xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 1fc88e5a2d5358c9a8ae9fc992b75d34ed360339)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/kexec.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/virtext.h>
51 #include <asm/vmx.h>
52 
53 #include "capabilities.h"
54 #include "cpuid.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 #include "smm.h"
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77 	{}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81 
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84 
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
87 
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
90 
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, S_IRUGO);
93 
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96 			enable_unrestricted_guest, bool, S_IRUGO);
97 
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
100 
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
103 
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, S_IRUGO);
106 
107 module_param(enable_apicv, bool, S_IRUGO);
108 
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111 
112 /*
113  * If nested=1, nested virtualization is supported, i.e., guests may use
114  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115  * use VMX instructions.
116  */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, S_IRUGO);
119 
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, S_IRUGO);
122 
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125 
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128 
129 #define MSR_BITMAP_MODE_X2APIC		1
130 #define MSR_BITMAP_MODE_X2APIC_APICV	2
131 
132 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
133 
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140 
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143 
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON				\
147 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148 
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152 
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154 
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158 	RTIT_STATUS_BYTECNT))
159 
160 /*
161  * List of MSRs that can be directly passed to the guest.
162  * In addition to these x2apic and PT MSRs are handled specially.
163  */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165 	MSR_IA32_SPEC_CTRL,
166 	MSR_IA32_PRED_CMD,
167 	MSR_IA32_FLUSH_CMD,
168 	MSR_IA32_TSC,
169 #ifdef CONFIG_X86_64
170 	MSR_FS_BASE,
171 	MSR_GS_BASE,
172 	MSR_KERNEL_GS_BASE,
173 	MSR_IA32_XFD,
174 	MSR_IA32_XFD_ERR,
175 #endif
176 	MSR_IA32_SYSENTER_CS,
177 	MSR_IA32_SYSENTER_ESP,
178 	MSR_IA32_SYSENTER_EIP,
179 	MSR_CORE_C1_RES,
180 	MSR_CORE_C3_RESIDENCY,
181 	MSR_CORE_C6_RESIDENCY,
182 	MSR_CORE_C7_RESIDENCY,
183 };
184 
185 /*
186  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
187  * ple_gap:    upper bound on the amount of time between two successive
188  *             executions of PAUSE in a loop. Also indicate if ple enabled.
189  *             According to test, this time is usually smaller than 128 cycles.
190  * ple_window: upper bound on the amount of time a guest is allowed to execute
191  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
192  *             less than 2^12 cycles
193  * Time is measured based on a counter that runs at the same rate as the TSC,
194  * refer SDM volume 3b section 21.6.13 & 22.1.3.
195  */
196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
197 module_param(ple_gap, uint, 0444);
198 
199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
200 module_param(ple_window, uint, 0444);
201 
202 /* Default doubles per-vcpu window every exit. */
203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
204 module_param(ple_window_grow, uint, 0444);
205 
206 /* Default resets per-vcpu window every exit to ple_window. */
207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
208 module_param(ple_window_shrink, uint, 0444);
209 
210 /* Default is to compute the maximum so we can never overflow. */
211 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
212 module_param(ple_window_max, uint, 0444);
213 
214 /* Default is SYSTEM mode, 1 for host-guest mode */
215 int __read_mostly pt_mode = PT_MODE_SYSTEM;
216 module_param(pt_mode, int, S_IRUGO);
217 
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
220 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
221 
222 /* Storage for pre module init parameter parsing */
223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
224 
225 static const struct {
226 	const char *option;
227 	bool for_parse;
228 } vmentry_l1d_param[] = {
229 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
230 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
231 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
232 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
233 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
234 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
235 };
236 
237 #define L1D_CACHE_ORDER 4
238 static void *vmx_l1d_flush_pages;
239 
240 /* Control for disabling CPU Fill buffer clear */
241 static bool __read_mostly vmx_fb_clear_ctrl_available;
242 
243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
244 {
245 	struct page *page;
246 	unsigned int i;
247 
248 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
249 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 		return 0;
251 	}
252 
253 	if (!enable_ept) {
254 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
255 		return 0;
256 	}
257 
258 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
259 		u64 msr;
260 
261 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
262 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
263 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
264 			return 0;
265 		}
266 	}
267 
268 	/* If set to auto use the default l1tf mitigation method */
269 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
270 		switch (l1tf_mitigation) {
271 		case L1TF_MITIGATION_OFF:
272 			l1tf = VMENTER_L1D_FLUSH_NEVER;
273 			break;
274 		case L1TF_MITIGATION_FLUSH_NOWARN:
275 		case L1TF_MITIGATION_FLUSH:
276 		case L1TF_MITIGATION_FLUSH_NOSMT:
277 			l1tf = VMENTER_L1D_FLUSH_COND;
278 			break;
279 		case L1TF_MITIGATION_FULL:
280 		case L1TF_MITIGATION_FULL_FORCE:
281 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
282 			break;
283 		}
284 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
285 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
286 	}
287 
288 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
289 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
290 		/*
291 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
292 		 * lifetime and so should not be charged to a memcg.
293 		 */
294 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
295 		if (!page)
296 			return -ENOMEM;
297 		vmx_l1d_flush_pages = page_address(page);
298 
299 		/*
300 		 * Initialize each page with a different pattern in
301 		 * order to protect against KSM in the nested
302 		 * virtualization case.
303 		 */
304 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
305 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
306 			       PAGE_SIZE);
307 		}
308 	}
309 
310 	l1tf_vmx_mitigation = l1tf;
311 
312 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
313 		static_branch_enable(&vmx_l1d_should_flush);
314 	else
315 		static_branch_disable(&vmx_l1d_should_flush);
316 
317 	if (l1tf == VMENTER_L1D_FLUSH_COND)
318 		static_branch_enable(&vmx_l1d_flush_cond);
319 	else
320 		static_branch_disable(&vmx_l1d_flush_cond);
321 	return 0;
322 }
323 
324 static int vmentry_l1d_flush_parse(const char *s)
325 {
326 	unsigned int i;
327 
328 	if (s) {
329 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
330 			if (vmentry_l1d_param[i].for_parse &&
331 			    sysfs_streq(s, vmentry_l1d_param[i].option))
332 				return i;
333 		}
334 	}
335 	return -EINVAL;
336 }
337 
338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
339 {
340 	int l1tf, ret;
341 
342 	l1tf = vmentry_l1d_flush_parse(s);
343 	if (l1tf < 0)
344 		return l1tf;
345 
346 	if (!boot_cpu_has(X86_BUG_L1TF))
347 		return 0;
348 
349 	/*
350 	 * Has vmx_init() run already? If not then this is the pre init
351 	 * parameter parsing. In that case just store the value and let
352 	 * vmx_init() do the proper setup after enable_ept has been
353 	 * established.
354 	 */
355 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
356 		vmentry_l1d_flush_param = l1tf;
357 		return 0;
358 	}
359 
360 	mutex_lock(&vmx_l1d_flush_mutex);
361 	ret = vmx_setup_l1d_flush(l1tf);
362 	mutex_unlock(&vmx_l1d_flush_mutex);
363 	return ret;
364 }
365 
366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
367 {
368 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
369 		return sprintf(s, "???\n");
370 
371 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
372 }
373 
374 static void vmx_setup_fb_clear_ctrl(void)
375 {
376 	u64 msr;
377 
378 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
379 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
380 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
381 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
382 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
383 			vmx_fb_clear_ctrl_available = true;
384 	}
385 }
386 
387 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
388 {
389 	u64 msr;
390 
391 	if (!vmx->disable_fb_clear)
392 		return;
393 
394 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
395 	msr |= FB_CLEAR_DIS;
396 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
397 	/* Cache the MSR value to avoid reading it later */
398 	vmx->msr_ia32_mcu_opt_ctrl = msr;
399 }
400 
401 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
402 {
403 	if (!vmx->disable_fb_clear)
404 		return;
405 
406 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
407 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
408 }
409 
410 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
411 {
412 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
413 
414 	/*
415 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
417 	 * execute VERW.
418 	 */
419 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425 		vmx->disable_fb_clear = false;
426 }
427 
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429 	.set = vmentry_l1d_flush_set,
430 	.get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433 
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435 
436 void vmx_vmexit(void);
437 
438 #define vmx_insn_failed(fmt...)		\
439 do {					\
440 	WARN_ONCE(1, fmt);		\
441 	pr_warn_ratelimited(fmt);	\
442 } while (0)
443 
444 void vmread_error(unsigned long field, bool fault)
445 {
446 	if (fault)
447 		kvm_spurious_fault();
448 	else
449 		vmx_insn_failed("vmread failed: field=%lx\n", field);
450 }
451 
452 noinline void vmwrite_error(unsigned long field, unsigned long value)
453 {
454 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
455 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
456 }
457 
458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
459 {
460 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
461 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
462 }
463 
464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
465 {
466 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
467 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
468 }
469 
470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
471 {
472 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
473 			ext, vpid, gva);
474 }
475 
476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
477 {
478 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
479 			ext, eptp, gpa);
480 }
481 
482 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
483 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
484 /*
485  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
486  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
487  */
488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
489 
490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
491 static DEFINE_SPINLOCK(vmx_vpid_lock);
492 
493 struct vmcs_config vmcs_config __ro_after_init;
494 struct vmx_capability vmx_capability __ro_after_init;
495 
496 #define VMX_SEGMENT_FIELD(seg)					\
497 	[VCPU_SREG_##seg] = {                                   \
498 		.selector = GUEST_##seg##_SELECTOR,		\
499 		.base = GUEST_##seg##_BASE,		   	\
500 		.limit = GUEST_##seg##_LIMIT,		   	\
501 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
502 	}
503 
504 static const struct kvm_vmx_segment_field {
505 	unsigned selector;
506 	unsigned base;
507 	unsigned limit;
508 	unsigned ar_bytes;
509 } kvm_vmx_segment_fields[] = {
510 	VMX_SEGMENT_FIELD(CS),
511 	VMX_SEGMENT_FIELD(DS),
512 	VMX_SEGMENT_FIELD(ES),
513 	VMX_SEGMENT_FIELD(FS),
514 	VMX_SEGMENT_FIELD(GS),
515 	VMX_SEGMENT_FIELD(SS),
516 	VMX_SEGMENT_FIELD(TR),
517 	VMX_SEGMENT_FIELD(LDTR),
518 };
519 
520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
521 {
522 	vmx->segment_cache.bitmask = 0;
523 }
524 
525 static unsigned long host_idt_base;
526 
527 #if IS_ENABLED(CONFIG_HYPERV)
528 static struct kvm_x86_ops vmx_x86_ops __initdata;
529 
530 static bool __read_mostly enlightened_vmcs = true;
531 module_param(enlightened_vmcs, bool, 0444);
532 
533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
534 {
535 	struct hv_enlightened_vmcs *evmcs;
536 	struct hv_partition_assist_pg **p_hv_pa_pg =
537 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
538 	/*
539 	 * Synthetic VM-Exit is not enabled in current code and so All
540 	 * evmcs in singe VM shares same assist page.
541 	 */
542 	if (!*p_hv_pa_pg)
543 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
544 
545 	if (!*p_hv_pa_pg)
546 		return -ENOMEM;
547 
548 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
549 
550 	evmcs->partition_assist_page =
551 		__pa(*p_hv_pa_pg);
552 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
553 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
554 
555 	return 0;
556 }
557 
558 static __init void hv_init_evmcs(void)
559 {
560 	int cpu;
561 
562 	if (!enlightened_vmcs)
563 		return;
564 
565 	/*
566 	 * Enlightened VMCS usage should be recommended and the host needs
567 	 * to support eVMCS v1 or above.
568 	 */
569 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
570 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
571 	     KVM_EVMCS_VERSION) {
572 
573 		/* Check that we have assist pages on all online CPUs */
574 		for_each_online_cpu(cpu) {
575 			if (!hv_get_vp_assist_page(cpu)) {
576 				enlightened_vmcs = false;
577 				break;
578 			}
579 		}
580 
581 		if (enlightened_vmcs) {
582 			pr_info("Using Hyper-V Enlightened VMCS\n");
583 			static_branch_enable(&__kvm_is_using_evmcs);
584 		}
585 
586 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
587 			vmx_x86_ops.enable_l2_tlb_flush
588 				= hv_enable_l2_tlb_flush;
589 
590 	} else {
591 		enlightened_vmcs = false;
592 	}
593 }
594 
595 static void hv_reset_evmcs(void)
596 {
597 	struct hv_vp_assist_page *vp_ap;
598 
599 	if (!kvm_is_using_evmcs())
600 		return;
601 
602 	/*
603 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
604 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
605 	 * doesn't have a VP assist page allocated.
606 	 */
607 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
608 	if (WARN_ON_ONCE(!vp_ap))
609 		return;
610 
611 	/*
612 	 * Reset everything to support using non-enlightened VMCS access later
613 	 * (e.g. when we reload the module with enlightened_vmcs=0)
614 	 */
615 	vp_ap->nested_control.features.directhypercall = 0;
616 	vp_ap->current_nested_vmcs = 0;
617 	vp_ap->enlighten_vmentry = 0;
618 }
619 
620 #else /* IS_ENABLED(CONFIG_HYPERV) */
621 static void hv_init_evmcs(void) {}
622 static void hv_reset_evmcs(void) {}
623 #endif /* IS_ENABLED(CONFIG_HYPERV) */
624 
625 /*
626  * Comment's format: document - errata name - stepping - processor name.
627  * Refer from
628  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
629  */
630 static u32 vmx_preemption_cpu_tfms[] = {
631 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
632 0x000206E6,
633 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
634 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
635 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
636 0x00020652,
637 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
638 0x00020655,
639 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
640 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
641 /*
642  * 320767.pdf - AAP86  - B1 -
643  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
644  */
645 0x000106E5,
646 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
647 0x000106A0,
648 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
649 0x000106A1,
650 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
651 0x000106A4,
652  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
653  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
654  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
655 0x000106A5,
656  /* Xeon E3-1220 V2 */
657 0x000306A8,
658 };
659 
660 static inline bool cpu_has_broken_vmx_preemption_timer(void)
661 {
662 	u32 eax = cpuid_eax(0x00000001), i;
663 
664 	/* Clear the reserved bits */
665 	eax &= ~(0x3U << 14 | 0xfU << 28);
666 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
667 		if (eax == vmx_preemption_cpu_tfms[i])
668 			return true;
669 
670 	return false;
671 }
672 
673 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
674 {
675 	return flexpriority_enabled && lapic_in_kernel(vcpu);
676 }
677 
678 static int possible_passthrough_msr_slot(u32 msr)
679 {
680 	u32 i;
681 
682 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
683 		if (vmx_possible_passthrough_msrs[i] == msr)
684 			return i;
685 
686 	return -ENOENT;
687 }
688 
689 static bool is_valid_passthrough_msr(u32 msr)
690 {
691 	bool r;
692 
693 	switch (msr) {
694 	case 0x800 ... 0x8ff:
695 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
696 		return true;
697 	case MSR_IA32_RTIT_STATUS:
698 	case MSR_IA32_RTIT_OUTPUT_BASE:
699 	case MSR_IA32_RTIT_OUTPUT_MASK:
700 	case MSR_IA32_RTIT_CR3_MATCH:
701 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
702 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
703 	case MSR_LBR_SELECT:
704 	case MSR_LBR_TOS:
705 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
706 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
707 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
708 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
709 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
710 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
711 		return true;
712 	}
713 
714 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
715 
716 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
717 
718 	return r;
719 }
720 
721 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
722 {
723 	int i;
724 
725 	i = kvm_find_user_return_msr(msr);
726 	if (i >= 0)
727 		return &vmx->guest_uret_msrs[i];
728 	return NULL;
729 }
730 
731 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
732 				  struct vmx_uret_msr *msr, u64 data)
733 {
734 	unsigned int slot = msr - vmx->guest_uret_msrs;
735 	int ret = 0;
736 
737 	if (msr->load_into_hardware) {
738 		preempt_disable();
739 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
740 		preempt_enable();
741 	}
742 	if (!ret)
743 		msr->data = data;
744 	return ret;
745 }
746 
747 #ifdef CONFIG_KEXEC_CORE
748 static void crash_vmclear_local_loaded_vmcss(void)
749 {
750 	int cpu = raw_smp_processor_id();
751 	struct loaded_vmcs *v;
752 
753 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
754 			    loaded_vmcss_on_cpu_link)
755 		vmcs_clear(v->vmcs);
756 }
757 #endif /* CONFIG_KEXEC_CORE */
758 
759 static void __loaded_vmcs_clear(void *arg)
760 {
761 	struct loaded_vmcs *loaded_vmcs = arg;
762 	int cpu = raw_smp_processor_id();
763 
764 	if (loaded_vmcs->cpu != cpu)
765 		return; /* vcpu migration can race with cpu offline */
766 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
767 		per_cpu(current_vmcs, cpu) = NULL;
768 
769 	vmcs_clear(loaded_vmcs->vmcs);
770 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
771 		vmcs_clear(loaded_vmcs->shadow_vmcs);
772 
773 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
774 
775 	/*
776 	 * Ensure all writes to loaded_vmcs, including deleting it from its
777 	 * current percpu list, complete before setting loaded_vmcs->cpu to
778 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
779 	 * and add loaded_vmcs to its percpu list before it's deleted from this
780 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
781 	 */
782 	smp_wmb();
783 
784 	loaded_vmcs->cpu = -1;
785 	loaded_vmcs->launched = 0;
786 }
787 
788 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
789 {
790 	int cpu = loaded_vmcs->cpu;
791 
792 	if (cpu != -1)
793 		smp_call_function_single(cpu,
794 			 __loaded_vmcs_clear, loaded_vmcs, 1);
795 }
796 
797 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
798 				       unsigned field)
799 {
800 	bool ret;
801 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
802 
803 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
804 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
805 		vmx->segment_cache.bitmask = 0;
806 	}
807 	ret = vmx->segment_cache.bitmask & mask;
808 	vmx->segment_cache.bitmask |= mask;
809 	return ret;
810 }
811 
812 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
813 {
814 	u16 *p = &vmx->segment_cache.seg[seg].selector;
815 
816 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
817 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
818 	return *p;
819 }
820 
821 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
822 {
823 	ulong *p = &vmx->segment_cache.seg[seg].base;
824 
825 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
826 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
827 	return *p;
828 }
829 
830 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
831 {
832 	u32 *p = &vmx->segment_cache.seg[seg].limit;
833 
834 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
835 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
836 	return *p;
837 }
838 
839 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
840 {
841 	u32 *p = &vmx->segment_cache.seg[seg].ar;
842 
843 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
844 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
845 	return *p;
846 }
847 
848 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
849 {
850 	u32 eb;
851 
852 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
853 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
854 	/*
855 	 * Guest access to VMware backdoor ports could legitimately
856 	 * trigger #GP because of TSS I/O permission bitmap.
857 	 * We intercept those #GP and allow access to them anyway
858 	 * as VMware does.
859 	 */
860 	if (enable_vmware_backdoor)
861 		eb |= (1u << GP_VECTOR);
862 	if ((vcpu->guest_debug &
863 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
864 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
865 		eb |= 1u << BP_VECTOR;
866 	if (to_vmx(vcpu)->rmode.vm86_active)
867 		eb = ~0;
868 	if (!vmx_need_pf_intercept(vcpu))
869 		eb &= ~(1u << PF_VECTOR);
870 
871 	/* When we are running a nested L2 guest and L1 specified for it a
872 	 * certain exception bitmap, we must trap the same exceptions and pass
873 	 * them to L1. When running L2, we will only handle the exceptions
874 	 * specified above if L1 did not want them.
875 	 */
876 	if (is_guest_mode(vcpu))
877 		eb |= get_vmcs12(vcpu)->exception_bitmap;
878 	else {
879 		int mask = 0, match = 0;
880 
881 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
882 			/*
883 			 * If EPT is enabled, #PF is currently only intercepted
884 			 * if MAXPHYADDR is smaller on the guest than on the
885 			 * host.  In that case we only care about present,
886 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
887 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
888 			 */
889 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
890 			match = PFERR_PRESENT_MASK;
891 		}
892 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
893 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
894 	}
895 
896 	/*
897 	 * Disabling xfd interception indicates that dynamic xfeatures
898 	 * might be used in the guest. Always trap #NM in this case
899 	 * to save guest xfd_err timely.
900 	 */
901 	if (vcpu->arch.xfd_no_write_intercept)
902 		eb |= (1u << NM_VECTOR);
903 
904 	vmcs_write32(EXCEPTION_BITMAP, eb);
905 }
906 
907 /*
908  * Check if MSR is intercepted for currently loaded MSR bitmap.
909  */
910 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
911 {
912 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
913 		return true;
914 
915 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
916 }
917 
918 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
919 {
920 	unsigned int flags = 0;
921 
922 	if (vmx->loaded_vmcs->launched)
923 		flags |= VMX_RUN_VMRESUME;
924 
925 	/*
926 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
927 	 * to change it directly without causing a vmexit.  In that case read
928 	 * it after vmexit and store it in vmx->spec_ctrl.
929 	 */
930 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
931 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
932 
933 	return flags;
934 }
935 
936 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
937 		unsigned long entry, unsigned long exit)
938 {
939 	vm_entry_controls_clearbit(vmx, entry);
940 	vm_exit_controls_clearbit(vmx, exit);
941 }
942 
943 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
944 {
945 	unsigned int i;
946 
947 	for (i = 0; i < m->nr; ++i) {
948 		if (m->val[i].index == msr)
949 			return i;
950 	}
951 	return -ENOENT;
952 }
953 
954 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
955 {
956 	int i;
957 	struct msr_autoload *m = &vmx->msr_autoload;
958 
959 	switch (msr) {
960 	case MSR_EFER:
961 		if (cpu_has_load_ia32_efer()) {
962 			clear_atomic_switch_msr_special(vmx,
963 					VM_ENTRY_LOAD_IA32_EFER,
964 					VM_EXIT_LOAD_IA32_EFER);
965 			return;
966 		}
967 		break;
968 	case MSR_CORE_PERF_GLOBAL_CTRL:
969 		if (cpu_has_load_perf_global_ctrl()) {
970 			clear_atomic_switch_msr_special(vmx,
971 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
972 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
973 			return;
974 		}
975 		break;
976 	}
977 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
978 	if (i < 0)
979 		goto skip_guest;
980 	--m->guest.nr;
981 	m->guest.val[i] = m->guest.val[m->guest.nr];
982 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
983 
984 skip_guest:
985 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
986 	if (i < 0)
987 		return;
988 
989 	--m->host.nr;
990 	m->host.val[i] = m->host.val[m->host.nr];
991 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
992 }
993 
994 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
995 		unsigned long entry, unsigned long exit,
996 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
997 		u64 guest_val, u64 host_val)
998 {
999 	vmcs_write64(guest_val_vmcs, guest_val);
1000 	if (host_val_vmcs != HOST_IA32_EFER)
1001 		vmcs_write64(host_val_vmcs, host_val);
1002 	vm_entry_controls_setbit(vmx, entry);
1003 	vm_exit_controls_setbit(vmx, exit);
1004 }
1005 
1006 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1007 				  u64 guest_val, u64 host_val, bool entry_only)
1008 {
1009 	int i, j = 0;
1010 	struct msr_autoload *m = &vmx->msr_autoload;
1011 
1012 	switch (msr) {
1013 	case MSR_EFER:
1014 		if (cpu_has_load_ia32_efer()) {
1015 			add_atomic_switch_msr_special(vmx,
1016 					VM_ENTRY_LOAD_IA32_EFER,
1017 					VM_EXIT_LOAD_IA32_EFER,
1018 					GUEST_IA32_EFER,
1019 					HOST_IA32_EFER,
1020 					guest_val, host_val);
1021 			return;
1022 		}
1023 		break;
1024 	case MSR_CORE_PERF_GLOBAL_CTRL:
1025 		if (cpu_has_load_perf_global_ctrl()) {
1026 			add_atomic_switch_msr_special(vmx,
1027 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1028 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1029 					GUEST_IA32_PERF_GLOBAL_CTRL,
1030 					HOST_IA32_PERF_GLOBAL_CTRL,
1031 					guest_val, host_val);
1032 			return;
1033 		}
1034 		break;
1035 	case MSR_IA32_PEBS_ENABLE:
1036 		/* PEBS needs a quiescent period after being disabled (to write
1037 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1038 		 * provide that period, so a CPU could write host's record into
1039 		 * guest's memory.
1040 		 */
1041 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1042 	}
1043 
1044 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1045 	if (!entry_only)
1046 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1047 
1048 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1049 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1050 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1051 				"Can't add msr %x\n", msr);
1052 		return;
1053 	}
1054 	if (i < 0) {
1055 		i = m->guest.nr++;
1056 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1057 	}
1058 	m->guest.val[i].index = msr;
1059 	m->guest.val[i].value = guest_val;
1060 
1061 	if (entry_only)
1062 		return;
1063 
1064 	if (j < 0) {
1065 		j = m->host.nr++;
1066 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1067 	}
1068 	m->host.val[j].index = msr;
1069 	m->host.val[j].value = host_val;
1070 }
1071 
1072 static bool update_transition_efer(struct vcpu_vmx *vmx)
1073 {
1074 	u64 guest_efer = vmx->vcpu.arch.efer;
1075 	u64 ignore_bits = 0;
1076 	int i;
1077 
1078 	/* Shadow paging assumes NX to be available.  */
1079 	if (!enable_ept)
1080 		guest_efer |= EFER_NX;
1081 
1082 	/*
1083 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1084 	 */
1085 	ignore_bits |= EFER_SCE;
1086 #ifdef CONFIG_X86_64
1087 	ignore_bits |= EFER_LMA | EFER_LME;
1088 	/* SCE is meaningful only in long mode on Intel */
1089 	if (guest_efer & EFER_LMA)
1090 		ignore_bits &= ~(u64)EFER_SCE;
1091 #endif
1092 
1093 	/*
1094 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1095 	 * On CPUs that support "load IA32_EFER", always switch EFER
1096 	 * atomically, since it's faster than switching it manually.
1097 	 */
1098 	if (cpu_has_load_ia32_efer() ||
1099 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1100 		if (!(guest_efer & EFER_LMA))
1101 			guest_efer &= ~EFER_LME;
1102 		if (guest_efer != host_efer)
1103 			add_atomic_switch_msr(vmx, MSR_EFER,
1104 					      guest_efer, host_efer, false);
1105 		else
1106 			clear_atomic_switch_msr(vmx, MSR_EFER);
1107 		return false;
1108 	}
1109 
1110 	i = kvm_find_user_return_msr(MSR_EFER);
1111 	if (i < 0)
1112 		return false;
1113 
1114 	clear_atomic_switch_msr(vmx, MSR_EFER);
1115 
1116 	guest_efer &= ~ignore_bits;
1117 	guest_efer |= host_efer & ignore_bits;
1118 
1119 	vmx->guest_uret_msrs[i].data = guest_efer;
1120 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1121 
1122 	return true;
1123 }
1124 
1125 #ifdef CONFIG_X86_32
1126 /*
1127  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1128  * VMCS rather than the segment table.  KVM uses this helper to figure
1129  * out the current bases to poke them into the VMCS before entry.
1130  */
1131 static unsigned long segment_base(u16 selector)
1132 {
1133 	struct desc_struct *table;
1134 	unsigned long v;
1135 
1136 	if (!(selector & ~SEGMENT_RPL_MASK))
1137 		return 0;
1138 
1139 	table = get_current_gdt_ro();
1140 
1141 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1142 		u16 ldt_selector = kvm_read_ldt();
1143 
1144 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1145 			return 0;
1146 
1147 		table = (struct desc_struct *)segment_base(ldt_selector);
1148 	}
1149 	v = get_desc_base(&table[selector >> 3]);
1150 	return v;
1151 }
1152 #endif
1153 
1154 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1155 {
1156 	return vmx_pt_mode_is_host_guest() &&
1157 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1158 }
1159 
1160 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1161 {
1162 	/* The base must be 128-byte aligned and a legal physical address. */
1163 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1164 }
1165 
1166 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1167 {
1168 	u32 i;
1169 
1170 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1171 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1172 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1173 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1174 	for (i = 0; i < addr_range; i++) {
1175 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1176 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1177 	}
1178 }
1179 
1180 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1181 {
1182 	u32 i;
1183 
1184 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1185 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1186 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1187 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1188 	for (i = 0; i < addr_range; i++) {
1189 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1190 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1191 	}
1192 }
1193 
1194 static void pt_guest_enter(struct vcpu_vmx *vmx)
1195 {
1196 	if (vmx_pt_mode_is_system())
1197 		return;
1198 
1199 	/*
1200 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1201 	 * Save host state before VM entry.
1202 	 */
1203 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1204 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1205 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1206 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1207 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1208 	}
1209 }
1210 
1211 static void pt_guest_exit(struct vcpu_vmx *vmx)
1212 {
1213 	if (vmx_pt_mode_is_system())
1214 		return;
1215 
1216 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1217 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1218 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1219 	}
1220 
1221 	/*
1222 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1223 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1224 	 */
1225 	if (vmx->pt_desc.host.ctl)
1226 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1227 }
1228 
1229 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1230 			unsigned long fs_base, unsigned long gs_base)
1231 {
1232 	if (unlikely(fs_sel != host->fs_sel)) {
1233 		if (!(fs_sel & 7))
1234 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1235 		else
1236 			vmcs_write16(HOST_FS_SELECTOR, 0);
1237 		host->fs_sel = fs_sel;
1238 	}
1239 	if (unlikely(gs_sel != host->gs_sel)) {
1240 		if (!(gs_sel & 7))
1241 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1242 		else
1243 			vmcs_write16(HOST_GS_SELECTOR, 0);
1244 		host->gs_sel = gs_sel;
1245 	}
1246 	if (unlikely(fs_base != host->fs_base)) {
1247 		vmcs_writel(HOST_FS_BASE, fs_base);
1248 		host->fs_base = fs_base;
1249 	}
1250 	if (unlikely(gs_base != host->gs_base)) {
1251 		vmcs_writel(HOST_GS_BASE, gs_base);
1252 		host->gs_base = gs_base;
1253 	}
1254 }
1255 
1256 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1257 {
1258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1259 	struct vmcs_host_state *host_state;
1260 #ifdef CONFIG_X86_64
1261 	int cpu = raw_smp_processor_id();
1262 #endif
1263 	unsigned long fs_base, gs_base;
1264 	u16 fs_sel, gs_sel;
1265 	int i;
1266 
1267 	vmx->req_immediate_exit = false;
1268 
1269 	/*
1270 	 * Note that guest MSRs to be saved/restored can also be changed
1271 	 * when guest state is loaded. This happens when guest transitions
1272 	 * to/from long-mode by setting MSR_EFER.LMA.
1273 	 */
1274 	if (!vmx->guest_uret_msrs_loaded) {
1275 		vmx->guest_uret_msrs_loaded = true;
1276 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1277 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1278 				continue;
1279 
1280 			kvm_set_user_return_msr(i,
1281 						vmx->guest_uret_msrs[i].data,
1282 						vmx->guest_uret_msrs[i].mask);
1283 		}
1284 	}
1285 
1286 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1287 		nested_sync_vmcs12_to_shadow(vcpu);
1288 
1289 	if (vmx->guest_state_loaded)
1290 		return;
1291 
1292 	host_state = &vmx->loaded_vmcs->host_state;
1293 
1294 	/*
1295 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1296 	 * allow segment selectors with cpl > 0 or ti == 1.
1297 	 */
1298 	host_state->ldt_sel = kvm_read_ldt();
1299 
1300 #ifdef CONFIG_X86_64
1301 	savesegment(ds, host_state->ds_sel);
1302 	savesegment(es, host_state->es_sel);
1303 
1304 	gs_base = cpu_kernelmode_gs_base(cpu);
1305 	if (likely(is_64bit_mm(current->mm))) {
1306 		current_save_fsgs();
1307 		fs_sel = current->thread.fsindex;
1308 		gs_sel = current->thread.gsindex;
1309 		fs_base = current->thread.fsbase;
1310 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1311 	} else {
1312 		savesegment(fs, fs_sel);
1313 		savesegment(gs, gs_sel);
1314 		fs_base = read_msr(MSR_FS_BASE);
1315 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1316 	}
1317 
1318 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1319 #else
1320 	savesegment(fs, fs_sel);
1321 	savesegment(gs, gs_sel);
1322 	fs_base = segment_base(fs_sel);
1323 	gs_base = segment_base(gs_sel);
1324 #endif
1325 
1326 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1327 	vmx->guest_state_loaded = true;
1328 }
1329 
1330 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1331 {
1332 	struct vmcs_host_state *host_state;
1333 
1334 	if (!vmx->guest_state_loaded)
1335 		return;
1336 
1337 	host_state = &vmx->loaded_vmcs->host_state;
1338 
1339 	++vmx->vcpu.stat.host_state_reload;
1340 
1341 #ifdef CONFIG_X86_64
1342 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1343 #endif
1344 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1345 		kvm_load_ldt(host_state->ldt_sel);
1346 #ifdef CONFIG_X86_64
1347 		load_gs_index(host_state->gs_sel);
1348 #else
1349 		loadsegment(gs, host_state->gs_sel);
1350 #endif
1351 	}
1352 	if (host_state->fs_sel & 7)
1353 		loadsegment(fs, host_state->fs_sel);
1354 #ifdef CONFIG_X86_64
1355 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1356 		loadsegment(ds, host_state->ds_sel);
1357 		loadsegment(es, host_state->es_sel);
1358 	}
1359 #endif
1360 	invalidate_tss_limit();
1361 #ifdef CONFIG_X86_64
1362 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1363 #endif
1364 	load_fixmap_gdt(raw_smp_processor_id());
1365 	vmx->guest_state_loaded = false;
1366 	vmx->guest_uret_msrs_loaded = false;
1367 }
1368 
1369 #ifdef CONFIG_X86_64
1370 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1371 {
1372 	preempt_disable();
1373 	if (vmx->guest_state_loaded)
1374 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1375 	preempt_enable();
1376 	return vmx->msr_guest_kernel_gs_base;
1377 }
1378 
1379 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1380 {
1381 	preempt_disable();
1382 	if (vmx->guest_state_loaded)
1383 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1384 	preempt_enable();
1385 	vmx->msr_guest_kernel_gs_base = data;
1386 }
1387 #endif
1388 
1389 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1390 			struct loaded_vmcs *buddy)
1391 {
1392 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1393 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1394 	struct vmcs *prev;
1395 
1396 	if (!already_loaded) {
1397 		loaded_vmcs_clear(vmx->loaded_vmcs);
1398 		local_irq_disable();
1399 
1400 		/*
1401 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1402 		 * this cpu's percpu list, otherwise it may not yet be deleted
1403 		 * from its previous cpu's percpu list.  Pairs with the
1404 		 * smb_wmb() in __loaded_vmcs_clear().
1405 		 */
1406 		smp_rmb();
1407 
1408 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1409 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1410 		local_irq_enable();
1411 	}
1412 
1413 	prev = per_cpu(current_vmcs, cpu);
1414 	if (prev != vmx->loaded_vmcs->vmcs) {
1415 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1416 		vmcs_load(vmx->loaded_vmcs->vmcs);
1417 
1418 		/*
1419 		 * No indirect branch prediction barrier needed when switching
1420 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1421 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1422 		 * performs IBPB on nested VM-Exit (a single nested transition
1423 		 * may switch the active VMCS multiple times).
1424 		 */
1425 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1426 			indirect_branch_prediction_barrier();
1427 	}
1428 
1429 	if (!already_loaded) {
1430 		void *gdt = get_current_gdt_ro();
1431 
1432 		/*
1433 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1434 		 * TLB entries from its previous association with the vCPU.
1435 		 */
1436 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1437 
1438 		/*
1439 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1440 		 * processors.  See 22.2.4.
1441 		 */
1442 		vmcs_writel(HOST_TR_BASE,
1443 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1444 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1445 
1446 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1447 			/* 22.2.3 */
1448 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1449 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1450 		}
1451 
1452 		vmx->loaded_vmcs->cpu = cpu;
1453 	}
1454 }
1455 
1456 /*
1457  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1458  * vcpu mutex is already taken.
1459  */
1460 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1461 {
1462 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1463 
1464 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1465 
1466 	vmx_vcpu_pi_load(vcpu, cpu);
1467 
1468 	vmx->host_debugctlmsr = get_debugctlmsr();
1469 }
1470 
1471 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1472 {
1473 	vmx_vcpu_pi_put(vcpu);
1474 
1475 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1476 }
1477 
1478 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1479 {
1480 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1481 }
1482 
1483 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1484 {
1485 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1486 	unsigned long rflags, save_rflags;
1487 
1488 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1489 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1490 		rflags = vmcs_readl(GUEST_RFLAGS);
1491 		if (vmx->rmode.vm86_active) {
1492 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1493 			save_rflags = vmx->rmode.save_rflags;
1494 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1495 		}
1496 		vmx->rflags = rflags;
1497 	}
1498 	return vmx->rflags;
1499 }
1500 
1501 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1502 {
1503 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1504 	unsigned long old_rflags;
1505 
1506 	if (is_unrestricted_guest(vcpu)) {
1507 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1508 		vmx->rflags = rflags;
1509 		vmcs_writel(GUEST_RFLAGS, rflags);
1510 		return;
1511 	}
1512 
1513 	old_rflags = vmx_get_rflags(vcpu);
1514 	vmx->rflags = rflags;
1515 	if (vmx->rmode.vm86_active) {
1516 		vmx->rmode.save_rflags = rflags;
1517 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1518 	}
1519 	vmcs_writel(GUEST_RFLAGS, rflags);
1520 
1521 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1522 		vmx->emulation_required = vmx_emulation_required(vcpu);
1523 }
1524 
1525 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1526 {
1527 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1528 }
1529 
1530 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1531 {
1532 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1533 	int ret = 0;
1534 
1535 	if (interruptibility & GUEST_INTR_STATE_STI)
1536 		ret |= KVM_X86_SHADOW_INT_STI;
1537 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1538 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1539 
1540 	return ret;
1541 }
1542 
1543 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1544 {
1545 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1546 	u32 interruptibility = interruptibility_old;
1547 
1548 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1549 
1550 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1551 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1552 	else if (mask & KVM_X86_SHADOW_INT_STI)
1553 		interruptibility |= GUEST_INTR_STATE_STI;
1554 
1555 	if ((interruptibility != interruptibility_old))
1556 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1557 }
1558 
1559 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1560 {
1561 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1562 	unsigned long value;
1563 
1564 	/*
1565 	 * Any MSR write that attempts to change bits marked reserved will
1566 	 * case a #GP fault.
1567 	 */
1568 	if (data & vmx->pt_desc.ctl_bitmask)
1569 		return 1;
1570 
1571 	/*
1572 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1573 	 * result in a #GP unless the same write also clears TraceEn.
1574 	 */
1575 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1576 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1577 		return 1;
1578 
1579 	/*
1580 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1581 	 * and FabricEn would cause #GP, if
1582 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1583 	 */
1584 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1585 		!(data & RTIT_CTL_FABRIC_EN) &&
1586 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1587 					PT_CAP_single_range_output))
1588 		return 1;
1589 
1590 	/*
1591 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1592 	 * utilize encodings marked reserved will cause a #GP fault.
1593 	 */
1594 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1595 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1596 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1597 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1598 		return 1;
1599 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1600 						PT_CAP_cycle_thresholds);
1601 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1602 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1603 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1604 		return 1;
1605 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1606 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1607 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1608 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1609 		return 1;
1610 
1611 	/*
1612 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1613 	 * cause a #GP fault.
1614 	 */
1615 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1616 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1617 		return 1;
1618 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1619 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1620 		return 1;
1621 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1622 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1623 		return 1;
1624 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1625 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1632 					void *insn, int insn_len)
1633 {
1634 	/*
1635 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1636 	 * not point at the failing instruction, and even if it did, the code
1637 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1638 	 * so that guest userspace can't DoS the guest simply by triggering
1639 	 * emulation (enclaves are CPL3 only).
1640 	 */
1641 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1642 		kvm_queue_exception(vcpu, UD_VECTOR);
1643 		return false;
1644 	}
1645 	return true;
1646 }
1647 
1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1649 {
1650 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1651 	unsigned long rip, orig_rip;
1652 	u32 instr_len;
1653 
1654 	/*
1655 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1656 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1657 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1658 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1659 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1660 	 * i.e. we end up advancing IP with some random value.
1661 	 */
1662 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1663 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1664 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1665 
1666 		/*
1667 		 * Emulating an enclave's instructions isn't supported as KVM
1668 		 * cannot access the enclave's memory or its true RIP, e.g. the
1669 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1670 		 * the RIP that actually triggered the VM-Exit.  But, because
1671 		 * most instructions that cause VM-Exit will #UD in an enclave,
1672 		 * most instruction-based VM-Exits simply do not occur.
1673 		 *
1674 		 * There are a few exceptions, notably the debug instructions
1675 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1676 		 * and generate #DB/#BP as expected, which KVM might intercept.
1677 		 * But again, the CPU does the dirty work and saves an instr
1678 		 * length of zero so VMMs don't shoot themselves in the foot.
1679 		 * WARN if KVM tries to skip a non-zero length instruction on
1680 		 * a VM-Exit from an enclave.
1681 		 */
1682 		if (!instr_len)
1683 			goto rip_updated;
1684 
1685 		WARN_ONCE(exit_reason.enclave_mode,
1686 			  "skipping instruction after SGX enclave VM-Exit");
1687 
1688 		orig_rip = kvm_rip_read(vcpu);
1689 		rip = orig_rip + instr_len;
1690 #ifdef CONFIG_X86_64
1691 		/*
1692 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1693 		 * mode, but just finding out that we are in 64-bit mode is
1694 		 * quite expensive.  Only do it if there was a carry.
1695 		 */
1696 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1697 			rip = (u32)rip;
1698 #endif
1699 		kvm_rip_write(vcpu, rip);
1700 	} else {
1701 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1702 			return 0;
1703 	}
1704 
1705 rip_updated:
1706 	/* skipping an emulated instruction also counts */
1707 	vmx_set_interrupt_shadow(vcpu, 0);
1708 
1709 	return 1;
1710 }
1711 
1712 /*
1713  * Recognizes a pending MTF VM-exit and records the nested state for later
1714  * delivery.
1715  */
1716 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1717 {
1718 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1719 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1720 
1721 	if (!is_guest_mode(vcpu))
1722 		return;
1723 
1724 	/*
1725 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1726 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1727 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1728 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1729 	 * as ICEBP is higher priority than both.  As instruction emulation is
1730 	 * completed at this point (i.e. KVM is at the instruction boundary),
1731 	 * any #DB exception pending delivery must be a debug-trap of lower
1732 	 * priority than MTF.  Record the pending MTF state to be delivered in
1733 	 * vmx_check_nested_events().
1734 	 */
1735 	if (nested_cpu_has_mtf(vmcs12) &&
1736 	    (!vcpu->arch.exception.pending ||
1737 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1738 	    (!vcpu->arch.exception_vmexit.pending ||
1739 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1740 		vmx->nested.mtf_pending = true;
1741 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1742 	} else {
1743 		vmx->nested.mtf_pending = false;
1744 	}
1745 }
1746 
1747 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1748 {
1749 	vmx_update_emulated_instruction(vcpu);
1750 	return skip_emulated_instruction(vcpu);
1751 }
1752 
1753 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1754 {
1755 	/*
1756 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1757 	 * explicitly skip the instruction because if the HLT state is set,
1758 	 * then the instruction is already executing and RIP has already been
1759 	 * advanced.
1760 	 */
1761 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1762 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1763 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1764 }
1765 
1766 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1767 {
1768 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1769 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1770 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1771 
1772 	kvm_deliver_exception_payload(vcpu, ex);
1773 
1774 	if (ex->has_error_code) {
1775 		/*
1776 		 * Despite the error code being architecturally defined as 32
1777 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1778 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1779 		 * will (should) never provide a bogus error code, but AMD CPUs
1780 		 * do generate error codes with bits 31:16 set, and so KVM's
1781 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1782 		 * the upper bits to avoid VM-Fail, losing information that
1783 		 * does't really exist is preferable to killing the VM.
1784 		 */
1785 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1786 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1787 	}
1788 
1789 	if (vmx->rmode.vm86_active) {
1790 		int inc_eip = 0;
1791 		if (kvm_exception_is_soft(ex->vector))
1792 			inc_eip = vcpu->arch.event_exit_inst_len;
1793 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1794 		return;
1795 	}
1796 
1797 	WARN_ON_ONCE(vmx->emulation_required);
1798 
1799 	if (kvm_exception_is_soft(ex->vector)) {
1800 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1801 			     vmx->vcpu.arch.event_exit_inst_len);
1802 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1803 	} else
1804 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1805 
1806 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1807 
1808 	vmx_clear_hlt(vcpu);
1809 }
1810 
1811 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1812 			       bool load_into_hardware)
1813 {
1814 	struct vmx_uret_msr *uret_msr;
1815 
1816 	uret_msr = vmx_find_uret_msr(vmx, msr);
1817 	if (!uret_msr)
1818 		return;
1819 
1820 	uret_msr->load_into_hardware = load_into_hardware;
1821 }
1822 
1823 /*
1824  * Configuring user return MSRs to automatically save, load, and restore MSRs
1825  * that need to be shoved into hardware when running the guest.  Note, omitting
1826  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1827  * loaded into hardware when running the guest.
1828  */
1829 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1830 {
1831 #ifdef CONFIG_X86_64
1832 	bool load_syscall_msrs;
1833 
1834 	/*
1835 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1836 	 * when EFER.SCE is set.
1837 	 */
1838 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1839 			    (vmx->vcpu.arch.efer & EFER_SCE);
1840 
1841 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1842 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1843 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1844 #endif
1845 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1846 
1847 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1848 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1849 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1850 
1851 	/*
1852 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1853 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1854 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1855 	 * so that TSX remains always disabled.
1856 	 */
1857 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1858 
1859 	/*
1860 	 * The set of MSRs to load may have changed, reload MSRs before the
1861 	 * next VM-Enter.
1862 	 */
1863 	vmx->guest_uret_msrs_loaded = false;
1864 }
1865 
1866 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1867 {
1868 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1869 
1870 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1871 		return vmcs12->tsc_offset;
1872 
1873 	return 0;
1874 }
1875 
1876 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1877 {
1878 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1879 
1880 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1881 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1882 		return vmcs12->tsc_multiplier;
1883 
1884 	return kvm_caps.default_tsc_scaling_ratio;
1885 }
1886 
1887 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1888 {
1889 	vmcs_write64(TSC_OFFSET, offset);
1890 }
1891 
1892 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1893 {
1894 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1895 }
1896 
1897 /*
1898  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1899  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1900  * all guests if the "nested" module option is off, and can also be disabled
1901  * for a single guest by disabling its VMX cpuid bit.
1902  */
1903 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1904 {
1905 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1906 }
1907 
1908 /*
1909  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1910  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1911  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1912  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1913  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1914  */
1915 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1916 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1917 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1918 					FEAT_CTL_SGX_LC_ENABLED		 | \
1919 					FEAT_CTL_SGX_ENABLED		 | \
1920 					FEAT_CTL_LMCE_ENABLED)
1921 
1922 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1923 						    struct msr_data *msr)
1924 {
1925 	uint64_t valid_bits;
1926 
1927 	/*
1928 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1929 	 * exposed to the guest.
1930 	 */
1931 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1932 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1933 
1934 	if (!msr->host_initiated &&
1935 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1936 		return false;
1937 
1938 	if (msr->host_initiated)
1939 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1940 	else
1941 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1942 
1943 	return !(msr->data & ~valid_bits);
1944 }
1945 
1946 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1947 {
1948 	switch (msr->index) {
1949 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1950 		if (!nested)
1951 			return 1;
1952 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1953 	default:
1954 		return KVM_MSR_RET_INVALID;
1955 	}
1956 }
1957 
1958 /*
1959  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1960  * Returns 0 on success, non-0 otherwise.
1961  * Assumes vcpu_load() was already called.
1962  */
1963 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1964 {
1965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1966 	struct vmx_uret_msr *msr;
1967 	u32 index;
1968 
1969 	switch (msr_info->index) {
1970 #ifdef CONFIG_X86_64
1971 	case MSR_FS_BASE:
1972 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1973 		break;
1974 	case MSR_GS_BASE:
1975 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1976 		break;
1977 	case MSR_KERNEL_GS_BASE:
1978 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1979 		break;
1980 #endif
1981 	case MSR_EFER:
1982 		return kvm_get_msr_common(vcpu, msr_info);
1983 	case MSR_IA32_TSX_CTRL:
1984 		if (!msr_info->host_initiated &&
1985 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1986 			return 1;
1987 		goto find_uret_msr;
1988 	case MSR_IA32_UMWAIT_CONTROL:
1989 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1990 			return 1;
1991 
1992 		msr_info->data = vmx->msr_ia32_umwait_control;
1993 		break;
1994 	case MSR_IA32_SPEC_CTRL:
1995 		if (!msr_info->host_initiated &&
1996 		    !guest_has_spec_ctrl_msr(vcpu))
1997 			return 1;
1998 
1999 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2000 		break;
2001 	case MSR_IA32_SYSENTER_CS:
2002 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2003 		break;
2004 	case MSR_IA32_SYSENTER_EIP:
2005 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2006 		break;
2007 	case MSR_IA32_SYSENTER_ESP:
2008 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2009 		break;
2010 	case MSR_IA32_BNDCFGS:
2011 		if (!kvm_mpx_supported() ||
2012 		    (!msr_info->host_initiated &&
2013 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2014 			return 1;
2015 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2016 		break;
2017 	case MSR_IA32_MCG_EXT_CTL:
2018 		if (!msr_info->host_initiated &&
2019 		    !(vmx->msr_ia32_feature_control &
2020 		      FEAT_CTL_LMCE_ENABLED))
2021 			return 1;
2022 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2023 		break;
2024 	case MSR_IA32_FEAT_CTL:
2025 		msr_info->data = vmx->msr_ia32_feature_control;
2026 		break;
2027 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2028 		if (!msr_info->host_initiated &&
2029 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2030 			return 1;
2031 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2032 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2033 		break;
2034 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2035 		if (!nested_vmx_allowed(vcpu))
2036 			return 1;
2037 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2038 				    &msr_info->data))
2039 			return 1;
2040 		/*
2041 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2042 		 * instead of just ignoring the features, different Hyper-V
2043 		 * versions are either trying to use them and fail or do some
2044 		 * sanity checking and refuse to boot. Filter all unsupported
2045 		 * features out.
2046 		 */
2047 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2048 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2049 							&msr_info->data);
2050 		break;
2051 	case MSR_IA32_RTIT_CTL:
2052 		if (!vmx_pt_mode_is_host_guest())
2053 			return 1;
2054 		msr_info->data = vmx->pt_desc.guest.ctl;
2055 		break;
2056 	case MSR_IA32_RTIT_STATUS:
2057 		if (!vmx_pt_mode_is_host_guest())
2058 			return 1;
2059 		msr_info->data = vmx->pt_desc.guest.status;
2060 		break;
2061 	case MSR_IA32_RTIT_CR3_MATCH:
2062 		if (!vmx_pt_mode_is_host_guest() ||
2063 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2064 						PT_CAP_cr3_filtering))
2065 			return 1;
2066 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2067 		break;
2068 	case MSR_IA32_RTIT_OUTPUT_BASE:
2069 		if (!vmx_pt_mode_is_host_guest() ||
2070 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2071 					PT_CAP_topa_output) &&
2072 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2073 					PT_CAP_single_range_output)))
2074 			return 1;
2075 		msr_info->data = vmx->pt_desc.guest.output_base;
2076 		break;
2077 	case MSR_IA32_RTIT_OUTPUT_MASK:
2078 		if (!vmx_pt_mode_is_host_guest() ||
2079 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2080 					PT_CAP_topa_output) &&
2081 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2082 					PT_CAP_single_range_output)))
2083 			return 1;
2084 		msr_info->data = vmx->pt_desc.guest.output_mask;
2085 		break;
2086 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2087 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2088 		if (!vmx_pt_mode_is_host_guest() ||
2089 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2090 			return 1;
2091 		if (index % 2)
2092 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2093 		else
2094 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2095 		break;
2096 	case MSR_IA32_DEBUGCTLMSR:
2097 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2098 		break;
2099 	default:
2100 	find_uret_msr:
2101 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2102 		if (msr) {
2103 			msr_info->data = msr->data;
2104 			break;
2105 		}
2106 		return kvm_get_msr_common(vcpu, msr_info);
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2113 						    u64 data)
2114 {
2115 #ifdef CONFIG_X86_64
2116 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2117 		return (u32)data;
2118 #endif
2119 	return (unsigned long)data;
2120 }
2121 
2122 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2123 {
2124 	u64 debugctl = 0;
2125 
2126 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2127 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2128 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2129 
2130 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2131 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2132 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2133 
2134 	return debugctl;
2135 }
2136 
2137 /*
2138  * Writes msr value into the appropriate "register".
2139  * Returns 0 on success, non-0 otherwise.
2140  * Assumes vcpu_load() was already called.
2141  */
2142 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2143 {
2144 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2145 	struct vmx_uret_msr *msr;
2146 	int ret = 0;
2147 	u32 msr_index = msr_info->index;
2148 	u64 data = msr_info->data;
2149 	u32 index;
2150 
2151 	switch (msr_index) {
2152 	case MSR_EFER:
2153 		ret = kvm_set_msr_common(vcpu, msr_info);
2154 		break;
2155 #ifdef CONFIG_X86_64
2156 	case MSR_FS_BASE:
2157 		vmx_segment_cache_clear(vmx);
2158 		vmcs_writel(GUEST_FS_BASE, data);
2159 		break;
2160 	case MSR_GS_BASE:
2161 		vmx_segment_cache_clear(vmx);
2162 		vmcs_writel(GUEST_GS_BASE, data);
2163 		break;
2164 	case MSR_KERNEL_GS_BASE:
2165 		vmx_write_guest_kernel_gs_base(vmx, data);
2166 		break;
2167 	case MSR_IA32_XFD:
2168 		ret = kvm_set_msr_common(vcpu, msr_info);
2169 		/*
2170 		 * Always intercepting WRMSR could incur non-negligible
2171 		 * overhead given xfd might be changed frequently in
2172 		 * guest context switch. Disable write interception
2173 		 * upon the first write with a non-zero value (indicating
2174 		 * potential usage on dynamic xfeatures). Also update
2175 		 * exception bitmap to trap #NM for proper virtualization
2176 		 * of guest xfd_err.
2177 		 */
2178 		if (!ret && data) {
2179 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2180 						      MSR_TYPE_RW);
2181 			vcpu->arch.xfd_no_write_intercept = true;
2182 			vmx_update_exception_bitmap(vcpu);
2183 		}
2184 		break;
2185 #endif
2186 	case MSR_IA32_SYSENTER_CS:
2187 		if (is_guest_mode(vcpu))
2188 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2189 		vmcs_write32(GUEST_SYSENTER_CS, data);
2190 		break;
2191 	case MSR_IA32_SYSENTER_EIP:
2192 		if (is_guest_mode(vcpu)) {
2193 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2194 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2195 		}
2196 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2197 		break;
2198 	case MSR_IA32_SYSENTER_ESP:
2199 		if (is_guest_mode(vcpu)) {
2200 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2201 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2202 		}
2203 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2204 		break;
2205 	case MSR_IA32_DEBUGCTLMSR: {
2206 		u64 invalid;
2207 
2208 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2209 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2210 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2211 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2212 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2213 		}
2214 
2215 		if (invalid)
2216 			return 1;
2217 
2218 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2219 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2220 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2221 
2222 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2223 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2224 		    (data & DEBUGCTLMSR_LBR))
2225 			intel_pmu_create_guest_lbr_event(vcpu);
2226 		return 0;
2227 	}
2228 	case MSR_IA32_BNDCFGS:
2229 		if (!kvm_mpx_supported() ||
2230 		    (!msr_info->host_initiated &&
2231 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2232 			return 1;
2233 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2234 		    (data & MSR_IA32_BNDCFGS_RSVD))
2235 			return 1;
2236 
2237 		if (is_guest_mode(vcpu) &&
2238 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2239 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2240 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2241 
2242 		vmcs_write64(GUEST_BNDCFGS, data);
2243 		break;
2244 	case MSR_IA32_UMWAIT_CONTROL:
2245 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2246 			return 1;
2247 
2248 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2249 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2250 			return 1;
2251 
2252 		vmx->msr_ia32_umwait_control = data;
2253 		break;
2254 	case MSR_IA32_SPEC_CTRL:
2255 		if (!msr_info->host_initiated &&
2256 		    !guest_has_spec_ctrl_msr(vcpu))
2257 			return 1;
2258 
2259 		if (kvm_spec_ctrl_test_value(data))
2260 			return 1;
2261 
2262 		vmx->spec_ctrl = data;
2263 		if (!data)
2264 			break;
2265 
2266 		/*
2267 		 * For non-nested:
2268 		 * When it's written (to non-zero) for the first time, pass
2269 		 * it through.
2270 		 *
2271 		 * For nested:
2272 		 * The handling of the MSR bitmap for L2 guests is done in
2273 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2274 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2275 		 * in the merging. We update the vmcs01 here for L1 as well
2276 		 * since it will end up touching the MSR anyway now.
2277 		 */
2278 		vmx_disable_intercept_for_msr(vcpu,
2279 					      MSR_IA32_SPEC_CTRL,
2280 					      MSR_TYPE_RW);
2281 		break;
2282 	case MSR_IA32_TSX_CTRL:
2283 		if (!msr_info->host_initiated &&
2284 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2285 			return 1;
2286 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2287 			return 1;
2288 		goto find_uret_msr;
2289 	case MSR_IA32_CR_PAT:
2290 		if (!kvm_pat_valid(data))
2291 			return 1;
2292 
2293 		if (is_guest_mode(vcpu) &&
2294 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2295 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2296 
2297 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2298 			vmcs_write64(GUEST_IA32_PAT, data);
2299 			vcpu->arch.pat = data;
2300 			break;
2301 		}
2302 		ret = kvm_set_msr_common(vcpu, msr_info);
2303 		break;
2304 	case MSR_IA32_MCG_EXT_CTL:
2305 		if ((!msr_info->host_initiated &&
2306 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2307 		       FEAT_CTL_LMCE_ENABLED)) ||
2308 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2309 			return 1;
2310 		vcpu->arch.mcg_ext_ctl = data;
2311 		break;
2312 	case MSR_IA32_FEAT_CTL:
2313 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2314 			return 1;
2315 
2316 		vmx->msr_ia32_feature_control = data;
2317 		if (msr_info->host_initiated && data == 0)
2318 			vmx_leave_nested(vcpu);
2319 
2320 		/* SGX may be enabled/disabled by guest's firmware */
2321 		vmx_write_encls_bitmap(vcpu, NULL);
2322 		break;
2323 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2324 		/*
2325 		 * On real hardware, the LE hash MSRs are writable before
2326 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2327 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2328 		 * become writable.
2329 		 *
2330 		 * KVM does not emulate SGX activation for simplicity, so
2331 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2332 		 * is unlocked.  This is technically not architectural
2333 		 * behavior, but it's close enough.
2334 		 */
2335 		if (!msr_info->host_initiated &&
2336 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2337 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2338 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2339 			return 1;
2340 		vmx->msr_ia32_sgxlepubkeyhash
2341 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2342 		break;
2343 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2344 		if (!msr_info->host_initiated)
2345 			return 1; /* they are read-only */
2346 		if (!nested_vmx_allowed(vcpu))
2347 			return 1;
2348 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2349 	case MSR_IA32_RTIT_CTL:
2350 		if (!vmx_pt_mode_is_host_guest() ||
2351 			vmx_rtit_ctl_check(vcpu, data) ||
2352 			vmx->nested.vmxon)
2353 			return 1;
2354 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2355 		vmx->pt_desc.guest.ctl = data;
2356 		pt_update_intercept_for_msr(vcpu);
2357 		break;
2358 	case MSR_IA32_RTIT_STATUS:
2359 		if (!pt_can_write_msr(vmx))
2360 			return 1;
2361 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2362 			return 1;
2363 		vmx->pt_desc.guest.status = data;
2364 		break;
2365 	case MSR_IA32_RTIT_CR3_MATCH:
2366 		if (!pt_can_write_msr(vmx))
2367 			return 1;
2368 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2369 					   PT_CAP_cr3_filtering))
2370 			return 1;
2371 		vmx->pt_desc.guest.cr3_match = data;
2372 		break;
2373 	case MSR_IA32_RTIT_OUTPUT_BASE:
2374 		if (!pt_can_write_msr(vmx))
2375 			return 1;
2376 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2377 					   PT_CAP_topa_output) &&
2378 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2379 					   PT_CAP_single_range_output))
2380 			return 1;
2381 		if (!pt_output_base_valid(vcpu, data))
2382 			return 1;
2383 		vmx->pt_desc.guest.output_base = data;
2384 		break;
2385 	case MSR_IA32_RTIT_OUTPUT_MASK:
2386 		if (!pt_can_write_msr(vmx))
2387 			return 1;
2388 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2389 					   PT_CAP_topa_output) &&
2390 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2391 					   PT_CAP_single_range_output))
2392 			return 1;
2393 		vmx->pt_desc.guest.output_mask = data;
2394 		break;
2395 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2396 		if (!pt_can_write_msr(vmx))
2397 			return 1;
2398 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2399 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2400 			return 1;
2401 		if (is_noncanonical_address(data, vcpu))
2402 			return 1;
2403 		if (index % 2)
2404 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2405 		else
2406 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2407 		break;
2408 	case MSR_IA32_PERF_CAPABILITIES:
2409 		if (data && !vcpu_to_pmu(vcpu)->version)
2410 			return 1;
2411 		if (data & PMU_CAP_LBR_FMT) {
2412 			if ((data & PMU_CAP_LBR_FMT) !=
2413 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2414 				return 1;
2415 			if (!cpuid_model_is_consistent(vcpu))
2416 				return 1;
2417 		}
2418 		if (data & PERF_CAP_PEBS_FORMAT) {
2419 			if ((data & PERF_CAP_PEBS_MASK) !=
2420 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2421 				return 1;
2422 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2423 				return 1;
2424 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2425 				return 1;
2426 			if (!cpuid_model_is_consistent(vcpu))
2427 				return 1;
2428 		}
2429 		ret = kvm_set_msr_common(vcpu, msr_info);
2430 		break;
2431 
2432 	default:
2433 	find_uret_msr:
2434 		msr = vmx_find_uret_msr(vmx, msr_index);
2435 		if (msr)
2436 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2437 		else
2438 			ret = kvm_set_msr_common(vcpu, msr_info);
2439 	}
2440 
2441 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2442 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2443 		vmx_update_fb_clear_dis(vcpu, vmx);
2444 
2445 	return ret;
2446 }
2447 
2448 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2449 {
2450 	unsigned long guest_owned_bits;
2451 
2452 	kvm_register_mark_available(vcpu, reg);
2453 
2454 	switch (reg) {
2455 	case VCPU_REGS_RSP:
2456 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2457 		break;
2458 	case VCPU_REGS_RIP:
2459 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2460 		break;
2461 	case VCPU_EXREG_PDPTR:
2462 		if (enable_ept)
2463 			ept_save_pdptrs(vcpu);
2464 		break;
2465 	case VCPU_EXREG_CR0:
2466 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2467 
2468 		vcpu->arch.cr0 &= ~guest_owned_bits;
2469 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2470 		break;
2471 	case VCPU_EXREG_CR3:
2472 		/*
2473 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2474 		 * CR3 is loaded into hardware, not the guest's CR3.
2475 		 */
2476 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2477 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2478 		break;
2479 	case VCPU_EXREG_CR4:
2480 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2481 
2482 		vcpu->arch.cr4 &= ~guest_owned_bits;
2483 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2484 		break;
2485 	default:
2486 		KVM_BUG_ON(1, vcpu->kvm);
2487 		break;
2488 	}
2489 }
2490 
2491 /*
2492  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2493  * directly instead of going through cpu_has(), to ensure KVM is trapping
2494  * ENCLS whenever it's supported in hardware.  It does not matter whether
2495  * the host OS supports or has enabled SGX.
2496  */
2497 static bool cpu_has_sgx(void)
2498 {
2499 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2500 }
2501 
2502 /*
2503  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2504  * can't be used due to errata where VM Exit may incorrectly clear
2505  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2506  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2507  */
2508 static bool cpu_has_perf_global_ctrl_bug(void)
2509 {
2510 	if (boot_cpu_data.x86 == 0x6) {
2511 		switch (boot_cpu_data.x86_model) {
2512 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2513 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2514 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2515 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2516 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2517 			return true;
2518 		default:
2519 			break;
2520 		}
2521 	}
2522 
2523 	return false;
2524 }
2525 
2526 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2527 {
2528 	u32 vmx_msr_low, vmx_msr_high;
2529 	u32 ctl = ctl_min | ctl_opt;
2530 
2531 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2532 
2533 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2534 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2535 
2536 	/* Ensure minimum (required) set of control bits are supported. */
2537 	if (ctl_min & ~ctl)
2538 		return -EIO;
2539 
2540 	*result = ctl;
2541 	return 0;
2542 }
2543 
2544 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2545 {
2546 	u64 allowed;
2547 
2548 	rdmsrl(msr, allowed);
2549 
2550 	return  ctl_opt & allowed;
2551 }
2552 
2553 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2554 			     struct vmx_capability *vmx_cap)
2555 {
2556 	u32 vmx_msr_low, vmx_msr_high;
2557 	u32 _pin_based_exec_control = 0;
2558 	u32 _cpu_based_exec_control = 0;
2559 	u32 _cpu_based_2nd_exec_control = 0;
2560 	u64 _cpu_based_3rd_exec_control = 0;
2561 	u32 _vmexit_control = 0;
2562 	u32 _vmentry_control = 0;
2563 	u64 misc_msr;
2564 	int i;
2565 
2566 	/*
2567 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2568 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2569 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2570 	 */
2571 	struct {
2572 		u32 entry_control;
2573 		u32 exit_control;
2574 	} const vmcs_entry_exit_pairs[] = {
2575 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2576 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2577 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2578 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2579 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2580 	};
2581 
2582 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2583 
2584 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2585 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2586 				MSR_IA32_VMX_PROCBASED_CTLS,
2587 				&_cpu_based_exec_control))
2588 		return -EIO;
2589 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2590 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2591 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2592 					MSR_IA32_VMX_PROCBASED_CTLS2,
2593 					&_cpu_based_2nd_exec_control))
2594 			return -EIO;
2595 	}
2596 #ifndef CONFIG_X86_64
2597 	if (!(_cpu_based_2nd_exec_control &
2598 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2599 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2600 #endif
2601 
2602 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2603 		_cpu_based_2nd_exec_control &= ~(
2604 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2605 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2606 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2607 
2608 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2609 		&vmx_cap->ept, &vmx_cap->vpid);
2610 
2611 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2612 	    vmx_cap->ept) {
2613 		pr_warn_once("EPT CAP should not exist if not support "
2614 				"1-setting enable EPT VM-execution control\n");
2615 
2616 		if (error_on_inconsistent_vmcs_config)
2617 			return -EIO;
2618 
2619 		vmx_cap->ept = 0;
2620 	}
2621 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2622 	    vmx_cap->vpid) {
2623 		pr_warn_once("VPID CAP should not exist if not support "
2624 				"1-setting enable VPID VM-execution control\n");
2625 
2626 		if (error_on_inconsistent_vmcs_config)
2627 			return -EIO;
2628 
2629 		vmx_cap->vpid = 0;
2630 	}
2631 
2632 	if (!cpu_has_sgx())
2633 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2634 
2635 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2636 		_cpu_based_3rd_exec_control =
2637 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2638 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2639 
2640 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2641 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2642 				MSR_IA32_VMX_EXIT_CTLS,
2643 				&_vmexit_control))
2644 		return -EIO;
2645 
2646 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2647 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2648 				MSR_IA32_VMX_PINBASED_CTLS,
2649 				&_pin_based_exec_control))
2650 		return -EIO;
2651 
2652 	if (cpu_has_broken_vmx_preemption_timer())
2653 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2654 	if (!(_cpu_based_2nd_exec_control &
2655 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2656 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2657 
2658 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2659 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2660 				MSR_IA32_VMX_ENTRY_CTLS,
2661 				&_vmentry_control))
2662 		return -EIO;
2663 
2664 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2665 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2666 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2667 
2668 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2669 			continue;
2670 
2671 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2672 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2673 
2674 		if (error_on_inconsistent_vmcs_config)
2675 			return -EIO;
2676 
2677 		_vmentry_control &= ~n_ctrl;
2678 		_vmexit_control &= ~x_ctrl;
2679 	}
2680 
2681 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2682 
2683 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2684 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2685 		return -EIO;
2686 
2687 #ifdef CONFIG_X86_64
2688 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2689 	if (vmx_msr_high & (1u<<16))
2690 		return -EIO;
2691 #endif
2692 
2693 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2694 	if (((vmx_msr_high >> 18) & 15) != 6)
2695 		return -EIO;
2696 
2697 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2698 
2699 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2700 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2701 
2702 	vmcs_conf->revision_id = vmx_msr_low;
2703 
2704 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2705 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2706 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2707 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2708 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2709 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2710 	vmcs_conf->misc	= misc_msr;
2711 
2712 #if IS_ENABLED(CONFIG_HYPERV)
2713 	if (enlightened_vmcs)
2714 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2715 #endif
2716 
2717 	return 0;
2718 }
2719 
2720 static bool kvm_is_vmx_supported(void)
2721 {
2722 	int cpu = raw_smp_processor_id();
2723 
2724 	if (!cpu_has_vmx()) {
2725 		pr_err("VMX not supported by CPU %d\n", cpu);
2726 		return false;
2727 	}
2728 
2729 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2730 	    !this_cpu_has(X86_FEATURE_VMX)) {
2731 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2732 		return false;
2733 	}
2734 
2735 	return true;
2736 }
2737 
2738 static int vmx_check_processor_compat(void)
2739 {
2740 	int cpu = raw_smp_processor_id();
2741 	struct vmcs_config vmcs_conf;
2742 	struct vmx_capability vmx_cap;
2743 
2744 	if (!kvm_is_vmx_supported())
2745 		return -EIO;
2746 
2747 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2748 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2749 		return -EIO;
2750 	}
2751 	if (nested)
2752 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2753 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2754 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2755 		return -EIO;
2756 	}
2757 	return 0;
2758 }
2759 
2760 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2761 {
2762 	u64 msr;
2763 
2764 	cr4_set_bits(X86_CR4_VMXE);
2765 
2766 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2767 			  _ASM_EXTABLE(1b, %l[fault])
2768 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2769 			  : : fault);
2770 	return 0;
2771 
2772 fault:
2773 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2774 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2775 	cr4_clear_bits(X86_CR4_VMXE);
2776 
2777 	return -EFAULT;
2778 }
2779 
2780 static int vmx_hardware_enable(void)
2781 {
2782 	int cpu = raw_smp_processor_id();
2783 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2784 	int r;
2785 
2786 	if (cr4_read_shadow() & X86_CR4_VMXE)
2787 		return -EBUSY;
2788 
2789 	/*
2790 	 * This can happen if we hot-added a CPU but failed to allocate
2791 	 * VP assist page for it.
2792 	 */
2793 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2794 		return -EFAULT;
2795 
2796 	intel_pt_handle_vmx(1);
2797 
2798 	r = kvm_cpu_vmxon(phys_addr);
2799 	if (r) {
2800 		intel_pt_handle_vmx(0);
2801 		return r;
2802 	}
2803 
2804 	if (enable_ept)
2805 		ept_sync_global();
2806 
2807 	return 0;
2808 }
2809 
2810 static void vmclear_local_loaded_vmcss(void)
2811 {
2812 	int cpu = raw_smp_processor_id();
2813 	struct loaded_vmcs *v, *n;
2814 
2815 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2816 				 loaded_vmcss_on_cpu_link)
2817 		__loaded_vmcs_clear(v);
2818 }
2819 
2820 static void vmx_hardware_disable(void)
2821 {
2822 	vmclear_local_loaded_vmcss();
2823 
2824 	if (cpu_vmxoff())
2825 		kvm_spurious_fault();
2826 
2827 	hv_reset_evmcs();
2828 
2829 	intel_pt_handle_vmx(0);
2830 }
2831 
2832 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2833 {
2834 	int node = cpu_to_node(cpu);
2835 	struct page *pages;
2836 	struct vmcs *vmcs;
2837 
2838 	pages = __alloc_pages_node(node, flags, 0);
2839 	if (!pages)
2840 		return NULL;
2841 	vmcs = page_address(pages);
2842 	memset(vmcs, 0, vmcs_config.size);
2843 
2844 	/* KVM supports Enlightened VMCS v1 only */
2845 	if (kvm_is_using_evmcs())
2846 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2847 	else
2848 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2849 
2850 	if (shadow)
2851 		vmcs->hdr.shadow_vmcs = 1;
2852 	return vmcs;
2853 }
2854 
2855 void free_vmcs(struct vmcs *vmcs)
2856 {
2857 	free_page((unsigned long)vmcs);
2858 }
2859 
2860 /*
2861  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2862  */
2863 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2864 {
2865 	if (!loaded_vmcs->vmcs)
2866 		return;
2867 	loaded_vmcs_clear(loaded_vmcs);
2868 	free_vmcs(loaded_vmcs->vmcs);
2869 	loaded_vmcs->vmcs = NULL;
2870 	if (loaded_vmcs->msr_bitmap)
2871 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2872 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2873 }
2874 
2875 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2876 {
2877 	loaded_vmcs->vmcs = alloc_vmcs(false);
2878 	if (!loaded_vmcs->vmcs)
2879 		return -ENOMEM;
2880 
2881 	vmcs_clear(loaded_vmcs->vmcs);
2882 
2883 	loaded_vmcs->shadow_vmcs = NULL;
2884 	loaded_vmcs->hv_timer_soft_disabled = false;
2885 	loaded_vmcs->cpu = -1;
2886 	loaded_vmcs->launched = 0;
2887 
2888 	if (cpu_has_vmx_msr_bitmap()) {
2889 		loaded_vmcs->msr_bitmap = (unsigned long *)
2890 				__get_free_page(GFP_KERNEL_ACCOUNT);
2891 		if (!loaded_vmcs->msr_bitmap)
2892 			goto out_vmcs;
2893 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2894 	}
2895 
2896 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2897 	memset(&loaded_vmcs->controls_shadow, 0,
2898 		sizeof(struct vmcs_controls_shadow));
2899 
2900 	return 0;
2901 
2902 out_vmcs:
2903 	free_loaded_vmcs(loaded_vmcs);
2904 	return -ENOMEM;
2905 }
2906 
2907 static void free_kvm_area(void)
2908 {
2909 	int cpu;
2910 
2911 	for_each_possible_cpu(cpu) {
2912 		free_vmcs(per_cpu(vmxarea, cpu));
2913 		per_cpu(vmxarea, cpu) = NULL;
2914 	}
2915 }
2916 
2917 static __init int alloc_kvm_area(void)
2918 {
2919 	int cpu;
2920 
2921 	for_each_possible_cpu(cpu) {
2922 		struct vmcs *vmcs;
2923 
2924 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2925 		if (!vmcs) {
2926 			free_kvm_area();
2927 			return -ENOMEM;
2928 		}
2929 
2930 		/*
2931 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2932 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2933 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2934 		 *
2935 		 * However, even though not explicitly documented by
2936 		 * TLFS, VMXArea passed as VMXON argument should
2937 		 * still be marked with revision_id reported by
2938 		 * physical CPU.
2939 		 */
2940 		if (kvm_is_using_evmcs())
2941 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2942 
2943 		per_cpu(vmxarea, cpu) = vmcs;
2944 	}
2945 	return 0;
2946 }
2947 
2948 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2949 		struct kvm_segment *save)
2950 {
2951 	if (!emulate_invalid_guest_state) {
2952 		/*
2953 		 * CS and SS RPL should be equal during guest entry according
2954 		 * to VMX spec, but in reality it is not always so. Since vcpu
2955 		 * is in the middle of the transition from real mode to
2956 		 * protected mode it is safe to assume that RPL 0 is a good
2957 		 * default value.
2958 		 */
2959 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2960 			save->selector &= ~SEGMENT_RPL_MASK;
2961 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2962 		save->s = 1;
2963 	}
2964 	__vmx_set_segment(vcpu, save, seg);
2965 }
2966 
2967 static void enter_pmode(struct kvm_vcpu *vcpu)
2968 {
2969 	unsigned long flags;
2970 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2971 
2972 	/*
2973 	 * Update real mode segment cache. It may be not up-to-date if segment
2974 	 * register was written while vcpu was in a guest mode.
2975 	 */
2976 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2977 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2978 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2979 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2980 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2981 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2982 
2983 	vmx->rmode.vm86_active = 0;
2984 
2985 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2986 
2987 	flags = vmcs_readl(GUEST_RFLAGS);
2988 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2989 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2990 	vmcs_writel(GUEST_RFLAGS, flags);
2991 
2992 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2993 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2994 
2995 	vmx_update_exception_bitmap(vcpu);
2996 
2997 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2998 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2999 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3000 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3001 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3002 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3003 }
3004 
3005 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3006 {
3007 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3008 	struct kvm_segment var = *save;
3009 
3010 	var.dpl = 0x3;
3011 	if (seg == VCPU_SREG_CS)
3012 		var.type = 0x3;
3013 
3014 	if (!emulate_invalid_guest_state) {
3015 		var.selector = var.base >> 4;
3016 		var.base = var.base & 0xffff0;
3017 		var.limit = 0xffff;
3018 		var.g = 0;
3019 		var.db = 0;
3020 		var.present = 1;
3021 		var.s = 1;
3022 		var.l = 0;
3023 		var.unusable = 0;
3024 		var.type = 0x3;
3025 		var.avl = 0;
3026 		if (save->base & 0xf)
3027 			pr_warn_once("segment base is not paragraph aligned "
3028 				     "when entering protected mode (seg=%d)", seg);
3029 	}
3030 
3031 	vmcs_write16(sf->selector, var.selector);
3032 	vmcs_writel(sf->base, var.base);
3033 	vmcs_write32(sf->limit, var.limit);
3034 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3035 }
3036 
3037 static void enter_rmode(struct kvm_vcpu *vcpu)
3038 {
3039 	unsigned long flags;
3040 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3041 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3042 
3043 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3044 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3045 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3046 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3047 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3048 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3049 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3050 
3051 	vmx->rmode.vm86_active = 1;
3052 
3053 	/*
3054 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3055 	 * vcpu. Warn the user that an update is overdue.
3056 	 */
3057 	if (!kvm_vmx->tss_addr)
3058 		pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n");
3059 
3060 	vmx_segment_cache_clear(vmx);
3061 
3062 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3063 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3064 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3065 
3066 	flags = vmcs_readl(GUEST_RFLAGS);
3067 	vmx->rmode.save_rflags = flags;
3068 
3069 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3070 
3071 	vmcs_writel(GUEST_RFLAGS, flags);
3072 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3073 	vmx_update_exception_bitmap(vcpu);
3074 
3075 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3076 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3077 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3078 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3079 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3080 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3081 }
3082 
3083 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3084 {
3085 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3086 
3087 	/* Nothing to do if hardware doesn't support EFER. */
3088 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3089 		return 0;
3090 
3091 	vcpu->arch.efer = efer;
3092 #ifdef CONFIG_X86_64
3093 	if (efer & EFER_LMA)
3094 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3095 	else
3096 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3097 #else
3098 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3099 		return 1;
3100 #endif
3101 
3102 	vmx_setup_uret_msrs(vmx);
3103 	return 0;
3104 }
3105 
3106 #ifdef CONFIG_X86_64
3107 
3108 static void enter_lmode(struct kvm_vcpu *vcpu)
3109 {
3110 	u32 guest_tr_ar;
3111 
3112 	vmx_segment_cache_clear(to_vmx(vcpu));
3113 
3114 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3115 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3116 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3117 				     __func__);
3118 		vmcs_write32(GUEST_TR_AR_BYTES,
3119 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3120 			     | VMX_AR_TYPE_BUSY_64_TSS);
3121 	}
3122 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3123 }
3124 
3125 static void exit_lmode(struct kvm_vcpu *vcpu)
3126 {
3127 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3128 }
3129 
3130 #endif
3131 
3132 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3133 {
3134 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3135 
3136 	/*
3137 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3138 	 * the CPU is not required to invalidate guest-physical mappings on
3139 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3140 	 * associated with the root EPT structure and not any particular VPID
3141 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3142 	 */
3143 	if (enable_ept) {
3144 		ept_sync_global();
3145 	} else if (enable_vpid) {
3146 		if (cpu_has_vmx_invvpid_global()) {
3147 			vpid_sync_vcpu_global();
3148 		} else {
3149 			vpid_sync_vcpu_single(vmx->vpid);
3150 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3151 		}
3152 	}
3153 }
3154 
3155 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3156 {
3157 	if (is_guest_mode(vcpu))
3158 		return nested_get_vpid02(vcpu);
3159 	return to_vmx(vcpu)->vpid;
3160 }
3161 
3162 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3163 {
3164 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3165 	u64 root_hpa = mmu->root.hpa;
3166 
3167 	/* No flush required if the current context is invalid. */
3168 	if (!VALID_PAGE(root_hpa))
3169 		return;
3170 
3171 	if (enable_ept)
3172 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3173 						mmu->root_role.level));
3174 	else
3175 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3176 }
3177 
3178 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3179 {
3180 	/*
3181 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3182 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3183 	 */
3184 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3185 }
3186 
3187 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3188 {
3189 	/*
3190 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3191 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3192 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3193 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3194 	 * i.e. no explicit INVVPID is necessary.
3195 	 */
3196 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3197 }
3198 
3199 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3200 {
3201 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3202 
3203 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3204 		return;
3205 
3206 	if (is_pae_paging(vcpu)) {
3207 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3208 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3209 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3210 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3211 	}
3212 }
3213 
3214 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3215 {
3216 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3217 
3218 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3219 		return;
3220 
3221 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3222 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3223 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3224 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3225 
3226 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3227 }
3228 
3229 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3230 			  CPU_BASED_CR3_STORE_EXITING)
3231 
3232 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3233 {
3234 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3235 	unsigned long hw_cr0, old_cr0_pg;
3236 	u32 tmp;
3237 
3238 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3239 
3240 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3241 	if (is_unrestricted_guest(vcpu))
3242 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3243 	else {
3244 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3245 		if (!enable_ept)
3246 			hw_cr0 |= X86_CR0_WP;
3247 
3248 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3249 			enter_pmode(vcpu);
3250 
3251 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3252 			enter_rmode(vcpu);
3253 	}
3254 
3255 	vmcs_writel(CR0_READ_SHADOW, cr0);
3256 	vmcs_writel(GUEST_CR0, hw_cr0);
3257 	vcpu->arch.cr0 = cr0;
3258 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3259 
3260 #ifdef CONFIG_X86_64
3261 	if (vcpu->arch.efer & EFER_LME) {
3262 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3263 			enter_lmode(vcpu);
3264 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3265 			exit_lmode(vcpu);
3266 	}
3267 #endif
3268 
3269 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3270 		/*
3271 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3272 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3273 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3274 		 * KVM's CR3 is installed.
3275 		 */
3276 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3277 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3278 
3279 		/*
3280 		 * When running with EPT but not unrestricted guest, KVM must
3281 		 * intercept CR3 accesses when paging is _disabled_.  This is
3282 		 * necessary because restricted guests can't actually run with
3283 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3284 		 * run the guest when identity mapped page tables.
3285 		 *
3286 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3287 		 * update, it may be stale with respect to CR3 interception,
3288 		 * e.g. after nested VM-Enter.
3289 		 *
3290 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3291 		 * stores to forward them to L1, even if KVM does not need to
3292 		 * intercept them to preserve its identity mapped page tables.
3293 		 */
3294 		if (!(cr0 & X86_CR0_PG)) {
3295 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3296 		} else if (!is_guest_mode(vcpu)) {
3297 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3298 		} else {
3299 			tmp = exec_controls_get(vmx);
3300 			tmp &= ~CR3_EXITING_BITS;
3301 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3302 			exec_controls_set(vmx, tmp);
3303 		}
3304 
3305 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3306 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3307 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3308 
3309 		/*
3310 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3311 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3312 		 */
3313 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3314 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3315 	}
3316 
3317 	/* depends on vcpu->arch.cr0 to be set to a new value */
3318 	vmx->emulation_required = vmx_emulation_required(vcpu);
3319 }
3320 
3321 static int vmx_get_max_tdp_level(void)
3322 {
3323 	if (cpu_has_vmx_ept_5levels())
3324 		return 5;
3325 	return 4;
3326 }
3327 
3328 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3329 {
3330 	u64 eptp = VMX_EPTP_MT_WB;
3331 
3332 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3333 
3334 	if (enable_ept_ad_bits &&
3335 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3336 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3337 	eptp |= root_hpa;
3338 
3339 	return eptp;
3340 }
3341 
3342 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3343 			     int root_level)
3344 {
3345 	struct kvm *kvm = vcpu->kvm;
3346 	bool update_guest_cr3 = true;
3347 	unsigned long guest_cr3;
3348 	u64 eptp;
3349 
3350 	if (enable_ept) {
3351 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3352 		vmcs_write64(EPT_POINTER, eptp);
3353 
3354 		hv_track_root_tdp(vcpu, root_hpa);
3355 
3356 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3357 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3358 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3359 			guest_cr3 = vcpu->arch.cr3;
3360 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3361 			update_guest_cr3 = false;
3362 		vmx_ept_load_pdptrs(vcpu);
3363 	} else {
3364 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3365 	}
3366 
3367 	if (update_guest_cr3)
3368 		vmcs_writel(GUEST_CR3, guest_cr3);
3369 }
3370 
3371 
3372 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3373 {
3374 	/*
3375 	 * We operate under the default treatment of SMM, so VMX cannot be
3376 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3377 	 * i.e. is a reserved bit, is handled by common x86 code.
3378 	 */
3379 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3380 		return false;
3381 
3382 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3383 		return false;
3384 
3385 	return true;
3386 }
3387 
3388 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3389 {
3390 	unsigned long old_cr4 = vcpu->arch.cr4;
3391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3392 	/*
3393 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3394 	 * is in force while we are in guest mode.  Do not let guests control
3395 	 * this bit, even if host CR4.MCE == 0.
3396 	 */
3397 	unsigned long hw_cr4;
3398 
3399 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3400 	if (is_unrestricted_guest(vcpu))
3401 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3402 	else if (vmx->rmode.vm86_active)
3403 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3404 	else
3405 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3406 
3407 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3408 		if (cr4 & X86_CR4_UMIP) {
3409 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3410 			hw_cr4 &= ~X86_CR4_UMIP;
3411 		} else if (!is_guest_mode(vcpu) ||
3412 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3413 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3414 		}
3415 	}
3416 
3417 	vcpu->arch.cr4 = cr4;
3418 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3419 
3420 	if (!is_unrestricted_guest(vcpu)) {
3421 		if (enable_ept) {
3422 			if (!is_paging(vcpu)) {
3423 				hw_cr4 &= ~X86_CR4_PAE;
3424 				hw_cr4 |= X86_CR4_PSE;
3425 			} else if (!(cr4 & X86_CR4_PAE)) {
3426 				hw_cr4 &= ~X86_CR4_PAE;
3427 			}
3428 		}
3429 
3430 		/*
3431 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3432 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3433 		 * to be manually disabled when guest switches to non-paging
3434 		 * mode.
3435 		 *
3436 		 * If !enable_unrestricted_guest, the CPU is always running
3437 		 * with CR0.PG=1 and CR4 needs to be modified.
3438 		 * If enable_unrestricted_guest, the CPU automatically
3439 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3440 		 */
3441 		if (!is_paging(vcpu))
3442 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3443 	}
3444 
3445 	vmcs_writel(CR4_READ_SHADOW, cr4);
3446 	vmcs_writel(GUEST_CR4, hw_cr4);
3447 
3448 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3449 		kvm_update_cpuid_runtime(vcpu);
3450 }
3451 
3452 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3453 {
3454 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3455 	u32 ar;
3456 
3457 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3458 		*var = vmx->rmode.segs[seg];
3459 		if (seg == VCPU_SREG_TR
3460 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3461 			return;
3462 		var->base = vmx_read_guest_seg_base(vmx, seg);
3463 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3464 		return;
3465 	}
3466 	var->base = vmx_read_guest_seg_base(vmx, seg);
3467 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3468 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3469 	ar = vmx_read_guest_seg_ar(vmx, seg);
3470 	var->unusable = (ar >> 16) & 1;
3471 	var->type = ar & 15;
3472 	var->s = (ar >> 4) & 1;
3473 	var->dpl = (ar >> 5) & 3;
3474 	/*
3475 	 * Some userspaces do not preserve unusable property. Since usable
3476 	 * segment has to be present according to VMX spec we can use present
3477 	 * property to amend userspace bug by making unusable segment always
3478 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3479 	 * segment as unusable.
3480 	 */
3481 	var->present = !var->unusable;
3482 	var->avl = (ar >> 12) & 1;
3483 	var->l = (ar >> 13) & 1;
3484 	var->db = (ar >> 14) & 1;
3485 	var->g = (ar >> 15) & 1;
3486 }
3487 
3488 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3489 {
3490 	struct kvm_segment s;
3491 
3492 	if (to_vmx(vcpu)->rmode.vm86_active) {
3493 		vmx_get_segment(vcpu, &s, seg);
3494 		return s.base;
3495 	}
3496 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3497 }
3498 
3499 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3500 {
3501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3502 
3503 	if (unlikely(vmx->rmode.vm86_active))
3504 		return 0;
3505 	else {
3506 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3507 		return VMX_AR_DPL(ar);
3508 	}
3509 }
3510 
3511 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3512 {
3513 	u32 ar;
3514 
3515 	ar = var->type & 15;
3516 	ar |= (var->s & 1) << 4;
3517 	ar |= (var->dpl & 3) << 5;
3518 	ar |= (var->present & 1) << 7;
3519 	ar |= (var->avl & 1) << 12;
3520 	ar |= (var->l & 1) << 13;
3521 	ar |= (var->db & 1) << 14;
3522 	ar |= (var->g & 1) << 15;
3523 	ar |= (var->unusable || !var->present) << 16;
3524 
3525 	return ar;
3526 }
3527 
3528 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3529 {
3530 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3531 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3532 
3533 	vmx_segment_cache_clear(vmx);
3534 
3535 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3536 		vmx->rmode.segs[seg] = *var;
3537 		if (seg == VCPU_SREG_TR)
3538 			vmcs_write16(sf->selector, var->selector);
3539 		else if (var->s)
3540 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3541 		return;
3542 	}
3543 
3544 	vmcs_writel(sf->base, var->base);
3545 	vmcs_write32(sf->limit, var->limit);
3546 	vmcs_write16(sf->selector, var->selector);
3547 
3548 	/*
3549 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3550 	 * qemu binaries.
3551 	 *   IA32 arch specifies that at the time of processor reset the
3552 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3553 	 * is setting it to 0 in the userland code. This causes invalid guest
3554 	 * state vmexit when "unrestricted guest" mode is turned on.
3555 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3556 	 * tree. Newer qemu binaries with that qemu fix would not need this
3557 	 * kvm hack.
3558 	 */
3559 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3560 		var->type |= 0x1; /* Accessed */
3561 
3562 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3563 }
3564 
3565 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3566 {
3567 	__vmx_set_segment(vcpu, var, seg);
3568 
3569 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3570 }
3571 
3572 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3573 {
3574 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3575 
3576 	*db = (ar >> 14) & 1;
3577 	*l = (ar >> 13) & 1;
3578 }
3579 
3580 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3581 {
3582 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3583 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3584 }
3585 
3586 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3587 {
3588 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3589 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3590 }
3591 
3592 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3593 {
3594 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3595 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3596 }
3597 
3598 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3599 {
3600 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3601 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3602 }
3603 
3604 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3605 {
3606 	struct kvm_segment var;
3607 	u32 ar;
3608 
3609 	vmx_get_segment(vcpu, &var, seg);
3610 	var.dpl = 0x3;
3611 	if (seg == VCPU_SREG_CS)
3612 		var.type = 0x3;
3613 	ar = vmx_segment_access_rights(&var);
3614 
3615 	if (var.base != (var.selector << 4))
3616 		return false;
3617 	if (var.limit != 0xffff)
3618 		return false;
3619 	if (ar != 0xf3)
3620 		return false;
3621 
3622 	return true;
3623 }
3624 
3625 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3626 {
3627 	struct kvm_segment cs;
3628 	unsigned int cs_rpl;
3629 
3630 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3631 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3632 
3633 	if (cs.unusable)
3634 		return false;
3635 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3636 		return false;
3637 	if (!cs.s)
3638 		return false;
3639 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3640 		if (cs.dpl > cs_rpl)
3641 			return false;
3642 	} else {
3643 		if (cs.dpl != cs_rpl)
3644 			return false;
3645 	}
3646 	if (!cs.present)
3647 		return false;
3648 
3649 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3650 	return true;
3651 }
3652 
3653 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3654 {
3655 	struct kvm_segment ss;
3656 	unsigned int ss_rpl;
3657 
3658 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3659 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3660 
3661 	if (ss.unusable)
3662 		return true;
3663 	if (ss.type != 3 && ss.type != 7)
3664 		return false;
3665 	if (!ss.s)
3666 		return false;
3667 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3668 		return false;
3669 	if (!ss.present)
3670 		return false;
3671 
3672 	return true;
3673 }
3674 
3675 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3676 {
3677 	struct kvm_segment var;
3678 	unsigned int rpl;
3679 
3680 	vmx_get_segment(vcpu, &var, seg);
3681 	rpl = var.selector & SEGMENT_RPL_MASK;
3682 
3683 	if (var.unusable)
3684 		return true;
3685 	if (!var.s)
3686 		return false;
3687 	if (!var.present)
3688 		return false;
3689 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3690 		if (var.dpl < rpl) /* DPL < RPL */
3691 			return false;
3692 	}
3693 
3694 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3695 	 * rights flags
3696 	 */
3697 	return true;
3698 }
3699 
3700 static bool tr_valid(struct kvm_vcpu *vcpu)
3701 {
3702 	struct kvm_segment tr;
3703 
3704 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3705 
3706 	if (tr.unusable)
3707 		return false;
3708 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3709 		return false;
3710 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3711 		return false;
3712 	if (!tr.present)
3713 		return false;
3714 
3715 	return true;
3716 }
3717 
3718 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3719 {
3720 	struct kvm_segment ldtr;
3721 
3722 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3723 
3724 	if (ldtr.unusable)
3725 		return true;
3726 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3727 		return false;
3728 	if (ldtr.type != 2)
3729 		return false;
3730 	if (!ldtr.present)
3731 		return false;
3732 
3733 	return true;
3734 }
3735 
3736 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3737 {
3738 	struct kvm_segment cs, ss;
3739 
3740 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3741 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3742 
3743 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3744 		 (ss.selector & SEGMENT_RPL_MASK));
3745 }
3746 
3747 /*
3748  * Check if guest state is valid. Returns true if valid, false if
3749  * not.
3750  * We assume that registers are always usable
3751  */
3752 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3753 {
3754 	/* real mode guest state checks */
3755 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3756 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3757 			return false;
3758 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3759 			return false;
3760 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3761 			return false;
3762 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3763 			return false;
3764 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3765 			return false;
3766 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3767 			return false;
3768 	} else {
3769 	/* protected mode guest state checks */
3770 		if (!cs_ss_rpl_check(vcpu))
3771 			return false;
3772 		if (!code_segment_valid(vcpu))
3773 			return false;
3774 		if (!stack_segment_valid(vcpu))
3775 			return false;
3776 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3777 			return false;
3778 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3779 			return false;
3780 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3781 			return false;
3782 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3783 			return false;
3784 		if (!tr_valid(vcpu))
3785 			return false;
3786 		if (!ldtr_valid(vcpu))
3787 			return false;
3788 	}
3789 	/* TODO:
3790 	 * - Add checks on RIP
3791 	 * - Add checks on RFLAGS
3792 	 */
3793 
3794 	return true;
3795 }
3796 
3797 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3798 {
3799 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3800 	u16 data;
3801 	int i;
3802 
3803 	for (i = 0; i < 3; i++) {
3804 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3805 			return -EFAULT;
3806 	}
3807 
3808 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3809 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3810 		return -EFAULT;
3811 
3812 	data = ~0;
3813 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3814 		return -EFAULT;
3815 
3816 	return 0;
3817 }
3818 
3819 static int init_rmode_identity_map(struct kvm *kvm)
3820 {
3821 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3822 	int i, r = 0;
3823 	void __user *uaddr;
3824 	u32 tmp;
3825 
3826 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3827 	mutex_lock(&kvm->slots_lock);
3828 
3829 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3830 		goto out;
3831 
3832 	if (!kvm_vmx->ept_identity_map_addr)
3833 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3834 
3835 	uaddr = __x86_set_memory_region(kvm,
3836 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3837 					kvm_vmx->ept_identity_map_addr,
3838 					PAGE_SIZE);
3839 	if (IS_ERR(uaddr)) {
3840 		r = PTR_ERR(uaddr);
3841 		goto out;
3842 	}
3843 
3844 	/* Set up identity-mapping pagetable for EPT in real mode */
3845 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3846 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3847 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3848 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3849 			r = -EFAULT;
3850 			goto out;
3851 		}
3852 	}
3853 	kvm_vmx->ept_identity_pagetable_done = true;
3854 
3855 out:
3856 	mutex_unlock(&kvm->slots_lock);
3857 	return r;
3858 }
3859 
3860 static void seg_setup(int seg)
3861 {
3862 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3863 	unsigned int ar;
3864 
3865 	vmcs_write16(sf->selector, 0);
3866 	vmcs_writel(sf->base, 0);
3867 	vmcs_write32(sf->limit, 0xffff);
3868 	ar = 0x93;
3869 	if (seg == VCPU_SREG_CS)
3870 		ar |= 0x08; /* code segment */
3871 
3872 	vmcs_write32(sf->ar_bytes, ar);
3873 }
3874 
3875 int allocate_vpid(void)
3876 {
3877 	int vpid;
3878 
3879 	if (!enable_vpid)
3880 		return 0;
3881 	spin_lock(&vmx_vpid_lock);
3882 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3883 	if (vpid < VMX_NR_VPIDS)
3884 		__set_bit(vpid, vmx_vpid_bitmap);
3885 	else
3886 		vpid = 0;
3887 	spin_unlock(&vmx_vpid_lock);
3888 	return vpid;
3889 }
3890 
3891 void free_vpid(int vpid)
3892 {
3893 	if (!enable_vpid || vpid == 0)
3894 		return;
3895 	spin_lock(&vmx_vpid_lock);
3896 	__clear_bit(vpid, vmx_vpid_bitmap);
3897 	spin_unlock(&vmx_vpid_lock);
3898 }
3899 
3900 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3901 {
3902 	/*
3903 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3904 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3905 	 * bitmap has changed.
3906 	 */
3907 	if (kvm_is_using_evmcs()) {
3908 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3909 
3910 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3911 			evmcs->hv_clean_fields &=
3912 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3913 	}
3914 
3915 	vmx->nested.force_msr_bitmap_recalc = true;
3916 }
3917 
3918 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3919 {
3920 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3921 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3922 
3923 	if (!cpu_has_vmx_msr_bitmap())
3924 		return;
3925 
3926 	vmx_msr_bitmap_l01_changed(vmx);
3927 
3928 	/*
3929 	 * Mark the desired intercept state in shadow bitmap, this is needed
3930 	 * for resync when the MSR filters change.
3931 	*/
3932 	if (is_valid_passthrough_msr(msr)) {
3933 		int idx = possible_passthrough_msr_slot(msr);
3934 
3935 		if (idx != -ENOENT) {
3936 			if (type & MSR_TYPE_R)
3937 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3938 			if (type & MSR_TYPE_W)
3939 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3940 		}
3941 	}
3942 
3943 	if ((type & MSR_TYPE_R) &&
3944 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3945 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3946 		type &= ~MSR_TYPE_R;
3947 	}
3948 
3949 	if ((type & MSR_TYPE_W) &&
3950 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3951 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3952 		type &= ~MSR_TYPE_W;
3953 	}
3954 
3955 	if (type & MSR_TYPE_R)
3956 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3957 
3958 	if (type & MSR_TYPE_W)
3959 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3960 }
3961 
3962 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3963 {
3964 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3965 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3966 
3967 	if (!cpu_has_vmx_msr_bitmap())
3968 		return;
3969 
3970 	vmx_msr_bitmap_l01_changed(vmx);
3971 
3972 	/*
3973 	 * Mark the desired intercept state in shadow bitmap, this is needed
3974 	 * for resync when the MSR filter changes.
3975 	*/
3976 	if (is_valid_passthrough_msr(msr)) {
3977 		int idx = possible_passthrough_msr_slot(msr);
3978 
3979 		if (idx != -ENOENT) {
3980 			if (type & MSR_TYPE_R)
3981 				set_bit(idx, vmx->shadow_msr_intercept.read);
3982 			if (type & MSR_TYPE_W)
3983 				set_bit(idx, vmx->shadow_msr_intercept.write);
3984 		}
3985 	}
3986 
3987 	if (type & MSR_TYPE_R)
3988 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3989 
3990 	if (type & MSR_TYPE_W)
3991 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3992 }
3993 
3994 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3995 {
3996 	/*
3997 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
3998 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
3999 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4000 	 */
4001 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4002 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4004 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4005 	u8 mode;
4006 
4007 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4008 		return;
4009 
4010 	if (cpu_has_secondary_exec_ctrls() &&
4011 	    (secondary_exec_controls_get(vmx) &
4012 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4013 		mode = MSR_BITMAP_MODE_X2APIC;
4014 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4015 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4016 	} else {
4017 		mode = 0;
4018 	}
4019 
4020 	if (mode == vmx->x2apic_msr_bitmap_mode)
4021 		return;
4022 
4023 	vmx->x2apic_msr_bitmap_mode = mode;
4024 
4025 	/*
4026 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4027 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4028 	 * Intercept all writes by default and poke holes as needed.  Pass
4029 	 * through reads for all valid registers by default in x2APIC+APICv
4030 	 * mode, only the current timer count needs on-demand emulation by KVM.
4031 	 */
4032 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4033 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4034 	else
4035 		msr_bitmap[read_idx] = ~0ull;
4036 	msr_bitmap[write_idx] = ~0ull;
4037 
4038 	/*
4039 	 * TPR reads and writes can be virtualized even if virtual interrupt
4040 	 * delivery is not in use.
4041 	 */
4042 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4043 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4044 
4045 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4046 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4047 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4048 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4049 		if (enable_ipiv)
4050 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4051 	}
4052 }
4053 
4054 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4055 {
4056 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4057 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4058 	u32 i;
4059 
4060 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4061 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4062 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4063 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4064 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4065 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4066 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4067 	}
4068 }
4069 
4070 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4071 {
4072 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4073 	void *vapic_page;
4074 	u32 vppr;
4075 	int rvi;
4076 
4077 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4078 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4079 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4080 		return false;
4081 
4082 	rvi = vmx_get_rvi();
4083 
4084 	vapic_page = vmx->nested.virtual_apic_map.hva;
4085 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4086 
4087 	return ((rvi & 0xf0) > (vppr & 0xf0));
4088 }
4089 
4090 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4091 {
4092 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4093 	u32 i;
4094 
4095 	/*
4096 	 * Redo intercept permissions for MSRs that KVM is passing through to
4097 	 * the guest.  Disabling interception will check the new MSR filter and
4098 	 * ensure that KVM enables interception if usersepace wants to filter
4099 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4100 	 * refreshed since KVM is going to intercept them regardless of what
4101 	 * userspace wants.
4102 	 */
4103 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4104 		u32 msr = vmx_possible_passthrough_msrs[i];
4105 
4106 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4107 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4108 
4109 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4110 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4111 	}
4112 
4113 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4114 	if (vmx_pt_mode_is_host_guest())
4115 		pt_update_intercept_for_msr(vcpu);
4116 }
4117 
4118 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4119 						     int pi_vec)
4120 {
4121 #ifdef CONFIG_SMP
4122 	if (vcpu->mode == IN_GUEST_MODE) {
4123 		/*
4124 		 * The vector of the virtual has already been set in the PIR.
4125 		 * Send a notification event to deliver the virtual interrupt
4126 		 * unless the vCPU is the currently running vCPU, i.e. the
4127 		 * event is being sent from a fastpath VM-Exit handler, in
4128 		 * which case the PIR will be synced to the vIRR before
4129 		 * re-entering the guest.
4130 		 *
4131 		 * When the target is not the running vCPU, the following
4132 		 * possibilities emerge:
4133 		 *
4134 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4135 		 * event posts the interrupt to the vCPU.
4136 		 *
4137 		 * Case 2: vCPU exits to root mode and is still runnable. The
4138 		 * PIR will be synced to the vIRR before re-entering the guest.
4139 		 * Sending a notification event is ok as the host IRQ handler
4140 		 * will ignore the spurious event.
4141 		 *
4142 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4143 		 * has already synced PIR to vIRR and never blocks the vCPU if
4144 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4145 		 * not wait for any requested interrupts in PIR, and sending a
4146 		 * notification event also results in a benign, spurious event.
4147 		 */
4148 
4149 		if (vcpu != kvm_get_running_vcpu())
4150 			apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4151 		return;
4152 	}
4153 #endif
4154 	/*
4155 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4156 	 * otherwise do nothing as KVM will grab the highest priority pending
4157 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4158 	 */
4159 	kvm_vcpu_wake_up(vcpu);
4160 }
4161 
4162 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4163 						int vector)
4164 {
4165 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4166 
4167 	if (is_guest_mode(vcpu) &&
4168 	    vector == vmx->nested.posted_intr_nv) {
4169 		/*
4170 		 * If a posted intr is not recognized by hardware,
4171 		 * we will accomplish it in the next vmentry.
4172 		 */
4173 		vmx->nested.pi_pending = true;
4174 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4175 
4176 		/*
4177 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4178 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4179 		 * request if triggering a posted interrupt "fails" because
4180 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4181 		 * the smb_wmb() in kvm_make_request() only ensures everything
4182 		 * done before making the request is visible when the request
4183 		 * is visible, it doesn't ensure ordering between the store to
4184 		 * vcpu->requests and the load from vcpu->mode.
4185 		 */
4186 		smp_mb__after_atomic();
4187 
4188 		/* the PIR and ON have been set by L1. */
4189 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4190 		return 0;
4191 	}
4192 	return -1;
4193 }
4194 /*
4195  * Send interrupt to vcpu via posted interrupt way.
4196  * 1. If target vcpu is running(non-root mode), send posted interrupt
4197  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4198  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4199  * interrupt from PIR in next vmentry.
4200  */
4201 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4202 {
4203 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4204 	int r;
4205 
4206 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4207 	if (!r)
4208 		return 0;
4209 
4210 	/* Note, this is called iff the local APIC is in-kernel. */
4211 	if (!vcpu->arch.apic->apicv_active)
4212 		return -1;
4213 
4214 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4215 		return 0;
4216 
4217 	/* If a previous notification has sent the IPI, nothing to do.  */
4218 	if (pi_test_and_set_on(&vmx->pi_desc))
4219 		return 0;
4220 
4221 	/*
4222 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4223 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4224 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4225 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4226 	 */
4227 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4228 	return 0;
4229 }
4230 
4231 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4232 				  int trig_mode, int vector)
4233 {
4234 	struct kvm_vcpu *vcpu = apic->vcpu;
4235 
4236 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4237 		kvm_lapic_set_irr(vector, apic);
4238 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4239 		kvm_vcpu_kick(vcpu);
4240 	} else {
4241 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4242 					   trig_mode, vector);
4243 	}
4244 }
4245 
4246 /*
4247  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4248  * will not change in the lifetime of the guest.
4249  * Note that host-state that does change is set elsewhere. E.g., host-state
4250  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4251  */
4252 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4253 {
4254 	u32 low32, high32;
4255 	unsigned long tmpl;
4256 	unsigned long cr0, cr3, cr4;
4257 
4258 	cr0 = read_cr0();
4259 	WARN_ON(cr0 & X86_CR0_TS);
4260 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4261 
4262 	/*
4263 	 * Save the most likely value for this task's CR3 in the VMCS.
4264 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4265 	 */
4266 	cr3 = __read_cr3();
4267 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4268 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4269 
4270 	/* Save the most likely value for this task's CR4 in the VMCS. */
4271 	cr4 = cr4_read_shadow();
4272 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4273 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4274 
4275 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4276 #ifdef CONFIG_X86_64
4277 	/*
4278 	 * Load null selectors, so we can avoid reloading them in
4279 	 * vmx_prepare_switch_to_host(), in case userspace uses
4280 	 * the null selectors too (the expected case).
4281 	 */
4282 	vmcs_write16(HOST_DS_SELECTOR, 0);
4283 	vmcs_write16(HOST_ES_SELECTOR, 0);
4284 #else
4285 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4286 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4287 #endif
4288 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4289 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4290 
4291 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4292 
4293 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4294 
4295 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4296 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4297 
4298 	/*
4299 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4300 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4301 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4302 	 * have already done so!).
4303 	 */
4304 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4305 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4306 
4307 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4308 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4309 
4310 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4311 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4312 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4313 	}
4314 
4315 	if (cpu_has_load_ia32_efer())
4316 		vmcs_write64(HOST_IA32_EFER, host_efer);
4317 }
4318 
4319 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4320 {
4321 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4322 
4323 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4324 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4325 	if (!enable_ept) {
4326 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4327 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4328 	}
4329 	if (is_guest_mode(&vmx->vcpu))
4330 		vcpu->arch.cr4_guest_owned_bits &=
4331 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4332 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4333 }
4334 
4335 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4336 {
4337 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4338 
4339 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4340 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4341 
4342 	if (!enable_vnmi)
4343 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4344 
4345 	if (!enable_preemption_timer)
4346 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4347 
4348 	return pin_based_exec_ctrl;
4349 }
4350 
4351 static u32 vmx_vmentry_ctrl(void)
4352 {
4353 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4354 
4355 	if (vmx_pt_mode_is_system())
4356 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4357 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4358 	/*
4359 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4360 	 */
4361 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4362 			  VM_ENTRY_LOAD_IA32_EFER |
4363 			  VM_ENTRY_IA32E_MODE);
4364 
4365 	if (cpu_has_perf_global_ctrl_bug())
4366 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4367 
4368 	return vmentry_ctrl;
4369 }
4370 
4371 static u32 vmx_vmexit_ctrl(void)
4372 {
4373 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4374 
4375 	/*
4376 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4377 	 * nested virtualization and thus allowed to be set in vmcs12.
4378 	 */
4379 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4380 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4381 
4382 	if (vmx_pt_mode_is_system())
4383 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4384 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4385 
4386 	if (cpu_has_perf_global_ctrl_bug())
4387 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4388 
4389 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4390 	return vmexit_ctrl &
4391 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4392 }
4393 
4394 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4395 {
4396 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4397 
4398 	if (is_guest_mode(vcpu)) {
4399 		vmx->nested.update_vmcs01_apicv_status = true;
4400 		return;
4401 	}
4402 
4403 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4404 
4405 	if (kvm_vcpu_apicv_active(vcpu)) {
4406 		secondary_exec_controls_setbit(vmx,
4407 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4408 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4409 		if (enable_ipiv)
4410 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4411 	} else {
4412 		secondary_exec_controls_clearbit(vmx,
4413 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4414 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4415 		if (enable_ipiv)
4416 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4417 	}
4418 
4419 	vmx_update_msr_bitmap_x2apic(vcpu);
4420 }
4421 
4422 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4423 {
4424 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4425 
4426 	/*
4427 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4428 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4429 	 */
4430 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4431 			  CPU_BASED_USE_IO_BITMAPS |
4432 			  CPU_BASED_MONITOR_TRAP_FLAG |
4433 			  CPU_BASED_PAUSE_EXITING);
4434 
4435 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4436 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4437 			  CPU_BASED_NMI_WINDOW_EXITING);
4438 
4439 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4440 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4441 
4442 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4443 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4444 
4445 #ifdef CONFIG_X86_64
4446 	if (exec_control & CPU_BASED_TPR_SHADOW)
4447 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4448 				  CPU_BASED_CR8_STORE_EXITING);
4449 	else
4450 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4451 				CPU_BASED_CR8_LOAD_EXITING;
4452 #endif
4453 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4454 	if (enable_ept)
4455 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4456 				  CPU_BASED_CR3_STORE_EXITING |
4457 				  CPU_BASED_INVLPG_EXITING);
4458 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4459 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4460 				CPU_BASED_MONITOR_EXITING);
4461 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4462 		exec_control &= ~CPU_BASED_HLT_EXITING;
4463 	return exec_control;
4464 }
4465 
4466 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4467 {
4468 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4469 
4470 	/*
4471 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4472 	 * APICv is inhibited.
4473 	 */
4474 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4475 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4476 
4477 	return exec_control;
4478 }
4479 
4480 /*
4481  * Adjust a single secondary execution control bit to intercept/allow an
4482  * instruction in the guest.  This is usually done based on whether or not a
4483  * feature has been exposed to the guest in order to correctly emulate faults.
4484  */
4485 static inline void
4486 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4487 				  u32 control, bool enabled, bool exiting)
4488 {
4489 	/*
4490 	 * If the control is for an opt-in feature, clear the control if the
4491 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4492 	 * control is opt-out, i.e. an exiting control, clear the control if
4493 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4494 	 * disabled for the associated instruction.  Note, the caller is
4495 	 * responsible presetting exec_control to set all supported bits.
4496 	 */
4497 	if (enabled == exiting)
4498 		*exec_control &= ~control;
4499 
4500 	/*
4501 	 * Update the nested MSR settings so that a nested VMM can/can't set
4502 	 * controls for features that are/aren't exposed to the guest.
4503 	 */
4504 	if (nested) {
4505 		/*
4506 		 * All features that can be added or removed to VMX MSRs must
4507 		 * be supported in the first place for nested virtualization.
4508 		 */
4509 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4510 			enabled = false;
4511 
4512 		if (enabled)
4513 			vmx->nested.msrs.secondary_ctls_high |= control;
4514 		else
4515 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4516 	}
4517 }
4518 
4519 /*
4520  * Wrapper macro for the common case of adjusting a secondary execution control
4521  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4522  * verifies that the control is actually supported by KVM and hardware.
4523  */
4524 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4525 ({									 \
4526 	bool __enabled;							 \
4527 									 \
4528 	if (cpu_has_vmx_##name()) {					 \
4529 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4530 					    X86_FEATURE_##feat_name);	 \
4531 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4532 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4533 	}								 \
4534 })
4535 
4536 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4537 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4538 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4539 
4540 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4541 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4542 
4543 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4544 {
4545 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4546 
4547 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4548 
4549 	if (vmx_pt_mode_is_system())
4550 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4551 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4552 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4553 	if (vmx->vpid == 0)
4554 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4555 	if (!enable_ept) {
4556 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4557 		enable_unrestricted_guest = 0;
4558 	}
4559 	if (!enable_unrestricted_guest)
4560 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4561 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4562 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4563 	if (!kvm_vcpu_apicv_active(vcpu))
4564 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4565 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4566 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4567 
4568 	/*
4569 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4570 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4571 	 */
4572 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4573 
4574 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4575 	 * in vmx_set_cr4.  */
4576 	exec_control &= ~SECONDARY_EXEC_DESC;
4577 
4578 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4579 	   (handle_vmptrld).
4580 	   We can NOT enable shadow_vmcs here because we don't have yet
4581 	   a current VMCS12
4582 	*/
4583 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4584 
4585 	/*
4586 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4587 	 * it needs to be set here when dirty logging is already active, e.g.
4588 	 * if this vCPU was created after dirty logging was enabled.
4589 	 */
4590 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4591 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4592 
4593 	if (cpu_has_vmx_xsaves()) {
4594 		/* Exposing XSAVES only when XSAVE is exposed */
4595 		bool xsaves_enabled =
4596 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4597 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4598 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4599 
4600 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4601 
4602 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4603 						  SECONDARY_EXEC_XSAVES,
4604 						  xsaves_enabled, false);
4605 	}
4606 
4607 	/*
4608 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4609 	 * feature is exposed to the guest.  This creates a virtualization hole
4610 	 * if both are supported in hardware but only one is exposed to the
4611 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4612 	 * is advertised is preferable to emulating the advertised instruction
4613 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4614 	 */
4615 	if (cpu_has_vmx_rdtscp()) {
4616 		bool rdpid_or_rdtscp_enabled =
4617 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4618 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4619 
4620 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4621 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4622 						  rdpid_or_rdtscp_enabled, false);
4623 	}
4624 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4625 
4626 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4627 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4628 
4629 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4630 				    ENABLE_USR_WAIT_PAUSE, false);
4631 
4632 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4633 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4634 
4635 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4636 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4637 
4638 	return exec_control;
4639 }
4640 
4641 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4642 {
4643 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4644 }
4645 
4646 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4647 {
4648 	struct page *pages;
4649 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4650 
4651 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4652 		return 0;
4653 
4654 	if (kvm_vmx->pid_table)
4655 		return 0;
4656 
4657 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4658 	if (!pages)
4659 		return -ENOMEM;
4660 
4661 	kvm_vmx->pid_table = (void *)page_address(pages);
4662 	return 0;
4663 }
4664 
4665 static int vmx_vcpu_precreate(struct kvm *kvm)
4666 {
4667 	return vmx_alloc_ipiv_pid_table(kvm);
4668 }
4669 
4670 #define VMX_XSS_EXIT_BITMAP 0
4671 
4672 static void init_vmcs(struct vcpu_vmx *vmx)
4673 {
4674 	struct kvm *kvm = vmx->vcpu.kvm;
4675 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4676 
4677 	if (nested)
4678 		nested_vmx_set_vmcs_shadowing_bitmap();
4679 
4680 	if (cpu_has_vmx_msr_bitmap())
4681 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4682 
4683 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4684 
4685 	/* Control */
4686 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4687 
4688 	exec_controls_set(vmx, vmx_exec_control(vmx));
4689 
4690 	if (cpu_has_secondary_exec_ctrls())
4691 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4692 
4693 	if (cpu_has_tertiary_exec_ctrls())
4694 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4695 
4696 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4697 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4698 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4699 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4700 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4701 
4702 		vmcs_write16(GUEST_INTR_STATUS, 0);
4703 
4704 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4705 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4706 	}
4707 
4708 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4709 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4710 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4711 	}
4712 
4713 	if (!kvm_pause_in_guest(kvm)) {
4714 		vmcs_write32(PLE_GAP, ple_gap);
4715 		vmx->ple_window = ple_window;
4716 		vmx->ple_window_dirty = true;
4717 	}
4718 
4719 	if (kvm_notify_vmexit_enabled(kvm))
4720 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4721 
4722 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4723 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4724 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4725 
4726 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4727 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4728 	vmx_set_constant_host_state(vmx);
4729 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4730 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4731 
4732 	if (cpu_has_vmx_vmfunc())
4733 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4734 
4735 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4736 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4737 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4738 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4739 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4740 
4741 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4742 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4743 
4744 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4745 
4746 	/* 22.2.1, 20.8.1 */
4747 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4748 
4749 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4750 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4751 
4752 	set_cr4_guest_host_mask(vmx);
4753 
4754 	if (vmx->vpid != 0)
4755 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4756 
4757 	if (cpu_has_vmx_xsaves())
4758 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4759 
4760 	if (enable_pml) {
4761 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4762 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4763 	}
4764 
4765 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4766 
4767 	if (vmx_pt_mode_is_host_guest()) {
4768 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4769 		/* Bit[6~0] are forced to 1, writes are ignored. */
4770 		vmx->pt_desc.guest.output_mask = 0x7F;
4771 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4772 	}
4773 
4774 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4775 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4776 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4777 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4778 
4779 	if (cpu_has_vmx_tpr_shadow()) {
4780 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4781 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4782 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4783 				     __pa(vmx->vcpu.arch.apic->regs));
4784 		vmcs_write32(TPR_THRESHOLD, 0);
4785 	}
4786 
4787 	vmx_setup_uret_msrs(vmx);
4788 }
4789 
4790 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4791 {
4792 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4793 
4794 	init_vmcs(vmx);
4795 
4796 	if (nested)
4797 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4798 
4799 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4800 
4801 	vmx->nested.posted_intr_nv = -1;
4802 	vmx->nested.vmxon_ptr = INVALID_GPA;
4803 	vmx->nested.current_vmptr = INVALID_GPA;
4804 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4805 
4806 	vcpu->arch.microcode_version = 0x100000000ULL;
4807 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4808 
4809 	/*
4810 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4811 	 * or POSTED_INTR_WAKEUP_VECTOR.
4812 	 */
4813 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4814 	vmx->pi_desc.sn = 1;
4815 }
4816 
4817 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4818 {
4819 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4820 
4821 	if (!init_event)
4822 		__vmx_vcpu_reset(vcpu);
4823 
4824 	vmx->rmode.vm86_active = 0;
4825 	vmx->spec_ctrl = 0;
4826 
4827 	vmx->msr_ia32_umwait_control = 0;
4828 
4829 	vmx->hv_deadline_tsc = -1;
4830 	kvm_set_cr8(vcpu, 0);
4831 
4832 	vmx_segment_cache_clear(vmx);
4833 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4834 
4835 	seg_setup(VCPU_SREG_CS);
4836 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4837 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4838 
4839 	seg_setup(VCPU_SREG_DS);
4840 	seg_setup(VCPU_SREG_ES);
4841 	seg_setup(VCPU_SREG_FS);
4842 	seg_setup(VCPU_SREG_GS);
4843 	seg_setup(VCPU_SREG_SS);
4844 
4845 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4846 	vmcs_writel(GUEST_TR_BASE, 0);
4847 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4848 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4849 
4850 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4851 	vmcs_writel(GUEST_LDTR_BASE, 0);
4852 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4853 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4854 
4855 	vmcs_writel(GUEST_GDTR_BASE, 0);
4856 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4857 
4858 	vmcs_writel(GUEST_IDTR_BASE, 0);
4859 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4860 
4861 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4862 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4863 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4864 	if (kvm_mpx_supported())
4865 		vmcs_write64(GUEST_BNDCFGS, 0);
4866 
4867 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4868 
4869 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4870 
4871 	vpid_sync_context(vmx->vpid);
4872 
4873 	vmx_update_fb_clear_dis(vcpu, vmx);
4874 }
4875 
4876 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4877 {
4878 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4879 }
4880 
4881 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4882 {
4883 	if (!enable_vnmi ||
4884 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4885 		vmx_enable_irq_window(vcpu);
4886 		return;
4887 	}
4888 
4889 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4890 }
4891 
4892 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4893 {
4894 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4895 	uint32_t intr;
4896 	int irq = vcpu->arch.interrupt.nr;
4897 
4898 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4899 
4900 	++vcpu->stat.irq_injections;
4901 	if (vmx->rmode.vm86_active) {
4902 		int inc_eip = 0;
4903 		if (vcpu->arch.interrupt.soft)
4904 			inc_eip = vcpu->arch.event_exit_inst_len;
4905 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4906 		return;
4907 	}
4908 	intr = irq | INTR_INFO_VALID_MASK;
4909 	if (vcpu->arch.interrupt.soft) {
4910 		intr |= INTR_TYPE_SOFT_INTR;
4911 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4912 			     vmx->vcpu.arch.event_exit_inst_len);
4913 	} else
4914 		intr |= INTR_TYPE_EXT_INTR;
4915 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4916 
4917 	vmx_clear_hlt(vcpu);
4918 }
4919 
4920 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4921 {
4922 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4923 
4924 	if (!enable_vnmi) {
4925 		/*
4926 		 * Tracking the NMI-blocked state in software is built upon
4927 		 * finding the next open IRQ window. This, in turn, depends on
4928 		 * well-behaving guests: They have to keep IRQs disabled at
4929 		 * least as long as the NMI handler runs. Otherwise we may
4930 		 * cause NMI nesting, maybe breaking the guest. But as this is
4931 		 * highly unlikely, we can live with the residual risk.
4932 		 */
4933 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4934 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4935 	}
4936 
4937 	++vcpu->stat.nmi_injections;
4938 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4939 
4940 	if (vmx->rmode.vm86_active) {
4941 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4942 		return;
4943 	}
4944 
4945 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4946 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4947 
4948 	vmx_clear_hlt(vcpu);
4949 }
4950 
4951 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4952 {
4953 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4954 	bool masked;
4955 
4956 	if (!enable_vnmi)
4957 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4958 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4959 		return false;
4960 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4961 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4962 	return masked;
4963 }
4964 
4965 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4966 {
4967 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4968 
4969 	if (!enable_vnmi) {
4970 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4971 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4972 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4973 		}
4974 	} else {
4975 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4976 		if (masked)
4977 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4978 				      GUEST_INTR_STATE_NMI);
4979 		else
4980 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4981 					GUEST_INTR_STATE_NMI);
4982 	}
4983 }
4984 
4985 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4986 {
4987 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4988 		return false;
4989 
4990 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4991 		return true;
4992 
4993 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4994 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4995 		 GUEST_INTR_STATE_NMI));
4996 }
4997 
4998 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4999 {
5000 	if (to_vmx(vcpu)->nested.nested_run_pending)
5001 		return -EBUSY;
5002 
5003 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5004 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5005 		return -EBUSY;
5006 
5007 	return !vmx_nmi_blocked(vcpu);
5008 }
5009 
5010 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5011 {
5012 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5013 		return false;
5014 
5015 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5016 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5017 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5018 }
5019 
5020 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5021 {
5022 	if (to_vmx(vcpu)->nested.nested_run_pending)
5023 		return -EBUSY;
5024 
5025 	/*
5026 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5027 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5028 	 */
5029 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5030 		return -EBUSY;
5031 
5032 	return !vmx_interrupt_blocked(vcpu);
5033 }
5034 
5035 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5036 {
5037 	void __user *ret;
5038 
5039 	if (enable_unrestricted_guest)
5040 		return 0;
5041 
5042 	mutex_lock(&kvm->slots_lock);
5043 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5044 				      PAGE_SIZE * 3);
5045 	mutex_unlock(&kvm->slots_lock);
5046 
5047 	if (IS_ERR(ret))
5048 		return PTR_ERR(ret);
5049 
5050 	to_kvm_vmx(kvm)->tss_addr = addr;
5051 
5052 	return init_rmode_tss(kvm, ret);
5053 }
5054 
5055 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5056 {
5057 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5058 	return 0;
5059 }
5060 
5061 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5062 {
5063 	switch (vec) {
5064 	case BP_VECTOR:
5065 		/*
5066 		 * Update instruction length as we may reinject the exception
5067 		 * from user space while in guest debugging mode.
5068 		 */
5069 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5070 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5071 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5072 			return false;
5073 		fallthrough;
5074 	case DB_VECTOR:
5075 		return !(vcpu->guest_debug &
5076 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5077 	case DE_VECTOR:
5078 	case OF_VECTOR:
5079 	case BR_VECTOR:
5080 	case UD_VECTOR:
5081 	case DF_VECTOR:
5082 	case SS_VECTOR:
5083 	case GP_VECTOR:
5084 	case MF_VECTOR:
5085 		return true;
5086 	}
5087 	return false;
5088 }
5089 
5090 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5091 				  int vec, u32 err_code)
5092 {
5093 	/*
5094 	 * Instruction with address size override prefix opcode 0x67
5095 	 * Cause the #SS fault with 0 error code in VM86 mode.
5096 	 */
5097 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5098 		if (kvm_emulate_instruction(vcpu, 0)) {
5099 			if (vcpu->arch.halt_request) {
5100 				vcpu->arch.halt_request = 0;
5101 				return kvm_emulate_halt_noskip(vcpu);
5102 			}
5103 			return 1;
5104 		}
5105 		return 0;
5106 	}
5107 
5108 	/*
5109 	 * Forward all other exceptions that are valid in real mode.
5110 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5111 	 *        the required debugging infrastructure rework.
5112 	 */
5113 	kvm_queue_exception(vcpu, vec);
5114 	return 1;
5115 }
5116 
5117 static int handle_machine_check(struct kvm_vcpu *vcpu)
5118 {
5119 	/* handled by vmx_vcpu_run() */
5120 	return 1;
5121 }
5122 
5123 /*
5124  * If the host has split lock detection disabled, then #AC is
5125  * unconditionally injected into the guest, which is the pre split lock
5126  * detection behaviour.
5127  *
5128  * If the host has split lock detection enabled then #AC is
5129  * only injected into the guest when:
5130  *  - Guest CPL == 3 (user mode)
5131  *  - Guest has #AC detection enabled in CR0
5132  *  - Guest EFLAGS has AC bit set
5133  */
5134 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5135 {
5136 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5137 		return true;
5138 
5139 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5140 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5141 }
5142 
5143 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5144 {
5145 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5146 	struct kvm_run *kvm_run = vcpu->run;
5147 	u32 intr_info, ex_no, error_code;
5148 	unsigned long cr2, dr6;
5149 	u32 vect_info;
5150 
5151 	vect_info = vmx->idt_vectoring_info;
5152 	intr_info = vmx_get_intr_info(vcpu);
5153 
5154 	/*
5155 	 * Machine checks are handled by handle_exception_irqoff(), or by
5156 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5157 	 * vmx_vcpu_enter_exit().
5158 	 */
5159 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5160 		return 1;
5161 
5162 	/*
5163 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5164 	 * This ensures the nested_vmx check is not skipped so vmexit can
5165 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5166 	 * point.
5167 	 */
5168 	if (is_nm_fault(intr_info)) {
5169 		kvm_queue_exception(vcpu, NM_VECTOR);
5170 		return 1;
5171 	}
5172 
5173 	if (is_invalid_opcode(intr_info))
5174 		return handle_ud(vcpu);
5175 
5176 	error_code = 0;
5177 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5178 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5179 
5180 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5181 		WARN_ON_ONCE(!enable_vmware_backdoor);
5182 
5183 		/*
5184 		 * VMware backdoor emulation on #GP interception only handles
5185 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5186 		 * error code on #GP.
5187 		 */
5188 		if (error_code) {
5189 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5190 			return 1;
5191 		}
5192 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5193 	}
5194 
5195 	/*
5196 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5197 	 * MMIO, it is better to report an internal error.
5198 	 * See the comments in vmx_handle_exit.
5199 	 */
5200 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5201 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5202 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5203 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5204 		vcpu->run->internal.ndata = 4;
5205 		vcpu->run->internal.data[0] = vect_info;
5206 		vcpu->run->internal.data[1] = intr_info;
5207 		vcpu->run->internal.data[2] = error_code;
5208 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5209 		return 0;
5210 	}
5211 
5212 	if (is_page_fault(intr_info)) {
5213 		cr2 = vmx_get_exit_qual(vcpu);
5214 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5215 			/*
5216 			 * EPT will cause page fault only if we need to
5217 			 * detect illegal GPAs.
5218 			 */
5219 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5220 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5221 			return 1;
5222 		} else
5223 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5224 	}
5225 
5226 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5227 
5228 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5229 		return handle_rmode_exception(vcpu, ex_no, error_code);
5230 
5231 	switch (ex_no) {
5232 	case DB_VECTOR:
5233 		dr6 = vmx_get_exit_qual(vcpu);
5234 		if (!(vcpu->guest_debug &
5235 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5236 			/*
5237 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5238 			 * instruction.  ICEBP generates a trap-like #DB, but
5239 			 * despite its interception control being tied to #DB,
5240 			 * is an instruction intercept, i.e. the VM-Exit occurs
5241 			 * on the ICEBP itself.  Use the inner "skip" helper to
5242 			 * avoid single-step #DB and MTF updates, as ICEBP is
5243 			 * higher priority.  Note, skipping ICEBP still clears
5244 			 * STI and MOVSS blocking.
5245 			 *
5246 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5247 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5248 			 * blocking is active, as the CPU doesn't set the bit
5249 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5250 			 * consistency check that a single-step #DB is pending
5251 			 * in this scenario as the previous instruction cannot
5252 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5253 			 * don't modify RFLAGS), therefore the one instruction
5254 			 * delay when activating single-step breakpoints must
5255 			 * have already expired.  Note, the CPU sets/clears BS
5256 			 * as appropriate for all other VM-Exits types.
5257 			 */
5258 			if (is_icebp(intr_info))
5259 				WARN_ON(!skip_emulated_instruction(vcpu));
5260 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5261 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5262 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5263 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5264 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5265 
5266 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5267 			return 1;
5268 		}
5269 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5270 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5271 		fallthrough;
5272 	case BP_VECTOR:
5273 		/*
5274 		 * Update instruction length as we may reinject #BP from
5275 		 * user space while in guest debugging mode. Reading it for
5276 		 * #DB as well causes no harm, it is not used in that case.
5277 		 */
5278 		vmx->vcpu.arch.event_exit_inst_len =
5279 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5280 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5281 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5282 		kvm_run->debug.arch.exception = ex_no;
5283 		break;
5284 	case AC_VECTOR:
5285 		if (vmx_guest_inject_ac(vcpu)) {
5286 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5287 			return 1;
5288 		}
5289 
5290 		/*
5291 		 * Handle split lock. Depending on detection mode this will
5292 		 * either warn and disable split lock detection for this
5293 		 * task or force SIGBUS on it.
5294 		 */
5295 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5296 			return 1;
5297 		fallthrough;
5298 	default:
5299 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5300 		kvm_run->ex.exception = ex_no;
5301 		kvm_run->ex.error_code = error_code;
5302 		break;
5303 	}
5304 	return 0;
5305 }
5306 
5307 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5308 {
5309 	++vcpu->stat.irq_exits;
5310 	return 1;
5311 }
5312 
5313 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5314 {
5315 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5316 	vcpu->mmio_needed = 0;
5317 	return 0;
5318 }
5319 
5320 static int handle_io(struct kvm_vcpu *vcpu)
5321 {
5322 	unsigned long exit_qualification;
5323 	int size, in, string;
5324 	unsigned port;
5325 
5326 	exit_qualification = vmx_get_exit_qual(vcpu);
5327 	string = (exit_qualification & 16) != 0;
5328 
5329 	++vcpu->stat.io_exits;
5330 
5331 	if (string)
5332 		return kvm_emulate_instruction(vcpu, 0);
5333 
5334 	port = exit_qualification >> 16;
5335 	size = (exit_qualification & 7) + 1;
5336 	in = (exit_qualification & 8) != 0;
5337 
5338 	return kvm_fast_pio(vcpu, size, port, in);
5339 }
5340 
5341 static void
5342 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5343 {
5344 	/*
5345 	 * Patch in the VMCALL instruction:
5346 	 */
5347 	hypercall[0] = 0x0f;
5348 	hypercall[1] = 0x01;
5349 	hypercall[2] = 0xc1;
5350 }
5351 
5352 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5353 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5354 {
5355 	if (is_guest_mode(vcpu)) {
5356 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5357 		unsigned long orig_val = val;
5358 
5359 		/*
5360 		 * We get here when L2 changed cr0 in a way that did not change
5361 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5362 		 * but did change L0 shadowed bits. So we first calculate the
5363 		 * effective cr0 value that L1 would like to write into the
5364 		 * hardware. It consists of the L2-owned bits from the new
5365 		 * value combined with the L1-owned bits from L1's guest_cr0.
5366 		 */
5367 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5368 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5369 
5370 		if (!nested_guest_cr0_valid(vcpu, val))
5371 			return 1;
5372 
5373 		if (kvm_set_cr0(vcpu, val))
5374 			return 1;
5375 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5376 		return 0;
5377 	} else {
5378 		if (to_vmx(vcpu)->nested.vmxon &&
5379 		    !nested_host_cr0_valid(vcpu, val))
5380 			return 1;
5381 
5382 		return kvm_set_cr0(vcpu, val);
5383 	}
5384 }
5385 
5386 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5387 {
5388 	if (is_guest_mode(vcpu)) {
5389 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5390 		unsigned long orig_val = val;
5391 
5392 		/* analogously to handle_set_cr0 */
5393 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5394 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5395 		if (kvm_set_cr4(vcpu, val))
5396 			return 1;
5397 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5398 		return 0;
5399 	} else
5400 		return kvm_set_cr4(vcpu, val);
5401 }
5402 
5403 static int handle_desc(struct kvm_vcpu *vcpu)
5404 {
5405 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5406 	return kvm_emulate_instruction(vcpu, 0);
5407 }
5408 
5409 static int handle_cr(struct kvm_vcpu *vcpu)
5410 {
5411 	unsigned long exit_qualification, val;
5412 	int cr;
5413 	int reg;
5414 	int err;
5415 	int ret;
5416 
5417 	exit_qualification = vmx_get_exit_qual(vcpu);
5418 	cr = exit_qualification & 15;
5419 	reg = (exit_qualification >> 8) & 15;
5420 	switch ((exit_qualification >> 4) & 3) {
5421 	case 0: /* mov to cr */
5422 		val = kvm_register_read(vcpu, reg);
5423 		trace_kvm_cr_write(cr, val);
5424 		switch (cr) {
5425 		case 0:
5426 			err = handle_set_cr0(vcpu, val);
5427 			return kvm_complete_insn_gp(vcpu, err);
5428 		case 3:
5429 			WARN_ON_ONCE(enable_unrestricted_guest);
5430 
5431 			err = kvm_set_cr3(vcpu, val);
5432 			return kvm_complete_insn_gp(vcpu, err);
5433 		case 4:
5434 			err = handle_set_cr4(vcpu, val);
5435 			return kvm_complete_insn_gp(vcpu, err);
5436 		case 8: {
5437 				u8 cr8_prev = kvm_get_cr8(vcpu);
5438 				u8 cr8 = (u8)val;
5439 				err = kvm_set_cr8(vcpu, cr8);
5440 				ret = kvm_complete_insn_gp(vcpu, err);
5441 				if (lapic_in_kernel(vcpu))
5442 					return ret;
5443 				if (cr8_prev <= cr8)
5444 					return ret;
5445 				/*
5446 				 * TODO: we might be squashing a
5447 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5448 				 * KVM_EXIT_DEBUG here.
5449 				 */
5450 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5451 				return 0;
5452 			}
5453 		}
5454 		break;
5455 	case 2: /* clts */
5456 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5457 		return -EIO;
5458 	case 1: /*mov from cr*/
5459 		switch (cr) {
5460 		case 3:
5461 			WARN_ON_ONCE(enable_unrestricted_guest);
5462 
5463 			val = kvm_read_cr3(vcpu);
5464 			kvm_register_write(vcpu, reg, val);
5465 			trace_kvm_cr_read(cr, val);
5466 			return kvm_skip_emulated_instruction(vcpu);
5467 		case 8:
5468 			val = kvm_get_cr8(vcpu);
5469 			kvm_register_write(vcpu, reg, val);
5470 			trace_kvm_cr_read(cr, val);
5471 			return kvm_skip_emulated_instruction(vcpu);
5472 		}
5473 		break;
5474 	case 3: /* lmsw */
5475 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5476 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5477 		kvm_lmsw(vcpu, val);
5478 
5479 		return kvm_skip_emulated_instruction(vcpu);
5480 	default:
5481 		break;
5482 	}
5483 	vcpu->run->exit_reason = 0;
5484 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5485 	       (int)(exit_qualification >> 4) & 3, cr);
5486 	return 0;
5487 }
5488 
5489 static int handle_dr(struct kvm_vcpu *vcpu)
5490 {
5491 	unsigned long exit_qualification;
5492 	int dr, dr7, reg;
5493 	int err = 1;
5494 
5495 	exit_qualification = vmx_get_exit_qual(vcpu);
5496 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5497 
5498 	/* First, if DR does not exist, trigger UD */
5499 	if (!kvm_require_dr(vcpu, dr))
5500 		return 1;
5501 
5502 	if (vmx_get_cpl(vcpu) > 0)
5503 		goto out;
5504 
5505 	dr7 = vmcs_readl(GUEST_DR7);
5506 	if (dr7 & DR7_GD) {
5507 		/*
5508 		 * As the vm-exit takes precedence over the debug trap, we
5509 		 * need to emulate the latter, either for the host or the
5510 		 * guest debugging itself.
5511 		 */
5512 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5513 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5514 			vcpu->run->debug.arch.dr7 = dr7;
5515 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5516 			vcpu->run->debug.arch.exception = DB_VECTOR;
5517 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5518 			return 0;
5519 		} else {
5520 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5521 			return 1;
5522 		}
5523 	}
5524 
5525 	if (vcpu->guest_debug == 0) {
5526 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5527 
5528 		/*
5529 		 * No more DR vmexits; force a reload of the debug registers
5530 		 * and reenter on this instruction.  The next vmexit will
5531 		 * retrieve the full state of the debug registers.
5532 		 */
5533 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5534 		return 1;
5535 	}
5536 
5537 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5538 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5539 		unsigned long val;
5540 
5541 		kvm_get_dr(vcpu, dr, &val);
5542 		kvm_register_write(vcpu, reg, val);
5543 		err = 0;
5544 	} else {
5545 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5546 	}
5547 
5548 out:
5549 	return kvm_complete_insn_gp(vcpu, err);
5550 }
5551 
5552 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5553 {
5554 	get_debugreg(vcpu->arch.db[0], 0);
5555 	get_debugreg(vcpu->arch.db[1], 1);
5556 	get_debugreg(vcpu->arch.db[2], 2);
5557 	get_debugreg(vcpu->arch.db[3], 3);
5558 	get_debugreg(vcpu->arch.dr6, 6);
5559 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5560 
5561 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5562 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5563 
5564 	/*
5565 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5566 	 * a stale dr6 from the guest.
5567 	 */
5568 	set_debugreg(DR6_RESERVED, 6);
5569 }
5570 
5571 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5572 {
5573 	vmcs_writel(GUEST_DR7, val);
5574 }
5575 
5576 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5577 {
5578 	kvm_apic_update_ppr(vcpu);
5579 	return 1;
5580 }
5581 
5582 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5583 {
5584 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5585 
5586 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5587 
5588 	++vcpu->stat.irq_window_exits;
5589 	return 1;
5590 }
5591 
5592 static int handle_invlpg(struct kvm_vcpu *vcpu)
5593 {
5594 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5595 
5596 	kvm_mmu_invlpg(vcpu, exit_qualification);
5597 	return kvm_skip_emulated_instruction(vcpu);
5598 }
5599 
5600 static int handle_apic_access(struct kvm_vcpu *vcpu)
5601 {
5602 	if (likely(fasteoi)) {
5603 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5604 		int access_type, offset;
5605 
5606 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5607 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5608 		/*
5609 		 * Sane guest uses MOV to write EOI, with written value
5610 		 * not cared. So make a short-circuit here by avoiding
5611 		 * heavy instruction emulation.
5612 		 */
5613 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5614 		    (offset == APIC_EOI)) {
5615 			kvm_lapic_set_eoi(vcpu);
5616 			return kvm_skip_emulated_instruction(vcpu);
5617 		}
5618 	}
5619 	return kvm_emulate_instruction(vcpu, 0);
5620 }
5621 
5622 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5623 {
5624 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5625 	int vector = exit_qualification & 0xff;
5626 
5627 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5628 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5629 	return 1;
5630 }
5631 
5632 static int handle_apic_write(struct kvm_vcpu *vcpu)
5633 {
5634 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5635 
5636 	/*
5637 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5638 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5639 	 * for the access.  I.e. the correct value has already been  written to
5640 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5641 	 * retrieve the register value and emulate the access.
5642 	 */
5643 	u32 offset = exit_qualification & 0xff0;
5644 
5645 	kvm_apic_write_nodecode(vcpu, offset);
5646 	return 1;
5647 }
5648 
5649 static int handle_task_switch(struct kvm_vcpu *vcpu)
5650 {
5651 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5652 	unsigned long exit_qualification;
5653 	bool has_error_code = false;
5654 	u32 error_code = 0;
5655 	u16 tss_selector;
5656 	int reason, type, idt_v, idt_index;
5657 
5658 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5659 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5660 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5661 
5662 	exit_qualification = vmx_get_exit_qual(vcpu);
5663 
5664 	reason = (u32)exit_qualification >> 30;
5665 	if (reason == TASK_SWITCH_GATE && idt_v) {
5666 		switch (type) {
5667 		case INTR_TYPE_NMI_INTR:
5668 			vcpu->arch.nmi_injected = false;
5669 			vmx_set_nmi_mask(vcpu, true);
5670 			break;
5671 		case INTR_TYPE_EXT_INTR:
5672 		case INTR_TYPE_SOFT_INTR:
5673 			kvm_clear_interrupt_queue(vcpu);
5674 			break;
5675 		case INTR_TYPE_HARD_EXCEPTION:
5676 			if (vmx->idt_vectoring_info &
5677 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5678 				has_error_code = true;
5679 				error_code =
5680 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5681 			}
5682 			fallthrough;
5683 		case INTR_TYPE_SOFT_EXCEPTION:
5684 			kvm_clear_exception_queue(vcpu);
5685 			break;
5686 		default:
5687 			break;
5688 		}
5689 	}
5690 	tss_selector = exit_qualification;
5691 
5692 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5693 		       type != INTR_TYPE_EXT_INTR &&
5694 		       type != INTR_TYPE_NMI_INTR))
5695 		WARN_ON(!skip_emulated_instruction(vcpu));
5696 
5697 	/*
5698 	 * TODO: What about debug traps on tss switch?
5699 	 *       Are we supposed to inject them and update dr6?
5700 	 */
5701 	return kvm_task_switch(vcpu, tss_selector,
5702 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5703 			       reason, has_error_code, error_code);
5704 }
5705 
5706 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5707 {
5708 	unsigned long exit_qualification;
5709 	gpa_t gpa;
5710 	u64 error_code;
5711 
5712 	exit_qualification = vmx_get_exit_qual(vcpu);
5713 
5714 	/*
5715 	 * EPT violation happened while executing iret from NMI,
5716 	 * "blocked by NMI" bit has to be set before next VM entry.
5717 	 * There are errata that may cause this bit to not be set:
5718 	 * AAK134, BY25.
5719 	 */
5720 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5721 			enable_vnmi &&
5722 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5723 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5724 
5725 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5726 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5727 
5728 	/* Is it a read fault? */
5729 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5730 		     ? PFERR_USER_MASK : 0;
5731 	/* Is it a write fault? */
5732 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5733 		      ? PFERR_WRITE_MASK : 0;
5734 	/* Is it a fetch fault? */
5735 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5736 		      ? PFERR_FETCH_MASK : 0;
5737 	/* ept page table entry is present? */
5738 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5739 		      ? PFERR_PRESENT_MASK : 0;
5740 
5741 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5742 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5743 
5744 	vcpu->arch.exit_qualification = exit_qualification;
5745 
5746 	/*
5747 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5748 	 * a guest page fault.  We have to emulate the instruction here, because
5749 	 * if the illegal address is that of a paging structure, then
5750 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5751 	 * would also use advanced VM-exit information for EPT violations to
5752 	 * reconstruct the page fault error code.
5753 	 */
5754 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5755 		return kvm_emulate_instruction(vcpu, 0);
5756 
5757 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5758 }
5759 
5760 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5761 {
5762 	gpa_t gpa;
5763 
5764 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5765 		return 1;
5766 
5767 	/*
5768 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5769 	 * nGPA here instead of the required GPA.
5770 	 */
5771 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5772 	if (!is_guest_mode(vcpu) &&
5773 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5774 		trace_kvm_fast_mmio(gpa);
5775 		return kvm_skip_emulated_instruction(vcpu);
5776 	}
5777 
5778 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5779 }
5780 
5781 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5782 {
5783 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5784 		return -EIO;
5785 
5786 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5787 	++vcpu->stat.nmi_window_exits;
5788 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5789 
5790 	return 1;
5791 }
5792 
5793 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5794 {
5795 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5796 
5797 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5798 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5799 }
5800 
5801 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5802 {
5803 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5804 	bool intr_window_requested;
5805 	unsigned count = 130;
5806 
5807 	intr_window_requested = exec_controls_get(vmx) &
5808 				CPU_BASED_INTR_WINDOW_EXITING;
5809 
5810 	while (vmx->emulation_required && count-- != 0) {
5811 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5812 			return handle_interrupt_window(&vmx->vcpu);
5813 
5814 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5815 			return 1;
5816 
5817 		if (!kvm_emulate_instruction(vcpu, 0))
5818 			return 0;
5819 
5820 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5821 			kvm_prepare_emulation_failure_exit(vcpu);
5822 			return 0;
5823 		}
5824 
5825 		if (vcpu->arch.halt_request) {
5826 			vcpu->arch.halt_request = 0;
5827 			return kvm_emulate_halt_noskip(vcpu);
5828 		}
5829 
5830 		/*
5831 		 * Note, return 1 and not 0, vcpu_run() will invoke
5832 		 * xfer_to_guest_mode() which will create a proper return
5833 		 * code.
5834 		 */
5835 		if (__xfer_to_guest_mode_work_pending())
5836 			return 1;
5837 	}
5838 
5839 	return 1;
5840 }
5841 
5842 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5843 {
5844 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5845 		kvm_prepare_emulation_failure_exit(vcpu);
5846 		return 0;
5847 	}
5848 
5849 	return 1;
5850 }
5851 
5852 static void grow_ple_window(struct kvm_vcpu *vcpu)
5853 {
5854 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5855 	unsigned int old = vmx->ple_window;
5856 
5857 	vmx->ple_window = __grow_ple_window(old, ple_window,
5858 					    ple_window_grow,
5859 					    ple_window_max);
5860 
5861 	if (vmx->ple_window != old) {
5862 		vmx->ple_window_dirty = true;
5863 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5864 					    vmx->ple_window, old);
5865 	}
5866 }
5867 
5868 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5869 {
5870 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5871 	unsigned int old = vmx->ple_window;
5872 
5873 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5874 					      ple_window_shrink,
5875 					      ple_window);
5876 
5877 	if (vmx->ple_window != old) {
5878 		vmx->ple_window_dirty = true;
5879 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5880 					    vmx->ple_window, old);
5881 	}
5882 }
5883 
5884 /*
5885  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5886  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5887  */
5888 static int handle_pause(struct kvm_vcpu *vcpu)
5889 {
5890 	if (!kvm_pause_in_guest(vcpu->kvm))
5891 		grow_ple_window(vcpu);
5892 
5893 	/*
5894 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5895 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5896 	 * never set PAUSE_EXITING and just set PLE if supported,
5897 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5898 	 */
5899 	kvm_vcpu_on_spin(vcpu, true);
5900 	return kvm_skip_emulated_instruction(vcpu);
5901 }
5902 
5903 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5904 {
5905 	return 1;
5906 }
5907 
5908 static int handle_invpcid(struct kvm_vcpu *vcpu)
5909 {
5910 	u32 vmx_instruction_info;
5911 	unsigned long type;
5912 	gva_t gva;
5913 	struct {
5914 		u64 pcid;
5915 		u64 gla;
5916 	} operand;
5917 	int gpr_index;
5918 
5919 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5920 		kvm_queue_exception(vcpu, UD_VECTOR);
5921 		return 1;
5922 	}
5923 
5924 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5925 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5926 	type = kvm_register_read(vcpu, gpr_index);
5927 
5928 	/* According to the Intel instruction reference, the memory operand
5929 	 * is read even if it isn't needed (e.g., for type==all)
5930 	 */
5931 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5932 				vmx_instruction_info, false,
5933 				sizeof(operand), &gva))
5934 		return 1;
5935 
5936 	return kvm_handle_invpcid(vcpu, type, gva);
5937 }
5938 
5939 static int handle_pml_full(struct kvm_vcpu *vcpu)
5940 {
5941 	unsigned long exit_qualification;
5942 
5943 	trace_kvm_pml_full(vcpu->vcpu_id);
5944 
5945 	exit_qualification = vmx_get_exit_qual(vcpu);
5946 
5947 	/*
5948 	 * PML buffer FULL happened while executing iret from NMI,
5949 	 * "blocked by NMI" bit has to be set before next VM entry.
5950 	 */
5951 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5952 			enable_vnmi &&
5953 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5954 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5955 				GUEST_INTR_STATE_NMI);
5956 
5957 	/*
5958 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5959 	 * here.., and there's no userspace involvement needed for PML.
5960 	 */
5961 	return 1;
5962 }
5963 
5964 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5965 {
5966 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5967 
5968 	if (!vmx->req_immediate_exit &&
5969 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5970 		kvm_lapic_expired_hv_timer(vcpu);
5971 		return EXIT_FASTPATH_REENTER_GUEST;
5972 	}
5973 
5974 	return EXIT_FASTPATH_NONE;
5975 }
5976 
5977 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5978 {
5979 	handle_fastpath_preemption_timer(vcpu);
5980 	return 1;
5981 }
5982 
5983 /*
5984  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5985  * are overwritten by nested_vmx_setup() when nested=1.
5986  */
5987 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5988 {
5989 	kvm_queue_exception(vcpu, UD_VECTOR);
5990 	return 1;
5991 }
5992 
5993 #ifndef CONFIG_X86_SGX_KVM
5994 static int handle_encls(struct kvm_vcpu *vcpu)
5995 {
5996 	/*
5997 	 * SGX virtualization is disabled.  There is no software enable bit for
5998 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5999 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6000 	 */
6001 	kvm_queue_exception(vcpu, UD_VECTOR);
6002 	return 1;
6003 }
6004 #endif /* CONFIG_X86_SGX_KVM */
6005 
6006 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6007 {
6008 	/*
6009 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6010 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6011 	 * vmx_handle_exit().
6012 	 */
6013 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6014 	return 1;
6015 }
6016 
6017 static int handle_notify(struct kvm_vcpu *vcpu)
6018 {
6019 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6020 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6021 
6022 	++vcpu->stat.notify_window_exits;
6023 
6024 	/*
6025 	 * Notify VM exit happened while executing iret from NMI,
6026 	 * "blocked by NMI" bit has to be set before next VM entry.
6027 	 */
6028 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6029 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6030 			      GUEST_INTR_STATE_NMI);
6031 
6032 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6033 	    context_invalid) {
6034 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6035 		vcpu->run->notify.flags = context_invalid ?
6036 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6037 		return 0;
6038 	}
6039 
6040 	return 1;
6041 }
6042 
6043 /*
6044  * The exit handlers return 1 if the exit was handled fully and guest execution
6045  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6046  * to be done to userspace and return 0.
6047  */
6048 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6049 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6050 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6051 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6052 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6053 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6054 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6055 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6056 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6057 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6058 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6059 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6060 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6061 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6062 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6063 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6064 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6065 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6066 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6067 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6068 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6069 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6070 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6071 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6072 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6073 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6074 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6075 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6076 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6077 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6078 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6079 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6080 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6081 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6082 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6083 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6084 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6085 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6086 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6087 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6088 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6089 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6090 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6091 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6092 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6093 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6094 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6095 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6096 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6097 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6098 	[EXIT_REASON_ENCLS]		      = handle_encls,
6099 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6100 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6101 };
6102 
6103 static const int kvm_vmx_max_exit_handlers =
6104 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6105 
6106 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6107 			      u64 *info1, u64 *info2,
6108 			      u32 *intr_info, u32 *error_code)
6109 {
6110 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6111 
6112 	*reason = vmx->exit_reason.full;
6113 	*info1 = vmx_get_exit_qual(vcpu);
6114 	if (!(vmx->exit_reason.failed_vmentry)) {
6115 		*info2 = vmx->idt_vectoring_info;
6116 		*intr_info = vmx_get_intr_info(vcpu);
6117 		if (is_exception_with_error_code(*intr_info))
6118 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6119 		else
6120 			*error_code = 0;
6121 	} else {
6122 		*info2 = 0;
6123 		*intr_info = 0;
6124 		*error_code = 0;
6125 	}
6126 }
6127 
6128 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6129 {
6130 	if (vmx->pml_pg) {
6131 		__free_page(vmx->pml_pg);
6132 		vmx->pml_pg = NULL;
6133 	}
6134 }
6135 
6136 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6137 {
6138 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6139 	u64 *pml_buf;
6140 	u16 pml_idx;
6141 
6142 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6143 
6144 	/* Do nothing if PML buffer is empty */
6145 	if (pml_idx == (PML_ENTITY_NUM - 1))
6146 		return;
6147 
6148 	/* PML index always points to next available PML buffer entity */
6149 	if (pml_idx >= PML_ENTITY_NUM)
6150 		pml_idx = 0;
6151 	else
6152 		pml_idx++;
6153 
6154 	pml_buf = page_address(vmx->pml_pg);
6155 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6156 		u64 gpa;
6157 
6158 		gpa = pml_buf[pml_idx];
6159 		WARN_ON(gpa & (PAGE_SIZE - 1));
6160 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6161 	}
6162 
6163 	/* reset PML index */
6164 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6165 }
6166 
6167 static void vmx_dump_sel(char *name, uint32_t sel)
6168 {
6169 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6170 	       name, vmcs_read16(sel),
6171 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6172 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6173 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6174 }
6175 
6176 static void vmx_dump_dtsel(char *name, uint32_t limit)
6177 {
6178 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6179 	       name, vmcs_read32(limit),
6180 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6181 }
6182 
6183 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6184 {
6185 	unsigned int i;
6186 	struct vmx_msr_entry *e;
6187 
6188 	pr_err("MSR %s:\n", name);
6189 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6190 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6191 }
6192 
6193 void dump_vmcs(struct kvm_vcpu *vcpu)
6194 {
6195 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6196 	u32 vmentry_ctl, vmexit_ctl;
6197 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6198 	u64 tertiary_exec_control;
6199 	unsigned long cr4;
6200 	int efer_slot;
6201 
6202 	if (!dump_invalid_vmcs) {
6203 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6204 		return;
6205 	}
6206 
6207 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6208 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6209 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6210 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6211 	cr4 = vmcs_readl(GUEST_CR4);
6212 
6213 	if (cpu_has_secondary_exec_ctrls())
6214 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6215 	else
6216 		secondary_exec_control = 0;
6217 
6218 	if (cpu_has_tertiary_exec_ctrls())
6219 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6220 	else
6221 		tertiary_exec_control = 0;
6222 
6223 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6224 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6225 	pr_err("*** Guest State ***\n");
6226 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6227 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6228 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6229 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6230 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6231 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6232 	if (cpu_has_vmx_ept()) {
6233 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6234 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6235 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6236 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6237 	}
6238 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6239 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6240 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6241 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6242 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6243 	       vmcs_readl(GUEST_SYSENTER_ESP),
6244 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6245 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6246 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6247 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6248 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6249 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6250 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6251 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6252 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6253 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6254 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6255 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6256 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6257 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6258 	else if (efer_slot >= 0)
6259 		pr_err("EFER= 0x%016llx (autoload)\n",
6260 		       vmx->msr_autoload.guest.val[efer_slot].value);
6261 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6262 		pr_err("EFER= 0x%016llx (effective)\n",
6263 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6264 	else
6265 		pr_err("EFER= 0x%016llx (effective)\n",
6266 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6267 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6268 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6269 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6270 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6271 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6272 	if (cpu_has_load_perf_global_ctrl() &&
6273 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6274 		pr_err("PerfGlobCtl = 0x%016llx\n",
6275 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6276 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6277 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6278 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6279 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6280 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6281 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6282 		pr_err("InterruptStatus = %04x\n",
6283 		       vmcs_read16(GUEST_INTR_STATUS));
6284 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6285 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6286 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6287 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6288 
6289 	pr_err("*** Host State ***\n");
6290 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6291 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6292 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6293 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6294 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6295 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6296 	       vmcs_read16(HOST_TR_SELECTOR));
6297 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6298 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6299 	       vmcs_readl(HOST_TR_BASE));
6300 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6301 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6302 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6303 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6304 	       vmcs_readl(HOST_CR4));
6305 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6306 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6307 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6308 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6309 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6310 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6311 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6312 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6313 	if (cpu_has_load_perf_global_ctrl() &&
6314 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6315 		pr_err("PerfGlobCtl = 0x%016llx\n",
6316 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6317 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6318 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6319 
6320 	pr_err("*** Control State ***\n");
6321 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6322 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6323 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6324 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6325 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6326 	       vmcs_read32(EXCEPTION_BITMAP),
6327 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6328 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6329 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6330 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6331 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6332 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6333 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6334 	       vmcs_read32(VM_EXIT_INTR_INFO),
6335 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6336 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6337 	pr_err("        reason=%08x qualification=%016lx\n",
6338 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6339 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6340 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6341 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6342 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6343 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6344 		pr_err("TSC Multiplier = 0x%016llx\n",
6345 		       vmcs_read64(TSC_MULTIPLIER));
6346 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6347 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6348 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6349 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6350 		}
6351 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6352 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6353 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6354 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6355 	}
6356 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6357 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6358 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6359 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6360 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6361 		pr_err("PLE Gap=%08x Window=%08x\n",
6362 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6363 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6364 		pr_err("Virtual processor ID = 0x%04x\n",
6365 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6366 }
6367 
6368 /*
6369  * The guest has exited.  See if we can fix it or if we need userspace
6370  * assistance.
6371  */
6372 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6373 {
6374 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6375 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6376 	u32 vectoring_info = vmx->idt_vectoring_info;
6377 	u16 exit_handler_index;
6378 
6379 	/*
6380 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6381 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6382 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6383 	 * mode as if vcpus is in root mode, the PML buffer must has been
6384 	 * flushed already.  Note, PML is never enabled in hardware while
6385 	 * running L2.
6386 	 */
6387 	if (enable_pml && !is_guest_mode(vcpu))
6388 		vmx_flush_pml_buffer(vcpu);
6389 
6390 	/*
6391 	 * KVM should never reach this point with a pending nested VM-Enter.
6392 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6393 	 * invalid guest state should never happen as that means KVM knowingly
6394 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6395 	 */
6396 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6397 		return -EIO;
6398 
6399 	if (is_guest_mode(vcpu)) {
6400 		/*
6401 		 * PML is never enabled when running L2, bail immediately if a
6402 		 * PML full exit occurs as something is horribly wrong.
6403 		 */
6404 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6405 			goto unexpected_vmexit;
6406 
6407 		/*
6408 		 * The host physical addresses of some pages of guest memory
6409 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6410 		 * Page). The CPU may write to these pages via their host
6411 		 * physical address while L2 is running, bypassing any
6412 		 * address-translation-based dirty tracking (e.g. EPT write
6413 		 * protection).
6414 		 *
6415 		 * Mark them dirty on every exit from L2 to prevent them from
6416 		 * getting out of sync with dirty tracking.
6417 		 */
6418 		nested_mark_vmcs12_pages_dirty(vcpu);
6419 
6420 		/*
6421 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6422 		 * operation, nested VM-Enter rejects any attempt to enter L2
6423 		 * with invalid state.  However, those checks are skipped if
6424 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6425 		 * L2 state is invalid, it means either L1 modified SMRAM state
6426 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6427 		 * doing so is architecturally allowed in the RSM case, and is
6428 		 * the least awful solution for the userspace case without
6429 		 * risking false positives.
6430 		 */
6431 		if (vmx->emulation_required) {
6432 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6433 			return 1;
6434 		}
6435 
6436 		if (nested_vmx_reflect_vmexit(vcpu))
6437 			return 1;
6438 	}
6439 
6440 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6441 	if (vmx->emulation_required)
6442 		return handle_invalid_guest_state(vcpu);
6443 
6444 	if (exit_reason.failed_vmentry) {
6445 		dump_vmcs(vcpu);
6446 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6447 		vcpu->run->fail_entry.hardware_entry_failure_reason
6448 			= exit_reason.full;
6449 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6450 		return 0;
6451 	}
6452 
6453 	if (unlikely(vmx->fail)) {
6454 		dump_vmcs(vcpu);
6455 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6456 		vcpu->run->fail_entry.hardware_entry_failure_reason
6457 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6458 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6459 		return 0;
6460 	}
6461 
6462 	/*
6463 	 * Note:
6464 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6465 	 * delivery event since it indicates guest is accessing MMIO.
6466 	 * The vm-exit can be triggered again after return to guest that
6467 	 * will cause infinite loop.
6468 	 */
6469 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6470 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6471 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6472 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6473 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6474 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6475 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6476 		int ndata = 3;
6477 
6478 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6479 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6480 		vcpu->run->internal.data[0] = vectoring_info;
6481 		vcpu->run->internal.data[1] = exit_reason.full;
6482 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6483 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6484 			vcpu->run->internal.data[ndata++] =
6485 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6486 		}
6487 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6488 		vcpu->run->internal.ndata = ndata;
6489 		return 0;
6490 	}
6491 
6492 	if (unlikely(!enable_vnmi &&
6493 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6494 		if (!vmx_interrupt_blocked(vcpu)) {
6495 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6496 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6497 			   vcpu->arch.nmi_pending) {
6498 			/*
6499 			 * This CPU don't support us in finding the end of an
6500 			 * NMI-blocked window if the guest runs with IRQs
6501 			 * disabled. So we pull the trigger after 1 s of
6502 			 * futile waiting, but inform the user about this.
6503 			 */
6504 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6505 			       "state on VCPU %d after 1 s timeout\n",
6506 			       __func__, vcpu->vcpu_id);
6507 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6508 		}
6509 	}
6510 
6511 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6512 		return 1;
6513 
6514 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6515 		goto unexpected_vmexit;
6516 #ifdef CONFIG_RETPOLINE
6517 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6518 		return kvm_emulate_wrmsr(vcpu);
6519 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6520 		return handle_preemption_timer(vcpu);
6521 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6522 		return handle_interrupt_window(vcpu);
6523 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6524 		return handle_external_interrupt(vcpu);
6525 	else if (exit_reason.basic == EXIT_REASON_HLT)
6526 		return kvm_emulate_halt(vcpu);
6527 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6528 		return handle_ept_misconfig(vcpu);
6529 #endif
6530 
6531 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6532 						kvm_vmx_max_exit_handlers);
6533 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6534 		goto unexpected_vmexit;
6535 
6536 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6537 
6538 unexpected_vmexit:
6539 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6540 		    exit_reason.full);
6541 	dump_vmcs(vcpu);
6542 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6543 	vcpu->run->internal.suberror =
6544 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6545 	vcpu->run->internal.ndata = 2;
6546 	vcpu->run->internal.data[0] = exit_reason.full;
6547 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6548 	return 0;
6549 }
6550 
6551 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6552 {
6553 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6554 
6555 	/*
6556 	 * Exit to user space when bus lock detected to inform that there is
6557 	 * a bus lock in guest.
6558 	 */
6559 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6560 		if (ret > 0)
6561 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6562 
6563 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6564 		return 0;
6565 	}
6566 	return ret;
6567 }
6568 
6569 /*
6570  * Software based L1D cache flush which is used when microcode providing
6571  * the cache control MSR is not loaded.
6572  *
6573  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6574  * flush it is required to read in 64 KiB because the replacement algorithm
6575  * is not exactly LRU. This could be sized at runtime via topology
6576  * information but as all relevant affected CPUs have 32KiB L1D cache size
6577  * there is no point in doing so.
6578  */
6579 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6580 {
6581 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6582 
6583 	/*
6584 	 * This code is only executed when the flush mode is 'cond' or
6585 	 * 'always'
6586 	 */
6587 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6588 		bool flush_l1d;
6589 
6590 		/*
6591 		 * Clear the per-vcpu flush bit, it gets set again
6592 		 * either from vcpu_run() or from one of the unsafe
6593 		 * VMEXIT handlers.
6594 		 */
6595 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6596 		vcpu->arch.l1tf_flush_l1d = false;
6597 
6598 		/*
6599 		 * Clear the per-cpu flush bit, it gets set again from
6600 		 * the interrupt handlers.
6601 		 */
6602 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6603 		kvm_clear_cpu_l1tf_flush_l1d();
6604 
6605 		if (!flush_l1d)
6606 			return;
6607 	}
6608 
6609 	vcpu->stat.l1d_flush++;
6610 
6611 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6612 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6613 		return;
6614 	}
6615 
6616 	asm volatile(
6617 		/* First ensure the pages are in the TLB */
6618 		"xorl	%%eax, %%eax\n"
6619 		".Lpopulate_tlb:\n\t"
6620 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6621 		"addl	$4096, %%eax\n\t"
6622 		"cmpl	%%eax, %[size]\n\t"
6623 		"jne	.Lpopulate_tlb\n\t"
6624 		"xorl	%%eax, %%eax\n\t"
6625 		"cpuid\n\t"
6626 		/* Now fill the cache */
6627 		"xorl	%%eax, %%eax\n"
6628 		".Lfill_cache:\n"
6629 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6630 		"addl	$64, %%eax\n\t"
6631 		"cmpl	%%eax, %[size]\n\t"
6632 		"jne	.Lfill_cache\n\t"
6633 		"lfence\n"
6634 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6635 		    [size] "r" (size)
6636 		: "eax", "ebx", "ecx", "edx");
6637 }
6638 
6639 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6640 {
6641 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6642 	int tpr_threshold;
6643 
6644 	if (is_guest_mode(vcpu) &&
6645 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6646 		return;
6647 
6648 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6649 	if (is_guest_mode(vcpu))
6650 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6651 	else
6652 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6653 }
6654 
6655 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6656 {
6657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6658 	u32 sec_exec_control;
6659 
6660 	if (!lapic_in_kernel(vcpu))
6661 		return;
6662 
6663 	if (!flexpriority_enabled &&
6664 	    !cpu_has_vmx_virtualize_x2apic_mode())
6665 		return;
6666 
6667 	/* Postpone execution until vmcs01 is the current VMCS. */
6668 	if (is_guest_mode(vcpu)) {
6669 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6670 		return;
6671 	}
6672 
6673 	sec_exec_control = secondary_exec_controls_get(vmx);
6674 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6675 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6676 
6677 	switch (kvm_get_apic_mode(vcpu)) {
6678 	case LAPIC_MODE_INVALID:
6679 		WARN_ONCE(true, "Invalid local APIC state");
6680 		break;
6681 	case LAPIC_MODE_DISABLED:
6682 		break;
6683 	case LAPIC_MODE_XAPIC:
6684 		if (flexpriority_enabled) {
6685 			sec_exec_control |=
6686 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6687 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6688 
6689 			/*
6690 			 * Flush the TLB, reloading the APIC access page will
6691 			 * only do so if its physical address has changed, but
6692 			 * the guest may have inserted a non-APIC mapping into
6693 			 * the TLB while the APIC access page was disabled.
6694 			 */
6695 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6696 		}
6697 		break;
6698 	case LAPIC_MODE_X2APIC:
6699 		if (cpu_has_vmx_virtualize_x2apic_mode())
6700 			sec_exec_control |=
6701 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6702 		break;
6703 	}
6704 	secondary_exec_controls_set(vmx, sec_exec_control);
6705 
6706 	vmx_update_msr_bitmap_x2apic(vcpu);
6707 }
6708 
6709 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6710 {
6711 	struct page *page;
6712 
6713 	/* Defer reload until vmcs01 is the current VMCS. */
6714 	if (is_guest_mode(vcpu)) {
6715 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6716 		return;
6717 	}
6718 
6719 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6720 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6721 		return;
6722 
6723 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6724 	if (is_error_page(page))
6725 		return;
6726 
6727 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6728 	vmx_flush_tlb_current(vcpu);
6729 
6730 	/*
6731 	 * Do not pin apic access page in memory, the MMU notifier
6732 	 * will call us again if it is migrated or swapped out.
6733 	 */
6734 	put_page(page);
6735 }
6736 
6737 static void vmx_hwapic_isr_update(int max_isr)
6738 {
6739 	u16 status;
6740 	u8 old;
6741 
6742 	if (max_isr == -1)
6743 		max_isr = 0;
6744 
6745 	status = vmcs_read16(GUEST_INTR_STATUS);
6746 	old = status >> 8;
6747 	if (max_isr != old) {
6748 		status &= 0xff;
6749 		status |= max_isr << 8;
6750 		vmcs_write16(GUEST_INTR_STATUS, status);
6751 	}
6752 }
6753 
6754 static void vmx_set_rvi(int vector)
6755 {
6756 	u16 status;
6757 	u8 old;
6758 
6759 	if (vector == -1)
6760 		vector = 0;
6761 
6762 	status = vmcs_read16(GUEST_INTR_STATUS);
6763 	old = (u8)status & 0xff;
6764 	if ((u8)vector != old) {
6765 		status &= ~0xff;
6766 		status |= (u8)vector;
6767 		vmcs_write16(GUEST_INTR_STATUS, status);
6768 	}
6769 }
6770 
6771 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6772 {
6773 	/*
6774 	 * When running L2, updating RVI is only relevant when
6775 	 * vmcs12 virtual-interrupt-delivery enabled.
6776 	 * However, it can be enabled only when L1 also
6777 	 * intercepts external-interrupts and in that case
6778 	 * we should not update vmcs02 RVI but instead intercept
6779 	 * interrupt. Therefore, do nothing when running L2.
6780 	 */
6781 	if (!is_guest_mode(vcpu))
6782 		vmx_set_rvi(max_irr);
6783 }
6784 
6785 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6786 {
6787 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6788 	int max_irr;
6789 	bool got_posted_interrupt;
6790 
6791 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6792 		return -EIO;
6793 
6794 	if (pi_test_on(&vmx->pi_desc)) {
6795 		pi_clear_on(&vmx->pi_desc);
6796 		/*
6797 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6798 		 * But on x86 this is just a compiler barrier anyway.
6799 		 */
6800 		smp_mb__after_atomic();
6801 		got_posted_interrupt =
6802 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6803 	} else {
6804 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6805 		got_posted_interrupt = false;
6806 	}
6807 
6808 	/*
6809 	 * Newly recognized interrupts are injected via either virtual interrupt
6810 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6811 	 * disabled in two cases:
6812 	 *
6813 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6814 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6815 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6816 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6817 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6818 	 *
6819 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6820 	 * attempt to post interrupts.  The posted interrupt vector will cause
6821 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6822 	 */
6823 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6824 		vmx_set_rvi(max_irr);
6825 	else if (got_posted_interrupt)
6826 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6827 
6828 	return max_irr;
6829 }
6830 
6831 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6832 {
6833 	if (!kvm_vcpu_apicv_active(vcpu))
6834 		return;
6835 
6836 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6837 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6838 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6839 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6840 }
6841 
6842 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6843 {
6844 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6845 
6846 	pi_clear_on(&vmx->pi_desc);
6847 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6848 }
6849 
6850 void vmx_do_interrupt_irqoff(unsigned long entry);
6851 void vmx_do_nmi_irqoff(void);
6852 
6853 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6854 {
6855 	/*
6856 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6857 	 * MSR value is not clobbered by the host activity before the guest
6858 	 * has chance to consume it.
6859 	 *
6860 	 * Do not blindly read xfd_err here, since this exception might
6861 	 * be caused by L1 interception on a platform which doesn't
6862 	 * support xfd at all.
6863 	 *
6864 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6865 	 * only when xfd contains a non-zero value.
6866 	 *
6867 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6868 	 */
6869 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6870 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6871 }
6872 
6873 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6874 {
6875 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6876 
6877 	/* if exit due to PF check for async PF */
6878 	if (is_page_fault(intr_info))
6879 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6880 	/* if exit due to NM, handle before interrupts are enabled */
6881 	else if (is_nm_fault(intr_info))
6882 		handle_nm_fault_irqoff(&vmx->vcpu);
6883 	/* Handle machine checks before interrupts are enabled */
6884 	else if (is_machine_check(intr_info))
6885 		kvm_machine_check();
6886 }
6887 
6888 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6889 {
6890 	u32 intr_info = vmx_get_intr_info(vcpu);
6891 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6892 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6893 
6894 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6895 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6896 		return;
6897 
6898 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6899 	vmx_do_interrupt_irqoff(gate_offset(desc));
6900 	kvm_after_interrupt(vcpu);
6901 
6902 	vcpu->arch.at_instruction_boundary = true;
6903 }
6904 
6905 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6906 {
6907 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6908 
6909 	if (vmx->emulation_required)
6910 		return;
6911 
6912 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6913 		handle_external_interrupt_irqoff(vcpu);
6914 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6915 		handle_exception_irqoff(vmx);
6916 }
6917 
6918 /*
6919  * The kvm parameter can be NULL (module initialization, or invocation before
6920  * VM creation). Be sure to check the kvm parameter before using it.
6921  */
6922 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6923 {
6924 	switch (index) {
6925 	case MSR_IA32_SMBASE:
6926 		if (!IS_ENABLED(CONFIG_KVM_SMM))
6927 			return false;
6928 		/*
6929 		 * We cannot do SMM unless we can run the guest in big
6930 		 * real mode.
6931 		 */
6932 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6933 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
6934 		return nested;
6935 	case MSR_AMD64_VIRT_SPEC_CTRL:
6936 	case MSR_AMD64_TSC_RATIO:
6937 		/* This is AMD only.  */
6938 		return false;
6939 	default:
6940 		return true;
6941 	}
6942 }
6943 
6944 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6945 {
6946 	u32 exit_intr_info;
6947 	bool unblock_nmi;
6948 	u8 vector;
6949 	bool idtv_info_valid;
6950 
6951 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6952 
6953 	if (enable_vnmi) {
6954 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6955 			return;
6956 
6957 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6958 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6959 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6960 		/*
6961 		 * SDM 3: 27.7.1.2 (September 2008)
6962 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6963 		 * a guest IRET fault.
6964 		 * SDM 3: 23.2.2 (September 2008)
6965 		 * Bit 12 is undefined in any of the following cases:
6966 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6967 		 *   information field.
6968 		 *  If the VM exit is due to a double fault.
6969 		 */
6970 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6971 		    vector != DF_VECTOR && !idtv_info_valid)
6972 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6973 				      GUEST_INTR_STATE_NMI);
6974 		else
6975 			vmx->loaded_vmcs->nmi_known_unmasked =
6976 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6977 				  & GUEST_INTR_STATE_NMI);
6978 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6979 		vmx->loaded_vmcs->vnmi_blocked_time +=
6980 			ktime_to_ns(ktime_sub(ktime_get(),
6981 					      vmx->loaded_vmcs->entry_time));
6982 }
6983 
6984 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6985 				      u32 idt_vectoring_info,
6986 				      int instr_len_field,
6987 				      int error_code_field)
6988 {
6989 	u8 vector;
6990 	int type;
6991 	bool idtv_info_valid;
6992 
6993 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6994 
6995 	vcpu->arch.nmi_injected = false;
6996 	kvm_clear_exception_queue(vcpu);
6997 	kvm_clear_interrupt_queue(vcpu);
6998 
6999 	if (!idtv_info_valid)
7000 		return;
7001 
7002 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7003 
7004 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7005 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7006 
7007 	switch (type) {
7008 	case INTR_TYPE_NMI_INTR:
7009 		vcpu->arch.nmi_injected = true;
7010 		/*
7011 		 * SDM 3: 27.7.1.2 (September 2008)
7012 		 * Clear bit "block by NMI" before VM entry if a NMI
7013 		 * delivery faulted.
7014 		 */
7015 		vmx_set_nmi_mask(vcpu, false);
7016 		break;
7017 	case INTR_TYPE_SOFT_EXCEPTION:
7018 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7019 		fallthrough;
7020 	case INTR_TYPE_HARD_EXCEPTION:
7021 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7022 			u32 err = vmcs_read32(error_code_field);
7023 			kvm_requeue_exception_e(vcpu, vector, err);
7024 		} else
7025 			kvm_requeue_exception(vcpu, vector);
7026 		break;
7027 	case INTR_TYPE_SOFT_INTR:
7028 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7029 		fallthrough;
7030 	case INTR_TYPE_EXT_INTR:
7031 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7032 		break;
7033 	default:
7034 		break;
7035 	}
7036 }
7037 
7038 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7039 {
7040 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7041 				  VM_EXIT_INSTRUCTION_LEN,
7042 				  IDT_VECTORING_ERROR_CODE);
7043 }
7044 
7045 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7046 {
7047 	__vmx_complete_interrupts(vcpu,
7048 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7049 				  VM_ENTRY_INSTRUCTION_LEN,
7050 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7051 
7052 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7053 }
7054 
7055 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7056 {
7057 	int i, nr_msrs;
7058 	struct perf_guest_switch_msr *msrs;
7059 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7060 
7061 	pmu->host_cross_mapped_mask = 0;
7062 	if (pmu->pebs_enable & pmu->global_ctrl)
7063 		intel_pmu_cross_mapped_check(pmu);
7064 
7065 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7066 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7067 	if (!msrs)
7068 		return;
7069 
7070 	for (i = 0; i < nr_msrs; i++)
7071 		if (msrs[i].host == msrs[i].guest)
7072 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7073 		else
7074 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7075 					msrs[i].host, false);
7076 }
7077 
7078 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7079 {
7080 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7081 	u64 tscl;
7082 	u32 delta_tsc;
7083 
7084 	if (vmx->req_immediate_exit) {
7085 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7086 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7087 	} else if (vmx->hv_deadline_tsc != -1) {
7088 		tscl = rdtsc();
7089 		if (vmx->hv_deadline_tsc > tscl)
7090 			/* set_hv_timer ensures the delta fits in 32-bits */
7091 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7092 				cpu_preemption_timer_multi);
7093 		else
7094 			delta_tsc = 0;
7095 
7096 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7097 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7098 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7099 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7100 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7101 	}
7102 }
7103 
7104 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7105 {
7106 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7107 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7108 		vmcs_writel(HOST_RSP, host_rsp);
7109 	}
7110 }
7111 
7112 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7113 					unsigned int flags)
7114 {
7115 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7116 
7117 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7118 		return;
7119 
7120 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7121 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7122 
7123 	/*
7124 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7125 	 *
7126 	 * For legacy IBRS, the IBRS bit always needs to be written after
7127 	 * transitioning from a less privileged predictor mode, regardless of
7128 	 * whether the guest/host values differ.
7129 	 */
7130 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7131 	    vmx->spec_ctrl != hostval)
7132 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7133 
7134 	barrier_nospec();
7135 }
7136 
7137 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7138 {
7139 	switch (to_vmx(vcpu)->exit_reason.basic) {
7140 	case EXIT_REASON_MSR_WRITE:
7141 		return handle_fastpath_set_msr_irqoff(vcpu);
7142 	case EXIT_REASON_PREEMPTION_TIMER:
7143 		return handle_fastpath_preemption_timer(vcpu);
7144 	default:
7145 		return EXIT_FASTPATH_NONE;
7146 	}
7147 }
7148 
7149 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7150 					unsigned int flags)
7151 {
7152 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7153 
7154 	guest_state_enter_irqoff();
7155 
7156 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
7157 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7158 		vmx_l1d_flush(vcpu);
7159 	else if (static_branch_unlikely(&mds_user_clear))
7160 		mds_clear_cpu_buffers();
7161 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7162 		 kvm_arch_has_assigned_device(vcpu->kvm))
7163 		mds_clear_cpu_buffers();
7164 
7165 	vmx_disable_fb_clear(vmx);
7166 
7167 	if (vcpu->arch.cr2 != native_read_cr2())
7168 		native_write_cr2(vcpu->arch.cr2);
7169 
7170 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7171 				   flags);
7172 
7173 	vcpu->arch.cr2 = native_read_cr2();
7174 
7175 	vmx_enable_fb_clear(vmx);
7176 
7177 	if (unlikely(vmx->fail))
7178 		vmx->exit_reason.full = 0xdead;
7179 	else
7180 		vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7181 
7182 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7183 	    is_nmi(vmx_get_intr_info(vcpu))) {
7184 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7185 		vmx_do_nmi_irqoff();
7186 		kvm_after_interrupt(vcpu);
7187 	}
7188 
7189 	guest_state_exit_irqoff();
7190 }
7191 
7192 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7193 {
7194 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7195 	unsigned long cr3, cr4;
7196 
7197 	/* Record the guest's net vcpu time for enforced NMI injections. */
7198 	if (unlikely(!enable_vnmi &&
7199 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7200 		vmx->loaded_vmcs->entry_time = ktime_get();
7201 
7202 	/*
7203 	 * Don't enter VMX if guest state is invalid, let the exit handler
7204 	 * start emulation until we arrive back to a valid state.  Synthesize a
7205 	 * consistency check VM-Exit due to invalid guest state and bail.
7206 	 */
7207 	if (unlikely(vmx->emulation_required)) {
7208 		vmx->fail = 0;
7209 
7210 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7211 		vmx->exit_reason.failed_vmentry = 1;
7212 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7213 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7214 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7215 		vmx->exit_intr_info = 0;
7216 		return EXIT_FASTPATH_NONE;
7217 	}
7218 
7219 	trace_kvm_entry(vcpu);
7220 
7221 	if (vmx->ple_window_dirty) {
7222 		vmx->ple_window_dirty = false;
7223 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7224 	}
7225 
7226 	/*
7227 	 * We did this in prepare_switch_to_guest, because it needs to
7228 	 * be within srcu_read_lock.
7229 	 */
7230 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7231 
7232 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7233 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7234 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7235 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7236 	vcpu->arch.regs_dirty = 0;
7237 
7238 	/*
7239 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7240 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7241 	 * it switches back to the current->mm, which can occur in KVM context
7242 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7243 	 * toggles a static key while handling a VM-Exit.
7244 	 */
7245 	cr3 = __get_current_cr3_fast();
7246 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7247 		vmcs_writel(HOST_CR3, cr3);
7248 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7249 	}
7250 
7251 	cr4 = cr4_read_shadow();
7252 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7253 		vmcs_writel(HOST_CR4, cr4);
7254 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7255 	}
7256 
7257 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7258 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7259 		set_debugreg(vcpu->arch.dr6, 6);
7260 
7261 	/* When single-stepping over STI and MOV SS, we must clear the
7262 	 * corresponding interruptibility bits in the guest state. Otherwise
7263 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7264 	 * exceptions being set, but that's not correct for the guest debugging
7265 	 * case. */
7266 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7267 		vmx_set_interrupt_shadow(vcpu, 0);
7268 
7269 	kvm_load_guest_xsave_state(vcpu);
7270 
7271 	pt_guest_enter(vmx);
7272 
7273 	atomic_switch_perf_msrs(vmx);
7274 	if (intel_pmu_lbr_is_enabled(vcpu))
7275 		vmx_passthrough_lbr_msrs(vcpu);
7276 
7277 	if (enable_preemption_timer)
7278 		vmx_update_hv_timer(vcpu);
7279 
7280 	kvm_wait_lapic_expire(vcpu);
7281 
7282 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7283 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7284 
7285 	/* All fields are clean at this point */
7286 	if (kvm_is_using_evmcs()) {
7287 		current_evmcs->hv_clean_fields |=
7288 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7289 
7290 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7291 	}
7292 
7293 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7294 	if (vmx->host_debugctlmsr)
7295 		update_debugctlmsr(vmx->host_debugctlmsr);
7296 
7297 #ifndef CONFIG_X86_64
7298 	/*
7299 	 * The sysexit path does not restore ds/es, so we must set them to
7300 	 * a reasonable value ourselves.
7301 	 *
7302 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7303 	 * function may be executed in interrupt context, which saves and
7304 	 * restore segments around it, nullifying its effect.
7305 	 */
7306 	loadsegment(ds, __USER_DS);
7307 	loadsegment(es, __USER_DS);
7308 #endif
7309 
7310 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7311 
7312 	pt_guest_exit(vmx);
7313 
7314 	kvm_load_host_xsave_state(vcpu);
7315 
7316 	if (is_guest_mode(vcpu)) {
7317 		/*
7318 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7319 		 * checking.
7320 		 */
7321 		if (vmx->nested.nested_run_pending &&
7322 		    !vmx->exit_reason.failed_vmentry)
7323 			++vcpu->stat.nested_run;
7324 
7325 		vmx->nested.nested_run_pending = 0;
7326 	}
7327 
7328 	vmx->idt_vectoring_info = 0;
7329 
7330 	if (unlikely(vmx->fail))
7331 		return EXIT_FASTPATH_NONE;
7332 
7333 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7334 		kvm_machine_check();
7335 
7336 	if (likely(!vmx->exit_reason.failed_vmentry))
7337 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7338 
7339 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7340 
7341 	if (unlikely(vmx->exit_reason.failed_vmentry))
7342 		return EXIT_FASTPATH_NONE;
7343 
7344 	vmx->loaded_vmcs->launched = 1;
7345 
7346 	vmx_recover_nmi_blocking(vmx);
7347 	vmx_complete_interrupts(vmx);
7348 
7349 	if (is_guest_mode(vcpu))
7350 		return EXIT_FASTPATH_NONE;
7351 
7352 	return vmx_exit_handlers_fastpath(vcpu);
7353 }
7354 
7355 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7356 {
7357 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7358 
7359 	if (enable_pml)
7360 		vmx_destroy_pml_buffer(vmx);
7361 	free_vpid(vmx->vpid);
7362 	nested_vmx_free_vcpu(vcpu);
7363 	free_loaded_vmcs(vmx->loaded_vmcs);
7364 }
7365 
7366 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7367 {
7368 	struct vmx_uret_msr *tsx_ctrl;
7369 	struct vcpu_vmx *vmx;
7370 	int i, err;
7371 
7372 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7373 	vmx = to_vmx(vcpu);
7374 
7375 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7376 
7377 	err = -ENOMEM;
7378 
7379 	vmx->vpid = allocate_vpid();
7380 
7381 	/*
7382 	 * If PML is turned on, failure on enabling PML just results in failure
7383 	 * of creating the vcpu, therefore we can simplify PML logic (by
7384 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7385 	 * for the guest), etc.
7386 	 */
7387 	if (enable_pml) {
7388 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7389 		if (!vmx->pml_pg)
7390 			goto free_vpid;
7391 	}
7392 
7393 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7394 		vmx->guest_uret_msrs[i].mask = -1ull;
7395 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7396 		/*
7397 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7398 		 * Keep the host value unchanged to avoid changing CPUID bits
7399 		 * under the host kernel's feet.
7400 		 */
7401 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7402 		if (tsx_ctrl)
7403 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7404 	}
7405 
7406 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7407 	if (err < 0)
7408 		goto free_pml;
7409 
7410 	/*
7411 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7412 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7413 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7414 	 * performance benefits from enabling it for vmcs02.
7415 	 */
7416 	if (kvm_is_using_evmcs() &&
7417 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7418 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7419 
7420 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7421 	}
7422 
7423 	/* The MSR bitmap starts with all ones */
7424 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7425 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7426 
7427 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7428 #ifdef CONFIG_X86_64
7429 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7430 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7431 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7432 #endif
7433 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7434 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7435 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7436 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7437 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7438 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7439 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7440 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7441 	}
7442 
7443 	vmx->loaded_vmcs = &vmx->vmcs01;
7444 
7445 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7446 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7447 		if (err)
7448 			goto free_vmcs;
7449 	}
7450 
7451 	if (enable_ept && !enable_unrestricted_guest) {
7452 		err = init_rmode_identity_map(vcpu->kvm);
7453 		if (err)
7454 			goto free_vmcs;
7455 	}
7456 
7457 	if (vmx_can_use_ipiv(vcpu))
7458 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7459 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7460 
7461 	return 0;
7462 
7463 free_vmcs:
7464 	free_loaded_vmcs(vmx->loaded_vmcs);
7465 free_pml:
7466 	vmx_destroy_pml_buffer(vmx);
7467 free_vpid:
7468 	free_vpid(vmx->vpid);
7469 	return err;
7470 }
7471 
7472 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7473 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7474 
7475 static int vmx_vm_init(struct kvm *kvm)
7476 {
7477 	if (!ple_gap)
7478 		kvm->arch.pause_in_guest = true;
7479 
7480 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7481 		switch (l1tf_mitigation) {
7482 		case L1TF_MITIGATION_OFF:
7483 		case L1TF_MITIGATION_FLUSH_NOWARN:
7484 			/* 'I explicitly don't care' is set */
7485 			break;
7486 		case L1TF_MITIGATION_FLUSH:
7487 		case L1TF_MITIGATION_FLUSH_NOSMT:
7488 		case L1TF_MITIGATION_FULL:
7489 			/*
7490 			 * Warn upon starting the first VM in a potentially
7491 			 * insecure environment.
7492 			 */
7493 			if (sched_smt_active())
7494 				pr_warn_once(L1TF_MSG_SMT);
7495 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7496 				pr_warn_once(L1TF_MSG_L1D);
7497 			break;
7498 		case L1TF_MITIGATION_FULL_FORCE:
7499 			/* Flush is enforced */
7500 			break;
7501 		}
7502 	}
7503 	return 0;
7504 }
7505 
7506 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7507 {
7508 	u8 cache;
7509 
7510 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7511 	 * memory aliases with conflicting memory types and sometimes MCEs.
7512 	 * We have to be careful as to what are honored and when.
7513 	 *
7514 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7515 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7516 	 * This was historically the source of MCEs and we want to be
7517 	 * conservative.
7518 	 *
7519 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7520 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7521 	 * EPT memory type is set to WB.  The effective memory type is forced
7522 	 * WB.
7523 	 *
7524 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7525 	 * EPT memory type is used to emulate guest CD/MTRR.
7526 	 */
7527 
7528 	if (is_mmio)
7529 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7530 
7531 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7532 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7533 
7534 	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7535 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7536 			cache = MTRR_TYPE_WRBACK;
7537 		else
7538 			cache = MTRR_TYPE_UNCACHABLE;
7539 
7540 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7541 	}
7542 
7543 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7544 }
7545 
7546 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7547 {
7548 	/*
7549 	 * These bits in the secondary execution controls field
7550 	 * are dynamic, the others are mostly based on the hypervisor
7551 	 * architecture and the guest's CPUID.  Do not touch the
7552 	 * dynamic bits.
7553 	 */
7554 	u32 mask =
7555 		SECONDARY_EXEC_SHADOW_VMCS |
7556 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7557 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7558 		SECONDARY_EXEC_DESC;
7559 
7560 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7561 
7562 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7563 }
7564 
7565 /*
7566  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7567  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7568  */
7569 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7570 {
7571 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7572 	struct kvm_cpuid_entry2 *entry;
7573 
7574 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7575 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7576 
7577 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7578 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7579 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7580 } while (0)
7581 
7582 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7583 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7584 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7585 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7586 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7587 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7588 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7589 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7590 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7591 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7592 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7593 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7594 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7595 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7596 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7597 
7598 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7599 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7600 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7601 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7602 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7603 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7604 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7605 
7606 #undef cr4_fixed1_update
7607 }
7608 
7609 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7610 {
7611 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7612 	struct kvm_cpuid_entry2 *best = NULL;
7613 	int i;
7614 
7615 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7616 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7617 		if (!best)
7618 			return;
7619 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7620 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7621 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7622 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7623 	}
7624 
7625 	/* Get the number of configurable Address Ranges for filtering */
7626 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7627 						PT_CAP_num_address_ranges);
7628 
7629 	/* Initialize and clear the no dependency bits */
7630 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7631 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7632 			RTIT_CTL_BRANCH_EN);
7633 
7634 	/*
7635 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7636 	 * will inject an #GP
7637 	 */
7638 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7639 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7640 
7641 	/*
7642 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7643 	 * PSBFreq can be set
7644 	 */
7645 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7646 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7647 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7648 
7649 	/*
7650 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7651 	 */
7652 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7653 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7654 					      RTIT_CTL_MTC_RANGE);
7655 
7656 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7657 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7658 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7659 							RTIT_CTL_PTW_EN);
7660 
7661 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7662 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7663 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7664 
7665 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7666 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7667 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7668 
7669 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7670 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7671 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7672 
7673 	/* unmask address range configure area */
7674 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7675 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7676 }
7677 
7678 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7679 {
7680 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7681 
7682 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7683 	vcpu->arch.xsaves_enabled = false;
7684 
7685 	vmx_setup_uret_msrs(vmx);
7686 
7687 	if (cpu_has_secondary_exec_ctrls())
7688 		vmcs_set_secondary_exec_control(vmx,
7689 						vmx_secondary_exec_control(vmx));
7690 
7691 	if (nested_vmx_allowed(vcpu))
7692 		vmx->msr_ia32_feature_control_valid_bits |=
7693 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7694 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7695 	else
7696 		vmx->msr_ia32_feature_control_valid_bits &=
7697 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7698 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7699 
7700 	if (nested_vmx_allowed(vcpu))
7701 		nested_vmx_cr_fixed1_bits_update(vcpu);
7702 
7703 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7704 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7705 		update_intel_pt_cfg(vcpu);
7706 
7707 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7708 		struct vmx_uret_msr *msr;
7709 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7710 		if (msr) {
7711 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7712 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7713 		}
7714 	}
7715 
7716 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7717 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7718 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7719 
7720 	if (boot_cpu_has(X86_FEATURE_IBPB))
7721 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7722 					  !guest_has_pred_cmd_msr(vcpu));
7723 
7724 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7725 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7726 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7727 
7728 	set_cr4_guest_host_mask(vmx);
7729 
7730 	vmx_write_encls_bitmap(vcpu, NULL);
7731 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7732 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7733 	else
7734 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7735 
7736 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7737 		vmx->msr_ia32_feature_control_valid_bits |=
7738 			FEAT_CTL_SGX_LC_ENABLED;
7739 	else
7740 		vmx->msr_ia32_feature_control_valid_bits &=
7741 			~FEAT_CTL_SGX_LC_ENABLED;
7742 
7743 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7744 	vmx_update_exception_bitmap(vcpu);
7745 }
7746 
7747 static u64 vmx_get_perf_capabilities(void)
7748 {
7749 	u64 perf_cap = PMU_CAP_FW_WRITES;
7750 	struct x86_pmu_lbr lbr;
7751 	u64 host_perf_cap = 0;
7752 
7753 	if (!enable_pmu)
7754 		return 0;
7755 
7756 	if (boot_cpu_has(X86_FEATURE_PDCM))
7757 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7758 
7759 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7760 		x86_perf_get_lbr(&lbr);
7761 		if (lbr.nr)
7762 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7763 	}
7764 
7765 	if (vmx_pebs_supported()) {
7766 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7767 		if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7768 			perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7769 	}
7770 
7771 	return perf_cap;
7772 }
7773 
7774 static __init void vmx_set_cpu_caps(void)
7775 {
7776 	kvm_set_cpu_caps();
7777 
7778 	/* CPUID 0x1 */
7779 	if (nested)
7780 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7781 
7782 	/* CPUID 0x7 */
7783 	if (kvm_mpx_supported())
7784 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7785 	if (!cpu_has_vmx_invpcid())
7786 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7787 	if (vmx_pt_mode_is_host_guest())
7788 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7789 	if (vmx_pebs_supported()) {
7790 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7791 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7792 	}
7793 
7794 	if (!enable_pmu)
7795 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7796 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7797 
7798 	if (!enable_sgx) {
7799 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7800 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7801 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7802 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7803 	}
7804 
7805 	if (vmx_umip_emulated())
7806 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7807 
7808 	/* CPUID 0xD.1 */
7809 	kvm_caps.supported_xss = 0;
7810 	if (!cpu_has_vmx_xsaves())
7811 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7812 
7813 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7814 	if (!cpu_has_vmx_rdtscp()) {
7815 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7816 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7817 	}
7818 
7819 	if (cpu_has_vmx_waitpkg())
7820 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7821 }
7822 
7823 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7824 {
7825 	to_vmx(vcpu)->req_immediate_exit = true;
7826 }
7827 
7828 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7829 				  struct x86_instruction_info *info)
7830 {
7831 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7832 	unsigned short port;
7833 	bool intercept;
7834 	int size;
7835 
7836 	if (info->intercept == x86_intercept_in ||
7837 	    info->intercept == x86_intercept_ins) {
7838 		port = info->src_val;
7839 		size = info->dst_bytes;
7840 	} else {
7841 		port = info->dst_val;
7842 		size = info->src_bytes;
7843 	}
7844 
7845 	/*
7846 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7847 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7848 	 * control.
7849 	 *
7850 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7851 	 */
7852 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7853 		intercept = nested_cpu_has(vmcs12,
7854 					   CPU_BASED_UNCOND_IO_EXITING);
7855 	else
7856 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7857 
7858 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7859 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7860 }
7861 
7862 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7863 			       struct x86_instruction_info *info,
7864 			       enum x86_intercept_stage stage,
7865 			       struct x86_exception *exception)
7866 {
7867 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7868 
7869 	switch (info->intercept) {
7870 	/*
7871 	 * RDPID causes #UD if disabled through secondary execution controls.
7872 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7873 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7874 	 */
7875 	case x86_intercept_rdpid:
7876 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7877 			exception->vector = UD_VECTOR;
7878 			exception->error_code_valid = false;
7879 			return X86EMUL_PROPAGATE_FAULT;
7880 		}
7881 		break;
7882 
7883 	case x86_intercept_in:
7884 	case x86_intercept_ins:
7885 	case x86_intercept_out:
7886 	case x86_intercept_outs:
7887 		return vmx_check_intercept_io(vcpu, info);
7888 
7889 	case x86_intercept_lgdt:
7890 	case x86_intercept_lidt:
7891 	case x86_intercept_lldt:
7892 	case x86_intercept_ltr:
7893 	case x86_intercept_sgdt:
7894 	case x86_intercept_sidt:
7895 	case x86_intercept_sldt:
7896 	case x86_intercept_str:
7897 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7898 			return X86EMUL_CONTINUE;
7899 
7900 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7901 		break;
7902 
7903 	case x86_intercept_pause:
7904 		/*
7905 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7906 		 * with vanilla NOPs in the emulator.  Apply the interception
7907 		 * check only to actual PAUSE instructions.  Don't check
7908 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
7909 		 * exit, i.e. KVM is within its rights to allow L2 to execute
7910 		 * the PAUSE.
7911 		 */
7912 		if ((info->rep_prefix != REPE_PREFIX) ||
7913 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7914 			return X86EMUL_CONTINUE;
7915 
7916 		break;
7917 
7918 	/* TODO: check more intercepts... */
7919 	default:
7920 		break;
7921 	}
7922 
7923 	return X86EMUL_UNHANDLEABLE;
7924 }
7925 
7926 #ifdef CONFIG_X86_64
7927 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7928 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7929 				  u64 divisor, u64 *result)
7930 {
7931 	u64 low = a << shift, high = a >> (64 - shift);
7932 
7933 	/* To avoid the overflow on divq */
7934 	if (high >= divisor)
7935 		return 1;
7936 
7937 	/* Low hold the result, high hold rem which is discarded */
7938 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7939 	    "rm" (divisor), "0" (low), "1" (high));
7940 	*result = low;
7941 
7942 	return 0;
7943 }
7944 
7945 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7946 			    bool *expired)
7947 {
7948 	struct vcpu_vmx *vmx;
7949 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7950 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7951 
7952 	vmx = to_vmx(vcpu);
7953 	tscl = rdtsc();
7954 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7955 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7956 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7957 						    ktimer->timer_advance_ns);
7958 
7959 	if (delta_tsc > lapic_timer_advance_cycles)
7960 		delta_tsc -= lapic_timer_advance_cycles;
7961 	else
7962 		delta_tsc = 0;
7963 
7964 	/* Convert to host delta tsc if tsc scaling is enabled */
7965 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7966 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7967 				kvm_caps.tsc_scaling_ratio_frac_bits,
7968 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7969 		return -ERANGE;
7970 
7971 	/*
7972 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7973 	 * we can't use the preemption timer.
7974 	 * It's possible that it fits on later vmentries, but checking
7975 	 * on every vmentry is costly so we just use an hrtimer.
7976 	 */
7977 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7978 		return -ERANGE;
7979 
7980 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7981 	*expired = !delta_tsc;
7982 	return 0;
7983 }
7984 
7985 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7986 {
7987 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7988 }
7989 #endif
7990 
7991 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7992 {
7993 	if (!kvm_pause_in_guest(vcpu->kvm))
7994 		shrink_ple_window(vcpu);
7995 }
7996 
7997 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7998 {
7999 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8000 
8001 	if (WARN_ON_ONCE(!enable_pml))
8002 		return;
8003 
8004 	if (is_guest_mode(vcpu)) {
8005 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8006 		return;
8007 	}
8008 
8009 	/*
8010 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8011 	 * code, but in that case another update request will be made and so
8012 	 * the guest will never run with a stale PML value.
8013 	 */
8014 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8015 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8016 	else
8017 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8018 }
8019 
8020 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8021 {
8022 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8023 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8024 			FEAT_CTL_LMCE_ENABLED;
8025 	else
8026 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8027 			~FEAT_CTL_LMCE_ENABLED;
8028 }
8029 
8030 #ifdef CONFIG_KVM_SMM
8031 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8032 {
8033 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8034 	if (to_vmx(vcpu)->nested.nested_run_pending)
8035 		return -EBUSY;
8036 	return !is_smm(vcpu);
8037 }
8038 
8039 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8040 {
8041 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8042 
8043 	/*
8044 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8045 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8046 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8047 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8048 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8049 	 */
8050 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8051 	if (vmx->nested.smm.guest_mode)
8052 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8053 
8054 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8055 	vmx->nested.vmxon = false;
8056 	vmx_clear_hlt(vcpu);
8057 	return 0;
8058 }
8059 
8060 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8061 {
8062 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8063 	int ret;
8064 
8065 	if (vmx->nested.smm.vmxon) {
8066 		vmx->nested.vmxon = true;
8067 		vmx->nested.smm.vmxon = false;
8068 	}
8069 
8070 	if (vmx->nested.smm.guest_mode) {
8071 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8072 		if (ret)
8073 			return ret;
8074 
8075 		vmx->nested.nested_run_pending = 1;
8076 		vmx->nested.smm.guest_mode = false;
8077 	}
8078 	return 0;
8079 }
8080 
8081 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8082 {
8083 	/* RSM will cause a vmexit anyway.  */
8084 }
8085 #endif
8086 
8087 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8088 {
8089 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8090 }
8091 
8092 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8093 {
8094 	if (is_guest_mode(vcpu)) {
8095 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8096 
8097 		if (hrtimer_try_to_cancel(timer) == 1)
8098 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8099 	}
8100 }
8101 
8102 static void vmx_hardware_unsetup(void)
8103 {
8104 	kvm_set_posted_intr_wakeup_handler(NULL);
8105 
8106 	if (nested)
8107 		nested_vmx_hardware_unsetup();
8108 
8109 	free_kvm_area();
8110 }
8111 
8112 #define VMX_REQUIRED_APICV_INHIBITS			\
8113 (							\
8114 	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8115 	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8116 	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8117 	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8118 	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8119 	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8120 	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8121 )
8122 
8123 static void vmx_vm_destroy(struct kvm *kvm)
8124 {
8125 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8126 
8127 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8128 }
8129 
8130 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8131 	.name = KBUILD_MODNAME,
8132 
8133 	.check_processor_compatibility = vmx_check_processor_compat,
8134 
8135 	.hardware_unsetup = vmx_hardware_unsetup,
8136 
8137 	.hardware_enable = vmx_hardware_enable,
8138 	.hardware_disable = vmx_hardware_disable,
8139 	.has_emulated_msr = vmx_has_emulated_msr,
8140 
8141 	.vm_size = sizeof(struct kvm_vmx),
8142 	.vm_init = vmx_vm_init,
8143 	.vm_destroy = vmx_vm_destroy,
8144 
8145 	.vcpu_precreate = vmx_vcpu_precreate,
8146 	.vcpu_create = vmx_vcpu_create,
8147 	.vcpu_free = vmx_vcpu_free,
8148 	.vcpu_reset = vmx_vcpu_reset,
8149 
8150 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8151 	.vcpu_load = vmx_vcpu_load,
8152 	.vcpu_put = vmx_vcpu_put,
8153 
8154 	.update_exception_bitmap = vmx_update_exception_bitmap,
8155 	.get_msr_feature = vmx_get_msr_feature,
8156 	.get_msr = vmx_get_msr,
8157 	.set_msr = vmx_set_msr,
8158 	.get_segment_base = vmx_get_segment_base,
8159 	.get_segment = vmx_get_segment,
8160 	.set_segment = vmx_set_segment,
8161 	.get_cpl = vmx_get_cpl,
8162 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8163 	.set_cr0 = vmx_set_cr0,
8164 	.is_valid_cr4 = vmx_is_valid_cr4,
8165 	.set_cr4 = vmx_set_cr4,
8166 	.set_efer = vmx_set_efer,
8167 	.get_idt = vmx_get_idt,
8168 	.set_idt = vmx_set_idt,
8169 	.get_gdt = vmx_get_gdt,
8170 	.set_gdt = vmx_set_gdt,
8171 	.set_dr7 = vmx_set_dr7,
8172 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8173 	.cache_reg = vmx_cache_reg,
8174 	.get_rflags = vmx_get_rflags,
8175 	.set_rflags = vmx_set_rflags,
8176 	.get_if_flag = vmx_get_if_flag,
8177 
8178 	.flush_tlb_all = vmx_flush_tlb_all,
8179 	.flush_tlb_current = vmx_flush_tlb_current,
8180 	.flush_tlb_gva = vmx_flush_tlb_gva,
8181 	.flush_tlb_guest = vmx_flush_tlb_guest,
8182 
8183 	.vcpu_pre_run = vmx_vcpu_pre_run,
8184 	.vcpu_run = vmx_vcpu_run,
8185 	.handle_exit = vmx_handle_exit,
8186 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8187 	.update_emulated_instruction = vmx_update_emulated_instruction,
8188 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8189 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8190 	.patch_hypercall = vmx_patch_hypercall,
8191 	.inject_irq = vmx_inject_irq,
8192 	.inject_nmi = vmx_inject_nmi,
8193 	.inject_exception = vmx_inject_exception,
8194 	.cancel_injection = vmx_cancel_injection,
8195 	.interrupt_allowed = vmx_interrupt_allowed,
8196 	.nmi_allowed = vmx_nmi_allowed,
8197 	.get_nmi_mask = vmx_get_nmi_mask,
8198 	.set_nmi_mask = vmx_set_nmi_mask,
8199 	.enable_nmi_window = vmx_enable_nmi_window,
8200 	.enable_irq_window = vmx_enable_irq_window,
8201 	.update_cr8_intercept = vmx_update_cr8_intercept,
8202 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8203 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8204 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8205 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8206 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
8207 	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8208 	.hwapic_irr_update = vmx_hwapic_irr_update,
8209 	.hwapic_isr_update = vmx_hwapic_isr_update,
8210 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8211 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8212 	.deliver_interrupt = vmx_deliver_interrupt,
8213 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8214 
8215 	.set_tss_addr = vmx_set_tss_addr,
8216 	.set_identity_map_addr = vmx_set_identity_map_addr,
8217 	.get_mt_mask = vmx_get_mt_mask,
8218 
8219 	.get_exit_info = vmx_get_exit_info,
8220 
8221 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8222 
8223 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8224 
8225 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8226 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8227 	.write_tsc_offset = vmx_write_tsc_offset,
8228 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8229 
8230 	.load_mmu_pgd = vmx_load_mmu_pgd,
8231 
8232 	.check_intercept = vmx_check_intercept,
8233 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8234 
8235 	.request_immediate_exit = vmx_request_immediate_exit,
8236 
8237 	.sched_in = vmx_sched_in,
8238 
8239 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8240 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8241 
8242 	.nested_ops = &vmx_nested_ops,
8243 
8244 	.pi_update_irte = vmx_pi_update_irte,
8245 	.pi_start_assignment = vmx_pi_start_assignment,
8246 
8247 #ifdef CONFIG_X86_64
8248 	.set_hv_timer = vmx_set_hv_timer,
8249 	.cancel_hv_timer = vmx_cancel_hv_timer,
8250 #endif
8251 
8252 	.setup_mce = vmx_setup_mce,
8253 
8254 #ifdef CONFIG_KVM_SMM
8255 	.smi_allowed = vmx_smi_allowed,
8256 	.enter_smm = vmx_enter_smm,
8257 	.leave_smm = vmx_leave_smm,
8258 	.enable_smi_window = vmx_enable_smi_window,
8259 #endif
8260 
8261 	.can_emulate_instruction = vmx_can_emulate_instruction,
8262 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8263 	.migrate_timers = vmx_migrate_timers,
8264 
8265 	.msr_filter_changed = vmx_msr_filter_changed,
8266 	.complete_emulated_msr = kvm_complete_insn_gp,
8267 
8268 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8269 };
8270 
8271 static unsigned int vmx_handle_intel_pt_intr(void)
8272 {
8273 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8274 
8275 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8276 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8277 		return 0;
8278 
8279 	kvm_make_request(KVM_REQ_PMI, vcpu);
8280 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8281 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8282 	return 1;
8283 }
8284 
8285 static __init void vmx_setup_user_return_msrs(void)
8286 {
8287 
8288 	/*
8289 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8290 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8291 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8292 	 * support this emulation, MSR_STAR is included in the list for i386,
8293 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8294 	 * into hardware and is here purely for emulation purposes.
8295 	 */
8296 	const u32 vmx_uret_msrs_list[] = {
8297 	#ifdef CONFIG_X86_64
8298 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8299 	#endif
8300 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8301 		MSR_IA32_TSX_CTRL,
8302 	};
8303 	int i;
8304 
8305 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8306 
8307 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8308 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8309 }
8310 
8311 static void __init vmx_setup_me_spte_mask(void)
8312 {
8313 	u64 me_mask = 0;
8314 
8315 	/*
8316 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8317 	 * the former to avoid exposing shadow_phys_bits.
8318 	 *
8319 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8320 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8321 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8322 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8323 	 * reported by CPUID.  Those bits between are KeyID bits.
8324 	 */
8325 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8326 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8327 			kvm_get_shadow_phys_bits() - 1);
8328 	/*
8329 	 * Unlike SME, host kernel doesn't support setting up any
8330 	 * MKTME KeyID on Intel platforms.  No memory encryption
8331 	 * bits should be included into the SPTE.
8332 	 */
8333 	kvm_mmu_set_me_spte_mask(0, me_mask);
8334 }
8335 
8336 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8337 
8338 static __init int hardware_setup(void)
8339 {
8340 	unsigned long host_bndcfgs;
8341 	struct desc_ptr dt;
8342 	int r;
8343 
8344 	store_idt(&dt);
8345 	host_idt_base = dt.address;
8346 
8347 	vmx_setup_user_return_msrs();
8348 
8349 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8350 		return -EIO;
8351 
8352 	if (cpu_has_perf_global_ctrl_bug())
8353 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8354 			     "does not work properly. Using workaround\n");
8355 
8356 	if (boot_cpu_has(X86_FEATURE_NX))
8357 		kvm_enable_efer_bits(EFER_NX);
8358 
8359 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8360 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8361 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8362 	}
8363 
8364 	if (!cpu_has_vmx_mpx())
8365 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8366 					     XFEATURE_MASK_BNDCSR);
8367 
8368 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8369 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8370 		enable_vpid = 0;
8371 
8372 	if (!cpu_has_vmx_ept() ||
8373 	    !cpu_has_vmx_ept_4levels() ||
8374 	    !cpu_has_vmx_ept_mt_wb() ||
8375 	    !cpu_has_vmx_invept_global())
8376 		enable_ept = 0;
8377 
8378 	/* NX support is required for shadow paging. */
8379 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8380 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8381 		return -EOPNOTSUPP;
8382 	}
8383 
8384 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8385 		enable_ept_ad_bits = 0;
8386 
8387 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8388 		enable_unrestricted_guest = 0;
8389 
8390 	if (!cpu_has_vmx_flexpriority())
8391 		flexpriority_enabled = 0;
8392 
8393 	if (!cpu_has_virtual_nmis())
8394 		enable_vnmi = 0;
8395 
8396 #ifdef CONFIG_X86_SGX_KVM
8397 	if (!cpu_has_vmx_encls_vmexit())
8398 		enable_sgx = false;
8399 #endif
8400 
8401 	/*
8402 	 * set_apic_access_page_addr() is used to reload apic access
8403 	 * page upon invalidation.  No need to do anything if not
8404 	 * using the APIC_ACCESS_ADDR VMCS field.
8405 	 */
8406 	if (!flexpriority_enabled)
8407 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8408 
8409 	if (!cpu_has_vmx_tpr_shadow())
8410 		vmx_x86_ops.update_cr8_intercept = NULL;
8411 
8412 #if IS_ENABLED(CONFIG_HYPERV)
8413 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8414 	    && enable_ept) {
8415 		vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8416 		vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8417 	}
8418 #endif
8419 
8420 	if (!cpu_has_vmx_ple()) {
8421 		ple_gap = 0;
8422 		ple_window = 0;
8423 		ple_window_grow = 0;
8424 		ple_window_max = 0;
8425 		ple_window_shrink = 0;
8426 	}
8427 
8428 	if (!cpu_has_vmx_apicv())
8429 		enable_apicv = 0;
8430 	if (!enable_apicv)
8431 		vmx_x86_ops.sync_pir_to_irr = NULL;
8432 
8433 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8434 		enable_ipiv = false;
8435 
8436 	if (cpu_has_vmx_tsc_scaling())
8437 		kvm_caps.has_tsc_control = true;
8438 
8439 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8440 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8441 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8442 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8443 
8444 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8445 
8446 	if (enable_ept)
8447 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8448 				      cpu_has_vmx_ept_execute_only());
8449 
8450 	/*
8451 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8452 	 * bits to shadow_zero_check.
8453 	 */
8454 	vmx_setup_me_spte_mask();
8455 
8456 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8457 			  ept_caps_to_lpage_level(vmx_capability.ept));
8458 
8459 	/*
8460 	 * Only enable PML when hardware supports PML feature, and both EPT
8461 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8462 	 */
8463 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8464 		enable_pml = 0;
8465 
8466 	if (!enable_pml)
8467 		vmx_x86_ops.cpu_dirty_log_size = 0;
8468 
8469 	if (!cpu_has_vmx_preemption_timer())
8470 		enable_preemption_timer = false;
8471 
8472 	if (enable_preemption_timer) {
8473 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8474 
8475 		cpu_preemption_timer_multi =
8476 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8477 
8478 		if (tsc_khz)
8479 			use_timer_freq = (u64)tsc_khz * 1000;
8480 		use_timer_freq >>= cpu_preemption_timer_multi;
8481 
8482 		/*
8483 		 * KVM "disables" the preemption timer by setting it to its max
8484 		 * value.  Don't use the timer if it might cause spurious exits
8485 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8486 		 */
8487 		if (use_timer_freq > 0xffffffffu / 10)
8488 			enable_preemption_timer = false;
8489 	}
8490 
8491 	if (!enable_preemption_timer) {
8492 		vmx_x86_ops.set_hv_timer = NULL;
8493 		vmx_x86_ops.cancel_hv_timer = NULL;
8494 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8495 	}
8496 
8497 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8498 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8499 
8500 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8501 		return -EINVAL;
8502 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8503 		pt_mode = PT_MODE_SYSTEM;
8504 	if (pt_mode == PT_MODE_HOST_GUEST)
8505 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8506 	else
8507 		vmx_init_ops.handle_intel_pt_intr = NULL;
8508 
8509 	setup_default_sgx_lepubkeyhash();
8510 
8511 	if (nested) {
8512 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8513 
8514 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8515 		if (r)
8516 			return r;
8517 	}
8518 
8519 	vmx_set_cpu_caps();
8520 
8521 	r = alloc_kvm_area();
8522 	if (r && nested)
8523 		nested_vmx_hardware_unsetup();
8524 
8525 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8526 
8527 	return r;
8528 }
8529 
8530 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8531 	.hardware_setup = hardware_setup,
8532 	.handle_intel_pt_intr = NULL,
8533 
8534 	.runtime_ops = &vmx_x86_ops,
8535 	.pmu_ops = &intel_pmu_ops,
8536 };
8537 
8538 static void vmx_cleanup_l1d_flush(void)
8539 {
8540 	if (vmx_l1d_flush_pages) {
8541 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8542 		vmx_l1d_flush_pages = NULL;
8543 	}
8544 	/* Restore state so sysfs ignores VMX */
8545 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8546 }
8547 
8548 static void __vmx_exit(void)
8549 {
8550 	allow_smaller_maxphyaddr = false;
8551 
8552 #ifdef CONFIG_KEXEC_CORE
8553 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8554 	synchronize_rcu();
8555 #endif
8556 	vmx_cleanup_l1d_flush();
8557 }
8558 
8559 static void vmx_exit(void)
8560 {
8561 	kvm_exit();
8562 	kvm_x86_vendor_exit();
8563 
8564 	__vmx_exit();
8565 }
8566 module_exit(vmx_exit);
8567 
8568 static int __init vmx_init(void)
8569 {
8570 	int r, cpu;
8571 
8572 	if (!kvm_is_vmx_supported())
8573 		return -EOPNOTSUPP;
8574 
8575 	/*
8576 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8577 	 * to unwind if a later step fails.
8578 	 */
8579 	hv_init_evmcs();
8580 
8581 	r = kvm_x86_vendor_init(&vmx_init_ops);
8582 	if (r)
8583 		return r;
8584 
8585 	/*
8586 	 * Must be called after common x86 init so enable_ept is properly set
8587 	 * up. Hand the parameter mitigation value in which was stored in
8588 	 * the pre module init parser. If no parameter was given, it will
8589 	 * contain 'auto' which will be turned into the default 'cond'
8590 	 * mitigation mode.
8591 	 */
8592 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8593 	if (r)
8594 		goto err_l1d_flush;
8595 
8596 	vmx_setup_fb_clear_ctrl();
8597 
8598 	for_each_possible_cpu(cpu) {
8599 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8600 
8601 		pi_init_cpu(cpu);
8602 	}
8603 
8604 #ifdef CONFIG_KEXEC_CORE
8605 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8606 			   crash_vmclear_local_loaded_vmcss);
8607 #endif
8608 	vmx_check_vmcs12_offsets();
8609 
8610 	/*
8611 	 * Shadow paging doesn't have a (further) performance penalty
8612 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8613 	 * by default
8614 	 */
8615 	if (!enable_ept)
8616 		allow_smaller_maxphyaddr = true;
8617 
8618 	/*
8619 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8620 	 * exposed to userspace!
8621 	 */
8622 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8623 		     THIS_MODULE);
8624 	if (r)
8625 		goto err_kvm_init;
8626 
8627 	return 0;
8628 
8629 err_kvm_init:
8630 	__vmx_exit();
8631 err_l1d_flush:
8632 	kvm_x86_vendor_exit();
8633 	return r;
8634 }
8635 module_init(vmx_init);
8636