1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/idtentry.h> 42 #include <asm/io.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/kexec.h> 45 #include <asm/perf_event.h> 46 #include <asm/mmu_context.h> 47 #include <asm/mshyperv.h> 48 #include <asm/mwait.h> 49 #include <asm/spec-ctrl.h> 50 #include <asm/virtext.h> 51 #include <asm/vmx.h> 52 53 #include "capabilities.h" 54 #include "cpuid.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 #include "smm.h" 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 #ifdef MODULE 75 static const struct x86_cpu_id vmx_cpu_id[] = { 76 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 77 {} 78 }; 79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 80 #endif 81 82 bool __read_mostly enable_vpid = 1; 83 module_param_named(vpid, enable_vpid, bool, 0444); 84 85 static bool __read_mostly enable_vnmi = 1; 86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 87 88 bool __read_mostly flexpriority_enabled = 1; 89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 90 91 bool __read_mostly enable_ept = 1; 92 module_param_named(ept, enable_ept, bool, S_IRUGO); 93 94 bool __read_mostly enable_unrestricted_guest = 1; 95 module_param_named(unrestricted_guest, 96 enable_unrestricted_guest, bool, S_IRUGO); 97 98 bool __read_mostly enable_ept_ad_bits = 1; 99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 100 101 static bool __read_mostly emulate_invalid_guest_state = true; 102 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 103 104 static bool __read_mostly fasteoi = 1; 105 module_param(fasteoi, bool, S_IRUGO); 106 107 module_param(enable_apicv, bool, S_IRUGO); 108 109 bool __read_mostly enable_ipiv = true; 110 module_param(enable_ipiv, bool, 0444); 111 112 /* 113 * If nested=1, nested virtualization is supported, i.e., guests may use 114 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 115 * use VMX instructions. 116 */ 117 static bool __read_mostly nested = 1; 118 module_param(nested, bool, S_IRUGO); 119 120 bool __read_mostly enable_pml = 1; 121 module_param_named(pml, enable_pml, bool, S_IRUGO); 122 123 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 124 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 125 126 static bool __read_mostly dump_invalid_vmcs = 0; 127 module_param(dump_invalid_vmcs, bool, 0644); 128 129 #define MSR_BITMAP_MODE_X2APIC 1 130 #define MSR_BITMAP_MODE_X2APIC_APICV 2 131 132 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 133 134 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 135 static int __read_mostly cpu_preemption_timer_multi; 136 static bool __read_mostly enable_preemption_timer = 1; 137 #ifdef CONFIG_X86_64 138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 139 #endif 140 141 extern bool __read_mostly allow_smaller_maxphyaddr; 142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 143 144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 146 #define KVM_VM_CR0_ALWAYS_ON \ 147 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 148 149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 152 153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 154 155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 156 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 157 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 158 RTIT_STATUS_BYTECNT)) 159 160 /* 161 * List of MSRs that can be directly passed to the guest. 162 * In addition to these x2apic and PT MSRs are handled specially. 163 */ 164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 165 MSR_IA32_SPEC_CTRL, 166 MSR_IA32_PRED_CMD, 167 MSR_IA32_FLUSH_CMD, 168 MSR_IA32_TSC, 169 #ifdef CONFIG_X86_64 170 MSR_FS_BASE, 171 MSR_GS_BASE, 172 MSR_KERNEL_GS_BASE, 173 MSR_IA32_XFD, 174 MSR_IA32_XFD_ERR, 175 #endif 176 MSR_IA32_SYSENTER_CS, 177 MSR_IA32_SYSENTER_ESP, 178 MSR_IA32_SYSENTER_EIP, 179 MSR_CORE_C1_RES, 180 MSR_CORE_C3_RESIDENCY, 181 MSR_CORE_C6_RESIDENCY, 182 MSR_CORE_C7_RESIDENCY, 183 }; 184 185 /* 186 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 187 * ple_gap: upper bound on the amount of time between two successive 188 * executions of PAUSE in a loop. Also indicate if ple enabled. 189 * According to test, this time is usually smaller than 128 cycles. 190 * ple_window: upper bound on the amount of time a guest is allowed to execute 191 * in a PAUSE loop. Tests indicate that most spinlocks are held for 192 * less than 2^12 cycles 193 * Time is measured based on a counter that runs at the same rate as the TSC, 194 * refer SDM volume 3b section 21.6.13 & 22.1.3. 195 */ 196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 197 module_param(ple_gap, uint, 0444); 198 199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 200 module_param(ple_window, uint, 0444); 201 202 /* Default doubles per-vcpu window every exit. */ 203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 204 module_param(ple_window_grow, uint, 0444); 205 206 /* Default resets per-vcpu window every exit to ple_window. */ 207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 208 module_param(ple_window_shrink, uint, 0444); 209 210 /* Default is to compute the maximum so we can never overflow. */ 211 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 212 module_param(ple_window_max, uint, 0444); 213 214 /* Default is SYSTEM mode, 1 for host-guest mode */ 215 int __read_mostly pt_mode = PT_MODE_SYSTEM; 216 module_param(pt_mode, int, S_IRUGO); 217 218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 220 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 221 222 /* Storage for pre module init parameter parsing */ 223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 224 225 static const struct { 226 const char *option; 227 bool for_parse; 228 } vmentry_l1d_param[] = { 229 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 230 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 231 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 232 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 233 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 234 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 235 }; 236 237 #define L1D_CACHE_ORDER 4 238 static void *vmx_l1d_flush_pages; 239 240 /* Control for disabling CPU Fill buffer clear */ 241 static bool __read_mostly vmx_fb_clear_ctrl_available; 242 243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 244 { 245 struct page *page; 246 unsigned int i; 247 248 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 253 if (!enable_ept) { 254 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 255 return 0; 256 } 257 258 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 259 u64 msr; 260 261 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 262 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 263 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 264 return 0; 265 } 266 } 267 268 /* If set to auto use the default l1tf mitigation method */ 269 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 270 switch (l1tf_mitigation) { 271 case L1TF_MITIGATION_OFF: 272 l1tf = VMENTER_L1D_FLUSH_NEVER; 273 break; 274 case L1TF_MITIGATION_FLUSH_NOWARN: 275 case L1TF_MITIGATION_FLUSH: 276 case L1TF_MITIGATION_FLUSH_NOSMT: 277 l1tf = VMENTER_L1D_FLUSH_COND; 278 break; 279 case L1TF_MITIGATION_FULL: 280 case L1TF_MITIGATION_FULL_FORCE: 281 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 282 break; 283 } 284 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 285 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 286 } 287 288 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 289 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 290 /* 291 * This allocation for vmx_l1d_flush_pages is not tied to a VM 292 * lifetime and so should not be charged to a memcg. 293 */ 294 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 295 if (!page) 296 return -ENOMEM; 297 vmx_l1d_flush_pages = page_address(page); 298 299 /* 300 * Initialize each page with a different pattern in 301 * order to protect against KSM in the nested 302 * virtualization case. 303 */ 304 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 305 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 306 PAGE_SIZE); 307 } 308 } 309 310 l1tf_vmx_mitigation = l1tf; 311 312 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 313 static_branch_enable(&vmx_l1d_should_flush); 314 else 315 static_branch_disable(&vmx_l1d_should_flush); 316 317 if (l1tf == VMENTER_L1D_FLUSH_COND) 318 static_branch_enable(&vmx_l1d_flush_cond); 319 else 320 static_branch_disable(&vmx_l1d_flush_cond); 321 return 0; 322 } 323 324 static int vmentry_l1d_flush_parse(const char *s) 325 { 326 unsigned int i; 327 328 if (s) { 329 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 330 if (vmentry_l1d_param[i].for_parse && 331 sysfs_streq(s, vmentry_l1d_param[i].option)) 332 return i; 333 } 334 } 335 return -EINVAL; 336 } 337 338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 339 { 340 int l1tf, ret; 341 342 l1tf = vmentry_l1d_flush_parse(s); 343 if (l1tf < 0) 344 return l1tf; 345 346 if (!boot_cpu_has(X86_BUG_L1TF)) 347 return 0; 348 349 /* 350 * Has vmx_init() run already? If not then this is the pre init 351 * parameter parsing. In that case just store the value and let 352 * vmx_init() do the proper setup after enable_ept has been 353 * established. 354 */ 355 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 356 vmentry_l1d_flush_param = l1tf; 357 return 0; 358 } 359 360 mutex_lock(&vmx_l1d_flush_mutex); 361 ret = vmx_setup_l1d_flush(l1tf); 362 mutex_unlock(&vmx_l1d_flush_mutex); 363 return ret; 364 } 365 366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 367 { 368 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 369 return sprintf(s, "???\n"); 370 371 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 372 } 373 374 static void vmx_setup_fb_clear_ctrl(void) 375 { 376 u64 msr; 377 378 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) && 379 !boot_cpu_has_bug(X86_BUG_MDS) && 380 !boot_cpu_has_bug(X86_BUG_TAA)) { 381 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 382 if (msr & ARCH_CAP_FB_CLEAR_CTRL) 383 vmx_fb_clear_ctrl_available = true; 384 } 385 } 386 387 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 388 { 389 u64 msr; 390 391 if (!vmx->disable_fb_clear) 392 return; 393 394 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 395 msr |= FB_CLEAR_DIS; 396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 397 /* Cache the MSR value to avoid reading it later */ 398 vmx->msr_ia32_mcu_opt_ctrl = msr; 399 } 400 401 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 402 { 403 if (!vmx->disable_fb_clear) 404 return; 405 406 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 407 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 408 } 409 410 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 411 { 412 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available; 413 414 /* 415 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 416 * at VMEntry. Skip the MSR read/write when a guest has no use case to 417 * execute VERW. 418 */ 419 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 420 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 421 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 422 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 423 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 424 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 425 vmx->disable_fb_clear = false; 426 } 427 428 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 429 .set = vmentry_l1d_flush_set, 430 .get = vmentry_l1d_flush_get, 431 }; 432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 433 434 static u32 vmx_segment_access_rights(struct kvm_segment *var); 435 436 void vmx_vmexit(void); 437 438 #define vmx_insn_failed(fmt...) \ 439 do { \ 440 WARN_ONCE(1, fmt); \ 441 pr_warn_ratelimited(fmt); \ 442 } while (0) 443 444 void vmread_error(unsigned long field, bool fault) 445 { 446 if (fault) 447 kvm_spurious_fault(); 448 else 449 vmx_insn_failed("vmread failed: field=%lx\n", field); 450 } 451 452 noinline void vmwrite_error(unsigned long field, unsigned long value) 453 { 454 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 455 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 456 } 457 458 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 459 { 460 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 461 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 462 } 463 464 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 465 { 466 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 467 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 468 } 469 470 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 471 { 472 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 473 ext, vpid, gva); 474 } 475 476 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 477 { 478 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 479 ext, eptp, gpa); 480 } 481 482 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 483 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 484 /* 485 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 486 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 487 */ 488 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 489 490 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 491 static DEFINE_SPINLOCK(vmx_vpid_lock); 492 493 struct vmcs_config vmcs_config __ro_after_init; 494 struct vmx_capability vmx_capability __ro_after_init; 495 496 #define VMX_SEGMENT_FIELD(seg) \ 497 [VCPU_SREG_##seg] = { \ 498 .selector = GUEST_##seg##_SELECTOR, \ 499 .base = GUEST_##seg##_BASE, \ 500 .limit = GUEST_##seg##_LIMIT, \ 501 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 502 } 503 504 static const struct kvm_vmx_segment_field { 505 unsigned selector; 506 unsigned base; 507 unsigned limit; 508 unsigned ar_bytes; 509 } kvm_vmx_segment_fields[] = { 510 VMX_SEGMENT_FIELD(CS), 511 VMX_SEGMENT_FIELD(DS), 512 VMX_SEGMENT_FIELD(ES), 513 VMX_SEGMENT_FIELD(FS), 514 VMX_SEGMENT_FIELD(GS), 515 VMX_SEGMENT_FIELD(SS), 516 VMX_SEGMENT_FIELD(TR), 517 VMX_SEGMENT_FIELD(LDTR), 518 }; 519 520 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 521 { 522 vmx->segment_cache.bitmask = 0; 523 } 524 525 static unsigned long host_idt_base; 526 527 #if IS_ENABLED(CONFIG_HYPERV) 528 static struct kvm_x86_ops vmx_x86_ops __initdata; 529 530 static bool __read_mostly enlightened_vmcs = true; 531 module_param(enlightened_vmcs, bool, 0444); 532 533 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 534 { 535 struct hv_enlightened_vmcs *evmcs; 536 struct hv_partition_assist_pg **p_hv_pa_pg = 537 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 538 /* 539 * Synthetic VM-Exit is not enabled in current code and so All 540 * evmcs in singe VM shares same assist page. 541 */ 542 if (!*p_hv_pa_pg) 543 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 544 545 if (!*p_hv_pa_pg) 546 return -ENOMEM; 547 548 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 549 550 evmcs->partition_assist_page = 551 __pa(*p_hv_pa_pg); 552 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 553 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 554 555 return 0; 556 } 557 558 static __init void hv_init_evmcs(void) 559 { 560 int cpu; 561 562 if (!enlightened_vmcs) 563 return; 564 565 /* 566 * Enlightened VMCS usage should be recommended and the host needs 567 * to support eVMCS v1 or above. 568 */ 569 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 570 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 571 KVM_EVMCS_VERSION) { 572 573 /* Check that we have assist pages on all online CPUs */ 574 for_each_online_cpu(cpu) { 575 if (!hv_get_vp_assist_page(cpu)) { 576 enlightened_vmcs = false; 577 break; 578 } 579 } 580 581 if (enlightened_vmcs) { 582 pr_info("Using Hyper-V Enlightened VMCS\n"); 583 static_branch_enable(&__kvm_is_using_evmcs); 584 } 585 586 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 587 vmx_x86_ops.enable_l2_tlb_flush 588 = hv_enable_l2_tlb_flush; 589 590 } else { 591 enlightened_vmcs = false; 592 } 593 } 594 595 static void hv_reset_evmcs(void) 596 { 597 struct hv_vp_assist_page *vp_ap; 598 599 if (!kvm_is_using_evmcs()) 600 return; 601 602 /* 603 * KVM should enable eVMCS if and only if all CPUs have a VP assist 604 * page, and should reject CPU onlining if eVMCS is enabled the CPU 605 * doesn't have a VP assist page allocated. 606 */ 607 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 608 if (WARN_ON_ONCE(!vp_ap)) 609 return; 610 611 /* 612 * Reset everything to support using non-enlightened VMCS access later 613 * (e.g. when we reload the module with enlightened_vmcs=0) 614 */ 615 vp_ap->nested_control.features.directhypercall = 0; 616 vp_ap->current_nested_vmcs = 0; 617 vp_ap->enlighten_vmentry = 0; 618 } 619 620 #else /* IS_ENABLED(CONFIG_HYPERV) */ 621 static void hv_init_evmcs(void) {} 622 static void hv_reset_evmcs(void) {} 623 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 624 625 /* 626 * Comment's format: document - errata name - stepping - processor name. 627 * Refer from 628 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 629 */ 630 static u32 vmx_preemption_cpu_tfms[] = { 631 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 632 0x000206E6, 633 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 634 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 635 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 636 0x00020652, 637 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 638 0x00020655, 639 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 640 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 641 /* 642 * 320767.pdf - AAP86 - B1 - 643 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 644 */ 645 0x000106E5, 646 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 647 0x000106A0, 648 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 649 0x000106A1, 650 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 651 0x000106A4, 652 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 653 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 654 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 655 0x000106A5, 656 /* Xeon E3-1220 V2 */ 657 0x000306A8, 658 }; 659 660 static inline bool cpu_has_broken_vmx_preemption_timer(void) 661 { 662 u32 eax = cpuid_eax(0x00000001), i; 663 664 /* Clear the reserved bits */ 665 eax &= ~(0x3U << 14 | 0xfU << 28); 666 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 667 if (eax == vmx_preemption_cpu_tfms[i]) 668 return true; 669 670 return false; 671 } 672 673 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 674 { 675 return flexpriority_enabled && lapic_in_kernel(vcpu); 676 } 677 678 static int possible_passthrough_msr_slot(u32 msr) 679 { 680 u32 i; 681 682 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 683 if (vmx_possible_passthrough_msrs[i] == msr) 684 return i; 685 686 return -ENOENT; 687 } 688 689 static bool is_valid_passthrough_msr(u32 msr) 690 { 691 bool r; 692 693 switch (msr) { 694 case 0x800 ... 0x8ff: 695 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 696 return true; 697 case MSR_IA32_RTIT_STATUS: 698 case MSR_IA32_RTIT_OUTPUT_BASE: 699 case MSR_IA32_RTIT_OUTPUT_MASK: 700 case MSR_IA32_RTIT_CR3_MATCH: 701 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 702 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 703 case MSR_LBR_SELECT: 704 case MSR_LBR_TOS: 705 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 706 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 707 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 708 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 709 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 710 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 711 return true; 712 } 713 714 r = possible_passthrough_msr_slot(msr) != -ENOENT; 715 716 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 717 718 return r; 719 } 720 721 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 722 { 723 int i; 724 725 i = kvm_find_user_return_msr(msr); 726 if (i >= 0) 727 return &vmx->guest_uret_msrs[i]; 728 return NULL; 729 } 730 731 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 732 struct vmx_uret_msr *msr, u64 data) 733 { 734 unsigned int slot = msr - vmx->guest_uret_msrs; 735 int ret = 0; 736 737 if (msr->load_into_hardware) { 738 preempt_disable(); 739 ret = kvm_set_user_return_msr(slot, data, msr->mask); 740 preempt_enable(); 741 } 742 if (!ret) 743 msr->data = data; 744 return ret; 745 } 746 747 #ifdef CONFIG_KEXEC_CORE 748 static void crash_vmclear_local_loaded_vmcss(void) 749 { 750 int cpu = raw_smp_processor_id(); 751 struct loaded_vmcs *v; 752 753 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 754 loaded_vmcss_on_cpu_link) 755 vmcs_clear(v->vmcs); 756 } 757 #endif /* CONFIG_KEXEC_CORE */ 758 759 static void __loaded_vmcs_clear(void *arg) 760 { 761 struct loaded_vmcs *loaded_vmcs = arg; 762 int cpu = raw_smp_processor_id(); 763 764 if (loaded_vmcs->cpu != cpu) 765 return; /* vcpu migration can race with cpu offline */ 766 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 767 per_cpu(current_vmcs, cpu) = NULL; 768 769 vmcs_clear(loaded_vmcs->vmcs); 770 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 771 vmcs_clear(loaded_vmcs->shadow_vmcs); 772 773 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 774 775 /* 776 * Ensure all writes to loaded_vmcs, including deleting it from its 777 * current percpu list, complete before setting loaded_vmcs->cpu to 778 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 779 * and add loaded_vmcs to its percpu list before it's deleted from this 780 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 781 */ 782 smp_wmb(); 783 784 loaded_vmcs->cpu = -1; 785 loaded_vmcs->launched = 0; 786 } 787 788 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 789 { 790 int cpu = loaded_vmcs->cpu; 791 792 if (cpu != -1) 793 smp_call_function_single(cpu, 794 __loaded_vmcs_clear, loaded_vmcs, 1); 795 } 796 797 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 798 unsigned field) 799 { 800 bool ret; 801 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 802 803 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 804 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 805 vmx->segment_cache.bitmask = 0; 806 } 807 ret = vmx->segment_cache.bitmask & mask; 808 vmx->segment_cache.bitmask |= mask; 809 return ret; 810 } 811 812 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 813 { 814 u16 *p = &vmx->segment_cache.seg[seg].selector; 815 816 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 817 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 818 return *p; 819 } 820 821 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 822 { 823 ulong *p = &vmx->segment_cache.seg[seg].base; 824 825 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 826 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 827 return *p; 828 } 829 830 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 831 { 832 u32 *p = &vmx->segment_cache.seg[seg].limit; 833 834 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 835 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 836 return *p; 837 } 838 839 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 840 { 841 u32 *p = &vmx->segment_cache.seg[seg].ar; 842 843 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 844 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 845 return *p; 846 } 847 848 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 849 { 850 u32 eb; 851 852 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 853 (1u << DB_VECTOR) | (1u << AC_VECTOR); 854 /* 855 * Guest access to VMware backdoor ports could legitimately 856 * trigger #GP because of TSS I/O permission bitmap. 857 * We intercept those #GP and allow access to them anyway 858 * as VMware does. 859 */ 860 if (enable_vmware_backdoor) 861 eb |= (1u << GP_VECTOR); 862 if ((vcpu->guest_debug & 863 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 864 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 865 eb |= 1u << BP_VECTOR; 866 if (to_vmx(vcpu)->rmode.vm86_active) 867 eb = ~0; 868 if (!vmx_need_pf_intercept(vcpu)) 869 eb &= ~(1u << PF_VECTOR); 870 871 /* When we are running a nested L2 guest and L1 specified for it a 872 * certain exception bitmap, we must trap the same exceptions and pass 873 * them to L1. When running L2, we will only handle the exceptions 874 * specified above if L1 did not want them. 875 */ 876 if (is_guest_mode(vcpu)) 877 eb |= get_vmcs12(vcpu)->exception_bitmap; 878 else { 879 int mask = 0, match = 0; 880 881 if (enable_ept && (eb & (1u << PF_VECTOR))) { 882 /* 883 * If EPT is enabled, #PF is currently only intercepted 884 * if MAXPHYADDR is smaller on the guest than on the 885 * host. In that case we only care about present, 886 * non-reserved faults. For vmcs02, however, PFEC_MASK 887 * and PFEC_MATCH are set in prepare_vmcs02_rare. 888 */ 889 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 890 match = PFERR_PRESENT_MASK; 891 } 892 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 893 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 894 } 895 896 /* 897 * Disabling xfd interception indicates that dynamic xfeatures 898 * might be used in the guest. Always trap #NM in this case 899 * to save guest xfd_err timely. 900 */ 901 if (vcpu->arch.xfd_no_write_intercept) 902 eb |= (1u << NM_VECTOR); 903 904 vmcs_write32(EXCEPTION_BITMAP, eb); 905 } 906 907 /* 908 * Check if MSR is intercepted for currently loaded MSR bitmap. 909 */ 910 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 911 { 912 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 913 return true; 914 915 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 916 } 917 918 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 919 { 920 unsigned int flags = 0; 921 922 if (vmx->loaded_vmcs->launched) 923 flags |= VMX_RUN_VMRESUME; 924 925 /* 926 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 927 * to change it directly without causing a vmexit. In that case read 928 * it after vmexit and store it in vmx->spec_ctrl. 929 */ 930 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 931 flags |= VMX_RUN_SAVE_SPEC_CTRL; 932 933 return flags; 934 } 935 936 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 937 unsigned long entry, unsigned long exit) 938 { 939 vm_entry_controls_clearbit(vmx, entry); 940 vm_exit_controls_clearbit(vmx, exit); 941 } 942 943 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 944 { 945 unsigned int i; 946 947 for (i = 0; i < m->nr; ++i) { 948 if (m->val[i].index == msr) 949 return i; 950 } 951 return -ENOENT; 952 } 953 954 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 955 { 956 int i; 957 struct msr_autoload *m = &vmx->msr_autoload; 958 959 switch (msr) { 960 case MSR_EFER: 961 if (cpu_has_load_ia32_efer()) { 962 clear_atomic_switch_msr_special(vmx, 963 VM_ENTRY_LOAD_IA32_EFER, 964 VM_EXIT_LOAD_IA32_EFER); 965 return; 966 } 967 break; 968 case MSR_CORE_PERF_GLOBAL_CTRL: 969 if (cpu_has_load_perf_global_ctrl()) { 970 clear_atomic_switch_msr_special(vmx, 971 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 972 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 973 return; 974 } 975 break; 976 } 977 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 978 if (i < 0) 979 goto skip_guest; 980 --m->guest.nr; 981 m->guest.val[i] = m->guest.val[m->guest.nr]; 982 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 983 984 skip_guest: 985 i = vmx_find_loadstore_msr_slot(&m->host, msr); 986 if (i < 0) 987 return; 988 989 --m->host.nr; 990 m->host.val[i] = m->host.val[m->host.nr]; 991 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 992 } 993 994 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 995 unsigned long entry, unsigned long exit, 996 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 997 u64 guest_val, u64 host_val) 998 { 999 vmcs_write64(guest_val_vmcs, guest_val); 1000 if (host_val_vmcs != HOST_IA32_EFER) 1001 vmcs_write64(host_val_vmcs, host_val); 1002 vm_entry_controls_setbit(vmx, entry); 1003 vm_exit_controls_setbit(vmx, exit); 1004 } 1005 1006 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1007 u64 guest_val, u64 host_val, bool entry_only) 1008 { 1009 int i, j = 0; 1010 struct msr_autoload *m = &vmx->msr_autoload; 1011 1012 switch (msr) { 1013 case MSR_EFER: 1014 if (cpu_has_load_ia32_efer()) { 1015 add_atomic_switch_msr_special(vmx, 1016 VM_ENTRY_LOAD_IA32_EFER, 1017 VM_EXIT_LOAD_IA32_EFER, 1018 GUEST_IA32_EFER, 1019 HOST_IA32_EFER, 1020 guest_val, host_val); 1021 return; 1022 } 1023 break; 1024 case MSR_CORE_PERF_GLOBAL_CTRL: 1025 if (cpu_has_load_perf_global_ctrl()) { 1026 add_atomic_switch_msr_special(vmx, 1027 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1028 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1029 GUEST_IA32_PERF_GLOBAL_CTRL, 1030 HOST_IA32_PERF_GLOBAL_CTRL, 1031 guest_val, host_val); 1032 return; 1033 } 1034 break; 1035 case MSR_IA32_PEBS_ENABLE: 1036 /* PEBS needs a quiescent period after being disabled (to write 1037 * a record). Disabling PEBS through VMX MSR swapping doesn't 1038 * provide that period, so a CPU could write host's record into 1039 * guest's memory. 1040 */ 1041 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1042 } 1043 1044 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1045 if (!entry_only) 1046 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1047 1048 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1049 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1050 printk_once(KERN_WARNING "Not enough msr switch entries. " 1051 "Can't add msr %x\n", msr); 1052 return; 1053 } 1054 if (i < 0) { 1055 i = m->guest.nr++; 1056 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1057 } 1058 m->guest.val[i].index = msr; 1059 m->guest.val[i].value = guest_val; 1060 1061 if (entry_only) 1062 return; 1063 1064 if (j < 0) { 1065 j = m->host.nr++; 1066 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1067 } 1068 m->host.val[j].index = msr; 1069 m->host.val[j].value = host_val; 1070 } 1071 1072 static bool update_transition_efer(struct vcpu_vmx *vmx) 1073 { 1074 u64 guest_efer = vmx->vcpu.arch.efer; 1075 u64 ignore_bits = 0; 1076 int i; 1077 1078 /* Shadow paging assumes NX to be available. */ 1079 if (!enable_ept) 1080 guest_efer |= EFER_NX; 1081 1082 /* 1083 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1084 */ 1085 ignore_bits |= EFER_SCE; 1086 #ifdef CONFIG_X86_64 1087 ignore_bits |= EFER_LMA | EFER_LME; 1088 /* SCE is meaningful only in long mode on Intel */ 1089 if (guest_efer & EFER_LMA) 1090 ignore_bits &= ~(u64)EFER_SCE; 1091 #endif 1092 1093 /* 1094 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1095 * On CPUs that support "load IA32_EFER", always switch EFER 1096 * atomically, since it's faster than switching it manually. 1097 */ 1098 if (cpu_has_load_ia32_efer() || 1099 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1100 if (!(guest_efer & EFER_LMA)) 1101 guest_efer &= ~EFER_LME; 1102 if (guest_efer != host_efer) 1103 add_atomic_switch_msr(vmx, MSR_EFER, 1104 guest_efer, host_efer, false); 1105 else 1106 clear_atomic_switch_msr(vmx, MSR_EFER); 1107 return false; 1108 } 1109 1110 i = kvm_find_user_return_msr(MSR_EFER); 1111 if (i < 0) 1112 return false; 1113 1114 clear_atomic_switch_msr(vmx, MSR_EFER); 1115 1116 guest_efer &= ~ignore_bits; 1117 guest_efer |= host_efer & ignore_bits; 1118 1119 vmx->guest_uret_msrs[i].data = guest_efer; 1120 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1121 1122 return true; 1123 } 1124 1125 #ifdef CONFIG_X86_32 1126 /* 1127 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1128 * VMCS rather than the segment table. KVM uses this helper to figure 1129 * out the current bases to poke them into the VMCS before entry. 1130 */ 1131 static unsigned long segment_base(u16 selector) 1132 { 1133 struct desc_struct *table; 1134 unsigned long v; 1135 1136 if (!(selector & ~SEGMENT_RPL_MASK)) 1137 return 0; 1138 1139 table = get_current_gdt_ro(); 1140 1141 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1142 u16 ldt_selector = kvm_read_ldt(); 1143 1144 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1145 return 0; 1146 1147 table = (struct desc_struct *)segment_base(ldt_selector); 1148 } 1149 v = get_desc_base(&table[selector >> 3]); 1150 return v; 1151 } 1152 #endif 1153 1154 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1155 { 1156 return vmx_pt_mode_is_host_guest() && 1157 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1158 } 1159 1160 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1161 { 1162 /* The base must be 128-byte aligned and a legal physical address. */ 1163 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1164 } 1165 1166 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1167 { 1168 u32 i; 1169 1170 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1171 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1172 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1173 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1174 for (i = 0; i < addr_range; i++) { 1175 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1176 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1177 } 1178 } 1179 1180 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1181 { 1182 u32 i; 1183 1184 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1185 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1186 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1187 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1188 for (i = 0; i < addr_range; i++) { 1189 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1190 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1191 } 1192 } 1193 1194 static void pt_guest_enter(struct vcpu_vmx *vmx) 1195 { 1196 if (vmx_pt_mode_is_system()) 1197 return; 1198 1199 /* 1200 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1201 * Save host state before VM entry. 1202 */ 1203 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1204 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1205 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1206 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1207 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1208 } 1209 } 1210 1211 static void pt_guest_exit(struct vcpu_vmx *vmx) 1212 { 1213 if (vmx_pt_mode_is_system()) 1214 return; 1215 1216 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1217 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1218 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1219 } 1220 1221 /* 1222 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1223 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1224 */ 1225 if (vmx->pt_desc.host.ctl) 1226 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1227 } 1228 1229 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1230 unsigned long fs_base, unsigned long gs_base) 1231 { 1232 if (unlikely(fs_sel != host->fs_sel)) { 1233 if (!(fs_sel & 7)) 1234 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1235 else 1236 vmcs_write16(HOST_FS_SELECTOR, 0); 1237 host->fs_sel = fs_sel; 1238 } 1239 if (unlikely(gs_sel != host->gs_sel)) { 1240 if (!(gs_sel & 7)) 1241 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1242 else 1243 vmcs_write16(HOST_GS_SELECTOR, 0); 1244 host->gs_sel = gs_sel; 1245 } 1246 if (unlikely(fs_base != host->fs_base)) { 1247 vmcs_writel(HOST_FS_BASE, fs_base); 1248 host->fs_base = fs_base; 1249 } 1250 if (unlikely(gs_base != host->gs_base)) { 1251 vmcs_writel(HOST_GS_BASE, gs_base); 1252 host->gs_base = gs_base; 1253 } 1254 } 1255 1256 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1257 { 1258 struct vcpu_vmx *vmx = to_vmx(vcpu); 1259 struct vmcs_host_state *host_state; 1260 #ifdef CONFIG_X86_64 1261 int cpu = raw_smp_processor_id(); 1262 #endif 1263 unsigned long fs_base, gs_base; 1264 u16 fs_sel, gs_sel; 1265 int i; 1266 1267 vmx->req_immediate_exit = false; 1268 1269 /* 1270 * Note that guest MSRs to be saved/restored can also be changed 1271 * when guest state is loaded. This happens when guest transitions 1272 * to/from long-mode by setting MSR_EFER.LMA. 1273 */ 1274 if (!vmx->guest_uret_msrs_loaded) { 1275 vmx->guest_uret_msrs_loaded = true; 1276 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1277 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1278 continue; 1279 1280 kvm_set_user_return_msr(i, 1281 vmx->guest_uret_msrs[i].data, 1282 vmx->guest_uret_msrs[i].mask); 1283 } 1284 } 1285 1286 if (vmx->nested.need_vmcs12_to_shadow_sync) 1287 nested_sync_vmcs12_to_shadow(vcpu); 1288 1289 if (vmx->guest_state_loaded) 1290 return; 1291 1292 host_state = &vmx->loaded_vmcs->host_state; 1293 1294 /* 1295 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1296 * allow segment selectors with cpl > 0 or ti == 1. 1297 */ 1298 host_state->ldt_sel = kvm_read_ldt(); 1299 1300 #ifdef CONFIG_X86_64 1301 savesegment(ds, host_state->ds_sel); 1302 savesegment(es, host_state->es_sel); 1303 1304 gs_base = cpu_kernelmode_gs_base(cpu); 1305 if (likely(is_64bit_mm(current->mm))) { 1306 current_save_fsgs(); 1307 fs_sel = current->thread.fsindex; 1308 gs_sel = current->thread.gsindex; 1309 fs_base = current->thread.fsbase; 1310 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1311 } else { 1312 savesegment(fs, fs_sel); 1313 savesegment(gs, gs_sel); 1314 fs_base = read_msr(MSR_FS_BASE); 1315 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1316 } 1317 1318 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1319 #else 1320 savesegment(fs, fs_sel); 1321 savesegment(gs, gs_sel); 1322 fs_base = segment_base(fs_sel); 1323 gs_base = segment_base(gs_sel); 1324 #endif 1325 1326 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1327 vmx->guest_state_loaded = true; 1328 } 1329 1330 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1331 { 1332 struct vmcs_host_state *host_state; 1333 1334 if (!vmx->guest_state_loaded) 1335 return; 1336 1337 host_state = &vmx->loaded_vmcs->host_state; 1338 1339 ++vmx->vcpu.stat.host_state_reload; 1340 1341 #ifdef CONFIG_X86_64 1342 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1343 #endif 1344 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1345 kvm_load_ldt(host_state->ldt_sel); 1346 #ifdef CONFIG_X86_64 1347 load_gs_index(host_state->gs_sel); 1348 #else 1349 loadsegment(gs, host_state->gs_sel); 1350 #endif 1351 } 1352 if (host_state->fs_sel & 7) 1353 loadsegment(fs, host_state->fs_sel); 1354 #ifdef CONFIG_X86_64 1355 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1356 loadsegment(ds, host_state->ds_sel); 1357 loadsegment(es, host_state->es_sel); 1358 } 1359 #endif 1360 invalidate_tss_limit(); 1361 #ifdef CONFIG_X86_64 1362 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1363 #endif 1364 load_fixmap_gdt(raw_smp_processor_id()); 1365 vmx->guest_state_loaded = false; 1366 vmx->guest_uret_msrs_loaded = false; 1367 } 1368 1369 #ifdef CONFIG_X86_64 1370 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1371 { 1372 preempt_disable(); 1373 if (vmx->guest_state_loaded) 1374 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1375 preempt_enable(); 1376 return vmx->msr_guest_kernel_gs_base; 1377 } 1378 1379 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1380 { 1381 preempt_disable(); 1382 if (vmx->guest_state_loaded) 1383 wrmsrl(MSR_KERNEL_GS_BASE, data); 1384 preempt_enable(); 1385 vmx->msr_guest_kernel_gs_base = data; 1386 } 1387 #endif 1388 1389 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1390 struct loaded_vmcs *buddy) 1391 { 1392 struct vcpu_vmx *vmx = to_vmx(vcpu); 1393 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1394 struct vmcs *prev; 1395 1396 if (!already_loaded) { 1397 loaded_vmcs_clear(vmx->loaded_vmcs); 1398 local_irq_disable(); 1399 1400 /* 1401 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1402 * this cpu's percpu list, otherwise it may not yet be deleted 1403 * from its previous cpu's percpu list. Pairs with the 1404 * smb_wmb() in __loaded_vmcs_clear(). 1405 */ 1406 smp_rmb(); 1407 1408 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1409 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1410 local_irq_enable(); 1411 } 1412 1413 prev = per_cpu(current_vmcs, cpu); 1414 if (prev != vmx->loaded_vmcs->vmcs) { 1415 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1416 vmcs_load(vmx->loaded_vmcs->vmcs); 1417 1418 /* 1419 * No indirect branch prediction barrier needed when switching 1420 * the active VMCS within a vCPU, unless IBRS is advertised to 1421 * the vCPU. To minimize the number of IBPBs executed, KVM 1422 * performs IBPB on nested VM-Exit (a single nested transition 1423 * may switch the active VMCS multiple times). 1424 */ 1425 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1426 indirect_branch_prediction_barrier(); 1427 } 1428 1429 if (!already_loaded) { 1430 void *gdt = get_current_gdt_ro(); 1431 1432 /* 1433 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1434 * TLB entries from its previous association with the vCPU. 1435 */ 1436 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1437 1438 /* 1439 * Linux uses per-cpu TSS and GDT, so set these when switching 1440 * processors. See 22.2.4. 1441 */ 1442 vmcs_writel(HOST_TR_BASE, 1443 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1444 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1445 1446 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1447 /* 22.2.3 */ 1448 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1449 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1450 } 1451 1452 vmx->loaded_vmcs->cpu = cpu; 1453 } 1454 } 1455 1456 /* 1457 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1458 * vcpu mutex is already taken. 1459 */ 1460 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1461 { 1462 struct vcpu_vmx *vmx = to_vmx(vcpu); 1463 1464 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1465 1466 vmx_vcpu_pi_load(vcpu, cpu); 1467 1468 vmx->host_debugctlmsr = get_debugctlmsr(); 1469 } 1470 1471 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1472 { 1473 vmx_vcpu_pi_put(vcpu); 1474 1475 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1476 } 1477 1478 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1479 { 1480 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1481 } 1482 1483 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1484 { 1485 struct vcpu_vmx *vmx = to_vmx(vcpu); 1486 unsigned long rflags, save_rflags; 1487 1488 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1489 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1490 rflags = vmcs_readl(GUEST_RFLAGS); 1491 if (vmx->rmode.vm86_active) { 1492 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1493 save_rflags = vmx->rmode.save_rflags; 1494 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1495 } 1496 vmx->rflags = rflags; 1497 } 1498 return vmx->rflags; 1499 } 1500 1501 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1502 { 1503 struct vcpu_vmx *vmx = to_vmx(vcpu); 1504 unsigned long old_rflags; 1505 1506 if (is_unrestricted_guest(vcpu)) { 1507 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1508 vmx->rflags = rflags; 1509 vmcs_writel(GUEST_RFLAGS, rflags); 1510 return; 1511 } 1512 1513 old_rflags = vmx_get_rflags(vcpu); 1514 vmx->rflags = rflags; 1515 if (vmx->rmode.vm86_active) { 1516 vmx->rmode.save_rflags = rflags; 1517 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1518 } 1519 vmcs_writel(GUEST_RFLAGS, rflags); 1520 1521 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1522 vmx->emulation_required = vmx_emulation_required(vcpu); 1523 } 1524 1525 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1526 { 1527 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1528 } 1529 1530 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1531 { 1532 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1533 int ret = 0; 1534 1535 if (interruptibility & GUEST_INTR_STATE_STI) 1536 ret |= KVM_X86_SHADOW_INT_STI; 1537 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1538 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1539 1540 return ret; 1541 } 1542 1543 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1544 { 1545 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1546 u32 interruptibility = interruptibility_old; 1547 1548 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1549 1550 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1551 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1552 else if (mask & KVM_X86_SHADOW_INT_STI) 1553 interruptibility |= GUEST_INTR_STATE_STI; 1554 1555 if ((interruptibility != interruptibility_old)) 1556 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1557 } 1558 1559 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1560 { 1561 struct vcpu_vmx *vmx = to_vmx(vcpu); 1562 unsigned long value; 1563 1564 /* 1565 * Any MSR write that attempts to change bits marked reserved will 1566 * case a #GP fault. 1567 */ 1568 if (data & vmx->pt_desc.ctl_bitmask) 1569 return 1; 1570 1571 /* 1572 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1573 * result in a #GP unless the same write also clears TraceEn. 1574 */ 1575 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1576 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1577 return 1; 1578 1579 /* 1580 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1581 * and FabricEn would cause #GP, if 1582 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1583 */ 1584 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1585 !(data & RTIT_CTL_FABRIC_EN) && 1586 !intel_pt_validate_cap(vmx->pt_desc.caps, 1587 PT_CAP_single_range_output)) 1588 return 1; 1589 1590 /* 1591 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1592 * utilize encodings marked reserved will cause a #GP fault. 1593 */ 1594 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1595 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1596 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1597 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1598 return 1; 1599 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1600 PT_CAP_cycle_thresholds); 1601 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1602 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1603 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1604 return 1; 1605 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1606 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1607 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1608 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1609 return 1; 1610 1611 /* 1612 * If ADDRx_CFG is reserved or the encodings is >2 will 1613 * cause a #GP fault. 1614 */ 1615 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1616 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1617 return 1; 1618 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1619 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1620 return 1; 1621 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1622 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1623 return 1; 1624 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1625 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1632 void *insn, int insn_len) 1633 { 1634 /* 1635 * Emulation of instructions in SGX enclaves is impossible as RIP does 1636 * not point at the failing instruction, and even if it did, the code 1637 * stream is inaccessible. Inject #UD instead of exiting to userspace 1638 * so that guest userspace can't DoS the guest simply by triggering 1639 * emulation (enclaves are CPL3 only). 1640 */ 1641 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1642 kvm_queue_exception(vcpu, UD_VECTOR); 1643 return false; 1644 } 1645 return true; 1646 } 1647 1648 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1649 { 1650 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1651 unsigned long rip, orig_rip; 1652 u32 instr_len; 1653 1654 /* 1655 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1656 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1657 * set when EPT misconfig occurs. In practice, real hardware updates 1658 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1659 * (namely Hyper-V) don't set it due to it being undefined behavior, 1660 * i.e. we end up advancing IP with some random value. 1661 */ 1662 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1663 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1664 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1665 1666 /* 1667 * Emulating an enclave's instructions isn't supported as KVM 1668 * cannot access the enclave's memory or its true RIP, e.g. the 1669 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1670 * the RIP that actually triggered the VM-Exit. But, because 1671 * most instructions that cause VM-Exit will #UD in an enclave, 1672 * most instruction-based VM-Exits simply do not occur. 1673 * 1674 * There are a few exceptions, notably the debug instructions 1675 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1676 * and generate #DB/#BP as expected, which KVM might intercept. 1677 * But again, the CPU does the dirty work and saves an instr 1678 * length of zero so VMMs don't shoot themselves in the foot. 1679 * WARN if KVM tries to skip a non-zero length instruction on 1680 * a VM-Exit from an enclave. 1681 */ 1682 if (!instr_len) 1683 goto rip_updated; 1684 1685 WARN_ONCE(exit_reason.enclave_mode, 1686 "skipping instruction after SGX enclave VM-Exit"); 1687 1688 orig_rip = kvm_rip_read(vcpu); 1689 rip = orig_rip + instr_len; 1690 #ifdef CONFIG_X86_64 1691 /* 1692 * We need to mask out the high 32 bits of RIP if not in 64-bit 1693 * mode, but just finding out that we are in 64-bit mode is 1694 * quite expensive. Only do it if there was a carry. 1695 */ 1696 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1697 rip = (u32)rip; 1698 #endif 1699 kvm_rip_write(vcpu, rip); 1700 } else { 1701 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1702 return 0; 1703 } 1704 1705 rip_updated: 1706 /* skipping an emulated instruction also counts */ 1707 vmx_set_interrupt_shadow(vcpu, 0); 1708 1709 return 1; 1710 } 1711 1712 /* 1713 * Recognizes a pending MTF VM-exit and records the nested state for later 1714 * delivery. 1715 */ 1716 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1717 { 1718 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1719 struct vcpu_vmx *vmx = to_vmx(vcpu); 1720 1721 if (!is_guest_mode(vcpu)) 1722 return; 1723 1724 /* 1725 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1726 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1727 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1728 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1729 * as ICEBP is higher priority than both. As instruction emulation is 1730 * completed at this point (i.e. KVM is at the instruction boundary), 1731 * any #DB exception pending delivery must be a debug-trap of lower 1732 * priority than MTF. Record the pending MTF state to be delivered in 1733 * vmx_check_nested_events(). 1734 */ 1735 if (nested_cpu_has_mtf(vmcs12) && 1736 (!vcpu->arch.exception.pending || 1737 vcpu->arch.exception.vector == DB_VECTOR) && 1738 (!vcpu->arch.exception_vmexit.pending || 1739 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1740 vmx->nested.mtf_pending = true; 1741 kvm_make_request(KVM_REQ_EVENT, vcpu); 1742 } else { 1743 vmx->nested.mtf_pending = false; 1744 } 1745 } 1746 1747 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1748 { 1749 vmx_update_emulated_instruction(vcpu); 1750 return skip_emulated_instruction(vcpu); 1751 } 1752 1753 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1754 { 1755 /* 1756 * Ensure that we clear the HLT state in the VMCS. We don't need to 1757 * explicitly skip the instruction because if the HLT state is set, 1758 * then the instruction is already executing and RIP has already been 1759 * advanced. 1760 */ 1761 if (kvm_hlt_in_guest(vcpu->kvm) && 1762 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1763 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1764 } 1765 1766 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1767 { 1768 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1769 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1770 struct vcpu_vmx *vmx = to_vmx(vcpu); 1771 1772 kvm_deliver_exception_payload(vcpu, ex); 1773 1774 if (ex->has_error_code) { 1775 /* 1776 * Despite the error code being architecturally defined as 32 1777 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1778 * VMX don't actually supporting setting bits 31:16. Hardware 1779 * will (should) never provide a bogus error code, but AMD CPUs 1780 * do generate error codes with bits 31:16 set, and so KVM's 1781 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1782 * the upper bits to avoid VM-Fail, losing information that 1783 * does't really exist is preferable to killing the VM. 1784 */ 1785 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1786 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1787 } 1788 1789 if (vmx->rmode.vm86_active) { 1790 int inc_eip = 0; 1791 if (kvm_exception_is_soft(ex->vector)) 1792 inc_eip = vcpu->arch.event_exit_inst_len; 1793 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1794 return; 1795 } 1796 1797 WARN_ON_ONCE(vmx->emulation_required); 1798 1799 if (kvm_exception_is_soft(ex->vector)) { 1800 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1801 vmx->vcpu.arch.event_exit_inst_len); 1802 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1803 } else 1804 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1805 1806 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1807 1808 vmx_clear_hlt(vcpu); 1809 } 1810 1811 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1812 bool load_into_hardware) 1813 { 1814 struct vmx_uret_msr *uret_msr; 1815 1816 uret_msr = vmx_find_uret_msr(vmx, msr); 1817 if (!uret_msr) 1818 return; 1819 1820 uret_msr->load_into_hardware = load_into_hardware; 1821 } 1822 1823 /* 1824 * Configuring user return MSRs to automatically save, load, and restore MSRs 1825 * that need to be shoved into hardware when running the guest. Note, omitting 1826 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1827 * loaded into hardware when running the guest. 1828 */ 1829 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1830 { 1831 #ifdef CONFIG_X86_64 1832 bool load_syscall_msrs; 1833 1834 /* 1835 * The SYSCALL MSRs are only needed on long mode guests, and only 1836 * when EFER.SCE is set. 1837 */ 1838 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1839 (vmx->vcpu.arch.efer & EFER_SCE); 1840 1841 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1842 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1843 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1844 #endif 1845 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1846 1847 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1848 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1849 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1850 1851 /* 1852 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1853 * kernel and old userspace. If those guests run on a tsx=off host, do 1854 * allow guests to use TSX_CTRL, but don't change the value in hardware 1855 * so that TSX remains always disabled. 1856 */ 1857 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1858 1859 /* 1860 * The set of MSRs to load may have changed, reload MSRs before the 1861 * next VM-Enter. 1862 */ 1863 vmx->guest_uret_msrs_loaded = false; 1864 } 1865 1866 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1867 { 1868 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1869 1870 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1871 return vmcs12->tsc_offset; 1872 1873 return 0; 1874 } 1875 1876 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1877 { 1878 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1879 1880 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1881 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1882 return vmcs12->tsc_multiplier; 1883 1884 return kvm_caps.default_tsc_scaling_ratio; 1885 } 1886 1887 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1888 { 1889 vmcs_write64(TSC_OFFSET, offset); 1890 } 1891 1892 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1893 { 1894 vmcs_write64(TSC_MULTIPLIER, multiplier); 1895 } 1896 1897 /* 1898 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1899 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1900 * all guests if the "nested" module option is off, and can also be disabled 1901 * for a single guest by disabling its VMX cpuid bit. 1902 */ 1903 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1904 { 1905 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1906 } 1907 1908 /* 1909 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1910 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1911 * backwards compatibility even though KVM doesn't support emulating SMX. And 1912 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1913 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1914 */ 1915 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1916 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1917 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1918 FEAT_CTL_SGX_LC_ENABLED | \ 1919 FEAT_CTL_SGX_ENABLED | \ 1920 FEAT_CTL_LMCE_ENABLED) 1921 1922 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1923 struct msr_data *msr) 1924 { 1925 uint64_t valid_bits; 1926 1927 /* 1928 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1929 * exposed to the guest. 1930 */ 1931 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1932 ~KVM_SUPPORTED_FEATURE_CONTROL); 1933 1934 if (!msr->host_initiated && 1935 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1936 return false; 1937 1938 if (msr->host_initiated) 1939 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1940 else 1941 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1942 1943 return !(msr->data & ~valid_bits); 1944 } 1945 1946 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1947 { 1948 switch (msr->index) { 1949 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1950 if (!nested) 1951 return 1; 1952 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1953 default: 1954 return KVM_MSR_RET_INVALID; 1955 } 1956 } 1957 1958 /* 1959 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1960 * Returns 0 on success, non-0 otherwise. 1961 * Assumes vcpu_load() was already called. 1962 */ 1963 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1964 { 1965 struct vcpu_vmx *vmx = to_vmx(vcpu); 1966 struct vmx_uret_msr *msr; 1967 u32 index; 1968 1969 switch (msr_info->index) { 1970 #ifdef CONFIG_X86_64 1971 case MSR_FS_BASE: 1972 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1973 break; 1974 case MSR_GS_BASE: 1975 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1976 break; 1977 case MSR_KERNEL_GS_BASE: 1978 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1979 break; 1980 #endif 1981 case MSR_EFER: 1982 return kvm_get_msr_common(vcpu, msr_info); 1983 case MSR_IA32_TSX_CTRL: 1984 if (!msr_info->host_initiated && 1985 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1986 return 1; 1987 goto find_uret_msr; 1988 case MSR_IA32_UMWAIT_CONTROL: 1989 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1990 return 1; 1991 1992 msr_info->data = vmx->msr_ia32_umwait_control; 1993 break; 1994 case MSR_IA32_SPEC_CTRL: 1995 if (!msr_info->host_initiated && 1996 !guest_has_spec_ctrl_msr(vcpu)) 1997 return 1; 1998 1999 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2000 break; 2001 case MSR_IA32_SYSENTER_CS: 2002 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2003 break; 2004 case MSR_IA32_SYSENTER_EIP: 2005 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2006 break; 2007 case MSR_IA32_SYSENTER_ESP: 2008 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2009 break; 2010 case MSR_IA32_BNDCFGS: 2011 if (!kvm_mpx_supported() || 2012 (!msr_info->host_initiated && 2013 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2014 return 1; 2015 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2016 break; 2017 case MSR_IA32_MCG_EXT_CTL: 2018 if (!msr_info->host_initiated && 2019 !(vmx->msr_ia32_feature_control & 2020 FEAT_CTL_LMCE_ENABLED)) 2021 return 1; 2022 msr_info->data = vcpu->arch.mcg_ext_ctl; 2023 break; 2024 case MSR_IA32_FEAT_CTL: 2025 msr_info->data = vmx->msr_ia32_feature_control; 2026 break; 2027 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2028 if (!msr_info->host_initiated && 2029 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2030 return 1; 2031 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2032 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2033 break; 2034 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2035 if (!nested_vmx_allowed(vcpu)) 2036 return 1; 2037 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2038 &msr_info->data)) 2039 return 1; 2040 /* 2041 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2042 * instead of just ignoring the features, different Hyper-V 2043 * versions are either trying to use them and fail or do some 2044 * sanity checking and refuse to boot. Filter all unsupported 2045 * features out. 2046 */ 2047 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2048 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2049 &msr_info->data); 2050 break; 2051 case MSR_IA32_RTIT_CTL: 2052 if (!vmx_pt_mode_is_host_guest()) 2053 return 1; 2054 msr_info->data = vmx->pt_desc.guest.ctl; 2055 break; 2056 case MSR_IA32_RTIT_STATUS: 2057 if (!vmx_pt_mode_is_host_guest()) 2058 return 1; 2059 msr_info->data = vmx->pt_desc.guest.status; 2060 break; 2061 case MSR_IA32_RTIT_CR3_MATCH: 2062 if (!vmx_pt_mode_is_host_guest() || 2063 !intel_pt_validate_cap(vmx->pt_desc.caps, 2064 PT_CAP_cr3_filtering)) 2065 return 1; 2066 msr_info->data = vmx->pt_desc.guest.cr3_match; 2067 break; 2068 case MSR_IA32_RTIT_OUTPUT_BASE: 2069 if (!vmx_pt_mode_is_host_guest() || 2070 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2071 PT_CAP_topa_output) && 2072 !intel_pt_validate_cap(vmx->pt_desc.caps, 2073 PT_CAP_single_range_output))) 2074 return 1; 2075 msr_info->data = vmx->pt_desc.guest.output_base; 2076 break; 2077 case MSR_IA32_RTIT_OUTPUT_MASK: 2078 if (!vmx_pt_mode_is_host_guest() || 2079 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2080 PT_CAP_topa_output) && 2081 !intel_pt_validate_cap(vmx->pt_desc.caps, 2082 PT_CAP_single_range_output))) 2083 return 1; 2084 msr_info->data = vmx->pt_desc.guest.output_mask; 2085 break; 2086 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2087 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2088 if (!vmx_pt_mode_is_host_guest() || 2089 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2090 return 1; 2091 if (index % 2) 2092 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2093 else 2094 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2095 break; 2096 case MSR_IA32_DEBUGCTLMSR: 2097 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2098 break; 2099 default: 2100 find_uret_msr: 2101 msr = vmx_find_uret_msr(vmx, msr_info->index); 2102 if (msr) { 2103 msr_info->data = msr->data; 2104 break; 2105 } 2106 return kvm_get_msr_common(vcpu, msr_info); 2107 } 2108 2109 return 0; 2110 } 2111 2112 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2113 u64 data) 2114 { 2115 #ifdef CONFIG_X86_64 2116 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2117 return (u32)data; 2118 #endif 2119 return (unsigned long)data; 2120 } 2121 2122 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2123 { 2124 u64 debugctl = 0; 2125 2126 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2127 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2128 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2129 2130 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2131 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2132 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2133 2134 return debugctl; 2135 } 2136 2137 /* 2138 * Writes msr value into the appropriate "register". 2139 * Returns 0 on success, non-0 otherwise. 2140 * Assumes vcpu_load() was already called. 2141 */ 2142 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2143 { 2144 struct vcpu_vmx *vmx = to_vmx(vcpu); 2145 struct vmx_uret_msr *msr; 2146 int ret = 0; 2147 u32 msr_index = msr_info->index; 2148 u64 data = msr_info->data; 2149 u32 index; 2150 2151 switch (msr_index) { 2152 case MSR_EFER: 2153 ret = kvm_set_msr_common(vcpu, msr_info); 2154 break; 2155 #ifdef CONFIG_X86_64 2156 case MSR_FS_BASE: 2157 vmx_segment_cache_clear(vmx); 2158 vmcs_writel(GUEST_FS_BASE, data); 2159 break; 2160 case MSR_GS_BASE: 2161 vmx_segment_cache_clear(vmx); 2162 vmcs_writel(GUEST_GS_BASE, data); 2163 break; 2164 case MSR_KERNEL_GS_BASE: 2165 vmx_write_guest_kernel_gs_base(vmx, data); 2166 break; 2167 case MSR_IA32_XFD: 2168 ret = kvm_set_msr_common(vcpu, msr_info); 2169 /* 2170 * Always intercepting WRMSR could incur non-negligible 2171 * overhead given xfd might be changed frequently in 2172 * guest context switch. Disable write interception 2173 * upon the first write with a non-zero value (indicating 2174 * potential usage on dynamic xfeatures). Also update 2175 * exception bitmap to trap #NM for proper virtualization 2176 * of guest xfd_err. 2177 */ 2178 if (!ret && data) { 2179 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2180 MSR_TYPE_RW); 2181 vcpu->arch.xfd_no_write_intercept = true; 2182 vmx_update_exception_bitmap(vcpu); 2183 } 2184 break; 2185 #endif 2186 case MSR_IA32_SYSENTER_CS: 2187 if (is_guest_mode(vcpu)) 2188 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2189 vmcs_write32(GUEST_SYSENTER_CS, data); 2190 break; 2191 case MSR_IA32_SYSENTER_EIP: 2192 if (is_guest_mode(vcpu)) { 2193 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2194 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2195 } 2196 vmcs_writel(GUEST_SYSENTER_EIP, data); 2197 break; 2198 case MSR_IA32_SYSENTER_ESP: 2199 if (is_guest_mode(vcpu)) { 2200 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2201 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2202 } 2203 vmcs_writel(GUEST_SYSENTER_ESP, data); 2204 break; 2205 case MSR_IA32_DEBUGCTLMSR: { 2206 u64 invalid; 2207 2208 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2209 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2210 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2211 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2212 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2213 } 2214 2215 if (invalid) 2216 return 1; 2217 2218 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2219 VM_EXIT_SAVE_DEBUG_CONTROLS) 2220 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2221 2222 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2223 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2224 (data & DEBUGCTLMSR_LBR)) 2225 intel_pmu_create_guest_lbr_event(vcpu); 2226 return 0; 2227 } 2228 case MSR_IA32_BNDCFGS: 2229 if (!kvm_mpx_supported() || 2230 (!msr_info->host_initiated && 2231 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2232 return 1; 2233 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2234 (data & MSR_IA32_BNDCFGS_RSVD)) 2235 return 1; 2236 2237 if (is_guest_mode(vcpu) && 2238 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2239 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2240 get_vmcs12(vcpu)->guest_bndcfgs = data; 2241 2242 vmcs_write64(GUEST_BNDCFGS, data); 2243 break; 2244 case MSR_IA32_UMWAIT_CONTROL: 2245 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2246 return 1; 2247 2248 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2249 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2250 return 1; 2251 2252 vmx->msr_ia32_umwait_control = data; 2253 break; 2254 case MSR_IA32_SPEC_CTRL: 2255 if (!msr_info->host_initiated && 2256 !guest_has_spec_ctrl_msr(vcpu)) 2257 return 1; 2258 2259 if (kvm_spec_ctrl_test_value(data)) 2260 return 1; 2261 2262 vmx->spec_ctrl = data; 2263 if (!data) 2264 break; 2265 2266 /* 2267 * For non-nested: 2268 * When it's written (to non-zero) for the first time, pass 2269 * it through. 2270 * 2271 * For nested: 2272 * The handling of the MSR bitmap for L2 guests is done in 2273 * nested_vmx_prepare_msr_bitmap. We should not touch the 2274 * vmcs02.msr_bitmap here since it gets completely overwritten 2275 * in the merging. We update the vmcs01 here for L1 as well 2276 * since it will end up touching the MSR anyway now. 2277 */ 2278 vmx_disable_intercept_for_msr(vcpu, 2279 MSR_IA32_SPEC_CTRL, 2280 MSR_TYPE_RW); 2281 break; 2282 case MSR_IA32_TSX_CTRL: 2283 if (!msr_info->host_initiated && 2284 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2285 return 1; 2286 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2287 return 1; 2288 goto find_uret_msr; 2289 case MSR_IA32_CR_PAT: 2290 if (!kvm_pat_valid(data)) 2291 return 1; 2292 2293 if (is_guest_mode(vcpu) && 2294 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2295 get_vmcs12(vcpu)->guest_ia32_pat = data; 2296 2297 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2298 vmcs_write64(GUEST_IA32_PAT, data); 2299 vcpu->arch.pat = data; 2300 break; 2301 } 2302 ret = kvm_set_msr_common(vcpu, msr_info); 2303 break; 2304 case MSR_IA32_MCG_EXT_CTL: 2305 if ((!msr_info->host_initiated && 2306 !(to_vmx(vcpu)->msr_ia32_feature_control & 2307 FEAT_CTL_LMCE_ENABLED)) || 2308 (data & ~MCG_EXT_CTL_LMCE_EN)) 2309 return 1; 2310 vcpu->arch.mcg_ext_ctl = data; 2311 break; 2312 case MSR_IA32_FEAT_CTL: 2313 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2314 return 1; 2315 2316 vmx->msr_ia32_feature_control = data; 2317 if (msr_info->host_initiated && data == 0) 2318 vmx_leave_nested(vcpu); 2319 2320 /* SGX may be enabled/disabled by guest's firmware */ 2321 vmx_write_encls_bitmap(vcpu, NULL); 2322 break; 2323 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2324 /* 2325 * On real hardware, the LE hash MSRs are writable before 2326 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2327 * at which point SGX related bits in IA32_FEATURE_CONTROL 2328 * become writable. 2329 * 2330 * KVM does not emulate SGX activation for simplicity, so 2331 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2332 * is unlocked. This is technically not architectural 2333 * behavior, but it's close enough. 2334 */ 2335 if (!msr_info->host_initiated && 2336 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2337 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2338 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2339 return 1; 2340 vmx->msr_ia32_sgxlepubkeyhash 2341 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2342 break; 2343 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2344 if (!msr_info->host_initiated) 2345 return 1; /* they are read-only */ 2346 if (!nested_vmx_allowed(vcpu)) 2347 return 1; 2348 return vmx_set_vmx_msr(vcpu, msr_index, data); 2349 case MSR_IA32_RTIT_CTL: 2350 if (!vmx_pt_mode_is_host_guest() || 2351 vmx_rtit_ctl_check(vcpu, data) || 2352 vmx->nested.vmxon) 2353 return 1; 2354 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2355 vmx->pt_desc.guest.ctl = data; 2356 pt_update_intercept_for_msr(vcpu); 2357 break; 2358 case MSR_IA32_RTIT_STATUS: 2359 if (!pt_can_write_msr(vmx)) 2360 return 1; 2361 if (data & MSR_IA32_RTIT_STATUS_MASK) 2362 return 1; 2363 vmx->pt_desc.guest.status = data; 2364 break; 2365 case MSR_IA32_RTIT_CR3_MATCH: 2366 if (!pt_can_write_msr(vmx)) 2367 return 1; 2368 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2369 PT_CAP_cr3_filtering)) 2370 return 1; 2371 vmx->pt_desc.guest.cr3_match = data; 2372 break; 2373 case MSR_IA32_RTIT_OUTPUT_BASE: 2374 if (!pt_can_write_msr(vmx)) 2375 return 1; 2376 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2377 PT_CAP_topa_output) && 2378 !intel_pt_validate_cap(vmx->pt_desc.caps, 2379 PT_CAP_single_range_output)) 2380 return 1; 2381 if (!pt_output_base_valid(vcpu, data)) 2382 return 1; 2383 vmx->pt_desc.guest.output_base = data; 2384 break; 2385 case MSR_IA32_RTIT_OUTPUT_MASK: 2386 if (!pt_can_write_msr(vmx)) 2387 return 1; 2388 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2389 PT_CAP_topa_output) && 2390 !intel_pt_validate_cap(vmx->pt_desc.caps, 2391 PT_CAP_single_range_output)) 2392 return 1; 2393 vmx->pt_desc.guest.output_mask = data; 2394 break; 2395 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2396 if (!pt_can_write_msr(vmx)) 2397 return 1; 2398 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2399 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2400 return 1; 2401 if (is_noncanonical_address(data, vcpu)) 2402 return 1; 2403 if (index % 2) 2404 vmx->pt_desc.guest.addr_b[index / 2] = data; 2405 else 2406 vmx->pt_desc.guest.addr_a[index / 2] = data; 2407 break; 2408 case MSR_IA32_PERF_CAPABILITIES: 2409 if (data && !vcpu_to_pmu(vcpu)->version) 2410 return 1; 2411 if (data & PMU_CAP_LBR_FMT) { 2412 if ((data & PMU_CAP_LBR_FMT) != 2413 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2414 return 1; 2415 if (!cpuid_model_is_consistent(vcpu)) 2416 return 1; 2417 } 2418 if (data & PERF_CAP_PEBS_FORMAT) { 2419 if ((data & PERF_CAP_PEBS_MASK) != 2420 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2421 return 1; 2422 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2423 return 1; 2424 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2425 return 1; 2426 if (!cpuid_model_is_consistent(vcpu)) 2427 return 1; 2428 } 2429 ret = kvm_set_msr_common(vcpu, msr_info); 2430 break; 2431 2432 default: 2433 find_uret_msr: 2434 msr = vmx_find_uret_msr(vmx, msr_index); 2435 if (msr) 2436 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2437 else 2438 ret = kvm_set_msr_common(vcpu, msr_info); 2439 } 2440 2441 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2442 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2443 vmx_update_fb_clear_dis(vcpu, vmx); 2444 2445 return ret; 2446 } 2447 2448 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2449 { 2450 unsigned long guest_owned_bits; 2451 2452 kvm_register_mark_available(vcpu, reg); 2453 2454 switch (reg) { 2455 case VCPU_REGS_RSP: 2456 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2457 break; 2458 case VCPU_REGS_RIP: 2459 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2460 break; 2461 case VCPU_EXREG_PDPTR: 2462 if (enable_ept) 2463 ept_save_pdptrs(vcpu); 2464 break; 2465 case VCPU_EXREG_CR0: 2466 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2467 2468 vcpu->arch.cr0 &= ~guest_owned_bits; 2469 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2470 break; 2471 case VCPU_EXREG_CR3: 2472 /* 2473 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2474 * CR3 is loaded into hardware, not the guest's CR3. 2475 */ 2476 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2477 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2478 break; 2479 case VCPU_EXREG_CR4: 2480 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2481 2482 vcpu->arch.cr4 &= ~guest_owned_bits; 2483 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2484 break; 2485 default: 2486 KVM_BUG_ON(1, vcpu->kvm); 2487 break; 2488 } 2489 } 2490 2491 /* 2492 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2493 * directly instead of going through cpu_has(), to ensure KVM is trapping 2494 * ENCLS whenever it's supported in hardware. It does not matter whether 2495 * the host OS supports or has enabled SGX. 2496 */ 2497 static bool cpu_has_sgx(void) 2498 { 2499 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2500 } 2501 2502 /* 2503 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2504 * can't be used due to errata where VM Exit may incorrectly clear 2505 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2506 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2507 */ 2508 static bool cpu_has_perf_global_ctrl_bug(void) 2509 { 2510 if (boot_cpu_data.x86 == 0x6) { 2511 switch (boot_cpu_data.x86_model) { 2512 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2513 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2514 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2515 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2516 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2517 return true; 2518 default: 2519 break; 2520 } 2521 } 2522 2523 return false; 2524 } 2525 2526 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2527 { 2528 u32 vmx_msr_low, vmx_msr_high; 2529 u32 ctl = ctl_min | ctl_opt; 2530 2531 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2532 2533 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2534 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2535 2536 /* Ensure minimum (required) set of control bits are supported. */ 2537 if (ctl_min & ~ctl) 2538 return -EIO; 2539 2540 *result = ctl; 2541 return 0; 2542 } 2543 2544 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2545 { 2546 u64 allowed; 2547 2548 rdmsrl(msr, allowed); 2549 2550 return ctl_opt & allowed; 2551 } 2552 2553 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2554 struct vmx_capability *vmx_cap) 2555 { 2556 u32 vmx_msr_low, vmx_msr_high; 2557 u32 _pin_based_exec_control = 0; 2558 u32 _cpu_based_exec_control = 0; 2559 u32 _cpu_based_2nd_exec_control = 0; 2560 u64 _cpu_based_3rd_exec_control = 0; 2561 u32 _vmexit_control = 0; 2562 u32 _vmentry_control = 0; 2563 u64 misc_msr; 2564 int i; 2565 2566 /* 2567 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2568 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2569 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2570 */ 2571 struct { 2572 u32 entry_control; 2573 u32 exit_control; 2574 } const vmcs_entry_exit_pairs[] = { 2575 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2576 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2577 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2578 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2579 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2580 }; 2581 2582 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2583 2584 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2585 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2586 MSR_IA32_VMX_PROCBASED_CTLS, 2587 &_cpu_based_exec_control)) 2588 return -EIO; 2589 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2590 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2591 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2592 MSR_IA32_VMX_PROCBASED_CTLS2, 2593 &_cpu_based_2nd_exec_control)) 2594 return -EIO; 2595 } 2596 #ifndef CONFIG_X86_64 2597 if (!(_cpu_based_2nd_exec_control & 2598 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2599 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2600 #endif 2601 2602 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2603 _cpu_based_2nd_exec_control &= ~( 2604 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2605 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2606 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2607 2608 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2609 &vmx_cap->ept, &vmx_cap->vpid); 2610 2611 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2612 vmx_cap->ept) { 2613 pr_warn_once("EPT CAP should not exist if not support " 2614 "1-setting enable EPT VM-execution control\n"); 2615 2616 if (error_on_inconsistent_vmcs_config) 2617 return -EIO; 2618 2619 vmx_cap->ept = 0; 2620 } 2621 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2622 vmx_cap->vpid) { 2623 pr_warn_once("VPID CAP should not exist if not support " 2624 "1-setting enable VPID VM-execution control\n"); 2625 2626 if (error_on_inconsistent_vmcs_config) 2627 return -EIO; 2628 2629 vmx_cap->vpid = 0; 2630 } 2631 2632 if (!cpu_has_sgx()) 2633 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2634 2635 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2636 _cpu_based_3rd_exec_control = 2637 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2638 MSR_IA32_VMX_PROCBASED_CTLS3); 2639 2640 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2641 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2642 MSR_IA32_VMX_EXIT_CTLS, 2643 &_vmexit_control)) 2644 return -EIO; 2645 2646 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2647 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2648 MSR_IA32_VMX_PINBASED_CTLS, 2649 &_pin_based_exec_control)) 2650 return -EIO; 2651 2652 if (cpu_has_broken_vmx_preemption_timer()) 2653 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2654 if (!(_cpu_based_2nd_exec_control & 2655 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2656 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2657 2658 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2659 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2660 MSR_IA32_VMX_ENTRY_CTLS, 2661 &_vmentry_control)) 2662 return -EIO; 2663 2664 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2665 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2666 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2667 2668 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2669 continue; 2670 2671 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2672 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2673 2674 if (error_on_inconsistent_vmcs_config) 2675 return -EIO; 2676 2677 _vmentry_control &= ~n_ctrl; 2678 _vmexit_control &= ~x_ctrl; 2679 } 2680 2681 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2682 2683 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2684 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2685 return -EIO; 2686 2687 #ifdef CONFIG_X86_64 2688 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2689 if (vmx_msr_high & (1u<<16)) 2690 return -EIO; 2691 #endif 2692 2693 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2694 if (((vmx_msr_high >> 18) & 15) != 6) 2695 return -EIO; 2696 2697 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2698 2699 vmcs_conf->size = vmx_msr_high & 0x1fff; 2700 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2701 2702 vmcs_conf->revision_id = vmx_msr_low; 2703 2704 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2705 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2706 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2707 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2708 vmcs_conf->vmexit_ctrl = _vmexit_control; 2709 vmcs_conf->vmentry_ctrl = _vmentry_control; 2710 vmcs_conf->misc = misc_msr; 2711 2712 #if IS_ENABLED(CONFIG_HYPERV) 2713 if (enlightened_vmcs) 2714 evmcs_sanitize_exec_ctrls(vmcs_conf); 2715 #endif 2716 2717 return 0; 2718 } 2719 2720 static bool kvm_is_vmx_supported(void) 2721 { 2722 int cpu = raw_smp_processor_id(); 2723 2724 if (!cpu_has_vmx()) { 2725 pr_err("VMX not supported by CPU %d\n", cpu); 2726 return false; 2727 } 2728 2729 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2730 !this_cpu_has(X86_FEATURE_VMX)) { 2731 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2732 return false; 2733 } 2734 2735 return true; 2736 } 2737 2738 static int vmx_check_processor_compat(void) 2739 { 2740 int cpu = raw_smp_processor_id(); 2741 struct vmcs_config vmcs_conf; 2742 struct vmx_capability vmx_cap; 2743 2744 if (!kvm_is_vmx_supported()) 2745 return -EIO; 2746 2747 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2748 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2749 return -EIO; 2750 } 2751 if (nested) 2752 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2753 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2754 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2755 return -EIO; 2756 } 2757 return 0; 2758 } 2759 2760 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2761 { 2762 u64 msr; 2763 2764 cr4_set_bits(X86_CR4_VMXE); 2765 2766 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2767 _ASM_EXTABLE(1b, %l[fault]) 2768 : : [vmxon_pointer] "m"(vmxon_pointer) 2769 : : fault); 2770 return 0; 2771 2772 fault: 2773 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2774 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2775 cr4_clear_bits(X86_CR4_VMXE); 2776 2777 return -EFAULT; 2778 } 2779 2780 static int vmx_hardware_enable(void) 2781 { 2782 int cpu = raw_smp_processor_id(); 2783 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2784 int r; 2785 2786 if (cr4_read_shadow() & X86_CR4_VMXE) 2787 return -EBUSY; 2788 2789 /* 2790 * This can happen if we hot-added a CPU but failed to allocate 2791 * VP assist page for it. 2792 */ 2793 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2794 return -EFAULT; 2795 2796 intel_pt_handle_vmx(1); 2797 2798 r = kvm_cpu_vmxon(phys_addr); 2799 if (r) { 2800 intel_pt_handle_vmx(0); 2801 return r; 2802 } 2803 2804 if (enable_ept) 2805 ept_sync_global(); 2806 2807 return 0; 2808 } 2809 2810 static void vmclear_local_loaded_vmcss(void) 2811 { 2812 int cpu = raw_smp_processor_id(); 2813 struct loaded_vmcs *v, *n; 2814 2815 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2816 loaded_vmcss_on_cpu_link) 2817 __loaded_vmcs_clear(v); 2818 } 2819 2820 static void vmx_hardware_disable(void) 2821 { 2822 vmclear_local_loaded_vmcss(); 2823 2824 if (cpu_vmxoff()) 2825 kvm_spurious_fault(); 2826 2827 hv_reset_evmcs(); 2828 2829 intel_pt_handle_vmx(0); 2830 } 2831 2832 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2833 { 2834 int node = cpu_to_node(cpu); 2835 struct page *pages; 2836 struct vmcs *vmcs; 2837 2838 pages = __alloc_pages_node(node, flags, 0); 2839 if (!pages) 2840 return NULL; 2841 vmcs = page_address(pages); 2842 memset(vmcs, 0, vmcs_config.size); 2843 2844 /* KVM supports Enlightened VMCS v1 only */ 2845 if (kvm_is_using_evmcs()) 2846 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2847 else 2848 vmcs->hdr.revision_id = vmcs_config.revision_id; 2849 2850 if (shadow) 2851 vmcs->hdr.shadow_vmcs = 1; 2852 return vmcs; 2853 } 2854 2855 void free_vmcs(struct vmcs *vmcs) 2856 { 2857 free_page((unsigned long)vmcs); 2858 } 2859 2860 /* 2861 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2862 */ 2863 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2864 { 2865 if (!loaded_vmcs->vmcs) 2866 return; 2867 loaded_vmcs_clear(loaded_vmcs); 2868 free_vmcs(loaded_vmcs->vmcs); 2869 loaded_vmcs->vmcs = NULL; 2870 if (loaded_vmcs->msr_bitmap) 2871 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2872 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2873 } 2874 2875 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2876 { 2877 loaded_vmcs->vmcs = alloc_vmcs(false); 2878 if (!loaded_vmcs->vmcs) 2879 return -ENOMEM; 2880 2881 vmcs_clear(loaded_vmcs->vmcs); 2882 2883 loaded_vmcs->shadow_vmcs = NULL; 2884 loaded_vmcs->hv_timer_soft_disabled = false; 2885 loaded_vmcs->cpu = -1; 2886 loaded_vmcs->launched = 0; 2887 2888 if (cpu_has_vmx_msr_bitmap()) { 2889 loaded_vmcs->msr_bitmap = (unsigned long *) 2890 __get_free_page(GFP_KERNEL_ACCOUNT); 2891 if (!loaded_vmcs->msr_bitmap) 2892 goto out_vmcs; 2893 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2894 } 2895 2896 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2897 memset(&loaded_vmcs->controls_shadow, 0, 2898 sizeof(struct vmcs_controls_shadow)); 2899 2900 return 0; 2901 2902 out_vmcs: 2903 free_loaded_vmcs(loaded_vmcs); 2904 return -ENOMEM; 2905 } 2906 2907 static void free_kvm_area(void) 2908 { 2909 int cpu; 2910 2911 for_each_possible_cpu(cpu) { 2912 free_vmcs(per_cpu(vmxarea, cpu)); 2913 per_cpu(vmxarea, cpu) = NULL; 2914 } 2915 } 2916 2917 static __init int alloc_kvm_area(void) 2918 { 2919 int cpu; 2920 2921 for_each_possible_cpu(cpu) { 2922 struct vmcs *vmcs; 2923 2924 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2925 if (!vmcs) { 2926 free_kvm_area(); 2927 return -ENOMEM; 2928 } 2929 2930 /* 2931 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2932 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2933 * revision_id reported by MSR_IA32_VMX_BASIC. 2934 * 2935 * However, even though not explicitly documented by 2936 * TLFS, VMXArea passed as VMXON argument should 2937 * still be marked with revision_id reported by 2938 * physical CPU. 2939 */ 2940 if (kvm_is_using_evmcs()) 2941 vmcs->hdr.revision_id = vmcs_config.revision_id; 2942 2943 per_cpu(vmxarea, cpu) = vmcs; 2944 } 2945 return 0; 2946 } 2947 2948 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2949 struct kvm_segment *save) 2950 { 2951 if (!emulate_invalid_guest_state) { 2952 /* 2953 * CS and SS RPL should be equal during guest entry according 2954 * to VMX spec, but in reality it is not always so. Since vcpu 2955 * is in the middle of the transition from real mode to 2956 * protected mode it is safe to assume that RPL 0 is a good 2957 * default value. 2958 */ 2959 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2960 save->selector &= ~SEGMENT_RPL_MASK; 2961 save->dpl = save->selector & SEGMENT_RPL_MASK; 2962 save->s = 1; 2963 } 2964 __vmx_set_segment(vcpu, save, seg); 2965 } 2966 2967 static void enter_pmode(struct kvm_vcpu *vcpu) 2968 { 2969 unsigned long flags; 2970 struct vcpu_vmx *vmx = to_vmx(vcpu); 2971 2972 /* 2973 * Update real mode segment cache. It may be not up-to-date if segment 2974 * register was written while vcpu was in a guest mode. 2975 */ 2976 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2977 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2978 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2979 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2980 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2981 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2982 2983 vmx->rmode.vm86_active = 0; 2984 2985 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2986 2987 flags = vmcs_readl(GUEST_RFLAGS); 2988 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2989 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2990 vmcs_writel(GUEST_RFLAGS, flags); 2991 2992 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2993 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2994 2995 vmx_update_exception_bitmap(vcpu); 2996 2997 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2998 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2999 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3000 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3001 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3002 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3003 } 3004 3005 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3006 { 3007 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3008 struct kvm_segment var = *save; 3009 3010 var.dpl = 0x3; 3011 if (seg == VCPU_SREG_CS) 3012 var.type = 0x3; 3013 3014 if (!emulate_invalid_guest_state) { 3015 var.selector = var.base >> 4; 3016 var.base = var.base & 0xffff0; 3017 var.limit = 0xffff; 3018 var.g = 0; 3019 var.db = 0; 3020 var.present = 1; 3021 var.s = 1; 3022 var.l = 0; 3023 var.unusable = 0; 3024 var.type = 0x3; 3025 var.avl = 0; 3026 if (save->base & 0xf) 3027 pr_warn_once("segment base is not paragraph aligned " 3028 "when entering protected mode (seg=%d)", seg); 3029 } 3030 3031 vmcs_write16(sf->selector, var.selector); 3032 vmcs_writel(sf->base, var.base); 3033 vmcs_write32(sf->limit, var.limit); 3034 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3035 } 3036 3037 static void enter_rmode(struct kvm_vcpu *vcpu) 3038 { 3039 unsigned long flags; 3040 struct vcpu_vmx *vmx = to_vmx(vcpu); 3041 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3042 3043 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3044 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3045 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3046 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3047 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3048 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3049 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3050 3051 vmx->rmode.vm86_active = 1; 3052 3053 /* 3054 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 3055 * vcpu. Warn the user that an update is overdue. 3056 */ 3057 if (!kvm_vmx->tss_addr) 3058 pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n"); 3059 3060 vmx_segment_cache_clear(vmx); 3061 3062 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3063 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3064 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3065 3066 flags = vmcs_readl(GUEST_RFLAGS); 3067 vmx->rmode.save_rflags = flags; 3068 3069 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3070 3071 vmcs_writel(GUEST_RFLAGS, flags); 3072 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3073 vmx_update_exception_bitmap(vcpu); 3074 3075 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3076 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3077 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3078 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3079 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3080 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3081 } 3082 3083 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3084 { 3085 struct vcpu_vmx *vmx = to_vmx(vcpu); 3086 3087 /* Nothing to do if hardware doesn't support EFER. */ 3088 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3089 return 0; 3090 3091 vcpu->arch.efer = efer; 3092 #ifdef CONFIG_X86_64 3093 if (efer & EFER_LMA) 3094 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3095 else 3096 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3097 #else 3098 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3099 return 1; 3100 #endif 3101 3102 vmx_setup_uret_msrs(vmx); 3103 return 0; 3104 } 3105 3106 #ifdef CONFIG_X86_64 3107 3108 static void enter_lmode(struct kvm_vcpu *vcpu) 3109 { 3110 u32 guest_tr_ar; 3111 3112 vmx_segment_cache_clear(to_vmx(vcpu)); 3113 3114 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3115 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3116 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3117 __func__); 3118 vmcs_write32(GUEST_TR_AR_BYTES, 3119 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3120 | VMX_AR_TYPE_BUSY_64_TSS); 3121 } 3122 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3123 } 3124 3125 static void exit_lmode(struct kvm_vcpu *vcpu) 3126 { 3127 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3128 } 3129 3130 #endif 3131 3132 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3133 { 3134 struct vcpu_vmx *vmx = to_vmx(vcpu); 3135 3136 /* 3137 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3138 * the CPU is not required to invalidate guest-physical mappings on 3139 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3140 * associated with the root EPT structure and not any particular VPID 3141 * (INVVPID also isn't required to invalidate guest-physical mappings). 3142 */ 3143 if (enable_ept) { 3144 ept_sync_global(); 3145 } else if (enable_vpid) { 3146 if (cpu_has_vmx_invvpid_global()) { 3147 vpid_sync_vcpu_global(); 3148 } else { 3149 vpid_sync_vcpu_single(vmx->vpid); 3150 vpid_sync_vcpu_single(vmx->nested.vpid02); 3151 } 3152 } 3153 } 3154 3155 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3156 { 3157 if (is_guest_mode(vcpu)) 3158 return nested_get_vpid02(vcpu); 3159 return to_vmx(vcpu)->vpid; 3160 } 3161 3162 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3163 { 3164 struct kvm_mmu *mmu = vcpu->arch.mmu; 3165 u64 root_hpa = mmu->root.hpa; 3166 3167 /* No flush required if the current context is invalid. */ 3168 if (!VALID_PAGE(root_hpa)) 3169 return; 3170 3171 if (enable_ept) 3172 ept_sync_context(construct_eptp(vcpu, root_hpa, 3173 mmu->root_role.level)); 3174 else 3175 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3176 } 3177 3178 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3179 { 3180 /* 3181 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3182 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3183 */ 3184 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3185 } 3186 3187 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3188 { 3189 /* 3190 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3191 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3192 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3193 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3194 * i.e. no explicit INVVPID is necessary. 3195 */ 3196 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3197 } 3198 3199 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3200 { 3201 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3202 3203 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3204 return; 3205 3206 if (is_pae_paging(vcpu)) { 3207 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3208 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3209 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3210 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3211 } 3212 } 3213 3214 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3215 { 3216 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3217 3218 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3219 return; 3220 3221 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3222 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3223 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3224 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3225 3226 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3227 } 3228 3229 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3230 CPU_BASED_CR3_STORE_EXITING) 3231 3232 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3233 { 3234 struct vcpu_vmx *vmx = to_vmx(vcpu); 3235 unsigned long hw_cr0, old_cr0_pg; 3236 u32 tmp; 3237 3238 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3239 3240 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3241 if (is_unrestricted_guest(vcpu)) 3242 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3243 else { 3244 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3245 if (!enable_ept) 3246 hw_cr0 |= X86_CR0_WP; 3247 3248 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3249 enter_pmode(vcpu); 3250 3251 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3252 enter_rmode(vcpu); 3253 } 3254 3255 vmcs_writel(CR0_READ_SHADOW, cr0); 3256 vmcs_writel(GUEST_CR0, hw_cr0); 3257 vcpu->arch.cr0 = cr0; 3258 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3259 3260 #ifdef CONFIG_X86_64 3261 if (vcpu->arch.efer & EFER_LME) { 3262 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3263 enter_lmode(vcpu); 3264 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3265 exit_lmode(vcpu); 3266 } 3267 #endif 3268 3269 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3270 /* 3271 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3272 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3273 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3274 * KVM's CR3 is installed. 3275 */ 3276 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3277 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3278 3279 /* 3280 * When running with EPT but not unrestricted guest, KVM must 3281 * intercept CR3 accesses when paging is _disabled_. This is 3282 * necessary because restricted guests can't actually run with 3283 * paging disabled, and so KVM stuffs its own CR3 in order to 3284 * run the guest when identity mapped page tables. 3285 * 3286 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3287 * update, it may be stale with respect to CR3 interception, 3288 * e.g. after nested VM-Enter. 3289 * 3290 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3291 * stores to forward them to L1, even if KVM does not need to 3292 * intercept them to preserve its identity mapped page tables. 3293 */ 3294 if (!(cr0 & X86_CR0_PG)) { 3295 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3296 } else if (!is_guest_mode(vcpu)) { 3297 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3298 } else { 3299 tmp = exec_controls_get(vmx); 3300 tmp &= ~CR3_EXITING_BITS; 3301 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3302 exec_controls_set(vmx, tmp); 3303 } 3304 3305 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3306 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3307 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3308 3309 /* 3310 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3311 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3312 */ 3313 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3314 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3315 } 3316 3317 /* depends on vcpu->arch.cr0 to be set to a new value */ 3318 vmx->emulation_required = vmx_emulation_required(vcpu); 3319 } 3320 3321 static int vmx_get_max_tdp_level(void) 3322 { 3323 if (cpu_has_vmx_ept_5levels()) 3324 return 5; 3325 return 4; 3326 } 3327 3328 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3329 { 3330 u64 eptp = VMX_EPTP_MT_WB; 3331 3332 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3333 3334 if (enable_ept_ad_bits && 3335 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3336 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3337 eptp |= root_hpa; 3338 3339 return eptp; 3340 } 3341 3342 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3343 int root_level) 3344 { 3345 struct kvm *kvm = vcpu->kvm; 3346 bool update_guest_cr3 = true; 3347 unsigned long guest_cr3; 3348 u64 eptp; 3349 3350 if (enable_ept) { 3351 eptp = construct_eptp(vcpu, root_hpa, root_level); 3352 vmcs_write64(EPT_POINTER, eptp); 3353 3354 hv_track_root_tdp(vcpu, root_hpa); 3355 3356 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3357 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3358 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3359 guest_cr3 = vcpu->arch.cr3; 3360 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3361 update_guest_cr3 = false; 3362 vmx_ept_load_pdptrs(vcpu); 3363 } else { 3364 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3365 } 3366 3367 if (update_guest_cr3) 3368 vmcs_writel(GUEST_CR3, guest_cr3); 3369 } 3370 3371 3372 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3373 { 3374 /* 3375 * We operate under the default treatment of SMM, so VMX cannot be 3376 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3377 * i.e. is a reserved bit, is handled by common x86 code. 3378 */ 3379 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3380 return false; 3381 3382 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3383 return false; 3384 3385 return true; 3386 } 3387 3388 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3389 { 3390 unsigned long old_cr4 = vcpu->arch.cr4; 3391 struct vcpu_vmx *vmx = to_vmx(vcpu); 3392 /* 3393 * Pass through host's Machine Check Enable value to hw_cr4, which 3394 * is in force while we are in guest mode. Do not let guests control 3395 * this bit, even if host CR4.MCE == 0. 3396 */ 3397 unsigned long hw_cr4; 3398 3399 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3400 if (is_unrestricted_guest(vcpu)) 3401 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3402 else if (vmx->rmode.vm86_active) 3403 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3404 else 3405 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3406 3407 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3408 if (cr4 & X86_CR4_UMIP) { 3409 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3410 hw_cr4 &= ~X86_CR4_UMIP; 3411 } else if (!is_guest_mode(vcpu) || 3412 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3413 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3414 } 3415 } 3416 3417 vcpu->arch.cr4 = cr4; 3418 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3419 3420 if (!is_unrestricted_guest(vcpu)) { 3421 if (enable_ept) { 3422 if (!is_paging(vcpu)) { 3423 hw_cr4 &= ~X86_CR4_PAE; 3424 hw_cr4 |= X86_CR4_PSE; 3425 } else if (!(cr4 & X86_CR4_PAE)) { 3426 hw_cr4 &= ~X86_CR4_PAE; 3427 } 3428 } 3429 3430 /* 3431 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3432 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3433 * to be manually disabled when guest switches to non-paging 3434 * mode. 3435 * 3436 * If !enable_unrestricted_guest, the CPU is always running 3437 * with CR0.PG=1 and CR4 needs to be modified. 3438 * If enable_unrestricted_guest, the CPU automatically 3439 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3440 */ 3441 if (!is_paging(vcpu)) 3442 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3443 } 3444 3445 vmcs_writel(CR4_READ_SHADOW, cr4); 3446 vmcs_writel(GUEST_CR4, hw_cr4); 3447 3448 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3449 kvm_update_cpuid_runtime(vcpu); 3450 } 3451 3452 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3453 { 3454 struct vcpu_vmx *vmx = to_vmx(vcpu); 3455 u32 ar; 3456 3457 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3458 *var = vmx->rmode.segs[seg]; 3459 if (seg == VCPU_SREG_TR 3460 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3461 return; 3462 var->base = vmx_read_guest_seg_base(vmx, seg); 3463 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3464 return; 3465 } 3466 var->base = vmx_read_guest_seg_base(vmx, seg); 3467 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3468 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3469 ar = vmx_read_guest_seg_ar(vmx, seg); 3470 var->unusable = (ar >> 16) & 1; 3471 var->type = ar & 15; 3472 var->s = (ar >> 4) & 1; 3473 var->dpl = (ar >> 5) & 3; 3474 /* 3475 * Some userspaces do not preserve unusable property. Since usable 3476 * segment has to be present according to VMX spec we can use present 3477 * property to amend userspace bug by making unusable segment always 3478 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3479 * segment as unusable. 3480 */ 3481 var->present = !var->unusable; 3482 var->avl = (ar >> 12) & 1; 3483 var->l = (ar >> 13) & 1; 3484 var->db = (ar >> 14) & 1; 3485 var->g = (ar >> 15) & 1; 3486 } 3487 3488 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3489 { 3490 struct kvm_segment s; 3491 3492 if (to_vmx(vcpu)->rmode.vm86_active) { 3493 vmx_get_segment(vcpu, &s, seg); 3494 return s.base; 3495 } 3496 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3497 } 3498 3499 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3500 { 3501 struct vcpu_vmx *vmx = to_vmx(vcpu); 3502 3503 if (unlikely(vmx->rmode.vm86_active)) 3504 return 0; 3505 else { 3506 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3507 return VMX_AR_DPL(ar); 3508 } 3509 } 3510 3511 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3512 { 3513 u32 ar; 3514 3515 ar = var->type & 15; 3516 ar |= (var->s & 1) << 4; 3517 ar |= (var->dpl & 3) << 5; 3518 ar |= (var->present & 1) << 7; 3519 ar |= (var->avl & 1) << 12; 3520 ar |= (var->l & 1) << 13; 3521 ar |= (var->db & 1) << 14; 3522 ar |= (var->g & 1) << 15; 3523 ar |= (var->unusable || !var->present) << 16; 3524 3525 return ar; 3526 } 3527 3528 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3529 { 3530 struct vcpu_vmx *vmx = to_vmx(vcpu); 3531 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3532 3533 vmx_segment_cache_clear(vmx); 3534 3535 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3536 vmx->rmode.segs[seg] = *var; 3537 if (seg == VCPU_SREG_TR) 3538 vmcs_write16(sf->selector, var->selector); 3539 else if (var->s) 3540 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3541 return; 3542 } 3543 3544 vmcs_writel(sf->base, var->base); 3545 vmcs_write32(sf->limit, var->limit); 3546 vmcs_write16(sf->selector, var->selector); 3547 3548 /* 3549 * Fix the "Accessed" bit in AR field of segment registers for older 3550 * qemu binaries. 3551 * IA32 arch specifies that at the time of processor reset the 3552 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3553 * is setting it to 0 in the userland code. This causes invalid guest 3554 * state vmexit when "unrestricted guest" mode is turned on. 3555 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3556 * tree. Newer qemu binaries with that qemu fix would not need this 3557 * kvm hack. 3558 */ 3559 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3560 var->type |= 0x1; /* Accessed */ 3561 3562 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3563 } 3564 3565 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3566 { 3567 __vmx_set_segment(vcpu, var, seg); 3568 3569 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3570 } 3571 3572 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3573 { 3574 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3575 3576 *db = (ar >> 14) & 1; 3577 *l = (ar >> 13) & 1; 3578 } 3579 3580 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3581 { 3582 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3583 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3584 } 3585 3586 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3587 { 3588 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3589 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3590 } 3591 3592 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3593 { 3594 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3595 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3596 } 3597 3598 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3599 { 3600 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3601 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3602 } 3603 3604 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3605 { 3606 struct kvm_segment var; 3607 u32 ar; 3608 3609 vmx_get_segment(vcpu, &var, seg); 3610 var.dpl = 0x3; 3611 if (seg == VCPU_SREG_CS) 3612 var.type = 0x3; 3613 ar = vmx_segment_access_rights(&var); 3614 3615 if (var.base != (var.selector << 4)) 3616 return false; 3617 if (var.limit != 0xffff) 3618 return false; 3619 if (ar != 0xf3) 3620 return false; 3621 3622 return true; 3623 } 3624 3625 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3626 { 3627 struct kvm_segment cs; 3628 unsigned int cs_rpl; 3629 3630 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3631 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3632 3633 if (cs.unusable) 3634 return false; 3635 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3636 return false; 3637 if (!cs.s) 3638 return false; 3639 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3640 if (cs.dpl > cs_rpl) 3641 return false; 3642 } else { 3643 if (cs.dpl != cs_rpl) 3644 return false; 3645 } 3646 if (!cs.present) 3647 return false; 3648 3649 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3650 return true; 3651 } 3652 3653 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3654 { 3655 struct kvm_segment ss; 3656 unsigned int ss_rpl; 3657 3658 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3659 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3660 3661 if (ss.unusable) 3662 return true; 3663 if (ss.type != 3 && ss.type != 7) 3664 return false; 3665 if (!ss.s) 3666 return false; 3667 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3668 return false; 3669 if (!ss.present) 3670 return false; 3671 3672 return true; 3673 } 3674 3675 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3676 { 3677 struct kvm_segment var; 3678 unsigned int rpl; 3679 3680 vmx_get_segment(vcpu, &var, seg); 3681 rpl = var.selector & SEGMENT_RPL_MASK; 3682 3683 if (var.unusable) 3684 return true; 3685 if (!var.s) 3686 return false; 3687 if (!var.present) 3688 return false; 3689 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3690 if (var.dpl < rpl) /* DPL < RPL */ 3691 return false; 3692 } 3693 3694 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3695 * rights flags 3696 */ 3697 return true; 3698 } 3699 3700 static bool tr_valid(struct kvm_vcpu *vcpu) 3701 { 3702 struct kvm_segment tr; 3703 3704 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3705 3706 if (tr.unusable) 3707 return false; 3708 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3709 return false; 3710 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3711 return false; 3712 if (!tr.present) 3713 return false; 3714 3715 return true; 3716 } 3717 3718 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3719 { 3720 struct kvm_segment ldtr; 3721 3722 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3723 3724 if (ldtr.unusable) 3725 return true; 3726 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3727 return false; 3728 if (ldtr.type != 2) 3729 return false; 3730 if (!ldtr.present) 3731 return false; 3732 3733 return true; 3734 } 3735 3736 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3737 { 3738 struct kvm_segment cs, ss; 3739 3740 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3741 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3742 3743 return ((cs.selector & SEGMENT_RPL_MASK) == 3744 (ss.selector & SEGMENT_RPL_MASK)); 3745 } 3746 3747 /* 3748 * Check if guest state is valid. Returns true if valid, false if 3749 * not. 3750 * We assume that registers are always usable 3751 */ 3752 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3753 { 3754 /* real mode guest state checks */ 3755 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3756 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3757 return false; 3758 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3759 return false; 3760 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3761 return false; 3762 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3763 return false; 3764 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3765 return false; 3766 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3767 return false; 3768 } else { 3769 /* protected mode guest state checks */ 3770 if (!cs_ss_rpl_check(vcpu)) 3771 return false; 3772 if (!code_segment_valid(vcpu)) 3773 return false; 3774 if (!stack_segment_valid(vcpu)) 3775 return false; 3776 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3777 return false; 3778 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3779 return false; 3780 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3781 return false; 3782 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3783 return false; 3784 if (!tr_valid(vcpu)) 3785 return false; 3786 if (!ldtr_valid(vcpu)) 3787 return false; 3788 } 3789 /* TODO: 3790 * - Add checks on RIP 3791 * - Add checks on RFLAGS 3792 */ 3793 3794 return true; 3795 } 3796 3797 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3798 { 3799 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3800 u16 data; 3801 int i; 3802 3803 for (i = 0; i < 3; i++) { 3804 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3805 return -EFAULT; 3806 } 3807 3808 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3809 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3810 return -EFAULT; 3811 3812 data = ~0; 3813 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3814 return -EFAULT; 3815 3816 return 0; 3817 } 3818 3819 static int init_rmode_identity_map(struct kvm *kvm) 3820 { 3821 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3822 int i, r = 0; 3823 void __user *uaddr; 3824 u32 tmp; 3825 3826 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3827 mutex_lock(&kvm->slots_lock); 3828 3829 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3830 goto out; 3831 3832 if (!kvm_vmx->ept_identity_map_addr) 3833 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3834 3835 uaddr = __x86_set_memory_region(kvm, 3836 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3837 kvm_vmx->ept_identity_map_addr, 3838 PAGE_SIZE); 3839 if (IS_ERR(uaddr)) { 3840 r = PTR_ERR(uaddr); 3841 goto out; 3842 } 3843 3844 /* Set up identity-mapping pagetable for EPT in real mode */ 3845 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3846 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3847 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3848 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3849 r = -EFAULT; 3850 goto out; 3851 } 3852 } 3853 kvm_vmx->ept_identity_pagetable_done = true; 3854 3855 out: 3856 mutex_unlock(&kvm->slots_lock); 3857 return r; 3858 } 3859 3860 static void seg_setup(int seg) 3861 { 3862 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3863 unsigned int ar; 3864 3865 vmcs_write16(sf->selector, 0); 3866 vmcs_writel(sf->base, 0); 3867 vmcs_write32(sf->limit, 0xffff); 3868 ar = 0x93; 3869 if (seg == VCPU_SREG_CS) 3870 ar |= 0x08; /* code segment */ 3871 3872 vmcs_write32(sf->ar_bytes, ar); 3873 } 3874 3875 int allocate_vpid(void) 3876 { 3877 int vpid; 3878 3879 if (!enable_vpid) 3880 return 0; 3881 spin_lock(&vmx_vpid_lock); 3882 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3883 if (vpid < VMX_NR_VPIDS) 3884 __set_bit(vpid, vmx_vpid_bitmap); 3885 else 3886 vpid = 0; 3887 spin_unlock(&vmx_vpid_lock); 3888 return vpid; 3889 } 3890 3891 void free_vpid(int vpid) 3892 { 3893 if (!enable_vpid || vpid == 0) 3894 return; 3895 spin_lock(&vmx_vpid_lock); 3896 __clear_bit(vpid, vmx_vpid_bitmap); 3897 spin_unlock(&vmx_vpid_lock); 3898 } 3899 3900 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3901 { 3902 /* 3903 * When KVM is a nested hypervisor on top of Hyper-V and uses 3904 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3905 * bitmap has changed. 3906 */ 3907 if (kvm_is_using_evmcs()) { 3908 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3909 3910 if (evmcs->hv_enlightenments_control.msr_bitmap) 3911 evmcs->hv_clean_fields &= 3912 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3913 } 3914 3915 vmx->nested.force_msr_bitmap_recalc = true; 3916 } 3917 3918 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3919 { 3920 struct vcpu_vmx *vmx = to_vmx(vcpu); 3921 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3922 3923 if (!cpu_has_vmx_msr_bitmap()) 3924 return; 3925 3926 vmx_msr_bitmap_l01_changed(vmx); 3927 3928 /* 3929 * Mark the desired intercept state in shadow bitmap, this is needed 3930 * for resync when the MSR filters change. 3931 */ 3932 if (is_valid_passthrough_msr(msr)) { 3933 int idx = possible_passthrough_msr_slot(msr); 3934 3935 if (idx != -ENOENT) { 3936 if (type & MSR_TYPE_R) 3937 clear_bit(idx, vmx->shadow_msr_intercept.read); 3938 if (type & MSR_TYPE_W) 3939 clear_bit(idx, vmx->shadow_msr_intercept.write); 3940 } 3941 } 3942 3943 if ((type & MSR_TYPE_R) && 3944 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3945 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3946 type &= ~MSR_TYPE_R; 3947 } 3948 3949 if ((type & MSR_TYPE_W) && 3950 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3951 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3952 type &= ~MSR_TYPE_W; 3953 } 3954 3955 if (type & MSR_TYPE_R) 3956 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3957 3958 if (type & MSR_TYPE_W) 3959 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3960 } 3961 3962 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3963 { 3964 struct vcpu_vmx *vmx = to_vmx(vcpu); 3965 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3966 3967 if (!cpu_has_vmx_msr_bitmap()) 3968 return; 3969 3970 vmx_msr_bitmap_l01_changed(vmx); 3971 3972 /* 3973 * Mark the desired intercept state in shadow bitmap, this is needed 3974 * for resync when the MSR filter changes. 3975 */ 3976 if (is_valid_passthrough_msr(msr)) { 3977 int idx = possible_passthrough_msr_slot(msr); 3978 3979 if (idx != -ENOENT) { 3980 if (type & MSR_TYPE_R) 3981 set_bit(idx, vmx->shadow_msr_intercept.read); 3982 if (type & MSR_TYPE_W) 3983 set_bit(idx, vmx->shadow_msr_intercept.write); 3984 } 3985 } 3986 3987 if (type & MSR_TYPE_R) 3988 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3989 3990 if (type & MSR_TYPE_W) 3991 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3992 } 3993 3994 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3995 { 3996 /* 3997 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 3998 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 3999 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4000 */ 4001 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4002 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4003 struct vcpu_vmx *vmx = to_vmx(vcpu); 4004 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4005 u8 mode; 4006 4007 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4008 return; 4009 4010 if (cpu_has_secondary_exec_ctrls() && 4011 (secondary_exec_controls_get(vmx) & 4012 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4013 mode = MSR_BITMAP_MODE_X2APIC; 4014 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4015 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4016 } else { 4017 mode = 0; 4018 } 4019 4020 if (mode == vmx->x2apic_msr_bitmap_mode) 4021 return; 4022 4023 vmx->x2apic_msr_bitmap_mode = mode; 4024 4025 /* 4026 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4027 * registers (0x840 and above) intercepted, KVM doesn't support them. 4028 * Intercept all writes by default and poke holes as needed. Pass 4029 * through reads for all valid registers by default in x2APIC+APICv 4030 * mode, only the current timer count needs on-demand emulation by KVM. 4031 */ 4032 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4033 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4034 else 4035 msr_bitmap[read_idx] = ~0ull; 4036 msr_bitmap[write_idx] = ~0ull; 4037 4038 /* 4039 * TPR reads and writes can be virtualized even if virtual interrupt 4040 * delivery is not in use. 4041 */ 4042 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4043 !(mode & MSR_BITMAP_MODE_X2APIC)); 4044 4045 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4046 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4047 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4048 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4049 if (enable_ipiv) 4050 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4051 } 4052 } 4053 4054 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4055 { 4056 struct vcpu_vmx *vmx = to_vmx(vcpu); 4057 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4058 u32 i; 4059 4060 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4061 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4062 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4063 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4064 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4065 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4066 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4067 } 4068 } 4069 4070 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4071 { 4072 struct vcpu_vmx *vmx = to_vmx(vcpu); 4073 void *vapic_page; 4074 u32 vppr; 4075 int rvi; 4076 4077 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4078 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4079 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4080 return false; 4081 4082 rvi = vmx_get_rvi(); 4083 4084 vapic_page = vmx->nested.virtual_apic_map.hva; 4085 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4086 4087 return ((rvi & 0xf0) > (vppr & 0xf0)); 4088 } 4089 4090 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4091 { 4092 struct vcpu_vmx *vmx = to_vmx(vcpu); 4093 u32 i; 4094 4095 /* 4096 * Redo intercept permissions for MSRs that KVM is passing through to 4097 * the guest. Disabling interception will check the new MSR filter and 4098 * ensure that KVM enables interception if usersepace wants to filter 4099 * the MSR. MSRs that KVM is already intercepting don't need to be 4100 * refreshed since KVM is going to intercept them regardless of what 4101 * userspace wants. 4102 */ 4103 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4104 u32 msr = vmx_possible_passthrough_msrs[i]; 4105 4106 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4107 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4108 4109 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4110 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4111 } 4112 4113 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4114 if (vmx_pt_mode_is_host_guest()) 4115 pt_update_intercept_for_msr(vcpu); 4116 } 4117 4118 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4119 int pi_vec) 4120 { 4121 #ifdef CONFIG_SMP 4122 if (vcpu->mode == IN_GUEST_MODE) { 4123 /* 4124 * The vector of the virtual has already been set in the PIR. 4125 * Send a notification event to deliver the virtual interrupt 4126 * unless the vCPU is the currently running vCPU, i.e. the 4127 * event is being sent from a fastpath VM-Exit handler, in 4128 * which case the PIR will be synced to the vIRR before 4129 * re-entering the guest. 4130 * 4131 * When the target is not the running vCPU, the following 4132 * possibilities emerge: 4133 * 4134 * Case 1: vCPU stays in non-root mode. Sending a notification 4135 * event posts the interrupt to the vCPU. 4136 * 4137 * Case 2: vCPU exits to root mode and is still runnable. The 4138 * PIR will be synced to the vIRR before re-entering the guest. 4139 * Sending a notification event is ok as the host IRQ handler 4140 * will ignore the spurious event. 4141 * 4142 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4143 * has already synced PIR to vIRR and never blocks the vCPU if 4144 * the vIRR is not empty. Therefore, a blocked vCPU here does 4145 * not wait for any requested interrupts in PIR, and sending a 4146 * notification event also results in a benign, spurious event. 4147 */ 4148 4149 if (vcpu != kvm_get_running_vcpu()) 4150 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4151 return; 4152 } 4153 #endif 4154 /* 4155 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4156 * otherwise do nothing as KVM will grab the highest priority pending 4157 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4158 */ 4159 kvm_vcpu_wake_up(vcpu); 4160 } 4161 4162 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4163 int vector) 4164 { 4165 struct vcpu_vmx *vmx = to_vmx(vcpu); 4166 4167 if (is_guest_mode(vcpu) && 4168 vector == vmx->nested.posted_intr_nv) { 4169 /* 4170 * If a posted intr is not recognized by hardware, 4171 * we will accomplish it in the next vmentry. 4172 */ 4173 vmx->nested.pi_pending = true; 4174 kvm_make_request(KVM_REQ_EVENT, vcpu); 4175 4176 /* 4177 * This pairs with the smp_mb_*() after setting vcpu->mode in 4178 * vcpu_enter_guest() to guarantee the vCPU sees the event 4179 * request if triggering a posted interrupt "fails" because 4180 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4181 * the smb_wmb() in kvm_make_request() only ensures everything 4182 * done before making the request is visible when the request 4183 * is visible, it doesn't ensure ordering between the store to 4184 * vcpu->requests and the load from vcpu->mode. 4185 */ 4186 smp_mb__after_atomic(); 4187 4188 /* the PIR and ON have been set by L1. */ 4189 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4190 return 0; 4191 } 4192 return -1; 4193 } 4194 /* 4195 * Send interrupt to vcpu via posted interrupt way. 4196 * 1. If target vcpu is running(non-root mode), send posted interrupt 4197 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4198 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4199 * interrupt from PIR in next vmentry. 4200 */ 4201 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4202 { 4203 struct vcpu_vmx *vmx = to_vmx(vcpu); 4204 int r; 4205 4206 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4207 if (!r) 4208 return 0; 4209 4210 /* Note, this is called iff the local APIC is in-kernel. */ 4211 if (!vcpu->arch.apic->apicv_active) 4212 return -1; 4213 4214 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4215 return 0; 4216 4217 /* If a previous notification has sent the IPI, nothing to do. */ 4218 if (pi_test_and_set_on(&vmx->pi_desc)) 4219 return 0; 4220 4221 /* 4222 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4223 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4224 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4225 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4226 */ 4227 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4228 return 0; 4229 } 4230 4231 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4232 int trig_mode, int vector) 4233 { 4234 struct kvm_vcpu *vcpu = apic->vcpu; 4235 4236 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4237 kvm_lapic_set_irr(vector, apic); 4238 kvm_make_request(KVM_REQ_EVENT, vcpu); 4239 kvm_vcpu_kick(vcpu); 4240 } else { 4241 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4242 trig_mode, vector); 4243 } 4244 } 4245 4246 /* 4247 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4248 * will not change in the lifetime of the guest. 4249 * Note that host-state that does change is set elsewhere. E.g., host-state 4250 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4251 */ 4252 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4253 { 4254 u32 low32, high32; 4255 unsigned long tmpl; 4256 unsigned long cr0, cr3, cr4; 4257 4258 cr0 = read_cr0(); 4259 WARN_ON(cr0 & X86_CR0_TS); 4260 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4261 4262 /* 4263 * Save the most likely value for this task's CR3 in the VMCS. 4264 * We can't use __get_current_cr3_fast() because we're not atomic. 4265 */ 4266 cr3 = __read_cr3(); 4267 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4268 vmx->loaded_vmcs->host_state.cr3 = cr3; 4269 4270 /* Save the most likely value for this task's CR4 in the VMCS. */ 4271 cr4 = cr4_read_shadow(); 4272 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4273 vmx->loaded_vmcs->host_state.cr4 = cr4; 4274 4275 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4276 #ifdef CONFIG_X86_64 4277 /* 4278 * Load null selectors, so we can avoid reloading them in 4279 * vmx_prepare_switch_to_host(), in case userspace uses 4280 * the null selectors too (the expected case). 4281 */ 4282 vmcs_write16(HOST_DS_SELECTOR, 0); 4283 vmcs_write16(HOST_ES_SELECTOR, 0); 4284 #else 4285 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4286 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4287 #endif 4288 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4289 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4290 4291 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4292 4293 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4294 4295 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4296 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4297 4298 /* 4299 * SYSENTER is used for 32-bit system calls on either 32-bit or 4300 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4301 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4302 * have already done so!). 4303 */ 4304 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4305 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4306 4307 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4308 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4309 4310 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4311 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4312 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4313 } 4314 4315 if (cpu_has_load_ia32_efer()) 4316 vmcs_write64(HOST_IA32_EFER, host_efer); 4317 } 4318 4319 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4320 { 4321 struct kvm_vcpu *vcpu = &vmx->vcpu; 4322 4323 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4324 ~vcpu->arch.cr4_guest_rsvd_bits; 4325 if (!enable_ept) { 4326 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4327 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4328 } 4329 if (is_guest_mode(&vmx->vcpu)) 4330 vcpu->arch.cr4_guest_owned_bits &= 4331 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4332 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4333 } 4334 4335 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4336 { 4337 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4338 4339 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4340 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4341 4342 if (!enable_vnmi) 4343 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4344 4345 if (!enable_preemption_timer) 4346 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4347 4348 return pin_based_exec_ctrl; 4349 } 4350 4351 static u32 vmx_vmentry_ctrl(void) 4352 { 4353 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4354 4355 if (vmx_pt_mode_is_system()) 4356 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4357 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4358 /* 4359 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4360 */ 4361 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4362 VM_ENTRY_LOAD_IA32_EFER | 4363 VM_ENTRY_IA32E_MODE); 4364 4365 if (cpu_has_perf_global_ctrl_bug()) 4366 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4367 4368 return vmentry_ctrl; 4369 } 4370 4371 static u32 vmx_vmexit_ctrl(void) 4372 { 4373 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4374 4375 /* 4376 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4377 * nested virtualization and thus allowed to be set in vmcs12. 4378 */ 4379 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4380 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4381 4382 if (vmx_pt_mode_is_system()) 4383 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4384 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4385 4386 if (cpu_has_perf_global_ctrl_bug()) 4387 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4388 4389 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4390 return vmexit_ctrl & 4391 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4392 } 4393 4394 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4395 { 4396 struct vcpu_vmx *vmx = to_vmx(vcpu); 4397 4398 if (is_guest_mode(vcpu)) { 4399 vmx->nested.update_vmcs01_apicv_status = true; 4400 return; 4401 } 4402 4403 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4404 4405 if (kvm_vcpu_apicv_active(vcpu)) { 4406 secondary_exec_controls_setbit(vmx, 4407 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4408 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4409 if (enable_ipiv) 4410 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4411 } else { 4412 secondary_exec_controls_clearbit(vmx, 4413 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4414 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4415 if (enable_ipiv) 4416 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4417 } 4418 4419 vmx_update_msr_bitmap_x2apic(vcpu); 4420 } 4421 4422 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4423 { 4424 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4425 4426 /* 4427 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4428 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4429 */ 4430 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4431 CPU_BASED_USE_IO_BITMAPS | 4432 CPU_BASED_MONITOR_TRAP_FLAG | 4433 CPU_BASED_PAUSE_EXITING); 4434 4435 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4436 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4437 CPU_BASED_NMI_WINDOW_EXITING); 4438 4439 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4440 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4441 4442 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4443 exec_control &= ~CPU_BASED_TPR_SHADOW; 4444 4445 #ifdef CONFIG_X86_64 4446 if (exec_control & CPU_BASED_TPR_SHADOW) 4447 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4448 CPU_BASED_CR8_STORE_EXITING); 4449 else 4450 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4451 CPU_BASED_CR8_LOAD_EXITING; 4452 #endif 4453 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4454 if (enable_ept) 4455 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4456 CPU_BASED_CR3_STORE_EXITING | 4457 CPU_BASED_INVLPG_EXITING); 4458 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4459 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4460 CPU_BASED_MONITOR_EXITING); 4461 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4462 exec_control &= ~CPU_BASED_HLT_EXITING; 4463 return exec_control; 4464 } 4465 4466 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4467 { 4468 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4469 4470 /* 4471 * IPI virtualization relies on APICv. Disable IPI virtualization if 4472 * APICv is inhibited. 4473 */ 4474 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4475 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4476 4477 return exec_control; 4478 } 4479 4480 /* 4481 * Adjust a single secondary execution control bit to intercept/allow an 4482 * instruction in the guest. This is usually done based on whether or not a 4483 * feature has been exposed to the guest in order to correctly emulate faults. 4484 */ 4485 static inline void 4486 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4487 u32 control, bool enabled, bool exiting) 4488 { 4489 /* 4490 * If the control is for an opt-in feature, clear the control if the 4491 * feature is not exposed to the guest, i.e. not enabled. If the 4492 * control is opt-out, i.e. an exiting control, clear the control if 4493 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4494 * disabled for the associated instruction. Note, the caller is 4495 * responsible presetting exec_control to set all supported bits. 4496 */ 4497 if (enabled == exiting) 4498 *exec_control &= ~control; 4499 4500 /* 4501 * Update the nested MSR settings so that a nested VMM can/can't set 4502 * controls for features that are/aren't exposed to the guest. 4503 */ 4504 if (nested) { 4505 /* 4506 * All features that can be added or removed to VMX MSRs must 4507 * be supported in the first place for nested virtualization. 4508 */ 4509 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4510 enabled = false; 4511 4512 if (enabled) 4513 vmx->nested.msrs.secondary_ctls_high |= control; 4514 else 4515 vmx->nested.msrs.secondary_ctls_high &= ~control; 4516 } 4517 } 4518 4519 /* 4520 * Wrapper macro for the common case of adjusting a secondary execution control 4521 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4522 * verifies that the control is actually supported by KVM and hardware. 4523 */ 4524 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4525 ({ \ 4526 bool __enabled; \ 4527 \ 4528 if (cpu_has_vmx_##name()) { \ 4529 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4530 X86_FEATURE_##feat_name); \ 4531 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4532 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4533 } \ 4534 }) 4535 4536 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4537 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4538 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4539 4540 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4541 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4542 4543 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4544 { 4545 struct kvm_vcpu *vcpu = &vmx->vcpu; 4546 4547 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4548 4549 if (vmx_pt_mode_is_system()) 4550 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4551 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4552 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4553 if (vmx->vpid == 0) 4554 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4555 if (!enable_ept) { 4556 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4557 enable_unrestricted_guest = 0; 4558 } 4559 if (!enable_unrestricted_guest) 4560 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4561 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4562 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4563 if (!kvm_vcpu_apicv_active(vcpu)) 4564 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4565 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4566 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4567 4568 /* 4569 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4570 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4571 */ 4572 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4573 4574 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4575 * in vmx_set_cr4. */ 4576 exec_control &= ~SECONDARY_EXEC_DESC; 4577 4578 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4579 (handle_vmptrld). 4580 We can NOT enable shadow_vmcs here because we don't have yet 4581 a current VMCS12 4582 */ 4583 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4584 4585 /* 4586 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4587 * it needs to be set here when dirty logging is already active, e.g. 4588 * if this vCPU was created after dirty logging was enabled. 4589 */ 4590 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4591 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4592 4593 if (cpu_has_vmx_xsaves()) { 4594 /* Exposing XSAVES only when XSAVE is exposed */ 4595 bool xsaves_enabled = 4596 boot_cpu_has(X86_FEATURE_XSAVE) && 4597 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4598 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4599 4600 vcpu->arch.xsaves_enabled = xsaves_enabled; 4601 4602 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4603 SECONDARY_EXEC_XSAVES, 4604 xsaves_enabled, false); 4605 } 4606 4607 /* 4608 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4609 * feature is exposed to the guest. This creates a virtualization hole 4610 * if both are supported in hardware but only one is exposed to the 4611 * guest, but letting the guest execute RDTSCP or RDPID when either one 4612 * is advertised is preferable to emulating the advertised instruction 4613 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4614 */ 4615 if (cpu_has_vmx_rdtscp()) { 4616 bool rdpid_or_rdtscp_enabled = 4617 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4618 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4619 4620 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4621 SECONDARY_EXEC_ENABLE_RDTSCP, 4622 rdpid_or_rdtscp_enabled, false); 4623 } 4624 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4625 4626 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4627 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4628 4629 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4630 ENABLE_USR_WAIT_PAUSE, false); 4631 4632 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4633 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4634 4635 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4636 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4637 4638 return exec_control; 4639 } 4640 4641 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4642 { 4643 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4644 } 4645 4646 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4647 { 4648 struct page *pages; 4649 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4650 4651 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4652 return 0; 4653 4654 if (kvm_vmx->pid_table) 4655 return 0; 4656 4657 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm)); 4658 if (!pages) 4659 return -ENOMEM; 4660 4661 kvm_vmx->pid_table = (void *)page_address(pages); 4662 return 0; 4663 } 4664 4665 static int vmx_vcpu_precreate(struct kvm *kvm) 4666 { 4667 return vmx_alloc_ipiv_pid_table(kvm); 4668 } 4669 4670 #define VMX_XSS_EXIT_BITMAP 0 4671 4672 static void init_vmcs(struct vcpu_vmx *vmx) 4673 { 4674 struct kvm *kvm = vmx->vcpu.kvm; 4675 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4676 4677 if (nested) 4678 nested_vmx_set_vmcs_shadowing_bitmap(); 4679 4680 if (cpu_has_vmx_msr_bitmap()) 4681 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4682 4683 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4684 4685 /* Control */ 4686 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4687 4688 exec_controls_set(vmx, vmx_exec_control(vmx)); 4689 4690 if (cpu_has_secondary_exec_ctrls()) 4691 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4692 4693 if (cpu_has_tertiary_exec_ctrls()) 4694 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4695 4696 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4697 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4698 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4699 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4700 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4701 4702 vmcs_write16(GUEST_INTR_STATUS, 0); 4703 4704 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4705 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4706 } 4707 4708 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4709 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4710 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4711 } 4712 4713 if (!kvm_pause_in_guest(kvm)) { 4714 vmcs_write32(PLE_GAP, ple_gap); 4715 vmx->ple_window = ple_window; 4716 vmx->ple_window_dirty = true; 4717 } 4718 4719 if (kvm_notify_vmexit_enabled(kvm)) 4720 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4721 4722 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4723 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4724 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4725 4726 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4727 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4728 vmx_set_constant_host_state(vmx); 4729 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4730 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4731 4732 if (cpu_has_vmx_vmfunc()) 4733 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4734 4735 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4736 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4737 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4738 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4739 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4740 4741 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4742 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4743 4744 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4745 4746 /* 22.2.1, 20.8.1 */ 4747 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4748 4749 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4750 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4751 4752 set_cr4_guest_host_mask(vmx); 4753 4754 if (vmx->vpid != 0) 4755 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4756 4757 if (cpu_has_vmx_xsaves()) 4758 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4759 4760 if (enable_pml) { 4761 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4762 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4763 } 4764 4765 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4766 4767 if (vmx_pt_mode_is_host_guest()) { 4768 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4769 /* Bit[6~0] are forced to 1, writes are ignored. */ 4770 vmx->pt_desc.guest.output_mask = 0x7F; 4771 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4772 } 4773 4774 vmcs_write32(GUEST_SYSENTER_CS, 0); 4775 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4776 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4777 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4778 4779 if (cpu_has_vmx_tpr_shadow()) { 4780 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4781 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4782 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4783 __pa(vmx->vcpu.arch.apic->regs)); 4784 vmcs_write32(TPR_THRESHOLD, 0); 4785 } 4786 4787 vmx_setup_uret_msrs(vmx); 4788 } 4789 4790 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4791 { 4792 struct vcpu_vmx *vmx = to_vmx(vcpu); 4793 4794 init_vmcs(vmx); 4795 4796 if (nested) 4797 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4798 4799 vcpu_setup_sgx_lepubkeyhash(vcpu); 4800 4801 vmx->nested.posted_intr_nv = -1; 4802 vmx->nested.vmxon_ptr = INVALID_GPA; 4803 vmx->nested.current_vmptr = INVALID_GPA; 4804 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4805 4806 vcpu->arch.microcode_version = 0x100000000ULL; 4807 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4808 4809 /* 4810 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4811 * or POSTED_INTR_WAKEUP_VECTOR. 4812 */ 4813 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4814 vmx->pi_desc.sn = 1; 4815 } 4816 4817 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4818 { 4819 struct vcpu_vmx *vmx = to_vmx(vcpu); 4820 4821 if (!init_event) 4822 __vmx_vcpu_reset(vcpu); 4823 4824 vmx->rmode.vm86_active = 0; 4825 vmx->spec_ctrl = 0; 4826 4827 vmx->msr_ia32_umwait_control = 0; 4828 4829 vmx->hv_deadline_tsc = -1; 4830 kvm_set_cr8(vcpu, 0); 4831 4832 vmx_segment_cache_clear(vmx); 4833 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4834 4835 seg_setup(VCPU_SREG_CS); 4836 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4837 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4838 4839 seg_setup(VCPU_SREG_DS); 4840 seg_setup(VCPU_SREG_ES); 4841 seg_setup(VCPU_SREG_FS); 4842 seg_setup(VCPU_SREG_GS); 4843 seg_setup(VCPU_SREG_SS); 4844 4845 vmcs_write16(GUEST_TR_SELECTOR, 0); 4846 vmcs_writel(GUEST_TR_BASE, 0); 4847 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4848 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4849 4850 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4851 vmcs_writel(GUEST_LDTR_BASE, 0); 4852 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4853 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4854 4855 vmcs_writel(GUEST_GDTR_BASE, 0); 4856 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4857 4858 vmcs_writel(GUEST_IDTR_BASE, 0); 4859 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4860 4861 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4862 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4863 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4864 if (kvm_mpx_supported()) 4865 vmcs_write64(GUEST_BNDCFGS, 0); 4866 4867 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4868 4869 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4870 4871 vpid_sync_context(vmx->vpid); 4872 4873 vmx_update_fb_clear_dis(vcpu, vmx); 4874 } 4875 4876 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4877 { 4878 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4879 } 4880 4881 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4882 { 4883 if (!enable_vnmi || 4884 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4885 vmx_enable_irq_window(vcpu); 4886 return; 4887 } 4888 4889 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4890 } 4891 4892 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4893 { 4894 struct vcpu_vmx *vmx = to_vmx(vcpu); 4895 uint32_t intr; 4896 int irq = vcpu->arch.interrupt.nr; 4897 4898 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4899 4900 ++vcpu->stat.irq_injections; 4901 if (vmx->rmode.vm86_active) { 4902 int inc_eip = 0; 4903 if (vcpu->arch.interrupt.soft) 4904 inc_eip = vcpu->arch.event_exit_inst_len; 4905 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4906 return; 4907 } 4908 intr = irq | INTR_INFO_VALID_MASK; 4909 if (vcpu->arch.interrupt.soft) { 4910 intr |= INTR_TYPE_SOFT_INTR; 4911 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4912 vmx->vcpu.arch.event_exit_inst_len); 4913 } else 4914 intr |= INTR_TYPE_EXT_INTR; 4915 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4916 4917 vmx_clear_hlt(vcpu); 4918 } 4919 4920 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4921 { 4922 struct vcpu_vmx *vmx = to_vmx(vcpu); 4923 4924 if (!enable_vnmi) { 4925 /* 4926 * Tracking the NMI-blocked state in software is built upon 4927 * finding the next open IRQ window. This, in turn, depends on 4928 * well-behaving guests: They have to keep IRQs disabled at 4929 * least as long as the NMI handler runs. Otherwise we may 4930 * cause NMI nesting, maybe breaking the guest. But as this is 4931 * highly unlikely, we can live with the residual risk. 4932 */ 4933 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4934 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4935 } 4936 4937 ++vcpu->stat.nmi_injections; 4938 vmx->loaded_vmcs->nmi_known_unmasked = false; 4939 4940 if (vmx->rmode.vm86_active) { 4941 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4942 return; 4943 } 4944 4945 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4946 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4947 4948 vmx_clear_hlt(vcpu); 4949 } 4950 4951 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4952 { 4953 struct vcpu_vmx *vmx = to_vmx(vcpu); 4954 bool masked; 4955 4956 if (!enable_vnmi) 4957 return vmx->loaded_vmcs->soft_vnmi_blocked; 4958 if (vmx->loaded_vmcs->nmi_known_unmasked) 4959 return false; 4960 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4961 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4962 return masked; 4963 } 4964 4965 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4966 { 4967 struct vcpu_vmx *vmx = to_vmx(vcpu); 4968 4969 if (!enable_vnmi) { 4970 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4971 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4972 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4973 } 4974 } else { 4975 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4976 if (masked) 4977 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4978 GUEST_INTR_STATE_NMI); 4979 else 4980 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4981 GUEST_INTR_STATE_NMI); 4982 } 4983 } 4984 4985 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4986 { 4987 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4988 return false; 4989 4990 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4991 return true; 4992 4993 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4994 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4995 GUEST_INTR_STATE_NMI)); 4996 } 4997 4998 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4999 { 5000 if (to_vmx(vcpu)->nested.nested_run_pending) 5001 return -EBUSY; 5002 5003 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5004 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5005 return -EBUSY; 5006 5007 return !vmx_nmi_blocked(vcpu); 5008 } 5009 5010 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5011 { 5012 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5013 return false; 5014 5015 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5016 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5017 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5018 } 5019 5020 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5021 { 5022 if (to_vmx(vcpu)->nested.nested_run_pending) 5023 return -EBUSY; 5024 5025 /* 5026 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5027 * e.g. if the IRQ arrived asynchronously after checking nested events. 5028 */ 5029 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5030 return -EBUSY; 5031 5032 return !vmx_interrupt_blocked(vcpu); 5033 } 5034 5035 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5036 { 5037 void __user *ret; 5038 5039 if (enable_unrestricted_guest) 5040 return 0; 5041 5042 mutex_lock(&kvm->slots_lock); 5043 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5044 PAGE_SIZE * 3); 5045 mutex_unlock(&kvm->slots_lock); 5046 5047 if (IS_ERR(ret)) 5048 return PTR_ERR(ret); 5049 5050 to_kvm_vmx(kvm)->tss_addr = addr; 5051 5052 return init_rmode_tss(kvm, ret); 5053 } 5054 5055 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5056 { 5057 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5058 return 0; 5059 } 5060 5061 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5062 { 5063 switch (vec) { 5064 case BP_VECTOR: 5065 /* 5066 * Update instruction length as we may reinject the exception 5067 * from user space while in guest debugging mode. 5068 */ 5069 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5070 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5071 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5072 return false; 5073 fallthrough; 5074 case DB_VECTOR: 5075 return !(vcpu->guest_debug & 5076 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5077 case DE_VECTOR: 5078 case OF_VECTOR: 5079 case BR_VECTOR: 5080 case UD_VECTOR: 5081 case DF_VECTOR: 5082 case SS_VECTOR: 5083 case GP_VECTOR: 5084 case MF_VECTOR: 5085 return true; 5086 } 5087 return false; 5088 } 5089 5090 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5091 int vec, u32 err_code) 5092 { 5093 /* 5094 * Instruction with address size override prefix opcode 0x67 5095 * Cause the #SS fault with 0 error code in VM86 mode. 5096 */ 5097 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5098 if (kvm_emulate_instruction(vcpu, 0)) { 5099 if (vcpu->arch.halt_request) { 5100 vcpu->arch.halt_request = 0; 5101 return kvm_emulate_halt_noskip(vcpu); 5102 } 5103 return 1; 5104 } 5105 return 0; 5106 } 5107 5108 /* 5109 * Forward all other exceptions that are valid in real mode. 5110 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5111 * the required debugging infrastructure rework. 5112 */ 5113 kvm_queue_exception(vcpu, vec); 5114 return 1; 5115 } 5116 5117 static int handle_machine_check(struct kvm_vcpu *vcpu) 5118 { 5119 /* handled by vmx_vcpu_run() */ 5120 return 1; 5121 } 5122 5123 /* 5124 * If the host has split lock detection disabled, then #AC is 5125 * unconditionally injected into the guest, which is the pre split lock 5126 * detection behaviour. 5127 * 5128 * If the host has split lock detection enabled then #AC is 5129 * only injected into the guest when: 5130 * - Guest CPL == 3 (user mode) 5131 * - Guest has #AC detection enabled in CR0 5132 * - Guest EFLAGS has AC bit set 5133 */ 5134 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5135 { 5136 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5137 return true; 5138 5139 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5140 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5141 } 5142 5143 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5144 { 5145 struct vcpu_vmx *vmx = to_vmx(vcpu); 5146 struct kvm_run *kvm_run = vcpu->run; 5147 u32 intr_info, ex_no, error_code; 5148 unsigned long cr2, dr6; 5149 u32 vect_info; 5150 5151 vect_info = vmx->idt_vectoring_info; 5152 intr_info = vmx_get_intr_info(vcpu); 5153 5154 /* 5155 * Machine checks are handled by handle_exception_irqoff(), or by 5156 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5157 * vmx_vcpu_enter_exit(). 5158 */ 5159 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5160 return 1; 5161 5162 /* 5163 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5164 * This ensures the nested_vmx check is not skipped so vmexit can 5165 * be reflected to L1 (when it intercepts #NM) before reaching this 5166 * point. 5167 */ 5168 if (is_nm_fault(intr_info)) { 5169 kvm_queue_exception(vcpu, NM_VECTOR); 5170 return 1; 5171 } 5172 5173 if (is_invalid_opcode(intr_info)) 5174 return handle_ud(vcpu); 5175 5176 error_code = 0; 5177 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5178 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5179 5180 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5181 WARN_ON_ONCE(!enable_vmware_backdoor); 5182 5183 /* 5184 * VMware backdoor emulation on #GP interception only handles 5185 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5186 * error code on #GP. 5187 */ 5188 if (error_code) { 5189 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5190 return 1; 5191 } 5192 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5193 } 5194 5195 /* 5196 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5197 * MMIO, it is better to report an internal error. 5198 * See the comments in vmx_handle_exit. 5199 */ 5200 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5201 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5202 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5203 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5204 vcpu->run->internal.ndata = 4; 5205 vcpu->run->internal.data[0] = vect_info; 5206 vcpu->run->internal.data[1] = intr_info; 5207 vcpu->run->internal.data[2] = error_code; 5208 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5209 return 0; 5210 } 5211 5212 if (is_page_fault(intr_info)) { 5213 cr2 = vmx_get_exit_qual(vcpu); 5214 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5215 /* 5216 * EPT will cause page fault only if we need to 5217 * detect illegal GPAs. 5218 */ 5219 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5220 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5221 return 1; 5222 } else 5223 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5224 } 5225 5226 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5227 5228 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5229 return handle_rmode_exception(vcpu, ex_no, error_code); 5230 5231 switch (ex_no) { 5232 case DB_VECTOR: 5233 dr6 = vmx_get_exit_qual(vcpu); 5234 if (!(vcpu->guest_debug & 5235 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5236 /* 5237 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5238 * instruction. ICEBP generates a trap-like #DB, but 5239 * despite its interception control being tied to #DB, 5240 * is an instruction intercept, i.e. the VM-Exit occurs 5241 * on the ICEBP itself. Use the inner "skip" helper to 5242 * avoid single-step #DB and MTF updates, as ICEBP is 5243 * higher priority. Note, skipping ICEBP still clears 5244 * STI and MOVSS blocking. 5245 * 5246 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5247 * if single-step is enabled in RFLAGS and STI or MOVSS 5248 * blocking is active, as the CPU doesn't set the bit 5249 * on VM-Exit due to #DB interception. VM-Entry has a 5250 * consistency check that a single-step #DB is pending 5251 * in this scenario as the previous instruction cannot 5252 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5253 * don't modify RFLAGS), therefore the one instruction 5254 * delay when activating single-step breakpoints must 5255 * have already expired. Note, the CPU sets/clears BS 5256 * as appropriate for all other VM-Exits types. 5257 */ 5258 if (is_icebp(intr_info)) 5259 WARN_ON(!skip_emulated_instruction(vcpu)); 5260 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5261 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5262 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5263 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5264 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5265 5266 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5267 return 1; 5268 } 5269 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5270 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5271 fallthrough; 5272 case BP_VECTOR: 5273 /* 5274 * Update instruction length as we may reinject #BP from 5275 * user space while in guest debugging mode. Reading it for 5276 * #DB as well causes no harm, it is not used in that case. 5277 */ 5278 vmx->vcpu.arch.event_exit_inst_len = 5279 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5280 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5281 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5282 kvm_run->debug.arch.exception = ex_no; 5283 break; 5284 case AC_VECTOR: 5285 if (vmx_guest_inject_ac(vcpu)) { 5286 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5287 return 1; 5288 } 5289 5290 /* 5291 * Handle split lock. Depending on detection mode this will 5292 * either warn and disable split lock detection for this 5293 * task or force SIGBUS on it. 5294 */ 5295 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5296 return 1; 5297 fallthrough; 5298 default: 5299 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5300 kvm_run->ex.exception = ex_no; 5301 kvm_run->ex.error_code = error_code; 5302 break; 5303 } 5304 return 0; 5305 } 5306 5307 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5308 { 5309 ++vcpu->stat.irq_exits; 5310 return 1; 5311 } 5312 5313 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5314 { 5315 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5316 vcpu->mmio_needed = 0; 5317 return 0; 5318 } 5319 5320 static int handle_io(struct kvm_vcpu *vcpu) 5321 { 5322 unsigned long exit_qualification; 5323 int size, in, string; 5324 unsigned port; 5325 5326 exit_qualification = vmx_get_exit_qual(vcpu); 5327 string = (exit_qualification & 16) != 0; 5328 5329 ++vcpu->stat.io_exits; 5330 5331 if (string) 5332 return kvm_emulate_instruction(vcpu, 0); 5333 5334 port = exit_qualification >> 16; 5335 size = (exit_qualification & 7) + 1; 5336 in = (exit_qualification & 8) != 0; 5337 5338 return kvm_fast_pio(vcpu, size, port, in); 5339 } 5340 5341 static void 5342 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5343 { 5344 /* 5345 * Patch in the VMCALL instruction: 5346 */ 5347 hypercall[0] = 0x0f; 5348 hypercall[1] = 0x01; 5349 hypercall[2] = 0xc1; 5350 } 5351 5352 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5353 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5354 { 5355 if (is_guest_mode(vcpu)) { 5356 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5357 unsigned long orig_val = val; 5358 5359 /* 5360 * We get here when L2 changed cr0 in a way that did not change 5361 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5362 * but did change L0 shadowed bits. So we first calculate the 5363 * effective cr0 value that L1 would like to write into the 5364 * hardware. It consists of the L2-owned bits from the new 5365 * value combined with the L1-owned bits from L1's guest_cr0. 5366 */ 5367 val = (val & ~vmcs12->cr0_guest_host_mask) | 5368 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5369 5370 if (!nested_guest_cr0_valid(vcpu, val)) 5371 return 1; 5372 5373 if (kvm_set_cr0(vcpu, val)) 5374 return 1; 5375 vmcs_writel(CR0_READ_SHADOW, orig_val); 5376 return 0; 5377 } else { 5378 if (to_vmx(vcpu)->nested.vmxon && 5379 !nested_host_cr0_valid(vcpu, val)) 5380 return 1; 5381 5382 return kvm_set_cr0(vcpu, val); 5383 } 5384 } 5385 5386 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5387 { 5388 if (is_guest_mode(vcpu)) { 5389 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5390 unsigned long orig_val = val; 5391 5392 /* analogously to handle_set_cr0 */ 5393 val = (val & ~vmcs12->cr4_guest_host_mask) | 5394 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5395 if (kvm_set_cr4(vcpu, val)) 5396 return 1; 5397 vmcs_writel(CR4_READ_SHADOW, orig_val); 5398 return 0; 5399 } else 5400 return kvm_set_cr4(vcpu, val); 5401 } 5402 5403 static int handle_desc(struct kvm_vcpu *vcpu) 5404 { 5405 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5406 return kvm_emulate_instruction(vcpu, 0); 5407 } 5408 5409 static int handle_cr(struct kvm_vcpu *vcpu) 5410 { 5411 unsigned long exit_qualification, val; 5412 int cr; 5413 int reg; 5414 int err; 5415 int ret; 5416 5417 exit_qualification = vmx_get_exit_qual(vcpu); 5418 cr = exit_qualification & 15; 5419 reg = (exit_qualification >> 8) & 15; 5420 switch ((exit_qualification >> 4) & 3) { 5421 case 0: /* mov to cr */ 5422 val = kvm_register_read(vcpu, reg); 5423 trace_kvm_cr_write(cr, val); 5424 switch (cr) { 5425 case 0: 5426 err = handle_set_cr0(vcpu, val); 5427 return kvm_complete_insn_gp(vcpu, err); 5428 case 3: 5429 WARN_ON_ONCE(enable_unrestricted_guest); 5430 5431 err = kvm_set_cr3(vcpu, val); 5432 return kvm_complete_insn_gp(vcpu, err); 5433 case 4: 5434 err = handle_set_cr4(vcpu, val); 5435 return kvm_complete_insn_gp(vcpu, err); 5436 case 8: { 5437 u8 cr8_prev = kvm_get_cr8(vcpu); 5438 u8 cr8 = (u8)val; 5439 err = kvm_set_cr8(vcpu, cr8); 5440 ret = kvm_complete_insn_gp(vcpu, err); 5441 if (lapic_in_kernel(vcpu)) 5442 return ret; 5443 if (cr8_prev <= cr8) 5444 return ret; 5445 /* 5446 * TODO: we might be squashing a 5447 * KVM_GUESTDBG_SINGLESTEP-triggered 5448 * KVM_EXIT_DEBUG here. 5449 */ 5450 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5451 return 0; 5452 } 5453 } 5454 break; 5455 case 2: /* clts */ 5456 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5457 return -EIO; 5458 case 1: /*mov from cr*/ 5459 switch (cr) { 5460 case 3: 5461 WARN_ON_ONCE(enable_unrestricted_guest); 5462 5463 val = kvm_read_cr3(vcpu); 5464 kvm_register_write(vcpu, reg, val); 5465 trace_kvm_cr_read(cr, val); 5466 return kvm_skip_emulated_instruction(vcpu); 5467 case 8: 5468 val = kvm_get_cr8(vcpu); 5469 kvm_register_write(vcpu, reg, val); 5470 trace_kvm_cr_read(cr, val); 5471 return kvm_skip_emulated_instruction(vcpu); 5472 } 5473 break; 5474 case 3: /* lmsw */ 5475 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5476 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5477 kvm_lmsw(vcpu, val); 5478 5479 return kvm_skip_emulated_instruction(vcpu); 5480 default: 5481 break; 5482 } 5483 vcpu->run->exit_reason = 0; 5484 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5485 (int)(exit_qualification >> 4) & 3, cr); 5486 return 0; 5487 } 5488 5489 static int handle_dr(struct kvm_vcpu *vcpu) 5490 { 5491 unsigned long exit_qualification; 5492 int dr, dr7, reg; 5493 int err = 1; 5494 5495 exit_qualification = vmx_get_exit_qual(vcpu); 5496 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5497 5498 /* First, if DR does not exist, trigger UD */ 5499 if (!kvm_require_dr(vcpu, dr)) 5500 return 1; 5501 5502 if (vmx_get_cpl(vcpu) > 0) 5503 goto out; 5504 5505 dr7 = vmcs_readl(GUEST_DR7); 5506 if (dr7 & DR7_GD) { 5507 /* 5508 * As the vm-exit takes precedence over the debug trap, we 5509 * need to emulate the latter, either for the host or the 5510 * guest debugging itself. 5511 */ 5512 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5513 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5514 vcpu->run->debug.arch.dr7 = dr7; 5515 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5516 vcpu->run->debug.arch.exception = DB_VECTOR; 5517 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5518 return 0; 5519 } else { 5520 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5521 return 1; 5522 } 5523 } 5524 5525 if (vcpu->guest_debug == 0) { 5526 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5527 5528 /* 5529 * No more DR vmexits; force a reload of the debug registers 5530 * and reenter on this instruction. The next vmexit will 5531 * retrieve the full state of the debug registers. 5532 */ 5533 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5534 return 1; 5535 } 5536 5537 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5538 if (exit_qualification & TYPE_MOV_FROM_DR) { 5539 unsigned long val; 5540 5541 kvm_get_dr(vcpu, dr, &val); 5542 kvm_register_write(vcpu, reg, val); 5543 err = 0; 5544 } else { 5545 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5546 } 5547 5548 out: 5549 return kvm_complete_insn_gp(vcpu, err); 5550 } 5551 5552 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5553 { 5554 get_debugreg(vcpu->arch.db[0], 0); 5555 get_debugreg(vcpu->arch.db[1], 1); 5556 get_debugreg(vcpu->arch.db[2], 2); 5557 get_debugreg(vcpu->arch.db[3], 3); 5558 get_debugreg(vcpu->arch.dr6, 6); 5559 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5560 5561 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5562 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5563 5564 /* 5565 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5566 * a stale dr6 from the guest. 5567 */ 5568 set_debugreg(DR6_RESERVED, 6); 5569 } 5570 5571 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5572 { 5573 vmcs_writel(GUEST_DR7, val); 5574 } 5575 5576 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5577 { 5578 kvm_apic_update_ppr(vcpu); 5579 return 1; 5580 } 5581 5582 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5583 { 5584 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5585 5586 kvm_make_request(KVM_REQ_EVENT, vcpu); 5587 5588 ++vcpu->stat.irq_window_exits; 5589 return 1; 5590 } 5591 5592 static int handle_invlpg(struct kvm_vcpu *vcpu) 5593 { 5594 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5595 5596 kvm_mmu_invlpg(vcpu, exit_qualification); 5597 return kvm_skip_emulated_instruction(vcpu); 5598 } 5599 5600 static int handle_apic_access(struct kvm_vcpu *vcpu) 5601 { 5602 if (likely(fasteoi)) { 5603 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5604 int access_type, offset; 5605 5606 access_type = exit_qualification & APIC_ACCESS_TYPE; 5607 offset = exit_qualification & APIC_ACCESS_OFFSET; 5608 /* 5609 * Sane guest uses MOV to write EOI, with written value 5610 * not cared. So make a short-circuit here by avoiding 5611 * heavy instruction emulation. 5612 */ 5613 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5614 (offset == APIC_EOI)) { 5615 kvm_lapic_set_eoi(vcpu); 5616 return kvm_skip_emulated_instruction(vcpu); 5617 } 5618 } 5619 return kvm_emulate_instruction(vcpu, 0); 5620 } 5621 5622 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5623 { 5624 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5625 int vector = exit_qualification & 0xff; 5626 5627 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5628 kvm_apic_set_eoi_accelerated(vcpu, vector); 5629 return 1; 5630 } 5631 5632 static int handle_apic_write(struct kvm_vcpu *vcpu) 5633 { 5634 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5635 5636 /* 5637 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5638 * hardware has done any necessary aliasing, offset adjustments, etc... 5639 * for the access. I.e. the correct value has already been written to 5640 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5641 * retrieve the register value and emulate the access. 5642 */ 5643 u32 offset = exit_qualification & 0xff0; 5644 5645 kvm_apic_write_nodecode(vcpu, offset); 5646 return 1; 5647 } 5648 5649 static int handle_task_switch(struct kvm_vcpu *vcpu) 5650 { 5651 struct vcpu_vmx *vmx = to_vmx(vcpu); 5652 unsigned long exit_qualification; 5653 bool has_error_code = false; 5654 u32 error_code = 0; 5655 u16 tss_selector; 5656 int reason, type, idt_v, idt_index; 5657 5658 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5659 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5660 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5661 5662 exit_qualification = vmx_get_exit_qual(vcpu); 5663 5664 reason = (u32)exit_qualification >> 30; 5665 if (reason == TASK_SWITCH_GATE && idt_v) { 5666 switch (type) { 5667 case INTR_TYPE_NMI_INTR: 5668 vcpu->arch.nmi_injected = false; 5669 vmx_set_nmi_mask(vcpu, true); 5670 break; 5671 case INTR_TYPE_EXT_INTR: 5672 case INTR_TYPE_SOFT_INTR: 5673 kvm_clear_interrupt_queue(vcpu); 5674 break; 5675 case INTR_TYPE_HARD_EXCEPTION: 5676 if (vmx->idt_vectoring_info & 5677 VECTORING_INFO_DELIVER_CODE_MASK) { 5678 has_error_code = true; 5679 error_code = 5680 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5681 } 5682 fallthrough; 5683 case INTR_TYPE_SOFT_EXCEPTION: 5684 kvm_clear_exception_queue(vcpu); 5685 break; 5686 default: 5687 break; 5688 } 5689 } 5690 tss_selector = exit_qualification; 5691 5692 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5693 type != INTR_TYPE_EXT_INTR && 5694 type != INTR_TYPE_NMI_INTR)) 5695 WARN_ON(!skip_emulated_instruction(vcpu)); 5696 5697 /* 5698 * TODO: What about debug traps on tss switch? 5699 * Are we supposed to inject them and update dr6? 5700 */ 5701 return kvm_task_switch(vcpu, tss_selector, 5702 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5703 reason, has_error_code, error_code); 5704 } 5705 5706 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5707 { 5708 unsigned long exit_qualification; 5709 gpa_t gpa; 5710 u64 error_code; 5711 5712 exit_qualification = vmx_get_exit_qual(vcpu); 5713 5714 /* 5715 * EPT violation happened while executing iret from NMI, 5716 * "blocked by NMI" bit has to be set before next VM entry. 5717 * There are errata that may cause this bit to not be set: 5718 * AAK134, BY25. 5719 */ 5720 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5721 enable_vnmi && 5722 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5723 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5724 5725 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5726 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5727 5728 /* Is it a read fault? */ 5729 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5730 ? PFERR_USER_MASK : 0; 5731 /* Is it a write fault? */ 5732 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5733 ? PFERR_WRITE_MASK : 0; 5734 /* Is it a fetch fault? */ 5735 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5736 ? PFERR_FETCH_MASK : 0; 5737 /* ept page table entry is present? */ 5738 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5739 ? PFERR_PRESENT_MASK : 0; 5740 5741 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5742 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5743 5744 vcpu->arch.exit_qualification = exit_qualification; 5745 5746 /* 5747 * Check that the GPA doesn't exceed physical memory limits, as that is 5748 * a guest page fault. We have to emulate the instruction here, because 5749 * if the illegal address is that of a paging structure, then 5750 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5751 * would also use advanced VM-exit information for EPT violations to 5752 * reconstruct the page fault error code. 5753 */ 5754 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5755 return kvm_emulate_instruction(vcpu, 0); 5756 5757 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5758 } 5759 5760 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5761 { 5762 gpa_t gpa; 5763 5764 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5765 return 1; 5766 5767 /* 5768 * A nested guest cannot optimize MMIO vmexits, because we have an 5769 * nGPA here instead of the required GPA. 5770 */ 5771 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5772 if (!is_guest_mode(vcpu) && 5773 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5774 trace_kvm_fast_mmio(gpa); 5775 return kvm_skip_emulated_instruction(vcpu); 5776 } 5777 5778 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5779 } 5780 5781 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5782 { 5783 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5784 return -EIO; 5785 5786 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5787 ++vcpu->stat.nmi_window_exits; 5788 kvm_make_request(KVM_REQ_EVENT, vcpu); 5789 5790 return 1; 5791 } 5792 5793 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5794 { 5795 struct vcpu_vmx *vmx = to_vmx(vcpu); 5796 5797 return vmx->emulation_required && !vmx->rmode.vm86_active && 5798 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5799 } 5800 5801 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5802 { 5803 struct vcpu_vmx *vmx = to_vmx(vcpu); 5804 bool intr_window_requested; 5805 unsigned count = 130; 5806 5807 intr_window_requested = exec_controls_get(vmx) & 5808 CPU_BASED_INTR_WINDOW_EXITING; 5809 5810 while (vmx->emulation_required && count-- != 0) { 5811 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5812 return handle_interrupt_window(&vmx->vcpu); 5813 5814 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5815 return 1; 5816 5817 if (!kvm_emulate_instruction(vcpu, 0)) 5818 return 0; 5819 5820 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5821 kvm_prepare_emulation_failure_exit(vcpu); 5822 return 0; 5823 } 5824 5825 if (vcpu->arch.halt_request) { 5826 vcpu->arch.halt_request = 0; 5827 return kvm_emulate_halt_noskip(vcpu); 5828 } 5829 5830 /* 5831 * Note, return 1 and not 0, vcpu_run() will invoke 5832 * xfer_to_guest_mode() which will create a proper return 5833 * code. 5834 */ 5835 if (__xfer_to_guest_mode_work_pending()) 5836 return 1; 5837 } 5838 5839 return 1; 5840 } 5841 5842 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5843 { 5844 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5845 kvm_prepare_emulation_failure_exit(vcpu); 5846 return 0; 5847 } 5848 5849 return 1; 5850 } 5851 5852 static void grow_ple_window(struct kvm_vcpu *vcpu) 5853 { 5854 struct vcpu_vmx *vmx = to_vmx(vcpu); 5855 unsigned int old = vmx->ple_window; 5856 5857 vmx->ple_window = __grow_ple_window(old, ple_window, 5858 ple_window_grow, 5859 ple_window_max); 5860 5861 if (vmx->ple_window != old) { 5862 vmx->ple_window_dirty = true; 5863 trace_kvm_ple_window_update(vcpu->vcpu_id, 5864 vmx->ple_window, old); 5865 } 5866 } 5867 5868 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5869 { 5870 struct vcpu_vmx *vmx = to_vmx(vcpu); 5871 unsigned int old = vmx->ple_window; 5872 5873 vmx->ple_window = __shrink_ple_window(old, ple_window, 5874 ple_window_shrink, 5875 ple_window); 5876 5877 if (vmx->ple_window != old) { 5878 vmx->ple_window_dirty = true; 5879 trace_kvm_ple_window_update(vcpu->vcpu_id, 5880 vmx->ple_window, old); 5881 } 5882 } 5883 5884 /* 5885 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5886 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5887 */ 5888 static int handle_pause(struct kvm_vcpu *vcpu) 5889 { 5890 if (!kvm_pause_in_guest(vcpu->kvm)) 5891 grow_ple_window(vcpu); 5892 5893 /* 5894 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5895 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5896 * never set PAUSE_EXITING and just set PLE if supported, 5897 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5898 */ 5899 kvm_vcpu_on_spin(vcpu, true); 5900 return kvm_skip_emulated_instruction(vcpu); 5901 } 5902 5903 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5904 { 5905 return 1; 5906 } 5907 5908 static int handle_invpcid(struct kvm_vcpu *vcpu) 5909 { 5910 u32 vmx_instruction_info; 5911 unsigned long type; 5912 gva_t gva; 5913 struct { 5914 u64 pcid; 5915 u64 gla; 5916 } operand; 5917 int gpr_index; 5918 5919 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5920 kvm_queue_exception(vcpu, UD_VECTOR); 5921 return 1; 5922 } 5923 5924 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5925 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5926 type = kvm_register_read(vcpu, gpr_index); 5927 5928 /* According to the Intel instruction reference, the memory operand 5929 * is read even if it isn't needed (e.g., for type==all) 5930 */ 5931 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5932 vmx_instruction_info, false, 5933 sizeof(operand), &gva)) 5934 return 1; 5935 5936 return kvm_handle_invpcid(vcpu, type, gva); 5937 } 5938 5939 static int handle_pml_full(struct kvm_vcpu *vcpu) 5940 { 5941 unsigned long exit_qualification; 5942 5943 trace_kvm_pml_full(vcpu->vcpu_id); 5944 5945 exit_qualification = vmx_get_exit_qual(vcpu); 5946 5947 /* 5948 * PML buffer FULL happened while executing iret from NMI, 5949 * "blocked by NMI" bit has to be set before next VM entry. 5950 */ 5951 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5952 enable_vnmi && 5953 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5954 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5955 GUEST_INTR_STATE_NMI); 5956 5957 /* 5958 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5959 * here.., and there's no userspace involvement needed for PML. 5960 */ 5961 return 1; 5962 } 5963 5964 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5965 { 5966 struct vcpu_vmx *vmx = to_vmx(vcpu); 5967 5968 if (!vmx->req_immediate_exit && 5969 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5970 kvm_lapic_expired_hv_timer(vcpu); 5971 return EXIT_FASTPATH_REENTER_GUEST; 5972 } 5973 5974 return EXIT_FASTPATH_NONE; 5975 } 5976 5977 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5978 { 5979 handle_fastpath_preemption_timer(vcpu); 5980 return 1; 5981 } 5982 5983 /* 5984 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5985 * are overwritten by nested_vmx_setup() when nested=1. 5986 */ 5987 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5988 { 5989 kvm_queue_exception(vcpu, UD_VECTOR); 5990 return 1; 5991 } 5992 5993 #ifndef CONFIG_X86_SGX_KVM 5994 static int handle_encls(struct kvm_vcpu *vcpu) 5995 { 5996 /* 5997 * SGX virtualization is disabled. There is no software enable bit for 5998 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5999 * the guest from executing ENCLS (when SGX is supported by hardware). 6000 */ 6001 kvm_queue_exception(vcpu, UD_VECTOR); 6002 return 1; 6003 } 6004 #endif /* CONFIG_X86_SGX_KVM */ 6005 6006 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6007 { 6008 /* 6009 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6010 * VM-Exits. Unconditionally set the flag here and leave the handling to 6011 * vmx_handle_exit(). 6012 */ 6013 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6014 return 1; 6015 } 6016 6017 static int handle_notify(struct kvm_vcpu *vcpu) 6018 { 6019 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6020 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6021 6022 ++vcpu->stat.notify_window_exits; 6023 6024 /* 6025 * Notify VM exit happened while executing iret from NMI, 6026 * "blocked by NMI" bit has to be set before next VM entry. 6027 */ 6028 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6029 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6030 GUEST_INTR_STATE_NMI); 6031 6032 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6033 context_invalid) { 6034 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6035 vcpu->run->notify.flags = context_invalid ? 6036 KVM_NOTIFY_CONTEXT_INVALID : 0; 6037 return 0; 6038 } 6039 6040 return 1; 6041 } 6042 6043 /* 6044 * The exit handlers return 1 if the exit was handled fully and guest execution 6045 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6046 * to be done to userspace and return 0. 6047 */ 6048 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6049 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6050 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6051 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6052 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6053 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6054 [EXIT_REASON_CR_ACCESS] = handle_cr, 6055 [EXIT_REASON_DR_ACCESS] = handle_dr, 6056 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6057 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6058 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6059 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6060 [EXIT_REASON_HLT] = kvm_emulate_halt, 6061 [EXIT_REASON_INVD] = kvm_emulate_invd, 6062 [EXIT_REASON_INVLPG] = handle_invlpg, 6063 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6064 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6065 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6066 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6067 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6068 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6069 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6070 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6071 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6072 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6073 [EXIT_REASON_VMON] = handle_vmx_instruction, 6074 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6075 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6076 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6077 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6078 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6079 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6080 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6081 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6082 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6083 [EXIT_REASON_LDTR_TR] = handle_desc, 6084 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6085 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6086 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6087 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6088 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6089 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6090 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6091 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6092 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6093 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6094 [EXIT_REASON_PML_FULL] = handle_pml_full, 6095 [EXIT_REASON_INVPCID] = handle_invpcid, 6096 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6097 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6098 [EXIT_REASON_ENCLS] = handle_encls, 6099 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6100 [EXIT_REASON_NOTIFY] = handle_notify, 6101 }; 6102 6103 static const int kvm_vmx_max_exit_handlers = 6104 ARRAY_SIZE(kvm_vmx_exit_handlers); 6105 6106 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6107 u64 *info1, u64 *info2, 6108 u32 *intr_info, u32 *error_code) 6109 { 6110 struct vcpu_vmx *vmx = to_vmx(vcpu); 6111 6112 *reason = vmx->exit_reason.full; 6113 *info1 = vmx_get_exit_qual(vcpu); 6114 if (!(vmx->exit_reason.failed_vmentry)) { 6115 *info2 = vmx->idt_vectoring_info; 6116 *intr_info = vmx_get_intr_info(vcpu); 6117 if (is_exception_with_error_code(*intr_info)) 6118 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6119 else 6120 *error_code = 0; 6121 } else { 6122 *info2 = 0; 6123 *intr_info = 0; 6124 *error_code = 0; 6125 } 6126 } 6127 6128 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6129 { 6130 if (vmx->pml_pg) { 6131 __free_page(vmx->pml_pg); 6132 vmx->pml_pg = NULL; 6133 } 6134 } 6135 6136 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6137 { 6138 struct vcpu_vmx *vmx = to_vmx(vcpu); 6139 u64 *pml_buf; 6140 u16 pml_idx; 6141 6142 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6143 6144 /* Do nothing if PML buffer is empty */ 6145 if (pml_idx == (PML_ENTITY_NUM - 1)) 6146 return; 6147 6148 /* PML index always points to next available PML buffer entity */ 6149 if (pml_idx >= PML_ENTITY_NUM) 6150 pml_idx = 0; 6151 else 6152 pml_idx++; 6153 6154 pml_buf = page_address(vmx->pml_pg); 6155 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6156 u64 gpa; 6157 6158 gpa = pml_buf[pml_idx]; 6159 WARN_ON(gpa & (PAGE_SIZE - 1)); 6160 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6161 } 6162 6163 /* reset PML index */ 6164 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6165 } 6166 6167 static void vmx_dump_sel(char *name, uint32_t sel) 6168 { 6169 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6170 name, vmcs_read16(sel), 6171 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6172 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6173 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6174 } 6175 6176 static void vmx_dump_dtsel(char *name, uint32_t limit) 6177 { 6178 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6179 name, vmcs_read32(limit), 6180 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6181 } 6182 6183 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6184 { 6185 unsigned int i; 6186 struct vmx_msr_entry *e; 6187 6188 pr_err("MSR %s:\n", name); 6189 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6190 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6191 } 6192 6193 void dump_vmcs(struct kvm_vcpu *vcpu) 6194 { 6195 struct vcpu_vmx *vmx = to_vmx(vcpu); 6196 u32 vmentry_ctl, vmexit_ctl; 6197 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6198 u64 tertiary_exec_control; 6199 unsigned long cr4; 6200 int efer_slot; 6201 6202 if (!dump_invalid_vmcs) { 6203 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6204 return; 6205 } 6206 6207 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6208 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6209 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6210 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6211 cr4 = vmcs_readl(GUEST_CR4); 6212 6213 if (cpu_has_secondary_exec_ctrls()) 6214 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6215 else 6216 secondary_exec_control = 0; 6217 6218 if (cpu_has_tertiary_exec_ctrls()) 6219 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6220 else 6221 tertiary_exec_control = 0; 6222 6223 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6224 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6225 pr_err("*** Guest State ***\n"); 6226 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6227 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6228 vmcs_readl(CR0_GUEST_HOST_MASK)); 6229 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6230 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6231 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6232 if (cpu_has_vmx_ept()) { 6233 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6234 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6235 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6236 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6237 } 6238 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6239 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6240 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6241 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6242 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6243 vmcs_readl(GUEST_SYSENTER_ESP), 6244 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6245 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6246 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6247 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6248 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6249 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6250 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6251 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6252 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6253 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6254 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6255 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6256 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6257 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6258 else if (efer_slot >= 0) 6259 pr_err("EFER= 0x%016llx (autoload)\n", 6260 vmx->msr_autoload.guest.val[efer_slot].value); 6261 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6262 pr_err("EFER= 0x%016llx (effective)\n", 6263 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6264 else 6265 pr_err("EFER= 0x%016llx (effective)\n", 6266 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6267 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6268 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6269 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6270 vmcs_read64(GUEST_IA32_DEBUGCTL), 6271 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6272 if (cpu_has_load_perf_global_ctrl() && 6273 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6274 pr_err("PerfGlobCtl = 0x%016llx\n", 6275 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6276 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6277 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6278 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6279 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6280 vmcs_read32(GUEST_ACTIVITY_STATE)); 6281 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6282 pr_err("InterruptStatus = %04x\n", 6283 vmcs_read16(GUEST_INTR_STATUS)); 6284 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6285 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6286 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6287 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6288 6289 pr_err("*** Host State ***\n"); 6290 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6291 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6292 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6293 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6294 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6295 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6296 vmcs_read16(HOST_TR_SELECTOR)); 6297 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6298 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6299 vmcs_readl(HOST_TR_BASE)); 6300 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6301 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6302 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6303 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6304 vmcs_readl(HOST_CR4)); 6305 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6306 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6307 vmcs_read32(HOST_IA32_SYSENTER_CS), 6308 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6309 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6310 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6311 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6312 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6313 if (cpu_has_load_perf_global_ctrl() && 6314 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6315 pr_err("PerfGlobCtl = 0x%016llx\n", 6316 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6317 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6318 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6319 6320 pr_err("*** Control State ***\n"); 6321 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6322 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6323 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6324 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6325 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6326 vmcs_read32(EXCEPTION_BITMAP), 6327 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6328 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6329 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6330 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6331 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6332 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6333 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6334 vmcs_read32(VM_EXIT_INTR_INFO), 6335 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6336 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6337 pr_err(" reason=%08x qualification=%016lx\n", 6338 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6339 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6340 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6341 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6342 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6343 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6344 pr_err("TSC Multiplier = 0x%016llx\n", 6345 vmcs_read64(TSC_MULTIPLIER)); 6346 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6347 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6348 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6349 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6350 } 6351 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6352 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6353 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6354 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6355 } 6356 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6357 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6358 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6359 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6360 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6361 pr_err("PLE Gap=%08x Window=%08x\n", 6362 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6363 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6364 pr_err("Virtual processor ID = 0x%04x\n", 6365 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6366 } 6367 6368 /* 6369 * The guest has exited. See if we can fix it or if we need userspace 6370 * assistance. 6371 */ 6372 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6373 { 6374 struct vcpu_vmx *vmx = to_vmx(vcpu); 6375 union vmx_exit_reason exit_reason = vmx->exit_reason; 6376 u32 vectoring_info = vmx->idt_vectoring_info; 6377 u16 exit_handler_index; 6378 6379 /* 6380 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6381 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6382 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6383 * mode as if vcpus is in root mode, the PML buffer must has been 6384 * flushed already. Note, PML is never enabled in hardware while 6385 * running L2. 6386 */ 6387 if (enable_pml && !is_guest_mode(vcpu)) 6388 vmx_flush_pml_buffer(vcpu); 6389 6390 /* 6391 * KVM should never reach this point with a pending nested VM-Enter. 6392 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6393 * invalid guest state should never happen as that means KVM knowingly 6394 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6395 */ 6396 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6397 return -EIO; 6398 6399 if (is_guest_mode(vcpu)) { 6400 /* 6401 * PML is never enabled when running L2, bail immediately if a 6402 * PML full exit occurs as something is horribly wrong. 6403 */ 6404 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6405 goto unexpected_vmexit; 6406 6407 /* 6408 * The host physical addresses of some pages of guest memory 6409 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6410 * Page). The CPU may write to these pages via their host 6411 * physical address while L2 is running, bypassing any 6412 * address-translation-based dirty tracking (e.g. EPT write 6413 * protection). 6414 * 6415 * Mark them dirty on every exit from L2 to prevent them from 6416 * getting out of sync with dirty tracking. 6417 */ 6418 nested_mark_vmcs12_pages_dirty(vcpu); 6419 6420 /* 6421 * Synthesize a triple fault if L2 state is invalid. In normal 6422 * operation, nested VM-Enter rejects any attempt to enter L2 6423 * with invalid state. However, those checks are skipped if 6424 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6425 * L2 state is invalid, it means either L1 modified SMRAM state 6426 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6427 * doing so is architecturally allowed in the RSM case, and is 6428 * the least awful solution for the userspace case without 6429 * risking false positives. 6430 */ 6431 if (vmx->emulation_required) { 6432 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6433 return 1; 6434 } 6435 6436 if (nested_vmx_reflect_vmexit(vcpu)) 6437 return 1; 6438 } 6439 6440 /* If guest state is invalid, start emulating. L2 is handled above. */ 6441 if (vmx->emulation_required) 6442 return handle_invalid_guest_state(vcpu); 6443 6444 if (exit_reason.failed_vmentry) { 6445 dump_vmcs(vcpu); 6446 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6447 vcpu->run->fail_entry.hardware_entry_failure_reason 6448 = exit_reason.full; 6449 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6450 return 0; 6451 } 6452 6453 if (unlikely(vmx->fail)) { 6454 dump_vmcs(vcpu); 6455 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6456 vcpu->run->fail_entry.hardware_entry_failure_reason 6457 = vmcs_read32(VM_INSTRUCTION_ERROR); 6458 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6459 return 0; 6460 } 6461 6462 /* 6463 * Note: 6464 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6465 * delivery event since it indicates guest is accessing MMIO. 6466 * The vm-exit can be triggered again after return to guest that 6467 * will cause infinite loop. 6468 */ 6469 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6470 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6471 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6472 exit_reason.basic != EXIT_REASON_PML_FULL && 6473 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6474 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6475 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6476 int ndata = 3; 6477 6478 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6479 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6480 vcpu->run->internal.data[0] = vectoring_info; 6481 vcpu->run->internal.data[1] = exit_reason.full; 6482 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6483 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6484 vcpu->run->internal.data[ndata++] = 6485 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6486 } 6487 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6488 vcpu->run->internal.ndata = ndata; 6489 return 0; 6490 } 6491 6492 if (unlikely(!enable_vnmi && 6493 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6494 if (!vmx_interrupt_blocked(vcpu)) { 6495 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6496 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6497 vcpu->arch.nmi_pending) { 6498 /* 6499 * This CPU don't support us in finding the end of an 6500 * NMI-blocked window if the guest runs with IRQs 6501 * disabled. So we pull the trigger after 1 s of 6502 * futile waiting, but inform the user about this. 6503 */ 6504 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6505 "state on VCPU %d after 1 s timeout\n", 6506 __func__, vcpu->vcpu_id); 6507 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6508 } 6509 } 6510 6511 if (exit_fastpath != EXIT_FASTPATH_NONE) 6512 return 1; 6513 6514 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6515 goto unexpected_vmexit; 6516 #ifdef CONFIG_RETPOLINE 6517 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6518 return kvm_emulate_wrmsr(vcpu); 6519 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6520 return handle_preemption_timer(vcpu); 6521 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6522 return handle_interrupt_window(vcpu); 6523 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6524 return handle_external_interrupt(vcpu); 6525 else if (exit_reason.basic == EXIT_REASON_HLT) 6526 return kvm_emulate_halt(vcpu); 6527 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6528 return handle_ept_misconfig(vcpu); 6529 #endif 6530 6531 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6532 kvm_vmx_max_exit_handlers); 6533 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6534 goto unexpected_vmexit; 6535 6536 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6537 6538 unexpected_vmexit: 6539 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6540 exit_reason.full); 6541 dump_vmcs(vcpu); 6542 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6543 vcpu->run->internal.suberror = 6544 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6545 vcpu->run->internal.ndata = 2; 6546 vcpu->run->internal.data[0] = exit_reason.full; 6547 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6548 return 0; 6549 } 6550 6551 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6552 { 6553 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6554 6555 /* 6556 * Exit to user space when bus lock detected to inform that there is 6557 * a bus lock in guest. 6558 */ 6559 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6560 if (ret > 0) 6561 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6562 6563 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6564 return 0; 6565 } 6566 return ret; 6567 } 6568 6569 /* 6570 * Software based L1D cache flush which is used when microcode providing 6571 * the cache control MSR is not loaded. 6572 * 6573 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6574 * flush it is required to read in 64 KiB because the replacement algorithm 6575 * is not exactly LRU. This could be sized at runtime via topology 6576 * information but as all relevant affected CPUs have 32KiB L1D cache size 6577 * there is no point in doing so. 6578 */ 6579 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6580 { 6581 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6582 6583 /* 6584 * This code is only executed when the flush mode is 'cond' or 6585 * 'always' 6586 */ 6587 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6588 bool flush_l1d; 6589 6590 /* 6591 * Clear the per-vcpu flush bit, it gets set again 6592 * either from vcpu_run() or from one of the unsafe 6593 * VMEXIT handlers. 6594 */ 6595 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6596 vcpu->arch.l1tf_flush_l1d = false; 6597 6598 /* 6599 * Clear the per-cpu flush bit, it gets set again from 6600 * the interrupt handlers. 6601 */ 6602 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6603 kvm_clear_cpu_l1tf_flush_l1d(); 6604 6605 if (!flush_l1d) 6606 return; 6607 } 6608 6609 vcpu->stat.l1d_flush++; 6610 6611 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6612 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6613 return; 6614 } 6615 6616 asm volatile( 6617 /* First ensure the pages are in the TLB */ 6618 "xorl %%eax, %%eax\n" 6619 ".Lpopulate_tlb:\n\t" 6620 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6621 "addl $4096, %%eax\n\t" 6622 "cmpl %%eax, %[size]\n\t" 6623 "jne .Lpopulate_tlb\n\t" 6624 "xorl %%eax, %%eax\n\t" 6625 "cpuid\n\t" 6626 /* Now fill the cache */ 6627 "xorl %%eax, %%eax\n" 6628 ".Lfill_cache:\n" 6629 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6630 "addl $64, %%eax\n\t" 6631 "cmpl %%eax, %[size]\n\t" 6632 "jne .Lfill_cache\n\t" 6633 "lfence\n" 6634 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6635 [size] "r" (size) 6636 : "eax", "ebx", "ecx", "edx"); 6637 } 6638 6639 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6640 { 6641 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6642 int tpr_threshold; 6643 6644 if (is_guest_mode(vcpu) && 6645 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6646 return; 6647 6648 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6649 if (is_guest_mode(vcpu)) 6650 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6651 else 6652 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6653 } 6654 6655 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6656 { 6657 struct vcpu_vmx *vmx = to_vmx(vcpu); 6658 u32 sec_exec_control; 6659 6660 if (!lapic_in_kernel(vcpu)) 6661 return; 6662 6663 if (!flexpriority_enabled && 6664 !cpu_has_vmx_virtualize_x2apic_mode()) 6665 return; 6666 6667 /* Postpone execution until vmcs01 is the current VMCS. */ 6668 if (is_guest_mode(vcpu)) { 6669 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6670 return; 6671 } 6672 6673 sec_exec_control = secondary_exec_controls_get(vmx); 6674 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6675 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6676 6677 switch (kvm_get_apic_mode(vcpu)) { 6678 case LAPIC_MODE_INVALID: 6679 WARN_ONCE(true, "Invalid local APIC state"); 6680 break; 6681 case LAPIC_MODE_DISABLED: 6682 break; 6683 case LAPIC_MODE_XAPIC: 6684 if (flexpriority_enabled) { 6685 sec_exec_control |= 6686 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6687 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6688 6689 /* 6690 * Flush the TLB, reloading the APIC access page will 6691 * only do so if its physical address has changed, but 6692 * the guest may have inserted a non-APIC mapping into 6693 * the TLB while the APIC access page was disabled. 6694 */ 6695 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6696 } 6697 break; 6698 case LAPIC_MODE_X2APIC: 6699 if (cpu_has_vmx_virtualize_x2apic_mode()) 6700 sec_exec_control |= 6701 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6702 break; 6703 } 6704 secondary_exec_controls_set(vmx, sec_exec_control); 6705 6706 vmx_update_msr_bitmap_x2apic(vcpu); 6707 } 6708 6709 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6710 { 6711 struct page *page; 6712 6713 /* Defer reload until vmcs01 is the current VMCS. */ 6714 if (is_guest_mode(vcpu)) { 6715 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6716 return; 6717 } 6718 6719 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6720 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6721 return; 6722 6723 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6724 if (is_error_page(page)) 6725 return; 6726 6727 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6728 vmx_flush_tlb_current(vcpu); 6729 6730 /* 6731 * Do not pin apic access page in memory, the MMU notifier 6732 * will call us again if it is migrated or swapped out. 6733 */ 6734 put_page(page); 6735 } 6736 6737 static void vmx_hwapic_isr_update(int max_isr) 6738 { 6739 u16 status; 6740 u8 old; 6741 6742 if (max_isr == -1) 6743 max_isr = 0; 6744 6745 status = vmcs_read16(GUEST_INTR_STATUS); 6746 old = status >> 8; 6747 if (max_isr != old) { 6748 status &= 0xff; 6749 status |= max_isr << 8; 6750 vmcs_write16(GUEST_INTR_STATUS, status); 6751 } 6752 } 6753 6754 static void vmx_set_rvi(int vector) 6755 { 6756 u16 status; 6757 u8 old; 6758 6759 if (vector == -1) 6760 vector = 0; 6761 6762 status = vmcs_read16(GUEST_INTR_STATUS); 6763 old = (u8)status & 0xff; 6764 if ((u8)vector != old) { 6765 status &= ~0xff; 6766 status |= (u8)vector; 6767 vmcs_write16(GUEST_INTR_STATUS, status); 6768 } 6769 } 6770 6771 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6772 { 6773 /* 6774 * When running L2, updating RVI is only relevant when 6775 * vmcs12 virtual-interrupt-delivery enabled. 6776 * However, it can be enabled only when L1 also 6777 * intercepts external-interrupts and in that case 6778 * we should not update vmcs02 RVI but instead intercept 6779 * interrupt. Therefore, do nothing when running L2. 6780 */ 6781 if (!is_guest_mode(vcpu)) 6782 vmx_set_rvi(max_irr); 6783 } 6784 6785 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6786 { 6787 struct vcpu_vmx *vmx = to_vmx(vcpu); 6788 int max_irr; 6789 bool got_posted_interrupt; 6790 6791 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6792 return -EIO; 6793 6794 if (pi_test_on(&vmx->pi_desc)) { 6795 pi_clear_on(&vmx->pi_desc); 6796 /* 6797 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6798 * But on x86 this is just a compiler barrier anyway. 6799 */ 6800 smp_mb__after_atomic(); 6801 got_posted_interrupt = 6802 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6803 } else { 6804 max_irr = kvm_lapic_find_highest_irr(vcpu); 6805 got_posted_interrupt = false; 6806 } 6807 6808 /* 6809 * Newly recognized interrupts are injected via either virtual interrupt 6810 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6811 * disabled in two cases: 6812 * 6813 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6814 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6815 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6816 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6817 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6818 * 6819 * 2) If APICv is disabled for this vCPU, assigned devices may still 6820 * attempt to post interrupts. The posted interrupt vector will cause 6821 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6822 */ 6823 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6824 vmx_set_rvi(max_irr); 6825 else if (got_posted_interrupt) 6826 kvm_make_request(KVM_REQ_EVENT, vcpu); 6827 6828 return max_irr; 6829 } 6830 6831 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6832 { 6833 if (!kvm_vcpu_apicv_active(vcpu)) 6834 return; 6835 6836 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6837 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6838 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6839 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6840 } 6841 6842 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6843 { 6844 struct vcpu_vmx *vmx = to_vmx(vcpu); 6845 6846 pi_clear_on(&vmx->pi_desc); 6847 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6848 } 6849 6850 void vmx_do_interrupt_irqoff(unsigned long entry); 6851 void vmx_do_nmi_irqoff(void); 6852 6853 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6854 { 6855 /* 6856 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6857 * MSR value is not clobbered by the host activity before the guest 6858 * has chance to consume it. 6859 * 6860 * Do not blindly read xfd_err here, since this exception might 6861 * be caused by L1 interception on a platform which doesn't 6862 * support xfd at all. 6863 * 6864 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6865 * only when xfd contains a non-zero value. 6866 * 6867 * Queuing exception is done in vmx_handle_exit. See comment there. 6868 */ 6869 if (vcpu->arch.guest_fpu.fpstate->xfd) 6870 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6871 } 6872 6873 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6874 { 6875 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6876 6877 /* if exit due to PF check for async PF */ 6878 if (is_page_fault(intr_info)) 6879 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6880 /* if exit due to NM, handle before interrupts are enabled */ 6881 else if (is_nm_fault(intr_info)) 6882 handle_nm_fault_irqoff(&vmx->vcpu); 6883 /* Handle machine checks before interrupts are enabled */ 6884 else if (is_machine_check(intr_info)) 6885 kvm_machine_check(); 6886 } 6887 6888 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6889 { 6890 u32 intr_info = vmx_get_intr_info(vcpu); 6891 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6892 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6893 6894 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6895 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6896 return; 6897 6898 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6899 vmx_do_interrupt_irqoff(gate_offset(desc)); 6900 kvm_after_interrupt(vcpu); 6901 6902 vcpu->arch.at_instruction_boundary = true; 6903 } 6904 6905 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6906 { 6907 struct vcpu_vmx *vmx = to_vmx(vcpu); 6908 6909 if (vmx->emulation_required) 6910 return; 6911 6912 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6913 handle_external_interrupt_irqoff(vcpu); 6914 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6915 handle_exception_irqoff(vmx); 6916 } 6917 6918 /* 6919 * The kvm parameter can be NULL (module initialization, or invocation before 6920 * VM creation). Be sure to check the kvm parameter before using it. 6921 */ 6922 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6923 { 6924 switch (index) { 6925 case MSR_IA32_SMBASE: 6926 if (!IS_ENABLED(CONFIG_KVM_SMM)) 6927 return false; 6928 /* 6929 * We cannot do SMM unless we can run the guest in big 6930 * real mode. 6931 */ 6932 return enable_unrestricted_guest || emulate_invalid_guest_state; 6933 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 6934 return nested; 6935 case MSR_AMD64_VIRT_SPEC_CTRL: 6936 case MSR_AMD64_TSC_RATIO: 6937 /* This is AMD only. */ 6938 return false; 6939 default: 6940 return true; 6941 } 6942 } 6943 6944 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6945 { 6946 u32 exit_intr_info; 6947 bool unblock_nmi; 6948 u8 vector; 6949 bool idtv_info_valid; 6950 6951 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6952 6953 if (enable_vnmi) { 6954 if (vmx->loaded_vmcs->nmi_known_unmasked) 6955 return; 6956 6957 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6958 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6959 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6960 /* 6961 * SDM 3: 27.7.1.2 (September 2008) 6962 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6963 * a guest IRET fault. 6964 * SDM 3: 23.2.2 (September 2008) 6965 * Bit 12 is undefined in any of the following cases: 6966 * If the VM exit sets the valid bit in the IDT-vectoring 6967 * information field. 6968 * If the VM exit is due to a double fault. 6969 */ 6970 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6971 vector != DF_VECTOR && !idtv_info_valid) 6972 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6973 GUEST_INTR_STATE_NMI); 6974 else 6975 vmx->loaded_vmcs->nmi_known_unmasked = 6976 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6977 & GUEST_INTR_STATE_NMI); 6978 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6979 vmx->loaded_vmcs->vnmi_blocked_time += 6980 ktime_to_ns(ktime_sub(ktime_get(), 6981 vmx->loaded_vmcs->entry_time)); 6982 } 6983 6984 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6985 u32 idt_vectoring_info, 6986 int instr_len_field, 6987 int error_code_field) 6988 { 6989 u8 vector; 6990 int type; 6991 bool idtv_info_valid; 6992 6993 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6994 6995 vcpu->arch.nmi_injected = false; 6996 kvm_clear_exception_queue(vcpu); 6997 kvm_clear_interrupt_queue(vcpu); 6998 6999 if (!idtv_info_valid) 7000 return; 7001 7002 kvm_make_request(KVM_REQ_EVENT, vcpu); 7003 7004 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7005 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7006 7007 switch (type) { 7008 case INTR_TYPE_NMI_INTR: 7009 vcpu->arch.nmi_injected = true; 7010 /* 7011 * SDM 3: 27.7.1.2 (September 2008) 7012 * Clear bit "block by NMI" before VM entry if a NMI 7013 * delivery faulted. 7014 */ 7015 vmx_set_nmi_mask(vcpu, false); 7016 break; 7017 case INTR_TYPE_SOFT_EXCEPTION: 7018 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7019 fallthrough; 7020 case INTR_TYPE_HARD_EXCEPTION: 7021 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7022 u32 err = vmcs_read32(error_code_field); 7023 kvm_requeue_exception_e(vcpu, vector, err); 7024 } else 7025 kvm_requeue_exception(vcpu, vector); 7026 break; 7027 case INTR_TYPE_SOFT_INTR: 7028 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7029 fallthrough; 7030 case INTR_TYPE_EXT_INTR: 7031 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7032 break; 7033 default: 7034 break; 7035 } 7036 } 7037 7038 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7039 { 7040 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7041 VM_EXIT_INSTRUCTION_LEN, 7042 IDT_VECTORING_ERROR_CODE); 7043 } 7044 7045 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7046 { 7047 __vmx_complete_interrupts(vcpu, 7048 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7049 VM_ENTRY_INSTRUCTION_LEN, 7050 VM_ENTRY_EXCEPTION_ERROR_CODE); 7051 7052 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7053 } 7054 7055 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7056 { 7057 int i, nr_msrs; 7058 struct perf_guest_switch_msr *msrs; 7059 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7060 7061 pmu->host_cross_mapped_mask = 0; 7062 if (pmu->pebs_enable & pmu->global_ctrl) 7063 intel_pmu_cross_mapped_check(pmu); 7064 7065 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7066 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7067 if (!msrs) 7068 return; 7069 7070 for (i = 0; i < nr_msrs; i++) 7071 if (msrs[i].host == msrs[i].guest) 7072 clear_atomic_switch_msr(vmx, msrs[i].msr); 7073 else 7074 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7075 msrs[i].host, false); 7076 } 7077 7078 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7079 { 7080 struct vcpu_vmx *vmx = to_vmx(vcpu); 7081 u64 tscl; 7082 u32 delta_tsc; 7083 7084 if (vmx->req_immediate_exit) { 7085 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7086 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7087 } else if (vmx->hv_deadline_tsc != -1) { 7088 tscl = rdtsc(); 7089 if (vmx->hv_deadline_tsc > tscl) 7090 /* set_hv_timer ensures the delta fits in 32-bits */ 7091 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7092 cpu_preemption_timer_multi); 7093 else 7094 delta_tsc = 0; 7095 7096 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7097 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7098 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7099 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7100 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7101 } 7102 } 7103 7104 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7105 { 7106 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7107 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7108 vmcs_writel(HOST_RSP, host_rsp); 7109 } 7110 } 7111 7112 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7113 unsigned int flags) 7114 { 7115 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7116 7117 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7118 return; 7119 7120 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7121 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7122 7123 /* 7124 * If the guest/host SPEC_CTRL values differ, restore the host value. 7125 * 7126 * For legacy IBRS, the IBRS bit always needs to be written after 7127 * transitioning from a less privileged predictor mode, regardless of 7128 * whether the guest/host values differ. 7129 */ 7130 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7131 vmx->spec_ctrl != hostval) 7132 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7133 7134 barrier_nospec(); 7135 } 7136 7137 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7138 { 7139 switch (to_vmx(vcpu)->exit_reason.basic) { 7140 case EXIT_REASON_MSR_WRITE: 7141 return handle_fastpath_set_msr_irqoff(vcpu); 7142 case EXIT_REASON_PREEMPTION_TIMER: 7143 return handle_fastpath_preemption_timer(vcpu); 7144 default: 7145 return EXIT_FASTPATH_NONE; 7146 } 7147 } 7148 7149 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7150 unsigned int flags) 7151 { 7152 struct vcpu_vmx *vmx = to_vmx(vcpu); 7153 7154 guest_state_enter_irqoff(); 7155 7156 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 7157 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7158 vmx_l1d_flush(vcpu); 7159 else if (static_branch_unlikely(&mds_user_clear)) 7160 mds_clear_cpu_buffers(); 7161 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7162 kvm_arch_has_assigned_device(vcpu->kvm)) 7163 mds_clear_cpu_buffers(); 7164 7165 vmx_disable_fb_clear(vmx); 7166 7167 if (vcpu->arch.cr2 != native_read_cr2()) 7168 native_write_cr2(vcpu->arch.cr2); 7169 7170 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7171 flags); 7172 7173 vcpu->arch.cr2 = native_read_cr2(); 7174 7175 vmx_enable_fb_clear(vmx); 7176 7177 if (unlikely(vmx->fail)) 7178 vmx->exit_reason.full = 0xdead; 7179 else 7180 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7181 7182 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7183 is_nmi(vmx_get_intr_info(vcpu))) { 7184 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7185 vmx_do_nmi_irqoff(); 7186 kvm_after_interrupt(vcpu); 7187 } 7188 7189 guest_state_exit_irqoff(); 7190 } 7191 7192 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7193 { 7194 struct vcpu_vmx *vmx = to_vmx(vcpu); 7195 unsigned long cr3, cr4; 7196 7197 /* Record the guest's net vcpu time for enforced NMI injections. */ 7198 if (unlikely(!enable_vnmi && 7199 vmx->loaded_vmcs->soft_vnmi_blocked)) 7200 vmx->loaded_vmcs->entry_time = ktime_get(); 7201 7202 /* 7203 * Don't enter VMX if guest state is invalid, let the exit handler 7204 * start emulation until we arrive back to a valid state. Synthesize a 7205 * consistency check VM-Exit due to invalid guest state and bail. 7206 */ 7207 if (unlikely(vmx->emulation_required)) { 7208 vmx->fail = 0; 7209 7210 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7211 vmx->exit_reason.failed_vmentry = 1; 7212 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7213 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7214 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7215 vmx->exit_intr_info = 0; 7216 return EXIT_FASTPATH_NONE; 7217 } 7218 7219 trace_kvm_entry(vcpu); 7220 7221 if (vmx->ple_window_dirty) { 7222 vmx->ple_window_dirty = false; 7223 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7224 } 7225 7226 /* 7227 * We did this in prepare_switch_to_guest, because it needs to 7228 * be within srcu_read_lock. 7229 */ 7230 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7231 7232 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7233 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7234 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7235 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7236 vcpu->arch.regs_dirty = 0; 7237 7238 /* 7239 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7240 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7241 * it switches back to the current->mm, which can occur in KVM context 7242 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7243 * toggles a static key while handling a VM-Exit. 7244 */ 7245 cr3 = __get_current_cr3_fast(); 7246 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7247 vmcs_writel(HOST_CR3, cr3); 7248 vmx->loaded_vmcs->host_state.cr3 = cr3; 7249 } 7250 7251 cr4 = cr4_read_shadow(); 7252 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7253 vmcs_writel(HOST_CR4, cr4); 7254 vmx->loaded_vmcs->host_state.cr4 = cr4; 7255 } 7256 7257 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7258 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7259 set_debugreg(vcpu->arch.dr6, 6); 7260 7261 /* When single-stepping over STI and MOV SS, we must clear the 7262 * corresponding interruptibility bits in the guest state. Otherwise 7263 * vmentry fails as it then expects bit 14 (BS) in pending debug 7264 * exceptions being set, but that's not correct for the guest debugging 7265 * case. */ 7266 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7267 vmx_set_interrupt_shadow(vcpu, 0); 7268 7269 kvm_load_guest_xsave_state(vcpu); 7270 7271 pt_guest_enter(vmx); 7272 7273 atomic_switch_perf_msrs(vmx); 7274 if (intel_pmu_lbr_is_enabled(vcpu)) 7275 vmx_passthrough_lbr_msrs(vcpu); 7276 7277 if (enable_preemption_timer) 7278 vmx_update_hv_timer(vcpu); 7279 7280 kvm_wait_lapic_expire(vcpu); 7281 7282 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7283 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7284 7285 /* All fields are clean at this point */ 7286 if (kvm_is_using_evmcs()) { 7287 current_evmcs->hv_clean_fields |= 7288 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7289 7290 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7291 } 7292 7293 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7294 if (vmx->host_debugctlmsr) 7295 update_debugctlmsr(vmx->host_debugctlmsr); 7296 7297 #ifndef CONFIG_X86_64 7298 /* 7299 * The sysexit path does not restore ds/es, so we must set them to 7300 * a reasonable value ourselves. 7301 * 7302 * We can't defer this to vmx_prepare_switch_to_host() since that 7303 * function may be executed in interrupt context, which saves and 7304 * restore segments around it, nullifying its effect. 7305 */ 7306 loadsegment(ds, __USER_DS); 7307 loadsegment(es, __USER_DS); 7308 #endif 7309 7310 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7311 7312 pt_guest_exit(vmx); 7313 7314 kvm_load_host_xsave_state(vcpu); 7315 7316 if (is_guest_mode(vcpu)) { 7317 /* 7318 * Track VMLAUNCH/VMRESUME that have made past guest state 7319 * checking. 7320 */ 7321 if (vmx->nested.nested_run_pending && 7322 !vmx->exit_reason.failed_vmentry) 7323 ++vcpu->stat.nested_run; 7324 7325 vmx->nested.nested_run_pending = 0; 7326 } 7327 7328 vmx->idt_vectoring_info = 0; 7329 7330 if (unlikely(vmx->fail)) 7331 return EXIT_FASTPATH_NONE; 7332 7333 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7334 kvm_machine_check(); 7335 7336 if (likely(!vmx->exit_reason.failed_vmentry)) 7337 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7338 7339 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7340 7341 if (unlikely(vmx->exit_reason.failed_vmentry)) 7342 return EXIT_FASTPATH_NONE; 7343 7344 vmx->loaded_vmcs->launched = 1; 7345 7346 vmx_recover_nmi_blocking(vmx); 7347 vmx_complete_interrupts(vmx); 7348 7349 if (is_guest_mode(vcpu)) 7350 return EXIT_FASTPATH_NONE; 7351 7352 return vmx_exit_handlers_fastpath(vcpu); 7353 } 7354 7355 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7356 { 7357 struct vcpu_vmx *vmx = to_vmx(vcpu); 7358 7359 if (enable_pml) 7360 vmx_destroy_pml_buffer(vmx); 7361 free_vpid(vmx->vpid); 7362 nested_vmx_free_vcpu(vcpu); 7363 free_loaded_vmcs(vmx->loaded_vmcs); 7364 } 7365 7366 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7367 { 7368 struct vmx_uret_msr *tsx_ctrl; 7369 struct vcpu_vmx *vmx; 7370 int i, err; 7371 7372 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7373 vmx = to_vmx(vcpu); 7374 7375 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7376 7377 err = -ENOMEM; 7378 7379 vmx->vpid = allocate_vpid(); 7380 7381 /* 7382 * If PML is turned on, failure on enabling PML just results in failure 7383 * of creating the vcpu, therefore we can simplify PML logic (by 7384 * avoiding dealing with cases, such as enabling PML partially on vcpus 7385 * for the guest), etc. 7386 */ 7387 if (enable_pml) { 7388 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7389 if (!vmx->pml_pg) 7390 goto free_vpid; 7391 } 7392 7393 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7394 vmx->guest_uret_msrs[i].mask = -1ull; 7395 if (boot_cpu_has(X86_FEATURE_RTM)) { 7396 /* 7397 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7398 * Keep the host value unchanged to avoid changing CPUID bits 7399 * under the host kernel's feet. 7400 */ 7401 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7402 if (tsx_ctrl) 7403 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7404 } 7405 7406 err = alloc_loaded_vmcs(&vmx->vmcs01); 7407 if (err < 0) 7408 goto free_pml; 7409 7410 /* 7411 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7412 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7413 * feature only for vmcs01, KVM currently isn't equipped to realize any 7414 * performance benefits from enabling it for vmcs02. 7415 */ 7416 if (kvm_is_using_evmcs() && 7417 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7418 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7419 7420 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7421 } 7422 7423 /* The MSR bitmap starts with all ones */ 7424 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7425 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7426 7427 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7428 #ifdef CONFIG_X86_64 7429 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7430 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7431 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7432 #endif 7433 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7434 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7435 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7436 if (kvm_cstate_in_guest(vcpu->kvm)) { 7437 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7438 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7439 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7440 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7441 } 7442 7443 vmx->loaded_vmcs = &vmx->vmcs01; 7444 7445 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7446 err = kvm_alloc_apic_access_page(vcpu->kvm); 7447 if (err) 7448 goto free_vmcs; 7449 } 7450 7451 if (enable_ept && !enable_unrestricted_guest) { 7452 err = init_rmode_identity_map(vcpu->kvm); 7453 if (err) 7454 goto free_vmcs; 7455 } 7456 7457 if (vmx_can_use_ipiv(vcpu)) 7458 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7459 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7460 7461 return 0; 7462 7463 free_vmcs: 7464 free_loaded_vmcs(vmx->loaded_vmcs); 7465 free_pml: 7466 vmx_destroy_pml_buffer(vmx); 7467 free_vpid: 7468 free_vpid(vmx->vpid); 7469 return err; 7470 } 7471 7472 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7473 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7474 7475 static int vmx_vm_init(struct kvm *kvm) 7476 { 7477 if (!ple_gap) 7478 kvm->arch.pause_in_guest = true; 7479 7480 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7481 switch (l1tf_mitigation) { 7482 case L1TF_MITIGATION_OFF: 7483 case L1TF_MITIGATION_FLUSH_NOWARN: 7484 /* 'I explicitly don't care' is set */ 7485 break; 7486 case L1TF_MITIGATION_FLUSH: 7487 case L1TF_MITIGATION_FLUSH_NOSMT: 7488 case L1TF_MITIGATION_FULL: 7489 /* 7490 * Warn upon starting the first VM in a potentially 7491 * insecure environment. 7492 */ 7493 if (sched_smt_active()) 7494 pr_warn_once(L1TF_MSG_SMT); 7495 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7496 pr_warn_once(L1TF_MSG_L1D); 7497 break; 7498 case L1TF_MITIGATION_FULL_FORCE: 7499 /* Flush is enforced */ 7500 break; 7501 } 7502 } 7503 return 0; 7504 } 7505 7506 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7507 { 7508 u8 cache; 7509 7510 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7511 * memory aliases with conflicting memory types and sometimes MCEs. 7512 * We have to be careful as to what are honored and when. 7513 * 7514 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7515 * UC. The effective memory type is UC or WC depending on guest PAT. 7516 * This was historically the source of MCEs and we want to be 7517 * conservative. 7518 * 7519 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7520 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7521 * EPT memory type is set to WB. The effective memory type is forced 7522 * WB. 7523 * 7524 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7525 * EPT memory type is used to emulate guest CD/MTRR. 7526 */ 7527 7528 if (is_mmio) 7529 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7530 7531 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7532 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7533 7534 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7535 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7536 cache = MTRR_TYPE_WRBACK; 7537 else 7538 cache = MTRR_TYPE_UNCACHABLE; 7539 7540 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7541 } 7542 7543 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7544 } 7545 7546 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7547 { 7548 /* 7549 * These bits in the secondary execution controls field 7550 * are dynamic, the others are mostly based on the hypervisor 7551 * architecture and the guest's CPUID. Do not touch the 7552 * dynamic bits. 7553 */ 7554 u32 mask = 7555 SECONDARY_EXEC_SHADOW_VMCS | 7556 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7557 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7558 SECONDARY_EXEC_DESC; 7559 7560 u32 cur_ctl = secondary_exec_controls_get(vmx); 7561 7562 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7563 } 7564 7565 /* 7566 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7567 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7568 */ 7569 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7570 { 7571 struct vcpu_vmx *vmx = to_vmx(vcpu); 7572 struct kvm_cpuid_entry2 *entry; 7573 7574 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7575 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7576 7577 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7578 if (entry && (entry->_reg & (_cpuid_mask))) \ 7579 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7580 } while (0) 7581 7582 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7583 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7584 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7585 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7586 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7587 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7588 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7589 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7590 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7591 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7592 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7593 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7594 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7595 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7596 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7597 7598 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7599 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7600 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7601 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7602 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7603 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7604 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7605 7606 #undef cr4_fixed1_update 7607 } 7608 7609 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7610 { 7611 struct vcpu_vmx *vmx = to_vmx(vcpu); 7612 struct kvm_cpuid_entry2 *best = NULL; 7613 int i; 7614 7615 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7616 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7617 if (!best) 7618 return; 7619 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7620 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7621 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7622 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7623 } 7624 7625 /* Get the number of configurable Address Ranges for filtering */ 7626 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7627 PT_CAP_num_address_ranges); 7628 7629 /* Initialize and clear the no dependency bits */ 7630 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7631 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7632 RTIT_CTL_BRANCH_EN); 7633 7634 /* 7635 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7636 * will inject an #GP 7637 */ 7638 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7639 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7640 7641 /* 7642 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7643 * PSBFreq can be set 7644 */ 7645 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7646 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7647 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7648 7649 /* 7650 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7651 */ 7652 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7653 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7654 RTIT_CTL_MTC_RANGE); 7655 7656 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7657 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7658 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7659 RTIT_CTL_PTW_EN); 7660 7661 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7662 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7663 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7664 7665 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7666 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7667 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7668 7669 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7670 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7671 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7672 7673 /* unmask address range configure area */ 7674 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7675 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7676 } 7677 7678 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7679 { 7680 struct vcpu_vmx *vmx = to_vmx(vcpu); 7681 7682 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7683 vcpu->arch.xsaves_enabled = false; 7684 7685 vmx_setup_uret_msrs(vmx); 7686 7687 if (cpu_has_secondary_exec_ctrls()) 7688 vmcs_set_secondary_exec_control(vmx, 7689 vmx_secondary_exec_control(vmx)); 7690 7691 if (nested_vmx_allowed(vcpu)) 7692 vmx->msr_ia32_feature_control_valid_bits |= 7693 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7694 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7695 else 7696 vmx->msr_ia32_feature_control_valid_bits &= 7697 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7698 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7699 7700 if (nested_vmx_allowed(vcpu)) 7701 nested_vmx_cr_fixed1_bits_update(vcpu); 7702 7703 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7704 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7705 update_intel_pt_cfg(vcpu); 7706 7707 if (boot_cpu_has(X86_FEATURE_RTM)) { 7708 struct vmx_uret_msr *msr; 7709 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7710 if (msr) { 7711 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7712 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7713 } 7714 } 7715 7716 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7717 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7718 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7719 7720 if (boot_cpu_has(X86_FEATURE_IBPB)) 7721 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7722 !guest_has_pred_cmd_msr(vcpu)); 7723 7724 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7725 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7726 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7727 7728 set_cr4_guest_host_mask(vmx); 7729 7730 vmx_write_encls_bitmap(vcpu, NULL); 7731 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7732 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7733 else 7734 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7735 7736 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7737 vmx->msr_ia32_feature_control_valid_bits |= 7738 FEAT_CTL_SGX_LC_ENABLED; 7739 else 7740 vmx->msr_ia32_feature_control_valid_bits &= 7741 ~FEAT_CTL_SGX_LC_ENABLED; 7742 7743 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7744 vmx_update_exception_bitmap(vcpu); 7745 } 7746 7747 static u64 vmx_get_perf_capabilities(void) 7748 { 7749 u64 perf_cap = PMU_CAP_FW_WRITES; 7750 struct x86_pmu_lbr lbr; 7751 u64 host_perf_cap = 0; 7752 7753 if (!enable_pmu) 7754 return 0; 7755 7756 if (boot_cpu_has(X86_FEATURE_PDCM)) 7757 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7758 7759 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7760 x86_perf_get_lbr(&lbr); 7761 if (lbr.nr) 7762 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7763 } 7764 7765 if (vmx_pebs_supported()) { 7766 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7767 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4) 7768 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7769 } 7770 7771 return perf_cap; 7772 } 7773 7774 static __init void vmx_set_cpu_caps(void) 7775 { 7776 kvm_set_cpu_caps(); 7777 7778 /* CPUID 0x1 */ 7779 if (nested) 7780 kvm_cpu_cap_set(X86_FEATURE_VMX); 7781 7782 /* CPUID 0x7 */ 7783 if (kvm_mpx_supported()) 7784 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7785 if (!cpu_has_vmx_invpcid()) 7786 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7787 if (vmx_pt_mode_is_host_guest()) 7788 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7789 if (vmx_pebs_supported()) { 7790 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7791 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7792 } 7793 7794 if (!enable_pmu) 7795 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7796 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7797 7798 if (!enable_sgx) { 7799 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7800 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7801 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7802 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7803 } 7804 7805 if (vmx_umip_emulated()) 7806 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7807 7808 /* CPUID 0xD.1 */ 7809 kvm_caps.supported_xss = 0; 7810 if (!cpu_has_vmx_xsaves()) 7811 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7812 7813 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7814 if (!cpu_has_vmx_rdtscp()) { 7815 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7816 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7817 } 7818 7819 if (cpu_has_vmx_waitpkg()) 7820 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7821 } 7822 7823 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7824 { 7825 to_vmx(vcpu)->req_immediate_exit = true; 7826 } 7827 7828 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7829 struct x86_instruction_info *info) 7830 { 7831 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7832 unsigned short port; 7833 bool intercept; 7834 int size; 7835 7836 if (info->intercept == x86_intercept_in || 7837 info->intercept == x86_intercept_ins) { 7838 port = info->src_val; 7839 size = info->dst_bytes; 7840 } else { 7841 port = info->dst_val; 7842 size = info->src_bytes; 7843 } 7844 7845 /* 7846 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7847 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7848 * control. 7849 * 7850 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7851 */ 7852 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7853 intercept = nested_cpu_has(vmcs12, 7854 CPU_BASED_UNCOND_IO_EXITING); 7855 else 7856 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7857 7858 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7859 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7860 } 7861 7862 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7863 struct x86_instruction_info *info, 7864 enum x86_intercept_stage stage, 7865 struct x86_exception *exception) 7866 { 7867 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7868 7869 switch (info->intercept) { 7870 /* 7871 * RDPID causes #UD if disabled through secondary execution controls. 7872 * Because it is marked as EmulateOnUD, we need to intercept it here. 7873 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7874 */ 7875 case x86_intercept_rdpid: 7876 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7877 exception->vector = UD_VECTOR; 7878 exception->error_code_valid = false; 7879 return X86EMUL_PROPAGATE_FAULT; 7880 } 7881 break; 7882 7883 case x86_intercept_in: 7884 case x86_intercept_ins: 7885 case x86_intercept_out: 7886 case x86_intercept_outs: 7887 return vmx_check_intercept_io(vcpu, info); 7888 7889 case x86_intercept_lgdt: 7890 case x86_intercept_lidt: 7891 case x86_intercept_lldt: 7892 case x86_intercept_ltr: 7893 case x86_intercept_sgdt: 7894 case x86_intercept_sidt: 7895 case x86_intercept_sldt: 7896 case x86_intercept_str: 7897 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7898 return X86EMUL_CONTINUE; 7899 7900 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7901 break; 7902 7903 case x86_intercept_pause: 7904 /* 7905 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 7906 * with vanilla NOPs in the emulator. Apply the interception 7907 * check only to actual PAUSE instructions. Don't check 7908 * PAUSE-loop-exiting, software can't expect a given PAUSE to 7909 * exit, i.e. KVM is within its rights to allow L2 to execute 7910 * the PAUSE. 7911 */ 7912 if ((info->rep_prefix != REPE_PREFIX) || 7913 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 7914 return X86EMUL_CONTINUE; 7915 7916 break; 7917 7918 /* TODO: check more intercepts... */ 7919 default: 7920 break; 7921 } 7922 7923 return X86EMUL_UNHANDLEABLE; 7924 } 7925 7926 #ifdef CONFIG_X86_64 7927 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7928 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7929 u64 divisor, u64 *result) 7930 { 7931 u64 low = a << shift, high = a >> (64 - shift); 7932 7933 /* To avoid the overflow on divq */ 7934 if (high >= divisor) 7935 return 1; 7936 7937 /* Low hold the result, high hold rem which is discarded */ 7938 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7939 "rm" (divisor), "0" (low), "1" (high)); 7940 *result = low; 7941 7942 return 0; 7943 } 7944 7945 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7946 bool *expired) 7947 { 7948 struct vcpu_vmx *vmx; 7949 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7950 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7951 7952 vmx = to_vmx(vcpu); 7953 tscl = rdtsc(); 7954 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7955 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7956 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7957 ktimer->timer_advance_ns); 7958 7959 if (delta_tsc > lapic_timer_advance_cycles) 7960 delta_tsc -= lapic_timer_advance_cycles; 7961 else 7962 delta_tsc = 0; 7963 7964 /* Convert to host delta tsc if tsc scaling is enabled */ 7965 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 7966 delta_tsc && u64_shl_div_u64(delta_tsc, 7967 kvm_caps.tsc_scaling_ratio_frac_bits, 7968 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7969 return -ERANGE; 7970 7971 /* 7972 * If the delta tsc can't fit in the 32 bit after the multi shift, 7973 * we can't use the preemption timer. 7974 * It's possible that it fits on later vmentries, but checking 7975 * on every vmentry is costly so we just use an hrtimer. 7976 */ 7977 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7978 return -ERANGE; 7979 7980 vmx->hv_deadline_tsc = tscl + delta_tsc; 7981 *expired = !delta_tsc; 7982 return 0; 7983 } 7984 7985 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7986 { 7987 to_vmx(vcpu)->hv_deadline_tsc = -1; 7988 } 7989 #endif 7990 7991 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7992 { 7993 if (!kvm_pause_in_guest(vcpu->kvm)) 7994 shrink_ple_window(vcpu); 7995 } 7996 7997 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7998 { 7999 struct vcpu_vmx *vmx = to_vmx(vcpu); 8000 8001 if (WARN_ON_ONCE(!enable_pml)) 8002 return; 8003 8004 if (is_guest_mode(vcpu)) { 8005 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8006 return; 8007 } 8008 8009 /* 8010 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8011 * code, but in that case another update request will be made and so 8012 * the guest will never run with a stale PML value. 8013 */ 8014 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8015 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8016 else 8017 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8018 } 8019 8020 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8021 { 8022 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8023 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8024 FEAT_CTL_LMCE_ENABLED; 8025 else 8026 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8027 ~FEAT_CTL_LMCE_ENABLED; 8028 } 8029 8030 #ifdef CONFIG_KVM_SMM 8031 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8032 { 8033 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8034 if (to_vmx(vcpu)->nested.nested_run_pending) 8035 return -EBUSY; 8036 return !is_smm(vcpu); 8037 } 8038 8039 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8040 { 8041 struct vcpu_vmx *vmx = to_vmx(vcpu); 8042 8043 /* 8044 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8045 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8046 * SMI and RSM only modify state that is saved and restored via SMRAM. 8047 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8048 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8049 */ 8050 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8051 if (vmx->nested.smm.guest_mode) 8052 nested_vmx_vmexit(vcpu, -1, 0, 0); 8053 8054 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8055 vmx->nested.vmxon = false; 8056 vmx_clear_hlt(vcpu); 8057 return 0; 8058 } 8059 8060 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8061 { 8062 struct vcpu_vmx *vmx = to_vmx(vcpu); 8063 int ret; 8064 8065 if (vmx->nested.smm.vmxon) { 8066 vmx->nested.vmxon = true; 8067 vmx->nested.smm.vmxon = false; 8068 } 8069 8070 if (vmx->nested.smm.guest_mode) { 8071 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8072 if (ret) 8073 return ret; 8074 8075 vmx->nested.nested_run_pending = 1; 8076 vmx->nested.smm.guest_mode = false; 8077 } 8078 return 0; 8079 } 8080 8081 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8082 { 8083 /* RSM will cause a vmexit anyway. */ 8084 } 8085 #endif 8086 8087 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8088 { 8089 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8090 } 8091 8092 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8093 { 8094 if (is_guest_mode(vcpu)) { 8095 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8096 8097 if (hrtimer_try_to_cancel(timer) == 1) 8098 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8099 } 8100 } 8101 8102 static void vmx_hardware_unsetup(void) 8103 { 8104 kvm_set_posted_intr_wakeup_handler(NULL); 8105 8106 if (nested) 8107 nested_vmx_hardware_unsetup(); 8108 8109 free_kvm_area(); 8110 } 8111 8112 #define VMX_REQUIRED_APICV_INHIBITS \ 8113 ( \ 8114 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8115 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8116 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8117 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8118 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8119 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8120 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8121 ) 8122 8123 static void vmx_vm_destroy(struct kvm *kvm) 8124 { 8125 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8126 8127 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8128 } 8129 8130 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8131 .name = KBUILD_MODNAME, 8132 8133 .check_processor_compatibility = vmx_check_processor_compat, 8134 8135 .hardware_unsetup = vmx_hardware_unsetup, 8136 8137 .hardware_enable = vmx_hardware_enable, 8138 .hardware_disable = vmx_hardware_disable, 8139 .has_emulated_msr = vmx_has_emulated_msr, 8140 8141 .vm_size = sizeof(struct kvm_vmx), 8142 .vm_init = vmx_vm_init, 8143 .vm_destroy = vmx_vm_destroy, 8144 8145 .vcpu_precreate = vmx_vcpu_precreate, 8146 .vcpu_create = vmx_vcpu_create, 8147 .vcpu_free = vmx_vcpu_free, 8148 .vcpu_reset = vmx_vcpu_reset, 8149 8150 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8151 .vcpu_load = vmx_vcpu_load, 8152 .vcpu_put = vmx_vcpu_put, 8153 8154 .update_exception_bitmap = vmx_update_exception_bitmap, 8155 .get_msr_feature = vmx_get_msr_feature, 8156 .get_msr = vmx_get_msr, 8157 .set_msr = vmx_set_msr, 8158 .get_segment_base = vmx_get_segment_base, 8159 .get_segment = vmx_get_segment, 8160 .set_segment = vmx_set_segment, 8161 .get_cpl = vmx_get_cpl, 8162 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8163 .set_cr0 = vmx_set_cr0, 8164 .is_valid_cr4 = vmx_is_valid_cr4, 8165 .set_cr4 = vmx_set_cr4, 8166 .set_efer = vmx_set_efer, 8167 .get_idt = vmx_get_idt, 8168 .set_idt = vmx_set_idt, 8169 .get_gdt = vmx_get_gdt, 8170 .set_gdt = vmx_set_gdt, 8171 .set_dr7 = vmx_set_dr7, 8172 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8173 .cache_reg = vmx_cache_reg, 8174 .get_rflags = vmx_get_rflags, 8175 .set_rflags = vmx_set_rflags, 8176 .get_if_flag = vmx_get_if_flag, 8177 8178 .flush_tlb_all = vmx_flush_tlb_all, 8179 .flush_tlb_current = vmx_flush_tlb_current, 8180 .flush_tlb_gva = vmx_flush_tlb_gva, 8181 .flush_tlb_guest = vmx_flush_tlb_guest, 8182 8183 .vcpu_pre_run = vmx_vcpu_pre_run, 8184 .vcpu_run = vmx_vcpu_run, 8185 .handle_exit = vmx_handle_exit, 8186 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8187 .update_emulated_instruction = vmx_update_emulated_instruction, 8188 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8189 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8190 .patch_hypercall = vmx_patch_hypercall, 8191 .inject_irq = vmx_inject_irq, 8192 .inject_nmi = vmx_inject_nmi, 8193 .inject_exception = vmx_inject_exception, 8194 .cancel_injection = vmx_cancel_injection, 8195 .interrupt_allowed = vmx_interrupt_allowed, 8196 .nmi_allowed = vmx_nmi_allowed, 8197 .get_nmi_mask = vmx_get_nmi_mask, 8198 .set_nmi_mask = vmx_set_nmi_mask, 8199 .enable_nmi_window = vmx_enable_nmi_window, 8200 .enable_irq_window = vmx_enable_irq_window, 8201 .update_cr8_intercept = vmx_update_cr8_intercept, 8202 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8203 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8204 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8205 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8206 .apicv_post_state_restore = vmx_apicv_post_state_restore, 8207 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8208 .hwapic_irr_update = vmx_hwapic_irr_update, 8209 .hwapic_isr_update = vmx_hwapic_isr_update, 8210 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8211 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8212 .deliver_interrupt = vmx_deliver_interrupt, 8213 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8214 8215 .set_tss_addr = vmx_set_tss_addr, 8216 .set_identity_map_addr = vmx_set_identity_map_addr, 8217 .get_mt_mask = vmx_get_mt_mask, 8218 8219 .get_exit_info = vmx_get_exit_info, 8220 8221 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8222 8223 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8224 8225 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8226 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8227 .write_tsc_offset = vmx_write_tsc_offset, 8228 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8229 8230 .load_mmu_pgd = vmx_load_mmu_pgd, 8231 8232 .check_intercept = vmx_check_intercept, 8233 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8234 8235 .request_immediate_exit = vmx_request_immediate_exit, 8236 8237 .sched_in = vmx_sched_in, 8238 8239 .cpu_dirty_log_size = PML_ENTITY_NUM, 8240 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8241 8242 .nested_ops = &vmx_nested_ops, 8243 8244 .pi_update_irte = vmx_pi_update_irte, 8245 .pi_start_assignment = vmx_pi_start_assignment, 8246 8247 #ifdef CONFIG_X86_64 8248 .set_hv_timer = vmx_set_hv_timer, 8249 .cancel_hv_timer = vmx_cancel_hv_timer, 8250 #endif 8251 8252 .setup_mce = vmx_setup_mce, 8253 8254 #ifdef CONFIG_KVM_SMM 8255 .smi_allowed = vmx_smi_allowed, 8256 .enter_smm = vmx_enter_smm, 8257 .leave_smm = vmx_leave_smm, 8258 .enable_smi_window = vmx_enable_smi_window, 8259 #endif 8260 8261 .can_emulate_instruction = vmx_can_emulate_instruction, 8262 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8263 .migrate_timers = vmx_migrate_timers, 8264 8265 .msr_filter_changed = vmx_msr_filter_changed, 8266 .complete_emulated_msr = kvm_complete_insn_gp, 8267 8268 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8269 }; 8270 8271 static unsigned int vmx_handle_intel_pt_intr(void) 8272 { 8273 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8274 8275 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8276 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8277 return 0; 8278 8279 kvm_make_request(KVM_REQ_PMI, vcpu); 8280 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8281 (unsigned long *)&vcpu->arch.pmu.global_status); 8282 return 1; 8283 } 8284 8285 static __init void vmx_setup_user_return_msrs(void) 8286 { 8287 8288 /* 8289 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8290 * will emulate SYSCALL in legacy mode if the vendor string in guest 8291 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8292 * support this emulation, MSR_STAR is included in the list for i386, 8293 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8294 * into hardware and is here purely for emulation purposes. 8295 */ 8296 const u32 vmx_uret_msrs_list[] = { 8297 #ifdef CONFIG_X86_64 8298 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8299 #endif 8300 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8301 MSR_IA32_TSX_CTRL, 8302 }; 8303 int i; 8304 8305 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8306 8307 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8308 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8309 } 8310 8311 static void __init vmx_setup_me_spte_mask(void) 8312 { 8313 u64 me_mask = 0; 8314 8315 /* 8316 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8317 * the former to avoid exposing shadow_phys_bits. 8318 * 8319 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8320 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8321 * boot_cpu_data.x86_phys_bits holds the actual physical address 8322 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8323 * reported by CPUID. Those bits between are KeyID bits. 8324 */ 8325 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8326 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8327 kvm_get_shadow_phys_bits() - 1); 8328 /* 8329 * Unlike SME, host kernel doesn't support setting up any 8330 * MKTME KeyID on Intel platforms. No memory encryption 8331 * bits should be included into the SPTE. 8332 */ 8333 kvm_mmu_set_me_spte_mask(0, me_mask); 8334 } 8335 8336 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8337 8338 static __init int hardware_setup(void) 8339 { 8340 unsigned long host_bndcfgs; 8341 struct desc_ptr dt; 8342 int r; 8343 8344 store_idt(&dt); 8345 host_idt_base = dt.address; 8346 8347 vmx_setup_user_return_msrs(); 8348 8349 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8350 return -EIO; 8351 8352 if (cpu_has_perf_global_ctrl_bug()) 8353 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8354 "does not work properly. Using workaround\n"); 8355 8356 if (boot_cpu_has(X86_FEATURE_NX)) 8357 kvm_enable_efer_bits(EFER_NX); 8358 8359 if (boot_cpu_has(X86_FEATURE_MPX)) { 8360 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8361 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8362 } 8363 8364 if (!cpu_has_vmx_mpx()) 8365 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8366 XFEATURE_MASK_BNDCSR); 8367 8368 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8369 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8370 enable_vpid = 0; 8371 8372 if (!cpu_has_vmx_ept() || 8373 !cpu_has_vmx_ept_4levels() || 8374 !cpu_has_vmx_ept_mt_wb() || 8375 !cpu_has_vmx_invept_global()) 8376 enable_ept = 0; 8377 8378 /* NX support is required for shadow paging. */ 8379 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8380 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8381 return -EOPNOTSUPP; 8382 } 8383 8384 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8385 enable_ept_ad_bits = 0; 8386 8387 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8388 enable_unrestricted_guest = 0; 8389 8390 if (!cpu_has_vmx_flexpriority()) 8391 flexpriority_enabled = 0; 8392 8393 if (!cpu_has_virtual_nmis()) 8394 enable_vnmi = 0; 8395 8396 #ifdef CONFIG_X86_SGX_KVM 8397 if (!cpu_has_vmx_encls_vmexit()) 8398 enable_sgx = false; 8399 #endif 8400 8401 /* 8402 * set_apic_access_page_addr() is used to reload apic access 8403 * page upon invalidation. No need to do anything if not 8404 * using the APIC_ACCESS_ADDR VMCS field. 8405 */ 8406 if (!flexpriority_enabled) 8407 vmx_x86_ops.set_apic_access_page_addr = NULL; 8408 8409 if (!cpu_has_vmx_tpr_shadow()) 8410 vmx_x86_ops.update_cr8_intercept = NULL; 8411 8412 #if IS_ENABLED(CONFIG_HYPERV) 8413 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8414 && enable_ept) { 8415 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8416 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8417 } 8418 #endif 8419 8420 if (!cpu_has_vmx_ple()) { 8421 ple_gap = 0; 8422 ple_window = 0; 8423 ple_window_grow = 0; 8424 ple_window_max = 0; 8425 ple_window_shrink = 0; 8426 } 8427 8428 if (!cpu_has_vmx_apicv()) 8429 enable_apicv = 0; 8430 if (!enable_apicv) 8431 vmx_x86_ops.sync_pir_to_irr = NULL; 8432 8433 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8434 enable_ipiv = false; 8435 8436 if (cpu_has_vmx_tsc_scaling()) 8437 kvm_caps.has_tsc_control = true; 8438 8439 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8440 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8441 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8442 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8443 8444 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8445 8446 if (enable_ept) 8447 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8448 cpu_has_vmx_ept_execute_only()); 8449 8450 /* 8451 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8452 * bits to shadow_zero_check. 8453 */ 8454 vmx_setup_me_spte_mask(); 8455 8456 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 8457 ept_caps_to_lpage_level(vmx_capability.ept)); 8458 8459 /* 8460 * Only enable PML when hardware supports PML feature, and both EPT 8461 * and EPT A/D bit features are enabled -- PML depends on them to work. 8462 */ 8463 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8464 enable_pml = 0; 8465 8466 if (!enable_pml) 8467 vmx_x86_ops.cpu_dirty_log_size = 0; 8468 8469 if (!cpu_has_vmx_preemption_timer()) 8470 enable_preemption_timer = false; 8471 8472 if (enable_preemption_timer) { 8473 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8474 8475 cpu_preemption_timer_multi = 8476 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8477 8478 if (tsc_khz) 8479 use_timer_freq = (u64)tsc_khz * 1000; 8480 use_timer_freq >>= cpu_preemption_timer_multi; 8481 8482 /* 8483 * KVM "disables" the preemption timer by setting it to its max 8484 * value. Don't use the timer if it might cause spurious exits 8485 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8486 */ 8487 if (use_timer_freq > 0xffffffffu / 10) 8488 enable_preemption_timer = false; 8489 } 8490 8491 if (!enable_preemption_timer) { 8492 vmx_x86_ops.set_hv_timer = NULL; 8493 vmx_x86_ops.cancel_hv_timer = NULL; 8494 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8495 } 8496 8497 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8498 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8499 8500 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8501 return -EINVAL; 8502 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8503 pt_mode = PT_MODE_SYSTEM; 8504 if (pt_mode == PT_MODE_HOST_GUEST) 8505 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8506 else 8507 vmx_init_ops.handle_intel_pt_intr = NULL; 8508 8509 setup_default_sgx_lepubkeyhash(); 8510 8511 if (nested) { 8512 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8513 8514 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8515 if (r) 8516 return r; 8517 } 8518 8519 vmx_set_cpu_caps(); 8520 8521 r = alloc_kvm_area(); 8522 if (r && nested) 8523 nested_vmx_hardware_unsetup(); 8524 8525 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8526 8527 return r; 8528 } 8529 8530 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8531 .hardware_setup = hardware_setup, 8532 .handle_intel_pt_intr = NULL, 8533 8534 .runtime_ops = &vmx_x86_ops, 8535 .pmu_ops = &intel_pmu_ops, 8536 }; 8537 8538 static void vmx_cleanup_l1d_flush(void) 8539 { 8540 if (vmx_l1d_flush_pages) { 8541 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8542 vmx_l1d_flush_pages = NULL; 8543 } 8544 /* Restore state so sysfs ignores VMX */ 8545 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8546 } 8547 8548 static void __vmx_exit(void) 8549 { 8550 allow_smaller_maxphyaddr = false; 8551 8552 #ifdef CONFIG_KEXEC_CORE 8553 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 8554 synchronize_rcu(); 8555 #endif 8556 vmx_cleanup_l1d_flush(); 8557 } 8558 8559 static void vmx_exit(void) 8560 { 8561 kvm_exit(); 8562 kvm_x86_vendor_exit(); 8563 8564 __vmx_exit(); 8565 } 8566 module_exit(vmx_exit); 8567 8568 static int __init vmx_init(void) 8569 { 8570 int r, cpu; 8571 8572 if (!kvm_is_vmx_supported()) 8573 return -EOPNOTSUPP; 8574 8575 /* 8576 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8577 * to unwind if a later step fails. 8578 */ 8579 hv_init_evmcs(); 8580 8581 r = kvm_x86_vendor_init(&vmx_init_ops); 8582 if (r) 8583 return r; 8584 8585 /* 8586 * Must be called after common x86 init so enable_ept is properly set 8587 * up. Hand the parameter mitigation value in which was stored in 8588 * the pre module init parser. If no parameter was given, it will 8589 * contain 'auto' which will be turned into the default 'cond' 8590 * mitigation mode. 8591 */ 8592 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8593 if (r) 8594 goto err_l1d_flush; 8595 8596 vmx_setup_fb_clear_ctrl(); 8597 8598 for_each_possible_cpu(cpu) { 8599 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8600 8601 pi_init_cpu(cpu); 8602 } 8603 8604 #ifdef CONFIG_KEXEC_CORE 8605 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8606 crash_vmclear_local_loaded_vmcss); 8607 #endif 8608 vmx_check_vmcs12_offsets(); 8609 8610 /* 8611 * Shadow paging doesn't have a (further) performance penalty 8612 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8613 * by default 8614 */ 8615 if (!enable_ept) 8616 allow_smaller_maxphyaddr = true; 8617 8618 /* 8619 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8620 * exposed to userspace! 8621 */ 8622 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8623 THIS_MODULE); 8624 if (r) 8625 goto err_kvm_init; 8626 8627 return 0; 8628 8629 err_kvm_init: 8630 __vmx_exit(); 8631 err_l1d_flush: 8632 kvm_x86_vendor_exit(); 8633 return r; 8634 } 8635 module_init(vmx_init); 8636