1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <linux/frame.h> 20 #include <linux/highmem.h> 21 #include <linux/hrtimer.h> 22 #include <linux/kernel.h> 23 #include <linux/kvm_host.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/mod_devicetable.h> 27 #include <linux/mm.h> 28 #include <linux/sched.h> 29 #include <linux/sched/smt.h> 30 #include <linux/slab.h> 31 #include <linux/tboot.h> 32 #include <linux/trace_events.h> 33 34 #include <asm/apic.h> 35 #include <asm/asm.h> 36 #include <asm/cpu.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/internal.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mce.h> 45 #include <asm/mmu_context.h> 46 #include <asm/mshyperv.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "irq.h" 55 #include "kvm_cache_regs.h" 56 #include "lapic.h" 57 #include "mmu.h" 58 #include "nested.h" 59 #include "ops.h" 60 #include "pmu.h" 61 #include "trace.h" 62 #include "vmcs.h" 63 #include "vmcs12.h" 64 #include "vmx.h" 65 #include "x86.h" 66 67 MODULE_AUTHOR("Qumranet"); 68 MODULE_LICENSE("GPL"); 69 70 static const struct x86_cpu_id vmx_cpu_id[] = { 71 X86_FEATURE_MATCH(X86_FEATURE_VMX), 72 {} 73 }; 74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 75 76 bool __read_mostly enable_vpid = 1; 77 module_param_named(vpid, enable_vpid, bool, 0444); 78 79 static bool __read_mostly enable_vnmi = 1; 80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 81 82 bool __read_mostly flexpriority_enabled = 1; 83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 84 85 bool __read_mostly enable_ept = 1; 86 module_param_named(ept, enable_ept, bool, S_IRUGO); 87 88 bool __read_mostly enable_unrestricted_guest = 1; 89 module_param_named(unrestricted_guest, 90 enable_unrestricted_guest, bool, S_IRUGO); 91 92 bool __read_mostly enable_ept_ad_bits = 1; 93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 94 95 static bool __read_mostly emulate_invalid_guest_state = true; 96 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 97 98 static bool __read_mostly fasteoi = 1; 99 module_param(fasteoi, bool, S_IRUGO); 100 101 static bool __read_mostly enable_apicv = 1; 102 module_param(enable_apicv, bool, S_IRUGO); 103 104 /* 105 * If nested=1, nested virtualization is supported, i.e., guests may use 106 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 107 * use VMX instructions. 108 */ 109 static bool __read_mostly nested = 1; 110 module_param(nested, bool, S_IRUGO); 111 112 static u64 __read_mostly host_xss; 113 114 bool __read_mostly enable_pml = 1; 115 module_param_named(pml, enable_pml, bool, S_IRUGO); 116 117 #define MSR_BITMAP_MODE_X2APIC 1 118 #define MSR_BITMAP_MODE_X2APIC_APICV 2 119 120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 121 122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 123 static int __read_mostly cpu_preemption_timer_multi; 124 static bool __read_mostly enable_preemption_timer = 1; 125 #ifdef CONFIG_X86_64 126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 127 #endif 128 129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 131 #define KVM_VM_CR0_ALWAYS_ON \ 132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 134 #define KVM_CR4_GUEST_OWNED_BITS \ 135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ 136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) 137 138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 141 142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 143 144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 147 RTIT_STATUS_BYTECNT)) 148 149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \ 150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f) 151 152 /* 153 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 154 * ple_gap: upper bound on the amount of time between two successive 155 * executions of PAUSE in a loop. Also indicate if ple enabled. 156 * According to test, this time is usually smaller than 128 cycles. 157 * ple_window: upper bound on the amount of time a guest is allowed to execute 158 * in a PAUSE loop. Tests indicate that most spinlocks are held for 159 * less than 2^12 cycles 160 * Time is measured based on a counter that runs at the same rate as the TSC, 161 * refer SDM volume 3b section 21.6.13 & 22.1.3. 162 */ 163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 164 module_param(ple_gap, uint, 0444); 165 166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 167 module_param(ple_window, uint, 0444); 168 169 /* Default doubles per-vcpu window every exit. */ 170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 171 module_param(ple_window_grow, uint, 0444); 172 173 /* Default resets per-vcpu window every exit to ple_window. */ 174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 175 module_param(ple_window_shrink, uint, 0444); 176 177 /* Default is to compute the maximum so we can never overflow. */ 178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 179 module_param(ple_window_max, uint, 0444); 180 181 /* Default is SYSTEM mode, 1 for host-guest mode */ 182 int __read_mostly pt_mode = PT_MODE_SYSTEM; 183 module_param(pt_mode, int, S_IRUGO); 184 185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 187 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 188 189 /* Storage for pre module init parameter parsing */ 190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 191 192 static const struct { 193 const char *option; 194 bool for_parse; 195 } vmentry_l1d_param[] = { 196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 198 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 202 }; 203 204 #define L1D_CACHE_ORDER 4 205 static void *vmx_l1d_flush_pages; 206 207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 208 { 209 struct page *page; 210 unsigned int i; 211 212 if (!enable_ept) { 213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 214 return 0; 215 } 216 217 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 218 u64 msr; 219 220 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 221 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 222 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 223 return 0; 224 } 225 } 226 227 /* If set to auto use the default l1tf mitigation method */ 228 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 229 switch (l1tf_mitigation) { 230 case L1TF_MITIGATION_OFF: 231 l1tf = VMENTER_L1D_FLUSH_NEVER; 232 break; 233 case L1TF_MITIGATION_FLUSH_NOWARN: 234 case L1TF_MITIGATION_FLUSH: 235 case L1TF_MITIGATION_FLUSH_NOSMT: 236 l1tf = VMENTER_L1D_FLUSH_COND; 237 break; 238 case L1TF_MITIGATION_FULL: 239 case L1TF_MITIGATION_FULL_FORCE: 240 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 241 break; 242 } 243 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 244 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 245 } 246 247 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 248 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 249 /* 250 * This allocation for vmx_l1d_flush_pages is not tied to a VM 251 * lifetime and so should not be charged to a memcg. 252 */ 253 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 254 if (!page) 255 return -ENOMEM; 256 vmx_l1d_flush_pages = page_address(page); 257 258 /* 259 * Initialize each page with a different pattern in 260 * order to protect against KSM in the nested 261 * virtualization case. 262 */ 263 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 264 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 265 PAGE_SIZE); 266 } 267 } 268 269 l1tf_vmx_mitigation = l1tf; 270 271 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 272 static_branch_enable(&vmx_l1d_should_flush); 273 else 274 static_branch_disable(&vmx_l1d_should_flush); 275 276 if (l1tf == VMENTER_L1D_FLUSH_COND) 277 static_branch_enable(&vmx_l1d_flush_cond); 278 else 279 static_branch_disable(&vmx_l1d_flush_cond); 280 return 0; 281 } 282 283 static int vmentry_l1d_flush_parse(const char *s) 284 { 285 unsigned int i; 286 287 if (s) { 288 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 289 if (vmentry_l1d_param[i].for_parse && 290 sysfs_streq(s, vmentry_l1d_param[i].option)) 291 return i; 292 } 293 } 294 return -EINVAL; 295 } 296 297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 298 { 299 int l1tf, ret; 300 301 l1tf = vmentry_l1d_flush_parse(s); 302 if (l1tf < 0) 303 return l1tf; 304 305 if (!boot_cpu_has(X86_BUG_L1TF)) 306 return 0; 307 308 /* 309 * Has vmx_init() run already? If not then this is the pre init 310 * parameter parsing. In that case just store the value and let 311 * vmx_init() do the proper setup after enable_ept has been 312 * established. 313 */ 314 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 315 vmentry_l1d_flush_param = l1tf; 316 return 0; 317 } 318 319 mutex_lock(&vmx_l1d_flush_mutex); 320 ret = vmx_setup_l1d_flush(l1tf); 321 mutex_unlock(&vmx_l1d_flush_mutex); 322 return ret; 323 } 324 325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 326 { 327 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 328 return sprintf(s, "???\n"); 329 330 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 331 } 332 333 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 334 .set = vmentry_l1d_flush_set, 335 .get = vmentry_l1d_flush_get, 336 }; 337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 338 339 static bool guest_state_valid(struct kvm_vcpu *vcpu); 340 static u32 vmx_segment_access_rights(struct kvm_segment *var); 341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, 342 u32 msr, int type); 343 344 void vmx_vmexit(void); 345 346 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 347 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 348 /* 349 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 350 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 351 */ 352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 353 354 /* 355 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we 356 * can find which vCPU should be waken up. 357 */ 358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); 359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); 360 361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 362 static DEFINE_SPINLOCK(vmx_vpid_lock); 363 364 struct vmcs_config vmcs_config; 365 struct vmx_capability vmx_capability; 366 367 #define VMX_SEGMENT_FIELD(seg) \ 368 [VCPU_SREG_##seg] = { \ 369 .selector = GUEST_##seg##_SELECTOR, \ 370 .base = GUEST_##seg##_BASE, \ 371 .limit = GUEST_##seg##_LIMIT, \ 372 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 373 } 374 375 static const struct kvm_vmx_segment_field { 376 unsigned selector; 377 unsigned base; 378 unsigned limit; 379 unsigned ar_bytes; 380 } kvm_vmx_segment_fields[] = { 381 VMX_SEGMENT_FIELD(CS), 382 VMX_SEGMENT_FIELD(DS), 383 VMX_SEGMENT_FIELD(ES), 384 VMX_SEGMENT_FIELD(FS), 385 VMX_SEGMENT_FIELD(GS), 386 VMX_SEGMENT_FIELD(SS), 387 VMX_SEGMENT_FIELD(TR), 388 VMX_SEGMENT_FIELD(LDTR), 389 }; 390 391 u64 host_efer; 392 393 /* 394 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 395 * will emulate SYSCALL in legacy mode if the vendor string in guest 396 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 397 * support this emulation, IA32_STAR must always be included in 398 * vmx_msr_index[], even in i386 builds. 399 */ 400 const u32 vmx_msr_index[] = { 401 #ifdef CONFIG_X86_64 402 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 403 #endif 404 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 405 }; 406 407 #if IS_ENABLED(CONFIG_HYPERV) 408 static bool __read_mostly enlightened_vmcs = true; 409 module_param(enlightened_vmcs, bool, 0444); 410 411 /* check_ept_pointer() should be under protection of ept_pointer_lock. */ 412 static void check_ept_pointer_match(struct kvm *kvm) 413 { 414 struct kvm_vcpu *vcpu; 415 u64 tmp_eptp = INVALID_PAGE; 416 int i; 417 418 kvm_for_each_vcpu(i, vcpu, kvm) { 419 if (!VALID_PAGE(tmp_eptp)) { 420 tmp_eptp = to_vmx(vcpu)->ept_pointer; 421 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { 422 to_kvm_vmx(kvm)->ept_pointers_match 423 = EPT_POINTERS_MISMATCH; 424 return; 425 } 426 } 427 428 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; 429 } 430 431 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, 432 void *data) 433 { 434 struct kvm_tlb_range *range = data; 435 436 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, 437 range->pages); 438 } 439 440 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, 441 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) 442 { 443 u64 ept_pointer = to_vmx(vcpu)->ept_pointer; 444 445 /* 446 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address 447 * of the base of EPT PML4 table, strip off EPT configuration 448 * information. 449 */ 450 if (range) 451 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, 452 kvm_fill_hv_flush_list_func, (void *)range); 453 else 454 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); 455 } 456 457 static int hv_remote_flush_tlb_with_range(struct kvm *kvm, 458 struct kvm_tlb_range *range) 459 { 460 struct kvm_vcpu *vcpu; 461 int ret = 0, i; 462 463 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 464 465 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) 466 check_ept_pointer_match(kvm); 467 468 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { 469 kvm_for_each_vcpu(i, vcpu, kvm) { 470 /* If ept_pointer is invalid pointer, bypass flush request. */ 471 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) 472 ret |= __hv_remote_flush_tlb_with_range( 473 kvm, vcpu, range); 474 } 475 } else { 476 ret = __hv_remote_flush_tlb_with_range(kvm, 477 kvm_get_vcpu(kvm, 0), range); 478 } 479 480 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 481 return ret; 482 } 483 static int hv_remote_flush_tlb(struct kvm *kvm) 484 { 485 return hv_remote_flush_tlb_with_range(kvm, NULL); 486 } 487 488 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 489 490 /* 491 * Comment's format: document - errata name - stepping - processor name. 492 * Refer from 493 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 494 */ 495 static u32 vmx_preemption_cpu_tfms[] = { 496 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 497 0x000206E6, 498 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 499 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 500 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 501 0x00020652, 502 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 503 0x00020655, 504 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 505 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 506 /* 507 * 320767.pdf - AAP86 - B1 - 508 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 509 */ 510 0x000106E5, 511 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 512 0x000106A0, 513 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 514 0x000106A1, 515 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 516 0x000106A4, 517 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 518 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 519 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 520 0x000106A5, 521 /* Xeon E3-1220 V2 */ 522 0x000306A8, 523 }; 524 525 static inline bool cpu_has_broken_vmx_preemption_timer(void) 526 { 527 u32 eax = cpuid_eax(0x00000001), i; 528 529 /* Clear the reserved bits */ 530 eax &= ~(0x3U << 14 | 0xfU << 28); 531 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 532 if (eax == vmx_preemption_cpu_tfms[i]) 533 return true; 534 535 return false; 536 } 537 538 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 539 { 540 return flexpriority_enabled && lapic_in_kernel(vcpu); 541 } 542 543 static inline bool report_flexpriority(void) 544 { 545 return flexpriority_enabled; 546 } 547 548 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) 549 { 550 int i; 551 552 for (i = 0; i < vmx->nmsrs; ++i) 553 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) 554 return i; 555 return -1; 556 } 557 558 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) 559 { 560 int i; 561 562 i = __find_msr_index(vmx, msr); 563 if (i >= 0) 564 return &vmx->guest_msrs[i]; 565 return NULL; 566 } 567 568 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) 569 { 570 vmcs_clear(loaded_vmcs->vmcs); 571 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 572 vmcs_clear(loaded_vmcs->shadow_vmcs); 573 loaded_vmcs->cpu = -1; 574 loaded_vmcs->launched = 0; 575 } 576 577 #ifdef CONFIG_KEXEC_CORE 578 /* 579 * This bitmap is used to indicate whether the vmclear 580 * operation is enabled on all cpus. All disabled by 581 * default. 582 */ 583 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; 584 585 static inline void crash_enable_local_vmclear(int cpu) 586 { 587 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); 588 } 589 590 static inline void crash_disable_local_vmclear(int cpu) 591 { 592 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); 593 } 594 595 static inline int crash_local_vmclear_enabled(int cpu) 596 { 597 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); 598 } 599 600 static void crash_vmclear_local_loaded_vmcss(void) 601 { 602 int cpu = raw_smp_processor_id(); 603 struct loaded_vmcs *v; 604 605 if (!crash_local_vmclear_enabled(cpu)) 606 return; 607 608 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 609 loaded_vmcss_on_cpu_link) 610 vmcs_clear(v->vmcs); 611 } 612 #else 613 static inline void crash_enable_local_vmclear(int cpu) { } 614 static inline void crash_disable_local_vmclear(int cpu) { } 615 #endif /* CONFIG_KEXEC_CORE */ 616 617 static void __loaded_vmcs_clear(void *arg) 618 { 619 struct loaded_vmcs *loaded_vmcs = arg; 620 int cpu = raw_smp_processor_id(); 621 622 if (loaded_vmcs->cpu != cpu) 623 return; /* vcpu migration can race with cpu offline */ 624 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 625 per_cpu(current_vmcs, cpu) = NULL; 626 crash_disable_local_vmclear(cpu); 627 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 628 629 /* 630 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link 631 * is before setting loaded_vmcs->vcpu to -1 which is done in 632 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist 633 * then adds the vmcs into percpu list before it is deleted. 634 */ 635 smp_wmb(); 636 637 loaded_vmcs_init(loaded_vmcs); 638 crash_enable_local_vmclear(cpu); 639 } 640 641 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 642 { 643 int cpu = loaded_vmcs->cpu; 644 645 if (cpu != -1) 646 smp_call_function_single(cpu, 647 __loaded_vmcs_clear, loaded_vmcs, 1); 648 } 649 650 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 651 unsigned field) 652 { 653 bool ret; 654 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 655 656 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { 657 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); 658 vmx->segment_cache.bitmask = 0; 659 } 660 ret = vmx->segment_cache.bitmask & mask; 661 vmx->segment_cache.bitmask |= mask; 662 return ret; 663 } 664 665 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 666 { 667 u16 *p = &vmx->segment_cache.seg[seg].selector; 668 669 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 670 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 671 return *p; 672 } 673 674 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 675 { 676 ulong *p = &vmx->segment_cache.seg[seg].base; 677 678 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 679 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 680 return *p; 681 } 682 683 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 684 { 685 u32 *p = &vmx->segment_cache.seg[seg].limit; 686 687 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 688 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 689 return *p; 690 } 691 692 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 693 { 694 u32 *p = &vmx->segment_cache.seg[seg].ar; 695 696 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 697 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 698 return *p; 699 } 700 701 void update_exception_bitmap(struct kvm_vcpu *vcpu) 702 { 703 u32 eb; 704 705 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 706 (1u << DB_VECTOR) | (1u << AC_VECTOR); 707 /* 708 * Guest access to VMware backdoor ports could legitimately 709 * trigger #GP because of TSS I/O permission bitmap. 710 * We intercept those #GP and allow access to them anyway 711 * as VMware does. 712 */ 713 if (enable_vmware_backdoor) 714 eb |= (1u << GP_VECTOR); 715 if ((vcpu->guest_debug & 716 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 717 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 718 eb |= 1u << BP_VECTOR; 719 if (to_vmx(vcpu)->rmode.vm86_active) 720 eb = ~0; 721 if (enable_ept) 722 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ 723 724 /* When we are running a nested L2 guest and L1 specified for it a 725 * certain exception bitmap, we must trap the same exceptions and pass 726 * them to L1. When running L2, we will only handle the exceptions 727 * specified above if L1 did not want them. 728 */ 729 if (is_guest_mode(vcpu)) 730 eb |= get_vmcs12(vcpu)->exception_bitmap; 731 732 vmcs_write32(EXCEPTION_BITMAP, eb); 733 } 734 735 /* 736 * Check if MSR is intercepted for currently loaded MSR bitmap. 737 */ 738 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 739 { 740 unsigned long *msr_bitmap; 741 int f = sizeof(unsigned long); 742 743 if (!cpu_has_vmx_msr_bitmap()) 744 return true; 745 746 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 747 748 if (msr <= 0x1fff) { 749 return !!test_bit(msr, msr_bitmap + 0x800 / f); 750 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 751 msr &= 0x1fff; 752 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 753 } 754 755 return true; 756 } 757 758 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 759 unsigned long entry, unsigned long exit) 760 { 761 vm_entry_controls_clearbit(vmx, entry); 762 vm_exit_controls_clearbit(vmx, exit); 763 } 764 765 static int find_msr(struct vmx_msrs *m, unsigned int msr) 766 { 767 unsigned int i; 768 769 for (i = 0; i < m->nr; ++i) { 770 if (m->val[i].index == msr) 771 return i; 772 } 773 return -ENOENT; 774 } 775 776 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 777 { 778 int i; 779 struct msr_autoload *m = &vmx->msr_autoload; 780 781 switch (msr) { 782 case MSR_EFER: 783 if (cpu_has_load_ia32_efer()) { 784 clear_atomic_switch_msr_special(vmx, 785 VM_ENTRY_LOAD_IA32_EFER, 786 VM_EXIT_LOAD_IA32_EFER); 787 return; 788 } 789 break; 790 case MSR_CORE_PERF_GLOBAL_CTRL: 791 if (cpu_has_load_perf_global_ctrl()) { 792 clear_atomic_switch_msr_special(vmx, 793 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 794 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 795 return; 796 } 797 break; 798 } 799 i = find_msr(&m->guest, msr); 800 if (i < 0) 801 goto skip_guest; 802 --m->guest.nr; 803 m->guest.val[i] = m->guest.val[m->guest.nr]; 804 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 805 806 skip_guest: 807 i = find_msr(&m->host, msr); 808 if (i < 0) 809 return; 810 811 --m->host.nr; 812 m->host.val[i] = m->host.val[m->host.nr]; 813 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 814 } 815 816 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 817 unsigned long entry, unsigned long exit, 818 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 819 u64 guest_val, u64 host_val) 820 { 821 vmcs_write64(guest_val_vmcs, guest_val); 822 if (host_val_vmcs != HOST_IA32_EFER) 823 vmcs_write64(host_val_vmcs, host_val); 824 vm_entry_controls_setbit(vmx, entry); 825 vm_exit_controls_setbit(vmx, exit); 826 } 827 828 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 829 u64 guest_val, u64 host_val, bool entry_only) 830 { 831 int i, j = 0; 832 struct msr_autoload *m = &vmx->msr_autoload; 833 834 switch (msr) { 835 case MSR_EFER: 836 if (cpu_has_load_ia32_efer()) { 837 add_atomic_switch_msr_special(vmx, 838 VM_ENTRY_LOAD_IA32_EFER, 839 VM_EXIT_LOAD_IA32_EFER, 840 GUEST_IA32_EFER, 841 HOST_IA32_EFER, 842 guest_val, host_val); 843 return; 844 } 845 break; 846 case MSR_CORE_PERF_GLOBAL_CTRL: 847 if (cpu_has_load_perf_global_ctrl()) { 848 add_atomic_switch_msr_special(vmx, 849 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 850 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 851 GUEST_IA32_PERF_GLOBAL_CTRL, 852 HOST_IA32_PERF_GLOBAL_CTRL, 853 guest_val, host_val); 854 return; 855 } 856 break; 857 case MSR_IA32_PEBS_ENABLE: 858 /* PEBS needs a quiescent period after being disabled (to write 859 * a record). Disabling PEBS through VMX MSR swapping doesn't 860 * provide that period, so a CPU could write host's record into 861 * guest's memory. 862 */ 863 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 864 } 865 866 i = find_msr(&m->guest, msr); 867 if (!entry_only) 868 j = find_msr(&m->host, msr); 869 870 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) || 871 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) { 872 printk_once(KERN_WARNING "Not enough msr switch entries. " 873 "Can't add msr %x\n", msr); 874 return; 875 } 876 if (i < 0) { 877 i = m->guest.nr++; 878 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 879 } 880 m->guest.val[i].index = msr; 881 m->guest.val[i].value = guest_val; 882 883 if (entry_only) 884 return; 885 886 if (j < 0) { 887 j = m->host.nr++; 888 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 889 } 890 m->host.val[j].index = msr; 891 m->host.val[j].value = host_val; 892 } 893 894 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) 895 { 896 u64 guest_efer = vmx->vcpu.arch.efer; 897 u64 ignore_bits = 0; 898 899 if (!enable_ept) { 900 /* 901 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing 902 * host CPUID is more efficient than testing guest CPUID 903 * or CR4. Host SMEP is anyway a requirement for guest SMEP. 904 */ 905 if (boot_cpu_has(X86_FEATURE_SMEP)) 906 guest_efer |= EFER_NX; 907 else if (!(guest_efer & EFER_NX)) 908 ignore_bits |= EFER_NX; 909 } 910 911 /* 912 * LMA and LME handled by hardware; SCE meaningless outside long mode. 913 */ 914 ignore_bits |= EFER_SCE; 915 #ifdef CONFIG_X86_64 916 ignore_bits |= EFER_LMA | EFER_LME; 917 /* SCE is meaningful only in long mode on Intel */ 918 if (guest_efer & EFER_LMA) 919 ignore_bits &= ~(u64)EFER_SCE; 920 #endif 921 922 /* 923 * On EPT, we can't emulate NX, so we must switch EFER atomically. 924 * On CPUs that support "load IA32_EFER", always switch EFER 925 * atomically, since it's faster than switching it manually. 926 */ 927 if (cpu_has_load_ia32_efer() || 928 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 929 if (!(guest_efer & EFER_LMA)) 930 guest_efer &= ~EFER_LME; 931 if (guest_efer != host_efer) 932 add_atomic_switch_msr(vmx, MSR_EFER, 933 guest_efer, host_efer, false); 934 else 935 clear_atomic_switch_msr(vmx, MSR_EFER); 936 return false; 937 } else { 938 clear_atomic_switch_msr(vmx, MSR_EFER); 939 940 guest_efer &= ~ignore_bits; 941 guest_efer |= host_efer & ignore_bits; 942 943 vmx->guest_msrs[efer_offset].data = guest_efer; 944 vmx->guest_msrs[efer_offset].mask = ~ignore_bits; 945 946 return true; 947 } 948 } 949 950 #ifdef CONFIG_X86_32 951 /* 952 * On 32-bit kernels, VM exits still load the FS and GS bases from the 953 * VMCS rather than the segment table. KVM uses this helper to figure 954 * out the current bases to poke them into the VMCS before entry. 955 */ 956 static unsigned long segment_base(u16 selector) 957 { 958 struct desc_struct *table; 959 unsigned long v; 960 961 if (!(selector & ~SEGMENT_RPL_MASK)) 962 return 0; 963 964 table = get_current_gdt_ro(); 965 966 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 967 u16 ldt_selector = kvm_read_ldt(); 968 969 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 970 return 0; 971 972 table = (struct desc_struct *)segment_base(ldt_selector); 973 } 974 v = get_desc_base(&table[selector >> 3]); 975 return v; 976 } 977 #endif 978 979 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 980 { 981 u32 i; 982 983 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 984 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 985 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 986 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 987 for (i = 0; i < addr_range; i++) { 988 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 989 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 990 } 991 } 992 993 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 994 { 995 u32 i; 996 997 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 998 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 999 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1000 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1001 for (i = 0; i < addr_range; i++) { 1002 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1003 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1004 } 1005 } 1006 1007 static void pt_guest_enter(struct vcpu_vmx *vmx) 1008 { 1009 if (pt_mode == PT_MODE_SYSTEM) 1010 return; 1011 1012 /* 1013 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1014 * Save host state before VM entry. 1015 */ 1016 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1017 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1018 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1019 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1020 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1021 } 1022 } 1023 1024 static void pt_guest_exit(struct vcpu_vmx *vmx) 1025 { 1026 if (pt_mode == PT_MODE_SYSTEM) 1027 return; 1028 1029 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1030 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1031 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1032 } 1033 1034 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1035 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1036 } 1037 1038 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1039 { 1040 struct vcpu_vmx *vmx = to_vmx(vcpu); 1041 struct vmcs_host_state *host_state; 1042 #ifdef CONFIG_X86_64 1043 int cpu = raw_smp_processor_id(); 1044 #endif 1045 unsigned long fs_base, gs_base; 1046 u16 fs_sel, gs_sel; 1047 int i; 1048 1049 vmx->req_immediate_exit = false; 1050 1051 /* 1052 * Note that guest MSRs to be saved/restored can also be changed 1053 * when guest state is loaded. This happens when guest transitions 1054 * to/from long-mode by setting MSR_EFER.LMA. 1055 */ 1056 if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) { 1057 vmx->guest_msrs_dirty = false; 1058 for (i = 0; i < vmx->save_nmsrs; ++i) 1059 kvm_set_shared_msr(vmx->guest_msrs[i].index, 1060 vmx->guest_msrs[i].data, 1061 vmx->guest_msrs[i].mask); 1062 1063 } 1064 1065 if (vmx->loaded_cpu_state) 1066 return; 1067 1068 vmx->loaded_cpu_state = vmx->loaded_vmcs; 1069 host_state = &vmx->loaded_cpu_state->host_state; 1070 1071 /* 1072 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1073 * allow segment selectors with cpl > 0 or ti == 1. 1074 */ 1075 host_state->ldt_sel = kvm_read_ldt(); 1076 1077 #ifdef CONFIG_X86_64 1078 savesegment(ds, host_state->ds_sel); 1079 savesegment(es, host_state->es_sel); 1080 1081 gs_base = cpu_kernelmode_gs_base(cpu); 1082 if (likely(is_64bit_mm(current->mm))) { 1083 save_fsgs_for_kvm(); 1084 fs_sel = current->thread.fsindex; 1085 gs_sel = current->thread.gsindex; 1086 fs_base = current->thread.fsbase; 1087 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1088 } else { 1089 savesegment(fs, fs_sel); 1090 savesegment(gs, gs_sel); 1091 fs_base = read_msr(MSR_FS_BASE); 1092 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1093 } 1094 1095 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1096 #else 1097 savesegment(fs, fs_sel); 1098 savesegment(gs, gs_sel); 1099 fs_base = segment_base(fs_sel); 1100 gs_base = segment_base(gs_sel); 1101 #endif 1102 1103 if (unlikely(fs_sel != host_state->fs_sel)) { 1104 if (!(fs_sel & 7)) 1105 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1106 else 1107 vmcs_write16(HOST_FS_SELECTOR, 0); 1108 host_state->fs_sel = fs_sel; 1109 } 1110 if (unlikely(gs_sel != host_state->gs_sel)) { 1111 if (!(gs_sel & 7)) 1112 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1113 else 1114 vmcs_write16(HOST_GS_SELECTOR, 0); 1115 host_state->gs_sel = gs_sel; 1116 } 1117 if (unlikely(fs_base != host_state->fs_base)) { 1118 vmcs_writel(HOST_FS_BASE, fs_base); 1119 host_state->fs_base = fs_base; 1120 } 1121 if (unlikely(gs_base != host_state->gs_base)) { 1122 vmcs_writel(HOST_GS_BASE, gs_base); 1123 host_state->gs_base = gs_base; 1124 } 1125 } 1126 1127 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1128 { 1129 struct vmcs_host_state *host_state; 1130 1131 if (!vmx->loaded_cpu_state) 1132 return; 1133 1134 WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); 1135 host_state = &vmx->loaded_cpu_state->host_state; 1136 1137 ++vmx->vcpu.stat.host_state_reload; 1138 vmx->loaded_cpu_state = NULL; 1139 1140 #ifdef CONFIG_X86_64 1141 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1142 #endif 1143 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1144 kvm_load_ldt(host_state->ldt_sel); 1145 #ifdef CONFIG_X86_64 1146 load_gs_index(host_state->gs_sel); 1147 #else 1148 loadsegment(gs, host_state->gs_sel); 1149 #endif 1150 } 1151 if (host_state->fs_sel & 7) 1152 loadsegment(fs, host_state->fs_sel); 1153 #ifdef CONFIG_X86_64 1154 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1155 loadsegment(ds, host_state->ds_sel); 1156 loadsegment(es, host_state->es_sel); 1157 } 1158 #endif 1159 invalidate_tss_limit(); 1160 #ifdef CONFIG_X86_64 1161 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1162 #endif 1163 load_fixmap_gdt(raw_smp_processor_id()); 1164 } 1165 1166 #ifdef CONFIG_X86_64 1167 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1168 { 1169 preempt_disable(); 1170 if (vmx->loaded_cpu_state) 1171 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1172 preempt_enable(); 1173 return vmx->msr_guest_kernel_gs_base; 1174 } 1175 1176 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1177 { 1178 preempt_disable(); 1179 if (vmx->loaded_cpu_state) 1180 wrmsrl(MSR_KERNEL_GS_BASE, data); 1181 preempt_enable(); 1182 vmx->msr_guest_kernel_gs_base = data; 1183 } 1184 #endif 1185 1186 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) 1187 { 1188 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 1189 struct pi_desc old, new; 1190 unsigned int dest; 1191 1192 /* 1193 * In case of hot-plug or hot-unplug, we may have to undo 1194 * vmx_vcpu_pi_put even if there is no assigned device. And we 1195 * always keep PI.NDST up to date for simplicity: it makes the 1196 * code easier, and CPU migration is not a fast path. 1197 */ 1198 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) 1199 return; 1200 1201 /* The full case. */ 1202 do { 1203 old.control = new.control = pi_desc->control; 1204 1205 dest = cpu_physical_id(cpu); 1206 1207 if (x2apic_enabled()) 1208 new.ndst = dest; 1209 else 1210 new.ndst = (dest << 8) & 0xFF00; 1211 1212 new.sn = 0; 1213 } while (cmpxchg64(&pi_desc->control, old.control, 1214 new.control) != old.control); 1215 1216 /* 1217 * Clear SN before reading the bitmap. The VT-d firmware 1218 * writes the bitmap and reads SN atomically (5.2.3 in the 1219 * spec), so it doesn't really have a memory barrier that 1220 * pairs with this, but we cannot do that and we need one. 1221 */ 1222 smp_mb__after_atomic(); 1223 1224 if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS)) 1225 pi_set_on(pi_desc); 1226 } 1227 1228 /* 1229 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1230 * vcpu mutex is already taken. 1231 */ 1232 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1233 { 1234 struct vcpu_vmx *vmx = to_vmx(vcpu); 1235 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1236 1237 if (!already_loaded) { 1238 loaded_vmcs_clear(vmx->loaded_vmcs); 1239 local_irq_disable(); 1240 crash_disable_local_vmclear(cpu); 1241 1242 /* 1243 * Read loaded_vmcs->cpu should be before fetching 1244 * loaded_vmcs->loaded_vmcss_on_cpu_link. 1245 * See the comments in __loaded_vmcs_clear(). 1246 */ 1247 smp_rmb(); 1248 1249 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1250 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1251 crash_enable_local_vmclear(cpu); 1252 local_irq_enable(); 1253 } 1254 1255 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { 1256 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1257 vmcs_load(vmx->loaded_vmcs->vmcs); 1258 indirect_branch_prediction_barrier(); 1259 } 1260 1261 if (!already_loaded) { 1262 void *gdt = get_current_gdt_ro(); 1263 unsigned long sysenter_esp; 1264 1265 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1266 1267 /* 1268 * Linux uses per-cpu TSS and GDT, so set these when switching 1269 * processors. See 22.2.4. 1270 */ 1271 vmcs_writel(HOST_TR_BASE, 1272 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1273 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1274 1275 /* 1276 * VM exits change the host TR limit to 0x67 after a VM 1277 * exit. This is okay, since 0x67 covers everything except 1278 * the IO bitmap and have have code to handle the IO bitmap 1279 * being lost after a VM exit. 1280 */ 1281 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); 1282 1283 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1284 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1285 1286 vmx->loaded_vmcs->cpu = cpu; 1287 } 1288 1289 /* Setup TSC multiplier */ 1290 if (kvm_has_tsc_control && 1291 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) 1292 decache_tsc_multiplier(vmx); 1293 1294 vmx_vcpu_pi_load(vcpu, cpu); 1295 vmx->host_pkru = read_pkru(); 1296 vmx->host_debugctlmsr = get_debugctlmsr(); 1297 } 1298 1299 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) 1300 { 1301 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 1302 1303 if (!kvm_arch_has_assigned_device(vcpu->kvm) || 1304 !irq_remapping_cap(IRQ_POSTING_CAP) || 1305 !kvm_vcpu_apicv_active(vcpu)) 1306 return; 1307 1308 /* Set SN when the vCPU is preempted */ 1309 if (vcpu->preempted) 1310 pi_set_sn(pi_desc); 1311 } 1312 1313 void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1314 { 1315 vmx_vcpu_pi_put(vcpu); 1316 1317 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1318 } 1319 1320 static bool emulation_required(struct kvm_vcpu *vcpu) 1321 { 1322 return emulate_invalid_guest_state && !guest_state_valid(vcpu); 1323 } 1324 1325 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); 1326 1327 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1328 { 1329 unsigned long rflags, save_rflags; 1330 1331 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { 1332 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); 1333 rflags = vmcs_readl(GUEST_RFLAGS); 1334 if (to_vmx(vcpu)->rmode.vm86_active) { 1335 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1336 save_rflags = to_vmx(vcpu)->rmode.save_rflags; 1337 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1338 } 1339 to_vmx(vcpu)->rflags = rflags; 1340 } 1341 return to_vmx(vcpu)->rflags; 1342 } 1343 1344 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1345 { 1346 unsigned long old_rflags = vmx_get_rflags(vcpu); 1347 1348 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); 1349 to_vmx(vcpu)->rflags = rflags; 1350 if (to_vmx(vcpu)->rmode.vm86_active) { 1351 to_vmx(vcpu)->rmode.save_rflags = rflags; 1352 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1353 } 1354 vmcs_writel(GUEST_RFLAGS, rflags); 1355 1356 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) 1357 to_vmx(vcpu)->emulation_required = emulation_required(vcpu); 1358 } 1359 1360 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1361 { 1362 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1363 int ret = 0; 1364 1365 if (interruptibility & GUEST_INTR_STATE_STI) 1366 ret |= KVM_X86_SHADOW_INT_STI; 1367 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1368 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1369 1370 return ret; 1371 } 1372 1373 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1374 { 1375 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1376 u32 interruptibility = interruptibility_old; 1377 1378 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1379 1380 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1381 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1382 else if (mask & KVM_X86_SHADOW_INT_STI) 1383 interruptibility |= GUEST_INTR_STATE_STI; 1384 1385 if ((interruptibility != interruptibility_old)) 1386 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1387 } 1388 1389 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1390 { 1391 struct vcpu_vmx *vmx = to_vmx(vcpu); 1392 unsigned long value; 1393 1394 /* 1395 * Any MSR write that attempts to change bits marked reserved will 1396 * case a #GP fault. 1397 */ 1398 if (data & vmx->pt_desc.ctl_bitmask) 1399 return 1; 1400 1401 /* 1402 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1403 * result in a #GP unless the same write also clears TraceEn. 1404 */ 1405 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1406 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1407 return 1; 1408 1409 /* 1410 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1411 * and FabricEn would cause #GP, if 1412 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1413 */ 1414 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1415 !(data & RTIT_CTL_FABRIC_EN) && 1416 !intel_pt_validate_cap(vmx->pt_desc.caps, 1417 PT_CAP_single_range_output)) 1418 return 1; 1419 1420 /* 1421 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1422 * utilize encodings marked reserved will casue a #GP fault. 1423 */ 1424 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1425 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1426 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1427 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1428 return 1; 1429 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1430 PT_CAP_cycle_thresholds); 1431 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1432 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1433 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1434 return 1; 1435 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1436 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1437 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1438 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1439 return 1; 1440 1441 /* 1442 * If ADDRx_CFG is reserved or the encodings is >2 will 1443 * cause a #GP fault. 1444 */ 1445 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1446 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1447 return 1; 1448 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1449 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1450 return 1; 1451 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1452 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1453 return 1; 1454 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1455 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1456 return 1; 1457 1458 return 0; 1459 } 1460 1461 1462 static void skip_emulated_instruction(struct kvm_vcpu *vcpu) 1463 { 1464 unsigned long rip; 1465 1466 rip = kvm_rip_read(vcpu); 1467 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1468 kvm_rip_write(vcpu, rip); 1469 1470 /* skipping an emulated instruction also counts */ 1471 vmx_set_interrupt_shadow(vcpu, 0); 1472 } 1473 1474 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1475 { 1476 /* 1477 * Ensure that we clear the HLT state in the VMCS. We don't need to 1478 * explicitly skip the instruction because if the HLT state is set, 1479 * then the instruction is already executing and RIP has already been 1480 * advanced. 1481 */ 1482 if (kvm_hlt_in_guest(vcpu->kvm) && 1483 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1484 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1485 } 1486 1487 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1488 { 1489 struct vcpu_vmx *vmx = to_vmx(vcpu); 1490 unsigned nr = vcpu->arch.exception.nr; 1491 bool has_error_code = vcpu->arch.exception.has_error_code; 1492 u32 error_code = vcpu->arch.exception.error_code; 1493 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1494 1495 kvm_deliver_exception_payload(vcpu); 1496 1497 if (has_error_code) { 1498 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1499 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1500 } 1501 1502 if (vmx->rmode.vm86_active) { 1503 int inc_eip = 0; 1504 if (kvm_exception_is_soft(nr)) 1505 inc_eip = vcpu->arch.event_exit_inst_len; 1506 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) 1507 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1508 return; 1509 } 1510 1511 WARN_ON_ONCE(vmx->emulation_required); 1512 1513 if (kvm_exception_is_soft(nr)) { 1514 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1515 vmx->vcpu.arch.event_exit_inst_len); 1516 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1517 } else 1518 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1519 1520 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1521 1522 vmx_clear_hlt(vcpu); 1523 } 1524 1525 static bool vmx_rdtscp_supported(void) 1526 { 1527 return cpu_has_vmx_rdtscp(); 1528 } 1529 1530 static bool vmx_invpcid_supported(void) 1531 { 1532 return cpu_has_vmx_invpcid(); 1533 } 1534 1535 /* 1536 * Swap MSR entry in host/guest MSR entry array. 1537 */ 1538 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) 1539 { 1540 struct shared_msr_entry tmp; 1541 1542 tmp = vmx->guest_msrs[to]; 1543 vmx->guest_msrs[to] = vmx->guest_msrs[from]; 1544 vmx->guest_msrs[from] = tmp; 1545 } 1546 1547 /* 1548 * Set up the vmcs to automatically save and restore system 1549 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1550 * mode, as fiddling with msrs is very expensive. 1551 */ 1552 static void setup_msrs(struct vcpu_vmx *vmx) 1553 { 1554 int save_nmsrs, index; 1555 1556 save_nmsrs = 0; 1557 #ifdef CONFIG_X86_64 1558 /* 1559 * The SYSCALL MSRs are only needed on long mode guests, and only 1560 * when EFER.SCE is set. 1561 */ 1562 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { 1563 index = __find_msr_index(vmx, MSR_STAR); 1564 if (index >= 0) 1565 move_msr_up(vmx, index, save_nmsrs++); 1566 index = __find_msr_index(vmx, MSR_LSTAR); 1567 if (index >= 0) 1568 move_msr_up(vmx, index, save_nmsrs++); 1569 index = __find_msr_index(vmx, MSR_SYSCALL_MASK); 1570 if (index >= 0) 1571 move_msr_up(vmx, index, save_nmsrs++); 1572 } 1573 #endif 1574 index = __find_msr_index(vmx, MSR_EFER); 1575 if (index >= 0 && update_transition_efer(vmx, index)) 1576 move_msr_up(vmx, index, save_nmsrs++); 1577 index = __find_msr_index(vmx, MSR_TSC_AUX); 1578 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) 1579 move_msr_up(vmx, index, save_nmsrs++); 1580 1581 vmx->save_nmsrs = save_nmsrs; 1582 vmx->guest_msrs_dirty = true; 1583 1584 if (cpu_has_vmx_msr_bitmap()) 1585 vmx_update_msr_bitmap(&vmx->vcpu); 1586 } 1587 1588 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) 1589 { 1590 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1591 1592 if (is_guest_mode(vcpu) && 1593 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) 1594 return vcpu->arch.tsc_offset - vmcs12->tsc_offset; 1595 1596 return vcpu->arch.tsc_offset; 1597 } 1598 1599 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1600 { 1601 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1602 u64 g_tsc_offset = 0; 1603 1604 /* 1605 * We're here if L1 chose not to trap WRMSR to TSC. According 1606 * to the spec, this should set L1's TSC; The offset that L1 1607 * set for L2 remains unchanged, and still needs to be added 1608 * to the newly set TSC to get L2's TSC. 1609 */ 1610 if (is_guest_mode(vcpu) && 1611 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) 1612 g_tsc_offset = vmcs12->tsc_offset; 1613 1614 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1615 vcpu->arch.tsc_offset - g_tsc_offset, 1616 offset); 1617 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); 1618 return offset + g_tsc_offset; 1619 } 1620 1621 /* 1622 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1623 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1624 * all guests if the "nested" module option is off, and can also be disabled 1625 * for a single guest by disabling its VMX cpuid bit. 1626 */ 1627 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1628 { 1629 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1630 } 1631 1632 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1633 uint64_t val) 1634 { 1635 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1636 1637 return !(val & ~valid_bits); 1638 } 1639 1640 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1641 { 1642 switch (msr->index) { 1643 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1644 if (!nested) 1645 return 1; 1646 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1647 default: 1648 return 1; 1649 } 1650 1651 return 0; 1652 } 1653 1654 /* 1655 * Reads an msr value (of 'msr_index') into 'pdata'. 1656 * Returns 0 on success, non-0 otherwise. 1657 * Assumes vcpu_load() was already called. 1658 */ 1659 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1660 { 1661 struct vcpu_vmx *vmx = to_vmx(vcpu); 1662 struct shared_msr_entry *msr; 1663 u32 index; 1664 1665 switch (msr_info->index) { 1666 #ifdef CONFIG_X86_64 1667 case MSR_FS_BASE: 1668 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1669 break; 1670 case MSR_GS_BASE: 1671 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1672 break; 1673 case MSR_KERNEL_GS_BASE: 1674 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1675 break; 1676 #endif 1677 case MSR_EFER: 1678 return kvm_get_msr_common(vcpu, msr_info); 1679 case MSR_IA32_SPEC_CTRL: 1680 if (!msr_info->host_initiated && 1681 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1682 return 1; 1683 1684 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1685 break; 1686 case MSR_IA32_SYSENTER_CS: 1687 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1688 break; 1689 case MSR_IA32_SYSENTER_EIP: 1690 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1691 break; 1692 case MSR_IA32_SYSENTER_ESP: 1693 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1694 break; 1695 case MSR_IA32_POWER_CTL: 1696 msr_info->data = vmx->msr_ia32_power_ctl; 1697 break; 1698 case MSR_IA32_BNDCFGS: 1699 if (!kvm_mpx_supported() || 1700 (!msr_info->host_initiated && 1701 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1702 return 1; 1703 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1704 break; 1705 case MSR_IA32_MCG_EXT_CTL: 1706 if (!msr_info->host_initiated && 1707 !(vmx->msr_ia32_feature_control & 1708 FEATURE_CONTROL_LMCE)) 1709 return 1; 1710 msr_info->data = vcpu->arch.mcg_ext_ctl; 1711 break; 1712 case MSR_IA32_FEATURE_CONTROL: 1713 msr_info->data = vmx->msr_ia32_feature_control; 1714 break; 1715 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1716 if (!nested_vmx_allowed(vcpu)) 1717 return 1; 1718 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1719 &msr_info->data); 1720 case MSR_IA32_XSS: 1721 if (!vmx_xsaves_supported()) 1722 return 1; 1723 msr_info->data = vcpu->arch.ia32_xss; 1724 break; 1725 case MSR_IA32_RTIT_CTL: 1726 if (pt_mode != PT_MODE_HOST_GUEST) 1727 return 1; 1728 msr_info->data = vmx->pt_desc.guest.ctl; 1729 break; 1730 case MSR_IA32_RTIT_STATUS: 1731 if (pt_mode != PT_MODE_HOST_GUEST) 1732 return 1; 1733 msr_info->data = vmx->pt_desc.guest.status; 1734 break; 1735 case MSR_IA32_RTIT_CR3_MATCH: 1736 if ((pt_mode != PT_MODE_HOST_GUEST) || 1737 !intel_pt_validate_cap(vmx->pt_desc.caps, 1738 PT_CAP_cr3_filtering)) 1739 return 1; 1740 msr_info->data = vmx->pt_desc.guest.cr3_match; 1741 break; 1742 case MSR_IA32_RTIT_OUTPUT_BASE: 1743 if ((pt_mode != PT_MODE_HOST_GUEST) || 1744 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1745 PT_CAP_topa_output) && 1746 !intel_pt_validate_cap(vmx->pt_desc.caps, 1747 PT_CAP_single_range_output))) 1748 return 1; 1749 msr_info->data = vmx->pt_desc.guest.output_base; 1750 break; 1751 case MSR_IA32_RTIT_OUTPUT_MASK: 1752 if ((pt_mode != PT_MODE_HOST_GUEST) || 1753 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1754 PT_CAP_topa_output) && 1755 !intel_pt_validate_cap(vmx->pt_desc.caps, 1756 PT_CAP_single_range_output))) 1757 return 1; 1758 msr_info->data = vmx->pt_desc.guest.output_mask; 1759 break; 1760 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1761 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1762 if ((pt_mode != PT_MODE_HOST_GUEST) || 1763 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1764 PT_CAP_num_address_ranges))) 1765 return 1; 1766 if (index % 2) 1767 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1768 else 1769 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1770 break; 1771 case MSR_TSC_AUX: 1772 if (!msr_info->host_initiated && 1773 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1774 return 1; 1775 /* Else, falls through */ 1776 default: 1777 msr = find_msr_entry(vmx, msr_info->index); 1778 if (msr) { 1779 msr_info->data = msr->data; 1780 break; 1781 } 1782 return kvm_get_msr_common(vcpu, msr_info); 1783 } 1784 1785 return 0; 1786 } 1787 1788 /* 1789 * Writes msr value into into the appropriate "register". 1790 * Returns 0 on success, non-0 otherwise. 1791 * Assumes vcpu_load() was already called. 1792 */ 1793 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1794 { 1795 struct vcpu_vmx *vmx = to_vmx(vcpu); 1796 struct shared_msr_entry *msr; 1797 int ret = 0; 1798 u32 msr_index = msr_info->index; 1799 u64 data = msr_info->data; 1800 u32 index; 1801 1802 switch (msr_index) { 1803 case MSR_EFER: 1804 ret = kvm_set_msr_common(vcpu, msr_info); 1805 break; 1806 #ifdef CONFIG_X86_64 1807 case MSR_FS_BASE: 1808 vmx_segment_cache_clear(vmx); 1809 vmcs_writel(GUEST_FS_BASE, data); 1810 break; 1811 case MSR_GS_BASE: 1812 vmx_segment_cache_clear(vmx); 1813 vmcs_writel(GUEST_GS_BASE, data); 1814 break; 1815 case MSR_KERNEL_GS_BASE: 1816 vmx_write_guest_kernel_gs_base(vmx, data); 1817 break; 1818 #endif 1819 case MSR_IA32_SYSENTER_CS: 1820 vmcs_write32(GUEST_SYSENTER_CS, data); 1821 break; 1822 case MSR_IA32_SYSENTER_EIP: 1823 vmcs_writel(GUEST_SYSENTER_EIP, data); 1824 break; 1825 case MSR_IA32_SYSENTER_ESP: 1826 vmcs_writel(GUEST_SYSENTER_ESP, data); 1827 break; 1828 case MSR_IA32_POWER_CTL: 1829 vmx->msr_ia32_power_ctl = data; 1830 break; 1831 case MSR_IA32_BNDCFGS: 1832 if (!kvm_mpx_supported() || 1833 (!msr_info->host_initiated && 1834 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1835 return 1; 1836 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 1837 (data & MSR_IA32_BNDCFGS_RSVD)) 1838 return 1; 1839 vmcs_write64(GUEST_BNDCFGS, data); 1840 break; 1841 case MSR_IA32_SPEC_CTRL: 1842 if (!msr_info->host_initiated && 1843 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1844 return 1; 1845 1846 /* The STIBP bit doesn't fault even if it's not advertised */ 1847 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) 1848 return 1; 1849 1850 vmx->spec_ctrl = data; 1851 1852 if (!data) 1853 break; 1854 1855 /* 1856 * For non-nested: 1857 * When it's written (to non-zero) for the first time, pass 1858 * it through. 1859 * 1860 * For nested: 1861 * The handling of the MSR bitmap for L2 guests is done in 1862 * nested_vmx_merge_msr_bitmap. We should not touch the 1863 * vmcs02.msr_bitmap here since it gets completely overwritten 1864 * in the merging. We update the vmcs01 here for L1 as well 1865 * since it will end up touching the MSR anyway now. 1866 */ 1867 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, 1868 MSR_IA32_SPEC_CTRL, 1869 MSR_TYPE_RW); 1870 break; 1871 case MSR_IA32_PRED_CMD: 1872 if (!msr_info->host_initiated && 1873 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1874 return 1; 1875 1876 if (data & ~PRED_CMD_IBPB) 1877 return 1; 1878 1879 if (!data) 1880 break; 1881 1882 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 1883 1884 /* 1885 * For non-nested: 1886 * When it's written (to non-zero) for the first time, pass 1887 * it through. 1888 * 1889 * For nested: 1890 * The handling of the MSR bitmap for L2 guests is done in 1891 * nested_vmx_merge_msr_bitmap. We should not touch the 1892 * vmcs02.msr_bitmap here since it gets completely overwritten 1893 * in the merging. 1894 */ 1895 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, 1896 MSR_TYPE_W); 1897 break; 1898 case MSR_IA32_CR_PAT: 1899 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 1900 if (!kvm_pat_valid(data)) 1901 return 1; 1902 vmcs_write64(GUEST_IA32_PAT, data); 1903 vcpu->arch.pat = data; 1904 break; 1905 } 1906 ret = kvm_set_msr_common(vcpu, msr_info); 1907 break; 1908 case MSR_IA32_TSC_ADJUST: 1909 ret = kvm_set_msr_common(vcpu, msr_info); 1910 break; 1911 case MSR_IA32_MCG_EXT_CTL: 1912 if ((!msr_info->host_initiated && 1913 !(to_vmx(vcpu)->msr_ia32_feature_control & 1914 FEATURE_CONTROL_LMCE)) || 1915 (data & ~MCG_EXT_CTL_LMCE_EN)) 1916 return 1; 1917 vcpu->arch.mcg_ext_ctl = data; 1918 break; 1919 case MSR_IA32_FEATURE_CONTROL: 1920 if (!vmx_feature_control_msr_valid(vcpu, data) || 1921 (to_vmx(vcpu)->msr_ia32_feature_control & 1922 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) 1923 return 1; 1924 vmx->msr_ia32_feature_control = data; 1925 if (msr_info->host_initiated && data == 0) 1926 vmx_leave_nested(vcpu); 1927 break; 1928 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1929 if (!msr_info->host_initiated) 1930 return 1; /* they are read-only */ 1931 if (!nested_vmx_allowed(vcpu)) 1932 return 1; 1933 return vmx_set_vmx_msr(vcpu, msr_index, data); 1934 case MSR_IA32_XSS: 1935 if (!vmx_xsaves_supported()) 1936 return 1; 1937 /* 1938 * The only supported bit as of Skylake is bit 8, but 1939 * it is not supported on KVM. 1940 */ 1941 if (data != 0) 1942 return 1; 1943 vcpu->arch.ia32_xss = data; 1944 if (vcpu->arch.ia32_xss != host_xss) 1945 add_atomic_switch_msr(vmx, MSR_IA32_XSS, 1946 vcpu->arch.ia32_xss, host_xss, false); 1947 else 1948 clear_atomic_switch_msr(vmx, MSR_IA32_XSS); 1949 break; 1950 case MSR_IA32_RTIT_CTL: 1951 if ((pt_mode != PT_MODE_HOST_GUEST) || 1952 vmx_rtit_ctl_check(vcpu, data) || 1953 vmx->nested.vmxon) 1954 return 1; 1955 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 1956 vmx->pt_desc.guest.ctl = data; 1957 pt_update_intercept_for_msr(vmx); 1958 break; 1959 case MSR_IA32_RTIT_STATUS: 1960 if ((pt_mode != PT_MODE_HOST_GUEST) || 1961 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1962 (data & MSR_IA32_RTIT_STATUS_MASK)) 1963 return 1; 1964 vmx->pt_desc.guest.status = data; 1965 break; 1966 case MSR_IA32_RTIT_CR3_MATCH: 1967 if ((pt_mode != PT_MODE_HOST_GUEST) || 1968 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1969 !intel_pt_validate_cap(vmx->pt_desc.caps, 1970 PT_CAP_cr3_filtering)) 1971 return 1; 1972 vmx->pt_desc.guest.cr3_match = data; 1973 break; 1974 case MSR_IA32_RTIT_OUTPUT_BASE: 1975 if ((pt_mode != PT_MODE_HOST_GUEST) || 1976 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1977 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1978 PT_CAP_topa_output) && 1979 !intel_pt_validate_cap(vmx->pt_desc.caps, 1980 PT_CAP_single_range_output)) || 1981 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)) 1982 return 1; 1983 vmx->pt_desc.guest.output_base = data; 1984 break; 1985 case MSR_IA32_RTIT_OUTPUT_MASK: 1986 if ((pt_mode != PT_MODE_HOST_GUEST) || 1987 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1988 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1989 PT_CAP_topa_output) && 1990 !intel_pt_validate_cap(vmx->pt_desc.caps, 1991 PT_CAP_single_range_output))) 1992 return 1; 1993 vmx->pt_desc.guest.output_mask = data; 1994 break; 1995 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1996 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1997 if ((pt_mode != PT_MODE_HOST_GUEST) || 1998 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1999 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2000 PT_CAP_num_address_ranges))) 2001 return 1; 2002 if (index % 2) 2003 vmx->pt_desc.guest.addr_b[index / 2] = data; 2004 else 2005 vmx->pt_desc.guest.addr_a[index / 2] = data; 2006 break; 2007 case MSR_TSC_AUX: 2008 if (!msr_info->host_initiated && 2009 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 2010 return 1; 2011 /* Check reserved bit, higher 32 bits should be zero */ 2012 if ((data >> 32) != 0) 2013 return 1; 2014 /* Else, falls through */ 2015 default: 2016 msr = find_msr_entry(vmx, msr_index); 2017 if (msr) { 2018 u64 old_msr_data = msr->data; 2019 msr->data = data; 2020 if (msr - vmx->guest_msrs < vmx->save_nmsrs) { 2021 preempt_disable(); 2022 ret = kvm_set_shared_msr(msr->index, msr->data, 2023 msr->mask); 2024 preempt_enable(); 2025 if (ret) 2026 msr->data = old_msr_data; 2027 } 2028 break; 2029 } 2030 ret = kvm_set_msr_common(vcpu, msr_info); 2031 } 2032 2033 return ret; 2034 } 2035 2036 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2037 { 2038 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); 2039 switch (reg) { 2040 case VCPU_REGS_RSP: 2041 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2042 break; 2043 case VCPU_REGS_RIP: 2044 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2045 break; 2046 case VCPU_EXREG_PDPTR: 2047 if (enable_ept) 2048 ept_save_pdptrs(vcpu); 2049 break; 2050 default: 2051 break; 2052 } 2053 } 2054 2055 static __init int cpu_has_kvm_support(void) 2056 { 2057 return cpu_has_vmx(); 2058 } 2059 2060 static __init int vmx_disabled_by_bios(void) 2061 { 2062 u64 msr; 2063 2064 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); 2065 if (msr & FEATURE_CONTROL_LOCKED) { 2066 /* launched w/ TXT and VMX disabled */ 2067 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) 2068 && tboot_enabled()) 2069 return 1; 2070 /* launched w/o TXT and VMX only enabled w/ TXT */ 2071 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) 2072 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) 2073 && !tboot_enabled()) { 2074 printk(KERN_WARNING "kvm: disable TXT in the BIOS or " 2075 "activate TXT before enabling KVM\n"); 2076 return 1; 2077 } 2078 /* launched w/o TXT and VMX disabled */ 2079 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) 2080 && !tboot_enabled()) 2081 return 1; 2082 } 2083 2084 return 0; 2085 } 2086 2087 static void kvm_cpu_vmxon(u64 addr) 2088 { 2089 cr4_set_bits(X86_CR4_VMXE); 2090 intel_pt_handle_vmx(1); 2091 2092 asm volatile ("vmxon %0" : : "m"(addr)); 2093 } 2094 2095 static int hardware_enable(void) 2096 { 2097 int cpu = raw_smp_processor_id(); 2098 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2099 u64 old, test_bits; 2100 2101 if (cr4_read_shadow() & X86_CR4_VMXE) 2102 return -EBUSY; 2103 2104 /* 2105 * This can happen if we hot-added a CPU but failed to allocate 2106 * VP assist page for it. 2107 */ 2108 if (static_branch_unlikely(&enable_evmcs) && 2109 !hv_get_vp_assist_page(cpu)) 2110 return -EFAULT; 2111 2112 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 2113 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); 2114 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 2115 2116 /* 2117 * Now we can enable the vmclear operation in kdump 2118 * since the loaded_vmcss_on_cpu list on this cpu 2119 * has been initialized. 2120 * 2121 * Though the cpu is not in VMX operation now, there 2122 * is no problem to enable the vmclear operation 2123 * for the loaded_vmcss_on_cpu list is empty! 2124 */ 2125 crash_enable_local_vmclear(cpu); 2126 2127 rdmsrl(MSR_IA32_FEATURE_CONTROL, old); 2128 2129 test_bits = FEATURE_CONTROL_LOCKED; 2130 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 2131 if (tboot_enabled()) 2132 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; 2133 2134 if ((old & test_bits) != test_bits) { 2135 /* enable and lock */ 2136 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); 2137 } 2138 kvm_cpu_vmxon(phys_addr); 2139 if (enable_ept) 2140 ept_sync_global(); 2141 2142 return 0; 2143 } 2144 2145 static void vmclear_local_loaded_vmcss(void) 2146 { 2147 int cpu = raw_smp_processor_id(); 2148 struct loaded_vmcs *v, *n; 2149 2150 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2151 loaded_vmcss_on_cpu_link) 2152 __loaded_vmcs_clear(v); 2153 } 2154 2155 2156 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() 2157 * tricks. 2158 */ 2159 static void kvm_cpu_vmxoff(void) 2160 { 2161 asm volatile (__ex("vmxoff")); 2162 2163 intel_pt_handle_vmx(0); 2164 cr4_clear_bits(X86_CR4_VMXE); 2165 } 2166 2167 static void hardware_disable(void) 2168 { 2169 vmclear_local_loaded_vmcss(); 2170 kvm_cpu_vmxoff(); 2171 } 2172 2173 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2174 u32 msr, u32 *result) 2175 { 2176 u32 vmx_msr_low, vmx_msr_high; 2177 u32 ctl = ctl_min | ctl_opt; 2178 2179 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2180 2181 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2182 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2183 2184 /* Ensure minimum (required) set of control bits are supported. */ 2185 if (ctl_min & ~ctl) 2186 return -EIO; 2187 2188 *result = ctl; 2189 return 0; 2190 } 2191 2192 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2193 struct vmx_capability *vmx_cap) 2194 { 2195 u32 vmx_msr_low, vmx_msr_high; 2196 u32 min, opt, min2, opt2; 2197 u32 _pin_based_exec_control = 0; 2198 u32 _cpu_based_exec_control = 0; 2199 u32 _cpu_based_2nd_exec_control = 0; 2200 u32 _vmexit_control = 0; 2201 u32 _vmentry_control = 0; 2202 2203 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2204 min = CPU_BASED_HLT_EXITING | 2205 #ifdef CONFIG_X86_64 2206 CPU_BASED_CR8_LOAD_EXITING | 2207 CPU_BASED_CR8_STORE_EXITING | 2208 #endif 2209 CPU_BASED_CR3_LOAD_EXITING | 2210 CPU_BASED_CR3_STORE_EXITING | 2211 CPU_BASED_UNCOND_IO_EXITING | 2212 CPU_BASED_MOV_DR_EXITING | 2213 CPU_BASED_USE_TSC_OFFSETING | 2214 CPU_BASED_MWAIT_EXITING | 2215 CPU_BASED_MONITOR_EXITING | 2216 CPU_BASED_INVLPG_EXITING | 2217 CPU_BASED_RDPMC_EXITING; 2218 2219 opt = CPU_BASED_TPR_SHADOW | 2220 CPU_BASED_USE_MSR_BITMAPS | 2221 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2222 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2223 &_cpu_based_exec_control) < 0) 2224 return -EIO; 2225 #ifdef CONFIG_X86_64 2226 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2227 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2228 ~CPU_BASED_CR8_STORE_EXITING; 2229 #endif 2230 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2231 min2 = 0; 2232 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2233 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2234 SECONDARY_EXEC_WBINVD_EXITING | 2235 SECONDARY_EXEC_ENABLE_VPID | 2236 SECONDARY_EXEC_ENABLE_EPT | 2237 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2238 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2239 SECONDARY_EXEC_DESC | 2240 SECONDARY_EXEC_RDTSCP | 2241 SECONDARY_EXEC_ENABLE_INVPCID | 2242 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2243 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2244 SECONDARY_EXEC_SHADOW_VMCS | 2245 SECONDARY_EXEC_XSAVES | 2246 SECONDARY_EXEC_RDSEED_EXITING | 2247 SECONDARY_EXEC_RDRAND_EXITING | 2248 SECONDARY_EXEC_ENABLE_PML | 2249 SECONDARY_EXEC_TSC_SCALING | 2250 SECONDARY_EXEC_PT_USE_GPA | 2251 SECONDARY_EXEC_PT_CONCEAL_VMX | 2252 SECONDARY_EXEC_ENABLE_VMFUNC | 2253 SECONDARY_EXEC_ENCLS_EXITING; 2254 if (adjust_vmx_controls(min2, opt2, 2255 MSR_IA32_VMX_PROCBASED_CTLS2, 2256 &_cpu_based_2nd_exec_control) < 0) 2257 return -EIO; 2258 } 2259 #ifndef CONFIG_X86_64 2260 if (!(_cpu_based_2nd_exec_control & 2261 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2262 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2263 #endif 2264 2265 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2266 _cpu_based_2nd_exec_control &= ~( 2267 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2268 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2269 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2270 2271 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2272 &vmx_cap->ept, &vmx_cap->vpid); 2273 2274 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2275 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2276 enabled */ 2277 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2278 CPU_BASED_CR3_STORE_EXITING | 2279 CPU_BASED_INVLPG_EXITING); 2280 } else if (vmx_cap->ept) { 2281 vmx_cap->ept = 0; 2282 pr_warn_once("EPT CAP should not exist if not support " 2283 "1-setting enable EPT VM-execution control\n"); 2284 } 2285 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2286 vmx_cap->vpid) { 2287 vmx_cap->vpid = 0; 2288 pr_warn_once("VPID CAP should not exist if not support " 2289 "1-setting enable VPID VM-execution control\n"); 2290 } 2291 2292 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2293 #ifdef CONFIG_X86_64 2294 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2295 #endif 2296 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2297 VM_EXIT_LOAD_IA32_PAT | 2298 VM_EXIT_LOAD_IA32_EFER | 2299 VM_EXIT_CLEAR_BNDCFGS | 2300 VM_EXIT_PT_CONCEAL_PIP | 2301 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2302 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2303 &_vmexit_control) < 0) 2304 return -EIO; 2305 2306 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2307 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2308 PIN_BASED_VMX_PREEMPTION_TIMER; 2309 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2310 &_pin_based_exec_control) < 0) 2311 return -EIO; 2312 2313 if (cpu_has_broken_vmx_preemption_timer()) 2314 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2315 if (!(_cpu_based_2nd_exec_control & 2316 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2317 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2318 2319 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2320 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2321 VM_ENTRY_LOAD_IA32_PAT | 2322 VM_ENTRY_LOAD_IA32_EFER | 2323 VM_ENTRY_LOAD_BNDCFGS | 2324 VM_ENTRY_PT_CONCEAL_PIP | 2325 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2326 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2327 &_vmentry_control) < 0) 2328 return -EIO; 2329 2330 /* 2331 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2332 * can't be used due to an errata where VM Exit may incorrectly clear 2333 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2334 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2335 */ 2336 if (boot_cpu_data.x86 == 0x6) { 2337 switch (boot_cpu_data.x86_model) { 2338 case 26: /* AAK155 */ 2339 case 30: /* AAP115 */ 2340 case 37: /* AAT100 */ 2341 case 44: /* BC86,AAY89,BD102 */ 2342 case 46: /* BA97 */ 2343 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2344 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2345 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2346 "does not work properly. Using workaround\n"); 2347 break; 2348 default: 2349 break; 2350 } 2351 } 2352 2353 2354 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2355 2356 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2357 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2358 return -EIO; 2359 2360 #ifdef CONFIG_X86_64 2361 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2362 if (vmx_msr_high & (1u<<16)) 2363 return -EIO; 2364 #endif 2365 2366 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2367 if (((vmx_msr_high >> 18) & 15) != 6) 2368 return -EIO; 2369 2370 vmcs_conf->size = vmx_msr_high & 0x1fff; 2371 vmcs_conf->order = get_order(vmcs_conf->size); 2372 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2373 2374 vmcs_conf->revision_id = vmx_msr_low; 2375 2376 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2377 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2378 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2379 vmcs_conf->vmexit_ctrl = _vmexit_control; 2380 vmcs_conf->vmentry_ctrl = _vmentry_control; 2381 2382 if (static_branch_unlikely(&enable_evmcs)) 2383 evmcs_sanitize_exec_ctrls(vmcs_conf); 2384 2385 return 0; 2386 } 2387 2388 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2389 { 2390 int node = cpu_to_node(cpu); 2391 struct page *pages; 2392 struct vmcs *vmcs; 2393 2394 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2395 if (!pages) 2396 return NULL; 2397 vmcs = page_address(pages); 2398 memset(vmcs, 0, vmcs_config.size); 2399 2400 /* KVM supports Enlightened VMCS v1 only */ 2401 if (static_branch_unlikely(&enable_evmcs)) 2402 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2403 else 2404 vmcs->hdr.revision_id = vmcs_config.revision_id; 2405 2406 if (shadow) 2407 vmcs->hdr.shadow_vmcs = 1; 2408 return vmcs; 2409 } 2410 2411 void free_vmcs(struct vmcs *vmcs) 2412 { 2413 free_pages((unsigned long)vmcs, vmcs_config.order); 2414 } 2415 2416 /* 2417 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2418 */ 2419 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2420 { 2421 if (!loaded_vmcs->vmcs) 2422 return; 2423 loaded_vmcs_clear(loaded_vmcs); 2424 free_vmcs(loaded_vmcs->vmcs); 2425 loaded_vmcs->vmcs = NULL; 2426 if (loaded_vmcs->msr_bitmap) 2427 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2428 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2429 } 2430 2431 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2432 { 2433 loaded_vmcs->vmcs = alloc_vmcs(false); 2434 if (!loaded_vmcs->vmcs) 2435 return -ENOMEM; 2436 2437 loaded_vmcs->shadow_vmcs = NULL; 2438 loaded_vmcs_init(loaded_vmcs); 2439 2440 if (cpu_has_vmx_msr_bitmap()) { 2441 loaded_vmcs->msr_bitmap = (unsigned long *) 2442 __get_free_page(GFP_KERNEL_ACCOUNT); 2443 if (!loaded_vmcs->msr_bitmap) 2444 goto out_vmcs; 2445 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2446 2447 if (IS_ENABLED(CONFIG_HYPERV) && 2448 static_branch_unlikely(&enable_evmcs) && 2449 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2450 struct hv_enlightened_vmcs *evmcs = 2451 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2452 2453 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2454 } 2455 } 2456 2457 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2458 2459 return 0; 2460 2461 out_vmcs: 2462 free_loaded_vmcs(loaded_vmcs); 2463 return -ENOMEM; 2464 } 2465 2466 static void free_kvm_area(void) 2467 { 2468 int cpu; 2469 2470 for_each_possible_cpu(cpu) { 2471 free_vmcs(per_cpu(vmxarea, cpu)); 2472 per_cpu(vmxarea, cpu) = NULL; 2473 } 2474 } 2475 2476 static __init int alloc_kvm_area(void) 2477 { 2478 int cpu; 2479 2480 for_each_possible_cpu(cpu) { 2481 struct vmcs *vmcs; 2482 2483 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2484 if (!vmcs) { 2485 free_kvm_area(); 2486 return -ENOMEM; 2487 } 2488 2489 /* 2490 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2491 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2492 * revision_id reported by MSR_IA32_VMX_BASIC. 2493 * 2494 * However, even though not explicitly documented by 2495 * TLFS, VMXArea passed as VMXON argument should 2496 * still be marked with revision_id reported by 2497 * physical CPU. 2498 */ 2499 if (static_branch_unlikely(&enable_evmcs)) 2500 vmcs->hdr.revision_id = vmcs_config.revision_id; 2501 2502 per_cpu(vmxarea, cpu) = vmcs; 2503 } 2504 return 0; 2505 } 2506 2507 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2508 struct kvm_segment *save) 2509 { 2510 if (!emulate_invalid_guest_state) { 2511 /* 2512 * CS and SS RPL should be equal during guest entry according 2513 * to VMX spec, but in reality it is not always so. Since vcpu 2514 * is in the middle of the transition from real mode to 2515 * protected mode it is safe to assume that RPL 0 is a good 2516 * default value. 2517 */ 2518 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2519 save->selector &= ~SEGMENT_RPL_MASK; 2520 save->dpl = save->selector & SEGMENT_RPL_MASK; 2521 save->s = 1; 2522 } 2523 vmx_set_segment(vcpu, save, seg); 2524 } 2525 2526 static void enter_pmode(struct kvm_vcpu *vcpu) 2527 { 2528 unsigned long flags; 2529 struct vcpu_vmx *vmx = to_vmx(vcpu); 2530 2531 /* 2532 * Update real mode segment cache. It may be not up-to-date if sement 2533 * register was written while vcpu was in a guest mode. 2534 */ 2535 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2536 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2537 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2538 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2539 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2540 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2541 2542 vmx->rmode.vm86_active = 0; 2543 2544 vmx_segment_cache_clear(vmx); 2545 2546 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2547 2548 flags = vmcs_readl(GUEST_RFLAGS); 2549 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2550 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2551 vmcs_writel(GUEST_RFLAGS, flags); 2552 2553 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2554 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2555 2556 update_exception_bitmap(vcpu); 2557 2558 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2559 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2560 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2561 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2562 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2563 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2564 } 2565 2566 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2567 { 2568 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2569 struct kvm_segment var = *save; 2570 2571 var.dpl = 0x3; 2572 if (seg == VCPU_SREG_CS) 2573 var.type = 0x3; 2574 2575 if (!emulate_invalid_guest_state) { 2576 var.selector = var.base >> 4; 2577 var.base = var.base & 0xffff0; 2578 var.limit = 0xffff; 2579 var.g = 0; 2580 var.db = 0; 2581 var.present = 1; 2582 var.s = 1; 2583 var.l = 0; 2584 var.unusable = 0; 2585 var.type = 0x3; 2586 var.avl = 0; 2587 if (save->base & 0xf) 2588 printk_once(KERN_WARNING "kvm: segment base is not " 2589 "paragraph aligned when entering " 2590 "protected mode (seg=%d)", seg); 2591 } 2592 2593 vmcs_write16(sf->selector, var.selector); 2594 vmcs_writel(sf->base, var.base); 2595 vmcs_write32(sf->limit, var.limit); 2596 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2597 } 2598 2599 static void enter_rmode(struct kvm_vcpu *vcpu) 2600 { 2601 unsigned long flags; 2602 struct vcpu_vmx *vmx = to_vmx(vcpu); 2603 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2604 2605 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2606 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2607 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2608 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2609 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2610 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2611 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2612 2613 vmx->rmode.vm86_active = 1; 2614 2615 /* 2616 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2617 * vcpu. Warn the user that an update is overdue. 2618 */ 2619 if (!kvm_vmx->tss_addr) 2620 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2621 "called before entering vcpu\n"); 2622 2623 vmx_segment_cache_clear(vmx); 2624 2625 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2626 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2627 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2628 2629 flags = vmcs_readl(GUEST_RFLAGS); 2630 vmx->rmode.save_rflags = flags; 2631 2632 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2633 2634 vmcs_writel(GUEST_RFLAGS, flags); 2635 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2636 update_exception_bitmap(vcpu); 2637 2638 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2639 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2640 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2641 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2642 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2643 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2644 2645 kvm_mmu_reset_context(vcpu); 2646 } 2647 2648 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2649 { 2650 struct vcpu_vmx *vmx = to_vmx(vcpu); 2651 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); 2652 2653 if (!msr) 2654 return; 2655 2656 vcpu->arch.efer = efer; 2657 if (efer & EFER_LMA) { 2658 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2659 msr->data = efer; 2660 } else { 2661 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2662 2663 msr->data = efer & ~EFER_LME; 2664 } 2665 setup_msrs(vmx); 2666 } 2667 2668 #ifdef CONFIG_X86_64 2669 2670 static void enter_lmode(struct kvm_vcpu *vcpu) 2671 { 2672 u32 guest_tr_ar; 2673 2674 vmx_segment_cache_clear(to_vmx(vcpu)); 2675 2676 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2677 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2678 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2679 __func__); 2680 vmcs_write32(GUEST_TR_AR_BYTES, 2681 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2682 | VMX_AR_TYPE_BUSY_64_TSS); 2683 } 2684 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2685 } 2686 2687 static void exit_lmode(struct kvm_vcpu *vcpu) 2688 { 2689 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2690 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2691 } 2692 2693 #endif 2694 2695 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2696 { 2697 int vpid = to_vmx(vcpu)->vpid; 2698 2699 if (!vpid_sync_vcpu_addr(vpid, addr)) 2700 vpid_sync_context(vpid); 2701 2702 /* 2703 * If VPIDs are not supported or enabled, then the above is a no-op. 2704 * But we don't really need a TLB flush in that case anyway, because 2705 * each VM entry/exit includes an implicit flush when VPID is 0. 2706 */ 2707 } 2708 2709 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) 2710 { 2711 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2712 2713 vcpu->arch.cr0 &= ~cr0_guest_owned_bits; 2714 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; 2715 } 2716 2717 static void vmx_decache_cr3(struct kvm_vcpu *vcpu) 2718 { 2719 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) 2720 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2721 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 2722 } 2723 2724 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) 2725 { 2726 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2727 2728 vcpu->arch.cr4 &= ~cr4_guest_owned_bits; 2729 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; 2730 } 2731 2732 static void ept_load_pdptrs(struct kvm_vcpu *vcpu) 2733 { 2734 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2735 2736 if (!test_bit(VCPU_EXREG_PDPTR, 2737 (unsigned long *)&vcpu->arch.regs_dirty)) 2738 return; 2739 2740 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { 2741 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2742 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2743 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2744 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2745 } 2746 } 2747 2748 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2749 { 2750 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2751 2752 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { 2753 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2754 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2755 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2756 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2757 } 2758 2759 __set_bit(VCPU_EXREG_PDPTR, 2760 (unsigned long *)&vcpu->arch.regs_avail); 2761 __set_bit(VCPU_EXREG_PDPTR, 2762 (unsigned long *)&vcpu->arch.regs_dirty); 2763 } 2764 2765 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 2766 unsigned long cr0, 2767 struct kvm_vcpu *vcpu) 2768 { 2769 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 2770 vmx_decache_cr3(vcpu); 2771 if (!(cr0 & X86_CR0_PG)) { 2772 /* From paging/starting to nonpaging */ 2773 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, 2774 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | 2775 (CPU_BASED_CR3_LOAD_EXITING | 2776 CPU_BASED_CR3_STORE_EXITING)); 2777 vcpu->arch.cr0 = cr0; 2778 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2779 } else if (!is_paging(vcpu)) { 2780 /* From nonpaging to paging */ 2781 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, 2782 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & 2783 ~(CPU_BASED_CR3_LOAD_EXITING | 2784 CPU_BASED_CR3_STORE_EXITING)); 2785 vcpu->arch.cr0 = cr0; 2786 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2787 } 2788 2789 if (!(cr0 & X86_CR0_WP)) 2790 *hw_cr0 &= ~X86_CR0_WP; 2791 } 2792 2793 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 2794 { 2795 struct vcpu_vmx *vmx = to_vmx(vcpu); 2796 unsigned long hw_cr0; 2797 2798 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 2799 if (enable_unrestricted_guest) 2800 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 2801 else { 2802 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 2803 2804 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 2805 enter_pmode(vcpu); 2806 2807 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 2808 enter_rmode(vcpu); 2809 } 2810 2811 #ifdef CONFIG_X86_64 2812 if (vcpu->arch.efer & EFER_LME) { 2813 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 2814 enter_lmode(vcpu); 2815 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 2816 exit_lmode(vcpu); 2817 } 2818 #endif 2819 2820 if (enable_ept && !enable_unrestricted_guest) 2821 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 2822 2823 vmcs_writel(CR0_READ_SHADOW, cr0); 2824 vmcs_writel(GUEST_CR0, hw_cr0); 2825 vcpu->arch.cr0 = cr0; 2826 2827 /* depends on vcpu->arch.cr0 to be set to a new value */ 2828 vmx->emulation_required = emulation_required(vcpu); 2829 } 2830 2831 static int get_ept_level(struct kvm_vcpu *vcpu) 2832 { 2833 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) 2834 return 5; 2835 return 4; 2836 } 2837 2838 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) 2839 { 2840 u64 eptp = VMX_EPTP_MT_WB; 2841 2842 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 2843 2844 if (enable_ept_ad_bits && 2845 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 2846 eptp |= VMX_EPTP_AD_ENABLE_BIT; 2847 eptp |= (root_hpa & PAGE_MASK); 2848 2849 return eptp; 2850 } 2851 2852 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 2853 { 2854 struct kvm *kvm = vcpu->kvm; 2855 unsigned long guest_cr3; 2856 u64 eptp; 2857 2858 guest_cr3 = cr3; 2859 if (enable_ept) { 2860 eptp = construct_eptp(vcpu, cr3); 2861 vmcs_write64(EPT_POINTER, eptp); 2862 2863 if (kvm_x86_ops->tlb_remote_flush) { 2864 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 2865 to_vmx(vcpu)->ept_pointer = eptp; 2866 to_kvm_vmx(kvm)->ept_pointers_match 2867 = EPT_POINTERS_CHECK; 2868 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 2869 } 2870 2871 if (enable_unrestricted_guest || is_paging(vcpu) || 2872 is_guest_mode(vcpu)) 2873 guest_cr3 = kvm_read_cr3(vcpu); 2874 else 2875 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 2876 ept_load_pdptrs(vcpu); 2877 } 2878 2879 vmcs_writel(GUEST_CR3, guest_cr3); 2880 } 2881 2882 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 2883 { 2884 /* 2885 * Pass through host's Machine Check Enable value to hw_cr4, which 2886 * is in force while we are in guest mode. Do not let guests control 2887 * this bit, even if host CR4.MCE == 0. 2888 */ 2889 unsigned long hw_cr4; 2890 2891 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 2892 if (enable_unrestricted_guest) 2893 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 2894 else if (to_vmx(vcpu)->rmode.vm86_active) 2895 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 2896 else 2897 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 2898 2899 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 2900 if (cr4 & X86_CR4_UMIP) { 2901 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, 2902 SECONDARY_EXEC_DESC); 2903 hw_cr4 &= ~X86_CR4_UMIP; 2904 } else if (!is_guest_mode(vcpu) || 2905 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) 2906 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, 2907 SECONDARY_EXEC_DESC); 2908 } 2909 2910 if (cr4 & X86_CR4_VMXE) { 2911 /* 2912 * To use VMXON (and later other VMX instructions), a guest 2913 * must first be able to turn on cr4.VMXE (see handle_vmon()). 2914 * So basically the check on whether to allow nested VMX 2915 * is here. We operate under the default treatment of SMM, 2916 * so VMX cannot be enabled under SMM. 2917 */ 2918 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) 2919 return 1; 2920 } 2921 2922 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 2923 return 1; 2924 2925 vcpu->arch.cr4 = cr4; 2926 2927 if (!enable_unrestricted_guest) { 2928 if (enable_ept) { 2929 if (!is_paging(vcpu)) { 2930 hw_cr4 &= ~X86_CR4_PAE; 2931 hw_cr4 |= X86_CR4_PSE; 2932 } else if (!(cr4 & X86_CR4_PAE)) { 2933 hw_cr4 &= ~X86_CR4_PAE; 2934 } 2935 } 2936 2937 /* 2938 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 2939 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 2940 * to be manually disabled when guest switches to non-paging 2941 * mode. 2942 * 2943 * If !enable_unrestricted_guest, the CPU is always running 2944 * with CR0.PG=1 and CR4 needs to be modified. 2945 * If enable_unrestricted_guest, the CPU automatically 2946 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 2947 */ 2948 if (!is_paging(vcpu)) 2949 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 2950 } 2951 2952 vmcs_writel(CR4_READ_SHADOW, cr4); 2953 vmcs_writel(GUEST_CR4, hw_cr4); 2954 return 0; 2955 } 2956 2957 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 2958 { 2959 struct vcpu_vmx *vmx = to_vmx(vcpu); 2960 u32 ar; 2961 2962 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 2963 *var = vmx->rmode.segs[seg]; 2964 if (seg == VCPU_SREG_TR 2965 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 2966 return; 2967 var->base = vmx_read_guest_seg_base(vmx, seg); 2968 var->selector = vmx_read_guest_seg_selector(vmx, seg); 2969 return; 2970 } 2971 var->base = vmx_read_guest_seg_base(vmx, seg); 2972 var->limit = vmx_read_guest_seg_limit(vmx, seg); 2973 var->selector = vmx_read_guest_seg_selector(vmx, seg); 2974 ar = vmx_read_guest_seg_ar(vmx, seg); 2975 var->unusable = (ar >> 16) & 1; 2976 var->type = ar & 15; 2977 var->s = (ar >> 4) & 1; 2978 var->dpl = (ar >> 5) & 3; 2979 /* 2980 * Some userspaces do not preserve unusable property. Since usable 2981 * segment has to be present according to VMX spec we can use present 2982 * property to amend userspace bug by making unusable segment always 2983 * nonpresent. vmx_segment_access_rights() already marks nonpresent 2984 * segment as unusable. 2985 */ 2986 var->present = !var->unusable; 2987 var->avl = (ar >> 12) & 1; 2988 var->l = (ar >> 13) & 1; 2989 var->db = (ar >> 14) & 1; 2990 var->g = (ar >> 15) & 1; 2991 } 2992 2993 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 2994 { 2995 struct kvm_segment s; 2996 2997 if (to_vmx(vcpu)->rmode.vm86_active) { 2998 vmx_get_segment(vcpu, &s, seg); 2999 return s.base; 3000 } 3001 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3002 } 3003 3004 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3005 { 3006 struct vcpu_vmx *vmx = to_vmx(vcpu); 3007 3008 if (unlikely(vmx->rmode.vm86_active)) 3009 return 0; 3010 else { 3011 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3012 return VMX_AR_DPL(ar); 3013 } 3014 } 3015 3016 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3017 { 3018 u32 ar; 3019 3020 if (var->unusable || !var->present) 3021 ar = 1 << 16; 3022 else { 3023 ar = var->type & 15; 3024 ar |= (var->s & 1) << 4; 3025 ar |= (var->dpl & 3) << 5; 3026 ar |= (var->present & 1) << 7; 3027 ar |= (var->avl & 1) << 12; 3028 ar |= (var->l & 1) << 13; 3029 ar |= (var->db & 1) << 14; 3030 ar |= (var->g & 1) << 15; 3031 } 3032 3033 return ar; 3034 } 3035 3036 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3037 { 3038 struct vcpu_vmx *vmx = to_vmx(vcpu); 3039 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3040 3041 vmx_segment_cache_clear(vmx); 3042 3043 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3044 vmx->rmode.segs[seg] = *var; 3045 if (seg == VCPU_SREG_TR) 3046 vmcs_write16(sf->selector, var->selector); 3047 else if (var->s) 3048 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3049 goto out; 3050 } 3051 3052 vmcs_writel(sf->base, var->base); 3053 vmcs_write32(sf->limit, var->limit); 3054 vmcs_write16(sf->selector, var->selector); 3055 3056 /* 3057 * Fix the "Accessed" bit in AR field of segment registers for older 3058 * qemu binaries. 3059 * IA32 arch specifies that at the time of processor reset the 3060 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3061 * is setting it to 0 in the userland code. This causes invalid guest 3062 * state vmexit when "unrestricted guest" mode is turned on. 3063 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3064 * tree. Newer qemu binaries with that qemu fix would not need this 3065 * kvm hack. 3066 */ 3067 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) 3068 var->type |= 0x1; /* Accessed */ 3069 3070 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3071 3072 out: 3073 vmx->emulation_required = emulation_required(vcpu); 3074 } 3075 3076 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3077 { 3078 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3079 3080 *db = (ar >> 14) & 1; 3081 *l = (ar >> 13) & 1; 3082 } 3083 3084 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3085 { 3086 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3087 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3088 } 3089 3090 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3091 { 3092 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3093 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3094 } 3095 3096 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3097 { 3098 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3099 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3100 } 3101 3102 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3103 { 3104 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3105 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3106 } 3107 3108 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3109 { 3110 struct kvm_segment var; 3111 u32 ar; 3112 3113 vmx_get_segment(vcpu, &var, seg); 3114 var.dpl = 0x3; 3115 if (seg == VCPU_SREG_CS) 3116 var.type = 0x3; 3117 ar = vmx_segment_access_rights(&var); 3118 3119 if (var.base != (var.selector << 4)) 3120 return false; 3121 if (var.limit != 0xffff) 3122 return false; 3123 if (ar != 0xf3) 3124 return false; 3125 3126 return true; 3127 } 3128 3129 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3130 { 3131 struct kvm_segment cs; 3132 unsigned int cs_rpl; 3133 3134 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3135 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3136 3137 if (cs.unusable) 3138 return false; 3139 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3140 return false; 3141 if (!cs.s) 3142 return false; 3143 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3144 if (cs.dpl > cs_rpl) 3145 return false; 3146 } else { 3147 if (cs.dpl != cs_rpl) 3148 return false; 3149 } 3150 if (!cs.present) 3151 return false; 3152 3153 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3154 return true; 3155 } 3156 3157 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3158 { 3159 struct kvm_segment ss; 3160 unsigned int ss_rpl; 3161 3162 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3163 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3164 3165 if (ss.unusable) 3166 return true; 3167 if (ss.type != 3 && ss.type != 7) 3168 return false; 3169 if (!ss.s) 3170 return false; 3171 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3172 return false; 3173 if (!ss.present) 3174 return false; 3175 3176 return true; 3177 } 3178 3179 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3180 { 3181 struct kvm_segment var; 3182 unsigned int rpl; 3183 3184 vmx_get_segment(vcpu, &var, seg); 3185 rpl = var.selector & SEGMENT_RPL_MASK; 3186 3187 if (var.unusable) 3188 return true; 3189 if (!var.s) 3190 return false; 3191 if (!var.present) 3192 return false; 3193 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3194 if (var.dpl < rpl) /* DPL < RPL */ 3195 return false; 3196 } 3197 3198 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3199 * rights flags 3200 */ 3201 return true; 3202 } 3203 3204 static bool tr_valid(struct kvm_vcpu *vcpu) 3205 { 3206 struct kvm_segment tr; 3207 3208 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3209 3210 if (tr.unusable) 3211 return false; 3212 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3213 return false; 3214 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3215 return false; 3216 if (!tr.present) 3217 return false; 3218 3219 return true; 3220 } 3221 3222 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3223 { 3224 struct kvm_segment ldtr; 3225 3226 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3227 3228 if (ldtr.unusable) 3229 return true; 3230 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3231 return false; 3232 if (ldtr.type != 2) 3233 return false; 3234 if (!ldtr.present) 3235 return false; 3236 3237 return true; 3238 } 3239 3240 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3241 { 3242 struct kvm_segment cs, ss; 3243 3244 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3245 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3246 3247 return ((cs.selector & SEGMENT_RPL_MASK) == 3248 (ss.selector & SEGMENT_RPL_MASK)); 3249 } 3250 3251 /* 3252 * Check if guest state is valid. Returns true if valid, false if 3253 * not. 3254 * We assume that registers are always usable 3255 */ 3256 static bool guest_state_valid(struct kvm_vcpu *vcpu) 3257 { 3258 if (enable_unrestricted_guest) 3259 return true; 3260 3261 /* real mode guest state checks */ 3262 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3263 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3264 return false; 3265 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3266 return false; 3267 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3268 return false; 3269 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3270 return false; 3271 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3272 return false; 3273 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3274 return false; 3275 } else { 3276 /* protected mode guest state checks */ 3277 if (!cs_ss_rpl_check(vcpu)) 3278 return false; 3279 if (!code_segment_valid(vcpu)) 3280 return false; 3281 if (!stack_segment_valid(vcpu)) 3282 return false; 3283 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3284 return false; 3285 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3286 return false; 3287 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3288 return false; 3289 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3290 return false; 3291 if (!tr_valid(vcpu)) 3292 return false; 3293 if (!ldtr_valid(vcpu)) 3294 return false; 3295 } 3296 /* TODO: 3297 * - Add checks on RIP 3298 * - Add checks on RFLAGS 3299 */ 3300 3301 return true; 3302 } 3303 3304 static int init_rmode_tss(struct kvm *kvm) 3305 { 3306 gfn_t fn; 3307 u16 data = 0; 3308 int idx, r; 3309 3310 idx = srcu_read_lock(&kvm->srcu); 3311 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; 3312 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); 3313 if (r < 0) 3314 goto out; 3315 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3316 r = kvm_write_guest_page(kvm, fn++, &data, 3317 TSS_IOPB_BASE_OFFSET, sizeof(u16)); 3318 if (r < 0) 3319 goto out; 3320 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); 3321 if (r < 0) 3322 goto out; 3323 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); 3324 if (r < 0) 3325 goto out; 3326 data = ~0; 3327 r = kvm_write_guest_page(kvm, fn, &data, 3328 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, 3329 sizeof(u8)); 3330 out: 3331 srcu_read_unlock(&kvm->srcu, idx); 3332 return r; 3333 } 3334 3335 static int init_rmode_identity_map(struct kvm *kvm) 3336 { 3337 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3338 int i, idx, r = 0; 3339 kvm_pfn_t identity_map_pfn; 3340 u32 tmp; 3341 3342 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3343 mutex_lock(&kvm->slots_lock); 3344 3345 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3346 goto out2; 3347 3348 if (!kvm_vmx->ept_identity_map_addr) 3349 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3350 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; 3351 3352 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3353 kvm_vmx->ept_identity_map_addr, PAGE_SIZE); 3354 if (r < 0) 3355 goto out2; 3356 3357 idx = srcu_read_lock(&kvm->srcu); 3358 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); 3359 if (r < 0) 3360 goto out; 3361 /* Set up identity-mapping pagetable for EPT in real mode */ 3362 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3363 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3364 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3365 r = kvm_write_guest_page(kvm, identity_map_pfn, 3366 &tmp, i * sizeof(tmp), sizeof(tmp)); 3367 if (r < 0) 3368 goto out; 3369 } 3370 kvm_vmx->ept_identity_pagetable_done = true; 3371 3372 out: 3373 srcu_read_unlock(&kvm->srcu, idx); 3374 3375 out2: 3376 mutex_unlock(&kvm->slots_lock); 3377 return r; 3378 } 3379 3380 static void seg_setup(int seg) 3381 { 3382 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3383 unsigned int ar; 3384 3385 vmcs_write16(sf->selector, 0); 3386 vmcs_writel(sf->base, 0); 3387 vmcs_write32(sf->limit, 0xffff); 3388 ar = 0x93; 3389 if (seg == VCPU_SREG_CS) 3390 ar |= 0x08; /* code segment */ 3391 3392 vmcs_write32(sf->ar_bytes, ar); 3393 } 3394 3395 static int alloc_apic_access_page(struct kvm *kvm) 3396 { 3397 struct page *page; 3398 int r = 0; 3399 3400 mutex_lock(&kvm->slots_lock); 3401 if (kvm->arch.apic_access_page_done) 3402 goto out; 3403 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3404 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3405 if (r) 3406 goto out; 3407 3408 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3409 if (is_error_page(page)) { 3410 r = -EFAULT; 3411 goto out; 3412 } 3413 3414 /* 3415 * Do not pin the page in memory, so that memory hot-unplug 3416 * is able to migrate it. 3417 */ 3418 put_page(page); 3419 kvm->arch.apic_access_page_done = true; 3420 out: 3421 mutex_unlock(&kvm->slots_lock); 3422 return r; 3423 } 3424 3425 int allocate_vpid(void) 3426 { 3427 int vpid; 3428 3429 if (!enable_vpid) 3430 return 0; 3431 spin_lock(&vmx_vpid_lock); 3432 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3433 if (vpid < VMX_NR_VPIDS) 3434 __set_bit(vpid, vmx_vpid_bitmap); 3435 else 3436 vpid = 0; 3437 spin_unlock(&vmx_vpid_lock); 3438 return vpid; 3439 } 3440 3441 void free_vpid(int vpid) 3442 { 3443 if (!enable_vpid || vpid == 0) 3444 return; 3445 spin_lock(&vmx_vpid_lock); 3446 __clear_bit(vpid, vmx_vpid_bitmap); 3447 spin_unlock(&vmx_vpid_lock); 3448 } 3449 3450 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, 3451 u32 msr, int type) 3452 { 3453 int f = sizeof(unsigned long); 3454 3455 if (!cpu_has_vmx_msr_bitmap()) 3456 return; 3457 3458 if (static_branch_unlikely(&enable_evmcs)) 3459 evmcs_touch_msr_bitmap(); 3460 3461 /* 3462 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 3463 * have the write-low and read-high bitmap offsets the wrong way round. 3464 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 3465 */ 3466 if (msr <= 0x1fff) { 3467 if (type & MSR_TYPE_R) 3468 /* read-low */ 3469 __clear_bit(msr, msr_bitmap + 0x000 / f); 3470 3471 if (type & MSR_TYPE_W) 3472 /* write-low */ 3473 __clear_bit(msr, msr_bitmap + 0x800 / f); 3474 3475 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 3476 msr &= 0x1fff; 3477 if (type & MSR_TYPE_R) 3478 /* read-high */ 3479 __clear_bit(msr, msr_bitmap + 0x400 / f); 3480 3481 if (type & MSR_TYPE_W) 3482 /* write-high */ 3483 __clear_bit(msr, msr_bitmap + 0xc00 / f); 3484 3485 } 3486 } 3487 3488 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, 3489 u32 msr, int type) 3490 { 3491 int f = sizeof(unsigned long); 3492 3493 if (!cpu_has_vmx_msr_bitmap()) 3494 return; 3495 3496 if (static_branch_unlikely(&enable_evmcs)) 3497 evmcs_touch_msr_bitmap(); 3498 3499 /* 3500 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 3501 * have the write-low and read-high bitmap offsets the wrong way round. 3502 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 3503 */ 3504 if (msr <= 0x1fff) { 3505 if (type & MSR_TYPE_R) 3506 /* read-low */ 3507 __set_bit(msr, msr_bitmap + 0x000 / f); 3508 3509 if (type & MSR_TYPE_W) 3510 /* write-low */ 3511 __set_bit(msr, msr_bitmap + 0x800 / f); 3512 3513 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 3514 msr &= 0x1fff; 3515 if (type & MSR_TYPE_R) 3516 /* read-high */ 3517 __set_bit(msr, msr_bitmap + 0x400 / f); 3518 3519 if (type & MSR_TYPE_W) 3520 /* write-high */ 3521 __set_bit(msr, msr_bitmap + 0xc00 / f); 3522 3523 } 3524 } 3525 3526 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, 3527 u32 msr, int type, bool value) 3528 { 3529 if (value) 3530 vmx_enable_intercept_for_msr(msr_bitmap, msr, type); 3531 else 3532 vmx_disable_intercept_for_msr(msr_bitmap, msr, type); 3533 } 3534 3535 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3536 { 3537 u8 mode = 0; 3538 3539 if (cpu_has_secondary_exec_ctrls() && 3540 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & 3541 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3542 mode |= MSR_BITMAP_MODE_X2APIC; 3543 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3544 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3545 } 3546 3547 return mode; 3548 } 3549 3550 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, 3551 u8 mode) 3552 { 3553 int msr; 3554 3555 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3556 unsigned word = msr / BITS_PER_LONG; 3557 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3558 msr_bitmap[word + (0x800 / sizeof(long))] = ~0; 3559 } 3560 3561 if (mode & MSR_BITMAP_MODE_X2APIC) { 3562 /* 3563 * TPR reads and writes can be virtualized even if virtual interrupt 3564 * delivery is not in use. 3565 */ 3566 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); 3567 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3568 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); 3569 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3570 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3571 } 3572 } 3573 } 3574 3575 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3576 { 3577 struct vcpu_vmx *vmx = to_vmx(vcpu); 3578 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3579 u8 mode = vmx_msr_bitmap_mode(vcpu); 3580 u8 changed = mode ^ vmx->msr_bitmap_mode; 3581 3582 if (!changed) 3583 return; 3584 3585 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3586 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); 3587 3588 vmx->msr_bitmap_mode = mode; 3589 } 3590 3591 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx) 3592 { 3593 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3594 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3595 u32 i; 3596 3597 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS, 3598 MSR_TYPE_RW, flag); 3599 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE, 3600 MSR_TYPE_RW, flag); 3601 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK, 3602 MSR_TYPE_RW, flag); 3603 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH, 3604 MSR_TYPE_RW, flag); 3605 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3606 vmx_set_intercept_for_msr(msr_bitmap, 3607 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3608 vmx_set_intercept_for_msr(msr_bitmap, 3609 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3610 } 3611 } 3612 3613 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) 3614 { 3615 return enable_apicv; 3616 } 3617 3618 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3619 { 3620 struct vcpu_vmx *vmx = to_vmx(vcpu); 3621 void *vapic_page; 3622 u32 vppr; 3623 int rvi; 3624 3625 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3626 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3627 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3628 return false; 3629 3630 rvi = vmx_get_rvi(); 3631 3632 vapic_page = vmx->nested.virtual_apic_map.hva; 3633 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3634 3635 return ((rvi & 0xf0) > (vppr & 0xf0)); 3636 } 3637 3638 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3639 bool nested) 3640 { 3641 #ifdef CONFIG_SMP 3642 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3643 3644 if (vcpu->mode == IN_GUEST_MODE) { 3645 /* 3646 * The vector of interrupt to be delivered to vcpu had 3647 * been set in PIR before this function. 3648 * 3649 * Following cases will be reached in this block, and 3650 * we always send a notification event in all cases as 3651 * explained below. 3652 * 3653 * Case 1: vcpu keeps in non-root mode. Sending a 3654 * notification event posts the interrupt to vcpu. 3655 * 3656 * Case 2: vcpu exits to root mode and is still 3657 * runnable. PIR will be synced to vIRR before the 3658 * next vcpu entry. Sending a notification event in 3659 * this case has no effect, as vcpu is not in root 3660 * mode. 3661 * 3662 * Case 3: vcpu exits to root mode and is blocked. 3663 * vcpu_block() has already synced PIR to vIRR and 3664 * never blocks vcpu if vIRR is not cleared. Therefore, 3665 * a blocked vcpu here does not wait for any requested 3666 * interrupts in PIR, and sending a notification event 3667 * which has no effect is safe here. 3668 */ 3669 3670 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3671 return true; 3672 } 3673 #endif 3674 return false; 3675 } 3676 3677 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3678 int vector) 3679 { 3680 struct vcpu_vmx *vmx = to_vmx(vcpu); 3681 3682 if (is_guest_mode(vcpu) && 3683 vector == vmx->nested.posted_intr_nv) { 3684 /* 3685 * If a posted intr is not recognized by hardware, 3686 * we will accomplish it in the next vmentry. 3687 */ 3688 vmx->nested.pi_pending = true; 3689 kvm_make_request(KVM_REQ_EVENT, vcpu); 3690 /* the PIR and ON have been set by L1. */ 3691 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3692 kvm_vcpu_kick(vcpu); 3693 return 0; 3694 } 3695 return -1; 3696 } 3697 /* 3698 * Send interrupt to vcpu via posted interrupt way. 3699 * 1. If target vcpu is running(non-root mode), send posted interrupt 3700 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3701 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3702 * interrupt from PIR in next vmentry. 3703 */ 3704 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3705 { 3706 struct vcpu_vmx *vmx = to_vmx(vcpu); 3707 int r; 3708 3709 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3710 if (!r) 3711 return; 3712 3713 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3714 return; 3715 3716 /* If a previous notification has sent the IPI, nothing to do. */ 3717 if (pi_test_and_set_on(&vmx->pi_desc)) 3718 return; 3719 3720 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 3721 kvm_vcpu_kick(vcpu); 3722 } 3723 3724 /* 3725 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 3726 * will not change in the lifetime of the guest. 3727 * Note that host-state that does change is set elsewhere. E.g., host-state 3728 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 3729 */ 3730 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 3731 { 3732 u32 low32, high32; 3733 unsigned long tmpl; 3734 struct desc_ptr dt; 3735 unsigned long cr0, cr3, cr4; 3736 3737 cr0 = read_cr0(); 3738 WARN_ON(cr0 & X86_CR0_TS); 3739 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 3740 3741 /* 3742 * Save the most likely value for this task's CR3 in the VMCS. 3743 * We can't use __get_current_cr3_fast() because we're not atomic. 3744 */ 3745 cr3 = __read_cr3(); 3746 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 3747 vmx->loaded_vmcs->host_state.cr3 = cr3; 3748 3749 /* Save the most likely value for this task's CR4 in the VMCS. */ 3750 cr4 = cr4_read_shadow(); 3751 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 3752 vmx->loaded_vmcs->host_state.cr4 = cr4; 3753 3754 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 3755 #ifdef CONFIG_X86_64 3756 /* 3757 * Load null selectors, so we can avoid reloading them in 3758 * vmx_prepare_switch_to_host(), in case userspace uses 3759 * the null selectors too (the expected case). 3760 */ 3761 vmcs_write16(HOST_DS_SELECTOR, 0); 3762 vmcs_write16(HOST_ES_SELECTOR, 0); 3763 #else 3764 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3765 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3766 #endif 3767 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3768 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 3769 3770 store_idt(&dt); 3771 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ 3772 vmx->host_idt_base = dt.address; 3773 3774 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 3775 3776 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 3777 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 3778 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 3779 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 3780 3781 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 3782 rdmsr(MSR_IA32_CR_PAT, low32, high32); 3783 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 3784 } 3785 3786 if (cpu_has_load_ia32_efer()) 3787 vmcs_write64(HOST_IA32_EFER, host_efer); 3788 } 3789 3790 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 3791 { 3792 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; 3793 if (enable_ept) 3794 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; 3795 if (is_guest_mode(&vmx->vcpu)) 3796 vmx->vcpu.arch.cr4_guest_owned_bits &= 3797 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; 3798 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); 3799 } 3800 3801 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 3802 { 3803 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 3804 3805 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 3806 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 3807 3808 if (!enable_vnmi) 3809 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 3810 3811 /* Enable the preemption timer dynamically */ 3812 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 3813 return pin_based_exec_ctrl; 3814 } 3815 3816 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 3817 { 3818 struct vcpu_vmx *vmx = to_vmx(vcpu); 3819 3820 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); 3821 if (cpu_has_secondary_exec_ctrls()) { 3822 if (kvm_vcpu_apicv_active(vcpu)) 3823 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, 3824 SECONDARY_EXEC_APIC_REGISTER_VIRT | 3825 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3826 else 3827 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, 3828 SECONDARY_EXEC_APIC_REGISTER_VIRT | 3829 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3830 } 3831 3832 if (cpu_has_vmx_msr_bitmap()) 3833 vmx_update_msr_bitmap(vcpu); 3834 } 3835 3836 u32 vmx_exec_control(struct vcpu_vmx *vmx) 3837 { 3838 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 3839 3840 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 3841 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 3842 3843 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 3844 exec_control &= ~CPU_BASED_TPR_SHADOW; 3845 #ifdef CONFIG_X86_64 3846 exec_control |= CPU_BASED_CR8_STORE_EXITING | 3847 CPU_BASED_CR8_LOAD_EXITING; 3848 #endif 3849 } 3850 if (!enable_ept) 3851 exec_control |= CPU_BASED_CR3_STORE_EXITING | 3852 CPU_BASED_CR3_LOAD_EXITING | 3853 CPU_BASED_INVLPG_EXITING; 3854 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 3855 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 3856 CPU_BASED_MONITOR_EXITING); 3857 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 3858 exec_control &= ~CPU_BASED_HLT_EXITING; 3859 return exec_control; 3860 } 3861 3862 3863 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 3864 { 3865 struct kvm_vcpu *vcpu = &vmx->vcpu; 3866 3867 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 3868 3869 if (pt_mode == PT_MODE_SYSTEM) 3870 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 3871 if (!cpu_need_virtualize_apic_accesses(vcpu)) 3872 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 3873 if (vmx->vpid == 0) 3874 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 3875 if (!enable_ept) { 3876 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 3877 enable_unrestricted_guest = 0; 3878 } 3879 if (!enable_unrestricted_guest) 3880 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 3881 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 3882 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 3883 if (!kvm_vcpu_apicv_active(vcpu)) 3884 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 3885 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3886 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 3887 3888 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 3889 * in vmx_set_cr4. */ 3890 exec_control &= ~SECONDARY_EXEC_DESC; 3891 3892 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 3893 (handle_vmptrld). 3894 We can NOT enable shadow_vmcs here because we don't have yet 3895 a current VMCS12 3896 */ 3897 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 3898 3899 if (!enable_pml) 3900 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 3901 3902 if (vmx_xsaves_supported()) { 3903 /* Exposing XSAVES only when XSAVE is exposed */ 3904 bool xsaves_enabled = 3905 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3906 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 3907 3908 if (!xsaves_enabled) 3909 exec_control &= ~SECONDARY_EXEC_XSAVES; 3910 3911 if (nested) { 3912 if (xsaves_enabled) 3913 vmx->nested.msrs.secondary_ctls_high |= 3914 SECONDARY_EXEC_XSAVES; 3915 else 3916 vmx->nested.msrs.secondary_ctls_high &= 3917 ~SECONDARY_EXEC_XSAVES; 3918 } 3919 } 3920 3921 if (vmx_rdtscp_supported()) { 3922 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); 3923 if (!rdtscp_enabled) 3924 exec_control &= ~SECONDARY_EXEC_RDTSCP; 3925 3926 if (nested) { 3927 if (rdtscp_enabled) 3928 vmx->nested.msrs.secondary_ctls_high |= 3929 SECONDARY_EXEC_RDTSCP; 3930 else 3931 vmx->nested.msrs.secondary_ctls_high &= 3932 ~SECONDARY_EXEC_RDTSCP; 3933 } 3934 } 3935 3936 if (vmx_invpcid_supported()) { 3937 /* Exposing INVPCID only when PCID is exposed */ 3938 bool invpcid_enabled = 3939 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && 3940 guest_cpuid_has(vcpu, X86_FEATURE_PCID); 3941 3942 if (!invpcid_enabled) { 3943 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; 3944 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); 3945 } 3946 3947 if (nested) { 3948 if (invpcid_enabled) 3949 vmx->nested.msrs.secondary_ctls_high |= 3950 SECONDARY_EXEC_ENABLE_INVPCID; 3951 else 3952 vmx->nested.msrs.secondary_ctls_high &= 3953 ~SECONDARY_EXEC_ENABLE_INVPCID; 3954 } 3955 } 3956 3957 if (vmx_rdrand_supported()) { 3958 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); 3959 if (rdrand_enabled) 3960 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; 3961 3962 if (nested) { 3963 if (rdrand_enabled) 3964 vmx->nested.msrs.secondary_ctls_high |= 3965 SECONDARY_EXEC_RDRAND_EXITING; 3966 else 3967 vmx->nested.msrs.secondary_ctls_high &= 3968 ~SECONDARY_EXEC_RDRAND_EXITING; 3969 } 3970 } 3971 3972 if (vmx_rdseed_supported()) { 3973 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); 3974 if (rdseed_enabled) 3975 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; 3976 3977 if (nested) { 3978 if (rdseed_enabled) 3979 vmx->nested.msrs.secondary_ctls_high |= 3980 SECONDARY_EXEC_RDSEED_EXITING; 3981 else 3982 vmx->nested.msrs.secondary_ctls_high &= 3983 ~SECONDARY_EXEC_RDSEED_EXITING; 3984 } 3985 } 3986 3987 vmx->secondary_exec_control = exec_control; 3988 } 3989 3990 static void ept_set_mmio_spte_mask(void) 3991 { 3992 /* 3993 * EPT Misconfigurations can be generated if the value of bits 2:0 3994 * of an EPT paging-structure entry is 110b (write/execute). 3995 */ 3996 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, 3997 VMX_EPT_MISCONFIG_WX_VALUE); 3998 } 3999 4000 #define VMX_XSS_EXIT_BITMAP 0 4001 4002 /* 4003 * Sets up the vmcs for emulated real mode. 4004 */ 4005 static void vmx_vcpu_setup(struct vcpu_vmx *vmx) 4006 { 4007 int i; 4008 4009 if (nested) 4010 nested_vmx_vcpu_setup(); 4011 4012 if (cpu_has_vmx_msr_bitmap()) 4013 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4014 4015 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4016 4017 /* Control */ 4018 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); 4019 vmx->hv_deadline_tsc = -1; 4020 4021 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); 4022 4023 if (cpu_has_secondary_exec_ctrls()) { 4024 vmx_compute_secondary_exec_control(vmx); 4025 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, 4026 vmx->secondary_exec_control); 4027 } 4028 4029 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4030 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4031 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4032 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4033 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4034 4035 vmcs_write16(GUEST_INTR_STATUS, 0); 4036 4037 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4038 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4039 } 4040 4041 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4042 vmcs_write32(PLE_GAP, ple_gap); 4043 vmx->ple_window = ple_window; 4044 vmx->ple_window_dirty = true; 4045 } 4046 4047 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4048 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4049 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4050 4051 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4052 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4053 vmx_set_constant_host_state(vmx); 4054 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4055 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4056 4057 if (cpu_has_vmx_vmfunc()) 4058 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4059 4060 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4061 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4062 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4063 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4064 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4065 4066 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4067 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4068 4069 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { 4070 u32 index = vmx_msr_index[i]; 4071 u32 data_low, data_high; 4072 int j = vmx->nmsrs; 4073 4074 if (rdmsr_safe(index, &data_low, &data_high) < 0) 4075 continue; 4076 if (wrmsr_safe(index, data_low, data_high) < 0) 4077 continue; 4078 vmx->guest_msrs[j].index = i; 4079 vmx->guest_msrs[j].data = 0; 4080 vmx->guest_msrs[j].mask = -1ull; 4081 ++vmx->nmsrs; 4082 } 4083 4084 vm_exit_controls_init(vmx, vmx_vmexit_ctrl()); 4085 4086 /* 22.2.1, 20.8.1 */ 4087 vm_entry_controls_init(vmx, vmx_vmentry_ctrl()); 4088 4089 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; 4090 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); 4091 4092 set_cr4_guest_host_mask(vmx); 4093 4094 if (vmx_xsaves_supported()) 4095 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4096 4097 if (enable_pml) { 4098 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4099 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4100 } 4101 4102 if (cpu_has_vmx_encls_vmexit()) 4103 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); 4104 4105 if (pt_mode == PT_MODE_HOST_GUEST) { 4106 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4107 /* Bit[6~0] are forced to 1, writes are ignored. */ 4108 vmx->pt_desc.guest.output_mask = 0x7F; 4109 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4110 } 4111 } 4112 4113 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4114 { 4115 struct vcpu_vmx *vmx = to_vmx(vcpu); 4116 struct msr_data apic_base_msr; 4117 u64 cr0; 4118 4119 vmx->rmode.vm86_active = 0; 4120 vmx->spec_ctrl = 0; 4121 4122 vcpu->arch.microcode_version = 0x100000000ULL; 4123 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4124 kvm_set_cr8(vcpu, 0); 4125 4126 if (!init_event) { 4127 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4128 MSR_IA32_APICBASE_ENABLE; 4129 if (kvm_vcpu_is_reset_bsp(vcpu)) 4130 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4131 apic_base_msr.host_initiated = true; 4132 kvm_set_apic_base(vcpu, &apic_base_msr); 4133 } 4134 4135 vmx_segment_cache_clear(vmx); 4136 4137 seg_setup(VCPU_SREG_CS); 4138 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4139 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4140 4141 seg_setup(VCPU_SREG_DS); 4142 seg_setup(VCPU_SREG_ES); 4143 seg_setup(VCPU_SREG_FS); 4144 seg_setup(VCPU_SREG_GS); 4145 seg_setup(VCPU_SREG_SS); 4146 4147 vmcs_write16(GUEST_TR_SELECTOR, 0); 4148 vmcs_writel(GUEST_TR_BASE, 0); 4149 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4150 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4151 4152 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4153 vmcs_writel(GUEST_LDTR_BASE, 0); 4154 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4155 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4156 4157 if (!init_event) { 4158 vmcs_write32(GUEST_SYSENTER_CS, 0); 4159 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4160 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4161 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4162 } 4163 4164 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4165 kvm_rip_write(vcpu, 0xfff0); 4166 4167 vmcs_writel(GUEST_GDTR_BASE, 0); 4168 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4169 4170 vmcs_writel(GUEST_IDTR_BASE, 0); 4171 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4172 4173 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4174 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4175 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4176 if (kvm_mpx_supported()) 4177 vmcs_write64(GUEST_BNDCFGS, 0); 4178 4179 setup_msrs(vmx); 4180 4181 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4182 4183 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4184 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4185 if (cpu_need_tpr_shadow(vcpu)) 4186 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4187 __pa(vcpu->arch.apic->regs)); 4188 vmcs_write32(TPR_THRESHOLD, 0); 4189 } 4190 4191 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4192 4193 if (vmx->vpid != 0) 4194 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4195 4196 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4197 vmx->vcpu.arch.cr0 = cr0; 4198 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4199 vmx_set_cr4(vcpu, 0); 4200 vmx_set_efer(vcpu, 0); 4201 4202 update_exception_bitmap(vcpu); 4203 4204 vpid_sync_context(vmx->vpid); 4205 if (init_event) 4206 vmx_clear_hlt(vcpu); 4207 } 4208 4209 static void enable_irq_window(struct kvm_vcpu *vcpu) 4210 { 4211 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, 4212 CPU_BASED_VIRTUAL_INTR_PENDING); 4213 } 4214 4215 static void enable_nmi_window(struct kvm_vcpu *vcpu) 4216 { 4217 if (!enable_vnmi || 4218 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4219 enable_irq_window(vcpu); 4220 return; 4221 } 4222 4223 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, 4224 CPU_BASED_VIRTUAL_NMI_PENDING); 4225 } 4226 4227 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4228 { 4229 struct vcpu_vmx *vmx = to_vmx(vcpu); 4230 uint32_t intr; 4231 int irq = vcpu->arch.interrupt.nr; 4232 4233 trace_kvm_inj_virq(irq); 4234 4235 ++vcpu->stat.irq_injections; 4236 if (vmx->rmode.vm86_active) { 4237 int inc_eip = 0; 4238 if (vcpu->arch.interrupt.soft) 4239 inc_eip = vcpu->arch.event_exit_inst_len; 4240 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) 4241 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4242 return; 4243 } 4244 intr = irq | INTR_INFO_VALID_MASK; 4245 if (vcpu->arch.interrupt.soft) { 4246 intr |= INTR_TYPE_SOFT_INTR; 4247 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4248 vmx->vcpu.arch.event_exit_inst_len); 4249 } else 4250 intr |= INTR_TYPE_EXT_INTR; 4251 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4252 4253 vmx_clear_hlt(vcpu); 4254 } 4255 4256 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4257 { 4258 struct vcpu_vmx *vmx = to_vmx(vcpu); 4259 4260 if (!enable_vnmi) { 4261 /* 4262 * Tracking the NMI-blocked state in software is built upon 4263 * finding the next open IRQ window. This, in turn, depends on 4264 * well-behaving guests: They have to keep IRQs disabled at 4265 * least as long as the NMI handler runs. Otherwise we may 4266 * cause NMI nesting, maybe breaking the guest. But as this is 4267 * highly unlikely, we can live with the residual risk. 4268 */ 4269 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4270 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4271 } 4272 4273 ++vcpu->stat.nmi_injections; 4274 vmx->loaded_vmcs->nmi_known_unmasked = false; 4275 4276 if (vmx->rmode.vm86_active) { 4277 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) 4278 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4279 return; 4280 } 4281 4282 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4283 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4284 4285 vmx_clear_hlt(vcpu); 4286 } 4287 4288 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4289 { 4290 struct vcpu_vmx *vmx = to_vmx(vcpu); 4291 bool masked; 4292 4293 if (!enable_vnmi) 4294 return vmx->loaded_vmcs->soft_vnmi_blocked; 4295 if (vmx->loaded_vmcs->nmi_known_unmasked) 4296 return false; 4297 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4298 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4299 return masked; 4300 } 4301 4302 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4303 { 4304 struct vcpu_vmx *vmx = to_vmx(vcpu); 4305 4306 if (!enable_vnmi) { 4307 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4308 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4309 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4310 } 4311 } else { 4312 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4313 if (masked) 4314 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4315 GUEST_INTR_STATE_NMI); 4316 else 4317 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4318 GUEST_INTR_STATE_NMI); 4319 } 4320 } 4321 4322 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) 4323 { 4324 if (to_vmx(vcpu)->nested.nested_run_pending) 4325 return 0; 4326 4327 if (!enable_vnmi && 4328 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4329 return 0; 4330 4331 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4332 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI 4333 | GUEST_INTR_STATE_NMI)); 4334 } 4335 4336 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) 4337 { 4338 return (!to_vmx(vcpu)->nested.nested_run_pending && 4339 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && 4340 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4341 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4342 } 4343 4344 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4345 { 4346 int ret; 4347 4348 if (enable_unrestricted_guest) 4349 return 0; 4350 4351 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4352 PAGE_SIZE * 3); 4353 if (ret) 4354 return ret; 4355 to_kvm_vmx(kvm)->tss_addr = addr; 4356 return init_rmode_tss(kvm); 4357 } 4358 4359 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4360 { 4361 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4362 return 0; 4363 } 4364 4365 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4366 { 4367 switch (vec) { 4368 case BP_VECTOR: 4369 /* 4370 * Update instruction length as we may reinject the exception 4371 * from user space while in guest debugging mode. 4372 */ 4373 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4374 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4375 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4376 return false; 4377 /* fall through */ 4378 case DB_VECTOR: 4379 if (vcpu->guest_debug & 4380 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) 4381 return false; 4382 /* fall through */ 4383 case DE_VECTOR: 4384 case OF_VECTOR: 4385 case BR_VECTOR: 4386 case UD_VECTOR: 4387 case DF_VECTOR: 4388 case SS_VECTOR: 4389 case GP_VECTOR: 4390 case MF_VECTOR: 4391 return true; 4392 break; 4393 } 4394 return false; 4395 } 4396 4397 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4398 int vec, u32 err_code) 4399 { 4400 /* 4401 * Instruction with address size override prefix opcode 0x67 4402 * Cause the #SS fault with 0 error code in VM86 mode. 4403 */ 4404 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4405 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { 4406 if (vcpu->arch.halt_request) { 4407 vcpu->arch.halt_request = 0; 4408 return kvm_vcpu_halt(vcpu); 4409 } 4410 return 1; 4411 } 4412 return 0; 4413 } 4414 4415 /* 4416 * Forward all other exceptions that are valid in real mode. 4417 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4418 * the required debugging infrastructure rework. 4419 */ 4420 kvm_queue_exception(vcpu, vec); 4421 return 1; 4422 } 4423 4424 /* 4425 * Trigger machine check on the host. We assume all the MSRs are already set up 4426 * by the CPU and that we still run on the same CPU as the MCE occurred on. 4427 * We pass a fake environment to the machine check handler because we want 4428 * the guest to be always treated like user space, no matter what context 4429 * it used internally. 4430 */ 4431 static void kvm_machine_check(void) 4432 { 4433 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) 4434 struct pt_regs regs = { 4435 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 4436 .flags = X86_EFLAGS_IF, 4437 }; 4438 4439 do_machine_check(®s, 0); 4440 #endif 4441 } 4442 4443 static int handle_machine_check(struct kvm_vcpu *vcpu) 4444 { 4445 /* already handled by vcpu_run */ 4446 return 1; 4447 } 4448 4449 static int handle_exception(struct kvm_vcpu *vcpu) 4450 { 4451 struct vcpu_vmx *vmx = to_vmx(vcpu); 4452 struct kvm_run *kvm_run = vcpu->run; 4453 u32 intr_info, ex_no, error_code; 4454 unsigned long cr2, rip, dr6; 4455 u32 vect_info; 4456 enum emulation_result er; 4457 4458 vect_info = vmx->idt_vectoring_info; 4459 intr_info = vmx->exit_intr_info; 4460 4461 if (is_machine_check(intr_info)) 4462 return handle_machine_check(vcpu); 4463 4464 if (is_nmi(intr_info)) 4465 return 1; /* already handled by vmx_vcpu_run() */ 4466 4467 if (is_invalid_opcode(intr_info)) 4468 return handle_ud(vcpu); 4469 4470 error_code = 0; 4471 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4472 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4473 4474 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4475 WARN_ON_ONCE(!enable_vmware_backdoor); 4476 er = kvm_emulate_instruction(vcpu, 4477 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); 4478 if (er == EMULATE_USER_EXIT) 4479 return 0; 4480 else if (er != EMULATE_DONE) 4481 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4482 return 1; 4483 } 4484 4485 /* 4486 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4487 * MMIO, it is better to report an internal error. 4488 * See the comments in vmx_handle_exit. 4489 */ 4490 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4491 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4492 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4493 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4494 vcpu->run->internal.ndata = 3; 4495 vcpu->run->internal.data[0] = vect_info; 4496 vcpu->run->internal.data[1] = intr_info; 4497 vcpu->run->internal.data[2] = error_code; 4498 return 0; 4499 } 4500 4501 if (is_page_fault(intr_info)) { 4502 cr2 = vmcs_readl(EXIT_QUALIFICATION); 4503 /* EPT won't cause page fault directly */ 4504 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); 4505 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4506 } 4507 4508 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4509 4510 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4511 return handle_rmode_exception(vcpu, ex_no, error_code); 4512 4513 switch (ex_no) { 4514 case AC_VECTOR: 4515 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4516 return 1; 4517 case DB_VECTOR: 4518 dr6 = vmcs_readl(EXIT_QUALIFICATION); 4519 if (!(vcpu->guest_debug & 4520 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4521 vcpu->arch.dr6 &= ~15; 4522 vcpu->arch.dr6 |= dr6 | DR6_RTM; 4523 if (is_icebp(intr_info)) 4524 skip_emulated_instruction(vcpu); 4525 4526 kvm_queue_exception(vcpu, DB_VECTOR); 4527 return 1; 4528 } 4529 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 4530 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4531 /* fall through */ 4532 case BP_VECTOR: 4533 /* 4534 * Update instruction length as we may reinject #BP from 4535 * user space while in guest debugging mode. Reading it for 4536 * #DB as well causes no harm, it is not used in that case. 4537 */ 4538 vmx->vcpu.arch.event_exit_inst_len = 4539 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4540 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4541 rip = kvm_rip_read(vcpu); 4542 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; 4543 kvm_run->debug.arch.exception = ex_no; 4544 break; 4545 default: 4546 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4547 kvm_run->ex.exception = ex_no; 4548 kvm_run->ex.error_code = error_code; 4549 break; 4550 } 4551 return 0; 4552 } 4553 4554 static int handle_external_interrupt(struct kvm_vcpu *vcpu) 4555 { 4556 ++vcpu->stat.irq_exits; 4557 return 1; 4558 } 4559 4560 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4561 { 4562 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4563 vcpu->mmio_needed = 0; 4564 return 0; 4565 } 4566 4567 static int handle_io(struct kvm_vcpu *vcpu) 4568 { 4569 unsigned long exit_qualification; 4570 int size, in, string; 4571 unsigned port; 4572 4573 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4574 string = (exit_qualification & 16) != 0; 4575 4576 ++vcpu->stat.io_exits; 4577 4578 if (string) 4579 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4580 4581 port = exit_qualification >> 16; 4582 size = (exit_qualification & 7) + 1; 4583 in = (exit_qualification & 8) != 0; 4584 4585 return kvm_fast_pio(vcpu, size, port, in); 4586 } 4587 4588 static void 4589 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4590 { 4591 /* 4592 * Patch in the VMCALL instruction: 4593 */ 4594 hypercall[0] = 0x0f; 4595 hypercall[1] = 0x01; 4596 hypercall[2] = 0xc1; 4597 } 4598 4599 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4600 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4601 { 4602 if (is_guest_mode(vcpu)) { 4603 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4604 unsigned long orig_val = val; 4605 4606 /* 4607 * We get here when L2 changed cr0 in a way that did not change 4608 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4609 * but did change L0 shadowed bits. So we first calculate the 4610 * effective cr0 value that L1 would like to write into the 4611 * hardware. It consists of the L2-owned bits from the new 4612 * value combined with the L1-owned bits from L1's guest_cr0. 4613 */ 4614 val = (val & ~vmcs12->cr0_guest_host_mask) | 4615 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4616 4617 if (!nested_guest_cr0_valid(vcpu, val)) 4618 return 1; 4619 4620 if (kvm_set_cr0(vcpu, val)) 4621 return 1; 4622 vmcs_writel(CR0_READ_SHADOW, orig_val); 4623 return 0; 4624 } else { 4625 if (to_vmx(vcpu)->nested.vmxon && 4626 !nested_host_cr0_valid(vcpu, val)) 4627 return 1; 4628 4629 return kvm_set_cr0(vcpu, val); 4630 } 4631 } 4632 4633 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4634 { 4635 if (is_guest_mode(vcpu)) { 4636 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4637 unsigned long orig_val = val; 4638 4639 /* analogously to handle_set_cr0 */ 4640 val = (val & ~vmcs12->cr4_guest_host_mask) | 4641 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4642 if (kvm_set_cr4(vcpu, val)) 4643 return 1; 4644 vmcs_writel(CR4_READ_SHADOW, orig_val); 4645 return 0; 4646 } else 4647 return kvm_set_cr4(vcpu, val); 4648 } 4649 4650 static int handle_desc(struct kvm_vcpu *vcpu) 4651 { 4652 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4653 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4654 } 4655 4656 static int handle_cr(struct kvm_vcpu *vcpu) 4657 { 4658 unsigned long exit_qualification, val; 4659 int cr; 4660 int reg; 4661 int err; 4662 int ret; 4663 4664 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4665 cr = exit_qualification & 15; 4666 reg = (exit_qualification >> 8) & 15; 4667 switch ((exit_qualification >> 4) & 3) { 4668 case 0: /* mov to cr */ 4669 val = kvm_register_readl(vcpu, reg); 4670 trace_kvm_cr_write(cr, val); 4671 switch (cr) { 4672 case 0: 4673 err = handle_set_cr0(vcpu, val); 4674 return kvm_complete_insn_gp(vcpu, err); 4675 case 3: 4676 WARN_ON_ONCE(enable_unrestricted_guest); 4677 err = kvm_set_cr3(vcpu, val); 4678 return kvm_complete_insn_gp(vcpu, err); 4679 case 4: 4680 err = handle_set_cr4(vcpu, val); 4681 return kvm_complete_insn_gp(vcpu, err); 4682 case 8: { 4683 u8 cr8_prev = kvm_get_cr8(vcpu); 4684 u8 cr8 = (u8)val; 4685 err = kvm_set_cr8(vcpu, cr8); 4686 ret = kvm_complete_insn_gp(vcpu, err); 4687 if (lapic_in_kernel(vcpu)) 4688 return ret; 4689 if (cr8_prev <= cr8) 4690 return ret; 4691 /* 4692 * TODO: we might be squashing a 4693 * KVM_GUESTDBG_SINGLESTEP-triggered 4694 * KVM_EXIT_DEBUG here. 4695 */ 4696 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 4697 return 0; 4698 } 4699 } 4700 break; 4701 case 2: /* clts */ 4702 WARN_ONCE(1, "Guest should always own CR0.TS"); 4703 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 4704 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 4705 return kvm_skip_emulated_instruction(vcpu); 4706 case 1: /*mov from cr*/ 4707 switch (cr) { 4708 case 3: 4709 WARN_ON_ONCE(enable_unrestricted_guest); 4710 val = kvm_read_cr3(vcpu); 4711 kvm_register_write(vcpu, reg, val); 4712 trace_kvm_cr_read(cr, val); 4713 return kvm_skip_emulated_instruction(vcpu); 4714 case 8: 4715 val = kvm_get_cr8(vcpu); 4716 kvm_register_write(vcpu, reg, val); 4717 trace_kvm_cr_read(cr, val); 4718 return kvm_skip_emulated_instruction(vcpu); 4719 } 4720 break; 4721 case 3: /* lmsw */ 4722 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 4723 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 4724 kvm_lmsw(vcpu, val); 4725 4726 return kvm_skip_emulated_instruction(vcpu); 4727 default: 4728 break; 4729 } 4730 vcpu->run->exit_reason = 0; 4731 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 4732 (int)(exit_qualification >> 4) & 3, cr); 4733 return 0; 4734 } 4735 4736 static int handle_dr(struct kvm_vcpu *vcpu) 4737 { 4738 unsigned long exit_qualification; 4739 int dr, dr7, reg; 4740 4741 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4742 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 4743 4744 /* First, if DR does not exist, trigger UD */ 4745 if (!kvm_require_dr(vcpu, dr)) 4746 return 1; 4747 4748 /* Do not handle if the CPL > 0, will trigger GP on re-entry */ 4749 if (!kvm_require_cpl(vcpu, 0)) 4750 return 1; 4751 dr7 = vmcs_readl(GUEST_DR7); 4752 if (dr7 & DR7_GD) { 4753 /* 4754 * As the vm-exit takes precedence over the debug trap, we 4755 * need to emulate the latter, either for the host or the 4756 * guest debugging itself. 4757 */ 4758 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 4759 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; 4760 vcpu->run->debug.arch.dr7 = dr7; 4761 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4762 vcpu->run->debug.arch.exception = DB_VECTOR; 4763 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 4764 return 0; 4765 } else { 4766 vcpu->arch.dr6 &= ~15; 4767 vcpu->arch.dr6 |= DR6_BD | DR6_RTM; 4768 kvm_queue_exception(vcpu, DB_VECTOR); 4769 return 1; 4770 } 4771 } 4772 4773 if (vcpu->guest_debug == 0) { 4774 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, 4775 CPU_BASED_MOV_DR_EXITING); 4776 4777 /* 4778 * No more DR vmexits; force a reload of the debug registers 4779 * and reenter on this instruction. The next vmexit will 4780 * retrieve the full state of the debug registers. 4781 */ 4782 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 4783 return 1; 4784 } 4785 4786 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 4787 if (exit_qualification & TYPE_MOV_FROM_DR) { 4788 unsigned long val; 4789 4790 if (kvm_get_dr(vcpu, dr, &val)) 4791 return 1; 4792 kvm_register_write(vcpu, reg, val); 4793 } else 4794 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) 4795 return 1; 4796 4797 return kvm_skip_emulated_instruction(vcpu); 4798 } 4799 4800 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) 4801 { 4802 return vcpu->arch.dr6; 4803 } 4804 4805 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) 4806 { 4807 } 4808 4809 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 4810 { 4811 get_debugreg(vcpu->arch.db[0], 0); 4812 get_debugreg(vcpu->arch.db[1], 1); 4813 get_debugreg(vcpu->arch.db[2], 2); 4814 get_debugreg(vcpu->arch.db[3], 3); 4815 get_debugreg(vcpu->arch.dr6, 6); 4816 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 4817 4818 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 4819 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); 4820 } 4821 4822 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 4823 { 4824 vmcs_writel(GUEST_DR7, val); 4825 } 4826 4827 static int handle_cpuid(struct kvm_vcpu *vcpu) 4828 { 4829 return kvm_emulate_cpuid(vcpu); 4830 } 4831 4832 static int handle_rdmsr(struct kvm_vcpu *vcpu) 4833 { 4834 u32 ecx = kvm_rcx_read(vcpu); 4835 struct msr_data msr_info; 4836 4837 msr_info.index = ecx; 4838 msr_info.host_initiated = false; 4839 if (vmx_get_msr(vcpu, &msr_info)) { 4840 trace_kvm_msr_read_ex(ecx); 4841 kvm_inject_gp(vcpu, 0); 4842 return 1; 4843 } 4844 4845 trace_kvm_msr_read(ecx, msr_info.data); 4846 4847 kvm_rax_write(vcpu, msr_info.data & -1u); 4848 kvm_rdx_write(vcpu, (msr_info.data >> 32) & -1u); 4849 return kvm_skip_emulated_instruction(vcpu); 4850 } 4851 4852 static int handle_wrmsr(struct kvm_vcpu *vcpu) 4853 { 4854 struct msr_data msr; 4855 u32 ecx = kvm_rcx_read(vcpu); 4856 u64 data = kvm_read_edx_eax(vcpu); 4857 4858 msr.data = data; 4859 msr.index = ecx; 4860 msr.host_initiated = false; 4861 if (kvm_set_msr(vcpu, &msr) != 0) { 4862 trace_kvm_msr_write_ex(ecx, data); 4863 kvm_inject_gp(vcpu, 0); 4864 return 1; 4865 } 4866 4867 trace_kvm_msr_write(ecx, data); 4868 return kvm_skip_emulated_instruction(vcpu); 4869 } 4870 4871 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 4872 { 4873 kvm_apic_update_ppr(vcpu); 4874 return 1; 4875 } 4876 4877 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 4878 { 4879 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, 4880 CPU_BASED_VIRTUAL_INTR_PENDING); 4881 4882 kvm_make_request(KVM_REQ_EVENT, vcpu); 4883 4884 ++vcpu->stat.irq_window_exits; 4885 return 1; 4886 } 4887 4888 static int handle_halt(struct kvm_vcpu *vcpu) 4889 { 4890 return kvm_emulate_halt(vcpu); 4891 } 4892 4893 static int handle_vmcall(struct kvm_vcpu *vcpu) 4894 { 4895 return kvm_emulate_hypercall(vcpu); 4896 } 4897 4898 static int handle_invd(struct kvm_vcpu *vcpu) 4899 { 4900 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4901 } 4902 4903 static int handle_invlpg(struct kvm_vcpu *vcpu) 4904 { 4905 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4906 4907 kvm_mmu_invlpg(vcpu, exit_qualification); 4908 return kvm_skip_emulated_instruction(vcpu); 4909 } 4910 4911 static int handle_rdpmc(struct kvm_vcpu *vcpu) 4912 { 4913 int err; 4914 4915 err = kvm_rdpmc(vcpu); 4916 return kvm_complete_insn_gp(vcpu, err); 4917 } 4918 4919 static int handle_wbinvd(struct kvm_vcpu *vcpu) 4920 { 4921 return kvm_emulate_wbinvd(vcpu); 4922 } 4923 4924 static int handle_xsetbv(struct kvm_vcpu *vcpu) 4925 { 4926 u64 new_bv = kvm_read_edx_eax(vcpu); 4927 u32 index = kvm_rcx_read(vcpu); 4928 4929 if (kvm_set_xcr(vcpu, index, new_bv) == 0) 4930 return kvm_skip_emulated_instruction(vcpu); 4931 return 1; 4932 } 4933 4934 static int handle_xsaves(struct kvm_vcpu *vcpu) 4935 { 4936 kvm_skip_emulated_instruction(vcpu); 4937 WARN(1, "this should never happen\n"); 4938 return 1; 4939 } 4940 4941 static int handle_xrstors(struct kvm_vcpu *vcpu) 4942 { 4943 kvm_skip_emulated_instruction(vcpu); 4944 WARN(1, "this should never happen\n"); 4945 return 1; 4946 } 4947 4948 static int handle_apic_access(struct kvm_vcpu *vcpu) 4949 { 4950 if (likely(fasteoi)) { 4951 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4952 int access_type, offset; 4953 4954 access_type = exit_qualification & APIC_ACCESS_TYPE; 4955 offset = exit_qualification & APIC_ACCESS_OFFSET; 4956 /* 4957 * Sane guest uses MOV to write EOI, with written value 4958 * not cared. So make a short-circuit here by avoiding 4959 * heavy instruction emulation. 4960 */ 4961 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 4962 (offset == APIC_EOI)) { 4963 kvm_lapic_set_eoi(vcpu); 4964 return kvm_skip_emulated_instruction(vcpu); 4965 } 4966 } 4967 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4968 } 4969 4970 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 4971 { 4972 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4973 int vector = exit_qualification & 0xff; 4974 4975 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 4976 kvm_apic_set_eoi_accelerated(vcpu, vector); 4977 return 1; 4978 } 4979 4980 static int handle_apic_write(struct kvm_vcpu *vcpu) 4981 { 4982 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4983 u32 offset = exit_qualification & 0xfff; 4984 4985 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 4986 kvm_apic_write_nodecode(vcpu, offset); 4987 return 1; 4988 } 4989 4990 static int handle_task_switch(struct kvm_vcpu *vcpu) 4991 { 4992 struct vcpu_vmx *vmx = to_vmx(vcpu); 4993 unsigned long exit_qualification; 4994 bool has_error_code = false; 4995 u32 error_code = 0; 4996 u16 tss_selector; 4997 int reason, type, idt_v, idt_index; 4998 4999 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5000 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5001 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5002 5003 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5004 5005 reason = (u32)exit_qualification >> 30; 5006 if (reason == TASK_SWITCH_GATE && idt_v) { 5007 switch (type) { 5008 case INTR_TYPE_NMI_INTR: 5009 vcpu->arch.nmi_injected = false; 5010 vmx_set_nmi_mask(vcpu, true); 5011 break; 5012 case INTR_TYPE_EXT_INTR: 5013 case INTR_TYPE_SOFT_INTR: 5014 kvm_clear_interrupt_queue(vcpu); 5015 break; 5016 case INTR_TYPE_HARD_EXCEPTION: 5017 if (vmx->idt_vectoring_info & 5018 VECTORING_INFO_DELIVER_CODE_MASK) { 5019 has_error_code = true; 5020 error_code = 5021 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5022 } 5023 /* fall through */ 5024 case INTR_TYPE_SOFT_EXCEPTION: 5025 kvm_clear_exception_queue(vcpu); 5026 break; 5027 default: 5028 break; 5029 } 5030 } 5031 tss_selector = exit_qualification; 5032 5033 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5034 type != INTR_TYPE_EXT_INTR && 5035 type != INTR_TYPE_NMI_INTR)) 5036 skip_emulated_instruction(vcpu); 5037 5038 if (kvm_task_switch(vcpu, tss_selector, 5039 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, 5040 has_error_code, error_code) == EMULATE_FAIL) { 5041 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5042 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5043 vcpu->run->internal.ndata = 0; 5044 return 0; 5045 } 5046 5047 /* 5048 * TODO: What about debug traps on tss switch? 5049 * Are we supposed to inject them and update dr6? 5050 */ 5051 5052 return 1; 5053 } 5054 5055 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5056 { 5057 unsigned long exit_qualification; 5058 gpa_t gpa; 5059 u64 error_code; 5060 5061 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5062 5063 /* 5064 * EPT violation happened while executing iret from NMI, 5065 * "blocked by NMI" bit has to be set before next VM entry. 5066 * There are errata that may cause this bit to not be set: 5067 * AAK134, BY25. 5068 */ 5069 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5070 enable_vnmi && 5071 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5072 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5073 5074 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5075 trace_kvm_page_fault(gpa, exit_qualification); 5076 5077 /* Is it a read fault? */ 5078 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5079 ? PFERR_USER_MASK : 0; 5080 /* Is it a write fault? */ 5081 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5082 ? PFERR_WRITE_MASK : 0; 5083 /* Is it a fetch fault? */ 5084 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5085 ? PFERR_FETCH_MASK : 0; 5086 /* ept page table entry is present? */ 5087 error_code |= (exit_qualification & 5088 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5089 EPT_VIOLATION_EXECUTABLE)) 5090 ? PFERR_PRESENT_MASK : 0; 5091 5092 error_code |= (exit_qualification & 0x100) != 0 ? 5093 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5094 5095 vcpu->arch.exit_qualification = exit_qualification; 5096 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5097 } 5098 5099 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5100 { 5101 gpa_t gpa; 5102 5103 /* 5104 * A nested guest cannot optimize MMIO vmexits, because we have an 5105 * nGPA here instead of the required GPA. 5106 */ 5107 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5108 if (!is_guest_mode(vcpu) && 5109 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5110 trace_kvm_fast_mmio(gpa); 5111 /* 5112 * Doing kvm_skip_emulated_instruction() depends on undefined 5113 * behavior: Intel's manual doesn't mandate 5114 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG 5115 * occurs and while on real hardware it was observed to be set, 5116 * other hypervisors (namely Hyper-V) don't set it, we end up 5117 * advancing IP with some random value. Disable fast mmio when 5118 * running nested and keep it for real hardware in hope that 5119 * VM_EXIT_INSTRUCTION_LEN will always be set correctly. 5120 */ 5121 if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) 5122 return kvm_skip_emulated_instruction(vcpu); 5123 else 5124 return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == 5125 EMULATE_DONE; 5126 } 5127 5128 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5129 } 5130 5131 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5132 { 5133 WARN_ON_ONCE(!enable_vnmi); 5134 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, 5135 CPU_BASED_VIRTUAL_NMI_PENDING); 5136 ++vcpu->stat.nmi_window_exits; 5137 kvm_make_request(KVM_REQ_EVENT, vcpu); 5138 5139 return 1; 5140 } 5141 5142 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5143 { 5144 struct vcpu_vmx *vmx = to_vmx(vcpu); 5145 enum emulation_result err = EMULATE_DONE; 5146 int ret = 1; 5147 u32 cpu_exec_ctrl; 5148 bool intr_window_requested; 5149 unsigned count = 130; 5150 5151 /* 5152 * We should never reach the point where we are emulating L2 5153 * due to invalid guest state as that means we incorrectly 5154 * allowed a nested VMEntry with an invalid vmcs12. 5155 */ 5156 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); 5157 5158 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5159 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; 5160 5161 while (vmx->emulation_required && count-- != 0) { 5162 if (intr_window_requested && vmx_interrupt_allowed(vcpu)) 5163 return handle_interrupt_window(&vmx->vcpu); 5164 5165 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5166 return 1; 5167 5168 err = kvm_emulate_instruction(vcpu, 0); 5169 5170 if (err == EMULATE_USER_EXIT) { 5171 ++vcpu->stat.mmio_exits; 5172 ret = 0; 5173 goto out; 5174 } 5175 5176 if (err != EMULATE_DONE) 5177 goto emulation_error; 5178 5179 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5180 vcpu->arch.exception.pending) 5181 goto emulation_error; 5182 5183 if (vcpu->arch.halt_request) { 5184 vcpu->arch.halt_request = 0; 5185 ret = kvm_vcpu_halt(vcpu); 5186 goto out; 5187 } 5188 5189 if (signal_pending(current)) 5190 goto out; 5191 if (need_resched()) 5192 schedule(); 5193 } 5194 5195 out: 5196 return ret; 5197 5198 emulation_error: 5199 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5200 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5201 vcpu->run->internal.ndata = 0; 5202 return 0; 5203 } 5204 5205 static void grow_ple_window(struct kvm_vcpu *vcpu) 5206 { 5207 struct vcpu_vmx *vmx = to_vmx(vcpu); 5208 int old = vmx->ple_window; 5209 5210 vmx->ple_window = __grow_ple_window(old, ple_window, 5211 ple_window_grow, 5212 ple_window_max); 5213 5214 if (vmx->ple_window != old) 5215 vmx->ple_window_dirty = true; 5216 5217 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); 5218 } 5219 5220 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5221 { 5222 struct vcpu_vmx *vmx = to_vmx(vcpu); 5223 int old = vmx->ple_window; 5224 5225 vmx->ple_window = __shrink_ple_window(old, ple_window, 5226 ple_window_shrink, 5227 ple_window); 5228 5229 if (vmx->ple_window != old) 5230 vmx->ple_window_dirty = true; 5231 5232 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); 5233 } 5234 5235 /* 5236 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 5237 */ 5238 static void wakeup_handler(void) 5239 { 5240 struct kvm_vcpu *vcpu; 5241 int cpu = smp_processor_id(); 5242 5243 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 5244 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), 5245 blocked_vcpu_list) { 5246 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 5247 5248 if (pi_test_on(pi_desc) == 1) 5249 kvm_vcpu_kick(vcpu); 5250 } 5251 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 5252 } 5253 5254 static void vmx_enable_tdp(void) 5255 { 5256 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, 5257 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, 5258 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, 5259 0ull, VMX_EPT_EXECUTABLE_MASK, 5260 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, 5261 VMX_EPT_RWX_MASK, 0ull); 5262 5263 ept_set_mmio_spte_mask(); 5264 kvm_enable_tdp(); 5265 } 5266 5267 /* 5268 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5269 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5270 */ 5271 static int handle_pause(struct kvm_vcpu *vcpu) 5272 { 5273 if (!kvm_pause_in_guest(vcpu->kvm)) 5274 grow_ple_window(vcpu); 5275 5276 /* 5277 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5278 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5279 * never set PAUSE_EXITING and just set PLE if supported, 5280 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5281 */ 5282 kvm_vcpu_on_spin(vcpu, true); 5283 return kvm_skip_emulated_instruction(vcpu); 5284 } 5285 5286 static int handle_nop(struct kvm_vcpu *vcpu) 5287 { 5288 return kvm_skip_emulated_instruction(vcpu); 5289 } 5290 5291 static int handle_mwait(struct kvm_vcpu *vcpu) 5292 { 5293 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 5294 return handle_nop(vcpu); 5295 } 5296 5297 static int handle_invalid_op(struct kvm_vcpu *vcpu) 5298 { 5299 kvm_queue_exception(vcpu, UD_VECTOR); 5300 return 1; 5301 } 5302 5303 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5304 { 5305 return 1; 5306 } 5307 5308 static int handle_monitor(struct kvm_vcpu *vcpu) 5309 { 5310 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 5311 return handle_nop(vcpu); 5312 } 5313 5314 static int handle_invpcid(struct kvm_vcpu *vcpu) 5315 { 5316 u32 vmx_instruction_info; 5317 unsigned long type; 5318 bool pcid_enabled; 5319 gva_t gva; 5320 struct x86_exception e; 5321 unsigned i; 5322 unsigned long roots_to_free = 0; 5323 struct { 5324 u64 pcid; 5325 u64 gla; 5326 } operand; 5327 5328 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5329 kvm_queue_exception(vcpu, UD_VECTOR); 5330 return 1; 5331 } 5332 5333 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5334 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); 5335 5336 if (type > 3) { 5337 kvm_inject_gp(vcpu, 0); 5338 return 1; 5339 } 5340 5341 /* According to the Intel instruction reference, the memory operand 5342 * is read even if it isn't needed (e.g., for type==all) 5343 */ 5344 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), 5345 vmx_instruction_info, false, &gva)) 5346 return 1; 5347 5348 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { 5349 kvm_inject_page_fault(vcpu, &e); 5350 return 1; 5351 } 5352 5353 if (operand.pcid >> 12 != 0) { 5354 kvm_inject_gp(vcpu, 0); 5355 return 1; 5356 } 5357 5358 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 5359 5360 switch (type) { 5361 case INVPCID_TYPE_INDIV_ADDR: 5362 if ((!pcid_enabled && (operand.pcid != 0)) || 5363 is_noncanonical_address(operand.gla, vcpu)) { 5364 kvm_inject_gp(vcpu, 0); 5365 return 1; 5366 } 5367 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 5368 return kvm_skip_emulated_instruction(vcpu); 5369 5370 case INVPCID_TYPE_SINGLE_CTXT: 5371 if (!pcid_enabled && (operand.pcid != 0)) { 5372 kvm_inject_gp(vcpu, 0); 5373 return 1; 5374 } 5375 5376 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 5377 kvm_mmu_sync_roots(vcpu); 5378 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5379 } 5380 5381 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5382 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) 5383 == operand.pcid) 5384 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5385 5386 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 5387 /* 5388 * If neither the current cr3 nor any of the prev_roots use the 5389 * given PCID, then nothing needs to be done here because a 5390 * resync will happen anyway before switching to any other CR3. 5391 */ 5392 5393 return kvm_skip_emulated_instruction(vcpu); 5394 5395 case INVPCID_TYPE_ALL_NON_GLOBAL: 5396 /* 5397 * Currently, KVM doesn't mark global entries in the shadow 5398 * page tables, so a non-global flush just degenerates to a 5399 * global flush. If needed, we could optimize this later by 5400 * keeping track of global entries in shadow page tables. 5401 */ 5402 5403 /* fall-through */ 5404 case INVPCID_TYPE_ALL_INCL_GLOBAL: 5405 kvm_mmu_unload(vcpu); 5406 return kvm_skip_emulated_instruction(vcpu); 5407 5408 default: 5409 BUG(); /* We have already checked above that type <= 3 */ 5410 } 5411 } 5412 5413 static int handle_pml_full(struct kvm_vcpu *vcpu) 5414 { 5415 unsigned long exit_qualification; 5416 5417 trace_kvm_pml_full(vcpu->vcpu_id); 5418 5419 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5420 5421 /* 5422 * PML buffer FULL happened while executing iret from NMI, 5423 * "blocked by NMI" bit has to be set before next VM entry. 5424 */ 5425 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5426 enable_vnmi && 5427 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5428 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5429 GUEST_INTR_STATE_NMI); 5430 5431 /* 5432 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5433 * here.., and there's no userspace involvement needed for PML. 5434 */ 5435 return 1; 5436 } 5437 5438 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5439 { 5440 if (!to_vmx(vcpu)->req_immediate_exit) 5441 kvm_lapic_expired_hv_timer(vcpu); 5442 return 1; 5443 } 5444 5445 /* 5446 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5447 * are overwritten by nested_vmx_setup() when nested=1. 5448 */ 5449 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5450 { 5451 kvm_queue_exception(vcpu, UD_VECTOR); 5452 return 1; 5453 } 5454 5455 static int handle_encls(struct kvm_vcpu *vcpu) 5456 { 5457 /* 5458 * SGX virtualization is not yet supported. There is no software 5459 * enable bit for SGX, so we have to trap ENCLS and inject a #UD 5460 * to prevent the guest from executing ENCLS. 5461 */ 5462 kvm_queue_exception(vcpu, UD_VECTOR); 5463 return 1; 5464 } 5465 5466 /* 5467 * The exit handlers return 1 if the exit was handled fully and guest execution 5468 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5469 * to be done to userspace and return 0. 5470 */ 5471 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5472 [EXIT_REASON_EXCEPTION_NMI] = handle_exception, 5473 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5474 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5475 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5476 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5477 [EXIT_REASON_CR_ACCESS] = handle_cr, 5478 [EXIT_REASON_DR_ACCESS] = handle_dr, 5479 [EXIT_REASON_CPUID] = handle_cpuid, 5480 [EXIT_REASON_MSR_READ] = handle_rdmsr, 5481 [EXIT_REASON_MSR_WRITE] = handle_wrmsr, 5482 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, 5483 [EXIT_REASON_HLT] = handle_halt, 5484 [EXIT_REASON_INVD] = handle_invd, 5485 [EXIT_REASON_INVLPG] = handle_invlpg, 5486 [EXIT_REASON_RDPMC] = handle_rdpmc, 5487 [EXIT_REASON_VMCALL] = handle_vmcall, 5488 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5489 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5490 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5491 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5492 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5493 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5494 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5495 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5496 [EXIT_REASON_VMON] = handle_vmx_instruction, 5497 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5498 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5499 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5500 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5501 [EXIT_REASON_WBINVD] = handle_wbinvd, 5502 [EXIT_REASON_XSETBV] = handle_xsetbv, 5503 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5504 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5505 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5506 [EXIT_REASON_LDTR_TR] = handle_desc, 5507 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5508 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5509 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5510 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, 5511 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5512 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, 5513 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5514 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5515 [EXIT_REASON_RDRAND] = handle_invalid_op, 5516 [EXIT_REASON_RDSEED] = handle_invalid_op, 5517 [EXIT_REASON_XSAVES] = handle_xsaves, 5518 [EXIT_REASON_XRSTORS] = handle_xrstors, 5519 [EXIT_REASON_PML_FULL] = handle_pml_full, 5520 [EXIT_REASON_INVPCID] = handle_invpcid, 5521 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5522 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5523 [EXIT_REASON_ENCLS] = handle_encls, 5524 }; 5525 5526 static const int kvm_vmx_max_exit_handlers = 5527 ARRAY_SIZE(kvm_vmx_exit_handlers); 5528 5529 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) 5530 { 5531 *info1 = vmcs_readl(EXIT_QUALIFICATION); 5532 *info2 = vmcs_read32(VM_EXIT_INTR_INFO); 5533 } 5534 5535 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5536 { 5537 if (vmx->pml_pg) { 5538 __free_page(vmx->pml_pg); 5539 vmx->pml_pg = NULL; 5540 } 5541 } 5542 5543 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5544 { 5545 struct vcpu_vmx *vmx = to_vmx(vcpu); 5546 u64 *pml_buf; 5547 u16 pml_idx; 5548 5549 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5550 5551 /* Do nothing if PML buffer is empty */ 5552 if (pml_idx == (PML_ENTITY_NUM - 1)) 5553 return; 5554 5555 /* PML index always points to next available PML buffer entity */ 5556 if (pml_idx >= PML_ENTITY_NUM) 5557 pml_idx = 0; 5558 else 5559 pml_idx++; 5560 5561 pml_buf = page_address(vmx->pml_pg); 5562 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5563 u64 gpa; 5564 5565 gpa = pml_buf[pml_idx]; 5566 WARN_ON(gpa & (PAGE_SIZE - 1)); 5567 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5568 } 5569 5570 /* reset PML index */ 5571 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5572 } 5573 5574 /* 5575 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. 5576 * Called before reporting dirty_bitmap to userspace. 5577 */ 5578 static void kvm_flush_pml_buffers(struct kvm *kvm) 5579 { 5580 int i; 5581 struct kvm_vcpu *vcpu; 5582 /* 5583 * We only need to kick vcpu out of guest mode here, as PML buffer 5584 * is flushed at beginning of all VMEXITs, and it's obvious that only 5585 * vcpus running in guest are possible to have unflushed GPAs in PML 5586 * buffer. 5587 */ 5588 kvm_for_each_vcpu(i, vcpu, kvm) 5589 kvm_vcpu_kick(vcpu); 5590 } 5591 5592 static void vmx_dump_sel(char *name, uint32_t sel) 5593 { 5594 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5595 name, vmcs_read16(sel), 5596 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5597 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5598 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5599 } 5600 5601 static void vmx_dump_dtsel(char *name, uint32_t limit) 5602 { 5603 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5604 name, vmcs_read32(limit), 5605 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5606 } 5607 5608 void dump_vmcs(void) 5609 { 5610 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5611 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5612 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5613 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5614 u32 secondary_exec_control = 0; 5615 unsigned long cr4 = vmcs_readl(GUEST_CR4); 5616 u64 efer = vmcs_read64(GUEST_IA32_EFER); 5617 int i, n; 5618 5619 if (cpu_has_secondary_exec_ctrls()) 5620 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5621 5622 pr_err("*** Guest State ***\n"); 5623 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5624 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5625 vmcs_readl(CR0_GUEST_HOST_MASK)); 5626 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5627 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5628 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5629 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 5630 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) 5631 { 5632 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5633 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5634 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5635 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5636 } 5637 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5638 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5639 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5640 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5641 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5642 vmcs_readl(GUEST_SYSENTER_ESP), 5643 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5644 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5645 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5646 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5647 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5648 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5649 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5650 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5651 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5652 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5653 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5654 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || 5655 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) 5656 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5657 efer, vmcs_read64(GUEST_IA32_PAT)); 5658 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5659 vmcs_read64(GUEST_IA32_DEBUGCTL), 5660 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5661 if (cpu_has_load_perf_global_ctrl() && 5662 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5663 pr_err("PerfGlobCtl = 0x%016llx\n", 5664 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5665 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5666 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5667 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5668 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5669 vmcs_read32(GUEST_ACTIVITY_STATE)); 5670 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5671 pr_err("InterruptStatus = %04x\n", 5672 vmcs_read16(GUEST_INTR_STATUS)); 5673 5674 pr_err("*** Host State ***\n"); 5675 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5676 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5677 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5678 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5679 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5680 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5681 vmcs_read16(HOST_TR_SELECTOR)); 5682 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5683 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5684 vmcs_readl(HOST_TR_BASE)); 5685 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5686 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5687 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5688 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5689 vmcs_readl(HOST_CR4)); 5690 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5691 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5692 vmcs_read32(HOST_IA32_SYSENTER_CS), 5693 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5694 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) 5695 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5696 vmcs_read64(HOST_IA32_EFER), 5697 vmcs_read64(HOST_IA32_PAT)); 5698 if (cpu_has_load_perf_global_ctrl() && 5699 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5700 pr_err("PerfGlobCtl = 0x%016llx\n", 5701 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5702 5703 pr_err("*** Control State ***\n"); 5704 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5705 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5706 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5707 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5708 vmcs_read32(EXCEPTION_BITMAP), 5709 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5710 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5711 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5712 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5713 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5714 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5715 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5716 vmcs_read32(VM_EXIT_INTR_INFO), 5717 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5718 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5719 pr_err(" reason=%08x qualification=%016lx\n", 5720 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5721 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5722 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5723 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5724 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5725 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5726 pr_err("TSC Multiplier = 0x%016llx\n", 5727 vmcs_read64(TSC_MULTIPLIER)); 5728 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5729 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5730 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5731 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5732 } 5733 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5734 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5735 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5736 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5737 } 5738 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5739 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5740 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5741 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5742 n = vmcs_read32(CR3_TARGET_COUNT); 5743 for (i = 0; i + 1 < n; i += 4) 5744 pr_err("CR3 target%u=%016lx target%u=%016lx\n", 5745 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), 5746 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); 5747 if (i < n) 5748 pr_err("CR3 target%u=%016lx\n", 5749 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); 5750 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5751 pr_err("PLE Gap=%08x Window=%08x\n", 5752 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5753 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5754 pr_err("Virtual processor ID = 0x%04x\n", 5755 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5756 } 5757 5758 /* 5759 * The guest has exited. See if we can fix it or if we need userspace 5760 * assistance. 5761 */ 5762 static int vmx_handle_exit(struct kvm_vcpu *vcpu) 5763 { 5764 struct vcpu_vmx *vmx = to_vmx(vcpu); 5765 u32 exit_reason = vmx->exit_reason; 5766 u32 vectoring_info = vmx->idt_vectoring_info; 5767 5768 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); 5769 5770 /* 5771 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5772 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5773 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5774 * mode as if vcpus is in root mode, the PML buffer must has been 5775 * flushed already. 5776 */ 5777 if (enable_pml) 5778 vmx_flush_pml_buffer(vcpu); 5779 5780 /* If guest state is invalid, start emulating */ 5781 if (vmx->emulation_required) 5782 return handle_invalid_guest_state(vcpu); 5783 5784 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) 5785 return nested_vmx_reflect_vmexit(vcpu, exit_reason); 5786 5787 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { 5788 dump_vmcs(); 5789 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5790 vcpu->run->fail_entry.hardware_entry_failure_reason 5791 = exit_reason; 5792 return 0; 5793 } 5794 5795 if (unlikely(vmx->fail)) { 5796 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5797 vcpu->run->fail_entry.hardware_entry_failure_reason 5798 = vmcs_read32(VM_INSTRUCTION_ERROR); 5799 return 0; 5800 } 5801 5802 /* 5803 * Note: 5804 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5805 * delivery event since it indicates guest is accessing MMIO. 5806 * The vm-exit can be triggered again after return to guest that 5807 * will cause infinite loop. 5808 */ 5809 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5810 (exit_reason != EXIT_REASON_EXCEPTION_NMI && 5811 exit_reason != EXIT_REASON_EPT_VIOLATION && 5812 exit_reason != EXIT_REASON_PML_FULL && 5813 exit_reason != EXIT_REASON_TASK_SWITCH)) { 5814 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5815 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5816 vcpu->run->internal.ndata = 3; 5817 vcpu->run->internal.data[0] = vectoring_info; 5818 vcpu->run->internal.data[1] = exit_reason; 5819 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5820 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { 5821 vcpu->run->internal.ndata++; 5822 vcpu->run->internal.data[3] = 5823 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5824 } 5825 return 0; 5826 } 5827 5828 if (unlikely(!enable_vnmi && 5829 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5830 if (vmx_interrupt_allowed(vcpu)) { 5831 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5832 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5833 vcpu->arch.nmi_pending) { 5834 /* 5835 * This CPU don't support us in finding the end of an 5836 * NMI-blocked window if the guest runs with IRQs 5837 * disabled. So we pull the trigger after 1 s of 5838 * futile waiting, but inform the user about this. 5839 */ 5840 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5841 "state on VCPU %d after 1 s timeout\n", 5842 __func__, vcpu->vcpu_id); 5843 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5844 } 5845 } 5846 5847 if (exit_reason < kvm_vmx_max_exit_handlers 5848 && kvm_vmx_exit_handlers[exit_reason]) 5849 return kvm_vmx_exit_handlers[exit_reason](vcpu); 5850 else { 5851 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 5852 exit_reason); 5853 kvm_queue_exception(vcpu, UD_VECTOR); 5854 return 1; 5855 } 5856 } 5857 5858 /* 5859 * Software based L1D cache flush which is used when microcode providing 5860 * the cache control MSR is not loaded. 5861 * 5862 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 5863 * flush it is required to read in 64 KiB because the replacement algorithm 5864 * is not exactly LRU. This could be sized at runtime via topology 5865 * information but as all relevant affected CPUs have 32KiB L1D cache size 5866 * there is no point in doing so. 5867 */ 5868 static void vmx_l1d_flush(struct kvm_vcpu *vcpu) 5869 { 5870 int size = PAGE_SIZE << L1D_CACHE_ORDER; 5871 5872 /* 5873 * This code is only executed when the the flush mode is 'cond' or 5874 * 'always' 5875 */ 5876 if (static_branch_likely(&vmx_l1d_flush_cond)) { 5877 bool flush_l1d; 5878 5879 /* 5880 * Clear the per-vcpu flush bit, it gets set again 5881 * either from vcpu_run() or from one of the unsafe 5882 * VMEXIT handlers. 5883 */ 5884 flush_l1d = vcpu->arch.l1tf_flush_l1d; 5885 vcpu->arch.l1tf_flush_l1d = false; 5886 5887 /* 5888 * Clear the per-cpu flush bit, it gets set again from 5889 * the interrupt handlers. 5890 */ 5891 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 5892 kvm_clear_cpu_l1tf_flush_l1d(); 5893 5894 if (!flush_l1d) 5895 return; 5896 } 5897 5898 vcpu->stat.l1d_flush++; 5899 5900 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 5901 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 5902 return; 5903 } 5904 5905 asm volatile( 5906 /* First ensure the pages are in the TLB */ 5907 "xorl %%eax, %%eax\n" 5908 ".Lpopulate_tlb:\n\t" 5909 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 5910 "addl $4096, %%eax\n\t" 5911 "cmpl %%eax, %[size]\n\t" 5912 "jne .Lpopulate_tlb\n\t" 5913 "xorl %%eax, %%eax\n\t" 5914 "cpuid\n\t" 5915 /* Now fill the cache */ 5916 "xorl %%eax, %%eax\n" 5917 ".Lfill_cache:\n" 5918 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 5919 "addl $64, %%eax\n\t" 5920 "cmpl %%eax, %[size]\n\t" 5921 "jne .Lfill_cache\n\t" 5922 "lfence\n" 5923 :: [flush_pages] "r" (vmx_l1d_flush_pages), 5924 [size] "r" (size) 5925 : "eax", "ebx", "ecx", "edx"); 5926 } 5927 5928 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 5929 { 5930 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5931 5932 if (is_guest_mode(vcpu) && 5933 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 5934 return; 5935 5936 if (irr == -1 || tpr < irr) { 5937 vmcs_write32(TPR_THRESHOLD, 0); 5938 return; 5939 } 5940 5941 vmcs_write32(TPR_THRESHOLD, irr); 5942 } 5943 5944 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 5945 { 5946 u32 sec_exec_control; 5947 5948 if (!lapic_in_kernel(vcpu)) 5949 return; 5950 5951 if (!flexpriority_enabled && 5952 !cpu_has_vmx_virtualize_x2apic_mode()) 5953 return; 5954 5955 /* Postpone execution until vmcs01 is the current VMCS. */ 5956 if (is_guest_mode(vcpu)) { 5957 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; 5958 return; 5959 } 5960 5961 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5962 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 5963 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 5964 5965 switch (kvm_get_apic_mode(vcpu)) { 5966 case LAPIC_MODE_INVALID: 5967 WARN_ONCE(true, "Invalid local APIC state"); 5968 case LAPIC_MODE_DISABLED: 5969 break; 5970 case LAPIC_MODE_XAPIC: 5971 if (flexpriority_enabled) { 5972 sec_exec_control |= 5973 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 5974 vmx_flush_tlb(vcpu, true); 5975 } 5976 break; 5977 case LAPIC_MODE_X2APIC: 5978 if (cpu_has_vmx_virtualize_x2apic_mode()) 5979 sec_exec_control |= 5980 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 5981 break; 5982 } 5983 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); 5984 5985 vmx_update_msr_bitmap(vcpu); 5986 } 5987 5988 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) 5989 { 5990 if (!is_guest_mode(vcpu)) { 5991 vmcs_write64(APIC_ACCESS_ADDR, hpa); 5992 vmx_flush_tlb(vcpu, true); 5993 } 5994 } 5995 5996 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 5997 { 5998 u16 status; 5999 u8 old; 6000 6001 if (max_isr == -1) 6002 max_isr = 0; 6003 6004 status = vmcs_read16(GUEST_INTR_STATUS); 6005 old = status >> 8; 6006 if (max_isr != old) { 6007 status &= 0xff; 6008 status |= max_isr << 8; 6009 vmcs_write16(GUEST_INTR_STATUS, status); 6010 } 6011 } 6012 6013 static void vmx_set_rvi(int vector) 6014 { 6015 u16 status; 6016 u8 old; 6017 6018 if (vector == -1) 6019 vector = 0; 6020 6021 status = vmcs_read16(GUEST_INTR_STATUS); 6022 old = (u8)status & 0xff; 6023 if ((u8)vector != old) { 6024 status &= ~0xff; 6025 status |= (u8)vector; 6026 vmcs_write16(GUEST_INTR_STATUS, status); 6027 } 6028 } 6029 6030 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6031 { 6032 /* 6033 * When running L2, updating RVI is only relevant when 6034 * vmcs12 virtual-interrupt-delivery enabled. 6035 * However, it can be enabled only when L1 also 6036 * intercepts external-interrupts and in that case 6037 * we should not update vmcs02 RVI but instead intercept 6038 * interrupt. Therefore, do nothing when running L2. 6039 */ 6040 if (!is_guest_mode(vcpu)) 6041 vmx_set_rvi(max_irr); 6042 } 6043 6044 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6045 { 6046 struct vcpu_vmx *vmx = to_vmx(vcpu); 6047 int max_irr; 6048 bool max_irr_updated; 6049 6050 WARN_ON(!vcpu->arch.apicv_active); 6051 if (pi_test_on(&vmx->pi_desc)) { 6052 pi_clear_on(&vmx->pi_desc); 6053 /* 6054 * IOMMU can write to PIR.ON, so the barrier matters even on UP. 6055 * But on x86 this is just a compiler barrier anyway. 6056 */ 6057 smp_mb__after_atomic(); 6058 max_irr_updated = 6059 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6060 6061 /* 6062 * If we are running L2 and L1 has a new pending interrupt 6063 * which can be injected, we should re-evaluate 6064 * what should be done with this new L1 interrupt. 6065 * If L1 intercepts external-interrupts, we should 6066 * exit from L2 to L1. Otherwise, interrupt should be 6067 * delivered directly to L2. 6068 */ 6069 if (is_guest_mode(vcpu) && max_irr_updated) { 6070 if (nested_exit_on_intr(vcpu)) 6071 kvm_vcpu_exiting_guest_mode(vcpu); 6072 else 6073 kvm_make_request(KVM_REQ_EVENT, vcpu); 6074 } 6075 } else { 6076 max_irr = kvm_lapic_find_highest_irr(vcpu); 6077 } 6078 vmx_hwapic_irr_update(vcpu, max_irr); 6079 return max_irr; 6080 } 6081 6082 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6083 { 6084 if (!kvm_vcpu_apicv_active(vcpu)) 6085 return; 6086 6087 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6088 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6089 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6090 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6091 } 6092 6093 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6094 { 6095 struct vcpu_vmx *vmx = to_vmx(vcpu); 6096 6097 pi_clear_on(&vmx->pi_desc); 6098 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6099 } 6100 6101 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) 6102 { 6103 u32 exit_intr_info = 0; 6104 u16 basic_exit_reason = (u16)vmx->exit_reason; 6105 6106 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY 6107 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI)) 6108 return; 6109 6110 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) 6111 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6112 vmx->exit_intr_info = exit_intr_info; 6113 6114 /* if exit due to PF check for async PF */ 6115 if (is_page_fault(exit_intr_info)) 6116 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); 6117 6118 /* Handle machine checks before interrupts are enabled */ 6119 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || 6120 is_machine_check(exit_intr_info)) 6121 kvm_machine_check(); 6122 6123 /* We need to handle NMIs before interrupts are enabled */ 6124 if (is_nmi(exit_intr_info)) { 6125 kvm_before_interrupt(&vmx->vcpu); 6126 asm("int $2"); 6127 kvm_after_interrupt(&vmx->vcpu); 6128 } 6129 } 6130 6131 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) 6132 { 6133 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6134 6135 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) 6136 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { 6137 unsigned int vector; 6138 unsigned long entry; 6139 gate_desc *desc; 6140 struct vcpu_vmx *vmx = to_vmx(vcpu); 6141 #ifdef CONFIG_X86_64 6142 unsigned long tmp; 6143 #endif 6144 6145 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6146 desc = (gate_desc *)vmx->host_idt_base + vector; 6147 entry = gate_offset(desc); 6148 asm volatile( 6149 #ifdef CONFIG_X86_64 6150 "mov %%" _ASM_SP ", %[sp]\n\t" 6151 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" 6152 "push $%c[ss]\n\t" 6153 "push %[sp]\n\t" 6154 #endif 6155 "pushf\n\t" 6156 __ASM_SIZE(push) " $%c[cs]\n\t" 6157 CALL_NOSPEC 6158 : 6159 #ifdef CONFIG_X86_64 6160 [sp]"=&r"(tmp), 6161 #endif 6162 ASM_CALL_CONSTRAINT 6163 : 6164 THUNK_TARGET(entry), 6165 [ss]"i"(__KERNEL_DS), 6166 [cs]"i"(__KERNEL_CS) 6167 ); 6168 } 6169 } 6170 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); 6171 6172 static bool vmx_has_emulated_msr(int index) 6173 { 6174 switch (index) { 6175 case MSR_IA32_SMBASE: 6176 /* 6177 * We cannot do SMM unless we can run the guest in big 6178 * real mode. 6179 */ 6180 return enable_unrestricted_guest || emulate_invalid_guest_state; 6181 case MSR_AMD64_VIRT_SPEC_CTRL: 6182 /* This is AMD only. */ 6183 return false; 6184 default: 6185 return true; 6186 } 6187 } 6188 6189 static bool vmx_pt_supported(void) 6190 { 6191 return pt_mode == PT_MODE_HOST_GUEST; 6192 } 6193 6194 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6195 { 6196 u32 exit_intr_info; 6197 bool unblock_nmi; 6198 u8 vector; 6199 bool idtv_info_valid; 6200 6201 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6202 6203 if (enable_vnmi) { 6204 if (vmx->loaded_vmcs->nmi_known_unmasked) 6205 return; 6206 /* 6207 * Can't use vmx->exit_intr_info since we're not sure what 6208 * the exit reason is. 6209 */ 6210 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6211 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6212 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6213 /* 6214 * SDM 3: 27.7.1.2 (September 2008) 6215 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6216 * a guest IRET fault. 6217 * SDM 3: 23.2.2 (September 2008) 6218 * Bit 12 is undefined in any of the following cases: 6219 * If the VM exit sets the valid bit in the IDT-vectoring 6220 * information field. 6221 * If the VM exit is due to a double fault. 6222 */ 6223 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6224 vector != DF_VECTOR && !idtv_info_valid) 6225 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6226 GUEST_INTR_STATE_NMI); 6227 else 6228 vmx->loaded_vmcs->nmi_known_unmasked = 6229 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6230 & GUEST_INTR_STATE_NMI); 6231 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6232 vmx->loaded_vmcs->vnmi_blocked_time += 6233 ktime_to_ns(ktime_sub(ktime_get(), 6234 vmx->loaded_vmcs->entry_time)); 6235 } 6236 6237 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6238 u32 idt_vectoring_info, 6239 int instr_len_field, 6240 int error_code_field) 6241 { 6242 u8 vector; 6243 int type; 6244 bool idtv_info_valid; 6245 6246 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6247 6248 vcpu->arch.nmi_injected = false; 6249 kvm_clear_exception_queue(vcpu); 6250 kvm_clear_interrupt_queue(vcpu); 6251 6252 if (!idtv_info_valid) 6253 return; 6254 6255 kvm_make_request(KVM_REQ_EVENT, vcpu); 6256 6257 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6258 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6259 6260 switch (type) { 6261 case INTR_TYPE_NMI_INTR: 6262 vcpu->arch.nmi_injected = true; 6263 /* 6264 * SDM 3: 27.7.1.2 (September 2008) 6265 * Clear bit "block by NMI" before VM entry if a NMI 6266 * delivery faulted. 6267 */ 6268 vmx_set_nmi_mask(vcpu, false); 6269 break; 6270 case INTR_TYPE_SOFT_EXCEPTION: 6271 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6272 /* fall through */ 6273 case INTR_TYPE_HARD_EXCEPTION: 6274 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6275 u32 err = vmcs_read32(error_code_field); 6276 kvm_requeue_exception_e(vcpu, vector, err); 6277 } else 6278 kvm_requeue_exception(vcpu, vector); 6279 break; 6280 case INTR_TYPE_SOFT_INTR: 6281 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6282 /* fall through */ 6283 case INTR_TYPE_EXT_INTR: 6284 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6285 break; 6286 default: 6287 break; 6288 } 6289 } 6290 6291 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6292 { 6293 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6294 VM_EXIT_INSTRUCTION_LEN, 6295 IDT_VECTORING_ERROR_CODE); 6296 } 6297 6298 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6299 { 6300 __vmx_complete_interrupts(vcpu, 6301 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6302 VM_ENTRY_INSTRUCTION_LEN, 6303 VM_ENTRY_EXCEPTION_ERROR_CODE); 6304 6305 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6306 } 6307 6308 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6309 { 6310 int i, nr_msrs; 6311 struct perf_guest_switch_msr *msrs; 6312 6313 msrs = perf_guest_get_msrs(&nr_msrs); 6314 6315 if (!msrs) 6316 return; 6317 6318 for (i = 0; i < nr_msrs; i++) 6319 if (msrs[i].host == msrs[i].guest) 6320 clear_atomic_switch_msr(vmx, msrs[i].msr); 6321 else 6322 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6323 msrs[i].host, false); 6324 } 6325 6326 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val) 6327 { 6328 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val); 6329 if (!vmx->loaded_vmcs->hv_timer_armed) 6330 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, 6331 PIN_BASED_VMX_PREEMPTION_TIMER); 6332 vmx->loaded_vmcs->hv_timer_armed = true; 6333 } 6334 6335 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6336 { 6337 struct vcpu_vmx *vmx = to_vmx(vcpu); 6338 u64 tscl; 6339 u32 delta_tsc; 6340 6341 if (vmx->req_immediate_exit) { 6342 vmx_arm_hv_timer(vmx, 0); 6343 return; 6344 } 6345 6346 if (vmx->hv_deadline_tsc != -1) { 6347 tscl = rdtsc(); 6348 if (vmx->hv_deadline_tsc > tscl) 6349 /* set_hv_timer ensures the delta fits in 32-bits */ 6350 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6351 cpu_preemption_timer_multi); 6352 else 6353 delta_tsc = 0; 6354 6355 vmx_arm_hv_timer(vmx, delta_tsc); 6356 return; 6357 } 6358 6359 if (vmx->loaded_vmcs->hv_timer_armed) 6360 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, 6361 PIN_BASED_VMX_PREEMPTION_TIMER); 6362 vmx->loaded_vmcs->hv_timer_armed = false; 6363 } 6364 6365 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6366 { 6367 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6368 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6369 vmcs_writel(HOST_RSP, host_rsp); 6370 } 6371 } 6372 6373 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched); 6374 6375 static void vmx_vcpu_run(struct kvm_vcpu *vcpu) 6376 { 6377 struct vcpu_vmx *vmx = to_vmx(vcpu); 6378 unsigned long cr3, cr4; 6379 6380 /* Record the guest's net vcpu time for enforced NMI injections. */ 6381 if (unlikely(!enable_vnmi && 6382 vmx->loaded_vmcs->soft_vnmi_blocked)) 6383 vmx->loaded_vmcs->entry_time = ktime_get(); 6384 6385 /* Don't enter VMX if guest state is invalid, let the exit handler 6386 start emulation until we arrive back to a valid state */ 6387 if (vmx->emulation_required) 6388 return; 6389 6390 if (vmx->ple_window_dirty) { 6391 vmx->ple_window_dirty = false; 6392 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6393 } 6394 6395 if (vmx->nested.need_vmcs12_sync) 6396 nested_sync_from_vmcs12(vcpu); 6397 6398 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) 6399 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6400 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) 6401 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6402 6403 cr3 = __get_current_cr3_fast(); 6404 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6405 vmcs_writel(HOST_CR3, cr3); 6406 vmx->loaded_vmcs->host_state.cr3 = cr3; 6407 } 6408 6409 cr4 = cr4_read_shadow(); 6410 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6411 vmcs_writel(HOST_CR4, cr4); 6412 vmx->loaded_vmcs->host_state.cr4 = cr4; 6413 } 6414 6415 /* When single-stepping over STI and MOV SS, we must clear the 6416 * corresponding interruptibility bits in the guest state. Otherwise 6417 * vmentry fails as it then expects bit 14 (BS) in pending debug 6418 * exceptions being set, but that's not correct for the guest debugging 6419 * case. */ 6420 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6421 vmx_set_interrupt_shadow(vcpu, 0); 6422 6423 kvm_load_guest_xcr0(vcpu); 6424 6425 if (static_cpu_has(X86_FEATURE_PKU) && 6426 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && 6427 vcpu->arch.pkru != vmx->host_pkru) 6428 __write_pkru(vcpu->arch.pkru); 6429 6430 pt_guest_enter(vmx); 6431 6432 atomic_switch_perf_msrs(vmx); 6433 6434 vmx_update_hv_timer(vcpu); 6435 6436 /* 6437 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6438 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6439 * is no need to worry about the conditional branch over the wrmsr 6440 * being speculatively taken. 6441 */ 6442 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6443 6444 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6445 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6446 vmx_l1d_flush(vcpu); 6447 else if (static_branch_unlikely(&mds_user_clear)) 6448 mds_clear_cpu_buffers(); 6449 6450 if (vcpu->arch.cr2 != read_cr2()) 6451 write_cr2(vcpu->arch.cr2); 6452 6453 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6454 vmx->loaded_vmcs->launched); 6455 6456 vcpu->arch.cr2 = read_cr2(); 6457 6458 /* 6459 * We do not use IBRS in the kernel. If this vCPU has used the 6460 * SPEC_CTRL MSR it may have left it on; save the value and 6461 * turn it off. This is much more efficient than blindly adding 6462 * it to the atomic save/restore list. Especially as the former 6463 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6464 * 6465 * For non-nested case: 6466 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6467 * save it. 6468 * 6469 * For nested case: 6470 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6471 * save it. 6472 */ 6473 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6474 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6475 6476 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6477 6478 /* All fields are clean at this point */ 6479 if (static_branch_unlikely(&enable_evmcs)) 6480 current_evmcs->hv_clean_fields |= 6481 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6482 6483 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6484 if (vmx->host_debugctlmsr) 6485 update_debugctlmsr(vmx->host_debugctlmsr); 6486 6487 #ifndef CONFIG_X86_64 6488 /* 6489 * The sysexit path does not restore ds/es, so we must set them to 6490 * a reasonable value ourselves. 6491 * 6492 * We can't defer this to vmx_prepare_switch_to_host() since that 6493 * function may be executed in interrupt context, which saves and 6494 * restore segments around it, nullifying its effect. 6495 */ 6496 loadsegment(ds, __USER_DS); 6497 loadsegment(es, __USER_DS); 6498 #endif 6499 6500 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) 6501 | (1 << VCPU_EXREG_RFLAGS) 6502 | (1 << VCPU_EXREG_PDPTR) 6503 | (1 << VCPU_EXREG_SEGMENTS) 6504 | (1 << VCPU_EXREG_CR3)); 6505 vcpu->arch.regs_dirty = 0; 6506 6507 pt_guest_exit(vmx); 6508 6509 /* 6510 * eager fpu is enabled if PKEY is supported and CR4 is switched 6511 * back on host, so it is safe to read guest PKRU from current 6512 * XSAVE. 6513 */ 6514 if (static_cpu_has(X86_FEATURE_PKU) && 6515 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { 6516 vcpu->arch.pkru = rdpkru(); 6517 if (vcpu->arch.pkru != vmx->host_pkru) 6518 __write_pkru(vmx->host_pkru); 6519 } 6520 6521 kvm_put_guest_xcr0(vcpu); 6522 6523 vmx->nested.nested_run_pending = 0; 6524 vmx->idt_vectoring_info = 0; 6525 6526 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); 6527 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) 6528 return; 6529 6530 vmx->loaded_vmcs->launched = 1; 6531 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6532 6533 vmx_complete_atomic_exit(vmx); 6534 vmx_recover_nmi_blocking(vmx); 6535 vmx_complete_interrupts(vmx); 6536 } 6537 6538 static struct kvm *vmx_vm_alloc(void) 6539 { 6540 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx), 6541 GFP_KERNEL_ACCOUNT | __GFP_ZERO, 6542 PAGE_KERNEL); 6543 return &kvm_vmx->kvm; 6544 } 6545 6546 static void vmx_vm_free(struct kvm *kvm) 6547 { 6548 vfree(to_kvm_vmx(kvm)); 6549 } 6550 6551 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6552 { 6553 struct vcpu_vmx *vmx = to_vmx(vcpu); 6554 6555 if (enable_pml) 6556 vmx_destroy_pml_buffer(vmx); 6557 free_vpid(vmx->vpid); 6558 nested_vmx_free_vcpu(vcpu); 6559 free_loaded_vmcs(vmx->loaded_vmcs); 6560 kfree(vmx->guest_msrs); 6561 kvm_vcpu_uninit(vcpu); 6562 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); 6563 kmem_cache_free(kvm_vcpu_cache, vmx); 6564 } 6565 6566 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) 6567 { 6568 int err; 6569 struct vcpu_vmx *vmx; 6570 unsigned long *msr_bitmap; 6571 int cpu; 6572 6573 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 6574 if (!vmx) 6575 return ERR_PTR(-ENOMEM); 6576 6577 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 6578 GFP_KERNEL_ACCOUNT); 6579 if (!vmx->vcpu.arch.guest_fpu) { 6580 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); 6581 err = -ENOMEM; 6582 goto free_partial_vcpu; 6583 } 6584 6585 vmx->vpid = allocate_vpid(); 6586 6587 err = kvm_vcpu_init(&vmx->vcpu, kvm, id); 6588 if (err) 6589 goto free_vcpu; 6590 6591 err = -ENOMEM; 6592 6593 /* 6594 * If PML is turned on, failure on enabling PML just results in failure 6595 * of creating the vcpu, therefore we can simplify PML logic (by 6596 * avoiding dealing with cases, such as enabling PML partially on vcpus 6597 * for the guest, etc. 6598 */ 6599 if (enable_pml) { 6600 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6601 if (!vmx->pml_pg) 6602 goto uninit_vcpu; 6603 } 6604 6605 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 6606 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) 6607 > PAGE_SIZE); 6608 6609 if (!vmx->guest_msrs) 6610 goto free_pml; 6611 6612 err = alloc_loaded_vmcs(&vmx->vmcs01); 6613 if (err < 0) 6614 goto free_msrs; 6615 6616 msr_bitmap = vmx->vmcs01.msr_bitmap; 6617 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R); 6618 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); 6619 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); 6620 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6621 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6622 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6623 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6624 vmx->msr_bitmap_mode = 0; 6625 6626 vmx->loaded_vmcs = &vmx->vmcs01; 6627 cpu = get_cpu(); 6628 vmx_vcpu_load(&vmx->vcpu, cpu); 6629 vmx->vcpu.cpu = cpu; 6630 vmx_vcpu_setup(vmx); 6631 vmx_vcpu_put(&vmx->vcpu); 6632 put_cpu(); 6633 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { 6634 err = alloc_apic_access_page(kvm); 6635 if (err) 6636 goto free_vmcs; 6637 } 6638 6639 if (enable_ept && !enable_unrestricted_guest) { 6640 err = init_rmode_identity_map(kvm); 6641 if (err) 6642 goto free_vmcs; 6643 } 6644 6645 if (nested) 6646 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, 6647 vmx_capability.ept, 6648 kvm_vcpu_apicv_active(&vmx->vcpu)); 6649 else 6650 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6651 6652 vmx->nested.posted_intr_nv = -1; 6653 vmx->nested.current_vmptr = -1ull; 6654 6655 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; 6656 6657 /* 6658 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6659 * or POSTED_INTR_WAKEUP_VECTOR. 6660 */ 6661 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6662 vmx->pi_desc.sn = 1; 6663 6664 vmx->ept_pointer = INVALID_PAGE; 6665 6666 return &vmx->vcpu; 6667 6668 free_vmcs: 6669 free_loaded_vmcs(vmx->loaded_vmcs); 6670 free_msrs: 6671 kfree(vmx->guest_msrs); 6672 free_pml: 6673 vmx_destroy_pml_buffer(vmx); 6674 uninit_vcpu: 6675 kvm_vcpu_uninit(&vmx->vcpu); 6676 free_vcpu: 6677 free_vpid(vmx->vpid); 6678 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); 6679 free_partial_vcpu: 6680 kmem_cache_free(kvm_vcpu_cache, vmx); 6681 return ERR_PTR(err); 6682 } 6683 6684 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6685 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6686 6687 static int vmx_vm_init(struct kvm *kvm) 6688 { 6689 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); 6690 6691 if (!ple_gap) 6692 kvm->arch.pause_in_guest = true; 6693 6694 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6695 switch (l1tf_mitigation) { 6696 case L1TF_MITIGATION_OFF: 6697 case L1TF_MITIGATION_FLUSH_NOWARN: 6698 /* 'I explicitly don't care' is set */ 6699 break; 6700 case L1TF_MITIGATION_FLUSH: 6701 case L1TF_MITIGATION_FLUSH_NOSMT: 6702 case L1TF_MITIGATION_FULL: 6703 /* 6704 * Warn upon starting the first VM in a potentially 6705 * insecure environment. 6706 */ 6707 if (sched_smt_active()) 6708 pr_warn_once(L1TF_MSG_SMT); 6709 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6710 pr_warn_once(L1TF_MSG_L1D); 6711 break; 6712 case L1TF_MITIGATION_FULL_FORCE: 6713 /* Flush is enforced */ 6714 break; 6715 } 6716 } 6717 return 0; 6718 } 6719 6720 static void __init vmx_check_processor_compat(void *rtn) 6721 { 6722 struct vmcs_config vmcs_conf; 6723 struct vmx_capability vmx_cap; 6724 6725 *(int *)rtn = 0; 6726 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6727 *(int *)rtn = -EIO; 6728 if (nested) 6729 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept, 6730 enable_apicv); 6731 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6732 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6733 smp_processor_id()); 6734 *(int *)rtn = -EIO; 6735 } 6736 } 6737 6738 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6739 { 6740 u8 cache; 6741 u64 ipat = 0; 6742 6743 /* For VT-d and EPT combination 6744 * 1. MMIO: always map as UC 6745 * 2. EPT with VT-d: 6746 * a. VT-d without snooping control feature: can't guarantee the 6747 * result, try to trust guest. 6748 * b. VT-d with snooping control feature: snooping control feature of 6749 * VT-d engine can guarantee the cache correctness. Just set it 6750 * to WB to keep consistent with host. So the same as item 3. 6751 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep 6752 * consistent with host MTRR 6753 */ 6754 if (is_mmio) { 6755 cache = MTRR_TYPE_UNCACHABLE; 6756 goto exit; 6757 } 6758 6759 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 6760 ipat = VMX_EPT_IPAT_BIT; 6761 cache = MTRR_TYPE_WRBACK; 6762 goto exit; 6763 } 6764 6765 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 6766 ipat = VMX_EPT_IPAT_BIT; 6767 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 6768 cache = MTRR_TYPE_WRBACK; 6769 else 6770 cache = MTRR_TYPE_UNCACHABLE; 6771 goto exit; 6772 } 6773 6774 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 6775 6776 exit: 6777 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 6778 } 6779 6780 static int vmx_get_lpage_level(void) 6781 { 6782 if (enable_ept && !cpu_has_vmx_ept_1g_page()) 6783 return PT_DIRECTORY_LEVEL; 6784 else 6785 /* For shadow and EPT supported 1GB page */ 6786 return PT_PDPE_LEVEL; 6787 } 6788 6789 static void vmcs_set_secondary_exec_control(u32 new_ctl) 6790 { 6791 /* 6792 * These bits in the secondary execution controls field 6793 * are dynamic, the others are mostly based on the hypervisor 6794 * architecture and the guest's CPUID. Do not touch the 6795 * dynamic bits. 6796 */ 6797 u32 mask = 6798 SECONDARY_EXEC_SHADOW_VMCS | 6799 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 6800 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6801 SECONDARY_EXEC_DESC; 6802 6803 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6804 6805 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, 6806 (new_ctl & ~mask) | (cur_ctl & mask)); 6807 } 6808 6809 /* 6810 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 6811 * (indicating "allowed-1") if they are supported in the guest's CPUID. 6812 */ 6813 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 6814 { 6815 struct vcpu_vmx *vmx = to_vmx(vcpu); 6816 struct kvm_cpuid_entry2 *entry; 6817 6818 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 6819 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 6820 6821 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 6822 if (entry && (entry->_reg & (_cpuid_mask))) \ 6823 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 6824 } while (0) 6825 6826 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 6827 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); 6828 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); 6829 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); 6830 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); 6831 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); 6832 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); 6833 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); 6834 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); 6835 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); 6836 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); 6837 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); 6838 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); 6839 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); 6840 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); 6841 6842 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 6843 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); 6844 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); 6845 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); 6846 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); 6847 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); 6848 6849 #undef cr4_fixed1_update 6850 } 6851 6852 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 6853 { 6854 struct vcpu_vmx *vmx = to_vmx(vcpu); 6855 6856 if (kvm_mpx_supported()) { 6857 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 6858 6859 if (mpx_enabled) { 6860 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 6861 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 6862 } else { 6863 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 6864 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 6865 } 6866 } 6867 } 6868 6869 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 6870 { 6871 struct vcpu_vmx *vmx = to_vmx(vcpu); 6872 struct kvm_cpuid_entry2 *best = NULL; 6873 int i; 6874 6875 for (i = 0; i < PT_CPUID_LEAVES; i++) { 6876 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 6877 if (!best) 6878 return; 6879 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 6880 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 6881 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 6882 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 6883 } 6884 6885 /* Get the number of configurable Address Ranges for filtering */ 6886 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 6887 PT_CAP_num_address_ranges); 6888 6889 /* Initialize and clear the no dependency bits */ 6890 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 6891 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 6892 6893 /* 6894 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 6895 * will inject an #GP 6896 */ 6897 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 6898 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 6899 6900 /* 6901 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 6902 * PSBFreq can be set 6903 */ 6904 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 6905 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 6906 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 6907 6908 /* 6909 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 6910 * MTCFreq can be set 6911 */ 6912 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 6913 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 6914 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 6915 6916 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 6917 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 6918 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 6919 RTIT_CTL_PTW_EN); 6920 6921 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 6922 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 6923 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 6924 6925 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 6926 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 6927 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 6928 6929 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ 6930 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 6931 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 6932 6933 /* unmask address range configure area */ 6934 for (i = 0; i < vmx->pt_desc.addr_range; i++) 6935 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 6936 } 6937 6938 static void vmx_cpuid_update(struct kvm_vcpu *vcpu) 6939 { 6940 struct vcpu_vmx *vmx = to_vmx(vcpu); 6941 6942 if (cpu_has_secondary_exec_ctrls()) { 6943 vmx_compute_secondary_exec_control(vmx); 6944 vmcs_set_secondary_exec_control(vmx->secondary_exec_control); 6945 } 6946 6947 if (nested_vmx_allowed(vcpu)) 6948 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 6949 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 6950 else 6951 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 6952 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 6953 6954 if (nested_vmx_allowed(vcpu)) { 6955 nested_vmx_cr_fixed1_bits_update(vcpu); 6956 nested_vmx_entry_exit_ctls_update(vcpu); 6957 } 6958 6959 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 6960 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 6961 update_intel_pt_cfg(vcpu); 6962 } 6963 6964 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) 6965 { 6966 if (func == 1 && nested) 6967 entry->ecx |= bit(X86_FEATURE_VMX); 6968 } 6969 6970 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 6971 { 6972 to_vmx(vcpu)->req_immediate_exit = true; 6973 } 6974 6975 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 6976 struct x86_instruction_info *info, 6977 enum x86_intercept_stage stage) 6978 { 6979 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6980 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6981 6982 /* 6983 * RDPID causes #UD if disabled through secondary execution controls. 6984 * Because it is marked as EmulateOnUD, we need to intercept it here. 6985 */ 6986 if (info->intercept == x86_intercept_rdtscp && 6987 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { 6988 ctxt->exception.vector = UD_VECTOR; 6989 ctxt->exception.error_code_valid = false; 6990 return X86EMUL_PROPAGATE_FAULT; 6991 } 6992 6993 /* TODO: check more intercepts... */ 6994 return X86EMUL_CONTINUE; 6995 } 6996 6997 #ifdef CONFIG_X86_64 6998 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 6999 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7000 u64 divisor, u64 *result) 7001 { 7002 u64 low = a << shift, high = a >> (64 - shift); 7003 7004 /* To avoid the overflow on divq */ 7005 if (high >= divisor) 7006 return 1; 7007 7008 /* Low hold the result, high hold rem which is discarded */ 7009 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7010 "rm" (divisor), "0" (low), "1" (high)); 7011 *result = low; 7012 7013 return 0; 7014 } 7015 7016 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7017 bool *expired) 7018 { 7019 struct vcpu_vmx *vmx; 7020 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7021 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7022 7023 if (kvm_mwait_in_guest(vcpu->kvm)) 7024 return -EOPNOTSUPP; 7025 7026 vmx = to_vmx(vcpu); 7027 tscl = rdtsc(); 7028 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7029 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7030 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7031 ktimer->timer_advance_ns); 7032 7033 if (delta_tsc > lapic_timer_advance_cycles) 7034 delta_tsc -= lapic_timer_advance_cycles; 7035 else 7036 delta_tsc = 0; 7037 7038 /* Convert to host delta tsc if tsc scaling is enabled */ 7039 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7040 delta_tsc && u64_shl_div_u64(delta_tsc, 7041 kvm_tsc_scaling_ratio_frac_bits, 7042 vcpu->arch.tsc_scaling_ratio, &delta_tsc)) 7043 return -ERANGE; 7044 7045 /* 7046 * If the delta tsc can't fit in the 32 bit after the multi shift, 7047 * we can't use the preemption timer. 7048 * It's possible that it fits on later vmentries, but checking 7049 * on every vmentry is costly so we just use an hrtimer. 7050 */ 7051 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7052 return -ERANGE; 7053 7054 vmx->hv_deadline_tsc = tscl + delta_tsc; 7055 *expired = !delta_tsc; 7056 return 0; 7057 } 7058 7059 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7060 { 7061 to_vmx(vcpu)->hv_deadline_tsc = -1; 7062 } 7063 #endif 7064 7065 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7066 { 7067 if (!kvm_pause_in_guest(vcpu->kvm)) 7068 shrink_ple_window(vcpu); 7069 } 7070 7071 static void vmx_slot_enable_log_dirty(struct kvm *kvm, 7072 struct kvm_memory_slot *slot) 7073 { 7074 kvm_mmu_slot_leaf_clear_dirty(kvm, slot); 7075 kvm_mmu_slot_largepage_remove_write_access(kvm, slot); 7076 } 7077 7078 static void vmx_slot_disable_log_dirty(struct kvm *kvm, 7079 struct kvm_memory_slot *slot) 7080 { 7081 kvm_mmu_slot_set_dirty(kvm, slot); 7082 } 7083 7084 static void vmx_flush_log_dirty(struct kvm *kvm) 7085 { 7086 kvm_flush_pml_buffers(kvm); 7087 } 7088 7089 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) 7090 { 7091 struct vmcs12 *vmcs12; 7092 struct vcpu_vmx *vmx = to_vmx(vcpu); 7093 gpa_t gpa, dst; 7094 7095 if (is_guest_mode(vcpu)) { 7096 WARN_ON_ONCE(vmx->nested.pml_full); 7097 7098 /* 7099 * Check if PML is enabled for the nested guest. 7100 * Whether eptp bit 6 is set is already checked 7101 * as part of A/D emulation. 7102 */ 7103 vmcs12 = get_vmcs12(vcpu); 7104 if (!nested_cpu_has_pml(vmcs12)) 7105 return 0; 7106 7107 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { 7108 vmx->nested.pml_full = true; 7109 return 1; 7110 } 7111 7112 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; 7113 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index; 7114 7115 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa, 7116 offset_in_page(dst), sizeof(gpa))) 7117 return 0; 7118 7119 vmcs12->guest_pml_index--; 7120 } 7121 7122 return 0; 7123 } 7124 7125 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, 7126 struct kvm_memory_slot *memslot, 7127 gfn_t offset, unsigned long mask) 7128 { 7129 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); 7130 } 7131 7132 static void __pi_post_block(struct kvm_vcpu *vcpu) 7133 { 7134 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 7135 struct pi_desc old, new; 7136 unsigned int dest; 7137 7138 do { 7139 old.control = new.control = pi_desc->control; 7140 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, 7141 "Wakeup handler not enabled while the VCPU is blocked\n"); 7142 7143 dest = cpu_physical_id(vcpu->cpu); 7144 7145 if (x2apic_enabled()) 7146 new.ndst = dest; 7147 else 7148 new.ndst = (dest << 8) & 0xFF00; 7149 7150 /* set 'NV' to 'notification vector' */ 7151 new.nv = POSTED_INTR_VECTOR; 7152 } while (cmpxchg64(&pi_desc->control, old.control, 7153 new.control) != old.control); 7154 7155 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { 7156 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7157 list_del(&vcpu->blocked_vcpu_list); 7158 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7159 vcpu->pre_pcpu = -1; 7160 } 7161 } 7162 7163 /* 7164 * This routine does the following things for vCPU which is going 7165 * to be blocked if VT-d PI is enabled. 7166 * - Store the vCPU to the wakeup list, so when interrupts happen 7167 * we can find the right vCPU to wake up. 7168 * - Change the Posted-interrupt descriptor as below: 7169 * 'NDST' <-- vcpu->pre_pcpu 7170 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR 7171 * - If 'ON' is set during this process, which means at least one 7172 * interrupt is posted for this vCPU, we cannot block it, in 7173 * this case, return 1, otherwise, return 0. 7174 * 7175 */ 7176 static int pi_pre_block(struct kvm_vcpu *vcpu) 7177 { 7178 unsigned int dest; 7179 struct pi_desc old, new; 7180 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 7181 7182 if (!kvm_arch_has_assigned_device(vcpu->kvm) || 7183 !irq_remapping_cap(IRQ_POSTING_CAP) || 7184 !kvm_vcpu_apicv_active(vcpu)) 7185 return 0; 7186 7187 WARN_ON(irqs_disabled()); 7188 local_irq_disable(); 7189 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { 7190 vcpu->pre_pcpu = vcpu->cpu; 7191 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7192 list_add_tail(&vcpu->blocked_vcpu_list, 7193 &per_cpu(blocked_vcpu_on_cpu, 7194 vcpu->pre_pcpu)); 7195 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7196 } 7197 7198 do { 7199 old.control = new.control = pi_desc->control; 7200 7201 WARN((pi_desc->sn == 1), 7202 "Warning: SN field of posted-interrupts " 7203 "is set before blocking\n"); 7204 7205 /* 7206 * Since vCPU can be preempted during this process, 7207 * vcpu->cpu could be different with pre_pcpu, we 7208 * need to set pre_pcpu as the destination of wakeup 7209 * notification event, then we can find the right vCPU 7210 * to wakeup in wakeup handler if interrupts happen 7211 * when the vCPU is in blocked state. 7212 */ 7213 dest = cpu_physical_id(vcpu->pre_pcpu); 7214 7215 if (x2apic_enabled()) 7216 new.ndst = dest; 7217 else 7218 new.ndst = (dest << 8) & 0xFF00; 7219 7220 /* set 'NV' to 'wakeup vector' */ 7221 new.nv = POSTED_INTR_WAKEUP_VECTOR; 7222 } while (cmpxchg64(&pi_desc->control, old.control, 7223 new.control) != old.control); 7224 7225 /* We should not block the vCPU if an interrupt is posted for it. */ 7226 if (pi_test_on(pi_desc) == 1) 7227 __pi_post_block(vcpu); 7228 7229 local_irq_enable(); 7230 return (vcpu->pre_pcpu == -1); 7231 } 7232 7233 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7234 { 7235 if (pi_pre_block(vcpu)) 7236 return 1; 7237 7238 if (kvm_lapic_hv_timer_in_use(vcpu)) 7239 kvm_lapic_switch_to_sw_timer(vcpu); 7240 7241 return 0; 7242 } 7243 7244 static void pi_post_block(struct kvm_vcpu *vcpu) 7245 { 7246 if (vcpu->pre_pcpu == -1) 7247 return; 7248 7249 WARN_ON(irqs_disabled()); 7250 local_irq_disable(); 7251 __pi_post_block(vcpu); 7252 local_irq_enable(); 7253 } 7254 7255 static void vmx_post_block(struct kvm_vcpu *vcpu) 7256 { 7257 if (kvm_x86_ops->set_hv_timer) 7258 kvm_lapic_switch_to_hv_timer(vcpu); 7259 7260 pi_post_block(vcpu); 7261 } 7262 7263 /* 7264 * vmx_update_pi_irte - set IRTE for Posted-Interrupts 7265 * 7266 * @kvm: kvm 7267 * @host_irq: host irq of the interrupt 7268 * @guest_irq: gsi of the interrupt 7269 * @set: set or unset PI 7270 * returns 0 on success, < 0 on failure 7271 */ 7272 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, 7273 uint32_t guest_irq, bool set) 7274 { 7275 struct kvm_kernel_irq_routing_entry *e; 7276 struct kvm_irq_routing_table *irq_rt; 7277 struct kvm_lapic_irq irq; 7278 struct kvm_vcpu *vcpu; 7279 struct vcpu_data vcpu_info; 7280 int idx, ret = 0; 7281 7282 if (!kvm_arch_has_assigned_device(kvm) || 7283 !irq_remapping_cap(IRQ_POSTING_CAP) || 7284 !kvm_vcpu_apicv_active(kvm->vcpus[0])) 7285 return 0; 7286 7287 idx = srcu_read_lock(&kvm->irq_srcu); 7288 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 7289 if (guest_irq >= irq_rt->nr_rt_entries || 7290 hlist_empty(&irq_rt->map[guest_irq])) { 7291 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", 7292 guest_irq, irq_rt->nr_rt_entries); 7293 goto out; 7294 } 7295 7296 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 7297 if (e->type != KVM_IRQ_ROUTING_MSI) 7298 continue; 7299 /* 7300 * VT-d PI cannot support posting multicast/broadcast 7301 * interrupts to a vCPU, we still use interrupt remapping 7302 * for these kind of interrupts. 7303 * 7304 * For lowest-priority interrupts, we only support 7305 * those with single CPU as the destination, e.g. user 7306 * configures the interrupts via /proc/irq or uses 7307 * irqbalance to make the interrupts single-CPU. 7308 * 7309 * We will support full lowest-priority interrupt later. 7310 */ 7311 7312 kvm_set_msi_irq(kvm, e, &irq); 7313 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { 7314 /* 7315 * Make sure the IRTE is in remapped mode if 7316 * we don't handle it in posted mode. 7317 */ 7318 ret = irq_set_vcpu_affinity(host_irq, NULL); 7319 if (ret < 0) { 7320 printk(KERN_INFO 7321 "failed to back to remapped mode, irq: %u\n", 7322 host_irq); 7323 goto out; 7324 } 7325 7326 continue; 7327 } 7328 7329 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); 7330 vcpu_info.vector = irq.vector; 7331 7332 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, 7333 vcpu_info.vector, vcpu_info.pi_desc_addr, set); 7334 7335 if (set) 7336 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); 7337 else 7338 ret = irq_set_vcpu_affinity(host_irq, NULL); 7339 7340 if (ret < 0) { 7341 printk(KERN_INFO "%s: failed to update PI IRTE\n", 7342 __func__); 7343 goto out; 7344 } 7345 } 7346 7347 ret = 0; 7348 out: 7349 srcu_read_unlock(&kvm->irq_srcu, idx); 7350 return ret; 7351 } 7352 7353 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7354 { 7355 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7356 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7357 FEATURE_CONTROL_LMCE; 7358 else 7359 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7360 ~FEATURE_CONTROL_LMCE; 7361 } 7362 7363 static int vmx_smi_allowed(struct kvm_vcpu *vcpu) 7364 { 7365 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7366 if (to_vmx(vcpu)->nested.nested_run_pending) 7367 return 0; 7368 return 1; 7369 } 7370 7371 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7372 { 7373 struct vcpu_vmx *vmx = to_vmx(vcpu); 7374 7375 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7376 if (vmx->nested.smm.guest_mode) 7377 nested_vmx_vmexit(vcpu, -1, 0, 0); 7378 7379 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7380 vmx->nested.vmxon = false; 7381 vmx_clear_hlt(vcpu); 7382 return 0; 7383 } 7384 7385 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7386 { 7387 struct vcpu_vmx *vmx = to_vmx(vcpu); 7388 int ret; 7389 7390 if (vmx->nested.smm.vmxon) { 7391 vmx->nested.vmxon = true; 7392 vmx->nested.smm.vmxon = false; 7393 } 7394 7395 if (vmx->nested.smm.guest_mode) { 7396 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7397 if (ret) 7398 return ret; 7399 7400 vmx->nested.smm.guest_mode = false; 7401 } 7402 return 0; 7403 } 7404 7405 static int enable_smi_window(struct kvm_vcpu *vcpu) 7406 { 7407 return 0; 7408 } 7409 7410 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) 7411 { 7412 return 0; 7413 } 7414 7415 static __init int hardware_setup(void) 7416 { 7417 unsigned long host_bndcfgs; 7418 int r, i; 7419 7420 rdmsrl_safe(MSR_EFER, &host_efer); 7421 7422 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) 7423 kvm_define_shared_msr(i, vmx_msr_index[i]); 7424 7425 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7426 return -EIO; 7427 7428 if (boot_cpu_has(X86_FEATURE_NX)) 7429 kvm_enable_efer_bits(EFER_NX); 7430 7431 if (boot_cpu_has(X86_FEATURE_MPX)) { 7432 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7433 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7434 } 7435 7436 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7437 rdmsrl(MSR_IA32_XSS, host_xss); 7438 7439 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7440 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7441 enable_vpid = 0; 7442 7443 if (!cpu_has_vmx_ept() || 7444 !cpu_has_vmx_ept_4levels() || 7445 !cpu_has_vmx_ept_mt_wb() || 7446 !cpu_has_vmx_invept_global()) 7447 enable_ept = 0; 7448 7449 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7450 enable_ept_ad_bits = 0; 7451 7452 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7453 enable_unrestricted_guest = 0; 7454 7455 if (!cpu_has_vmx_flexpriority()) 7456 flexpriority_enabled = 0; 7457 7458 if (!cpu_has_virtual_nmis()) 7459 enable_vnmi = 0; 7460 7461 /* 7462 * set_apic_access_page_addr() is used to reload apic access 7463 * page upon invalidation. No need to do anything if not 7464 * using the APIC_ACCESS_ADDR VMCS field. 7465 */ 7466 if (!flexpriority_enabled) 7467 kvm_x86_ops->set_apic_access_page_addr = NULL; 7468 7469 if (!cpu_has_vmx_tpr_shadow()) 7470 kvm_x86_ops->update_cr8_intercept = NULL; 7471 7472 if (enable_ept && !cpu_has_vmx_ept_2m_page()) 7473 kvm_disable_largepages(); 7474 7475 #if IS_ENABLED(CONFIG_HYPERV) 7476 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7477 && enable_ept) { 7478 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb; 7479 kvm_x86_ops->tlb_remote_flush_with_range = 7480 hv_remote_flush_tlb_with_range; 7481 } 7482 #endif 7483 7484 if (!cpu_has_vmx_ple()) { 7485 ple_gap = 0; 7486 ple_window = 0; 7487 ple_window_grow = 0; 7488 ple_window_max = 0; 7489 ple_window_shrink = 0; 7490 } 7491 7492 if (!cpu_has_vmx_apicv()) { 7493 enable_apicv = 0; 7494 kvm_x86_ops->sync_pir_to_irr = NULL; 7495 } 7496 7497 if (cpu_has_vmx_tsc_scaling()) { 7498 kvm_has_tsc_control = true; 7499 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7500 kvm_tsc_scaling_ratio_frac_bits = 48; 7501 } 7502 7503 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7504 7505 if (enable_ept) 7506 vmx_enable_tdp(); 7507 else 7508 kvm_disable_tdp(); 7509 7510 /* 7511 * Only enable PML when hardware supports PML feature, and both EPT 7512 * and EPT A/D bit features are enabled -- PML depends on them to work. 7513 */ 7514 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7515 enable_pml = 0; 7516 7517 if (!enable_pml) { 7518 kvm_x86_ops->slot_enable_log_dirty = NULL; 7519 kvm_x86_ops->slot_disable_log_dirty = NULL; 7520 kvm_x86_ops->flush_log_dirty = NULL; 7521 kvm_x86_ops->enable_log_dirty_pt_masked = NULL; 7522 } 7523 7524 if (!cpu_has_vmx_preemption_timer()) 7525 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; 7526 7527 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { 7528 u64 vmx_msr; 7529 7530 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7531 cpu_preemption_timer_multi = 7532 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7533 } else { 7534 kvm_x86_ops->set_hv_timer = NULL; 7535 kvm_x86_ops->cancel_hv_timer = NULL; 7536 } 7537 7538 kvm_set_posted_intr_wakeup_handler(wakeup_handler); 7539 7540 kvm_mce_cap_supported |= MCG_LMCE_P; 7541 7542 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7543 return -EINVAL; 7544 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7545 pt_mode = PT_MODE_SYSTEM; 7546 7547 if (nested) { 7548 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7549 vmx_capability.ept, enable_apicv); 7550 7551 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7552 if (r) 7553 return r; 7554 } 7555 7556 r = alloc_kvm_area(); 7557 if (r) 7558 nested_vmx_hardware_unsetup(); 7559 return r; 7560 } 7561 7562 static __exit void hardware_unsetup(void) 7563 { 7564 if (nested) 7565 nested_vmx_hardware_unsetup(); 7566 7567 free_kvm_area(); 7568 } 7569 7570 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { 7571 .cpu_has_kvm_support = cpu_has_kvm_support, 7572 .disabled_by_bios = vmx_disabled_by_bios, 7573 .hardware_setup = hardware_setup, 7574 .hardware_unsetup = hardware_unsetup, 7575 .check_processor_compatibility = vmx_check_processor_compat, 7576 .hardware_enable = hardware_enable, 7577 .hardware_disable = hardware_disable, 7578 .cpu_has_accelerated_tpr = report_flexpriority, 7579 .has_emulated_msr = vmx_has_emulated_msr, 7580 7581 .vm_init = vmx_vm_init, 7582 .vm_alloc = vmx_vm_alloc, 7583 .vm_free = vmx_vm_free, 7584 7585 .vcpu_create = vmx_create_vcpu, 7586 .vcpu_free = vmx_free_vcpu, 7587 .vcpu_reset = vmx_vcpu_reset, 7588 7589 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7590 .vcpu_load = vmx_vcpu_load, 7591 .vcpu_put = vmx_vcpu_put, 7592 7593 .update_bp_intercept = update_exception_bitmap, 7594 .get_msr_feature = vmx_get_msr_feature, 7595 .get_msr = vmx_get_msr, 7596 .set_msr = vmx_set_msr, 7597 .get_segment_base = vmx_get_segment_base, 7598 .get_segment = vmx_get_segment, 7599 .set_segment = vmx_set_segment, 7600 .get_cpl = vmx_get_cpl, 7601 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7602 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, 7603 .decache_cr3 = vmx_decache_cr3, 7604 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, 7605 .set_cr0 = vmx_set_cr0, 7606 .set_cr3 = vmx_set_cr3, 7607 .set_cr4 = vmx_set_cr4, 7608 .set_efer = vmx_set_efer, 7609 .get_idt = vmx_get_idt, 7610 .set_idt = vmx_set_idt, 7611 .get_gdt = vmx_get_gdt, 7612 .set_gdt = vmx_set_gdt, 7613 .get_dr6 = vmx_get_dr6, 7614 .set_dr6 = vmx_set_dr6, 7615 .set_dr7 = vmx_set_dr7, 7616 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7617 .cache_reg = vmx_cache_reg, 7618 .get_rflags = vmx_get_rflags, 7619 .set_rflags = vmx_set_rflags, 7620 7621 .tlb_flush = vmx_flush_tlb, 7622 .tlb_flush_gva = vmx_flush_tlb_gva, 7623 7624 .run = vmx_vcpu_run, 7625 .handle_exit = vmx_handle_exit, 7626 .skip_emulated_instruction = skip_emulated_instruction, 7627 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7628 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7629 .patch_hypercall = vmx_patch_hypercall, 7630 .set_irq = vmx_inject_irq, 7631 .set_nmi = vmx_inject_nmi, 7632 .queue_exception = vmx_queue_exception, 7633 .cancel_injection = vmx_cancel_injection, 7634 .interrupt_allowed = vmx_interrupt_allowed, 7635 .nmi_allowed = vmx_nmi_allowed, 7636 .get_nmi_mask = vmx_get_nmi_mask, 7637 .set_nmi_mask = vmx_set_nmi_mask, 7638 .enable_nmi_window = enable_nmi_window, 7639 .enable_irq_window = enable_irq_window, 7640 .update_cr8_intercept = update_cr8_intercept, 7641 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7642 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7643 .get_enable_apicv = vmx_get_enable_apicv, 7644 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7645 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7646 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7647 .hwapic_irr_update = vmx_hwapic_irr_update, 7648 .hwapic_isr_update = vmx_hwapic_isr_update, 7649 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7650 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7651 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7652 7653 .set_tss_addr = vmx_set_tss_addr, 7654 .set_identity_map_addr = vmx_set_identity_map_addr, 7655 .get_tdp_level = get_ept_level, 7656 .get_mt_mask = vmx_get_mt_mask, 7657 7658 .get_exit_info = vmx_get_exit_info, 7659 7660 .get_lpage_level = vmx_get_lpage_level, 7661 7662 .cpuid_update = vmx_cpuid_update, 7663 7664 .rdtscp_supported = vmx_rdtscp_supported, 7665 .invpcid_supported = vmx_invpcid_supported, 7666 7667 .set_supported_cpuid = vmx_set_supported_cpuid, 7668 7669 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7670 7671 .read_l1_tsc_offset = vmx_read_l1_tsc_offset, 7672 .write_l1_tsc_offset = vmx_write_l1_tsc_offset, 7673 7674 .set_tdp_cr3 = vmx_set_cr3, 7675 7676 .check_intercept = vmx_check_intercept, 7677 .handle_external_intr = vmx_handle_external_intr, 7678 .mpx_supported = vmx_mpx_supported, 7679 .xsaves_supported = vmx_xsaves_supported, 7680 .umip_emulated = vmx_umip_emulated, 7681 .pt_supported = vmx_pt_supported, 7682 7683 .request_immediate_exit = vmx_request_immediate_exit, 7684 7685 .sched_in = vmx_sched_in, 7686 7687 .slot_enable_log_dirty = vmx_slot_enable_log_dirty, 7688 .slot_disable_log_dirty = vmx_slot_disable_log_dirty, 7689 .flush_log_dirty = vmx_flush_log_dirty, 7690 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, 7691 .write_log_dirty = vmx_write_pml_buffer, 7692 7693 .pre_block = vmx_pre_block, 7694 .post_block = vmx_post_block, 7695 7696 .pmu_ops = &intel_pmu_ops, 7697 7698 .update_pi_irte = vmx_update_pi_irte, 7699 7700 #ifdef CONFIG_X86_64 7701 .set_hv_timer = vmx_set_hv_timer, 7702 .cancel_hv_timer = vmx_cancel_hv_timer, 7703 #endif 7704 7705 .setup_mce = vmx_setup_mce, 7706 7707 .smi_allowed = vmx_smi_allowed, 7708 .pre_enter_smm = vmx_pre_enter_smm, 7709 .pre_leave_smm = vmx_pre_leave_smm, 7710 .enable_smi_window = enable_smi_window, 7711 7712 .check_nested_events = NULL, 7713 .get_nested_state = NULL, 7714 .set_nested_state = NULL, 7715 .get_vmcs12_pages = NULL, 7716 .nested_enable_evmcs = NULL, 7717 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault, 7718 }; 7719 7720 static void vmx_cleanup_l1d_flush(void) 7721 { 7722 if (vmx_l1d_flush_pages) { 7723 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7724 vmx_l1d_flush_pages = NULL; 7725 } 7726 /* Restore state so sysfs ignores VMX */ 7727 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7728 } 7729 7730 static void vmx_exit(void) 7731 { 7732 #ifdef CONFIG_KEXEC_CORE 7733 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7734 synchronize_rcu(); 7735 #endif 7736 7737 kvm_exit(); 7738 7739 #if IS_ENABLED(CONFIG_HYPERV) 7740 if (static_branch_unlikely(&enable_evmcs)) { 7741 int cpu; 7742 struct hv_vp_assist_page *vp_ap; 7743 /* 7744 * Reset everything to support using non-enlightened VMCS 7745 * access later (e.g. when we reload the module with 7746 * enlightened_vmcs=0) 7747 */ 7748 for_each_online_cpu(cpu) { 7749 vp_ap = hv_get_vp_assist_page(cpu); 7750 7751 if (!vp_ap) 7752 continue; 7753 7754 vp_ap->current_nested_vmcs = 0; 7755 vp_ap->enlighten_vmentry = 0; 7756 } 7757 7758 static_branch_disable(&enable_evmcs); 7759 } 7760 #endif 7761 vmx_cleanup_l1d_flush(); 7762 } 7763 module_exit(vmx_exit); 7764 7765 static int __init vmx_init(void) 7766 { 7767 int r; 7768 7769 #if IS_ENABLED(CONFIG_HYPERV) 7770 /* 7771 * Enlightened VMCS usage should be recommended and the host needs 7772 * to support eVMCS v1 or above. We can also disable eVMCS support 7773 * with module parameter. 7774 */ 7775 if (enlightened_vmcs && 7776 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7777 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7778 KVM_EVMCS_VERSION) { 7779 int cpu; 7780 7781 /* Check that we have assist pages on all online CPUs */ 7782 for_each_online_cpu(cpu) { 7783 if (!hv_get_vp_assist_page(cpu)) { 7784 enlightened_vmcs = false; 7785 break; 7786 } 7787 } 7788 7789 if (enlightened_vmcs) { 7790 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7791 static_branch_enable(&enable_evmcs); 7792 } 7793 } else { 7794 enlightened_vmcs = false; 7795 } 7796 #endif 7797 7798 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), 7799 __alignof__(struct vcpu_vmx), THIS_MODULE); 7800 if (r) 7801 return r; 7802 7803 /* 7804 * Must be called after kvm_init() so enable_ept is properly set 7805 * up. Hand the parameter mitigation value in which was stored in 7806 * the pre module init parser. If no parameter was given, it will 7807 * contain 'auto' which will be turned into the default 'cond' 7808 * mitigation mode. 7809 */ 7810 if (boot_cpu_has(X86_BUG_L1TF)) { 7811 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 7812 if (r) { 7813 vmx_exit(); 7814 return r; 7815 } 7816 } 7817 7818 #ifdef CONFIG_KEXEC_CORE 7819 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 7820 crash_vmclear_local_loaded_vmcss); 7821 #endif 7822 vmx_check_vmcs12_offsets(); 7823 7824 return 0; 7825 } 7826 module_init(vmx_init); 7827