xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "x86_ops.h"
72 #include "smm.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
75 
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78 
79 #ifdef MODULE
80 static const struct x86_cpu_id vmx_cpu_id[] = {
81 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
82 	{}
83 };
84 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
85 #endif
86 
87 bool __read_mostly enable_vpid = 1;
88 module_param_named(vpid, enable_vpid, bool, 0444);
89 
90 static bool __read_mostly enable_vnmi = 1;
91 module_param_named(vnmi, enable_vnmi, bool, 0444);
92 
93 bool __read_mostly flexpriority_enabled = 1;
94 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
95 
96 bool __read_mostly enable_ept = 1;
97 module_param_named(ept, enable_ept, bool, 0444);
98 
99 bool __read_mostly enable_unrestricted_guest = 1;
100 module_param_named(unrestricted_guest,
101 			enable_unrestricted_guest, bool, 0444);
102 
103 bool __read_mostly enable_ept_ad_bits = 1;
104 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
105 
106 static bool __read_mostly emulate_invalid_guest_state = true;
107 module_param(emulate_invalid_guest_state, bool, 0444);
108 
109 static bool __read_mostly fasteoi = 1;
110 module_param(fasteoi, bool, 0444);
111 
112 module_param(enable_apicv, bool, 0444);
113 
114 bool __read_mostly enable_ipiv = true;
115 module_param(enable_ipiv, bool, 0444);
116 
117 /*
118  * If nested=1, nested virtualization is supported, i.e., guests may use
119  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
120  * use VMX instructions.
121  */
122 static bool __read_mostly nested = 1;
123 module_param(nested, bool, 0444);
124 
125 bool __read_mostly enable_pml = 1;
126 module_param_named(pml, enable_pml, bool, 0444);
127 
128 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
129 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
130 
131 static bool __read_mostly dump_invalid_vmcs = 0;
132 module_param(dump_invalid_vmcs, bool, 0644);
133 
134 #define MSR_BITMAP_MODE_X2APIC		1
135 #define MSR_BITMAP_MODE_X2APIC_APICV	2
136 
137 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
138 
139 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
140 static int __read_mostly cpu_preemption_timer_multi;
141 static bool __read_mostly enable_preemption_timer = 1;
142 #ifdef CONFIG_X86_64
143 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
144 #endif
145 
146 extern bool __read_mostly allow_smaller_maxphyaddr;
147 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
148 
149 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
150 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
151 #define KVM_VM_CR0_ALWAYS_ON				\
152 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
153 
154 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
155 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
156 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
157 
158 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
159 
160 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
161 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
162 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
163 	RTIT_STATUS_BYTECNT))
164 
165 /*
166  * List of MSRs that can be directly passed to the guest.
167  * In addition to these x2apic, PT and LBR MSRs are handled specially.
168  */
169 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
170 	MSR_IA32_SPEC_CTRL,
171 	MSR_IA32_PRED_CMD,
172 	MSR_IA32_FLUSH_CMD,
173 	MSR_IA32_TSC,
174 #ifdef CONFIG_X86_64
175 	MSR_FS_BASE,
176 	MSR_GS_BASE,
177 	MSR_KERNEL_GS_BASE,
178 	MSR_IA32_XFD,
179 	MSR_IA32_XFD_ERR,
180 #endif
181 	MSR_IA32_SYSENTER_CS,
182 	MSR_IA32_SYSENTER_ESP,
183 	MSR_IA32_SYSENTER_EIP,
184 	MSR_CORE_C1_RES,
185 	MSR_CORE_C3_RESIDENCY,
186 	MSR_CORE_C6_RESIDENCY,
187 	MSR_CORE_C7_RESIDENCY,
188 };
189 
190 /*
191  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
192  * ple_gap:    upper bound on the amount of time between two successive
193  *             executions of PAUSE in a loop. Also indicate if ple enabled.
194  *             According to test, this time is usually smaller than 128 cycles.
195  * ple_window: upper bound on the amount of time a guest is allowed to execute
196  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
197  *             less than 2^12 cycles
198  * Time is measured based on a counter that runs at the same rate as the TSC,
199  * refer SDM volume 3b section 21.6.13 & 22.1.3.
200  */
201 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
202 module_param(ple_gap, uint, 0444);
203 
204 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
205 module_param(ple_window, uint, 0444);
206 
207 /* Default doubles per-vcpu window every exit. */
208 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
209 module_param(ple_window_grow, uint, 0444);
210 
211 /* Default resets per-vcpu window every exit to ple_window. */
212 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
213 module_param(ple_window_shrink, uint, 0444);
214 
215 /* Default is to compute the maximum so we can never overflow. */
216 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
217 module_param(ple_window_max, uint, 0444);
218 
219 /* Default is SYSTEM mode, 1 for host-guest mode */
220 int __read_mostly pt_mode = PT_MODE_SYSTEM;
221 module_param(pt_mode, int, S_IRUGO);
222 
223 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
224 
225 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
226 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
227 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
228 
229 /* Storage for pre module init parameter parsing */
230 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
231 
232 static const struct {
233 	const char *option;
234 	bool for_parse;
235 } vmentry_l1d_param[] = {
236 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
237 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
238 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
239 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
240 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
241 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
242 };
243 
244 #define L1D_CACHE_ORDER 4
245 static void *vmx_l1d_flush_pages;
246 
247 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
248 {
249 	struct page *page;
250 	unsigned int i;
251 
252 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
253 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
254 		return 0;
255 	}
256 
257 	if (!enable_ept) {
258 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
259 		return 0;
260 	}
261 
262 	if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
263 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
264 		return 0;
265 	}
266 
267 	/* If set to auto use the default l1tf mitigation method */
268 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
269 		switch (l1tf_mitigation) {
270 		case L1TF_MITIGATION_OFF:
271 			l1tf = VMENTER_L1D_FLUSH_NEVER;
272 			break;
273 		case L1TF_MITIGATION_FLUSH_NOWARN:
274 		case L1TF_MITIGATION_FLUSH:
275 		case L1TF_MITIGATION_FLUSH_NOSMT:
276 			l1tf = VMENTER_L1D_FLUSH_COND;
277 			break;
278 		case L1TF_MITIGATION_FULL:
279 		case L1TF_MITIGATION_FULL_FORCE:
280 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
281 			break;
282 		}
283 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
284 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
285 	}
286 
287 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
288 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
289 		/*
290 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
291 		 * lifetime and so should not be charged to a memcg.
292 		 */
293 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
294 		if (!page)
295 			return -ENOMEM;
296 		vmx_l1d_flush_pages = page_address(page);
297 
298 		/*
299 		 * Initialize each page with a different pattern in
300 		 * order to protect against KSM in the nested
301 		 * virtualization case.
302 		 */
303 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
304 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
305 			       PAGE_SIZE);
306 		}
307 	}
308 
309 	l1tf_vmx_mitigation = l1tf;
310 
311 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
312 		static_branch_enable(&vmx_l1d_should_flush);
313 	else
314 		static_branch_disable(&vmx_l1d_should_flush);
315 
316 	if (l1tf == VMENTER_L1D_FLUSH_COND)
317 		static_branch_enable(&vmx_l1d_flush_cond);
318 	else
319 		static_branch_disable(&vmx_l1d_flush_cond);
320 	return 0;
321 }
322 
323 static int vmentry_l1d_flush_parse(const char *s)
324 {
325 	unsigned int i;
326 
327 	if (s) {
328 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
329 			if (vmentry_l1d_param[i].for_parse &&
330 			    sysfs_streq(s, vmentry_l1d_param[i].option))
331 				return i;
332 		}
333 	}
334 	return -EINVAL;
335 }
336 
337 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
338 {
339 	int l1tf, ret;
340 
341 	l1tf = vmentry_l1d_flush_parse(s);
342 	if (l1tf < 0)
343 		return l1tf;
344 
345 	if (!boot_cpu_has(X86_BUG_L1TF))
346 		return 0;
347 
348 	/*
349 	 * Has vmx_init() run already? If not then this is the pre init
350 	 * parameter parsing. In that case just store the value and let
351 	 * vmx_init() do the proper setup after enable_ept has been
352 	 * established.
353 	 */
354 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
355 		vmentry_l1d_flush_param = l1tf;
356 		return 0;
357 	}
358 
359 	mutex_lock(&vmx_l1d_flush_mutex);
360 	ret = vmx_setup_l1d_flush(l1tf);
361 	mutex_unlock(&vmx_l1d_flush_mutex);
362 	return ret;
363 }
364 
365 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
366 {
367 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
368 		return sysfs_emit(s, "???\n");
369 
370 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
371 }
372 
373 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
374 {
375 	u64 msr;
376 
377 	if (!vmx->disable_fb_clear)
378 		return;
379 
380 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
381 	msr |= FB_CLEAR_DIS;
382 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
383 	/* Cache the MSR value to avoid reading it later */
384 	vmx->msr_ia32_mcu_opt_ctrl = msr;
385 }
386 
387 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
388 {
389 	if (!vmx->disable_fb_clear)
390 		return;
391 
392 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
393 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
394 }
395 
396 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
397 {
398 	/*
399 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
400 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
401 	 * the mitigation. Disabling the clearing behavior provides a
402 	 * performance boost for guests that aren't aware that manually clearing
403 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
404 	 * and VM-Exit.
405 	 */
406 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
407 				(host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
408 				!boot_cpu_has_bug(X86_BUG_MDS) &&
409 				!boot_cpu_has_bug(X86_BUG_TAA);
410 
411 	/*
412 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
413 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
414 	 * execute VERW.
415 	 */
416 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
417 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
418 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
419 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
420 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
422 		vmx->disable_fb_clear = false;
423 }
424 
425 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
426 	.set = vmentry_l1d_flush_set,
427 	.get = vmentry_l1d_flush_get,
428 };
429 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
430 
431 static u32 vmx_segment_access_rights(struct kvm_segment *var);
432 
433 void vmx_vmexit(void);
434 
435 #define vmx_insn_failed(fmt...)		\
436 do {					\
437 	WARN_ONCE(1, fmt);		\
438 	pr_warn_ratelimited(fmt);	\
439 } while (0)
440 
441 noinline void vmread_error(unsigned long field)
442 {
443 	vmx_insn_failed("vmread failed: field=%lx\n", field);
444 }
445 
446 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
447 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
448 {
449 	if (fault) {
450 		kvm_spurious_fault();
451 	} else {
452 		instrumentation_begin();
453 		vmread_error(field);
454 		instrumentation_end();
455 	}
456 }
457 #endif
458 
459 noinline void vmwrite_error(unsigned long field, unsigned long value)
460 {
461 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
462 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
463 }
464 
465 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
466 {
467 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
468 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
469 }
470 
471 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
472 {
473 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
474 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
475 }
476 
477 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
478 {
479 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
480 			ext, vpid, gva);
481 }
482 
483 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
484 {
485 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
486 			ext, eptp, gpa);
487 }
488 
489 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
490 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
491 /*
492  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
493  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
494  */
495 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
496 
497 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
498 static DEFINE_SPINLOCK(vmx_vpid_lock);
499 
500 struct vmcs_config vmcs_config __ro_after_init;
501 struct vmx_capability vmx_capability __ro_after_init;
502 
503 #define VMX_SEGMENT_FIELD(seg)					\
504 	[VCPU_SREG_##seg] = {                                   \
505 		.selector = GUEST_##seg##_SELECTOR,		\
506 		.base = GUEST_##seg##_BASE,		   	\
507 		.limit = GUEST_##seg##_LIMIT,		   	\
508 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
509 	}
510 
511 static const struct kvm_vmx_segment_field {
512 	unsigned selector;
513 	unsigned base;
514 	unsigned limit;
515 	unsigned ar_bytes;
516 } kvm_vmx_segment_fields[] = {
517 	VMX_SEGMENT_FIELD(CS),
518 	VMX_SEGMENT_FIELD(DS),
519 	VMX_SEGMENT_FIELD(ES),
520 	VMX_SEGMENT_FIELD(FS),
521 	VMX_SEGMENT_FIELD(GS),
522 	VMX_SEGMENT_FIELD(SS),
523 	VMX_SEGMENT_FIELD(TR),
524 	VMX_SEGMENT_FIELD(LDTR),
525 };
526 
527 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
528 {
529 	vmx->segment_cache.bitmask = 0;
530 }
531 
532 static unsigned long host_idt_base;
533 
534 #if IS_ENABLED(CONFIG_HYPERV)
535 static bool __read_mostly enlightened_vmcs = true;
536 module_param(enlightened_vmcs, bool, 0444);
537 
538 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
539 {
540 	struct hv_enlightened_vmcs *evmcs;
541 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
542 
543 	if (partition_assist_page == INVALID_PAGE)
544 		return -ENOMEM;
545 
546 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
547 
548 	evmcs->partition_assist_page = partition_assist_page;
549 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
550 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
551 
552 	return 0;
553 }
554 
555 static __init void hv_init_evmcs(void)
556 {
557 	int cpu;
558 
559 	if (!enlightened_vmcs)
560 		return;
561 
562 	/*
563 	 * Enlightened VMCS usage should be recommended and the host needs
564 	 * to support eVMCS v1 or above.
565 	 */
566 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
567 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
568 	     KVM_EVMCS_VERSION) {
569 
570 		/* Check that we have assist pages on all online CPUs */
571 		for_each_online_cpu(cpu) {
572 			if (!hv_get_vp_assist_page(cpu)) {
573 				enlightened_vmcs = false;
574 				break;
575 			}
576 		}
577 
578 		if (enlightened_vmcs) {
579 			pr_info("Using Hyper-V Enlightened VMCS\n");
580 			static_branch_enable(&__kvm_is_using_evmcs);
581 		}
582 
583 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
584 			vt_x86_ops.enable_l2_tlb_flush
585 				= hv_enable_l2_tlb_flush;
586 	} else {
587 		enlightened_vmcs = false;
588 	}
589 }
590 
591 static void hv_reset_evmcs(void)
592 {
593 	struct hv_vp_assist_page *vp_ap;
594 
595 	if (!kvm_is_using_evmcs())
596 		return;
597 
598 	/*
599 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
600 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
601 	 * doesn't have a VP assist page allocated.
602 	 */
603 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
604 	if (WARN_ON_ONCE(!vp_ap))
605 		return;
606 
607 	/*
608 	 * Reset everything to support using non-enlightened VMCS access later
609 	 * (e.g. when we reload the module with enlightened_vmcs=0)
610 	 */
611 	vp_ap->nested_control.features.directhypercall = 0;
612 	vp_ap->current_nested_vmcs = 0;
613 	vp_ap->enlighten_vmentry = 0;
614 }
615 
616 #else /* IS_ENABLED(CONFIG_HYPERV) */
617 static void hv_init_evmcs(void) {}
618 static void hv_reset_evmcs(void) {}
619 #endif /* IS_ENABLED(CONFIG_HYPERV) */
620 
621 /*
622  * Comment's format: document - errata name - stepping - processor name.
623  * Refer from
624  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
625  */
626 static u32 vmx_preemption_cpu_tfms[] = {
627 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
628 0x000206E6,
629 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
630 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
631 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
632 0x00020652,
633 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
634 0x00020655,
635 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
636 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
637 /*
638  * 320767.pdf - AAP86  - B1 -
639  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
640  */
641 0x000106E5,
642 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
643 0x000106A0,
644 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
645 0x000106A1,
646 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
647 0x000106A4,
648  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
649  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
650  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
651 0x000106A5,
652  /* Xeon E3-1220 V2 */
653 0x000306A8,
654 };
655 
656 static inline bool cpu_has_broken_vmx_preemption_timer(void)
657 {
658 	u32 eax = cpuid_eax(0x00000001), i;
659 
660 	/* Clear the reserved bits */
661 	eax &= ~(0x3U << 14 | 0xfU << 28);
662 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
663 		if (eax == vmx_preemption_cpu_tfms[i])
664 			return true;
665 
666 	return false;
667 }
668 
669 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
670 {
671 	return flexpriority_enabled && lapic_in_kernel(vcpu);
672 }
673 
674 static int vmx_get_passthrough_msr_slot(u32 msr)
675 {
676 	int i;
677 
678 	switch (msr) {
679 	case 0x800 ... 0x8ff:
680 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
681 		return -ENOENT;
682 	case MSR_IA32_RTIT_STATUS:
683 	case MSR_IA32_RTIT_OUTPUT_BASE:
684 	case MSR_IA32_RTIT_OUTPUT_MASK:
685 	case MSR_IA32_RTIT_CR3_MATCH:
686 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
687 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
688 	case MSR_LBR_SELECT:
689 	case MSR_LBR_TOS:
690 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
691 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
692 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
693 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
694 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
695 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
696 		return -ENOENT;
697 	}
698 
699 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
700 		if (vmx_possible_passthrough_msrs[i] == msr)
701 			return i;
702 	}
703 
704 	WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
705 	return -ENOENT;
706 }
707 
708 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
709 {
710 	int i;
711 
712 	i = kvm_find_user_return_msr(msr);
713 	if (i >= 0)
714 		return &vmx->guest_uret_msrs[i];
715 	return NULL;
716 }
717 
718 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
719 				  struct vmx_uret_msr *msr, u64 data)
720 {
721 	unsigned int slot = msr - vmx->guest_uret_msrs;
722 	int ret = 0;
723 
724 	if (msr->load_into_hardware) {
725 		preempt_disable();
726 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
727 		preempt_enable();
728 	}
729 	if (!ret)
730 		msr->data = data;
731 	return ret;
732 }
733 
734 /*
735  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
736  *
737  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
738  * atomically track post-VMXON state, e.g. this may be called in NMI context.
739  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
740  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
741  * magically in RM, VM86, compat mode, or at CPL>0.
742  */
743 static int kvm_cpu_vmxoff(void)
744 {
745 	asm goto("1: vmxoff\n\t"
746 			  _ASM_EXTABLE(1b, %l[fault])
747 			  ::: "cc", "memory" : fault);
748 
749 	cr4_clear_bits(X86_CR4_VMXE);
750 	return 0;
751 
752 fault:
753 	cr4_clear_bits(X86_CR4_VMXE);
754 	return -EIO;
755 }
756 
757 static void vmx_emergency_disable(void)
758 {
759 	int cpu = raw_smp_processor_id();
760 	struct loaded_vmcs *v;
761 
762 	kvm_rebooting = true;
763 
764 	/*
765 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
766 	 * set in task context.  If this races with VMX is disabled by an NMI,
767 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
768 	 * kvm_rebooting set.
769 	 */
770 	if (!(__read_cr4() & X86_CR4_VMXE))
771 		return;
772 
773 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
774 			    loaded_vmcss_on_cpu_link)
775 		vmcs_clear(v->vmcs);
776 
777 	kvm_cpu_vmxoff();
778 }
779 
780 static void __loaded_vmcs_clear(void *arg)
781 {
782 	struct loaded_vmcs *loaded_vmcs = arg;
783 	int cpu = raw_smp_processor_id();
784 
785 	if (loaded_vmcs->cpu != cpu)
786 		return; /* vcpu migration can race with cpu offline */
787 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
788 		per_cpu(current_vmcs, cpu) = NULL;
789 
790 	vmcs_clear(loaded_vmcs->vmcs);
791 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
792 		vmcs_clear(loaded_vmcs->shadow_vmcs);
793 
794 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
795 
796 	/*
797 	 * Ensure all writes to loaded_vmcs, including deleting it from its
798 	 * current percpu list, complete before setting loaded_vmcs->cpu to
799 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
800 	 * and add loaded_vmcs to its percpu list before it's deleted from this
801 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
802 	 */
803 	smp_wmb();
804 
805 	loaded_vmcs->cpu = -1;
806 	loaded_vmcs->launched = 0;
807 }
808 
809 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
810 {
811 	int cpu = loaded_vmcs->cpu;
812 
813 	if (cpu != -1)
814 		smp_call_function_single(cpu,
815 			 __loaded_vmcs_clear, loaded_vmcs, 1);
816 }
817 
818 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
819 				       unsigned field)
820 {
821 	bool ret;
822 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
823 
824 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
825 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
826 		vmx->segment_cache.bitmask = 0;
827 	}
828 	ret = vmx->segment_cache.bitmask & mask;
829 	vmx->segment_cache.bitmask |= mask;
830 	return ret;
831 }
832 
833 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
834 {
835 	u16 *p = &vmx->segment_cache.seg[seg].selector;
836 
837 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
838 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
839 	return *p;
840 }
841 
842 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
843 {
844 	ulong *p = &vmx->segment_cache.seg[seg].base;
845 
846 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
847 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
848 	return *p;
849 }
850 
851 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
852 {
853 	u32 *p = &vmx->segment_cache.seg[seg].limit;
854 
855 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
856 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
857 	return *p;
858 }
859 
860 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
861 {
862 	u32 *p = &vmx->segment_cache.seg[seg].ar;
863 
864 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
865 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
866 	return *p;
867 }
868 
869 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
870 {
871 	u32 eb;
872 
873 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
874 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
875 	/*
876 	 * #VE isn't used for VMX.  To test against unexpected changes
877 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
878 	 */
879 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
880 		eb |= 1u << VE_VECTOR;
881 	/*
882 	 * Guest access to VMware backdoor ports could legitimately
883 	 * trigger #GP because of TSS I/O permission bitmap.
884 	 * We intercept those #GP and allow access to them anyway
885 	 * as VMware does.
886 	 */
887 	if (enable_vmware_backdoor)
888 		eb |= (1u << GP_VECTOR);
889 	if ((vcpu->guest_debug &
890 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
891 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
892 		eb |= 1u << BP_VECTOR;
893 	if (to_vmx(vcpu)->rmode.vm86_active)
894 		eb = ~0;
895 	if (!vmx_need_pf_intercept(vcpu))
896 		eb &= ~(1u << PF_VECTOR);
897 
898 	/* When we are running a nested L2 guest and L1 specified for it a
899 	 * certain exception bitmap, we must trap the same exceptions and pass
900 	 * them to L1. When running L2, we will only handle the exceptions
901 	 * specified above if L1 did not want them.
902 	 */
903 	if (is_guest_mode(vcpu))
904 		eb |= get_vmcs12(vcpu)->exception_bitmap;
905 	else {
906 		int mask = 0, match = 0;
907 
908 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
909 			/*
910 			 * If EPT is enabled, #PF is currently only intercepted
911 			 * if MAXPHYADDR is smaller on the guest than on the
912 			 * host.  In that case we only care about present,
913 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
914 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
915 			 */
916 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
917 			match = PFERR_PRESENT_MASK;
918 		}
919 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
920 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
921 	}
922 
923 	/*
924 	 * Disabling xfd interception indicates that dynamic xfeatures
925 	 * might be used in the guest. Always trap #NM in this case
926 	 * to save guest xfd_err timely.
927 	 */
928 	if (vcpu->arch.xfd_no_write_intercept)
929 		eb |= (1u << NM_VECTOR);
930 
931 	vmcs_write32(EXCEPTION_BITMAP, eb);
932 }
933 
934 /*
935  * Check if MSR is intercepted for currently loaded MSR bitmap.
936  */
937 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
938 {
939 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
940 		return true;
941 
942 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
943 }
944 
945 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
946 {
947 	unsigned int flags = 0;
948 
949 	if (vmx->loaded_vmcs->launched)
950 		flags |= VMX_RUN_VMRESUME;
951 
952 	/*
953 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
954 	 * to change it directly without causing a vmexit.  In that case read
955 	 * it after vmexit and store it in vmx->spec_ctrl.
956 	 */
957 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
958 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
959 
960 	return flags;
961 }
962 
963 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
964 		unsigned long entry, unsigned long exit)
965 {
966 	vm_entry_controls_clearbit(vmx, entry);
967 	vm_exit_controls_clearbit(vmx, exit);
968 }
969 
970 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
971 {
972 	unsigned int i;
973 
974 	for (i = 0; i < m->nr; ++i) {
975 		if (m->val[i].index == msr)
976 			return i;
977 	}
978 	return -ENOENT;
979 }
980 
981 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
982 {
983 	int i;
984 	struct msr_autoload *m = &vmx->msr_autoload;
985 
986 	switch (msr) {
987 	case MSR_EFER:
988 		if (cpu_has_load_ia32_efer()) {
989 			clear_atomic_switch_msr_special(vmx,
990 					VM_ENTRY_LOAD_IA32_EFER,
991 					VM_EXIT_LOAD_IA32_EFER);
992 			return;
993 		}
994 		break;
995 	case MSR_CORE_PERF_GLOBAL_CTRL:
996 		if (cpu_has_load_perf_global_ctrl()) {
997 			clear_atomic_switch_msr_special(vmx,
998 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
999 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1000 			return;
1001 		}
1002 		break;
1003 	}
1004 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1005 	if (i < 0)
1006 		goto skip_guest;
1007 	--m->guest.nr;
1008 	m->guest.val[i] = m->guest.val[m->guest.nr];
1009 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1010 
1011 skip_guest:
1012 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1013 	if (i < 0)
1014 		return;
1015 
1016 	--m->host.nr;
1017 	m->host.val[i] = m->host.val[m->host.nr];
1018 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1019 }
1020 
1021 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1022 		unsigned long entry, unsigned long exit,
1023 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1024 		u64 guest_val, u64 host_val)
1025 {
1026 	vmcs_write64(guest_val_vmcs, guest_val);
1027 	if (host_val_vmcs != HOST_IA32_EFER)
1028 		vmcs_write64(host_val_vmcs, host_val);
1029 	vm_entry_controls_setbit(vmx, entry);
1030 	vm_exit_controls_setbit(vmx, exit);
1031 }
1032 
1033 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1034 				  u64 guest_val, u64 host_val, bool entry_only)
1035 {
1036 	int i, j = 0;
1037 	struct msr_autoload *m = &vmx->msr_autoload;
1038 
1039 	switch (msr) {
1040 	case MSR_EFER:
1041 		if (cpu_has_load_ia32_efer()) {
1042 			add_atomic_switch_msr_special(vmx,
1043 					VM_ENTRY_LOAD_IA32_EFER,
1044 					VM_EXIT_LOAD_IA32_EFER,
1045 					GUEST_IA32_EFER,
1046 					HOST_IA32_EFER,
1047 					guest_val, host_val);
1048 			return;
1049 		}
1050 		break;
1051 	case MSR_CORE_PERF_GLOBAL_CTRL:
1052 		if (cpu_has_load_perf_global_ctrl()) {
1053 			add_atomic_switch_msr_special(vmx,
1054 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1055 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1056 					GUEST_IA32_PERF_GLOBAL_CTRL,
1057 					HOST_IA32_PERF_GLOBAL_CTRL,
1058 					guest_val, host_val);
1059 			return;
1060 		}
1061 		break;
1062 	case MSR_IA32_PEBS_ENABLE:
1063 		/* PEBS needs a quiescent period after being disabled (to write
1064 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1065 		 * provide that period, so a CPU could write host's record into
1066 		 * guest's memory.
1067 		 */
1068 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1069 	}
1070 
1071 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1072 	if (!entry_only)
1073 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1074 
1075 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1076 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1077 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1078 				"Can't add msr %x\n", msr);
1079 		return;
1080 	}
1081 	if (i < 0) {
1082 		i = m->guest.nr++;
1083 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1084 	}
1085 	m->guest.val[i].index = msr;
1086 	m->guest.val[i].value = guest_val;
1087 
1088 	if (entry_only)
1089 		return;
1090 
1091 	if (j < 0) {
1092 		j = m->host.nr++;
1093 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1094 	}
1095 	m->host.val[j].index = msr;
1096 	m->host.val[j].value = host_val;
1097 }
1098 
1099 static bool update_transition_efer(struct vcpu_vmx *vmx)
1100 {
1101 	u64 guest_efer = vmx->vcpu.arch.efer;
1102 	u64 ignore_bits = 0;
1103 	int i;
1104 
1105 	/* Shadow paging assumes NX to be available.  */
1106 	if (!enable_ept)
1107 		guest_efer |= EFER_NX;
1108 
1109 	/*
1110 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1111 	 */
1112 	ignore_bits |= EFER_SCE;
1113 #ifdef CONFIG_X86_64
1114 	ignore_bits |= EFER_LMA | EFER_LME;
1115 	/* SCE is meaningful only in long mode on Intel */
1116 	if (guest_efer & EFER_LMA)
1117 		ignore_bits &= ~(u64)EFER_SCE;
1118 #endif
1119 
1120 	/*
1121 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1122 	 * On CPUs that support "load IA32_EFER", always switch EFER
1123 	 * atomically, since it's faster than switching it manually.
1124 	 */
1125 	if (cpu_has_load_ia32_efer() ||
1126 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1127 		if (!(guest_efer & EFER_LMA))
1128 			guest_efer &= ~EFER_LME;
1129 		if (guest_efer != host_efer)
1130 			add_atomic_switch_msr(vmx, MSR_EFER,
1131 					      guest_efer, host_efer, false);
1132 		else
1133 			clear_atomic_switch_msr(vmx, MSR_EFER);
1134 		return false;
1135 	}
1136 
1137 	i = kvm_find_user_return_msr(MSR_EFER);
1138 	if (i < 0)
1139 		return false;
1140 
1141 	clear_atomic_switch_msr(vmx, MSR_EFER);
1142 
1143 	guest_efer &= ~ignore_bits;
1144 	guest_efer |= host_efer & ignore_bits;
1145 
1146 	vmx->guest_uret_msrs[i].data = guest_efer;
1147 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1148 
1149 	return true;
1150 }
1151 
1152 #ifdef CONFIG_X86_32
1153 /*
1154  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1155  * VMCS rather than the segment table.  KVM uses this helper to figure
1156  * out the current bases to poke them into the VMCS before entry.
1157  */
1158 static unsigned long segment_base(u16 selector)
1159 {
1160 	struct desc_struct *table;
1161 	unsigned long v;
1162 
1163 	if (!(selector & ~SEGMENT_RPL_MASK))
1164 		return 0;
1165 
1166 	table = get_current_gdt_ro();
1167 
1168 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1169 		u16 ldt_selector = kvm_read_ldt();
1170 
1171 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1172 			return 0;
1173 
1174 		table = (struct desc_struct *)segment_base(ldt_selector);
1175 	}
1176 	v = get_desc_base(&table[selector >> 3]);
1177 	return v;
1178 }
1179 #endif
1180 
1181 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1182 {
1183 	return vmx_pt_mode_is_host_guest() &&
1184 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1185 }
1186 
1187 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1188 {
1189 	/* The base must be 128-byte aligned and a legal physical address. */
1190 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1191 }
1192 
1193 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1194 {
1195 	u32 i;
1196 
1197 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1198 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1199 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1200 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1201 	for (i = 0; i < addr_range; i++) {
1202 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1203 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1204 	}
1205 }
1206 
1207 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1208 {
1209 	u32 i;
1210 
1211 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1212 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1213 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1214 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1215 	for (i = 0; i < addr_range; i++) {
1216 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1217 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1218 	}
1219 }
1220 
1221 static void pt_guest_enter(struct vcpu_vmx *vmx)
1222 {
1223 	if (vmx_pt_mode_is_system())
1224 		return;
1225 
1226 	/*
1227 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1228 	 * Save host state before VM entry.
1229 	 */
1230 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1231 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1232 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1233 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1234 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1235 	}
1236 }
1237 
1238 static void pt_guest_exit(struct vcpu_vmx *vmx)
1239 {
1240 	if (vmx_pt_mode_is_system())
1241 		return;
1242 
1243 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1244 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1245 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1246 	}
1247 
1248 	/*
1249 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1250 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1251 	 */
1252 	if (vmx->pt_desc.host.ctl)
1253 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1254 }
1255 
1256 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1257 			unsigned long fs_base, unsigned long gs_base)
1258 {
1259 	if (unlikely(fs_sel != host->fs_sel)) {
1260 		if (!(fs_sel & 7))
1261 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1262 		else
1263 			vmcs_write16(HOST_FS_SELECTOR, 0);
1264 		host->fs_sel = fs_sel;
1265 	}
1266 	if (unlikely(gs_sel != host->gs_sel)) {
1267 		if (!(gs_sel & 7))
1268 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1269 		else
1270 			vmcs_write16(HOST_GS_SELECTOR, 0);
1271 		host->gs_sel = gs_sel;
1272 	}
1273 	if (unlikely(fs_base != host->fs_base)) {
1274 		vmcs_writel(HOST_FS_BASE, fs_base);
1275 		host->fs_base = fs_base;
1276 	}
1277 	if (unlikely(gs_base != host->gs_base)) {
1278 		vmcs_writel(HOST_GS_BASE, gs_base);
1279 		host->gs_base = gs_base;
1280 	}
1281 }
1282 
1283 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1284 {
1285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1286 	struct vmcs_host_state *host_state;
1287 #ifdef CONFIG_X86_64
1288 	int cpu = raw_smp_processor_id();
1289 #endif
1290 	unsigned long fs_base, gs_base;
1291 	u16 fs_sel, gs_sel;
1292 	int i;
1293 
1294 	/*
1295 	 * Note that guest MSRs to be saved/restored can also be changed
1296 	 * when guest state is loaded. This happens when guest transitions
1297 	 * to/from long-mode by setting MSR_EFER.LMA.
1298 	 */
1299 	if (!vmx->guest_uret_msrs_loaded) {
1300 		vmx->guest_uret_msrs_loaded = true;
1301 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1302 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1303 				continue;
1304 
1305 			kvm_set_user_return_msr(i,
1306 						vmx->guest_uret_msrs[i].data,
1307 						vmx->guest_uret_msrs[i].mask);
1308 		}
1309 	}
1310 
1311 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1312 		nested_sync_vmcs12_to_shadow(vcpu);
1313 
1314 	if (vmx->guest_state_loaded)
1315 		return;
1316 
1317 	host_state = &vmx->loaded_vmcs->host_state;
1318 
1319 	/*
1320 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1321 	 * allow segment selectors with cpl > 0 or ti == 1.
1322 	 */
1323 	host_state->ldt_sel = kvm_read_ldt();
1324 
1325 #ifdef CONFIG_X86_64
1326 	savesegment(ds, host_state->ds_sel);
1327 	savesegment(es, host_state->es_sel);
1328 
1329 	gs_base = cpu_kernelmode_gs_base(cpu);
1330 	if (likely(is_64bit_mm(current->mm))) {
1331 		current_save_fsgs();
1332 		fs_sel = current->thread.fsindex;
1333 		gs_sel = current->thread.gsindex;
1334 		fs_base = current->thread.fsbase;
1335 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1336 	} else {
1337 		savesegment(fs, fs_sel);
1338 		savesegment(gs, gs_sel);
1339 		fs_base = read_msr(MSR_FS_BASE);
1340 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1341 	}
1342 
1343 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1344 #else
1345 	savesegment(fs, fs_sel);
1346 	savesegment(gs, gs_sel);
1347 	fs_base = segment_base(fs_sel);
1348 	gs_base = segment_base(gs_sel);
1349 #endif
1350 
1351 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1352 	vmx->guest_state_loaded = true;
1353 }
1354 
1355 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1356 {
1357 	struct vmcs_host_state *host_state;
1358 
1359 	if (!vmx->guest_state_loaded)
1360 		return;
1361 
1362 	host_state = &vmx->loaded_vmcs->host_state;
1363 
1364 	++vmx->vcpu.stat.host_state_reload;
1365 
1366 #ifdef CONFIG_X86_64
1367 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1368 #endif
1369 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1370 		kvm_load_ldt(host_state->ldt_sel);
1371 #ifdef CONFIG_X86_64
1372 		load_gs_index(host_state->gs_sel);
1373 #else
1374 		loadsegment(gs, host_state->gs_sel);
1375 #endif
1376 	}
1377 	if (host_state->fs_sel & 7)
1378 		loadsegment(fs, host_state->fs_sel);
1379 #ifdef CONFIG_X86_64
1380 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1381 		loadsegment(ds, host_state->ds_sel);
1382 		loadsegment(es, host_state->es_sel);
1383 	}
1384 #endif
1385 	invalidate_tss_limit();
1386 #ifdef CONFIG_X86_64
1387 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1388 #endif
1389 	load_fixmap_gdt(raw_smp_processor_id());
1390 	vmx->guest_state_loaded = false;
1391 	vmx->guest_uret_msrs_loaded = false;
1392 }
1393 
1394 #ifdef CONFIG_X86_64
1395 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1396 {
1397 	preempt_disable();
1398 	if (vmx->guest_state_loaded)
1399 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1400 	preempt_enable();
1401 	return vmx->msr_guest_kernel_gs_base;
1402 }
1403 
1404 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1405 {
1406 	preempt_disable();
1407 	if (vmx->guest_state_loaded)
1408 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1409 	preempt_enable();
1410 	vmx->msr_guest_kernel_gs_base = data;
1411 }
1412 #endif
1413 
1414 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1415 			struct loaded_vmcs *buddy)
1416 {
1417 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1418 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1419 	struct vmcs *prev;
1420 
1421 	if (!already_loaded) {
1422 		loaded_vmcs_clear(vmx->loaded_vmcs);
1423 		local_irq_disable();
1424 
1425 		/*
1426 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1427 		 * this cpu's percpu list, otherwise it may not yet be deleted
1428 		 * from its previous cpu's percpu list.  Pairs with the
1429 		 * smb_wmb() in __loaded_vmcs_clear().
1430 		 */
1431 		smp_rmb();
1432 
1433 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1434 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1435 		local_irq_enable();
1436 	}
1437 
1438 	prev = per_cpu(current_vmcs, cpu);
1439 	if (prev != vmx->loaded_vmcs->vmcs) {
1440 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1441 		vmcs_load(vmx->loaded_vmcs->vmcs);
1442 
1443 		/*
1444 		 * No indirect branch prediction barrier needed when switching
1445 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1446 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1447 		 * performs IBPB on nested VM-Exit (a single nested transition
1448 		 * may switch the active VMCS multiple times).
1449 		 */
1450 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1451 			indirect_branch_prediction_barrier();
1452 	}
1453 
1454 	if (!already_loaded) {
1455 		void *gdt = get_current_gdt_ro();
1456 
1457 		/*
1458 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1459 		 * TLB entries from its previous association with the vCPU.
1460 		 */
1461 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1462 
1463 		/*
1464 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1465 		 * processors.  See 22.2.4.
1466 		 */
1467 		vmcs_writel(HOST_TR_BASE,
1468 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1469 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1470 
1471 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1472 			/* 22.2.3 */
1473 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1474 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1475 		}
1476 
1477 		vmx->loaded_vmcs->cpu = cpu;
1478 	}
1479 }
1480 
1481 /*
1482  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1483  * vcpu mutex is already taken.
1484  */
1485 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1486 {
1487 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1488 
1489 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1490 
1491 	vmx_vcpu_pi_load(vcpu, cpu);
1492 
1493 	vmx->host_debugctlmsr = get_debugctlmsr();
1494 }
1495 
1496 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1497 {
1498 	vmx_vcpu_pi_put(vcpu);
1499 
1500 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1501 }
1502 
1503 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1504 {
1505 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1506 }
1507 
1508 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1509 {
1510 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1511 	unsigned long rflags, save_rflags;
1512 
1513 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1514 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1515 		rflags = vmcs_readl(GUEST_RFLAGS);
1516 		if (vmx->rmode.vm86_active) {
1517 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1518 			save_rflags = vmx->rmode.save_rflags;
1519 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1520 		}
1521 		vmx->rflags = rflags;
1522 	}
1523 	return vmx->rflags;
1524 }
1525 
1526 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1527 {
1528 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1529 	unsigned long old_rflags;
1530 
1531 	/*
1532 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1533 	 * is an unrestricted guest in order to mark L2 as needing emulation
1534 	 * if L1 runs L2 as a restricted guest.
1535 	 */
1536 	if (is_unrestricted_guest(vcpu)) {
1537 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1538 		vmx->rflags = rflags;
1539 		vmcs_writel(GUEST_RFLAGS, rflags);
1540 		return;
1541 	}
1542 
1543 	old_rflags = vmx_get_rflags(vcpu);
1544 	vmx->rflags = rflags;
1545 	if (vmx->rmode.vm86_active) {
1546 		vmx->rmode.save_rflags = rflags;
1547 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1548 	}
1549 	vmcs_writel(GUEST_RFLAGS, rflags);
1550 
1551 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1552 		vmx->emulation_required = vmx_emulation_required(vcpu);
1553 }
1554 
1555 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1556 {
1557 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1558 }
1559 
1560 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1561 {
1562 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1563 	int ret = 0;
1564 
1565 	if (interruptibility & GUEST_INTR_STATE_STI)
1566 		ret |= KVM_X86_SHADOW_INT_STI;
1567 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1568 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1569 
1570 	return ret;
1571 }
1572 
1573 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1574 {
1575 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1576 	u32 interruptibility = interruptibility_old;
1577 
1578 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1579 
1580 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1581 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1582 	else if (mask & KVM_X86_SHADOW_INT_STI)
1583 		interruptibility |= GUEST_INTR_STATE_STI;
1584 
1585 	if ((interruptibility != interruptibility_old))
1586 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1587 }
1588 
1589 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1590 {
1591 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1592 	unsigned long value;
1593 
1594 	/*
1595 	 * Any MSR write that attempts to change bits marked reserved will
1596 	 * case a #GP fault.
1597 	 */
1598 	if (data & vmx->pt_desc.ctl_bitmask)
1599 		return 1;
1600 
1601 	/*
1602 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1603 	 * result in a #GP unless the same write also clears TraceEn.
1604 	 */
1605 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1606 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1607 		return 1;
1608 
1609 	/*
1610 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1611 	 * and FabricEn would cause #GP, if
1612 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1613 	 */
1614 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1615 		!(data & RTIT_CTL_FABRIC_EN) &&
1616 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1617 					PT_CAP_single_range_output))
1618 		return 1;
1619 
1620 	/*
1621 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1622 	 * utilize encodings marked reserved will cause a #GP fault.
1623 	 */
1624 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1625 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1626 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1627 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1628 		return 1;
1629 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1630 						PT_CAP_cycle_thresholds);
1631 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1632 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1633 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1634 		return 1;
1635 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1636 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1637 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1638 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1639 		return 1;
1640 
1641 	/*
1642 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1643 	 * cause a #GP fault.
1644 	 */
1645 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1646 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1647 		return 1;
1648 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1649 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1650 		return 1;
1651 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1652 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1653 		return 1;
1654 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1655 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1656 		return 1;
1657 
1658 	return 0;
1659 }
1660 
1661 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1662 				  void *insn, int insn_len)
1663 {
1664 	/*
1665 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1666 	 * not point at the failing instruction, and even if it did, the code
1667 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1668 	 * so that guest userspace can't DoS the guest simply by triggering
1669 	 * emulation (enclaves are CPL3 only).
1670 	 */
1671 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1672 		kvm_queue_exception(vcpu, UD_VECTOR);
1673 		return X86EMUL_PROPAGATE_FAULT;
1674 	}
1675 	return X86EMUL_CONTINUE;
1676 }
1677 
1678 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1679 {
1680 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1681 	unsigned long rip, orig_rip;
1682 	u32 instr_len;
1683 
1684 	/*
1685 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1686 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1687 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1688 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1689 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1690 	 * i.e. we end up advancing IP with some random value.
1691 	 */
1692 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1693 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1694 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1695 
1696 		/*
1697 		 * Emulating an enclave's instructions isn't supported as KVM
1698 		 * cannot access the enclave's memory or its true RIP, e.g. the
1699 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1700 		 * the RIP that actually triggered the VM-Exit.  But, because
1701 		 * most instructions that cause VM-Exit will #UD in an enclave,
1702 		 * most instruction-based VM-Exits simply do not occur.
1703 		 *
1704 		 * There are a few exceptions, notably the debug instructions
1705 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1706 		 * and generate #DB/#BP as expected, which KVM might intercept.
1707 		 * But again, the CPU does the dirty work and saves an instr
1708 		 * length of zero so VMMs don't shoot themselves in the foot.
1709 		 * WARN if KVM tries to skip a non-zero length instruction on
1710 		 * a VM-Exit from an enclave.
1711 		 */
1712 		if (!instr_len)
1713 			goto rip_updated;
1714 
1715 		WARN_ONCE(exit_reason.enclave_mode,
1716 			  "skipping instruction after SGX enclave VM-Exit");
1717 
1718 		orig_rip = kvm_rip_read(vcpu);
1719 		rip = orig_rip + instr_len;
1720 #ifdef CONFIG_X86_64
1721 		/*
1722 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1723 		 * mode, but just finding out that we are in 64-bit mode is
1724 		 * quite expensive.  Only do it if there was a carry.
1725 		 */
1726 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1727 			rip = (u32)rip;
1728 #endif
1729 		kvm_rip_write(vcpu, rip);
1730 	} else {
1731 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1732 			return 0;
1733 	}
1734 
1735 rip_updated:
1736 	/* skipping an emulated instruction also counts */
1737 	vmx_set_interrupt_shadow(vcpu, 0);
1738 
1739 	return 1;
1740 }
1741 
1742 /*
1743  * Recognizes a pending MTF VM-exit and records the nested state for later
1744  * delivery.
1745  */
1746 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1747 {
1748 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1749 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1750 
1751 	if (!is_guest_mode(vcpu))
1752 		return;
1753 
1754 	/*
1755 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1756 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1757 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1758 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1759 	 * as ICEBP is higher priority than both.  As instruction emulation is
1760 	 * completed at this point (i.e. KVM is at the instruction boundary),
1761 	 * any #DB exception pending delivery must be a debug-trap of lower
1762 	 * priority than MTF.  Record the pending MTF state to be delivered in
1763 	 * vmx_check_nested_events().
1764 	 */
1765 	if (nested_cpu_has_mtf(vmcs12) &&
1766 	    (!vcpu->arch.exception.pending ||
1767 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1768 	    (!vcpu->arch.exception_vmexit.pending ||
1769 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1770 		vmx->nested.mtf_pending = true;
1771 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1772 	} else {
1773 		vmx->nested.mtf_pending = false;
1774 	}
1775 }
1776 
1777 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1778 {
1779 	vmx_update_emulated_instruction(vcpu);
1780 	return skip_emulated_instruction(vcpu);
1781 }
1782 
1783 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1784 {
1785 	/*
1786 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1787 	 * explicitly skip the instruction because if the HLT state is set,
1788 	 * then the instruction is already executing and RIP has already been
1789 	 * advanced.
1790 	 */
1791 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1792 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1793 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1794 }
1795 
1796 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1797 {
1798 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1799 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1800 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1801 
1802 	kvm_deliver_exception_payload(vcpu, ex);
1803 
1804 	if (ex->has_error_code) {
1805 		/*
1806 		 * Despite the error code being architecturally defined as 32
1807 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1808 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1809 		 * will (should) never provide a bogus error code, but AMD CPUs
1810 		 * do generate error codes with bits 31:16 set, and so KVM's
1811 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1812 		 * the upper bits to avoid VM-Fail, losing information that
1813 		 * doesn't really exist is preferable to killing the VM.
1814 		 */
1815 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1816 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1817 	}
1818 
1819 	if (vmx->rmode.vm86_active) {
1820 		int inc_eip = 0;
1821 		if (kvm_exception_is_soft(ex->vector))
1822 			inc_eip = vcpu->arch.event_exit_inst_len;
1823 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1824 		return;
1825 	}
1826 
1827 	WARN_ON_ONCE(vmx->emulation_required);
1828 
1829 	if (kvm_exception_is_soft(ex->vector)) {
1830 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1831 			     vmx->vcpu.arch.event_exit_inst_len);
1832 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1833 	} else
1834 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1835 
1836 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1837 
1838 	vmx_clear_hlt(vcpu);
1839 }
1840 
1841 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1842 			       bool load_into_hardware)
1843 {
1844 	struct vmx_uret_msr *uret_msr;
1845 
1846 	uret_msr = vmx_find_uret_msr(vmx, msr);
1847 	if (!uret_msr)
1848 		return;
1849 
1850 	uret_msr->load_into_hardware = load_into_hardware;
1851 }
1852 
1853 /*
1854  * Configuring user return MSRs to automatically save, load, and restore MSRs
1855  * that need to be shoved into hardware when running the guest.  Note, omitting
1856  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1857  * loaded into hardware when running the guest.
1858  */
1859 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1860 {
1861 #ifdef CONFIG_X86_64
1862 	bool load_syscall_msrs;
1863 
1864 	/*
1865 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1866 	 * when EFER.SCE is set.
1867 	 */
1868 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1869 			    (vmx->vcpu.arch.efer & EFER_SCE);
1870 
1871 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1872 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1873 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1874 #endif
1875 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1876 
1877 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1878 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1879 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1880 
1881 	/*
1882 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1883 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1884 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1885 	 * so that TSX remains always disabled.
1886 	 */
1887 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1888 
1889 	/*
1890 	 * The set of MSRs to load may have changed, reload MSRs before the
1891 	 * next VM-Enter.
1892 	 */
1893 	vmx->guest_uret_msrs_loaded = false;
1894 }
1895 
1896 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1897 {
1898 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1899 
1900 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1901 		return vmcs12->tsc_offset;
1902 
1903 	return 0;
1904 }
1905 
1906 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1907 {
1908 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1909 
1910 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1911 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1912 		return vmcs12->tsc_multiplier;
1913 
1914 	return kvm_caps.default_tsc_scaling_ratio;
1915 }
1916 
1917 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1918 {
1919 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1920 }
1921 
1922 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1923 {
1924 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1925 }
1926 
1927 /*
1928  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1929  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1930  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1931  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1932  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1933  */
1934 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1935 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1936 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1937 					FEAT_CTL_SGX_LC_ENABLED		 | \
1938 					FEAT_CTL_SGX_ENABLED		 | \
1939 					FEAT_CTL_LMCE_ENABLED)
1940 
1941 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1942 						    struct msr_data *msr)
1943 {
1944 	uint64_t valid_bits;
1945 
1946 	/*
1947 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1948 	 * exposed to the guest.
1949 	 */
1950 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1951 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1952 
1953 	if (!msr->host_initiated &&
1954 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1955 		return false;
1956 
1957 	if (msr->host_initiated)
1958 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1959 	else
1960 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1961 
1962 	return !(msr->data & ~valid_bits);
1963 }
1964 
1965 int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1966 {
1967 	switch (msr->index) {
1968 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1969 		if (!nested)
1970 			return 1;
1971 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1972 	default:
1973 		return KVM_MSR_RET_INVALID;
1974 	}
1975 }
1976 
1977 /*
1978  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1979  * Returns 0 on success, non-0 otherwise.
1980  * Assumes vcpu_load() was already called.
1981  */
1982 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1983 {
1984 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1985 	struct vmx_uret_msr *msr;
1986 	u32 index;
1987 
1988 	switch (msr_info->index) {
1989 #ifdef CONFIG_X86_64
1990 	case MSR_FS_BASE:
1991 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1992 		break;
1993 	case MSR_GS_BASE:
1994 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1995 		break;
1996 	case MSR_KERNEL_GS_BASE:
1997 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1998 		break;
1999 #endif
2000 	case MSR_EFER:
2001 		return kvm_get_msr_common(vcpu, msr_info);
2002 	case MSR_IA32_TSX_CTRL:
2003 		if (!msr_info->host_initiated &&
2004 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2005 			return 1;
2006 		goto find_uret_msr;
2007 	case MSR_IA32_UMWAIT_CONTROL:
2008 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2009 			return 1;
2010 
2011 		msr_info->data = vmx->msr_ia32_umwait_control;
2012 		break;
2013 	case MSR_IA32_SPEC_CTRL:
2014 		if (!msr_info->host_initiated &&
2015 		    !guest_has_spec_ctrl_msr(vcpu))
2016 			return 1;
2017 
2018 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2019 		break;
2020 	case MSR_IA32_SYSENTER_CS:
2021 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2022 		break;
2023 	case MSR_IA32_SYSENTER_EIP:
2024 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2025 		break;
2026 	case MSR_IA32_SYSENTER_ESP:
2027 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2028 		break;
2029 	case MSR_IA32_BNDCFGS:
2030 		if (!kvm_mpx_supported() ||
2031 		    (!msr_info->host_initiated &&
2032 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2033 			return 1;
2034 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2035 		break;
2036 	case MSR_IA32_MCG_EXT_CTL:
2037 		if (!msr_info->host_initiated &&
2038 		    !(vmx->msr_ia32_feature_control &
2039 		      FEAT_CTL_LMCE_ENABLED))
2040 			return 1;
2041 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2042 		break;
2043 	case MSR_IA32_FEAT_CTL:
2044 		msr_info->data = vmx->msr_ia32_feature_control;
2045 		break;
2046 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2047 		if (!msr_info->host_initiated &&
2048 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2049 			return 1;
2050 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2051 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2052 		break;
2053 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2054 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2055 			return 1;
2056 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2057 				    &msr_info->data))
2058 			return 1;
2059 #ifdef CONFIG_KVM_HYPERV
2060 		/*
2061 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2062 		 * instead of just ignoring the features, different Hyper-V
2063 		 * versions are either trying to use them and fail or do some
2064 		 * sanity checking and refuse to boot. Filter all unsupported
2065 		 * features out.
2066 		 */
2067 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2068 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2069 							&msr_info->data);
2070 #endif
2071 		break;
2072 	case MSR_IA32_RTIT_CTL:
2073 		if (!vmx_pt_mode_is_host_guest())
2074 			return 1;
2075 		msr_info->data = vmx->pt_desc.guest.ctl;
2076 		break;
2077 	case MSR_IA32_RTIT_STATUS:
2078 		if (!vmx_pt_mode_is_host_guest())
2079 			return 1;
2080 		msr_info->data = vmx->pt_desc.guest.status;
2081 		break;
2082 	case MSR_IA32_RTIT_CR3_MATCH:
2083 		if (!vmx_pt_mode_is_host_guest() ||
2084 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2085 						PT_CAP_cr3_filtering))
2086 			return 1;
2087 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2088 		break;
2089 	case MSR_IA32_RTIT_OUTPUT_BASE:
2090 		if (!vmx_pt_mode_is_host_guest() ||
2091 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2092 					PT_CAP_topa_output) &&
2093 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2094 					PT_CAP_single_range_output)))
2095 			return 1;
2096 		msr_info->data = vmx->pt_desc.guest.output_base;
2097 		break;
2098 	case MSR_IA32_RTIT_OUTPUT_MASK:
2099 		if (!vmx_pt_mode_is_host_guest() ||
2100 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2101 					PT_CAP_topa_output) &&
2102 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2103 					PT_CAP_single_range_output)))
2104 			return 1;
2105 		msr_info->data = vmx->pt_desc.guest.output_mask;
2106 		break;
2107 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2108 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2109 		if (!vmx_pt_mode_is_host_guest() ||
2110 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2111 			return 1;
2112 		if (index % 2)
2113 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2114 		else
2115 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2116 		break;
2117 	case MSR_IA32_DEBUGCTLMSR:
2118 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2119 		break;
2120 	default:
2121 	find_uret_msr:
2122 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2123 		if (msr) {
2124 			msr_info->data = msr->data;
2125 			break;
2126 		}
2127 		return kvm_get_msr_common(vcpu, msr_info);
2128 	}
2129 
2130 	return 0;
2131 }
2132 
2133 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2134 						    u64 data)
2135 {
2136 #ifdef CONFIG_X86_64
2137 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2138 		return (u32)data;
2139 #endif
2140 	return (unsigned long)data;
2141 }
2142 
2143 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2144 {
2145 	u64 debugctl = 0;
2146 
2147 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2148 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2149 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2150 
2151 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2152 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2153 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2154 
2155 	return debugctl;
2156 }
2157 
2158 /*
2159  * Writes msr value into the appropriate "register".
2160  * Returns 0 on success, non-0 otherwise.
2161  * Assumes vcpu_load() was already called.
2162  */
2163 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2164 {
2165 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2166 	struct vmx_uret_msr *msr;
2167 	int ret = 0;
2168 	u32 msr_index = msr_info->index;
2169 	u64 data = msr_info->data;
2170 	u32 index;
2171 
2172 	switch (msr_index) {
2173 	case MSR_EFER:
2174 		ret = kvm_set_msr_common(vcpu, msr_info);
2175 		break;
2176 #ifdef CONFIG_X86_64
2177 	case MSR_FS_BASE:
2178 		vmx_segment_cache_clear(vmx);
2179 		vmcs_writel(GUEST_FS_BASE, data);
2180 		break;
2181 	case MSR_GS_BASE:
2182 		vmx_segment_cache_clear(vmx);
2183 		vmcs_writel(GUEST_GS_BASE, data);
2184 		break;
2185 	case MSR_KERNEL_GS_BASE:
2186 		vmx_write_guest_kernel_gs_base(vmx, data);
2187 		break;
2188 	case MSR_IA32_XFD:
2189 		ret = kvm_set_msr_common(vcpu, msr_info);
2190 		/*
2191 		 * Always intercepting WRMSR could incur non-negligible
2192 		 * overhead given xfd might be changed frequently in
2193 		 * guest context switch. Disable write interception
2194 		 * upon the first write with a non-zero value (indicating
2195 		 * potential usage on dynamic xfeatures). Also update
2196 		 * exception bitmap to trap #NM for proper virtualization
2197 		 * of guest xfd_err.
2198 		 */
2199 		if (!ret && data) {
2200 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2201 						      MSR_TYPE_RW);
2202 			vcpu->arch.xfd_no_write_intercept = true;
2203 			vmx_update_exception_bitmap(vcpu);
2204 		}
2205 		break;
2206 #endif
2207 	case MSR_IA32_SYSENTER_CS:
2208 		if (is_guest_mode(vcpu))
2209 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2210 		vmcs_write32(GUEST_SYSENTER_CS, data);
2211 		break;
2212 	case MSR_IA32_SYSENTER_EIP:
2213 		if (is_guest_mode(vcpu)) {
2214 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2215 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2216 		}
2217 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2218 		break;
2219 	case MSR_IA32_SYSENTER_ESP:
2220 		if (is_guest_mode(vcpu)) {
2221 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2222 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2223 		}
2224 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2225 		break;
2226 	case MSR_IA32_DEBUGCTLMSR: {
2227 		u64 invalid;
2228 
2229 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2230 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2231 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2232 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2233 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2234 		}
2235 
2236 		if (invalid)
2237 			return 1;
2238 
2239 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2240 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2241 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2242 
2243 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2244 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2245 		    (data & DEBUGCTLMSR_LBR))
2246 			intel_pmu_create_guest_lbr_event(vcpu);
2247 		return 0;
2248 	}
2249 	case MSR_IA32_BNDCFGS:
2250 		if (!kvm_mpx_supported() ||
2251 		    (!msr_info->host_initiated &&
2252 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2253 			return 1;
2254 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2255 		    (data & MSR_IA32_BNDCFGS_RSVD))
2256 			return 1;
2257 
2258 		if (is_guest_mode(vcpu) &&
2259 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2260 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2261 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2262 
2263 		vmcs_write64(GUEST_BNDCFGS, data);
2264 		break;
2265 	case MSR_IA32_UMWAIT_CONTROL:
2266 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2267 			return 1;
2268 
2269 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2270 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2271 			return 1;
2272 
2273 		vmx->msr_ia32_umwait_control = data;
2274 		break;
2275 	case MSR_IA32_SPEC_CTRL:
2276 		if (!msr_info->host_initiated &&
2277 		    !guest_has_spec_ctrl_msr(vcpu))
2278 			return 1;
2279 
2280 		if (kvm_spec_ctrl_test_value(data))
2281 			return 1;
2282 
2283 		vmx->spec_ctrl = data;
2284 		if (!data)
2285 			break;
2286 
2287 		/*
2288 		 * For non-nested:
2289 		 * When it's written (to non-zero) for the first time, pass
2290 		 * it through.
2291 		 *
2292 		 * For nested:
2293 		 * The handling of the MSR bitmap for L2 guests is done in
2294 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2295 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2296 		 * in the merging. We update the vmcs01 here for L1 as well
2297 		 * since it will end up touching the MSR anyway now.
2298 		 */
2299 		vmx_disable_intercept_for_msr(vcpu,
2300 					      MSR_IA32_SPEC_CTRL,
2301 					      MSR_TYPE_RW);
2302 		break;
2303 	case MSR_IA32_TSX_CTRL:
2304 		if (!msr_info->host_initiated &&
2305 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2306 			return 1;
2307 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2308 			return 1;
2309 		goto find_uret_msr;
2310 	case MSR_IA32_CR_PAT:
2311 		ret = kvm_set_msr_common(vcpu, msr_info);
2312 		if (ret)
2313 			break;
2314 
2315 		if (is_guest_mode(vcpu) &&
2316 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2317 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2318 
2319 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2320 			vmcs_write64(GUEST_IA32_PAT, data);
2321 		break;
2322 	case MSR_IA32_MCG_EXT_CTL:
2323 		if ((!msr_info->host_initiated &&
2324 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2325 		       FEAT_CTL_LMCE_ENABLED)) ||
2326 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2327 			return 1;
2328 		vcpu->arch.mcg_ext_ctl = data;
2329 		break;
2330 	case MSR_IA32_FEAT_CTL:
2331 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2332 			return 1;
2333 
2334 		vmx->msr_ia32_feature_control = data;
2335 		if (msr_info->host_initiated && data == 0)
2336 			vmx_leave_nested(vcpu);
2337 
2338 		/* SGX may be enabled/disabled by guest's firmware */
2339 		vmx_write_encls_bitmap(vcpu, NULL);
2340 		break;
2341 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2342 		/*
2343 		 * On real hardware, the LE hash MSRs are writable before
2344 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2345 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2346 		 * become writable.
2347 		 *
2348 		 * KVM does not emulate SGX activation for simplicity, so
2349 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2350 		 * is unlocked.  This is technically not architectural
2351 		 * behavior, but it's close enough.
2352 		 */
2353 		if (!msr_info->host_initiated &&
2354 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2355 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2356 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2357 			return 1;
2358 		vmx->msr_ia32_sgxlepubkeyhash
2359 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2360 		break;
2361 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2362 		if (!msr_info->host_initiated)
2363 			return 1; /* they are read-only */
2364 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2365 			return 1;
2366 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2367 	case MSR_IA32_RTIT_CTL:
2368 		if (!vmx_pt_mode_is_host_guest() ||
2369 			vmx_rtit_ctl_check(vcpu, data) ||
2370 			vmx->nested.vmxon)
2371 			return 1;
2372 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2373 		vmx->pt_desc.guest.ctl = data;
2374 		pt_update_intercept_for_msr(vcpu);
2375 		break;
2376 	case MSR_IA32_RTIT_STATUS:
2377 		if (!pt_can_write_msr(vmx))
2378 			return 1;
2379 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2380 			return 1;
2381 		vmx->pt_desc.guest.status = data;
2382 		break;
2383 	case MSR_IA32_RTIT_CR3_MATCH:
2384 		if (!pt_can_write_msr(vmx))
2385 			return 1;
2386 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2387 					   PT_CAP_cr3_filtering))
2388 			return 1;
2389 		vmx->pt_desc.guest.cr3_match = data;
2390 		break;
2391 	case MSR_IA32_RTIT_OUTPUT_BASE:
2392 		if (!pt_can_write_msr(vmx))
2393 			return 1;
2394 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2395 					   PT_CAP_topa_output) &&
2396 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2397 					   PT_CAP_single_range_output))
2398 			return 1;
2399 		if (!pt_output_base_valid(vcpu, data))
2400 			return 1;
2401 		vmx->pt_desc.guest.output_base = data;
2402 		break;
2403 	case MSR_IA32_RTIT_OUTPUT_MASK:
2404 		if (!pt_can_write_msr(vmx))
2405 			return 1;
2406 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2407 					   PT_CAP_topa_output) &&
2408 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2409 					   PT_CAP_single_range_output))
2410 			return 1;
2411 		vmx->pt_desc.guest.output_mask = data;
2412 		break;
2413 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2414 		if (!pt_can_write_msr(vmx))
2415 			return 1;
2416 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2417 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2418 			return 1;
2419 		if (is_noncanonical_address(data, vcpu))
2420 			return 1;
2421 		if (index % 2)
2422 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2423 		else
2424 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2425 		break;
2426 	case MSR_IA32_PERF_CAPABILITIES:
2427 		if (data && !vcpu_to_pmu(vcpu)->version)
2428 			return 1;
2429 		if (data & PMU_CAP_LBR_FMT) {
2430 			if ((data & PMU_CAP_LBR_FMT) !=
2431 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2432 				return 1;
2433 			if (!cpuid_model_is_consistent(vcpu))
2434 				return 1;
2435 		}
2436 		if (data & PERF_CAP_PEBS_FORMAT) {
2437 			if ((data & PERF_CAP_PEBS_MASK) !=
2438 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2439 				return 1;
2440 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2441 				return 1;
2442 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2443 				return 1;
2444 			if (!cpuid_model_is_consistent(vcpu))
2445 				return 1;
2446 		}
2447 		ret = kvm_set_msr_common(vcpu, msr_info);
2448 		break;
2449 
2450 	default:
2451 	find_uret_msr:
2452 		msr = vmx_find_uret_msr(vmx, msr_index);
2453 		if (msr)
2454 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2455 		else
2456 			ret = kvm_set_msr_common(vcpu, msr_info);
2457 	}
2458 
2459 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2460 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2461 		vmx_update_fb_clear_dis(vcpu, vmx);
2462 
2463 	return ret;
2464 }
2465 
2466 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2467 {
2468 	unsigned long guest_owned_bits;
2469 
2470 	kvm_register_mark_available(vcpu, reg);
2471 
2472 	switch (reg) {
2473 	case VCPU_REGS_RSP:
2474 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2475 		break;
2476 	case VCPU_REGS_RIP:
2477 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2478 		break;
2479 	case VCPU_EXREG_PDPTR:
2480 		if (enable_ept)
2481 			ept_save_pdptrs(vcpu);
2482 		break;
2483 	case VCPU_EXREG_CR0:
2484 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2485 
2486 		vcpu->arch.cr0 &= ~guest_owned_bits;
2487 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2488 		break;
2489 	case VCPU_EXREG_CR3:
2490 		/*
2491 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2492 		 * CR3 is loaded into hardware, not the guest's CR3.
2493 		 */
2494 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2495 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2496 		break;
2497 	case VCPU_EXREG_CR4:
2498 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2499 
2500 		vcpu->arch.cr4 &= ~guest_owned_bits;
2501 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2502 		break;
2503 	default:
2504 		KVM_BUG_ON(1, vcpu->kvm);
2505 		break;
2506 	}
2507 }
2508 
2509 /*
2510  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2511  * directly instead of going through cpu_has(), to ensure KVM is trapping
2512  * ENCLS whenever it's supported in hardware.  It does not matter whether
2513  * the host OS supports or has enabled SGX.
2514  */
2515 static bool cpu_has_sgx(void)
2516 {
2517 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2518 }
2519 
2520 /*
2521  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2522  * can't be used due to errata where VM Exit may incorrectly clear
2523  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2524  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2525  */
2526 static bool cpu_has_perf_global_ctrl_bug(void)
2527 {
2528 	if (boot_cpu_data.x86 == 0x6) {
2529 		switch (boot_cpu_data.x86_model) {
2530 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2531 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2532 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2533 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2534 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2535 			return true;
2536 		default:
2537 			break;
2538 		}
2539 	}
2540 
2541 	return false;
2542 }
2543 
2544 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2545 {
2546 	u32 vmx_msr_low, vmx_msr_high;
2547 	u32 ctl = ctl_min | ctl_opt;
2548 
2549 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2550 
2551 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2552 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2553 
2554 	/* Ensure minimum (required) set of control bits are supported. */
2555 	if (ctl_min & ~ctl)
2556 		return -EIO;
2557 
2558 	*result = ctl;
2559 	return 0;
2560 }
2561 
2562 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2563 {
2564 	u64 allowed;
2565 
2566 	rdmsrl(msr, allowed);
2567 
2568 	return  ctl_opt & allowed;
2569 }
2570 
2571 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2572 			     struct vmx_capability *vmx_cap)
2573 {
2574 	u32 vmx_msr_low, vmx_msr_high;
2575 	u32 _pin_based_exec_control = 0;
2576 	u32 _cpu_based_exec_control = 0;
2577 	u32 _cpu_based_2nd_exec_control = 0;
2578 	u64 _cpu_based_3rd_exec_control = 0;
2579 	u32 _vmexit_control = 0;
2580 	u32 _vmentry_control = 0;
2581 	u64 misc_msr;
2582 	int i;
2583 
2584 	/*
2585 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2586 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2587 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2588 	 */
2589 	struct {
2590 		u32 entry_control;
2591 		u32 exit_control;
2592 	} const vmcs_entry_exit_pairs[] = {
2593 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2594 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2595 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2596 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2597 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2598 	};
2599 
2600 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2601 
2602 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2603 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2604 				MSR_IA32_VMX_PROCBASED_CTLS,
2605 				&_cpu_based_exec_control))
2606 		return -EIO;
2607 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2608 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2609 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2610 					MSR_IA32_VMX_PROCBASED_CTLS2,
2611 					&_cpu_based_2nd_exec_control))
2612 			return -EIO;
2613 	}
2614 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2615 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2616 
2617 #ifndef CONFIG_X86_64
2618 	if (!(_cpu_based_2nd_exec_control &
2619 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2620 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2621 #endif
2622 
2623 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2624 		_cpu_based_2nd_exec_control &= ~(
2625 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2626 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2627 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2628 
2629 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2630 		&vmx_cap->ept, &vmx_cap->vpid);
2631 
2632 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2633 	    vmx_cap->ept) {
2634 		pr_warn_once("EPT CAP should not exist if not support "
2635 				"1-setting enable EPT VM-execution control\n");
2636 
2637 		if (error_on_inconsistent_vmcs_config)
2638 			return -EIO;
2639 
2640 		vmx_cap->ept = 0;
2641 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2642 	}
2643 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2644 	    vmx_cap->vpid) {
2645 		pr_warn_once("VPID CAP should not exist if not support "
2646 				"1-setting enable VPID VM-execution control\n");
2647 
2648 		if (error_on_inconsistent_vmcs_config)
2649 			return -EIO;
2650 
2651 		vmx_cap->vpid = 0;
2652 	}
2653 
2654 	if (!cpu_has_sgx())
2655 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2656 
2657 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2658 		_cpu_based_3rd_exec_control =
2659 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2660 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2661 
2662 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2663 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2664 				MSR_IA32_VMX_EXIT_CTLS,
2665 				&_vmexit_control))
2666 		return -EIO;
2667 
2668 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2669 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2670 				MSR_IA32_VMX_PINBASED_CTLS,
2671 				&_pin_based_exec_control))
2672 		return -EIO;
2673 
2674 	if (cpu_has_broken_vmx_preemption_timer())
2675 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2676 	if (!(_cpu_based_2nd_exec_control &
2677 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2678 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2679 
2680 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2681 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2682 				MSR_IA32_VMX_ENTRY_CTLS,
2683 				&_vmentry_control))
2684 		return -EIO;
2685 
2686 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2687 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2688 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2689 
2690 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2691 			continue;
2692 
2693 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2694 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2695 
2696 		if (error_on_inconsistent_vmcs_config)
2697 			return -EIO;
2698 
2699 		_vmentry_control &= ~n_ctrl;
2700 		_vmexit_control &= ~x_ctrl;
2701 	}
2702 
2703 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2704 
2705 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2706 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2707 		return -EIO;
2708 
2709 #ifdef CONFIG_X86_64
2710 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2711 	if (vmx_msr_high & (1u<<16))
2712 		return -EIO;
2713 #endif
2714 
2715 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2716 	if (((vmx_msr_high >> 18) & 15) != 6)
2717 		return -EIO;
2718 
2719 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2720 
2721 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2722 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2723 
2724 	vmcs_conf->revision_id = vmx_msr_low;
2725 
2726 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2727 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2728 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2729 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2730 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2731 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2732 	vmcs_conf->misc	= misc_msr;
2733 
2734 #if IS_ENABLED(CONFIG_HYPERV)
2735 	if (enlightened_vmcs)
2736 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2737 #endif
2738 
2739 	return 0;
2740 }
2741 
2742 static bool __kvm_is_vmx_supported(void)
2743 {
2744 	int cpu = smp_processor_id();
2745 
2746 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2747 		pr_err("VMX not supported by CPU %d\n", cpu);
2748 		return false;
2749 	}
2750 
2751 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2752 	    !this_cpu_has(X86_FEATURE_VMX)) {
2753 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2754 		return false;
2755 	}
2756 
2757 	return true;
2758 }
2759 
2760 static bool kvm_is_vmx_supported(void)
2761 {
2762 	bool supported;
2763 
2764 	migrate_disable();
2765 	supported = __kvm_is_vmx_supported();
2766 	migrate_enable();
2767 
2768 	return supported;
2769 }
2770 
2771 int vmx_check_processor_compat(void)
2772 {
2773 	int cpu = raw_smp_processor_id();
2774 	struct vmcs_config vmcs_conf;
2775 	struct vmx_capability vmx_cap;
2776 
2777 	if (!__kvm_is_vmx_supported())
2778 		return -EIO;
2779 
2780 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2781 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2782 		return -EIO;
2783 	}
2784 	if (nested)
2785 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2786 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2787 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2788 		return -EIO;
2789 	}
2790 	return 0;
2791 }
2792 
2793 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2794 {
2795 	u64 msr;
2796 
2797 	cr4_set_bits(X86_CR4_VMXE);
2798 
2799 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2800 			  _ASM_EXTABLE(1b, %l[fault])
2801 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2802 			  : : fault);
2803 	return 0;
2804 
2805 fault:
2806 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2807 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2808 	cr4_clear_bits(X86_CR4_VMXE);
2809 
2810 	return -EFAULT;
2811 }
2812 
2813 int vmx_hardware_enable(void)
2814 {
2815 	int cpu = raw_smp_processor_id();
2816 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2817 	int r;
2818 
2819 	if (cr4_read_shadow() & X86_CR4_VMXE)
2820 		return -EBUSY;
2821 
2822 	/*
2823 	 * This can happen if we hot-added a CPU but failed to allocate
2824 	 * VP assist page for it.
2825 	 */
2826 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2827 		return -EFAULT;
2828 
2829 	intel_pt_handle_vmx(1);
2830 
2831 	r = kvm_cpu_vmxon(phys_addr);
2832 	if (r) {
2833 		intel_pt_handle_vmx(0);
2834 		return r;
2835 	}
2836 
2837 	if (enable_ept)
2838 		ept_sync_global();
2839 
2840 	return 0;
2841 }
2842 
2843 static void vmclear_local_loaded_vmcss(void)
2844 {
2845 	int cpu = raw_smp_processor_id();
2846 	struct loaded_vmcs *v, *n;
2847 
2848 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2849 				 loaded_vmcss_on_cpu_link)
2850 		__loaded_vmcs_clear(v);
2851 }
2852 
2853 void vmx_hardware_disable(void)
2854 {
2855 	vmclear_local_loaded_vmcss();
2856 
2857 	if (kvm_cpu_vmxoff())
2858 		kvm_spurious_fault();
2859 
2860 	hv_reset_evmcs();
2861 
2862 	intel_pt_handle_vmx(0);
2863 }
2864 
2865 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2866 {
2867 	int node = cpu_to_node(cpu);
2868 	struct page *pages;
2869 	struct vmcs *vmcs;
2870 
2871 	pages = __alloc_pages_node(node, flags, 0);
2872 	if (!pages)
2873 		return NULL;
2874 	vmcs = page_address(pages);
2875 	memset(vmcs, 0, vmcs_config.size);
2876 
2877 	/* KVM supports Enlightened VMCS v1 only */
2878 	if (kvm_is_using_evmcs())
2879 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2880 	else
2881 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2882 
2883 	if (shadow)
2884 		vmcs->hdr.shadow_vmcs = 1;
2885 	return vmcs;
2886 }
2887 
2888 void free_vmcs(struct vmcs *vmcs)
2889 {
2890 	free_page((unsigned long)vmcs);
2891 }
2892 
2893 /*
2894  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2895  */
2896 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2897 {
2898 	if (!loaded_vmcs->vmcs)
2899 		return;
2900 	loaded_vmcs_clear(loaded_vmcs);
2901 	free_vmcs(loaded_vmcs->vmcs);
2902 	loaded_vmcs->vmcs = NULL;
2903 	if (loaded_vmcs->msr_bitmap)
2904 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2905 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2906 }
2907 
2908 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2909 {
2910 	loaded_vmcs->vmcs = alloc_vmcs(false);
2911 	if (!loaded_vmcs->vmcs)
2912 		return -ENOMEM;
2913 
2914 	vmcs_clear(loaded_vmcs->vmcs);
2915 
2916 	loaded_vmcs->shadow_vmcs = NULL;
2917 	loaded_vmcs->hv_timer_soft_disabled = false;
2918 	loaded_vmcs->cpu = -1;
2919 	loaded_vmcs->launched = 0;
2920 
2921 	if (cpu_has_vmx_msr_bitmap()) {
2922 		loaded_vmcs->msr_bitmap = (unsigned long *)
2923 				__get_free_page(GFP_KERNEL_ACCOUNT);
2924 		if (!loaded_vmcs->msr_bitmap)
2925 			goto out_vmcs;
2926 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2927 	}
2928 
2929 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2930 	memset(&loaded_vmcs->controls_shadow, 0,
2931 		sizeof(struct vmcs_controls_shadow));
2932 
2933 	return 0;
2934 
2935 out_vmcs:
2936 	free_loaded_vmcs(loaded_vmcs);
2937 	return -ENOMEM;
2938 }
2939 
2940 static void free_kvm_area(void)
2941 {
2942 	int cpu;
2943 
2944 	for_each_possible_cpu(cpu) {
2945 		free_vmcs(per_cpu(vmxarea, cpu));
2946 		per_cpu(vmxarea, cpu) = NULL;
2947 	}
2948 }
2949 
2950 static __init int alloc_kvm_area(void)
2951 {
2952 	int cpu;
2953 
2954 	for_each_possible_cpu(cpu) {
2955 		struct vmcs *vmcs;
2956 
2957 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2958 		if (!vmcs) {
2959 			free_kvm_area();
2960 			return -ENOMEM;
2961 		}
2962 
2963 		/*
2964 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2965 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2966 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2967 		 *
2968 		 * However, even though not explicitly documented by
2969 		 * TLFS, VMXArea passed as VMXON argument should
2970 		 * still be marked with revision_id reported by
2971 		 * physical CPU.
2972 		 */
2973 		if (kvm_is_using_evmcs())
2974 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2975 
2976 		per_cpu(vmxarea, cpu) = vmcs;
2977 	}
2978 	return 0;
2979 }
2980 
2981 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2982 		struct kvm_segment *save)
2983 {
2984 	if (!emulate_invalid_guest_state) {
2985 		/*
2986 		 * CS and SS RPL should be equal during guest entry according
2987 		 * to VMX spec, but in reality it is not always so. Since vcpu
2988 		 * is in the middle of the transition from real mode to
2989 		 * protected mode it is safe to assume that RPL 0 is a good
2990 		 * default value.
2991 		 */
2992 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2993 			save->selector &= ~SEGMENT_RPL_MASK;
2994 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2995 		save->s = 1;
2996 	}
2997 	__vmx_set_segment(vcpu, save, seg);
2998 }
2999 
3000 static void enter_pmode(struct kvm_vcpu *vcpu)
3001 {
3002 	unsigned long flags;
3003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3004 
3005 	/*
3006 	 * Update real mode segment cache. It may be not up-to-date if segment
3007 	 * register was written while vcpu was in a guest mode.
3008 	 */
3009 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3010 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3011 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3012 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3013 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3014 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3015 
3016 	vmx->rmode.vm86_active = 0;
3017 
3018 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3019 
3020 	flags = vmcs_readl(GUEST_RFLAGS);
3021 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3022 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3023 	vmcs_writel(GUEST_RFLAGS, flags);
3024 
3025 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3026 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3027 
3028 	vmx_update_exception_bitmap(vcpu);
3029 
3030 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3031 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3032 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3033 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3034 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3035 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3036 }
3037 
3038 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3039 {
3040 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3041 	struct kvm_segment var = *save;
3042 
3043 	var.dpl = 0x3;
3044 	if (seg == VCPU_SREG_CS)
3045 		var.type = 0x3;
3046 
3047 	if (!emulate_invalid_guest_state) {
3048 		var.selector = var.base >> 4;
3049 		var.base = var.base & 0xffff0;
3050 		var.limit = 0xffff;
3051 		var.g = 0;
3052 		var.db = 0;
3053 		var.present = 1;
3054 		var.s = 1;
3055 		var.l = 0;
3056 		var.unusable = 0;
3057 		var.type = 0x3;
3058 		var.avl = 0;
3059 		if (save->base & 0xf)
3060 			pr_warn_once("segment base is not paragraph aligned "
3061 				     "when entering protected mode (seg=%d)", seg);
3062 	}
3063 
3064 	vmcs_write16(sf->selector, var.selector);
3065 	vmcs_writel(sf->base, var.base);
3066 	vmcs_write32(sf->limit, var.limit);
3067 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3068 }
3069 
3070 static void enter_rmode(struct kvm_vcpu *vcpu)
3071 {
3072 	unsigned long flags;
3073 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3074 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3075 
3076 	/*
3077 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3078 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3079 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3080 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3081 	 * CR0.PG=0 when L2 is active.
3082 	 */
3083 	WARN_ON_ONCE(is_guest_mode(vcpu));
3084 
3085 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3086 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3087 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3088 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3089 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3090 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3091 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3092 
3093 	vmx->rmode.vm86_active = 1;
3094 
3095 	vmx_segment_cache_clear(vmx);
3096 
3097 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3098 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3099 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3100 
3101 	flags = vmcs_readl(GUEST_RFLAGS);
3102 	vmx->rmode.save_rflags = flags;
3103 
3104 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3105 
3106 	vmcs_writel(GUEST_RFLAGS, flags);
3107 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3108 	vmx_update_exception_bitmap(vcpu);
3109 
3110 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3111 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3112 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3113 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3114 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3115 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3116 }
3117 
3118 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3119 {
3120 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3121 
3122 	/* Nothing to do if hardware doesn't support EFER. */
3123 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3124 		return 0;
3125 
3126 	vcpu->arch.efer = efer;
3127 #ifdef CONFIG_X86_64
3128 	if (efer & EFER_LMA)
3129 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3130 	else
3131 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3132 #else
3133 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3134 		return 1;
3135 #endif
3136 
3137 	vmx_setup_uret_msrs(vmx);
3138 	return 0;
3139 }
3140 
3141 #ifdef CONFIG_X86_64
3142 
3143 static void enter_lmode(struct kvm_vcpu *vcpu)
3144 {
3145 	u32 guest_tr_ar;
3146 
3147 	vmx_segment_cache_clear(to_vmx(vcpu));
3148 
3149 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3150 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3151 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3152 				     __func__);
3153 		vmcs_write32(GUEST_TR_AR_BYTES,
3154 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3155 			     | VMX_AR_TYPE_BUSY_64_TSS);
3156 	}
3157 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3158 }
3159 
3160 static void exit_lmode(struct kvm_vcpu *vcpu)
3161 {
3162 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3163 }
3164 
3165 #endif
3166 
3167 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3168 {
3169 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3170 
3171 	/*
3172 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3173 	 * the CPU is not required to invalidate guest-physical mappings on
3174 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3175 	 * associated with the root EPT structure and not any particular VPID
3176 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3177 	 */
3178 	if (enable_ept) {
3179 		ept_sync_global();
3180 	} else if (enable_vpid) {
3181 		if (cpu_has_vmx_invvpid_global()) {
3182 			vpid_sync_vcpu_global();
3183 		} else {
3184 			vpid_sync_vcpu_single(vmx->vpid);
3185 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3186 		}
3187 	}
3188 }
3189 
3190 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3191 {
3192 	if (is_guest_mode(vcpu))
3193 		return nested_get_vpid02(vcpu);
3194 	return to_vmx(vcpu)->vpid;
3195 }
3196 
3197 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3198 {
3199 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3200 	u64 root_hpa = mmu->root.hpa;
3201 
3202 	/* No flush required if the current context is invalid. */
3203 	if (!VALID_PAGE(root_hpa))
3204 		return;
3205 
3206 	if (enable_ept)
3207 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3208 						mmu->root_role.level));
3209 	else
3210 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3211 }
3212 
3213 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3214 {
3215 	/*
3216 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3217 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3218 	 */
3219 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3220 }
3221 
3222 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3223 {
3224 	/*
3225 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3226 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3227 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3228 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3229 	 * i.e. no explicit INVVPID is necessary.
3230 	 */
3231 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3232 }
3233 
3234 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3235 {
3236 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3237 
3238 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3239 		return;
3240 
3241 	if (is_pae_paging(vcpu)) {
3242 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3243 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3244 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3245 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3246 	}
3247 }
3248 
3249 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3250 {
3251 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3252 
3253 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3254 		return;
3255 
3256 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3257 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3258 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3259 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3260 
3261 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3262 }
3263 
3264 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3265 			  CPU_BASED_CR3_STORE_EXITING)
3266 
3267 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3268 {
3269 	if (is_guest_mode(vcpu))
3270 		return nested_guest_cr0_valid(vcpu, cr0);
3271 
3272 	if (to_vmx(vcpu)->nested.vmxon)
3273 		return nested_host_cr0_valid(vcpu, cr0);
3274 
3275 	return true;
3276 }
3277 
3278 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3279 {
3280 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3281 	unsigned long hw_cr0, old_cr0_pg;
3282 	u32 tmp;
3283 
3284 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3285 
3286 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3287 	if (enable_unrestricted_guest)
3288 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3289 	else {
3290 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3291 		if (!enable_ept)
3292 			hw_cr0 |= X86_CR0_WP;
3293 
3294 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3295 			enter_pmode(vcpu);
3296 
3297 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3298 			enter_rmode(vcpu);
3299 	}
3300 
3301 	vmcs_writel(CR0_READ_SHADOW, cr0);
3302 	vmcs_writel(GUEST_CR0, hw_cr0);
3303 	vcpu->arch.cr0 = cr0;
3304 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3305 
3306 #ifdef CONFIG_X86_64
3307 	if (vcpu->arch.efer & EFER_LME) {
3308 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3309 			enter_lmode(vcpu);
3310 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3311 			exit_lmode(vcpu);
3312 	}
3313 #endif
3314 
3315 	if (enable_ept && !enable_unrestricted_guest) {
3316 		/*
3317 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3318 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3319 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3320 		 * KVM's CR3 is installed.
3321 		 */
3322 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3323 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3324 
3325 		/*
3326 		 * When running with EPT but not unrestricted guest, KVM must
3327 		 * intercept CR3 accesses when paging is _disabled_.  This is
3328 		 * necessary because restricted guests can't actually run with
3329 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3330 		 * run the guest when identity mapped page tables.
3331 		 *
3332 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3333 		 * update, it may be stale with respect to CR3 interception,
3334 		 * e.g. after nested VM-Enter.
3335 		 *
3336 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3337 		 * stores to forward them to L1, even if KVM does not need to
3338 		 * intercept them to preserve its identity mapped page tables.
3339 		 */
3340 		if (!(cr0 & X86_CR0_PG)) {
3341 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3342 		} else if (!is_guest_mode(vcpu)) {
3343 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3344 		} else {
3345 			tmp = exec_controls_get(vmx);
3346 			tmp &= ~CR3_EXITING_BITS;
3347 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3348 			exec_controls_set(vmx, tmp);
3349 		}
3350 
3351 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3352 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3353 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3354 
3355 		/*
3356 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3357 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3358 		 */
3359 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3360 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3361 	}
3362 
3363 	/* depends on vcpu->arch.cr0 to be set to a new value */
3364 	vmx->emulation_required = vmx_emulation_required(vcpu);
3365 }
3366 
3367 static int vmx_get_max_ept_level(void)
3368 {
3369 	if (cpu_has_vmx_ept_5levels())
3370 		return 5;
3371 	return 4;
3372 }
3373 
3374 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3375 {
3376 	u64 eptp = VMX_EPTP_MT_WB;
3377 
3378 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3379 
3380 	if (enable_ept_ad_bits &&
3381 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3382 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3383 	eptp |= root_hpa;
3384 
3385 	return eptp;
3386 }
3387 
3388 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3389 {
3390 	struct kvm *kvm = vcpu->kvm;
3391 	bool update_guest_cr3 = true;
3392 	unsigned long guest_cr3;
3393 	u64 eptp;
3394 
3395 	if (enable_ept) {
3396 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3397 		vmcs_write64(EPT_POINTER, eptp);
3398 
3399 		hv_track_root_tdp(vcpu, root_hpa);
3400 
3401 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3402 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3403 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3404 			guest_cr3 = vcpu->arch.cr3;
3405 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3406 			update_guest_cr3 = false;
3407 		vmx_ept_load_pdptrs(vcpu);
3408 	} else {
3409 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3410 			    kvm_get_active_cr3_lam_bits(vcpu);
3411 	}
3412 
3413 	if (update_guest_cr3)
3414 		vmcs_writel(GUEST_CR3, guest_cr3);
3415 }
3416 
3417 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3418 {
3419 	/*
3420 	 * We operate under the default treatment of SMM, so VMX cannot be
3421 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3422 	 * i.e. is a reserved bit, is handled by common x86 code.
3423 	 */
3424 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3425 		return false;
3426 
3427 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3428 		return false;
3429 
3430 	return true;
3431 }
3432 
3433 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3434 {
3435 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3436 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3437 	unsigned long hw_cr4;
3438 
3439 	/*
3440 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3441 	 * is in force while we are in guest mode.  Do not let guests control
3442 	 * this bit, even if host CR4.MCE == 0.
3443 	 */
3444 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3445 	if (enable_unrestricted_guest)
3446 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3447 	else if (vmx->rmode.vm86_active)
3448 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3449 	else
3450 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3451 
3452 	if (vmx_umip_emulated()) {
3453 		if (cr4 & X86_CR4_UMIP) {
3454 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3455 			hw_cr4 &= ~X86_CR4_UMIP;
3456 		} else if (!is_guest_mode(vcpu) ||
3457 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3458 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3459 		}
3460 	}
3461 
3462 	vcpu->arch.cr4 = cr4;
3463 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3464 
3465 	if (!enable_unrestricted_guest) {
3466 		if (enable_ept) {
3467 			if (!is_paging(vcpu)) {
3468 				hw_cr4 &= ~X86_CR4_PAE;
3469 				hw_cr4 |= X86_CR4_PSE;
3470 			} else if (!(cr4 & X86_CR4_PAE)) {
3471 				hw_cr4 &= ~X86_CR4_PAE;
3472 			}
3473 		}
3474 
3475 		/*
3476 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3477 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3478 		 * to be manually disabled when guest switches to non-paging
3479 		 * mode.
3480 		 *
3481 		 * If !enable_unrestricted_guest, the CPU is always running
3482 		 * with CR0.PG=1 and CR4 needs to be modified.
3483 		 * If enable_unrestricted_guest, the CPU automatically
3484 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3485 		 */
3486 		if (!is_paging(vcpu))
3487 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3488 	}
3489 
3490 	vmcs_writel(CR4_READ_SHADOW, cr4);
3491 	vmcs_writel(GUEST_CR4, hw_cr4);
3492 
3493 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3494 		kvm_update_cpuid_runtime(vcpu);
3495 }
3496 
3497 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3498 {
3499 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3500 	u32 ar;
3501 
3502 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3503 		*var = vmx->rmode.segs[seg];
3504 		if (seg == VCPU_SREG_TR
3505 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3506 			return;
3507 		var->base = vmx_read_guest_seg_base(vmx, seg);
3508 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3509 		return;
3510 	}
3511 	var->base = vmx_read_guest_seg_base(vmx, seg);
3512 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3513 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3514 	ar = vmx_read_guest_seg_ar(vmx, seg);
3515 	var->unusable = (ar >> 16) & 1;
3516 	var->type = ar & 15;
3517 	var->s = (ar >> 4) & 1;
3518 	var->dpl = (ar >> 5) & 3;
3519 	/*
3520 	 * Some userspaces do not preserve unusable property. Since usable
3521 	 * segment has to be present according to VMX spec we can use present
3522 	 * property to amend userspace bug by making unusable segment always
3523 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3524 	 * segment as unusable.
3525 	 */
3526 	var->present = !var->unusable;
3527 	var->avl = (ar >> 12) & 1;
3528 	var->l = (ar >> 13) & 1;
3529 	var->db = (ar >> 14) & 1;
3530 	var->g = (ar >> 15) & 1;
3531 }
3532 
3533 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3534 {
3535 	struct kvm_segment s;
3536 
3537 	if (to_vmx(vcpu)->rmode.vm86_active) {
3538 		vmx_get_segment(vcpu, &s, seg);
3539 		return s.base;
3540 	}
3541 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3542 }
3543 
3544 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3545 {
3546 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3547 
3548 	if (unlikely(vmx->rmode.vm86_active))
3549 		return 0;
3550 	else {
3551 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3552 		return VMX_AR_DPL(ar);
3553 	}
3554 }
3555 
3556 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3557 {
3558 	u32 ar;
3559 
3560 	ar = var->type & 15;
3561 	ar |= (var->s & 1) << 4;
3562 	ar |= (var->dpl & 3) << 5;
3563 	ar |= (var->present & 1) << 7;
3564 	ar |= (var->avl & 1) << 12;
3565 	ar |= (var->l & 1) << 13;
3566 	ar |= (var->db & 1) << 14;
3567 	ar |= (var->g & 1) << 15;
3568 	ar |= (var->unusable || !var->present) << 16;
3569 
3570 	return ar;
3571 }
3572 
3573 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3574 {
3575 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3576 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3577 
3578 	vmx_segment_cache_clear(vmx);
3579 
3580 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3581 		vmx->rmode.segs[seg] = *var;
3582 		if (seg == VCPU_SREG_TR)
3583 			vmcs_write16(sf->selector, var->selector);
3584 		else if (var->s)
3585 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3586 		return;
3587 	}
3588 
3589 	vmcs_writel(sf->base, var->base);
3590 	vmcs_write32(sf->limit, var->limit);
3591 	vmcs_write16(sf->selector, var->selector);
3592 
3593 	/*
3594 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3595 	 * qemu binaries.
3596 	 *   IA32 arch specifies that at the time of processor reset the
3597 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3598 	 * is setting it to 0 in the userland code. This causes invalid guest
3599 	 * state vmexit when "unrestricted guest" mode is turned on.
3600 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3601 	 * tree. Newer qemu binaries with that qemu fix would not need this
3602 	 * kvm hack.
3603 	 */
3604 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3605 		var->type |= 0x1; /* Accessed */
3606 
3607 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3608 }
3609 
3610 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3611 {
3612 	__vmx_set_segment(vcpu, var, seg);
3613 
3614 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3615 }
3616 
3617 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3618 {
3619 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3620 
3621 	*db = (ar >> 14) & 1;
3622 	*l = (ar >> 13) & 1;
3623 }
3624 
3625 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3626 {
3627 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3628 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3629 }
3630 
3631 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3632 {
3633 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3634 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3635 }
3636 
3637 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3638 {
3639 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3640 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3641 }
3642 
3643 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3644 {
3645 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3646 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3647 }
3648 
3649 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3650 {
3651 	struct kvm_segment var;
3652 	u32 ar;
3653 
3654 	vmx_get_segment(vcpu, &var, seg);
3655 	var.dpl = 0x3;
3656 	if (seg == VCPU_SREG_CS)
3657 		var.type = 0x3;
3658 	ar = vmx_segment_access_rights(&var);
3659 
3660 	if (var.base != (var.selector << 4))
3661 		return false;
3662 	if (var.limit != 0xffff)
3663 		return false;
3664 	if (ar != 0xf3)
3665 		return false;
3666 
3667 	return true;
3668 }
3669 
3670 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3671 {
3672 	struct kvm_segment cs;
3673 	unsigned int cs_rpl;
3674 
3675 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3676 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3677 
3678 	if (cs.unusable)
3679 		return false;
3680 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3681 		return false;
3682 	if (!cs.s)
3683 		return false;
3684 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3685 		if (cs.dpl > cs_rpl)
3686 			return false;
3687 	} else {
3688 		if (cs.dpl != cs_rpl)
3689 			return false;
3690 	}
3691 	if (!cs.present)
3692 		return false;
3693 
3694 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3695 	return true;
3696 }
3697 
3698 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3699 {
3700 	struct kvm_segment ss;
3701 	unsigned int ss_rpl;
3702 
3703 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3704 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3705 
3706 	if (ss.unusable)
3707 		return true;
3708 	if (ss.type != 3 && ss.type != 7)
3709 		return false;
3710 	if (!ss.s)
3711 		return false;
3712 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3713 		return false;
3714 	if (!ss.present)
3715 		return false;
3716 
3717 	return true;
3718 }
3719 
3720 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3721 {
3722 	struct kvm_segment var;
3723 	unsigned int rpl;
3724 
3725 	vmx_get_segment(vcpu, &var, seg);
3726 	rpl = var.selector & SEGMENT_RPL_MASK;
3727 
3728 	if (var.unusable)
3729 		return true;
3730 	if (!var.s)
3731 		return false;
3732 	if (!var.present)
3733 		return false;
3734 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3735 		if (var.dpl < rpl) /* DPL < RPL */
3736 			return false;
3737 	}
3738 
3739 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3740 	 * rights flags
3741 	 */
3742 	return true;
3743 }
3744 
3745 static bool tr_valid(struct kvm_vcpu *vcpu)
3746 {
3747 	struct kvm_segment tr;
3748 
3749 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3750 
3751 	if (tr.unusable)
3752 		return false;
3753 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3754 		return false;
3755 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3756 		return false;
3757 	if (!tr.present)
3758 		return false;
3759 
3760 	return true;
3761 }
3762 
3763 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3764 {
3765 	struct kvm_segment ldtr;
3766 
3767 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3768 
3769 	if (ldtr.unusable)
3770 		return true;
3771 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3772 		return false;
3773 	if (ldtr.type != 2)
3774 		return false;
3775 	if (!ldtr.present)
3776 		return false;
3777 
3778 	return true;
3779 }
3780 
3781 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3782 {
3783 	struct kvm_segment cs, ss;
3784 
3785 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3786 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3787 
3788 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3789 		 (ss.selector & SEGMENT_RPL_MASK));
3790 }
3791 
3792 /*
3793  * Check if guest state is valid. Returns true if valid, false if
3794  * not.
3795  * We assume that registers are always usable
3796  */
3797 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3798 {
3799 	/* real mode guest state checks */
3800 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3801 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3802 			return false;
3803 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3804 			return false;
3805 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3806 			return false;
3807 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3808 			return false;
3809 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3810 			return false;
3811 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3812 			return false;
3813 	} else {
3814 	/* protected mode guest state checks */
3815 		if (!cs_ss_rpl_check(vcpu))
3816 			return false;
3817 		if (!code_segment_valid(vcpu))
3818 			return false;
3819 		if (!stack_segment_valid(vcpu))
3820 			return false;
3821 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3822 			return false;
3823 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3824 			return false;
3825 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3826 			return false;
3827 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3828 			return false;
3829 		if (!tr_valid(vcpu))
3830 			return false;
3831 		if (!ldtr_valid(vcpu))
3832 			return false;
3833 	}
3834 	/* TODO:
3835 	 * - Add checks on RIP
3836 	 * - Add checks on RFLAGS
3837 	 */
3838 
3839 	return true;
3840 }
3841 
3842 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3843 {
3844 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3845 	u16 data;
3846 	int i;
3847 
3848 	for (i = 0; i < 3; i++) {
3849 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3850 			return -EFAULT;
3851 	}
3852 
3853 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3854 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3855 		return -EFAULT;
3856 
3857 	data = ~0;
3858 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3859 		return -EFAULT;
3860 
3861 	return 0;
3862 }
3863 
3864 static int init_rmode_identity_map(struct kvm *kvm)
3865 {
3866 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3867 	int i, r = 0;
3868 	void __user *uaddr;
3869 	u32 tmp;
3870 
3871 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3872 	mutex_lock(&kvm->slots_lock);
3873 
3874 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3875 		goto out;
3876 
3877 	if (!kvm_vmx->ept_identity_map_addr)
3878 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3879 
3880 	uaddr = __x86_set_memory_region(kvm,
3881 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3882 					kvm_vmx->ept_identity_map_addr,
3883 					PAGE_SIZE);
3884 	if (IS_ERR(uaddr)) {
3885 		r = PTR_ERR(uaddr);
3886 		goto out;
3887 	}
3888 
3889 	/* Set up identity-mapping pagetable for EPT in real mode */
3890 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3891 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3892 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3893 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3894 			r = -EFAULT;
3895 			goto out;
3896 		}
3897 	}
3898 	kvm_vmx->ept_identity_pagetable_done = true;
3899 
3900 out:
3901 	mutex_unlock(&kvm->slots_lock);
3902 	return r;
3903 }
3904 
3905 static void seg_setup(int seg)
3906 {
3907 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3908 	unsigned int ar;
3909 
3910 	vmcs_write16(sf->selector, 0);
3911 	vmcs_writel(sf->base, 0);
3912 	vmcs_write32(sf->limit, 0xffff);
3913 	ar = 0x93;
3914 	if (seg == VCPU_SREG_CS)
3915 		ar |= 0x08; /* code segment */
3916 
3917 	vmcs_write32(sf->ar_bytes, ar);
3918 }
3919 
3920 int allocate_vpid(void)
3921 {
3922 	int vpid;
3923 
3924 	if (!enable_vpid)
3925 		return 0;
3926 	spin_lock(&vmx_vpid_lock);
3927 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3928 	if (vpid < VMX_NR_VPIDS)
3929 		__set_bit(vpid, vmx_vpid_bitmap);
3930 	else
3931 		vpid = 0;
3932 	spin_unlock(&vmx_vpid_lock);
3933 	return vpid;
3934 }
3935 
3936 void free_vpid(int vpid)
3937 {
3938 	if (!enable_vpid || vpid == 0)
3939 		return;
3940 	spin_lock(&vmx_vpid_lock);
3941 	__clear_bit(vpid, vmx_vpid_bitmap);
3942 	spin_unlock(&vmx_vpid_lock);
3943 }
3944 
3945 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3946 {
3947 	/*
3948 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3949 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3950 	 * bitmap has changed.
3951 	 */
3952 	if (kvm_is_using_evmcs()) {
3953 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3954 
3955 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3956 			evmcs->hv_clean_fields &=
3957 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3958 	}
3959 
3960 	vmx->nested.force_msr_bitmap_recalc = true;
3961 }
3962 
3963 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3964 {
3965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3966 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3967 	int idx;
3968 
3969 	if (!cpu_has_vmx_msr_bitmap())
3970 		return;
3971 
3972 	vmx_msr_bitmap_l01_changed(vmx);
3973 
3974 	/*
3975 	 * Mark the desired intercept state in shadow bitmap, this is needed
3976 	 * for resync when the MSR filters change.
3977 	 */
3978 	idx = vmx_get_passthrough_msr_slot(msr);
3979 	if (idx >= 0) {
3980 		if (type & MSR_TYPE_R)
3981 			clear_bit(idx, vmx->shadow_msr_intercept.read);
3982 		if (type & MSR_TYPE_W)
3983 			clear_bit(idx, vmx->shadow_msr_intercept.write);
3984 	}
3985 
3986 	if ((type & MSR_TYPE_R) &&
3987 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3988 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3989 		type &= ~MSR_TYPE_R;
3990 	}
3991 
3992 	if ((type & MSR_TYPE_W) &&
3993 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3994 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3995 		type &= ~MSR_TYPE_W;
3996 	}
3997 
3998 	if (type & MSR_TYPE_R)
3999 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4000 
4001 	if (type & MSR_TYPE_W)
4002 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4003 }
4004 
4005 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4006 {
4007 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4008 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4009 	int idx;
4010 
4011 	if (!cpu_has_vmx_msr_bitmap())
4012 		return;
4013 
4014 	vmx_msr_bitmap_l01_changed(vmx);
4015 
4016 	/*
4017 	 * Mark the desired intercept state in shadow bitmap, this is needed
4018 	 * for resync when the MSR filter changes.
4019 	 */
4020 	idx = vmx_get_passthrough_msr_slot(msr);
4021 	if (idx >= 0) {
4022 		if (type & MSR_TYPE_R)
4023 			set_bit(idx, vmx->shadow_msr_intercept.read);
4024 		if (type & MSR_TYPE_W)
4025 			set_bit(idx, vmx->shadow_msr_intercept.write);
4026 	}
4027 
4028 	if (type & MSR_TYPE_R)
4029 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4030 
4031 	if (type & MSR_TYPE_W)
4032 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4033 }
4034 
4035 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4036 {
4037 	/*
4038 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4039 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4040 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4041 	 */
4042 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4043 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4044 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4045 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4046 	u8 mode;
4047 
4048 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4049 		return;
4050 
4051 	if (cpu_has_secondary_exec_ctrls() &&
4052 	    (secondary_exec_controls_get(vmx) &
4053 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4054 		mode = MSR_BITMAP_MODE_X2APIC;
4055 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4056 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4057 	} else {
4058 		mode = 0;
4059 	}
4060 
4061 	if (mode == vmx->x2apic_msr_bitmap_mode)
4062 		return;
4063 
4064 	vmx->x2apic_msr_bitmap_mode = mode;
4065 
4066 	/*
4067 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4068 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4069 	 * Intercept all writes by default and poke holes as needed.  Pass
4070 	 * through reads for all valid registers by default in x2APIC+APICv
4071 	 * mode, only the current timer count needs on-demand emulation by KVM.
4072 	 */
4073 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4074 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4075 	else
4076 		msr_bitmap[read_idx] = ~0ull;
4077 	msr_bitmap[write_idx] = ~0ull;
4078 
4079 	/*
4080 	 * TPR reads and writes can be virtualized even if virtual interrupt
4081 	 * delivery is not in use.
4082 	 */
4083 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4084 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4085 
4086 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4087 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4088 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4089 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4090 		if (enable_ipiv)
4091 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4092 	}
4093 }
4094 
4095 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4096 {
4097 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4098 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4099 	u32 i;
4100 
4101 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4102 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4103 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4104 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4105 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4106 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4107 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4108 	}
4109 }
4110 
4111 bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4112 {
4113 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4114 	void *vapic_page;
4115 	u32 vppr;
4116 	int rvi;
4117 
4118 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4119 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4120 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4121 		return false;
4122 
4123 	rvi = vmx_get_rvi();
4124 
4125 	vapic_page = vmx->nested.virtual_apic_map.hva;
4126 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4127 
4128 	return ((rvi & 0xf0) > (vppr & 0xf0));
4129 }
4130 
4131 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4132 {
4133 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4134 	u32 i;
4135 
4136 	if (!cpu_has_vmx_msr_bitmap())
4137 		return;
4138 
4139 	/*
4140 	 * Redo intercept permissions for MSRs that KVM is passing through to
4141 	 * the guest.  Disabling interception will check the new MSR filter and
4142 	 * ensure that KVM enables interception if usersepace wants to filter
4143 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4144 	 * refreshed since KVM is going to intercept them regardless of what
4145 	 * userspace wants.
4146 	 */
4147 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4148 		u32 msr = vmx_possible_passthrough_msrs[i];
4149 
4150 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4151 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4152 
4153 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4154 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4155 	}
4156 
4157 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4158 	if (vmx_pt_mode_is_host_guest())
4159 		pt_update_intercept_for_msr(vcpu);
4160 }
4161 
4162 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4163 						     int pi_vec)
4164 {
4165 #ifdef CONFIG_SMP
4166 	if (vcpu->mode == IN_GUEST_MODE) {
4167 		/*
4168 		 * The vector of the virtual has already been set in the PIR.
4169 		 * Send a notification event to deliver the virtual interrupt
4170 		 * unless the vCPU is the currently running vCPU, i.e. the
4171 		 * event is being sent from a fastpath VM-Exit handler, in
4172 		 * which case the PIR will be synced to the vIRR before
4173 		 * re-entering the guest.
4174 		 *
4175 		 * When the target is not the running vCPU, the following
4176 		 * possibilities emerge:
4177 		 *
4178 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4179 		 * event posts the interrupt to the vCPU.
4180 		 *
4181 		 * Case 2: vCPU exits to root mode and is still runnable. The
4182 		 * PIR will be synced to the vIRR before re-entering the guest.
4183 		 * Sending a notification event is ok as the host IRQ handler
4184 		 * will ignore the spurious event.
4185 		 *
4186 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4187 		 * has already synced PIR to vIRR and never blocks the vCPU if
4188 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4189 		 * not wait for any requested interrupts in PIR, and sending a
4190 		 * notification event also results in a benign, spurious event.
4191 		 */
4192 
4193 		if (vcpu != kvm_get_running_vcpu())
4194 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4195 		return;
4196 	}
4197 #endif
4198 	/*
4199 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4200 	 * otherwise do nothing as KVM will grab the highest priority pending
4201 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4202 	 */
4203 	kvm_vcpu_wake_up(vcpu);
4204 }
4205 
4206 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4207 						int vector)
4208 {
4209 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4210 
4211 	if (is_guest_mode(vcpu) &&
4212 	    vector == vmx->nested.posted_intr_nv) {
4213 		/*
4214 		 * If a posted intr is not recognized by hardware,
4215 		 * we will accomplish it in the next vmentry.
4216 		 */
4217 		vmx->nested.pi_pending = true;
4218 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4219 
4220 		/*
4221 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4222 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4223 		 * request if triggering a posted interrupt "fails" because
4224 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4225 		 * the smb_wmb() in kvm_make_request() only ensures everything
4226 		 * done before making the request is visible when the request
4227 		 * is visible, it doesn't ensure ordering between the store to
4228 		 * vcpu->requests and the load from vcpu->mode.
4229 		 */
4230 		smp_mb__after_atomic();
4231 
4232 		/* the PIR and ON have been set by L1. */
4233 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4234 		return 0;
4235 	}
4236 	return -1;
4237 }
4238 /*
4239  * Send interrupt to vcpu via posted interrupt way.
4240  * 1. If target vcpu is running(non-root mode), send posted interrupt
4241  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4242  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4243  * interrupt from PIR in next vmentry.
4244  */
4245 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4246 {
4247 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4248 	int r;
4249 
4250 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4251 	if (!r)
4252 		return 0;
4253 
4254 	/* Note, this is called iff the local APIC is in-kernel. */
4255 	if (!vcpu->arch.apic->apicv_active)
4256 		return -1;
4257 
4258 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4259 		return 0;
4260 
4261 	/* If a previous notification has sent the IPI, nothing to do.  */
4262 	if (pi_test_and_set_on(&vmx->pi_desc))
4263 		return 0;
4264 
4265 	/*
4266 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4267 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4268 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4269 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4270 	 */
4271 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4272 	return 0;
4273 }
4274 
4275 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4276 			   int trig_mode, int vector)
4277 {
4278 	struct kvm_vcpu *vcpu = apic->vcpu;
4279 
4280 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4281 		kvm_lapic_set_irr(vector, apic);
4282 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4283 		kvm_vcpu_kick(vcpu);
4284 	} else {
4285 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4286 					   trig_mode, vector);
4287 	}
4288 }
4289 
4290 /*
4291  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4292  * will not change in the lifetime of the guest.
4293  * Note that host-state that does change is set elsewhere. E.g., host-state
4294  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4295  */
4296 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4297 {
4298 	u32 low32, high32;
4299 	unsigned long tmpl;
4300 	unsigned long cr0, cr3, cr4;
4301 
4302 	cr0 = read_cr0();
4303 	WARN_ON(cr0 & X86_CR0_TS);
4304 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4305 
4306 	/*
4307 	 * Save the most likely value for this task's CR3 in the VMCS.
4308 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4309 	 */
4310 	cr3 = __read_cr3();
4311 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4312 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4313 
4314 	/* Save the most likely value for this task's CR4 in the VMCS. */
4315 	cr4 = cr4_read_shadow();
4316 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4317 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4318 
4319 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4320 #ifdef CONFIG_X86_64
4321 	/*
4322 	 * Load null selectors, so we can avoid reloading them in
4323 	 * vmx_prepare_switch_to_host(), in case userspace uses
4324 	 * the null selectors too (the expected case).
4325 	 */
4326 	vmcs_write16(HOST_DS_SELECTOR, 0);
4327 	vmcs_write16(HOST_ES_SELECTOR, 0);
4328 #else
4329 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4330 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4331 #endif
4332 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4333 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4334 
4335 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4336 
4337 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4338 
4339 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4340 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4341 
4342 	/*
4343 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4344 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4345 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4346 	 * have already done so!).
4347 	 */
4348 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4349 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4350 
4351 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4352 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4353 
4354 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4355 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4356 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4357 	}
4358 
4359 	if (cpu_has_load_ia32_efer())
4360 		vmcs_write64(HOST_IA32_EFER, host_efer);
4361 }
4362 
4363 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4364 {
4365 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4366 
4367 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4368 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4369 	if (!enable_ept) {
4370 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4371 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4372 	}
4373 	if (is_guest_mode(&vmx->vcpu))
4374 		vcpu->arch.cr4_guest_owned_bits &=
4375 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4376 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4377 }
4378 
4379 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4380 {
4381 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4382 
4383 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4384 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4385 
4386 	if (!enable_vnmi)
4387 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4388 
4389 	if (!enable_preemption_timer)
4390 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4391 
4392 	return pin_based_exec_ctrl;
4393 }
4394 
4395 static u32 vmx_vmentry_ctrl(void)
4396 {
4397 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4398 
4399 	if (vmx_pt_mode_is_system())
4400 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4401 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4402 	/*
4403 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4404 	 */
4405 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4406 			  VM_ENTRY_LOAD_IA32_EFER |
4407 			  VM_ENTRY_IA32E_MODE);
4408 
4409 	if (cpu_has_perf_global_ctrl_bug())
4410 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4411 
4412 	return vmentry_ctrl;
4413 }
4414 
4415 static u32 vmx_vmexit_ctrl(void)
4416 {
4417 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4418 
4419 	/*
4420 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4421 	 * nested virtualization and thus allowed to be set in vmcs12.
4422 	 */
4423 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4424 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4425 
4426 	if (vmx_pt_mode_is_system())
4427 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4428 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4429 
4430 	if (cpu_has_perf_global_ctrl_bug())
4431 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4432 
4433 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4434 	return vmexit_ctrl &
4435 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4436 }
4437 
4438 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4439 {
4440 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4441 
4442 	if (is_guest_mode(vcpu)) {
4443 		vmx->nested.update_vmcs01_apicv_status = true;
4444 		return;
4445 	}
4446 
4447 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4448 
4449 	if (kvm_vcpu_apicv_active(vcpu)) {
4450 		secondary_exec_controls_setbit(vmx,
4451 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4452 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4453 		if (enable_ipiv)
4454 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4455 	} else {
4456 		secondary_exec_controls_clearbit(vmx,
4457 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4458 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4459 		if (enable_ipiv)
4460 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4461 	}
4462 
4463 	vmx_update_msr_bitmap_x2apic(vcpu);
4464 }
4465 
4466 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4467 {
4468 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4469 
4470 	/*
4471 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4472 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4473 	 */
4474 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4475 			  CPU_BASED_USE_IO_BITMAPS |
4476 			  CPU_BASED_MONITOR_TRAP_FLAG |
4477 			  CPU_BASED_PAUSE_EXITING);
4478 
4479 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4480 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4481 			  CPU_BASED_NMI_WINDOW_EXITING);
4482 
4483 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4484 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4485 
4486 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4487 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4488 
4489 #ifdef CONFIG_X86_64
4490 	if (exec_control & CPU_BASED_TPR_SHADOW)
4491 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4492 				  CPU_BASED_CR8_STORE_EXITING);
4493 	else
4494 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4495 				CPU_BASED_CR8_LOAD_EXITING;
4496 #endif
4497 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4498 	if (enable_ept)
4499 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4500 				  CPU_BASED_CR3_STORE_EXITING |
4501 				  CPU_BASED_INVLPG_EXITING);
4502 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4503 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4504 				CPU_BASED_MONITOR_EXITING);
4505 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4506 		exec_control &= ~CPU_BASED_HLT_EXITING;
4507 	return exec_control;
4508 }
4509 
4510 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4511 {
4512 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4513 
4514 	/*
4515 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4516 	 * APICv is inhibited.
4517 	 */
4518 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4519 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4520 
4521 	return exec_control;
4522 }
4523 
4524 /*
4525  * Adjust a single secondary execution control bit to intercept/allow an
4526  * instruction in the guest.  This is usually done based on whether or not a
4527  * feature has been exposed to the guest in order to correctly emulate faults.
4528  */
4529 static inline void
4530 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4531 				  u32 control, bool enabled, bool exiting)
4532 {
4533 	/*
4534 	 * If the control is for an opt-in feature, clear the control if the
4535 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4536 	 * control is opt-out, i.e. an exiting control, clear the control if
4537 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4538 	 * disabled for the associated instruction.  Note, the caller is
4539 	 * responsible presetting exec_control to set all supported bits.
4540 	 */
4541 	if (enabled == exiting)
4542 		*exec_control &= ~control;
4543 
4544 	/*
4545 	 * Update the nested MSR settings so that a nested VMM can/can't set
4546 	 * controls for features that are/aren't exposed to the guest.
4547 	 */
4548 	if (nested) {
4549 		/*
4550 		 * All features that can be added or removed to VMX MSRs must
4551 		 * be supported in the first place for nested virtualization.
4552 		 */
4553 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4554 			enabled = false;
4555 
4556 		if (enabled)
4557 			vmx->nested.msrs.secondary_ctls_high |= control;
4558 		else
4559 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4560 	}
4561 }
4562 
4563 /*
4564  * Wrapper macro for the common case of adjusting a secondary execution control
4565  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4566  * verifies that the control is actually supported by KVM and hardware.
4567  */
4568 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4569 ({												\
4570 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4571 	bool __enabled;										\
4572 												\
4573 	if (cpu_has_vmx_##name()) {								\
4574 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4575 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4576 		else										\
4577 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4578 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4579 						  __enabled, exiting);				\
4580 	}											\
4581 })
4582 
4583 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4584 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4585 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4586 
4587 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4588 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4589 
4590 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4591 {
4592 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4593 
4594 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4595 
4596 	if (vmx_pt_mode_is_system())
4597 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4598 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4599 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4600 	if (vmx->vpid == 0)
4601 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4602 	if (!enable_ept) {
4603 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4604 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4605 		enable_unrestricted_guest = 0;
4606 	}
4607 	if (!enable_unrestricted_guest)
4608 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4609 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4610 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4611 	if (!kvm_vcpu_apicv_active(vcpu))
4612 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4613 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4614 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4615 
4616 	/*
4617 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4618 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4619 	 */
4620 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4621 
4622 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4623 	 * in vmx_set_cr4.  */
4624 	exec_control &= ~SECONDARY_EXEC_DESC;
4625 
4626 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4627 	   (handle_vmptrld).
4628 	   We can NOT enable shadow_vmcs here because we don't have yet
4629 	   a current VMCS12
4630 	*/
4631 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4632 
4633 	/*
4634 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4635 	 * it needs to be set here when dirty logging is already active, e.g.
4636 	 * if this vCPU was created after dirty logging was enabled.
4637 	 */
4638 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4639 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4640 
4641 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4642 
4643 	/*
4644 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4645 	 * feature is exposed to the guest.  This creates a virtualization hole
4646 	 * if both are supported in hardware but only one is exposed to the
4647 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4648 	 * is advertised is preferable to emulating the advertised instruction
4649 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4650 	 */
4651 	if (cpu_has_vmx_rdtscp()) {
4652 		bool rdpid_or_rdtscp_enabled =
4653 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4654 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4655 
4656 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4657 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4658 						  rdpid_or_rdtscp_enabled, false);
4659 	}
4660 
4661 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4662 
4663 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4664 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4665 
4666 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4667 				    ENABLE_USR_WAIT_PAUSE, false);
4668 
4669 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4670 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4671 
4672 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4673 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4674 
4675 	return exec_control;
4676 }
4677 
4678 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4679 {
4680 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4681 }
4682 
4683 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4684 {
4685 	struct page *pages;
4686 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4687 
4688 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4689 		return 0;
4690 
4691 	if (kvm_vmx->pid_table)
4692 		return 0;
4693 
4694 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4695 			    vmx_get_pid_table_order(kvm));
4696 	if (!pages)
4697 		return -ENOMEM;
4698 
4699 	kvm_vmx->pid_table = (void *)page_address(pages);
4700 	return 0;
4701 }
4702 
4703 int vmx_vcpu_precreate(struct kvm *kvm)
4704 {
4705 	return vmx_alloc_ipiv_pid_table(kvm);
4706 }
4707 
4708 #define VMX_XSS_EXIT_BITMAP 0
4709 
4710 static void init_vmcs(struct vcpu_vmx *vmx)
4711 {
4712 	struct kvm *kvm = vmx->vcpu.kvm;
4713 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4714 
4715 	if (nested)
4716 		nested_vmx_set_vmcs_shadowing_bitmap();
4717 
4718 	if (cpu_has_vmx_msr_bitmap())
4719 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4720 
4721 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4722 
4723 	/* Control */
4724 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4725 
4726 	exec_controls_set(vmx, vmx_exec_control(vmx));
4727 
4728 	if (cpu_has_secondary_exec_ctrls()) {
4729 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4730 		if (vmx->ve_info)
4731 			vmcs_write64(VE_INFORMATION_ADDRESS,
4732 				     __pa(vmx->ve_info));
4733 	}
4734 
4735 	if (cpu_has_tertiary_exec_ctrls())
4736 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4737 
4738 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4739 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4740 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4741 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4742 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4743 
4744 		vmcs_write16(GUEST_INTR_STATUS, 0);
4745 
4746 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4747 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4748 	}
4749 
4750 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4751 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4752 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4753 	}
4754 
4755 	if (!kvm_pause_in_guest(kvm)) {
4756 		vmcs_write32(PLE_GAP, ple_gap);
4757 		vmx->ple_window = ple_window;
4758 		vmx->ple_window_dirty = true;
4759 	}
4760 
4761 	if (kvm_notify_vmexit_enabled(kvm))
4762 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4763 
4764 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4765 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4766 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4767 
4768 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4769 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4770 	vmx_set_constant_host_state(vmx);
4771 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4772 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4773 
4774 	if (cpu_has_vmx_vmfunc())
4775 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4776 
4777 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4778 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4779 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4780 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4781 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4782 
4783 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4784 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4785 
4786 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4787 
4788 	/* 22.2.1, 20.8.1 */
4789 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4790 
4791 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4792 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4793 
4794 	set_cr4_guest_host_mask(vmx);
4795 
4796 	if (vmx->vpid != 0)
4797 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4798 
4799 	if (cpu_has_vmx_xsaves())
4800 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4801 
4802 	if (enable_pml) {
4803 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4804 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4805 	}
4806 
4807 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4808 
4809 	if (vmx_pt_mode_is_host_guest()) {
4810 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4811 		/* Bit[6~0] are forced to 1, writes are ignored. */
4812 		vmx->pt_desc.guest.output_mask = 0x7F;
4813 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4814 	}
4815 
4816 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4817 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4818 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4819 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4820 
4821 	if (cpu_has_vmx_tpr_shadow()) {
4822 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4823 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4824 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4825 				     __pa(vmx->vcpu.arch.apic->regs));
4826 		vmcs_write32(TPR_THRESHOLD, 0);
4827 	}
4828 
4829 	vmx_setup_uret_msrs(vmx);
4830 }
4831 
4832 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4833 {
4834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4835 
4836 	init_vmcs(vmx);
4837 
4838 	if (nested)
4839 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4840 
4841 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4842 
4843 	vmx->nested.posted_intr_nv = -1;
4844 	vmx->nested.vmxon_ptr = INVALID_GPA;
4845 	vmx->nested.current_vmptr = INVALID_GPA;
4846 
4847 #ifdef CONFIG_KVM_HYPERV
4848 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4849 #endif
4850 
4851 	vcpu->arch.microcode_version = 0x100000000ULL;
4852 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4853 
4854 	/*
4855 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4856 	 * or POSTED_INTR_WAKEUP_VECTOR.
4857 	 */
4858 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4859 	__pi_set_sn(&vmx->pi_desc);
4860 }
4861 
4862 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4863 {
4864 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4865 
4866 	if (!init_event)
4867 		__vmx_vcpu_reset(vcpu);
4868 
4869 	vmx->rmode.vm86_active = 0;
4870 	vmx->spec_ctrl = 0;
4871 
4872 	vmx->msr_ia32_umwait_control = 0;
4873 
4874 	vmx->hv_deadline_tsc = -1;
4875 	kvm_set_cr8(vcpu, 0);
4876 
4877 	vmx_segment_cache_clear(vmx);
4878 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4879 
4880 	seg_setup(VCPU_SREG_CS);
4881 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4882 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4883 
4884 	seg_setup(VCPU_SREG_DS);
4885 	seg_setup(VCPU_SREG_ES);
4886 	seg_setup(VCPU_SREG_FS);
4887 	seg_setup(VCPU_SREG_GS);
4888 	seg_setup(VCPU_SREG_SS);
4889 
4890 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4891 	vmcs_writel(GUEST_TR_BASE, 0);
4892 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4893 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4894 
4895 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4896 	vmcs_writel(GUEST_LDTR_BASE, 0);
4897 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4898 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4899 
4900 	vmcs_writel(GUEST_GDTR_BASE, 0);
4901 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4902 
4903 	vmcs_writel(GUEST_IDTR_BASE, 0);
4904 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4905 
4906 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4907 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4908 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4909 	if (kvm_mpx_supported())
4910 		vmcs_write64(GUEST_BNDCFGS, 0);
4911 
4912 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4913 
4914 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4915 
4916 	vpid_sync_context(vmx->vpid);
4917 
4918 	vmx_update_fb_clear_dis(vcpu, vmx);
4919 }
4920 
4921 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4922 {
4923 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4924 }
4925 
4926 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4927 {
4928 	if (!enable_vnmi ||
4929 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4930 		vmx_enable_irq_window(vcpu);
4931 		return;
4932 	}
4933 
4934 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4935 }
4936 
4937 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4938 {
4939 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4940 	uint32_t intr;
4941 	int irq = vcpu->arch.interrupt.nr;
4942 
4943 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4944 
4945 	++vcpu->stat.irq_injections;
4946 	if (vmx->rmode.vm86_active) {
4947 		int inc_eip = 0;
4948 		if (vcpu->arch.interrupt.soft)
4949 			inc_eip = vcpu->arch.event_exit_inst_len;
4950 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4951 		return;
4952 	}
4953 	intr = irq | INTR_INFO_VALID_MASK;
4954 	if (vcpu->arch.interrupt.soft) {
4955 		intr |= INTR_TYPE_SOFT_INTR;
4956 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4957 			     vmx->vcpu.arch.event_exit_inst_len);
4958 	} else
4959 		intr |= INTR_TYPE_EXT_INTR;
4960 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4961 
4962 	vmx_clear_hlt(vcpu);
4963 }
4964 
4965 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4966 {
4967 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4968 
4969 	if (!enable_vnmi) {
4970 		/*
4971 		 * Tracking the NMI-blocked state in software is built upon
4972 		 * finding the next open IRQ window. This, in turn, depends on
4973 		 * well-behaving guests: They have to keep IRQs disabled at
4974 		 * least as long as the NMI handler runs. Otherwise we may
4975 		 * cause NMI nesting, maybe breaking the guest. But as this is
4976 		 * highly unlikely, we can live with the residual risk.
4977 		 */
4978 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4979 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4980 	}
4981 
4982 	++vcpu->stat.nmi_injections;
4983 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4984 
4985 	if (vmx->rmode.vm86_active) {
4986 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4987 		return;
4988 	}
4989 
4990 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4991 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4992 
4993 	vmx_clear_hlt(vcpu);
4994 }
4995 
4996 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4997 {
4998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4999 	bool masked;
5000 
5001 	if (!enable_vnmi)
5002 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5003 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5004 		return false;
5005 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5006 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5007 	return masked;
5008 }
5009 
5010 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5011 {
5012 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5013 
5014 	if (!enable_vnmi) {
5015 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5016 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5017 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5018 		}
5019 	} else {
5020 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5021 		if (masked)
5022 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5023 				      GUEST_INTR_STATE_NMI);
5024 		else
5025 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5026 					GUEST_INTR_STATE_NMI);
5027 	}
5028 }
5029 
5030 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5031 {
5032 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5033 		return false;
5034 
5035 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5036 		return true;
5037 
5038 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5039 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5040 		 GUEST_INTR_STATE_NMI));
5041 }
5042 
5043 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5044 {
5045 	if (to_vmx(vcpu)->nested.nested_run_pending)
5046 		return -EBUSY;
5047 
5048 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5049 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5050 		return -EBUSY;
5051 
5052 	return !vmx_nmi_blocked(vcpu);
5053 }
5054 
5055 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5056 {
5057 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5058 		return false;
5059 
5060 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5061 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5062 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5063 }
5064 
5065 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5066 {
5067 	if (to_vmx(vcpu)->nested.nested_run_pending)
5068 		return -EBUSY;
5069 
5070 	/*
5071 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5072 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5073 	 */
5074 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5075 		return -EBUSY;
5076 
5077 	return !vmx_interrupt_blocked(vcpu);
5078 }
5079 
5080 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5081 {
5082 	void __user *ret;
5083 
5084 	if (enable_unrestricted_guest)
5085 		return 0;
5086 
5087 	mutex_lock(&kvm->slots_lock);
5088 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5089 				      PAGE_SIZE * 3);
5090 	mutex_unlock(&kvm->slots_lock);
5091 
5092 	if (IS_ERR(ret))
5093 		return PTR_ERR(ret);
5094 
5095 	to_kvm_vmx(kvm)->tss_addr = addr;
5096 
5097 	return init_rmode_tss(kvm, ret);
5098 }
5099 
5100 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5101 {
5102 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5103 	return 0;
5104 }
5105 
5106 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5107 {
5108 	switch (vec) {
5109 	case BP_VECTOR:
5110 		/*
5111 		 * Update instruction length as we may reinject the exception
5112 		 * from user space while in guest debugging mode.
5113 		 */
5114 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5115 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5116 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5117 			return false;
5118 		fallthrough;
5119 	case DB_VECTOR:
5120 		return !(vcpu->guest_debug &
5121 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5122 	case DE_VECTOR:
5123 	case OF_VECTOR:
5124 	case BR_VECTOR:
5125 	case UD_VECTOR:
5126 	case DF_VECTOR:
5127 	case SS_VECTOR:
5128 	case GP_VECTOR:
5129 	case MF_VECTOR:
5130 		return true;
5131 	}
5132 	return false;
5133 }
5134 
5135 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5136 				  int vec, u32 err_code)
5137 {
5138 	/*
5139 	 * Instruction with address size override prefix opcode 0x67
5140 	 * Cause the #SS fault with 0 error code in VM86 mode.
5141 	 */
5142 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5143 		if (kvm_emulate_instruction(vcpu, 0)) {
5144 			if (vcpu->arch.halt_request) {
5145 				vcpu->arch.halt_request = 0;
5146 				return kvm_emulate_halt_noskip(vcpu);
5147 			}
5148 			return 1;
5149 		}
5150 		return 0;
5151 	}
5152 
5153 	/*
5154 	 * Forward all other exceptions that are valid in real mode.
5155 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5156 	 *        the required debugging infrastructure rework.
5157 	 */
5158 	kvm_queue_exception(vcpu, vec);
5159 	return 1;
5160 }
5161 
5162 static int handle_machine_check(struct kvm_vcpu *vcpu)
5163 {
5164 	/* handled by vmx_vcpu_run() */
5165 	return 1;
5166 }
5167 
5168 /*
5169  * If the host has split lock detection disabled, then #AC is
5170  * unconditionally injected into the guest, which is the pre split lock
5171  * detection behaviour.
5172  *
5173  * If the host has split lock detection enabled then #AC is
5174  * only injected into the guest when:
5175  *  - Guest CPL == 3 (user mode)
5176  *  - Guest has #AC detection enabled in CR0
5177  *  - Guest EFLAGS has AC bit set
5178  */
5179 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5180 {
5181 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5182 		return true;
5183 
5184 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5185 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5186 }
5187 
5188 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5189 {
5190 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5191 	struct kvm_run *kvm_run = vcpu->run;
5192 	u32 intr_info, ex_no, error_code;
5193 	unsigned long cr2, dr6;
5194 	u32 vect_info;
5195 
5196 	vect_info = vmx->idt_vectoring_info;
5197 	intr_info = vmx_get_intr_info(vcpu);
5198 
5199 	/*
5200 	 * Machine checks are handled by handle_exception_irqoff(), or by
5201 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5202 	 * vmx_vcpu_enter_exit().
5203 	 */
5204 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5205 		return 1;
5206 
5207 	/*
5208 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5209 	 * This ensures the nested_vmx check is not skipped so vmexit can
5210 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5211 	 * point.
5212 	 */
5213 	if (is_nm_fault(intr_info)) {
5214 		kvm_queue_exception(vcpu, NM_VECTOR);
5215 		return 1;
5216 	}
5217 
5218 	if (is_invalid_opcode(intr_info))
5219 		return handle_ud(vcpu);
5220 
5221 	if (KVM_BUG_ON(is_ve_fault(intr_info), vcpu->kvm))
5222 		return -EIO;
5223 
5224 	error_code = 0;
5225 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5226 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5227 
5228 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5229 		WARN_ON_ONCE(!enable_vmware_backdoor);
5230 
5231 		/*
5232 		 * VMware backdoor emulation on #GP interception only handles
5233 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5234 		 * error code on #GP.
5235 		 */
5236 		if (error_code) {
5237 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5238 			return 1;
5239 		}
5240 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5241 	}
5242 
5243 	/*
5244 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5245 	 * MMIO, it is better to report an internal error.
5246 	 * See the comments in vmx_handle_exit.
5247 	 */
5248 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5249 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5250 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5251 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5252 		vcpu->run->internal.ndata = 4;
5253 		vcpu->run->internal.data[0] = vect_info;
5254 		vcpu->run->internal.data[1] = intr_info;
5255 		vcpu->run->internal.data[2] = error_code;
5256 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5257 		return 0;
5258 	}
5259 
5260 	if (is_page_fault(intr_info)) {
5261 		cr2 = vmx_get_exit_qual(vcpu);
5262 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5263 			/*
5264 			 * EPT will cause page fault only if we need to
5265 			 * detect illegal GPAs.
5266 			 */
5267 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5268 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5269 			return 1;
5270 		} else
5271 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5272 	}
5273 
5274 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5275 
5276 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5277 		return handle_rmode_exception(vcpu, ex_no, error_code);
5278 
5279 	switch (ex_no) {
5280 	case DB_VECTOR:
5281 		dr6 = vmx_get_exit_qual(vcpu);
5282 		if (!(vcpu->guest_debug &
5283 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5284 			/*
5285 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5286 			 * instruction.  ICEBP generates a trap-like #DB, but
5287 			 * despite its interception control being tied to #DB,
5288 			 * is an instruction intercept, i.e. the VM-Exit occurs
5289 			 * on the ICEBP itself.  Use the inner "skip" helper to
5290 			 * avoid single-step #DB and MTF updates, as ICEBP is
5291 			 * higher priority.  Note, skipping ICEBP still clears
5292 			 * STI and MOVSS blocking.
5293 			 *
5294 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5295 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5296 			 * blocking is active, as the CPU doesn't set the bit
5297 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5298 			 * consistency check that a single-step #DB is pending
5299 			 * in this scenario as the previous instruction cannot
5300 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5301 			 * don't modify RFLAGS), therefore the one instruction
5302 			 * delay when activating single-step breakpoints must
5303 			 * have already expired.  Note, the CPU sets/clears BS
5304 			 * as appropriate for all other VM-Exits types.
5305 			 */
5306 			if (is_icebp(intr_info))
5307 				WARN_ON(!skip_emulated_instruction(vcpu));
5308 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5309 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5310 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5311 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5312 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5313 
5314 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5315 			return 1;
5316 		}
5317 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5318 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5319 		fallthrough;
5320 	case BP_VECTOR:
5321 		/*
5322 		 * Update instruction length as we may reinject #BP from
5323 		 * user space while in guest debugging mode. Reading it for
5324 		 * #DB as well causes no harm, it is not used in that case.
5325 		 */
5326 		vmx->vcpu.arch.event_exit_inst_len =
5327 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5328 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5329 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5330 		kvm_run->debug.arch.exception = ex_no;
5331 		break;
5332 	case AC_VECTOR:
5333 		if (vmx_guest_inject_ac(vcpu)) {
5334 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5335 			return 1;
5336 		}
5337 
5338 		/*
5339 		 * Handle split lock. Depending on detection mode this will
5340 		 * either warn and disable split lock detection for this
5341 		 * task or force SIGBUS on it.
5342 		 */
5343 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5344 			return 1;
5345 		fallthrough;
5346 	default:
5347 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5348 		kvm_run->ex.exception = ex_no;
5349 		kvm_run->ex.error_code = error_code;
5350 		break;
5351 	}
5352 	return 0;
5353 }
5354 
5355 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5356 {
5357 	++vcpu->stat.irq_exits;
5358 	return 1;
5359 }
5360 
5361 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5362 {
5363 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5364 	vcpu->mmio_needed = 0;
5365 	return 0;
5366 }
5367 
5368 static int handle_io(struct kvm_vcpu *vcpu)
5369 {
5370 	unsigned long exit_qualification;
5371 	int size, in, string;
5372 	unsigned port;
5373 
5374 	exit_qualification = vmx_get_exit_qual(vcpu);
5375 	string = (exit_qualification & 16) != 0;
5376 
5377 	++vcpu->stat.io_exits;
5378 
5379 	if (string)
5380 		return kvm_emulate_instruction(vcpu, 0);
5381 
5382 	port = exit_qualification >> 16;
5383 	size = (exit_qualification & 7) + 1;
5384 	in = (exit_qualification & 8) != 0;
5385 
5386 	return kvm_fast_pio(vcpu, size, port, in);
5387 }
5388 
5389 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5390 {
5391 	/*
5392 	 * Patch in the VMCALL instruction:
5393 	 */
5394 	hypercall[0] = 0x0f;
5395 	hypercall[1] = 0x01;
5396 	hypercall[2] = 0xc1;
5397 }
5398 
5399 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5400 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5401 {
5402 	if (is_guest_mode(vcpu)) {
5403 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5404 		unsigned long orig_val = val;
5405 
5406 		/*
5407 		 * We get here when L2 changed cr0 in a way that did not change
5408 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5409 		 * but did change L0 shadowed bits. So we first calculate the
5410 		 * effective cr0 value that L1 would like to write into the
5411 		 * hardware. It consists of the L2-owned bits from the new
5412 		 * value combined with the L1-owned bits from L1's guest_cr0.
5413 		 */
5414 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5415 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5416 
5417 		if (kvm_set_cr0(vcpu, val))
5418 			return 1;
5419 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5420 		return 0;
5421 	} else {
5422 		return kvm_set_cr0(vcpu, val);
5423 	}
5424 }
5425 
5426 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5427 {
5428 	if (is_guest_mode(vcpu)) {
5429 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5430 		unsigned long orig_val = val;
5431 
5432 		/* analogously to handle_set_cr0 */
5433 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5434 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5435 		if (kvm_set_cr4(vcpu, val))
5436 			return 1;
5437 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5438 		return 0;
5439 	} else
5440 		return kvm_set_cr4(vcpu, val);
5441 }
5442 
5443 static int handle_desc(struct kvm_vcpu *vcpu)
5444 {
5445 	/*
5446 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5447 	 * and other code needs to be updated if UMIP can be guest owned.
5448 	 */
5449 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5450 
5451 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5452 	return kvm_emulate_instruction(vcpu, 0);
5453 }
5454 
5455 static int handle_cr(struct kvm_vcpu *vcpu)
5456 {
5457 	unsigned long exit_qualification, val;
5458 	int cr;
5459 	int reg;
5460 	int err;
5461 	int ret;
5462 
5463 	exit_qualification = vmx_get_exit_qual(vcpu);
5464 	cr = exit_qualification & 15;
5465 	reg = (exit_qualification >> 8) & 15;
5466 	switch ((exit_qualification >> 4) & 3) {
5467 	case 0: /* mov to cr */
5468 		val = kvm_register_read(vcpu, reg);
5469 		trace_kvm_cr_write(cr, val);
5470 		switch (cr) {
5471 		case 0:
5472 			err = handle_set_cr0(vcpu, val);
5473 			return kvm_complete_insn_gp(vcpu, err);
5474 		case 3:
5475 			WARN_ON_ONCE(enable_unrestricted_guest);
5476 
5477 			err = kvm_set_cr3(vcpu, val);
5478 			return kvm_complete_insn_gp(vcpu, err);
5479 		case 4:
5480 			err = handle_set_cr4(vcpu, val);
5481 			return kvm_complete_insn_gp(vcpu, err);
5482 		case 8: {
5483 				u8 cr8_prev = kvm_get_cr8(vcpu);
5484 				u8 cr8 = (u8)val;
5485 				err = kvm_set_cr8(vcpu, cr8);
5486 				ret = kvm_complete_insn_gp(vcpu, err);
5487 				if (lapic_in_kernel(vcpu))
5488 					return ret;
5489 				if (cr8_prev <= cr8)
5490 					return ret;
5491 				/*
5492 				 * TODO: we might be squashing a
5493 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5494 				 * KVM_EXIT_DEBUG here.
5495 				 */
5496 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5497 				return 0;
5498 			}
5499 		}
5500 		break;
5501 	case 2: /* clts */
5502 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5503 		return -EIO;
5504 	case 1: /*mov from cr*/
5505 		switch (cr) {
5506 		case 3:
5507 			WARN_ON_ONCE(enable_unrestricted_guest);
5508 
5509 			val = kvm_read_cr3(vcpu);
5510 			kvm_register_write(vcpu, reg, val);
5511 			trace_kvm_cr_read(cr, val);
5512 			return kvm_skip_emulated_instruction(vcpu);
5513 		case 8:
5514 			val = kvm_get_cr8(vcpu);
5515 			kvm_register_write(vcpu, reg, val);
5516 			trace_kvm_cr_read(cr, val);
5517 			return kvm_skip_emulated_instruction(vcpu);
5518 		}
5519 		break;
5520 	case 3: /* lmsw */
5521 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5522 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5523 		kvm_lmsw(vcpu, val);
5524 
5525 		return kvm_skip_emulated_instruction(vcpu);
5526 	default:
5527 		break;
5528 	}
5529 	vcpu->run->exit_reason = 0;
5530 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5531 	       (int)(exit_qualification >> 4) & 3, cr);
5532 	return 0;
5533 }
5534 
5535 static int handle_dr(struct kvm_vcpu *vcpu)
5536 {
5537 	unsigned long exit_qualification;
5538 	int dr, dr7, reg;
5539 	int err = 1;
5540 
5541 	exit_qualification = vmx_get_exit_qual(vcpu);
5542 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5543 
5544 	/* First, if DR does not exist, trigger UD */
5545 	if (!kvm_require_dr(vcpu, dr))
5546 		return 1;
5547 
5548 	if (vmx_get_cpl(vcpu) > 0)
5549 		goto out;
5550 
5551 	dr7 = vmcs_readl(GUEST_DR7);
5552 	if (dr7 & DR7_GD) {
5553 		/*
5554 		 * As the vm-exit takes precedence over the debug trap, we
5555 		 * need to emulate the latter, either for the host or the
5556 		 * guest debugging itself.
5557 		 */
5558 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5559 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5560 			vcpu->run->debug.arch.dr7 = dr7;
5561 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5562 			vcpu->run->debug.arch.exception = DB_VECTOR;
5563 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5564 			return 0;
5565 		} else {
5566 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5567 			return 1;
5568 		}
5569 	}
5570 
5571 	if (vcpu->guest_debug == 0) {
5572 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5573 
5574 		/*
5575 		 * No more DR vmexits; force a reload of the debug registers
5576 		 * and reenter on this instruction.  The next vmexit will
5577 		 * retrieve the full state of the debug registers.
5578 		 */
5579 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5580 		return 1;
5581 	}
5582 
5583 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5584 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5585 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5586 		err = 0;
5587 	} else {
5588 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5589 	}
5590 
5591 out:
5592 	return kvm_complete_insn_gp(vcpu, err);
5593 }
5594 
5595 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5596 {
5597 	get_debugreg(vcpu->arch.db[0], 0);
5598 	get_debugreg(vcpu->arch.db[1], 1);
5599 	get_debugreg(vcpu->arch.db[2], 2);
5600 	get_debugreg(vcpu->arch.db[3], 3);
5601 	get_debugreg(vcpu->arch.dr6, 6);
5602 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5603 
5604 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5605 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5606 
5607 	/*
5608 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5609 	 * a stale dr6 from the guest.
5610 	 */
5611 	set_debugreg(DR6_RESERVED, 6);
5612 }
5613 
5614 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5615 {
5616 	vmcs_writel(GUEST_DR7, val);
5617 }
5618 
5619 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5620 {
5621 	kvm_apic_update_ppr(vcpu);
5622 	return 1;
5623 }
5624 
5625 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5626 {
5627 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5628 
5629 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5630 
5631 	++vcpu->stat.irq_window_exits;
5632 	return 1;
5633 }
5634 
5635 static int handle_invlpg(struct kvm_vcpu *vcpu)
5636 {
5637 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5638 
5639 	kvm_mmu_invlpg(vcpu, exit_qualification);
5640 	return kvm_skip_emulated_instruction(vcpu);
5641 }
5642 
5643 static int handle_apic_access(struct kvm_vcpu *vcpu)
5644 {
5645 	if (likely(fasteoi)) {
5646 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5647 		int access_type, offset;
5648 
5649 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5650 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5651 		/*
5652 		 * Sane guest uses MOV to write EOI, with written value
5653 		 * not cared. So make a short-circuit here by avoiding
5654 		 * heavy instruction emulation.
5655 		 */
5656 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5657 		    (offset == APIC_EOI)) {
5658 			kvm_lapic_set_eoi(vcpu);
5659 			return kvm_skip_emulated_instruction(vcpu);
5660 		}
5661 	}
5662 	return kvm_emulate_instruction(vcpu, 0);
5663 }
5664 
5665 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5666 {
5667 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5668 	int vector = exit_qualification & 0xff;
5669 
5670 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5671 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5672 	return 1;
5673 }
5674 
5675 static int handle_apic_write(struct kvm_vcpu *vcpu)
5676 {
5677 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5678 
5679 	/*
5680 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5681 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5682 	 * for the access.  I.e. the correct value has already been  written to
5683 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5684 	 * retrieve the register value and emulate the access.
5685 	 */
5686 	u32 offset = exit_qualification & 0xff0;
5687 
5688 	kvm_apic_write_nodecode(vcpu, offset);
5689 	return 1;
5690 }
5691 
5692 static int handle_task_switch(struct kvm_vcpu *vcpu)
5693 {
5694 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5695 	unsigned long exit_qualification;
5696 	bool has_error_code = false;
5697 	u32 error_code = 0;
5698 	u16 tss_selector;
5699 	int reason, type, idt_v, idt_index;
5700 
5701 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5702 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5703 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5704 
5705 	exit_qualification = vmx_get_exit_qual(vcpu);
5706 
5707 	reason = (u32)exit_qualification >> 30;
5708 	if (reason == TASK_SWITCH_GATE && idt_v) {
5709 		switch (type) {
5710 		case INTR_TYPE_NMI_INTR:
5711 			vcpu->arch.nmi_injected = false;
5712 			vmx_set_nmi_mask(vcpu, true);
5713 			break;
5714 		case INTR_TYPE_EXT_INTR:
5715 		case INTR_TYPE_SOFT_INTR:
5716 			kvm_clear_interrupt_queue(vcpu);
5717 			break;
5718 		case INTR_TYPE_HARD_EXCEPTION:
5719 			if (vmx->idt_vectoring_info &
5720 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5721 				has_error_code = true;
5722 				error_code =
5723 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5724 			}
5725 			fallthrough;
5726 		case INTR_TYPE_SOFT_EXCEPTION:
5727 			kvm_clear_exception_queue(vcpu);
5728 			break;
5729 		default:
5730 			break;
5731 		}
5732 	}
5733 	tss_selector = exit_qualification;
5734 
5735 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5736 		       type != INTR_TYPE_EXT_INTR &&
5737 		       type != INTR_TYPE_NMI_INTR))
5738 		WARN_ON(!skip_emulated_instruction(vcpu));
5739 
5740 	/*
5741 	 * TODO: What about debug traps on tss switch?
5742 	 *       Are we supposed to inject them and update dr6?
5743 	 */
5744 	return kvm_task_switch(vcpu, tss_selector,
5745 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5746 			       reason, has_error_code, error_code);
5747 }
5748 
5749 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5750 {
5751 	unsigned long exit_qualification;
5752 	gpa_t gpa;
5753 	u64 error_code;
5754 
5755 	exit_qualification = vmx_get_exit_qual(vcpu);
5756 
5757 	/*
5758 	 * EPT violation happened while executing iret from NMI,
5759 	 * "blocked by NMI" bit has to be set before next VM entry.
5760 	 * There are errata that may cause this bit to not be set:
5761 	 * AAK134, BY25.
5762 	 */
5763 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5764 			enable_vnmi &&
5765 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5766 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5767 
5768 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5769 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5770 
5771 	/* Is it a read fault? */
5772 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5773 		     ? PFERR_USER_MASK : 0;
5774 	/* Is it a write fault? */
5775 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5776 		      ? PFERR_WRITE_MASK : 0;
5777 	/* Is it a fetch fault? */
5778 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5779 		      ? PFERR_FETCH_MASK : 0;
5780 	/* ept page table entry is present? */
5781 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5782 		      ? PFERR_PRESENT_MASK : 0;
5783 
5784 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5785 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5786 
5787 	/*
5788 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5789 	 * a guest page fault.  We have to emulate the instruction here, because
5790 	 * if the illegal address is that of a paging structure, then
5791 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5792 	 * would also use advanced VM-exit information for EPT violations to
5793 	 * reconstruct the page fault error code.
5794 	 */
5795 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5796 		return kvm_emulate_instruction(vcpu, 0);
5797 
5798 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5799 }
5800 
5801 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5802 {
5803 	gpa_t gpa;
5804 
5805 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5806 		return 1;
5807 
5808 	/*
5809 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5810 	 * nGPA here instead of the required GPA.
5811 	 */
5812 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5813 	if (!is_guest_mode(vcpu) &&
5814 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5815 		trace_kvm_fast_mmio(gpa);
5816 		return kvm_skip_emulated_instruction(vcpu);
5817 	}
5818 
5819 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5820 }
5821 
5822 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5823 {
5824 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5825 		return -EIO;
5826 
5827 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5828 	++vcpu->stat.nmi_window_exits;
5829 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5830 
5831 	return 1;
5832 }
5833 
5834 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5835 {
5836 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5837 
5838 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5839 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5840 }
5841 
5842 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5843 {
5844 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5845 	bool intr_window_requested;
5846 	unsigned count = 130;
5847 
5848 	intr_window_requested = exec_controls_get(vmx) &
5849 				CPU_BASED_INTR_WINDOW_EXITING;
5850 
5851 	while (vmx->emulation_required && count-- != 0) {
5852 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5853 			return handle_interrupt_window(&vmx->vcpu);
5854 
5855 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5856 			return 1;
5857 
5858 		if (!kvm_emulate_instruction(vcpu, 0))
5859 			return 0;
5860 
5861 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5862 			kvm_prepare_emulation_failure_exit(vcpu);
5863 			return 0;
5864 		}
5865 
5866 		if (vcpu->arch.halt_request) {
5867 			vcpu->arch.halt_request = 0;
5868 			return kvm_emulate_halt_noskip(vcpu);
5869 		}
5870 
5871 		/*
5872 		 * Note, return 1 and not 0, vcpu_run() will invoke
5873 		 * xfer_to_guest_mode() which will create a proper return
5874 		 * code.
5875 		 */
5876 		if (__xfer_to_guest_mode_work_pending())
5877 			return 1;
5878 	}
5879 
5880 	return 1;
5881 }
5882 
5883 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5884 {
5885 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5886 		kvm_prepare_emulation_failure_exit(vcpu);
5887 		return 0;
5888 	}
5889 
5890 	return 1;
5891 }
5892 
5893 static void grow_ple_window(struct kvm_vcpu *vcpu)
5894 {
5895 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5896 	unsigned int old = vmx->ple_window;
5897 
5898 	vmx->ple_window = __grow_ple_window(old, ple_window,
5899 					    ple_window_grow,
5900 					    ple_window_max);
5901 
5902 	if (vmx->ple_window != old) {
5903 		vmx->ple_window_dirty = true;
5904 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5905 					    vmx->ple_window, old);
5906 	}
5907 }
5908 
5909 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5910 {
5911 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5912 	unsigned int old = vmx->ple_window;
5913 
5914 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5915 					      ple_window_shrink,
5916 					      ple_window);
5917 
5918 	if (vmx->ple_window != old) {
5919 		vmx->ple_window_dirty = true;
5920 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5921 					    vmx->ple_window, old);
5922 	}
5923 }
5924 
5925 /*
5926  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5927  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5928  */
5929 static int handle_pause(struct kvm_vcpu *vcpu)
5930 {
5931 	if (!kvm_pause_in_guest(vcpu->kvm))
5932 		grow_ple_window(vcpu);
5933 
5934 	/*
5935 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5936 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5937 	 * never set PAUSE_EXITING and just set PLE if supported,
5938 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5939 	 */
5940 	kvm_vcpu_on_spin(vcpu, true);
5941 	return kvm_skip_emulated_instruction(vcpu);
5942 }
5943 
5944 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5945 {
5946 	return 1;
5947 }
5948 
5949 static int handle_invpcid(struct kvm_vcpu *vcpu)
5950 {
5951 	u32 vmx_instruction_info;
5952 	unsigned long type;
5953 	gva_t gva;
5954 	struct {
5955 		u64 pcid;
5956 		u64 gla;
5957 	} operand;
5958 	int gpr_index;
5959 
5960 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5961 		kvm_queue_exception(vcpu, UD_VECTOR);
5962 		return 1;
5963 	}
5964 
5965 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5966 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5967 	type = kvm_register_read(vcpu, gpr_index);
5968 
5969 	/* According to the Intel instruction reference, the memory operand
5970 	 * is read even if it isn't needed (e.g., for type==all)
5971 	 */
5972 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5973 				vmx_instruction_info, false,
5974 				sizeof(operand), &gva))
5975 		return 1;
5976 
5977 	return kvm_handle_invpcid(vcpu, type, gva);
5978 }
5979 
5980 static int handle_pml_full(struct kvm_vcpu *vcpu)
5981 {
5982 	unsigned long exit_qualification;
5983 
5984 	trace_kvm_pml_full(vcpu->vcpu_id);
5985 
5986 	exit_qualification = vmx_get_exit_qual(vcpu);
5987 
5988 	/*
5989 	 * PML buffer FULL happened while executing iret from NMI,
5990 	 * "blocked by NMI" bit has to be set before next VM entry.
5991 	 */
5992 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5993 			enable_vnmi &&
5994 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5995 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5996 				GUEST_INTR_STATE_NMI);
5997 
5998 	/*
5999 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6000 	 * here.., and there's no userspace involvement needed for PML.
6001 	 */
6002 	return 1;
6003 }
6004 
6005 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6006 						   bool force_immediate_exit)
6007 {
6008 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6009 
6010 	/*
6011 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6012 	 * due to the timer expiring while it was "soft" disabled, just eat the
6013 	 * exit and re-enter the guest.
6014 	 */
6015 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6016 		return EXIT_FASTPATH_REENTER_GUEST;
6017 
6018 	/*
6019 	 * If the timer expired because KVM used it to force an immediate exit,
6020 	 * then mission accomplished.
6021 	 */
6022 	if (force_immediate_exit)
6023 		return EXIT_FASTPATH_EXIT_HANDLED;
6024 
6025 	/*
6026 	 * If L2 is active, go down the slow path as emulating the guest timer
6027 	 * expiration likely requires synthesizing a nested VM-Exit.
6028 	 */
6029 	if (is_guest_mode(vcpu))
6030 		return EXIT_FASTPATH_NONE;
6031 
6032 	kvm_lapic_expired_hv_timer(vcpu);
6033 	return EXIT_FASTPATH_REENTER_GUEST;
6034 }
6035 
6036 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6037 {
6038 	/*
6039 	 * This non-fastpath handler is reached if and only if the preemption
6040 	 * timer was being used to emulate a guest timer while L2 is active.
6041 	 * All other scenarios are supposed to be handled in the fastpath.
6042 	 */
6043 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6044 	kvm_lapic_expired_hv_timer(vcpu);
6045 	return 1;
6046 }
6047 
6048 /*
6049  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6050  * are overwritten by nested_vmx_setup() when nested=1.
6051  */
6052 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6053 {
6054 	kvm_queue_exception(vcpu, UD_VECTOR);
6055 	return 1;
6056 }
6057 
6058 #ifndef CONFIG_X86_SGX_KVM
6059 static int handle_encls(struct kvm_vcpu *vcpu)
6060 {
6061 	/*
6062 	 * SGX virtualization is disabled.  There is no software enable bit for
6063 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6064 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6065 	 */
6066 	kvm_queue_exception(vcpu, UD_VECTOR);
6067 	return 1;
6068 }
6069 #endif /* CONFIG_X86_SGX_KVM */
6070 
6071 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6072 {
6073 	/*
6074 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6075 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6076 	 * vmx_handle_exit().
6077 	 */
6078 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6079 	return 1;
6080 }
6081 
6082 static int handle_notify(struct kvm_vcpu *vcpu)
6083 {
6084 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6085 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6086 
6087 	++vcpu->stat.notify_window_exits;
6088 
6089 	/*
6090 	 * Notify VM exit happened while executing iret from NMI,
6091 	 * "blocked by NMI" bit has to be set before next VM entry.
6092 	 */
6093 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6094 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6095 			      GUEST_INTR_STATE_NMI);
6096 
6097 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6098 	    context_invalid) {
6099 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6100 		vcpu->run->notify.flags = context_invalid ?
6101 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6102 		return 0;
6103 	}
6104 
6105 	return 1;
6106 }
6107 
6108 /*
6109  * The exit handlers return 1 if the exit was handled fully and guest execution
6110  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6111  * to be done to userspace and return 0.
6112  */
6113 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6114 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6115 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6116 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6117 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6118 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6119 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6120 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6121 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6122 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6123 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6124 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6125 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6126 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6127 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6128 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6129 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6130 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6131 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6132 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6133 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6134 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6135 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6136 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6137 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6138 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6139 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6140 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6141 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6142 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6143 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6144 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6145 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6146 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6147 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6148 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6149 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6150 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6151 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6152 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6153 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6154 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6155 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6156 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6157 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6158 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6159 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6160 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6161 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6162 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6163 	[EXIT_REASON_ENCLS]		      = handle_encls,
6164 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6165 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6166 };
6167 
6168 static const int kvm_vmx_max_exit_handlers =
6169 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6170 
6171 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6172 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6173 {
6174 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6175 
6176 	*reason = vmx->exit_reason.full;
6177 	*info1 = vmx_get_exit_qual(vcpu);
6178 	if (!(vmx->exit_reason.failed_vmentry)) {
6179 		*info2 = vmx->idt_vectoring_info;
6180 		*intr_info = vmx_get_intr_info(vcpu);
6181 		if (is_exception_with_error_code(*intr_info))
6182 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6183 		else
6184 			*error_code = 0;
6185 	} else {
6186 		*info2 = 0;
6187 		*intr_info = 0;
6188 		*error_code = 0;
6189 	}
6190 }
6191 
6192 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6193 {
6194 	if (vmx->pml_pg) {
6195 		__free_page(vmx->pml_pg);
6196 		vmx->pml_pg = NULL;
6197 	}
6198 }
6199 
6200 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6201 {
6202 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6203 	u64 *pml_buf;
6204 	u16 pml_idx;
6205 
6206 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6207 
6208 	/* Do nothing if PML buffer is empty */
6209 	if (pml_idx == (PML_ENTITY_NUM - 1))
6210 		return;
6211 
6212 	/* PML index always points to next available PML buffer entity */
6213 	if (pml_idx >= PML_ENTITY_NUM)
6214 		pml_idx = 0;
6215 	else
6216 		pml_idx++;
6217 
6218 	pml_buf = page_address(vmx->pml_pg);
6219 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6220 		u64 gpa;
6221 
6222 		gpa = pml_buf[pml_idx];
6223 		WARN_ON(gpa & (PAGE_SIZE - 1));
6224 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6225 	}
6226 
6227 	/* reset PML index */
6228 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6229 }
6230 
6231 static void vmx_dump_sel(char *name, uint32_t sel)
6232 {
6233 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6234 	       name, vmcs_read16(sel),
6235 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6236 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6237 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6238 }
6239 
6240 static void vmx_dump_dtsel(char *name, uint32_t limit)
6241 {
6242 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6243 	       name, vmcs_read32(limit),
6244 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6245 }
6246 
6247 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6248 {
6249 	unsigned int i;
6250 	struct vmx_msr_entry *e;
6251 
6252 	pr_err("MSR %s:\n", name);
6253 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6254 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6255 }
6256 
6257 void dump_vmcs(struct kvm_vcpu *vcpu)
6258 {
6259 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6260 	u32 vmentry_ctl, vmexit_ctl;
6261 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6262 	u64 tertiary_exec_control;
6263 	unsigned long cr4;
6264 	int efer_slot;
6265 
6266 	if (!dump_invalid_vmcs) {
6267 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6268 		return;
6269 	}
6270 
6271 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6272 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6273 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6274 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6275 	cr4 = vmcs_readl(GUEST_CR4);
6276 
6277 	if (cpu_has_secondary_exec_ctrls())
6278 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6279 	else
6280 		secondary_exec_control = 0;
6281 
6282 	if (cpu_has_tertiary_exec_ctrls())
6283 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6284 	else
6285 		tertiary_exec_control = 0;
6286 
6287 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6288 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6289 	pr_err("*** Guest State ***\n");
6290 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6291 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6292 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6293 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6294 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6295 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6296 	if (cpu_has_vmx_ept()) {
6297 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6298 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6299 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6300 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6301 	}
6302 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6303 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6304 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6305 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6306 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6307 	       vmcs_readl(GUEST_SYSENTER_ESP),
6308 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6309 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6310 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6311 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6312 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6313 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6314 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6315 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6316 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6317 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6318 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6319 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6320 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6321 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6322 	else if (efer_slot >= 0)
6323 		pr_err("EFER= 0x%016llx (autoload)\n",
6324 		       vmx->msr_autoload.guest.val[efer_slot].value);
6325 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6326 		pr_err("EFER= 0x%016llx (effective)\n",
6327 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6328 	else
6329 		pr_err("EFER= 0x%016llx (effective)\n",
6330 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6331 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6332 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6333 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6334 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6335 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6336 	if (cpu_has_load_perf_global_ctrl() &&
6337 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6338 		pr_err("PerfGlobCtl = 0x%016llx\n",
6339 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6340 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6341 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6342 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6343 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6344 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6345 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6346 		pr_err("InterruptStatus = %04x\n",
6347 		       vmcs_read16(GUEST_INTR_STATUS));
6348 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6349 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6350 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6351 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6352 
6353 	pr_err("*** Host State ***\n");
6354 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6355 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6356 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6357 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6358 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6359 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6360 	       vmcs_read16(HOST_TR_SELECTOR));
6361 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6362 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6363 	       vmcs_readl(HOST_TR_BASE));
6364 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6365 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6366 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6367 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6368 	       vmcs_readl(HOST_CR4));
6369 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6370 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6371 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6372 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6373 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6374 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6375 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6376 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6377 	if (cpu_has_load_perf_global_ctrl() &&
6378 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6379 		pr_err("PerfGlobCtl = 0x%016llx\n",
6380 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6381 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6382 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6383 
6384 	pr_err("*** Control State ***\n");
6385 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6386 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6387 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6388 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6389 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6390 	       vmcs_read32(EXCEPTION_BITMAP),
6391 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6392 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6393 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6394 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6395 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6396 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6397 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6398 	       vmcs_read32(VM_EXIT_INTR_INFO),
6399 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6400 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6401 	pr_err("        reason=%08x qualification=%016lx\n",
6402 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6403 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6404 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6405 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6406 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6407 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6408 		pr_err("TSC Multiplier = 0x%016llx\n",
6409 		       vmcs_read64(TSC_MULTIPLIER));
6410 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6411 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6412 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6413 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6414 		}
6415 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6416 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6417 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6418 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6419 	}
6420 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6421 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6422 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6423 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6424 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6425 		pr_err("PLE Gap=%08x Window=%08x\n",
6426 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6427 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6428 		pr_err("Virtual processor ID = 0x%04x\n",
6429 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6430 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6431 		struct vmx_ve_information *ve_info = vmx->ve_info;
6432 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6433 
6434 		/*
6435 		 * If KVM is dumping the VMCS, then something has gone wrong
6436 		 * already.  Derefencing an address from the VMCS, which could
6437 		 * very well be corrupted, is a terrible idea.  The virtual
6438 		 * address is known so use it.
6439 		 */
6440 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6441 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6442 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6443 		       ve_info->exit_reason, ve_info->delivery,
6444 		       ve_info->exit_qualification,
6445 		       ve_info->guest_linear_address,
6446 		       ve_info->guest_physical_address, ve_info->eptp_index);
6447 	}
6448 }
6449 
6450 /*
6451  * The guest has exited.  See if we can fix it or if we need userspace
6452  * assistance.
6453  */
6454 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6455 {
6456 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6457 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6458 	u32 vectoring_info = vmx->idt_vectoring_info;
6459 	u16 exit_handler_index;
6460 
6461 	/*
6462 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6463 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6464 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6465 	 * mode as if vcpus is in root mode, the PML buffer must has been
6466 	 * flushed already.  Note, PML is never enabled in hardware while
6467 	 * running L2.
6468 	 */
6469 	if (enable_pml && !is_guest_mode(vcpu))
6470 		vmx_flush_pml_buffer(vcpu);
6471 
6472 	/*
6473 	 * KVM should never reach this point with a pending nested VM-Enter.
6474 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6475 	 * invalid guest state should never happen as that means KVM knowingly
6476 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6477 	 */
6478 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6479 		return -EIO;
6480 
6481 	if (is_guest_mode(vcpu)) {
6482 		/*
6483 		 * PML is never enabled when running L2, bail immediately if a
6484 		 * PML full exit occurs as something is horribly wrong.
6485 		 */
6486 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6487 			goto unexpected_vmexit;
6488 
6489 		/*
6490 		 * The host physical addresses of some pages of guest memory
6491 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6492 		 * Page). The CPU may write to these pages via their host
6493 		 * physical address while L2 is running, bypassing any
6494 		 * address-translation-based dirty tracking (e.g. EPT write
6495 		 * protection).
6496 		 *
6497 		 * Mark them dirty on every exit from L2 to prevent them from
6498 		 * getting out of sync with dirty tracking.
6499 		 */
6500 		nested_mark_vmcs12_pages_dirty(vcpu);
6501 
6502 		/*
6503 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6504 		 * operation, nested VM-Enter rejects any attempt to enter L2
6505 		 * with invalid state.  However, those checks are skipped if
6506 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6507 		 * L2 state is invalid, it means either L1 modified SMRAM state
6508 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6509 		 * doing so is architecturally allowed in the RSM case, and is
6510 		 * the least awful solution for the userspace case without
6511 		 * risking false positives.
6512 		 */
6513 		if (vmx->emulation_required) {
6514 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6515 			return 1;
6516 		}
6517 
6518 		if (nested_vmx_reflect_vmexit(vcpu))
6519 			return 1;
6520 	}
6521 
6522 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6523 	if (vmx->emulation_required)
6524 		return handle_invalid_guest_state(vcpu);
6525 
6526 	if (exit_reason.failed_vmentry) {
6527 		dump_vmcs(vcpu);
6528 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6529 		vcpu->run->fail_entry.hardware_entry_failure_reason
6530 			= exit_reason.full;
6531 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6532 		return 0;
6533 	}
6534 
6535 	if (unlikely(vmx->fail)) {
6536 		dump_vmcs(vcpu);
6537 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6538 		vcpu->run->fail_entry.hardware_entry_failure_reason
6539 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6540 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6541 		return 0;
6542 	}
6543 
6544 	/*
6545 	 * Note:
6546 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6547 	 * delivery event since it indicates guest is accessing MMIO.
6548 	 * The vm-exit can be triggered again after return to guest that
6549 	 * will cause infinite loop.
6550 	 */
6551 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6552 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6553 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6554 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6555 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6556 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6557 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6558 		int ndata = 3;
6559 
6560 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6561 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6562 		vcpu->run->internal.data[0] = vectoring_info;
6563 		vcpu->run->internal.data[1] = exit_reason.full;
6564 		vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6565 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6566 			vcpu->run->internal.data[ndata++] =
6567 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6568 		}
6569 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6570 		vcpu->run->internal.ndata = ndata;
6571 		return 0;
6572 	}
6573 
6574 	if (unlikely(!enable_vnmi &&
6575 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6576 		if (!vmx_interrupt_blocked(vcpu)) {
6577 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6578 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6579 			   vcpu->arch.nmi_pending) {
6580 			/*
6581 			 * This CPU don't support us in finding the end of an
6582 			 * NMI-blocked window if the guest runs with IRQs
6583 			 * disabled. So we pull the trigger after 1 s of
6584 			 * futile waiting, but inform the user about this.
6585 			 */
6586 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6587 			       "state on VCPU %d after 1 s timeout\n",
6588 			       __func__, vcpu->vcpu_id);
6589 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6590 		}
6591 	}
6592 
6593 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6594 		return 1;
6595 
6596 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6597 		goto unexpected_vmexit;
6598 #ifdef CONFIG_MITIGATION_RETPOLINE
6599 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6600 		return kvm_emulate_wrmsr(vcpu);
6601 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6602 		return handle_preemption_timer(vcpu);
6603 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6604 		return handle_interrupt_window(vcpu);
6605 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6606 		return handle_external_interrupt(vcpu);
6607 	else if (exit_reason.basic == EXIT_REASON_HLT)
6608 		return kvm_emulate_halt(vcpu);
6609 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6610 		return handle_ept_misconfig(vcpu);
6611 #endif
6612 
6613 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6614 						kvm_vmx_max_exit_handlers);
6615 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6616 		goto unexpected_vmexit;
6617 
6618 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6619 
6620 unexpected_vmexit:
6621 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6622 		    exit_reason.full);
6623 	dump_vmcs(vcpu);
6624 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6625 	vcpu->run->internal.suberror =
6626 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6627 	vcpu->run->internal.ndata = 2;
6628 	vcpu->run->internal.data[0] = exit_reason.full;
6629 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6630 	return 0;
6631 }
6632 
6633 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6634 {
6635 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6636 
6637 	/*
6638 	 * Exit to user space when bus lock detected to inform that there is
6639 	 * a bus lock in guest.
6640 	 */
6641 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6642 		if (ret > 0)
6643 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6644 
6645 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6646 		return 0;
6647 	}
6648 	return ret;
6649 }
6650 
6651 /*
6652  * Software based L1D cache flush which is used when microcode providing
6653  * the cache control MSR is not loaded.
6654  *
6655  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6656  * flush it is required to read in 64 KiB because the replacement algorithm
6657  * is not exactly LRU. This could be sized at runtime via topology
6658  * information but as all relevant affected CPUs have 32KiB L1D cache size
6659  * there is no point in doing so.
6660  */
6661 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6662 {
6663 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6664 
6665 	/*
6666 	 * This code is only executed when the flush mode is 'cond' or
6667 	 * 'always'
6668 	 */
6669 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6670 		bool flush_l1d;
6671 
6672 		/*
6673 		 * Clear the per-vcpu flush bit, it gets set again
6674 		 * either from vcpu_run() or from one of the unsafe
6675 		 * VMEXIT handlers.
6676 		 */
6677 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6678 		vcpu->arch.l1tf_flush_l1d = false;
6679 
6680 		/*
6681 		 * Clear the per-cpu flush bit, it gets set again from
6682 		 * the interrupt handlers.
6683 		 */
6684 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6685 		kvm_clear_cpu_l1tf_flush_l1d();
6686 
6687 		if (!flush_l1d)
6688 			return;
6689 	}
6690 
6691 	vcpu->stat.l1d_flush++;
6692 
6693 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6694 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6695 		return;
6696 	}
6697 
6698 	asm volatile(
6699 		/* First ensure the pages are in the TLB */
6700 		"xorl	%%eax, %%eax\n"
6701 		".Lpopulate_tlb:\n\t"
6702 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6703 		"addl	$4096, %%eax\n\t"
6704 		"cmpl	%%eax, %[size]\n\t"
6705 		"jne	.Lpopulate_tlb\n\t"
6706 		"xorl	%%eax, %%eax\n\t"
6707 		"cpuid\n\t"
6708 		/* Now fill the cache */
6709 		"xorl	%%eax, %%eax\n"
6710 		".Lfill_cache:\n"
6711 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6712 		"addl	$64, %%eax\n\t"
6713 		"cmpl	%%eax, %[size]\n\t"
6714 		"jne	.Lfill_cache\n\t"
6715 		"lfence\n"
6716 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6717 		    [size] "r" (size)
6718 		: "eax", "ebx", "ecx", "edx");
6719 }
6720 
6721 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6722 {
6723 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6724 	int tpr_threshold;
6725 
6726 	if (is_guest_mode(vcpu) &&
6727 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6728 		return;
6729 
6730 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6731 	if (is_guest_mode(vcpu))
6732 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6733 	else
6734 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6735 }
6736 
6737 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6738 {
6739 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6740 	u32 sec_exec_control;
6741 
6742 	if (!lapic_in_kernel(vcpu))
6743 		return;
6744 
6745 	if (!flexpriority_enabled &&
6746 	    !cpu_has_vmx_virtualize_x2apic_mode())
6747 		return;
6748 
6749 	/* Postpone execution until vmcs01 is the current VMCS. */
6750 	if (is_guest_mode(vcpu)) {
6751 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6752 		return;
6753 	}
6754 
6755 	sec_exec_control = secondary_exec_controls_get(vmx);
6756 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6757 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6758 
6759 	switch (kvm_get_apic_mode(vcpu)) {
6760 	case LAPIC_MODE_INVALID:
6761 		WARN_ONCE(true, "Invalid local APIC state");
6762 		break;
6763 	case LAPIC_MODE_DISABLED:
6764 		break;
6765 	case LAPIC_MODE_XAPIC:
6766 		if (flexpriority_enabled) {
6767 			sec_exec_control |=
6768 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6769 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6770 
6771 			/*
6772 			 * Flush the TLB, reloading the APIC access page will
6773 			 * only do so if its physical address has changed, but
6774 			 * the guest may have inserted a non-APIC mapping into
6775 			 * the TLB while the APIC access page was disabled.
6776 			 */
6777 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6778 		}
6779 		break;
6780 	case LAPIC_MODE_X2APIC:
6781 		if (cpu_has_vmx_virtualize_x2apic_mode())
6782 			sec_exec_control |=
6783 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6784 		break;
6785 	}
6786 	secondary_exec_controls_set(vmx, sec_exec_control);
6787 
6788 	vmx_update_msr_bitmap_x2apic(vcpu);
6789 }
6790 
6791 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6792 {
6793 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6794 	struct kvm *kvm = vcpu->kvm;
6795 	struct kvm_memslots *slots = kvm_memslots(kvm);
6796 	struct kvm_memory_slot *slot;
6797 	unsigned long mmu_seq;
6798 	kvm_pfn_t pfn;
6799 
6800 	/* Defer reload until vmcs01 is the current VMCS. */
6801 	if (is_guest_mode(vcpu)) {
6802 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6803 		return;
6804 	}
6805 
6806 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6807 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6808 		return;
6809 
6810 	/*
6811 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6812 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6813 	 * be impossible for userspace to create a memslot for the APIC when
6814 	 * APICv is enabled, but paranoia won't hurt in this case.
6815 	 */
6816 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6817 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6818 		return;
6819 
6820 	/*
6821 	 * Ensure that the mmu_notifier sequence count is read before KVM
6822 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6823 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6824 	 * in kvm_mmu_invalidate_end().
6825 	 */
6826 	mmu_seq = kvm->mmu_invalidate_seq;
6827 	smp_rmb();
6828 
6829 	/*
6830 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6831 	 * controls the APIC-access page memslot, and only deletes the memslot
6832 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6833 	 */
6834 	pfn = gfn_to_pfn_memslot(slot, gfn);
6835 	if (is_error_noslot_pfn(pfn))
6836 		return;
6837 
6838 	read_lock(&vcpu->kvm->mmu_lock);
6839 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6840 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6841 		read_unlock(&vcpu->kvm->mmu_lock);
6842 		goto out;
6843 	}
6844 
6845 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6846 	read_unlock(&vcpu->kvm->mmu_lock);
6847 
6848 	/*
6849 	 * No need for a manual TLB flush at this point, KVM has already done a
6850 	 * flush if there were SPTEs pointing at the previous page.
6851 	 */
6852 out:
6853 	/*
6854 	 * Do not pin apic access page in memory, the MMU notifier
6855 	 * will call us again if it is migrated or swapped out.
6856 	 */
6857 	kvm_release_pfn_clean(pfn);
6858 }
6859 
6860 void vmx_hwapic_isr_update(int max_isr)
6861 {
6862 	u16 status;
6863 	u8 old;
6864 
6865 	if (max_isr == -1)
6866 		max_isr = 0;
6867 
6868 	status = vmcs_read16(GUEST_INTR_STATUS);
6869 	old = status >> 8;
6870 	if (max_isr != old) {
6871 		status &= 0xff;
6872 		status |= max_isr << 8;
6873 		vmcs_write16(GUEST_INTR_STATUS, status);
6874 	}
6875 }
6876 
6877 static void vmx_set_rvi(int vector)
6878 {
6879 	u16 status;
6880 	u8 old;
6881 
6882 	if (vector == -1)
6883 		vector = 0;
6884 
6885 	status = vmcs_read16(GUEST_INTR_STATUS);
6886 	old = (u8)status & 0xff;
6887 	if ((u8)vector != old) {
6888 		status &= ~0xff;
6889 		status |= (u8)vector;
6890 		vmcs_write16(GUEST_INTR_STATUS, status);
6891 	}
6892 }
6893 
6894 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6895 {
6896 	/*
6897 	 * When running L2, updating RVI is only relevant when
6898 	 * vmcs12 virtual-interrupt-delivery enabled.
6899 	 * However, it can be enabled only when L1 also
6900 	 * intercepts external-interrupts and in that case
6901 	 * we should not update vmcs02 RVI but instead intercept
6902 	 * interrupt. Therefore, do nothing when running L2.
6903 	 */
6904 	if (!is_guest_mode(vcpu))
6905 		vmx_set_rvi(max_irr);
6906 }
6907 
6908 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6909 {
6910 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6911 	int max_irr;
6912 	bool got_posted_interrupt;
6913 
6914 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6915 		return -EIO;
6916 
6917 	if (pi_test_on(&vmx->pi_desc)) {
6918 		pi_clear_on(&vmx->pi_desc);
6919 		/*
6920 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6921 		 * But on x86 this is just a compiler barrier anyway.
6922 		 */
6923 		smp_mb__after_atomic();
6924 		got_posted_interrupt =
6925 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6926 	} else {
6927 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6928 		got_posted_interrupt = false;
6929 	}
6930 
6931 	/*
6932 	 * Newly recognized interrupts are injected via either virtual interrupt
6933 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6934 	 * disabled in two cases:
6935 	 *
6936 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6937 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6938 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6939 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6940 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6941 	 *
6942 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6943 	 * attempt to post interrupts.  The posted interrupt vector will cause
6944 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6945 	 */
6946 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6947 		vmx_set_rvi(max_irr);
6948 	else if (got_posted_interrupt)
6949 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6950 
6951 	return max_irr;
6952 }
6953 
6954 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6955 {
6956 	if (!kvm_vcpu_apicv_active(vcpu))
6957 		return;
6958 
6959 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6960 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6961 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6962 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6963 }
6964 
6965 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6966 {
6967 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6968 
6969 	pi_clear_on(&vmx->pi_desc);
6970 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6971 }
6972 
6973 void vmx_do_interrupt_irqoff(unsigned long entry);
6974 void vmx_do_nmi_irqoff(void);
6975 
6976 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6977 {
6978 	/*
6979 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6980 	 * MSR value is not clobbered by the host activity before the guest
6981 	 * has chance to consume it.
6982 	 *
6983 	 * Do not blindly read xfd_err here, since this exception might
6984 	 * be caused by L1 interception on a platform which doesn't
6985 	 * support xfd at all.
6986 	 *
6987 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6988 	 * only when xfd contains a non-zero value.
6989 	 *
6990 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6991 	 */
6992 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6993 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6994 }
6995 
6996 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6997 {
6998 	/* if exit due to PF check for async PF */
6999 	if (is_page_fault(intr_info))
7000 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7001 	/* if exit due to NM, handle before interrupts are enabled */
7002 	else if (is_nm_fault(intr_info))
7003 		handle_nm_fault_irqoff(vcpu);
7004 	/* Handle machine checks before interrupts are enabled */
7005 	else if (is_machine_check(intr_info))
7006 		kvm_machine_check();
7007 }
7008 
7009 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7010 					     u32 intr_info)
7011 {
7012 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7013 
7014 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7015 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7016 		return;
7017 
7018 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7019 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7020 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7021 	else
7022 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7023 	kvm_after_interrupt(vcpu);
7024 
7025 	vcpu->arch.at_instruction_boundary = true;
7026 }
7027 
7028 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7029 {
7030 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7031 
7032 	if (vmx->emulation_required)
7033 		return;
7034 
7035 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7036 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7037 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7038 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7039 }
7040 
7041 /*
7042  * The kvm parameter can be NULL (module initialization, or invocation before
7043  * VM creation). Be sure to check the kvm parameter before using it.
7044  */
7045 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7046 {
7047 	switch (index) {
7048 	case MSR_IA32_SMBASE:
7049 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7050 			return false;
7051 		/*
7052 		 * We cannot do SMM unless we can run the guest in big
7053 		 * real mode.
7054 		 */
7055 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7056 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7057 		return nested;
7058 	case MSR_AMD64_VIRT_SPEC_CTRL:
7059 	case MSR_AMD64_TSC_RATIO:
7060 		/* This is AMD only.  */
7061 		return false;
7062 	default:
7063 		return true;
7064 	}
7065 }
7066 
7067 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7068 {
7069 	u32 exit_intr_info;
7070 	bool unblock_nmi;
7071 	u8 vector;
7072 	bool idtv_info_valid;
7073 
7074 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7075 
7076 	if (enable_vnmi) {
7077 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7078 			return;
7079 
7080 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7081 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7082 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7083 		/*
7084 		 * SDM 3: 27.7.1.2 (September 2008)
7085 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7086 		 * a guest IRET fault.
7087 		 * SDM 3: 23.2.2 (September 2008)
7088 		 * Bit 12 is undefined in any of the following cases:
7089 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7090 		 *   information field.
7091 		 *  If the VM exit is due to a double fault.
7092 		 */
7093 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7094 		    vector != DF_VECTOR && !idtv_info_valid)
7095 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7096 				      GUEST_INTR_STATE_NMI);
7097 		else
7098 			vmx->loaded_vmcs->nmi_known_unmasked =
7099 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7100 				  & GUEST_INTR_STATE_NMI);
7101 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7102 		vmx->loaded_vmcs->vnmi_blocked_time +=
7103 			ktime_to_ns(ktime_sub(ktime_get(),
7104 					      vmx->loaded_vmcs->entry_time));
7105 }
7106 
7107 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7108 				      u32 idt_vectoring_info,
7109 				      int instr_len_field,
7110 				      int error_code_field)
7111 {
7112 	u8 vector;
7113 	int type;
7114 	bool idtv_info_valid;
7115 
7116 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7117 
7118 	vcpu->arch.nmi_injected = false;
7119 	kvm_clear_exception_queue(vcpu);
7120 	kvm_clear_interrupt_queue(vcpu);
7121 
7122 	if (!idtv_info_valid)
7123 		return;
7124 
7125 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7126 
7127 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7128 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7129 
7130 	switch (type) {
7131 	case INTR_TYPE_NMI_INTR:
7132 		vcpu->arch.nmi_injected = true;
7133 		/*
7134 		 * SDM 3: 27.7.1.2 (September 2008)
7135 		 * Clear bit "block by NMI" before VM entry if a NMI
7136 		 * delivery faulted.
7137 		 */
7138 		vmx_set_nmi_mask(vcpu, false);
7139 		break;
7140 	case INTR_TYPE_SOFT_EXCEPTION:
7141 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7142 		fallthrough;
7143 	case INTR_TYPE_HARD_EXCEPTION:
7144 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7145 			u32 err = vmcs_read32(error_code_field);
7146 			kvm_requeue_exception_e(vcpu, vector, err);
7147 		} else
7148 			kvm_requeue_exception(vcpu, vector);
7149 		break;
7150 	case INTR_TYPE_SOFT_INTR:
7151 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7152 		fallthrough;
7153 	case INTR_TYPE_EXT_INTR:
7154 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7155 		break;
7156 	default:
7157 		break;
7158 	}
7159 }
7160 
7161 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7162 {
7163 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7164 				  VM_EXIT_INSTRUCTION_LEN,
7165 				  IDT_VECTORING_ERROR_CODE);
7166 }
7167 
7168 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7169 {
7170 	__vmx_complete_interrupts(vcpu,
7171 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7172 				  VM_ENTRY_INSTRUCTION_LEN,
7173 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7174 
7175 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7176 }
7177 
7178 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7179 {
7180 	int i, nr_msrs;
7181 	struct perf_guest_switch_msr *msrs;
7182 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7183 
7184 	pmu->host_cross_mapped_mask = 0;
7185 	if (pmu->pebs_enable & pmu->global_ctrl)
7186 		intel_pmu_cross_mapped_check(pmu);
7187 
7188 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7189 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7190 	if (!msrs)
7191 		return;
7192 
7193 	for (i = 0; i < nr_msrs; i++)
7194 		if (msrs[i].host == msrs[i].guest)
7195 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7196 		else
7197 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7198 					msrs[i].host, false);
7199 }
7200 
7201 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7202 {
7203 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7204 	u64 tscl;
7205 	u32 delta_tsc;
7206 
7207 	if (force_immediate_exit) {
7208 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7209 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7210 	} else if (vmx->hv_deadline_tsc != -1) {
7211 		tscl = rdtsc();
7212 		if (vmx->hv_deadline_tsc > tscl)
7213 			/* set_hv_timer ensures the delta fits in 32-bits */
7214 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7215 				cpu_preemption_timer_multi);
7216 		else
7217 			delta_tsc = 0;
7218 
7219 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7220 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7221 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7222 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7223 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7224 	}
7225 }
7226 
7227 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7228 {
7229 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7230 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7231 		vmcs_writel(HOST_RSP, host_rsp);
7232 	}
7233 }
7234 
7235 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7236 					unsigned int flags)
7237 {
7238 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7239 
7240 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7241 		return;
7242 
7243 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7244 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7245 
7246 	/*
7247 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7248 	 *
7249 	 * For legacy IBRS, the IBRS bit always needs to be written after
7250 	 * transitioning from a less privileged predictor mode, regardless of
7251 	 * whether the guest/host values differ.
7252 	 */
7253 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7254 	    vmx->spec_ctrl != hostval)
7255 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7256 
7257 	barrier_nospec();
7258 }
7259 
7260 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7261 					     bool force_immediate_exit)
7262 {
7263 	/*
7264 	 * If L2 is active, some VMX preemption timer exits can be handled in
7265 	 * the fastpath even, all other exits must use the slow path.
7266 	 */
7267 	if (is_guest_mode(vcpu) &&
7268 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7269 		return EXIT_FASTPATH_NONE;
7270 
7271 	switch (to_vmx(vcpu)->exit_reason.basic) {
7272 	case EXIT_REASON_MSR_WRITE:
7273 		return handle_fastpath_set_msr_irqoff(vcpu);
7274 	case EXIT_REASON_PREEMPTION_TIMER:
7275 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7276 	default:
7277 		return EXIT_FASTPATH_NONE;
7278 	}
7279 }
7280 
7281 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7282 					unsigned int flags)
7283 {
7284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7285 
7286 	guest_state_enter_irqoff();
7287 
7288 	/*
7289 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7290 	 * mitigation for MDS is done late in VMentry and is still
7291 	 * executed in spite of L1D Flush. This is because an extra VERW
7292 	 * should not matter much after the big hammer L1D Flush.
7293 	 */
7294 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7295 		vmx_l1d_flush(vcpu);
7296 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7297 		 kvm_arch_has_assigned_device(vcpu->kvm))
7298 		mds_clear_cpu_buffers();
7299 
7300 	vmx_disable_fb_clear(vmx);
7301 
7302 	if (vcpu->arch.cr2 != native_read_cr2())
7303 		native_write_cr2(vcpu->arch.cr2);
7304 
7305 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7306 				   flags);
7307 
7308 	vcpu->arch.cr2 = native_read_cr2();
7309 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7310 
7311 	vmx->idt_vectoring_info = 0;
7312 
7313 	vmx_enable_fb_clear(vmx);
7314 
7315 	if (unlikely(vmx->fail)) {
7316 		vmx->exit_reason.full = 0xdead;
7317 		goto out;
7318 	}
7319 
7320 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7321 	if (likely(!vmx->exit_reason.failed_vmentry))
7322 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7323 
7324 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7325 	    is_nmi(vmx_get_intr_info(vcpu))) {
7326 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7327 		if (cpu_feature_enabled(X86_FEATURE_FRED))
7328 			fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7329 		else
7330 			vmx_do_nmi_irqoff();
7331 		kvm_after_interrupt(vcpu);
7332 	}
7333 
7334 out:
7335 	guest_state_exit_irqoff();
7336 }
7337 
7338 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7339 {
7340 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7341 	unsigned long cr3, cr4;
7342 
7343 	/* Record the guest's net vcpu time for enforced NMI injections. */
7344 	if (unlikely(!enable_vnmi &&
7345 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7346 		vmx->loaded_vmcs->entry_time = ktime_get();
7347 
7348 	/*
7349 	 * Don't enter VMX if guest state is invalid, let the exit handler
7350 	 * start emulation until we arrive back to a valid state.  Synthesize a
7351 	 * consistency check VM-Exit due to invalid guest state and bail.
7352 	 */
7353 	if (unlikely(vmx->emulation_required)) {
7354 		vmx->fail = 0;
7355 
7356 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7357 		vmx->exit_reason.failed_vmentry = 1;
7358 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7359 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7360 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7361 		vmx->exit_intr_info = 0;
7362 		return EXIT_FASTPATH_NONE;
7363 	}
7364 
7365 	trace_kvm_entry(vcpu, force_immediate_exit);
7366 
7367 	if (vmx->ple_window_dirty) {
7368 		vmx->ple_window_dirty = false;
7369 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7370 	}
7371 
7372 	/*
7373 	 * We did this in prepare_switch_to_guest, because it needs to
7374 	 * be within srcu_read_lock.
7375 	 */
7376 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7377 
7378 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7379 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7380 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7381 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7382 	vcpu->arch.regs_dirty = 0;
7383 
7384 	/*
7385 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7386 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7387 	 * it switches back to the current->mm, which can occur in KVM context
7388 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7389 	 * toggles a static key while handling a VM-Exit.
7390 	 */
7391 	cr3 = __get_current_cr3_fast();
7392 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7393 		vmcs_writel(HOST_CR3, cr3);
7394 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7395 	}
7396 
7397 	cr4 = cr4_read_shadow();
7398 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7399 		vmcs_writel(HOST_CR4, cr4);
7400 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7401 	}
7402 
7403 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7404 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7405 		set_debugreg(vcpu->arch.dr6, 6);
7406 
7407 	/* When single-stepping over STI and MOV SS, we must clear the
7408 	 * corresponding interruptibility bits in the guest state. Otherwise
7409 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7410 	 * exceptions being set, but that's not correct for the guest debugging
7411 	 * case. */
7412 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7413 		vmx_set_interrupt_shadow(vcpu, 0);
7414 
7415 	kvm_load_guest_xsave_state(vcpu);
7416 
7417 	pt_guest_enter(vmx);
7418 
7419 	atomic_switch_perf_msrs(vmx);
7420 	if (intel_pmu_lbr_is_enabled(vcpu))
7421 		vmx_passthrough_lbr_msrs(vcpu);
7422 
7423 	if (enable_preemption_timer)
7424 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7425 	else if (force_immediate_exit)
7426 		smp_send_reschedule(vcpu->cpu);
7427 
7428 	kvm_wait_lapic_expire(vcpu);
7429 
7430 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7431 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7432 
7433 	/* All fields are clean at this point */
7434 	if (kvm_is_using_evmcs()) {
7435 		current_evmcs->hv_clean_fields |=
7436 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7437 
7438 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7439 	}
7440 
7441 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7442 	if (vmx->host_debugctlmsr)
7443 		update_debugctlmsr(vmx->host_debugctlmsr);
7444 
7445 #ifndef CONFIG_X86_64
7446 	/*
7447 	 * The sysexit path does not restore ds/es, so we must set them to
7448 	 * a reasonable value ourselves.
7449 	 *
7450 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7451 	 * function may be executed in interrupt context, which saves and
7452 	 * restore segments around it, nullifying its effect.
7453 	 */
7454 	loadsegment(ds, __USER_DS);
7455 	loadsegment(es, __USER_DS);
7456 #endif
7457 
7458 	pt_guest_exit(vmx);
7459 
7460 	kvm_load_host_xsave_state(vcpu);
7461 
7462 	if (is_guest_mode(vcpu)) {
7463 		/*
7464 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7465 		 * checking.
7466 		 */
7467 		if (vmx->nested.nested_run_pending &&
7468 		    !vmx->exit_reason.failed_vmentry)
7469 			++vcpu->stat.nested_run;
7470 
7471 		vmx->nested.nested_run_pending = 0;
7472 	}
7473 
7474 	if (unlikely(vmx->fail))
7475 		return EXIT_FASTPATH_NONE;
7476 
7477 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7478 		kvm_machine_check();
7479 
7480 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7481 
7482 	if (unlikely(vmx->exit_reason.failed_vmentry))
7483 		return EXIT_FASTPATH_NONE;
7484 
7485 	vmx->loaded_vmcs->launched = 1;
7486 
7487 	vmx_recover_nmi_blocking(vmx);
7488 	vmx_complete_interrupts(vmx);
7489 
7490 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7491 }
7492 
7493 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7494 {
7495 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7496 
7497 	if (enable_pml)
7498 		vmx_destroy_pml_buffer(vmx);
7499 	free_vpid(vmx->vpid);
7500 	nested_vmx_free_vcpu(vcpu);
7501 	free_loaded_vmcs(vmx->loaded_vmcs);
7502 	free_page((unsigned long)vmx->ve_info);
7503 }
7504 
7505 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7506 {
7507 	struct vmx_uret_msr *tsx_ctrl;
7508 	struct vcpu_vmx *vmx;
7509 	int i, err;
7510 
7511 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7512 	vmx = to_vmx(vcpu);
7513 
7514 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7515 
7516 	err = -ENOMEM;
7517 
7518 	vmx->vpid = allocate_vpid();
7519 
7520 	/*
7521 	 * If PML is turned on, failure on enabling PML just results in failure
7522 	 * of creating the vcpu, therefore we can simplify PML logic (by
7523 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7524 	 * for the guest), etc.
7525 	 */
7526 	if (enable_pml) {
7527 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7528 		if (!vmx->pml_pg)
7529 			goto free_vpid;
7530 	}
7531 
7532 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7533 		vmx->guest_uret_msrs[i].mask = -1ull;
7534 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7535 		/*
7536 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7537 		 * Keep the host value unchanged to avoid changing CPUID bits
7538 		 * under the host kernel's feet.
7539 		 */
7540 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7541 		if (tsx_ctrl)
7542 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7543 	}
7544 
7545 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7546 	if (err < 0)
7547 		goto free_pml;
7548 
7549 	/*
7550 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7551 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7552 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7553 	 * performance benefits from enabling it for vmcs02.
7554 	 */
7555 	if (kvm_is_using_evmcs() &&
7556 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7557 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7558 
7559 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7560 	}
7561 
7562 	/* The MSR bitmap starts with all ones */
7563 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7564 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7565 
7566 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7567 #ifdef CONFIG_X86_64
7568 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7569 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7570 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7571 #endif
7572 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7573 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7574 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7575 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7576 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7577 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7578 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7579 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7580 	}
7581 
7582 	vmx->loaded_vmcs = &vmx->vmcs01;
7583 
7584 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7585 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7586 		if (err)
7587 			goto free_vmcs;
7588 	}
7589 
7590 	if (enable_ept && !enable_unrestricted_guest) {
7591 		err = init_rmode_identity_map(vcpu->kvm);
7592 		if (err)
7593 			goto free_vmcs;
7594 	}
7595 
7596 	err = -ENOMEM;
7597 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7598 		struct page *page;
7599 
7600 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7601 
7602 		/* ve_info must be page aligned. */
7603 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7604 		if (!page)
7605 			goto free_vmcs;
7606 
7607 		vmx->ve_info = page_to_virt(page);
7608 	}
7609 
7610 	if (vmx_can_use_ipiv(vcpu))
7611 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7612 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7613 
7614 	return 0;
7615 
7616 free_vmcs:
7617 	free_loaded_vmcs(vmx->loaded_vmcs);
7618 free_pml:
7619 	vmx_destroy_pml_buffer(vmx);
7620 free_vpid:
7621 	free_vpid(vmx->vpid);
7622 	return err;
7623 }
7624 
7625 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7626 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7627 
7628 int vmx_vm_init(struct kvm *kvm)
7629 {
7630 	if (!ple_gap)
7631 		kvm->arch.pause_in_guest = true;
7632 
7633 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7634 		switch (l1tf_mitigation) {
7635 		case L1TF_MITIGATION_OFF:
7636 		case L1TF_MITIGATION_FLUSH_NOWARN:
7637 			/* 'I explicitly don't care' is set */
7638 			break;
7639 		case L1TF_MITIGATION_FLUSH:
7640 		case L1TF_MITIGATION_FLUSH_NOSMT:
7641 		case L1TF_MITIGATION_FULL:
7642 			/*
7643 			 * Warn upon starting the first VM in a potentially
7644 			 * insecure environment.
7645 			 */
7646 			if (sched_smt_active())
7647 				pr_warn_once(L1TF_MSG_SMT);
7648 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7649 				pr_warn_once(L1TF_MSG_L1D);
7650 			break;
7651 		case L1TF_MITIGATION_FULL_FORCE:
7652 			/* Flush is enforced */
7653 			break;
7654 		}
7655 	}
7656 	return 0;
7657 }
7658 
7659 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7660 {
7661 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7662 	 * memory aliases with conflicting memory types and sometimes MCEs.
7663 	 * We have to be careful as to what are honored and when.
7664 	 *
7665 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7666 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7667 	 * This was historically the source of MCEs and we want to be
7668 	 * conservative.
7669 	 *
7670 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7671 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7672 	 * EPT memory type is set to WB.  The effective memory type is forced
7673 	 * WB.
7674 	 *
7675 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7676 	 * EPT memory type is used to emulate guest CD/MTRR.
7677 	 */
7678 
7679 	if (is_mmio)
7680 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7681 
7682 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7683 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7684 
7685 	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7686 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7687 			return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT;
7688 		else
7689 			return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) |
7690 				VMX_EPT_IPAT_BIT;
7691 	}
7692 
7693 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7694 }
7695 
7696 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7697 {
7698 	/*
7699 	 * These bits in the secondary execution controls field
7700 	 * are dynamic, the others are mostly based on the hypervisor
7701 	 * architecture and the guest's CPUID.  Do not touch the
7702 	 * dynamic bits.
7703 	 */
7704 	u32 mask =
7705 		SECONDARY_EXEC_SHADOW_VMCS |
7706 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7707 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7708 		SECONDARY_EXEC_DESC;
7709 
7710 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7711 
7712 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7713 }
7714 
7715 /*
7716  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7717  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7718  */
7719 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7720 {
7721 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7722 	struct kvm_cpuid_entry2 *entry;
7723 
7724 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7725 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7726 
7727 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7728 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7729 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7730 } while (0)
7731 
7732 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7733 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7734 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7735 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7736 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7737 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7738 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7739 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7740 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7741 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7742 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7743 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7744 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7745 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7746 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7747 
7748 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7749 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7750 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7751 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7752 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7753 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7754 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7755 
7756 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7757 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7758 
7759 #undef cr4_fixed1_update
7760 }
7761 
7762 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7763 {
7764 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7765 	struct kvm_cpuid_entry2 *best = NULL;
7766 	int i;
7767 
7768 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7769 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7770 		if (!best)
7771 			return;
7772 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7773 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7774 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7775 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7776 	}
7777 
7778 	/* Get the number of configurable Address Ranges for filtering */
7779 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7780 						PT_CAP_num_address_ranges);
7781 
7782 	/* Initialize and clear the no dependency bits */
7783 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7784 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7785 			RTIT_CTL_BRANCH_EN);
7786 
7787 	/*
7788 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7789 	 * will inject an #GP
7790 	 */
7791 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7792 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7793 
7794 	/*
7795 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7796 	 * PSBFreq can be set
7797 	 */
7798 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7799 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7800 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7801 
7802 	/*
7803 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7804 	 */
7805 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7806 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7807 					      RTIT_CTL_MTC_RANGE);
7808 
7809 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7810 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7811 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7812 							RTIT_CTL_PTW_EN);
7813 
7814 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7815 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7816 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7817 
7818 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7819 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7820 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7821 
7822 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7823 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7824 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7825 
7826 	/* unmask address range configure area */
7827 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7828 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7829 }
7830 
7831 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7832 {
7833 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7834 
7835 	/*
7836 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7837 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7838 	 * set if and only if XSAVE is supported.
7839 	 */
7840 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7841 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7842 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7843 
7844 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7845 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7846 
7847 	vmx_setup_uret_msrs(vmx);
7848 
7849 	if (cpu_has_secondary_exec_ctrls())
7850 		vmcs_set_secondary_exec_control(vmx,
7851 						vmx_secondary_exec_control(vmx));
7852 
7853 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7854 		vmx->msr_ia32_feature_control_valid_bits |=
7855 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7856 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7857 	else
7858 		vmx->msr_ia32_feature_control_valid_bits &=
7859 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7860 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7861 
7862 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7863 		nested_vmx_cr_fixed1_bits_update(vcpu);
7864 
7865 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7866 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7867 		update_intel_pt_cfg(vcpu);
7868 
7869 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7870 		struct vmx_uret_msr *msr;
7871 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7872 		if (msr) {
7873 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7874 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7875 		}
7876 	}
7877 
7878 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7879 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7880 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7881 
7882 	if (boot_cpu_has(X86_FEATURE_IBPB))
7883 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7884 					  !guest_has_pred_cmd_msr(vcpu));
7885 
7886 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7887 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7888 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7889 
7890 	set_cr4_guest_host_mask(vmx);
7891 
7892 	vmx_write_encls_bitmap(vcpu, NULL);
7893 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7894 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7895 	else
7896 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7897 
7898 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7899 		vmx->msr_ia32_feature_control_valid_bits |=
7900 			FEAT_CTL_SGX_LC_ENABLED;
7901 	else
7902 		vmx->msr_ia32_feature_control_valid_bits &=
7903 			~FEAT_CTL_SGX_LC_ENABLED;
7904 
7905 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7906 	vmx_update_exception_bitmap(vcpu);
7907 }
7908 
7909 static __init u64 vmx_get_perf_capabilities(void)
7910 {
7911 	u64 perf_cap = PMU_CAP_FW_WRITES;
7912 	u64 host_perf_cap = 0;
7913 
7914 	if (!enable_pmu)
7915 		return 0;
7916 
7917 	if (boot_cpu_has(X86_FEATURE_PDCM))
7918 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7919 
7920 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7921 		x86_perf_get_lbr(&vmx_lbr_caps);
7922 
7923 		/*
7924 		 * KVM requires LBR callstack support, as the overhead due to
7925 		 * context switching LBRs without said support is too high.
7926 		 * See intel_pmu_create_guest_lbr_event() for more info.
7927 		 */
7928 		if (!vmx_lbr_caps.has_callstack)
7929 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7930 		else if (vmx_lbr_caps.nr)
7931 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7932 	}
7933 
7934 	if (vmx_pebs_supported()) {
7935 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7936 
7937 		/*
7938 		 * Disallow adaptive PEBS as it is functionally broken, can be
7939 		 * used by the guest to read *host* LBRs, and can be used to
7940 		 * bypass userspace event filters.  To correctly and safely
7941 		 * support adaptive PEBS, KVM needs to:
7942 		 *
7943 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7944 		 *    counters.
7945 		 *
7946 		 * 2. Gain support from perf (or take direct control of counter
7947 		 *    programming) to support events without adaptive PEBS
7948 		 *    enabled for the hardware counter.
7949 		 *
7950 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7951 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7952 		 *
7953 		 * 4. Document which PMU events are effectively exposed to the
7954 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7955 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7956 		 */
7957 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7958 	}
7959 
7960 	return perf_cap;
7961 }
7962 
7963 static __init void vmx_set_cpu_caps(void)
7964 {
7965 	kvm_set_cpu_caps();
7966 
7967 	/* CPUID 0x1 */
7968 	if (nested)
7969 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7970 
7971 	/* CPUID 0x7 */
7972 	if (kvm_mpx_supported())
7973 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7974 	if (!cpu_has_vmx_invpcid())
7975 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7976 	if (vmx_pt_mode_is_host_guest())
7977 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7978 	if (vmx_pebs_supported()) {
7979 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7980 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7981 	}
7982 
7983 	if (!enable_pmu)
7984 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7985 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7986 
7987 	if (!enable_sgx) {
7988 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7989 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7990 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7991 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7992 	}
7993 
7994 	if (vmx_umip_emulated())
7995 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7996 
7997 	/* CPUID 0xD.1 */
7998 	kvm_caps.supported_xss = 0;
7999 	if (!cpu_has_vmx_xsaves())
8000 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
8001 
8002 	/* CPUID 0x80000001 and 0x7 (RDPID) */
8003 	if (!cpu_has_vmx_rdtscp()) {
8004 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
8005 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
8006 	}
8007 
8008 	if (cpu_has_vmx_waitpkg())
8009 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
8010 }
8011 
8012 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
8013 				  struct x86_instruction_info *info)
8014 {
8015 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8016 	unsigned short port;
8017 	bool intercept;
8018 	int size;
8019 
8020 	if (info->intercept == x86_intercept_in ||
8021 	    info->intercept == x86_intercept_ins) {
8022 		port = info->src_val;
8023 		size = info->dst_bytes;
8024 	} else {
8025 		port = info->dst_val;
8026 		size = info->src_bytes;
8027 	}
8028 
8029 	/*
8030 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8031 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8032 	 * control.
8033 	 *
8034 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8035 	 */
8036 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8037 		intercept = nested_cpu_has(vmcs12,
8038 					   CPU_BASED_UNCOND_IO_EXITING);
8039 	else
8040 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8041 
8042 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8043 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8044 }
8045 
8046 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8047 			struct x86_instruction_info *info,
8048 			enum x86_intercept_stage stage,
8049 			struct x86_exception *exception)
8050 {
8051 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8052 
8053 	switch (info->intercept) {
8054 	/*
8055 	 * RDPID causes #UD if disabled through secondary execution controls.
8056 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
8057 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8058 	 */
8059 	case x86_intercept_rdpid:
8060 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8061 			exception->vector = UD_VECTOR;
8062 			exception->error_code_valid = false;
8063 			return X86EMUL_PROPAGATE_FAULT;
8064 		}
8065 		break;
8066 
8067 	case x86_intercept_in:
8068 	case x86_intercept_ins:
8069 	case x86_intercept_out:
8070 	case x86_intercept_outs:
8071 		return vmx_check_intercept_io(vcpu, info);
8072 
8073 	case x86_intercept_lgdt:
8074 	case x86_intercept_lidt:
8075 	case x86_intercept_lldt:
8076 	case x86_intercept_ltr:
8077 	case x86_intercept_sgdt:
8078 	case x86_intercept_sidt:
8079 	case x86_intercept_sldt:
8080 	case x86_intercept_str:
8081 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8082 			return X86EMUL_CONTINUE;
8083 
8084 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8085 		break;
8086 
8087 	case x86_intercept_pause:
8088 		/*
8089 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8090 		 * with vanilla NOPs in the emulator.  Apply the interception
8091 		 * check only to actual PAUSE instructions.  Don't check
8092 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8093 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8094 		 * the PAUSE.
8095 		 */
8096 		if ((info->rep_prefix != REPE_PREFIX) ||
8097 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8098 			return X86EMUL_CONTINUE;
8099 
8100 		break;
8101 
8102 	/* TODO: check more intercepts... */
8103 	default:
8104 		break;
8105 	}
8106 
8107 	return X86EMUL_UNHANDLEABLE;
8108 }
8109 
8110 #ifdef CONFIG_X86_64
8111 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8112 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8113 				  u64 divisor, u64 *result)
8114 {
8115 	u64 low = a << shift, high = a >> (64 - shift);
8116 
8117 	/* To avoid the overflow on divq */
8118 	if (high >= divisor)
8119 		return 1;
8120 
8121 	/* Low hold the result, high hold rem which is discarded */
8122 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8123 	    "rm" (divisor), "0" (low), "1" (high));
8124 	*result = low;
8125 
8126 	return 0;
8127 }
8128 
8129 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8130 		     bool *expired)
8131 {
8132 	struct vcpu_vmx *vmx;
8133 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8134 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8135 
8136 	vmx = to_vmx(vcpu);
8137 	tscl = rdtsc();
8138 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8139 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8140 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8141 						    ktimer->timer_advance_ns);
8142 
8143 	if (delta_tsc > lapic_timer_advance_cycles)
8144 		delta_tsc -= lapic_timer_advance_cycles;
8145 	else
8146 		delta_tsc = 0;
8147 
8148 	/* Convert to host delta tsc if tsc scaling is enabled */
8149 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8150 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8151 				kvm_caps.tsc_scaling_ratio_frac_bits,
8152 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8153 		return -ERANGE;
8154 
8155 	/*
8156 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8157 	 * we can't use the preemption timer.
8158 	 * It's possible that it fits on later vmentries, but checking
8159 	 * on every vmentry is costly so we just use an hrtimer.
8160 	 */
8161 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8162 		return -ERANGE;
8163 
8164 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8165 	*expired = !delta_tsc;
8166 	return 0;
8167 }
8168 
8169 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8170 {
8171 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8172 }
8173 #endif
8174 
8175 void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8176 {
8177 	if (!kvm_pause_in_guest(vcpu->kvm))
8178 		shrink_ple_window(vcpu);
8179 }
8180 
8181 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8182 {
8183 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8184 
8185 	if (WARN_ON_ONCE(!enable_pml))
8186 		return;
8187 
8188 	if (is_guest_mode(vcpu)) {
8189 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8190 		return;
8191 	}
8192 
8193 	/*
8194 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8195 	 * code, but in that case another update request will be made and so
8196 	 * the guest will never run with a stale PML value.
8197 	 */
8198 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8199 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8200 	else
8201 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8202 }
8203 
8204 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8205 {
8206 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8207 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8208 			FEAT_CTL_LMCE_ENABLED;
8209 	else
8210 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8211 			~FEAT_CTL_LMCE_ENABLED;
8212 }
8213 
8214 #ifdef CONFIG_KVM_SMM
8215 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8216 {
8217 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8218 	if (to_vmx(vcpu)->nested.nested_run_pending)
8219 		return -EBUSY;
8220 	return !is_smm(vcpu);
8221 }
8222 
8223 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8224 {
8225 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8226 
8227 	/*
8228 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8229 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8230 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8231 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8232 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8233 	 */
8234 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8235 	if (vmx->nested.smm.guest_mode)
8236 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8237 
8238 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8239 	vmx->nested.vmxon = false;
8240 	vmx_clear_hlt(vcpu);
8241 	return 0;
8242 }
8243 
8244 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8245 {
8246 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8247 	int ret;
8248 
8249 	if (vmx->nested.smm.vmxon) {
8250 		vmx->nested.vmxon = true;
8251 		vmx->nested.smm.vmxon = false;
8252 	}
8253 
8254 	if (vmx->nested.smm.guest_mode) {
8255 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8256 		if (ret)
8257 			return ret;
8258 
8259 		vmx->nested.nested_run_pending = 1;
8260 		vmx->nested.smm.guest_mode = false;
8261 	}
8262 	return 0;
8263 }
8264 
8265 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8266 {
8267 	/* RSM will cause a vmexit anyway.  */
8268 }
8269 #endif
8270 
8271 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8272 {
8273 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8274 }
8275 
8276 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8277 {
8278 	if (is_guest_mode(vcpu)) {
8279 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8280 
8281 		if (hrtimer_try_to_cancel(timer) == 1)
8282 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8283 	}
8284 }
8285 
8286 void vmx_hardware_unsetup(void)
8287 {
8288 	kvm_set_posted_intr_wakeup_handler(NULL);
8289 
8290 	if (nested)
8291 		nested_vmx_hardware_unsetup();
8292 
8293 	free_kvm_area();
8294 }
8295 
8296 void vmx_vm_destroy(struct kvm *kvm)
8297 {
8298 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8299 
8300 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8301 }
8302 
8303 /*
8304  * Note, the SDM states that the linear address is masked *after* the modified
8305  * canonicality check, whereas KVM masks (untags) the address and then performs
8306  * a "normal" canonicality check.  Functionally, the two methods are identical,
8307  * and when the masking occurs relative to the canonicality check isn't visible
8308  * to software, i.e. KVM's behavior doesn't violate the SDM.
8309  */
8310 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8311 {
8312 	int lam_bit;
8313 	unsigned long cr3_bits;
8314 
8315 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8316 		return gva;
8317 
8318 	if (!is_64_bit_mode(vcpu))
8319 		return gva;
8320 
8321 	/*
8322 	 * Bit 63 determines if the address should be treated as user address
8323 	 * or a supervisor address.
8324 	 */
8325 	if (!(gva & BIT_ULL(63))) {
8326 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8327 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8328 			return gva;
8329 
8330 		/* LAM_U48 is ignored if LAM_U57 is set. */
8331 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8332 	} else {
8333 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8334 			return gva;
8335 
8336 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8337 	}
8338 
8339 	/*
8340 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8341 	 * Bit 63 is retained from the raw virtual address so that untagging
8342 	 * doesn't change a user access to a supervisor access, and vice versa.
8343 	 */
8344 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8345 }
8346 
8347 static unsigned int vmx_handle_intel_pt_intr(void)
8348 {
8349 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8350 
8351 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8352 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8353 		return 0;
8354 
8355 	kvm_make_request(KVM_REQ_PMI, vcpu);
8356 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8357 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8358 	return 1;
8359 }
8360 
8361 static __init void vmx_setup_user_return_msrs(void)
8362 {
8363 
8364 	/*
8365 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8366 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8367 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8368 	 * support this emulation, MSR_STAR is included in the list for i386,
8369 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8370 	 * into hardware and is here purely for emulation purposes.
8371 	 */
8372 	const u32 vmx_uret_msrs_list[] = {
8373 	#ifdef CONFIG_X86_64
8374 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8375 	#endif
8376 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8377 		MSR_IA32_TSX_CTRL,
8378 	};
8379 	int i;
8380 
8381 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8382 
8383 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8384 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8385 }
8386 
8387 static void __init vmx_setup_me_spte_mask(void)
8388 {
8389 	u64 me_mask = 0;
8390 
8391 	/*
8392 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8393 	 * the former to avoid exposing shadow_phys_bits.
8394 	 *
8395 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8396 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8397 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8398 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8399 	 * reported by CPUID.  Those bits between are KeyID bits.
8400 	 */
8401 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8402 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8403 			kvm_get_shadow_phys_bits() - 1);
8404 	/*
8405 	 * Unlike SME, host kernel doesn't support setting up any
8406 	 * MKTME KeyID on Intel platforms.  No memory encryption
8407 	 * bits should be included into the SPTE.
8408 	 */
8409 	kvm_mmu_set_me_spte_mask(0, me_mask);
8410 }
8411 
8412 __init int vmx_hardware_setup(void)
8413 {
8414 	unsigned long host_bndcfgs;
8415 	struct desc_ptr dt;
8416 	int r;
8417 
8418 	store_idt(&dt);
8419 	host_idt_base = dt.address;
8420 
8421 	vmx_setup_user_return_msrs();
8422 
8423 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8424 		return -EIO;
8425 
8426 	if (cpu_has_perf_global_ctrl_bug())
8427 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8428 			     "does not work properly. Using workaround\n");
8429 
8430 	if (boot_cpu_has(X86_FEATURE_NX))
8431 		kvm_enable_efer_bits(EFER_NX);
8432 
8433 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8434 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8435 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8436 	}
8437 
8438 	if (!cpu_has_vmx_mpx())
8439 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8440 					     XFEATURE_MASK_BNDCSR);
8441 
8442 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8443 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8444 		enable_vpid = 0;
8445 
8446 	if (!cpu_has_vmx_ept() ||
8447 	    !cpu_has_vmx_ept_4levels() ||
8448 	    !cpu_has_vmx_ept_mt_wb() ||
8449 	    !cpu_has_vmx_invept_global())
8450 		enable_ept = 0;
8451 
8452 	/* NX support is required for shadow paging. */
8453 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8454 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8455 		return -EOPNOTSUPP;
8456 	}
8457 
8458 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8459 		enable_ept_ad_bits = 0;
8460 
8461 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8462 		enable_unrestricted_guest = 0;
8463 
8464 	if (!cpu_has_vmx_flexpriority())
8465 		flexpriority_enabled = 0;
8466 
8467 	if (!cpu_has_virtual_nmis())
8468 		enable_vnmi = 0;
8469 
8470 #ifdef CONFIG_X86_SGX_KVM
8471 	if (!cpu_has_vmx_encls_vmexit())
8472 		enable_sgx = false;
8473 #endif
8474 
8475 	/*
8476 	 * set_apic_access_page_addr() is used to reload apic access
8477 	 * page upon invalidation.  No need to do anything if not
8478 	 * using the APIC_ACCESS_ADDR VMCS field.
8479 	 */
8480 	if (!flexpriority_enabled)
8481 		vt_x86_ops.set_apic_access_page_addr = NULL;
8482 
8483 	if (!cpu_has_vmx_tpr_shadow())
8484 		vt_x86_ops.update_cr8_intercept = NULL;
8485 
8486 #if IS_ENABLED(CONFIG_HYPERV)
8487 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8488 	    && enable_ept) {
8489 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8490 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8491 	}
8492 #endif
8493 
8494 	if (!cpu_has_vmx_ple()) {
8495 		ple_gap = 0;
8496 		ple_window = 0;
8497 		ple_window_grow = 0;
8498 		ple_window_max = 0;
8499 		ple_window_shrink = 0;
8500 	}
8501 
8502 	if (!cpu_has_vmx_apicv())
8503 		enable_apicv = 0;
8504 	if (!enable_apicv)
8505 		vt_x86_ops.sync_pir_to_irr = NULL;
8506 
8507 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8508 		enable_ipiv = false;
8509 
8510 	if (cpu_has_vmx_tsc_scaling())
8511 		kvm_caps.has_tsc_control = true;
8512 
8513 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8514 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8515 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8516 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8517 
8518 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8519 
8520 	if (enable_ept)
8521 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8522 				      cpu_has_vmx_ept_execute_only());
8523 
8524 	/*
8525 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8526 	 * bits to shadow_zero_check.
8527 	 */
8528 	vmx_setup_me_spte_mask();
8529 
8530 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8531 			  ept_caps_to_lpage_level(vmx_capability.ept));
8532 
8533 	/*
8534 	 * Only enable PML when hardware supports PML feature, and both EPT
8535 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8536 	 */
8537 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8538 		enable_pml = 0;
8539 
8540 	if (!enable_pml)
8541 		vt_x86_ops.cpu_dirty_log_size = 0;
8542 
8543 	if (!cpu_has_vmx_preemption_timer())
8544 		enable_preemption_timer = false;
8545 
8546 	if (enable_preemption_timer) {
8547 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8548 
8549 		cpu_preemption_timer_multi =
8550 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8551 
8552 		if (tsc_khz)
8553 			use_timer_freq = (u64)tsc_khz * 1000;
8554 		use_timer_freq >>= cpu_preemption_timer_multi;
8555 
8556 		/*
8557 		 * KVM "disables" the preemption timer by setting it to its max
8558 		 * value.  Don't use the timer if it might cause spurious exits
8559 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8560 		 */
8561 		if (use_timer_freq > 0xffffffffu / 10)
8562 			enable_preemption_timer = false;
8563 	}
8564 
8565 	if (!enable_preemption_timer) {
8566 		vt_x86_ops.set_hv_timer = NULL;
8567 		vt_x86_ops.cancel_hv_timer = NULL;
8568 	}
8569 
8570 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8571 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8572 
8573 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8574 		return -EINVAL;
8575 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8576 		pt_mode = PT_MODE_SYSTEM;
8577 	if (pt_mode == PT_MODE_HOST_GUEST)
8578 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8579 	else
8580 		vt_init_ops.handle_intel_pt_intr = NULL;
8581 
8582 	setup_default_sgx_lepubkeyhash();
8583 
8584 	if (nested) {
8585 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8586 
8587 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8588 		if (r)
8589 			return r;
8590 	}
8591 
8592 	vmx_set_cpu_caps();
8593 
8594 	r = alloc_kvm_area();
8595 	if (r && nested)
8596 		nested_vmx_hardware_unsetup();
8597 
8598 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8599 
8600 	return r;
8601 }
8602 
8603 static void vmx_cleanup_l1d_flush(void)
8604 {
8605 	if (vmx_l1d_flush_pages) {
8606 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8607 		vmx_l1d_flush_pages = NULL;
8608 	}
8609 	/* Restore state so sysfs ignores VMX */
8610 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8611 }
8612 
8613 static void __vmx_exit(void)
8614 {
8615 	allow_smaller_maxphyaddr = false;
8616 
8617 	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8618 
8619 	vmx_cleanup_l1d_flush();
8620 }
8621 
8622 static void vmx_exit(void)
8623 {
8624 	kvm_exit();
8625 	kvm_x86_vendor_exit();
8626 
8627 	__vmx_exit();
8628 }
8629 module_exit(vmx_exit);
8630 
8631 static int __init vmx_init(void)
8632 {
8633 	int r, cpu;
8634 
8635 	if (!kvm_is_vmx_supported())
8636 		return -EOPNOTSUPP;
8637 
8638 	/*
8639 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8640 	 * to unwind if a later step fails.
8641 	 */
8642 	hv_init_evmcs();
8643 
8644 	r = kvm_x86_vendor_init(&vt_init_ops);
8645 	if (r)
8646 		return r;
8647 
8648 	/*
8649 	 * Must be called after common x86 init so enable_ept is properly set
8650 	 * up. Hand the parameter mitigation value in which was stored in
8651 	 * the pre module init parser. If no parameter was given, it will
8652 	 * contain 'auto' which will be turned into the default 'cond'
8653 	 * mitigation mode.
8654 	 */
8655 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8656 	if (r)
8657 		goto err_l1d_flush;
8658 
8659 	for_each_possible_cpu(cpu) {
8660 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8661 
8662 		pi_init_cpu(cpu);
8663 	}
8664 
8665 	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8666 
8667 	vmx_check_vmcs12_offsets();
8668 
8669 	/*
8670 	 * Shadow paging doesn't have a (further) performance penalty
8671 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8672 	 * by default
8673 	 */
8674 	if (!enable_ept)
8675 		allow_smaller_maxphyaddr = true;
8676 
8677 	/*
8678 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8679 	 * exposed to userspace!
8680 	 */
8681 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8682 		     THIS_MODULE);
8683 	if (r)
8684 		goto err_kvm_init;
8685 
8686 	return 0;
8687 
8688 err_kvm_init:
8689 	__vmx_exit();
8690 err_l1d_flush:
8691 	kvm_x86_vendor_exit();
8692 	return r;
8693 }
8694 module_init(vmx_init);
8695