1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/fred.h> 42 #include <asm/idtentry.h> 43 #include <asm/io.h> 44 #include <asm/irq_remapping.h> 45 #include <asm/reboot.h> 46 #include <asm/perf_event.h> 47 #include <asm/mmu_context.h> 48 #include <asm/mshyperv.h> 49 #include <asm/mwait.h> 50 #include <asm/spec-ctrl.h> 51 #include <asm/vmx.h> 52 53 #include <trace/events/ipi.h> 54 55 #include "capabilities.h" 56 #include "cpuid.h" 57 #include "hyperv.h" 58 #include "kvm_onhyperv.h" 59 #include "irq.h" 60 #include "kvm_cache_regs.h" 61 #include "lapic.h" 62 #include "mmu.h" 63 #include "nested.h" 64 #include "pmu.h" 65 #include "sgx.h" 66 #include "trace.h" 67 #include "vmcs.h" 68 #include "vmcs12.h" 69 #include "vmx.h" 70 #include "x86.h" 71 #include "x86_ops.h" 72 #include "smm.h" 73 #include "vmx_onhyperv.h" 74 #include "posted_intr.h" 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions"); 78 MODULE_LICENSE("GPL"); 79 80 #ifdef MODULE 81 static const struct x86_cpu_id vmx_cpu_id[] = { 82 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 83 {} 84 }; 85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 86 #endif 87 88 bool __read_mostly enable_vpid = 1; 89 module_param_named(vpid, enable_vpid, bool, 0444); 90 91 static bool __read_mostly enable_vnmi = 1; 92 module_param_named(vnmi, enable_vnmi, bool, 0444); 93 94 bool __read_mostly flexpriority_enabled = 1; 95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444); 96 97 bool __read_mostly enable_ept = 1; 98 module_param_named(ept, enable_ept, bool, 0444); 99 100 bool __read_mostly enable_unrestricted_guest = 1; 101 module_param_named(unrestricted_guest, 102 enable_unrestricted_guest, bool, 0444); 103 104 bool __read_mostly enable_ept_ad_bits = 1; 105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444); 106 107 static bool __read_mostly emulate_invalid_guest_state = true; 108 module_param(emulate_invalid_guest_state, bool, 0444); 109 110 static bool __read_mostly fasteoi = 1; 111 module_param(fasteoi, bool, 0444); 112 113 module_param(enable_apicv, bool, 0444); 114 115 bool __read_mostly enable_ipiv = true; 116 module_param(enable_ipiv, bool, 0444); 117 118 /* 119 * If nested=1, nested virtualization is supported, i.e., guests may use 120 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 121 * use VMX instructions. 122 */ 123 static bool __read_mostly nested = 1; 124 module_param(nested, bool, 0444); 125 126 bool __read_mostly enable_pml = 1; 127 module_param_named(pml, enable_pml, bool, 0444); 128 129 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 130 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 131 132 static bool __read_mostly dump_invalid_vmcs = 0; 133 module_param(dump_invalid_vmcs, bool, 0644); 134 135 #define MSR_BITMAP_MODE_X2APIC 1 136 #define MSR_BITMAP_MODE_X2APIC_APICV 2 137 138 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 139 140 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 141 static int __read_mostly cpu_preemption_timer_multi; 142 static bool __read_mostly enable_preemption_timer = 1; 143 #ifdef CONFIG_X86_64 144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 145 #endif 146 147 extern bool __read_mostly allow_smaller_maxphyaddr; 148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 149 150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 152 #define KVM_VM_CR0_ALWAYS_ON \ 153 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 154 155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 158 159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 160 161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 162 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 163 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 164 RTIT_STATUS_BYTECNT)) 165 166 /* 167 * List of MSRs that can be directly passed to the guest. 168 * In addition to these x2apic, PT and LBR MSRs are handled specially. 169 */ 170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 171 MSR_IA32_SPEC_CTRL, 172 MSR_IA32_PRED_CMD, 173 MSR_IA32_FLUSH_CMD, 174 MSR_IA32_TSC, 175 #ifdef CONFIG_X86_64 176 MSR_FS_BASE, 177 MSR_GS_BASE, 178 MSR_KERNEL_GS_BASE, 179 MSR_IA32_XFD, 180 MSR_IA32_XFD_ERR, 181 #endif 182 MSR_IA32_SYSENTER_CS, 183 MSR_IA32_SYSENTER_ESP, 184 MSR_IA32_SYSENTER_EIP, 185 MSR_CORE_C1_RES, 186 MSR_CORE_C3_RESIDENCY, 187 MSR_CORE_C6_RESIDENCY, 188 MSR_CORE_C7_RESIDENCY, 189 }; 190 191 /* 192 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 193 * ple_gap: upper bound on the amount of time between two successive 194 * executions of PAUSE in a loop. Also indicate if ple enabled. 195 * According to test, this time is usually smaller than 128 cycles. 196 * ple_window: upper bound on the amount of time a guest is allowed to execute 197 * in a PAUSE loop. Tests indicate that most spinlocks are held for 198 * less than 2^12 cycles 199 * Time is measured based on a counter that runs at the same rate as the TSC, 200 * refer SDM volume 3b section 21.6.13 & 22.1.3. 201 */ 202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 203 module_param(ple_gap, uint, 0444); 204 205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 206 module_param(ple_window, uint, 0444); 207 208 /* Default doubles per-vcpu window every exit. */ 209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 210 module_param(ple_window_grow, uint, 0444); 211 212 /* Default resets per-vcpu window every exit to ple_window. */ 213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 214 module_param(ple_window_shrink, uint, 0444); 215 216 /* Default is to compute the maximum so we can never overflow. */ 217 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 218 module_param(ple_window_max, uint, 0444); 219 220 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */ 221 int __read_mostly pt_mode = PT_MODE_SYSTEM; 222 #ifdef CONFIG_BROKEN 223 module_param(pt_mode, int, S_IRUGO); 224 #endif 225 226 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps; 227 228 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 229 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 230 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 231 232 /* Storage for pre module init parameter parsing */ 233 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 234 235 static const struct { 236 const char *option; 237 bool for_parse; 238 } vmentry_l1d_param[] = { 239 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 240 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 241 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 242 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 243 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 244 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 245 }; 246 247 #define L1D_CACHE_ORDER 4 248 static void *vmx_l1d_flush_pages; 249 250 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 251 { 252 struct page *page; 253 unsigned int i; 254 255 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 257 return 0; 258 } 259 260 if (!enable_ept) { 261 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 262 return 0; 263 } 264 265 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 266 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 267 return 0; 268 } 269 270 /* If set to auto use the default l1tf mitigation method */ 271 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 272 switch (l1tf_mitigation) { 273 case L1TF_MITIGATION_OFF: 274 l1tf = VMENTER_L1D_FLUSH_NEVER; 275 break; 276 case L1TF_MITIGATION_FLUSH_NOWARN: 277 case L1TF_MITIGATION_FLUSH: 278 case L1TF_MITIGATION_FLUSH_NOSMT: 279 l1tf = VMENTER_L1D_FLUSH_COND; 280 break; 281 case L1TF_MITIGATION_FULL: 282 case L1TF_MITIGATION_FULL_FORCE: 283 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 284 break; 285 } 286 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 287 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 288 } 289 290 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 291 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 292 /* 293 * This allocation for vmx_l1d_flush_pages is not tied to a VM 294 * lifetime and so should not be charged to a memcg. 295 */ 296 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 297 if (!page) 298 return -ENOMEM; 299 vmx_l1d_flush_pages = page_address(page); 300 301 /* 302 * Initialize each page with a different pattern in 303 * order to protect against KSM in the nested 304 * virtualization case. 305 */ 306 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 307 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 308 PAGE_SIZE); 309 } 310 } 311 312 l1tf_vmx_mitigation = l1tf; 313 314 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 315 static_branch_enable(&vmx_l1d_should_flush); 316 else 317 static_branch_disable(&vmx_l1d_should_flush); 318 319 if (l1tf == VMENTER_L1D_FLUSH_COND) 320 static_branch_enable(&vmx_l1d_flush_cond); 321 else 322 static_branch_disable(&vmx_l1d_flush_cond); 323 return 0; 324 } 325 326 static int vmentry_l1d_flush_parse(const char *s) 327 { 328 unsigned int i; 329 330 if (s) { 331 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 332 if (vmentry_l1d_param[i].for_parse && 333 sysfs_streq(s, vmentry_l1d_param[i].option)) 334 return i; 335 } 336 } 337 return -EINVAL; 338 } 339 340 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 341 { 342 int l1tf, ret; 343 344 l1tf = vmentry_l1d_flush_parse(s); 345 if (l1tf < 0) 346 return l1tf; 347 348 if (!boot_cpu_has(X86_BUG_L1TF)) 349 return 0; 350 351 /* 352 * Has vmx_init() run already? If not then this is the pre init 353 * parameter parsing. In that case just store the value and let 354 * vmx_init() do the proper setup after enable_ept has been 355 * established. 356 */ 357 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 358 vmentry_l1d_flush_param = l1tf; 359 return 0; 360 } 361 362 mutex_lock(&vmx_l1d_flush_mutex); 363 ret = vmx_setup_l1d_flush(l1tf); 364 mutex_unlock(&vmx_l1d_flush_mutex); 365 return ret; 366 } 367 368 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 369 { 370 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 371 return sysfs_emit(s, "???\n"); 372 373 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 374 } 375 376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 377 { 378 u64 msr; 379 380 if (!vmx->disable_fb_clear) 381 return; 382 383 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 384 msr |= FB_CLEAR_DIS; 385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 386 /* Cache the MSR value to avoid reading it later */ 387 vmx->msr_ia32_mcu_opt_ctrl = msr; 388 } 389 390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 391 { 392 if (!vmx->disable_fb_clear) 393 return; 394 395 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 397 } 398 399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 400 { 401 /* 402 * Disable VERW's behavior of clearing CPU buffers for the guest if the 403 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 404 * the mitigation. Disabling the clearing behavior provides a 405 * performance boost for guests that aren't aware that manually clearing 406 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 407 * and VM-Exit. 408 */ 409 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 410 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 411 !boot_cpu_has_bug(X86_BUG_MDS) && 412 !boot_cpu_has_bug(X86_BUG_TAA); 413 414 /* 415 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 416 * at VMEntry. Skip the MSR read/write when a guest has no use case to 417 * execute VERW. 418 */ 419 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 420 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 421 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 422 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 423 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 424 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 425 vmx->disable_fb_clear = false; 426 } 427 428 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 429 .set = vmentry_l1d_flush_set, 430 .get = vmentry_l1d_flush_get, 431 }; 432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 433 434 static u32 vmx_segment_access_rights(struct kvm_segment *var); 435 436 void vmx_vmexit(void); 437 438 #define vmx_insn_failed(fmt...) \ 439 do { \ 440 WARN_ONCE(1, fmt); \ 441 pr_warn_ratelimited(fmt); \ 442 } while (0) 443 444 noinline void vmread_error(unsigned long field) 445 { 446 vmx_insn_failed("vmread failed: field=%lx\n", field); 447 } 448 449 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 450 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 451 { 452 if (fault) { 453 kvm_spurious_fault(); 454 } else { 455 instrumentation_begin(); 456 vmread_error(field); 457 instrumentation_end(); 458 } 459 } 460 #endif 461 462 noinline void vmwrite_error(unsigned long field, unsigned long value) 463 { 464 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 465 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 466 } 467 468 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 469 { 470 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 471 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 472 } 473 474 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 475 { 476 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 477 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 478 } 479 480 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 481 { 482 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 483 ext, vpid, gva); 484 } 485 486 noinline void invept_error(unsigned long ext, u64 eptp) 487 { 488 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp); 489 } 490 491 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 492 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 493 /* 494 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 495 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 496 */ 497 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 498 499 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 500 static DEFINE_SPINLOCK(vmx_vpid_lock); 501 502 struct vmcs_config vmcs_config __ro_after_init; 503 struct vmx_capability vmx_capability __ro_after_init; 504 505 #define VMX_SEGMENT_FIELD(seg) \ 506 [VCPU_SREG_##seg] = { \ 507 .selector = GUEST_##seg##_SELECTOR, \ 508 .base = GUEST_##seg##_BASE, \ 509 .limit = GUEST_##seg##_LIMIT, \ 510 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 511 } 512 513 static const struct kvm_vmx_segment_field { 514 unsigned selector; 515 unsigned base; 516 unsigned limit; 517 unsigned ar_bytes; 518 } kvm_vmx_segment_fields[] = { 519 VMX_SEGMENT_FIELD(CS), 520 VMX_SEGMENT_FIELD(DS), 521 VMX_SEGMENT_FIELD(ES), 522 VMX_SEGMENT_FIELD(FS), 523 VMX_SEGMENT_FIELD(GS), 524 VMX_SEGMENT_FIELD(SS), 525 VMX_SEGMENT_FIELD(TR), 526 VMX_SEGMENT_FIELD(LDTR), 527 }; 528 529 530 static unsigned long host_idt_base; 531 532 #if IS_ENABLED(CONFIG_HYPERV) 533 static bool __read_mostly enlightened_vmcs = true; 534 module_param(enlightened_vmcs, bool, 0444); 535 536 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 537 { 538 struct hv_enlightened_vmcs *evmcs; 539 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); 540 541 if (partition_assist_page == INVALID_PAGE) 542 return -ENOMEM; 543 544 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 545 546 evmcs->partition_assist_page = partition_assist_page; 547 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 548 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 549 550 return 0; 551 } 552 553 static __init void hv_init_evmcs(void) 554 { 555 int cpu; 556 557 if (!enlightened_vmcs) 558 return; 559 560 /* 561 * Enlightened VMCS usage should be recommended and the host needs 562 * to support eVMCS v1 or above. 563 */ 564 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 565 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 566 KVM_EVMCS_VERSION) { 567 568 /* Check that we have assist pages on all online CPUs */ 569 for_each_online_cpu(cpu) { 570 if (!hv_get_vp_assist_page(cpu)) { 571 enlightened_vmcs = false; 572 break; 573 } 574 } 575 576 if (enlightened_vmcs) { 577 pr_info("Using Hyper-V Enlightened VMCS\n"); 578 static_branch_enable(&__kvm_is_using_evmcs); 579 } 580 581 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 582 vt_x86_ops.enable_l2_tlb_flush 583 = hv_enable_l2_tlb_flush; 584 } else { 585 enlightened_vmcs = false; 586 } 587 } 588 589 static void hv_reset_evmcs(void) 590 { 591 struct hv_vp_assist_page *vp_ap; 592 593 if (!kvm_is_using_evmcs()) 594 return; 595 596 /* 597 * KVM should enable eVMCS if and only if all CPUs have a VP assist 598 * page, and should reject CPU onlining if eVMCS is enabled the CPU 599 * doesn't have a VP assist page allocated. 600 */ 601 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 602 if (WARN_ON_ONCE(!vp_ap)) 603 return; 604 605 /* 606 * Reset everything to support using non-enlightened VMCS access later 607 * (e.g. when we reload the module with enlightened_vmcs=0) 608 */ 609 vp_ap->nested_control.features.directhypercall = 0; 610 vp_ap->current_nested_vmcs = 0; 611 vp_ap->enlighten_vmentry = 0; 612 } 613 614 #else /* IS_ENABLED(CONFIG_HYPERV) */ 615 static void hv_init_evmcs(void) {} 616 static void hv_reset_evmcs(void) {} 617 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 618 619 /* 620 * Comment's format: document - errata name - stepping - processor name. 621 * Refer from 622 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 623 */ 624 static u32 vmx_preemption_cpu_tfms[] = { 625 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 626 0x000206E6, 627 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 628 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 629 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 630 0x00020652, 631 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 632 0x00020655, 633 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 634 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 635 /* 636 * 320767.pdf - AAP86 - B1 - 637 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 638 */ 639 0x000106E5, 640 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 641 0x000106A0, 642 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 643 0x000106A1, 644 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 645 0x000106A4, 646 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 647 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 648 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 649 0x000106A5, 650 /* Xeon E3-1220 V2 */ 651 0x000306A8, 652 }; 653 654 static inline bool cpu_has_broken_vmx_preemption_timer(void) 655 { 656 u32 eax = cpuid_eax(0x00000001), i; 657 658 /* Clear the reserved bits */ 659 eax &= ~(0x3U << 14 | 0xfU << 28); 660 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 661 if (eax == vmx_preemption_cpu_tfms[i]) 662 return true; 663 664 return false; 665 } 666 667 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 668 { 669 return flexpriority_enabled && lapic_in_kernel(vcpu); 670 } 671 672 static int vmx_get_passthrough_msr_slot(u32 msr) 673 { 674 int i; 675 676 switch (msr) { 677 case 0x800 ... 0x8ff: 678 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 679 return -ENOENT; 680 case MSR_IA32_RTIT_STATUS: 681 case MSR_IA32_RTIT_OUTPUT_BASE: 682 case MSR_IA32_RTIT_OUTPUT_MASK: 683 case MSR_IA32_RTIT_CR3_MATCH: 684 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 685 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 686 case MSR_LBR_SELECT: 687 case MSR_LBR_TOS: 688 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 689 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 690 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 691 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 692 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 693 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 694 return -ENOENT; 695 } 696 697 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 698 if (vmx_possible_passthrough_msrs[i] == msr) 699 return i; 700 } 701 702 WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 703 return -ENOENT; 704 } 705 706 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 707 { 708 int i; 709 710 i = kvm_find_user_return_msr(msr); 711 if (i >= 0) 712 return &vmx->guest_uret_msrs[i]; 713 return NULL; 714 } 715 716 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 717 struct vmx_uret_msr *msr, u64 data) 718 { 719 unsigned int slot = msr - vmx->guest_uret_msrs; 720 int ret = 0; 721 722 if (msr->load_into_hardware) { 723 preempt_disable(); 724 ret = kvm_set_user_return_msr(slot, data, msr->mask); 725 preempt_enable(); 726 } 727 if (!ret) 728 msr->data = data; 729 return ret; 730 } 731 732 /* 733 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 734 * 735 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 736 * atomically track post-VMXON state, e.g. this may be called in NMI context. 737 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 738 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 739 * magically in RM, VM86, compat mode, or at CPL>0. 740 */ 741 static int kvm_cpu_vmxoff(void) 742 { 743 asm goto("1: vmxoff\n\t" 744 _ASM_EXTABLE(1b, %l[fault]) 745 ::: "cc", "memory" : fault); 746 747 cr4_clear_bits(X86_CR4_VMXE); 748 return 0; 749 750 fault: 751 cr4_clear_bits(X86_CR4_VMXE); 752 return -EIO; 753 } 754 755 void vmx_emergency_disable_virtualization_cpu(void) 756 { 757 int cpu = raw_smp_processor_id(); 758 struct loaded_vmcs *v; 759 760 kvm_rebooting = true; 761 762 /* 763 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 764 * set in task context. If this races with VMX is disabled by an NMI, 765 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 766 * kvm_rebooting set. 767 */ 768 if (!(__read_cr4() & X86_CR4_VMXE)) 769 return; 770 771 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 772 loaded_vmcss_on_cpu_link) 773 vmcs_clear(v->vmcs); 774 775 kvm_cpu_vmxoff(); 776 } 777 778 static void __loaded_vmcs_clear(void *arg) 779 { 780 struct loaded_vmcs *loaded_vmcs = arg; 781 int cpu = raw_smp_processor_id(); 782 783 if (loaded_vmcs->cpu != cpu) 784 return; /* vcpu migration can race with cpu offline */ 785 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 786 per_cpu(current_vmcs, cpu) = NULL; 787 788 vmcs_clear(loaded_vmcs->vmcs); 789 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 790 vmcs_clear(loaded_vmcs->shadow_vmcs); 791 792 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 793 794 /* 795 * Ensure all writes to loaded_vmcs, including deleting it from its 796 * current percpu list, complete before setting loaded_vmcs->cpu to 797 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 798 * and add loaded_vmcs to its percpu list before it's deleted from this 799 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 800 */ 801 smp_wmb(); 802 803 loaded_vmcs->cpu = -1; 804 loaded_vmcs->launched = 0; 805 } 806 807 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 808 { 809 int cpu = loaded_vmcs->cpu; 810 811 if (cpu != -1) 812 smp_call_function_single(cpu, 813 __loaded_vmcs_clear, loaded_vmcs, 1); 814 } 815 816 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 817 unsigned field) 818 { 819 bool ret; 820 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 821 822 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 823 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 824 vmx->segment_cache.bitmask = 0; 825 } 826 ret = vmx->segment_cache.bitmask & mask; 827 vmx->segment_cache.bitmask |= mask; 828 return ret; 829 } 830 831 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 832 { 833 u16 *p = &vmx->segment_cache.seg[seg].selector; 834 835 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 836 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 837 return *p; 838 } 839 840 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 841 { 842 ulong *p = &vmx->segment_cache.seg[seg].base; 843 844 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 845 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 846 return *p; 847 } 848 849 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 850 { 851 u32 *p = &vmx->segment_cache.seg[seg].limit; 852 853 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 854 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 855 return *p; 856 } 857 858 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 859 { 860 u32 *p = &vmx->segment_cache.seg[seg].ar; 861 862 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 863 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 864 return *p; 865 } 866 867 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 868 { 869 u32 eb; 870 871 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 872 (1u << DB_VECTOR) | (1u << AC_VECTOR); 873 /* 874 * #VE isn't used for VMX. To test against unexpected changes 875 * related to #VE for VMX, intercept unexpected #VE and warn on it. 876 */ 877 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) 878 eb |= 1u << VE_VECTOR; 879 /* 880 * Guest access to VMware backdoor ports could legitimately 881 * trigger #GP because of TSS I/O permission bitmap. 882 * We intercept those #GP and allow access to them anyway 883 * as VMware does. 884 */ 885 if (enable_vmware_backdoor) 886 eb |= (1u << GP_VECTOR); 887 if ((vcpu->guest_debug & 888 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 889 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 890 eb |= 1u << BP_VECTOR; 891 if (to_vmx(vcpu)->rmode.vm86_active) 892 eb = ~0; 893 if (!vmx_need_pf_intercept(vcpu)) 894 eb &= ~(1u << PF_VECTOR); 895 896 /* When we are running a nested L2 guest and L1 specified for it a 897 * certain exception bitmap, we must trap the same exceptions and pass 898 * them to L1. When running L2, we will only handle the exceptions 899 * specified above if L1 did not want them. 900 */ 901 if (is_guest_mode(vcpu)) 902 eb |= get_vmcs12(vcpu)->exception_bitmap; 903 else { 904 int mask = 0, match = 0; 905 906 if (enable_ept && (eb & (1u << PF_VECTOR))) { 907 /* 908 * If EPT is enabled, #PF is currently only intercepted 909 * if MAXPHYADDR is smaller on the guest than on the 910 * host. In that case we only care about present, 911 * non-reserved faults. For vmcs02, however, PFEC_MASK 912 * and PFEC_MATCH are set in prepare_vmcs02_rare. 913 */ 914 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 915 match = PFERR_PRESENT_MASK; 916 } 917 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 918 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 919 } 920 921 /* 922 * Disabling xfd interception indicates that dynamic xfeatures 923 * might be used in the guest. Always trap #NM in this case 924 * to save guest xfd_err timely. 925 */ 926 if (vcpu->arch.xfd_no_write_intercept) 927 eb |= (1u << NM_VECTOR); 928 929 vmcs_write32(EXCEPTION_BITMAP, eb); 930 } 931 932 /* 933 * Check if MSR is intercepted for currently loaded MSR bitmap. 934 */ 935 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 936 { 937 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 938 return true; 939 940 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 941 } 942 943 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 944 { 945 unsigned int flags = 0; 946 947 if (vmx->loaded_vmcs->launched) 948 flags |= VMX_RUN_VMRESUME; 949 950 /* 951 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 952 * to change it directly without causing a vmexit. In that case read 953 * it after vmexit and store it in vmx->spec_ctrl. 954 */ 955 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 956 flags |= VMX_RUN_SAVE_SPEC_CTRL; 957 958 return flags; 959 } 960 961 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 962 unsigned long entry, unsigned long exit) 963 { 964 vm_entry_controls_clearbit(vmx, entry); 965 vm_exit_controls_clearbit(vmx, exit); 966 } 967 968 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 969 { 970 unsigned int i; 971 972 for (i = 0; i < m->nr; ++i) { 973 if (m->val[i].index == msr) 974 return i; 975 } 976 return -ENOENT; 977 } 978 979 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 980 { 981 int i; 982 struct msr_autoload *m = &vmx->msr_autoload; 983 984 switch (msr) { 985 case MSR_EFER: 986 if (cpu_has_load_ia32_efer()) { 987 clear_atomic_switch_msr_special(vmx, 988 VM_ENTRY_LOAD_IA32_EFER, 989 VM_EXIT_LOAD_IA32_EFER); 990 return; 991 } 992 break; 993 case MSR_CORE_PERF_GLOBAL_CTRL: 994 if (cpu_has_load_perf_global_ctrl()) { 995 clear_atomic_switch_msr_special(vmx, 996 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 997 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 998 return; 999 } 1000 break; 1001 } 1002 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1003 if (i < 0) 1004 goto skip_guest; 1005 --m->guest.nr; 1006 m->guest.val[i] = m->guest.val[m->guest.nr]; 1007 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1008 1009 skip_guest: 1010 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1011 if (i < 0) 1012 return; 1013 1014 --m->host.nr; 1015 m->host.val[i] = m->host.val[m->host.nr]; 1016 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1017 } 1018 1019 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1020 unsigned long entry, unsigned long exit, 1021 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1022 u64 guest_val, u64 host_val) 1023 { 1024 vmcs_write64(guest_val_vmcs, guest_val); 1025 if (host_val_vmcs != HOST_IA32_EFER) 1026 vmcs_write64(host_val_vmcs, host_val); 1027 vm_entry_controls_setbit(vmx, entry); 1028 vm_exit_controls_setbit(vmx, exit); 1029 } 1030 1031 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1032 u64 guest_val, u64 host_val, bool entry_only) 1033 { 1034 int i, j = 0; 1035 struct msr_autoload *m = &vmx->msr_autoload; 1036 1037 switch (msr) { 1038 case MSR_EFER: 1039 if (cpu_has_load_ia32_efer()) { 1040 add_atomic_switch_msr_special(vmx, 1041 VM_ENTRY_LOAD_IA32_EFER, 1042 VM_EXIT_LOAD_IA32_EFER, 1043 GUEST_IA32_EFER, 1044 HOST_IA32_EFER, 1045 guest_val, host_val); 1046 return; 1047 } 1048 break; 1049 case MSR_CORE_PERF_GLOBAL_CTRL: 1050 if (cpu_has_load_perf_global_ctrl()) { 1051 add_atomic_switch_msr_special(vmx, 1052 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1053 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1054 GUEST_IA32_PERF_GLOBAL_CTRL, 1055 HOST_IA32_PERF_GLOBAL_CTRL, 1056 guest_val, host_val); 1057 return; 1058 } 1059 break; 1060 case MSR_IA32_PEBS_ENABLE: 1061 /* PEBS needs a quiescent period after being disabled (to write 1062 * a record). Disabling PEBS through VMX MSR swapping doesn't 1063 * provide that period, so a CPU could write host's record into 1064 * guest's memory. 1065 */ 1066 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1067 } 1068 1069 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1070 if (!entry_only) 1071 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1072 1073 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1074 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1075 printk_once(KERN_WARNING "Not enough msr switch entries. " 1076 "Can't add msr %x\n", msr); 1077 return; 1078 } 1079 if (i < 0) { 1080 i = m->guest.nr++; 1081 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1082 } 1083 m->guest.val[i].index = msr; 1084 m->guest.val[i].value = guest_val; 1085 1086 if (entry_only) 1087 return; 1088 1089 if (j < 0) { 1090 j = m->host.nr++; 1091 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1092 } 1093 m->host.val[j].index = msr; 1094 m->host.val[j].value = host_val; 1095 } 1096 1097 static bool update_transition_efer(struct vcpu_vmx *vmx) 1098 { 1099 u64 guest_efer = vmx->vcpu.arch.efer; 1100 u64 ignore_bits = 0; 1101 int i; 1102 1103 /* Shadow paging assumes NX to be available. */ 1104 if (!enable_ept) 1105 guest_efer |= EFER_NX; 1106 1107 /* 1108 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1109 */ 1110 ignore_bits |= EFER_SCE; 1111 #ifdef CONFIG_X86_64 1112 ignore_bits |= EFER_LMA | EFER_LME; 1113 /* SCE is meaningful only in long mode on Intel */ 1114 if (guest_efer & EFER_LMA) 1115 ignore_bits &= ~(u64)EFER_SCE; 1116 #endif 1117 1118 /* 1119 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1120 * On CPUs that support "load IA32_EFER", always switch EFER 1121 * atomically, since it's faster than switching it manually. 1122 */ 1123 if (cpu_has_load_ia32_efer() || 1124 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) { 1125 if (!(guest_efer & EFER_LMA)) 1126 guest_efer &= ~EFER_LME; 1127 if (guest_efer != kvm_host.efer) 1128 add_atomic_switch_msr(vmx, MSR_EFER, 1129 guest_efer, kvm_host.efer, false); 1130 else 1131 clear_atomic_switch_msr(vmx, MSR_EFER); 1132 return false; 1133 } 1134 1135 i = kvm_find_user_return_msr(MSR_EFER); 1136 if (i < 0) 1137 return false; 1138 1139 clear_atomic_switch_msr(vmx, MSR_EFER); 1140 1141 guest_efer &= ~ignore_bits; 1142 guest_efer |= kvm_host.efer & ignore_bits; 1143 1144 vmx->guest_uret_msrs[i].data = guest_efer; 1145 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1146 1147 return true; 1148 } 1149 1150 #ifdef CONFIG_X86_32 1151 /* 1152 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1153 * VMCS rather than the segment table. KVM uses this helper to figure 1154 * out the current bases to poke them into the VMCS before entry. 1155 */ 1156 static unsigned long segment_base(u16 selector) 1157 { 1158 struct desc_struct *table; 1159 unsigned long v; 1160 1161 if (!(selector & ~SEGMENT_RPL_MASK)) 1162 return 0; 1163 1164 table = get_current_gdt_ro(); 1165 1166 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1167 u16 ldt_selector = kvm_read_ldt(); 1168 1169 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1170 return 0; 1171 1172 table = (struct desc_struct *)segment_base(ldt_selector); 1173 } 1174 v = get_desc_base(&table[selector >> 3]); 1175 return v; 1176 } 1177 #endif 1178 1179 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1180 { 1181 return vmx_pt_mode_is_host_guest() && 1182 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1183 } 1184 1185 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1186 { 1187 /* The base must be 128-byte aligned and a legal physical address. */ 1188 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1189 } 1190 1191 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1192 { 1193 u32 i; 1194 1195 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1196 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1197 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1198 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1199 for (i = 0; i < addr_range; i++) { 1200 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1201 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1202 } 1203 } 1204 1205 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1206 { 1207 u32 i; 1208 1209 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1210 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1211 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1212 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1213 for (i = 0; i < addr_range; i++) { 1214 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1215 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1216 } 1217 } 1218 1219 static void pt_guest_enter(struct vcpu_vmx *vmx) 1220 { 1221 if (vmx_pt_mode_is_system()) 1222 return; 1223 1224 /* 1225 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1226 * Save host state before VM entry. 1227 */ 1228 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1229 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1230 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1231 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1232 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1233 } 1234 } 1235 1236 static void pt_guest_exit(struct vcpu_vmx *vmx) 1237 { 1238 if (vmx_pt_mode_is_system()) 1239 return; 1240 1241 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1242 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1243 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1244 } 1245 1246 /* 1247 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1248 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1249 */ 1250 if (vmx->pt_desc.host.ctl) 1251 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1252 } 1253 1254 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1255 unsigned long fs_base, unsigned long gs_base) 1256 { 1257 if (unlikely(fs_sel != host->fs_sel)) { 1258 if (!(fs_sel & 7)) 1259 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1260 else 1261 vmcs_write16(HOST_FS_SELECTOR, 0); 1262 host->fs_sel = fs_sel; 1263 } 1264 if (unlikely(gs_sel != host->gs_sel)) { 1265 if (!(gs_sel & 7)) 1266 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1267 else 1268 vmcs_write16(HOST_GS_SELECTOR, 0); 1269 host->gs_sel = gs_sel; 1270 } 1271 if (unlikely(fs_base != host->fs_base)) { 1272 vmcs_writel(HOST_FS_BASE, fs_base); 1273 host->fs_base = fs_base; 1274 } 1275 if (unlikely(gs_base != host->gs_base)) { 1276 vmcs_writel(HOST_GS_BASE, gs_base); 1277 host->gs_base = gs_base; 1278 } 1279 } 1280 1281 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1282 { 1283 struct vcpu_vmx *vmx = to_vmx(vcpu); 1284 struct vmcs_host_state *host_state; 1285 #ifdef CONFIG_X86_64 1286 int cpu = raw_smp_processor_id(); 1287 #endif 1288 unsigned long fs_base, gs_base; 1289 u16 fs_sel, gs_sel; 1290 int i; 1291 1292 /* 1293 * Note that guest MSRs to be saved/restored can also be changed 1294 * when guest state is loaded. This happens when guest transitions 1295 * to/from long-mode by setting MSR_EFER.LMA. 1296 */ 1297 if (!vmx->guest_uret_msrs_loaded) { 1298 vmx->guest_uret_msrs_loaded = true; 1299 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1300 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1301 continue; 1302 1303 kvm_set_user_return_msr(i, 1304 vmx->guest_uret_msrs[i].data, 1305 vmx->guest_uret_msrs[i].mask); 1306 } 1307 } 1308 1309 if (vmx->nested.need_vmcs12_to_shadow_sync) 1310 nested_sync_vmcs12_to_shadow(vcpu); 1311 1312 if (vmx->guest_state_loaded) 1313 return; 1314 1315 host_state = &vmx->loaded_vmcs->host_state; 1316 1317 /* 1318 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1319 * allow segment selectors with cpl > 0 or ti == 1. 1320 */ 1321 host_state->ldt_sel = kvm_read_ldt(); 1322 1323 #ifdef CONFIG_X86_64 1324 savesegment(ds, host_state->ds_sel); 1325 savesegment(es, host_state->es_sel); 1326 1327 gs_base = cpu_kernelmode_gs_base(cpu); 1328 if (likely(is_64bit_mm(current->mm))) { 1329 current_save_fsgs(); 1330 fs_sel = current->thread.fsindex; 1331 gs_sel = current->thread.gsindex; 1332 fs_base = current->thread.fsbase; 1333 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1334 } else { 1335 savesegment(fs, fs_sel); 1336 savesegment(gs, gs_sel); 1337 fs_base = read_msr(MSR_FS_BASE); 1338 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1339 } 1340 1341 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1342 #else 1343 savesegment(fs, fs_sel); 1344 savesegment(gs, gs_sel); 1345 fs_base = segment_base(fs_sel); 1346 gs_base = segment_base(gs_sel); 1347 #endif 1348 1349 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1350 vmx->guest_state_loaded = true; 1351 } 1352 1353 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1354 { 1355 struct vmcs_host_state *host_state; 1356 1357 if (!vmx->guest_state_loaded) 1358 return; 1359 1360 host_state = &vmx->loaded_vmcs->host_state; 1361 1362 ++vmx->vcpu.stat.host_state_reload; 1363 1364 #ifdef CONFIG_X86_64 1365 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1366 #endif 1367 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1368 kvm_load_ldt(host_state->ldt_sel); 1369 #ifdef CONFIG_X86_64 1370 load_gs_index(host_state->gs_sel); 1371 #else 1372 loadsegment(gs, host_state->gs_sel); 1373 #endif 1374 } 1375 if (host_state->fs_sel & 7) 1376 loadsegment(fs, host_state->fs_sel); 1377 #ifdef CONFIG_X86_64 1378 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1379 loadsegment(ds, host_state->ds_sel); 1380 loadsegment(es, host_state->es_sel); 1381 } 1382 #endif 1383 invalidate_tss_limit(); 1384 #ifdef CONFIG_X86_64 1385 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1386 #endif 1387 load_fixmap_gdt(raw_smp_processor_id()); 1388 vmx->guest_state_loaded = false; 1389 vmx->guest_uret_msrs_loaded = false; 1390 } 1391 1392 #ifdef CONFIG_X86_64 1393 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1394 { 1395 preempt_disable(); 1396 if (vmx->guest_state_loaded) 1397 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1398 preempt_enable(); 1399 return vmx->msr_guest_kernel_gs_base; 1400 } 1401 1402 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1403 { 1404 preempt_disable(); 1405 if (vmx->guest_state_loaded) 1406 wrmsrl(MSR_KERNEL_GS_BASE, data); 1407 preempt_enable(); 1408 vmx->msr_guest_kernel_gs_base = data; 1409 } 1410 #endif 1411 1412 static void grow_ple_window(struct kvm_vcpu *vcpu) 1413 { 1414 struct vcpu_vmx *vmx = to_vmx(vcpu); 1415 unsigned int old = vmx->ple_window; 1416 1417 vmx->ple_window = __grow_ple_window(old, ple_window, 1418 ple_window_grow, 1419 ple_window_max); 1420 1421 if (vmx->ple_window != old) { 1422 vmx->ple_window_dirty = true; 1423 trace_kvm_ple_window_update(vcpu->vcpu_id, 1424 vmx->ple_window, old); 1425 } 1426 } 1427 1428 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1429 { 1430 struct vcpu_vmx *vmx = to_vmx(vcpu); 1431 unsigned int old = vmx->ple_window; 1432 1433 vmx->ple_window = __shrink_ple_window(old, ple_window, 1434 ple_window_shrink, 1435 ple_window); 1436 1437 if (vmx->ple_window != old) { 1438 vmx->ple_window_dirty = true; 1439 trace_kvm_ple_window_update(vcpu->vcpu_id, 1440 vmx->ple_window, old); 1441 } 1442 } 1443 1444 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1445 struct loaded_vmcs *buddy) 1446 { 1447 struct vcpu_vmx *vmx = to_vmx(vcpu); 1448 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1449 struct vmcs *prev; 1450 1451 if (!already_loaded) { 1452 loaded_vmcs_clear(vmx->loaded_vmcs); 1453 local_irq_disable(); 1454 1455 /* 1456 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1457 * this cpu's percpu list, otherwise it may not yet be deleted 1458 * from its previous cpu's percpu list. Pairs with the 1459 * smb_wmb() in __loaded_vmcs_clear(). 1460 */ 1461 smp_rmb(); 1462 1463 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1464 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1465 local_irq_enable(); 1466 } 1467 1468 prev = per_cpu(current_vmcs, cpu); 1469 if (prev != vmx->loaded_vmcs->vmcs) { 1470 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1471 vmcs_load(vmx->loaded_vmcs->vmcs); 1472 1473 /* 1474 * No indirect branch prediction barrier needed when switching 1475 * the active VMCS within a vCPU, unless IBRS is advertised to 1476 * the vCPU. To minimize the number of IBPBs executed, KVM 1477 * performs IBPB on nested VM-Exit (a single nested transition 1478 * may switch the active VMCS multiple times). 1479 */ 1480 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1481 indirect_branch_prediction_barrier(); 1482 } 1483 1484 if (!already_loaded) { 1485 void *gdt = get_current_gdt_ro(); 1486 1487 /* 1488 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1489 * TLB entries from its previous association with the vCPU. 1490 */ 1491 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1492 1493 /* 1494 * Linux uses per-cpu TSS and GDT, so set these when switching 1495 * processors. See 22.2.4. 1496 */ 1497 vmcs_writel(HOST_TR_BASE, 1498 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1499 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1500 1501 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1502 /* 22.2.3 */ 1503 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1504 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1505 } 1506 1507 vmx->loaded_vmcs->cpu = cpu; 1508 } 1509 } 1510 1511 /* 1512 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1513 * vcpu mutex is already taken. 1514 */ 1515 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1516 { 1517 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1518 shrink_ple_window(vcpu); 1519 1520 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1521 1522 vmx_vcpu_pi_load(vcpu, cpu); 1523 } 1524 1525 void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1526 { 1527 vmx_vcpu_pi_put(vcpu); 1528 1529 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1530 } 1531 1532 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1533 { 1534 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1535 } 1536 1537 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1538 { 1539 struct vcpu_vmx *vmx = to_vmx(vcpu); 1540 unsigned long rflags, save_rflags; 1541 1542 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1543 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1544 rflags = vmcs_readl(GUEST_RFLAGS); 1545 if (vmx->rmode.vm86_active) { 1546 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1547 save_rflags = vmx->rmode.save_rflags; 1548 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1549 } 1550 vmx->rflags = rflags; 1551 } 1552 return vmx->rflags; 1553 } 1554 1555 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1556 { 1557 struct vcpu_vmx *vmx = to_vmx(vcpu); 1558 unsigned long old_rflags; 1559 1560 /* 1561 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1562 * is an unrestricted guest in order to mark L2 as needing emulation 1563 * if L1 runs L2 as a restricted guest. 1564 */ 1565 if (is_unrestricted_guest(vcpu)) { 1566 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1567 vmx->rflags = rflags; 1568 vmcs_writel(GUEST_RFLAGS, rflags); 1569 return; 1570 } 1571 1572 old_rflags = vmx_get_rflags(vcpu); 1573 vmx->rflags = rflags; 1574 if (vmx->rmode.vm86_active) { 1575 vmx->rmode.save_rflags = rflags; 1576 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1577 } 1578 vmcs_writel(GUEST_RFLAGS, rflags); 1579 1580 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1581 vmx->emulation_required = vmx_emulation_required(vcpu); 1582 } 1583 1584 bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1585 { 1586 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1587 } 1588 1589 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1590 { 1591 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1592 int ret = 0; 1593 1594 if (interruptibility & GUEST_INTR_STATE_STI) 1595 ret |= KVM_X86_SHADOW_INT_STI; 1596 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1597 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1598 1599 return ret; 1600 } 1601 1602 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1603 { 1604 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1605 u32 interruptibility = interruptibility_old; 1606 1607 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1608 1609 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1610 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1611 else if (mask & KVM_X86_SHADOW_INT_STI) 1612 interruptibility |= GUEST_INTR_STATE_STI; 1613 1614 if ((interruptibility != interruptibility_old)) 1615 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1616 } 1617 1618 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1619 { 1620 struct vcpu_vmx *vmx = to_vmx(vcpu); 1621 unsigned long value; 1622 1623 /* 1624 * Any MSR write that attempts to change bits marked reserved will 1625 * case a #GP fault. 1626 */ 1627 if (data & vmx->pt_desc.ctl_bitmask) 1628 return 1; 1629 1630 /* 1631 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1632 * result in a #GP unless the same write also clears TraceEn. 1633 */ 1634 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1635 (data & RTIT_CTL_TRACEEN) && 1636 data != vmx->pt_desc.guest.ctl) 1637 return 1; 1638 1639 /* 1640 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1641 * and FabricEn would cause #GP, if 1642 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1643 */ 1644 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1645 !(data & RTIT_CTL_FABRIC_EN) && 1646 !intel_pt_validate_cap(vmx->pt_desc.caps, 1647 PT_CAP_single_range_output)) 1648 return 1; 1649 1650 /* 1651 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1652 * utilize encodings marked reserved will cause a #GP fault. 1653 */ 1654 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1655 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1656 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1657 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1658 return 1; 1659 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1660 PT_CAP_cycle_thresholds); 1661 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1662 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1663 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1664 return 1; 1665 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1666 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1667 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1668 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1669 return 1; 1670 1671 /* 1672 * If ADDRx_CFG is reserved or the encodings is >2 will 1673 * cause a #GP fault. 1674 */ 1675 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1676 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1677 return 1; 1678 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1679 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1680 return 1; 1681 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1682 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1683 return 1; 1684 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1685 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1686 return 1; 1687 1688 return 0; 1689 } 1690 1691 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1692 void *insn, int insn_len) 1693 { 1694 /* 1695 * Emulation of instructions in SGX enclaves is impossible as RIP does 1696 * not point at the failing instruction, and even if it did, the code 1697 * stream is inaccessible. Inject #UD instead of exiting to userspace 1698 * so that guest userspace can't DoS the guest simply by triggering 1699 * emulation (enclaves are CPL3 only). 1700 */ 1701 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1702 kvm_queue_exception(vcpu, UD_VECTOR); 1703 return X86EMUL_PROPAGATE_FAULT; 1704 } 1705 1706 /* Check that emulation is possible during event vectoring */ 1707 if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 1708 !kvm_can_emulate_event_vectoring(emul_type)) 1709 return X86EMUL_UNHANDLEABLE_VECTORING; 1710 1711 return X86EMUL_CONTINUE; 1712 } 1713 1714 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1715 { 1716 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1717 unsigned long rip, orig_rip; 1718 u32 instr_len; 1719 1720 /* 1721 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1722 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1723 * set when EPT misconfig occurs. In practice, real hardware updates 1724 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1725 * (namely Hyper-V) don't set it due to it being undefined behavior, 1726 * i.e. we end up advancing IP with some random value. 1727 */ 1728 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1729 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1730 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1731 1732 /* 1733 * Emulating an enclave's instructions isn't supported as KVM 1734 * cannot access the enclave's memory or its true RIP, e.g. the 1735 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1736 * the RIP that actually triggered the VM-Exit. But, because 1737 * most instructions that cause VM-Exit will #UD in an enclave, 1738 * most instruction-based VM-Exits simply do not occur. 1739 * 1740 * There are a few exceptions, notably the debug instructions 1741 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1742 * and generate #DB/#BP as expected, which KVM might intercept. 1743 * But again, the CPU does the dirty work and saves an instr 1744 * length of zero so VMMs don't shoot themselves in the foot. 1745 * WARN if KVM tries to skip a non-zero length instruction on 1746 * a VM-Exit from an enclave. 1747 */ 1748 if (!instr_len) 1749 goto rip_updated; 1750 1751 WARN_ONCE(exit_reason.enclave_mode, 1752 "skipping instruction after SGX enclave VM-Exit"); 1753 1754 orig_rip = kvm_rip_read(vcpu); 1755 rip = orig_rip + instr_len; 1756 #ifdef CONFIG_X86_64 1757 /* 1758 * We need to mask out the high 32 bits of RIP if not in 64-bit 1759 * mode, but just finding out that we are in 64-bit mode is 1760 * quite expensive. Only do it if there was a carry. 1761 */ 1762 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1763 rip = (u32)rip; 1764 #endif 1765 kvm_rip_write(vcpu, rip); 1766 } else { 1767 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1768 return 0; 1769 } 1770 1771 rip_updated: 1772 /* skipping an emulated instruction also counts */ 1773 vmx_set_interrupt_shadow(vcpu, 0); 1774 1775 return 1; 1776 } 1777 1778 /* 1779 * Recognizes a pending MTF VM-exit and records the nested state for later 1780 * delivery. 1781 */ 1782 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1783 { 1784 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1785 struct vcpu_vmx *vmx = to_vmx(vcpu); 1786 1787 if (!is_guest_mode(vcpu)) 1788 return; 1789 1790 /* 1791 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1792 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1793 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1794 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1795 * as ICEBP is higher priority than both. As instruction emulation is 1796 * completed at this point (i.e. KVM is at the instruction boundary), 1797 * any #DB exception pending delivery must be a debug-trap of lower 1798 * priority than MTF. Record the pending MTF state to be delivered in 1799 * vmx_check_nested_events(). 1800 */ 1801 if (nested_cpu_has_mtf(vmcs12) && 1802 (!vcpu->arch.exception.pending || 1803 vcpu->arch.exception.vector == DB_VECTOR) && 1804 (!vcpu->arch.exception_vmexit.pending || 1805 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1806 vmx->nested.mtf_pending = true; 1807 kvm_make_request(KVM_REQ_EVENT, vcpu); 1808 } else { 1809 vmx->nested.mtf_pending = false; 1810 } 1811 } 1812 1813 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1814 { 1815 vmx_update_emulated_instruction(vcpu); 1816 return skip_emulated_instruction(vcpu); 1817 } 1818 1819 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1820 { 1821 /* 1822 * Ensure that we clear the HLT state in the VMCS. We don't need to 1823 * explicitly skip the instruction because if the HLT state is set, 1824 * then the instruction is already executing and RIP has already been 1825 * advanced. 1826 */ 1827 if (kvm_hlt_in_guest(vcpu->kvm) && 1828 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1829 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1830 } 1831 1832 void vmx_inject_exception(struct kvm_vcpu *vcpu) 1833 { 1834 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1835 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1836 struct vcpu_vmx *vmx = to_vmx(vcpu); 1837 1838 kvm_deliver_exception_payload(vcpu, ex); 1839 1840 if (ex->has_error_code) { 1841 /* 1842 * Despite the error code being architecturally defined as 32 1843 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1844 * VMX don't actually supporting setting bits 31:16. Hardware 1845 * will (should) never provide a bogus error code, but AMD CPUs 1846 * do generate error codes with bits 31:16 set, and so KVM's 1847 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1848 * the upper bits to avoid VM-Fail, losing information that 1849 * doesn't really exist is preferable to killing the VM. 1850 */ 1851 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1852 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1853 } 1854 1855 if (vmx->rmode.vm86_active) { 1856 int inc_eip = 0; 1857 if (kvm_exception_is_soft(ex->vector)) 1858 inc_eip = vcpu->arch.event_exit_inst_len; 1859 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1860 return; 1861 } 1862 1863 WARN_ON_ONCE(vmx->emulation_required); 1864 1865 if (kvm_exception_is_soft(ex->vector)) { 1866 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1867 vmx->vcpu.arch.event_exit_inst_len); 1868 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1869 } else 1870 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1871 1872 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1873 1874 vmx_clear_hlt(vcpu); 1875 } 1876 1877 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1878 bool load_into_hardware) 1879 { 1880 struct vmx_uret_msr *uret_msr; 1881 1882 uret_msr = vmx_find_uret_msr(vmx, msr); 1883 if (!uret_msr) 1884 return; 1885 1886 uret_msr->load_into_hardware = load_into_hardware; 1887 } 1888 1889 /* 1890 * Configuring user return MSRs to automatically save, load, and restore MSRs 1891 * that need to be shoved into hardware when running the guest. Note, omitting 1892 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1893 * loaded into hardware when running the guest. 1894 */ 1895 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1896 { 1897 #ifdef CONFIG_X86_64 1898 bool load_syscall_msrs; 1899 1900 /* 1901 * The SYSCALL MSRs are only needed on long mode guests, and only 1902 * when EFER.SCE is set. 1903 */ 1904 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1905 (vmx->vcpu.arch.efer & EFER_SCE); 1906 1907 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1908 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1909 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1910 #endif 1911 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1912 1913 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1914 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1915 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1916 1917 /* 1918 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1919 * kernel and old userspace. If those guests run on a tsx=off host, do 1920 * allow guests to use TSX_CTRL, but don't change the value in hardware 1921 * so that TSX remains always disabled. 1922 */ 1923 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1924 1925 /* 1926 * The set of MSRs to load may have changed, reload MSRs before the 1927 * next VM-Enter. 1928 */ 1929 vmx->guest_uret_msrs_loaded = false; 1930 } 1931 1932 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1933 { 1934 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1935 1936 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1937 return vmcs12->tsc_offset; 1938 1939 return 0; 1940 } 1941 1942 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1943 { 1944 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1945 1946 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1947 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1948 return vmcs12->tsc_multiplier; 1949 1950 return kvm_caps.default_tsc_scaling_ratio; 1951 } 1952 1953 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1954 { 1955 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1956 } 1957 1958 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1959 { 1960 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1961 } 1962 1963 /* 1964 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1965 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1966 * backwards compatibility even though KVM doesn't support emulating SMX. And 1967 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1968 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1969 */ 1970 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1971 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1972 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1973 FEAT_CTL_SGX_LC_ENABLED | \ 1974 FEAT_CTL_SGX_ENABLED | \ 1975 FEAT_CTL_LMCE_ENABLED) 1976 1977 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1978 struct msr_data *msr) 1979 { 1980 uint64_t valid_bits; 1981 1982 /* 1983 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1984 * exposed to the guest. 1985 */ 1986 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1987 ~KVM_SUPPORTED_FEATURE_CONTROL); 1988 1989 if (!msr->host_initiated && 1990 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1991 return false; 1992 1993 if (msr->host_initiated) 1994 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1995 else 1996 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1997 1998 return !(msr->data & ~valid_bits); 1999 } 2000 2001 int vmx_get_feature_msr(u32 msr, u64 *data) 2002 { 2003 switch (msr) { 2004 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2005 if (!nested) 2006 return 1; 2007 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data); 2008 default: 2009 return KVM_MSR_RET_UNSUPPORTED; 2010 } 2011 } 2012 2013 /* 2014 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 2015 * Returns 0 on success, non-0 otherwise. 2016 * Assumes vcpu_load() was already called. 2017 */ 2018 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2019 { 2020 struct vcpu_vmx *vmx = to_vmx(vcpu); 2021 struct vmx_uret_msr *msr; 2022 u32 index; 2023 2024 switch (msr_info->index) { 2025 #ifdef CONFIG_X86_64 2026 case MSR_FS_BASE: 2027 msr_info->data = vmcs_readl(GUEST_FS_BASE); 2028 break; 2029 case MSR_GS_BASE: 2030 msr_info->data = vmcs_readl(GUEST_GS_BASE); 2031 break; 2032 case MSR_KERNEL_GS_BASE: 2033 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 2034 break; 2035 #endif 2036 case MSR_EFER: 2037 return kvm_get_msr_common(vcpu, msr_info); 2038 case MSR_IA32_TSX_CTRL: 2039 if (!msr_info->host_initiated && 2040 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2041 return 1; 2042 goto find_uret_msr; 2043 case MSR_IA32_UMWAIT_CONTROL: 2044 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2045 return 1; 2046 2047 msr_info->data = vmx->msr_ia32_umwait_control; 2048 break; 2049 case MSR_IA32_SPEC_CTRL: 2050 if (!msr_info->host_initiated && 2051 !guest_has_spec_ctrl_msr(vcpu)) 2052 return 1; 2053 2054 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2055 break; 2056 case MSR_IA32_SYSENTER_CS: 2057 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2058 break; 2059 case MSR_IA32_SYSENTER_EIP: 2060 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2061 break; 2062 case MSR_IA32_SYSENTER_ESP: 2063 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2064 break; 2065 case MSR_IA32_BNDCFGS: 2066 if (!kvm_mpx_supported() || 2067 (!msr_info->host_initiated && 2068 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX))) 2069 return 1; 2070 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2071 break; 2072 case MSR_IA32_MCG_EXT_CTL: 2073 if (!msr_info->host_initiated && 2074 !(vmx->msr_ia32_feature_control & 2075 FEAT_CTL_LMCE_ENABLED)) 2076 return 1; 2077 msr_info->data = vcpu->arch.mcg_ext_ctl; 2078 break; 2079 case MSR_IA32_FEAT_CTL: 2080 msr_info->data = vmx->msr_ia32_feature_control; 2081 break; 2082 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2083 if (!msr_info->host_initiated && 2084 !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC)) 2085 return 1; 2086 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2087 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2088 break; 2089 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2090 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) 2091 return 1; 2092 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2093 &msr_info->data)) 2094 return 1; 2095 #ifdef CONFIG_KVM_HYPERV 2096 /* 2097 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2098 * instead of just ignoring the features, different Hyper-V 2099 * versions are either trying to use them and fail or do some 2100 * sanity checking and refuse to boot. Filter all unsupported 2101 * features out. 2102 */ 2103 if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu)) 2104 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2105 &msr_info->data); 2106 #endif 2107 break; 2108 case MSR_IA32_RTIT_CTL: 2109 if (!vmx_pt_mode_is_host_guest()) 2110 return 1; 2111 msr_info->data = vmx->pt_desc.guest.ctl; 2112 break; 2113 case MSR_IA32_RTIT_STATUS: 2114 if (!vmx_pt_mode_is_host_guest()) 2115 return 1; 2116 msr_info->data = vmx->pt_desc.guest.status; 2117 break; 2118 case MSR_IA32_RTIT_CR3_MATCH: 2119 if (!vmx_pt_mode_is_host_guest() || 2120 !intel_pt_validate_cap(vmx->pt_desc.caps, 2121 PT_CAP_cr3_filtering)) 2122 return 1; 2123 msr_info->data = vmx->pt_desc.guest.cr3_match; 2124 break; 2125 case MSR_IA32_RTIT_OUTPUT_BASE: 2126 if (!vmx_pt_mode_is_host_guest() || 2127 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2128 PT_CAP_topa_output) && 2129 !intel_pt_validate_cap(vmx->pt_desc.caps, 2130 PT_CAP_single_range_output))) 2131 return 1; 2132 msr_info->data = vmx->pt_desc.guest.output_base; 2133 break; 2134 case MSR_IA32_RTIT_OUTPUT_MASK: 2135 if (!vmx_pt_mode_is_host_guest() || 2136 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2137 PT_CAP_topa_output) && 2138 !intel_pt_validate_cap(vmx->pt_desc.caps, 2139 PT_CAP_single_range_output))) 2140 return 1; 2141 msr_info->data = vmx->pt_desc.guest.output_mask; 2142 break; 2143 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2144 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2145 if (!vmx_pt_mode_is_host_guest() || 2146 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2147 return 1; 2148 if (index % 2) 2149 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2150 else 2151 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2152 break; 2153 case MSR_IA32_DEBUGCTLMSR: 2154 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2155 break; 2156 default: 2157 find_uret_msr: 2158 msr = vmx_find_uret_msr(vmx, msr_info->index); 2159 if (msr) { 2160 msr_info->data = msr->data; 2161 break; 2162 } 2163 return kvm_get_msr_common(vcpu, msr_info); 2164 } 2165 2166 return 0; 2167 } 2168 2169 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2170 u64 data) 2171 { 2172 #ifdef CONFIG_X86_64 2173 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 2174 return (u32)data; 2175 #endif 2176 return (unsigned long)data; 2177 } 2178 2179 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2180 { 2181 u64 debugctl = 0; 2182 2183 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2184 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2185 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2186 2187 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2188 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2189 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2190 2191 return debugctl; 2192 } 2193 2194 /* 2195 * Writes msr value into the appropriate "register". 2196 * Returns 0 on success, non-0 otherwise. 2197 * Assumes vcpu_load() was already called. 2198 */ 2199 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2200 { 2201 struct vcpu_vmx *vmx = to_vmx(vcpu); 2202 struct vmx_uret_msr *msr; 2203 int ret = 0; 2204 u32 msr_index = msr_info->index; 2205 u64 data = msr_info->data; 2206 u32 index; 2207 2208 switch (msr_index) { 2209 case MSR_EFER: 2210 ret = kvm_set_msr_common(vcpu, msr_info); 2211 break; 2212 #ifdef CONFIG_X86_64 2213 case MSR_FS_BASE: 2214 vmx_segment_cache_clear(vmx); 2215 vmcs_writel(GUEST_FS_BASE, data); 2216 break; 2217 case MSR_GS_BASE: 2218 vmx_segment_cache_clear(vmx); 2219 vmcs_writel(GUEST_GS_BASE, data); 2220 break; 2221 case MSR_KERNEL_GS_BASE: 2222 vmx_write_guest_kernel_gs_base(vmx, data); 2223 break; 2224 case MSR_IA32_XFD: 2225 ret = kvm_set_msr_common(vcpu, msr_info); 2226 /* 2227 * Always intercepting WRMSR could incur non-negligible 2228 * overhead given xfd might be changed frequently in 2229 * guest context switch. Disable write interception 2230 * upon the first write with a non-zero value (indicating 2231 * potential usage on dynamic xfeatures). Also update 2232 * exception bitmap to trap #NM for proper virtualization 2233 * of guest xfd_err. 2234 */ 2235 if (!ret && data) { 2236 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2237 MSR_TYPE_RW); 2238 vcpu->arch.xfd_no_write_intercept = true; 2239 vmx_update_exception_bitmap(vcpu); 2240 } 2241 break; 2242 #endif 2243 case MSR_IA32_SYSENTER_CS: 2244 if (is_guest_mode(vcpu)) 2245 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2246 vmcs_write32(GUEST_SYSENTER_CS, data); 2247 break; 2248 case MSR_IA32_SYSENTER_EIP: 2249 if (is_guest_mode(vcpu)) { 2250 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2251 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2252 } 2253 vmcs_writel(GUEST_SYSENTER_EIP, data); 2254 break; 2255 case MSR_IA32_SYSENTER_ESP: 2256 if (is_guest_mode(vcpu)) { 2257 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2258 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2259 } 2260 vmcs_writel(GUEST_SYSENTER_ESP, data); 2261 break; 2262 case MSR_IA32_DEBUGCTLMSR: { 2263 u64 invalid; 2264 2265 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2266 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2267 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2268 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2269 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2270 } 2271 2272 if (invalid) 2273 return 1; 2274 2275 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2276 VM_EXIT_SAVE_DEBUG_CONTROLS) 2277 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2278 2279 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2280 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2281 (data & DEBUGCTLMSR_LBR)) 2282 intel_pmu_create_guest_lbr_event(vcpu); 2283 return 0; 2284 } 2285 case MSR_IA32_BNDCFGS: 2286 if (!kvm_mpx_supported() || 2287 (!msr_info->host_initiated && 2288 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX))) 2289 return 1; 2290 if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) || 2291 (data & MSR_IA32_BNDCFGS_RSVD)) 2292 return 1; 2293 2294 if (is_guest_mode(vcpu) && 2295 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2296 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2297 get_vmcs12(vcpu)->guest_bndcfgs = data; 2298 2299 vmcs_write64(GUEST_BNDCFGS, data); 2300 break; 2301 case MSR_IA32_UMWAIT_CONTROL: 2302 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2303 return 1; 2304 2305 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2306 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2307 return 1; 2308 2309 vmx->msr_ia32_umwait_control = data; 2310 break; 2311 case MSR_IA32_SPEC_CTRL: 2312 if (!msr_info->host_initiated && 2313 !guest_has_spec_ctrl_msr(vcpu)) 2314 return 1; 2315 2316 if (kvm_spec_ctrl_test_value(data)) 2317 return 1; 2318 2319 vmx->spec_ctrl = data; 2320 if (!data) 2321 break; 2322 2323 /* 2324 * For non-nested: 2325 * When it's written (to non-zero) for the first time, pass 2326 * it through. 2327 * 2328 * For nested: 2329 * The handling of the MSR bitmap for L2 guests is done in 2330 * nested_vmx_prepare_msr_bitmap. We should not touch the 2331 * vmcs02.msr_bitmap here since it gets completely overwritten 2332 * in the merging. We update the vmcs01 here for L1 as well 2333 * since it will end up touching the MSR anyway now. 2334 */ 2335 vmx_disable_intercept_for_msr(vcpu, 2336 MSR_IA32_SPEC_CTRL, 2337 MSR_TYPE_RW); 2338 break; 2339 case MSR_IA32_TSX_CTRL: 2340 if (!msr_info->host_initiated && 2341 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2342 return 1; 2343 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2344 return 1; 2345 goto find_uret_msr; 2346 case MSR_IA32_CR_PAT: 2347 ret = kvm_set_msr_common(vcpu, msr_info); 2348 if (ret) 2349 break; 2350 2351 if (is_guest_mode(vcpu) && 2352 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2353 get_vmcs12(vcpu)->guest_ia32_pat = data; 2354 2355 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2356 vmcs_write64(GUEST_IA32_PAT, data); 2357 break; 2358 case MSR_IA32_MCG_EXT_CTL: 2359 if ((!msr_info->host_initiated && 2360 !(to_vmx(vcpu)->msr_ia32_feature_control & 2361 FEAT_CTL_LMCE_ENABLED)) || 2362 (data & ~MCG_EXT_CTL_LMCE_EN)) 2363 return 1; 2364 vcpu->arch.mcg_ext_ctl = data; 2365 break; 2366 case MSR_IA32_FEAT_CTL: 2367 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2368 return 1; 2369 2370 vmx->msr_ia32_feature_control = data; 2371 if (msr_info->host_initiated && data == 0) 2372 vmx_leave_nested(vcpu); 2373 2374 /* SGX may be enabled/disabled by guest's firmware */ 2375 vmx_write_encls_bitmap(vcpu, NULL); 2376 break; 2377 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2378 /* 2379 * On real hardware, the LE hash MSRs are writable before 2380 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2381 * at which point SGX related bits in IA32_FEATURE_CONTROL 2382 * become writable. 2383 * 2384 * KVM does not emulate SGX activation for simplicity, so 2385 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2386 * is unlocked. This is technically not architectural 2387 * behavior, but it's close enough. 2388 */ 2389 if (!msr_info->host_initiated && 2390 (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) || 2391 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2392 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2393 return 1; 2394 vmx->msr_ia32_sgxlepubkeyhash 2395 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2396 break; 2397 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2398 if (!msr_info->host_initiated) 2399 return 1; /* they are read-only */ 2400 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) 2401 return 1; 2402 return vmx_set_vmx_msr(vcpu, msr_index, data); 2403 case MSR_IA32_RTIT_CTL: 2404 if (!vmx_pt_mode_is_host_guest() || 2405 vmx_rtit_ctl_check(vcpu, data) || 2406 vmx->nested.vmxon) 2407 return 1; 2408 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2409 vmx->pt_desc.guest.ctl = data; 2410 pt_update_intercept_for_msr(vcpu); 2411 break; 2412 case MSR_IA32_RTIT_STATUS: 2413 if (!pt_can_write_msr(vmx)) 2414 return 1; 2415 if (data & MSR_IA32_RTIT_STATUS_MASK) 2416 return 1; 2417 vmx->pt_desc.guest.status = data; 2418 break; 2419 case MSR_IA32_RTIT_CR3_MATCH: 2420 if (!pt_can_write_msr(vmx)) 2421 return 1; 2422 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2423 PT_CAP_cr3_filtering)) 2424 return 1; 2425 vmx->pt_desc.guest.cr3_match = data; 2426 break; 2427 case MSR_IA32_RTIT_OUTPUT_BASE: 2428 if (!pt_can_write_msr(vmx)) 2429 return 1; 2430 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2431 PT_CAP_topa_output) && 2432 !intel_pt_validate_cap(vmx->pt_desc.caps, 2433 PT_CAP_single_range_output)) 2434 return 1; 2435 if (!pt_output_base_valid(vcpu, data)) 2436 return 1; 2437 vmx->pt_desc.guest.output_base = data; 2438 break; 2439 case MSR_IA32_RTIT_OUTPUT_MASK: 2440 if (!pt_can_write_msr(vmx)) 2441 return 1; 2442 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2443 PT_CAP_topa_output) && 2444 !intel_pt_validate_cap(vmx->pt_desc.caps, 2445 PT_CAP_single_range_output)) 2446 return 1; 2447 vmx->pt_desc.guest.output_mask = data; 2448 break; 2449 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2450 if (!pt_can_write_msr(vmx)) 2451 return 1; 2452 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2453 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2454 return 1; 2455 if (is_noncanonical_msr_address(data, vcpu)) 2456 return 1; 2457 if (index % 2) 2458 vmx->pt_desc.guest.addr_b[index / 2] = data; 2459 else 2460 vmx->pt_desc.guest.addr_a[index / 2] = data; 2461 break; 2462 case MSR_IA32_PERF_CAPABILITIES: 2463 if (data & PMU_CAP_LBR_FMT) { 2464 if ((data & PMU_CAP_LBR_FMT) != 2465 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2466 return 1; 2467 if (!cpuid_model_is_consistent(vcpu)) 2468 return 1; 2469 } 2470 if (data & PERF_CAP_PEBS_FORMAT) { 2471 if ((data & PERF_CAP_PEBS_MASK) != 2472 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2473 return 1; 2474 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS)) 2475 return 1; 2476 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64)) 2477 return 1; 2478 if (!cpuid_model_is_consistent(vcpu)) 2479 return 1; 2480 } 2481 ret = kvm_set_msr_common(vcpu, msr_info); 2482 break; 2483 2484 default: 2485 find_uret_msr: 2486 msr = vmx_find_uret_msr(vmx, msr_index); 2487 if (msr) 2488 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2489 else 2490 ret = kvm_set_msr_common(vcpu, msr_info); 2491 } 2492 2493 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2494 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2495 vmx_update_fb_clear_dis(vcpu, vmx); 2496 2497 return ret; 2498 } 2499 2500 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2501 { 2502 unsigned long guest_owned_bits; 2503 2504 kvm_register_mark_available(vcpu, reg); 2505 2506 switch (reg) { 2507 case VCPU_REGS_RSP: 2508 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2509 break; 2510 case VCPU_REGS_RIP: 2511 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2512 break; 2513 case VCPU_EXREG_PDPTR: 2514 if (enable_ept) 2515 ept_save_pdptrs(vcpu); 2516 break; 2517 case VCPU_EXREG_CR0: 2518 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2519 2520 vcpu->arch.cr0 &= ~guest_owned_bits; 2521 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2522 break; 2523 case VCPU_EXREG_CR3: 2524 /* 2525 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2526 * CR3 is loaded into hardware, not the guest's CR3. 2527 */ 2528 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2529 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2530 break; 2531 case VCPU_EXREG_CR4: 2532 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2533 2534 vcpu->arch.cr4 &= ~guest_owned_bits; 2535 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2536 break; 2537 default: 2538 KVM_BUG_ON(1, vcpu->kvm); 2539 break; 2540 } 2541 } 2542 2543 /* 2544 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2545 * directly instead of going through cpu_has(), to ensure KVM is trapping 2546 * ENCLS whenever it's supported in hardware. It does not matter whether 2547 * the host OS supports or has enabled SGX. 2548 */ 2549 static bool cpu_has_sgx(void) 2550 { 2551 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2552 } 2553 2554 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2555 { 2556 u32 vmx_msr_low, vmx_msr_high; 2557 u32 ctl = ctl_min | ctl_opt; 2558 2559 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2560 2561 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2562 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2563 2564 /* Ensure minimum (required) set of control bits are supported. */ 2565 if (ctl_min & ~ctl) 2566 return -EIO; 2567 2568 *result = ctl; 2569 return 0; 2570 } 2571 2572 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2573 { 2574 u64 allowed; 2575 2576 rdmsrl(msr, allowed); 2577 2578 return ctl_opt & allowed; 2579 } 2580 2581 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2582 struct vmx_capability *vmx_cap) 2583 { 2584 u32 _pin_based_exec_control = 0; 2585 u32 _cpu_based_exec_control = 0; 2586 u32 _cpu_based_2nd_exec_control = 0; 2587 u64 _cpu_based_3rd_exec_control = 0; 2588 u32 _vmexit_control = 0; 2589 u32 _vmentry_control = 0; 2590 u64 basic_msr; 2591 u64 misc_msr; 2592 int i; 2593 2594 /* 2595 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2596 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2597 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2598 */ 2599 struct { 2600 u32 entry_control; 2601 u32 exit_control; 2602 } const vmcs_entry_exit_pairs[] = { 2603 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2604 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2605 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2606 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2607 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2608 }; 2609 2610 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2611 2612 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2613 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2614 MSR_IA32_VMX_PROCBASED_CTLS, 2615 &_cpu_based_exec_control)) 2616 return -EIO; 2617 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2618 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2619 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2620 MSR_IA32_VMX_PROCBASED_CTLS2, 2621 &_cpu_based_2nd_exec_control)) 2622 return -EIO; 2623 } 2624 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) 2625 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 2626 2627 #ifndef CONFIG_X86_64 2628 if (!(_cpu_based_2nd_exec_control & 2629 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2630 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2631 #endif 2632 2633 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2634 _cpu_based_2nd_exec_control &= ~( 2635 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2636 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2637 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2638 2639 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2640 &vmx_cap->ept, &vmx_cap->vpid); 2641 2642 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2643 vmx_cap->ept) { 2644 pr_warn_once("EPT CAP should not exist if not support " 2645 "1-setting enable EPT VM-execution control\n"); 2646 2647 if (error_on_inconsistent_vmcs_config) 2648 return -EIO; 2649 2650 vmx_cap->ept = 0; 2651 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 2652 } 2653 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2654 vmx_cap->vpid) { 2655 pr_warn_once("VPID CAP should not exist if not support " 2656 "1-setting enable VPID VM-execution control\n"); 2657 2658 if (error_on_inconsistent_vmcs_config) 2659 return -EIO; 2660 2661 vmx_cap->vpid = 0; 2662 } 2663 2664 if (!cpu_has_sgx()) 2665 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2666 2667 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2668 _cpu_based_3rd_exec_control = 2669 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2670 MSR_IA32_VMX_PROCBASED_CTLS3); 2671 2672 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2673 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2674 MSR_IA32_VMX_EXIT_CTLS, 2675 &_vmexit_control)) 2676 return -EIO; 2677 2678 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2679 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2680 MSR_IA32_VMX_PINBASED_CTLS, 2681 &_pin_based_exec_control)) 2682 return -EIO; 2683 2684 if (cpu_has_broken_vmx_preemption_timer()) 2685 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2686 if (!(_cpu_based_2nd_exec_control & 2687 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2688 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2689 2690 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2691 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2692 MSR_IA32_VMX_ENTRY_CTLS, 2693 &_vmentry_control)) 2694 return -EIO; 2695 2696 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2697 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2698 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2699 2700 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2701 continue; 2702 2703 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2704 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2705 2706 if (error_on_inconsistent_vmcs_config) 2707 return -EIO; 2708 2709 _vmentry_control &= ~n_ctrl; 2710 _vmexit_control &= ~x_ctrl; 2711 } 2712 2713 /* 2714 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2715 * can't be used due to an errata where VM Exit may incorrectly clear 2716 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2717 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2718 */ 2719 switch (boot_cpu_data.x86_vfm) { 2720 case INTEL_NEHALEM_EP: /* AAK155 */ 2721 case INTEL_NEHALEM: /* AAP115 */ 2722 case INTEL_WESTMERE: /* AAT100 */ 2723 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2724 case INTEL_NEHALEM_EX: /* BA97 */ 2725 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2726 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2727 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2728 "does not work properly. Using workaround\n"); 2729 break; 2730 default: 2731 break; 2732 } 2733 2734 rdmsrl(MSR_IA32_VMX_BASIC, basic_msr); 2735 2736 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2737 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE) 2738 return -EIO; 2739 2740 #ifdef CONFIG_X86_64 2741 /* 2742 * KVM expects to be able to shove all legal physical addresses into 2743 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always 2744 * 0 for processors that support Intel 64 architecture". 2745 */ 2746 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY) 2747 return -EIO; 2748 #endif 2749 2750 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2751 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB) 2752 return -EIO; 2753 2754 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2755 2756 vmcs_conf->basic = basic_msr; 2757 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2758 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2759 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2760 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2761 vmcs_conf->vmexit_ctrl = _vmexit_control; 2762 vmcs_conf->vmentry_ctrl = _vmentry_control; 2763 vmcs_conf->misc = misc_msr; 2764 2765 #if IS_ENABLED(CONFIG_HYPERV) 2766 if (enlightened_vmcs) 2767 evmcs_sanitize_exec_ctrls(vmcs_conf); 2768 #endif 2769 2770 return 0; 2771 } 2772 2773 static bool __kvm_is_vmx_supported(void) 2774 { 2775 int cpu = smp_processor_id(); 2776 2777 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2778 pr_err("VMX not supported by CPU %d\n", cpu); 2779 return false; 2780 } 2781 2782 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2783 !this_cpu_has(X86_FEATURE_VMX)) { 2784 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2785 return false; 2786 } 2787 2788 return true; 2789 } 2790 2791 static bool kvm_is_vmx_supported(void) 2792 { 2793 bool supported; 2794 2795 migrate_disable(); 2796 supported = __kvm_is_vmx_supported(); 2797 migrate_enable(); 2798 2799 return supported; 2800 } 2801 2802 int vmx_check_processor_compat(void) 2803 { 2804 int cpu = raw_smp_processor_id(); 2805 struct vmcs_config vmcs_conf; 2806 struct vmx_capability vmx_cap; 2807 2808 if (!__kvm_is_vmx_supported()) 2809 return -EIO; 2810 2811 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2812 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2813 return -EIO; 2814 } 2815 if (nested) 2816 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2817 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2818 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2819 return -EIO; 2820 } 2821 return 0; 2822 } 2823 2824 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2825 { 2826 u64 msr; 2827 2828 cr4_set_bits(X86_CR4_VMXE); 2829 2830 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2831 _ASM_EXTABLE(1b, %l[fault]) 2832 : : [vmxon_pointer] "m"(vmxon_pointer) 2833 : : fault); 2834 return 0; 2835 2836 fault: 2837 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2838 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2839 cr4_clear_bits(X86_CR4_VMXE); 2840 2841 return -EFAULT; 2842 } 2843 2844 int vmx_enable_virtualization_cpu(void) 2845 { 2846 int cpu = raw_smp_processor_id(); 2847 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2848 int r; 2849 2850 if (cr4_read_shadow() & X86_CR4_VMXE) 2851 return -EBUSY; 2852 2853 /* 2854 * This can happen if we hot-added a CPU but failed to allocate 2855 * VP assist page for it. 2856 */ 2857 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2858 return -EFAULT; 2859 2860 intel_pt_handle_vmx(1); 2861 2862 r = kvm_cpu_vmxon(phys_addr); 2863 if (r) { 2864 intel_pt_handle_vmx(0); 2865 return r; 2866 } 2867 2868 return 0; 2869 } 2870 2871 static void vmclear_local_loaded_vmcss(void) 2872 { 2873 int cpu = raw_smp_processor_id(); 2874 struct loaded_vmcs *v, *n; 2875 2876 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2877 loaded_vmcss_on_cpu_link) 2878 __loaded_vmcs_clear(v); 2879 } 2880 2881 void vmx_disable_virtualization_cpu(void) 2882 { 2883 vmclear_local_loaded_vmcss(); 2884 2885 if (kvm_cpu_vmxoff()) 2886 kvm_spurious_fault(); 2887 2888 hv_reset_evmcs(); 2889 2890 intel_pt_handle_vmx(0); 2891 } 2892 2893 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2894 { 2895 int node = cpu_to_node(cpu); 2896 struct page *pages; 2897 struct vmcs *vmcs; 2898 2899 pages = __alloc_pages_node(node, flags, 0); 2900 if (!pages) 2901 return NULL; 2902 vmcs = page_address(pages); 2903 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic)); 2904 2905 /* KVM supports Enlightened VMCS v1 only */ 2906 if (kvm_is_using_evmcs()) 2907 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2908 else 2909 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic); 2910 2911 if (shadow) 2912 vmcs->hdr.shadow_vmcs = 1; 2913 return vmcs; 2914 } 2915 2916 void free_vmcs(struct vmcs *vmcs) 2917 { 2918 free_page((unsigned long)vmcs); 2919 } 2920 2921 /* 2922 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2923 */ 2924 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2925 { 2926 if (!loaded_vmcs->vmcs) 2927 return; 2928 loaded_vmcs_clear(loaded_vmcs); 2929 free_vmcs(loaded_vmcs->vmcs); 2930 loaded_vmcs->vmcs = NULL; 2931 if (loaded_vmcs->msr_bitmap) 2932 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2933 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2934 } 2935 2936 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2937 { 2938 loaded_vmcs->vmcs = alloc_vmcs(false); 2939 if (!loaded_vmcs->vmcs) 2940 return -ENOMEM; 2941 2942 vmcs_clear(loaded_vmcs->vmcs); 2943 2944 loaded_vmcs->shadow_vmcs = NULL; 2945 loaded_vmcs->hv_timer_soft_disabled = false; 2946 loaded_vmcs->cpu = -1; 2947 loaded_vmcs->launched = 0; 2948 2949 if (cpu_has_vmx_msr_bitmap()) { 2950 loaded_vmcs->msr_bitmap = (unsigned long *) 2951 __get_free_page(GFP_KERNEL_ACCOUNT); 2952 if (!loaded_vmcs->msr_bitmap) 2953 goto out_vmcs; 2954 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2955 } 2956 2957 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2958 memset(&loaded_vmcs->controls_shadow, 0, 2959 sizeof(struct vmcs_controls_shadow)); 2960 2961 return 0; 2962 2963 out_vmcs: 2964 free_loaded_vmcs(loaded_vmcs); 2965 return -ENOMEM; 2966 } 2967 2968 static void free_kvm_area(void) 2969 { 2970 int cpu; 2971 2972 for_each_possible_cpu(cpu) { 2973 free_vmcs(per_cpu(vmxarea, cpu)); 2974 per_cpu(vmxarea, cpu) = NULL; 2975 } 2976 } 2977 2978 static __init int alloc_kvm_area(void) 2979 { 2980 int cpu; 2981 2982 for_each_possible_cpu(cpu) { 2983 struct vmcs *vmcs; 2984 2985 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2986 if (!vmcs) { 2987 free_kvm_area(); 2988 return -ENOMEM; 2989 } 2990 2991 /* 2992 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2993 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2994 * revision_id reported by MSR_IA32_VMX_BASIC. 2995 * 2996 * However, even though not explicitly documented by 2997 * TLFS, VMXArea passed as VMXON argument should 2998 * still be marked with revision_id reported by 2999 * physical CPU. 3000 */ 3001 if (kvm_is_using_evmcs()) 3002 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic); 3003 3004 per_cpu(vmxarea, cpu) = vmcs; 3005 } 3006 return 0; 3007 } 3008 3009 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 3010 struct kvm_segment *save) 3011 { 3012 if (!emulate_invalid_guest_state) { 3013 /* 3014 * CS and SS RPL should be equal during guest entry according 3015 * to VMX spec, but in reality it is not always so. Since vcpu 3016 * is in the middle of the transition from real mode to 3017 * protected mode it is safe to assume that RPL 0 is a good 3018 * default value. 3019 */ 3020 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 3021 save->selector &= ~SEGMENT_RPL_MASK; 3022 save->dpl = save->selector & SEGMENT_RPL_MASK; 3023 save->s = 1; 3024 } 3025 __vmx_set_segment(vcpu, save, seg); 3026 } 3027 3028 static void enter_pmode(struct kvm_vcpu *vcpu) 3029 { 3030 unsigned long flags; 3031 struct vcpu_vmx *vmx = to_vmx(vcpu); 3032 3033 /* 3034 * Update real mode segment cache. It may be not up-to-date if segment 3035 * register was written while vcpu was in a guest mode. 3036 */ 3037 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3038 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3039 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3041 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3042 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3043 3044 vmx->rmode.vm86_active = 0; 3045 3046 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3047 3048 flags = vmcs_readl(GUEST_RFLAGS); 3049 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3050 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3051 vmcs_writel(GUEST_RFLAGS, flags); 3052 3053 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3054 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3055 3056 vmx_update_exception_bitmap(vcpu); 3057 3058 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3059 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3060 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3061 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3062 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3063 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3064 } 3065 3066 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3067 { 3068 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3069 struct kvm_segment var = *save; 3070 3071 var.dpl = 0x3; 3072 if (seg == VCPU_SREG_CS) 3073 var.type = 0x3; 3074 3075 if (!emulate_invalid_guest_state) { 3076 var.selector = var.base >> 4; 3077 var.base = var.base & 0xffff0; 3078 var.limit = 0xffff; 3079 var.g = 0; 3080 var.db = 0; 3081 var.present = 1; 3082 var.s = 1; 3083 var.l = 0; 3084 var.unusable = 0; 3085 var.type = 0x3; 3086 var.avl = 0; 3087 if (save->base & 0xf) 3088 pr_warn_once("segment base is not paragraph aligned " 3089 "when entering protected mode (seg=%d)", seg); 3090 } 3091 3092 vmcs_write16(sf->selector, var.selector); 3093 vmcs_writel(sf->base, var.base); 3094 vmcs_write32(sf->limit, var.limit); 3095 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3096 } 3097 3098 static void enter_rmode(struct kvm_vcpu *vcpu) 3099 { 3100 unsigned long flags; 3101 struct vcpu_vmx *vmx = to_vmx(vcpu); 3102 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3103 3104 /* 3105 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3106 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3107 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3108 * should VM-Fail and KVM should reject userspace attempts to stuff 3109 * CR0.PG=0 when L2 is active. 3110 */ 3111 WARN_ON_ONCE(is_guest_mode(vcpu)); 3112 3113 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3114 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3115 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3116 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3117 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3118 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3119 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3120 3121 vmx->rmode.vm86_active = 1; 3122 3123 vmx_segment_cache_clear(vmx); 3124 3125 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3126 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3127 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3128 3129 flags = vmcs_readl(GUEST_RFLAGS); 3130 vmx->rmode.save_rflags = flags; 3131 3132 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3133 3134 vmcs_writel(GUEST_RFLAGS, flags); 3135 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3136 vmx_update_exception_bitmap(vcpu); 3137 3138 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3139 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3140 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3141 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3142 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3143 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3144 } 3145 3146 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3147 { 3148 struct vcpu_vmx *vmx = to_vmx(vcpu); 3149 3150 /* Nothing to do if hardware doesn't support EFER. */ 3151 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3152 return 0; 3153 3154 vcpu->arch.efer = efer; 3155 #ifdef CONFIG_X86_64 3156 if (efer & EFER_LMA) 3157 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3158 else 3159 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3160 #else 3161 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3162 return 1; 3163 #endif 3164 3165 vmx_setup_uret_msrs(vmx); 3166 return 0; 3167 } 3168 3169 #ifdef CONFIG_X86_64 3170 3171 static void enter_lmode(struct kvm_vcpu *vcpu) 3172 { 3173 u32 guest_tr_ar; 3174 3175 vmx_segment_cache_clear(to_vmx(vcpu)); 3176 3177 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3178 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3179 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3180 __func__); 3181 vmcs_write32(GUEST_TR_AR_BYTES, 3182 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3183 | VMX_AR_TYPE_BUSY_64_TSS); 3184 } 3185 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3186 } 3187 3188 static void exit_lmode(struct kvm_vcpu *vcpu) 3189 { 3190 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3191 } 3192 3193 #endif 3194 3195 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3196 { 3197 struct vcpu_vmx *vmx = to_vmx(vcpu); 3198 3199 /* 3200 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3201 * the CPU is not required to invalidate guest-physical mappings on 3202 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3203 * associated with the root EPT structure and not any particular VPID 3204 * (INVVPID also isn't required to invalidate guest-physical mappings). 3205 */ 3206 if (enable_ept) { 3207 ept_sync_global(); 3208 } else if (enable_vpid) { 3209 if (cpu_has_vmx_invvpid_global()) { 3210 vpid_sync_vcpu_global(); 3211 } else { 3212 vpid_sync_vcpu_single(vmx->vpid); 3213 vpid_sync_vcpu_single(vmx->nested.vpid02); 3214 } 3215 } 3216 } 3217 3218 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3219 { 3220 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu))) 3221 return nested_get_vpid02(vcpu); 3222 return to_vmx(vcpu)->vpid; 3223 } 3224 3225 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3226 { 3227 struct kvm_mmu *mmu = vcpu->arch.mmu; 3228 u64 root_hpa = mmu->root.hpa; 3229 3230 /* No flush required if the current context is invalid. */ 3231 if (!VALID_PAGE(root_hpa)) 3232 return; 3233 3234 if (enable_ept) 3235 ept_sync_context(construct_eptp(vcpu, root_hpa, 3236 mmu->root_role.level)); 3237 else 3238 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3239 } 3240 3241 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3242 { 3243 /* 3244 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3245 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3246 */ 3247 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3248 } 3249 3250 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3251 { 3252 /* 3253 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3254 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3255 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3256 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3257 * i.e. no explicit INVVPID is necessary. 3258 */ 3259 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3260 } 3261 3262 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3263 { 3264 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3265 3266 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3267 return; 3268 3269 if (is_pae_paging(vcpu)) { 3270 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3271 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3272 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3273 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3274 } 3275 } 3276 3277 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3278 { 3279 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3280 3281 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3282 return; 3283 3284 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3285 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3286 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3287 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3288 3289 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3290 } 3291 3292 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3293 CPU_BASED_CR3_STORE_EXITING) 3294 3295 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3296 { 3297 if (is_guest_mode(vcpu)) 3298 return nested_guest_cr0_valid(vcpu, cr0); 3299 3300 if (to_vmx(vcpu)->nested.vmxon) 3301 return nested_host_cr0_valid(vcpu, cr0); 3302 3303 return true; 3304 } 3305 3306 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3307 { 3308 struct vcpu_vmx *vmx = to_vmx(vcpu); 3309 unsigned long hw_cr0, old_cr0_pg; 3310 u32 tmp; 3311 3312 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3313 3314 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3315 if (enable_unrestricted_guest) 3316 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3317 else { 3318 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3319 if (!enable_ept) 3320 hw_cr0 |= X86_CR0_WP; 3321 3322 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3323 enter_pmode(vcpu); 3324 3325 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3326 enter_rmode(vcpu); 3327 } 3328 3329 vmcs_writel(CR0_READ_SHADOW, cr0); 3330 vmcs_writel(GUEST_CR0, hw_cr0); 3331 vcpu->arch.cr0 = cr0; 3332 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3333 3334 #ifdef CONFIG_X86_64 3335 if (vcpu->arch.efer & EFER_LME) { 3336 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3337 enter_lmode(vcpu); 3338 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3339 exit_lmode(vcpu); 3340 } 3341 #endif 3342 3343 if (enable_ept && !enable_unrestricted_guest) { 3344 /* 3345 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3346 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3347 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3348 * KVM's CR3 is installed. 3349 */ 3350 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3351 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3352 3353 /* 3354 * When running with EPT but not unrestricted guest, KVM must 3355 * intercept CR3 accesses when paging is _disabled_. This is 3356 * necessary because restricted guests can't actually run with 3357 * paging disabled, and so KVM stuffs its own CR3 in order to 3358 * run the guest when identity mapped page tables. 3359 * 3360 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3361 * update, it may be stale with respect to CR3 interception, 3362 * e.g. after nested VM-Enter. 3363 * 3364 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3365 * stores to forward them to L1, even if KVM does not need to 3366 * intercept them to preserve its identity mapped page tables. 3367 */ 3368 if (!(cr0 & X86_CR0_PG)) { 3369 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3370 } else if (!is_guest_mode(vcpu)) { 3371 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3372 } else { 3373 tmp = exec_controls_get(vmx); 3374 tmp &= ~CR3_EXITING_BITS; 3375 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3376 exec_controls_set(vmx, tmp); 3377 } 3378 3379 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3380 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3381 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3382 3383 /* 3384 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3385 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3386 */ 3387 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3388 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3389 } 3390 3391 /* depends on vcpu->arch.cr0 to be set to a new value */ 3392 vmx->emulation_required = vmx_emulation_required(vcpu); 3393 } 3394 3395 static int vmx_get_max_ept_level(void) 3396 { 3397 if (cpu_has_vmx_ept_5levels()) 3398 return 5; 3399 return 4; 3400 } 3401 3402 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3403 { 3404 u64 eptp = VMX_EPTP_MT_WB; 3405 3406 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3407 3408 if (enable_ept_ad_bits && 3409 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3410 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3411 eptp |= root_hpa; 3412 3413 return eptp; 3414 } 3415 3416 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3417 { 3418 struct kvm *kvm = vcpu->kvm; 3419 bool update_guest_cr3 = true; 3420 unsigned long guest_cr3; 3421 u64 eptp; 3422 3423 if (enable_ept) { 3424 eptp = construct_eptp(vcpu, root_hpa, root_level); 3425 vmcs_write64(EPT_POINTER, eptp); 3426 3427 hv_track_root_tdp(vcpu, root_hpa); 3428 3429 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3430 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3431 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3432 guest_cr3 = vcpu->arch.cr3; 3433 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3434 update_guest_cr3 = false; 3435 vmx_ept_load_pdptrs(vcpu); 3436 } else { 3437 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | 3438 kvm_get_active_cr3_lam_bits(vcpu); 3439 } 3440 3441 if (update_guest_cr3) 3442 vmcs_writel(GUEST_CR3, guest_cr3); 3443 } 3444 3445 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3446 { 3447 /* 3448 * We operate under the default treatment of SMM, so VMX cannot be 3449 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3450 * i.e. is a reserved bit, is handled by common x86 code. 3451 */ 3452 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3453 return false; 3454 3455 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3456 return false; 3457 3458 return true; 3459 } 3460 3461 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3462 { 3463 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3464 struct vcpu_vmx *vmx = to_vmx(vcpu); 3465 unsigned long hw_cr4; 3466 3467 /* 3468 * Pass through host's Machine Check Enable value to hw_cr4, which 3469 * is in force while we are in guest mode. Do not let guests control 3470 * this bit, even if host CR4.MCE == 0. 3471 */ 3472 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3473 if (enable_unrestricted_guest) 3474 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3475 else if (vmx->rmode.vm86_active) 3476 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3477 else 3478 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3479 3480 if (vmx_umip_emulated()) { 3481 if (cr4 & X86_CR4_UMIP) { 3482 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3483 hw_cr4 &= ~X86_CR4_UMIP; 3484 } else if (!is_guest_mode(vcpu) || 3485 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3486 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3487 } 3488 } 3489 3490 vcpu->arch.cr4 = cr4; 3491 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3492 3493 if (!enable_unrestricted_guest) { 3494 if (enable_ept) { 3495 if (!is_paging(vcpu)) { 3496 hw_cr4 &= ~X86_CR4_PAE; 3497 hw_cr4 |= X86_CR4_PSE; 3498 } else if (!(cr4 & X86_CR4_PAE)) { 3499 hw_cr4 &= ~X86_CR4_PAE; 3500 } 3501 } 3502 3503 /* 3504 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3505 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3506 * to be manually disabled when guest switches to non-paging 3507 * mode. 3508 * 3509 * If !enable_unrestricted_guest, the CPU is always running 3510 * with CR0.PG=1 and CR4 needs to be modified. 3511 * If enable_unrestricted_guest, the CPU automatically 3512 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3513 */ 3514 if (!is_paging(vcpu)) 3515 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3516 } 3517 3518 vmcs_writel(CR4_READ_SHADOW, cr4); 3519 vmcs_writel(GUEST_CR4, hw_cr4); 3520 3521 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3522 kvm_update_cpuid_runtime(vcpu); 3523 } 3524 3525 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3526 { 3527 struct vcpu_vmx *vmx = to_vmx(vcpu); 3528 u32 ar; 3529 3530 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3531 *var = vmx->rmode.segs[seg]; 3532 if (seg == VCPU_SREG_TR 3533 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3534 return; 3535 var->base = vmx_read_guest_seg_base(vmx, seg); 3536 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3537 return; 3538 } 3539 var->base = vmx_read_guest_seg_base(vmx, seg); 3540 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3541 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3542 ar = vmx_read_guest_seg_ar(vmx, seg); 3543 var->unusable = (ar >> 16) & 1; 3544 var->type = ar & 15; 3545 var->s = (ar >> 4) & 1; 3546 var->dpl = (ar >> 5) & 3; 3547 /* 3548 * Some userspaces do not preserve unusable property. Since usable 3549 * segment has to be present according to VMX spec we can use present 3550 * property to amend userspace bug by making unusable segment always 3551 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3552 * segment as unusable. 3553 */ 3554 var->present = !var->unusable; 3555 var->avl = (ar >> 12) & 1; 3556 var->l = (ar >> 13) & 1; 3557 var->db = (ar >> 14) & 1; 3558 var->g = (ar >> 15) & 1; 3559 } 3560 3561 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3562 { 3563 struct kvm_segment s; 3564 3565 if (to_vmx(vcpu)->rmode.vm86_active) { 3566 vmx_get_segment(vcpu, &s, seg); 3567 return s.base; 3568 } 3569 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3570 } 3571 3572 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache) 3573 { 3574 struct vcpu_vmx *vmx = to_vmx(vcpu); 3575 int ar; 3576 3577 if (unlikely(vmx->rmode.vm86_active)) 3578 return 0; 3579 3580 if (no_cache) 3581 ar = vmcs_read32(GUEST_SS_AR_BYTES); 3582 else 3583 ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3584 return VMX_AR_DPL(ar); 3585 } 3586 3587 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3588 { 3589 return __vmx_get_cpl(vcpu, false); 3590 } 3591 3592 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu) 3593 { 3594 return __vmx_get_cpl(vcpu, true); 3595 } 3596 3597 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3598 { 3599 u32 ar; 3600 3601 ar = var->type & 15; 3602 ar |= (var->s & 1) << 4; 3603 ar |= (var->dpl & 3) << 5; 3604 ar |= (var->present & 1) << 7; 3605 ar |= (var->avl & 1) << 12; 3606 ar |= (var->l & 1) << 13; 3607 ar |= (var->db & 1) << 14; 3608 ar |= (var->g & 1) << 15; 3609 ar |= (var->unusable || !var->present) << 16; 3610 3611 return ar; 3612 } 3613 3614 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3615 { 3616 struct vcpu_vmx *vmx = to_vmx(vcpu); 3617 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3618 3619 vmx_segment_cache_clear(vmx); 3620 3621 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3622 vmx->rmode.segs[seg] = *var; 3623 if (seg == VCPU_SREG_TR) 3624 vmcs_write16(sf->selector, var->selector); 3625 else if (var->s) 3626 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3627 return; 3628 } 3629 3630 vmcs_writel(sf->base, var->base); 3631 vmcs_write32(sf->limit, var->limit); 3632 vmcs_write16(sf->selector, var->selector); 3633 3634 /* 3635 * Fix the "Accessed" bit in AR field of segment registers for older 3636 * qemu binaries. 3637 * IA32 arch specifies that at the time of processor reset the 3638 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3639 * is setting it to 0 in the userland code. This causes invalid guest 3640 * state vmexit when "unrestricted guest" mode is turned on. 3641 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3642 * tree. Newer qemu binaries with that qemu fix would not need this 3643 * kvm hack. 3644 */ 3645 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3646 var->type |= 0x1; /* Accessed */ 3647 3648 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3649 } 3650 3651 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3652 { 3653 __vmx_set_segment(vcpu, var, seg); 3654 3655 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3656 } 3657 3658 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3659 { 3660 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3661 3662 *db = (ar >> 14) & 1; 3663 *l = (ar >> 13) & 1; 3664 } 3665 3666 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3667 { 3668 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3669 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3670 } 3671 3672 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3673 { 3674 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3675 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3676 } 3677 3678 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3679 { 3680 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3681 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3682 } 3683 3684 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3685 { 3686 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3687 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3688 } 3689 3690 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3691 { 3692 struct kvm_segment var; 3693 u32 ar; 3694 3695 vmx_get_segment(vcpu, &var, seg); 3696 var.dpl = 0x3; 3697 if (seg == VCPU_SREG_CS) 3698 var.type = 0x3; 3699 ar = vmx_segment_access_rights(&var); 3700 3701 if (var.base != (var.selector << 4)) 3702 return false; 3703 if (var.limit != 0xffff) 3704 return false; 3705 if (ar != 0xf3) 3706 return false; 3707 3708 return true; 3709 } 3710 3711 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3712 { 3713 struct kvm_segment cs; 3714 unsigned int cs_rpl; 3715 3716 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3717 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3718 3719 if (cs.unusable) 3720 return false; 3721 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3722 return false; 3723 if (!cs.s) 3724 return false; 3725 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3726 if (cs.dpl > cs_rpl) 3727 return false; 3728 } else { 3729 if (cs.dpl != cs_rpl) 3730 return false; 3731 } 3732 if (!cs.present) 3733 return false; 3734 3735 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3736 return true; 3737 } 3738 3739 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3740 { 3741 struct kvm_segment ss; 3742 unsigned int ss_rpl; 3743 3744 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3745 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3746 3747 if (ss.unusable) 3748 return true; 3749 if (ss.type != 3 && ss.type != 7) 3750 return false; 3751 if (!ss.s) 3752 return false; 3753 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3754 return false; 3755 if (!ss.present) 3756 return false; 3757 3758 return true; 3759 } 3760 3761 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3762 { 3763 struct kvm_segment var; 3764 unsigned int rpl; 3765 3766 vmx_get_segment(vcpu, &var, seg); 3767 rpl = var.selector & SEGMENT_RPL_MASK; 3768 3769 if (var.unusable) 3770 return true; 3771 if (!var.s) 3772 return false; 3773 if (!var.present) 3774 return false; 3775 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3776 if (var.dpl < rpl) /* DPL < RPL */ 3777 return false; 3778 } 3779 3780 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3781 * rights flags 3782 */ 3783 return true; 3784 } 3785 3786 static bool tr_valid(struct kvm_vcpu *vcpu) 3787 { 3788 struct kvm_segment tr; 3789 3790 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3791 3792 if (tr.unusable) 3793 return false; 3794 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3795 return false; 3796 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3797 return false; 3798 if (!tr.present) 3799 return false; 3800 3801 return true; 3802 } 3803 3804 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3805 { 3806 struct kvm_segment ldtr; 3807 3808 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3809 3810 if (ldtr.unusable) 3811 return true; 3812 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3813 return false; 3814 if (ldtr.type != 2) 3815 return false; 3816 if (!ldtr.present) 3817 return false; 3818 3819 return true; 3820 } 3821 3822 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3823 { 3824 struct kvm_segment cs, ss; 3825 3826 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3827 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3828 3829 return ((cs.selector & SEGMENT_RPL_MASK) == 3830 (ss.selector & SEGMENT_RPL_MASK)); 3831 } 3832 3833 /* 3834 * Check if guest state is valid. Returns true if valid, false if 3835 * not. 3836 * We assume that registers are always usable 3837 */ 3838 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3839 { 3840 /* real mode guest state checks */ 3841 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3842 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3843 return false; 3844 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3845 return false; 3846 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3847 return false; 3848 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3849 return false; 3850 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3851 return false; 3852 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3853 return false; 3854 } else { 3855 /* protected mode guest state checks */ 3856 if (!cs_ss_rpl_check(vcpu)) 3857 return false; 3858 if (!code_segment_valid(vcpu)) 3859 return false; 3860 if (!stack_segment_valid(vcpu)) 3861 return false; 3862 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3863 return false; 3864 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3865 return false; 3866 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3867 return false; 3868 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3869 return false; 3870 if (!tr_valid(vcpu)) 3871 return false; 3872 if (!ldtr_valid(vcpu)) 3873 return false; 3874 } 3875 /* TODO: 3876 * - Add checks on RIP 3877 * - Add checks on RFLAGS 3878 */ 3879 3880 return true; 3881 } 3882 3883 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3884 { 3885 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3886 u16 data; 3887 int i; 3888 3889 for (i = 0; i < 3; i++) { 3890 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3891 return -EFAULT; 3892 } 3893 3894 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3895 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3896 return -EFAULT; 3897 3898 data = ~0; 3899 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3900 return -EFAULT; 3901 3902 return 0; 3903 } 3904 3905 static int init_rmode_identity_map(struct kvm *kvm) 3906 { 3907 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3908 int i, r = 0; 3909 void __user *uaddr; 3910 u32 tmp; 3911 3912 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3913 mutex_lock(&kvm->slots_lock); 3914 3915 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3916 goto out; 3917 3918 if (!kvm_vmx->ept_identity_map_addr) 3919 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3920 3921 uaddr = __x86_set_memory_region(kvm, 3922 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3923 kvm_vmx->ept_identity_map_addr, 3924 PAGE_SIZE); 3925 if (IS_ERR(uaddr)) { 3926 r = PTR_ERR(uaddr); 3927 goto out; 3928 } 3929 3930 /* Set up identity-mapping pagetable for EPT in real mode */ 3931 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3932 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3933 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3934 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3935 r = -EFAULT; 3936 goto out; 3937 } 3938 } 3939 kvm_vmx->ept_identity_pagetable_done = true; 3940 3941 out: 3942 mutex_unlock(&kvm->slots_lock); 3943 return r; 3944 } 3945 3946 static void seg_setup(int seg) 3947 { 3948 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3949 unsigned int ar; 3950 3951 vmcs_write16(sf->selector, 0); 3952 vmcs_writel(sf->base, 0); 3953 vmcs_write32(sf->limit, 0xffff); 3954 ar = 0x93; 3955 if (seg == VCPU_SREG_CS) 3956 ar |= 0x08; /* code segment */ 3957 3958 vmcs_write32(sf->ar_bytes, ar); 3959 } 3960 3961 int allocate_vpid(void) 3962 { 3963 int vpid; 3964 3965 if (!enable_vpid) 3966 return 0; 3967 spin_lock(&vmx_vpid_lock); 3968 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3969 if (vpid < VMX_NR_VPIDS) 3970 __set_bit(vpid, vmx_vpid_bitmap); 3971 else 3972 vpid = 0; 3973 spin_unlock(&vmx_vpid_lock); 3974 return vpid; 3975 } 3976 3977 void free_vpid(int vpid) 3978 { 3979 if (!enable_vpid || vpid == 0) 3980 return; 3981 spin_lock(&vmx_vpid_lock); 3982 __clear_bit(vpid, vmx_vpid_bitmap); 3983 spin_unlock(&vmx_vpid_lock); 3984 } 3985 3986 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3987 { 3988 /* 3989 * When KVM is a nested hypervisor on top of Hyper-V and uses 3990 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3991 * bitmap has changed. 3992 */ 3993 if (kvm_is_using_evmcs()) { 3994 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3995 3996 if (evmcs->hv_enlightenments_control.msr_bitmap) 3997 evmcs->hv_clean_fields &= 3998 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3999 } 4000 4001 vmx->nested.force_msr_bitmap_recalc = true; 4002 } 4003 4004 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4005 { 4006 struct vcpu_vmx *vmx = to_vmx(vcpu); 4007 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4008 int idx; 4009 4010 if (!cpu_has_vmx_msr_bitmap()) 4011 return; 4012 4013 vmx_msr_bitmap_l01_changed(vmx); 4014 4015 /* 4016 * Mark the desired intercept state in shadow bitmap, this is needed 4017 * for resync when the MSR filters change. 4018 */ 4019 idx = vmx_get_passthrough_msr_slot(msr); 4020 if (idx >= 0) { 4021 if (type & MSR_TYPE_R) 4022 clear_bit(idx, vmx->shadow_msr_intercept.read); 4023 if (type & MSR_TYPE_W) 4024 clear_bit(idx, vmx->shadow_msr_intercept.write); 4025 } 4026 4027 if ((type & MSR_TYPE_R) && 4028 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 4029 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4030 type &= ~MSR_TYPE_R; 4031 } 4032 4033 if ((type & MSR_TYPE_W) && 4034 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 4035 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4036 type &= ~MSR_TYPE_W; 4037 } 4038 4039 if (type & MSR_TYPE_R) 4040 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 4041 4042 if (type & MSR_TYPE_W) 4043 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 4044 } 4045 4046 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4047 { 4048 struct vcpu_vmx *vmx = to_vmx(vcpu); 4049 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4050 int idx; 4051 4052 if (!cpu_has_vmx_msr_bitmap()) 4053 return; 4054 4055 vmx_msr_bitmap_l01_changed(vmx); 4056 4057 /* 4058 * Mark the desired intercept state in shadow bitmap, this is needed 4059 * for resync when the MSR filter changes. 4060 */ 4061 idx = vmx_get_passthrough_msr_slot(msr); 4062 if (idx >= 0) { 4063 if (type & MSR_TYPE_R) 4064 set_bit(idx, vmx->shadow_msr_intercept.read); 4065 if (type & MSR_TYPE_W) 4066 set_bit(idx, vmx->shadow_msr_intercept.write); 4067 } 4068 4069 if (type & MSR_TYPE_R) 4070 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4071 4072 if (type & MSR_TYPE_W) 4073 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4074 } 4075 4076 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4077 { 4078 /* 4079 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4080 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4081 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4082 */ 4083 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4084 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4085 struct vcpu_vmx *vmx = to_vmx(vcpu); 4086 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4087 u8 mode; 4088 4089 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4090 return; 4091 4092 if (cpu_has_secondary_exec_ctrls() && 4093 (secondary_exec_controls_get(vmx) & 4094 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4095 mode = MSR_BITMAP_MODE_X2APIC; 4096 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4097 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4098 } else { 4099 mode = 0; 4100 } 4101 4102 if (mode == vmx->x2apic_msr_bitmap_mode) 4103 return; 4104 4105 vmx->x2apic_msr_bitmap_mode = mode; 4106 4107 /* 4108 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4109 * registers (0x840 and above) intercepted, KVM doesn't support them. 4110 * Intercept all writes by default and poke holes as needed. Pass 4111 * through reads for all valid registers by default in x2APIC+APICv 4112 * mode, only the current timer count needs on-demand emulation by KVM. 4113 */ 4114 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4115 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4116 else 4117 msr_bitmap[read_idx] = ~0ull; 4118 msr_bitmap[write_idx] = ~0ull; 4119 4120 /* 4121 * TPR reads and writes can be virtualized even if virtual interrupt 4122 * delivery is not in use. 4123 */ 4124 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4125 !(mode & MSR_BITMAP_MODE_X2APIC)); 4126 4127 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4128 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4129 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4130 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4131 if (enable_ipiv) 4132 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4133 } 4134 } 4135 4136 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4137 { 4138 struct vcpu_vmx *vmx = to_vmx(vcpu); 4139 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4140 u32 i; 4141 4142 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4143 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4144 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4145 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4146 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4147 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4148 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4149 } 4150 } 4151 4152 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4153 { 4154 struct vcpu_vmx *vmx = to_vmx(vcpu); 4155 u32 i; 4156 4157 if (!cpu_has_vmx_msr_bitmap()) 4158 return; 4159 4160 /* 4161 * Redo intercept permissions for MSRs that KVM is passing through to 4162 * the guest. Disabling interception will check the new MSR filter and 4163 * ensure that KVM enables interception if usersepace wants to filter 4164 * the MSR. MSRs that KVM is already intercepting don't need to be 4165 * refreshed since KVM is going to intercept them regardless of what 4166 * userspace wants. 4167 */ 4168 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4169 u32 msr = vmx_possible_passthrough_msrs[i]; 4170 4171 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4172 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4173 4174 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4175 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4176 } 4177 4178 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4179 if (vmx_pt_mode_is_host_guest()) 4180 pt_update_intercept_for_msr(vcpu); 4181 } 4182 4183 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4184 int pi_vec) 4185 { 4186 #ifdef CONFIG_SMP 4187 if (vcpu->mode == IN_GUEST_MODE) { 4188 /* 4189 * The vector of the virtual has already been set in the PIR. 4190 * Send a notification event to deliver the virtual interrupt 4191 * unless the vCPU is the currently running vCPU, i.e. the 4192 * event is being sent from a fastpath VM-Exit handler, in 4193 * which case the PIR will be synced to the vIRR before 4194 * re-entering the guest. 4195 * 4196 * When the target is not the running vCPU, the following 4197 * possibilities emerge: 4198 * 4199 * Case 1: vCPU stays in non-root mode. Sending a notification 4200 * event posts the interrupt to the vCPU. 4201 * 4202 * Case 2: vCPU exits to root mode and is still runnable. The 4203 * PIR will be synced to the vIRR before re-entering the guest. 4204 * Sending a notification event is ok as the host IRQ handler 4205 * will ignore the spurious event. 4206 * 4207 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4208 * has already synced PIR to vIRR and never blocks the vCPU if 4209 * the vIRR is not empty. Therefore, a blocked vCPU here does 4210 * not wait for any requested interrupts in PIR, and sending a 4211 * notification event also results in a benign, spurious event. 4212 */ 4213 4214 if (vcpu != kvm_get_running_vcpu()) 4215 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4216 return; 4217 } 4218 #endif 4219 /* 4220 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4221 * otherwise do nothing as KVM will grab the highest priority pending 4222 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4223 */ 4224 kvm_vcpu_wake_up(vcpu); 4225 } 4226 4227 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4228 int vector) 4229 { 4230 struct vcpu_vmx *vmx = to_vmx(vcpu); 4231 4232 /* 4233 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated 4234 * and freed, and must not be accessed outside of vcpu->mutex. The 4235 * vCPU's cached PI NV is valid if and only if posted interrupts 4236 * enabled in its vmcs12, i.e. checking the vector also checks that 4237 * L1 has enabled posted interrupts for L2. 4238 */ 4239 if (is_guest_mode(vcpu) && 4240 vector == vmx->nested.posted_intr_nv) { 4241 /* 4242 * If a posted intr is not recognized by hardware, 4243 * we will accomplish it in the next vmentry. 4244 */ 4245 vmx->nested.pi_pending = true; 4246 kvm_make_request(KVM_REQ_EVENT, vcpu); 4247 4248 /* 4249 * This pairs with the smp_mb_*() after setting vcpu->mode in 4250 * vcpu_enter_guest() to guarantee the vCPU sees the event 4251 * request if triggering a posted interrupt "fails" because 4252 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4253 * the smb_wmb() in kvm_make_request() only ensures everything 4254 * done before making the request is visible when the request 4255 * is visible, it doesn't ensure ordering between the store to 4256 * vcpu->requests and the load from vcpu->mode. 4257 */ 4258 smp_mb__after_atomic(); 4259 4260 /* the PIR and ON have been set by L1. */ 4261 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4262 return 0; 4263 } 4264 return -1; 4265 } 4266 /* 4267 * Send interrupt to vcpu via posted interrupt way. 4268 * 1. If target vcpu is running(non-root mode), send posted interrupt 4269 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4270 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4271 * interrupt from PIR in next vmentry. 4272 */ 4273 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4274 { 4275 struct vcpu_vmx *vmx = to_vmx(vcpu); 4276 int r; 4277 4278 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4279 if (!r) 4280 return 0; 4281 4282 /* Note, this is called iff the local APIC is in-kernel. */ 4283 if (!vcpu->arch.apic->apicv_active) 4284 return -1; 4285 4286 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4287 return 0; 4288 4289 /* If a previous notification has sent the IPI, nothing to do. */ 4290 if (pi_test_and_set_on(&vmx->pi_desc)) 4291 return 0; 4292 4293 /* 4294 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4295 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4296 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4297 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4298 */ 4299 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4300 return 0; 4301 } 4302 4303 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4304 int trig_mode, int vector) 4305 { 4306 struct kvm_vcpu *vcpu = apic->vcpu; 4307 4308 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4309 kvm_lapic_set_irr(vector, apic); 4310 kvm_make_request(KVM_REQ_EVENT, vcpu); 4311 kvm_vcpu_kick(vcpu); 4312 } else { 4313 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4314 trig_mode, vector); 4315 } 4316 } 4317 4318 /* 4319 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4320 * will not change in the lifetime of the guest. 4321 * Note that host-state that does change is set elsewhere. E.g., host-state 4322 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4323 */ 4324 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4325 { 4326 u32 low32, high32; 4327 unsigned long tmpl; 4328 unsigned long cr0, cr3, cr4; 4329 4330 cr0 = read_cr0(); 4331 WARN_ON(cr0 & X86_CR0_TS); 4332 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4333 4334 /* 4335 * Save the most likely value for this task's CR3 in the VMCS. 4336 * We can't use __get_current_cr3_fast() because we're not atomic. 4337 */ 4338 cr3 = __read_cr3(); 4339 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4340 vmx->loaded_vmcs->host_state.cr3 = cr3; 4341 4342 /* Save the most likely value for this task's CR4 in the VMCS. */ 4343 cr4 = cr4_read_shadow(); 4344 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4345 vmx->loaded_vmcs->host_state.cr4 = cr4; 4346 4347 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4348 #ifdef CONFIG_X86_64 4349 /* 4350 * Load null selectors, so we can avoid reloading them in 4351 * vmx_prepare_switch_to_host(), in case userspace uses 4352 * the null selectors too (the expected case). 4353 */ 4354 vmcs_write16(HOST_DS_SELECTOR, 0); 4355 vmcs_write16(HOST_ES_SELECTOR, 0); 4356 #else 4357 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4358 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4359 #endif 4360 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4361 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4362 4363 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4364 4365 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4366 4367 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4368 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4369 4370 /* 4371 * SYSENTER is used for 32-bit system calls on either 32-bit or 4372 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4373 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4374 * have already done so!). 4375 */ 4376 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4377 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4378 4379 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4380 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4381 4382 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4383 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4384 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4385 } 4386 4387 if (cpu_has_load_ia32_efer()) 4388 vmcs_write64(HOST_IA32_EFER, kvm_host.efer); 4389 } 4390 4391 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4392 { 4393 struct kvm_vcpu *vcpu = &vmx->vcpu; 4394 4395 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4396 ~vcpu->arch.cr4_guest_rsvd_bits; 4397 if (!enable_ept) { 4398 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4399 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4400 } 4401 if (is_guest_mode(&vmx->vcpu)) 4402 vcpu->arch.cr4_guest_owned_bits &= 4403 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4404 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4405 } 4406 4407 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4408 { 4409 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4410 4411 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4412 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4413 4414 if (!enable_vnmi) 4415 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4416 4417 if (!enable_preemption_timer) 4418 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4419 4420 return pin_based_exec_ctrl; 4421 } 4422 4423 static u32 vmx_vmentry_ctrl(void) 4424 { 4425 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4426 4427 if (vmx_pt_mode_is_system()) 4428 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4429 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4430 /* 4431 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4432 */ 4433 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4434 VM_ENTRY_LOAD_IA32_EFER | 4435 VM_ENTRY_IA32E_MODE); 4436 4437 return vmentry_ctrl; 4438 } 4439 4440 static u32 vmx_vmexit_ctrl(void) 4441 { 4442 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4443 4444 /* 4445 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4446 * nested virtualization and thus allowed to be set in vmcs12. 4447 */ 4448 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4449 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4450 4451 if (vmx_pt_mode_is_system()) 4452 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4453 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4454 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4455 return vmexit_ctrl & 4456 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4457 } 4458 4459 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4460 { 4461 struct vcpu_vmx *vmx = to_vmx(vcpu); 4462 4463 if (is_guest_mode(vcpu)) { 4464 vmx->nested.update_vmcs01_apicv_status = true; 4465 return; 4466 } 4467 4468 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4469 4470 if (kvm_vcpu_apicv_active(vcpu)) { 4471 secondary_exec_controls_setbit(vmx, 4472 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4473 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4474 if (enable_ipiv) 4475 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4476 } else { 4477 secondary_exec_controls_clearbit(vmx, 4478 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4479 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4480 if (enable_ipiv) 4481 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4482 } 4483 4484 vmx_update_msr_bitmap_x2apic(vcpu); 4485 } 4486 4487 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4488 { 4489 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4490 4491 /* 4492 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4493 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4494 */ 4495 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4496 CPU_BASED_USE_IO_BITMAPS | 4497 CPU_BASED_MONITOR_TRAP_FLAG | 4498 CPU_BASED_PAUSE_EXITING); 4499 4500 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4501 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4502 CPU_BASED_NMI_WINDOW_EXITING); 4503 4504 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4505 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4506 4507 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4508 exec_control &= ~CPU_BASED_TPR_SHADOW; 4509 4510 #ifdef CONFIG_X86_64 4511 if (exec_control & CPU_BASED_TPR_SHADOW) 4512 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4513 CPU_BASED_CR8_STORE_EXITING); 4514 else 4515 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4516 CPU_BASED_CR8_LOAD_EXITING; 4517 #endif 4518 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4519 if (enable_ept) 4520 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4521 CPU_BASED_CR3_STORE_EXITING | 4522 CPU_BASED_INVLPG_EXITING); 4523 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4524 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4525 CPU_BASED_MONITOR_EXITING); 4526 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4527 exec_control &= ~CPU_BASED_HLT_EXITING; 4528 return exec_control; 4529 } 4530 4531 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4532 { 4533 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4534 4535 /* 4536 * IPI virtualization relies on APICv. Disable IPI virtualization if 4537 * APICv is inhibited. 4538 */ 4539 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4540 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4541 4542 return exec_control; 4543 } 4544 4545 /* 4546 * Adjust a single secondary execution control bit to intercept/allow an 4547 * instruction in the guest. This is usually done based on whether or not a 4548 * feature has been exposed to the guest in order to correctly emulate faults. 4549 */ 4550 static inline void 4551 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4552 u32 control, bool enabled, bool exiting) 4553 { 4554 /* 4555 * If the control is for an opt-in feature, clear the control if the 4556 * feature is not exposed to the guest, i.e. not enabled. If the 4557 * control is opt-out, i.e. an exiting control, clear the control if 4558 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4559 * disabled for the associated instruction. Note, the caller is 4560 * responsible presetting exec_control to set all supported bits. 4561 */ 4562 if (enabled == exiting) 4563 *exec_control &= ~control; 4564 4565 /* 4566 * Update the nested MSR settings so that a nested VMM can/can't set 4567 * controls for features that are/aren't exposed to the guest. 4568 */ 4569 if (nested && 4570 kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { 4571 /* 4572 * All features that can be added or removed to VMX MSRs must 4573 * be supported in the first place for nested virtualization. 4574 */ 4575 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4576 enabled = false; 4577 4578 if (enabled) 4579 vmx->nested.msrs.secondary_ctls_high |= control; 4580 else 4581 vmx->nested.msrs.secondary_ctls_high &= ~control; 4582 } 4583 } 4584 4585 /* 4586 * Wrapper macro for the common case of adjusting a secondary execution control 4587 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4588 * verifies that the control is actually supported by KVM and hardware. 4589 */ 4590 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4591 ({ \ 4592 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4593 bool __enabled; \ 4594 \ 4595 if (cpu_has_vmx_##name()) { \ 4596 __enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \ 4597 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4598 __enabled, exiting); \ 4599 } \ 4600 }) 4601 4602 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4603 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4604 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4605 4606 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4607 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4608 4609 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4610 { 4611 struct kvm_vcpu *vcpu = &vmx->vcpu; 4612 4613 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4614 4615 if (vmx_pt_mode_is_system()) 4616 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4617 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4618 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4619 if (vmx->vpid == 0) 4620 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4621 if (!enable_ept) { 4622 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4623 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 4624 enable_unrestricted_guest = 0; 4625 } 4626 if (!enable_unrestricted_guest) 4627 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4628 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4629 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4630 if (!kvm_vcpu_apicv_active(vcpu)) 4631 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4632 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4633 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4634 4635 /* 4636 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4637 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4638 */ 4639 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4640 4641 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4642 * in vmx_set_cr4. */ 4643 exec_control &= ~SECONDARY_EXEC_DESC; 4644 4645 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4646 (handle_vmptrld). 4647 We can NOT enable shadow_vmcs here because we don't have yet 4648 a current VMCS12 4649 */ 4650 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4651 4652 /* 4653 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4654 * it needs to be set here when dirty logging is already active, e.g. 4655 * if this vCPU was created after dirty logging was enabled. 4656 */ 4657 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4658 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4659 4660 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4661 4662 /* 4663 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4664 * feature is exposed to the guest. This creates a virtualization hole 4665 * if both are supported in hardware but only one is exposed to the 4666 * guest, but letting the guest execute RDTSCP or RDPID when either one 4667 * is advertised is preferable to emulating the advertised instruction 4668 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4669 */ 4670 if (cpu_has_vmx_rdtscp()) { 4671 bool rdpid_or_rdtscp_enabled = 4672 guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) || 4673 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID); 4674 4675 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4676 SECONDARY_EXEC_ENABLE_RDTSCP, 4677 rdpid_or_rdtscp_enabled, false); 4678 } 4679 4680 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4681 4682 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4683 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4684 4685 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4686 ENABLE_USR_WAIT_PAUSE, false); 4687 4688 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4689 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4690 4691 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4692 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4693 4694 return exec_control; 4695 } 4696 4697 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4698 { 4699 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4700 } 4701 4702 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4703 { 4704 struct page *pages; 4705 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4706 4707 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4708 return 0; 4709 4710 if (kvm_vmx->pid_table) 4711 return 0; 4712 4713 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4714 vmx_get_pid_table_order(kvm)); 4715 if (!pages) 4716 return -ENOMEM; 4717 4718 kvm_vmx->pid_table = (void *)page_address(pages); 4719 return 0; 4720 } 4721 4722 int vmx_vcpu_precreate(struct kvm *kvm) 4723 { 4724 return vmx_alloc_ipiv_pid_table(kvm); 4725 } 4726 4727 #define VMX_XSS_EXIT_BITMAP 0 4728 4729 static void init_vmcs(struct vcpu_vmx *vmx) 4730 { 4731 struct kvm *kvm = vmx->vcpu.kvm; 4732 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4733 4734 if (nested) 4735 nested_vmx_set_vmcs_shadowing_bitmap(); 4736 4737 if (cpu_has_vmx_msr_bitmap()) 4738 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4739 4740 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4741 4742 /* Control */ 4743 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4744 4745 exec_controls_set(vmx, vmx_exec_control(vmx)); 4746 4747 if (cpu_has_secondary_exec_ctrls()) { 4748 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4749 if (vmx->ve_info) 4750 vmcs_write64(VE_INFORMATION_ADDRESS, 4751 __pa(vmx->ve_info)); 4752 } 4753 4754 if (cpu_has_tertiary_exec_ctrls()) 4755 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4756 4757 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4758 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4759 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4760 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4761 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4762 4763 vmcs_write16(GUEST_INTR_STATUS, 0); 4764 4765 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4766 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4767 } 4768 4769 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4770 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4771 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4772 } 4773 4774 if (!kvm_pause_in_guest(kvm)) { 4775 vmcs_write32(PLE_GAP, ple_gap); 4776 vmx->ple_window = ple_window; 4777 vmx->ple_window_dirty = true; 4778 } 4779 4780 if (kvm_notify_vmexit_enabled(kvm)) 4781 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4782 4783 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4784 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4785 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4786 4787 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4788 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4789 vmx_set_constant_host_state(vmx); 4790 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4791 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4792 4793 if (cpu_has_vmx_vmfunc()) 4794 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4795 4796 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4797 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4798 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4799 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4800 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4801 4802 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4803 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4804 4805 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4806 4807 /* 22.2.1, 20.8.1 */ 4808 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4809 4810 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4811 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4812 4813 set_cr4_guest_host_mask(vmx); 4814 4815 if (vmx->vpid != 0) 4816 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4817 4818 if (cpu_has_vmx_xsaves()) 4819 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4820 4821 if (enable_pml) { 4822 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4823 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX); 4824 } 4825 4826 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4827 4828 if (vmx_pt_mode_is_host_guest()) { 4829 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4830 /* Bit[6~0] are forced to 1, writes are ignored. */ 4831 vmx->pt_desc.guest.output_mask = 0x7F; 4832 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4833 } 4834 4835 vmcs_write32(GUEST_SYSENTER_CS, 0); 4836 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4837 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4838 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4839 4840 if (cpu_has_vmx_tpr_shadow()) { 4841 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4842 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4843 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4844 __pa(vmx->vcpu.arch.apic->regs)); 4845 vmcs_write32(TPR_THRESHOLD, 0); 4846 } 4847 4848 vmx_setup_uret_msrs(vmx); 4849 } 4850 4851 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4852 { 4853 struct vcpu_vmx *vmx = to_vmx(vcpu); 4854 4855 init_vmcs(vmx); 4856 4857 if (nested && 4858 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 4859 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4860 4861 vcpu_setup_sgx_lepubkeyhash(vcpu); 4862 4863 vmx->nested.posted_intr_nv = -1; 4864 vmx->nested.vmxon_ptr = INVALID_GPA; 4865 vmx->nested.current_vmptr = INVALID_GPA; 4866 4867 #ifdef CONFIG_KVM_HYPERV 4868 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4869 #endif 4870 4871 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 4872 vcpu->arch.microcode_version = 0x100000000ULL; 4873 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4874 4875 /* 4876 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4877 * or POSTED_INTR_WAKEUP_VECTOR. 4878 */ 4879 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4880 __pi_set_sn(&vmx->pi_desc); 4881 } 4882 4883 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4884 { 4885 struct vcpu_vmx *vmx = to_vmx(vcpu); 4886 4887 if (!init_event) 4888 __vmx_vcpu_reset(vcpu); 4889 4890 vmx->rmode.vm86_active = 0; 4891 vmx->spec_ctrl = 0; 4892 4893 vmx->msr_ia32_umwait_control = 0; 4894 4895 vmx->hv_deadline_tsc = -1; 4896 kvm_set_cr8(vcpu, 0); 4897 4898 seg_setup(VCPU_SREG_CS); 4899 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4900 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4901 4902 seg_setup(VCPU_SREG_DS); 4903 seg_setup(VCPU_SREG_ES); 4904 seg_setup(VCPU_SREG_FS); 4905 seg_setup(VCPU_SREG_GS); 4906 seg_setup(VCPU_SREG_SS); 4907 4908 vmcs_write16(GUEST_TR_SELECTOR, 0); 4909 vmcs_writel(GUEST_TR_BASE, 0); 4910 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4911 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4912 4913 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4914 vmcs_writel(GUEST_LDTR_BASE, 0); 4915 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4916 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4917 4918 vmcs_writel(GUEST_GDTR_BASE, 0); 4919 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4920 4921 vmcs_writel(GUEST_IDTR_BASE, 0); 4922 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4923 4924 vmx_segment_cache_clear(vmx); 4925 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4926 4927 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4928 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4929 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4930 if (kvm_mpx_supported()) 4931 vmcs_write64(GUEST_BNDCFGS, 0); 4932 4933 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4934 4935 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4936 4937 vpid_sync_context(vmx->vpid); 4938 4939 vmx_update_fb_clear_dis(vcpu, vmx); 4940 } 4941 4942 void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4943 { 4944 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4945 } 4946 4947 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4948 { 4949 if (!enable_vnmi || 4950 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4951 vmx_enable_irq_window(vcpu); 4952 return; 4953 } 4954 4955 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4956 } 4957 4958 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4959 { 4960 struct vcpu_vmx *vmx = to_vmx(vcpu); 4961 uint32_t intr; 4962 int irq = vcpu->arch.interrupt.nr; 4963 4964 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4965 4966 ++vcpu->stat.irq_injections; 4967 if (vmx->rmode.vm86_active) { 4968 int inc_eip = 0; 4969 if (vcpu->arch.interrupt.soft) 4970 inc_eip = vcpu->arch.event_exit_inst_len; 4971 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4972 return; 4973 } 4974 intr = irq | INTR_INFO_VALID_MASK; 4975 if (vcpu->arch.interrupt.soft) { 4976 intr |= INTR_TYPE_SOFT_INTR; 4977 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4978 vmx->vcpu.arch.event_exit_inst_len); 4979 } else 4980 intr |= INTR_TYPE_EXT_INTR; 4981 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4982 4983 vmx_clear_hlt(vcpu); 4984 } 4985 4986 void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4987 { 4988 struct vcpu_vmx *vmx = to_vmx(vcpu); 4989 4990 if (!enable_vnmi) { 4991 /* 4992 * Tracking the NMI-blocked state in software is built upon 4993 * finding the next open IRQ window. This, in turn, depends on 4994 * well-behaving guests: They have to keep IRQs disabled at 4995 * least as long as the NMI handler runs. Otherwise we may 4996 * cause NMI nesting, maybe breaking the guest. But as this is 4997 * highly unlikely, we can live with the residual risk. 4998 */ 4999 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 5000 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5001 } 5002 5003 ++vcpu->stat.nmi_injections; 5004 vmx->loaded_vmcs->nmi_known_unmasked = false; 5005 5006 if (vmx->rmode.vm86_active) { 5007 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 5008 return; 5009 } 5010 5011 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 5012 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 5013 5014 vmx_clear_hlt(vcpu); 5015 } 5016 5017 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 5018 { 5019 struct vcpu_vmx *vmx = to_vmx(vcpu); 5020 bool masked; 5021 5022 if (!enable_vnmi) 5023 return vmx->loaded_vmcs->soft_vnmi_blocked; 5024 if (vmx->loaded_vmcs->nmi_known_unmasked) 5025 return false; 5026 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 5027 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5028 return masked; 5029 } 5030 5031 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 5032 { 5033 struct vcpu_vmx *vmx = to_vmx(vcpu); 5034 5035 if (!enable_vnmi) { 5036 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5037 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5038 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5039 } 5040 } else { 5041 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5042 if (masked) 5043 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5044 GUEST_INTR_STATE_NMI); 5045 else 5046 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5047 GUEST_INTR_STATE_NMI); 5048 } 5049 } 5050 5051 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5052 { 5053 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5054 return false; 5055 5056 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5057 return true; 5058 5059 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5060 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5061 GUEST_INTR_STATE_NMI)); 5062 } 5063 5064 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5065 { 5066 if (to_vmx(vcpu)->nested.nested_run_pending) 5067 return -EBUSY; 5068 5069 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5070 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5071 return -EBUSY; 5072 5073 return !vmx_nmi_blocked(vcpu); 5074 } 5075 5076 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5077 { 5078 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5079 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5080 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5081 } 5082 5083 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5084 { 5085 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5086 return false; 5087 5088 return __vmx_interrupt_blocked(vcpu); 5089 } 5090 5091 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5092 { 5093 if (to_vmx(vcpu)->nested.nested_run_pending) 5094 return -EBUSY; 5095 5096 /* 5097 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5098 * e.g. if the IRQ arrived asynchronously after checking nested events. 5099 */ 5100 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5101 return -EBUSY; 5102 5103 return !vmx_interrupt_blocked(vcpu); 5104 } 5105 5106 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5107 { 5108 void __user *ret; 5109 5110 if (enable_unrestricted_guest) 5111 return 0; 5112 5113 mutex_lock(&kvm->slots_lock); 5114 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5115 PAGE_SIZE * 3); 5116 mutex_unlock(&kvm->slots_lock); 5117 5118 if (IS_ERR(ret)) 5119 return PTR_ERR(ret); 5120 5121 to_kvm_vmx(kvm)->tss_addr = addr; 5122 5123 return init_rmode_tss(kvm, ret); 5124 } 5125 5126 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5127 { 5128 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5129 return 0; 5130 } 5131 5132 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5133 { 5134 switch (vec) { 5135 case BP_VECTOR: 5136 /* 5137 * Update instruction length as we may reinject the exception 5138 * from user space while in guest debugging mode. 5139 */ 5140 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5141 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5142 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5143 return false; 5144 fallthrough; 5145 case DB_VECTOR: 5146 return !(vcpu->guest_debug & 5147 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5148 case DE_VECTOR: 5149 case OF_VECTOR: 5150 case BR_VECTOR: 5151 case UD_VECTOR: 5152 case DF_VECTOR: 5153 case SS_VECTOR: 5154 case GP_VECTOR: 5155 case MF_VECTOR: 5156 return true; 5157 } 5158 return false; 5159 } 5160 5161 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5162 int vec, u32 err_code) 5163 { 5164 /* 5165 * Instruction with address size override prefix opcode 0x67 5166 * Cause the #SS fault with 0 error code in VM86 mode. 5167 */ 5168 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5169 if (kvm_emulate_instruction(vcpu, 0)) { 5170 if (vcpu->arch.halt_request) { 5171 vcpu->arch.halt_request = 0; 5172 return kvm_emulate_halt_noskip(vcpu); 5173 } 5174 return 1; 5175 } 5176 return 0; 5177 } 5178 5179 /* 5180 * Forward all other exceptions that are valid in real mode. 5181 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5182 * the required debugging infrastructure rework. 5183 */ 5184 kvm_queue_exception(vcpu, vec); 5185 return 1; 5186 } 5187 5188 static int handle_machine_check(struct kvm_vcpu *vcpu) 5189 { 5190 /* handled by vmx_vcpu_run() */ 5191 return 1; 5192 } 5193 5194 /* 5195 * If the host has split lock detection disabled, then #AC is 5196 * unconditionally injected into the guest, which is the pre split lock 5197 * detection behaviour. 5198 * 5199 * If the host has split lock detection enabled then #AC is 5200 * only injected into the guest when: 5201 * - Guest CPL == 3 (user mode) 5202 * - Guest has #AC detection enabled in CR0 5203 * - Guest EFLAGS has AC bit set 5204 */ 5205 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5206 { 5207 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5208 return true; 5209 5210 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5211 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5212 } 5213 5214 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5215 { 5216 struct vcpu_vmx *vmx = to_vmx(vcpu); 5217 struct kvm_run *kvm_run = vcpu->run; 5218 u32 intr_info, ex_no, error_code; 5219 unsigned long cr2, dr6; 5220 u32 vect_info; 5221 5222 vect_info = vmx->idt_vectoring_info; 5223 intr_info = vmx_get_intr_info(vcpu); 5224 5225 /* 5226 * Machine checks are handled by handle_exception_irqoff(), or by 5227 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5228 * vmx_vcpu_enter_exit(). 5229 */ 5230 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5231 return 1; 5232 5233 /* 5234 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5235 * This ensures the nested_vmx check is not skipped so vmexit can 5236 * be reflected to L1 (when it intercepts #NM) before reaching this 5237 * point. 5238 */ 5239 if (is_nm_fault(intr_info)) { 5240 kvm_queue_exception(vcpu, NM_VECTOR); 5241 return 1; 5242 } 5243 5244 if (is_invalid_opcode(intr_info)) 5245 return handle_ud(vcpu); 5246 5247 if (WARN_ON_ONCE(is_ve_fault(intr_info))) { 5248 struct vmx_ve_information *ve_info = vmx->ve_info; 5249 5250 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION, 5251 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason); 5252 dump_vmcs(vcpu); 5253 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE"); 5254 return 1; 5255 } 5256 5257 error_code = 0; 5258 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5259 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5260 5261 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5262 WARN_ON_ONCE(!enable_vmware_backdoor); 5263 5264 /* 5265 * VMware backdoor emulation on #GP interception only handles 5266 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5267 * error code on #GP. 5268 */ 5269 if (error_code) { 5270 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5271 return 1; 5272 } 5273 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5274 } 5275 5276 /* 5277 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5278 * MMIO, it is better to report an internal error. 5279 * See the comments in vmx_handle_exit. 5280 */ 5281 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5282 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5283 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5284 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5285 vcpu->run->internal.ndata = 4; 5286 vcpu->run->internal.data[0] = vect_info; 5287 vcpu->run->internal.data[1] = intr_info; 5288 vcpu->run->internal.data[2] = error_code; 5289 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5290 return 0; 5291 } 5292 5293 if (is_page_fault(intr_info)) { 5294 cr2 = vmx_get_exit_qual(vcpu); 5295 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5296 /* 5297 * EPT will cause page fault only if we need to 5298 * detect illegal GPAs. 5299 */ 5300 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5301 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5302 return 1; 5303 } else 5304 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5305 } 5306 5307 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5308 5309 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5310 return handle_rmode_exception(vcpu, ex_no, error_code); 5311 5312 switch (ex_no) { 5313 case DB_VECTOR: 5314 dr6 = vmx_get_exit_qual(vcpu); 5315 if (!(vcpu->guest_debug & 5316 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5317 /* 5318 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5319 * instruction. ICEBP generates a trap-like #DB, but 5320 * despite its interception control being tied to #DB, 5321 * is an instruction intercept, i.e. the VM-Exit occurs 5322 * on the ICEBP itself. Use the inner "skip" helper to 5323 * avoid single-step #DB and MTF updates, as ICEBP is 5324 * higher priority. Note, skipping ICEBP still clears 5325 * STI and MOVSS blocking. 5326 * 5327 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5328 * if single-step is enabled in RFLAGS and STI or MOVSS 5329 * blocking is active, as the CPU doesn't set the bit 5330 * on VM-Exit due to #DB interception. VM-Entry has a 5331 * consistency check that a single-step #DB is pending 5332 * in this scenario as the previous instruction cannot 5333 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5334 * don't modify RFLAGS), therefore the one instruction 5335 * delay when activating single-step breakpoints must 5336 * have already expired. Note, the CPU sets/clears BS 5337 * as appropriate for all other VM-Exits types. 5338 */ 5339 if (is_icebp(intr_info)) 5340 WARN_ON(!skip_emulated_instruction(vcpu)); 5341 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5342 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5343 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5344 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5345 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5346 5347 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5348 return 1; 5349 } 5350 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5351 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5352 fallthrough; 5353 case BP_VECTOR: 5354 /* 5355 * Update instruction length as we may reinject #BP from 5356 * user space while in guest debugging mode. Reading it for 5357 * #DB as well causes no harm, it is not used in that case. 5358 */ 5359 vmx->vcpu.arch.event_exit_inst_len = 5360 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5361 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5362 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5363 kvm_run->debug.arch.exception = ex_no; 5364 break; 5365 case AC_VECTOR: 5366 if (vmx_guest_inject_ac(vcpu)) { 5367 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5368 return 1; 5369 } 5370 5371 /* 5372 * Handle split lock. Depending on detection mode this will 5373 * either warn and disable split lock detection for this 5374 * task or force SIGBUS on it. 5375 */ 5376 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5377 return 1; 5378 fallthrough; 5379 default: 5380 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5381 kvm_run->ex.exception = ex_no; 5382 kvm_run->ex.error_code = error_code; 5383 break; 5384 } 5385 return 0; 5386 } 5387 5388 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5389 { 5390 ++vcpu->stat.irq_exits; 5391 return 1; 5392 } 5393 5394 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5395 { 5396 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5397 vcpu->mmio_needed = 0; 5398 return 0; 5399 } 5400 5401 static int handle_io(struct kvm_vcpu *vcpu) 5402 { 5403 unsigned long exit_qualification; 5404 int size, in, string; 5405 unsigned port; 5406 5407 exit_qualification = vmx_get_exit_qual(vcpu); 5408 string = (exit_qualification & 16) != 0; 5409 5410 ++vcpu->stat.io_exits; 5411 5412 if (string) 5413 return kvm_emulate_instruction(vcpu, 0); 5414 5415 port = exit_qualification >> 16; 5416 size = (exit_qualification & 7) + 1; 5417 in = (exit_qualification & 8) != 0; 5418 5419 return kvm_fast_pio(vcpu, size, port, in); 5420 } 5421 5422 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5423 { 5424 /* 5425 * Patch in the VMCALL instruction: 5426 */ 5427 hypercall[0] = 0x0f; 5428 hypercall[1] = 0x01; 5429 hypercall[2] = 0xc1; 5430 } 5431 5432 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5433 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5434 { 5435 if (is_guest_mode(vcpu)) { 5436 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5437 unsigned long orig_val = val; 5438 5439 /* 5440 * We get here when L2 changed cr0 in a way that did not change 5441 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5442 * but did change L0 shadowed bits. So we first calculate the 5443 * effective cr0 value that L1 would like to write into the 5444 * hardware. It consists of the L2-owned bits from the new 5445 * value combined with the L1-owned bits from L1's guest_cr0. 5446 */ 5447 val = (val & ~vmcs12->cr0_guest_host_mask) | 5448 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5449 5450 if (kvm_set_cr0(vcpu, val)) 5451 return 1; 5452 vmcs_writel(CR0_READ_SHADOW, orig_val); 5453 return 0; 5454 } else { 5455 return kvm_set_cr0(vcpu, val); 5456 } 5457 } 5458 5459 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5460 { 5461 if (is_guest_mode(vcpu)) { 5462 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5463 unsigned long orig_val = val; 5464 5465 /* analogously to handle_set_cr0 */ 5466 val = (val & ~vmcs12->cr4_guest_host_mask) | 5467 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5468 if (kvm_set_cr4(vcpu, val)) 5469 return 1; 5470 vmcs_writel(CR4_READ_SHADOW, orig_val); 5471 return 0; 5472 } else 5473 return kvm_set_cr4(vcpu, val); 5474 } 5475 5476 static int handle_desc(struct kvm_vcpu *vcpu) 5477 { 5478 /* 5479 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5480 * and other code needs to be updated if UMIP can be guest owned. 5481 */ 5482 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5483 5484 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5485 return kvm_emulate_instruction(vcpu, 0); 5486 } 5487 5488 static int handle_cr(struct kvm_vcpu *vcpu) 5489 { 5490 unsigned long exit_qualification, val; 5491 int cr; 5492 int reg; 5493 int err; 5494 int ret; 5495 5496 exit_qualification = vmx_get_exit_qual(vcpu); 5497 cr = exit_qualification & 15; 5498 reg = (exit_qualification >> 8) & 15; 5499 switch ((exit_qualification >> 4) & 3) { 5500 case 0: /* mov to cr */ 5501 val = kvm_register_read(vcpu, reg); 5502 trace_kvm_cr_write(cr, val); 5503 switch (cr) { 5504 case 0: 5505 err = handle_set_cr0(vcpu, val); 5506 return kvm_complete_insn_gp(vcpu, err); 5507 case 3: 5508 WARN_ON_ONCE(enable_unrestricted_guest); 5509 5510 err = kvm_set_cr3(vcpu, val); 5511 return kvm_complete_insn_gp(vcpu, err); 5512 case 4: 5513 err = handle_set_cr4(vcpu, val); 5514 return kvm_complete_insn_gp(vcpu, err); 5515 case 8: { 5516 u8 cr8_prev = kvm_get_cr8(vcpu); 5517 u8 cr8 = (u8)val; 5518 err = kvm_set_cr8(vcpu, cr8); 5519 ret = kvm_complete_insn_gp(vcpu, err); 5520 if (lapic_in_kernel(vcpu)) 5521 return ret; 5522 if (cr8_prev <= cr8) 5523 return ret; 5524 /* 5525 * TODO: we might be squashing a 5526 * KVM_GUESTDBG_SINGLESTEP-triggered 5527 * KVM_EXIT_DEBUG here. 5528 */ 5529 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5530 return 0; 5531 } 5532 } 5533 break; 5534 case 2: /* clts */ 5535 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5536 return -EIO; 5537 case 1: /*mov from cr*/ 5538 switch (cr) { 5539 case 3: 5540 WARN_ON_ONCE(enable_unrestricted_guest); 5541 5542 val = kvm_read_cr3(vcpu); 5543 kvm_register_write(vcpu, reg, val); 5544 trace_kvm_cr_read(cr, val); 5545 return kvm_skip_emulated_instruction(vcpu); 5546 case 8: 5547 val = kvm_get_cr8(vcpu); 5548 kvm_register_write(vcpu, reg, val); 5549 trace_kvm_cr_read(cr, val); 5550 return kvm_skip_emulated_instruction(vcpu); 5551 } 5552 break; 5553 case 3: /* lmsw */ 5554 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5555 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5556 kvm_lmsw(vcpu, val); 5557 5558 return kvm_skip_emulated_instruction(vcpu); 5559 default: 5560 break; 5561 } 5562 vcpu->run->exit_reason = 0; 5563 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5564 (int)(exit_qualification >> 4) & 3, cr); 5565 return 0; 5566 } 5567 5568 static int handle_dr(struct kvm_vcpu *vcpu) 5569 { 5570 unsigned long exit_qualification; 5571 int dr, dr7, reg; 5572 int err = 1; 5573 5574 exit_qualification = vmx_get_exit_qual(vcpu); 5575 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5576 5577 /* First, if DR does not exist, trigger UD */ 5578 if (!kvm_require_dr(vcpu, dr)) 5579 return 1; 5580 5581 if (vmx_get_cpl(vcpu) > 0) 5582 goto out; 5583 5584 dr7 = vmcs_readl(GUEST_DR7); 5585 if (dr7 & DR7_GD) { 5586 /* 5587 * As the vm-exit takes precedence over the debug trap, we 5588 * need to emulate the latter, either for the host or the 5589 * guest debugging itself. 5590 */ 5591 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5592 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5593 vcpu->run->debug.arch.dr7 = dr7; 5594 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5595 vcpu->run->debug.arch.exception = DB_VECTOR; 5596 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5597 return 0; 5598 } else { 5599 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5600 return 1; 5601 } 5602 } 5603 5604 if (vcpu->guest_debug == 0) { 5605 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5606 5607 /* 5608 * No more DR vmexits; force a reload of the debug registers 5609 * and reenter on this instruction. The next vmexit will 5610 * retrieve the full state of the debug registers. 5611 */ 5612 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5613 return 1; 5614 } 5615 5616 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5617 if (exit_qualification & TYPE_MOV_FROM_DR) { 5618 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 5619 err = 0; 5620 } else { 5621 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5622 } 5623 5624 out: 5625 return kvm_complete_insn_gp(vcpu, err); 5626 } 5627 5628 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5629 { 5630 get_debugreg(vcpu->arch.db[0], 0); 5631 get_debugreg(vcpu->arch.db[1], 1); 5632 get_debugreg(vcpu->arch.db[2], 2); 5633 get_debugreg(vcpu->arch.db[3], 3); 5634 get_debugreg(vcpu->arch.dr6, 6); 5635 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5636 5637 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5638 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5639 5640 /* 5641 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5642 * a stale dr6 from the guest. 5643 */ 5644 set_debugreg(DR6_RESERVED, 6); 5645 } 5646 5647 void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) 5648 { 5649 lockdep_assert_irqs_disabled(); 5650 set_debugreg(vcpu->arch.dr6, 6); 5651 } 5652 5653 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5654 { 5655 vmcs_writel(GUEST_DR7, val); 5656 } 5657 5658 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5659 { 5660 kvm_apic_update_ppr(vcpu); 5661 return 1; 5662 } 5663 5664 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5665 { 5666 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5667 5668 kvm_make_request(KVM_REQ_EVENT, vcpu); 5669 5670 ++vcpu->stat.irq_window_exits; 5671 return 1; 5672 } 5673 5674 static int handle_invlpg(struct kvm_vcpu *vcpu) 5675 { 5676 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5677 5678 kvm_mmu_invlpg(vcpu, exit_qualification); 5679 return kvm_skip_emulated_instruction(vcpu); 5680 } 5681 5682 static int handle_apic_access(struct kvm_vcpu *vcpu) 5683 { 5684 if (likely(fasteoi)) { 5685 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5686 int access_type, offset; 5687 5688 access_type = exit_qualification & APIC_ACCESS_TYPE; 5689 offset = exit_qualification & APIC_ACCESS_OFFSET; 5690 /* 5691 * Sane guest uses MOV to write EOI, with written value 5692 * not cared. So make a short-circuit here by avoiding 5693 * heavy instruction emulation. 5694 */ 5695 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5696 (offset == APIC_EOI)) { 5697 kvm_lapic_set_eoi(vcpu); 5698 return kvm_skip_emulated_instruction(vcpu); 5699 } 5700 } 5701 return kvm_emulate_instruction(vcpu, 0); 5702 } 5703 5704 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5705 { 5706 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5707 int vector = exit_qualification & 0xff; 5708 5709 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5710 kvm_apic_set_eoi_accelerated(vcpu, vector); 5711 return 1; 5712 } 5713 5714 static int handle_apic_write(struct kvm_vcpu *vcpu) 5715 { 5716 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5717 5718 /* 5719 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5720 * hardware has done any necessary aliasing, offset adjustments, etc... 5721 * for the access. I.e. the correct value has already been written to 5722 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5723 * retrieve the register value and emulate the access. 5724 */ 5725 u32 offset = exit_qualification & 0xff0; 5726 5727 kvm_apic_write_nodecode(vcpu, offset); 5728 return 1; 5729 } 5730 5731 static int handle_task_switch(struct kvm_vcpu *vcpu) 5732 { 5733 struct vcpu_vmx *vmx = to_vmx(vcpu); 5734 unsigned long exit_qualification; 5735 bool has_error_code = false; 5736 u32 error_code = 0; 5737 u16 tss_selector; 5738 int reason, type, idt_v, idt_index; 5739 5740 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5741 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5742 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5743 5744 exit_qualification = vmx_get_exit_qual(vcpu); 5745 5746 reason = (u32)exit_qualification >> 30; 5747 if (reason == TASK_SWITCH_GATE && idt_v) { 5748 switch (type) { 5749 case INTR_TYPE_NMI_INTR: 5750 vcpu->arch.nmi_injected = false; 5751 vmx_set_nmi_mask(vcpu, true); 5752 break; 5753 case INTR_TYPE_EXT_INTR: 5754 case INTR_TYPE_SOFT_INTR: 5755 kvm_clear_interrupt_queue(vcpu); 5756 break; 5757 case INTR_TYPE_HARD_EXCEPTION: 5758 if (vmx->idt_vectoring_info & 5759 VECTORING_INFO_DELIVER_CODE_MASK) { 5760 has_error_code = true; 5761 error_code = 5762 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5763 } 5764 fallthrough; 5765 case INTR_TYPE_SOFT_EXCEPTION: 5766 kvm_clear_exception_queue(vcpu); 5767 break; 5768 default: 5769 break; 5770 } 5771 } 5772 tss_selector = exit_qualification; 5773 5774 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5775 type != INTR_TYPE_EXT_INTR && 5776 type != INTR_TYPE_NMI_INTR)) 5777 WARN_ON(!skip_emulated_instruction(vcpu)); 5778 5779 /* 5780 * TODO: What about debug traps on tss switch? 5781 * Are we supposed to inject them and update dr6? 5782 */ 5783 return kvm_task_switch(vcpu, tss_selector, 5784 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5785 reason, has_error_code, error_code); 5786 } 5787 5788 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5789 { 5790 unsigned long exit_qualification; 5791 gpa_t gpa; 5792 u64 error_code; 5793 5794 exit_qualification = vmx_get_exit_qual(vcpu); 5795 5796 /* 5797 * EPT violation happened while executing iret from NMI, 5798 * "blocked by NMI" bit has to be set before next VM entry. 5799 * There are errata that may cause this bit to not be set: 5800 * AAK134, BY25. 5801 */ 5802 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5803 enable_vnmi && 5804 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5805 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5806 5807 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5808 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5809 5810 /* Is it a read fault? */ 5811 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5812 ? PFERR_USER_MASK : 0; 5813 /* Is it a write fault? */ 5814 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5815 ? PFERR_WRITE_MASK : 0; 5816 /* Is it a fetch fault? */ 5817 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5818 ? PFERR_FETCH_MASK : 0; 5819 /* ept page table entry is present? */ 5820 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5821 ? PFERR_PRESENT_MASK : 0; 5822 5823 if (error_code & EPT_VIOLATION_GVA_IS_VALID) 5824 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ? 5825 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5826 5827 /* 5828 * Check that the GPA doesn't exceed physical memory limits, as that is 5829 * a guest page fault. We have to emulate the instruction here, because 5830 * if the illegal address is that of a paging structure, then 5831 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5832 * would also use advanced VM-exit information for EPT violations to 5833 * reconstruct the page fault error code. 5834 */ 5835 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) 5836 return kvm_emulate_instruction(vcpu, 0); 5837 5838 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5839 } 5840 5841 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5842 { 5843 gpa_t gpa; 5844 5845 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5846 return 1; 5847 5848 /* 5849 * A nested guest cannot optimize MMIO vmexits, because we have an 5850 * nGPA here instead of the required GPA. 5851 */ 5852 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5853 if (!is_guest_mode(vcpu) && 5854 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5855 trace_kvm_fast_mmio(gpa); 5856 return kvm_skip_emulated_instruction(vcpu); 5857 } 5858 5859 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5860 } 5861 5862 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5863 { 5864 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5865 return -EIO; 5866 5867 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5868 ++vcpu->stat.nmi_window_exits; 5869 kvm_make_request(KVM_REQ_EVENT, vcpu); 5870 5871 return 1; 5872 } 5873 5874 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5875 { 5876 struct vcpu_vmx *vmx = to_vmx(vcpu); 5877 5878 return vmx->emulation_required && !vmx->rmode.vm86_active && 5879 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5880 } 5881 5882 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5883 { 5884 struct vcpu_vmx *vmx = to_vmx(vcpu); 5885 bool intr_window_requested; 5886 unsigned count = 130; 5887 5888 intr_window_requested = exec_controls_get(vmx) & 5889 CPU_BASED_INTR_WINDOW_EXITING; 5890 5891 while (vmx->emulation_required && count-- != 0) { 5892 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5893 return handle_interrupt_window(&vmx->vcpu); 5894 5895 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5896 return 1; 5897 5898 if (!kvm_emulate_instruction(vcpu, 0)) 5899 return 0; 5900 5901 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5902 kvm_prepare_emulation_failure_exit(vcpu); 5903 return 0; 5904 } 5905 5906 if (vcpu->arch.halt_request) { 5907 vcpu->arch.halt_request = 0; 5908 return kvm_emulate_halt_noskip(vcpu); 5909 } 5910 5911 /* 5912 * Note, return 1 and not 0, vcpu_run() will invoke 5913 * xfer_to_guest_mode() which will create a proper return 5914 * code. 5915 */ 5916 if (__xfer_to_guest_mode_work_pending()) 5917 return 1; 5918 } 5919 5920 return 1; 5921 } 5922 5923 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5924 { 5925 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5926 kvm_prepare_emulation_failure_exit(vcpu); 5927 return 0; 5928 } 5929 5930 return 1; 5931 } 5932 5933 /* 5934 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5935 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5936 */ 5937 static int handle_pause(struct kvm_vcpu *vcpu) 5938 { 5939 if (!kvm_pause_in_guest(vcpu->kvm)) 5940 grow_ple_window(vcpu); 5941 5942 /* 5943 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5944 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5945 * never set PAUSE_EXITING and just set PLE if supported, 5946 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5947 */ 5948 kvm_vcpu_on_spin(vcpu, true); 5949 return kvm_skip_emulated_instruction(vcpu); 5950 } 5951 5952 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5953 { 5954 return 1; 5955 } 5956 5957 static int handle_invpcid(struct kvm_vcpu *vcpu) 5958 { 5959 u32 vmx_instruction_info; 5960 unsigned long type; 5961 gva_t gva; 5962 struct { 5963 u64 pcid; 5964 u64 gla; 5965 } operand; 5966 int gpr_index; 5967 5968 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 5969 kvm_queue_exception(vcpu, UD_VECTOR); 5970 return 1; 5971 } 5972 5973 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5974 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5975 type = kvm_register_read(vcpu, gpr_index); 5976 5977 /* According to the Intel instruction reference, the memory operand 5978 * is read even if it isn't needed (e.g., for type==all) 5979 */ 5980 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5981 vmx_instruction_info, false, 5982 sizeof(operand), &gva)) 5983 return 1; 5984 5985 return kvm_handle_invpcid(vcpu, type, gva); 5986 } 5987 5988 static int handle_pml_full(struct kvm_vcpu *vcpu) 5989 { 5990 unsigned long exit_qualification; 5991 5992 trace_kvm_pml_full(vcpu->vcpu_id); 5993 5994 exit_qualification = vmx_get_exit_qual(vcpu); 5995 5996 /* 5997 * PML buffer FULL happened while executing iret from NMI, 5998 * "blocked by NMI" bit has to be set before next VM entry. 5999 */ 6000 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 6001 enable_vnmi && 6002 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 6003 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6004 GUEST_INTR_STATE_NMI); 6005 6006 /* 6007 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 6008 * here.., and there's no userspace involvement needed for PML. 6009 */ 6010 return 1; 6011 } 6012 6013 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu, 6014 bool force_immediate_exit) 6015 { 6016 struct vcpu_vmx *vmx = to_vmx(vcpu); 6017 6018 /* 6019 * In the *extremely* unlikely scenario that this is a spurious VM-Exit 6020 * due to the timer expiring while it was "soft" disabled, just eat the 6021 * exit and re-enter the guest. 6022 */ 6023 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) 6024 return EXIT_FASTPATH_REENTER_GUEST; 6025 6026 /* 6027 * If the timer expired because KVM used it to force an immediate exit, 6028 * then mission accomplished. 6029 */ 6030 if (force_immediate_exit) 6031 return EXIT_FASTPATH_EXIT_HANDLED; 6032 6033 /* 6034 * If L2 is active, go down the slow path as emulating the guest timer 6035 * expiration likely requires synthesizing a nested VM-Exit. 6036 */ 6037 if (is_guest_mode(vcpu)) 6038 return EXIT_FASTPATH_NONE; 6039 6040 kvm_lapic_expired_hv_timer(vcpu); 6041 return EXIT_FASTPATH_REENTER_GUEST; 6042 } 6043 6044 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6045 { 6046 /* 6047 * This non-fastpath handler is reached if and only if the preemption 6048 * timer was being used to emulate a guest timer while L2 is active. 6049 * All other scenarios are supposed to be handled in the fastpath. 6050 */ 6051 WARN_ON_ONCE(!is_guest_mode(vcpu)); 6052 kvm_lapic_expired_hv_timer(vcpu); 6053 return 1; 6054 } 6055 6056 /* 6057 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6058 * are overwritten by nested_vmx_hardware_setup() when nested=1. 6059 */ 6060 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6061 { 6062 kvm_queue_exception(vcpu, UD_VECTOR); 6063 return 1; 6064 } 6065 6066 #ifndef CONFIG_X86_SGX_KVM 6067 static int handle_encls(struct kvm_vcpu *vcpu) 6068 { 6069 /* 6070 * SGX virtualization is disabled. There is no software enable bit for 6071 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6072 * the guest from executing ENCLS (when SGX is supported by hardware). 6073 */ 6074 kvm_queue_exception(vcpu, UD_VECTOR); 6075 return 1; 6076 } 6077 #endif /* CONFIG_X86_SGX_KVM */ 6078 6079 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6080 { 6081 /* 6082 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6083 * VM-Exits. Unconditionally set the flag here and leave the handling to 6084 * vmx_handle_exit(). 6085 */ 6086 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6087 return 1; 6088 } 6089 6090 static int handle_notify(struct kvm_vcpu *vcpu) 6091 { 6092 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6093 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6094 6095 ++vcpu->stat.notify_window_exits; 6096 6097 /* 6098 * Notify VM exit happened while executing iret from NMI, 6099 * "blocked by NMI" bit has to be set before next VM entry. 6100 */ 6101 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6102 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6103 GUEST_INTR_STATE_NMI); 6104 6105 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6106 context_invalid) { 6107 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6108 vcpu->run->notify.flags = context_invalid ? 6109 KVM_NOTIFY_CONTEXT_INVALID : 0; 6110 return 0; 6111 } 6112 6113 return 1; 6114 } 6115 6116 /* 6117 * The exit handlers return 1 if the exit was handled fully and guest execution 6118 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6119 * to be done to userspace and return 0. 6120 */ 6121 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6122 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6123 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6124 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6125 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6126 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6127 [EXIT_REASON_CR_ACCESS] = handle_cr, 6128 [EXIT_REASON_DR_ACCESS] = handle_dr, 6129 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6130 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6131 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6132 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6133 [EXIT_REASON_HLT] = kvm_emulate_halt, 6134 [EXIT_REASON_INVD] = kvm_emulate_invd, 6135 [EXIT_REASON_INVLPG] = handle_invlpg, 6136 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6137 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6138 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6139 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6140 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6141 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6142 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6143 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6144 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6145 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6146 [EXIT_REASON_VMON] = handle_vmx_instruction, 6147 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6148 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6149 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6150 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6151 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6152 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6153 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6154 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6155 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6156 [EXIT_REASON_LDTR_TR] = handle_desc, 6157 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6158 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6159 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6160 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6161 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6162 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6163 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6164 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6165 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6166 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6167 [EXIT_REASON_PML_FULL] = handle_pml_full, 6168 [EXIT_REASON_INVPCID] = handle_invpcid, 6169 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6170 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6171 [EXIT_REASON_ENCLS] = handle_encls, 6172 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6173 [EXIT_REASON_NOTIFY] = handle_notify, 6174 }; 6175 6176 static const int kvm_vmx_max_exit_handlers = 6177 ARRAY_SIZE(kvm_vmx_exit_handlers); 6178 6179 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6180 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) 6181 { 6182 struct vcpu_vmx *vmx = to_vmx(vcpu); 6183 6184 *reason = vmx->exit_reason.full; 6185 *info1 = vmx_get_exit_qual(vcpu); 6186 if (!(vmx->exit_reason.failed_vmentry)) { 6187 *info2 = vmx->idt_vectoring_info; 6188 *intr_info = vmx_get_intr_info(vcpu); 6189 if (is_exception_with_error_code(*intr_info)) 6190 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6191 else 6192 *error_code = 0; 6193 } else { 6194 *info2 = 0; 6195 *intr_info = 0; 6196 *error_code = 0; 6197 } 6198 } 6199 6200 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code) 6201 { 6202 *intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD); 6203 if (is_exception_with_error_code(*intr_info)) 6204 *error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE); 6205 else 6206 *error_code = 0; 6207 } 6208 6209 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6210 { 6211 if (vmx->pml_pg) { 6212 __free_page(vmx->pml_pg); 6213 vmx->pml_pg = NULL; 6214 } 6215 } 6216 6217 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6218 { 6219 struct vcpu_vmx *vmx = to_vmx(vcpu); 6220 u16 pml_idx, pml_tail_index; 6221 u64 *pml_buf; 6222 int i; 6223 6224 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6225 6226 /* Do nothing if PML buffer is empty */ 6227 if (pml_idx == PML_HEAD_INDEX) 6228 return; 6229 /* 6230 * PML index always points to the next available PML buffer entity 6231 * unless PML log has just overflowed. 6232 */ 6233 pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1; 6234 6235 /* 6236 * PML log is written backwards: the CPU first writes the entry 511 6237 * then the entry 510, and so on. 6238 * 6239 * Read the entries in the same order they were written, to ensure that 6240 * the dirty ring is filled in the same order the CPU wrote them. 6241 */ 6242 pml_buf = page_address(vmx->pml_pg); 6243 6244 for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) { 6245 u64 gpa; 6246 6247 gpa = pml_buf[i]; 6248 WARN_ON(gpa & (PAGE_SIZE - 1)); 6249 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6250 } 6251 6252 /* reset PML index */ 6253 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX); 6254 } 6255 6256 static void vmx_dump_sel(char *name, uint32_t sel) 6257 { 6258 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6259 name, vmcs_read16(sel), 6260 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6261 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6262 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6263 } 6264 6265 static void vmx_dump_dtsel(char *name, uint32_t limit) 6266 { 6267 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6268 name, vmcs_read32(limit), 6269 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6270 } 6271 6272 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6273 { 6274 unsigned int i; 6275 struct vmx_msr_entry *e; 6276 6277 pr_err("MSR %s:\n", name); 6278 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6279 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6280 } 6281 6282 void dump_vmcs(struct kvm_vcpu *vcpu) 6283 { 6284 struct vcpu_vmx *vmx = to_vmx(vcpu); 6285 u32 vmentry_ctl, vmexit_ctl; 6286 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6287 u64 tertiary_exec_control; 6288 unsigned long cr4; 6289 int efer_slot; 6290 6291 if (!dump_invalid_vmcs) { 6292 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6293 return; 6294 } 6295 6296 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6297 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6298 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6299 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6300 cr4 = vmcs_readl(GUEST_CR4); 6301 6302 if (cpu_has_secondary_exec_ctrls()) 6303 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6304 else 6305 secondary_exec_control = 0; 6306 6307 if (cpu_has_tertiary_exec_ctrls()) 6308 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6309 else 6310 tertiary_exec_control = 0; 6311 6312 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6313 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6314 pr_err("*** Guest State ***\n"); 6315 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6316 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6317 vmcs_readl(CR0_GUEST_HOST_MASK)); 6318 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6319 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6320 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6321 if (cpu_has_vmx_ept()) { 6322 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6323 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6324 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6325 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6326 } 6327 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6328 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6329 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6330 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6331 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6332 vmcs_readl(GUEST_SYSENTER_ESP), 6333 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6334 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6335 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6336 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6337 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6338 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6339 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6340 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6341 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6342 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6343 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6344 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6345 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6346 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6347 else if (efer_slot >= 0) 6348 pr_err("EFER= 0x%016llx (autoload)\n", 6349 vmx->msr_autoload.guest.val[efer_slot].value); 6350 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6351 pr_err("EFER= 0x%016llx (effective)\n", 6352 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6353 else 6354 pr_err("EFER= 0x%016llx (effective)\n", 6355 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6356 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6357 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6358 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6359 vmcs_read64(GUEST_IA32_DEBUGCTL), 6360 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6361 if (cpu_has_load_perf_global_ctrl() && 6362 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6363 pr_err("PerfGlobCtl = 0x%016llx\n", 6364 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6365 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6366 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6367 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6368 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6369 vmcs_read32(GUEST_ACTIVITY_STATE)); 6370 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6371 pr_err("InterruptStatus = %04x\n", 6372 vmcs_read16(GUEST_INTR_STATUS)); 6373 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6374 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6375 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6376 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6377 6378 pr_err("*** Host State ***\n"); 6379 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6380 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6381 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6382 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6383 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6384 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6385 vmcs_read16(HOST_TR_SELECTOR)); 6386 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6387 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6388 vmcs_readl(HOST_TR_BASE)); 6389 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6390 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6391 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6392 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6393 vmcs_readl(HOST_CR4)); 6394 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6395 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6396 vmcs_read32(HOST_IA32_SYSENTER_CS), 6397 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6398 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6399 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6400 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6401 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6402 if (cpu_has_load_perf_global_ctrl() && 6403 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6404 pr_err("PerfGlobCtl = 0x%016llx\n", 6405 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6406 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6407 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6408 6409 pr_err("*** Control State ***\n"); 6410 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6411 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6412 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6413 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6414 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6415 vmcs_read32(EXCEPTION_BITMAP), 6416 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6417 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6418 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6419 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6420 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6421 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6422 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6423 vmcs_read32(VM_EXIT_INTR_INFO), 6424 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6425 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6426 pr_err(" reason=%08x qualification=%016lx\n", 6427 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6428 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6429 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6430 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6431 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6432 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6433 pr_err("TSC Multiplier = 0x%016llx\n", 6434 vmcs_read64(TSC_MULTIPLIER)); 6435 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6436 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6437 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6438 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6439 } 6440 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6441 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6442 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6443 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6444 } 6445 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6446 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6447 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6448 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6449 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6450 pr_err("PLE Gap=%08x Window=%08x\n", 6451 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6452 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6453 pr_err("Virtual processor ID = 0x%04x\n", 6454 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6455 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) { 6456 struct vmx_ve_information *ve_info = vmx->ve_info; 6457 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS); 6458 6459 /* 6460 * If KVM is dumping the VMCS, then something has gone wrong 6461 * already. Derefencing an address from the VMCS, which could 6462 * very well be corrupted, is a terrible idea. The virtual 6463 * address is known so use it. 6464 */ 6465 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa, 6466 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)"); 6467 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n", 6468 ve_info->exit_reason, ve_info->delivery, 6469 ve_info->exit_qualification, 6470 ve_info->guest_linear_address, 6471 ve_info->guest_physical_address, ve_info->eptp_index); 6472 } 6473 } 6474 6475 /* 6476 * The guest has exited. See if we can fix it or if we need userspace 6477 * assistance. 6478 */ 6479 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6480 { 6481 struct vcpu_vmx *vmx = to_vmx(vcpu); 6482 union vmx_exit_reason exit_reason = vmx->exit_reason; 6483 u32 vectoring_info = vmx->idt_vectoring_info; 6484 u16 exit_handler_index; 6485 6486 /* 6487 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6488 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6489 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6490 * mode as if vcpus is in root mode, the PML buffer must has been 6491 * flushed already. Note, PML is never enabled in hardware while 6492 * running L2. 6493 */ 6494 if (enable_pml && !is_guest_mode(vcpu)) 6495 vmx_flush_pml_buffer(vcpu); 6496 6497 /* 6498 * KVM should never reach this point with a pending nested VM-Enter. 6499 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6500 * invalid guest state should never happen as that means KVM knowingly 6501 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6502 */ 6503 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6504 return -EIO; 6505 6506 if (is_guest_mode(vcpu)) { 6507 /* 6508 * PML is never enabled when running L2, bail immediately if a 6509 * PML full exit occurs as something is horribly wrong. 6510 */ 6511 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6512 goto unexpected_vmexit; 6513 6514 /* 6515 * The host physical addresses of some pages of guest memory 6516 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6517 * Page). The CPU may write to these pages via their host 6518 * physical address while L2 is running, bypassing any 6519 * address-translation-based dirty tracking (e.g. EPT write 6520 * protection). 6521 * 6522 * Mark them dirty on every exit from L2 to prevent them from 6523 * getting out of sync with dirty tracking. 6524 */ 6525 nested_mark_vmcs12_pages_dirty(vcpu); 6526 6527 /* 6528 * Synthesize a triple fault if L2 state is invalid. In normal 6529 * operation, nested VM-Enter rejects any attempt to enter L2 6530 * with invalid state. However, those checks are skipped if 6531 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6532 * L2 state is invalid, it means either L1 modified SMRAM state 6533 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6534 * doing so is architecturally allowed in the RSM case, and is 6535 * the least awful solution for the userspace case without 6536 * risking false positives. 6537 */ 6538 if (vmx->emulation_required) { 6539 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6540 return 1; 6541 } 6542 6543 if (nested_vmx_reflect_vmexit(vcpu)) 6544 return 1; 6545 } 6546 6547 /* If guest state is invalid, start emulating. L2 is handled above. */ 6548 if (vmx->emulation_required) 6549 return handle_invalid_guest_state(vcpu); 6550 6551 if (exit_reason.failed_vmentry) { 6552 dump_vmcs(vcpu); 6553 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6554 vcpu->run->fail_entry.hardware_entry_failure_reason 6555 = exit_reason.full; 6556 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6557 return 0; 6558 } 6559 6560 if (unlikely(vmx->fail)) { 6561 dump_vmcs(vcpu); 6562 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6563 vcpu->run->fail_entry.hardware_entry_failure_reason 6564 = vmcs_read32(VM_INSTRUCTION_ERROR); 6565 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6566 return 0; 6567 } 6568 6569 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6570 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6571 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6572 exit_reason.basic != EXIT_REASON_PML_FULL && 6573 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6574 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6575 exit_reason.basic != EXIT_REASON_NOTIFY && 6576 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) { 6577 kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA); 6578 return 0; 6579 } 6580 6581 if (unlikely(!enable_vnmi && 6582 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6583 if (!vmx_interrupt_blocked(vcpu)) { 6584 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6585 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6586 vcpu->arch.nmi_pending) { 6587 /* 6588 * This CPU don't support us in finding the end of an 6589 * NMI-blocked window if the guest runs with IRQs 6590 * disabled. So we pull the trigger after 1 s of 6591 * futile waiting, but inform the user about this. 6592 */ 6593 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6594 "state on VCPU %d after 1 s timeout\n", 6595 __func__, vcpu->vcpu_id); 6596 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6597 } 6598 } 6599 6600 if (exit_fastpath != EXIT_FASTPATH_NONE) 6601 return 1; 6602 6603 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6604 goto unexpected_vmexit; 6605 #ifdef CONFIG_MITIGATION_RETPOLINE 6606 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6607 return kvm_emulate_wrmsr(vcpu); 6608 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6609 return handle_preemption_timer(vcpu); 6610 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6611 return handle_interrupt_window(vcpu); 6612 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6613 return handle_external_interrupt(vcpu); 6614 else if (exit_reason.basic == EXIT_REASON_HLT) 6615 return kvm_emulate_halt(vcpu); 6616 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6617 return handle_ept_misconfig(vcpu); 6618 #endif 6619 6620 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6621 kvm_vmx_max_exit_handlers); 6622 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6623 goto unexpected_vmexit; 6624 6625 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6626 6627 unexpected_vmexit: 6628 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6629 exit_reason.full); 6630 dump_vmcs(vcpu); 6631 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6632 vcpu->run->internal.suberror = 6633 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6634 vcpu->run->internal.ndata = 2; 6635 vcpu->run->internal.data[0] = exit_reason.full; 6636 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6637 return 0; 6638 } 6639 6640 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6641 { 6642 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6643 6644 /* 6645 * Exit to user space when bus lock detected to inform that there is 6646 * a bus lock in guest. 6647 */ 6648 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6649 if (ret > 0) 6650 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6651 6652 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6653 return 0; 6654 } 6655 return ret; 6656 } 6657 6658 /* 6659 * Software based L1D cache flush which is used when microcode providing 6660 * the cache control MSR is not loaded. 6661 * 6662 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6663 * flush it is required to read in 64 KiB because the replacement algorithm 6664 * is not exactly LRU. This could be sized at runtime via topology 6665 * information but as all relevant affected CPUs have 32KiB L1D cache size 6666 * there is no point in doing so. 6667 */ 6668 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6669 { 6670 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6671 6672 /* 6673 * This code is only executed when the flush mode is 'cond' or 6674 * 'always' 6675 */ 6676 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6677 bool flush_l1d; 6678 6679 /* 6680 * Clear the per-vcpu flush bit, it gets set again if the vCPU 6681 * is reloaded, i.e. if the vCPU is scheduled out or if KVM 6682 * exits to userspace, or if KVM reaches one of the unsafe 6683 * VMEXIT handlers, e.g. if KVM calls into the emulator. 6684 */ 6685 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6686 vcpu->arch.l1tf_flush_l1d = false; 6687 6688 /* 6689 * Clear the per-cpu flush bit, it gets set again from 6690 * the interrupt handlers. 6691 */ 6692 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6693 kvm_clear_cpu_l1tf_flush_l1d(); 6694 6695 if (!flush_l1d) 6696 return; 6697 } 6698 6699 vcpu->stat.l1d_flush++; 6700 6701 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6702 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6703 return; 6704 } 6705 6706 asm volatile( 6707 /* First ensure the pages are in the TLB */ 6708 "xorl %%eax, %%eax\n" 6709 ".Lpopulate_tlb:\n\t" 6710 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6711 "addl $4096, %%eax\n\t" 6712 "cmpl %%eax, %[size]\n\t" 6713 "jne .Lpopulate_tlb\n\t" 6714 "xorl %%eax, %%eax\n\t" 6715 "cpuid\n\t" 6716 /* Now fill the cache */ 6717 "xorl %%eax, %%eax\n" 6718 ".Lfill_cache:\n" 6719 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6720 "addl $64, %%eax\n\t" 6721 "cmpl %%eax, %[size]\n\t" 6722 "jne .Lfill_cache\n\t" 6723 "lfence\n" 6724 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6725 [size] "r" (size) 6726 : "eax", "ebx", "ecx", "edx"); 6727 } 6728 6729 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6730 { 6731 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6732 int tpr_threshold; 6733 6734 if (is_guest_mode(vcpu) && 6735 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6736 return; 6737 6738 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6739 if (is_guest_mode(vcpu)) 6740 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6741 else 6742 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6743 } 6744 6745 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6746 { 6747 struct vcpu_vmx *vmx = to_vmx(vcpu); 6748 u32 sec_exec_control; 6749 6750 if (!lapic_in_kernel(vcpu)) 6751 return; 6752 6753 if (!flexpriority_enabled && 6754 !cpu_has_vmx_virtualize_x2apic_mode()) 6755 return; 6756 6757 /* Postpone execution until vmcs01 is the current VMCS. */ 6758 if (is_guest_mode(vcpu)) { 6759 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6760 return; 6761 } 6762 6763 sec_exec_control = secondary_exec_controls_get(vmx); 6764 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6765 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6766 6767 switch (kvm_get_apic_mode(vcpu)) { 6768 case LAPIC_MODE_INVALID: 6769 WARN_ONCE(true, "Invalid local APIC state"); 6770 break; 6771 case LAPIC_MODE_DISABLED: 6772 break; 6773 case LAPIC_MODE_XAPIC: 6774 if (flexpriority_enabled) { 6775 sec_exec_control |= 6776 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6777 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6778 6779 /* 6780 * Flush the TLB, reloading the APIC access page will 6781 * only do so if its physical address has changed, but 6782 * the guest may have inserted a non-APIC mapping into 6783 * the TLB while the APIC access page was disabled. 6784 */ 6785 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6786 } 6787 break; 6788 case LAPIC_MODE_X2APIC: 6789 if (cpu_has_vmx_virtualize_x2apic_mode()) 6790 sec_exec_control |= 6791 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6792 break; 6793 } 6794 secondary_exec_controls_set(vmx, sec_exec_control); 6795 6796 vmx_update_msr_bitmap_x2apic(vcpu); 6797 } 6798 6799 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6800 { 6801 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6802 struct kvm *kvm = vcpu->kvm; 6803 struct kvm_memslots *slots = kvm_memslots(kvm); 6804 struct kvm_memory_slot *slot; 6805 struct page *refcounted_page; 6806 unsigned long mmu_seq; 6807 kvm_pfn_t pfn; 6808 bool writable; 6809 6810 /* Defer reload until vmcs01 is the current VMCS. */ 6811 if (is_guest_mode(vcpu)) { 6812 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6813 return; 6814 } 6815 6816 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6817 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6818 return; 6819 6820 /* 6821 * Explicitly grab the memslot using KVM's internal slot ID to ensure 6822 * KVM doesn't unintentionally grab a userspace memslot. It _should_ 6823 * be impossible for userspace to create a memslot for the APIC when 6824 * APICv is enabled, but paranoia won't hurt in this case. 6825 */ 6826 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6827 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6828 return; 6829 6830 /* 6831 * Ensure that the mmu_notifier sequence count is read before KVM 6832 * retrieves the pfn from the primary MMU. Note, the memslot is 6833 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6834 * in kvm_mmu_invalidate_end(). 6835 */ 6836 mmu_seq = kvm->mmu_invalidate_seq; 6837 smp_rmb(); 6838 6839 /* 6840 * No need to retry if the memslot does not exist or is invalid. KVM 6841 * controls the APIC-access page memslot, and only deletes the memslot 6842 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6843 */ 6844 pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page); 6845 if (is_error_noslot_pfn(pfn)) 6846 return; 6847 6848 read_lock(&vcpu->kvm->mmu_lock); 6849 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) 6850 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6851 else 6852 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6853 6854 /* 6855 * Do not pin the APIC access page in memory so that it can be freely 6856 * migrated, the MMU notifier will call us again if it is migrated or 6857 * swapped out. KVM backs the memslot with anonymous memory, the pfn 6858 * should always point at a refcounted page (if the pfn is valid). 6859 */ 6860 if (!WARN_ON_ONCE(!refcounted_page)) 6861 kvm_release_page_clean(refcounted_page); 6862 6863 /* 6864 * No need for a manual TLB flush at this point, KVM has already done a 6865 * flush if there were SPTEs pointing at the previous page. 6866 */ 6867 read_unlock(&vcpu->kvm->mmu_lock); 6868 } 6869 6870 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6871 { 6872 u16 status; 6873 u8 old; 6874 6875 /* 6876 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI 6877 * is only relevant for if and only if Virtual Interrupt Delivery is 6878 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's 6879 * vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested 6880 * VM-Exit, otherwise L1 with run with a stale SVI. 6881 */ 6882 if (is_guest_mode(vcpu)) { 6883 /* 6884 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID 6885 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC. 6886 * Note, userspace can stuff state while L2 is active; assert 6887 * that VID is disabled if and only if the vCPU is in KVM_RUN 6888 * to avoid false positives if userspace is setting APIC state. 6889 */ 6890 WARN_ON_ONCE(vcpu->wants_to_run && 6891 nested_cpu_has_vid(get_vmcs12(vcpu))); 6892 to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true; 6893 return; 6894 } 6895 6896 if (max_isr == -1) 6897 max_isr = 0; 6898 6899 status = vmcs_read16(GUEST_INTR_STATUS); 6900 old = status >> 8; 6901 if (max_isr != old) { 6902 status &= 0xff; 6903 status |= max_isr << 8; 6904 vmcs_write16(GUEST_INTR_STATUS, status); 6905 } 6906 } 6907 6908 static void vmx_set_rvi(int vector) 6909 { 6910 u16 status; 6911 u8 old; 6912 6913 if (vector == -1) 6914 vector = 0; 6915 6916 status = vmcs_read16(GUEST_INTR_STATUS); 6917 old = (u8)status & 0xff; 6918 if ((u8)vector != old) { 6919 status &= ~0xff; 6920 status |= (u8)vector; 6921 vmcs_write16(GUEST_INTR_STATUS, status); 6922 } 6923 } 6924 6925 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6926 { 6927 struct vcpu_vmx *vmx = to_vmx(vcpu); 6928 int max_irr; 6929 bool got_posted_interrupt; 6930 6931 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6932 return -EIO; 6933 6934 if (pi_test_on(&vmx->pi_desc)) { 6935 pi_clear_on(&vmx->pi_desc); 6936 /* 6937 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6938 * But on x86 this is just a compiler barrier anyway. 6939 */ 6940 smp_mb__after_atomic(); 6941 got_posted_interrupt = 6942 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6943 } else { 6944 max_irr = kvm_lapic_find_highest_irr(vcpu); 6945 got_posted_interrupt = false; 6946 } 6947 6948 /* 6949 * Newly recognized interrupts are injected via either virtual interrupt 6950 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6951 * disabled in two cases: 6952 * 6953 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6954 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6955 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6956 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6957 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6958 * 6959 * 2) If APICv is disabled for this vCPU, assigned devices may still 6960 * attempt to post interrupts. The posted interrupt vector will cause 6961 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6962 */ 6963 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6964 vmx_set_rvi(max_irr); 6965 else if (got_posted_interrupt) 6966 kvm_make_request(KVM_REQ_EVENT, vcpu); 6967 6968 return max_irr; 6969 } 6970 6971 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6972 { 6973 if (!kvm_vcpu_apicv_active(vcpu)) 6974 return; 6975 6976 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6977 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6978 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6979 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6980 } 6981 6982 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6983 { 6984 struct vcpu_vmx *vmx = to_vmx(vcpu); 6985 6986 pi_clear_on(&vmx->pi_desc); 6987 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6988 } 6989 6990 void vmx_do_interrupt_irqoff(unsigned long entry); 6991 void vmx_do_nmi_irqoff(void); 6992 6993 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6994 { 6995 /* 6996 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6997 * MSR value is not clobbered by the host activity before the guest 6998 * has chance to consume it. 6999 * 7000 * Do not blindly read xfd_err here, since this exception might 7001 * be caused by L1 interception on a platform which doesn't 7002 * support xfd at all. 7003 * 7004 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 7005 * only when xfd contains a non-zero value. 7006 * 7007 * Queuing exception is done in vmx_handle_exit. See comment there. 7008 */ 7009 if (vcpu->arch.guest_fpu.fpstate->xfd) 7010 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 7011 } 7012 7013 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) 7014 { 7015 /* if exit due to PF check for async PF */ 7016 if (is_page_fault(intr_info)) 7017 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 7018 /* if exit due to NM, handle before interrupts are enabled */ 7019 else if (is_nm_fault(intr_info)) 7020 handle_nm_fault_irqoff(vcpu); 7021 /* Handle machine checks before interrupts are enabled */ 7022 else if (is_machine_check(intr_info)) 7023 kvm_machine_check(); 7024 } 7025 7026 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu, 7027 u32 intr_info) 7028 { 7029 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 7030 7031 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 7032 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 7033 return; 7034 7035 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 7036 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7037 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); 7038 else 7039 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); 7040 kvm_after_interrupt(vcpu); 7041 7042 vcpu->arch.at_instruction_boundary = true; 7043 } 7044 7045 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 7046 { 7047 struct vcpu_vmx *vmx = to_vmx(vcpu); 7048 7049 if (vmx->emulation_required) 7050 return; 7051 7052 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 7053 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu)); 7054 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 7055 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu)); 7056 } 7057 7058 /* 7059 * The kvm parameter can be NULL (module initialization, or invocation before 7060 * VM creation). Be sure to check the kvm parameter before using it. 7061 */ 7062 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7063 { 7064 switch (index) { 7065 case MSR_IA32_SMBASE: 7066 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7067 return false; 7068 /* 7069 * We cannot do SMM unless we can run the guest in big 7070 * real mode. 7071 */ 7072 return enable_unrestricted_guest || emulate_invalid_guest_state; 7073 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7074 return nested; 7075 case MSR_AMD64_VIRT_SPEC_CTRL: 7076 case MSR_AMD64_TSC_RATIO: 7077 /* This is AMD only. */ 7078 return false; 7079 default: 7080 return true; 7081 } 7082 } 7083 7084 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7085 { 7086 u32 exit_intr_info; 7087 bool unblock_nmi; 7088 u8 vector; 7089 bool idtv_info_valid; 7090 7091 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7092 7093 if (enable_vnmi) { 7094 if (vmx->loaded_vmcs->nmi_known_unmasked) 7095 return; 7096 7097 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7098 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7099 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7100 /* 7101 * SDM 3: 27.7.1.2 (September 2008) 7102 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7103 * a guest IRET fault. 7104 * SDM 3: 23.2.2 (September 2008) 7105 * Bit 12 is undefined in any of the following cases: 7106 * If the VM exit sets the valid bit in the IDT-vectoring 7107 * information field. 7108 * If the VM exit is due to a double fault. 7109 */ 7110 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7111 vector != DF_VECTOR && !idtv_info_valid) 7112 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7113 GUEST_INTR_STATE_NMI); 7114 else 7115 vmx->loaded_vmcs->nmi_known_unmasked = 7116 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7117 & GUEST_INTR_STATE_NMI); 7118 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7119 vmx->loaded_vmcs->vnmi_blocked_time += 7120 ktime_to_ns(ktime_sub(ktime_get(), 7121 vmx->loaded_vmcs->entry_time)); 7122 } 7123 7124 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7125 u32 idt_vectoring_info, 7126 int instr_len_field, 7127 int error_code_field) 7128 { 7129 u8 vector; 7130 int type; 7131 bool idtv_info_valid; 7132 7133 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7134 7135 vcpu->arch.nmi_injected = false; 7136 kvm_clear_exception_queue(vcpu); 7137 kvm_clear_interrupt_queue(vcpu); 7138 7139 if (!idtv_info_valid) 7140 return; 7141 7142 kvm_make_request(KVM_REQ_EVENT, vcpu); 7143 7144 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7145 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7146 7147 switch (type) { 7148 case INTR_TYPE_NMI_INTR: 7149 vcpu->arch.nmi_injected = true; 7150 /* 7151 * SDM 3: 27.7.1.2 (September 2008) 7152 * Clear bit "block by NMI" before VM entry if a NMI 7153 * delivery faulted. 7154 */ 7155 vmx_set_nmi_mask(vcpu, false); 7156 break; 7157 case INTR_TYPE_SOFT_EXCEPTION: 7158 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7159 fallthrough; 7160 case INTR_TYPE_HARD_EXCEPTION: 7161 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7162 u32 err = vmcs_read32(error_code_field); 7163 kvm_requeue_exception_e(vcpu, vector, err); 7164 } else 7165 kvm_requeue_exception(vcpu, vector); 7166 break; 7167 case INTR_TYPE_SOFT_INTR: 7168 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7169 fallthrough; 7170 case INTR_TYPE_EXT_INTR: 7171 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7172 break; 7173 default: 7174 break; 7175 } 7176 } 7177 7178 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7179 { 7180 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7181 VM_EXIT_INSTRUCTION_LEN, 7182 IDT_VECTORING_ERROR_CODE); 7183 } 7184 7185 void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7186 { 7187 __vmx_complete_interrupts(vcpu, 7188 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7189 VM_ENTRY_INSTRUCTION_LEN, 7190 VM_ENTRY_EXCEPTION_ERROR_CODE); 7191 7192 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7193 } 7194 7195 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7196 { 7197 int i, nr_msrs; 7198 struct perf_guest_switch_msr *msrs; 7199 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7200 7201 pmu->host_cross_mapped_mask = 0; 7202 if (pmu->pebs_enable & pmu->global_ctrl) 7203 intel_pmu_cross_mapped_check(pmu); 7204 7205 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7206 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7207 if (!msrs) 7208 return; 7209 7210 for (i = 0; i < nr_msrs; i++) 7211 if (msrs[i].host == msrs[i].guest) 7212 clear_atomic_switch_msr(vmx, msrs[i].msr); 7213 else 7214 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7215 msrs[i].host, false); 7216 } 7217 7218 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7219 { 7220 struct vcpu_vmx *vmx = to_vmx(vcpu); 7221 u64 tscl; 7222 u32 delta_tsc; 7223 7224 if (force_immediate_exit) { 7225 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7226 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7227 } else if (vmx->hv_deadline_tsc != -1) { 7228 tscl = rdtsc(); 7229 if (vmx->hv_deadline_tsc > tscl) 7230 /* set_hv_timer ensures the delta fits in 32-bits */ 7231 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7232 cpu_preemption_timer_multi); 7233 else 7234 delta_tsc = 0; 7235 7236 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7237 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7238 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7239 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7240 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7241 } 7242 } 7243 7244 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7245 { 7246 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7247 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7248 vmcs_writel(HOST_RSP, host_rsp); 7249 } 7250 } 7251 7252 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7253 unsigned int flags) 7254 { 7255 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7256 7257 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7258 return; 7259 7260 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7261 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7262 7263 /* 7264 * If the guest/host SPEC_CTRL values differ, restore the host value. 7265 * 7266 * For legacy IBRS, the IBRS bit always needs to be written after 7267 * transitioning from a less privileged predictor mode, regardless of 7268 * whether the guest/host values differ. 7269 */ 7270 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7271 vmx->spec_ctrl != hostval) 7272 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7273 7274 barrier_nospec(); 7275 } 7276 7277 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu, 7278 bool force_immediate_exit) 7279 { 7280 /* 7281 * If L2 is active, some VMX preemption timer exits can be handled in 7282 * the fastpath even, all other exits must use the slow path. 7283 */ 7284 if (is_guest_mode(vcpu) && 7285 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER) 7286 return EXIT_FASTPATH_NONE; 7287 7288 switch (to_vmx(vcpu)->exit_reason.basic) { 7289 case EXIT_REASON_MSR_WRITE: 7290 return handle_fastpath_set_msr_irqoff(vcpu); 7291 case EXIT_REASON_PREEMPTION_TIMER: 7292 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit); 7293 case EXIT_REASON_HLT: 7294 return handle_fastpath_hlt(vcpu); 7295 default: 7296 return EXIT_FASTPATH_NONE; 7297 } 7298 } 7299 7300 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7301 unsigned int flags) 7302 { 7303 struct vcpu_vmx *vmx = to_vmx(vcpu); 7304 7305 guest_state_enter_irqoff(); 7306 7307 /* 7308 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7309 * mitigation for MDS is done late in VMentry and is still 7310 * executed in spite of L1D Flush. This is because an extra VERW 7311 * should not matter much after the big hammer L1D Flush. 7312 */ 7313 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7314 vmx_l1d_flush(vcpu); 7315 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7316 kvm_arch_has_assigned_device(vcpu->kvm)) 7317 mds_clear_cpu_buffers(); 7318 7319 vmx_disable_fb_clear(vmx); 7320 7321 if (vcpu->arch.cr2 != native_read_cr2()) 7322 native_write_cr2(vcpu->arch.cr2); 7323 7324 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7325 flags); 7326 7327 vcpu->arch.cr2 = native_read_cr2(); 7328 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7329 7330 vmx->idt_vectoring_info = 0; 7331 7332 vmx_enable_fb_clear(vmx); 7333 7334 if (unlikely(vmx->fail)) { 7335 vmx->exit_reason.full = 0xdead; 7336 goto out; 7337 } 7338 7339 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7340 if (likely(!vmx->exit_reason.failed_vmentry)) 7341 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7342 7343 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7344 is_nmi(vmx_get_intr_info(vcpu))) { 7345 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7346 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7347 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); 7348 else 7349 vmx_do_nmi_irqoff(); 7350 kvm_after_interrupt(vcpu); 7351 } 7352 7353 out: 7354 guest_state_exit_irqoff(); 7355 } 7356 7357 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7358 { 7359 struct vcpu_vmx *vmx = to_vmx(vcpu); 7360 unsigned long cr3, cr4; 7361 7362 /* Record the guest's net vcpu time for enforced NMI injections. */ 7363 if (unlikely(!enable_vnmi && 7364 vmx->loaded_vmcs->soft_vnmi_blocked)) 7365 vmx->loaded_vmcs->entry_time = ktime_get(); 7366 7367 /* 7368 * Don't enter VMX if guest state is invalid, let the exit handler 7369 * start emulation until we arrive back to a valid state. Synthesize a 7370 * consistency check VM-Exit due to invalid guest state and bail. 7371 */ 7372 if (unlikely(vmx->emulation_required)) { 7373 vmx->fail = 0; 7374 7375 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7376 vmx->exit_reason.failed_vmentry = 1; 7377 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7378 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7379 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7380 vmx->exit_intr_info = 0; 7381 return EXIT_FASTPATH_NONE; 7382 } 7383 7384 trace_kvm_entry(vcpu, force_immediate_exit); 7385 7386 if (vmx->ple_window_dirty) { 7387 vmx->ple_window_dirty = false; 7388 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7389 } 7390 7391 /* 7392 * We did this in prepare_switch_to_guest, because it needs to 7393 * be within srcu_read_lock. 7394 */ 7395 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7396 7397 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7398 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7399 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7400 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7401 vcpu->arch.regs_dirty = 0; 7402 7403 /* 7404 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7405 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7406 * it switches back to the current->mm, which can occur in KVM context 7407 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7408 * toggles a static key while handling a VM-Exit. 7409 */ 7410 cr3 = __get_current_cr3_fast(); 7411 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7412 vmcs_writel(HOST_CR3, cr3); 7413 vmx->loaded_vmcs->host_state.cr3 = cr3; 7414 } 7415 7416 cr4 = cr4_read_shadow(); 7417 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7418 vmcs_writel(HOST_CR4, cr4); 7419 vmx->loaded_vmcs->host_state.cr4 = cr4; 7420 } 7421 7422 /* When single-stepping over STI and MOV SS, we must clear the 7423 * corresponding interruptibility bits in the guest state. Otherwise 7424 * vmentry fails as it then expects bit 14 (BS) in pending debug 7425 * exceptions being set, but that's not correct for the guest debugging 7426 * case. */ 7427 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7428 vmx_set_interrupt_shadow(vcpu, 0); 7429 7430 kvm_load_guest_xsave_state(vcpu); 7431 7432 pt_guest_enter(vmx); 7433 7434 atomic_switch_perf_msrs(vmx); 7435 if (intel_pmu_lbr_is_enabled(vcpu)) 7436 vmx_passthrough_lbr_msrs(vcpu); 7437 7438 if (enable_preemption_timer) 7439 vmx_update_hv_timer(vcpu, force_immediate_exit); 7440 else if (force_immediate_exit) 7441 smp_send_reschedule(vcpu->cpu); 7442 7443 kvm_wait_lapic_expire(vcpu); 7444 7445 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7446 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7447 7448 /* All fields are clean at this point */ 7449 if (kvm_is_using_evmcs()) { 7450 current_evmcs->hv_clean_fields |= 7451 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7452 7453 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7454 } 7455 7456 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7457 if (vcpu->arch.host_debugctl) 7458 update_debugctlmsr(vcpu->arch.host_debugctl); 7459 7460 #ifndef CONFIG_X86_64 7461 /* 7462 * The sysexit path does not restore ds/es, so we must set them to 7463 * a reasonable value ourselves. 7464 * 7465 * We can't defer this to vmx_prepare_switch_to_host() since that 7466 * function may be executed in interrupt context, which saves and 7467 * restore segments around it, nullifying its effect. 7468 */ 7469 loadsegment(ds, __USER_DS); 7470 loadsegment(es, __USER_DS); 7471 #endif 7472 7473 pt_guest_exit(vmx); 7474 7475 kvm_load_host_xsave_state(vcpu); 7476 7477 if (is_guest_mode(vcpu)) { 7478 /* 7479 * Track VMLAUNCH/VMRESUME that have made past guest state 7480 * checking. 7481 */ 7482 if (vmx->nested.nested_run_pending && 7483 !vmx->exit_reason.failed_vmentry) 7484 ++vcpu->stat.nested_run; 7485 7486 vmx->nested.nested_run_pending = 0; 7487 } 7488 7489 if (unlikely(vmx->fail)) 7490 return EXIT_FASTPATH_NONE; 7491 7492 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7493 kvm_machine_check(); 7494 7495 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7496 7497 if (unlikely(vmx->exit_reason.failed_vmentry)) 7498 return EXIT_FASTPATH_NONE; 7499 7500 vmx->loaded_vmcs->launched = 1; 7501 7502 vmx_recover_nmi_blocking(vmx); 7503 vmx_complete_interrupts(vmx); 7504 7505 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit); 7506 } 7507 7508 void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7509 { 7510 struct vcpu_vmx *vmx = to_vmx(vcpu); 7511 7512 if (enable_pml) 7513 vmx_destroy_pml_buffer(vmx); 7514 free_vpid(vmx->vpid); 7515 nested_vmx_free_vcpu(vcpu); 7516 free_loaded_vmcs(vmx->loaded_vmcs); 7517 free_page((unsigned long)vmx->ve_info); 7518 } 7519 7520 int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7521 { 7522 struct vmx_uret_msr *tsx_ctrl; 7523 struct vcpu_vmx *vmx; 7524 int i, err; 7525 7526 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7527 vmx = to_vmx(vcpu); 7528 7529 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7530 7531 err = -ENOMEM; 7532 7533 vmx->vpid = allocate_vpid(); 7534 7535 /* 7536 * If PML is turned on, failure on enabling PML just results in failure 7537 * of creating the vcpu, therefore we can simplify PML logic (by 7538 * avoiding dealing with cases, such as enabling PML partially on vcpus 7539 * for the guest), etc. 7540 */ 7541 if (enable_pml) { 7542 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7543 if (!vmx->pml_pg) 7544 goto free_vpid; 7545 } 7546 7547 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7548 vmx->guest_uret_msrs[i].mask = -1ull; 7549 if (boot_cpu_has(X86_FEATURE_RTM)) { 7550 /* 7551 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7552 * Keep the host value unchanged to avoid changing CPUID bits 7553 * under the host kernel's feet. 7554 */ 7555 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7556 if (tsx_ctrl) 7557 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7558 } 7559 7560 err = alloc_loaded_vmcs(&vmx->vmcs01); 7561 if (err < 0) 7562 goto free_pml; 7563 7564 /* 7565 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7566 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7567 * feature only for vmcs01, KVM currently isn't equipped to realize any 7568 * performance benefits from enabling it for vmcs02. 7569 */ 7570 if (kvm_is_using_evmcs() && 7571 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7572 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7573 7574 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7575 } 7576 7577 /* The MSR bitmap starts with all ones */ 7578 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7579 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7580 7581 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7582 #ifdef CONFIG_X86_64 7583 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7584 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7585 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7586 #endif 7587 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7588 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7589 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7590 if (kvm_cstate_in_guest(vcpu->kvm)) { 7591 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7592 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7593 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7594 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7595 } 7596 7597 vmx->loaded_vmcs = &vmx->vmcs01; 7598 7599 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7600 err = kvm_alloc_apic_access_page(vcpu->kvm); 7601 if (err) 7602 goto free_vmcs; 7603 } 7604 7605 if (enable_ept && !enable_unrestricted_guest) { 7606 err = init_rmode_identity_map(vcpu->kvm); 7607 if (err) 7608 goto free_vmcs; 7609 } 7610 7611 err = -ENOMEM; 7612 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) { 7613 struct page *page; 7614 7615 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE); 7616 7617 /* ve_info must be page aligned. */ 7618 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7619 if (!page) 7620 goto free_vmcs; 7621 7622 vmx->ve_info = page_to_virt(page); 7623 } 7624 7625 if (vmx_can_use_ipiv(vcpu)) 7626 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7627 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7628 7629 return 0; 7630 7631 free_vmcs: 7632 free_loaded_vmcs(vmx->loaded_vmcs); 7633 free_pml: 7634 vmx_destroy_pml_buffer(vmx); 7635 free_vpid: 7636 free_vpid(vmx->vpid); 7637 return err; 7638 } 7639 7640 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7641 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7642 7643 int vmx_vm_init(struct kvm *kvm) 7644 { 7645 if (!ple_gap) 7646 kvm->arch.pause_in_guest = true; 7647 7648 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7649 switch (l1tf_mitigation) { 7650 case L1TF_MITIGATION_OFF: 7651 case L1TF_MITIGATION_FLUSH_NOWARN: 7652 /* 'I explicitly don't care' is set */ 7653 break; 7654 case L1TF_MITIGATION_FLUSH: 7655 case L1TF_MITIGATION_FLUSH_NOSMT: 7656 case L1TF_MITIGATION_FULL: 7657 /* 7658 * Warn upon starting the first VM in a potentially 7659 * insecure environment. 7660 */ 7661 if (sched_smt_active()) 7662 pr_warn_once(L1TF_MSG_SMT); 7663 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7664 pr_warn_once(L1TF_MSG_L1D); 7665 break; 7666 case L1TF_MITIGATION_FULL_FORCE: 7667 /* Flush is enforced */ 7668 break; 7669 } 7670 } 7671 return 0; 7672 } 7673 7674 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7675 { 7676 /* 7677 * Force UC for host MMIO regions, as allowing the guest to access MMIO 7678 * with cacheable accesses will result in Machine Checks. 7679 */ 7680 if (is_mmio) 7681 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7682 7683 /* 7684 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent 7685 * device attached. Letting the guest control memory types on Intel 7686 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust 7687 * the guest to behave only as a last resort. 7688 */ 7689 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7690 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7691 7692 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT); 7693 } 7694 7695 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7696 { 7697 /* 7698 * These bits in the secondary execution controls field 7699 * are dynamic, the others are mostly based on the hypervisor 7700 * architecture and the guest's CPUID. Do not touch the 7701 * dynamic bits. 7702 */ 7703 u32 mask = 7704 SECONDARY_EXEC_SHADOW_VMCS | 7705 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7706 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7707 SECONDARY_EXEC_DESC; 7708 7709 u32 cur_ctl = secondary_exec_controls_get(vmx); 7710 7711 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7712 } 7713 7714 /* 7715 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7716 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7717 */ 7718 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7719 { 7720 struct vcpu_vmx *vmx = to_vmx(vcpu); 7721 struct kvm_cpuid_entry2 *entry; 7722 7723 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7724 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7725 7726 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7727 if (entry && (entry->_reg & (_cpuid_mask))) \ 7728 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7729 } while (0) 7730 7731 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7732 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7733 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7734 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7735 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7736 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7737 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7738 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7739 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7740 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7741 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7742 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7743 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7744 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7745 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7746 7747 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7748 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7749 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7750 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7751 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7752 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7753 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7754 7755 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); 7756 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); 7757 7758 #undef cr4_fixed1_update 7759 } 7760 7761 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7762 { 7763 struct vcpu_vmx *vmx = to_vmx(vcpu); 7764 struct kvm_cpuid_entry2 *best = NULL; 7765 int i; 7766 7767 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7768 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7769 if (!best) 7770 return; 7771 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7772 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7773 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7774 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7775 } 7776 7777 /* Get the number of configurable Address Ranges for filtering */ 7778 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7779 PT_CAP_num_address_ranges); 7780 7781 /* Initialize and clear the no dependency bits */ 7782 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7783 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7784 RTIT_CTL_BRANCH_EN); 7785 7786 /* 7787 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7788 * will inject an #GP 7789 */ 7790 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7791 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7792 7793 /* 7794 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7795 * PSBFreq can be set 7796 */ 7797 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7798 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7799 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7800 7801 /* 7802 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7803 */ 7804 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7805 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7806 RTIT_CTL_MTC_RANGE); 7807 7808 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7809 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7810 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7811 RTIT_CTL_PTW_EN); 7812 7813 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7814 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7815 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7816 7817 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7818 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7819 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7820 7821 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7822 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7823 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7824 7825 /* unmask address range configure area */ 7826 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7827 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7828 } 7829 7830 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7831 { 7832 struct vcpu_vmx *vmx = to_vmx(vcpu); 7833 7834 /* 7835 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7836 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7837 * set if and only if XSAVE is supported. 7838 */ 7839 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)) 7840 guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES); 7841 7842 vmx_setup_uret_msrs(vmx); 7843 7844 if (cpu_has_secondary_exec_ctrls()) 7845 vmcs_set_secondary_exec_control(vmx, 7846 vmx_secondary_exec_control(vmx)); 7847 7848 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) 7849 vmx->msr_ia32_feature_control_valid_bits |= 7850 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7851 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7852 else 7853 vmx->msr_ia32_feature_control_valid_bits &= 7854 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7855 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7856 7857 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) 7858 nested_vmx_cr_fixed1_bits_update(vcpu); 7859 7860 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7861 guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT)) 7862 update_intel_pt_cfg(vcpu); 7863 7864 if (boot_cpu_has(X86_FEATURE_RTM)) { 7865 struct vmx_uret_msr *msr; 7866 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7867 if (msr) { 7868 bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM); 7869 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7870 } 7871 } 7872 7873 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7874 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7875 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)); 7876 7877 if (boot_cpu_has(X86_FEATURE_IBPB)) 7878 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7879 !guest_has_pred_cmd_msr(vcpu)); 7880 7881 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7882 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7883 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7884 7885 set_cr4_guest_host_mask(vmx); 7886 7887 vmx_write_encls_bitmap(vcpu, NULL); 7888 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX)) 7889 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7890 else 7891 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7892 7893 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC)) 7894 vmx->msr_ia32_feature_control_valid_bits |= 7895 FEAT_CTL_SGX_LC_ENABLED; 7896 else 7897 vmx->msr_ia32_feature_control_valid_bits &= 7898 ~FEAT_CTL_SGX_LC_ENABLED; 7899 7900 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7901 vmx_update_exception_bitmap(vcpu); 7902 } 7903 7904 static __init u64 vmx_get_perf_capabilities(void) 7905 { 7906 u64 perf_cap = PMU_CAP_FW_WRITES; 7907 u64 host_perf_cap = 0; 7908 7909 if (!enable_pmu) 7910 return 0; 7911 7912 if (boot_cpu_has(X86_FEATURE_PDCM)) 7913 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7914 7915 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7916 x86_perf_get_lbr(&vmx_lbr_caps); 7917 7918 /* 7919 * KVM requires LBR callstack support, as the overhead due to 7920 * context switching LBRs without said support is too high. 7921 * See intel_pmu_create_guest_lbr_event() for more info. 7922 */ 7923 if (!vmx_lbr_caps.has_callstack) 7924 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps)); 7925 else if (vmx_lbr_caps.nr) 7926 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7927 } 7928 7929 if (vmx_pebs_supported()) { 7930 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7931 7932 /* 7933 * Disallow adaptive PEBS as it is functionally broken, can be 7934 * used by the guest to read *host* LBRs, and can be used to 7935 * bypass userspace event filters. To correctly and safely 7936 * support adaptive PEBS, KVM needs to: 7937 * 7938 * 1. Account for the ADAPTIVE flag when (re)programming fixed 7939 * counters. 7940 * 7941 * 2. Gain support from perf (or take direct control of counter 7942 * programming) to support events without adaptive PEBS 7943 * enabled for the hardware counter. 7944 * 7945 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with 7946 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. 7947 * 7948 * 4. Document which PMU events are effectively exposed to the 7949 * guest via adaptive PEBS, and make adaptive PEBS mutually 7950 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. 7951 */ 7952 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7953 } 7954 7955 return perf_cap; 7956 } 7957 7958 static __init void vmx_set_cpu_caps(void) 7959 { 7960 kvm_set_cpu_caps(); 7961 7962 /* CPUID 0x1 */ 7963 if (nested) 7964 kvm_cpu_cap_set(X86_FEATURE_VMX); 7965 7966 /* CPUID 0x7 */ 7967 if (kvm_mpx_supported()) 7968 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7969 if (!cpu_has_vmx_invpcid()) 7970 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7971 if (vmx_pt_mode_is_host_guest()) 7972 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7973 if (vmx_pebs_supported()) { 7974 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7975 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7976 } 7977 7978 if (!enable_pmu) 7979 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7980 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7981 7982 if (!enable_sgx) { 7983 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7984 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7985 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7986 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7987 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA); 7988 } 7989 7990 if (vmx_umip_emulated()) 7991 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7992 7993 /* CPUID 0xD.1 */ 7994 kvm_caps.supported_xss = 0; 7995 if (!cpu_has_vmx_xsaves()) 7996 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7997 7998 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7999 if (!cpu_has_vmx_rdtscp()) { 8000 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 8001 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 8002 } 8003 8004 if (cpu_has_vmx_waitpkg()) 8005 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 8006 } 8007 8008 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 8009 struct x86_instruction_info *info) 8010 { 8011 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 8012 unsigned short port; 8013 bool intercept; 8014 int size; 8015 8016 if (info->intercept == x86_intercept_in || 8017 info->intercept == x86_intercept_ins) { 8018 port = info->src_val; 8019 size = info->dst_bytes; 8020 } else { 8021 port = info->dst_val; 8022 size = info->src_bytes; 8023 } 8024 8025 /* 8026 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 8027 * VM-exits depend on the 'unconditional IO exiting' VM-execution 8028 * control. 8029 * 8030 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 8031 */ 8032 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 8033 intercept = nested_cpu_has(vmcs12, 8034 CPU_BASED_UNCOND_IO_EXITING); 8035 else 8036 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 8037 8038 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8039 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 8040 } 8041 8042 int vmx_check_intercept(struct kvm_vcpu *vcpu, 8043 struct x86_instruction_info *info, 8044 enum x86_intercept_stage stage, 8045 struct x86_exception *exception) 8046 { 8047 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 8048 8049 switch (info->intercept) { 8050 /* 8051 * RDPID causes #UD if disabled through secondary execution controls. 8052 * Because it is marked as EmulateOnUD, we need to intercept it here. 8053 * Note, RDPID is hidden behind ENABLE_RDTSCP. 8054 */ 8055 case x86_intercept_rdpid: 8056 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 8057 exception->vector = UD_VECTOR; 8058 exception->error_code_valid = false; 8059 return X86EMUL_PROPAGATE_FAULT; 8060 } 8061 break; 8062 8063 case x86_intercept_in: 8064 case x86_intercept_ins: 8065 case x86_intercept_out: 8066 case x86_intercept_outs: 8067 return vmx_check_intercept_io(vcpu, info); 8068 8069 case x86_intercept_lgdt: 8070 case x86_intercept_lidt: 8071 case x86_intercept_lldt: 8072 case x86_intercept_ltr: 8073 case x86_intercept_sgdt: 8074 case x86_intercept_sidt: 8075 case x86_intercept_sldt: 8076 case x86_intercept_str: 8077 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 8078 return X86EMUL_CONTINUE; 8079 8080 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8081 break; 8082 8083 case x86_intercept_pause: 8084 /* 8085 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 8086 * with vanilla NOPs in the emulator. Apply the interception 8087 * check only to actual PAUSE instructions. Don't check 8088 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8089 * exit, i.e. KVM is within its rights to allow L2 to execute 8090 * the PAUSE. 8091 */ 8092 if ((info->rep_prefix != REPE_PREFIX) || 8093 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 8094 return X86EMUL_CONTINUE; 8095 8096 break; 8097 8098 /* TODO: check more intercepts... */ 8099 default: 8100 break; 8101 } 8102 8103 return X86EMUL_UNHANDLEABLE; 8104 } 8105 8106 #ifdef CONFIG_X86_64 8107 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8108 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8109 u64 divisor, u64 *result) 8110 { 8111 u64 low = a << shift, high = a >> (64 - shift); 8112 8113 /* To avoid the overflow on divq */ 8114 if (high >= divisor) 8115 return 1; 8116 8117 /* Low hold the result, high hold rem which is discarded */ 8118 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8119 "rm" (divisor), "0" (low), "1" (high)); 8120 *result = low; 8121 8122 return 0; 8123 } 8124 8125 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8126 bool *expired) 8127 { 8128 struct vcpu_vmx *vmx; 8129 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8130 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8131 8132 vmx = to_vmx(vcpu); 8133 tscl = rdtsc(); 8134 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8135 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8136 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8137 ktimer->timer_advance_ns); 8138 8139 if (delta_tsc > lapic_timer_advance_cycles) 8140 delta_tsc -= lapic_timer_advance_cycles; 8141 else 8142 delta_tsc = 0; 8143 8144 /* Convert to host delta tsc if tsc scaling is enabled */ 8145 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8146 delta_tsc && u64_shl_div_u64(delta_tsc, 8147 kvm_caps.tsc_scaling_ratio_frac_bits, 8148 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8149 return -ERANGE; 8150 8151 /* 8152 * If the delta tsc can't fit in the 32 bit after the multi shift, 8153 * we can't use the preemption timer. 8154 * It's possible that it fits on later vmentries, but checking 8155 * on every vmentry is costly so we just use an hrtimer. 8156 */ 8157 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8158 return -ERANGE; 8159 8160 vmx->hv_deadline_tsc = tscl + delta_tsc; 8161 *expired = !delta_tsc; 8162 return 0; 8163 } 8164 8165 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8166 { 8167 to_vmx(vcpu)->hv_deadline_tsc = -1; 8168 } 8169 #endif 8170 8171 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8172 { 8173 struct vcpu_vmx *vmx = to_vmx(vcpu); 8174 8175 if (WARN_ON_ONCE(!enable_pml)) 8176 return; 8177 8178 if (is_guest_mode(vcpu)) { 8179 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8180 return; 8181 } 8182 8183 /* 8184 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8185 * code, but in that case another update request will be made and so 8186 * the guest will never run with a stale PML value. 8187 */ 8188 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8189 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8190 else 8191 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8192 } 8193 8194 void vmx_setup_mce(struct kvm_vcpu *vcpu) 8195 { 8196 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8197 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8198 FEAT_CTL_LMCE_ENABLED; 8199 else 8200 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8201 ~FEAT_CTL_LMCE_ENABLED; 8202 } 8203 8204 #ifdef CONFIG_KVM_SMM 8205 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8206 { 8207 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8208 if (to_vmx(vcpu)->nested.nested_run_pending) 8209 return -EBUSY; 8210 return !is_smm(vcpu); 8211 } 8212 8213 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8214 { 8215 struct vcpu_vmx *vmx = to_vmx(vcpu); 8216 8217 /* 8218 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8219 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8220 * SMI and RSM only modify state that is saved and restored via SMRAM. 8221 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8222 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8223 */ 8224 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8225 if (vmx->nested.smm.guest_mode) 8226 nested_vmx_vmexit(vcpu, -1, 0, 0); 8227 8228 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8229 vmx->nested.vmxon = false; 8230 vmx_clear_hlt(vcpu); 8231 return 0; 8232 } 8233 8234 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8235 { 8236 struct vcpu_vmx *vmx = to_vmx(vcpu); 8237 int ret; 8238 8239 if (vmx->nested.smm.vmxon) { 8240 vmx->nested.vmxon = true; 8241 vmx->nested.smm.vmxon = false; 8242 } 8243 8244 if (vmx->nested.smm.guest_mode) { 8245 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8246 if (ret) 8247 return ret; 8248 8249 vmx->nested.nested_run_pending = 1; 8250 vmx->nested.smm.guest_mode = false; 8251 } 8252 return 0; 8253 } 8254 8255 void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8256 { 8257 /* RSM will cause a vmexit anyway. */ 8258 } 8259 #endif 8260 8261 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8262 { 8263 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8264 } 8265 8266 void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8267 { 8268 if (is_guest_mode(vcpu)) { 8269 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8270 8271 if (hrtimer_try_to_cancel(timer) == 1) 8272 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8273 } 8274 } 8275 8276 void vmx_hardware_unsetup(void) 8277 { 8278 kvm_set_posted_intr_wakeup_handler(NULL); 8279 8280 if (nested) 8281 nested_vmx_hardware_unsetup(); 8282 8283 free_kvm_area(); 8284 } 8285 8286 void vmx_vm_destroy(struct kvm *kvm) 8287 { 8288 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8289 8290 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8291 } 8292 8293 /* 8294 * Note, the SDM states that the linear address is masked *after* the modified 8295 * canonicality check, whereas KVM masks (untags) the address and then performs 8296 * a "normal" canonicality check. Functionally, the two methods are identical, 8297 * and when the masking occurs relative to the canonicality check isn't visible 8298 * to software, i.e. KVM's behavior doesn't violate the SDM. 8299 */ 8300 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) 8301 { 8302 int lam_bit; 8303 unsigned long cr3_bits; 8304 8305 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) 8306 return gva; 8307 8308 if (!is_64_bit_mode(vcpu)) 8309 return gva; 8310 8311 /* 8312 * Bit 63 determines if the address should be treated as user address 8313 * or a supervisor address. 8314 */ 8315 if (!(gva & BIT_ULL(63))) { 8316 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); 8317 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) 8318 return gva; 8319 8320 /* LAM_U48 is ignored if LAM_U57 is set. */ 8321 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; 8322 } else { 8323 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) 8324 return gva; 8325 8326 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; 8327 } 8328 8329 /* 8330 * Untag the address by sign-extending the lam_bit, but NOT to bit 63. 8331 * Bit 63 is retained from the raw virtual address so that untagging 8332 * doesn't change a user access to a supervisor access, and vice versa. 8333 */ 8334 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); 8335 } 8336 8337 static unsigned int vmx_handle_intel_pt_intr(void) 8338 { 8339 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8340 8341 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8342 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8343 return 0; 8344 8345 kvm_make_request(KVM_REQ_PMI, vcpu); 8346 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8347 (unsigned long *)&vcpu->arch.pmu.global_status); 8348 return 1; 8349 } 8350 8351 static __init void vmx_setup_user_return_msrs(void) 8352 { 8353 8354 /* 8355 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8356 * will emulate SYSCALL in legacy mode if the vendor string in guest 8357 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8358 * support this emulation, MSR_STAR is included in the list for i386, 8359 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8360 * into hardware and is here purely for emulation purposes. 8361 */ 8362 const u32 vmx_uret_msrs_list[] = { 8363 #ifdef CONFIG_X86_64 8364 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8365 #endif 8366 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8367 MSR_IA32_TSX_CTRL, 8368 }; 8369 int i; 8370 8371 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8372 8373 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8374 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8375 } 8376 8377 static void __init vmx_setup_me_spte_mask(void) 8378 { 8379 u64 me_mask = 0; 8380 8381 /* 8382 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8383 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems, 8384 * boot_cpu_data.x86_phys_bits holds the actual physical address 8385 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to 8386 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits. 8387 */ 8388 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr) 8389 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8390 kvm_host.maxphyaddr - 1); 8391 8392 /* 8393 * Unlike SME, host kernel doesn't support setting up any 8394 * MKTME KeyID on Intel platforms. No memory encryption 8395 * bits should be included into the SPTE. 8396 */ 8397 kvm_mmu_set_me_spte_mask(0, me_mask); 8398 } 8399 8400 __init int vmx_hardware_setup(void) 8401 { 8402 unsigned long host_bndcfgs; 8403 struct desc_ptr dt; 8404 int r; 8405 8406 store_idt(&dt); 8407 host_idt_base = dt.address; 8408 8409 vmx_setup_user_return_msrs(); 8410 8411 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8412 return -EIO; 8413 8414 if (boot_cpu_has(X86_FEATURE_NX)) 8415 kvm_enable_efer_bits(EFER_NX); 8416 8417 if (boot_cpu_has(X86_FEATURE_MPX)) { 8418 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8419 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8420 } 8421 8422 if (!cpu_has_vmx_mpx()) 8423 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8424 XFEATURE_MASK_BNDCSR); 8425 8426 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8427 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8428 enable_vpid = 0; 8429 8430 if (!cpu_has_vmx_ept() || 8431 !cpu_has_vmx_ept_4levels() || 8432 !cpu_has_vmx_ept_mt_wb() || 8433 !cpu_has_vmx_invept_global()) 8434 enable_ept = 0; 8435 8436 /* NX support is required for shadow paging. */ 8437 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8438 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8439 return -EOPNOTSUPP; 8440 } 8441 8442 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8443 enable_ept_ad_bits = 0; 8444 8445 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8446 enable_unrestricted_guest = 0; 8447 8448 if (!cpu_has_vmx_flexpriority()) 8449 flexpriority_enabled = 0; 8450 8451 if (!cpu_has_virtual_nmis()) 8452 enable_vnmi = 0; 8453 8454 #ifdef CONFIG_X86_SGX_KVM 8455 if (!cpu_has_vmx_encls_vmexit()) 8456 enable_sgx = false; 8457 #endif 8458 8459 /* 8460 * set_apic_access_page_addr() is used to reload apic access 8461 * page upon invalidation. No need to do anything if not 8462 * using the APIC_ACCESS_ADDR VMCS field. 8463 */ 8464 if (!flexpriority_enabled) 8465 vt_x86_ops.set_apic_access_page_addr = NULL; 8466 8467 if (!cpu_has_vmx_tpr_shadow()) 8468 vt_x86_ops.update_cr8_intercept = NULL; 8469 8470 #if IS_ENABLED(CONFIG_HYPERV) 8471 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8472 && enable_ept) { 8473 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8474 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8475 } 8476 #endif 8477 8478 if (!cpu_has_vmx_ple()) { 8479 ple_gap = 0; 8480 ple_window = 0; 8481 ple_window_grow = 0; 8482 ple_window_max = 0; 8483 ple_window_shrink = 0; 8484 } 8485 8486 if (!cpu_has_vmx_apicv()) 8487 enable_apicv = 0; 8488 if (!enable_apicv) 8489 vt_x86_ops.sync_pir_to_irr = NULL; 8490 8491 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8492 enable_ipiv = false; 8493 8494 if (cpu_has_vmx_tsc_scaling()) 8495 kvm_caps.has_tsc_control = true; 8496 8497 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8498 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8499 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8500 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8501 8502 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8503 8504 if (enable_ept) 8505 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8506 cpu_has_vmx_ept_execute_only()); 8507 8508 /* 8509 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8510 * bits to shadow_zero_check. 8511 */ 8512 vmx_setup_me_spte_mask(); 8513 8514 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8515 ept_caps_to_lpage_level(vmx_capability.ept)); 8516 8517 /* 8518 * Only enable PML when hardware supports PML feature, and both EPT 8519 * and EPT A/D bit features are enabled -- PML depends on them to work. 8520 */ 8521 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8522 enable_pml = 0; 8523 8524 if (!enable_pml) 8525 vt_x86_ops.cpu_dirty_log_size = 0; 8526 8527 if (!cpu_has_vmx_preemption_timer()) 8528 enable_preemption_timer = false; 8529 8530 if (enable_preemption_timer) { 8531 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8532 8533 cpu_preemption_timer_multi = 8534 vmx_misc_preemption_timer_rate(vmcs_config.misc); 8535 8536 if (tsc_khz) 8537 use_timer_freq = (u64)tsc_khz * 1000; 8538 use_timer_freq >>= cpu_preemption_timer_multi; 8539 8540 /* 8541 * KVM "disables" the preemption timer by setting it to its max 8542 * value. Don't use the timer if it might cause spurious exits 8543 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8544 */ 8545 if (use_timer_freq > 0xffffffffu / 10) 8546 enable_preemption_timer = false; 8547 } 8548 8549 if (!enable_preemption_timer) { 8550 vt_x86_ops.set_hv_timer = NULL; 8551 vt_x86_ops.cancel_hv_timer = NULL; 8552 } 8553 8554 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8555 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8556 8557 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8558 return -EINVAL; 8559 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8560 pt_mode = PT_MODE_SYSTEM; 8561 if (pt_mode == PT_MODE_HOST_GUEST) 8562 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8563 else 8564 vt_init_ops.handle_intel_pt_intr = NULL; 8565 8566 setup_default_sgx_lepubkeyhash(); 8567 8568 if (nested) { 8569 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8570 8571 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8572 if (r) 8573 return r; 8574 } 8575 8576 vmx_set_cpu_caps(); 8577 8578 r = alloc_kvm_area(); 8579 if (r && nested) 8580 nested_vmx_hardware_unsetup(); 8581 8582 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8583 8584 return r; 8585 } 8586 8587 static void vmx_cleanup_l1d_flush(void) 8588 { 8589 if (vmx_l1d_flush_pages) { 8590 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8591 vmx_l1d_flush_pages = NULL; 8592 } 8593 /* Restore state so sysfs ignores VMX */ 8594 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8595 } 8596 8597 static void __vmx_exit(void) 8598 { 8599 allow_smaller_maxphyaddr = false; 8600 8601 vmx_cleanup_l1d_flush(); 8602 } 8603 8604 static void __exit vmx_exit(void) 8605 { 8606 kvm_exit(); 8607 __vmx_exit(); 8608 kvm_x86_vendor_exit(); 8609 8610 } 8611 module_exit(vmx_exit); 8612 8613 static int __init vmx_init(void) 8614 { 8615 int r, cpu; 8616 8617 if (!kvm_is_vmx_supported()) 8618 return -EOPNOTSUPP; 8619 8620 /* 8621 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8622 * to unwind if a later step fails. 8623 */ 8624 hv_init_evmcs(); 8625 8626 r = kvm_x86_vendor_init(&vt_init_ops); 8627 if (r) 8628 return r; 8629 8630 /* 8631 * Must be called after common x86 init so enable_ept is properly set 8632 * up. Hand the parameter mitigation value in which was stored in 8633 * the pre module init parser. If no parameter was given, it will 8634 * contain 'auto' which will be turned into the default 'cond' 8635 * mitigation mode. 8636 */ 8637 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8638 if (r) 8639 goto err_l1d_flush; 8640 8641 for_each_possible_cpu(cpu) { 8642 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8643 8644 pi_init_cpu(cpu); 8645 } 8646 8647 vmx_check_vmcs12_offsets(); 8648 8649 /* 8650 * Shadow paging doesn't have a (further) performance penalty 8651 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8652 * by default 8653 */ 8654 if (!enable_ept) 8655 allow_smaller_maxphyaddr = true; 8656 8657 /* 8658 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8659 * exposed to userspace! 8660 */ 8661 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8662 THIS_MODULE); 8663 if (r) 8664 goto err_kvm_init; 8665 8666 return 0; 8667 8668 err_kvm_init: 8669 __vmx_exit(); 8670 err_l1d_flush: 8671 kvm_x86_vendor_exit(); 8672 return r; 8673 } 8674 module_init(vmx_init); 8675