1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/fred.h> 42 #include <asm/idtentry.h> 43 #include <asm/io.h> 44 #include <asm/irq_remapping.h> 45 #include <asm/reboot.h> 46 #include <asm/perf_event.h> 47 #include <asm/mmu_context.h> 48 #include <asm/mshyperv.h> 49 #include <asm/msr.h> 50 #include <asm/mwait.h> 51 #include <asm/spec-ctrl.h> 52 #include <asm/vmx.h> 53 54 #include <trace/events/ipi.h> 55 56 #include "capabilities.h" 57 #include "common.h" 58 #include "cpuid.h" 59 #include "hyperv.h" 60 #include "kvm_onhyperv.h" 61 #include "irq.h" 62 #include "kvm_cache_regs.h" 63 #include "lapic.h" 64 #include "mmu.h" 65 #include "nested.h" 66 #include "pmu.h" 67 #include "sgx.h" 68 #include "trace.h" 69 #include "vmcs.h" 70 #include "vmcs12.h" 71 #include "vmx.h" 72 #include "x86.h" 73 #include "x86_ops.h" 74 #include "smm.h" 75 #include "vmx_onhyperv.h" 76 #include "posted_intr.h" 77 78 #include "mmu/spte.h" 79 80 MODULE_AUTHOR("Qumranet"); 81 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions"); 82 MODULE_LICENSE("GPL"); 83 84 #ifdef MODULE 85 static const struct x86_cpu_id vmx_cpu_id[] = { 86 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 87 {} 88 }; 89 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 90 #endif 91 92 bool __read_mostly enable_vpid = 1; 93 module_param_named(vpid, enable_vpid, bool, 0444); 94 95 static bool __read_mostly enable_vnmi = 1; 96 module_param_named(vnmi, enable_vnmi, bool, 0444); 97 98 bool __read_mostly flexpriority_enabled = 1; 99 module_param_named(flexpriority, flexpriority_enabled, bool, 0444); 100 101 bool __read_mostly enable_ept = 1; 102 module_param_named(ept, enable_ept, bool, 0444); 103 104 bool __read_mostly enable_unrestricted_guest = 1; 105 module_param_named(unrestricted_guest, 106 enable_unrestricted_guest, bool, 0444); 107 108 bool __read_mostly enable_ept_ad_bits = 1; 109 module_param_named(eptad, enable_ept_ad_bits, bool, 0444); 110 111 static bool __read_mostly emulate_invalid_guest_state = true; 112 module_param(emulate_invalid_guest_state, bool, 0444); 113 114 static bool __read_mostly fasteoi = 1; 115 module_param(fasteoi, bool, 0444); 116 117 module_param(enable_apicv, bool, 0444); 118 module_param(enable_ipiv, bool, 0444); 119 120 module_param(enable_device_posted_irqs, bool, 0444); 121 122 /* 123 * If nested=1, nested virtualization is supported, i.e., guests may use 124 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 125 * use VMX instructions. 126 */ 127 static bool __read_mostly nested = 1; 128 module_param(nested, bool, 0444); 129 130 bool __read_mostly enable_pml = 1; 131 module_param_named(pml, enable_pml, bool, 0444); 132 133 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 134 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 135 136 static bool __read_mostly dump_invalid_vmcs = 0; 137 module_param(dump_invalid_vmcs, bool, 0644); 138 139 #define MSR_BITMAP_MODE_X2APIC 1 140 #define MSR_BITMAP_MODE_X2APIC_APICV 2 141 142 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 143 144 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 145 static int __read_mostly cpu_preemption_timer_multi; 146 static bool __read_mostly enable_preemption_timer = 1; 147 #ifdef CONFIG_X86_64 148 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 149 #endif 150 151 extern bool __read_mostly allow_smaller_maxphyaddr; 152 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 153 154 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 155 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 156 #define KVM_VM_CR0_ALWAYS_ON \ 157 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 158 159 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 160 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 161 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 162 163 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 164 165 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 166 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 167 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 168 RTIT_STATUS_BYTECNT)) 169 170 /* 171 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 172 * ple_gap: upper bound on the amount of time between two successive 173 * executions of PAUSE in a loop. Also indicate if ple enabled. 174 * According to test, this time is usually smaller than 128 cycles. 175 * ple_window: upper bound on the amount of time a guest is allowed to execute 176 * in a PAUSE loop. Tests indicate that most spinlocks are held for 177 * less than 2^12 cycles 178 * Time is measured based on a counter that runs at the same rate as the TSC, 179 * refer SDM volume 3b section 21.6.13 & 22.1.3. 180 */ 181 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 182 module_param(ple_gap, uint, 0444); 183 184 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 185 module_param(ple_window, uint, 0444); 186 187 /* Default doubles per-vcpu window every exit. */ 188 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 189 module_param(ple_window_grow, uint, 0444); 190 191 /* Default resets per-vcpu window every exit to ple_window. */ 192 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 193 module_param(ple_window_shrink, uint, 0444); 194 195 /* Default is to compute the maximum so we can never overflow. */ 196 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 197 module_param(ple_window_max, uint, 0444); 198 199 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */ 200 int __read_mostly pt_mode = PT_MODE_SYSTEM; 201 #ifdef CONFIG_BROKEN 202 module_param(pt_mode, int, S_IRUGO); 203 #endif 204 205 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps; 206 207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 209 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 210 211 /* Storage for pre module init parameter parsing */ 212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 213 214 static const struct { 215 const char *option; 216 bool for_parse; 217 } vmentry_l1d_param[] = { 218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 220 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 224 }; 225 226 #define L1D_CACHE_ORDER 4 227 static void *vmx_l1d_flush_pages; 228 229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 230 { 231 struct page *page; 232 unsigned int i; 233 234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 236 return 0; 237 } 238 239 if (!enable_ept) { 240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 241 return 0; 242 } 243 244 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 246 return 0; 247 } 248 249 /* If set to auto use the default l1tf mitigation method */ 250 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 251 switch (l1tf_mitigation) { 252 case L1TF_MITIGATION_OFF: 253 l1tf = VMENTER_L1D_FLUSH_NEVER; 254 break; 255 case L1TF_MITIGATION_AUTO: 256 case L1TF_MITIGATION_FLUSH_NOWARN: 257 case L1TF_MITIGATION_FLUSH: 258 case L1TF_MITIGATION_FLUSH_NOSMT: 259 l1tf = VMENTER_L1D_FLUSH_COND; 260 break; 261 case L1TF_MITIGATION_FULL: 262 case L1TF_MITIGATION_FULL_FORCE: 263 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 264 break; 265 } 266 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 } 269 270 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 271 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 272 /* 273 * This allocation for vmx_l1d_flush_pages is not tied to a VM 274 * lifetime and so should not be charged to a memcg. 275 */ 276 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 277 if (!page) 278 return -ENOMEM; 279 vmx_l1d_flush_pages = page_address(page); 280 281 /* 282 * Initialize each page with a different pattern in 283 * order to protect against KSM in the nested 284 * virtualization case. 285 */ 286 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 287 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 288 PAGE_SIZE); 289 } 290 } 291 292 l1tf_vmx_mitigation = l1tf; 293 294 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 295 static_branch_enable(&vmx_l1d_should_flush); 296 else 297 static_branch_disable(&vmx_l1d_should_flush); 298 299 if (l1tf == VMENTER_L1D_FLUSH_COND) 300 static_branch_enable(&vmx_l1d_flush_cond); 301 else 302 static_branch_disable(&vmx_l1d_flush_cond); 303 return 0; 304 } 305 306 static int vmentry_l1d_flush_parse(const char *s) 307 { 308 unsigned int i; 309 310 if (s) { 311 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 312 if (vmentry_l1d_param[i].for_parse && 313 sysfs_streq(s, vmentry_l1d_param[i].option)) 314 return i; 315 } 316 } 317 return -EINVAL; 318 } 319 320 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 321 { 322 int l1tf, ret; 323 324 l1tf = vmentry_l1d_flush_parse(s); 325 if (l1tf < 0) 326 return l1tf; 327 328 if (!boot_cpu_has(X86_BUG_L1TF)) 329 return 0; 330 331 /* 332 * Has vmx_init() run already? If not then this is the pre init 333 * parameter parsing. In that case just store the value and let 334 * vmx_init() do the proper setup after enable_ept has been 335 * established. 336 */ 337 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 338 vmentry_l1d_flush_param = l1tf; 339 return 0; 340 } 341 342 mutex_lock(&vmx_l1d_flush_mutex); 343 ret = vmx_setup_l1d_flush(l1tf); 344 mutex_unlock(&vmx_l1d_flush_mutex); 345 return ret; 346 } 347 348 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 349 { 350 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 351 return sysfs_emit(s, "???\n"); 352 353 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 354 } 355 356 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 357 { 358 u64 msr; 359 360 if (!vmx->disable_fb_clear) 361 return; 362 363 msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL); 364 msr |= FB_CLEAR_DIS; 365 native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr); 366 /* Cache the MSR value to avoid reading it later */ 367 vmx->msr_ia32_mcu_opt_ctrl = msr; 368 } 369 370 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 371 { 372 if (!vmx->disable_fb_clear) 373 return; 374 375 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 376 native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 377 } 378 379 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 380 { 381 /* 382 * Disable VERW's behavior of clearing CPU buffers for the guest if the 383 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 384 * the mitigation. Disabling the clearing behavior provides a 385 * performance boost for guests that aren't aware that manually clearing 386 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 387 * and VM-Exit. 388 */ 389 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 390 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 391 !boot_cpu_has_bug(X86_BUG_MDS) && 392 !boot_cpu_has_bug(X86_BUG_TAA); 393 394 /* 395 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 396 * at VMEntry. Skip the MSR read/write when a guest has no use case to 397 * execute VERW. 398 */ 399 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 400 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 401 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 402 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 403 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 404 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 405 vmx->disable_fb_clear = false; 406 } 407 408 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 409 .set = vmentry_l1d_flush_set, 410 .get = vmentry_l1d_flush_get, 411 }; 412 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 413 414 static u32 vmx_segment_access_rights(struct kvm_segment *var); 415 416 void vmx_vmexit(void); 417 418 #define vmx_insn_failed(fmt...) \ 419 do { \ 420 WARN_ONCE(1, fmt); \ 421 pr_warn_ratelimited(fmt); \ 422 } while (0) 423 424 noinline void vmread_error(unsigned long field) 425 { 426 vmx_insn_failed("vmread failed: field=%lx\n", field); 427 } 428 429 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 430 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 431 { 432 if (fault) { 433 kvm_spurious_fault(); 434 } else { 435 instrumentation_begin(); 436 vmread_error(field); 437 instrumentation_end(); 438 } 439 } 440 #endif 441 442 noinline void vmwrite_error(unsigned long field, unsigned long value) 443 { 444 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 445 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 446 } 447 448 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 449 { 450 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 451 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 452 } 453 454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 455 { 456 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 457 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 458 } 459 460 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 461 { 462 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 463 ext, vpid, gva); 464 } 465 466 noinline void invept_error(unsigned long ext, u64 eptp) 467 { 468 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp); 469 } 470 471 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 472 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 473 /* 474 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 475 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 476 */ 477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 478 479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 480 static DEFINE_SPINLOCK(vmx_vpid_lock); 481 482 struct vmcs_config vmcs_config __ro_after_init; 483 struct vmx_capability vmx_capability __ro_after_init; 484 485 #define VMX_SEGMENT_FIELD(seg) \ 486 [VCPU_SREG_##seg] = { \ 487 .selector = GUEST_##seg##_SELECTOR, \ 488 .base = GUEST_##seg##_BASE, \ 489 .limit = GUEST_##seg##_LIMIT, \ 490 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 491 } 492 493 static const struct kvm_vmx_segment_field { 494 unsigned selector; 495 unsigned base; 496 unsigned limit; 497 unsigned ar_bytes; 498 } kvm_vmx_segment_fields[] = { 499 VMX_SEGMENT_FIELD(CS), 500 VMX_SEGMENT_FIELD(DS), 501 VMX_SEGMENT_FIELD(ES), 502 VMX_SEGMENT_FIELD(FS), 503 VMX_SEGMENT_FIELD(GS), 504 VMX_SEGMENT_FIELD(SS), 505 VMX_SEGMENT_FIELD(TR), 506 VMX_SEGMENT_FIELD(LDTR), 507 }; 508 509 510 static unsigned long host_idt_base; 511 512 #if IS_ENABLED(CONFIG_HYPERV) 513 static bool __read_mostly enlightened_vmcs = true; 514 module_param(enlightened_vmcs, bool, 0444); 515 516 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 517 { 518 struct hv_enlightened_vmcs *evmcs; 519 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu); 520 521 if (partition_assist_page == INVALID_PAGE) 522 return -ENOMEM; 523 524 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 525 526 evmcs->partition_assist_page = partition_assist_page; 527 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 528 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 529 530 return 0; 531 } 532 533 static __init void hv_init_evmcs(void) 534 { 535 int cpu; 536 537 if (!enlightened_vmcs) 538 return; 539 540 /* 541 * Enlightened VMCS usage should be recommended and the host needs 542 * to support eVMCS v1 or above. 543 */ 544 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 545 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 546 KVM_EVMCS_VERSION) { 547 548 /* Check that we have assist pages on all online CPUs */ 549 for_each_online_cpu(cpu) { 550 if (!hv_get_vp_assist_page(cpu)) { 551 enlightened_vmcs = false; 552 break; 553 } 554 } 555 556 if (enlightened_vmcs) { 557 pr_info("Using Hyper-V Enlightened VMCS\n"); 558 static_branch_enable(&__kvm_is_using_evmcs); 559 } 560 561 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 562 vt_x86_ops.enable_l2_tlb_flush 563 = hv_enable_l2_tlb_flush; 564 } else { 565 enlightened_vmcs = false; 566 } 567 } 568 569 static void hv_reset_evmcs(void) 570 { 571 struct hv_vp_assist_page *vp_ap; 572 573 if (!kvm_is_using_evmcs()) 574 return; 575 576 /* 577 * KVM should enable eVMCS if and only if all CPUs have a VP assist 578 * page, and should reject CPU onlining if eVMCS is enabled the CPU 579 * doesn't have a VP assist page allocated. 580 */ 581 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 582 if (WARN_ON_ONCE(!vp_ap)) 583 return; 584 585 /* 586 * Reset everything to support using non-enlightened VMCS access later 587 * (e.g. when we reload the module with enlightened_vmcs=0) 588 */ 589 vp_ap->nested_control.features.directhypercall = 0; 590 vp_ap->current_nested_vmcs = 0; 591 vp_ap->enlighten_vmentry = 0; 592 } 593 594 #else /* IS_ENABLED(CONFIG_HYPERV) */ 595 static void hv_init_evmcs(void) {} 596 static void hv_reset_evmcs(void) {} 597 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 598 599 /* 600 * Comment's format: document - errata name - stepping - processor name. 601 * Refer from 602 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 603 */ 604 static u32 vmx_preemption_cpu_tfms[] = { 605 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 606 0x000206E6, 607 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 608 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 609 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 610 0x00020652, 611 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 612 0x00020655, 613 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 614 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 615 /* 616 * 320767.pdf - AAP86 - B1 - 617 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 618 */ 619 0x000106E5, 620 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 621 0x000106A0, 622 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 623 0x000106A1, 624 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 625 0x000106A4, 626 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 627 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 628 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 629 0x000106A5, 630 /* Xeon E3-1220 V2 */ 631 0x000306A8, 632 }; 633 634 static inline bool cpu_has_broken_vmx_preemption_timer(void) 635 { 636 u32 eax = cpuid_eax(0x00000001), i; 637 638 /* Clear the reserved bits */ 639 eax &= ~(0x3U << 14 | 0xfU << 28); 640 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 641 if (eax == vmx_preemption_cpu_tfms[i]) 642 return true; 643 644 return false; 645 } 646 647 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 648 { 649 return flexpriority_enabled && lapic_in_kernel(vcpu); 650 } 651 652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 653 { 654 int i; 655 656 i = kvm_find_user_return_msr(msr); 657 if (i >= 0) 658 return &vmx->guest_uret_msrs[i]; 659 return NULL; 660 } 661 662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 663 struct vmx_uret_msr *msr, u64 data) 664 { 665 unsigned int slot = msr - vmx->guest_uret_msrs; 666 int ret = 0; 667 668 if (msr->load_into_hardware) { 669 preempt_disable(); 670 ret = kvm_set_user_return_msr(slot, data, msr->mask); 671 preempt_enable(); 672 } 673 if (!ret) 674 msr->data = data; 675 return ret; 676 } 677 678 /* 679 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 680 * 681 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 682 * atomically track post-VMXON state, e.g. this may be called in NMI context. 683 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 684 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 685 * magically in RM, VM86, compat mode, or at CPL>0. 686 */ 687 static int kvm_cpu_vmxoff(void) 688 { 689 asm goto("1: vmxoff\n\t" 690 _ASM_EXTABLE(1b, %l[fault]) 691 ::: "cc", "memory" : fault); 692 693 cr4_clear_bits(X86_CR4_VMXE); 694 return 0; 695 696 fault: 697 cr4_clear_bits(X86_CR4_VMXE); 698 return -EIO; 699 } 700 701 void vmx_emergency_disable_virtualization_cpu(void) 702 { 703 int cpu = raw_smp_processor_id(); 704 struct loaded_vmcs *v; 705 706 kvm_rebooting = true; 707 708 /* 709 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 710 * set in task context. If this races with VMX is disabled by an NMI, 711 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 712 * kvm_rebooting set. 713 */ 714 if (!(__read_cr4() & X86_CR4_VMXE)) 715 return; 716 717 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 718 loaded_vmcss_on_cpu_link) { 719 vmcs_clear(v->vmcs); 720 if (v->shadow_vmcs) 721 vmcs_clear(v->shadow_vmcs); 722 } 723 724 kvm_cpu_vmxoff(); 725 } 726 727 static void __loaded_vmcs_clear(void *arg) 728 { 729 struct loaded_vmcs *loaded_vmcs = arg; 730 int cpu = raw_smp_processor_id(); 731 732 if (loaded_vmcs->cpu != cpu) 733 return; /* vcpu migration can race with cpu offline */ 734 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 735 per_cpu(current_vmcs, cpu) = NULL; 736 737 vmcs_clear(loaded_vmcs->vmcs); 738 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 739 vmcs_clear(loaded_vmcs->shadow_vmcs); 740 741 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 742 743 /* 744 * Ensure all writes to loaded_vmcs, including deleting it from its 745 * current percpu list, complete before setting loaded_vmcs->cpu to 746 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 747 * and add loaded_vmcs to its percpu list before it's deleted from this 748 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 749 */ 750 smp_wmb(); 751 752 loaded_vmcs->cpu = -1; 753 loaded_vmcs->launched = 0; 754 } 755 756 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 757 { 758 int cpu = loaded_vmcs->cpu; 759 760 if (cpu != -1) 761 smp_call_function_single(cpu, 762 __loaded_vmcs_clear, loaded_vmcs, 1); 763 } 764 765 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 766 unsigned field) 767 { 768 bool ret; 769 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 770 771 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 772 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 773 vmx->segment_cache.bitmask = 0; 774 } 775 ret = vmx->segment_cache.bitmask & mask; 776 vmx->segment_cache.bitmask |= mask; 777 return ret; 778 } 779 780 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 781 { 782 u16 *p = &vmx->segment_cache.seg[seg].selector; 783 784 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 785 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 786 return *p; 787 } 788 789 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 790 { 791 ulong *p = &vmx->segment_cache.seg[seg].base; 792 793 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 794 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 795 return *p; 796 } 797 798 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 799 { 800 u32 *p = &vmx->segment_cache.seg[seg].limit; 801 802 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 803 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 804 return *p; 805 } 806 807 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 808 { 809 u32 *p = &vmx->segment_cache.seg[seg].ar; 810 811 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 812 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 813 return *p; 814 } 815 816 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 817 { 818 u32 eb; 819 820 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 821 (1u << DB_VECTOR) | (1u << AC_VECTOR); 822 /* 823 * #VE isn't used for VMX. To test against unexpected changes 824 * related to #VE for VMX, intercept unexpected #VE and warn on it. 825 */ 826 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) 827 eb |= 1u << VE_VECTOR; 828 /* 829 * Guest access to VMware backdoor ports could legitimately 830 * trigger #GP because of TSS I/O permission bitmap. 831 * We intercept those #GP and allow access to them anyway 832 * as VMware does. 833 */ 834 if (enable_vmware_backdoor) 835 eb |= (1u << GP_VECTOR); 836 if ((vcpu->guest_debug & 837 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 838 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 839 eb |= 1u << BP_VECTOR; 840 if (to_vmx(vcpu)->rmode.vm86_active) 841 eb = ~0; 842 if (!vmx_need_pf_intercept(vcpu)) 843 eb &= ~(1u << PF_VECTOR); 844 845 /* When we are running a nested L2 guest and L1 specified for it a 846 * certain exception bitmap, we must trap the same exceptions and pass 847 * them to L1. When running L2, we will only handle the exceptions 848 * specified above if L1 did not want them. 849 */ 850 if (is_guest_mode(vcpu)) 851 eb |= get_vmcs12(vcpu)->exception_bitmap; 852 else { 853 int mask = 0, match = 0; 854 855 if (enable_ept && (eb & (1u << PF_VECTOR))) { 856 /* 857 * If EPT is enabled, #PF is currently only intercepted 858 * if MAXPHYADDR is smaller on the guest than on the 859 * host. In that case we only care about present, 860 * non-reserved faults. For vmcs02, however, PFEC_MASK 861 * and PFEC_MATCH are set in prepare_vmcs02_rare. 862 */ 863 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 864 match = PFERR_PRESENT_MASK; 865 } 866 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 867 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 868 } 869 870 /* 871 * Disabling xfd interception indicates that dynamic xfeatures 872 * might be used in the guest. Always trap #NM in this case 873 * to save guest xfd_err timely. 874 */ 875 if (vcpu->arch.xfd_no_write_intercept) 876 eb |= (1u << NM_VECTOR); 877 878 vmcs_write32(EXCEPTION_BITMAP, eb); 879 } 880 881 /* 882 * Check if MSR is intercepted for currently loaded MSR bitmap. 883 */ 884 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 885 { 886 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 887 return true; 888 889 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 890 } 891 892 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 893 { 894 unsigned int flags = 0; 895 896 if (vmx->loaded_vmcs->launched) 897 flags |= VMX_RUN_VMRESUME; 898 899 /* 900 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 901 * to change it directly without causing a vmexit. In that case read 902 * it after vmexit and store it in vmx->spec_ctrl. 903 */ 904 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 905 flags |= VMX_RUN_SAVE_SPEC_CTRL; 906 907 if (static_branch_unlikely(&cpu_buf_vm_clear) && 908 kvm_vcpu_can_access_host_mmio(&vmx->vcpu)) 909 flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO; 910 911 return flags; 912 } 913 914 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 915 unsigned long entry, unsigned long exit) 916 { 917 vm_entry_controls_clearbit(vmx, entry); 918 vm_exit_controls_clearbit(vmx, exit); 919 } 920 921 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 922 { 923 unsigned int i; 924 925 for (i = 0; i < m->nr; ++i) { 926 if (m->val[i].index == msr) 927 return i; 928 } 929 return -ENOENT; 930 } 931 932 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 933 { 934 int i; 935 struct msr_autoload *m = &vmx->msr_autoload; 936 937 switch (msr) { 938 case MSR_EFER: 939 if (cpu_has_load_ia32_efer()) { 940 clear_atomic_switch_msr_special(vmx, 941 VM_ENTRY_LOAD_IA32_EFER, 942 VM_EXIT_LOAD_IA32_EFER); 943 return; 944 } 945 break; 946 case MSR_CORE_PERF_GLOBAL_CTRL: 947 if (cpu_has_load_perf_global_ctrl()) { 948 clear_atomic_switch_msr_special(vmx, 949 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 950 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 951 return; 952 } 953 break; 954 } 955 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 956 if (i < 0) 957 goto skip_guest; 958 --m->guest.nr; 959 m->guest.val[i] = m->guest.val[m->guest.nr]; 960 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 961 962 skip_guest: 963 i = vmx_find_loadstore_msr_slot(&m->host, msr); 964 if (i < 0) 965 return; 966 967 --m->host.nr; 968 m->host.val[i] = m->host.val[m->host.nr]; 969 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 970 } 971 972 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 973 unsigned long entry, unsigned long exit, 974 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 975 u64 guest_val, u64 host_val) 976 { 977 vmcs_write64(guest_val_vmcs, guest_val); 978 if (host_val_vmcs != HOST_IA32_EFER) 979 vmcs_write64(host_val_vmcs, host_val); 980 vm_entry_controls_setbit(vmx, entry); 981 vm_exit_controls_setbit(vmx, exit); 982 } 983 984 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 985 u64 guest_val, u64 host_val, bool entry_only) 986 { 987 int i, j = 0; 988 struct msr_autoload *m = &vmx->msr_autoload; 989 990 switch (msr) { 991 case MSR_EFER: 992 if (cpu_has_load_ia32_efer()) { 993 add_atomic_switch_msr_special(vmx, 994 VM_ENTRY_LOAD_IA32_EFER, 995 VM_EXIT_LOAD_IA32_EFER, 996 GUEST_IA32_EFER, 997 HOST_IA32_EFER, 998 guest_val, host_val); 999 return; 1000 } 1001 break; 1002 case MSR_CORE_PERF_GLOBAL_CTRL: 1003 if (cpu_has_load_perf_global_ctrl()) { 1004 add_atomic_switch_msr_special(vmx, 1005 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1006 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1007 GUEST_IA32_PERF_GLOBAL_CTRL, 1008 HOST_IA32_PERF_GLOBAL_CTRL, 1009 guest_val, host_val); 1010 return; 1011 } 1012 break; 1013 case MSR_IA32_PEBS_ENABLE: 1014 /* PEBS needs a quiescent period after being disabled (to write 1015 * a record). Disabling PEBS through VMX MSR swapping doesn't 1016 * provide that period, so a CPU could write host's record into 1017 * guest's memory. 1018 */ 1019 wrmsrq(MSR_IA32_PEBS_ENABLE, 0); 1020 } 1021 1022 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1023 if (!entry_only) 1024 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1025 1026 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1027 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1028 printk_once(KERN_WARNING "Not enough msr switch entries. " 1029 "Can't add msr %x\n", msr); 1030 return; 1031 } 1032 if (i < 0) { 1033 i = m->guest.nr++; 1034 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1035 } 1036 m->guest.val[i].index = msr; 1037 m->guest.val[i].value = guest_val; 1038 1039 if (entry_only) 1040 return; 1041 1042 if (j < 0) { 1043 j = m->host.nr++; 1044 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1045 } 1046 m->host.val[j].index = msr; 1047 m->host.val[j].value = host_val; 1048 } 1049 1050 static bool update_transition_efer(struct vcpu_vmx *vmx) 1051 { 1052 u64 guest_efer = vmx->vcpu.arch.efer; 1053 u64 ignore_bits = 0; 1054 int i; 1055 1056 /* Shadow paging assumes NX to be available. */ 1057 if (!enable_ept) 1058 guest_efer |= EFER_NX; 1059 1060 /* 1061 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1062 */ 1063 ignore_bits |= EFER_SCE; 1064 #ifdef CONFIG_X86_64 1065 ignore_bits |= EFER_LMA | EFER_LME; 1066 /* SCE is meaningful only in long mode on Intel */ 1067 if (guest_efer & EFER_LMA) 1068 ignore_bits &= ~(u64)EFER_SCE; 1069 #endif 1070 1071 /* 1072 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1073 * On CPUs that support "load IA32_EFER", always switch EFER 1074 * atomically, since it's faster than switching it manually. 1075 */ 1076 if (cpu_has_load_ia32_efer() || 1077 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) { 1078 if (!(guest_efer & EFER_LMA)) 1079 guest_efer &= ~EFER_LME; 1080 if (guest_efer != kvm_host.efer) 1081 add_atomic_switch_msr(vmx, MSR_EFER, 1082 guest_efer, kvm_host.efer, false); 1083 else 1084 clear_atomic_switch_msr(vmx, MSR_EFER); 1085 return false; 1086 } 1087 1088 i = kvm_find_user_return_msr(MSR_EFER); 1089 if (i < 0) 1090 return false; 1091 1092 clear_atomic_switch_msr(vmx, MSR_EFER); 1093 1094 guest_efer &= ~ignore_bits; 1095 guest_efer |= kvm_host.efer & ignore_bits; 1096 1097 vmx->guest_uret_msrs[i].data = guest_efer; 1098 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1099 1100 return true; 1101 } 1102 1103 #ifdef CONFIG_X86_32 1104 /* 1105 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1106 * VMCS rather than the segment table. KVM uses this helper to figure 1107 * out the current bases to poke them into the VMCS before entry. 1108 */ 1109 static unsigned long segment_base(u16 selector) 1110 { 1111 struct desc_struct *table; 1112 unsigned long v; 1113 1114 if (!(selector & ~SEGMENT_RPL_MASK)) 1115 return 0; 1116 1117 table = get_current_gdt_ro(); 1118 1119 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1120 u16 ldt_selector = kvm_read_ldt(); 1121 1122 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1123 return 0; 1124 1125 table = (struct desc_struct *)segment_base(ldt_selector); 1126 } 1127 v = get_desc_base(&table[selector >> 3]); 1128 return v; 1129 } 1130 #endif 1131 1132 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1133 { 1134 return vmx_pt_mode_is_host_guest() && 1135 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1136 } 1137 1138 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1139 { 1140 /* The base must be 128-byte aligned and a legal physical address. */ 1141 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1142 } 1143 1144 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1145 { 1146 u32 i; 1147 1148 wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status); 1149 wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1150 wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1151 wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1152 for (i = 0; i < addr_range; i++) { 1153 wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1154 wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1155 } 1156 } 1157 1158 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1159 { 1160 u32 i; 1161 1162 rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status); 1163 rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1164 rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1165 rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1166 for (i = 0; i < addr_range; i++) { 1167 rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1168 rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1169 } 1170 } 1171 1172 static void pt_guest_enter(struct vcpu_vmx *vmx) 1173 { 1174 if (vmx_pt_mode_is_system()) 1175 return; 1176 1177 /* 1178 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1179 * Save host state before VM entry. 1180 */ 1181 rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1182 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1183 wrmsrq(MSR_IA32_RTIT_CTL, 0); 1184 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1185 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1186 } 1187 } 1188 1189 static void pt_guest_exit(struct vcpu_vmx *vmx) 1190 { 1191 if (vmx_pt_mode_is_system()) 1192 return; 1193 1194 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1195 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1196 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1197 } 1198 1199 /* 1200 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1201 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1202 */ 1203 if (vmx->pt_desc.host.ctl) 1204 wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1205 } 1206 1207 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1208 unsigned long fs_base, unsigned long gs_base) 1209 { 1210 if (unlikely(fs_sel != host->fs_sel)) { 1211 if (!(fs_sel & 7)) 1212 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1213 else 1214 vmcs_write16(HOST_FS_SELECTOR, 0); 1215 host->fs_sel = fs_sel; 1216 } 1217 if (unlikely(gs_sel != host->gs_sel)) { 1218 if (!(gs_sel & 7)) 1219 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1220 else 1221 vmcs_write16(HOST_GS_SELECTOR, 0); 1222 host->gs_sel = gs_sel; 1223 } 1224 if (unlikely(fs_base != host->fs_base)) { 1225 vmcs_writel(HOST_FS_BASE, fs_base); 1226 host->fs_base = fs_base; 1227 } 1228 if (unlikely(gs_base != host->gs_base)) { 1229 vmcs_writel(HOST_GS_BASE, gs_base); 1230 host->gs_base = gs_base; 1231 } 1232 } 1233 1234 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1235 { 1236 struct vcpu_vmx *vmx = to_vmx(vcpu); 1237 struct vcpu_vt *vt = to_vt(vcpu); 1238 struct vmcs_host_state *host_state; 1239 #ifdef CONFIG_X86_64 1240 int cpu = raw_smp_processor_id(); 1241 #endif 1242 unsigned long fs_base, gs_base; 1243 u16 fs_sel, gs_sel; 1244 int i; 1245 1246 /* 1247 * Note that guest MSRs to be saved/restored can also be changed 1248 * when guest state is loaded. This happens when guest transitions 1249 * to/from long-mode by setting MSR_EFER.LMA. 1250 */ 1251 if (!vmx->guest_uret_msrs_loaded) { 1252 vmx->guest_uret_msrs_loaded = true; 1253 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1254 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1255 continue; 1256 1257 kvm_set_user_return_msr(i, 1258 vmx->guest_uret_msrs[i].data, 1259 vmx->guest_uret_msrs[i].mask); 1260 } 1261 } 1262 1263 if (vmx->nested.need_vmcs12_to_shadow_sync) 1264 nested_sync_vmcs12_to_shadow(vcpu); 1265 1266 if (vt->guest_state_loaded) 1267 return; 1268 1269 host_state = &vmx->loaded_vmcs->host_state; 1270 1271 /* 1272 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1273 * allow segment selectors with cpl > 0 or ti == 1. 1274 */ 1275 host_state->ldt_sel = kvm_read_ldt(); 1276 1277 #ifdef CONFIG_X86_64 1278 savesegment(ds, host_state->ds_sel); 1279 savesegment(es, host_state->es_sel); 1280 1281 gs_base = cpu_kernelmode_gs_base(cpu); 1282 if (likely(is_64bit_mm(current->mm))) { 1283 current_save_fsgs(); 1284 fs_sel = current->thread.fsindex; 1285 gs_sel = current->thread.gsindex; 1286 fs_base = current->thread.fsbase; 1287 vt->msr_host_kernel_gs_base = current->thread.gsbase; 1288 } else { 1289 savesegment(fs, fs_sel); 1290 savesegment(gs, gs_sel); 1291 fs_base = read_msr(MSR_FS_BASE); 1292 vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1293 } 1294 1295 wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1296 #else 1297 savesegment(fs, fs_sel); 1298 savesegment(gs, gs_sel); 1299 fs_base = segment_base(fs_sel); 1300 gs_base = segment_base(gs_sel); 1301 #endif 1302 1303 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1304 vt->guest_state_loaded = true; 1305 } 1306 1307 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1308 { 1309 struct vmcs_host_state *host_state; 1310 1311 if (!vmx->vt.guest_state_loaded) 1312 return; 1313 1314 host_state = &vmx->loaded_vmcs->host_state; 1315 1316 ++vmx->vcpu.stat.host_state_reload; 1317 1318 #ifdef CONFIG_X86_64 1319 rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1320 #endif 1321 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1322 kvm_load_ldt(host_state->ldt_sel); 1323 #ifdef CONFIG_X86_64 1324 load_gs_index(host_state->gs_sel); 1325 #else 1326 loadsegment(gs, host_state->gs_sel); 1327 #endif 1328 } 1329 if (host_state->fs_sel & 7) 1330 loadsegment(fs, host_state->fs_sel); 1331 #ifdef CONFIG_X86_64 1332 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1333 loadsegment(ds, host_state->ds_sel); 1334 loadsegment(es, host_state->es_sel); 1335 } 1336 #endif 1337 invalidate_tss_limit(); 1338 #ifdef CONFIG_X86_64 1339 wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base); 1340 #endif 1341 load_fixmap_gdt(raw_smp_processor_id()); 1342 vmx->vt.guest_state_loaded = false; 1343 vmx->guest_uret_msrs_loaded = false; 1344 } 1345 1346 #ifdef CONFIG_X86_64 1347 static u64 vmx_read_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 *cache) 1348 { 1349 preempt_disable(); 1350 if (vmx->vt.guest_state_loaded) 1351 *cache = read_msr(msr); 1352 preempt_enable(); 1353 return *cache; 1354 } 1355 1356 static void vmx_write_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 data, 1357 u64 *cache) 1358 { 1359 preempt_disable(); 1360 if (vmx->vt.guest_state_loaded) 1361 wrmsrns(msr, data); 1362 preempt_enable(); 1363 *cache = data; 1364 } 1365 1366 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1367 { 1368 return vmx_read_guest_host_msr(vmx, MSR_KERNEL_GS_BASE, 1369 &vmx->msr_guest_kernel_gs_base); 1370 } 1371 1372 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1373 { 1374 vmx_write_guest_host_msr(vmx, MSR_KERNEL_GS_BASE, data, 1375 &vmx->msr_guest_kernel_gs_base); 1376 } 1377 #endif 1378 1379 static void grow_ple_window(struct kvm_vcpu *vcpu) 1380 { 1381 struct vcpu_vmx *vmx = to_vmx(vcpu); 1382 unsigned int old = vmx->ple_window; 1383 1384 vmx->ple_window = __grow_ple_window(old, ple_window, 1385 ple_window_grow, 1386 ple_window_max); 1387 1388 if (vmx->ple_window != old) { 1389 vmx->ple_window_dirty = true; 1390 trace_kvm_ple_window_update(vcpu->vcpu_id, 1391 vmx->ple_window, old); 1392 } 1393 } 1394 1395 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1396 { 1397 struct vcpu_vmx *vmx = to_vmx(vcpu); 1398 unsigned int old = vmx->ple_window; 1399 1400 vmx->ple_window = __shrink_ple_window(old, ple_window, 1401 ple_window_shrink, 1402 ple_window); 1403 1404 if (vmx->ple_window != old) { 1405 vmx->ple_window_dirty = true; 1406 trace_kvm_ple_window_update(vcpu->vcpu_id, 1407 vmx->ple_window, old); 1408 } 1409 } 1410 1411 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu) 1412 { 1413 struct vcpu_vmx *vmx = to_vmx(vcpu); 1414 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1415 struct vmcs *prev; 1416 1417 if (!already_loaded) { 1418 loaded_vmcs_clear(vmx->loaded_vmcs); 1419 local_irq_disable(); 1420 1421 /* 1422 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1423 * this cpu's percpu list, otherwise it may not yet be deleted 1424 * from its previous cpu's percpu list. Pairs with the 1425 * smb_wmb() in __loaded_vmcs_clear(). 1426 */ 1427 smp_rmb(); 1428 1429 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1430 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1431 local_irq_enable(); 1432 } 1433 1434 prev = per_cpu(current_vmcs, cpu); 1435 if (prev != vmx->loaded_vmcs->vmcs) { 1436 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1437 vmcs_load(vmx->loaded_vmcs->vmcs); 1438 } 1439 1440 if (!already_loaded) { 1441 void *gdt = get_current_gdt_ro(); 1442 1443 /* 1444 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1445 * TLB entries from its previous association with the vCPU. 1446 */ 1447 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1448 1449 /* 1450 * Linux uses per-cpu TSS and GDT, so set these when switching 1451 * processors. See 22.2.4. 1452 */ 1453 vmcs_writel(HOST_TR_BASE, 1454 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1455 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1456 1457 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1458 /* 22.2.3 */ 1459 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1460 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1461 } 1462 1463 vmx->loaded_vmcs->cpu = cpu; 1464 } 1465 } 1466 1467 /* 1468 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1469 * vcpu mutex is already taken. 1470 */ 1471 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1472 { 1473 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1474 shrink_ple_window(vcpu); 1475 1476 vmx_vcpu_load_vmcs(vcpu, cpu); 1477 1478 vmx_vcpu_pi_load(vcpu, cpu); 1479 } 1480 1481 void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1482 { 1483 vmx_vcpu_pi_put(vcpu); 1484 1485 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1486 } 1487 1488 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1489 { 1490 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1491 } 1492 1493 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1494 { 1495 struct vcpu_vmx *vmx = to_vmx(vcpu); 1496 unsigned long rflags, save_rflags; 1497 1498 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1499 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1500 rflags = vmcs_readl(GUEST_RFLAGS); 1501 if (vmx->rmode.vm86_active) { 1502 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1503 save_rflags = vmx->rmode.save_rflags; 1504 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1505 } 1506 vmx->rflags = rflags; 1507 } 1508 return vmx->rflags; 1509 } 1510 1511 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1512 { 1513 struct vcpu_vmx *vmx = to_vmx(vcpu); 1514 unsigned long old_rflags; 1515 1516 /* 1517 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1518 * is an unrestricted guest in order to mark L2 as needing emulation 1519 * if L1 runs L2 as a restricted guest. 1520 */ 1521 if (is_unrestricted_guest(vcpu)) { 1522 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1523 vmx->rflags = rflags; 1524 vmcs_writel(GUEST_RFLAGS, rflags); 1525 return; 1526 } 1527 1528 old_rflags = vmx_get_rflags(vcpu); 1529 vmx->rflags = rflags; 1530 if (vmx->rmode.vm86_active) { 1531 vmx->rmode.save_rflags = rflags; 1532 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1533 } 1534 vmcs_writel(GUEST_RFLAGS, rflags); 1535 1536 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1537 vmx->vt.emulation_required = vmx_emulation_required(vcpu); 1538 } 1539 1540 bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1541 { 1542 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1543 } 1544 1545 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1546 { 1547 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1548 int ret = 0; 1549 1550 if (interruptibility & GUEST_INTR_STATE_STI) 1551 ret |= KVM_X86_SHADOW_INT_STI; 1552 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1553 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1554 1555 return ret; 1556 } 1557 1558 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1559 { 1560 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1561 u32 interruptibility = interruptibility_old; 1562 1563 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1564 1565 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1566 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1567 else if (mask & KVM_X86_SHADOW_INT_STI) 1568 interruptibility |= GUEST_INTR_STATE_STI; 1569 1570 if ((interruptibility != interruptibility_old)) 1571 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1572 } 1573 1574 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1575 { 1576 struct vcpu_vmx *vmx = to_vmx(vcpu); 1577 unsigned long value; 1578 1579 /* 1580 * Any MSR write that attempts to change bits marked reserved will 1581 * case a #GP fault. 1582 */ 1583 if (data & vmx->pt_desc.ctl_bitmask) 1584 return 1; 1585 1586 /* 1587 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1588 * result in a #GP unless the same write also clears TraceEn. 1589 */ 1590 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1591 (data & RTIT_CTL_TRACEEN) && 1592 data != vmx->pt_desc.guest.ctl) 1593 return 1; 1594 1595 /* 1596 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1597 * and FabricEn would cause #GP, if 1598 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1599 */ 1600 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1601 !(data & RTIT_CTL_FABRIC_EN) && 1602 !intel_pt_validate_cap(vmx->pt_desc.caps, 1603 PT_CAP_single_range_output)) 1604 return 1; 1605 1606 /* 1607 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1608 * utilize encodings marked reserved will cause a #GP fault. 1609 */ 1610 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1611 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1612 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1613 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1614 return 1; 1615 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1616 PT_CAP_cycle_thresholds); 1617 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1618 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1619 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1620 return 1; 1621 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1622 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1623 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1624 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1625 return 1; 1626 1627 /* 1628 * If ADDRx_CFG is reserved or the encodings is >2 will 1629 * cause a #GP fault. 1630 */ 1631 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1632 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1633 return 1; 1634 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1635 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1636 return 1; 1637 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1638 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1639 return 1; 1640 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1641 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1642 return 1; 1643 1644 return 0; 1645 } 1646 1647 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1648 void *insn, int insn_len) 1649 { 1650 /* 1651 * Emulation of instructions in SGX enclaves is impossible as RIP does 1652 * not point at the failing instruction, and even if it did, the code 1653 * stream is inaccessible. Inject #UD instead of exiting to userspace 1654 * so that guest userspace can't DoS the guest simply by triggering 1655 * emulation (enclaves are CPL3 only). 1656 */ 1657 if (vmx_get_exit_reason(vcpu).enclave_mode) { 1658 kvm_queue_exception(vcpu, UD_VECTOR); 1659 return X86EMUL_PROPAGATE_FAULT; 1660 } 1661 1662 /* Check that emulation is possible during event vectoring */ 1663 if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 1664 !kvm_can_emulate_event_vectoring(emul_type)) 1665 return X86EMUL_UNHANDLEABLE_VECTORING; 1666 1667 return X86EMUL_CONTINUE; 1668 } 1669 1670 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1671 { 1672 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu); 1673 unsigned long rip, orig_rip; 1674 u32 instr_len; 1675 1676 /* 1677 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1678 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1679 * set when EPT misconfig occurs. In practice, real hardware updates 1680 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1681 * (namely Hyper-V) don't set it due to it being undefined behavior, 1682 * i.e. we end up advancing IP with some random value. 1683 */ 1684 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1685 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1686 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1687 1688 /* 1689 * Emulating an enclave's instructions isn't supported as KVM 1690 * cannot access the enclave's memory or its true RIP, e.g. the 1691 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1692 * the RIP that actually triggered the VM-Exit. But, because 1693 * most instructions that cause VM-Exit will #UD in an enclave, 1694 * most instruction-based VM-Exits simply do not occur. 1695 * 1696 * There are a few exceptions, notably the debug instructions 1697 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1698 * and generate #DB/#BP as expected, which KVM might intercept. 1699 * But again, the CPU does the dirty work and saves an instr 1700 * length of zero so VMMs don't shoot themselves in the foot. 1701 * WARN if KVM tries to skip a non-zero length instruction on 1702 * a VM-Exit from an enclave. 1703 */ 1704 if (!instr_len) 1705 goto rip_updated; 1706 1707 WARN_ONCE(exit_reason.enclave_mode, 1708 "skipping instruction after SGX enclave VM-Exit"); 1709 1710 orig_rip = kvm_rip_read(vcpu); 1711 rip = orig_rip + instr_len; 1712 #ifdef CONFIG_X86_64 1713 /* 1714 * We need to mask out the high 32 bits of RIP if not in 64-bit 1715 * mode, but just finding out that we are in 64-bit mode is 1716 * quite expensive. Only do it if there was a carry. 1717 */ 1718 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1719 rip = (u32)rip; 1720 #endif 1721 kvm_rip_write(vcpu, rip); 1722 } else { 1723 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1724 return 0; 1725 } 1726 1727 rip_updated: 1728 /* skipping an emulated instruction also counts */ 1729 vmx_set_interrupt_shadow(vcpu, 0); 1730 1731 return 1; 1732 } 1733 1734 /* 1735 * Recognizes a pending MTF VM-exit and records the nested state for later 1736 * delivery. 1737 */ 1738 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1739 { 1740 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1741 struct vcpu_vmx *vmx = to_vmx(vcpu); 1742 1743 if (!is_guest_mode(vcpu)) 1744 return; 1745 1746 /* 1747 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1748 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1749 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1750 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1751 * as ICEBP is higher priority than both. As instruction emulation is 1752 * completed at this point (i.e. KVM is at the instruction boundary), 1753 * any #DB exception pending delivery must be a debug-trap of lower 1754 * priority than MTF. Record the pending MTF state to be delivered in 1755 * vmx_check_nested_events(). 1756 */ 1757 if (nested_cpu_has_mtf(vmcs12) && 1758 (!vcpu->arch.exception.pending || 1759 vcpu->arch.exception.vector == DB_VECTOR) && 1760 (!vcpu->arch.exception_vmexit.pending || 1761 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1762 vmx->nested.mtf_pending = true; 1763 kvm_make_request(KVM_REQ_EVENT, vcpu); 1764 } else { 1765 vmx->nested.mtf_pending = false; 1766 } 1767 } 1768 1769 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1770 { 1771 vmx_update_emulated_instruction(vcpu); 1772 return skip_emulated_instruction(vcpu); 1773 } 1774 1775 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1776 { 1777 /* 1778 * Ensure that we clear the HLT state in the VMCS. We don't need to 1779 * explicitly skip the instruction because if the HLT state is set, 1780 * then the instruction is already executing and RIP has already been 1781 * advanced. 1782 */ 1783 if (kvm_hlt_in_guest(vcpu->kvm) && 1784 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1785 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1786 } 1787 1788 void vmx_inject_exception(struct kvm_vcpu *vcpu) 1789 { 1790 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1791 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1792 struct vcpu_vmx *vmx = to_vmx(vcpu); 1793 1794 kvm_deliver_exception_payload(vcpu, ex); 1795 1796 if (ex->has_error_code) { 1797 /* 1798 * Despite the error code being architecturally defined as 32 1799 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1800 * VMX don't actually supporting setting bits 31:16. Hardware 1801 * will (should) never provide a bogus error code, but AMD CPUs 1802 * do generate error codes with bits 31:16 set, and so KVM's 1803 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1804 * the upper bits to avoid VM-Fail, losing information that 1805 * doesn't really exist is preferable to killing the VM. 1806 */ 1807 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1808 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1809 } 1810 1811 if (vmx->rmode.vm86_active) { 1812 int inc_eip = 0; 1813 if (kvm_exception_is_soft(ex->vector)) 1814 inc_eip = vcpu->arch.event_exit_inst_len; 1815 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1816 return; 1817 } 1818 1819 WARN_ON_ONCE(vmx->vt.emulation_required); 1820 1821 if (kvm_exception_is_soft(ex->vector)) { 1822 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1823 vmx->vcpu.arch.event_exit_inst_len); 1824 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1825 } else 1826 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1827 1828 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1829 1830 vmx_clear_hlt(vcpu); 1831 } 1832 1833 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1834 bool load_into_hardware) 1835 { 1836 struct vmx_uret_msr *uret_msr; 1837 1838 uret_msr = vmx_find_uret_msr(vmx, msr); 1839 if (!uret_msr) 1840 return; 1841 1842 uret_msr->load_into_hardware = load_into_hardware; 1843 } 1844 1845 /* 1846 * Configuring user return MSRs to automatically save, load, and restore MSRs 1847 * that need to be shoved into hardware when running the guest. Note, omitting 1848 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1849 * loaded into hardware when running the guest. 1850 */ 1851 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1852 { 1853 #ifdef CONFIG_X86_64 1854 bool load_syscall_msrs; 1855 1856 /* 1857 * The SYSCALL MSRs are only needed on long mode guests, and only 1858 * when EFER.SCE is set. 1859 */ 1860 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1861 (vmx->vcpu.arch.efer & EFER_SCE); 1862 1863 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1864 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1865 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1866 #endif 1867 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1868 1869 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1870 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1871 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1872 1873 /* 1874 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1875 * kernel and old userspace. If those guests run on a tsx=off host, do 1876 * allow guests to use TSX_CTRL, but don't change the value in hardware 1877 * so that TSX remains always disabled. 1878 */ 1879 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1880 1881 /* 1882 * The set of MSRs to load may have changed, reload MSRs before the 1883 * next VM-Enter. 1884 */ 1885 vmx->guest_uret_msrs_loaded = false; 1886 } 1887 1888 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1889 { 1890 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1891 1892 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1893 return vmcs12->tsc_offset; 1894 1895 return 0; 1896 } 1897 1898 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1899 { 1900 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1901 1902 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1903 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1904 return vmcs12->tsc_multiplier; 1905 1906 return kvm_caps.default_tsc_scaling_ratio; 1907 } 1908 1909 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1910 { 1911 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1912 } 1913 1914 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1915 { 1916 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1917 } 1918 1919 /* 1920 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1921 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1922 * backwards compatibility even though KVM doesn't support emulating SMX. And 1923 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1924 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1925 */ 1926 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1927 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1928 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1929 FEAT_CTL_SGX_LC_ENABLED | \ 1930 FEAT_CTL_SGX_ENABLED | \ 1931 FEAT_CTL_LMCE_ENABLED) 1932 1933 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1934 struct msr_data *msr) 1935 { 1936 uint64_t valid_bits; 1937 1938 /* 1939 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1940 * exposed to the guest. 1941 */ 1942 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1943 ~KVM_SUPPORTED_FEATURE_CONTROL); 1944 1945 if (!msr->host_initiated && 1946 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1947 return false; 1948 1949 if (msr->host_initiated) 1950 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1951 else 1952 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1953 1954 return !(msr->data & ~valid_bits); 1955 } 1956 1957 int vmx_get_feature_msr(u32 msr, u64 *data) 1958 { 1959 switch (msr) { 1960 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1961 if (!nested) 1962 return 1; 1963 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data); 1964 default: 1965 return KVM_MSR_RET_UNSUPPORTED; 1966 } 1967 } 1968 1969 /* 1970 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1971 * Returns 0 on success, non-0 otherwise. 1972 * Assumes vcpu_load() was already called. 1973 */ 1974 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1975 { 1976 struct vcpu_vmx *vmx = to_vmx(vcpu); 1977 struct vmx_uret_msr *msr; 1978 u32 index; 1979 1980 switch (msr_info->index) { 1981 #ifdef CONFIG_X86_64 1982 case MSR_FS_BASE: 1983 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1984 break; 1985 case MSR_GS_BASE: 1986 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1987 break; 1988 case MSR_KERNEL_GS_BASE: 1989 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1990 break; 1991 #endif 1992 case MSR_EFER: 1993 return kvm_get_msr_common(vcpu, msr_info); 1994 case MSR_IA32_TSX_CTRL: 1995 if (!msr_info->host_initiated && 1996 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1997 return 1; 1998 goto find_uret_msr; 1999 case MSR_IA32_UMWAIT_CONTROL: 2000 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2001 return 1; 2002 2003 msr_info->data = vmx->msr_ia32_umwait_control; 2004 break; 2005 case MSR_IA32_SPEC_CTRL: 2006 if (!msr_info->host_initiated && 2007 !guest_has_spec_ctrl_msr(vcpu)) 2008 return 1; 2009 2010 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2011 break; 2012 case MSR_IA32_SYSENTER_CS: 2013 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2014 break; 2015 case MSR_IA32_SYSENTER_EIP: 2016 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2017 break; 2018 case MSR_IA32_SYSENTER_ESP: 2019 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2020 break; 2021 case MSR_IA32_BNDCFGS: 2022 if (!kvm_mpx_supported() || 2023 (!msr_info->host_initiated && 2024 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX))) 2025 return 1; 2026 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2027 break; 2028 case MSR_IA32_MCG_EXT_CTL: 2029 if (!msr_info->host_initiated && 2030 !(vmx->msr_ia32_feature_control & 2031 FEAT_CTL_LMCE_ENABLED)) 2032 return 1; 2033 msr_info->data = vcpu->arch.mcg_ext_ctl; 2034 break; 2035 case MSR_IA32_FEAT_CTL: 2036 msr_info->data = vmx->msr_ia32_feature_control; 2037 break; 2038 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2039 if (!msr_info->host_initiated && 2040 !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC)) 2041 return 1; 2042 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2043 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2044 break; 2045 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2046 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) 2047 return 1; 2048 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2049 &msr_info->data)) 2050 return 1; 2051 #ifdef CONFIG_KVM_HYPERV 2052 /* 2053 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2054 * instead of just ignoring the features, different Hyper-V 2055 * versions are either trying to use them and fail or do some 2056 * sanity checking and refuse to boot. Filter all unsupported 2057 * features out. 2058 */ 2059 if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu)) 2060 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2061 &msr_info->data); 2062 #endif 2063 break; 2064 case MSR_IA32_RTIT_CTL: 2065 if (!vmx_pt_mode_is_host_guest()) 2066 return 1; 2067 msr_info->data = vmx->pt_desc.guest.ctl; 2068 break; 2069 case MSR_IA32_RTIT_STATUS: 2070 if (!vmx_pt_mode_is_host_guest()) 2071 return 1; 2072 msr_info->data = vmx->pt_desc.guest.status; 2073 break; 2074 case MSR_IA32_RTIT_CR3_MATCH: 2075 if (!vmx_pt_mode_is_host_guest() || 2076 !intel_pt_validate_cap(vmx->pt_desc.caps, 2077 PT_CAP_cr3_filtering)) 2078 return 1; 2079 msr_info->data = vmx->pt_desc.guest.cr3_match; 2080 break; 2081 case MSR_IA32_RTIT_OUTPUT_BASE: 2082 if (!vmx_pt_mode_is_host_guest() || 2083 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2084 PT_CAP_topa_output) && 2085 !intel_pt_validate_cap(vmx->pt_desc.caps, 2086 PT_CAP_single_range_output))) 2087 return 1; 2088 msr_info->data = vmx->pt_desc.guest.output_base; 2089 break; 2090 case MSR_IA32_RTIT_OUTPUT_MASK: 2091 if (!vmx_pt_mode_is_host_guest() || 2092 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2093 PT_CAP_topa_output) && 2094 !intel_pt_validate_cap(vmx->pt_desc.caps, 2095 PT_CAP_single_range_output))) 2096 return 1; 2097 msr_info->data = vmx->pt_desc.guest.output_mask; 2098 break; 2099 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2100 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2101 if (!vmx_pt_mode_is_host_guest() || 2102 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2103 return 1; 2104 if (index % 2) 2105 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2106 else 2107 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2108 break; 2109 case MSR_IA32_S_CET: 2110 msr_info->data = vmcs_readl(GUEST_S_CET); 2111 break; 2112 case MSR_KVM_INTERNAL_GUEST_SSP: 2113 msr_info->data = vmcs_readl(GUEST_SSP); 2114 break; 2115 case MSR_IA32_INT_SSP_TAB: 2116 msr_info->data = vmcs_readl(GUEST_INTR_SSP_TABLE); 2117 break; 2118 case MSR_IA32_DEBUGCTLMSR: 2119 msr_info->data = vmx_guest_debugctl_read(); 2120 break; 2121 default: 2122 find_uret_msr: 2123 msr = vmx_find_uret_msr(vmx, msr_info->index); 2124 if (msr) { 2125 msr_info->data = msr->data; 2126 break; 2127 } 2128 return kvm_get_msr_common(vcpu, msr_info); 2129 } 2130 2131 return 0; 2132 } 2133 2134 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2135 u64 data) 2136 { 2137 #ifdef CONFIG_X86_64 2138 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 2139 return (u32)data; 2140 #endif 2141 return (unsigned long)data; 2142 } 2143 2144 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2145 { 2146 u64 debugctl = 0; 2147 2148 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2149 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2150 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2151 2152 if ((kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT) && 2153 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2154 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2155 2156 if (boot_cpu_has(X86_FEATURE_RTM) && 2157 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM))) 2158 debugctl |= DEBUGCTLMSR_RTM_DEBUG; 2159 2160 return debugctl; 2161 } 2162 2163 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated) 2164 { 2165 u64 invalid; 2166 2167 invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated); 2168 if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) { 2169 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 2170 invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR); 2171 } 2172 return !invalid; 2173 } 2174 2175 /* 2176 * Writes msr value into the appropriate "register". 2177 * Returns 0 on success, non-0 otherwise. 2178 * Assumes vcpu_load() was already called. 2179 */ 2180 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2181 { 2182 struct vcpu_vmx *vmx = to_vmx(vcpu); 2183 struct vmx_uret_msr *msr; 2184 int ret = 0; 2185 u32 msr_index = msr_info->index; 2186 u64 data = msr_info->data; 2187 u32 index; 2188 2189 switch (msr_index) { 2190 case MSR_EFER: 2191 ret = kvm_set_msr_common(vcpu, msr_info); 2192 break; 2193 #ifdef CONFIG_X86_64 2194 case MSR_FS_BASE: 2195 vmx_segment_cache_clear(vmx); 2196 vmcs_writel(GUEST_FS_BASE, data); 2197 break; 2198 case MSR_GS_BASE: 2199 vmx_segment_cache_clear(vmx); 2200 vmcs_writel(GUEST_GS_BASE, data); 2201 break; 2202 case MSR_KERNEL_GS_BASE: 2203 vmx_write_guest_kernel_gs_base(vmx, data); 2204 break; 2205 case MSR_IA32_XFD: 2206 ret = kvm_set_msr_common(vcpu, msr_info); 2207 /* 2208 * Always intercepting WRMSR could incur non-negligible 2209 * overhead given xfd might be changed frequently in 2210 * guest context switch. Disable write interception 2211 * upon the first write with a non-zero value (indicating 2212 * potential usage on dynamic xfeatures). Also update 2213 * exception bitmap to trap #NM for proper virtualization 2214 * of guest xfd_err. 2215 */ 2216 if (!ret && data) { 2217 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2218 MSR_TYPE_RW); 2219 vcpu->arch.xfd_no_write_intercept = true; 2220 vmx_update_exception_bitmap(vcpu); 2221 } 2222 break; 2223 #endif 2224 case MSR_IA32_SYSENTER_CS: 2225 if (is_guest_mode(vcpu)) 2226 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2227 vmcs_write32(GUEST_SYSENTER_CS, data); 2228 break; 2229 case MSR_IA32_SYSENTER_EIP: 2230 if (is_guest_mode(vcpu)) { 2231 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2232 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2233 } 2234 vmcs_writel(GUEST_SYSENTER_EIP, data); 2235 break; 2236 case MSR_IA32_SYSENTER_ESP: 2237 if (is_guest_mode(vcpu)) { 2238 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2239 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2240 } 2241 vmcs_writel(GUEST_SYSENTER_ESP, data); 2242 break; 2243 case MSR_IA32_DEBUGCTLMSR: 2244 if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated)) 2245 return 1; 2246 2247 data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2248 2249 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2250 VM_EXIT_SAVE_DEBUG_CONTROLS) 2251 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2252 2253 vmx_guest_debugctl_write(vcpu, data); 2254 2255 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2256 (data & DEBUGCTLMSR_LBR)) 2257 intel_pmu_create_guest_lbr_event(vcpu); 2258 return 0; 2259 case MSR_IA32_BNDCFGS: 2260 if (!kvm_mpx_supported() || 2261 (!msr_info->host_initiated && 2262 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX))) 2263 return 1; 2264 if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) || 2265 (data & MSR_IA32_BNDCFGS_RSVD)) 2266 return 1; 2267 2268 if (is_guest_mode(vcpu) && 2269 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2270 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2271 get_vmcs12(vcpu)->guest_bndcfgs = data; 2272 2273 vmcs_write64(GUEST_BNDCFGS, data); 2274 break; 2275 case MSR_IA32_UMWAIT_CONTROL: 2276 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2277 return 1; 2278 2279 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2280 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2281 return 1; 2282 2283 vmx->msr_ia32_umwait_control = data; 2284 break; 2285 case MSR_IA32_SPEC_CTRL: 2286 if (!msr_info->host_initiated && 2287 !guest_has_spec_ctrl_msr(vcpu)) 2288 return 1; 2289 2290 if (kvm_spec_ctrl_test_value(data)) 2291 return 1; 2292 2293 vmx->spec_ctrl = data; 2294 if (!data) 2295 break; 2296 2297 /* 2298 * For non-nested: 2299 * When it's written (to non-zero) for the first time, pass 2300 * it through. 2301 * 2302 * For nested: 2303 * The handling of the MSR bitmap for L2 guests is done in 2304 * nested_vmx_prepare_msr_bitmap. We should not touch the 2305 * vmcs02.msr_bitmap here since it gets completely overwritten 2306 * in the merging. We update the vmcs01 here for L1 as well 2307 * since it will end up touching the MSR anyway now. 2308 */ 2309 vmx_disable_intercept_for_msr(vcpu, 2310 MSR_IA32_SPEC_CTRL, 2311 MSR_TYPE_RW); 2312 break; 2313 case MSR_IA32_TSX_CTRL: 2314 if (!msr_info->host_initiated && 2315 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2316 return 1; 2317 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2318 return 1; 2319 goto find_uret_msr; 2320 case MSR_IA32_CR_PAT: 2321 ret = kvm_set_msr_common(vcpu, msr_info); 2322 if (ret) 2323 break; 2324 2325 if (is_guest_mode(vcpu) && 2326 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2327 get_vmcs12(vcpu)->guest_ia32_pat = data; 2328 2329 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2330 vmcs_write64(GUEST_IA32_PAT, data); 2331 break; 2332 case MSR_IA32_MCG_EXT_CTL: 2333 if ((!msr_info->host_initiated && 2334 !(to_vmx(vcpu)->msr_ia32_feature_control & 2335 FEAT_CTL_LMCE_ENABLED)) || 2336 (data & ~MCG_EXT_CTL_LMCE_EN)) 2337 return 1; 2338 vcpu->arch.mcg_ext_ctl = data; 2339 break; 2340 case MSR_IA32_FEAT_CTL: 2341 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2342 return 1; 2343 2344 vmx->msr_ia32_feature_control = data; 2345 if (msr_info->host_initiated && data == 0) 2346 vmx_leave_nested(vcpu); 2347 2348 /* SGX may be enabled/disabled by guest's firmware */ 2349 vmx_write_encls_bitmap(vcpu, NULL); 2350 break; 2351 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2352 /* 2353 * On real hardware, the LE hash MSRs are writable before 2354 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2355 * at which point SGX related bits in IA32_FEATURE_CONTROL 2356 * become writable. 2357 * 2358 * KVM does not emulate SGX activation for simplicity, so 2359 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2360 * is unlocked. This is technically not architectural 2361 * behavior, but it's close enough. 2362 */ 2363 if (!msr_info->host_initiated && 2364 (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) || 2365 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2366 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2367 return 1; 2368 vmx->msr_ia32_sgxlepubkeyhash 2369 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2370 break; 2371 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2372 if (!msr_info->host_initiated) 2373 return 1; /* they are read-only */ 2374 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) 2375 return 1; 2376 return vmx_set_vmx_msr(vcpu, msr_index, data); 2377 case MSR_IA32_RTIT_CTL: 2378 if (!vmx_pt_mode_is_host_guest() || 2379 vmx_rtit_ctl_check(vcpu, data) || 2380 vmx->nested.vmxon) 2381 return 1; 2382 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2383 vmx->pt_desc.guest.ctl = data; 2384 pt_update_intercept_for_msr(vcpu); 2385 break; 2386 case MSR_IA32_RTIT_STATUS: 2387 if (!pt_can_write_msr(vmx)) 2388 return 1; 2389 if (data & MSR_IA32_RTIT_STATUS_MASK) 2390 return 1; 2391 vmx->pt_desc.guest.status = data; 2392 break; 2393 case MSR_IA32_RTIT_CR3_MATCH: 2394 if (!pt_can_write_msr(vmx)) 2395 return 1; 2396 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2397 PT_CAP_cr3_filtering)) 2398 return 1; 2399 vmx->pt_desc.guest.cr3_match = data; 2400 break; 2401 case MSR_IA32_RTIT_OUTPUT_BASE: 2402 if (!pt_can_write_msr(vmx)) 2403 return 1; 2404 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2405 PT_CAP_topa_output) && 2406 !intel_pt_validate_cap(vmx->pt_desc.caps, 2407 PT_CAP_single_range_output)) 2408 return 1; 2409 if (!pt_output_base_valid(vcpu, data)) 2410 return 1; 2411 vmx->pt_desc.guest.output_base = data; 2412 break; 2413 case MSR_IA32_RTIT_OUTPUT_MASK: 2414 if (!pt_can_write_msr(vmx)) 2415 return 1; 2416 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2417 PT_CAP_topa_output) && 2418 !intel_pt_validate_cap(vmx->pt_desc.caps, 2419 PT_CAP_single_range_output)) 2420 return 1; 2421 vmx->pt_desc.guest.output_mask = data; 2422 break; 2423 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2424 if (!pt_can_write_msr(vmx)) 2425 return 1; 2426 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2427 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2428 return 1; 2429 if (is_noncanonical_msr_address(data, vcpu)) 2430 return 1; 2431 if (index % 2) 2432 vmx->pt_desc.guest.addr_b[index / 2] = data; 2433 else 2434 vmx->pt_desc.guest.addr_a[index / 2] = data; 2435 break; 2436 case MSR_IA32_S_CET: 2437 vmcs_writel(GUEST_S_CET, data); 2438 break; 2439 case MSR_KVM_INTERNAL_GUEST_SSP: 2440 vmcs_writel(GUEST_SSP, data); 2441 break; 2442 case MSR_IA32_INT_SSP_TAB: 2443 vmcs_writel(GUEST_INTR_SSP_TABLE, data); 2444 break; 2445 case MSR_IA32_PERF_CAPABILITIES: 2446 if (data & PERF_CAP_LBR_FMT) { 2447 if ((data & PERF_CAP_LBR_FMT) != 2448 (kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT)) 2449 return 1; 2450 if (!cpuid_model_is_consistent(vcpu)) 2451 return 1; 2452 } 2453 if (data & PERF_CAP_PEBS_FORMAT) { 2454 if ((data & PERF_CAP_PEBS_MASK) != 2455 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2456 return 1; 2457 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS)) 2458 return 1; 2459 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64)) 2460 return 1; 2461 if (!cpuid_model_is_consistent(vcpu)) 2462 return 1; 2463 } 2464 ret = kvm_set_msr_common(vcpu, msr_info); 2465 break; 2466 2467 default: 2468 find_uret_msr: 2469 msr = vmx_find_uret_msr(vmx, msr_index); 2470 if (msr) 2471 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2472 else 2473 ret = kvm_set_msr_common(vcpu, msr_info); 2474 } 2475 2476 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2477 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2478 vmx_update_fb_clear_dis(vcpu, vmx); 2479 2480 return ret; 2481 } 2482 2483 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2484 { 2485 unsigned long guest_owned_bits; 2486 2487 kvm_register_mark_available(vcpu, reg); 2488 2489 switch (reg) { 2490 case VCPU_REGS_RSP: 2491 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2492 break; 2493 case VCPU_REGS_RIP: 2494 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2495 break; 2496 case VCPU_EXREG_PDPTR: 2497 if (enable_ept) 2498 ept_save_pdptrs(vcpu); 2499 break; 2500 case VCPU_EXREG_CR0: 2501 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2502 2503 vcpu->arch.cr0 &= ~guest_owned_bits; 2504 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2505 break; 2506 case VCPU_EXREG_CR3: 2507 /* 2508 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2509 * CR3 is loaded into hardware, not the guest's CR3. 2510 */ 2511 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2512 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2513 break; 2514 case VCPU_EXREG_CR4: 2515 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2516 2517 vcpu->arch.cr4 &= ~guest_owned_bits; 2518 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2519 break; 2520 default: 2521 KVM_BUG_ON(1, vcpu->kvm); 2522 break; 2523 } 2524 } 2525 2526 /* 2527 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2528 * directly instead of going through cpu_has(), to ensure KVM is trapping 2529 * ENCLS whenever it's supported in hardware. It does not matter whether 2530 * the host OS supports or has enabled SGX. 2531 */ 2532 static bool cpu_has_sgx(void) 2533 { 2534 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2535 } 2536 2537 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2538 { 2539 u32 vmx_msr_low, vmx_msr_high; 2540 u32 ctl = ctl_min | ctl_opt; 2541 2542 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2543 2544 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2545 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2546 2547 /* Ensure minimum (required) set of control bits are supported. */ 2548 if (ctl_min & ~ctl) 2549 return -EIO; 2550 2551 *result = ctl; 2552 return 0; 2553 } 2554 2555 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2556 { 2557 u64 allowed; 2558 2559 rdmsrq(msr, allowed); 2560 2561 return ctl_opt & allowed; 2562 } 2563 2564 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls) \ 2565 ({ \ 2566 int i, r = 0; \ 2567 \ 2568 BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls)); \ 2569 BUILD_BUG_ON(sizeof(pairs[0].exit_control) != sizeof(exit_controls)); \ 2570 \ 2571 for (i = 0; i < ARRAY_SIZE(pairs); i++) { \ 2572 typeof(entry_controls) n_ctrl = pairs[i].entry_control; \ 2573 typeof(exit_controls) x_ctrl = pairs[i].exit_control; \ 2574 \ 2575 if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl)) \ 2576 continue; \ 2577 \ 2578 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, " \ 2579 "entry = %llx (%llx), exit = %llx (%llx)\n", \ 2580 (u64)(entry_controls & n_ctrl), (u64)n_ctrl, \ 2581 (u64)(exit_controls & x_ctrl), (u64)x_ctrl); \ 2582 \ 2583 if (error_on_inconsistent_vmcs_config) \ 2584 r = -EIO; \ 2585 \ 2586 entry_controls &= ~n_ctrl; \ 2587 exit_controls &= ~x_ctrl; \ 2588 } \ 2589 r; \ 2590 }) 2591 2592 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2593 struct vmx_capability *vmx_cap) 2594 { 2595 u32 _pin_based_exec_control = 0; 2596 u32 _cpu_based_exec_control = 0; 2597 u32 _cpu_based_2nd_exec_control = 0; 2598 u64 _cpu_based_3rd_exec_control = 0; 2599 u32 _vmexit_control = 0; 2600 u32 _vmentry_control = 0; 2601 u64 basic_msr; 2602 u64 misc_msr; 2603 2604 /* 2605 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2606 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2607 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2608 */ 2609 struct { 2610 u32 entry_control; 2611 u32 exit_control; 2612 } const vmcs_entry_exit_pairs[] = { 2613 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2614 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2615 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2616 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2617 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2618 { VM_ENTRY_LOAD_CET_STATE, VM_EXIT_LOAD_CET_STATE }, 2619 }; 2620 2621 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2622 2623 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2624 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2625 MSR_IA32_VMX_PROCBASED_CTLS, 2626 &_cpu_based_exec_control)) 2627 return -EIO; 2628 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2629 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2630 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2631 MSR_IA32_VMX_PROCBASED_CTLS2, 2632 &_cpu_based_2nd_exec_control)) 2633 return -EIO; 2634 } 2635 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE)) 2636 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 2637 2638 #ifndef CONFIG_X86_64 2639 if (!(_cpu_based_2nd_exec_control & 2640 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2641 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2642 #endif 2643 2644 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2645 _cpu_based_2nd_exec_control &= ~( 2646 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2647 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2648 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2649 2650 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2651 &vmx_cap->ept, &vmx_cap->vpid); 2652 2653 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2654 vmx_cap->ept) { 2655 pr_warn_once("EPT CAP should not exist if not support " 2656 "1-setting enable EPT VM-execution control\n"); 2657 2658 if (error_on_inconsistent_vmcs_config) 2659 return -EIO; 2660 2661 vmx_cap->ept = 0; 2662 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 2663 } 2664 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2665 vmx_cap->vpid) { 2666 pr_warn_once("VPID CAP should not exist if not support " 2667 "1-setting enable VPID VM-execution control\n"); 2668 2669 if (error_on_inconsistent_vmcs_config) 2670 return -EIO; 2671 2672 vmx_cap->vpid = 0; 2673 } 2674 2675 if (!cpu_has_sgx()) 2676 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2677 2678 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2679 _cpu_based_3rd_exec_control = 2680 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2681 MSR_IA32_VMX_PROCBASED_CTLS3); 2682 2683 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2684 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2685 MSR_IA32_VMX_EXIT_CTLS, 2686 &_vmexit_control)) 2687 return -EIO; 2688 2689 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2690 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2691 MSR_IA32_VMX_PINBASED_CTLS, 2692 &_pin_based_exec_control)) 2693 return -EIO; 2694 2695 if (cpu_has_broken_vmx_preemption_timer()) 2696 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2697 if (!(_cpu_based_2nd_exec_control & 2698 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2699 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2700 2701 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2702 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2703 MSR_IA32_VMX_ENTRY_CTLS, 2704 &_vmentry_control)) 2705 return -EIO; 2706 2707 if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs, 2708 _vmentry_control, _vmexit_control)) 2709 return -EIO; 2710 2711 /* 2712 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2713 * can't be used due to an errata where VM Exit may incorrectly clear 2714 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2715 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2716 */ 2717 switch (boot_cpu_data.x86_vfm) { 2718 case INTEL_NEHALEM_EP: /* AAK155 */ 2719 case INTEL_NEHALEM: /* AAP115 */ 2720 case INTEL_WESTMERE: /* AAT100 */ 2721 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2722 case INTEL_NEHALEM_EX: /* BA97 */ 2723 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2724 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2725 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2726 "does not work properly. Using workaround\n"); 2727 break; 2728 default: 2729 break; 2730 } 2731 2732 rdmsrq(MSR_IA32_VMX_BASIC, basic_msr); 2733 2734 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2735 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE) 2736 return -EIO; 2737 2738 #ifdef CONFIG_X86_64 2739 /* 2740 * KVM expects to be able to shove all legal physical addresses into 2741 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always 2742 * 0 for processors that support Intel 64 architecture". 2743 */ 2744 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY) 2745 return -EIO; 2746 #endif 2747 2748 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2749 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB) 2750 return -EIO; 2751 2752 rdmsrq(MSR_IA32_VMX_MISC, misc_msr); 2753 2754 vmcs_conf->basic = basic_msr; 2755 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2756 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2757 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2758 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2759 vmcs_conf->vmexit_ctrl = _vmexit_control; 2760 vmcs_conf->vmentry_ctrl = _vmentry_control; 2761 vmcs_conf->misc = misc_msr; 2762 2763 #if IS_ENABLED(CONFIG_HYPERV) 2764 if (enlightened_vmcs) 2765 evmcs_sanitize_exec_ctrls(vmcs_conf); 2766 #endif 2767 2768 return 0; 2769 } 2770 2771 static bool __kvm_is_vmx_supported(void) 2772 { 2773 int cpu = smp_processor_id(); 2774 2775 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2776 pr_err("VMX not supported by CPU %d\n", cpu); 2777 return false; 2778 } 2779 2780 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2781 !this_cpu_has(X86_FEATURE_VMX)) { 2782 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2783 return false; 2784 } 2785 2786 return true; 2787 } 2788 2789 static bool kvm_is_vmx_supported(void) 2790 { 2791 bool supported; 2792 2793 migrate_disable(); 2794 supported = __kvm_is_vmx_supported(); 2795 migrate_enable(); 2796 2797 return supported; 2798 } 2799 2800 int vmx_check_processor_compat(void) 2801 { 2802 int cpu = raw_smp_processor_id(); 2803 struct vmcs_config vmcs_conf; 2804 struct vmx_capability vmx_cap; 2805 2806 if (!__kvm_is_vmx_supported()) 2807 return -EIO; 2808 2809 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2810 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2811 return -EIO; 2812 } 2813 if (nested) 2814 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2815 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2816 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2817 return -EIO; 2818 } 2819 return 0; 2820 } 2821 2822 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2823 { 2824 u64 msr; 2825 2826 cr4_set_bits(X86_CR4_VMXE); 2827 2828 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2829 _ASM_EXTABLE(1b, %l[fault]) 2830 : : [vmxon_pointer] "m"(vmxon_pointer) 2831 : : fault); 2832 return 0; 2833 2834 fault: 2835 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2836 rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2837 cr4_clear_bits(X86_CR4_VMXE); 2838 2839 return -EFAULT; 2840 } 2841 2842 int vmx_enable_virtualization_cpu(void) 2843 { 2844 int cpu = raw_smp_processor_id(); 2845 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2846 int r; 2847 2848 if (cr4_read_shadow() & X86_CR4_VMXE) 2849 return -EBUSY; 2850 2851 /* 2852 * This can happen if we hot-added a CPU but failed to allocate 2853 * VP assist page for it. 2854 */ 2855 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2856 return -EFAULT; 2857 2858 intel_pt_handle_vmx(1); 2859 2860 r = kvm_cpu_vmxon(phys_addr); 2861 if (r) { 2862 intel_pt_handle_vmx(0); 2863 return r; 2864 } 2865 2866 return 0; 2867 } 2868 2869 static void vmclear_local_loaded_vmcss(void) 2870 { 2871 int cpu = raw_smp_processor_id(); 2872 struct loaded_vmcs *v, *n; 2873 2874 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2875 loaded_vmcss_on_cpu_link) 2876 __loaded_vmcs_clear(v); 2877 } 2878 2879 void vmx_disable_virtualization_cpu(void) 2880 { 2881 vmclear_local_loaded_vmcss(); 2882 2883 if (kvm_cpu_vmxoff()) 2884 kvm_spurious_fault(); 2885 2886 hv_reset_evmcs(); 2887 2888 intel_pt_handle_vmx(0); 2889 } 2890 2891 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2892 { 2893 int node = cpu_to_node(cpu); 2894 struct page *pages; 2895 struct vmcs *vmcs; 2896 2897 pages = __alloc_pages_node(node, flags, 0); 2898 if (!pages) 2899 return NULL; 2900 vmcs = page_address(pages); 2901 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic)); 2902 2903 /* KVM supports Enlightened VMCS v1 only */ 2904 if (kvm_is_using_evmcs()) 2905 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2906 else 2907 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic); 2908 2909 if (shadow) 2910 vmcs->hdr.shadow_vmcs = 1; 2911 return vmcs; 2912 } 2913 2914 void free_vmcs(struct vmcs *vmcs) 2915 { 2916 free_page((unsigned long)vmcs); 2917 } 2918 2919 /* 2920 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2921 */ 2922 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2923 { 2924 if (!loaded_vmcs->vmcs) 2925 return; 2926 loaded_vmcs_clear(loaded_vmcs); 2927 free_vmcs(loaded_vmcs->vmcs); 2928 loaded_vmcs->vmcs = NULL; 2929 if (loaded_vmcs->msr_bitmap) 2930 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2931 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2932 } 2933 2934 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2935 { 2936 loaded_vmcs->vmcs = alloc_vmcs(false); 2937 if (!loaded_vmcs->vmcs) 2938 return -ENOMEM; 2939 2940 vmcs_clear(loaded_vmcs->vmcs); 2941 2942 loaded_vmcs->shadow_vmcs = NULL; 2943 loaded_vmcs->hv_timer_soft_disabled = false; 2944 loaded_vmcs->cpu = -1; 2945 loaded_vmcs->launched = 0; 2946 2947 if (cpu_has_vmx_msr_bitmap()) { 2948 loaded_vmcs->msr_bitmap = (unsigned long *) 2949 __get_free_page(GFP_KERNEL_ACCOUNT); 2950 if (!loaded_vmcs->msr_bitmap) 2951 goto out_vmcs; 2952 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2953 } 2954 2955 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2956 memset(&loaded_vmcs->controls_shadow, 0, 2957 sizeof(struct vmcs_controls_shadow)); 2958 2959 return 0; 2960 2961 out_vmcs: 2962 free_loaded_vmcs(loaded_vmcs); 2963 return -ENOMEM; 2964 } 2965 2966 static void free_kvm_area(void) 2967 { 2968 int cpu; 2969 2970 for_each_possible_cpu(cpu) { 2971 free_vmcs(per_cpu(vmxarea, cpu)); 2972 per_cpu(vmxarea, cpu) = NULL; 2973 } 2974 } 2975 2976 static __init int alloc_kvm_area(void) 2977 { 2978 int cpu; 2979 2980 for_each_possible_cpu(cpu) { 2981 struct vmcs *vmcs; 2982 2983 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2984 if (!vmcs) { 2985 free_kvm_area(); 2986 return -ENOMEM; 2987 } 2988 2989 /* 2990 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2991 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2992 * revision_id reported by MSR_IA32_VMX_BASIC. 2993 * 2994 * However, even though not explicitly documented by 2995 * TLFS, VMXArea passed as VMXON argument should 2996 * still be marked with revision_id reported by 2997 * physical CPU. 2998 */ 2999 if (kvm_is_using_evmcs()) 3000 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic); 3001 3002 per_cpu(vmxarea, cpu) = vmcs; 3003 } 3004 return 0; 3005 } 3006 3007 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 3008 struct kvm_segment *save) 3009 { 3010 if (!emulate_invalid_guest_state) { 3011 /* 3012 * CS and SS RPL should be equal during guest entry according 3013 * to VMX spec, but in reality it is not always so. Since vcpu 3014 * is in the middle of the transition from real mode to 3015 * protected mode it is safe to assume that RPL 0 is a good 3016 * default value. 3017 */ 3018 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 3019 save->selector &= ~SEGMENT_RPL_MASK; 3020 save->dpl = save->selector & SEGMENT_RPL_MASK; 3021 save->s = 1; 3022 } 3023 __vmx_set_segment(vcpu, save, seg); 3024 } 3025 3026 static void enter_pmode(struct kvm_vcpu *vcpu) 3027 { 3028 unsigned long flags; 3029 struct vcpu_vmx *vmx = to_vmx(vcpu); 3030 3031 /* 3032 * Update real mode segment cache. It may be not up-to-date if segment 3033 * register was written while vcpu was in a guest mode. 3034 */ 3035 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3036 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3037 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3038 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3039 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3040 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3041 3042 vmx->rmode.vm86_active = 0; 3043 3044 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3045 3046 flags = vmcs_readl(GUEST_RFLAGS); 3047 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3048 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3049 vmcs_writel(GUEST_RFLAGS, flags); 3050 3051 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3052 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3053 3054 vmx_update_exception_bitmap(vcpu); 3055 3056 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3057 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3058 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3059 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3060 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3061 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3062 } 3063 3064 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3065 { 3066 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3067 struct kvm_segment var = *save; 3068 3069 var.dpl = 0x3; 3070 if (seg == VCPU_SREG_CS) 3071 var.type = 0x3; 3072 3073 if (!emulate_invalid_guest_state) { 3074 var.selector = var.base >> 4; 3075 var.base = var.base & 0xffff0; 3076 var.limit = 0xffff; 3077 var.g = 0; 3078 var.db = 0; 3079 var.present = 1; 3080 var.s = 1; 3081 var.l = 0; 3082 var.unusable = 0; 3083 var.type = 0x3; 3084 var.avl = 0; 3085 if (save->base & 0xf) 3086 pr_warn_once("segment base is not paragraph aligned " 3087 "when entering protected mode (seg=%d)", seg); 3088 } 3089 3090 vmcs_write16(sf->selector, var.selector); 3091 vmcs_writel(sf->base, var.base); 3092 vmcs_write32(sf->limit, var.limit); 3093 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3094 } 3095 3096 static void enter_rmode(struct kvm_vcpu *vcpu) 3097 { 3098 unsigned long flags; 3099 struct vcpu_vmx *vmx = to_vmx(vcpu); 3100 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3101 3102 /* 3103 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3104 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3105 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3106 * should VM-Fail and KVM should reject userspace attempts to stuff 3107 * CR0.PG=0 when L2 is active. 3108 */ 3109 WARN_ON_ONCE(is_guest_mode(vcpu)); 3110 3111 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3112 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3113 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3114 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3115 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3116 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3117 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3118 3119 vmx->rmode.vm86_active = 1; 3120 3121 vmx_segment_cache_clear(vmx); 3122 3123 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3124 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3125 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3126 3127 flags = vmcs_readl(GUEST_RFLAGS); 3128 vmx->rmode.save_rflags = flags; 3129 3130 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3131 3132 vmcs_writel(GUEST_RFLAGS, flags); 3133 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3134 vmx_update_exception_bitmap(vcpu); 3135 3136 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3137 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3138 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3139 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3140 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3141 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3142 } 3143 3144 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3145 { 3146 struct vcpu_vmx *vmx = to_vmx(vcpu); 3147 3148 /* Nothing to do if hardware doesn't support EFER. */ 3149 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3150 return 0; 3151 3152 vcpu->arch.efer = efer; 3153 #ifdef CONFIG_X86_64 3154 if (efer & EFER_LMA) 3155 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3156 else 3157 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3158 #else 3159 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3160 return 1; 3161 #endif 3162 3163 vmx_setup_uret_msrs(vmx); 3164 return 0; 3165 } 3166 3167 #ifdef CONFIG_X86_64 3168 3169 static void enter_lmode(struct kvm_vcpu *vcpu) 3170 { 3171 u32 guest_tr_ar; 3172 3173 vmx_segment_cache_clear(to_vmx(vcpu)); 3174 3175 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3176 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3177 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3178 __func__); 3179 vmcs_write32(GUEST_TR_AR_BYTES, 3180 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3181 | VMX_AR_TYPE_BUSY_64_TSS); 3182 } 3183 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3184 } 3185 3186 static void exit_lmode(struct kvm_vcpu *vcpu) 3187 { 3188 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3189 } 3190 3191 #endif 3192 3193 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3194 { 3195 struct vcpu_vmx *vmx = to_vmx(vcpu); 3196 3197 /* 3198 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3199 * the CPU is not required to invalidate guest-physical mappings on 3200 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3201 * associated with the root EPT structure and not any particular VPID 3202 * (INVVPID also isn't required to invalidate guest-physical mappings). 3203 */ 3204 if (enable_ept) { 3205 ept_sync_global(); 3206 } else if (enable_vpid) { 3207 if (cpu_has_vmx_invvpid_global()) { 3208 vpid_sync_vcpu_global(); 3209 } else { 3210 vpid_sync_vcpu_single(vmx->vpid); 3211 vpid_sync_vcpu_single(vmx->nested.vpid02); 3212 } 3213 } 3214 } 3215 3216 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3217 { 3218 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu))) 3219 return nested_get_vpid02(vcpu); 3220 return to_vmx(vcpu)->vpid; 3221 } 3222 3223 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3224 { 3225 struct kvm_mmu *mmu = vcpu->arch.mmu; 3226 u64 root_hpa = mmu->root.hpa; 3227 3228 /* No flush required if the current context is invalid. */ 3229 if (!VALID_PAGE(root_hpa)) 3230 return; 3231 3232 if (enable_ept) 3233 ept_sync_context(construct_eptp(vcpu, root_hpa, 3234 mmu->root_role.level)); 3235 else 3236 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3237 } 3238 3239 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3240 { 3241 /* 3242 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3243 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3244 */ 3245 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3246 } 3247 3248 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3249 { 3250 /* 3251 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3252 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3253 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3254 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3255 * i.e. no explicit INVVPID is necessary. 3256 */ 3257 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3258 } 3259 3260 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3261 { 3262 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3263 3264 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3265 return; 3266 3267 if (is_pae_paging(vcpu)) { 3268 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3269 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3270 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3271 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3272 } 3273 } 3274 3275 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3276 { 3277 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3278 3279 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3280 return; 3281 3282 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3283 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3284 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3285 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3286 3287 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3288 } 3289 3290 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3291 CPU_BASED_CR3_STORE_EXITING) 3292 3293 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3294 { 3295 if (is_guest_mode(vcpu)) 3296 return nested_guest_cr0_valid(vcpu, cr0); 3297 3298 if (to_vmx(vcpu)->nested.vmxon) 3299 return nested_host_cr0_valid(vcpu, cr0); 3300 3301 return true; 3302 } 3303 3304 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3305 { 3306 struct vcpu_vmx *vmx = to_vmx(vcpu); 3307 unsigned long hw_cr0, old_cr0_pg; 3308 u32 tmp; 3309 3310 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3311 3312 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3313 if (enable_unrestricted_guest) 3314 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3315 else { 3316 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3317 if (!enable_ept) 3318 hw_cr0 |= X86_CR0_WP; 3319 3320 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3321 enter_pmode(vcpu); 3322 3323 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3324 enter_rmode(vcpu); 3325 } 3326 3327 vmcs_writel(CR0_READ_SHADOW, cr0); 3328 vmcs_writel(GUEST_CR0, hw_cr0); 3329 vcpu->arch.cr0 = cr0; 3330 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3331 3332 #ifdef CONFIG_X86_64 3333 if (vcpu->arch.efer & EFER_LME) { 3334 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3335 enter_lmode(vcpu); 3336 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3337 exit_lmode(vcpu); 3338 } 3339 #endif 3340 3341 if (enable_ept && !enable_unrestricted_guest) { 3342 /* 3343 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3344 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3345 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3346 * KVM's CR3 is installed. 3347 */ 3348 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3349 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3350 3351 /* 3352 * When running with EPT but not unrestricted guest, KVM must 3353 * intercept CR3 accesses when paging is _disabled_. This is 3354 * necessary because restricted guests can't actually run with 3355 * paging disabled, and so KVM stuffs its own CR3 in order to 3356 * run the guest when identity mapped page tables. 3357 * 3358 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3359 * update, it may be stale with respect to CR3 interception, 3360 * e.g. after nested VM-Enter. 3361 * 3362 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3363 * stores to forward them to L1, even if KVM does not need to 3364 * intercept them to preserve its identity mapped page tables. 3365 */ 3366 if (!(cr0 & X86_CR0_PG)) { 3367 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3368 } else if (!is_guest_mode(vcpu)) { 3369 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3370 } else { 3371 tmp = exec_controls_get(vmx); 3372 tmp &= ~CR3_EXITING_BITS; 3373 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3374 exec_controls_set(vmx, tmp); 3375 } 3376 3377 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3378 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3379 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3380 3381 /* 3382 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3383 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3384 */ 3385 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3386 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3387 } 3388 3389 /* depends on vcpu->arch.cr0 to be set to a new value */ 3390 vmx->vt.emulation_required = vmx_emulation_required(vcpu); 3391 } 3392 3393 static int vmx_get_max_ept_level(void) 3394 { 3395 if (cpu_has_vmx_ept_5levels()) 3396 return 5; 3397 return 4; 3398 } 3399 3400 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3401 { 3402 u64 eptp = VMX_EPTP_MT_WB; 3403 3404 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3405 3406 if (enable_ept_ad_bits && 3407 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3408 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3409 eptp |= root_hpa; 3410 3411 return eptp; 3412 } 3413 3414 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3415 { 3416 struct kvm *kvm = vcpu->kvm; 3417 bool update_guest_cr3 = true; 3418 unsigned long guest_cr3; 3419 u64 eptp; 3420 3421 if (enable_ept) { 3422 eptp = construct_eptp(vcpu, root_hpa, root_level); 3423 vmcs_write64(EPT_POINTER, eptp); 3424 3425 hv_track_root_tdp(vcpu, root_hpa); 3426 3427 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3428 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3429 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3430 guest_cr3 = vcpu->arch.cr3; 3431 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3432 update_guest_cr3 = false; 3433 vmx_ept_load_pdptrs(vcpu); 3434 } else { 3435 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) | 3436 kvm_get_active_cr3_lam_bits(vcpu); 3437 } 3438 3439 if (update_guest_cr3) 3440 vmcs_writel(GUEST_CR3, guest_cr3); 3441 } 3442 3443 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3444 { 3445 /* 3446 * We operate under the default treatment of SMM, so VMX cannot be 3447 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3448 * i.e. is a reserved bit, is handled by common x86 code. 3449 */ 3450 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3451 return false; 3452 3453 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3454 return false; 3455 3456 return true; 3457 } 3458 3459 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3460 { 3461 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3462 struct vcpu_vmx *vmx = to_vmx(vcpu); 3463 unsigned long hw_cr4; 3464 3465 /* 3466 * Pass through host's Machine Check Enable value to hw_cr4, which 3467 * is in force while we are in guest mode. Do not let guests control 3468 * this bit, even if host CR4.MCE == 0. 3469 */ 3470 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3471 if (enable_unrestricted_guest) 3472 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3473 else if (vmx->rmode.vm86_active) 3474 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3475 else 3476 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3477 3478 if (vmx_umip_emulated()) { 3479 if (cr4 & X86_CR4_UMIP) { 3480 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3481 hw_cr4 &= ~X86_CR4_UMIP; 3482 } else if (!is_guest_mode(vcpu) || 3483 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3484 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3485 } 3486 } 3487 3488 vcpu->arch.cr4 = cr4; 3489 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3490 3491 if (!enable_unrestricted_guest) { 3492 if (enable_ept) { 3493 if (!is_paging(vcpu)) { 3494 hw_cr4 &= ~X86_CR4_PAE; 3495 hw_cr4 |= X86_CR4_PSE; 3496 } else if (!(cr4 & X86_CR4_PAE)) { 3497 hw_cr4 &= ~X86_CR4_PAE; 3498 } 3499 } 3500 3501 /* 3502 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3503 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3504 * to be manually disabled when guest switches to non-paging 3505 * mode. 3506 * 3507 * If !enable_unrestricted_guest, the CPU is always running 3508 * with CR0.PG=1 and CR4 needs to be modified. 3509 * If enable_unrestricted_guest, the CPU automatically 3510 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3511 */ 3512 if (!is_paging(vcpu)) 3513 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3514 } 3515 3516 vmcs_writel(CR4_READ_SHADOW, cr4); 3517 vmcs_writel(GUEST_CR4, hw_cr4); 3518 3519 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3520 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3521 } 3522 3523 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3524 { 3525 struct vcpu_vmx *vmx = to_vmx(vcpu); 3526 u32 ar; 3527 3528 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3529 *var = vmx->rmode.segs[seg]; 3530 if (seg == VCPU_SREG_TR 3531 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3532 return; 3533 var->base = vmx_read_guest_seg_base(vmx, seg); 3534 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3535 return; 3536 } 3537 var->base = vmx_read_guest_seg_base(vmx, seg); 3538 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3539 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3540 ar = vmx_read_guest_seg_ar(vmx, seg); 3541 var->unusable = (ar >> 16) & 1; 3542 var->type = ar & 15; 3543 var->s = (ar >> 4) & 1; 3544 var->dpl = (ar >> 5) & 3; 3545 /* 3546 * Some userspaces do not preserve unusable property. Since usable 3547 * segment has to be present according to VMX spec we can use present 3548 * property to amend userspace bug by making unusable segment always 3549 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3550 * segment as unusable. 3551 */ 3552 var->present = !var->unusable; 3553 var->avl = (ar >> 12) & 1; 3554 var->l = (ar >> 13) & 1; 3555 var->db = (ar >> 14) & 1; 3556 var->g = (ar >> 15) & 1; 3557 } 3558 3559 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3560 { 3561 struct kvm_segment s; 3562 3563 if (to_vmx(vcpu)->rmode.vm86_active) { 3564 vmx_get_segment(vcpu, &s, seg); 3565 return s.base; 3566 } 3567 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3568 } 3569 3570 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache) 3571 { 3572 struct vcpu_vmx *vmx = to_vmx(vcpu); 3573 int ar; 3574 3575 if (unlikely(vmx->rmode.vm86_active)) 3576 return 0; 3577 3578 if (no_cache) 3579 ar = vmcs_read32(GUEST_SS_AR_BYTES); 3580 else 3581 ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3582 return VMX_AR_DPL(ar); 3583 } 3584 3585 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3586 { 3587 return __vmx_get_cpl(vcpu, false); 3588 } 3589 3590 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu) 3591 { 3592 return __vmx_get_cpl(vcpu, true); 3593 } 3594 3595 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3596 { 3597 u32 ar; 3598 3599 ar = var->type & 15; 3600 ar |= (var->s & 1) << 4; 3601 ar |= (var->dpl & 3) << 5; 3602 ar |= (var->present & 1) << 7; 3603 ar |= (var->avl & 1) << 12; 3604 ar |= (var->l & 1) << 13; 3605 ar |= (var->db & 1) << 14; 3606 ar |= (var->g & 1) << 15; 3607 ar |= (var->unusable || !var->present) << 16; 3608 3609 return ar; 3610 } 3611 3612 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3613 { 3614 struct vcpu_vmx *vmx = to_vmx(vcpu); 3615 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3616 3617 vmx_segment_cache_clear(vmx); 3618 3619 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3620 vmx->rmode.segs[seg] = *var; 3621 if (seg == VCPU_SREG_TR) 3622 vmcs_write16(sf->selector, var->selector); 3623 else if (var->s) 3624 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3625 return; 3626 } 3627 3628 vmcs_writel(sf->base, var->base); 3629 vmcs_write32(sf->limit, var->limit); 3630 vmcs_write16(sf->selector, var->selector); 3631 3632 /* 3633 * Fix the "Accessed" bit in AR field of segment registers for older 3634 * qemu binaries. 3635 * IA32 arch specifies that at the time of processor reset the 3636 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3637 * is setting it to 0 in the userland code. This causes invalid guest 3638 * state vmexit when "unrestricted guest" mode is turned on. 3639 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3640 * tree. Newer qemu binaries with that qemu fix would not need this 3641 * kvm hack. 3642 */ 3643 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3644 var->type |= 0x1; /* Accessed */ 3645 3646 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3647 } 3648 3649 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3650 { 3651 __vmx_set_segment(vcpu, var, seg); 3652 3653 to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu); 3654 } 3655 3656 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3657 { 3658 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3659 3660 *db = (ar >> 14) & 1; 3661 *l = (ar >> 13) & 1; 3662 } 3663 3664 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3665 { 3666 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3667 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3668 } 3669 3670 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3671 { 3672 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3673 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3674 } 3675 3676 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3677 { 3678 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3679 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3680 } 3681 3682 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3683 { 3684 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3685 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3686 } 3687 3688 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3689 { 3690 struct kvm_segment var; 3691 u32 ar; 3692 3693 vmx_get_segment(vcpu, &var, seg); 3694 var.dpl = 0x3; 3695 if (seg == VCPU_SREG_CS) 3696 var.type = 0x3; 3697 ar = vmx_segment_access_rights(&var); 3698 3699 if (var.base != (var.selector << 4)) 3700 return false; 3701 if (var.limit != 0xffff) 3702 return false; 3703 if (ar != 0xf3) 3704 return false; 3705 3706 return true; 3707 } 3708 3709 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3710 { 3711 struct kvm_segment cs; 3712 unsigned int cs_rpl; 3713 3714 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3715 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3716 3717 if (cs.unusable) 3718 return false; 3719 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3720 return false; 3721 if (!cs.s) 3722 return false; 3723 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3724 if (cs.dpl > cs_rpl) 3725 return false; 3726 } else { 3727 if (cs.dpl != cs_rpl) 3728 return false; 3729 } 3730 if (!cs.present) 3731 return false; 3732 3733 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3734 return true; 3735 } 3736 3737 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3738 { 3739 struct kvm_segment ss; 3740 unsigned int ss_rpl; 3741 3742 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3743 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3744 3745 if (ss.unusable) 3746 return true; 3747 if (ss.type != 3 && ss.type != 7) 3748 return false; 3749 if (!ss.s) 3750 return false; 3751 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3752 return false; 3753 if (!ss.present) 3754 return false; 3755 3756 return true; 3757 } 3758 3759 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3760 { 3761 struct kvm_segment var; 3762 unsigned int rpl; 3763 3764 vmx_get_segment(vcpu, &var, seg); 3765 rpl = var.selector & SEGMENT_RPL_MASK; 3766 3767 if (var.unusable) 3768 return true; 3769 if (!var.s) 3770 return false; 3771 if (!var.present) 3772 return false; 3773 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3774 if (var.dpl < rpl) /* DPL < RPL */ 3775 return false; 3776 } 3777 3778 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3779 * rights flags 3780 */ 3781 return true; 3782 } 3783 3784 static bool tr_valid(struct kvm_vcpu *vcpu) 3785 { 3786 struct kvm_segment tr; 3787 3788 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3789 3790 if (tr.unusable) 3791 return false; 3792 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3793 return false; 3794 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3795 return false; 3796 if (!tr.present) 3797 return false; 3798 3799 return true; 3800 } 3801 3802 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3803 { 3804 struct kvm_segment ldtr; 3805 3806 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3807 3808 if (ldtr.unusable) 3809 return true; 3810 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3811 return false; 3812 if (ldtr.type != 2) 3813 return false; 3814 if (!ldtr.present) 3815 return false; 3816 3817 return true; 3818 } 3819 3820 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3821 { 3822 struct kvm_segment cs, ss; 3823 3824 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3825 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3826 3827 return ((cs.selector & SEGMENT_RPL_MASK) == 3828 (ss.selector & SEGMENT_RPL_MASK)); 3829 } 3830 3831 /* 3832 * Check if guest state is valid. Returns true if valid, false if 3833 * not. 3834 * We assume that registers are always usable 3835 */ 3836 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3837 { 3838 /* real mode guest state checks */ 3839 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3840 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3841 return false; 3842 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3843 return false; 3844 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3845 return false; 3846 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3847 return false; 3848 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3849 return false; 3850 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3851 return false; 3852 } else { 3853 /* protected mode guest state checks */ 3854 if (!cs_ss_rpl_check(vcpu)) 3855 return false; 3856 if (!code_segment_valid(vcpu)) 3857 return false; 3858 if (!stack_segment_valid(vcpu)) 3859 return false; 3860 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3861 return false; 3862 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3863 return false; 3864 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3865 return false; 3866 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3867 return false; 3868 if (!tr_valid(vcpu)) 3869 return false; 3870 if (!ldtr_valid(vcpu)) 3871 return false; 3872 } 3873 /* TODO: 3874 * - Add checks on RIP 3875 * - Add checks on RFLAGS 3876 */ 3877 3878 return true; 3879 } 3880 3881 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3882 { 3883 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3884 u16 data; 3885 int i; 3886 3887 for (i = 0; i < 3; i++) { 3888 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3889 return -EFAULT; 3890 } 3891 3892 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3893 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3894 return -EFAULT; 3895 3896 data = ~0; 3897 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3898 return -EFAULT; 3899 3900 return 0; 3901 } 3902 3903 static int init_rmode_identity_map(struct kvm *kvm) 3904 { 3905 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3906 int i, r = 0; 3907 void __user *uaddr; 3908 u32 tmp; 3909 3910 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3911 mutex_lock(&kvm->slots_lock); 3912 3913 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3914 goto out; 3915 3916 if (!kvm_vmx->ept_identity_map_addr) 3917 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3918 3919 uaddr = __x86_set_memory_region(kvm, 3920 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3921 kvm_vmx->ept_identity_map_addr, 3922 PAGE_SIZE); 3923 if (IS_ERR(uaddr)) { 3924 r = PTR_ERR(uaddr); 3925 goto out; 3926 } 3927 3928 /* Set up identity-mapping pagetable for EPT in real mode */ 3929 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3930 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3931 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3932 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3933 r = -EFAULT; 3934 goto out; 3935 } 3936 } 3937 kvm_vmx->ept_identity_pagetable_done = true; 3938 3939 out: 3940 mutex_unlock(&kvm->slots_lock); 3941 return r; 3942 } 3943 3944 static void seg_setup(int seg) 3945 { 3946 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3947 unsigned int ar; 3948 3949 vmcs_write16(sf->selector, 0); 3950 vmcs_writel(sf->base, 0); 3951 vmcs_write32(sf->limit, 0xffff); 3952 ar = 0x93; 3953 if (seg == VCPU_SREG_CS) 3954 ar |= 0x08; /* code segment */ 3955 3956 vmcs_write32(sf->ar_bytes, ar); 3957 } 3958 3959 int allocate_vpid(void) 3960 { 3961 int vpid; 3962 3963 if (!enable_vpid) 3964 return 0; 3965 spin_lock(&vmx_vpid_lock); 3966 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3967 if (vpid < VMX_NR_VPIDS) 3968 __set_bit(vpid, vmx_vpid_bitmap); 3969 else 3970 vpid = 0; 3971 spin_unlock(&vmx_vpid_lock); 3972 return vpid; 3973 } 3974 3975 void free_vpid(int vpid) 3976 { 3977 if (!enable_vpid || vpid == 0) 3978 return; 3979 spin_lock(&vmx_vpid_lock); 3980 __clear_bit(vpid, vmx_vpid_bitmap); 3981 spin_unlock(&vmx_vpid_lock); 3982 } 3983 3984 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3985 { 3986 /* 3987 * When KVM is a nested hypervisor on top of Hyper-V and uses 3988 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3989 * bitmap has changed. 3990 */ 3991 if (kvm_is_using_evmcs()) { 3992 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3993 3994 if (evmcs->hv_enlightenments_control.msr_bitmap) 3995 evmcs->hv_clean_fields &= 3996 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3997 } 3998 3999 vmx->nested.force_msr_bitmap_recalc = true; 4000 } 4001 4002 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set) 4003 { 4004 struct vcpu_vmx *vmx = to_vmx(vcpu); 4005 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4006 4007 if (!cpu_has_vmx_msr_bitmap()) 4008 return; 4009 4010 vmx_msr_bitmap_l01_changed(vmx); 4011 4012 if (type & MSR_TYPE_R) { 4013 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 4014 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 4015 else 4016 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4017 } 4018 4019 if (type & MSR_TYPE_W) { 4020 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 4021 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 4022 else 4023 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4024 } 4025 } 4026 4027 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4028 { 4029 /* 4030 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4031 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4032 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4033 */ 4034 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4035 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4036 struct vcpu_vmx *vmx = to_vmx(vcpu); 4037 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4038 u8 mode; 4039 4040 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4041 return; 4042 4043 if (cpu_has_secondary_exec_ctrls() && 4044 (secondary_exec_controls_get(vmx) & 4045 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4046 mode = MSR_BITMAP_MODE_X2APIC; 4047 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4048 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4049 } else { 4050 mode = 0; 4051 } 4052 4053 if (mode == vmx->x2apic_msr_bitmap_mode) 4054 return; 4055 4056 vmx->x2apic_msr_bitmap_mode = mode; 4057 4058 /* 4059 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4060 * registers (0x840 and above) intercepted, KVM doesn't support them. 4061 * Intercept all writes by default and poke holes as needed. Pass 4062 * through reads for all valid registers by default in x2APIC+APICv 4063 * mode, only the current timer count needs on-demand emulation by KVM. 4064 */ 4065 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4066 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4067 else 4068 msr_bitmap[read_idx] = ~0ull; 4069 msr_bitmap[write_idx] = ~0ull; 4070 4071 /* 4072 * TPR reads and writes can be virtualized even if virtual interrupt 4073 * delivery is not in use. 4074 */ 4075 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4076 !(mode & MSR_BITMAP_MODE_X2APIC)); 4077 4078 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4079 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4080 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4081 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4082 if (enable_ipiv) 4083 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4084 } 4085 } 4086 4087 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4088 { 4089 struct vcpu_vmx *vmx = to_vmx(vcpu); 4090 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4091 u32 i; 4092 4093 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4094 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4095 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4096 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4097 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4098 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4099 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4100 } 4101 } 4102 4103 static void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu) 4104 { 4105 bool intercept; 4106 4107 if (!cpu_has_vmx_msr_bitmap()) 4108 return; 4109 4110 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 4111 #ifdef CONFIG_X86_64 4112 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 4113 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 4114 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 4115 #endif 4116 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 4117 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 4118 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 4119 if (kvm_cstate_in_guest(vcpu->kvm)) { 4120 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 4121 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 4122 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 4123 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 4124 } 4125 if (kvm_aperfmperf_in_guest(vcpu->kvm)) { 4126 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R); 4127 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R); 4128 } 4129 4130 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4131 if (vmx_pt_mode_is_host_guest()) 4132 pt_update_intercept_for_msr(vcpu); 4133 4134 if (vcpu->arch.xfd_no_write_intercept) 4135 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW); 4136 4137 vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, 4138 !to_vmx(vcpu)->spec_ctrl); 4139 4140 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 4141 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 4142 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)); 4143 4144 if (cpu_feature_enabled(X86_FEATURE_IBPB)) 4145 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 4146 !guest_has_pred_cmd_msr(vcpu)); 4147 4148 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D)) 4149 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 4150 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4151 4152 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) { 4153 intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK); 4154 4155 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, intercept); 4156 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, intercept); 4157 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, intercept); 4158 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, intercept); 4159 } 4160 4161 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK) || kvm_cpu_cap_has(X86_FEATURE_IBT)) { 4162 intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) && 4163 !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK); 4164 4165 vmx_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, intercept); 4166 vmx_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, intercept); 4167 } 4168 4169 /* 4170 * x2APIC and LBR MSR intercepts are modified on-demand and cannot be 4171 * filtered by userspace. 4172 */ 4173 } 4174 4175 void vmx_recalc_intercepts(struct kvm_vcpu *vcpu) 4176 { 4177 vmx_recalc_msr_intercepts(vcpu); 4178 } 4179 4180 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4181 int vector) 4182 { 4183 struct vcpu_vmx *vmx = to_vmx(vcpu); 4184 4185 /* 4186 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated 4187 * and freed, and must not be accessed outside of vcpu->mutex. The 4188 * vCPU's cached PI NV is valid if and only if posted interrupts 4189 * enabled in its vmcs12, i.e. checking the vector also checks that 4190 * L1 has enabled posted interrupts for L2. 4191 */ 4192 if (is_guest_mode(vcpu) && 4193 vector == vmx->nested.posted_intr_nv) { 4194 /* 4195 * If a posted intr is not recognized by hardware, 4196 * we will accomplish it in the next vmentry. 4197 */ 4198 vmx->nested.pi_pending = true; 4199 kvm_make_request(KVM_REQ_EVENT, vcpu); 4200 4201 /* 4202 * This pairs with the smp_mb_*() after setting vcpu->mode in 4203 * vcpu_enter_guest() to guarantee the vCPU sees the event 4204 * request if triggering a posted interrupt "fails" because 4205 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4206 * the smb_wmb() in kvm_make_request() only ensures everything 4207 * done before making the request is visible when the request 4208 * is visible, it doesn't ensure ordering between the store to 4209 * vcpu->requests and the load from vcpu->mode. 4210 */ 4211 smp_mb__after_atomic(); 4212 4213 /* the PIR and ON have been set by L1. */ 4214 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4215 return 0; 4216 } 4217 return -1; 4218 } 4219 /* 4220 * Send interrupt to vcpu via posted interrupt way. 4221 * 1. If target vcpu is running(non-root mode), send posted interrupt 4222 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4223 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4224 * interrupt from PIR in next vmentry. 4225 */ 4226 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4227 { 4228 struct vcpu_vt *vt = to_vt(vcpu); 4229 int r; 4230 4231 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4232 if (!r) 4233 return 0; 4234 4235 /* Note, this is called iff the local APIC is in-kernel. */ 4236 if (!vcpu->arch.apic->apicv_active) 4237 return -1; 4238 4239 __vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector); 4240 return 0; 4241 } 4242 4243 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4244 int trig_mode, int vector) 4245 { 4246 struct kvm_vcpu *vcpu = apic->vcpu; 4247 4248 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4249 kvm_lapic_set_irr(vector, apic); 4250 kvm_make_request(KVM_REQ_EVENT, vcpu); 4251 kvm_vcpu_kick(vcpu); 4252 } else { 4253 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4254 trig_mode, vector); 4255 } 4256 } 4257 4258 /* 4259 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4260 * will not change in the lifetime of the guest. 4261 * Note that host-state that does change is set elsewhere. E.g., host-state 4262 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4263 */ 4264 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4265 { 4266 u32 low32, high32; 4267 unsigned long tmpl; 4268 unsigned long cr0, cr3, cr4; 4269 4270 cr0 = read_cr0(); 4271 WARN_ON(cr0 & X86_CR0_TS); 4272 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4273 4274 /* 4275 * Save the most likely value for this task's CR3 in the VMCS. 4276 * We can't use __get_current_cr3_fast() because we're not atomic. 4277 */ 4278 cr3 = __read_cr3(); 4279 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4280 vmx->loaded_vmcs->host_state.cr3 = cr3; 4281 4282 /* Save the most likely value for this task's CR4 in the VMCS. */ 4283 cr4 = cr4_read_shadow(); 4284 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4285 vmx->loaded_vmcs->host_state.cr4 = cr4; 4286 4287 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4288 #ifdef CONFIG_X86_64 4289 /* 4290 * Load null selectors, so we can avoid reloading them in 4291 * vmx_prepare_switch_to_host(), in case userspace uses 4292 * the null selectors too (the expected case). 4293 */ 4294 vmcs_write16(HOST_DS_SELECTOR, 0); 4295 vmcs_write16(HOST_ES_SELECTOR, 0); 4296 #else 4297 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4298 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4299 #endif 4300 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4301 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4302 4303 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4304 4305 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4306 4307 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4308 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4309 4310 /* 4311 * SYSENTER is used for 32-bit system calls on either 32-bit or 4312 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4313 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4314 * have already done so!). 4315 */ 4316 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4317 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4318 4319 rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl); 4320 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4321 4322 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4323 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4324 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4325 } 4326 4327 if (cpu_has_load_ia32_efer()) 4328 vmcs_write64(HOST_IA32_EFER, kvm_host.efer); 4329 4330 /* 4331 * Supervisor shadow stack is not enabled on host side, i.e., 4332 * host IA32_S_CET.SHSTK_EN bit is guaranteed to 0 now, per SDM 4333 * description(RDSSP instruction), SSP is not readable in CPL0, 4334 * so resetting the two registers to 0s at VM-Exit does no harm 4335 * to kernel execution. When execution flow exits to userspace, 4336 * SSP is reloaded from IA32_PL3_SSP. Check SDM Vol.2A/B Chapter 4337 * 3 and 4 for details. 4338 */ 4339 if (cpu_has_load_cet_ctrl()) { 4340 vmcs_writel(HOST_S_CET, kvm_host.s_cet); 4341 vmcs_writel(HOST_SSP, 0); 4342 vmcs_writel(HOST_INTR_SSP_TABLE, 0); 4343 } 4344 } 4345 4346 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4347 { 4348 struct kvm_vcpu *vcpu = &vmx->vcpu; 4349 4350 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4351 ~vcpu->arch.cr4_guest_rsvd_bits; 4352 if (!enable_ept) { 4353 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4354 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4355 } 4356 if (is_guest_mode(&vmx->vcpu)) 4357 vcpu->arch.cr4_guest_owned_bits &= 4358 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4359 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4360 } 4361 4362 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4363 { 4364 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4365 4366 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4367 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4368 4369 if (!enable_vnmi) 4370 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4371 4372 if (!enable_preemption_timer) 4373 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4374 4375 return pin_based_exec_ctrl; 4376 } 4377 4378 static u32 vmx_get_initial_vmentry_ctrl(void) 4379 { 4380 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4381 4382 if (vmx_pt_mode_is_system()) 4383 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4384 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4385 /* 4386 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4387 */ 4388 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4389 VM_ENTRY_LOAD_IA32_EFER | 4390 VM_ENTRY_IA32E_MODE); 4391 4392 return vmentry_ctrl; 4393 } 4394 4395 static u32 vmx_get_initial_vmexit_ctrl(void) 4396 { 4397 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4398 4399 /* 4400 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4401 * nested virtualization and thus allowed to be set in vmcs12. 4402 */ 4403 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4404 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4405 4406 if (vmx_pt_mode_is_system()) 4407 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4408 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4409 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4410 return vmexit_ctrl & 4411 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4412 } 4413 4414 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4415 { 4416 struct vcpu_vmx *vmx = to_vmx(vcpu); 4417 4418 if (is_guest_mode(vcpu)) { 4419 vmx->nested.update_vmcs01_apicv_status = true; 4420 return; 4421 } 4422 4423 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4424 4425 secondary_exec_controls_changebit(vmx, 4426 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4427 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY, 4428 kvm_vcpu_apicv_active(vcpu)); 4429 if (enable_ipiv) 4430 tertiary_exec_controls_changebit(vmx, TERTIARY_EXEC_IPI_VIRT, 4431 kvm_vcpu_apicv_active(vcpu)); 4432 4433 vmx_update_msr_bitmap_x2apic(vcpu); 4434 } 4435 4436 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4437 { 4438 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4439 4440 /* 4441 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4442 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4443 */ 4444 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4445 CPU_BASED_USE_IO_BITMAPS | 4446 CPU_BASED_MONITOR_TRAP_FLAG | 4447 CPU_BASED_PAUSE_EXITING); 4448 4449 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4450 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4451 CPU_BASED_NMI_WINDOW_EXITING); 4452 4453 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4454 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4455 4456 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4457 exec_control &= ~CPU_BASED_TPR_SHADOW; 4458 4459 #ifdef CONFIG_X86_64 4460 if (exec_control & CPU_BASED_TPR_SHADOW) 4461 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4462 CPU_BASED_CR8_STORE_EXITING); 4463 else 4464 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4465 CPU_BASED_CR8_LOAD_EXITING; 4466 #endif 4467 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4468 if (enable_ept) 4469 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4470 CPU_BASED_CR3_STORE_EXITING | 4471 CPU_BASED_INVLPG_EXITING); 4472 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4473 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4474 CPU_BASED_MONITOR_EXITING); 4475 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4476 exec_control &= ~CPU_BASED_HLT_EXITING; 4477 return exec_control; 4478 } 4479 4480 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4481 { 4482 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4483 4484 /* 4485 * IPI virtualization relies on APICv. Disable IPI virtualization if 4486 * APICv is inhibited. 4487 */ 4488 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4489 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4490 4491 return exec_control; 4492 } 4493 4494 /* 4495 * Adjust a single secondary execution control bit to intercept/allow an 4496 * instruction in the guest. This is usually done based on whether or not a 4497 * feature has been exposed to the guest in order to correctly emulate faults. 4498 */ 4499 static inline void 4500 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4501 u32 control, bool enabled, bool exiting) 4502 { 4503 /* 4504 * If the control is for an opt-in feature, clear the control if the 4505 * feature is not exposed to the guest, i.e. not enabled. If the 4506 * control is opt-out, i.e. an exiting control, clear the control if 4507 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4508 * disabled for the associated instruction. Note, the caller is 4509 * responsible presetting exec_control to set all supported bits. 4510 */ 4511 if (enabled == exiting) 4512 *exec_control &= ~control; 4513 4514 /* 4515 * Update the nested MSR settings so that a nested VMM can/can't set 4516 * controls for features that are/aren't exposed to the guest. 4517 */ 4518 if (nested && 4519 kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { 4520 /* 4521 * All features that can be added or removed to VMX MSRs must 4522 * be supported in the first place for nested virtualization. 4523 */ 4524 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4525 enabled = false; 4526 4527 if (enabled) 4528 vmx->nested.msrs.secondary_ctls_high |= control; 4529 else 4530 vmx->nested.msrs.secondary_ctls_high &= ~control; 4531 } 4532 } 4533 4534 /* 4535 * Wrapper macro for the common case of adjusting a secondary execution control 4536 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4537 * verifies that the control is actually supported by KVM and hardware. 4538 */ 4539 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4540 ({ \ 4541 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4542 bool __enabled; \ 4543 \ 4544 if (cpu_has_vmx_##name()) { \ 4545 __enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \ 4546 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4547 __enabled, exiting); \ 4548 } \ 4549 }) 4550 4551 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4552 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4553 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4554 4555 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4556 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4557 4558 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4559 { 4560 struct kvm_vcpu *vcpu = &vmx->vcpu; 4561 4562 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4563 4564 if (vmx_pt_mode_is_system()) 4565 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4566 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4567 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4568 if (vmx->vpid == 0) 4569 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4570 if (!enable_ept) { 4571 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4572 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE; 4573 enable_unrestricted_guest = 0; 4574 } 4575 if (!enable_unrestricted_guest) 4576 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4577 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4578 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4579 if (!kvm_vcpu_apicv_active(vcpu)) 4580 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4581 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4582 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4583 4584 /* 4585 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4586 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4587 */ 4588 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4589 4590 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4591 * in vmx_set_cr4. */ 4592 exec_control &= ~SECONDARY_EXEC_DESC; 4593 4594 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4595 (handle_vmptrld). 4596 We can NOT enable shadow_vmcs here because we don't have yet 4597 a current VMCS12 4598 */ 4599 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4600 4601 /* 4602 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4603 * it needs to be set here when dirty logging is already active, e.g. 4604 * if this vCPU was created after dirty logging was enabled. 4605 */ 4606 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4607 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4608 4609 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4610 4611 /* 4612 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4613 * feature is exposed to the guest. This creates a virtualization hole 4614 * if both are supported in hardware but only one is exposed to the 4615 * guest, but letting the guest execute RDTSCP or RDPID when either one 4616 * is advertised is preferable to emulating the advertised instruction 4617 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4618 */ 4619 if (cpu_has_vmx_rdtscp()) { 4620 bool rdpid_or_rdtscp_enabled = 4621 guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) || 4622 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID); 4623 4624 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4625 SECONDARY_EXEC_ENABLE_RDTSCP, 4626 rdpid_or_rdtscp_enabled, false); 4627 } 4628 4629 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4630 4631 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4632 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4633 4634 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4635 ENABLE_USR_WAIT_PAUSE, false); 4636 4637 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4638 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4639 4640 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4641 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4642 4643 return exec_control; 4644 } 4645 4646 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4647 { 4648 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4649 } 4650 4651 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4652 { 4653 struct page *pages; 4654 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4655 4656 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4657 return 0; 4658 4659 if (kvm_vmx->pid_table) 4660 return 0; 4661 4662 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4663 vmx_get_pid_table_order(kvm)); 4664 if (!pages) 4665 return -ENOMEM; 4666 4667 kvm_vmx->pid_table = (void *)page_address(pages); 4668 return 0; 4669 } 4670 4671 int vmx_vcpu_precreate(struct kvm *kvm) 4672 { 4673 return vmx_alloc_ipiv_pid_table(kvm); 4674 } 4675 4676 #define VMX_XSS_EXIT_BITMAP 0 4677 4678 static void init_vmcs(struct vcpu_vmx *vmx) 4679 { 4680 struct kvm *kvm = vmx->vcpu.kvm; 4681 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4682 4683 if (nested) 4684 nested_vmx_set_vmcs_shadowing_bitmap(); 4685 4686 if (cpu_has_vmx_msr_bitmap()) 4687 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4688 4689 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4690 4691 /* Control */ 4692 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4693 4694 exec_controls_set(vmx, vmx_exec_control(vmx)); 4695 4696 if (cpu_has_secondary_exec_ctrls()) { 4697 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4698 if (vmx->ve_info) 4699 vmcs_write64(VE_INFORMATION_ADDRESS, 4700 __pa(vmx->ve_info)); 4701 } 4702 4703 if (cpu_has_tertiary_exec_ctrls()) 4704 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4705 4706 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4707 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4708 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4709 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4710 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4711 4712 vmcs_write16(GUEST_INTR_STATUS, 0); 4713 4714 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4715 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc))); 4716 } 4717 4718 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4719 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4720 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4721 } 4722 4723 if (!kvm_pause_in_guest(kvm)) { 4724 vmcs_write32(PLE_GAP, ple_gap); 4725 vmx->ple_window = ple_window; 4726 vmx->ple_window_dirty = true; 4727 } 4728 4729 if (kvm_notify_vmexit_enabled(kvm)) 4730 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4731 4732 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4733 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4734 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4735 4736 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4737 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4738 vmx_set_constant_host_state(vmx); 4739 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4740 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4741 4742 if (cpu_has_vmx_vmfunc()) 4743 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4744 4745 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4746 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4747 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4748 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4749 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4750 4751 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4752 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4753 4754 vm_exit_controls_set(vmx, vmx_get_initial_vmexit_ctrl()); 4755 4756 /* 22.2.1, 20.8.1 */ 4757 vm_entry_controls_set(vmx, vmx_get_initial_vmentry_ctrl()); 4758 4759 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4760 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4761 4762 set_cr4_guest_host_mask(vmx); 4763 4764 if (vmx->vpid != 0) 4765 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4766 4767 if (cpu_has_vmx_xsaves()) 4768 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4769 4770 if (enable_pml) { 4771 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4772 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX); 4773 } 4774 4775 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4776 4777 if (vmx_pt_mode_is_host_guest()) { 4778 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4779 /* Bit[6~0] are forced to 1, writes are ignored. */ 4780 vmx->pt_desc.guest.output_mask = 0x7F; 4781 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4782 } 4783 4784 vmcs_write32(GUEST_SYSENTER_CS, 0); 4785 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4786 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4787 4788 vmx_guest_debugctl_write(&vmx->vcpu, 0); 4789 4790 if (cpu_has_vmx_tpr_shadow()) { 4791 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4792 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4793 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4794 __pa(vmx->vcpu.arch.apic->regs)); 4795 vmcs_write32(TPR_THRESHOLD, 0); 4796 } 4797 4798 vmx_setup_uret_msrs(vmx); 4799 } 4800 4801 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4802 { 4803 struct vcpu_vmx *vmx = to_vmx(vcpu); 4804 4805 init_vmcs(vmx); 4806 4807 if (nested && 4808 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 4809 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4810 4811 vcpu_setup_sgx_lepubkeyhash(vcpu); 4812 4813 vmx->nested.posted_intr_nv = -1; 4814 vmx->nested.vmxon_ptr = INVALID_GPA; 4815 vmx->nested.current_vmptr = INVALID_GPA; 4816 4817 #ifdef CONFIG_KVM_HYPERV 4818 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4819 #endif 4820 4821 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 4822 vcpu->arch.microcode_version = 0x100000000ULL; 4823 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4824 4825 /* 4826 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4827 * or POSTED_INTR_WAKEUP_VECTOR. 4828 */ 4829 vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR; 4830 __pi_set_sn(&vmx->vt.pi_desc); 4831 } 4832 4833 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4834 { 4835 struct vcpu_vmx *vmx = to_vmx(vcpu); 4836 4837 if (!init_event) 4838 __vmx_vcpu_reset(vcpu); 4839 4840 vmx->rmode.vm86_active = 0; 4841 vmx->spec_ctrl = 0; 4842 4843 vmx->msr_ia32_umwait_control = 0; 4844 4845 vmx->hv_deadline_tsc = -1; 4846 kvm_set_cr8(vcpu, 0); 4847 4848 seg_setup(VCPU_SREG_CS); 4849 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4850 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4851 4852 seg_setup(VCPU_SREG_DS); 4853 seg_setup(VCPU_SREG_ES); 4854 seg_setup(VCPU_SREG_FS); 4855 seg_setup(VCPU_SREG_GS); 4856 seg_setup(VCPU_SREG_SS); 4857 4858 vmcs_write16(GUEST_TR_SELECTOR, 0); 4859 vmcs_writel(GUEST_TR_BASE, 0); 4860 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4861 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4862 4863 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4864 vmcs_writel(GUEST_LDTR_BASE, 0); 4865 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4866 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4867 4868 vmcs_writel(GUEST_GDTR_BASE, 0); 4869 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4870 4871 vmcs_writel(GUEST_IDTR_BASE, 0); 4872 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4873 4874 vmx_segment_cache_clear(vmx); 4875 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4876 4877 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4878 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4879 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4880 if (kvm_mpx_supported()) 4881 vmcs_write64(GUEST_BNDCFGS, 0); 4882 4883 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4884 4885 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) { 4886 vmcs_writel(GUEST_SSP, 0); 4887 vmcs_writel(GUEST_INTR_SSP_TABLE, 0); 4888 } 4889 if (kvm_cpu_cap_has(X86_FEATURE_IBT) || 4890 kvm_cpu_cap_has(X86_FEATURE_SHSTK)) 4891 vmcs_writel(GUEST_S_CET, 0); 4892 4893 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4894 4895 vpid_sync_context(vmx->vpid); 4896 4897 vmx_update_fb_clear_dis(vcpu, vmx); 4898 } 4899 4900 void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4901 { 4902 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4903 } 4904 4905 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4906 { 4907 if (!enable_vnmi || 4908 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4909 vmx_enable_irq_window(vcpu); 4910 return; 4911 } 4912 4913 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4914 } 4915 4916 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4917 { 4918 struct vcpu_vmx *vmx = to_vmx(vcpu); 4919 uint32_t intr; 4920 int irq = vcpu->arch.interrupt.nr; 4921 4922 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4923 4924 ++vcpu->stat.irq_injections; 4925 if (vmx->rmode.vm86_active) { 4926 int inc_eip = 0; 4927 if (vcpu->arch.interrupt.soft) 4928 inc_eip = vcpu->arch.event_exit_inst_len; 4929 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4930 return; 4931 } 4932 intr = irq | INTR_INFO_VALID_MASK; 4933 if (vcpu->arch.interrupt.soft) { 4934 intr |= INTR_TYPE_SOFT_INTR; 4935 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4936 vmx->vcpu.arch.event_exit_inst_len); 4937 } else 4938 intr |= INTR_TYPE_EXT_INTR; 4939 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4940 4941 vmx_clear_hlt(vcpu); 4942 } 4943 4944 void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4945 { 4946 struct vcpu_vmx *vmx = to_vmx(vcpu); 4947 4948 if (!enable_vnmi) { 4949 /* 4950 * Tracking the NMI-blocked state in software is built upon 4951 * finding the next open IRQ window. This, in turn, depends on 4952 * well-behaving guests: They have to keep IRQs disabled at 4953 * least as long as the NMI handler runs. Otherwise we may 4954 * cause NMI nesting, maybe breaking the guest. But as this is 4955 * highly unlikely, we can live with the residual risk. 4956 */ 4957 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4958 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4959 } 4960 4961 ++vcpu->stat.nmi_injections; 4962 vmx->loaded_vmcs->nmi_known_unmasked = false; 4963 4964 if (vmx->rmode.vm86_active) { 4965 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4966 return; 4967 } 4968 4969 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4970 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4971 4972 vmx_clear_hlt(vcpu); 4973 } 4974 4975 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4976 { 4977 struct vcpu_vmx *vmx = to_vmx(vcpu); 4978 bool masked; 4979 4980 if (!enable_vnmi) 4981 return vmx->loaded_vmcs->soft_vnmi_blocked; 4982 if (vmx->loaded_vmcs->nmi_known_unmasked) 4983 return false; 4984 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4985 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4986 return masked; 4987 } 4988 4989 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4990 { 4991 struct vcpu_vmx *vmx = to_vmx(vcpu); 4992 4993 if (!enable_vnmi) { 4994 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4995 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4996 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4997 } 4998 } else { 4999 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5000 if (masked) 5001 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5002 GUEST_INTR_STATE_NMI); 5003 else 5004 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5005 GUEST_INTR_STATE_NMI); 5006 } 5007 } 5008 5009 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5010 { 5011 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5012 return false; 5013 5014 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5015 return true; 5016 5017 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5018 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5019 GUEST_INTR_STATE_NMI)); 5020 } 5021 5022 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5023 { 5024 if (to_vmx(vcpu)->nested.nested_run_pending) 5025 return -EBUSY; 5026 5027 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5028 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5029 return -EBUSY; 5030 5031 return !vmx_nmi_blocked(vcpu); 5032 } 5033 5034 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5035 { 5036 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5037 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5038 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5039 } 5040 5041 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5042 { 5043 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5044 return false; 5045 5046 return __vmx_interrupt_blocked(vcpu); 5047 } 5048 5049 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5050 { 5051 if (to_vmx(vcpu)->nested.nested_run_pending) 5052 return -EBUSY; 5053 5054 /* 5055 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5056 * e.g. if the IRQ arrived asynchronously after checking nested events. 5057 */ 5058 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5059 return -EBUSY; 5060 5061 return !vmx_interrupt_blocked(vcpu); 5062 } 5063 5064 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5065 { 5066 void __user *ret; 5067 5068 if (enable_unrestricted_guest) 5069 return 0; 5070 5071 mutex_lock(&kvm->slots_lock); 5072 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5073 PAGE_SIZE * 3); 5074 mutex_unlock(&kvm->slots_lock); 5075 5076 if (IS_ERR(ret)) 5077 return PTR_ERR(ret); 5078 5079 to_kvm_vmx(kvm)->tss_addr = addr; 5080 5081 return init_rmode_tss(kvm, ret); 5082 } 5083 5084 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5085 { 5086 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5087 return 0; 5088 } 5089 5090 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5091 { 5092 switch (vec) { 5093 case BP_VECTOR: 5094 /* 5095 * Update instruction length as we may reinject the exception 5096 * from user space while in guest debugging mode. 5097 */ 5098 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5099 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5100 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5101 return false; 5102 fallthrough; 5103 case DB_VECTOR: 5104 return !(vcpu->guest_debug & 5105 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5106 case DE_VECTOR: 5107 case OF_VECTOR: 5108 case BR_VECTOR: 5109 case UD_VECTOR: 5110 case DF_VECTOR: 5111 case SS_VECTOR: 5112 case GP_VECTOR: 5113 case MF_VECTOR: 5114 return true; 5115 } 5116 return false; 5117 } 5118 5119 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5120 int vec, u32 err_code) 5121 { 5122 /* 5123 * Instruction with address size override prefix opcode 0x67 5124 * Cause the #SS fault with 0 error code in VM86 mode. 5125 */ 5126 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5127 if (kvm_emulate_instruction(vcpu, 0)) { 5128 if (vcpu->arch.halt_request) { 5129 vcpu->arch.halt_request = 0; 5130 return kvm_emulate_halt_noskip(vcpu); 5131 } 5132 return 1; 5133 } 5134 return 0; 5135 } 5136 5137 /* 5138 * Forward all other exceptions that are valid in real mode. 5139 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5140 * the required debugging infrastructure rework. 5141 */ 5142 kvm_queue_exception(vcpu, vec); 5143 return 1; 5144 } 5145 5146 static int handle_machine_check(struct kvm_vcpu *vcpu) 5147 { 5148 /* handled by vmx_vcpu_run() */ 5149 return 1; 5150 } 5151 5152 /* 5153 * If the host has split lock detection disabled, then #AC is 5154 * unconditionally injected into the guest, which is the pre split lock 5155 * detection behaviour. 5156 * 5157 * If the host has split lock detection enabled then #AC is 5158 * only injected into the guest when: 5159 * - Guest CPL == 3 (user mode) 5160 * - Guest has #AC detection enabled in CR0 5161 * - Guest EFLAGS has AC bit set 5162 */ 5163 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5164 { 5165 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5166 return true; 5167 5168 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5169 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5170 } 5171 5172 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu) 5173 { 5174 return vcpu->arch.guest_fpu.fpstate->xfd && 5175 !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS); 5176 } 5177 5178 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5179 { 5180 struct vcpu_vmx *vmx = to_vmx(vcpu); 5181 struct kvm_run *kvm_run = vcpu->run; 5182 u32 intr_info, ex_no, error_code; 5183 unsigned long cr2, dr6; 5184 u32 vect_info; 5185 5186 vect_info = vmx->idt_vectoring_info; 5187 intr_info = vmx_get_intr_info(vcpu); 5188 5189 /* 5190 * Machine checks are handled by handle_exception_irqoff(), or by 5191 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5192 * vmx_vcpu_enter_exit(). 5193 */ 5194 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5195 return 1; 5196 5197 /* 5198 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5199 * This ensures the nested_vmx check is not skipped so vmexit can 5200 * be reflected to L1 (when it intercepts #NM) before reaching this 5201 * point. 5202 */ 5203 if (is_nm_fault(intr_info)) { 5204 kvm_queue_exception_p(vcpu, NM_VECTOR, 5205 is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0); 5206 return 1; 5207 } 5208 5209 if (is_invalid_opcode(intr_info)) 5210 return handle_ud(vcpu); 5211 5212 if (WARN_ON_ONCE(is_ve_fault(intr_info))) { 5213 struct vmx_ve_information *ve_info = vmx->ve_info; 5214 5215 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION, 5216 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason); 5217 dump_vmcs(vcpu); 5218 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE"); 5219 return 1; 5220 } 5221 5222 error_code = 0; 5223 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5224 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5225 5226 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5227 WARN_ON_ONCE(!enable_vmware_backdoor); 5228 5229 /* 5230 * VMware backdoor emulation on #GP interception only handles 5231 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5232 * error code on #GP. 5233 */ 5234 if (error_code) { 5235 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5236 return 1; 5237 } 5238 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5239 } 5240 5241 /* 5242 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5243 * MMIO, it is better to report an internal error. 5244 * See the comments in vmx_handle_exit. 5245 */ 5246 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5247 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5248 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5249 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5250 vcpu->run->internal.ndata = 4; 5251 vcpu->run->internal.data[0] = vect_info; 5252 vcpu->run->internal.data[1] = intr_info; 5253 vcpu->run->internal.data[2] = error_code; 5254 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5255 return 0; 5256 } 5257 5258 if (is_page_fault(intr_info)) { 5259 cr2 = vmx_get_exit_qual(vcpu); 5260 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5261 /* 5262 * EPT will cause page fault only if we need to 5263 * detect illegal GPAs. 5264 */ 5265 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5266 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5267 return 1; 5268 } else 5269 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5270 } 5271 5272 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5273 5274 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5275 return handle_rmode_exception(vcpu, ex_no, error_code); 5276 5277 switch (ex_no) { 5278 case DB_VECTOR: 5279 dr6 = vmx_get_exit_qual(vcpu); 5280 if (!(vcpu->guest_debug & 5281 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5282 /* 5283 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5284 * instruction. ICEBP generates a trap-like #DB, but 5285 * despite its interception control being tied to #DB, 5286 * is an instruction intercept, i.e. the VM-Exit occurs 5287 * on the ICEBP itself. Use the inner "skip" helper to 5288 * avoid single-step #DB and MTF updates, as ICEBP is 5289 * higher priority. Note, skipping ICEBP still clears 5290 * STI and MOVSS blocking. 5291 * 5292 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5293 * if single-step is enabled in RFLAGS and STI or MOVSS 5294 * blocking is active, as the CPU doesn't set the bit 5295 * on VM-Exit due to #DB interception. VM-Entry has a 5296 * consistency check that a single-step #DB is pending 5297 * in this scenario as the previous instruction cannot 5298 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5299 * don't modify RFLAGS), therefore the one instruction 5300 * delay when activating single-step breakpoints must 5301 * have already expired. Note, the CPU sets/clears BS 5302 * as appropriate for all other VM-Exits types. 5303 */ 5304 if (is_icebp(intr_info)) 5305 WARN_ON(!skip_emulated_instruction(vcpu)); 5306 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5307 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5308 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5309 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5310 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5311 5312 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5313 return 1; 5314 } 5315 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5316 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5317 fallthrough; 5318 case BP_VECTOR: 5319 /* 5320 * Update instruction length as we may reinject #BP from 5321 * user space while in guest debugging mode. Reading it for 5322 * #DB as well causes no harm, it is not used in that case. 5323 */ 5324 vmx->vcpu.arch.event_exit_inst_len = 5325 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5326 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5327 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5328 kvm_run->debug.arch.exception = ex_no; 5329 break; 5330 case AC_VECTOR: 5331 if (vmx_guest_inject_ac(vcpu)) { 5332 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5333 return 1; 5334 } 5335 5336 /* 5337 * Handle split lock. Depending on detection mode this will 5338 * either warn and disable split lock detection for this 5339 * task or force SIGBUS on it. 5340 */ 5341 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5342 return 1; 5343 fallthrough; 5344 default: 5345 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5346 kvm_run->ex.exception = ex_no; 5347 kvm_run->ex.error_code = error_code; 5348 break; 5349 } 5350 return 0; 5351 } 5352 5353 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5354 { 5355 ++vcpu->stat.irq_exits; 5356 return 1; 5357 } 5358 5359 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5360 { 5361 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5362 vcpu->mmio_needed = 0; 5363 return 0; 5364 } 5365 5366 static int handle_io(struct kvm_vcpu *vcpu) 5367 { 5368 unsigned long exit_qualification; 5369 int size, in, string; 5370 unsigned port; 5371 5372 exit_qualification = vmx_get_exit_qual(vcpu); 5373 string = (exit_qualification & 16) != 0; 5374 5375 ++vcpu->stat.io_exits; 5376 5377 if (string) 5378 return kvm_emulate_instruction(vcpu, 0); 5379 5380 port = exit_qualification >> 16; 5381 size = (exit_qualification & 7) + 1; 5382 in = (exit_qualification & 8) != 0; 5383 5384 return kvm_fast_pio(vcpu, size, port, in); 5385 } 5386 5387 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5388 { 5389 /* 5390 * Patch in the VMCALL instruction: 5391 */ 5392 hypercall[0] = 0x0f; 5393 hypercall[1] = 0x01; 5394 hypercall[2] = 0xc1; 5395 } 5396 5397 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5398 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5399 { 5400 if (is_guest_mode(vcpu)) { 5401 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5402 unsigned long orig_val = val; 5403 5404 /* 5405 * We get here when L2 changed cr0 in a way that did not change 5406 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5407 * but did change L0 shadowed bits. So we first calculate the 5408 * effective cr0 value that L1 would like to write into the 5409 * hardware. It consists of the L2-owned bits from the new 5410 * value combined with the L1-owned bits from L1's guest_cr0. 5411 */ 5412 val = (val & ~vmcs12->cr0_guest_host_mask) | 5413 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5414 5415 if (kvm_set_cr0(vcpu, val)) 5416 return 1; 5417 vmcs_writel(CR0_READ_SHADOW, orig_val); 5418 return 0; 5419 } else { 5420 return kvm_set_cr0(vcpu, val); 5421 } 5422 } 5423 5424 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5425 { 5426 if (is_guest_mode(vcpu)) { 5427 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5428 unsigned long orig_val = val; 5429 5430 /* analogously to handle_set_cr0 */ 5431 val = (val & ~vmcs12->cr4_guest_host_mask) | 5432 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5433 if (kvm_set_cr4(vcpu, val)) 5434 return 1; 5435 vmcs_writel(CR4_READ_SHADOW, orig_val); 5436 return 0; 5437 } else 5438 return kvm_set_cr4(vcpu, val); 5439 } 5440 5441 static int handle_desc(struct kvm_vcpu *vcpu) 5442 { 5443 /* 5444 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5445 * and other code needs to be updated if UMIP can be guest owned. 5446 */ 5447 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5448 5449 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5450 return kvm_emulate_instruction(vcpu, 0); 5451 } 5452 5453 static int handle_cr(struct kvm_vcpu *vcpu) 5454 { 5455 unsigned long exit_qualification, val; 5456 int cr; 5457 int reg; 5458 int err; 5459 int ret; 5460 5461 exit_qualification = vmx_get_exit_qual(vcpu); 5462 cr = exit_qualification & 15; 5463 reg = (exit_qualification >> 8) & 15; 5464 switch ((exit_qualification >> 4) & 3) { 5465 case 0: /* mov to cr */ 5466 val = kvm_register_read(vcpu, reg); 5467 trace_kvm_cr_write(cr, val); 5468 switch (cr) { 5469 case 0: 5470 err = handle_set_cr0(vcpu, val); 5471 return kvm_complete_insn_gp(vcpu, err); 5472 case 3: 5473 WARN_ON_ONCE(enable_unrestricted_guest); 5474 5475 err = kvm_set_cr3(vcpu, val); 5476 return kvm_complete_insn_gp(vcpu, err); 5477 case 4: 5478 err = handle_set_cr4(vcpu, val); 5479 return kvm_complete_insn_gp(vcpu, err); 5480 case 8: { 5481 u8 cr8_prev = kvm_get_cr8(vcpu); 5482 u8 cr8 = (u8)val; 5483 err = kvm_set_cr8(vcpu, cr8); 5484 ret = kvm_complete_insn_gp(vcpu, err); 5485 if (lapic_in_kernel(vcpu)) 5486 return ret; 5487 if (cr8_prev <= cr8) 5488 return ret; 5489 /* 5490 * TODO: we might be squashing a 5491 * KVM_GUESTDBG_SINGLESTEP-triggered 5492 * KVM_EXIT_DEBUG here. 5493 */ 5494 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5495 return 0; 5496 } 5497 } 5498 break; 5499 case 2: /* clts */ 5500 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5501 return -EIO; 5502 case 1: /*mov from cr*/ 5503 switch (cr) { 5504 case 3: 5505 WARN_ON_ONCE(enable_unrestricted_guest); 5506 5507 val = kvm_read_cr3(vcpu); 5508 kvm_register_write(vcpu, reg, val); 5509 trace_kvm_cr_read(cr, val); 5510 return kvm_skip_emulated_instruction(vcpu); 5511 case 8: 5512 val = kvm_get_cr8(vcpu); 5513 kvm_register_write(vcpu, reg, val); 5514 trace_kvm_cr_read(cr, val); 5515 return kvm_skip_emulated_instruction(vcpu); 5516 } 5517 break; 5518 case 3: /* lmsw */ 5519 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5520 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5521 kvm_lmsw(vcpu, val); 5522 5523 return kvm_skip_emulated_instruction(vcpu); 5524 default: 5525 break; 5526 } 5527 vcpu->run->exit_reason = 0; 5528 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5529 (int)(exit_qualification >> 4) & 3, cr); 5530 return 0; 5531 } 5532 5533 static int handle_dr(struct kvm_vcpu *vcpu) 5534 { 5535 unsigned long exit_qualification; 5536 int dr, dr7, reg; 5537 int err = 1; 5538 5539 exit_qualification = vmx_get_exit_qual(vcpu); 5540 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5541 5542 /* First, if DR does not exist, trigger UD */ 5543 if (!kvm_require_dr(vcpu, dr)) 5544 return 1; 5545 5546 if (vmx_get_cpl(vcpu) > 0) 5547 goto out; 5548 5549 dr7 = vmcs_readl(GUEST_DR7); 5550 if (dr7 & DR7_GD) { 5551 /* 5552 * As the vm-exit takes precedence over the debug trap, we 5553 * need to emulate the latter, either for the host or the 5554 * guest debugging itself. 5555 */ 5556 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5557 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5558 vcpu->run->debug.arch.dr7 = dr7; 5559 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5560 vcpu->run->debug.arch.exception = DB_VECTOR; 5561 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5562 return 0; 5563 } else { 5564 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5565 return 1; 5566 } 5567 } 5568 5569 if (vcpu->guest_debug == 0) { 5570 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5571 5572 /* 5573 * No more DR vmexits; force a reload of the debug registers 5574 * and reenter on this instruction. The next vmexit will 5575 * retrieve the full state of the debug registers. 5576 */ 5577 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5578 return 1; 5579 } 5580 5581 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5582 if (exit_qualification & TYPE_MOV_FROM_DR) { 5583 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 5584 err = 0; 5585 } else { 5586 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5587 } 5588 5589 out: 5590 return kvm_complete_insn_gp(vcpu, err); 5591 } 5592 5593 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5594 { 5595 get_debugreg(vcpu->arch.db[0], 0); 5596 get_debugreg(vcpu->arch.db[1], 1); 5597 get_debugreg(vcpu->arch.db[2], 2); 5598 get_debugreg(vcpu->arch.db[3], 3); 5599 get_debugreg(vcpu->arch.dr6, 6); 5600 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5601 5602 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5603 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5604 5605 /* 5606 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5607 * a stale dr6 from the guest. 5608 */ 5609 set_debugreg(DR6_RESERVED, 6); 5610 } 5611 5612 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5613 { 5614 vmcs_writel(GUEST_DR7, val); 5615 } 5616 5617 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5618 { 5619 kvm_apic_update_ppr(vcpu); 5620 return 1; 5621 } 5622 5623 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5624 { 5625 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5626 5627 kvm_make_request(KVM_REQ_EVENT, vcpu); 5628 5629 ++vcpu->stat.irq_window_exits; 5630 return 1; 5631 } 5632 5633 static int handle_invlpg(struct kvm_vcpu *vcpu) 5634 { 5635 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5636 5637 kvm_mmu_invlpg(vcpu, exit_qualification); 5638 return kvm_skip_emulated_instruction(vcpu); 5639 } 5640 5641 static int handle_apic_access(struct kvm_vcpu *vcpu) 5642 { 5643 if (likely(fasteoi)) { 5644 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5645 int access_type, offset; 5646 5647 access_type = exit_qualification & APIC_ACCESS_TYPE; 5648 offset = exit_qualification & APIC_ACCESS_OFFSET; 5649 /* 5650 * Sane guest uses MOV to write EOI, with written value 5651 * not cared. So make a short-circuit here by avoiding 5652 * heavy instruction emulation. 5653 */ 5654 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5655 (offset == APIC_EOI)) { 5656 kvm_lapic_set_eoi(vcpu); 5657 return kvm_skip_emulated_instruction(vcpu); 5658 } 5659 } 5660 return kvm_emulate_instruction(vcpu, 0); 5661 } 5662 5663 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5664 { 5665 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5666 int vector = exit_qualification & 0xff; 5667 5668 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5669 kvm_apic_set_eoi_accelerated(vcpu, vector); 5670 return 1; 5671 } 5672 5673 static int handle_apic_write(struct kvm_vcpu *vcpu) 5674 { 5675 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5676 5677 /* 5678 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5679 * hardware has done any necessary aliasing, offset adjustments, etc... 5680 * for the access. I.e. the correct value has already been written to 5681 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5682 * retrieve the register value and emulate the access. 5683 */ 5684 u32 offset = exit_qualification & 0xff0; 5685 5686 kvm_apic_write_nodecode(vcpu, offset); 5687 return 1; 5688 } 5689 5690 static int handle_task_switch(struct kvm_vcpu *vcpu) 5691 { 5692 struct vcpu_vmx *vmx = to_vmx(vcpu); 5693 unsigned long exit_qualification; 5694 bool has_error_code = false; 5695 u32 error_code = 0; 5696 u16 tss_selector; 5697 int reason, type, idt_v, idt_index; 5698 5699 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5700 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5701 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5702 5703 exit_qualification = vmx_get_exit_qual(vcpu); 5704 5705 reason = (u32)exit_qualification >> 30; 5706 if (reason == TASK_SWITCH_GATE && idt_v) { 5707 switch (type) { 5708 case INTR_TYPE_NMI_INTR: 5709 vcpu->arch.nmi_injected = false; 5710 vmx_set_nmi_mask(vcpu, true); 5711 break; 5712 case INTR_TYPE_EXT_INTR: 5713 case INTR_TYPE_SOFT_INTR: 5714 kvm_clear_interrupt_queue(vcpu); 5715 break; 5716 case INTR_TYPE_HARD_EXCEPTION: 5717 if (vmx->idt_vectoring_info & 5718 VECTORING_INFO_DELIVER_CODE_MASK) { 5719 has_error_code = true; 5720 error_code = 5721 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5722 } 5723 fallthrough; 5724 case INTR_TYPE_SOFT_EXCEPTION: 5725 kvm_clear_exception_queue(vcpu); 5726 break; 5727 default: 5728 break; 5729 } 5730 } 5731 tss_selector = exit_qualification; 5732 5733 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5734 type != INTR_TYPE_EXT_INTR && 5735 type != INTR_TYPE_NMI_INTR)) 5736 WARN_ON(!skip_emulated_instruction(vcpu)); 5737 5738 /* 5739 * TODO: What about debug traps on tss switch? 5740 * Are we supposed to inject them and update dr6? 5741 */ 5742 return kvm_task_switch(vcpu, tss_selector, 5743 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5744 reason, has_error_code, error_code); 5745 } 5746 5747 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5748 { 5749 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5750 gpa_t gpa; 5751 5752 /* 5753 * EPT violation happened while executing iret from NMI, 5754 * "blocked by NMI" bit has to be set before next VM entry. 5755 * There are errata that may cause this bit to not be set: 5756 * AAK134, BY25. 5757 */ 5758 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5759 enable_vnmi && 5760 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5761 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5762 5763 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5764 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5765 5766 /* 5767 * Check that the GPA doesn't exceed physical memory limits, as that is 5768 * a guest page fault. We have to emulate the instruction here, because 5769 * if the illegal address is that of a paging structure, then 5770 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5771 * would also use advanced VM-exit information for EPT violations to 5772 * reconstruct the page fault error code. 5773 */ 5774 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa))) 5775 return kvm_emulate_instruction(vcpu, 0); 5776 5777 return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification); 5778 } 5779 5780 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5781 { 5782 gpa_t gpa; 5783 5784 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5785 return 1; 5786 5787 /* 5788 * A nested guest cannot optimize MMIO vmexits, because we have an 5789 * nGPA here instead of the required GPA. 5790 */ 5791 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5792 if (!is_guest_mode(vcpu) && 5793 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5794 trace_kvm_fast_mmio(gpa); 5795 return kvm_skip_emulated_instruction(vcpu); 5796 } 5797 5798 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5799 } 5800 5801 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5802 { 5803 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5804 return -EIO; 5805 5806 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5807 ++vcpu->stat.nmi_window_exits; 5808 kvm_make_request(KVM_REQ_EVENT, vcpu); 5809 5810 return 1; 5811 } 5812 5813 /* 5814 * Returns true if emulation is required (due to the vCPU having invalid state 5815 * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the 5816 * current vCPU state. 5817 */ 5818 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu) 5819 { 5820 struct vcpu_vmx *vmx = to_vmx(vcpu); 5821 5822 if (!vmx->vt.emulation_required) 5823 return false; 5824 5825 /* 5826 * It is architecturally impossible for emulation to be required when a 5827 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if 5828 * guest state is invalid and unrestricted guest is disabled, i.e. KVM 5829 * should synthesize VM-Fail instead emulation L2 code. This path is 5830 * only reachable if userspace modifies L2 guest state after KVM has 5831 * performed the nested VM-Enter consistency checks. 5832 */ 5833 if (vmx->nested.nested_run_pending) 5834 return true; 5835 5836 /* 5837 * KVM only supports emulating exceptions if the vCPU is in Real Mode. 5838 * If emulation is required, KVM can't perform a successful VM-Enter to 5839 * inject the exception. 5840 */ 5841 return !vmx->rmode.vm86_active && 5842 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5843 } 5844 5845 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5846 { 5847 struct vcpu_vmx *vmx = to_vmx(vcpu); 5848 bool intr_window_requested; 5849 unsigned count = 130; 5850 5851 intr_window_requested = exec_controls_get(vmx) & 5852 CPU_BASED_INTR_WINDOW_EXITING; 5853 5854 while (vmx->vt.emulation_required && count-- != 0) { 5855 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5856 return handle_interrupt_window(&vmx->vcpu); 5857 5858 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5859 return 1; 5860 5861 /* 5862 * Ensure that any updates to kvm->buses[] observed by the 5863 * previous instruction (emulated or otherwise) are also 5864 * visible to the instruction KVM is about to emulate. 5865 */ 5866 smp_rmb(); 5867 5868 if (!kvm_emulate_instruction(vcpu, 0)) 5869 return 0; 5870 5871 if (vmx_unhandleable_emulation_required(vcpu)) { 5872 kvm_prepare_emulation_failure_exit(vcpu); 5873 return 0; 5874 } 5875 5876 if (vcpu->arch.halt_request) { 5877 vcpu->arch.halt_request = 0; 5878 return kvm_emulate_halt_noskip(vcpu); 5879 } 5880 5881 /* 5882 * Note, return 1 and not 0, vcpu_run() will invoke 5883 * xfer_to_guest_mode() which will create a proper return 5884 * code. 5885 */ 5886 if (__xfer_to_guest_mode_work_pending()) 5887 return 1; 5888 } 5889 5890 return 1; 5891 } 5892 5893 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5894 { 5895 if (vmx_unhandleable_emulation_required(vcpu)) { 5896 kvm_prepare_emulation_failure_exit(vcpu); 5897 return 0; 5898 } 5899 5900 return 1; 5901 } 5902 5903 /* 5904 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5905 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5906 */ 5907 static int handle_pause(struct kvm_vcpu *vcpu) 5908 { 5909 if (!kvm_pause_in_guest(vcpu->kvm)) 5910 grow_ple_window(vcpu); 5911 5912 /* 5913 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5914 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5915 * never set PAUSE_EXITING and just set PLE if supported, 5916 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5917 */ 5918 kvm_vcpu_on_spin(vcpu, true); 5919 return kvm_skip_emulated_instruction(vcpu); 5920 } 5921 5922 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5923 { 5924 return 1; 5925 } 5926 5927 static int handle_invpcid(struct kvm_vcpu *vcpu) 5928 { 5929 u32 vmx_instruction_info; 5930 unsigned long type; 5931 gva_t gva; 5932 struct { 5933 u64 pcid; 5934 u64 gla; 5935 } operand; 5936 int gpr_index; 5937 5938 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 5939 kvm_queue_exception(vcpu, UD_VECTOR); 5940 return 1; 5941 } 5942 5943 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5944 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5945 type = kvm_register_read(vcpu, gpr_index); 5946 5947 /* According to the Intel instruction reference, the memory operand 5948 * is read even if it isn't needed (e.g., for type==all) 5949 */ 5950 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5951 vmx_instruction_info, false, 5952 sizeof(operand), &gva)) 5953 return 1; 5954 5955 return kvm_handle_invpcid(vcpu, type, gva); 5956 } 5957 5958 static int handle_pml_full(struct kvm_vcpu *vcpu) 5959 { 5960 unsigned long exit_qualification; 5961 5962 trace_kvm_pml_full(vcpu->vcpu_id); 5963 5964 exit_qualification = vmx_get_exit_qual(vcpu); 5965 5966 /* 5967 * PML buffer FULL happened while executing iret from NMI, 5968 * "blocked by NMI" bit has to be set before next VM entry. 5969 */ 5970 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5971 enable_vnmi && 5972 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5973 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5974 GUEST_INTR_STATE_NMI); 5975 5976 /* 5977 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5978 * here.., and there's no userspace involvement needed for PML. 5979 */ 5980 return 1; 5981 } 5982 5983 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu, 5984 bool force_immediate_exit) 5985 { 5986 struct vcpu_vmx *vmx = to_vmx(vcpu); 5987 5988 /* 5989 * In the *extremely* unlikely scenario that this is a spurious VM-Exit 5990 * due to the timer expiring while it was "soft" disabled, just eat the 5991 * exit and re-enter the guest. 5992 */ 5993 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) 5994 return EXIT_FASTPATH_REENTER_GUEST; 5995 5996 /* 5997 * If the timer expired because KVM used it to force an immediate exit, 5998 * then mission accomplished. 5999 */ 6000 if (force_immediate_exit) 6001 return EXIT_FASTPATH_EXIT_HANDLED; 6002 6003 /* 6004 * If L2 is active, go down the slow path as emulating the guest timer 6005 * expiration likely requires synthesizing a nested VM-Exit. 6006 */ 6007 if (is_guest_mode(vcpu)) 6008 return EXIT_FASTPATH_NONE; 6009 6010 kvm_lapic_expired_hv_timer(vcpu); 6011 return EXIT_FASTPATH_REENTER_GUEST; 6012 } 6013 6014 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6015 { 6016 /* 6017 * This non-fastpath handler is reached if and only if the preemption 6018 * timer was being used to emulate a guest timer while L2 is active. 6019 * All other scenarios are supposed to be handled in the fastpath. 6020 */ 6021 WARN_ON_ONCE(!is_guest_mode(vcpu)); 6022 kvm_lapic_expired_hv_timer(vcpu); 6023 return 1; 6024 } 6025 6026 /* 6027 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6028 * are overwritten by nested_vmx_hardware_setup() when nested=1. 6029 */ 6030 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6031 { 6032 kvm_queue_exception(vcpu, UD_VECTOR); 6033 return 1; 6034 } 6035 6036 #ifndef CONFIG_X86_SGX_KVM 6037 static int handle_encls(struct kvm_vcpu *vcpu) 6038 { 6039 /* 6040 * SGX virtualization is disabled. There is no software enable bit for 6041 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6042 * the guest from executing ENCLS (when SGX is supported by hardware). 6043 */ 6044 kvm_queue_exception(vcpu, UD_VECTOR); 6045 return 1; 6046 } 6047 #endif /* CONFIG_X86_SGX_KVM */ 6048 6049 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6050 { 6051 /* 6052 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6053 * VM-Exits. Unconditionally set the flag here and leave the handling to 6054 * vmx_handle_exit(). 6055 */ 6056 to_vt(vcpu)->exit_reason.bus_lock_detected = true; 6057 return 1; 6058 } 6059 6060 static int handle_notify(struct kvm_vcpu *vcpu) 6061 { 6062 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6063 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6064 6065 ++vcpu->stat.notify_window_exits; 6066 6067 /* 6068 * Notify VM exit happened while executing iret from NMI, 6069 * "blocked by NMI" bit has to be set before next VM entry. 6070 */ 6071 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6072 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6073 GUEST_INTR_STATE_NMI); 6074 6075 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6076 context_invalid) { 6077 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6078 vcpu->run->notify.flags = context_invalid ? 6079 KVM_NOTIFY_CONTEXT_INVALID : 0; 6080 return 0; 6081 } 6082 6083 return 1; 6084 } 6085 6086 static int vmx_get_msr_imm_reg(struct kvm_vcpu *vcpu) 6087 { 6088 return vmx_get_instr_info_reg(vmcs_read32(VMX_INSTRUCTION_INFO)); 6089 } 6090 6091 static int handle_rdmsr_imm(struct kvm_vcpu *vcpu) 6092 { 6093 return kvm_emulate_rdmsr_imm(vcpu, vmx_get_exit_qual(vcpu), 6094 vmx_get_msr_imm_reg(vcpu)); 6095 } 6096 6097 static int handle_wrmsr_imm(struct kvm_vcpu *vcpu) 6098 { 6099 return kvm_emulate_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu), 6100 vmx_get_msr_imm_reg(vcpu)); 6101 } 6102 6103 /* 6104 * The exit handlers return 1 if the exit was handled fully and guest execution 6105 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6106 * to be done to userspace and return 0. 6107 */ 6108 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6109 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6110 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6111 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6112 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6113 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6114 [EXIT_REASON_CR_ACCESS] = handle_cr, 6115 [EXIT_REASON_DR_ACCESS] = handle_dr, 6116 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6117 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6118 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6119 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6120 [EXIT_REASON_HLT] = kvm_emulate_halt, 6121 [EXIT_REASON_INVD] = kvm_emulate_invd, 6122 [EXIT_REASON_INVLPG] = handle_invlpg, 6123 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6124 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6125 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6126 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6127 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6128 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6129 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6130 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6131 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6132 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6133 [EXIT_REASON_VMON] = handle_vmx_instruction, 6134 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6135 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6136 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6137 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6138 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6139 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6140 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6141 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6142 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6143 [EXIT_REASON_LDTR_TR] = handle_desc, 6144 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6145 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6146 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6147 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6148 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6149 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6150 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6151 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6152 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6153 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6154 [EXIT_REASON_PML_FULL] = handle_pml_full, 6155 [EXIT_REASON_INVPCID] = handle_invpcid, 6156 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6157 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6158 [EXIT_REASON_ENCLS] = handle_encls, 6159 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6160 [EXIT_REASON_NOTIFY] = handle_notify, 6161 [EXIT_REASON_MSR_READ_IMM] = handle_rdmsr_imm, 6162 [EXIT_REASON_MSR_WRITE_IMM] = handle_wrmsr_imm, 6163 }; 6164 6165 static const int kvm_vmx_max_exit_handlers = 6166 ARRAY_SIZE(kvm_vmx_exit_handlers); 6167 6168 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6169 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) 6170 { 6171 struct vcpu_vmx *vmx = to_vmx(vcpu); 6172 6173 *reason = vmx->vt.exit_reason.full; 6174 *info1 = vmx_get_exit_qual(vcpu); 6175 if (!(vmx->vt.exit_reason.failed_vmentry)) { 6176 *info2 = vmx->idt_vectoring_info; 6177 *intr_info = vmx_get_intr_info(vcpu); 6178 if (is_exception_with_error_code(*intr_info)) 6179 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6180 else 6181 *error_code = 0; 6182 } else { 6183 *info2 = 0; 6184 *intr_info = 0; 6185 *error_code = 0; 6186 } 6187 } 6188 6189 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code) 6190 { 6191 *intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD); 6192 if (is_exception_with_error_code(*intr_info)) 6193 *error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE); 6194 else 6195 *error_code = 0; 6196 } 6197 6198 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6199 { 6200 if (vmx->pml_pg) { 6201 __free_page(vmx->pml_pg); 6202 vmx->pml_pg = NULL; 6203 } 6204 } 6205 6206 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6207 { 6208 struct vcpu_vmx *vmx = to_vmx(vcpu); 6209 u16 pml_idx, pml_tail_index; 6210 u64 *pml_buf; 6211 int i; 6212 6213 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6214 6215 /* Do nothing if PML buffer is empty */ 6216 if (pml_idx == PML_HEAD_INDEX) 6217 return; 6218 /* 6219 * PML index always points to the next available PML buffer entity 6220 * unless PML log has just overflowed. 6221 */ 6222 pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1; 6223 6224 /* 6225 * PML log is written backwards: the CPU first writes the entry 511 6226 * then the entry 510, and so on. 6227 * 6228 * Read the entries in the same order they were written, to ensure that 6229 * the dirty ring is filled in the same order the CPU wrote them. 6230 */ 6231 pml_buf = page_address(vmx->pml_pg); 6232 6233 for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) { 6234 u64 gpa; 6235 6236 gpa = pml_buf[i]; 6237 WARN_ON(gpa & (PAGE_SIZE - 1)); 6238 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6239 } 6240 6241 /* reset PML index */ 6242 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX); 6243 } 6244 6245 static void vmx_dump_sel(char *name, uint32_t sel) 6246 { 6247 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6248 name, vmcs_read16(sel), 6249 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6250 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6251 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6252 } 6253 6254 static void vmx_dump_dtsel(char *name, uint32_t limit) 6255 { 6256 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6257 name, vmcs_read32(limit), 6258 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6259 } 6260 6261 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6262 { 6263 unsigned int i; 6264 struct vmx_msr_entry *e; 6265 6266 pr_err("MSR %s:\n", name); 6267 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6268 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6269 } 6270 6271 void dump_vmcs(struct kvm_vcpu *vcpu) 6272 { 6273 struct vcpu_vmx *vmx = to_vmx(vcpu); 6274 u32 vmentry_ctl, vmexit_ctl; 6275 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6276 u64 tertiary_exec_control; 6277 unsigned long cr4; 6278 int efer_slot; 6279 6280 if (!dump_invalid_vmcs) { 6281 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6282 return; 6283 } 6284 6285 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6286 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6287 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6288 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6289 cr4 = vmcs_readl(GUEST_CR4); 6290 6291 if (cpu_has_secondary_exec_ctrls()) 6292 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6293 else 6294 secondary_exec_control = 0; 6295 6296 if (cpu_has_tertiary_exec_ctrls()) 6297 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6298 else 6299 tertiary_exec_control = 0; 6300 6301 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6302 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6303 pr_err("*** Guest State ***\n"); 6304 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6305 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6306 vmcs_readl(CR0_GUEST_HOST_MASK)); 6307 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6308 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6309 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6310 if (cpu_has_vmx_ept()) { 6311 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6312 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6313 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6314 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6315 } 6316 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6317 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6318 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6319 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6320 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6321 vmcs_readl(GUEST_SYSENTER_ESP), 6322 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6323 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6324 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6325 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6326 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6327 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6328 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6329 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6330 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6331 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6332 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6333 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6334 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6335 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6336 else if (efer_slot >= 0) 6337 pr_err("EFER= 0x%016llx (autoload)\n", 6338 vmx->msr_autoload.guest.val[efer_slot].value); 6339 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6340 pr_err("EFER= 0x%016llx (effective)\n", 6341 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6342 else 6343 pr_err("EFER= 0x%016llx (effective)\n", 6344 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6345 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6346 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6347 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6348 vmcs_read64(GUEST_IA32_DEBUGCTL), 6349 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6350 if (cpu_has_load_perf_global_ctrl() && 6351 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6352 pr_err("PerfGlobCtl = 0x%016llx\n", 6353 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6354 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6355 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6356 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6357 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6358 vmcs_read32(GUEST_ACTIVITY_STATE)); 6359 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6360 pr_err("InterruptStatus = %04x\n", 6361 vmcs_read16(GUEST_INTR_STATUS)); 6362 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6363 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6364 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6365 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6366 6367 if (vmentry_ctl & VM_ENTRY_LOAD_CET_STATE) 6368 pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n", 6369 vmcs_readl(GUEST_S_CET), vmcs_readl(GUEST_SSP), 6370 vmcs_readl(GUEST_INTR_SSP_TABLE)); 6371 pr_err("*** Host State ***\n"); 6372 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6373 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6374 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6375 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6376 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6377 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6378 vmcs_read16(HOST_TR_SELECTOR)); 6379 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6380 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6381 vmcs_readl(HOST_TR_BASE)); 6382 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6383 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6384 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6385 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6386 vmcs_readl(HOST_CR4)); 6387 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6388 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6389 vmcs_read32(HOST_IA32_SYSENTER_CS), 6390 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6391 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6392 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6393 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6394 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6395 if (cpu_has_load_perf_global_ctrl() && 6396 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6397 pr_err("PerfGlobCtl = 0x%016llx\n", 6398 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6399 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6400 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6401 if (vmexit_ctl & VM_EXIT_LOAD_CET_STATE) 6402 pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n", 6403 vmcs_readl(HOST_S_CET), vmcs_readl(HOST_SSP), 6404 vmcs_readl(HOST_INTR_SSP_TABLE)); 6405 6406 pr_err("*** Control State ***\n"); 6407 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6408 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6409 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6410 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6411 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6412 vmcs_read32(EXCEPTION_BITMAP), 6413 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6414 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6415 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6416 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6417 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6418 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6419 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6420 vmcs_read32(VM_EXIT_INTR_INFO), 6421 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6422 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6423 pr_err(" reason=%08x qualification=%016lx\n", 6424 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6425 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6426 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6427 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6428 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6429 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6430 pr_err("TSC Multiplier = 0x%016llx\n", 6431 vmcs_read64(TSC_MULTIPLIER)); 6432 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6433 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6434 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6435 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6436 } 6437 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6438 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6439 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6440 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6441 } 6442 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6443 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6444 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6445 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6446 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6447 pr_err("PLE Gap=%08x Window=%08x\n", 6448 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6449 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6450 pr_err("Virtual processor ID = 0x%04x\n", 6451 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6452 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) { 6453 struct vmx_ve_information *ve_info = vmx->ve_info; 6454 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS); 6455 6456 /* 6457 * If KVM is dumping the VMCS, then something has gone wrong 6458 * already. Derefencing an address from the VMCS, which could 6459 * very well be corrupted, is a terrible idea. The virtual 6460 * address is known so use it. 6461 */ 6462 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa, 6463 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)"); 6464 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n", 6465 ve_info->exit_reason, ve_info->delivery, 6466 ve_info->exit_qualification, 6467 ve_info->guest_linear_address, 6468 ve_info->guest_physical_address, ve_info->eptp_index); 6469 } 6470 } 6471 6472 /* 6473 * The guest has exited. See if we can fix it or if we need userspace 6474 * assistance. 6475 */ 6476 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6477 { 6478 struct vcpu_vmx *vmx = to_vmx(vcpu); 6479 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu); 6480 u32 vectoring_info = vmx->idt_vectoring_info; 6481 u16 exit_handler_index; 6482 6483 /* 6484 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6485 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6486 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6487 * mode as if vcpus is in root mode, the PML buffer must has been 6488 * flushed already. Note, PML is never enabled in hardware while 6489 * running L2. 6490 */ 6491 if (enable_pml && !is_guest_mode(vcpu)) 6492 vmx_flush_pml_buffer(vcpu); 6493 6494 /* 6495 * KVM should never reach this point with a pending nested VM-Enter. 6496 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6497 * invalid guest state should never happen as that means KVM knowingly 6498 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6499 */ 6500 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6501 return -EIO; 6502 6503 if (is_guest_mode(vcpu)) { 6504 /* 6505 * PML is never enabled when running L2, bail immediately if a 6506 * PML full exit occurs as something is horribly wrong. 6507 */ 6508 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6509 goto unexpected_vmexit; 6510 6511 /* 6512 * The host physical addresses of some pages of guest memory 6513 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6514 * Page). The CPU may write to these pages via their host 6515 * physical address while L2 is running, bypassing any 6516 * address-translation-based dirty tracking (e.g. EPT write 6517 * protection). 6518 * 6519 * Mark them dirty on every exit from L2 to prevent them from 6520 * getting out of sync with dirty tracking. 6521 */ 6522 nested_mark_vmcs12_pages_dirty(vcpu); 6523 6524 /* 6525 * Synthesize a triple fault if L2 state is invalid. In normal 6526 * operation, nested VM-Enter rejects any attempt to enter L2 6527 * with invalid state. However, those checks are skipped if 6528 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6529 * L2 state is invalid, it means either L1 modified SMRAM state 6530 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6531 * doing so is architecturally allowed in the RSM case, and is 6532 * the least awful solution for the userspace case without 6533 * risking false positives. 6534 */ 6535 if (vmx->vt.emulation_required) { 6536 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6537 return 1; 6538 } 6539 6540 if (nested_vmx_reflect_vmexit(vcpu)) 6541 return 1; 6542 } 6543 6544 /* If guest state is invalid, start emulating. L2 is handled above. */ 6545 if (vmx->vt.emulation_required) 6546 return handle_invalid_guest_state(vcpu); 6547 6548 if (exit_reason.failed_vmentry) { 6549 dump_vmcs(vcpu); 6550 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6551 vcpu->run->fail_entry.hardware_entry_failure_reason 6552 = exit_reason.full; 6553 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6554 return 0; 6555 } 6556 6557 if (unlikely(vmx->fail)) { 6558 dump_vmcs(vcpu); 6559 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6560 vcpu->run->fail_entry.hardware_entry_failure_reason 6561 = vmcs_read32(VM_INSTRUCTION_ERROR); 6562 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6563 return 0; 6564 } 6565 6566 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6567 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6568 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6569 exit_reason.basic != EXIT_REASON_PML_FULL && 6570 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6571 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6572 exit_reason.basic != EXIT_REASON_NOTIFY && 6573 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) { 6574 kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA); 6575 return 0; 6576 } 6577 6578 if (unlikely(!enable_vnmi && 6579 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6580 if (!vmx_interrupt_blocked(vcpu)) { 6581 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6582 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6583 vcpu->arch.nmi_pending) { 6584 /* 6585 * This CPU don't support us in finding the end of an 6586 * NMI-blocked window if the guest runs with IRQs 6587 * disabled. So we pull the trigger after 1 s of 6588 * futile waiting, but inform the user about this. 6589 */ 6590 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6591 "state on VCPU %d after 1 s timeout\n", 6592 __func__, vcpu->vcpu_id); 6593 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6594 } 6595 } 6596 6597 if (exit_fastpath != EXIT_FASTPATH_NONE) 6598 return 1; 6599 6600 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6601 goto unexpected_vmexit; 6602 #ifdef CONFIG_MITIGATION_RETPOLINE 6603 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6604 return kvm_emulate_wrmsr(vcpu); 6605 else if (exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM) 6606 return handle_wrmsr_imm(vcpu); 6607 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6608 return handle_preemption_timer(vcpu); 6609 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6610 return handle_interrupt_window(vcpu); 6611 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6612 return handle_external_interrupt(vcpu); 6613 else if (exit_reason.basic == EXIT_REASON_HLT) 6614 return kvm_emulate_halt(vcpu); 6615 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6616 return handle_ept_misconfig(vcpu); 6617 #endif 6618 6619 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6620 kvm_vmx_max_exit_handlers); 6621 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6622 goto unexpected_vmexit; 6623 6624 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6625 6626 unexpected_vmexit: 6627 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6628 exit_reason.full); 6629 dump_vmcs(vcpu); 6630 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6631 vcpu->run->internal.suberror = 6632 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6633 vcpu->run->internal.ndata = 2; 6634 vcpu->run->internal.data[0] = exit_reason.full; 6635 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6636 return 0; 6637 } 6638 6639 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6640 { 6641 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6642 6643 /* 6644 * Exit to user space when bus lock detected to inform that there is 6645 * a bus lock in guest. 6646 */ 6647 if (vmx_get_exit_reason(vcpu).bus_lock_detected) { 6648 if (ret > 0) 6649 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6650 6651 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6652 return 0; 6653 } 6654 return ret; 6655 } 6656 6657 /* 6658 * Software based L1D cache flush which is used when microcode providing 6659 * the cache control MSR is not loaded. 6660 * 6661 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6662 * flush it is required to read in 64 KiB because the replacement algorithm 6663 * is not exactly LRU. This could be sized at runtime via topology 6664 * information but as all relevant affected CPUs have 32KiB L1D cache size 6665 * there is no point in doing so. 6666 */ 6667 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6668 { 6669 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6670 6671 /* 6672 * This code is only executed when the flush mode is 'cond' or 6673 * 'always' 6674 */ 6675 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6676 bool flush_l1d; 6677 6678 /* 6679 * Clear the per-vcpu flush bit, it gets set again if the vCPU 6680 * is reloaded, i.e. if the vCPU is scheduled out or if KVM 6681 * exits to userspace, or if KVM reaches one of the unsafe 6682 * VMEXIT handlers, e.g. if KVM calls into the emulator. 6683 */ 6684 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6685 vcpu->arch.l1tf_flush_l1d = false; 6686 6687 /* 6688 * Clear the per-cpu flush bit, it gets set again from 6689 * the interrupt handlers. 6690 */ 6691 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6692 kvm_clear_cpu_l1tf_flush_l1d(); 6693 6694 if (!flush_l1d) 6695 return; 6696 } 6697 6698 vcpu->stat.l1d_flush++; 6699 6700 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6701 native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6702 return; 6703 } 6704 6705 asm volatile( 6706 /* First ensure the pages are in the TLB */ 6707 "xorl %%eax, %%eax\n" 6708 ".Lpopulate_tlb:\n\t" 6709 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6710 "addl $4096, %%eax\n\t" 6711 "cmpl %%eax, %[size]\n\t" 6712 "jne .Lpopulate_tlb\n\t" 6713 "xorl %%eax, %%eax\n\t" 6714 "cpuid\n\t" 6715 /* Now fill the cache */ 6716 "xorl %%eax, %%eax\n" 6717 ".Lfill_cache:\n" 6718 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6719 "addl $64, %%eax\n\t" 6720 "cmpl %%eax, %[size]\n\t" 6721 "jne .Lfill_cache\n\t" 6722 "lfence\n" 6723 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6724 [size] "r" (size) 6725 : "eax", "ebx", "ecx", "edx"); 6726 } 6727 6728 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6729 { 6730 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6731 int tpr_threshold; 6732 6733 if (is_guest_mode(vcpu) && 6734 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6735 return; 6736 6737 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6738 if (is_guest_mode(vcpu)) 6739 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6740 else 6741 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6742 } 6743 6744 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6745 { 6746 struct vcpu_vmx *vmx = to_vmx(vcpu); 6747 u32 sec_exec_control; 6748 6749 if (!lapic_in_kernel(vcpu)) 6750 return; 6751 6752 if (!flexpriority_enabled && 6753 !cpu_has_vmx_virtualize_x2apic_mode()) 6754 return; 6755 6756 /* Postpone execution until vmcs01 is the current VMCS. */ 6757 if (is_guest_mode(vcpu)) { 6758 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6759 return; 6760 } 6761 6762 sec_exec_control = secondary_exec_controls_get(vmx); 6763 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6764 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6765 6766 switch (kvm_get_apic_mode(vcpu)) { 6767 case LAPIC_MODE_INVALID: 6768 WARN_ONCE(true, "Invalid local APIC state"); 6769 break; 6770 case LAPIC_MODE_DISABLED: 6771 break; 6772 case LAPIC_MODE_XAPIC: 6773 if (flexpriority_enabled) { 6774 sec_exec_control |= 6775 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6776 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6777 6778 /* 6779 * Flush the TLB, reloading the APIC access page will 6780 * only do so if its physical address has changed, but 6781 * the guest may have inserted a non-APIC mapping into 6782 * the TLB while the APIC access page was disabled. 6783 */ 6784 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6785 } 6786 break; 6787 case LAPIC_MODE_X2APIC: 6788 if (cpu_has_vmx_virtualize_x2apic_mode()) 6789 sec_exec_control |= 6790 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6791 break; 6792 } 6793 secondary_exec_controls_set(vmx, sec_exec_control); 6794 6795 vmx_update_msr_bitmap_x2apic(vcpu); 6796 } 6797 6798 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6799 { 6800 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6801 struct kvm *kvm = vcpu->kvm; 6802 struct kvm_memslots *slots = kvm_memslots(kvm); 6803 struct kvm_memory_slot *slot; 6804 struct page *refcounted_page; 6805 unsigned long mmu_seq; 6806 kvm_pfn_t pfn; 6807 bool writable; 6808 6809 /* Defer reload until vmcs01 is the current VMCS. */ 6810 if (is_guest_mode(vcpu)) { 6811 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6812 return; 6813 } 6814 6815 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6816 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6817 return; 6818 6819 /* 6820 * Explicitly grab the memslot using KVM's internal slot ID to ensure 6821 * KVM doesn't unintentionally grab a userspace memslot. It _should_ 6822 * be impossible for userspace to create a memslot for the APIC when 6823 * APICv is enabled, but paranoia won't hurt in this case. 6824 */ 6825 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6826 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6827 return; 6828 6829 /* 6830 * Ensure that the mmu_notifier sequence count is read before KVM 6831 * retrieves the pfn from the primary MMU. Note, the memslot is 6832 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6833 * in kvm_mmu_invalidate_end(). 6834 */ 6835 mmu_seq = kvm->mmu_invalidate_seq; 6836 smp_rmb(); 6837 6838 /* 6839 * No need to retry if the memslot does not exist or is invalid. KVM 6840 * controls the APIC-access page memslot, and only deletes the memslot 6841 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6842 */ 6843 pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page); 6844 if (is_error_noslot_pfn(pfn)) 6845 return; 6846 6847 read_lock(&vcpu->kvm->mmu_lock); 6848 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) 6849 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6850 else 6851 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6852 6853 /* 6854 * Do not pin the APIC access page in memory so that it can be freely 6855 * migrated, the MMU notifier will call us again if it is migrated or 6856 * swapped out. KVM backs the memslot with anonymous memory, the pfn 6857 * should always point at a refcounted page (if the pfn is valid). 6858 */ 6859 if (!WARN_ON_ONCE(!refcounted_page)) 6860 kvm_release_page_clean(refcounted_page); 6861 6862 /* 6863 * No need for a manual TLB flush at this point, KVM has already done a 6864 * flush if there were SPTEs pointing at the previous page. 6865 */ 6866 read_unlock(&vcpu->kvm->mmu_lock); 6867 } 6868 6869 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6870 { 6871 u16 status; 6872 u8 old; 6873 6874 /* 6875 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI 6876 * is only relevant for if and only if Virtual Interrupt Delivery is 6877 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's 6878 * vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested 6879 * VM-Exit, otherwise L1 with run with a stale SVI. 6880 */ 6881 if (is_guest_mode(vcpu)) { 6882 /* 6883 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID 6884 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC. 6885 * Note, userspace can stuff state while L2 is active; assert 6886 * that VID is disabled if and only if the vCPU is in KVM_RUN 6887 * to avoid false positives if userspace is setting APIC state. 6888 */ 6889 WARN_ON_ONCE(vcpu->wants_to_run && 6890 nested_cpu_has_vid(get_vmcs12(vcpu))); 6891 to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true; 6892 return; 6893 } 6894 6895 if (max_isr == -1) 6896 max_isr = 0; 6897 6898 status = vmcs_read16(GUEST_INTR_STATUS); 6899 old = status >> 8; 6900 if (max_isr != old) { 6901 status &= 0xff; 6902 status |= max_isr << 8; 6903 vmcs_write16(GUEST_INTR_STATUS, status); 6904 } 6905 } 6906 6907 static void vmx_set_rvi(int vector) 6908 { 6909 u16 status; 6910 u8 old; 6911 6912 if (vector == -1) 6913 vector = 0; 6914 6915 status = vmcs_read16(GUEST_INTR_STATUS); 6916 old = (u8)status & 0xff; 6917 if ((u8)vector != old) { 6918 status &= ~0xff; 6919 status |= (u8)vector; 6920 vmcs_write16(GUEST_INTR_STATUS, status); 6921 } 6922 } 6923 6924 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6925 { 6926 struct vcpu_vt *vt = to_vt(vcpu); 6927 int max_irr; 6928 bool got_posted_interrupt; 6929 6930 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6931 return -EIO; 6932 6933 if (pi_test_on(&vt->pi_desc)) { 6934 pi_clear_on(&vt->pi_desc); 6935 /* 6936 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6937 * But on x86 this is just a compiler barrier anyway. 6938 */ 6939 smp_mb__after_atomic(); 6940 got_posted_interrupt = 6941 kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr); 6942 } else { 6943 max_irr = kvm_lapic_find_highest_irr(vcpu); 6944 got_posted_interrupt = false; 6945 } 6946 6947 /* 6948 * Newly recognized interrupts are injected via either virtual interrupt 6949 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6950 * disabled in two cases: 6951 * 6952 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6953 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6954 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6955 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6956 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6957 * 6958 * 2) If APICv is disabled for this vCPU, assigned devices may still 6959 * attempt to post interrupts. The posted interrupt vector will cause 6960 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6961 */ 6962 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6963 vmx_set_rvi(max_irr); 6964 else if (got_posted_interrupt) 6965 kvm_make_request(KVM_REQ_EVENT, vcpu); 6966 6967 return max_irr; 6968 } 6969 6970 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6971 { 6972 if (!kvm_vcpu_apicv_active(vcpu)) 6973 return; 6974 6975 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6976 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6977 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6978 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6979 } 6980 6981 void vmx_do_interrupt_irqoff(unsigned long entry); 6982 void vmx_do_nmi_irqoff(void); 6983 6984 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6985 { 6986 /* 6987 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6988 * MSR value is not clobbered by the host activity before the guest 6989 * has chance to consume it. 6990 * 6991 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM 6992 * interception may have been caused by L1 interception. Per the SDM, 6993 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1. 6994 * 6995 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e. 6996 * unlike CR2 and DR6, the value is not a payload that is attached to 6997 * the #NM exception. 6998 */ 6999 if (is_xfd_nm_fault(vcpu)) 7000 rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 7001 } 7002 7003 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) 7004 { 7005 /* if exit due to PF check for async PF */ 7006 if (is_page_fault(intr_info)) 7007 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 7008 /* if exit due to NM, handle before interrupts are enabled */ 7009 else if (is_nm_fault(intr_info)) 7010 handle_nm_fault_irqoff(vcpu); 7011 /* Handle machine checks before interrupts are enabled */ 7012 else if (is_machine_check(intr_info)) 7013 kvm_machine_check(); 7014 } 7015 7016 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu, 7017 u32 intr_info) 7018 { 7019 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 7020 7021 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 7022 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 7023 return; 7024 7025 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 7026 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7027 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector); 7028 else 7029 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector)); 7030 kvm_after_interrupt(vcpu); 7031 7032 vcpu->arch.at_instruction_boundary = true; 7033 } 7034 7035 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 7036 { 7037 if (to_vt(vcpu)->emulation_required) 7038 return; 7039 7040 if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT) 7041 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu)); 7042 else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI) 7043 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu)); 7044 } 7045 7046 /* 7047 * The kvm parameter can be NULL (module initialization, or invocation before 7048 * VM creation). Be sure to check the kvm parameter before using it. 7049 */ 7050 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7051 { 7052 switch (index) { 7053 case MSR_IA32_SMBASE: 7054 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7055 return false; 7056 /* 7057 * We cannot do SMM unless we can run the guest in big 7058 * real mode. 7059 */ 7060 return enable_unrestricted_guest || emulate_invalid_guest_state; 7061 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7062 return nested; 7063 case MSR_AMD64_VIRT_SPEC_CTRL: 7064 case MSR_AMD64_TSC_RATIO: 7065 /* This is AMD only. */ 7066 return false; 7067 default: 7068 return true; 7069 } 7070 } 7071 7072 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7073 { 7074 u32 exit_intr_info; 7075 bool unblock_nmi; 7076 u8 vector; 7077 bool idtv_info_valid; 7078 7079 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7080 7081 if (enable_vnmi) { 7082 if (vmx->loaded_vmcs->nmi_known_unmasked) 7083 return; 7084 7085 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7086 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7087 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7088 /* 7089 * SDM 3: 27.7.1.2 (September 2008) 7090 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7091 * a guest IRET fault. 7092 * SDM 3: 23.2.2 (September 2008) 7093 * Bit 12 is undefined in any of the following cases: 7094 * If the VM exit sets the valid bit in the IDT-vectoring 7095 * information field. 7096 * If the VM exit is due to a double fault. 7097 */ 7098 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7099 vector != DF_VECTOR && !idtv_info_valid) 7100 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7101 GUEST_INTR_STATE_NMI); 7102 else 7103 vmx->loaded_vmcs->nmi_known_unmasked = 7104 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7105 & GUEST_INTR_STATE_NMI); 7106 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7107 vmx->loaded_vmcs->vnmi_blocked_time += 7108 ktime_to_ns(ktime_sub(ktime_get(), 7109 vmx->loaded_vmcs->entry_time)); 7110 } 7111 7112 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7113 u32 idt_vectoring_info, 7114 int instr_len_field, 7115 int error_code_field) 7116 { 7117 u8 vector; 7118 int type; 7119 bool idtv_info_valid; 7120 7121 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7122 7123 vcpu->arch.nmi_injected = false; 7124 kvm_clear_exception_queue(vcpu); 7125 kvm_clear_interrupt_queue(vcpu); 7126 7127 if (!idtv_info_valid) 7128 return; 7129 7130 kvm_make_request(KVM_REQ_EVENT, vcpu); 7131 7132 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7133 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7134 7135 switch (type) { 7136 case INTR_TYPE_NMI_INTR: 7137 vcpu->arch.nmi_injected = true; 7138 /* 7139 * SDM 3: 27.7.1.2 (September 2008) 7140 * Clear bit "block by NMI" before VM entry if a NMI 7141 * delivery faulted. 7142 */ 7143 vmx_set_nmi_mask(vcpu, false); 7144 break; 7145 case INTR_TYPE_SOFT_EXCEPTION: 7146 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7147 fallthrough; 7148 case INTR_TYPE_HARD_EXCEPTION: { 7149 u32 error_code = 0; 7150 7151 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) 7152 error_code = vmcs_read32(error_code_field); 7153 7154 kvm_requeue_exception(vcpu, vector, 7155 idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK, 7156 error_code); 7157 break; 7158 } 7159 case INTR_TYPE_SOFT_INTR: 7160 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7161 fallthrough; 7162 case INTR_TYPE_EXT_INTR: 7163 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7164 break; 7165 default: 7166 break; 7167 } 7168 } 7169 7170 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7171 { 7172 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7173 VM_EXIT_INSTRUCTION_LEN, 7174 IDT_VECTORING_ERROR_CODE); 7175 } 7176 7177 void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7178 { 7179 __vmx_complete_interrupts(vcpu, 7180 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7181 VM_ENTRY_INSTRUCTION_LEN, 7182 VM_ENTRY_EXCEPTION_ERROR_CODE); 7183 7184 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7185 } 7186 7187 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7188 { 7189 int i, nr_msrs; 7190 struct perf_guest_switch_msr *msrs; 7191 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7192 7193 pmu->host_cross_mapped_mask = 0; 7194 if (pmu->pebs_enable & pmu->global_ctrl) 7195 intel_pmu_cross_mapped_check(pmu); 7196 7197 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7198 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7199 if (!msrs) 7200 return; 7201 7202 for (i = 0; i < nr_msrs; i++) 7203 if (msrs[i].host == msrs[i].guest) 7204 clear_atomic_switch_msr(vmx, msrs[i].msr); 7205 else 7206 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7207 msrs[i].host, false); 7208 } 7209 7210 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit) 7211 { 7212 struct vcpu_vmx *vmx = to_vmx(vcpu); 7213 u64 tscl; 7214 u32 delta_tsc; 7215 7216 if (force_immediate_exit) { 7217 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7218 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7219 } else if (vmx->hv_deadline_tsc != -1) { 7220 tscl = rdtsc(); 7221 if (vmx->hv_deadline_tsc > tscl) 7222 /* set_hv_timer ensures the delta fits in 32-bits */ 7223 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7224 cpu_preemption_timer_multi); 7225 else 7226 delta_tsc = 0; 7227 7228 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7229 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7230 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7231 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7232 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7233 } 7234 } 7235 7236 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7237 { 7238 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7239 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7240 vmcs_writel(HOST_RSP, host_rsp); 7241 } 7242 } 7243 7244 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7245 unsigned int flags) 7246 { 7247 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7248 7249 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7250 return; 7251 7252 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7253 vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL); 7254 7255 /* 7256 * If the guest/host SPEC_CTRL values differ, restore the host value. 7257 * 7258 * For legacy IBRS, the IBRS bit always needs to be written after 7259 * transitioning from a less privileged predictor mode, regardless of 7260 * whether the guest/host values differ. 7261 */ 7262 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7263 vmx->spec_ctrl != hostval) 7264 native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval); 7265 7266 barrier_nospec(); 7267 } 7268 7269 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu, 7270 bool force_immediate_exit) 7271 { 7272 /* 7273 * If L2 is active, some VMX preemption timer exits can be handled in 7274 * the fastpath even, all other exits must use the slow path. 7275 */ 7276 if (is_guest_mode(vcpu) && 7277 vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER) 7278 return EXIT_FASTPATH_NONE; 7279 7280 switch (vmx_get_exit_reason(vcpu).basic) { 7281 case EXIT_REASON_MSR_WRITE: 7282 return handle_fastpath_wrmsr(vcpu); 7283 case EXIT_REASON_MSR_WRITE_IMM: 7284 return handle_fastpath_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu), 7285 vmx_get_msr_imm_reg(vcpu)); 7286 case EXIT_REASON_PREEMPTION_TIMER: 7287 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit); 7288 case EXIT_REASON_HLT: 7289 return handle_fastpath_hlt(vcpu); 7290 case EXIT_REASON_INVD: 7291 return handle_fastpath_invd(vcpu); 7292 default: 7293 return EXIT_FASTPATH_NONE; 7294 } 7295 } 7296 7297 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu) 7298 { 7299 if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI || 7300 !is_nmi(vmx_get_intr_info(vcpu))) 7301 return; 7302 7303 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7304 if (cpu_feature_enabled(X86_FEATURE_FRED)) 7305 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR); 7306 else 7307 vmx_do_nmi_irqoff(); 7308 kvm_after_interrupt(vcpu); 7309 } 7310 7311 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7312 unsigned int flags) 7313 { 7314 struct vcpu_vmx *vmx = to_vmx(vcpu); 7315 7316 guest_state_enter_irqoff(); 7317 7318 /* 7319 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7320 * mitigation for MDS is done late in VMentry and is still 7321 * executed in spite of L1D Flush. This is because an extra VERW 7322 * should not matter much after the big hammer L1D Flush. 7323 * 7324 * cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA, 7325 * and is affected by MMIO Stale Data. In such cases mitigation in only 7326 * needed against an MMIO capable guest. 7327 */ 7328 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7329 vmx_l1d_flush(vcpu); 7330 else if (static_branch_unlikely(&cpu_buf_vm_clear) && 7331 (flags & VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO)) 7332 x86_clear_cpu_buffers(); 7333 7334 vmx_disable_fb_clear(vmx); 7335 7336 if (vcpu->arch.cr2 != native_read_cr2()) 7337 native_write_cr2(vcpu->arch.cr2); 7338 7339 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7340 flags); 7341 7342 vcpu->arch.cr2 = native_read_cr2(); 7343 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7344 7345 vmx->idt_vectoring_info = 0; 7346 7347 vmx_enable_fb_clear(vmx); 7348 7349 if (unlikely(vmx->fail)) { 7350 vmx->vt.exit_reason.full = 0xdead; 7351 goto out; 7352 } 7353 7354 vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7355 if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry)) 7356 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7357 7358 vmx_handle_nmi(vcpu); 7359 7360 out: 7361 guest_state_exit_irqoff(); 7362 } 7363 7364 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags) 7365 { 7366 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT; 7367 struct vcpu_vmx *vmx = to_vmx(vcpu); 7368 unsigned long cr3, cr4; 7369 7370 /* Record the guest's net vcpu time for enforced NMI injections. */ 7371 if (unlikely(!enable_vnmi && 7372 vmx->loaded_vmcs->soft_vnmi_blocked)) 7373 vmx->loaded_vmcs->entry_time = ktime_get(); 7374 7375 /* 7376 * Don't enter VMX if guest state is invalid, let the exit handler 7377 * start emulation until we arrive back to a valid state. Synthesize a 7378 * consistency check VM-Exit due to invalid guest state and bail. 7379 */ 7380 if (unlikely(vmx->vt.emulation_required)) { 7381 vmx->fail = 0; 7382 7383 vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE; 7384 vmx->vt.exit_reason.failed_vmentry = 1; 7385 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7386 vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT; 7387 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7388 vmx->vt.exit_intr_info = 0; 7389 return EXIT_FASTPATH_NONE; 7390 } 7391 7392 trace_kvm_entry(vcpu, force_immediate_exit); 7393 7394 if (vmx->ple_window_dirty) { 7395 vmx->ple_window_dirty = false; 7396 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7397 } 7398 7399 /* 7400 * We did this in prepare_switch_to_guest, because it needs to 7401 * be within srcu_read_lock. 7402 */ 7403 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7404 7405 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7406 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7407 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7408 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7409 vcpu->arch.regs_dirty = 0; 7410 7411 if (run_flags & KVM_RUN_LOAD_GUEST_DR6) 7412 set_debugreg(vcpu->arch.dr6, 6); 7413 7414 if (run_flags & KVM_RUN_LOAD_DEBUGCTL) 7415 vmx_reload_guest_debugctl(vcpu); 7416 7417 /* 7418 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7419 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7420 * it switches back to the current->mm, which can occur in KVM context 7421 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7422 * toggles a static key while handling a VM-Exit. 7423 */ 7424 cr3 = __get_current_cr3_fast(); 7425 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7426 vmcs_writel(HOST_CR3, cr3); 7427 vmx->loaded_vmcs->host_state.cr3 = cr3; 7428 } 7429 7430 cr4 = cr4_read_shadow(); 7431 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7432 vmcs_writel(HOST_CR4, cr4); 7433 vmx->loaded_vmcs->host_state.cr4 = cr4; 7434 } 7435 7436 /* When single-stepping over STI and MOV SS, we must clear the 7437 * corresponding interruptibility bits in the guest state. Otherwise 7438 * vmentry fails as it then expects bit 14 (BS) in pending debug 7439 * exceptions being set, but that's not correct for the guest debugging 7440 * case. */ 7441 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7442 vmx_set_interrupt_shadow(vcpu, 0); 7443 7444 kvm_load_guest_xsave_state(vcpu); 7445 7446 pt_guest_enter(vmx); 7447 7448 atomic_switch_perf_msrs(vmx); 7449 if (intel_pmu_lbr_is_enabled(vcpu)) 7450 vmx_passthrough_lbr_msrs(vcpu); 7451 7452 if (enable_preemption_timer) 7453 vmx_update_hv_timer(vcpu, force_immediate_exit); 7454 else if (force_immediate_exit) 7455 smp_send_reschedule(vcpu->cpu); 7456 7457 kvm_wait_lapic_expire(vcpu); 7458 7459 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7460 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7461 7462 /* All fields are clean at this point */ 7463 if (kvm_is_using_evmcs()) { 7464 current_evmcs->hv_clean_fields |= 7465 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7466 7467 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7468 } 7469 7470 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7471 if (vcpu->arch.host_debugctl) 7472 update_debugctlmsr(vcpu->arch.host_debugctl); 7473 7474 #ifndef CONFIG_X86_64 7475 /* 7476 * The sysexit path does not restore ds/es, so we must set them to 7477 * a reasonable value ourselves. 7478 * 7479 * We can't defer this to vmx_prepare_switch_to_host() since that 7480 * function may be executed in interrupt context, which saves and 7481 * restore segments around it, nullifying its effect. 7482 */ 7483 loadsegment(ds, __USER_DS); 7484 loadsegment(es, __USER_DS); 7485 #endif 7486 7487 pt_guest_exit(vmx); 7488 7489 kvm_load_host_xsave_state(vcpu); 7490 7491 if (is_guest_mode(vcpu)) { 7492 /* 7493 * Track VMLAUNCH/VMRESUME that have made past guest state 7494 * checking. 7495 */ 7496 if (vmx->nested.nested_run_pending && 7497 !vmx_get_exit_reason(vcpu).failed_vmentry) 7498 ++vcpu->stat.nested_run; 7499 7500 vmx->nested.nested_run_pending = 0; 7501 } 7502 7503 if (unlikely(vmx->fail)) 7504 return EXIT_FASTPATH_NONE; 7505 7506 if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7507 kvm_machine_check(); 7508 7509 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7510 7511 if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry)) 7512 return EXIT_FASTPATH_NONE; 7513 7514 vmx->loaded_vmcs->launched = 1; 7515 7516 vmx_recover_nmi_blocking(vmx); 7517 vmx_complete_interrupts(vmx); 7518 7519 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit); 7520 } 7521 7522 void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7523 { 7524 struct vcpu_vmx *vmx = to_vmx(vcpu); 7525 7526 if (enable_pml) 7527 vmx_destroy_pml_buffer(vmx); 7528 free_vpid(vmx->vpid); 7529 nested_vmx_free_vcpu(vcpu); 7530 free_loaded_vmcs(vmx->loaded_vmcs); 7531 free_page((unsigned long)vmx->ve_info); 7532 } 7533 7534 int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7535 { 7536 struct vmx_uret_msr *tsx_ctrl; 7537 struct vcpu_vmx *vmx; 7538 int i, err; 7539 7540 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7541 vmx = to_vmx(vcpu); 7542 7543 INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list); 7544 7545 err = -ENOMEM; 7546 7547 vmx->vpid = allocate_vpid(); 7548 7549 /* 7550 * If PML is turned on, failure on enabling PML just results in failure 7551 * of creating the vcpu, therefore we can simplify PML logic (by 7552 * avoiding dealing with cases, such as enabling PML partially on vcpus 7553 * for the guest), etc. 7554 */ 7555 if (enable_pml) { 7556 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7557 if (!vmx->pml_pg) 7558 goto free_vpid; 7559 } 7560 7561 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7562 vmx->guest_uret_msrs[i].mask = -1ull; 7563 if (boot_cpu_has(X86_FEATURE_RTM)) { 7564 /* 7565 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7566 * Keep the host value unchanged to avoid changing CPUID bits 7567 * under the host kernel's feet. 7568 */ 7569 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7570 if (tsx_ctrl) 7571 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7572 } 7573 7574 err = alloc_loaded_vmcs(&vmx->vmcs01); 7575 if (err < 0) 7576 goto free_pml; 7577 7578 /* 7579 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7580 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7581 * feature only for vmcs01, KVM currently isn't equipped to realize any 7582 * performance benefits from enabling it for vmcs02. 7583 */ 7584 if (kvm_is_using_evmcs() && 7585 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7586 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7587 7588 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7589 } 7590 7591 vmx->loaded_vmcs = &vmx->vmcs01; 7592 7593 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7594 err = kvm_alloc_apic_access_page(vcpu->kvm); 7595 if (err) 7596 goto free_vmcs; 7597 } 7598 7599 if (enable_ept && !enable_unrestricted_guest) { 7600 err = init_rmode_identity_map(vcpu->kvm); 7601 if (err) 7602 goto free_vmcs; 7603 } 7604 7605 err = -ENOMEM; 7606 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) { 7607 struct page *page; 7608 7609 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE); 7610 7611 /* ve_info must be page aligned. */ 7612 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7613 if (!page) 7614 goto free_vmcs; 7615 7616 vmx->ve_info = page_to_virt(page); 7617 } 7618 7619 if (vmx_can_use_ipiv(vcpu)) 7620 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7621 __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID); 7622 7623 return 0; 7624 7625 free_vmcs: 7626 free_loaded_vmcs(vmx->loaded_vmcs); 7627 free_pml: 7628 vmx_destroy_pml_buffer(vmx); 7629 free_vpid: 7630 free_vpid(vmx->vpid); 7631 return err; 7632 } 7633 7634 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7635 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7636 7637 int vmx_vm_init(struct kvm *kvm) 7638 { 7639 if (!ple_gap) 7640 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE); 7641 7642 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7643 switch (l1tf_mitigation) { 7644 case L1TF_MITIGATION_OFF: 7645 case L1TF_MITIGATION_FLUSH_NOWARN: 7646 /* 'I explicitly don't care' is set */ 7647 break; 7648 case L1TF_MITIGATION_AUTO: 7649 case L1TF_MITIGATION_FLUSH: 7650 case L1TF_MITIGATION_FLUSH_NOSMT: 7651 case L1TF_MITIGATION_FULL: 7652 /* 7653 * Warn upon starting the first VM in a potentially 7654 * insecure environment. 7655 */ 7656 if (sched_smt_active()) 7657 pr_warn_once(L1TF_MSG_SMT); 7658 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7659 pr_warn_once(L1TF_MSG_L1D); 7660 break; 7661 case L1TF_MITIGATION_FULL_FORCE: 7662 /* Flush is enforced */ 7663 break; 7664 } 7665 } 7666 7667 if (enable_pml) 7668 kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES; 7669 return 0; 7670 } 7671 7672 static inline bool vmx_ignore_guest_pat(struct kvm *kvm) 7673 { 7674 /* 7675 * Non-coherent DMA devices need the guest to flush CPU properly. 7676 * In that case it is not possible to map all guest RAM as WB, so 7677 * always trust guest PAT. 7678 */ 7679 return !kvm_arch_has_noncoherent_dma(kvm) && 7680 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT); 7681 } 7682 7683 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7684 { 7685 /* 7686 * Force UC for host MMIO regions, as allowing the guest to access MMIO 7687 * with cacheable accesses will result in Machine Checks. 7688 */ 7689 if (is_mmio) 7690 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7691 7692 /* Force WB if ignoring guest PAT */ 7693 if (vmx_ignore_guest_pat(vcpu->kvm)) 7694 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7695 7696 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT); 7697 } 7698 7699 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7700 { 7701 /* 7702 * These bits in the secondary execution controls field 7703 * are dynamic, the others are mostly based on the hypervisor 7704 * architecture and the guest's CPUID. Do not touch the 7705 * dynamic bits. 7706 */ 7707 u32 mask = 7708 SECONDARY_EXEC_SHADOW_VMCS | 7709 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7710 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7711 SECONDARY_EXEC_DESC; 7712 7713 u32 cur_ctl = secondary_exec_controls_get(vmx); 7714 7715 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7716 } 7717 7718 /* 7719 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7720 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7721 */ 7722 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7723 { 7724 struct vcpu_vmx *vmx = to_vmx(vcpu); 7725 struct kvm_cpuid_entry2 *entry; 7726 7727 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7728 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7729 7730 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7731 if (entry && (entry->_reg & (_cpuid_mask))) \ 7732 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7733 } while (0) 7734 7735 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7736 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7737 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7738 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7739 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7740 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7741 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7742 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7743 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7744 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7745 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7746 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7747 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7748 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7749 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7750 7751 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7752 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7753 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7754 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7755 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7756 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7757 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7758 cr4_fixed1_update(X86_CR4_CET, ecx, feature_bit(SHSTK)); 7759 cr4_fixed1_update(X86_CR4_CET, edx, feature_bit(IBT)); 7760 7761 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1); 7762 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM)); 7763 7764 #undef cr4_fixed1_update 7765 } 7766 7767 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7768 { 7769 struct vcpu_vmx *vmx = to_vmx(vcpu); 7770 struct kvm_cpuid_entry2 *best = NULL; 7771 int i; 7772 7773 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7774 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7775 if (!best) 7776 return; 7777 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7778 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7779 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7780 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7781 } 7782 7783 /* Get the number of configurable Address Ranges for filtering */ 7784 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7785 PT_CAP_num_address_ranges); 7786 7787 /* Initialize and clear the no dependency bits */ 7788 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7789 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7790 RTIT_CTL_BRANCH_EN); 7791 7792 /* 7793 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7794 * will inject an #GP 7795 */ 7796 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7797 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7798 7799 /* 7800 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7801 * PSBFreq can be set 7802 */ 7803 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7804 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7805 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7806 7807 /* 7808 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7809 */ 7810 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7811 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7812 RTIT_CTL_MTC_RANGE); 7813 7814 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7815 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7816 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7817 RTIT_CTL_PTW_EN); 7818 7819 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7820 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7821 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7822 7823 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7824 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7825 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7826 7827 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7828 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7829 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7830 7831 /* unmask address range configure area */ 7832 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7833 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7834 } 7835 7836 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7837 { 7838 struct vcpu_vmx *vmx = to_vmx(vcpu); 7839 7840 /* 7841 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7842 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7843 * set if and only if XSAVE is supported. 7844 */ 7845 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)) 7846 guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES); 7847 7848 vmx_setup_uret_msrs(vmx); 7849 7850 if (cpu_has_secondary_exec_ctrls()) 7851 vmcs_set_secondary_exec_control(vmx, 7852 vmx_secondary_exec_control(vmx)); 7853 7854 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) 7855 vmx->msr_ia32_feature_control_valid_bits |= 7856 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7857 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7858 else 7859 vmx->msr_ia32_feature_control_valid_bits &= 7860 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7861 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7862 7863 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX)) 7864 nested_vmx_cr_fixed1_bits_update(vcpu); 7865 7866 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7867 guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT)) 7868 update_intel_pt_cfg(vcpu); 7869 7870 if (boot_cpu_has(X86_FEATURE_RTM)) { 7871 struct vmx_uret_msr *msr; 7872 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7873 if (msr) { 7874 bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM); 7875 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7876 } 7877 } 7878 7879 set_cr4_guest_host_mask(vmx); 7880 7881 vmx_write_encls_bitmap(vcpu, NULL); 7882 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX)) 7883 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7884 else 7885 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7886 7887 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC)) 7888 vmx->msr_ia32_feature_control_valid_bits |= 7889 FEAT_CTL_SGX_LC_ENABLED; 7890 else 7891 vmx->msr_ia32_feature_control_valid_bits &= 7892 ~FEAT_CTL_SGX_LC_ENABLED; 7893 7894 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7895 vmx_update_exception_bitmap(vcpu); 7896 } 7897 7898 static __init u64 vmx_get_perf_capabilities(void) 7899 { 7900 u64 perf_cap = PERF_CAP_FW_WRITES; 7901 u64 host_perf_cap = 0; 7902 7903 if (!enable_pmu) 7904 return 0; 7905 7906 if (boot_cpu_has(X86_FEATURE_PDCM)) 7907 rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7908 7909 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7910 x86_perf_get_lbr(&vmx_lbr_caps); 7911 7912 /* 7913 * KVM requires LBR callstack support, as the overhead due to 7914 * context switching LBRs without said support is too high. 7915 * See intel_pmu_create_guest_lbr_event() for more info. 7916 */ 7917 if (!vmx_lbr_caps.has_callstack) 7918 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps)); 7919 else if (vmx_lbr_caps.nr) 7920 perf_cap |= host_perf_cap & PERF_CAP_LBR_FMT; 7921 } 7922 7923 if (vmx_pebs_supported()) { 7924 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7925 7926 /* 7927 * Disallow adaptive PEBS as it is functionally broken, can be 7928 * used by the guest to read *host* LBRs, and can be used to 7929 * bypass userspace event filters. To correctly and safely 7930 * support adaptive PEBS, KVM needs to: 7931 * 7932 * 1. Account for the ADAPTIVE flag when (re)programming fixed 7933 * counters. 7934 * 7935 * 2. Gain support from perf (or take direct control of counter 7936 * programming) to support events without adaptive PEBS 7937 * enabled for the hardware counter. 7938 * 7939 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with 7940 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. 7941 * 7942 * 4. Document which PMU events are effectively exposed to the 7943 * guest via adaptive PEBS, and make adaptive PEBS mutually 7944 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. 7945 */ 7946 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7947 } 7948 7949 return perf_cap; 7950 } 7951 7952 static __init void vmx_set_cpu_caps(void) 7953 { 7954 kvm_set_cpu_caps(); 7955 7956 /* CPUID 0x1 */ 7957 if (nested) 7958 kvm_cpu_cap_set(X86_FEATURE_VMX); 7959 7960 /* CPUID 0x7 */ 7961 if (kvm_mpx_supported()) 7962 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7963 if (!cpu_has_vmx_invpcid()) 7964 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7965 if (vmx_pt_mode_is_host_guest()) 7966 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7967 if (vmx_pebs_supported()) { 7968 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7969 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7970 } 7971 7972 if (!enable_pmu) 7973 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7974 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7975 7976 if (!enable_sgx) { 7977 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7978 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7979 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7980 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7981 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA); 7982 } 7983 7984 if (vmx_umip_emulated()) 7985 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7986 7987 /* CPUID 0xD.1 */ 7988 if (!cpu_has_vmx_xsaves()) 7989 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7990 7991 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7992 if (!cpu_has_vmx_rdtscp()) { 7993 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7994 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7995 } 7996 7997 if (cpu_has_vmx_waitpkg()) 7998 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7999 8000 /* 8001 * Disable CET if unrestricted_guest is unsupported as KVM doesn't 8002 * enforce CET HW behaviors in emulator. On platforms with 8003 * VMX_BASIC[bit56] == 0, inject #CP at VMX entry with error code 8004 * fails, so disable CET in this case too. 8005 */ 8006 if (!cpu_has_load_cet_ctrl() || !enable_unrestricted_guest || 8007 !cpu_has_vmx_basic_no_hw_errcode_cc()) { 8008 kvm_cpu_cap_clear(X86_FEATURE_SHSTK); 8009 kvm_cpu_cap_clear(X86_FEATURE_IBT); 8010 } 8011 } 8012 8013 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu, 8014 struct x86_instruction_info *info, 8015 unsigned long *exit_qualification) 8016 { 8017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 8018 unsigned short port; 8019 int size; 8020 bool imm; 8021 8022 /* 8023 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 8024 * VM-exits depend on the 'unconditional IO exiting' VM-execution 8025 * control. 8026 * 8027 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 8028 */ 8029 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 8030 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); 8031 8032 if (info->intercept == x86_intercept_in || 8033 info->intercept == x86_intercept_ins) { 8034 port = info->src_val; 8035 size = info->dst_bytes; 8036 imm = info->src_type == OP_IMM; 8037 } else { 8038 port = info->dst_val; 8039 size = info->src_bytes; 8040 imm = info->dst_type == OP_IMM; 8041 } 8042 8043 8044 *exit_qualification = ((unsigned long)port << 16) | (size - 1); 8045 8046 if (info->intercept == x86_intercept_ins || 8047 info->intercept == x86_intercept_outs) 8048 *exit_qualification |= BIT(4); 8049 8050 if (info->rep_prefix) 8051 *exit_qualification |= BIT(5); 8052 8053 if (imm) 8054 *exit_qualification |= BIT(6); 8055 8056 return nested_vmx_check_io_bitmaps(vcpu, port, size); 8057 } 8058 8059 int vmx_check_intercept(struct kvm_vcpu *vcpu, 8060 struct x86_instruction_info *info, 8061 enum x86_intercept_stage stage, 8062 struct x86_exception *exception) 8063 { 8064 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 8065 unsigned long exit_qualification = 0; 8066 u32 vm_exit_reason; 8067 u64 exit_insn_len; 8068 8069 switch (info->intercept) { 8070 case x86_intercept_rdpid: 8071 /* 8072 * RDPID causes #UD if not enabled through secondary execution 8073 * controls (ENABLE_RDTSCP). Note, the implicit MSR access to 8074 * TSC_AUX is NOT subject to interception, i.e. checking only 8075 * the dedicated execution control is architecturally correct. 8076 */ 8077 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 8078 exception->vector = UD_VECTOR; 8079 exception->error_code_valid = false; 8080 return X86EMUL_PROPAGATE_FAULT; 8081 } 8082 return X86EMUL_CONTINUE; 8083 8084 case x86_intercept_in: 8085 case x86_intercept_ins: 8086 case x86_intercept_out: 8087 case x86_intercept_outs: 8088 if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification)) 8089 return X86EMUL_CONTINUE; 8090 8091 vm_exit_reason = EXIT_REASON_IO_INSTRUCTION; 8092 break; 8093 8094 case x86_intercept_lgdt: 8095 case x86_intercept_lidt: 8096 case x86_intercept_lldt: 8097 case x86_intercept_ltr: 8098 case x86_intercept_sgdt: 8099 case x86_intercept_sidt: 8100 case x86_intercept_sldt: 8101 case x86_intercept_str: 8102 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 8103 return X86EMUL_CONTINUE; 8104 8105 if (info->intercept == x86_intercept_lldt || 8106 info->intercept == x86_intercept_ltr || 8107 info->intercept == x86_intercept_sldt || 8108 info->intercept == x86_intercept_str) 8109 vm_exit_reason = EXIT_REASON_LDTR_TR; 8110 else 8111 vm_exit_reason = EXIT_REASON_GDTR_IDTR; 8112 /* 8113 * FIXME: Decode the ModR/M to generate the correct exit 8114 * qualification for memory operands. 8115 */ 8116 break; 8117 8118 case x86_intercept_hlt: 8119 if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING)) 8120 return X86EMUL_CONTINUE; 8121 8122 vm_exit_reason = EXIT_REASON_HLT; 8123 break; 8124 8125 case x86_intercept_pause: 8126 /* 8127 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 8128 * with vanilla NOPs in the emulator. Apply the interception 8129 * check only to actual PAUSE instructions. Don't check 8130 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8131 * exit, i.e. KVM is within its rights to allow L2 to execute 8132 * the PAUSE. 8133 */ 8134 if ((info->rep_prefix != REPE_PREFIX) || 8135 !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING)) 8136 return X86EMUL_CONTINUE; 8137 8138 vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION; 8139 break; 8140 8141 /* TODO: check more intercepts... */ 8142 default: 8143 return X86EMUL_UNHANDLEABLE; 8144 } 8145 8146 exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip); 8147 if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH) 8148 return X86EMUL_UNHANDLEABLE; 8149 8150 __nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification, 8151 exit_insn_len); 8152 return X86EMUL_INTERCEPTED; 8153 } 8154 8155 #ifdef CONFIG_X86_64 8156 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8157 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8158 u64 divisor, u64 *result) 8159 { 8160 u64 low = a << shift, high = a >> (64 - shift); 8161 8162 /* To avoid the overflow on divq */ 8163 if (high >= divisor) 8164 return 1; 8165 8166 /* Low hold the result, high hold rem which is discarded */ 8167 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8168 "rm" (divisor), "0" (low), "1" (high)); 8169 *result = low; 8170 8171 return 0; 8172 } 8173 8174 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8175 bool *expired) 8176 { 8177 struct vcpu_vmx *vmx; 8178 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8179 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8180 8181 vmx = to_vmx(vcpu); 8182 tscl = rdtsc(); 8183 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8184 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8185 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8186 ktimer->timer_advance_ns); 8187 8188 if (delta_tsc > lapic_timer_advance_cycles) 8189 delta_tsc -= lapic_timer_advance_cycles; 8190 else 8191 delta_tsc = 0; 8192 8193 /* Convert to host delta tsc if tsc scaling is enabled */ 8194 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8195 delta_tsc && u64_shl_div_u64(delta_tsc, 8196 kvm_caps.tsc_scaling_ratio_frac_bits, 8197 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8198 return -ERANGE; 8199 8200 /* 8201 * If the delta tsc can't fit in the 32 bit after the multi shift, 8202 * we can't use the preemption timer. 8203 * It's possible that it fits on later vmentries, but checking 8204 * on every vmentry is costly so we just use an hrtimer. 8205 */ 8206 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8207 return -ERANGE; 8208 8209 vmx->hv_deadline_tsc = tscl + delta_tsc; 8210 *expired = !delta_tsc; 8211 return 0; 8212 } 8213 8214 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8215 { 8216 to_vmx(vcpu)->hv_deadline_tsc = -1; 8217 } 8218 #endif 8219 8220 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8221 { 8222 struct vcpu_vmx *vmx = to_vmx(vcpu); 8223 8224 if (WARN_ON_ONCE(!enable_pml)) 8225 return; 8226 8227 if (is_guest_mode(vcpu)) { 8228 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8229 return; 8230 } 8231 8232 /* 8233 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8234 * code, but in that case another update request will be made and so 8235 * the guest will never run with a stale PML value. 8236 */ 8237 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8238 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8239 else 8240 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8241 } 8242 8243 void vmx_setup_mce(struct kvm_vcpu *vcpu) 8244 { 8245 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8246 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8247 FEAT_CTL_LMCE_ENABLED; 8248 else 8249 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8250 ~FEAT_CTL_LMCE_ENABLED; 8251 } 8252 8253 #ifdef CONFIG_KVM_SMM 8254 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8255 { 8256 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8257 if (to_vmx(vcpu)->nested.nested_run_pending) 8258 return -EBUSY; 8259 return !is_smm(vcpu); 8260 } 8261 8262 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8263 { 8264 struct vcpu_vmx *vmx = to_vmx(vcpu); 8265 8266 /* 8267 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8268 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8269 * SMI and RSM only modify state that is saved and restored via SMRAM. 8270 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8271 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8272 */ 8273 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8274 if (vmx->nested.smm.guest_mode) 8275 nested_vmx_vmexit(vcpu, -1, 0, 0); 8276 8277 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8278 vmx->nested.vmxon = false; 8279 vmx_clear_hlt(vcpu); 8280 return 0; 8281 } 8282 8283 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8284 { 8285 struct vcpu_vmx *vmx = to_vmx(vcpu); 8286 int ret; 8287 8288 if (vmx->nested.smm.vmxon) { 8289 vmx->nested.vmxon = true; 8290 vmx->nested.smm.vmxon = false; 8291 } 8292 8293 if (vmx->nested.smm.guest_mode) { 8294 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8295 if (ret) 8296 return ret; 8297 8298 vmx->nested.nested_run_pending = 1; 8299 vmx->nested.smm.guest_mode = false; 8300 } 8301 return 0; 8302 } 8303 8304 void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8305 { 8306 /* RSM will cause a vmexit anyway. */ 8307 } 8308 #endif 8309 8310 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8311 { 8312 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8313 } 8314 8315 void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8316 { 8317 if (is_guest_mode(vcpu)) { 8318 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8319 8320 if (hrtimer_try_to_cancel(timer) == 1) 8321 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8322 } 8323 } 8324 8325 void vmx_hardware_unsetup(void) 8326 { 8327 kvm_set_posted_intr_wakeup_handler(NULL); 8328 8329 if (nested) 8330 nested_vmx_hardware_unsetup(); 8331 8332 free_kvm_area(); 8333 } 8334 8335 void vmx_vm_destroy(struct kvm *kvm) 8336 { 8337 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8338 8339 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8340 } 8341 8342 /* 8343 * Note, the SDM states that the linear address is masked *after* the modified 8344 * canonicality check, whereas KVM masks (untags) the address and then performs 8345 * a "normal" canonicality check. Functionally, the two methods are identical, 8346 * and when the masking occurs relative to the canonicality check isn't visible 8347 * to software, i.e. KVM's behavior doesn't violate the SDM. 8348 */ 8349 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags) 8350 { 8351 int lam_bit; 8352 unsigned long cr3_bits; 8353 8354 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG)) 8355 return gva; 8356 8357 if (!is_64_bit_mode(vcpu)) 8358 return gva; 8359 8360 /* 8361 * Bit 63 determines if the address should be treated as user address 8362 * or a supervisor address. 8363 */ 8364 if (!(gva & BIT_ULL(63))) { 8365 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu); 8366 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48))) 8367 return gva; 8368 8369 /* LAM_U48 is ignored if LAM_U57 is set. */ 8370 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47; 8371 } else { 8372 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP)) 8373 return gva; 8374 8375 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47; 8376 } 8377 8378 /* 8379 * Untag the address by sign-extending the lam_bit, but NOT to bit 63. 8380 * Bit 63 is retained from the raw virtual address so that untagging 8381 * doesn't change a user access to a supervisor access, and vice versa. 8382 */ 8383 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63)); 8384 } 8385 8386 static unsigned int vmx_handle_intel_pt_intr(void) 8387 { 8388 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8389 8390 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8391 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8392 return 0; 8393 8394 kvm_make_request(KVM_REQ_PMI, vcpu); 8395 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8396 (unsigned long *)&vcpu->arch.pmu.global_status); 8397 return 1; 8398 } 8399 8400 static __init void vmx_setup_user_return_msrs(void) 8401 { 8402 8403 /* 8404 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8405 * will emulate SYSCALL in legacy mode if the vendor string in guest 8406 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8407 * support this emulation, MSR_STAR is included in the list for i386, 8408 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8409 * into hardware and is here purely for emulation purposes. 8410 */ 8411 const u32 vmx_uret_msrs_list[] = { 8412 #ifdef CONFIG_X86_64 8413 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8414 #endif 8415 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8416 MSR_IA32_TSX_CTRL, 8417 }; 8418 int i; 8419 8420 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8421 8422 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8423 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8424 } 8425 8426 static void __init vmx_setup_me_spte_mask(void) 8427 { 8428 u64 me_mask = 0; 8429 8430 /* 8431 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8432 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems, 8433 * boot_cpu_data.x86_phys_bits holds the actual physical address 8434 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to 8435 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits. 8436 */ 8437 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr) 8438 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8439 kvm_host.maxphyaddr - 1); 8440 8441 /* 8442 * Unlike SME, host kernel doesn't support setting up any 8443 * MKTME KeyID on Intel platforms. No memory encryption 8444 * bits should be included into the SPTE. 8445 */ 8446 kvm_mmu_set_me_spte_mask(0, me_mask); 8447 } 8448 8449 __init int vmx_hardware_setup(void) 8450 { 8451 unsigned long host_bndcfgs; 8452 struct desc_ptr dt; 8453 int r; 8454 8455 store_idt(&dt); 8456 host_idt_base = dt.address; 8457 8458 vmx_setup_user_return_msrs(); 8459 8460 8461 if (boot_cpu_has(X86_FEATURE_NX)) 8462 kvm_enable_efer_bits(EFER_NX); 8463 8464 if (boot_cpu_has(X86_FEATURE_MPX)) { 8465 rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs); 8466 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8467 } 8468 8469 if (!cpu_has_vmx_mpx()) 8470 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8471 XFEATURE_MASK_BNDCSR); 8472 8473 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8474 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8475 enable_vpid = 0; 8476 8477 if (!cpu_has_vmx_ept() || 8478 !cpu_has_vmx_ept_4levels() || 8479 !cpu_has_vmx_ept_mt_wb() || 8480 !cpu_has_vmx_invept_global()) 8481 enable_ept = 0; 8482 8483 /* NX support is required for shadow paging. */ 8484 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8485 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8486 return -EOPNOTSUPP; 8487 } 8488 8489 /* 8490 * Shadow paging doesn't have a (further) performance penalty 8491 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8492 * by default 8493 */ 8494 if (!enable_ept) 8495 allow_smaller_maxphyaddr = true; 8496 8497 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8498 enable_ept_ad_bits = 0; 8499 8500 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8501 enable_unrestricted_guest = 0; 8502 8503 if (!cpu_has_vmx_flexpriority()) 8504 flexpriority_enabled = 0; 8505 8506 if (!cpu_has_virtual_nmis()) 8507 enable_vnmi = 0; 8508 8509 #ifdef CONFIG_X86_SGX_KVM 8510 if (!cpu_has_vmx_encls_vmexit()) 8511 enable_sgx = false; 8512 #endif 8513 8514 /* 8515 * set_apic_access_page_addr() is used to reload apic access 8516 * page upon invalidation. No need to do anything if not 8517 * using the APIC_ACCESS_ADDR VMCS field. 8518 */ 8519 if (!flexpriority_enabled) 8520 vt_x86_ops.set_apic_access_page_addr = NULL; 8521 8522 if (!cpu_has_vmx_tpr_shadow()) 8523 vt_x86_ops.update_cr8_intercept = NULL; 8524 8525 #if IS_ENABLED(CONFIG_HYPERV) 8526 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8527 && enable_ept) { 8528 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8529 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8530 } 8531 #endif 8532 8533 if (!cpu_has_vmx_ple()) { 8534 ple_gap = 0; 8535 ple_window = 0; 8536 ple_window_grow = 0; 8537 ple_window_max = 0; 8538 ple_window_shrink = 0; 8539 } 8540 8541 if (!cpu_has_vmx_apicv()) 8542 enable_apicv = 0; 8543 if (!enable_apicv) 8544 vt_x86_ops.sync_pir_to_irr = NULL; 8545 8546 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8547 enable_ipiv = false; 8548 8549 if (cpu_has_vmx_tsc_scaling()) 8550 kvm_caps.has_tsc_control = true; 8551 8552 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8553 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8554 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8555 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8556 8557 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8558 8559 if (enable_ept) 8560 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8561 cpu_has_vmx_ept_execute_only()); 8562 else 8563 vt_x86_ops.get_mt_mask = NULL; 8564 8565 /* 8566 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8567 * bits to shadow_zero_check. 8568 */ 8569 vmx_setup_me_spte_mask(); 8570 8571 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8572 ept_caps_to_lpage_level(vmx_capability.ept)); 8573 8574 /* 8575 * Only enable PML when hardware supports PML feature, and both EPT 8576 * and EPT A/D bit features are enabled -- PML depends on them to work. 8577 */ 8578 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8579 enable_pml = 0; 8580 8581 if (!cpu_has_vmx_preemption_timer()) 8582 enable_preemption_timer = false; 8583 8584 if (enable_preemption_timer) { 8585 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8586 8587 cpu_preemption_timer_multi = 8588 vmx_misc_preemption_timer_rate(vmcs_config.misc); 8589 8590 if (tsc_khz) 8591 use_timer_freq = (u64)tsc_khz * 1000; 8592 use_timer_freq >>= cpu_preemption_timer_multi; 8593 8594 /* 8595 * KVM "disables" the preemption timer by setting it to its max 8596 * value. Don't use the timer if it might cause spurious exits 8597 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8598 */ 8599 if (use_timer_freq > 0xffffffffu / 10) 8600 enable_preemption_timer = false; 8601 } 8602 8603 if (!enable_preemption_timer) { 8604 vt_x86_ops.set_hv_timer = NULL; 8605 vt_x86_ops.cancel_hv_timer = NULL; 8606 } 8607 8608 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8609 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8610 8611 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8612 return -EINVAL; 8613 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8614 pt_mode = PT_MODE_SYSTEM; 8615 if (pt_mode == PT_MODE_HOST_GUEST) 8616 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8617 else 8618 vt_init_ops.handle_intel_pt_intr = NULL; 8619 8620 setup_default_sgx_lepubkeyhash(); 8621 8622 vmx_set_cpu_caps(); 8623 8624 /* 8625 * Configure nested capabilities after core CPU capabilities so that 8626 * nested support can be conditional on base support, e.g. so that KVM 8627 * can hide/show features based on kvm_cpu_cap_has(). 8628 */ 8629 if (nested) { 8630 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8631 8632 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8633 if (r) 8634 return r; 8635 } 8636 8637 r = alloc_kvm_area(); 8638 if (r && nested) 8639 nested_vmx_hardware_unsetup(); 8640 8641 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8642 8643 /* 8644 * On Intel CPUs that lack self-snoop feature, letting the guest control 8645 * memory types may result in unexpected behavior. So always ignore guest 8646 * PAT on those CPUs and map VM as writeback, not allowing userspace to 8647 * disable the quirk. 8648 * 8649 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is 8650 * supported, UC is slow enough to cause issues with some older guests (e.g. 8651 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to 8652 * map the video RAM, causing wayland desktop to fail to get started 8653 * correctly). To avoid breaking those older guests that rely on KVM to force 8654 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the 8655 * safer (for performance) default behavior. 8656 * 8657 * On top of this, non-coherent DMA devices need the guest to flush CPU 8658 * caches properly. This also requires honoring guest PAT, and is forced 8659 * independent of the quirk in vmx_ignore_guest_pat(). 8660 */ 8661 if (!static_cpu_has(X86_FEATURE_SELFSNOOP)) 8662 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT; 8663 8664 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT; 8665 8666 return r; 8667 } 8668 8669 static void vmx_cleanup_l1d_flush(void) 8670 { 8671 if (vmx_l1d_flush_pages) { 8672 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8673 vmx_l1d_flush_pages = NULL; 8674 } 8675 /* Restore state so sysfs ignores VMX */ 8676 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8677 } 8678 8679 void vmx_exit(void) 8680 { 8681 allow_smaller_maxphyaddr = false; 8682 8683 vmx_cleanup_l1d_flush(); 8684 8685 kvm_x86_vendor_exit(); 8686 } 8687 8688 int __init vmx_init(void) 8689 { 8690 int r, cpu; 8691 8692 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx); 8693 8694 if (!kvm_is_vmx_supported()) 8695 return -EOPNOTSUPP; 8696 8697 /* 8698 * Note, VMCS and eVMCS configuration only touch VMX knobs/variables, 8699 * i.e. there's nothing to unwind if a later step fails. 8700 */ 8701 hv_init_evmcs(); 8702 8703 /* 8704 * Parse the VMCS config and VMX capabilities before anything else, so 8705 * that the information is available to all setup flows. 8706 */ 8707 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8708 return -EIO; 8709 8710 r = kvm_x86_vendor_init(&vt_init_ops); 8711 if (r) 8712 return r; 8713 8714 /* 8715 * Must be called after common x86 init so enable_ept is properly set 8716 * up. Hand the parameter mitigation value in which was stored in 8717 * the pre module init parser. If no parameter was given, it will 8718 * contain 'auto' which will be turned into the default 'cond' 8719 * mitigation mode. 8720 */ 8721 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8722 if (r) 8723 goto err_l1d_flush; 8724 8725 for_each_possible_cpu(cpu) { 8726 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8727 8728 pi_init_cpu(cpu); 8729 } 8730 8731 vmx_check_vmcs12_offsets(); 8732 8733 return 0; 8734 8735 err_l1d_flush: 8736 kvm_x86_vendor_exit(); 8737 return r; 8738 } 8739