1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/cleanup.h> 3 #include <linux/cpu.h> 4 #include <asm/cpufeature.h> 5 #include <asm/fpu/xcr.h> 6 #include <linux/misc_cgroup.h> 7 #include <linux/mmu_context.h> 8 #include <asm/tdx.h> 9 #include "capabilities.h" 10 #include "mmu.h" 11 #include "x86_ops.h" 12 #include "lapic.h" 13 #include "tdx.h" 14 #include "vmx.h" 15 #include "mmu/spte.h" 16 #include "common.h" 17 #include "posted_intr.h" 18 #include "irq.h" 19 #include <trace/events/kvm.h> 20 #include "trace.h" 21 22 #pragma GCC poison to_vmx 23 24 #undef pr_fmt 25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 26 27 #define pr_tdx_error(__fn, __err) \ 28 pr_err_ratelimited("SEAMCALL %s failed: 0x%llx\n", #__fn, __err) 29 30 #define __pr_tdx_error_N(__fn_str, __err, __fmt, ...) \ 31 pr_err_ratelimited("SEAMCALL " __fn_str " failed: 0x%llx, " __fmt, __err, __VA_ARGS__) 32 33 #define pr_tdx_error_1(__fn, __err, __rcx) \ 34 __pr_tdx_error_N(#__fn, __err, "rcx 0x%llx\n", __rcx) 35 36 #define pr_tdx_error_2(__fn, __err, __rcx, __rdx) \ 37 __pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx\n", __rcx, __rdx) 38 39 #define pr_tdx_error_3(__fn, __err, __rcx, __rdx, __r8) \ 40 __pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx, r8 0x%llx\n", __rcx, __rdx, __r8) 41 42 bool enable_tdx __ro_after_init; 43 module_param_named(tdx, enable_tdx, bool, 0444); 44 45 #define TDX_SHARED_BIT_PWL_5 gpa_to_gfn(BIT_ULL(51)) 46 #define TDX_SHARED_BIT_PWL_4 gpa_to_gfn(BIT_ULL(47)) 47 48 static enum cpuhp_state tdx_cpuhp_state; 49 50 static const struct tdx_sys_info *tdx_sysinfo; 51 52 void tdh_vp_rd_failed(struct vcpu_tdx *tdx, char *uclass, u32 field, u64 err) 53 { 54 KVM_BUG_ON(1, tdx->vcpu.kvm); 55 pr_err("TDH_VP_RD[%s.0x%x] failed 0x%llx\n", uclass, field, err); 56 } 57 58 void tdh_vp_wr_failed(struct vcpu_tdx *tdx, char *uclass, char *op, u32 field, 59 u64 val, u64 err) 60 { 61 KVM_BUG_ON(1, tdx->vcpu.kvm); 62 pr_err("TDH_VP_WR[%s.0x%x]%s0x%llx failed: 0x%llx\n", uclass, field, op, val, err); 63 } 64 65 #define KVM_SUPPORTED_TD_ATTRS (TDX_TD_ATTR_SEPT_VE_DISABLE) 66 67 static __always_inline struct kvm_tdx *to_kvm_tdx(struct kvm *kvm) 68 { 69 return container_of(kvm, struct kvm_tdx, kvm); 70 } 71 72 static __always_inline struct vcpu_tdx *to_tdx(struct kvm_vcpu *vcpu) 73 { 74 return container_of(vcpu, struct vcpu_tdx, vcpu); 75 } 76 77 static u64 tdx_get_supported_attrs(const struct tdx_sys_info_td_conf *td_conf) 78 { 79 u64 val = KVM_SUPPORTED_TD_ATTRS; 80 81 if ((val & td_conf->attributes_fixed1) != td_conf->attributes_fixed1) 82 return 0; 83 84 val &= td_conf->attributes_fixed0; 85 86 return val; 87 } 88 89 static u64 tdx_get_supported_xfam(const struct tdx_sys_info_td_conf *td_conf) 90 { 91 u64 val = kvm_caps.supported_xcr0 | kvm_caps.supported_xss; 92 93 if ((val & td_conf->xfam_fixed1) != td_conf->xfam_fixed1) 94 return 0; 95 96 val &= td_conf->xfam_fixed0; 97 98 return val; 99 } 100 101 static int tdx_get_guest_phys_addr_bits(const u32 eax) 102 { 103 return (eax & GENMASK(23, 16)) >> 16; 104 } 105 106 static u32 tdx_set_guest_phys_addr_bits(const u32 eax, int addr_bits) 107 { 108 return (eax & ~GENMASK(23, 16)) | (addr_bits & 0xff) << 16; 109 } 110 111 #define TDX_FEATURE_TSX (__feature_bit(X86_FEATURE_HLE) | __feature_bit(X86_FEATURE_RTM)) 112 113 static bool has_tsx(const struct kvm_cpuid_entry2 *entry) 114 { 115 return entry->function == 7 && entry->index == 0 && 116 (entry->ebx & TDX_FEATURE_TSX); 117 } 118 119 static void clear_tsx(struct kvm_cpuid_entry2 *entry) 120 { 121 entry->ebx &= ~TDX_FEATURE_TSX; 122 } 123 124 static bool has_waitpkg(const struct kvm_cpuid_entry2 *entry) 125 { 126 return entry->function == 7 && entry->index == 0 && 127 (entry->ecx & __feature_bit(X86_FEATURE_WAITPKG)); 128 } 129 130 static void clear_waitpkg(struct kvm_cpuid_entry2 *entry) 131 { 132 entry->ecx &= ~__feature_bit(X86_FEATURE_WAITPKG); 133 } 134 135 static void tdx_clear_unsupported_cpuid(struct kvm_cpuid_entry2 *entry) 136 { 137 if (has_tsx(entry)) 138 clear_tsx(entry); 139 140 if (has_waitpkg(entry)) 141 clear_waitpkg(entry); 142 } 143 144 static bool tdx_unsupported_cpuid(const struct kvm_cpuid_entry2 *entry) 145 { 146 return has_tsx(entry) || has_waitpkg(entry); 147 } 148 149 #define KVM_TDX_CPUID_NO_SUBLEAF ((__u32)-1) 150 151 static void td_init_cpuid_entry2(struct kvm_cpuid_entry2 *entry, unsigned char idx) 152 { 153 const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf; 154 155 entry->function = (u32)td_conf->cpuid_config_leaves[idx]; 156 entry->index = td_conf->cpuid_config_leaves[idx] >> 32; 157 entry->eax = (u32)td_conf->cpuid_config_values[idx][0]; 158 entry->ebx = td_conf->cpuid_config_values[idx][0] >> 32; 159 entry->ecx = (u32)td_conf->cpuid_config_values[idx][1]; 160 entry->edx = td_conf->cpuid_config_values[idx][1] >> 32; 161 162 if (entry->index == KVM_TDX_CPUID_NO_SUBLEAF) 163 entry->index = 0; 164 165 /* 166 * The TDX module doesn't allow configuring the guest phys addr bits 167 * (EAX[23:16]). However, KVM uses it as an interface to the userspace 168 * to configure the GPAW. Report these bits as configurable. 169 */ 170 if (entry->function == 0x80000008) 171 entry->eax = tdx_set_guest_phys_addr_bits(entry->eax, 0xff); 172 173 tdx_clear_unsupported_cpuid(entry); 174 } 175 176 #define TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT BIT(1) 177 178 static int init_kvm_tdx_caps(const struct tdx_sys_info_td_conf *td_conf, 179 struct kvm_tdx_capabilities *caps) 180 { 181 int i; 182 183 caps->supported_attrs = tdx_get_supported_attrs(td_conf); 184 if (!caps->supported_attrs) 185 return -EIO; 186 187 caps->supported_xfam = tdx_get_supported_xfam(td_conf); 188 if (!caps->supported_xfam) 189 return -EIO; 190 191 caps->cpuid.nent = td_conf->num_cpuid_config; 192 193 caps->user_tdvmcallinfo_1_r11 = 194 TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT; 195 196 for (i = 0; i < td_conf->num_cpuid_config; i++) 197 td_init_cpuid_entry2(&caps->cpuid.entries[i], i); 198 199 return 0; 200 } 201 202 /* 203 * Some SEAMCALLs acquire the TDX module globally, and can fail with 204 * TDX_OPERAND_BUSY. Use a global mutex to serialize these SEAMCALLs. 205 */ 206 static DEFINE_MUTEX(tdx_lock); 207 208 static atomic_t nr_configured_hkid; 209 210 static bool tdx_operand_busy(u64 err) 211 { 212 return (err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_BUSY; 213 } 214 215 216 /* 217 * A per-CPU list of TD vCPUs associated with a given CPU. 218 * Protected by interrupt mask. Only manipulated by the CPU owning this per-CPU 219 * list. 220 * - When a vCPU is loaded onto a CPU, it is removed from the per-CPU list of 221 * the old CPU during the IPI callback running on the old CPU, and then added 222 * to the per-CPU list of the new CPU. 223 * - When a TD is tearing down, all vCPUs are disassociated from their current 224 * running CPUs and removed from the per-CPU list during the IPI callback 225 * running on those CPUs. 226 * - When a CPU is brought down, traverse the per-CPU list to disassociate all 227 * associated TD vCPUs and remove them from the per-CPU list. 228 */ 229 static DEFINE_PER_CPU(struct list_head, associated_tdvcpus); 230 231 static __always_inline unsigned long tdvmcall_exit_type(struct kvm_vcpu *vcpu) 232 { 233 return to_tdx(vcpu)->vp_enter_args.r10; 234 } 235 236 static __always_inline unsigned long tdvmcall_leaf(struct kvm_vcpu *vcpu) 237 { 238 return to_tdx(vcpu)->vp_enter_args.r11; 239 } 240 241 static __always_inline void tdvmcall_set_return_code(struct kvm_vcpu *vcpu, 242 long val) 243 { 244 to_tdx(vcpu)->vp_enter_args.r10 = val; 245 } 246 247 static __always_inline void tdvmcall_set_return_val(struct kvm_vcpu *vcpu, 248 unsigned long val) 249 { 250 to_tdx(vcpu)->vp_enter_args.r11 = val; 251 } 252 253 static inline void tdx_hkid_free(struct kvm_tdx *kvm_tdx) 254 { 255 tdx_guest_keyid_free(kvm_tdx->hkid); 256 kvm_tdx->hkid = -1; 257 atomic_dec(&nr_configured_hkid); 258 misc_cg_uncharge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1); 259 put_misc_cg(kvm_tdx->misc_cg); 260 kvm_tdx->misc_cg = NULL; 261 } 262 263 static inline bool is_hkid_assigned(struct kvm_tdx *kvm_tdx) 264 { 265 return kvm_tdx->hkid > 0; 266 } 267 268 static inline void tdx_disassociate_vp(struct kvm_vcpu *vcpu) 269 { 270 lockdep_assert_irqs_disabled(); 271 272 list_del(&to_tdx(vcpu)->cpu_list); 273 274 /* 275 * Ensure tdx->cpu_list is updated before setting vcpu->cpu to -1, 276 * otherwise, a different CPU can see vcpu->cpu = -1 and add the vCPU 277 * to its list before it's deleted from this CPU's list. 278 */ 279 smp_wmb(); 280 281 vcpu->cpu = -1; 282 } 283 284 static void tdx_no_vcpus_enter_start(struct kvm *kvm) 285 { 286 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 287 288 lockdep_assert_held_write(&kvm->mmu_lock); 289 290 WRITE_ONCE(kvm_tdx->wait_for_sept_zap, true); 291 292 kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE); 293 } 294 295 static void tdx_no_vcpus_enter_stop(struct kvm *kvm) 296 { 297 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 298 299 lockdep_assert_held_write(&kvm->mmu_lock); 300 301 WRITE_ONCE(kvm_tdx->wait_for_sept_zap, false); 302 } 303 304 /* TDH.PHYMEM.PAGE.RECLAIM is allowed only when destroying the TD. */ 305 static int __tdx_reclaim_page(struct page *page) 306 { 307 u64 err, rcx, rdx, r8; 308 309 err = tdh_phymem_page_reclaim(page, &rcx, &rdx, &r8); 310 311 /* 312 * No need to check for TDX_OPERAND_BUSY; all TD pages are freed 313 * before the HKID is released and control pages have also been 314 * released at this point, so there is no possibility of contention. 315 */ 316 if (WARN_ON_ONCE(err)) { 317 pr_tdx_error_3(TDH_PHYMEM_PAGE_RECLAIM, err, rcx, rdx, r8); 318 return -EIO; 319 } 320 return 0; 321 } 322 323 static int tdx_reclaim_page(struct page *page) 324 { 325 int r; 326 327 r = __tdx_reclaim_page(page); 328 if (!r) 329 tdx_quirk_reset_page(page); 330 return r; 331 } 332 333 334 /* 335 * Reclaim the TD control page(s) which are crypto-protected by TDX guest's 336 * private KeyID. Assume the cache associated with the TDX private KeyID has 337 * been flushed. 338 */ 339 static void tdx_reclaim_control_page(struct page *ctrl_page) 340 { 341 /* 342 * Leak the page if the kernel failed to reclaim the page. 343 * The kernel cannot use it safely anymore. 344 */ 345 if (tdx_reclaim_page(ctrl_page)) 346 return; 347 348 __free_page(ctrl_page); 349 } 350 351 struct tdx_flush_vp_arg { 352 struct kvm_vcpu *vcpu; 353 u64 err; 354 }; 355 356 static void tdx_flush_vp(void *_arg) 357 { 358 struct tdx_flush_vp_arg *arg = _arg; 359 struct kvm_vcpu *vcpu = arg->vcpu; 360 u64 err; 361 362 arg->err = 0; 363 lockdep_assert_irqs_disabled(); 364 365 /* Task migration can race with CPU offlining. */ 366 if (unlikely(vcpu->cpu != raw_smp_processor_id())) 367 return; 368 369 /* 370 * No need to do TDH_VP_FLUSH if the vCPU hasn't been initialized. The 371 * list tracking still needs to be updated so that it's correct if/when 372 * the vCPU does get initialized. 373 */ 374 if (to_tdx(vcpu)->state != VCPU_TD_STATE_UNINITIALIZED) { 375 /* 376 * No need to retry. TDX Resources needed for TDH.VP.FLUSH are: 377 * TDVPR as exclusive, TDR as shared, and TDCS as shared. This 378 * vp flush function is called when destructing vCPU/TD or vCPU 379 * migration. No other thread uses TDVPR in those cases. 380 */ 381 err = tdh_vp_flush(&to_tdx(vcpu)->vp); 382 if (unlikely(err && err != TDX_VCPU_NOT_ASSOCIATED)) { 383 /* 384 * This function is called in IPI context. Do not use 385 * printk to avoid console semaphore. 386 * The caller prints out the error message, instead. 387 */ 388 if (err) 389 arg->err = err; 390 } 391 } 392 393 tdx_disassociate_vp(vcpu); 394 } 395 396 static void tdx_flush_vp_on_cpu(struct kvm_vcpu *vcpu) 397 { 398 struct tdx_flush_vp_arg arg = { 399 .vcpu = vcpu, 400 }; 401 int cpu = vcpu->cpu; 402 403 if (unlikely(cpu == -1)) 404 return; 405 406 smp_call_function_single(cpu, tdx_flush_vp, &arg, 1); 407 if (KVM_BUG_ON(arg.err, vcpu->kvm)) 408 pr_tdx_error(TDH_VP_FLUSH, arg.err); 409 } 410 411 void tdx_disable_virtualization_cpu(void) 412 { 413 int cpu = raw_smp_processor_id(); 414 struct list_head *tdvcpus = &per_cpu(associated_tdvcpus, cpu); 415 struct tdx_flush_vp_arg arg; 416 struct vcpu_tdx *tdx, *tmp; 417 unsigned long flags; 418 419 local_irq_save(flags); 420 /* Safe variant needed as tdx_disassociate_vp() deletes the entry. */ 421 list_for_each_entry_safe(tdx, tmp, tdvcpus, cpu_list) { 422 arg.vcpu = &tdx->vcpu; 423 tdx_flush_vp(&arg); 424 } 425 local_irq_restore(flags); 426 427 /* 428 * Flush cache now if kexec is possible: this is necessary to avoid 429 * having dirty private memory cachelines when the new kernel boots, 430 * but WBINVD is a relatively expensive operation and doing it during 431 * kexec can exacerbate races in native_stop_other_cpus(). Do it 432 * now, since this is a safe moment and there is going to be no more 433 * TDX activity on this CPU from this point on. 434 */ 435 tdx_cpu_flush_cache_for_kexec(); 436 } 437 438 #define TDX_SEAMCALL_RETRIES 10000 439 440 static void smp_func_do_phymem_cache_wb(void *unused) 441 { 442 u64 err = 0; 443 bool resume; 444 int i; 445 446 /* 447 * TDH.PHYMEM.CACHE.WB flushes caches associated with any TDX private 448 * KeyID on the package or core. The TDX module may not finish the 449 * cache flush but return TDX_INTERRUPTED_RESUMEABLE instead. The 450 * kernel should retry it until it returns success w/o rescheduling. 451 */ 452 for (i = TDX_SEAMCALL_RETRIES; i > 0; i--) { 453 resume = !!err; 454 err = tdh_phymem_cache_wb(resume); 455 switch (err) { 456 case TDX_INTERRUPTED_RESUMABLE: 457 continue; 458 case TDX_NO_HKID_READY_TO_WBCACHE: 459 err = TDX_SUCCESS; /* Already done by other thread */ 460 fallthrough; 461 default: 462 goto out; 463 } 464 } 465 466 out: 467 if (WARN_ON_ONCE(err)) 468 pr_tdx_error(TDH_PHYMEM_CACHE_WB, err); 469 } 470 471 void tdx_mmu_release_hkid(struct kvm *kvm) 472 { 473 bool packages_allocated, targets_allocated; 474 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 475 cpumask_var_t packages, targets; 476 struct kvm_vcpu *vcpu; 477 unsigned long j; 478 int i; 479 u64 err; 480 481 if (!is_hkid_assigned(kvm_tdx)) 482 return; 483 484 packages_allocated = zalloc_cpumask_var(&packages, GFP_KERNEL); 485 targets_allocated = zalloc_cpumask_var(&targets, GFP_KERNEL); 486 cpus_read_lock(); 487 488 kvm_for_each_vcpu(j, vcpu, kvm) 489 tdx_flush_vp_on_cpu(vcpu); 490 491 /* 492 * TDH.PHYMEM.CACHE.WB tries to acquire the TDX module global lock 493 * and can fail with TDX_OPERAND_BUSY when it fails to get the lock. 494 * Multiple TDX guests can be destroyed simultaneously. Take the 495 * mutex to prevent it from getting error. 496 */ 497 mutex_lock(&tdx_lock); 498 499 /* 500 * Releasing HKID is in vm_destroy(). 501 * After the above flushing vps, there should be no more vCPU 502 * associations, as all vCPU fds have been released at this stage. 503 */ 504 err = tdh_mng_vpflushdone(&kvm_tdx->td); 505 if (err == TDX_FLUSHVP_NOT_DONE) 506 goto out; 507 if (KVM_BUG_ON(err, kvm)) { 508 pr_tdx_error(TDH_MNG_VPFLUSHDONE, err); 509 pr_err("tdh_mng_vpflushdone() failed. HKID %d is leaked.\n", 510 kvm_tdx->hkid); 511 goto out; 512 } 513 514 for_each_online_cpu(i) { 515 if (packages_allocated && 516 cpumask_test_and_set_cpu(topology_physical_package_id(i), 517 packages)) 518 continue; 519 if (targets_allocated) 520 cpumask_set_cpu(i, targets); 521 } 522 if (targets_allocated) 523 on_each_cpu_mask(targets, smp_func_do_phymem_cache_wb, NULL, true); 524 else 525 on_each_cpu(smp_func_do_phymem_cache_wb, NULL, true); 526 /* 527 * In the case of error in smp_func_do_phymem_cache_wb(), the following 528 * tdh_mng_key_freeid() will fail. 529 */ 530 err = tdh_mng_key_freeid(&kvm_tdx->td); 531 if (KVM_BUG_ON(err, kvm)) { 532 pr_tdx_error(TDH_MNG_KEY_FREEID, err); 533 pr_err("tdh_mng_key_freeid() failed. HKID %d is leaked.\n", 534 kvm_tdx->hkid); 535 } else { 536 tdx_hkid_free(kvm_tdx); 537 } 538 539 out: 540 mutex_unlock(&tdx_lock); 541 cpus_read_unlock(); 542 free_cpumask_var(targets); 543 free_cpumask_var(packages); 544 } 545 546 static void tdx_reclaim_td_control_pages(struct kvm *kvm) 547 { 548 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 549 u64 err; 550 int i; 551 552 /* 553 * tdx_mmu_release_hkid() failed to reclaim HKID. Something went wrong 554 * heavily with TDX module. Give up freeing TD pages. As the function 555 * already warned, don't warn it again. 556 */ 557 if (is_hkid_assigned(kvm_tdx)) 558 return; 559 560 if (kvm_tdx->td.tdcs_pages) { 561 for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) { 562 if (!kvm_tdx->td.tdcs_pages[i]) 563 continue; 564 565 tdx_reclaim_control_page(kvm_tdx->td.tdcs_pages[i]); 566 } 567 kfree(kvm_tdx->td.tdcs_pages); 568 kvm_tdx->td.tdcs_pages = NULL; 569 } 570 571 if (!kvm_tdx->td.tdr_page) 572 return; 573 574 if (__tdx_reclaim_page(kvm_tdx->td.tdr_page)) 575 return; 576 577 /* 578 * Use a SEAMCALL to ask the TDX module to flush the cache based on the 579 * KeyID. TDX module may access TDR while operating on TD (Especially 580 * when it is reclaiming TDCS). 581 */ 582 err = tdh_phymem_page_wbinvd_tdr(&kvm_tdx->td); 583 if (KVM_BUG_ON(err, kvm)) { 584 pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err); 585 return; 586 } 587 tdx_quirk_reset_page(kvm_tdx->td.tdr_page); 588 589 __free_page(kvm_tdx->td.tdr_page); 590 kvm_tdx->td.tdr_page = NULL; 591 } 592 593 void tdx_vm_destroy(struct kvm *kvm) 594 { 595 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 596 597 tdx_reclaim_td_control_pages(kvm); 598 599 kvm_tdx->state = TD_STATE_UNINITIALIZED; 600 } 601 602 static int tdx_do_tdh_mng_key_config(void *param) 603 { 604 struct kvm_tdx *kvm_tdx = param; 605 u64 err; 606 607 /* TDX_RND_NO_ENTROPY related retries are handled by sc_retry() */ 608 err = tdh_mng_key_config(&kvm_tdx->td); 609 610 if (KVM_BUG_ON(err, &kvm_tdx->kvm)) { 611 pr_tdx_error(TDH_MNG_KEY_CONFIG, err); 612 return -EIO; 613 } 614 615 return 0; 616 } 617 618 int tdx_vm_init(struct kvm *kvm) 619 { 620 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 621 622 kvm->arch.has_protected_state = true; 623 kvm->arch.has_private_mem = true; 624 kvm->arch.disabled_quirks |= KVM_X86_QUIRK_IGNORE_GUEST_PAT; 625 626 /* 627 * Because guest TD is protected, VMM can't parse the instruction in TD. 628 * Instead, guest uses MMIO hypercall. For unmodified device driver, 629 * #VE needs to be injected for MMIO and #VE handler in TD converts MMIO 630 * instruction into MMIO hypercall. 631 * 632 * SPTE value for MMIO needs to be setup so that #VE is injected into 633 * TD instead of triggering EPT MISCONFIG. 634 * - RWX=0 so that EPT violation is triggered. 635 * - suppress #VE bit is cleared to inject #VE. 636 */ 637 kvm_mmu_set_mmio_spte_value(kvm, 0); 638 639 /* 640 * TDX has its own limit of maximum vCPUs it can support for all 641 * TDX guests in addition to KVM_MAX_VCPUS. TDX module reports 642 * such limit via the MAX_VCPU_PER_TD global metadata. In 643 * practice, it reflects the number of logical CPUs that ALL 644 * platforms that the TDX module supports can possibly have. 645 * 646 * Limit TDX guest's maximum vCPUs to the number of logical CPUs 647 * the platform has. Simply forwarding the MAX_VCPU_PER_TD to 648 * userspace would result in an unpredictable ABI. 649 */ 650 kvm->max_vcpus = min_t(int, kvm->max_vcpus, num_present_cpus()); 651 652 kvm_tdx->state = TD_STATE_UNINITIALIZED; 653 654 return 0; 655 } 656 657 int tdx_vcpu_create(struct kvm_vcpu *vcpu) 658 { 659 struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm); 660 struct vcpu_tdx *tdx = to_tdx(vcpu); 661 662 if (kvm_tdx->state != TD_STATE_INITIALIZED) 663 return -EIO; 664 665 /* 666 * TDX module mandates APICv, which requires an in-kernel local APIC. 667 * Disallow an in-kernel I/O APIC, because level-triggered interrupts 668 * and thus the I/O APIC as a whole can't be faithfully emulated in KVM. 669 */ 670 if (!irqchip_split(vcpu->kvm)) 671 return -EINVAL; 672 673 fpstate_set_confidential(&vcpu->arch.guest_fpu); 674 vcpu->arch.apic->guest_apic_protected = true; 675 INIT_LIST_HEAD(&tdx->vt.pi_wakeup_list); 676 677 vcpu->arch.efer = EFER_SCE | EFER_LME | EFER_LMA | EFER_NX; 678 679 vcpu->arch.switch_db_regs = KVM_DEBUGREG_AUTO_SWITCH; 680 vcpu->arch.cr0_guest_owned_bits = -1ul; 681 vcpu->arch.cr4_guest_owned_bits = -1ul; 682 683 /* KVM can't change TSC offset/multiplier as TDX module manages them. */ 684 vcpu->arch.guest_tsc_protected = true; 685 vcpu->arch.tsc_offset = kvm_tdx->tsc_offset; 686 vcpu->arch.l1_tsc_offset = vcpu->arch.tsc_offset; 687 vcpu->arch.tsc_scaling_ratio = kvm_tdx->tsc_multiplier; 688 vcpu->arch.l1_tsc_scaling_ratio = kvm_tdx->tsc_multiplier; 689 690 vcpu->arch.guest_state_protected = 691 !(to_kvm_tdx(vcpu->kvm)->attributes & TDX_TD_ATTR_DEBUG); 692 693 if ((kvm_tdx->xfam & XFEATURE_MASK_XTILE) == XFEATURE_MASK_XTILE) 694 vcpu->arch.xfd_no_write_intercept = true; 695 696 tdx->vt.pi_desc.nv = POSTED_INTR_VECTOR; 697 __pi_set_sn(&tdx->vt.pi_desc); 698 699 tdx->state = VCPU_TD_STATE_UNINITIALIZED; 700 701 return 0; 702 } 703 704 void tdx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 705 { 706 struct vcpu_tdx *tdx = to_tdx(vcpu); 707 708 vmx_vcpu_pi_load(vcpu, cpu); 709 if (vcpu->cpu == cpu || !is_hkid_assigned(to_kvm_tdx(vcpu->kvm))) 710 return; 711 712 tdx_flush_vp_on_cpu(vcpu); 713 714 KVM_BUG_ON(cpu != raw_smp_processor_id(), vcpu->kvm); 715 local_irq_disable(); 716 /* 717 * Pairs with the smp_wmb() in tdx_disassociate_vp() to ensure 718 * vcpu->cpu is read before tdx->cpu_list. 719 */ 720 smp_rmb(); 721 722 list_add(&tdx->cpu_list, &per_cpu(associated_tdvcpus, cpu)); 723 local_irq_enable(); 724 } 725 726 bool tdx_interrupt_allowed(struct kvm_vcpu *vcpu) 727 { 728 /* 729 * KVM can't get the interrupt status of TDX guest and it assumes 730 * interrupt is always allowed unless TDX guest calls TDVMCALL with HLT, 731 * which passes the interrupt blocked flag. 732 */ 733 return vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT || 734 !to_tdx(vcpu)->vp_enter_args.r12; 735 } 736 737 static bool tdx_protected_apic_has_interrupt(struct kvm_vcpu *vcpu) 738 { 739 u64 vcpu_state_details; 740 741 if (pi_has_pending_interrupt(vcpu)) 742 return true; 743 744 /* 745 * Only check RVI pending for HALTED case with IRQ enabled. 746 * For non-HLT cases, KVM doesn't care about STI/SS shadows. And if the 747 * interrupt was pending before TD exit, then it _must_ be blocked, 748 * otherwise the interrupt would have been serviced at the instruction 749 * boundary. 750 */ 751 if (vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT || 752 to_tdx(vcpu)->vp_enter_args.r12) 753 return false; 754 755 vcpu_state_details = 756 td_state_non_arch_read64(to_tdx(vcpu), TD_VCPU_STATE_DETAILS_NON_ARCH); 757 758 return tdx_vcpu_state_details_intr_pending(vcpu_state_details); 759 } 760 761 /* 762 * Compared to vmx_prepare_switch_to_guest(), there is not much to do 763 * as SEAMCALL/SEAMRET calls take care of most of save and restore. 764 */ 765 void tdx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 766 { 767 struct vcpu_vt *vt = to_vt(vcpu); 768 769 if (vt->guest_state_loaded) 770 return; 771 772 if (likely(is_64bit_mm(current->mm))) 773 vt->msr_host_kernel_gs_base = current->thread.gsbase; 774 else 775 vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 776 777 vt->guest_state_loaded = true; 778 } 779 780 struct tdx_uret_msr { 781 u32 msr; 782 unsigned int slot; 783 u64 defval; 784 }; 785 786 static struct tdx_uret_msr tdx_uret_msrs[] = { 787 {.msr = MSR_SYSCALL_MASK, .defval = 0x20200 }, 788 {.msr = MSR_STAR,}, 789 {.msr = MSR_LSTAR,}, 790 {.msr = MSR_TSC_AUX,}, 791 }; 792 793 static void tdx_user_return_msr_update_cache(void) 794 { 795 int i; 796 797 for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++) 798 kvm_user_return_msr_update_cache(tdx_uret_msrs[i].slot, 799 tdx_uret_msrs[i].defval); 800 } 801 802 static void tdx_prepare_switch_to_host(struct kvm_vcpu *vcpu) 803 { 804 struct vcpu_vt *vt = to_vt(vcpu); 805 struct vcpu_tdx *tdx = to_tdx(vcpu); 806 807 if (!vt->guest_state_loaded) 808 return; 809 810 ++vcpu->stat.host_state_reload; 811 wrmsrl(MSR_KERNEL_GS_BASE, vt->msr_host_kernel_gs_base); 812 813 if (tdx->guest_entered) { 814 tdx_user_return_msr_update_cache(); 815 tdx->guest_entered = false; 816 } 817 818 vt->guest_state_loaded = false; 819 } 820 821 void tdx_vcpu_put(struct kvm_vcpu *vcpu) 822 { 823 vmx_vcpu_pi_put(vcpu); 824 tdx_prepare_switch_to_host(vcpu); 825 } 826 827 void tdx_vcpu_free(struct kvm_vcpu *vcpu) 828 { 829 struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm); 830 struct vcpu_tdx *tdx = to_tdx(vcpu); 831 int i; 832 833 /* 834 * It is not possible to reclaim pages while hkid is assigned. It might 835 * be assigned if: 836 * 1. the TD VM is being destroyed but freeing hkid failed, in which 837 * case the pages are leaked 838 * 2. TD VCPU creation failed and this on the error path, in which case 839 * there is nothing to do anyway 840 */ 841 if (is_hkid_assigned(kvm_tdx)) 842 return; 843 844 if (tdx->vp.tdcx_pages) { 845 for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) { 846 if (tdx->vp.tdcx_pages[i]) 847 tdx_reclaim_control_page(tdx->vp.tdcx_pages[i]); 848 } 849 kfree(tdx->vp.tdcx_pages); 850 tdx->vp.tdcx_pages = NULL; 851 } 852 if (tdx->vp.tdvpr_page) { 853 tdx_reclaim_control_page(tdx->vp.tdvpr_page); 854 tdx->vp.tdvpr_page = 0; 855 tdx->vp.tdvpr_pa = 0; 856 } 857 858 tdx->state = VCPU_TD_STATE_UNINITIALIZED; 859 } 860 861 int tdx_vcpu_pre_run(struct kvm_vcpu *vcpu) 862 { 863 if (unlikely(to_tdx(vcpu)->state != VCPU_TD_STATE_INITIALIZED || 864 to_kvm_tdx(vcpu->kvm)->state != TD_STATE_RUNNABLE)) 865 return -EINVAL; 866 867 return 1; 868 } 869 870 static __always_inline u32 tdcall_to_vmx_exit_reason(struct kvm_vcpu *vcpu) 871 { 872 switch (tdvmcall_leaf(vcpu)) { 873 case EXIT_REASON_CPUID: 874 case EXIT_REASON_HLT: 875 case EXIT_REASON_IO_INSTRUCTION: 876 case EXIT_REASON_MSR_READ: 877 case EXIT_REASON_MSR_WRITE: 878 return tdvmcall_leaf(vcpu); 879 case EXIT_REASON_EPT_VIOLATION: 880 return EXIT_REASON_EPT_MISCONFIG; 881 default: 882 break; 883 } 884 885 return EXIT_REASON_TDCALL; 886 } 887 888 static __always_inline u32 tdx_to_vmx_exit_reason(struct kvm_vcpu *vcpu) 889 { 890 struct vcpu_tdx *tdx = to_tdx(vcpu); 891 u32 exit_reason; 892 893 switch (tdx->vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) { 894 case TDX_SUCCESS: 895 case TDX_NON_RECOVERABLE_VCPU: 896 case TDX_NON_RECOVERABLE_TD: 897 case TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE: 898 case TDX_NON_RECOVERABLE_TD_WRONG_APIC_MODE: 899 break; 900 default: 901 return -1u; 902 } 903 904 exit_reason = tdx->vp_enter_ret; 905 906 switch (exit_reason) { 907 case EXIT_REASON_TDCALL: 908 if (tdvmcall_exit_type(vcpu)) 909 return EXIT_REASON_VMCALL; 910 911 return tdcall_to_vmx_exit_reason(vcpu); 912 case EXIT_REASON_EPT_MISCONFIG: 913 /* 914 * Defer KVM_BUG_ON() until tdx_handle_exit() because this is in 915 * non-instrumentable code with interrupts disabled. 916 */ 917 return -1u; 918 default: 919 break; 920 } 921 922 return exit_reason; 923 } 924 925 static noinstr void tdx_vcpu_enter_exit(struct kvm_vcpu *vcpu) 926 { 927 struct vcpu_tdx *tdx = to_tdx(vcpu); 928 struct vcpu_vt *vt = to_vt(vcpu); 929 930 guest_state_enter_irqoff(); 931 932 tdx->vp_enter_ret = tdh_vp_enter(&tdx->vp, &tdx->vp_enter_args); 933 934 vt->exit_reason.full = tdx_to_vmx_exit_reason(vcpu); 935 936 vt->exit_qualification = tdx->vp_enter_args.rcx; 937 tdx->ext_exit_qualification = tdx->vp_enter_args.rdx; 938 tdx->exit_gpa = tdx->vp_enter_args.r8; 939 vt->exit_intr_info = tdx->vp_enter_args.r9; 940 941 vmx_handle_nmi(vcpu); 942 943 guest_state_exit_irqoff(); 944 } 945 946 static bool tdx_failed_vmentry(struct kvm_vcpu *vcpu) 947 { 948 return vmx_get_exit_reason(vcpu).failed_vmentry && 949 vmx_get_exit_reason(vcpu).full != -1u; 950 } 951 952 static fastpath_t tdx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 953 { 954 u64 vp_enter_ret = to_tdx(vcpu)->vp_enter_ret; 955 956 /* 957 * TDX_OPERAND_BUSY could be returned for SEPT due to 0-step mitigation 958 * or for TD EPOCH due to contention with TDH.MEM.TRACK on TDH.VP.ENTER. 959 * 960 * When KVM requests KVM_REQ_OUTSIDE_GUEST_MODE, which has both 961 * KVM_REQUEST_WAIT and KVM_REQUEST_NO_ACTION set, it requires target 962 * vCPUs leaving fastpath so that interrupt can be enabled to ensure the 963 * IPIs can be delivered. Return EXIT_FASTPATH_EXIT_HANDLED instead of 964 * EXIT_FASTPATH_REENTER_GUEST to exit fastpath, otherwise, the 965 * requester may be blocked endlessly. 966 */ 967 if (unlikely(tdx_operand_busy(vp_enter_ret))) 968 return EXIT_FASTPATH_EXIT_HANDLED; 969 970 return EXIT_FASTPATH_NONE; 971 } 972 973 #define TDX_REGS_AVAIL_SET (BIT_ULL(VCPU_EXREG_EXIT_INFO_1) | \ 974 BIT_ULL(VCPU_EXREG_EXIT_INFO_2) | \ 975 BIT_ULL(VCPU_REGS_RAX) | \ 976 BIT_ULL(VCPU_REGS_RBX) | \ 977 BIT_ULL(VCPU_REGS_RCX) | \ 978 BIT_ULL(VCPU_REGS_RDX) | \ 979 BIT_ULL(VCPU_REGS_RBP) | \ 980 BIT_ULL(VCPU_REGS_RSI) | \ 981 BIT_ULL(VCPU_REGS_RDI) | \ 982 BIT_ULL(VCPU_REGS_R8) | \ 983 BIT_ULL(VCPU_REGS_R9) | \ 984 BIT_ULL(VCPU_REGS_R10) | \ 985 BIT_ULL(VCPU_REGS_R11) | \ 986 BIT_ULL(VCPU_REGS_R12) | \ 987 BIT_ULL(VCPU_REGS_R13) | \ 988 BIT_ULL(VCPU_REGS_R14) | \ 989 BIT_ULL(VCPU_REGS_R15)) 990 991 static void tdx_load_host_xsave_state(struct kvm_vcpu *vcpu) 992 { 993 struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm); 994 995 /* 996 * All TDX hosts support PKRU; but even if they didn't, 997 * vcpu->arch.host_pkru would be 0 and the wrpkru would be 998 * skipped. 999 */ 1000 if (vcpu->arch.host_pkru != 0) 1001 wrpkru(vcpu->arch.host_pkru); 1002 1003 if (kvm_host.xcr0 != (kvm_tdx->xfam & kvm_caps.supported_xcr0)) 1004 xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); 1005 1006 /* 1007 * Likewise, even if a TDX hosts didn't support XSS both arms of 1008 * the comparison would be 0 and the wrmsrl would be skipped. 1009 */ 1010 if (kvm_host.xss != (kvm_tdx->xfam & kvm_caps.supported_xss)) 1011 wrmsrl(MSR_IA32_XSS, kvm_host.xss); 1012 } 1013 1014 #define TDX_DEBUGCTL_PRESERVED (DEBUGCTLMSR_BTF | \ 1015 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI | \ 1016 DEBUGCTLMSR_FREEZE_IN_SMM) 1017 1018 fastpath_t tdx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags) 1019 { 1020 struct vcpu_tdx *tdx = to_tdx(vcpu); 1021 struct vcpu_vt *vt = to_vt(vcpu); 1022 1023 /* 1024 * WARN if KVM wants to force an immediate exit, as the TDX module does 1025 * not guarantee entry into the guest, i.e. it's possible for KVM to 1026 * _think_ it completed entry to the guest and forced an immediate exit 1027 * without actually having done so. Luckily, KVM never needs to force 1028 * an immediate exit for TDX (KVM can't do direct event injection, so 1029 * just WARN and continue on. 1030 */ 1031 WARN_ON_ONCE(run_flags); 1032 1033 /* 1034 * Wait until retry of SEPT-zap-related SEAMCALL completes before 1035 * allowing vCPU entry to avoid contention with tdh_vp_enter() and 1036 * TDCALLs. 1037 */ 1038 if (unlikely(READ_ONCE(to_kvm_tdx(vcpu->kvm)->wait_for_sept_zap))) 1039 return EXIT_FASTPATH_EXIT_HANDLED; 1040 1041 trace_kvm_entry(vcpu, run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT); 1042 1043 if (pi_test_on(&vt->pi_desc)) { 1044 apic->send_IPI_self(POSTED_INTR_VECTOR); 1045 1046 if (pi_test_pir(kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVTT) & 1047 APIC_VECTOR_MASK, &vt->pi_desc)) 1048 kvm_wait_lapic_expire(vcpu); 1049 } 1050 1051 tdx_vcpu_enter_exit(vcpu); 1052 1053 if (vcpu->arch.host_debugctl & ~TDX_DEBUGCTL_PRESERVED) 1054 update_debugctlmsr(vcpu->arch.host_debugctl); 1055 1056 tdx_load_host_xsave_state(vcpu); 1057 tdx->guest_entered = true; 1058 1059 vcpu->arch.regs_avail &= TDX_REGS_AVAIL_SET; 1060 1061 if (unlikely(tdx->vp_enter_ret == EXIT_REASON_EPT_MISCONFIG)) 1062 return EXIT_FASTPATH_NONE; 1063 1064 if (unlikely((tdx->vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR)) 1065 return EXIT_FASTPATH_NONE; 1066 1067 if (unlikely(vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY)) 1068 kvm_machine_check(); 1069 1070 trace_kvm_exit(vcpu, KVM_ISA_VMX); 1071 1072 if (unlikely(tdx_failed_vmentry(vcpu))) 1073 return EXIT_FASTPATH_NONE; 1074 1075 return tdx_exit_handlers_fastpath(vcpu); 1076 } 1077 1078 void tdx_inject_nmi(struct kvm_vcpu *vcpu) 1079 { 1080 ++vcpu->stat.nmi_injections; 1081 td_management_write8(to_tdx(vcpu), TD_VCPU_PEND_NMI, 1); 1082 /* 1083 * From KVM's perspective, NMI injection is completed right after 1084 * writing to PEND_NMI. KVM doesn't care whether an NMI is injected by 1085 * the TDX module or not. 1086 */ 1087 vcpu->arch.nmi_injected = false; 1088 /* 1089 * TDX doesn't support KVM to request NMI window exit. If there is 1090 * still a pending vNMI, KVM is not able to inject it along with the 1091 * one pending in TDX module in a back-to-back way. Since the previous 1092 * vNMI is still pending in TDX module, i.e. it has not been delivered 1093 * to TDX guest yet, it's OK to collapse the pending vNMI into the 1094 * previous one. The guest is expected to handle all the NMI sources 1095 * when handling the first vNMI. 1096 */ 1097 vcpu->arch.nmi_pending = 0; 1098 } 1099 1100 static int tdx_handle_exception_nmi(struct kvm_vcpu *vcpu) 1101 { 1102 u32 intr_info = vmx_get_intr_info(vcpu); 1103 1104 /* 1105 * Machine checks are handled by handle_exception_irqoff(), or by 1106 * tdx_handle_exit() with TDX_NON_RECOVERABLE set if a #MC occurs on 1107 * VM-Entry. NMIs are handled by tdx_vcpu_enter_exit(). 1108 */ 1109 if (is_nmi(intr_info) || is_machine_check(intr_info)) 1110 return 1; 1111 1112 vcpu->run->exit_reason = KVM_EXIT_EXCEPTION; 1113 vcpu->run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK; 1114 vcpu->run->ex.error_code = 0; 1115 1116 return 0; 1117 } 1118 1119 static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 1120 { 1121 tdvmcall_set_return_code(vcpu, vcpu->run->hypercall.ret); 1122 return 1; 1123 } 1124 1125 static int tdx_emulate_vmcall(struct kvm_vcpu *vcpu) 1126 { 1127 kvm_rax_write(vcpu, to_tdx(vcpu)->vp_enter_args.r10); 1128 kvm_rbx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r11); 1129 kvm_rcx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r12); 1130 kvm_rdx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r13); 1131 kvm_rsi_write(vcpu, to_tdx(vcpu)->vp_enter_args.r14); 1132 1133 return __kvm_emulate_hypercall(vcpu, 0, complete_hypercall_exit); 1134 } 1135 1136 /* 1137 * Split into chunks and check interrupt pending between chunks. This allows 1138 * for timely injection of interrupts to prevent issues with guest lockup 1139 * detection. 1140 */ 1141 #define TDX_MAP_GPA_MAX_LEN (2 * 1024 * 1024) 1142 static void __tdx_map_gpa(struct vcpu_tdx *tdx); 1143 1144 static int tdx_complete_vmcall_map_gpa(struct kvm_vcpu *vcpu) 1145 { 1146 struct vcpu_tdx *tdx = to_tdx(vcpu); 1147 1148 if (vcpu->run->hypercall.ret) { 1149 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND); 1150 tdx->vp_enter_args.r11 = tdx->map_gpa_next; 1151 return 1; 1152 } 1153 1154 tdx->map_gpa_next += TDX_MAP_GPA_MAX_LEN; 1155 if (tdx->map_gpa_next >= tdx->map_gpa_end) 1156 return 1; 1157 1158 /* 1159 * Stop processing the remaining part if there is a pending interrupt, 1160 * which could be qualified to deliver. Skip checking pending RVI for 1161 * TDVMCALL_MAP_GPA, see comments in tdx_protected_apic_has_interrupt(). 1162 */ 1163 if (kvm_vcpu_has_events(vcpu)) { 1164 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_RETRY); 1165 tdx->vp_enter_args.r11 = tdx->map_gpa_next; 1166 return 1; 1167 } 1168 1169 __tdx_map_gpa(tdx); 1170 return 0; 1171 } 1172 1173 static void __tdx_map_gpa(struct vcpu_tdx *tdx) 1174 { 1175 u64 gpa = tdx->map_gpa_next; 1176 u64 size = tdx->map_gpa_end - tdx->map_gpa_next; 1177 1178 if (size > TDX_MAP_GPA_MAX_LEN) 1179 size = TDX_MAP_GPA_MAX_LEN; 1180 1181 tdx->vcpu.run->exit_reason = KVM_EXIT_HYPERCALL; 1182 tdx->vcpu.run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 1183 /* 1184 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 1185 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 1186 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 1187 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 1188 */ 1189 tdx->vcpu.run->hypercall.ret = 0; 1190 tdx->vcpu.run->hypercall.args[0] = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm)); 1191 tdx->vcpu.run->hypercall.args[1] = size / PAGE_SIZE; 1192 tdx->vcpu.run->hypercall.args[2] = vt_is_tdx_private_gpa(tdx->vcpu.kvm, gpa) ? 1193 KVM_MAP_GPA_RANGE_ENCRYPTED : 1194 KVM_MAP_GPA_RANGE_DECRYPTED; 1195 tdx->vcpu.run->hypercall.flags = KVM_EXIT_HYPERCALL_LONG_MODE; 1196 1197 tdx->vcpu.arch.complete_userspace_io = tdx_complete_vmcall_map_gpa; 1198 } 1199 1200 static int tdx_map_gpa(struct kvm_vcpu *vcpu) 1201 { 1202 struct vcpu_tdx *tdx = to_tdx(vcpu); 1203 u64 gpa = tdx->vp_enter_args.r12; 1204 u64 size = tdx->vp_enter_args.r13; 1205 u64 ret; 1206 1207 /* 1208 * Converting TDVMCALL_MAP_GPA to KVM_HC_MAP_GPA_RANGE requires 1209 * userspace to enable KVM_CAP_EXIT_HYPERCALL with KVM_HC_MAP_GPA_RANGE 1210 * bit set. This is a base call so it should always be supported, but 1211 * KVM has no way to ensure that userspace implements the GHCI correctly. 1212 * So if KVM_HC_MAP_GPA_RANGE does not cause a VMEXIT, return an error 1213 * to the guest. 1214 */ 1215 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 1216 ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED; 1217 goto error; 1218 } 1219 1220 if (gpa + size <= gpa || !kvm_vcpu_is_legal_gpa(vcpu, gpa) || 1221 !kvm_vcpu_is_legal_gpa(vcpu, gpa + size - 1) || 1222 (vt_is_tdx_private_gpa(vcpu->kvm, gpa) != 1223 vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))) { 1224 ret = TDVMCALL_STATUS_INVALID_OPERAND; 1225 goto error; 1226 } 1227 1228 if (!PAGE_ALIGNED(gpa) || !PAGE_ALIGNED(size)) { 1229 ret = TDVMCALL_STATUS_ALIGN_ERROR; 1230 goto error; 1231 } 1232 1233 tdx->map_gpa_end = gpa + size; 1234 tdx->map_gpa_next = gpa; 1235 1236 __tdx_map_gpa(tdx); 1237 return 0; 1238 1239 error: 1240 tdvmcall_set_return_code(vcpu, ret); 1241 tdx->vp_enter_args.r11 = gpa; 1242 return 1; 1243 } 1244 1245 static int tdx_report_fatal_error(struct kvm_vcpu *vcpu) 1246 { 1247 struct vcpu_tdx *tdx = to_tdx(vcpu); 1248 u64 *regs = vcpu->run->system_event.data; 1249 u64 *module_regs = &tdx->vp_enter_args.r8; 1250 int index = VCPU_REGS_RAX; 1251 1252 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 1253 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_TDX_FATAL; 1254 vcpu->run->system_event.ndata = 16; 1255 1256 /* Dump 16 general-purpose registers to userspace in ascending order. */ 1257 regs[index++] = tdx->vp_enter_ret; 1258 regs[index++] = tdx->vp_enter_args.rcx; 1259 regs[index++] = tdx->vp_enter_args.rdx; 1260 regs[index++] = tdx->vp_enter_args.rbx; 1261 regs[index++] = 0; 1262 regs[index++] = 0; 1263 regs[index++] = tdx->vp_enter_args.rsi; 1264 regs[index] = tdx->vp_enter_args.rdi; 1265 for (index = 0; index < 8; index++) 1266 regs[VCPU_REGS_R8 + index] = module_regs[index]; 1267 1268 return 0; 1269 } 1270 1271 static int tdx_emulate_cpuid(struct kvm_vcpu *vcpu) 1272 { 1273 u32 eax, ebx, ecx, edx; 1274 struct vcpu_tdx *tdx = to_tdx(vcpu); 1275 1276 /* EAX and ECX for cpuid is stored in R12 and R13. */ 1277 eax = tdx->vp_enter_args.r12; 1278 ecx = tdx->vp_enter_args.r13; 1279 1280 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false); 1281 1282 tdx->vp_enter_args.r12 = eax; 1283 tdx->vp_enter_args.r13 = ebx; 1284 tdx->vp_enter_args.r14 = ecx; 1285 tdx->vp_enter_args.r15 = edx; 1286 1287 return 1; 1288 } 1289 1290 static int tdx_complete_pio_out(struct kvm_vcpu *vcpu) 1291 { 1292 vcpu->arch.pio.count = 0; 1293 return 1; 1294 } 1295 1296 static int tdx_complete_pio_in(struct kvm_vcpu *vcpu) 1297 { 1298 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 1299 unsigned long val = 0; 1300 int ret; 1301 1302 ret = ctxt->ops->pio_in_emulated(ctxt, vcpu->arch.pio.size, 1303 vcpu->arch.pio.port, &val, 1); 1304 1305 WARN_ON_ONCE(!ret); 1306 1307 tdvmcall_set_return_val(vcpu, val); 1308 1309 return 1; 1310 } 1311 1312 static int tdx_emulate_io(struct kvm_vcpu *vcpu) 1313 { 1314 struct vcpu_tdx *tdx = to_tdx(vcpu); 1315 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 1316 unsigned long val = 0; 1317 unsigned int port; 1318 u64 size, write; 1319 int ret; 1320 1321 ++vcpu->stat.io_exits; 1322 1323 size = tdx->vp_enter_args.r12; 1324 write = tdx->vp_enter_args.r13; 1325 port = tdx->vp_enter_args.r14; 1326 1327 if ((write != 0 && write != 1) || (size != 1 && size != 2 && size != 4)) { 1328 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND); 1329 return 1; 1330 } 1331 1332 if (write) { 1333 val = tdx->vp_enter_args.r15; 1334 ret = ctxt->ops->pio_out_emulated(ctxt, size, port, &val, 1); 1335 } else { 1336 ret = ctxt->ops->pio_in_emulated(ctxt, size, port, &val, 1); 1337 } 1338 1339 if (!ret) 1340 vcpu->arch.complete_userspace_io = write ? tdx_complete_pio_out : 1341 tdx_complete_pio_in; 1342 else if (!write) 1343 tdvmcall_set_return_val(vcpu, val); 1344 1345 return ret; 1346 } 1347 1348 static int tdx_complete_mmio_read(struct kvm_vcpu *vcpu) 1349 { 1350 unsigned long val = 0; 1351 gpa_t gpa; 1352 int size; 1353 1354 gpa = vcpu->mmio_fragments[0].gpa; 1355 size = vcpu->mmio_fragments[0].len; 1356 1357 memcpy(&val, vcpu->run->mmio.data, size); 1358 tdvmcall_set_return_val(vcpu, val); 1359 trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val); 1360 return 1; 1361 } 1362 1363 static inline int tdx_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, int size, 1364 unsigned long val) 1365 { 1366 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 1367 trace_kvm_fast_mmio(gpa); 1368 return 0; 1369 } 1370 1371 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, size, gpa, &val); 1372 if (kvm_io_bus_write(vcpu, KVM_MMIO_BUS, gpa, size, &val)) 1373 return -EOPNOTSUPP; 1374 1375 return 0; 1376 } 1377 1378 static inline int tdx_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, int size) 1379 { 1380 unsigned long val; 1381 1382 if (kvm_io_bus_read(vcpu, KVM_MMIO_BUS, gpa, size, &val)) 1383 return -EOPNOTSUPP; 1384 1385 tdvmcall_set_return_val(vcpu, val); 1386 trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val); 1387 return 0; 1388 } 1389 1390 static int tdx_emulate_mmio(struct kvm_vcpu *vcpu) 1391 { 1392 struct vcpu_tdx *tdx = to_tdx(vcpu); 1393 int size, write, r; 1394 unsigned long val; 1395 gpa_t gpa; 1396 1397 size = tdx->vp_enter_args.r12; 1398 write = tdx->vp_enter_args.r13; 1399 gpa = tdx->vp_enter_args.r14; 1400 val = write ? tdx->vp_enter_args.r15 : 0; 1401 1402 if (size != 1 && size != 2 && size != 4 && size != 8) 1403 goto error; 1404 if (write != 0 && write != 1) 1405 goto error; 1406 1407 /* 1408 * TDG.VP.VMCALL<MMIO> allows only shared GPA, it makes no sense to 1409 * do MMIO emulation for private GPA. 1410 */ 1411 if (vt_is_tdx_private_gpa(vcpu->kvm, gpa) || 1412 vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1)) 1413 goto error; 1414 1415 gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm)); 1416 1417 if (write) 1418 r = tdx_mmio_write(vcpu, gpa, size, val); 1419 else 1420 r = tdx_mmio_read(vcpu, gpa, size); 1421 if (!r) 1422 /* Kernel completed device emulation. */ 1423 return 1; 1424 1425 /* Request the device emulation to userspace device model. */ 1426 vcpu->mmio_is_write = write; 1427 if (!write) 1428 vcpu->arch.complete_userspace_io = tdx_complete_mmio_read; 1429 1430 vcpu->run->mmio.phys_addr = gpa; 1431 vcpu->run->mmio.len = size; 1432 vcpu->run->mmio.is_write = write; 1433 vcpu->run->exit_reason = KVM_EXIT_MMIO; 1434 1435 if (write) { 1436 memcpy(vcpu->run->mmio.data, &val, size); 1437 } else { 1438 vcpu->mmio_fragments[0].gpa = gpa; 1439 vcpu->mmio_fragments[0].len = size; 1440 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, size, gpa, NULL); 1441 } 1442 return 0; 1443 1444 error: 1445 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND); 1446 return 1; 1447 } 1448 1449 static int tdx_complete_get_td_vm_call_info(struct kvm_vcpu *vcpu) 1450 { 1451 struct vcpu_tdx *tdx = to_tdx(vcpu); 1452 1453 tdvmcall_set_return_code(vcpu, vcpu->run->tdx.get_tdvmcall_info.ret); 1454 1455 /* 1456 * For now, there is no TDVMCALL beyond GHCI base API supported by KVM 1457 * directly without the support from userspace, just set the value 1458 * returned from userspace. 1459 */ 1460 tdx->vp_enter_args.r11 = vcpu->run->tdx.get_tdvmcall_info.r11; 1461 tdx->vp_enter_args.r12 = vcpu->run->tdx.get_tdvmcall_info.r12; 1462 tdx->vp_enter_args.r13 = vcpu->run->tdx.get_tdvmcall_info.r13; 1463 tdx->vp_enter_args.r14 = vcpu->run->tdx.get_tdvmcall_info.r14; 1464 1465 return 1; 1466 } 1467 1468 static int tdx_get_td_vm_call_info(struct kvm_vcpu *vcpu) 1469 { 1470 struct vcpu_tdx *tdx = to_tdx(vcpu); 1471 1472 switch (tdx->vp_enter_args.r12) { 1473 case 0: 1474 tdx->vp_enter_args.r11 = 0; 1475 tdx->vp_enter_args.r12 = 0; 1476 tdx->vp_enter_args.r13 = 0; 1477 tdx->vp_enter_args.r14 = 0; 1478 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUCCESS); 1479 return 1; 1480 case 1: 1481 vcpu->run->tdx.get_tdvmcall_info.leaf = tdx->vp_enter_args.r12; 1482 vcpu->run->exit_reason = KVM_EXIT_TDX; 1483 vcpu->run->tdx.flags = 0; 1484 vcpu->run->tdx.nr = TDVMCALL_GET_TD_VM_CALL_INFO; 1485 vcpu->run->tdx.get_tdvmcall_info.ret = TDVMCALL_STATUS_SUCCESS; 1486 vcpu->run->tdx.get_tdvmcall_info.r11 = 0; 1487 vcpu->run->tdx.get_tdvmcall_info.r12 = 0; 1488 vcpu->run->tdx.get_tdvmcall_info.r13 = 0; 1489 vcpu->run->tdx.get_tdvmcall_info.r14 = 0; 1490 vcpu->arch.complete_userspace_io = tdx_complete_get_td_vm_call_info; 1491 return 0; 1492 default: 1493 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND); 1494 return 1; 1495 } 1496 } 1497 1498 static int tdx_complete_simple(struct kvm_vcpu *vcpu) 1499 { 1500 tdvmcall_set_return_code(vcpu, vcpu->run->tdx.unknown.ret); 1501 return 1; 1502 } 1503 1504 static int tdx_get_quote(struct kvm_vcpu *vcpu) 1505 { 1506 struct vcpu_tdx *tdx = to_tdx(vcpu); 1507 u64 gpa = tdx->vp_enter_args.r12; 1508 u64 size = tdx->vp_enter_args.r13; 1509 1510 /* The gpa of buffer must have shared bit set. */ 1511 if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) { 1512 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND); 1513 return 1; 1514 } 1515 1516 vcpu->run->exit_reason = KVM_EXIT_TDX; 1517 vcpu->run->tdx.flags = 0; 1518 vcpu->run->tdx.nr = TDVMCALL_GET_QUOTE; 1519 vcpu->run->tdx.get_quote.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED; 1520 vcpu->run->tdx.get_quote.gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm)); 1521 vcpu->run->tdx.get_quote.size = size; 1522 1523 vcpu->arch.complete_userspace_io = tdx_complete_simple; 1524 1525 return 0; 1526 } 1527 1528 static int tdx_setup_event_notify_interrupt(struct kvm_vcpu *vcpu) 1529 { 1530 struct vcpu_tdx *tdx = to_tdx(vcpu); 1531 u64 vector = tdx->vp_enter_args.r12; 1532 1533 if (vector < 32 || vector > 255) { 1534 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND); 1535 return 1; 1536 } 1537 1538 vcpu->run->exit_reason = KVM_EXIT_TDX; 1539 vcpu->run->tdx.flags = 0; 1540 vcpu->run->tdx.nr = TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT; 1541 vcpu->run->tdx.setup_event_notify.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED; 1542 vcpu->run->tdx.setup_event_notify.vector = vector; 1543 1544 vcpu->arch.complete_userspace_io = tdx_complete_simple; 1545 1546 return 0; 1547 } 1548 1549 static int handle_tdvmcall(struct kvm_vcpu *vcpu) 1550 { 1551 switch (tdvmcall_leaf(vcpu)) { 1552 case TDVMCALL_MAP_GPA: 1553 return tdx_map_gpa(vcpu); 1554 case TDVMCALL_REPORT_FATAL_ERROR: 1555 return tdx_report_fatal_error(vcpu); 1556 case TDVMCALL_GET_TD_VM_CALL_INFO: 1557 return tdx_get_td_vm_call_info(vcpu); 1558 case TDVMCALL_GET_QUOTE: 1559 return tdx_get_quote(vcpu); 1560 case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT: 1561 return tdx_setup_event_notify_interrupt(vcpu); 1562 default: 1563 break; 1564 } 1565 1566 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED); 1567 return 1; 1568 } 1569 1570 void tdx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int pgd_level) 1571 { 1572 u64 shared_bit = (pgd_level == 5) ? TDX_SHARED_BIT_PWL_5 : 1573 TDX_SHARED_BIT_PWL_4; 1574 1575 if (KVM_BUG_ON(shared_bit != kvm_gfn_direct_bits(vcpu->kvm), vcpu->kvm)) 1576 return; 1577 1578 td_vmcs_write64(to_tdx(vcpu), SHARED_EPT_POINTER, root_hpa); 1579 } 1580 1581 static void tdx_unpin(struct kvm *kvm, struct page *page) 1582 { 1583 put_page(page); 1584 } 1585 1586 static int tdx_mem_page_aug(struct kvm *kvm, gfn_t gfn, 1587 enum pg_level level, struct page *page) 1588 { 1589 int tdx_level = pg_level_to_tdx_sept_level(level); 1590 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 1591 gpa_t gpa = gfn_to_gpa(gfn); 1592 u64 entry, level_state; 1593 u64 err; 1594 1595 err = tdh_mem_page_aug(&kvm_tdx->td, gpa, tdx_level, page, &entry, &level_state); 1596 if (unlikely(tdx_operand_busy(err))) { 1597 tdx_unpin(kvm, page); 1598 return -EBUSY; 1599 } 1600 1601 if (KVM_BUG_ON(err, kvm)) { 1602 pr_tdx_error_2(TDH_MEM_PAGE_AUG, err, entry, level_state); 1603 tdx_unpin(kvm, page); 1604 return -EIO; 1605 } 1606 1607 return 0; 1608 } 1609 1610 /* 1611 * KVM_TDX_INIT_MEM_REGION calls kvm_gmem_populate() to map guest pages; the 1612 * callback tdx_gmem_post_populate() then maps pages into private memory. 1613 * through the a seamcall TDH.MEM.PAGE.ADD(). The SEAMCALL also requires the 1614 * private EPT structures for the page to have been built before, which is 1615 * done via kvm_tdp_map_page(). nr_premapped counts the number of pages that 1616 * were added to the EPT structures but not added with TDH.MEM.PAGE.ADD(). 1617 * The counter has to be zero on KVM_TDX_FINALIZE_VM, to ensure that there 1618 * are no half-initialized shared EPT pages. 1619 */ 1620 static int tdx_mem_page_record_premap_cnt(struct kvm *kvm, gfn_t gfn, 1621 enum pg_level level, kvm_pfn_t pfn) 1622 { 1623 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 1624 1625 if (KVM_BUG_ON(kvm->arch.pre_fault_allowed, kvm)) 1626 return -EINVAL; 1627 1628 /* nr_premapped will be decreased when tdh_mem_page_add() is called. */ 1629 atomic64_inc(&kvm_tdx->nr_premapped); 1630 return 0; 1631 } 1632 1633 static int tdx_sept_set_private_spte(struct kvm *kvm, gfn_t gfn, 1634 enum pg_level level, kvm_pfn_t pfn) 1635 { 1636 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 1637 struct page *page = pfn_to_page(pfn); 1638 1639 /* TODO: handle large pages. */ 1640 if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm)) 1641 return -EINVAL; 1642 1643 /* 1644 * Because guest_memfd doesn't support page migration with 1645 * a_ops->migrate_folio (yet), no callback is triggered for KVM on page 1646 * migration. Until guest_memfd supports page migration, prevent page 1647 * migration. 1648 * TODO: Once guest_memfd introduces callback on page migration, 1649 * implement it and remove get_page/put_page(). 1650 */ 1651 get_page(page); 1652 1653 /* 1654 * Read 'pre_fault_allowed' before 'kvm_tdx->state'; see matching 1655 * barrier in tdx_td_finalize(). 1656 */ 1657 smp_rmb(); 1658 if (likely(kvm_tdx->state == TD_STATE_RUNNABLE)) 1659 return tdx_mem_page_aug(kvm, gfn, level, page); 1660 1661 return tdx_mem_page_record_premap_cnt(kvm, gfn, level, pfn); 1662 } 1663 1664 static int tdx_sept_drop_private_spte(struct kvm *kvm, gfn_t gfn, 1665 enum pg_level level, struct page *page) 1666 { 1667 int tdx_level = pg_level_to_tdx_sept_level(level); 1668 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 1669 gpa_t gpa = gfn_to_gpa(gfn); 1670 u64 err, entry, level_state; 1671 1672 /* TODO: handle large pages. */ 1673 if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm)) 1674 return -EINVAL; 1675 1676 if (KVM_BUG_ON(!is_hkid_assigned(kvm_tdx), kvm)) 1677 return -EINVAL; 1678 1679 /* 1680 * When zapping private page, write lock is held. So no race condition 1681 * with other vcpu sept operation. 1682 * Race with TDH.VP.ENTER due to (0-step mitigation) and Guest TDCALLs. 1683 */ 1684 err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry, 1685 &level_state); 1686 1687 if (unlikely(tdx_operand_busy(err))) { 1688 /* 1689 * The second retry is expected to succeed after kicking off all 1690 * other vCPUs and prevent them from invoking TDH.VP.ENTER. 1691 */ 1692 tdx_no_vcpus_enter_start(kvm); 1693 err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry, 1694 &level_state); 1695 tdx_no_vcpus_enter_stop(kvm); 1696 } 1697 1698 if (KVM_BUG_ON(err, kvm)) { 1699 pr_tdx_error_2(TDH_MEM_PAGE_REMOVE, err, entry, level_state); 1700 return -EIO; 1701 } 1702 1703 err = tdh_phymem_page_wbinvd_hkid((u16)kvm_tdx->hkid, page); 1704 1705 if (KVM_BUG_ON(err, kvm)) { 1706 pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err); 1707 return -EIO; 1708 } 1709 tdx_quirk_reset_page(page); 1710 tdx_unpin(kvm, page); 1711 return 0; 1712 } 1713 1714 static int tdx_sept_link_private_spt(struct kvm *kvm, gfn_t gfn, 1715 enum pg_level level, void *private_spt) 1716 { 1717 int tdx_level = pg_level_to_tdx_sept_level(level); 1718 gpa_t gpa = gfn_to_gpa(gfn); 1719 struct page *page = virt_to_page(private_spt); 1720 u64 err, entry, level_state; 1721 1722 err = tdh_mem_sept_add(&to_kvm_tdx(kvm)->td, gpa, tdx_level, page, &entry, 1723 &level_state); 1724 if (unlikely(tdx_operand_busy(err))) 1725 return -EBUSY; 1726 1727 if (KVM_BUG_ON(err, kvm)) { 1728 pr_tdx_error_2(TDH_MEM_SEPT_ADD, err, entry, level_state); 1729 return -EIO; 1730 } 1731 1732 return 0; 1733 } 1734 1735 /* 1736 * Check if the error returned from a SEPT zap SEAMCALL is due to that a page is 1737 * mapped by KVM_TDX_INIT_MEM_REGION without tdh_mem_page_add() being called 1738 * successfully. 1739 * 1740 * Since tdh_mem_sept_add() must have been invoked successfully before a 1741 * non-leaf entry present in the mirrored page table, the SEPT ZAP related 1742 * SEAMCALLs should not encounter err TDX_EPT_WALK_FAILED. They should instead 1743 * find TDX_EPT_ENTRY_STATE_INCORRECT due to an empty leaf entry found in the 1744 * SEPT. 1745 * 1746 * Further check if the returned entry from SEPT walking is with RWX permissions 1747 * to filter out anything unexpected. 1748 * 1749 * Note: @level is pg_level, not the tdx_level. The tdx_level extracted from 1750 * level_state returned from a SEAMCALL error is the same as that passed into 1751 * the SEAMCALL. 1752 */ 1753 static int tdx_is_sept_zap_err_due_to_premap(struct kvm_tdx *kvm_tdx, u64 err, 1754 u64 entry, int level) 1755 { 1756 if (!err || kvm_tdx->state == TD_STATE_RUNNABLE) 1757 return false; 1758 1759 if (err != (TDX_EPT_ENTRY_STATE_INCORRECT | TDX_OPERAND_ID_RCX)) 1760 return false; 1761 1762 if ((is_last_spte(entry, level) && (entry & VMX_EPT_RWX_MASK))) 1763 return false; 1764 1765 return true; 1766 } 1767 1768 static int tdx_sept_zap_private_spte(struct kvm *kvm, gfn_t gfn, 1769 enum pg_level level, struct page *page) 1770 { 1771 int tdx_level = pg_level_to_tdx_sept_level(level); 1772 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 1773 gpa_t gpa = gfn_to_gpa(gfn) & KVM_HPAGE_MASK(level); 1774 u64 err, entry, level_state; 1775 1776 /* For now large page isn't supported yet. */ 1777 WARN_ON_ONCE(level != PG_LEVEL_4K); 1778 1779 err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state); 1780 1781 if (unlikely(tdx_operand_busy(err))) { 1782 /* After no vCPUs enter, the second retry is expected to succeed */ 1783 tdx_no_vcpus_enter_start(kvm); 1784 err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state); 1785 tdx_no_vcpus_enter_stop(kvm); 1786 } 1787 if (tdx_is_sept_zap_err_due_to_premap(kvm_tdx, err, entry, level) && 1788 !KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm)) { 1789 atomic64_dec(&kvm_tdx->nr_premapped); 1790 tdx_unpin(kvm, page); 1791 return 0; 1792 } 1793 1794 if (KVM_BUG_ON(err, kvm)) { 1795 pr_tdx_error_2(TDH_MEM_RANGE_BLOCK, err, entry, level_state); 1796 return -EIO; 1797 } 1798 return 1; 1799 } 1800 1801 /* 1802 * Ensure shared and private EPTs to be flushed on all vCPUs. 1803 * tdh_mem_track() is the only caller that increases TD epoch. An increase in 1804 * the TD epoch (e.g., to value "N + 1") is successful only if no vCPUs are 1805 * running in guest mode with the value "N - 1". 1806 * 1807 * A successful execution of tdh_mem_track() ensures that vCPUs can only run in 1808 * guest mode with TD epoch value "N" if no TD exit occurs after the TD epoch 1809 * being increased to "N + 1". 1810 * 1811 * Kicking off all vCPUs after that further results in no vCPUs can run in guest 1812 * mode with TD epoch value "N", which unblocks the next tdh_mem_track() (e.g. 1813 * to increase TD epoch to "N + 2"). 1814 * 1815 * TDX module will flush EPT on the next TD enter and make vCPUs to run in 1816 * guest mode with TD epoch value "N + 1". 1817 * 1818 * kvm_make_all_cpus_request() guarantees all vCPUs are out of guest mode by 1819 * waiting empty IPI handler ack_kick(). 1820 * 1821 * No action is required to the vCPUs being kicked off since the kicking off 1822 * occurs certainly after TD epoch increment and before the next 1823 * tdh_mem_track(). 1824 */ 1825 static void tdx_track(struct kvm *kvm) 1826 { 1827 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 1828 u64 err; 1829 1830 /* If TD isn't finalized, it's before any vcpu running. */ 1831 if (unlikely(kvm_tdx->state != TD_STATE_RUNNABLE)) 1832 return; 1833 1834 lockdep_assert_held_write(&kvm->mmu_lock); 1835 1836 err = tdh_mem_track(&kvm_tdx->td); 1837 if (unlikely(tdx_operand_busy(err))) { 1838 /* After no vCPUs enter, the second retry is expected to succeed */ 1839 tdx_no_vcpus_enter_start(kvm); 1840 err = tdh_mem_track(&kvm_tdx->td); 1841 tdx_no_vcpus_enter_stop(kvm); 1842 } 1843 1844 if (KVM_BUG_ON(err, kvm)) 1845 pr_tdx_error(TDH_MEM_TRACK, err); 1846 1847 kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE); 1848 } 1849 1850 static int tdx_sept_free_private_spt(struct kvm *kvm, gfn_t gfn, 1851 enum pg_level level, void *private_spt) 1852 { 1853 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 1854 1855 /* 1856 * free_external_spt() is only called after hkid is freed when TD is 1857 * tearing down. 1858 * KVM doesn't (yet) zap page table pages in mirror page table while 1859 * TD is active, though guest pages mapped in mirror page table could be 1860 * zapped during TD is active, e.g. for shared <-> private conversion 1861 * and slot move/deletion. 1862 */ 1863 if (KVM_BUG_ON(is_hkid_assigned(kvm_tdx), kvm)) 1864 return -EINVAL; 1865 1866 /* 1867 * The HKID assigned to this TD was already freed and cache was 1868 * already flushed. We don't have to flush again. 1869 */ 1870 return tdx_reclaim_page(virt_to_page(private_spt)); 1871 } 1872 1873 static int tdx_sept_remove_private_spte(struct kvm *kvm, gfn_t gfn, 1874 enum pg_level level, kvm_pfn_t pfn) 1875 { 1876 struct page *page = pfn_to_page(pfn); 1877 int ret; 1878 1879 /* 1880 * HKID is released after all private pages have been removed, and set 1881 * before any might be populated. Warn if zapping is attempted when 1882 * there can't be anything populated in the private EPT. 1883 */ 1884 if (KVM_BUG_ON(!is_hkid_assigned(to_kvm_tdx(kvm)), kvm)) 1885 return -EINVAL; 1886 1887 ret = tdx_sept_zap_private_spte(kvm, gfn, level, page); 1888 if (ret <= 0) 1889 return ret; 1890 1891 /* 1892 * TDX requires TLB tracking before dropping private page. Do 1893 * it here, although it is also done later. 1894 */ 1895 tdx_track(kvm); 1896 1897 return tdx_sept_drop_private_spte(kvm, gfn, level, page); 1898 } 1899 1900 void tdx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 1901 int trig_mode, int vector) 1902 { 1903 struct kvm_vcpu *vcpu = apic->vcpu; 1904 struct vcpu_tdx *tdx = to_tdx(vcpu); 1905 1906 /* TDX supports only posted interrupt. No lapic emulation. */ 1907 __vmx_deliver_posted_interrupt(vcpu, &tdx->vt.pi_desc, vector); 1908 1909 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 1910 } 1911 1912 static inline bool tdx_is_sept_violation_unexpected_pending(struct kvm_vcpu *vcpu) 1913 { 1914 u64 eeq_type = to_tdx(vcpu)->ext_exit_qualification & TDX_EXT_EXIT_QUAL_TYPE_MASK; 1915 u64 eq = vmx_get_exit_qual(vcpu); 1916 1917 if (eeq_type != TDX_EXT_EXIT_QUAL_TYPE_PENDING_EPT_VIOLATION) 1918 return false; 1919 1920 return !(eq & EPT_VIOLATION_PROT_MASK) && !(eq & EPT_VIOLATION_EXEC_FOR_RING3_LIN); 1921 } 1922 1923 static int tdx_handle_ept_violation(struct kvm_vcpu *vcpu) 1924 { 1925 unsigned long exit_qual; 1926 gpa_t gpa = to_tdx(vcpu)->exit_gpa; 1927 bool local_retry = false; 1928 int ret; 1929 1930 if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) { 1931 if (tdx_is_sept_violation_unexpected_pending(vcpu)) { 1932 pr_warn("Guest access before accepting 0x%llx on vCPU %d\n", 1933 gpa, vcpu->vcpu_id); 1934 kvm_vm_dead(vcpu->kvm); 1935 return -EIO; 1936 } 1937 /* 1938 * Always treat SEPT violations as write faults. Ignore the 1939 * EXIT_QUALIFICATION reported by TDX-SEAM for SEPT violations. 1940 * TD private pages are always RWX in the SEPT tables, 1941 * i.e. they're always mapped writable. Just as importantly, 1942 * treating SEPT violations as write faults is necessary to 1943 * avoid COW allocations, which will cause TDAUGPAGE failures 1944 * due to aliasing a single HPA to multiple GPAs. 1945 */ 1946 exit_qual = EPT_VIOLATION_ACC_WRITE; 1947 1948 /* Only private GPA triggers zero-step mitigation */ 1949 local_retry = true; 1950 } else { 1951 exit_qual = vmx_get_exit_qual(vcpu); 1952 /* 1953 * EPT violation due to instruction fetch should never be 1954 * triggered from shared memory in TDX guest. If such EPT 1955 * violation occurs, treat it as broken hardware. 1956 */ 1957 if (KVM_BUG_ON(exit_qual & EPT_VIOLATION_ACC_INSTR, vcpu->kvm)) 1958 return -EIO; 1959 } 1960 1961 trace_kvm_page_fault(vcpu, gpa, exit_qual); 1962 1963 /* 1964 * To minimize TDH.VP.ENTER invocations, retry locally for private GPA 1965 * mapping in TDX. 1966 * 1967 * KVM may return RET_PF_RETRY for private GPA due to 1968 * - contentions when atomically updating SPTEs of the mirror page table 1969 * - in-progress GFN invalidation or memslot removal. 1970 * - TDX_OPERAND_BUSY error from TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD, 1971 * caused by contentions with TDH.VP.ENTER (with zero-step mitigation) 1972 * or certain TDCALLs. 1973 * 1974 * If TDH.VP.ENTER is invoked more times than the threshold set by the 1975 * TDX module before KVM resolves the private GPA mapping, the TDX 1976 * module will activate zero-step mitigation during TDH.VP.ENTER. This 1977 * process acquires an SEPT tree lock in the TDX module, leading to 1978 * further contentions with TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD 1979 * operations on other vCPUs. 1980 * 1981 * Breaking out of local retries for kvm_vcpu_has_events() is for 1982 * interrupt injection. kvm_vcpu_has_events() should not see pending 1983 * events for TDX. Since KVM can't determine if IRQs (or NMIs) are 1984 * blocked by TDs, false positives are inevitable i.e., KVM may re-enter 1985 * the guest even if the IRQ/NMI can't be delivered. 1986 * 1987 * Note: even without breaking out of local retries, zero-step 1988 * mitigation may still occur due to 1989 * - invoking of TDH.VP.ENTER after KVM_EXIT_MEMORY_FAULT, 1990 * - a single RIP causing EPT violations for more GFNs than the 1991 * threshold count. 1992 * This is safe, as triggering zero-step mitigation only introduces 1993 * contentions to page installation SEAMCALLs on other vCPUs, which will 1994 * handle retries locally in their EPT violation handlers. 1995 */ 1996 while (1) { 1997 ret = __vmx_handle_ept_violation(vcpu, gpa, exit_qual); 1998 1999 if (ret != RET_PF_RETRY || !local_retry) 2000 break; 2001 2002 if (kvm_vcpu_has_events(vcpu) || signal_pending(current)) 2003 break; 2004 2005 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 2006 ret = -EIO; 2007 break; 2008 } 2009 2010 cond_resched(); 2011 } 2012 return ret; 2013 } 2014 2015 int tdx_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2016 { 2017 if (err) { 2018 tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND); 2019 return 1; 2020 } 2021 2022 if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MSR_READ) 2023 tdvmcall_set_return_val(vcpu, kvm_read_edx_eax(vcpu)); 2024 2025 return 1; 2026 } 2027 2028 2029 int tdx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t fastpath) 2030 { 2031 struct vcpu_tdx *tdx = to_tdx(vcpu); 2032 u64 vp_enter_ret = tdx->vp_enter_ret; 2033 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu); 2034 2035 if (fastpath != EXIT_FASTPATH_NONE) 2036 return 1; 2037 2038 if (unlikely(vp_enter_ret == EXIT_REASON_EPT_MISCONFIG)) { 2039 KVM_BUG_ON(1, vcpu->kvm); 2040 return -EIO; 2041 } 2042 2043 /* 2044 * Handle TDX SW errors, including TDX_SEAMCALL_UD, TDX_SEAMCALL_GP and 2045 * TDX_SEAMCALL_VMFAILINVALID. 2046 */ 2047 if (unlikely((vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR)) { 2048 KVM_BUG_ON(!kvm_rebooting, vcpu->kvm); 2049 goto unhandled_exit; 2050 } 2051 2052 if (unlikely(tdx_failed_vmentry(vcpu))) { 2053 /* 2054 * If the guest state is protected, that means off-TD debug is 2055 * not enabled, TDX_NON_RECOVERABLE must be set. 2056 */ 2057 WARN_ON_ONCE(vcpu->arch.guest_state_protected && 2058 !(vp_enter_ret & TDX_NON_RECOVERABLE)); 2059 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 2060 vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason.full; 2061 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 2062 return 0; 2063 } 2064 2065 if (unlikely(vp_enter_ret & (TDX_ERROR | TDX_NON_RECOVERABLE)) && 2066 exit_reason.basic != EXIT_REASON_TRIPLE_FAULT) { 2067 kvm_pr_unimpl("TD vp_enter_ret 0x%llx\n", vp_enter_ret); 2068 goto unhandled_exit; 2069 } 2070 2071 WARN_ON_ONCE(exit_reason.basic != EXIT_REASON_TRIPLE_FAULT && 2072 (vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) != TDX_SUCCESS); 2073 2074 switch (exit_reason.basic) { 2075 case EXIT_REASON_TRIPLE_FAULT: 2076 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 2077 vcpu->mmio_needed = 0; 2078 return 0; 2079 case EXIT_REASON_EXCEPTION_NMI: 2080 return tdx_handle_exception_nmi(vcpu); 2081 case EXIT_REASON_EXTERNAL_INTERRUPT: 2082 ++vcpu->stat.irq_exits; 2083 return 1; 2084 case EXIT_REASON_CPUID: 2085 return tdx_emulate_cpuid(vcpu); 2086 case EXIT_REASON_HLT: 2087 return kvm_emulate_halt_noskip(vcpu); 2088 case EXIT_REASON_TDCALL: 2089 return handle_tdvmcall(vcpu); 2090 case EXIT_REASON_VMCALL: 2091 return tdx_emulate_vmcall(vcpu); 2092 case EXIT_REASON_IO_INSTRUCTION: 2093 return tdx_emulate_io(vcpu); 2094 case EXIT_REASON_MSR_READ: 2095 kvm_rcx_write(vcpu, tdx->vp_enter_args.r12); 2096 return kvm_emulate_rdmsr(vcpu); 2097 case EXIT_REASON_MSR_WRITE: 2098 kvm_rcx_write(vcpu, tdx->vp_enter_args.r12); 2099 kvm_rax_write(vcpu, tdx->vp_enter_args.r13 & -1u); 2100 kvm_rdx_write(vcpu, tdx->vp_enter_args.r13 >> 32); 2101 return kvm_emulate_wrmsr(vcpu); 2102 case EXIT_REASON_EPT_MISCONFIG: 2103 return tdx_emulate_mmio(vcpu); 2104 case EXIT_REASON_EPT_VIOLATION: 2105 return tdx_handle_ept_violation(vcpu); 2106 case EXIT_REASON_OTHER_SMI: 2107 /* 2108 * Unlike VMX, SMI in SEAM non-root mode (i.e. when 2109 * TD guest vCPU is running) will cause VM exit to TDX module, 2110 * then SEAMRET to KVM. Once it exits to KVM, SMI is delivered 2111 * and handled by kernel handler right away. 2112 * 2113 * The Other SMI exit can also be caused by the SEAM non-root 2114 * machine check delivered via Machine Check System Management 2115 * Interrupt (MSMI), but it has already been handled by the 2116 * kernel machine check handler, i.e., the memory page has been 2117 * marked as poisoned and it won't be freed to the free list 2118 * when the TDX guest is terminated (the TDX module marks the 2119 * guest as dead and prevent it from further running when 2120 * machine check happens in SEAM non-root). 2121 * 2122 * - A MSMI will not reach here, it's handled as non_recoverable 2123 * case above. 2124 * - If it's not an MSMI, no need to do anything here. 2125 */ 2126 return 1; 2127 default: 2128 break; 2129 } 2130 2131 unhandled_exit: 2132 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2133 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2134 vcpu->run->internal.ndata = 2; 2135 vcpu->run->internal.data[0] = vp_enter_ret; 2136 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2137 return 0; 2138 } 2139 2140 void tdx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 2141 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code) 2142 { 2143 struct vcpu_tdx *tdx = to_tdx(vcpu); 2144 2145 *reason = tdx->vt.exit_reason.full; 2146 if (*reason != -1u) { 2147 *info1 = vmx_get_exit_qual(vcpu); 2148 *info2 = tdx->ext_exit_qualification; 2149 *intr_info = vmx_get_intr_info(vcpu); 2150 } else { 2151 *info1 = 0; 2152 *info2 = 0; 2153 *intr_info = 0; 2154 } 2155 2156 *error_code = 0; 2157 } 2158 2159 bool tdx_has_emulated_msr(u32 index) 2160 { 2161 switch (index) { 2162 case MSR_IA32_UCODE_REV: 2163 case MSR_IA32_ARCH_CAPABILITIES: 2164 case MSR_IA32_POWER_CTL: 2165 case MSR_IA32_CR_PAT: 2166 case MSR_MTRRcap: 2167 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: 2168 case MSR_MTRRdefType: 2169 case MSR_IA32_TSC_DEADLINE: 2170 case MSR_IA32_MISC_ENABLE: 2171 case MSR_PLATFORM_INFO: 2172 case MSR_MISC_FEATURES_ENABLES: 2173 case MSR_IA32_APICBASE: 2174 case MSR_EFER: 2175 case MSR_IA32_FEAT_CTL: 2176 case MSR_IA32_MCG_CAP: 2177 case MSR_IA32_MCG_STATUS: 2178 case MSR_IA32_MCG_CTL: 2179 case MSR_IA32_MCG_EXT_CTL: 2180 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2181 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: 2182 /* MSR_IA32_MCx_{CTL, STATUS, ADDR, MISC, CTL2} */ 2183 case MSR_KVM_POLL_CONTROL: 2184 return true; 2185 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 2186 /* 2187 * x2APIC registers that are virtualized by the CPU can't be 2188 * emulated, KVM doesn't have access to the virtual APIC page. 2189 */ 2190 switch (index) { 2191 case X2APIC_MSR(APIC_TASKPRI): 2192 case X2APIC_MSR(APIC_PROCPRI): 2193 case X2APIC_MSR(APIC_EOI): 2194 case X2APIC_MSR(APIC_ISR) ... X2APIC_MSR(APIC_ISR + APIC_ISR_NR): 2195 case X2APIC_MSR(APIC_TMR) ... X2APIC_MSR(APIC_TMR + APIC_ISR_NR): 2196 case X2APIC_MSR(APIC_IRR) ... X2APIC_MSR(APIC_IRR + APIC_ISR_NR): 2197 return false; 2198 default: 2199 return true; 2200 } 2201 default: 2202 return false; 2203 } 2204 } 2205 2206 static bool tdx_is_read_only_msr(u32 index) 2207 { 2208 return index == MSR_IA32_APICBASE || index == MSR_EFER || 2209 index == MSR_IA32_FEAT_CTL; 2210 } 2211 2212 int tdx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2213 { 2214 switch (msr->index) { 2215 case MSR_IA32_FEAT_CTL: 2216 /* 2217 * MCE and MCA are advertised via cpuid. Guest kernel could 2218 * check if LMCE is enabled or not. 2219 */ 2220 msr->data = FEAT_CTL_LOCKED; 2221 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 2222 msr->data |= FEAT_CTL_LMCE_ENABLED; 2223 return 0; 2224 case MSR_IA32_MCG_EXT_CTL: 2225 if (!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P)) 2226 return 1; 2227 msr->data = vcpu->arch.mcg_ext_ctl; 2228 return 0; 2229 default: 2230 if (!tdx_has_emulated_msr(msr->index)) 2231 return 1; 2232 2233 return kvm_get_msr_common(vcpu, msr); 2234 } 2235 } 2236 2237 int tdx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2238 { 2239 switch (msr->index) { 2240 case MSR_IA32_MCG_EXT_CTL: 2241 if ((!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P)) || 2242 (msr->data & ~MCG_EXT_CTL_LMCE_EN)) 2243 return 1; 2244 vcpu->arch.mcg_ext_ctl = msr->data; 2245 return 0; 2246 default: 2247 if (tdx_is_read_only_msr(msr->index)) 2248 return 1; 2249 2250 if (!tdx_has_emulated_msr(msr->index)) 2251 return 1; 2252 2253 return kvm_set_msr_common(vcpu, msr); 2254 } 2255 } 2256 2257 static int tdx_get_capabilities(struct kvm_tdx_cmd *cmd) 2258 { 2259 const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf; 2260 struct kvm_tdx_capabilities __user *user_caps; 2261 struct kvm_tdx_capabilities *caps = NULL; 2262 u32 nr_user_entries; 2263 int ret = 0; 2264 2265 /* flags is reserved for future use */ 2266 if (cmd->flags) 2267 return -EINVAL; 2268 2269 caps = kzalloc(sizeof(*caps) + 2270 sizeof(struct kvm_cpuid_entry2) * td_conf->num_cpuid_config, 2271 GFP_KERNEL); 2272 if (!caps) 2273 return -ENOMEM; 2274 2275 user_caps = u64_to_user_ptr(cmd->data); 2276 if (get_user(nr_user_entries, &user_caps->cpuid.nent)) { 2277 ret = -EFAULT; 2278 goto out; 2279 } 2280 2281 if (nr_user_entries < td_conf->num_cpuid_config) { 2282 ret = -E2BIG; 2283 goto out; 2284 } 2285 2286 ret = init_kvm_tdx_caps(td_conf, caps); 2287 if (ret) 2288 goto out; 2289 2290 if (copy_to_user(user_caps, caps, sizeof(*caps))) { 2291 ret = -EFAULT; 2292 goto out; 2293 } 2294 2295 if (copy_to_user(user_caps->cpuid.entries, caps->cpuid.entries, 2296 caps->cpuid.nent * 2297 sizeof(caps->cpuid.entries[0]))) 2298 ret = -EFAULT; 2299 2300 out: 2301 /* kfree() accepts NULL. */ 2302 kfree(caps); 2303 return ret; 2304 } 2305 2306 /* 2307 * KVM reports guest physical address in CPUID.0x800000008.EAX[23:16], which is 2308 * similar to TDX's GPAW. Use this field as the interface for userspace to 2309 * configure the GPAW and EPT level for TDs. 2310 * 2311 * Only values 48 and 52 are supported. Value 52 means GPAW-52 and EPT level 2312 * 5, Value 48 means GPAW-48 and EPT level 4. For value 48, GPAW-48 is always 2313 * supported. Value 52 is only supported when the platform supports 5 level 2314 * EPT. 2315 */ 2316 static int setup_tdparams_eptp_controls(struct kvm_cpuid2 *cpuid, 2317 struct td_params *td_params) 2318 { 2319 const struct kvm_cpuid_entry2 *entry; 2320 int guest_pa; 2321 2322 entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent, 0x80000008, 0); 2323 if (!entry) 2324 return -EINVAL; 2325 2326 guest_pa = tdx_get_guest_phys_addr_bits(entry->eax); 2327 2328 if (guest_pa != 48 && guest_pa != 52) 2329 return -EINVAL; 2330 2331 if (guest_pa == 52 && !cpu_has_vmx_ept_5levels()) 2332 return -EINVAL; 2333 2334 td_params->eptp_controls = VMX_EPTP_MT_WB; 2335 if (guest_pa == 52) { 2336 td_params->eptp_controls |= VMX_EPTP_PWL_5; 2337 td_params->config_flags |= TDX_CONFIG_FLAGS_MAX_GPAW; 2338 } else { 2339 td_params->eptp_controls |= VMX_EPTP_PWL_4; 2340 } 2341 2342 return 0; 2343 } 2344 2345 static int setup_tdparams_cpuids(struct kvm_cpuid2 *cpuid, 2346 struct td_params *td_params) 2347 { 2348 const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf; 2349 const struct kvm_cpuid_entry2 *entry; 2350 struct tdx_cpuid_value *value; 2351 int i, copy_cnt = 0; 2352 2353 /* 2354 * td_params.cpuid_values: The number and the order of cpuid_value must 2355 * be same to the one of struct tdsysinfo.{num_cpuid_config, cpuid_configs} 2356 * It's assumed that td_params was zeroed. 2357 */ 2358 for (i = 0; i < td_conf->num_cpuid_config; i++) { 2359 struct kvm_cpuid_entry2 tmp; 2360 2361 td_init_cpuid_entry2(&tmp, i); 2362 2363 entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent, 2364 tmp.function, tmp.index); 2365 if (!entry) 2366 continue; 2367 2368 if (tdx_unsupported_cpuid(entry)) 2369 return -EINVAL; 2370 2371 copy_cnt++; 2372 2373 value = &td_params->cpuid_values[i]; 2374 value->eax = entry->eax; 2375 value->ebx = entry->ebx; 2376 value->ecx = entry->ecx; 2377 value->edx = entry->edx; 2378 2379 /* 2380 * TDX module does not accept nonzero bits 16..23 for the 2381 * CPUID[0x80000008].EAX, see setup_tdparams_eptp_controls(). 2382 */ 2383 if (tmp.function == 0x80000008) 2384 value->eax = tdx_set_guest_phys_addr_bits(value->eax, 0); 2385 } 2386 2387 /* 2388 * Rely on the TDX module to reject invalid configuration, but it can't 2389 * check of leafs that don't have a proper slot in td_params->cpuid_values 2390 * to stick then. So fail if there were entries that didn't get copied to 2391 * td_params. 2392 */ 2393 if (copy_cnt != cpuid->nent) 2394 return -EINVAL; 2395 2396 return 0; 2397 } 2398 2399 static int setup_tdparams(struct kvm *kvm, struct td_params *td_params, 2400 struct kvm_tdx_init_vm *init_vm) 2401 { 2402 const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf; 2403 struct kvm_cpuid2 *cpuid = &init_vm->cpuid; 2404 int ret; 2405 2406 if (kvm->created_vcpus) 2407 return -EBUSY; 2408 2409 if (init_vm->attributes & ~tdx_get_supported_attrs(td_conf)) 2410 return -EINVAL; 2411 2412 if (init_vm->xfam & ~tdx_get_supported_xfam(td_conf)) 2413 return -EINVAL; 2414 2415 td_params->max_vcpus = kvm->max_vcpus; 2416 td_params->attributes = init_vm->attributes | td_conf->attributes_fixed1; 2417 td_params->xfam = init_vm->xfam | td_conf->xfam_fixed1; 2418 2419 td_params->config_flags = TDX_CONFIG_FLAGS_NO_RBP_MOD; 2420 td_params->tsc_frequency = TDX_TSC_KHZ_TO_25MHZ(kvm->arch.default_tsc_khz); 2421 2422 ret = setup_tdparams_eptp_controls(cpuid, td_params); 2423 if (ret) 2424 return ret; 2425 2426 ret = setup_tdparams_cpuids(cpuid, td_params); 2427 if (ret) 2428 return ret; 2429 2430 #define MEMCPY_SAME_SIZE(dst, src) \ 2431 do { \ 2432 BUILD_BUG_ON(sizeof(dst) != sizeof(src)); \ 2433 memcpy((dst), (src), sizeof(dst)); \ 2434 } while (0) 2435 2436 MEMCPY_SAME_SIZE(td_params->mrconfigid, init_vm->mrconfigid); 2437 MEMCPY_SAME_SIZE(td_params->mrowner, init_vm->mrowner); 2438 MEMCPY_SAME_SIZE(td_params->mrownerconfig, init_vm->mrownerconfig); 2439 2440 return 0; 2441 } 2442 2443 static int __tdx_td_init(struct kvm *kvm, struct td_params *td_params, 2444 u64 *seamcall_err) 2445 { 2446 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 2447 cpumask_var_t packages; 2448 struct page **tdcs_pages = NULL; 2449 struct page *tdr_page; 2450 int ret, i; 2451 u64 err, rcx; 2452 2453 *seamcall_err = 0; 2454 ret = tdx_guest_keyid_alloc(); 2455 if (ret < 0) 2456 return ret; 2457 kvm_tdx->hkid = ret; 2458 kvm_tdx->misc_cg = get_current_misc_cg(); 2459 ret = misc_cg_try_charge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1); 2460 if (ret) 2461 goto free_hkid; 2462 2463 ret = -ENOMEM; 2464 2465 atomic_inc(&nr_configured_hkid); 2466 2467 tdr_page = alloc_page(GFP_KERNEL); 2468 if (!tdr_page) 2469 goto free_hkid; 2470 2471 kvm_tdx->td.tdcs_nr_pages = tdx_sysinfo->td_ctrl.tdcs_base_size / PAGE_SIZE; 2472 /* TDVPS = TDVPR(4K page) + TDCX(multiple 4K pages), -1 for TDVPR. */ 2473 kvm_tdx->td.tdcx_nr_pages = tdx_sysinfo->td_ctrl.tdvps_base_size / PAGE_SIZE - 1; 2474 tdcs_pages = kcalloc(kvm_tdx->td.tdcs_nr_pages, sizeof(*kvm_tdx->td.tdcs_pages), 2475 GFP_KERNEL | __GFP_ZERO); 2476 if (!tdcs_pages) 2477 goto free_tdr; 2478 2479 for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) { 2480 tdcs_pages[i] = alloc_page(GFP_KERNEL); 2481 if (!tdcs_pages[i]) 2482 goto free_tdcs; 2483 } 2484 2485 if (!zalloc_cpumask_var(&packages, GFP_KERNEL)) 2486 goto free_tdcs; 2487 2488 cpus_read_lock(); 2489 2490 /* 2491 * Need at least one CPU of the package to be online in order to 2492 * program all packages for host key id. Check it. 2493 */ 2494 for_each_present_cpu(i) 2495 cpumask_set_cpu(topology_physical_package_id(i), packages); 2496 for_each_online_cpu(i) 2497 cpumask_clear_cpu(topology_physical_package_id(i), packages); 2498 if (!cpumask_empty(packages)) { 2499 ret = -EIO; 2500 /* 2501 * Because it's hard for human operator to figure out the 2502 * reason, warn it. 2503 */ 2504 #define MSG_ALLPKG "All packages need to have online CPU to create TD. Online CPU and retry.\n" 2505 pr_warn_ratelimited(MSG_ALLPKG); 2506 goto free_packages; 2507 } 2508 2509 /* 2510 * TDH.MNG.CREATE tries to grab the global TDX module and fails 2511 * with TDX_OPERAND_BUSY when it fails to grab. Take the global 2512 * lock to prevent it from failure. 2513 */ 2514 mutex_lock(&tdx_lock); 2515 kvm_tdx->td.tdr_page = tdr_page; 2516 err = tdh_mng_create(&kvm_tdx->td, kvm_tdx->hkid); 2517 mutex_unlock(&tdx_lock); 2518 2519 if (err == TDX_RND_NO_ENTROPY) { 2520 ret = -EAGAIN; 2521 goto free_packages; 2522 } 2523 2524 if (WARN_ON_ONCE(err)) { 2525 pr_tdx_error(TDH_MNG_CREATE, err); 2526 ret = -EIO; 2527 goto free_packages; 2528 } 2529 2530 for_each_online_cpu(i) { 2531 int pkg = topology_physical_package_id(i); 2532 2533 if (cpumask_test_and_set_cpu(pkg, packages)) 2534 continue; 2535 2536 /* 2537 * Program the memory controller in the package with an 2538 * encryption key associated to a TDX private host key id 2539 * assigned to this TDR. Concurrent operations on same memory 2540 * controller results in TDX_OPERAND_BUSY. No locking needed 2541 * beyond the cpus_read_lock() above as it serializes against 2542 * hotplug and the first online CPU of the package is always 2543 * used. We never have two CPUs in the same socket trying to 2544 * program the key. 2545 */ 2546 ret = smp_call_on_cpu(i, tdx_do_tdh_mng_key_config, 2547 kvm_tdx, true); 2548 if (ret) 2549 break; 2550 } 2551 cpus_read_unlock(); 2552 free_cpumask_var(packages); 2553 if (ret) { 2554 i = 0; 2555 goto teardown; 2556 } 2557 2558 kvm_tdx->td.tdcs_pages = tdcs_pages; 2559 for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) { 2560 err = tdh_mng_addcx(&kvm_tdx->td, tdcs_pages[i]); 2561 if (err == TDX_RND_NO_ENTROPY) { 2562 /* Here it's hard to allow userspace to retry. */ 2563 ret = -EAGAIN; 2564 goto teardown; 2565 } 2566 if (WARN_ON_ONCE(err)) { 2567 pr_tdx_error(TDH_MNG_ADDCX, err); 2568 ret = -EIO; 2569 goto teardown; 2570 } 2571 } 2572 2573 err = tdh_mng_init(&kvm_tdx->td, __pa(td_params), &rcx); 2574 if ((err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_INVALID) { 2575 /* 2576 * Because a user gives operands, don't warn. 2577 * Return a hint to the user because it's sometimes hard for the 2578 * user to figure out which operand is invalid. SEAMCALL status 2579 * code includes which operand caused invalid operand error. 2580 */ 2581 *seamcall_err = err; 2582 ret = -EINVAL; 2583 goto teardown; 2584 } else if (WARN_ON_ONCE(err)) { 2585 pr_tdx_error_1(TDH_MNG_INIT, err, rcx); 2586 ret = -EIO; 2587 goto teardown; 2588 } 2589 2590 return 0; 2591 2592 /* 2593 * The sequence for freeing resources from a partially initialized TD 2594 * varies based on where in the initialization flow failure occurred. 2595 * Simply use the full teardown and destroy, which naturally play nice 2596 * with partial initialization. 2597 */ 2598 teardown: 2599 /* Only free pages not yet added, so start at 'i' */ 2600 for (; i < kvm_tdx->td.tdcs_nr_pages; i++) { 2601 if (tdcs_pages[i]) { 2602 __free_page(tdcs_pages[i]); 2603 tdcs_pages[i] = NULL; 2604 } 2605 } 2606 if (!kvm_tdx->td.tdcs_pages) 2607 kfree(tdcs_pages); 2608 2609 tdx_mmu_release_hkid(kvm); 2610 tdx_reclaim_td_control_pages(kvm); 2611 2612 return ret; 2613 2614 free_packages: 2615 cpus_read_unlock(); 2616 free_cpumask_var(packages); 2617 2618 free_tdcs: 2619 for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) { 2620 if (tdcs_pages[i]) 2621 __free_page(tdcs_pages[i]); 2622 } 2623 kfree(tdcs_pages); 2624 kvm_tdx->td.tdcs_pages = NULL; 2625 2626 free_tdr: 2627 if (tdr_page) 2628 __free_page(tdr_page); 2629 kvm_tdx->td.tdr_page = 0; 2630 2631 free_hkid: 2632 tdx_hkid_free(kvm_tdx); 2633 2634 return ret; 2635 } 2636 2637 static u64 tdx_td_metadata_field_read(struct kvm_tdx *tdx, u64 field_id, 2638 u64 *data) 2639 { 2640 u64 err; 2641 2642 err = tdh_mng_rd(&tdx->td, field_id, data); 2643 2644 return err; 2645 } 2646 2647 #define TDX_MD_UNREADABLE_LEAF_MASK GENMASK(30, 7) 2648 #define TDX_MD_UNREADABLE_SUBLEAF_MASK GENMASK(31, 7) 2649 2650 static int tdx_read_cpuid(struct kvm_vcpu *vcpu, u32 leaf, u32 sub_leaf, 2651 bool sub_leaf_set, int *entry_index, 2652 struct kvm_cpuid_entry2 *out) 2653 { 2654 struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm); 2655 u64 field_id = TD_MD_FIELD_ID_CPUID_VALUES; 2656 u64 ebx_eax, edx_ecx; 2657 u64 err = 0; 2658 2659 if (sub_leaf > 0b1111111) 2660 return -EINVAL; 2661 2662 if (*entry_index >= KVM_MAX_CPUID_ENTRIES) 2663 return -EINVAL; 2664 2665 if (leaf & TDX_MD_UNREADABLE_LEAF_MASK || 2666 sub_leaf & TDX_MD_UNREADABLE_SUBLEAF_MASK) 2667 return -EINVAL; 2668 2669 /* 2670 * bit 23:17, REVSERVED: reserved, must be 0; 2671 * bit 16, LEAF_31: leaf number bit 31; 2672 * bit 15:9, LEAF_6_0: leaf number bits 6:0, leaf bits 30:7 are 2673 * implicitly 0; 2674 * bit 8, SUBLEAF_NA: sub-leaf not applicable flag; 2675 * bit 7:1, SUBLEAF_6_0: sub-leaf number bits 6:0. If SUBLEAF_NA is 1, 2676 * the SUBLEAF_6_0 is all-1. 2677 * sub-leaf bits 31:7 are implicitly 0; 2678 * bit 0, ELEMENT_I: Element index within field; 2679 */ 2680 field_id |= ((leaf & 0x80000000) ? 1 : 0) << 16; 2681 field_id |= (leaf & 0x7f) << 9; 2682 if (sub_leaf_set) 2683 field_id |= (sub_leaf & 0x7f) << 1; 2684 else 2685 field_id |= 0x1fe; 2686 2687 err = tdx_td_metadata_field_read(kvm_tdx, field_id, &ebx_eax); 2688 if (err) //TODO check for specific errors 2689 goto err_out; 2690 2691 out->eax = (u32) ebx_eax; 2692 out->ebx = (u32) (ebx_eax >> 32); 2693 2694 field_id++; 2695 err = tdx_td_metadata_field_read(kvm_tdx, field_id, &edx_ecx); 2696 /* 2697 * It's weird that reading edx_ecx fails while reading ebx_eax 2698 * succeeded. 2699 */ 2700 if (WARN_ON_ONCE(err)) 2701 goto err_out; 2702 2703 out->ecx = (u32) edx_ecx; 2704 out->edx = (u32) (edx_ecx >> 32); 2705 2706 out->function = leaf; 2707 out->index = sub_leaf; 2708 out->flags |= sub_leaf_set ? KVM_CPUID_FLAG_SIGNIFCANT_INDEX : 0; 2709 2710 /* 2711 * Work around missing support on old TDX modules, fetch 2712 * guest maxpa from gfn_direct_bits. 2713 */ 2714 if (leaf == 0x80000008) { 2715 gpa_t gpa_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm)); 2716 unsigned int g_maxpa = __ffs(gpa_bits) + 1; 2717 2718 out->eax = tdx_set_guest_phys_addr_bits(out->eax, g_maxpa); 2719 } 2720 2721 (*entry_index)++; 2722 2723 return 0; 2724 2725 err_out: 2726 out->eax = 0; 2727 out->ebx = 0; 2728 out->ecx = 0; 2729 out->edx = 0; 2730 2731 return -EIO; 2732 } 2733 2734 static int tdx_td_init(struct kvm *kvm, struct kvm_tdx_cmd *cmd) 2735 { 2736 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 2737 struct kvm_tdx_init_vm *init_vm; 2738 struct td_params *td_params = NULL; 2739 int ret; 2740 2741 BUILD_BUG_ON(sizeof(*init_vm) != 256 + sizeof_field(struct kvm_tdx_init_vm, cpuid)); 2742 BUILD_BUG_ON(sizeof(struct td_params) != 1024); 2743 2744 if (kvm_tdx->state != TD_STATE_UNINITIALIZED) 2745 return -EINVAL; 2746 2747 if (cmd->flags) 2748 return -EINVAL; 2749 2750 init_vm = kmalloc(sizeof(*init_vm) + 2751 sizeof(init_vm->cpuid.entries[0]) * KVM_MAX_CPUID_ENTRIES, 2752 GFP_KERNEL); 2753 if (!init_vm) 2754 return -ENOMEM; 2755 2756 if (copy_from_user(init_vm, u64_to_user_ptr(cmd->data), sizeof(*init_vm))) { 2757 ret = -EFAULT; 2758 goto out; 2759 } 2760 2761 if (init_vm->cpuid.nent > KVM_MAX_CPUID_ENTRIES) { 2762 ret = -E2BIG; 2763 goto out; 2764 } 2765 2766 if (copy_from_user(init_vm->cpuid.entries, 2767 u64_to_user_ptr(cmd->data) + sizeof(*init_vm), 2768 flex_array_size(init_vm, cpuid.entries, init_vm->cpuid.nent))) { 2769 ret = -EFAULT; 2770 goto out; 2771 } 2772 2773 if (memchr_inv(init_vm->reserved, 0, sizeof(init_vm->reserved))) { 2774 ret = -EINVAL; 2775 goto out; 2776 } 2777 2778 if (init_vm->cpuid.padding) { 2779 ret = -EINVAL; 2780 goto out; 2781 } 2782 2783 td_params = kzalloc(sizeof(struct td_params), GFP_KERNEL); 2784 if (!td_params) { 2785 ret = -ENOMEM; 2786 goto out; 2787 } 2788 2789 ret = setup_tdparams(kvm, td_params, init_vm); 2790 if (ret) 2791 goto out; 2792 2793 ret = __tdx_td_init(kvm, td_params, &cmd->hw_error); 2794 if (ret) 2795 goto out; 2796 2797 kvm_tdx->tsc_offset = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_OFFSET); 2798 kvm_tdx->tsc_multiplier = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_MULTIPLIER); 2799 kvm_tdx->attributes = td_params->attributes; 2800 kvm_tdx->xfam = td_params->xfam; 2801 2802 if (td_params->config_flags & TDX_CONFIG_FLAGS_MAX_GPAW) 2803 kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_5; 2804 else 2805 kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_4; 2806 2807 kvm_tdx->state = TD_STATE_INITIALIZED; 2808 out: 2809 /* kfree() accepts NULL. */ 2810 kfree(init_vm); 2811 kfree(td_params); 2812 2813 return ret; 2814 } 2815 2816 void tdx_flush_tlb_current(struct kvm_vcpu *vcpu) 2817 { 2818 /* 2819 * flush_tlb_current() is invoked when the first time for the vcpu to 2820 * run or when root of shared EPT is invalidated. 2821 * KVM only needs to flush shared EPT because the TDX module handles TLB 2822 * invalidation for private EPT in tdh_vp_enter(); 2823 * 2824 * A single context invalidation for shared EPT can be performed here. 2825 * However, this single context invalidation requires the private EPTP 2826 * rather than the shared EPTP to flush shared EPT, as shared EPT uses 2827 * private EPTP as its ASID for TLB invalidation. 2828 * 2829 * To avoid reading back private EPTP, perform a global invalidation for 2830 * shared EPT instead to keep this function simple. 2831 */ 2832 ept_sync_global(); 2833 } 2834 2835 void tdx_flush_tlb_all(struct kvm_vcpu *vcpu) 2836 { 2837 /* 2838 * TDX has called tdx_track() in tdx_sept_remove_private_spte() to 2839 * ensure that private EPT will be flushed on the next TD enter. No need 2840 * to call tdx_track() here again even when this callback is a result of 2841 * zapping private EPT. 2842 * 2843 * Due to the lack of the context to determine which EPT has been 2844 * affected by zapping, invoke invept() directly here for both shared 2845 * EPT and private EPT for simplicity, though it's not necessary for 2846 * private EPT. 2847 */ 2848 ept_sync_global(); 2849 } 2850 2851 static int tdx_td_finalize(struct kvm *kvm, struct kvm_tdx_cmd *cmd) 2852 { 2853 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 2854 2855 guard(mutex)(&kvm->slots_lock); 2856 2857 if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE) 2858 return -EINVAL; 2859 /* 2860 * Pages are pending for KVM_TDX_INIT_MEM_REGION to issue 2861 * TDH.MEM.PAGE.ADD(). 2862 */ 2863 if (atomic64_read(&kvm_tdx->nr_premapped)) 2864 return -EINVAL; 2865 2866 cmd->hw_error = tdh_mr_finalize(&kvm_tdx->td); 2867 if (tdx_operand_busy(cmd->hw_error)) 2868 return -EBUSY; 2869 if (KVM_BUG_ON(cmd->hw_error, kvm)) { 2870 pr_tdx_error(TDH_MR_FINALIZE, cmd->hw_error); 2871 return -EIO; 2872 } 2873 2874 kvm_tdx->state = TD_STATE_RUNNABLE; 2875 /* TD_STATE_RUNNABLE must be set before 'pre_fault_allowed' */ 2876 smp_wmb(); 2877 kvm->arch.pre_fault_allowed = true; 2878 return 0; 2879 } 2880 2881 int tdx_vm_ioctl(struct kvm *kvm, void __user *argp) 2882 { 2883 struct kvm_tdx_cmd tdx_cmd; 2884 int r; 2885 2886 if (copy_from_user(&tdx_cmd, argp, sizeof(struct kvm_tdx_cmd))) 2887 return -EFAULT; 2888 2889 /* 2890 * Userspace should never set hw_error. It is used to fill 2891 * hardware-defined error by the kernel. 2892 */ 2893 if (tdx_cmd.hw_error) 2894 return -EINVAL; 2895 2896 mutex_lock(&kvm->lock); 2897 2898 switch (tdx_cmd.id) { 2899 case KVM_TDX_CAPABILITIES: 2900 r = tdx_get_capabilities(&tdx_cmd); 2901 break; 2902 case KVM_TDX_INIT_VM: 2903 r = tdx_td_init(kvm, &tdx_cmd); 2904 break; 2905 case KVM_TDX_FINALIZE_VM: 2906 r = tdx_td_finalize(kvm, &tdx_cmd); 2907 break; 2908 default: 2909 r = -EINVAL; 2910 goto out; 2911 } 2912 2913 if (copy_to_user(argp, &tdx_cmd, sizeof(struct kvm_tdx_cmd))) 2914 r = -EFAULT; 2915 2916 out: 2917 mutex_unlock(&kvm->lock); 2918 return r; 2919 } 2920 2921 /* VMM can pass one 64bit auxiliary data to vcpu via RCX for guest BIOS. */ 2922 static int tdx_td_vcpu_init(struct kvm_vcpu *vcpu, u64 vcpu_rcx) 2923 { 2924 struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm); 2925 struct vcpu_tdx *tdx = to_tdx(vcpu); 2926 struct page *page; 2927 int ret, i; 2928 u64 err; 2929 2930 page = alloc_page(GFP_KERNEL); 2931 if (!page) 2932 return -ENOMEM; 2933 tdx->vp.tdvpr_page = page; 2934 2935 /* 2936 * page_to_phys() does not work in 'noinstr' code, like guest 2937 * entry via tdh_vp_enter(). Precalculate and store it instead 2938 * of doing it at runtime later. 2939 */ 2940 tdx->vp.tdvpr_pa = page_to_phys(tdx->vp.tdvpr_page); 2941 2942 tdx->vp.tdcx_pages = kcalloc(kvm_tdx->td.tdcx_nr_pages, sizeof(*tdx->vp.tdcx_pages), 2943 GFP_KERNEL); 2944 if (!tdx->vp.tdcx_pages) { 2945 ret = -ENOMEM; 2946 goto free_tdvpr; 2947 } 2948 2949 for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) { 2950 page = alloc_page(GFP_KERNEL); 2951 if (!page) { 2952 ret = -ENOMEM; 2953 goto free_tdcx; 2954 } 2955 tdx->vp.tdcx_pages[i] = page; 2956 } 2957 2958 err = tdh_vp_create(&kvm_tdx->td, &tdx->vp); 2959 if (KVM_BUG_ON(err, vcpu->kvm)) { 2960 ret = -EIO; 2961 pr_tdx_error(TDH_VP_CREATE, err); 2962 goto free_tdcx; 2963 } 2964 2965 for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) { 2966 err = tdh_vp_addcx(&tdx->vp, tdx->vp.tdcx_pages[i]); 2967 if (KVM_BUG_ON(err, vcpu->kvm)) { 2968 pr_tdx_error(TDH_VP_ADDCX, err); 2969 /* 2970 * Pages already added are reclaimed by the vcpu_free 2971 * method, but the rest are freed here. 2972 */ 2973 for (; i < kvm_tdx->td.tdcx_nr_pages; i++) { 2974 __free_page(tdx->vp.tdcx_pages[i]); 2975 tdx->vp.tdcx_pages[i] = NULL; 2976 } 2977 return -EIO; 2978 } 2979 } 2980 2981 err = tdh_vp_init(&tdx->vp, vcpu_rcx, vcpu->vcpu_id); 2982 if (KVM_BUG_ON(err, vcpu->kvm)) { 2983 pr_tdx_error(TDH_VP_INIT, err); 2984 return -EIO; 2985 } 2986 2987 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 2988 2989 return 0; 2990 2991 free_tdcx: 2992 for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) { 2993 if (tdx->vp.tdcx_pages[i]) 2994 __free_page(tdx->vp.tdcx_pages[i]); 2995 tdx->vp.tdcx_pages[i] = NULL; 2996 } 2997 kfree(tdx->vp.tdcx_pages); 2998 tdx->vp.tdcx_pages = NULL; 2999 3000 free_tdvpr: 3001 if (tdx->vp.tdvpr_page) 3002 __free_page(tdx->vp.tdvpr_page); 3003 tdx->vp.tdvpr_page = 0; 3004 tdx->vp.tdvpr_pa = 0; 3005 3006 return ret; 3007 } 3008 3009 /* Sometimes reads multipple subleafs. Return how many enties were written. */ 3010 static int tdx_vcpu_get_cpuid_leaf(struct kvm_vcpu *vcpu, u32 leaf, int *entry_index, 3011 struct kvm_cpuid_entry2 *output_e) 3012 { 3013 int sub_leaf = 0; 3014 int ret; 3015 3016 /* First try without a subleaf */ 3017 ret = tdx_read_cpuid(vcpu, leaf, 0, false, entry_index, output_e); 3018 3019 /* If success, or invalid leaf, just give up */ 3020 if (ret != -EIO) 3021 return ret; 3022 3023 /* 3024 * If the try without a subleaf failed, try reading subleafs until 3025 * failure. The TDX module only supports 6 bits of subleaf index. 3026 */ 3027 while (1) { 3028 /* Keep reading subleafs until there is a failure. */ 3029 if (tdx_read_cpuid(vcpu, leaf, sub_leaf, true, entry_index, output_e)) 3030 return !sub_leaf; 3031 3032 sub_leaf++; 3033 output_e++; 3034 } 3035 3036 return 0; 3037 } 3038 3039 static int tdx_vcpu_get_cpuid(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd) 3040 { 3041 struct kvm_cpuid2 __user *output, *td_cpuid; 3042 int r = 0, i = 0, leaf; 3043 u32 level; 3044 3045 output = u64_to_user_ptr(cmd->data); 3046 td_cpuid = kzalloc(sizeof(*td_cpuid) + 3047 sizeof(output->entries[0]) * KVM_MAX_CPUID_ENTRIES, 3048 GFP_KERNEL); 3049 if (!td_cpuid) 3050 return -ENOMEM; 3051 3052 if (copy_from_user(td_cpuid, output, sizeof(*output))) { 3053 r = -EFAULT; 3054 goto out; 3055 } 3056 3057 /* Read max CPUID for normal range */ 3058 if (tdx_vcpu_get_cpuid_leaf(vcpu, 0, &i, &td_cpuid->entries[i])) { 3059 r = -EIO; 3060 goto out; 3061 } 3062 level = td_cpuid->entries[0].eax; 3063 3064 for (leaf = 1; leaf <= level; leaf++) 3065 tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]); 3066 3067 /* Read max CPUID for extended range */ 3068 if (tdx_vcpu_get_cpuid_leaf(vcpu, 0x80000000, &i, &td_cpuid->entries[i])) { 3069 r = -EIO; 3070 goto out; 3071 } 3072 level = td_cpuid->entries[i - 1].eax; 3073 3074 for (leaf = 0x80000001; leaf <= level; leaf++) 3075 tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]); 3076 3077 if (td_cpuid->nent < i) 3078 r = -E2BIG; 3079 td_cpuid->nent = i; 3080 3081 if (copy_to_user(output, td_cpuid, sizeof(*output))) { 3082 r = -EFAULT; 3083 goto out; 3084 } 3085 3086 if (r == -E2BIG) 3087 goto out; 3088 3089 if (copy_to_user(output->entries, td_cpuid->entries, 3090 td_cpuid->nent * sizeof(struct kvm_cpuid_entry2))) 3091 r = -EFAULT; 3092 3093 out: 3094 kfree(td_cpuid); 3095 3096 return r; 3097 } 3098 3099 static int tdx_vcpu_init(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd) 3100 { 3101 u64 apic_base; 3102 struct vcpu_tdx *tdx = to_tdx(vcpu); 3103 int ret; 3104 3105 if (cmd->flags) 3106 return -EINVAL; 3107 3108 if (tdx->state != VCPU_TD_STATE_UNINITIALIZED) 3109 return -EINVAL; 3110 3111 /* 3112 * TDX requires X2APIC, userspace is responsible for configuring guest 3113 * CPUID accordingly. 3114 */ 3115 apic_base = APIC_DEFAULT_PHYS_BASE | LAPIC_MODE_X2APIC | 3116 (kvm_vcpu_is_reset_bsp(vcpu) ? MSR_IA32_APICBASE_BSP : 0); 3117 if (kvm_apic_set_base(vcpu, apic_base, true)) 3118 return -EINVAL; 3119 3120 ret = tdx_td_vcpu_init(vcpu, (u64)cmd->data); 3121 if (ret) 3122 return ret; 3123 3124 td_vmcs_write16(tdx, POSTED_INTR_NV, POSTED_INTR_VECTOR); 3125 td_vmcs_write64(tdx, POSTED_INTR_DESC_ADDR, __pa(&tdx->vt.pi_desc)); 3126 td_vmcs_setbit32(tdx, PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_POSTED_INTR); 3127 3128 tdx->state = VCPU_TD_STATE_INITIALIZED; 3129 3130 return 0; 3131 } 3132 3133 void tdx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 3134 { 3135 /* 3136 * Yell on INIT, as TDX doesn't support INIT, i.e. KVM should drop all 3137 * INIT events. 3138 * 3139 * Defer initializing vCPU for RESET state until KVM_TDX_INIT_VCPU, as 3140 * userspace needs to define the vCPU model before KVM can initialize 3141 * vCPU state, e.g. to enable x2APIC. 3142 */ 3143 WARN_ON_ONCE(init_event); 3144 } 3145 3146 struct tdx_gmem_post_populate_arg { 3147 struct kvm_vcpu *vcpu; 3148 __u32 flags; 3149 }; 3150 3151 static int tdx_gmem_post_populate(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 3152 void __user *src, int order, void *_arg) 3153 { 3154 u64 error_code = PFERR_GUEST_FINAL_MASK | PFERR_PRIVATE_ACCESS; 3155 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 3156 struct tdx_gmem_post_populate_arg *arg = _arg; 3157 struct kvm_vcpu *vcpu = arg->vcpu; 3158 gpa_t gpa = gfn_to_gpa(gfn); 3159 u8 level = PG_LEVEL_4K; 3160 struct page *src_page; 3161 int ret, i; 3162 u64 err, entry, level_state; 3163 3164 /* 3165 * Get the source page if it has been faulted in. Return failure if the 3166 * source page has been swapped out or unmapped in primary memory. 3167 */ 3168 ret = get_user_pages_fast((unsigned long)src, 1, 0, &src_page); 3169 if (ret < 0) 3170 return ret; 3171 if (ret != 1) 3172 return -ENOMEM; 3173 3174 ret = kvm_tdp_map_page(vcpu, gpa, error_code, &level); 3175 if (ret < 0) 3176 goto out; 3177 3178 /* 3179 * The private mem cannot be zapped after kvm_tdp_map_page() 3180 * because all paths are covered by slots_lock and the 3181 * filemap invalidate lock. Check that they are indeed enough. 3182 */ 3183 if (IS_ENABLED(CONFIG_KVM_PROVE_MMU)) { 3184 scoped_guard(read_lock, &kvm->mmu_lock) { 3185 if (KVM_BUG_ON(!kvm_tdp_mmu_gpa_is_mapped(vcpu, gpa), kvm)) { 3186 ret = -EIO; 3187 goto out; 3188 } 3189 } 3190 } 3191 3192 ret = 0; 3193 err = tdh_mem_page_add(&kvm_tdx->td, gpa, pfn_to_page(pfn), 3194 src_page, &entry, &level_state); 3195 if (err) { 3196 ret = unlikely(tdx_operand_busy(err)) ? -EBUSY : -EIO; 3197 goto out; 3198 } 3199 3200 if (!KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm)) 3201 atomic64_dec(&kvm_tdx->nr_premapped); 3202 3203 if (arg->flags & KVM_TDX_MEASURE_MEMORY_REGION) { 3204 for (i = 0; i < PAGE_SIZE; i += TDX_EXTENDMR_CHUNKSIZE) { 3205 err = tdh_mr_extend(&kvm_tdx->td, gpa + i, &entry, 3206 &level_state); 3207 if (err) { 3208 ret = -EIO; 3209 break; 3210 } 3211 } 3212 } 3213 3214 out: 3215 put_page(src_page); 3216 return ret; 3217 } 3218 3219 static int tdx_vcpu_init_mem_region(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd) 3220 { 3221 struct vcpu_tdx *tdx = to_tdx(vcpu); 3222 struct kvm *kvm = vcpu->kvm; 3223 struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm); 3224 struct kvm_tdx_init_mem_region region; 3225 struct tdx_gmem_post_populate_arg arg; 3226 long gmem_ret; 3227 int ret; 3228 3229 if (tdx->state != VCPU_TD_STATE_INITIALIZED) 3230 return -EINVAL; 3231 3232 guard(mutex)(&kvm->slots_lock); 3233 3234 /* Once TD is finalized, the initial guest memory is fixed. */ 3235 if (kvm_tdx->state == TD_STATE_RUNNABLE) 3236 return -EINVAL; 3237 3238 if (cmd->flags & ~KVM_TDX_MEASURE_MEMORY_REGION) 3239 return -EINVAL; 3240 3241 if (copy_from_user(®ion, u64_to_user_ptr(cmd->data), sizeof(region))) 3242 return -EFAULT; 3243 3244 if (!PAGE_ALIGNED(region.source_addr) || !PAGE_ALIGNED(region.gpa) || 3245 !region.nr_pages || 3246 region.gpa + (region.nr_pages << PAGE_SHIFT) <= region.gpa || 3247 !vt_is_tdx_private_gpa(kvm, region.gpa) || 3248 !vt_is_tdx_private_gpa(kvm, region.gpa + (region.nr_pages << PAGE_SHIFT) - 1)) 3249 return -EINVAL; 3250 3251 kvm_mmu_reload(vcpu); 3252 ret = 0; 3253 while (region.nr_pages) { 3254 if (signal_pending(current)) { 3255 ret = -EINTR; 3256 break; 3257 } 3258 3259 arg = (struct tdx_gmem_post_populate_arg) { 3260 .vcpu = vcpu, 3261 .flags = cmd->flags, 3262 }; 3263 gmem_ret = kvm_gmem_populate(kvm, gpa_to_gfn(region.gpa), 3264 u64_to_user_ptr(region.source_addr), 3265 1, tdx_gmem_post_populate, &arg); 3266 if (gmem_ret < 0) { 3267 ret = gmem_ret; 3268 break; 3269 } 3270 3271 if (gmem_ret != 1) { 3272 ret = -EIO; 3273 break; 3274 } 3275 3276 region.source_addr += PAGE_SIZE; 3277 region.gpa += PAGE_SIZE; 3278 region.nr_pages--; 3279 3280 cond_resched(); 3281 } 3282 3283 if (copy_to_user(u64_to_user_ptr(cmd->data), ®ion, sizeof(region))) 3284 ret = -EFAULT; 3285 return ret; 3286 } 3287 3288 int tdx_vcpu_ioctl(struct kvm_vcpu *vcpu, void __user *argp) 3289 { 3290 struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm); 3291 struct kvm_tdx_cmd cmd; 3292 int ret; 3293 3294 if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE) 3295 return -EINVAL; 3296 3297 if (copy_from_user(&cmd, argp, sizeof(cmd))) 3298 return -EFAULT; 3299 3300 if (cmd.hw_error) 3301 return -EINVAL; 3302 3303 switch (cmd.id) { 3304 case KVM_TDX_INIT_VCPU: 3305 ret = tdx_vcpu_init(vcpu, &cmd); 3306 break; 3307 case KVM_TDX_INIT_MEM_REGION: 3308 ret = tdx_vcpu_init_mem_region(vcpu, &cmd); 3309 break; 3310 case KVM_TDX_GET_CPUID: 3311 ret = tdx_vcpu_get_cpuid(vcpu, &cmd); 3312 break; 3313 default: 3314 ret = -EINVAL; 3315 break; 3316 } 3317 3318 return ret; 3319 } 3320 3321 int tdx_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private) 3322 { 3323 if (!is_private) 3324 return 0; 3325 3326 return PG_LEVEL_4K; 3327 } 3328 3329 static int tdx_online_cpu(unsigned int cpu) 3330 { 3331 unsigned long flags; 3332 int r; 3333 3334 /* Sanity check CPU is already in post-VMXON */ 3335 WARN_ON_ONCE(!(cr4_read_shadow() & X86_CR4_VMXE)); 3336 3337 local_irq_save(flags); 3338 r = tdx_cpu_enable(); 3339 local_irq_restore(flags); 3340 3341 return r; 3342 } 3343 3344 static int tdx_offline_cpu(unsigned int cpu) 3345 { 3346 int i; 3347 3348 /* No TD is running. Allow any cpu to be offline. */ 3349 if (!atomic_read(&nr_configured_hkid)) 3350 return 0; 3351 3352 /* 3353 * In order to reclaim TDX HKID, (i.e. when deleting guest TD), need to 3354 * call TDH.PHYMEM.PAGE.WBINVD on all packages to program all memory 3355 * controller with pconfig. If we have active TDX HKID, refuse to 3356 * offline the last online cpu. 3357 */ 3358 for_each_online_cpu(i) { 3359 /* 3360 * Found another online cpu on the same package. 3361 * Allow to offline. 3362 */ 3363 if (i != cpu && topology_physical_package_id(i) == 3364 topology_physical_package_id(cpu)) 3365 return 0; 3366 } 3367 3368 /* 3369 * This is the last cpu of this package. Don't offline it. 3370 * 3371 * Because it's hard for human operator to understand the 3372 * reason, warn it. 3373 */ 3374 #define MSG_ALLPKG_ONLINE \ 3375 "TDX requires all packages to have an online CPU. Delete all TDs in order to offline all CPUs of a package.\n" 3376 pr_warn_ratelimited(MSG_ALLPKG_ONLINE); 3377 return -EBUSY; 3378 } 3379 3380 static void __do_tdx_cleanup(void) 3381 { 3382 /* 3383 * Once TDX module is initialized, it cannot be disabled and 3384 * re-initialized again w/o runtime update (which isn't 3385 * supported by kernel). Only need to remove the cpuhp here. 3386 * The TDX host core code tracks TDX status and can handle 3387 * 'multiple enabling' scenario. 3388 */ 3389 WARN_ON_ONCE(!tdx_cpuhp_state); 3390 cpuhp_remove_state_nocalls_cpuslocked(tdx_cpuhp_state); 3391 tdx_cpuhp_state = 0; 3392 } 3393 3394 static void __tdx_cleanup(void) 3395 { 3396 cpus_read_lock(); 3397 __do_tdx_cleanup(); 3398 cpus_read_unlock(); 3399 } 3400 3401 static int __init __do_tdx_bringup(void) 3402 { 3403 int r; 3404 3405 /* 3406 * TDX-specific cpuhp callback to call tdx_cpu_enable() on all 3407 * online CPUs before calling tdx_enable(), and on any new 3408 * going-online CPU to make sure it is ready for TDX guest. 3409 */ 3410 r = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN, 3411 "kvm/cpu/tdx:online", 3412 tdx_online_cpu, tdx_offline_cpu); 3413 if (r < 0) 3414 return r; 3415 3416 tdx_cpuhp_state = r; 3417 3418 r = tdx_enable(); 3419 if (r) 3420 __do_tdx_cleanup(); 3421 3422 return r; 3423 } 3424 3425 static int __init __tdx_bringup(void) 3426 { 3427 const struct tdx_sys_info_td_conf *td_conf; 3428 int r, i; 3429 3430 for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++) { 3431 /* 3432 * Check if MSRs (tdx_uret_msrs) can be saved/restored 3433 * before returning to user space. 3434 * 3435 * this_cpu_ptr(user_return_msrs)->registered isn't checked 3436 * because the registration is done at vcpu runtime by 3437 * tdx_user_return_msr_update_cache(). 3438 */ 3439 tdx_uret_msrs[i].slot = kvm_find_user_return_msr(tdx_uret_msrs[i].msr); 3440 if (tdx_uret_msrs[i].slot == -1) { 3441 /* If any MSR isn't supported, it is a KVM bug */ 3442 pr_err("MSR %x isn't included by kvm_find_user_return_msr\n", 3443 tdx_uret_msrs[i].msr); 3444 return -EIO; 3445 } 3446 } 3447 3448 /* 3449 * Enabling TDX requires enabling hardware virtualization first, 3450 * as making SEAMCALLs requires CPU being in post-VMXON state. 3451 */ 3452 r = kvm_enable_virtualization(); 3453 if (r) 3454 return r; 3455 3456 cpus_read_lock(); 3457 r = __do_tdx_bringup(); 3458 cpus_read_unlock(); 3459 3460 if (r) 3461 goto tdx_bringup_err; 3462 3463 /* Get TDX global information for later use */ 3464 tdx_sysinfo = tdx_get_sysinfo(); 3465 if (WARN_ON_ONCE(!tdx_sysinfo)) { 3466 r = -EINVAL; 3467 goto get_sysinfo_err; 3468 } 3469 3470 /* Check TDX module and KVM capabilities */ 3471 if (!tdx_get_supported_attrs(&tdx_sysinfo->td_conf) || 3472 !tdx_get_supported_xfam(&tdx_sysinfo->td_conf)) 3473 goto get_sysinfo_err; 3474 3475 if (!(tdx_sysinfo->features.tdx_features0 & MD_FIELD_ID_FEATURES0_TOPOLOGY_ENUM)) 3476 goto get_sysinfo_err; 3477 3478 /* 3479 * TDX has its own limit of maximum vCPUs it can support for all 3480 * TDX guests in addition to KVM_MAX_VCPUS. Userspace needs to 3481 * query TDX guest's maximum vCPUs by checking KVM_CAP_MAX_VCPU 3482 * extension on per-VM basis. 3483 * 3484 * TDX module reports such limit via the MAX_VCPU_PER_TD global 3485 * metadata. Different modules may report different values. 3486 * Some old module may also not support this metadata (in which 3487 * case this limit is U16_MAX). 3488 * 3489 * In practice, the reported value reflects the maximum logical 3490 * CPUs that ALL the platforms that the module supports can 3491 * possibly have. 3492 * 3493 * Simply forwarding the MAX_VCPU_PER_TD to userspace could 3494 * result in an unpredictable ABI. KVM instead always advertise 3495 * the number of logical CPUs the platform has as the maximum 3496 * vCPUs for TDX guests. 3497 * 3498 * Make sure MAX_VCPU_PER_TD reported by TDX module is not 3499 * smaller than the number of logical CPUs, otherwise KVM will 3500 * report an unsupported value to userspace. 3501 * 3502 * Note, a platform with TDX enabled in the BIOS cannot support 3503 * physical CPU hotplug, and TDX requires the BIOS has marked 3504 * all logical CPUs in MADT table as enabled. Just use 3505 * num_present_cpus() for the number of logical CPUs. 3506 */ 3507 td_conf = &tdx_sysinfo->td_conf; 3508 if (td_conf->max_vcpus_per_td < num_present_cpus()) { 3509 pr_err("Disable TDX: MAX_VCPU_PER_TD (%u) smaller than number of logical CPUs (%u).\n", 3510 td_conf->max_vcpus_per_td, num_present_cpus()); 3511 r = -EINVAL; 3512 goto get_sysinfo_err; 3513 } 3514 3515 if (misc_cg_set_capacity(MISC_CG_RES_TDX, tdx_get_nr_guest_keyids())) { 3516 r = -EINVAL; 3517 goto get_sysinfo_err; 3518 } 3519 3520 /* 3521 * Leave hardware virtualization enabled after TDX is enabled 3522 * successfully. TDX CPU hotplug depends on this. 3523 */ 3524 return 0; 3525 3526 get_sysinfo_err: 3527 __tdx_cleanup(); 3528 tdx_bringup_err: 3529 kvm_disable_virtualization(); 3530 return r; 3531 } 3532 3533 void tdx_cleanup(void) 3534 { 3535 if (enable_tdx) { 3536 misc_cg_set_capacity(MISC_CG_RES_TDX, 0); 3537 __tdx_cleanup(); 3538 kvm_disable_virtualization(); 3539 } 3540 } 3541 3542 int __init tdx_bringup(void) 3543 { 3544 int r, i; 3545 3546 /* tdx_disable_virtualization_cpu() uses associated_tdvcpus. */ 3547 for_each_possible_cpu(i) 3548 INIT_LIST_HEAD(&per_cpu(associated_tdvcpus, i)); 3549 3550 if (!enable_tdx) 3551 return 0; 3552 3553 if (!enable_ept) { 3554 pr_err("EPT is required for TDX\n"); 3555 goto success_disable_tdx; 3556 } 3557 3558 if (!tdp_mmu_enabled || !enable_mmio_caching || !enable_ept_ad_bits) { 3559 pr_err("TDP MMU and MMIO caching and EPT A/D bit is required for TDX\n"); 3560 goto success_disable_tdx; 3561 } 3562 3563 if (!enable_apicv) { 3564 pr_err("APICv is required for TDX\n"); 3565 goto success_disable_tdx; 3566 } 3567 3568 if (!cpu_feature_enabled(X86_FEATURE_OSXSAVE)) { 3569 pr_err("tdx: OSXSAVE is required for TDX\n"); 3570 goto success_disable_tdx; 3571 } 3572 3573 if (!cpu_feature_enabled(X86_FEATURE_MOVDIR64B)) { 3574 pr_err("tdx: MOVDIR64B is required for TDX\n"); 3575 goto success_disable_tdx; 3576 } 3577 3578 if (!cpu_feature_enabled(X86_FEATURE_SELFSNOOP)) { 3579 pr_err("Self-snoop is required for TDX\n"); 3580 goto success_disable_tdx; 3581 } 3582 3583 if (!cpu_feature_enabled(X86_FEATURE_TDX_HOST_PLATFORM)) { 3584 pr_err("tdx: no TDX private KeyIDs available\n"); 3585 goto success_disable_tdx; 3586 } 3587 3588 if (!enable_virt_at_load) { 3589 pr_err("tdx: tdx requires kvm.enable_virt_at_load=1\n"); 3590 goto success_disable_tdx; 3591 } 3592 3593 /* 3594 * Ideally KVM should probe whether TDX module has been loaded 3595 * first and then try to bring it up. But TDX needs to use SEAMCALL 3596 * to probe whether the module is loaded (there is no CPUID or MSR 3597 * for that), and making SEAMCALL requires enabling virtualization 3598 * first, just like the rest steps of bringing up TDX module. 3599 * 3600 * So, for simplicity do everything in __tdx_bringup(); the first 3601 * SEAMCALL will return -ENODEV when the module is not loaded. The 3602 * only complication is having to make sure that initialization 3603 * SEAMCALLs don't return TDX_SEAMCALL_VMFAILINVALID in other 3604 * cases. 3605 */ 3606 r = __tdx_bringup(); 3607 if (r) { 3608 /* 3609 * Disable TDX only but don't fail to load module if the TDX 3610 * module could not be loaded. No need to print message saying 3611 * "module is not loaded" because it was printed when the first 3612 * SEAMCALL failed. Don't bother unwinding the S-EPT hooks or 3613 * vm_size, as kvm_x86_ops have already been finalized (and are 3614 * intentionally not exported). The S-EPT code is unreachable, 3615 * and allocating a few more bytes per VM in a should-be-rare 3616 * failure scenario is a non-issue. 3617 */ 3618 if (r == -ENODEV) 3619 goto success_disable_tdx; 3620 3621 enable_tdx = 0; 3622 } 3623 3624 return r; 3625 3626 success_disable_tdx: 3627 enable_tdx = 0; 3628 return 0; 3629 } 3630 3631 void __init tdx_hardware_setup(void) 3632 { 3633 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_tdx); 3634 3635 /* 3636 * Note, if the TDX module can't be loaded, KVM TDX support will be 3637 * disabled but KVM will continue loading (see tdx_bringup()). 3638 */ 3639 vt_x86_ops.vm_size = max_t(unsigned int, vt_x86_ops.vm_size, sizeof(struct kvm_tdx)); 3640 3641 vt_x86_ops.link_external_spt = tdx_sept_link_private_spt; 3642 vt_x86_ops.set_external_spte = tdx_sept_set_private_spte; 3643 vt_x86_ops.free_external_spt = tdx_sept_free_private_spt; 3644 vt_x86_ops.remove_external_spte = tdx_sept_remove_private_spte; 3645 vt_x86_ops.protected_apic_has_interrupt = tdx_protected_apic_has_interrupt; 3646 } 3647