xref: /linux/arch/x86/kvm/vmx/tdx.c (revision b66451723c45b791fd2824d1b8f62fe498989e23)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/cleanup.h>
3 #include <linux/cpu.h>
4 #include <asm/cpufeature.h>
5 #include <asm/fpu/xcr.h>
6 #include <linux/misc_cgroup.h>
7 #include <linux/mmu_context.h>
8 #include <asm/tdx.h>
9 #include "capabilities.h"
10 #include "mmu.h"
11 #include "x86_ops.h"
12 #include "lapic.h"
13 #include "tdx.h"
14 #include "vmx.h"
15 #include "mmu/spte.h"
16 #include "common.h"
17 #include "posted_intr.h"
18 #include "irq.h"
19 #include <trace/events/kvm.h>
20 #include "trace.h"
21 
22 #pragma GCC poison to_vmx
23 
24 #undef pr_fmt
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #define pr_tdx_error(__fn, __err)	\
28 	pr_err_ratelimited("SEAMCALL %s failed: 0x%llx\n", #__fn, __err)
29 
30 #define __pr_tdx_error_N(__fn_str, __err, __fmt, ...)		\
31 	pr_err_ratelimited("SEAMCALL " __fn_str " failed: 0x%llx, " __fmt,  __err,  __VA_ARGS__)
32 
33 #define pr_tdx_error_1(__fn, __err, __rcx)		\
34 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx\n", __rcx)
35 
36 #define pr_tdx_error_2(__fn, __err, __rcx, __rdx)	\
37 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx\n", __rcx, __rdx)
38 
39 #define pr_tdx_error_3(__fn, __err, __rcx, __rdx, __r8)	\
40 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx, r8 0x%llx\n", __rcx, __rdx, __r8)
41 
42 bool enable_tdx __ro_after_init;
43 module_param_named(tdx, enable_tdx, bool, 0444);
44 
45 #define TDX_SHARED_BIT_PWL_5 gpa_to_gfn(BIT_ULL(51))
46 #define TDX_SHARED_BIT_PWL_4 gpa_to_gfn(BIT_ULL(47))
47 
48 static enum cpuhp_state tdx_cpuhp_state;
49 
50 static const struct tdx_sys_info *tdx_sysinfo;
51 
52 void tdh_vp_rd_failed(struct vcpu_tdx *tdx, char *uclass, u32 field, u64 err)
53 {
54 	KVM_BUG_ON(1, tdx->vcpu.kvm);
55 	pr_err("TDH_VP_RD[%s.0x%x] failed 0x%llx\n", uclass, field, err);
56 }
57 
58 void tdh_vp_wr_failed(struct vcpu_tdx *tdx, char *uclass, char *op, u32 field,
59 		      u64 val, u64 err)
60 {
61 	KVM_BUG_ON(1, tdx->vcpu.kvm);
62 	pr_err("TDH_VP_WR[%s.0x%x]%s0x%llx failed: 0x%llx\n", uclass, field, op, val, err);
63 }
64 
65 #define KVM_SUPPORTED_TD_ATTRS (TDX_TD_ATTR_SEPT_VE_DISABLE)
66 
67 static __always_inline struct kvm_tdx *to_kvm_tdx(struct kvm *kvm)
68 {
69 	return container_of(kvm, struct kvm_tdx, kvm);
70 }
71 
72 static __always_inline struct vcpu_tdx *to_tdx(struct kvm_vcpu *vcpu)
73 {
74 	return container_of(vcpu, struct vcpu_tdx, vcpu);
75 }
76 
77 static u64 tdx_get_supported_attrs(const struct tdx_sys_info_td_conf *td_conf)
78 {
79 	u64 val = KVM_SUPPORTED_TD_ATTRS;
80 
81 	if ((val & td_conf->attributes_fixed1) != td_conf->attributes_fixed1)
82 		return 0;
83 
84 	val &= td_conf->attributes_fixed0;
85 
86 	return val;
87 }
88 
89 static u64 tdx_get_supported_xfam(const struct tdx_sys_info_td_conf *td_conf)
90 {
91 	u64 val = kvm_caps.supported_xcr0 | kvm_caps.supported_xss;
92 
93 	if ((val & td_conf->xfam_fixed1) != td_conf->xfam_fixed1)
94 		return 0;
95 
96 	val &= td_conf->xfam_fixed0;
97 
98 	return val;
99 }
100 
101 static int tdx_get_guest_phys_addr_bits(const u32 eax)
102 {
103 	return (eax & GENMASK(23, 16)) >> 16;
104 }
105 
106 static u32 tdx_set_guest_phys_addr_bits(const u32 eax, int addr_bits)
107 {
108 	return (eax & ~GENMASK(23, 16)) | (addr_bits & 0xff) << 16;
109 }
110 
111 #define TDX_FEATURE_TSX (__feature_bit(X86_FEATURE_HLE) | __feature_bit(X86_FEATURE_RTM))
112 
113 static bool has_tsx(const struct kvm_cpuid_entry2 *entry)
114 {
115 	return entry->function == 7 && entry->index == 0 &&
116 	       (entry->ebx & TDX_FEATURE_TSX);
117 }
118 
119 static void clear_tsx(struct kvm_cpuid_entry2 *entry)
120 {
121 	entry->ebx &= ~TDX_FEATURE_TSX;
122 }
123 
124 static bool has_waitpkg(const struct kvm_cpuid_entry2 *entry)
125 {
126 	return entry->function == 7 && entry->index == 0 &&
127 	       (entry->ecx & __feature_bit(X86_FEATURE_WAITPKG));
128 }
129 
130 static void clear_waitpkg(struct kvm_cpuid_entry2 *entry)
131 {
132 	entry->ecx &= ~__feature_bit(X86_FEATURE_WAITPKG);
133 }
134 
135 static void tdx_clear_unsupported_cpuid(struct kvm_cpuid_entry2 *entry)
136 {
137 	if (has_tsx(entry))
138 		clear_tsx(entry);
139 
140 	if (has_waitpkg(entry))
141 		clear_waitpkg(entry);
142 }
143 
144 static bool tdx_unsupported_cpuid(const struct kvm_cpuid_entry2 *entry)
145 {
146 	return has_tsx(entry) || has_waitpkg(entry);
147 }
148 
149 #define KVM_TDX_CPUID_NO_SUBLEAF	((__u32)-1)
150 
151 static void td_init_cpuid_entry2(struct kvm_cpuid_entry2 *entry, unsigned char idx)
152 {
153 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
154 
155 	entry->function = (u32)td_conf->cpuid_config_leaves[idx];
156 	entry->index = td_conf->cpuid_config_leaves[idx] >> 32;
157 	entry->eax = (u32)td_conf->cpuid_config_values[idx][0];
158 	entry->ebx = td_conf->cpuid_config_values[idx][0] >> 32;
159 	entry->ecx = (u32)td_conf->cpuid_config_values[idx][1];
160 	entry->edx = td_conf->cpuid_config_values[idx][1] >> 32;
161 
162 	if (entry->index == KVM_TDX_CPUID_NO_SUBLEAF)
163 		entry->index = 0;
164 
165 	/*
166 	 * The TDX module doesn't allow configuring the guest phys addr bits
167 	 * (EAX[23:16]).  However, KVM uses it as an interface to the userspace
168 	 * to configure the GPAW.  Report these bits as configurable.
169 	 */
170 	if (entry->function == 0x80000008)
171 		entry->eax = tdx_set_guest_phys_addr_bits(entry->eax, 0xff);
172 
173 	tdx_clear_unsupported_cpuid(entry);
174 }
175 
176 #define TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT	BIT(1)
177 
178 static int init_kvm_tdx_caps(const struct tdx_sys_info_td_conf *td_conf,
179 			     struct kvm_tdx_capabilities *caps)
180 {
181 	int i;
182 
183 	caps->supported_attrs = tdx_get_supported_attrs(td_conf);
184 	if (!caps->supported_attrs)
185 		return -EIO;
186 
187 	caps->supported_xfam = tdx_get_supported_xfam(td_conf);
188 	if (!caps->supported_xfam)
189 		return -EIO;
190 
191 	caps->cpuid.nent = td_conf->num_cpuid_config;
192 
193 	caps->user_tdvmcallinfo_1_r11 =
194 		TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT;
195 
196 	for (i = 0; i < td_conf->num_cpuid_config; i++)
197 		td_init_cpuid_entry2(&caps->cpuid.entries[i], i);
198 
199 	return 0;
200 }
201 
202 /*
203  * Some SEAMCALLs acquire the TDX module globally, and can fail with
204  * TDX_OPERAND_BUSY.  Use a global mutex to serialize these SEAMCALLs.
205  */
206 static DEFINE_MUTEX(tdx_lock);
207 
208 static atomic_t nr_configured_hkid;
209 
210 static bool tdx_operand_busy(u64 err)
211 {
212 	return (err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_BUSY;
213 }
214 
215 
216 /*
217  * A per-CPU list of TD vCPUs associated with a given CPU.
218  * Protected by interrupt mask. Only manipulated by the CPU owning this per-CPU
219  * list.
220  * - When a vCPU is loaded onto a CPU, it is removed from the per-CPU list of
221  *   the old CPU during the IPI callback running on the old CPU, and then added
222  *   to the per-CPU list of the new CPU.
223  * - When a TD is tearing down, all vCPUs are disassociated from their current
224  *   running CPUs and removed from the per-CPU list during the IPI callback
225  *   running on those CPUs.
226  * - When a CPU is brought down, traverse the per-CPU list to disassociate all
227  *   associated TD vCPUs and remove them from the per-CPU list.
228  */
229 static DEFINE_PER_CPU(struct list_head, associated_tdvcpus);
230 
231 static __always_inline unsigned long tdvmcall_exit_type(struct kvm_vcpu *vcpu)
232 {
233 	return to_tdx(vcpu)->vp_enter_args.r10;
234 }
235 
236 static __always_inline unsigned long tdvmcall_leaf(struct kvm_vcpu *vcpu)
237 {
238 	return to_tdx(vcpu)->vp_enter_args.r11;
239 }
240 
241 static __always_inline void tdvmcall_set_return_code(struct kvm_vcpu *vcpu,
242 						     long val)
243 {
244 	to_tdx(vcpu)->vp_enter_args.r10 = val;
245 }
246 
247 static __always_inline void tdvmcall_set_return_val(struct kvm_vcpu *vcpu,
248 						    unsigned long val)
249 {
250 	to_tdx(vcpu)->vp_enter_args.r11 = val;
251 }
252 
253 static inline void tdx_hkid_free(struct kvm_tdx *kvm_tdx)
254 {
255 	tdx_guest_keyid_free(kvm_tdx->hkid);
256 	kvm_tdx->hkid = -1;
257 	atomic_dec(&nr_configured_hkid);
258 	misc_cg_uncharge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
259 	put_misc_cg(kvm_tdx->misc_cg);
260 	kvm_tdx->misc_cg = NULL;
261 }
262 
263 static inline bool is_hkid_assigned(struct kvm_tdx *kvm_tdx)
264 {
265 	return kvm_tdx->hkid > 0;
266 }
267 
268 static inline void tdx_disassociate_vp(struct kvm_vcpu *vcpu)
269 {
270 	lockdep_assert_irqs_disabled();
271 
272 	list_del(&to_tdx(vcpu)->cpu_list);
273 
274 	/*
275 	 * Ensure tdx->cpu_list is updated before setting vcpu->cpu to -1,
276 	 * otherwise, a different CPU can see vcpu->cpu = -1 and add the vCPU
277 	 * to its list before it's deleted from this CPU's list.
278 	 */
279 	smp_wmb();
280 
281 	vcpu->cpu = -1;
282 }
283 
284 static void tdx_no_vcpus_enter_start(struct kvm *kvm)
285 {
286 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
287 
288 	lockdep_assert_held_write(&kvm->mmu_lock);
289 
290 	WRITE_ONCE(kvm_tdx->wait_for_sept_zap, true);
291 
292 	kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
293 }
294 
295 static void tdx_no_vcpus_enter_stop(struct kvm *kvm)
296 {
297 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
298 
299 	lockdep_assert_held_write(&kvm->mmu_lock);
300 
301 	WRITE_ONCE(kvm_tdx->wait_for_sept_zap, false);
302 }
303 
304 /* TDH.PHYMEM.PAGE.RECLAIM is allowed only when destroying the TD. */
305 static int __tdx_reclaim_page(struct page *page)
306 {
307 	u64 err, rcx, rdx, r8;
308 
309 	err = tdh_phymem_page_reclaim(page, &rcx, &rdx, &r8);
310 
311 	/*
312 	 * No need to check for TDX_OPERAND_BUSY; all TD pages are freed
313 	 * before the HKID is released and control pages have also been
314 	 * released at this point, so there is no possibility of contention.
315 	 */
316 	if (WARN_ON_ONCE(err)) {
317 		pr_tdx_error_3(TDH_PHYMEM_PAGE_RECLAIM, err, rcx, rdx, r8);
318 		return -EIO;
319 	}
320 	return 0;
321 }
322 
323 static int tdx_reclaim_page(struct page *page)
324 {
325 	int r;
326 
327 	r = __tdx_reclaim_page(page);
328 	if (!r)
329 		tdx_quirk_reset_page(page);
330 	return r;
331 }
332 
333 
334 /*
335  * Reclaim the TD control page(s) which are crypto-protected by TDX guest's
336  * private KeyID.  Assume the cache associated with the TDX private KeyID has
337  * been flushed.
338  */
339 static void tdx_reclaim_control_page(struct page *ctrl_page)
340 {
341 	/*
342 	 * Leak the page if the kernel failed to reclaim the page.
343 	 * The kernel cannot use it safely anymore.
344 	 */
345 	if (tdx_reclaim_page(ctrl_page))
346 		return;
347 
348 	__free_page(ctrl_page);
349 }
350 
351 struct tdx_flush_vp_arg {
352 	struct kvm_vcpu *vcpu;
353 	u64 err;
354 };
355 
356 static void tdx_flush_vp(void *_arg)
357 {
358 	struct tdx_flush_vp_arg *arg = _arg;
359 	struct kvm_vcpu *vcpu = arg->vcpu;
360 	u64 err;
361 
362 	arg->err = 0;
363 	lockdep_assert_irqs_disabled();
364 
365 	/* Task migration can race with CPU offlining. */
366 	if (unlikely(vcpu->cpu != raw_smp_processor_id()))
367 		return;
368 
369 	/*
370 	 * No need to do TDH_VP_FLUSH if the vCPU hasn't been initialized.  The
371 	 * list tracking still needs to be updated so that it's correct if/when
372 	 * the vCPU does get initialized.
373 	 */
374 	if (to_tdx(vcpu)->state != VCPU_TD_STATE_UNINITIALIZED) {
375 		/*
376 		 * No need to retry.  TDX Resources needed for TDH.VP.FLUSH are:
377 		 * TDVPR as exclusive, TDR as shared, and TDCS as shared.  This
378 		 * vp flush function is called when destructing vCPU/TD or vCPU
379 		 * migration.  No other thread uses TDVPR in those cases.
380 		 */
381 		err = tdh_vp_flush(&to_tdx(vcpu)->vp);
382 		if (unlikely(err && err != TDX_VCPU_NOT_ASSOCIATED)) {
383 			/*
384 			 * This function is called in IPI context. Do not use
385 			 * printk to avoid console semaphore.
386 			 * The caller prints out the error message, instead.
387 			 */
388 			if (err)
389 				arg->err = err;
390 		}
391 	}
392 
393 	tdx_disassociate_vp(vcpu);
394 }
395 
396 static void tdx_flush_vp_on_cpu(struct kvm_vcpu *vcpu)
397 {
398 	struct tdx_flush_vp_arg arg = {
399 		.vcpu = vcpu,
400 	};
401 	int cpu = vcpu->cpu;
402 
403 	if (unlikely(cpu == -1))
404 		return;
405 
406 	smp_call_function_single(cpu, tdx_flush_vp, &arg, 1);
407 	if (KVM_BUG_ON(arg.err, vcpu->kvm))
408 		pr_tdx_error(TDH_VP_FLUSH, arg.err);
409 }
410 
411 void tdx_disable_virtualization_cpu(void)
412 {
413 	int cpu = raw_smp_processor_id();
414 	struct list_head *tdvcpus = &per_cpu(associated_tdvcpus, cpu);
415 	struct tdx_flush_vp_arg arg;
416 	struct vcpu_tdx *tdx, *tmp;
417 	unsigned long flags;
418 
419 	local_irq_save(flags);
420 	/* Safe variant needed as tdx_disassociate_vp() deletes the entry. */
421 	list_for_each_entry_safe(tdx, tmp, tdvcpus, cpu_list) {
422 		arg.vcpu = &tdx->vcpu;
423 		tdx_flush_vp(&arg);
424 	}
425 	local_irq_restore(flags);
426 
427 	/*
428 	 * Flush cache now if kexec is possible: this is necessary to avoid
429 	 * having dirty private memory cachelines when the new kernel boots,
430 	 * but WBINVD is a relatively expensive operation and doing it during
431 	 * kexec can exacerbate races in native_stop_other_cpus().  Do it
432 	 * now, since this is a safe moment and there is going to be no more
433 	 * TDX activity on this CPU from this point on.
434 	 */
435 	tdx_cpu_flush_cache_for_kexec();
436 }
437 
438 #define TDX_SEAMCALL_RETRIES 10000
439 
440 static void smp_func_do_phymem_cache_wb(void *unused)
441 {
442 	u64 err = 0;
443 	bool resume;
444 	int i;
445 
446 	/*
447 	 * TDH.PHYMEM.CACHE.WB flushes caches associated with any TDX private
448 	 * KeyID on the package or core.  The TDX module may not finish the
449 	 * cache flush but return TDX_INTERRUPTED_RESUMEABLE instead.  The
450 	 * kernel should retry it until it returns success w/o rescheduling.
451 	 */
452 	for (i = TDX_SEAMCALL_RETRIES; i > 0; i--) {
453 		resume = !!err;
454 		err = tdh_phymem_cache_wb(resume);
455 		switch (err) {
456 		case TDX_INTERRUPTED_RESUMABLE:
457 			continue;
458 		case TDX_NO_HKID_READY_TO_WBCACHE:
459 			err = TDX_SUCCESS; /* Already done by other thread */
460 			fallthrough;
461 		default:
462 			goto out;
463 		}
464 	}
465 
466 out:
467 	if (WARN_ON_ONCE(err))
468 		pr_tdx_error(TDH_PHYMEM_CACHE_WB, err);
469 }
470 
471 void tdx_mmu_release_hkid(struct kvm *kvm)
472 {
473 	bool packages_allocated, targets_allocated;
474 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
475 	cpumask_var_t packages, targets;
476 	struct kvm_vcpu *vcpu;
477 	unsigned long j;
478 	int i;
479 	u64 err;
480 
481 	if (!is_hkid_assigned(kvm_tdx))
482 		return;
483 
484 	packages_allocated = zalloc_cpumask_var(&packages, GFP_KERNEL);
485 	targets_allocated = zalloc_cpumask_var(&targets, GFP_KERNEL);
486 	cpus_read_lock();
487 
488 	kvm_for_each_vcpu(j, vcpu, kvm)
489 		tdx_flush_vp_on_cpu(vcpu);
490 
491 	/*
492 	 * TDH.PHYMEM.CACHE.WB tries to acquire the TDX module global lock
493 	 * and can fail with TDX_OPERAND_BUSY when it fails to get the lock.
494 	 * Multiple TDX guests can be destroyed simultaneously. Take the
495 	 * mutex to prevent it from getting error.
496 	 */
497 	mutex_lock(&tdx_lock);
498 
499 	/*
500 	 * Releasing HKID is in vm_destroy().
501 	 * After the above flushing vps, there should be no more vCPU
502 	 * associations, as all vCPU fds have been released at this stage.
503 	 */
504 	err = tdh_mng_vpflushdone(&kvm_tdx->td);
505 	if (err == TDX_FLUSHVP_NOT_DONE)
506 		goto out;
507 	if (KVM_BUG_ON(err, kvm)) {
508 		pr_tdx_error(TDH_MNG_VPFLUSHDONE, err);
509 		pr_err("tdh_mng_vpflushdone() failed. HKID %d is leaked.\n",
510 		       kvm_tdx->hkid);
511 		goto out;
512 	}
513 
514 	for_each_online_cpu(i) {
515 		if (packages_allocated &&
516 		    cpumask_test_and_set_cpu(topology_physical_package_id(i),
517 					     packages))
518 			continue;
519 		if (targets_allocated)
520 			cpumask_set_cpu(i, targets);
521 	}
522 	if (targets_allocated)
523 		on_each_cpu_mask(targets, smp_func_do_phymem_cache_wb, NULL, true);
524 	else
525 		on_each_cpu(smp_func_do_phymem_cache_wb, NULL, true);
526 	/*
527 	 * In the case of error in smp_func_do_phymem_cache_wb(), the following
528 	 * tdh_mng_key_freeid() will fail.
529 	 */
530 	err = tdh_mng_key_freeid(&kvm_tdx->td);
531 	if (KVM_BUG_ON(err, kvm)) {
532 		pr_tdx_error(TDH_MNG_KEY_FREEID, err);
533 		pr_err("tdh_mng_key_freeid() failed. HKID %d is leaked.\n",
534 		       kvm_tdx->hkid);
535 	} else {
536 		tdx_hkid_free(kvm_tdx);
537 	}
538 
539 out:
540 	mutex_unlock(&tdx_lock);
541 	cpus_read_unlock();
542 	free_cpumask_var(targets);
543 	free_cpumask_var(packages);
544 }
545 
546 static void tdx_reclaim_td_control_pages(struct kvm *kvm)
547 {
548 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
549 	u64 err;
550 	int i;
551 
552 	/*
553 	 * tdx_mmu_release_hkid() failed to reclaim HKID.  Something went wrong
554 	 * heavily with TDX module.  Give up freeing TD pages.  As the function
555 	 * already warned, don't warn it again.
556 	 */
557 	if (is_hkid_assigned(kvm_tdx))
558 		return;
559 
560 	if (kvm_tdx->td.tdcs_pages) {
561 		for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
562 			if (!kvm_tdx->td.tdcs_pages[i])
563 				continue;
564 
565 			tdx_reclaim_control_page(kvm_tdx->td.tdcs_pages[i]);
566 		}
567 		kfree(kvm_tdx->td.tdcs_pages);
568 		kvm_tdx->td.tdcs_pages = NULL;
569 	}
570 
571 	if (!kvm_tdx->td.tdr_page)
572 		return;
573 
574 	if (__tdx_reclaim_page(kvm_tdx->td.tdr_page))
575 		return;
576 
577 	/*
578 	 * Use a SEAMCALL to ask the TDX module to flush the cache based on the
579 	 * KeyID. TDX module may access TDR while operating on TD (Especially
580 	 * when it is reclaiming TDCS).
581 	 */
582 	err = tdh_phymem_page_wbinvd_tdr(&kvm_tdx->td);
583 	if (KVM_BUG_ON(err, kvm)) {
584 		pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
585 		return;
586 	}
587 	tdx_quirk_reset_page(kvm_tdx->td.tdr_page);
588 
589 	__free_page(kvm_tdx->td.tdr_page);
590 	kvm_tdx->td.tdr_page = NULL;
591 }
592 
593 void tdx_vm_destroy(struct kvm *kvm)
594 {
595 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
596 
597 	tdx_reclaim_td_control_pages(kvm);
598 
599 	kvm_tdx->state = TD_STATE_UNINITIALIZED;
600 }
601 
602 static int tdx_do_tdh_mng_key_config(void *param)
603 {
604 	struct kvm_tdx *kvm_tdx = param;
605 	u64 err;
606 
607 	/* TDX_RND_NO_ENTROPY related retries are handled by sc_retry() */
608 	err = tdh_mng_key_config(&kvm_tdx->td);
609 
610 	if (KVM_BUG_ON(err, &kvm_tdx->kvm)) {
611 		pr_tdx_error(TDH_MNG_KEY_CONFIG, err);
612 		return -EIO;
613 	}
614 
615 	return 0;
616 }
617 
618 int tdx_vm_init(struct kvm *kvm)
619 {
620 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
621 
622 	kvm->arch.has_protected_state = true;
623 	kvm->arch.has_private_mem = true;
624 	kvm->arch.disabled_quirks |= KVM_X86_QUIRK_IGNORE_GUEST_PAT;
625 
626 	/*
627 	 * Because guest TD is protected, VMM can't parse the instruction in TD.
628 	 * Instead, guest uses MMIO hypercall.  For unmodified device driver,
629 	 * #VE needs to be injected for MMIO and #VE handler in TD converts MMIO
630 	 * instruction into MMIO hypercall.
631 	 *
632 	 * SPTE value for MMIO needs to be setup so that #VE is injected into
633 	 * TD instead of triggering EPT MISCONFIG.
634 	 * - RWX=0 so that EPT violation is triggered.
635 	 * - suppress #VE bit is cleared to inject #VE.
636 	 */
637 	kvm_mmu_set_mmio_spte_value(kvm, 0);
638 
639 	/*
640 	 * TDX has its own limit of maximum vCPUs it can support for all
641 	 * TDX guests in addition to KVM_MAX_VCPUS.  TDX module reports
642 	 * such limit via the MAX_VCPU_PER_TD global metadata.  In
643 	 * practice, it reflects the number of logical CPUs that ALL
644 	 * platforms that the TDX module supports can possibly have.
645 	 *
646 	 * Limit TDX guest's maximum vCPUs to the number of logical CPUs
647 	 * the platform has.  Simply forwarding the MAX_VCPU_PER_TD to
648 	 * userspace would result in an unpredictable ABI.
649 	 */
650 	kvm->max_vcpus = min_t(int, kvm->max_vcpus, num_present_cpus());
651 
652 	kvm_tdx->state = TD_STATE_UNINITIALIZED;
653 
654 	return 0;
655 }
656 
657 int tdx_vcpu_create(struct kvm_vcpu *vcpu)
658 {
659 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
660 	struct vcpu_tdx *tdx = to_tdx(vcpu);
661 
662 	if (kvm_tdx->state != TD_STATE_INITIALIZED)
663 		return -EIO;
664 
665 	/*
666 	 * TDX module mandates APICv, which requires an in-kernel local APIC.
667 	 * Disallow an in-kernel I/O APIC, because level-triggered interrupts
668 	 * and thus the I/O APIC as a whole can't be faithfully emulated in KVM.
669 	 */
670 	if (!irqchip_split(vcpu->kvm))
671 		return -EINVAL;
672 
673 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
674 	vcpu->arch.apic->guest_apic_protected = true;
675 	INIT_LIST_HEAD(&tdx->vt.pi_wakeup_list);
676 
677 	vcpu->arch.efer = EFER_SCE | EFER_LME | EFER_LMA | EFER_NX;
678 
679 	vcpu->arch.switch_db_regs = KVM_DEBUGREG_AUTO_SWITCH;
680 	vcpu->arch.cr0_guest_owned_bits = -1ul;
681 	vcpu->arch.cr4_guest_owned_bits = -1ul;
682 
683 	/* KVM can't change TSC offset/multiplier as TDX module manages them. */
684 	vcpu->arch.guest_tsc_protected = true;
685 	vcpu->arch.tsc_offset = kvm_tdx->tsc_offset;
686 	vcpu->arch.l1_tsc_offset = vcpu->arch.tsc_offset;
687 	vcpu->arch.tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
688 	vcpu->arch.l1_tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
689 
690 	vcpu->arch.guest_state_protected =
691 		!(to_kvm_tdx(vcpu->kvm)->attributes & TDX_TD_ATTR_DEBUG);
692 
693 	if ((kvm_tdx->xfam & XFEATURE_MASK_XTILE) == XFEATURE_MASK_XTILE)
694 		vcpu->arch.xfd_no_write_intercept = true;
695 
696 	tdx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
697 	__pi_set_sn(&tdx->vt.pi_desc);
698 
699 	tdx->state = VCPU_TD_STATE_UNINITIALIZED;
700 
701 	return 0;
702 }
703 
704 void tdx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
705 {
706 	struct vcpu_tdx *tdx = to_tdx(vcpu);
707 
708 	vmx_vcpu_pi_load(vcpu, cpu);
709 	if (vcpu->cpu == cpu || !is_hkid_assigned(to_kvm_tdx(vcpu->kvm)))
710 		return;
711 
712 	tdx_flush_vp_on_cpu(vcpu);
713 
714 	KVM_BUG_ON(cpu != raw_smp_processor_id(), vcpu->kvm);
715 	local_irq_disable();
716 	/*
717 	 * Pairs with the smp_wmb() in tdx_disassociate_vp() to ensure
718 	 * vcpu->cpu is read before tdx->cpu_list.
719 	 */
720 	smp_rmb();
721 
722 	list_add(&tdx->cpu_list, &per_cpu(associated_tdvcpus, cpu));
723 	local_irq_enable();
724 }
725 
726 bool tdx_interrupt_allowed(struct kvm_vcpu *vcpu)
727 {
728 	/*
729 	 * KVM can't get the interrupt status of TDX guest and it assumes
730 	 * interrupt is always allowed unless TDX guest calls TDVMCALL with HLT,
731 	 * which passes the interrupt blocked flag.
732 	 */
733 	return vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
734 	       !to_tdx(vcpu)->vp_enter_args.r12;
735 }
736 
737 static bool tdx_protected_apic_has_interrupt(struct kvm_vcpu *vcpu)
738 {
739 	u64 vcpu_state_details;
740 
741 	if (pi_has_pending_interrupt(vcpu))
742 		return true;
743 
744 	/*
745 	 * Only check RVI pending for HALTED case with IRQ enabled.
746 	 * For non-HLT cases, KVM doesn't care about STI/SS shadows.  And if the
747 	 * interrupt was pending before TD exit, then it _must_ be blocked,
748 	 * otherwise the interrupt would have been serviced at the instruction
749 	 * boundary.
750 	 */
751 	if (vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
752 	    to_tdx(vcpu)->vp_enter_args.r12)
753 		return false;
754 
755 	vcpu_state_details =
756 		td_state_non_arch_read64(to_tdx(vcpu), TD_VCPU_STATE_DETAILS_NON_ARCH);
757 
758 	return tdx_vcpu_state_details_intr_pending(vcpu_state_details);
759 }
760 
761 /*
762  * Compared to vmx_prepare_switch_to_guest(), there is not much to do
763  * as SEAMCALL/SEAMRET calls take care of most of save and restore.
764  */
765 void tdx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
766 {
767 	struct vcpu_vt *vt = to_vt(vcpu);
768 
769 	if (vt->guest_state_loaded)
770 		return;
771 
772 	if (likely(is_64bit_mm(current->mm)))
773 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
774 	else
775 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
776 
777 	vt->guest_state_loaded = true;
778 }
779 
780 struct tdx_uret_msr {
781 	u32 msr;
782 	unsigned int slot;
783 	u64 defval;
784 };
785 
786 static struct tdx_uret_msr tdx_uret_msrs[] = {
787 	{.msr = MSR_SYSCALL_MASK, .defval = 0x20200 },
788 	{.msr = MSR_STAR,},
789 	{.msr = MSR_LSTAR,},
790 	{.msr = MSR_TSC_AUX,},
791 };
792 
793 static void tdx_user_return_msr_update_cache(void)
794 {
795 	int i;
796 
797 	for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++)
798 		kvm_user_return_msr_update_cache(tdx_uret_msrs[i].slot,
799 						 tdx_uret_msrs[i].defval);
800 }
801 
802 static void tdx_prepare_switch_to_host(struct kvm_vcpu *vcpu)
803 {
804 	struct vcpu_vt *vt = to_vt(vcpu);
805 	struct vcpu_tdx *tdx = to_tdx(vcpu);
806 
807 	if (!vt->guest_state_loaded)
808 		return;
809 
810 	++vcpu->stat.host_state_reload;
811 	wrmsrl(MSR_KERNEL_GS_BASE, vt->msr_host_kernel_gs_base);
812 
813 	if (tdx->guest_entered) {
814 		tdx_user_return_msr_update_cache();
815 		tdx->guest_entered = false;
816 	}
817 
818 	vt->guest_state_loaded = false;
819 }
820 
821 void tdx_vcpu_put(struct kvm_vcpu *vcpu)
822 {
823 	vmx_vcpu_pi_put(vcpu);
824 	tdx_prepare_switch_to_host(vcpu);
825 }
826 
827 void tdx_vcpu_free(struct kvm_vcpu *vcpu)
828 {
829 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
830 	struct vcpu_tdx *tdx = to_tdx(vcpu);
831 	int i;
832 
833 	/*
834 	 * It is not possible to reclaim pages while hkid is assigned. It might
835 	 * be assigned if:
836 	 * 1. the TD VM is being destroyed but freeing hkid failed, in which
837 	 * case the pages are leaked
838 	 * 2. TD VCPU creation failed and this on the error path, in which case
839 	 * there is nothing to do anyway
840 	 */
841 	if (is_hkid_assigned(kvm_tdx))
842 		return;
843 
844 	if (tdx->vp.tdcx_pages) {
845 		for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
846 			if (tdx->vp.tdcx_pages[i])
847 				tdx_reclaim_control_page(tdx->vp.tdcx_pages[i]);
848 		}
849 		kfree(tdx->vp.tdcx_pages);
850 		tdx->vp.tdcx_pages = NULL;
851 	}
852 	if (tdx->vp.tdvpr_page) {
853 		tdx_reclaim_control_page(tdx->vp.tdvpr_page);
854 		tdx->vp.tdvpr_page = 0;
855 		tdx->vp.tdvpr_pa = 0;
856 	}
857 
858 	tdx->state = VCPU_TD_STATE_UNINITIALIZED;
859 }
860 
861 int tdx_vcpu_pre_run(struct kvm_vcpu *vcpu)
862 {
863 	if (unlikely(to_tdx(vcpu)->state != VCPU_TD_STATE_INITIALIZED ||
864 		     to_kvm_tdx(vcpu->kvm)->state != TD_STATE_RUNNABLE))
865 		return -EINVAL;
866 
867 	return 1;
868 }
869 
870 static __always_inline u32 tdcall_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
871 {
872 	switch (tdvmcall_leaf(vcpu)) {
873 	case EXIT_REASON_CPUID:
874 	case EXIT_REASON_HLT:
875 	case EXIT_REASON_IO_INSTRUCTION:
876 	case EXIT_REASON_MSR_READ:
877 	case EXIT_REASON_MSR_WRITE:
878 		return tdvmcall_leaf(vcpu);
879 	case EXIT_REASON_EPT_VIOLATION:
880 		return EXIT_REASON_EPT_MISCONFIG;
881 	default:
882 		break;
883 	}
884 
885 	return EXIT_REASON_TDCALL;
886 }
887 
888 static __always_inline u32 tdx_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
889 {
890 	struct vcpu_tdx *tdx = to_tdx(vcpu);
891 	u32 exit_reason;
892 
893 	switch (tdx->vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) {
894 	case TDX_SUCCESS:
895 	case TDX_NON_RECOVERABLE_VCPU:
896 	case TDX_NON_RECOVERABLE_TD:
897 	case TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE:
898 	case TDX_NON_RECOVERABLE_TD_WRONG_APIC_MODE:
899 		break;
900 	default:
901 		return -1u;
902 	}
903 
904 	exit_reason = tdx->vp_enter_ret;
905 
906 	switch (exit_reason) {
907 	case EXIT_REASON_TDCALL:
908 		if (tdvmcall_exit_type(vcpu))
909 			return EXIT_REASON_VMCALL;
910 
911 		return tdcall_to_vmx_exit_reason(vcpu);
912 	case EXIT_REASON_EPT_MISCONFIG:
913 		/*
914 		 * Defer KVM_BUG_ON() until tdx_handle_exit() because this is in
915 		 * non-instrumentable code with interrupts disabled.
916 		 */
917 		return -1u;
918 	default:
919 		break;
920 	}
921 
922 	return exit_reason;
923 }
924 
925 static noinstr void tdx_vcpu_enter_exit(struct kvm_vcpu *vcpu)
926 {
927 	struct vcpu_tdx *tdx = to_tdx(vcpu);
928 	struct vcpu_vt *vt = to_vt(vcpu);
929 
930 	guest_state_enter_irqoff();
931 
932 	tdx->vp_enter_ret = tdh_vp_enter(&tdx->vp, &tdx->vp_enter_args);
933 
934 	vt->exit_reason.full = tdx_to_vmx_exit_reason(vcpu);
935 
936 	vt->exit_qualification = tdx->vp_enter_args.rcx;
937 	tdx->ext_exit_qualification = tdx->vp_enter_args.rdx;
938 	tdx->exit_gpa = tdx->vp_enter_args.r8;
939 	vt->exit_intr_info = tdx->vp_enter_args.r9;
940 
941 	vmx_handle_nmi(vcpu);
942 
943 	guest_state_exit_irqoff();
944 }
945 
946 static bool tdx_failed_vmentry(struct kvm_vcpu *vcpu)
947 {
948 	return vmx_get_exit_reason(vcpu).failed_vmentry &&
949 	       vmx_get_exit_reason(vcpu).full != -1u;
950 }
951 
952 static fastpath_t tdx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
953 {
954 	u64 vp_enter_ret = to_tdx(vcpu)->vp_enter_ret;
955 
956 	/*
957 	 * TDX_OPERAND_BUSY could be returned for SEPT due to 0-step mitigation
958 	 * or for TD EPOCH due to contention with TDH.MEM.TRACK on TDH.VP.ENTER.
959 	 *
960 	 * When KVM requests KVM_REQ_OUTSIDE_GUEST_MODE, which has both
961 	 * KVM_REQUEST_WAIT and KVM_REQUEST_NO_ACTION set, it requires target
962 	 * vCPUs leaving fastpath so that interrupt can be enabled to ensure the
963 	 * IPIs can be delivered. Return EXIT_FASTPATH_EXIT_HANDLED instead of
964 	 * EXIT_FASTPATH_REENTER_GUEST to exit fastpath, otherwise, the
965 	 * requester may be blocked endlessly.
966 	 */
967 	if (unlikely(tdx_operand_busy(vp_enter_ret)))
968 		return EXIT_FASTPATH_EXIT_HANDLED;
969 
970 	return EXIT_FASTPATH_NONE;
971 }
972 
973 #define TDX_REGS_AVAIL_SET	(BIT_ULL(VCPU_EXREG_EXIT_INFO_1) | \
974 				 BIT_ULL(VCPU_EXREG_EXIT_INFO_2) | \
975 				 BIT_ULL(VCPU_REGS_RAX) | \
976 				 BIT_ULL(VCPU_REGS_RBX) | \
977 				 BIT_ULL(VCPU_REGS_RCX) | \
978 				 BIT_ULL(VCPU_REGS_RDX) | \
979 				 BIT_ULL(VCPU_REGS_RBP) | \
980 				 BIT_ULL(VCPU_REGS_RSI) | \
981 				 BIT_ULL(VCPU_REGS_RDI) | \
982 				 BIT_ULL(VCPU_REGS_R8) | \
983 				 BIT_ULL(VCPU_REGS_R9) | \
984 				 BIT_ULL(VCPU_REGS_R10) | \
985 				 BIT_ULL(VCPU_REGS_R11) | \
986 				 BIT_ULL(VCPU_REGS_R12) | \
987 				 BIT_ULL(VCPU_REGS_R13) | \
988 				 BIT_ULL(VCPU_REGS_R14) | \
989 				 BIT_ULL(VCPU_REGS_R15))
990 
991 static void tdx_load_host_xsave_state(struct kvm_vcpu *vcpu)
992 {
993 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
994 
995 	/*
996 	 * All TDX hosts support PKRU; but even if they didn't,
997 	 * vcpu->arch.host_pkru would be 0 and the wrpkru would be
998 	 * skipped.
999 	 */
1000 	if (vcpu->arch.host_pkru != 0)
1001 		wrpkru(vcpu->arch.host_pkru);
1002 
1003 	if (kvm_host.xcr0 != (kvm_tdx->xfam & kvm_caps.supported_xcr0))
1004 		xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1005 
1006 	/*
1007 	 * Likewise, even if a TDX hosts didn't support XSS both arms of
1008 	 * the comparison would be 0 and the wrmsrl would be skipped.
1009 	 */
1010 	if (kvm_host.xss != (kvm_tdx->xfam & kvm_caps.supported_xss))
1011 		wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1012 }
1013 
1014 #define TDX_DEBUGCTL_PRESERVED (DEBUGCTLMSR_BTF | \
1015 				DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI | \
1016 				DEBUGCTLMSR_FREEZE_IN_SMM)
1017 
1018 fastpath_t tdx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
1019 {
1020 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1021 	struct vcpu_vt *vt = to_vt(vcpu);
1022 
1023 	/*
1024 	 * WARN if KVM wants to force an immediate exit, as the TDX module does
1025 	 * not guarantee entry into the guest, i.e. it's possible for KVM to
1026 	 * _think_ it completed entry to the guest and forced an immediate exit
1027 	 * without actually having done so.  Luckily, KVM never needs to force
1028 	 * an immediate exit for TDX (KVM can't do direct event injection, so
1029 	 * just WARN and continue on.
1030 	 */
1031 	WARN_ON_ONCE(run_flags);
1032 
1033 	/*
1034 	 * Wait until retry of SEPT-zap-related SEAMCALL completes before
1035 	 * allowing vCPU entry to avoid contention with tdh_vp_enter() and
1036 	 * TDCALLs.
1037 	 */
1038 	if (unlikely(READ_ONCE(to_kvm_tdx(vcpu->kvm)->wait_for_sept_zap)))
1039 		return EXIT_FASTPATH_EXIT_HANDLED;
1040 
1041 	trace_kvm_entry(vcpu, run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT);
1042 
1043 	if (pi_test_on(&vt->pi_desc)) {
1044 		apic->send_IPI_self(POSTED_INTR_VECTOR);
1045 
1046 		if (pi_test_pir(kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVTT) &
1047 			       APIC_VECTOR_MASK, &vt->pi_desc))
1048 			kvm_wait_lapic_expire(vcpu);
1049 	}
1050 
1051 	tdx_vcpu_enter_exit(vcpu);
1052 
1053 	if (vcpu->arch.host_debugctl & ~TDX_DEBUGCTL_PRESERVED)
1054 		update_debugctlmsr(vcpu->arch.host_debugctl);
1055 
1056 	tdx_load_host_xsave_state(vcpu);
1057 	tdx->guest_entered = true;
1058 
1059 	vcpu->arch.regs_avail &= TDX_REGS_AVAIL_SET;
1060 
1061 	if (unlikely(tdx->vp_enter_ret == EXIT_REASON_EPT_MISCONFIG))
1062 		return EXIT_FASTPATH_NONE;
1063 
1064 	if (unlikely((tdx->vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR))
1065 		return EXIT_FASTPATH_NONE;
1066 
1067 	if (unlikely(vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
1068 		kvm_machine_check();
1069 
1070 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
1071 
1072 	if (unlikely(tdx_failed_vmentry(vcpu)))
1073 		return EXIT_FASTPATH_NONE;
1074 
1075 	return tdx_exit_handlers_fastpath(vcpu);
1076 }
1077 
1078 void tdx_inject_nmi(struct kvm_vcpu *vcpu)
1079 {
1080 	++vcpu->stat.nmi_injections;
1081 	td_management_write8(to_tdx(vcpu), TD_VCPU_PEND_NMI, 1);
1082 	/*
1083 	 * From KVM's perspective, NMI injection is completed right after
1084 	 * writing to PEND_NMI.  KVM doesn't care whether an NMI is injected by
1085 	 * the TDX module or not.
1086 	 */
1087 	vcpu->arch.nmi_injected = false;
1088 	/*
1089 	 * TDX doesn't support KVM to request NMI window exit.  If there is
1090 	 * still a pending vNMI, KVM is not able to inject it along with the
1091 	 * one pending in TDX module in a back-to-back way.  Since the previous
1092 	 * vNMI is still pending in TDX module, i.e. it has not been delivered
1093 	 * to TDX guest yet, it's OK to collapse the pending vNMI into the
1094 	 * previous one.  The guest is expected to handle all the NMI sources
1095 	 * when handling the first vNMI.
1096 	 */
1097 	vcpu->arch.nmi_pending = 0;
1098 }
1099 
1100 static int tdx_handle_exception_nmi(struct kvm_vcpu *vcpu)
1101 {
1102 	u32 intr_info = vmx_get_intr_info(vcpu);
1103 
1104 	/*
1105 	 * Machine checks are handled by handle_exception_irqoff(), or by
1106 	 * tdx_handle_exit() with TDX_NON_RECOVERABLE set if a #MC occurs on
1107 	 * VM-Entry.  NMIs are handled by tdx_vcpu_enter_exit().
1108 	 */
1109 	if (is_nmi(intr_info) || is_machine_check(intr_info))
1110 		return 1;
1111 
1112 	vcpu->run->exit_reason = KVM_EXIT_EXCEPTION;
1113 	vcpu->run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1114 	vcpu->run->ex.error_code = 0;
1115 
1116 	return 0;
1117 }
1118 
1119 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
1120 {
1121 	tdvmcall_set_return_code(vcpu, vcpu->run->hypercall.ret);
1122 	return 1;
1123 }
1124 
1125 static int tdx_emulate_vmcall(struct kvm_vcpu *vcpu)
1126 {
1127 	kvm_rax_write(vcpu, to_tdx(vcpu)->vp_enter_args.r10);
1128 	kvm_rbx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r11);
1129 	kvm_rcx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r12);
1130 	kvm_rdx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r13);
1131 	kvm_rsi_write(vcpu, to_tdx(vcpu)->vp_enter_args.r14);
1132 
1133 	return __kvm_emulate_hypercall(vcpu, 0, complete_hypercall_exit);
1134 }
1135 
1136 /*
1137  * Split into chunks and check interrupt pending between chunks.  This allows
1138  * for timely injection of interrupts to prevent issues with guest lockup
1139  * detection.
1140  */
1141 #define TDX_MAP_GPA_MAX_LEN (2 * 1024 * 1024)
1142 static void __tdx_map_gpa(struct vcpu_tdx *tdx);
1143 
1144 static int tdx_complete_vmcall_map_gpa(struct kvm_vcpu *vcpu)
1145 {
1146 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1147 
1148 	if (vcpu->run->hypercall.ret) {
1149 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1150 		tdx->vp_enter_args.r11 = tdx->map_gpa_next;
1151 		return 1;
1152 	}
1153 
1154 	tdx->map_gpa_next += TDX_MAP_GPA_MAX_LEN;
1155 	if (tdx->map_gpa_next >= tdx->map_gpa_end)
1156 		return 1;
1157 
1158 	/*
1159 	 * Stop processing the remaining part if there is a pending interrupt,
1160 	 * which could be qualified to deliver.  Skip checking pending RVI for
1161 	 * TDVMCALL_MAP_GPA, see comments in tdx_protected_apic_has_interrupt().
1162 	 */
1163 	if (kvm_vcpu_has_events(vcpu)) {
1164 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_RETRY);
1165 		tdx->vp_enter_args.r11 = tdx->map_gpa_next;
1166 		return 1;
1167 	}
1168 
1169 	__tdx_map_gpa(tdx);
1170 	return 0;
1171 }
1172 
1173 static void __tdx_map_gpa(struct vcpu_tdx *tdx)
1174 {
1175 	u64 gpa = tdx->map_gpa_next;
1176 	u64 size = tdx->map_gpa_end - tdx->map_gpa_next;
1177 
1178 	if (size > TDX_MAP_GPA_MAX_LEN)
1179 		size = TDX_MAP_GPA_MAX_LEN;
1180 
1181 	tdx->vcpu.run->exit_reason       = KVM_EXIT_HYPERCALL;
1182 	tdx->vcpu.run->hypercall.nr      = KVM_HC_MAP_GPA_RANGE;
1183 	/*
1184 	 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
1185 	 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
1186 	 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
1187 	 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
1188 	 */
1189 	tdx->vcpu.run->hypercall.ret = 0;
1190 	tdx->vcpu.run->hypercall.args[0] = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
1191 	tdx->vcpu.run->hypercall.args[1] = size / PAGE_SIZE;
1192 	tdx->vcpu.run->hypercall.args[2] = vt_is_tdx_private_gpa(tdx->vcpu.kvm, gpa) ?
1193 					   KVM_MAP_GPA_RANGE_ENCRYPTED :
1194 					   KVM_MAP_GPA_RANGE_DECRYPTED;
1195 	tdx->vcpu.run->hypercall.flags   = KVM_EXIT_HYPERCALL_LONG_MODE;
1196 
1197 	tdx->vcpu.arch.complete_userspace_io = tdx_complete_vmcall_map_gpa;
1198 }
1199 
1200 static int tdx_map_gpa(struct kvm_vcpu *vcpu)
1201 {
1202 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1203 	u64 gpa = tdx->vp_enter_args.r12;
1204 	u64 size = tdx->vp_enter_args.r13;
1205 	u64 ret;
1206 
1207 	/*
1208 	 * Converting TDVMCALL_MAP_GPA to KVM_HC_MAP_GPA_RANGE requires
1209 	 * userspace to enable KVM_CAP_EXIT_HYPERCALL with KVM_HC_MAP_GPA_RANGE
1210 	 * bit set.  This is a base call so it should always be supported, but
1211 	 * KVM has no way to ensure that userspace implements the GHCI correctly.
1212 	 * So if KVM_HC_MAP_GPA_RANGE does not cause a VMEXIT, return an error
1213 	 * to the guest.
1214 	 */
1215 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
1216 		ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1217 		goto error;
1218 	}
1219 
1220 	if (gpa + size <= gpa || !kvm_vcpu_is_legal_gpa(vcpu, gpa) ||
1221 	    !kvm_vcpu_is_legal_gpa(vcpu, gpa + size - 1) ||
1222 	    (vt_is_tdx_private_gpa(vcpu->kvm, gpa) !=
1223 	     vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))) {
1224 		ret = TDVMCALL_STATUS_INVALID_OPERAND;
1225 		goto error;
1226 	}
1227 
1228 	if (!PAGE_ALIGNED(gpa) || !PAGE_ALIGNED(size)) {
1229 		ret = TDVMCALL_STATUS_ALIGN_ERROR;
1230 		goto error;
1231 	}
1232 
1233 	tdx->map_gpa_end = gpa + size;
1234 	tdx->map_gpa_next = gpa;
1235 
1236 	__tdx_map_gpa(tdx);
1237 	return 0;
1238 
1239 error:
1240 	tdvmcall_set_return_code(vcpu, ret);
1241 	tdx->vp_enter_args.r11 = gpa;
1242 	return 1;
1243 }
1244 
1245 static int tdx_report_fatal_error(struct kvm_vcpu *vcpu)
1246 {
1247 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1248 	u64 *regs = vcpu->run->system_event.data;
1249 	u64 *module_regs = &tdx->vp_enter_args.r8;
1250 	int index = VCPU_REGS_RAX;
1251 
1252 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1253 	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_TDX_FATAL;
1254 	vcpu->run->system_event.ndata = 16;
1255 
1256 	/* Dump 16 general-purpose registers to userspace in ascending order. */
1257 	regs[index++] = tdx->vp_enter_ret;
1258 	regs[index++] = tdx->vp_enter_args.rcx;
1259 	regs[index++] = tdx->vp_enter_args.rdx;
1260 	regs[index++] = tdx->vp_enter_args.rbx;
1261 	regs[index++] = 0;
1262 	regs[index++] = 0;
1263 	regs[index++] = tdx->vp_enter_args.rsi;
1264 	regs[index] = tdx->vp_enter_args.rdi;
1265 	for (index = 0; index < 8; index++)
1266 		regs[VCPU_REGS_R8 + index] = module_regs[index];
1267 
1268 	return 0;
1269 }
1270 
1271 static int tdx_emulate_cpuid(struct kvm_vcpu *vcpu)
1272 {
1273 	u32 eax, ebx, ecx, edx;
1274 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1275 
1276 	/* EAX and ECX for cpuid is stored in R12 and R13. */
1277 	eax = tdx->vp_enter_args.r12;
1278 	ecx = tdx->vp_enter_args.r13;
1279 
1280 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1281 
1282 	tdx->vp_enter_args.r12 = eax;
1283 	tdx->vp_enter_args.r13 = ebx;
1284 	tdx->vp_enter_args.r14 = ecx;
1285 	tdx->vp_enter_args.r15 = edx;
1286 
1287 	return 1;
1288 }
1289 
1290 static int tdx_complete_pio_out(struct kvm_vcpu *vcpu)
1291 {
1292 	vcpu->arch.pio.count = 0;
1293 	return 1;
1294 }
1295 
1296 static int tdx_complete_pio_in(struct kvm_vcpu *vcpu)
1297 {
1298 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
1299 	unsigned long val = 0;
1300 	int ret;
1301 
1302 	ret = ctxt->ops->pio_in_emulated(ctxt, vcpu->arch.pio.size,
1303 					 vcpu->arch.pio.port, &val, 1);
1304 
1305 	WARN_ON_ONCE(!ret);
1306 
1307 	tdvmcall_set_return_val(vcpu, val);
1308 
1309 	return 1;
1310 }
1311 
1312 static int tdx_emulate_io(struct kvm_vcpu *vcpu)
1313 {
1314 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1315 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
1316 	unsigned long val = 0;
1317 	unsigned int port;
1318 	u64 size, write;
1319 	int ret;
1320 
1321 	++vcpu->stat.io_exits;
1322 
1323 	size = tdx->vp_enter_args.r12;
1324 	write = tdx->vp_enter_args.r13;
1325 	port = tdx->vp_enter_args.r14;
1326 
1327 	if ((write != 0 && write != 1) || (size != 1 && size != 2 && size != 4)) {
1328 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1329 		return 1;
1330 	}
1331 
1332 	if (write) {
1333 		val = tdx->vp_enter_args.r15;
1334 		ret = ctxt->ops->pio_out_emulated(ctxt, size, port, &val, 1);
1335 	} else {
1336 		ret = ctxt->ops->pio_in_emulated(ctxt, size, port, &val, 1);
1337 	}
1338 
1339 	if (!ret)
1340 		vcpu->arch.complete_userspace_io = write ? tdx_complete_pio_out :
1341 							   tdx_complete_pio_in;
1342 	else if (!write)
1343 		tdvmcall_set_return_val(vcpu, val);
1344 
1345 	return ret;
1346 }
1347 
1348 static int tdx_complete_mmio_read(struct kvm_vcpu *vcpu)
1349 {
1350 	unsigned long val = 0;
1351 	gpa_t gpa;
1352 	int size;
1353 
1354 	gpa = vcpu->mmio_fragments[0].gpa;
1355 	size = vcpu->mmio_fragments[0].len;
1356 
1357 	memcpy(&val, vcpu->run->mmio.data, size);
1358 	tdvmcall_set_return_val(vcpu, val);
1359 	trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
1360 	return 1;
1361 }
1362 
1363 static inline int tdx_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, int size,
1364 				 unsigned long val)
1365 {
1366 	if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
1367 		trace_kvm_fast_mmio(gpa);
1368 		return 0;
1369 	}
1370 
1371 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, size, gpa, &val);
1372 	if (kvm_io_bus_write(vcpu, KVM_MMIO_BUS, gpa, size, &val))
1373 		return -EOPNOTSUPP;
1374 
1375 	return 0;
1376 }
1377 
1378 static inline int tdx_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, int size)
1379 {
1380 	unsigned long val;
1381 
1382 	if (kvm_io_bus_read(vcpu, KVM_MMIO_BUS, gpa, size, &val))
1383 		return -EOPNOTSUPP;
1384 
1385 	tdvmcall_set_return_val(vcpu, val);
1386 	trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
1387 	return 0;
1388 }
1389 
1390 static int tdx_emulate_mmio(struct kvm_vcpu *vcpu)
1391 {
1392 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1393 	int size, write, r;
1394 	unsigned long val;
1395 	gpa_t gpa;
1396 
1397 	size = tdx->vp_enter_args.r12;
1398 	write = tdx->vp_enter_args.r13;
1399 	gpa = tdx->vp_enter_args.r14;
1400 	val = write ? tdx->vp_enter_args.r15 : 0;
1401 
1402 	if (size != 1 && size != 2 && size != 4 && size != 8)
1403 		goto error;
1404 	if (write != 0 && write != 1)
1405 		goto error;
1406 
1407 	/*
1408 	 * TDG.VP.VMCALL<MMIO> allows only shared GPA, it makes no sense to
1409 	 * do MMIO emulation for private GPA.
1410 	 */
1411 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa) ||
1412 	    vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))
1413 		goto error;
1414 
1415 	gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
1416 
1417 	if (write)
1418 		r = tdx_mmio_write(vcpu, gpa, size, val);
1419 	else
1420 		r = tdx_mmio_read(vcpu, gpa, size);
1421 	if (!r)
1422 		/* Kernel completed device emulation. */
1423 		return 1;
1424 
1425 	/* Request the device emulation to userspace device model. */
1426 	vcpu->mmio_is_write = write;
1427 	if (!write)
1428 		vcpu->arch.complete_userspace_io = tdx_complete_mmio_read;
1429 
1430 	vcpu->run->mmio.phys_addr = gpa;
1431 	vcpu->run->mmio.len = size;
1432 	vcpu->run->mmio.is_write = write;
1433 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
1434 
1435 	if (write) {
1436 		memcpy(vcpu->run->mmio.data, &val, size);
1437 	} else {
1438 		vcpu->mmio_fragments[0].gpa = gpa;
1439 		vcpu->mmio_fragments[0].len = size;
1440 		trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, size, gpa, NULL);
1441 	}
1442 	return 0;
1443 
1444 error:
1445 	tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1446 	return 1;
1447 }
1448 
1449 static int tdx_complete_get_td_vm_call_info(struct kvm_vcpu *vcpu)
1450 {
1451 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1452 
1453 	tdvmcall_set_return_code(vcpu, vcpu->run->tdx.get_tdvmcall_info.ret);
1454 
1455 	/*
1456 	 * For now, there is no TDVMCALL beyond GHCI base API supported by KVM
1457 	 * directly without the support from userspace, just set the value
1458 	 * returned from userspace.
1459 	 */
1460 	tdx->vp_enter_args.r11 = vcpu->run->tdx.get_tdvmcall_info.r11;
1461 	tdx->vp_enter_args.r12 = vcpu->run->tdx.get_tdvmcall_info.r12;
1462 	tdx->vp_enter_args.r13 = vcpu->run->tdx.get_tdvmcall_info.r13;
1463 	tdx->vp_enter_args.r14 = vcpu->run->tdx.get_tdvmcall_info.r14;
1464 
1465 	return 1;
1466 }
1467 
1468 static int tdx_get_td_vm_call_info(struct kvm_vcpu *vcpu)
1469 {
1470 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1471 
1472 	switch (tdx->vp_enter_args.r12) {
1473 	case 0:
1474 		tdx->vp_enter_args.r11 = 0;
1475 		tdx->vp_enter_args.r12 = 0;
1476 		tdx->vp_enter_args.r13 = 0;
1477 		tdx->vp_enter_args.r14 = 0;
1478 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUCCESS);
1479 		return 1;
1480 	case 1:
1481 		vcpu->run->tdx.get_tdvmcall_info.leaf = tdx->vp_enter_args.r12;
1482 		vcpu->run->exit_reason = KVM_EXIT_TDX;
1483 		vcpu->run->tdx.flags = 0;
1484 		vcpu->run->tdx.nr = TDVMCALL_GET_TD_VM_CALL_INFO;
1485 		vcpu->run->tdx.get_tdvmcall_info.ret = TDVMCALL_STATUS_SUCCESS;
1486 		vcpu->run->tdx.get_tdvmcall_info.r11 = 0;
1487 		vcpu->run->tdx.get_tdvmcall_info.r12 = 0;
1488 		vcpu->run->tdx.get_tdvmcall_info.r13 = 0;
1489 		vcpu->run->tdx.get_tdvmcall_info.r14 = 0;
1490 		vcpu->arch.complete_userspace_io = tdx_complete_get_td_vm_call_info;
1491 		return 0;
1492 	default:
1493 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1494 		return 1;
1495 	}
1496 }
1497 
1498 static int tdx_complete_simple(struct kvm_vcpu *vcpu)
1499 {
1500 	tdvmcall_set_return_code(vcpu, vcpu->run->tdx.unknown.ret);
1501 	return 1;
1502 }
1503 
1504 static int tdx_get_quote(struct kvm_vcpu *vcpu)
1505 {
1506 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1507 	u64 gpa = tdx->vp_enter_args.r12;
1508 	u64 size = tdx->vp_enter_args.r13;
1509 
1510 	/* The gpa of buffer must have shared bit set. */
1511 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
1512 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1513 		return 1;
1514 	}
1515 
1516 	vcpu->run->exit_reason = KVM_EXIT_TDX;
1517 	vcpu->run->tdx.flags = 0;
1518 	vcpu->run->tdx.nr = TDVMCALL_GET_QUOTE;
1519 	vcpu->run->tdx.get_quote.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1520 	vcpu->run->tdx.get_quote.gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
1521 	vcpu->run->tdx.get_quote.size = size;
1522 
1523 	vcpu->arch.complete_userspace_io = tdx_complete_simple;
1524 
1525 	return 0;
1526 }
1527 
1528 static int tdx_setup_event_notify_interrupt(struct kvm_vcpu *vcpu)
1529 {
1530 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1531 	u64 vector = tdx->vp_enter_args.r12;
1532 
1533 	if (vector < 32 || vector > 255) {
1534 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1535 		return 1;
1536 	}
1537 
1538 	vcpu->run->exit_reason = KVM_EXIT_TDX;
1539 	vcpu->run->tdx.flags = 0;
1540 	vcpu->run->tdx.nr = TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT;
1541 	vcpu->run->tdx.setup_event_notify.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1542 	vcpu->run->tdx.setup_event_notify.vector = vector;
1543 
1544 	vcpu->arch.complete_userspace_io = tdx_complete_simple;
1545 
1546 	return 0;
1547 }
1548 
1549 static int handle_tdvmcall(struct kvm_vcpu *vcpu)
1550 {
1551 	switch (tdvmcall_leaf(vcpu)) {
1552 	case TDVMCALL_MAP_GPA:
1553 		return tdx_map_gpa(vcpu);
1554 	case TDVMCALL_REPORT_FATAL_ERROR:
1555 		return tdx_report_fatal_error(vcpu);
1556 	case TDVMCALL_GET_TD_VM_CALL_INFO:
1557 		return tdx_get_td_vm_call_info(vcpu);
1558 	case TDVMCALL_GET_QUOTE:
1559 		return tdx_get_quote(vcpu);
1560 	case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT:
1561 		return tdx_setup_event_notify_interrupt(vcpu);
1562 	default:
1563 		break;
1564 	}
1565 
1566 	tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED);
1567 	return 1;
1568 }
1569 
1570 void tdx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int pgd_level)
1571 {
1572 	u64 shared_bit = (pgd_level == 5) ? TDX_SHARED_BIT_PWL_5 :
1573 			  TDX_SHARED_BIT_PWL_4;
1574 
1575 	if (KVM_BUG_ON(shared_bit != kvm_gfn_direct_bits(vcpu->kvm), vcpu->kvm))
1576 		return;
1577 
1578 	td_vmcs_write64(to_tdx(vcpu), SHARED_EPT_POINTER, root_hpa);
1579 }
1580 
1581 static void tdx_unpin(struct kvm *kvm, struct page *page)
1582 {
1583 	put_page(page);
1584 }
1585 
1586 static int tdx_mem_page_aug(struct kvm *kvm, gfn_t gfn,
1587 			    enum pg_level level, struct page *page)
1588 {
1589 	int tdx_level = pg_level_to_tdx_sept_level(level);
1590 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1591 	gpa_t gpa = gfn_to_gpa(gfn);
1592 	u64 entry, level_state;
1593 	u64 err;
1594 
1595 	err = tdh_mem_page_aug(&kvm_tdx->td, gpa, tdx_level, page, &entry, &level_state);
1596 	if (unlikely(tdx_operand_busy(err))) {
1597 		tdx_unpin(kvm, page);
1598 		return -EBUSY;
1599 	}
1600 
1601 	if (KVM_BUG_ON(err, kvm)) {
1602 		pr_tdx_error_2(TDH_MEM_PAGE_AUG, err, entry, level_state);
1603 		tdx_unpin(kvm, page);
1604 		return -EIO;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * KVM_TDX_INIT_MEM_REGION calls kvm_gmem_populate() to map guest pages; the
1612  * callback tdx_gmem_post_populate() then maps pages into private memory.
1613  * through the a seamcall TDH.MEM.PAGE.ADD().  The SEAMCALL also requires the
1614  * private EPT structures for the page to have been built before, which is
1615  * done via kvm_tdp_map_page(). nr_premapped counts the number of pages that
1616  * were added to the EPT structures but not added with TDH.MEM.PAGE.ADD().
1617  * The counter has to be zero on KVM_TDX_FINALIZE_VM, to ensure that there
1618  * are no half-initialized shared EPT pages.
1619  */
1620 static int tdx_mem_page_record_premap_cnt(struct kvm *kvm, gfn_t gfn,
1621 					  enum pg_level level, kvm_pfn_t pfn)
1622 {
1623 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1624 
1625 	if (KVM_BUG_ON(kvm->arch.pre_fault_allowed, kvm))
1626 		return -EINVAL;
1627 
1628 	/* nr_premapped will be decreased when tdh_mem_page_add() is called. */
1629 	atomic64_inc(&kvm_tdx->nr_premapped);
1630 	return 0;
1631 }
1632 
1633 static int tdx_sept_set_private_spte(struct kvm *kvm, gfn_t gfn,
1634 				     enum pg_level level, kvm_pfn_t pfn)
1635 {
1636 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1637 	struct page *page = pfn_to_page(pfn);
1638 
1639 	/* TODO: handle large pages. */
1640 	if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
1641 		return -EINVAL;
1642 
1643 	/*
1644 	 * Because guest_memfd doesn't support page migration with
1645 	 * a_ops->migrate_folio (yet), no callback is triggered for KVM on page
1646 	 * migration.  Until guest_memfd supports page migration, prevent page
1647 	 * migration.
1648 	 * TODO: Once guest_memfd introduces callback on page migration,
1649 	 * implement it and remove get_page/put_page().
1650 	 */
1651 	get_page(page);
1652 
1653 	/*
1654 	 * Read 'pre_fault_allowed' before 'kvm_tdx->state'; see matching
1655 	 * barrier in tdx_td_finalize().
1656 	 */
1657 	smp_rmb();
1658 	if (likely(kvm_tdx->state == TD_STATE_RUNNABLE))
1659 		return tdx_mem_page_aug(kvm, gfn, level, page);
1660 
1661 	return tdx_mem_page_record_premap_cnt(kvm, gfn, level, pfn);
1662 }
1663 
1664 static int tdx_sept_drop_private_spte(struct kvm *kvm, gfn_t gfn,
1665 				      enum pg_level level, struct page *page)
1666 {
1667 	int tdx_level = pg_level_to_tdx_sept_level(level);
1668 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1669 	gpa_t gpa = gfn_to_gpa(gfn);
1670 	u64 err, entry, level_state;
1671 
1672 	/* TODO: handle large pages. */
1673 	if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
1674 		return -EINVAL;
1675 
1676 	if (KVM_BUG_ON(!is_hkid_assigned(kvm_tdx), kvm))
1677 		return -EINVAL;
1678 
1679 	/*
1680 	 * When zapping private page, write lock is held. So no race condition
1681 	 * with other vcpu sept operation.
1682 	 * Race with TDH.VP.ENTER due to (0-step mitigation) and Guest TDCALLs.
1683 	 */
1684 	err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
1685 				  &level_state);
1686 
1687 	if (unlikely(tdx_operand_busy(err))) {
1688 		/*
1689 		 * The second retry is expected to succeed after kicking off all
1690 		 * other vCPUs and prevent them from invoking TDH.VP.ENTER.
1691 		 */
1692 		tdx_no_vcpus_enter_start(kvm);
1693 		err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
1694 					  &level_state);
1695 		tdx_no_vcpus_enter_stop(kvm);
1696 	}
1697 
1698 	if (KVM_BUG_ON(err, kvm)) {
1699 		pr_tdx_error_2(TDH_MEM_PAGE_REMOVE, err, entry, level_state);
1700 		return -EIO;
1701 	}
1702 
1703 	err = tdh_phymem_page_wbinvd_hkid((u16)kvm_tdx->hkid, page);
1704 
1705 	if (KVM_BUG_ON(err, kvm)) {
1706 		pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
1707 		return -EIO;
1708 	}
1709 	tdx_quirk_reset_page(page);
1710 	tdx_unpin(kvm, page);
1711 	return 0;
1712 }
1713 
1714 static int tdx_sept_link_private_spt(struct kvm *kvm, gfn_t gfn,
1715 				     enum pg_level level, void *private_spt)
1716 {
1717 	int tdx_level = pg_level_to_tdx_sept_level(level);
1718 	gpa_t gpa = gfn_to_gpa(gfn);
1719 	struct page *page = virt_to_page(private_spt);
1720 	u64 err, entry, level_state;
1721 
1722 	err = tdh_mem_sept_add(&to_kvm_tdx(kvm)->td, gpa, tdx_level, page, &entry,
1723 			       &level_state);
1724 	if (unlikely(tdx_operand_busy(err)))
1725 		return -EBUSY;
1726 
1727 	if (KVM_BUG_ON(err, kvm)) {
1728 		pr_tdx_error_2(TDH_MEM_SEPT_ADD, err, entry, level_state);
1729 		return -EIO;
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 /*
1736  * Check if the error returned from a SEPT zap SEAMCALL is due to that a page is
1737  * mapped by KVM_TDX_INIT_MEM_REGION without tdh_mem_page_add() being called
1738  * successfully.
1739  *
1740  * Since tdh_mem_sept_add() must have been invoked successfully before a
1741  * non-leaf entry present in the mirrored page table, the SEPT ZAP related
1742  * SEAMCALLs should not encounter err TDX_EPT_WALK_FAILED. They should instead
1743  * find TDX_EPT_ENTRY_STATE_INCORRECT due to an empty leaf entry found in the
1744  * SEPT.
1745  *
1746  * Further check if the returned entry from SEPT walking is with RWX permissions
1747  * to filter out anything unexpected.
1748  *
1749  * Note: @level is pg_level, not the tdx_level. The tdx_level extracted from
1750  * level_state returned from a SEAMCALL error is the same as that passed into
1751  * the SEAMCALL.
1752  */
1753 static int tdx_is_sept_zap_err_due_to_premap(struct kvm_tdx *kvm_tdx, u64 err,
1754 					     u64 entry, int level)
1755 {
1756 	if (!err || kvm_tdx->state == TD_STATE_RUNNABLE)
1757 		return false;
1758 
1759 	if (err != (TDX_EPT_ENTRY_STATE_INCORRECT | TDX_OPERAND_ID_RCX))
1760 		return false;
1761 
1762 	if ((is_last_spte(entry, level) && (entry & VMX_EPT_RWX_MASK)))
1763 		return false;
1764 
1765 	return true;
1766 }
1767 
1768 static int tdx_sept_zap_private_spte(struct kvm *kvm, gfn_t gfn,
1769 				     enum pg_level level, struct page *page)
1770 {
1771 	int tdx_level = pg_level_to_tdx_sept_level(level);
1772 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1773 	gpa_t gpa = gfn_to_gpa(gfn) & KVM_HPAGE_MASK(level);
1774 	u64 err, entry, level_state;
1775 
1776 	/* For now large page isn't supported yet. */
1777 	WARN_ON_ONCE(level != PG_LEVEL_4K);
1778 
1779 	err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
1780 
1781 	if (unlikely(tdx_operand_busy(err))) {
1782 		/* After no vCPUs enter, the second retry is expected to succeed */
1783 		tdx_no_vcpus_enter_start(kvm);
1784 		err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
1785 		tdx_no_vcpus_enter_stop(kvm);
1786 	}
1787 	if (tdx_is_sept_zap_err_due_to_premap(kvm_tdx, err, entry, level) &&
1788 	    !KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm)) {
1789 		atomic64_dec(&kvm_tdx->nr_premapped);
1790 		tdx_unpin(kvm, page);
1791 		return 0;
1792 	}
1793 
1794 	if (KVM_BUG_ON(err, kvm)) {
1795 		pr_tdx_error_2(TDH_MEM_RANGE_BLOCK, err, entry, level_state);
1796 		return -EIO;
1797 	}
1798 	return 1;
1799 }
1800 
1801 /*
1802  * Ensure shared and private EPTs to be flushed on all vCPUs.
1803  * tdh_mem_track() is the only caller that increases TD epoch. An increase in
1804  * the TD epoch (e.g., to value "N + 1") is successful only if no vCPUs are
1805  * running in guest mode with the value "N - 1".
1806  *
1807  * A successful execution of tdh_mem_track() ensures that vCPUs can only run in
1808  * guest mode with TD epoch value "N" if no TD exit occurs after the TD epoch
1809  * being increased to "N + 1".
1810  *
1811  * Kicking off all vCPUs after that further results in no vCPUs can run in guest
1812  * mode with TD epoch value "N", which unblocks the next tdh_mem_track() (e.g.
1813  * to increase TD epoch to "N + 2").
1814  *
1815  * TDX module will flush EPT on the next TD enter and make vCPUs to run in
1816  * guest mode with TD epoch value "N + 1".
1817  *
1818  * kvm_make_all_cpus_request() guarantees all vCPUs are out of guest mode by
1819  * waiting empty IPI handler ack_kick().
1820  *
1821  * No action is required to the vCPUs being kicked off since the kicking off
1822  * occurs certainly after TD epoch increment and before the next
1823  * tdh_mem_track().
1824  */
1825 static void tdx_track(struct kvm *kvm)
1826 {
1827 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1828 	u64 err;
1829 
1830 	/* If TD isn't finalized, it's before any vcpu running. */
1831 	if (unlikely(kvm_tdx->state != TD_STATE_RUNNABLE))
1832 		return;
1833 
1834 	lockdep_assert_held_write(&kvm->mmu_lock);
1835 
1836 	err = tdh_mem_track(&kvm_tdx->td);
1837 	if (unlikely(tdx_operand_busy(err))) {
1838 		/* After no vCPUs enter, the second retry is expected to succeed */
1839 		tdx_no_vcpus_enter_start(kvm);
1840 		err = tdh_mem_track(&kvm_tdx->td);
1841 		tdx_no_vcpus_enter_stop(kvm);
1842 	}
1843 
1844 	if (KVM_BUG_ON(err, kvm))
1845 		pr_tdx_error(TDH_MEM_TRACK, err);
1846 
1847 	kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
1848 }
1849 
1850 static int tdx_sept_free_private_spt(struct kvm *kvm, gfn_t gfn,
1851 				     enum pg_level level, void *private_spt)
1852 {
1853 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1854 
1855 	/*
1856 	 * free_external_spt() is only called after hkid is freed when TD is
1857 	 * tearing down.
1858 	 * KVM doesn't (yet) zap page table pages in mirror page table while
1859 	 * TD is active, though guest pages mapped in mirror page table could be
1860 	 * zapped during TD is active, e.g. for shared <-> private conversion
1861 	 * and slot move/deletion.
1862 	 */
1863 	if (KVM_BUG_ON(is_hkid_assigned(kvm_tdx), kvm))
1864 		return -EINVAL;
1865 
1866 	/*
1867 	 * The HKID assigned to this TD was already freed and cache was
1868 	 * already flushed. We don't have to flush again.
1869 	 */
1870 	return tdx_reclaim_page(virt_to_page(private_spt));
1871 }
1872 
1873 static int tdx_sept_remove_private_spte(struct kvm *kvm, gfn_t gfn,
1874 					enum pg_level level, kvm_pfn_t pfn)
1875 {
1876 	struct page *page = pfn_to_page(pfn);
1877 	int ret;
1878 
1879 	/*
1880 	 * HKID is released after all private pages have been removed, and set
1881 	 * before any might be populated. Warn if zapping is attempted when
1882 	 * there can't be anything populated in the private EPT.
1883 	 */
1884 	if (KVM_BUG_ON(!is_hkid_assigned(to_kvm_tdx(kvm)), kvm))
1885 		return -EINVAL;
1886 
1887 	ret = tdx_sept_zap_private_spte(kvm, gfn, level, page);
1888 	if (ret <= 0)
1889 		return ret;
1890 
1891 	/*
1892 	 * TDX requires TLB tracking before dropping private page.  Do
1893 	 * it here, although it is also done later.
1894 	 */
1895 	tdx_track(kvm);
1896 
1897 	return tdx_sept_drop_private_spte(kvm, gfn, level, page);
1898 }
1899 
1900 void tdx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
1901 			   int trig_mode, int vector)
1902 {
1903 	struct kvm_vcpu *vcpu = apic->vcpu;
1904 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1905 
1906 	/* TDX supports only posted interrupt.  No lapic emulation. */
1907 	__vmx_deliver_posted_interrupt(vcpu, &tdx->vt.pi_desc, vector);
1908 
1909 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
1910 }
1911 
1912 static inline bool tdx_is_sept_violation_unexpected_pending(struct kvm_vcpu *vcpu)
1913 {
1914 	u64 eeq_type = to_tdx(vcpu)->ext_exit_qualification & TDX_EXT_EXIT_QUAL_TYPE_MASK;
1915 	u64 eq = vmx_get_exit_qual(vcpu);
1916 
1917 	if (eeq_type != TDX_EXT_EXIT_QUAL_TYPE_PENDING_EPT_VIOLATION)
1918 		return false;
1919 
1920 	return !(eq & EPT_VIOLATION_PROT_MASK) && !(eq & EPT_VIOLATION_EXEC_FOR_RING3_LIN);
1921 }
1922 
1923 static int tdx_handle_ept_violation(struct kvm_vcpu *vcpu)
1924 {
1925 	unsigned long exit_qual;
1926 	gpa_t gpa = to_tdx(vcpu)->exit_gpa;
1927 	bool local_retry = false;
1928 	int ret;
1929 
1930 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
1931 		if (tdx_is_sept_violation_unexpected_pending(vcpu)) {
1932 			pr_warn("Guest access before accepting 0x%llx on vCPU %d\n",
1933 				gpa, vcpu->vcpu_id);
1934 			kvm_vm_dead(vcpu->kvm);
1935 			return -EIO;
1936 		}
1937 		/*
1938 		 * Always treat SEPT violations as write faults.  Ignore the
1939 		 * EXIT_QUALIFICATION reported by TDX-SEAM for SEPT violations.
1940 		 * TD private pages are always RWX in the SEPT tables,
1941 		 * i.e. they're always mapped writable.  Just as importantly,
1942 		 * treating SEPT violations as write faults is necessary to
1943 		 * avoid COW allocations, which will cause TDAUGPAGE failures
1944 		 * due to aliasing a single HPA to multiple GPAs.
1945 		 */
1946 		exit_qual = EPT_VIOLATION_ACC_WRITE;
1947 
1948 		/* Only private GPA triggers zero-step mitigation */
1949 		local_retry = true;
1950 	} else {
1951 		exit_qual = vmx_get_exit_qual(vcpu);
1952 		/*
1953 		 * EPT violation due to instruction fetch should never be
1954 		 * triggered from shared memory in TDX guest.  If such EPT
1955 		 * violation occurs, treat it as broken hardware.
1956 		 */
1957 		if (KVM_BUG_ON(exit_qual & EPT_VIOLATION_ACC_INSTR, vcpu->kvm))
1958 			return -EIO;
1959 	}
1960 
1961 	trace_kvm_page_fault(vcpu, gpa, exit_qual);
1962 
1963 	/*
1964 	 * To minimize TDH.VP.ENTER invocations, retry locally for private GPA
1965 	 * mapping in TDX.
1966 	 *
1967 	 * KVM may return RET_PF_RETRY for private GPA due to
1968 	 * - contentions when atomically updating SPTEs of the mirror page table
1969 	 * - in-progress GFN invalidation or memslot removal.
1970 	 * - TDX_OPERAND_BUSY error from TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD,
1971 	 *   caused by contentions with TDH.VP.ENTER (with zero-step mitigation)
1972 	 *   or certain TDCALLs.
1973 	 *
1974 	 * If TDH.VP.ENTER is invoked more times than the threshold set by the
1975 	 * TDX module before KVM resolves the private GPA mapping, the TDX
1976 	 * module will activate zero-step mitigation during TDH.VP.ENTER. This
1977 	 * process acquires an SEPT tree lock in the TDX module, leading to
1978 	 * further contentions with TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD
1979 	 * operations on other vCPUs.
1980 	 *
1981 	 * Breaking out of local retries for kvm_vcpu_has_events() is for
1982 	 * interrupt injection. kvm_vcpu_has_events() should not see pending
1983 	 * events for TDX. Since KVM can't determine if IRQs (or NMIs) are
1984 	 * blocked by TDs, false positives are inevitable i.e., KVM may re-enter
1985 	 * the guest even if the IRQ/NMI can't be delivered.
1986 	 *
1987 	 * Note: even without breaking out of local retries, zero-step
1988 	 * mitigation may still occur due to
1989 	 * - invoking of TDH.VP.ENTER after KVM_EXIT_MEMORY_FAULT,
1990 	 * - a single RIP causing EPT violations for more GFNs than the
1991 	 *   threshold count.
1992 	 * This is safe, as triggering zero-step mitigation only introduces
1993 	 * contentions to page installation SEAMCALLs on other vCPUs, which will
1994 	 * handle retries locally in their EPT violation handlers.
1995 	 */
1996 	while (1) {
1997 		ret = __vmx_handle_ept_violation(vcpu, gpa, exit_qual);
1998 
1999 		if (ret != RET_PF_RETRY || !local_retry)
2000 			break;
2001 
2002 		if (kvm_vcpu_has_events(vcpu) || signal_pending(current))
2003 			break;
2004 
2005 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
2006 			ret = -EIO;
2007 			break;
2008 		}
2009 
2010 		cond_resched();
2011 	}
2012 	return ret;
2013 }
2014 
2015 int tdx_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2016 {
2017 	if (err) {
2018 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
2019 		return 1;
2020 	}
2021 
2022 	if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MSR_READ)
2023 		tdvmcall_set_return_val(vcpu, kvm_read_edx_eax(vcpu));
2024 
2025 	return 1;
2026 }
2027 
2028 
2029 int tdx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t fastpath)
2030 {
2031 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2032 	u64 vp_enter_ret = tdx->vp_enter_ret;
2033 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
2034 
2035 	if (fastpath != EXIT_FASTPATH_NONE)
2036 		return 1;
2037 
2038 	if (unlikely(vp_enter_ret == EXIT_REASON_EPT_MISCONFIG)) {
2039 		KVM_BUG_ON(1, vcpu->kvm);
2040 		return -EIO;
2041 	}
2042 
2043 	/*
2044 	 * Handle TDX SW errors, including TDX_SEAMCALL_UD, TDX_SEAMCALL_GP and
2045 	 * TDX_SEAMCALL_VMFAILINVALID.
2046 	 */
2047 	if (unlikely((vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR)) {
2048 		KVM_BUG_ON(!kvm_rebooting, vcpu->kvm);
2049 		goto unhandled_exit;
2050 	}
2051 
2052 	if (unlikely(tdx_failed_vmentry(vcpu))) {
2053 		/*
2054 		 * If the guest state is protected, that means off-TD debug is
2055 		 * not enabled, TDX_NON_RECOVERABLE must be set.
2056 		 */
2057 		WARN_ON_ONCE(vcpu->arch.guest_state_protected &&
2058 				!(vp_enter_ret & TDX_NON_RECOVERABLE));
2059 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2060 		vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason.full;
2061 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
2062 		return 0;
2063 	}
2064 
2065 	if (unlikely(vp_enter_ret & (TDX_ERROR | TDX_NON_RECOVERABLE)) &&
2066 		exit_reason.basic != EXIT_REASON_TRIPLE_FAULT) {
2067 		kvm_pr_unimpl("TD vp_enter_ret 0x%llx\n", vp_enter_ret);
2068 		goto unhandled_exit;
2069 	}
2070 
2071 	WARN_ON_ONCE(exit_reason.basic != EXIT_REASON_TRIPLE_FAULT &&
2072 		     (vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) != TDX_SUCCESS);
2073 
2074 	switch (exit_reason.basic) {
2075 	case EXIT_REASON_TRIPLE_FAULT:
2076 		vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2077 		vcpu->mmio_needed = 0;
2078 		return 0;
2079 	case EXIT_REASON_EXCEPTION_NMI:
2080 		return tdx_handle_exception_nmi(vcpu);
2081 	case EXIT_REASON_EXTERNAL_INTERRUPT:
2082 		++vcpu->stat.irq_exits;
2083 		return 1;
2084 	case EXIT_REASON_CPUID:
2085 		return tdx_emulate_cpuid(vcpu);
2086 	case EXIT_REASON_HLT:
2087 		return kvm_emulate_halt_noskip(vcpu);
2088 	case EXIT_REASON_TDCALL:
2089 		return handle_tdvmcall(vcpu);
2090 	case EXIT_REASON_VMCALL:
2091 		return tdx_emulate_vmcall(vcpu);
2092 	case EXIT_REASON_IO_INSTRUCTION:
2093 		return tdx_emulate_io(vcpu);
2094 	case EXIT_REASON_MSR_READ:
2095 		kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
2096 		return kvm_emulate_rdmsr(vcpu);
2097 	case EXIT_REASON_MSR_WRITE:
2098 		kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
2099 		kvm_rax_write(vcpu, tdx->vp_enter_args.r13 & -1u);
2100 		kvm_rdx_write(vcpu, tdx->vp_enter_args.r13 >> 32);
2101 		return kvm_emulate_wrmsr(vcpu);
2102 	case EXIT_REASON_EPT_MISCONFIG:
2103 		return tdx_emulate_mmio(vcpu);
2104 	case EXIT_REASON_EPT_VIOLATION:
2105 		return tdx_handle_ept_violation(vcpu);
2106 	case EXIT_REASON_OTHER_SMI:
2107 		/*
2108 		 * Unlike VMX, SMI in SEAM non-root mode (i.e. when
2109 		 * TD guest vCPU is running) will cause VM exit to TDX module,
2110 		 * then SEAMRET to KVM.  Once it exits to KVM, SMI is delivered
2111 		 * and handled by kernel handler right away.
2112 		 *
2113 		 * The Other SMI exit can also be caused by the SEAM non-root
2114 		 * machine check delivered via Machine Check System Management
2115 		 * Interrupt (MSMI), but it has already been handled by the
2116 		 * kernel machine check handler, i.e., the memory page has been
2117 		 * marked as poisoned and it won't be freed to the free list
2118 		 * when the TDX guest is terminated (the TDX module marks the
2119 		 * guest as dead and prevent it from further running when
2120 		 * machine check happens in SEAM non-root).
2121 		 *
2122 		 * - A MSMI will not reach here, it's handled as non_recoverable
2123 		 *   case above.
2124 		 * - If it's not an MSMI, no need to do anything here.
2125 		 */
2126 		return 1;
2127 	default:
2128 		break;
2129 	}
2130 
2131 unhandled_exit:
2132 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2133 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2134 	vcpu->run->internal.ndata = 2;
2135 	vcpu->run->internal.data[0] = vp_enter_ret;
2136 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2137 	return 0;
2138 }
2139 
2140 void tdx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
2141 		u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
2142 {
2143 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2144 
2145 	*reason = tdx->vt.exit_reason.full;
2146 	if (*reason != -1u) {
2147 		*info1 = vmx_get_exit_qual(vcpu);
2148 		*info2 = tdx->ext_exit_qualification;
2149 		*intr_info = vmx_get_intr_info(vcpu);
2150 	} else {
2151 		*info1 = 0;
2152 		*info2 = 0;
2153 		*intr_info = 0;
2154 	}
2155 
2156 	*error_code = 0;
2157 }
2158 
2159 bool tdx_has_emulated_msr(u32 index)
2160 {
2161 	switch (index) {
2162 	case MSR_IA32_UCODE_REV:
2163 	case MSR_IA32_ARCH_CAPABILITIES:
2164 	case MSR_IA32_POWER_CTL:
2165 	case MSR_IA32_CR_PAT:
2166 	case MSR_MTRRcap:
2167 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
2168 	case MSR_MTRRdefType:
2169 	case MSR_IA32_TSC_DEADLINE:
2170 	case MSR_IA32_MISC_ENABLE:
2171 	case MSR_PLATFORM_INFO:
2172 	case MSR_MISC_FEATURES_ENABLES:
2173 	case MSR_IA32_APICBASE:
2174 	case MSR_EFER:
2175 	case MSR_IA32_FEAT_CTL:
2176 	case MSR_IA32_MCG_CAP:
2177 	case MSR_IA32_MCG_STATUS:
2178 	case MSR_IA32_MCG_CTL:
2179 	case MSR_IA32_MCG_EXT_CTL:
2180 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2181 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
2182 		/* MSR_IA32_MCx_{CTL, STATUS, ADDR, MISC, CTL2} */
2183 	case MSR_KVM_POLL_CONTROL:
2184 		return true;
2185 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2186 		/*
2187 		 * x2APIC registers that are virtualized by the CPU can't be
2188 		 * emulated, KVM doesn't have access to the virtual APIC page.
2189 		 */
2190 		switch (index) {
2191 		case X2APIC_MSR(APIC_TASKPRI):
2192 		case X2APIC_MSR(APIC_PROCPRI):
2193 		case X2APIC_MSR(APIC_EOI):
2194 		case X2APIC_MSR(APIC_ISR) ... X2APIC_MSR(APIC_ISR + APIC_ISR_NR):
2195 		case X2APIC_MSR(APIC_TMR) ... X2APIC_MSR(APIC_TMR + APIC_ISR_NR):
2196 		case X2APIC_MSR(APIC_IRR) ... X2APIC_MSR(APIC_IRR + APIC_ISR_NR):
2197 			return false;
2198 		default:
2199 			return true;
2200 		}
2201 	default:
2202 		return false;
2203 	}
2204 }
2205 
2206 static bool tdx_is_read_only_msr(u32 index)
2207 {
2208 	return  index == MSR_IA32_APICBASE || index == MSR_EFER ||
2209 		index == MSR_IA32_FEAT_CTL;
2210 }
2211 
2212 int tdx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2213 {
2214 	switch (msr->index) {
2215 	case MSR_IA32_FEAT_CTL:
2216 		/*
2217 		 * MCE and MCA are advertised via cpuid. Guest kernel could
2218 		 * check if LMCE is enabled or not.
2219 		 */
2220 		msr->data = FEAT_CTL_LOCKED;
2221 		if (vcpu->arch.mcg_cap & MCG_LMCE_P)
2222 			msr->data |= FEAT_CTL_LMCE_ENABLED;
2223 		return 0;
2224 	case MSR_IA32_MCG_EXT_CTL:
2225 		if (!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P))
2226 			return 1;
2227 		msr->data = vcpu->arch.mcg_ext_ctl;
2228 		return 0;
2229 	default:
2230 		if (!tdx_has_emulated_msr(msr->index))
2231 			return 1;
2232 
2233 		return kvm_get_msr_common(vcpu, msr);
2234 	}
2235 }
2236 
2237 int tdx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2238 {
2239 	switch (msr->index) {
2240 	case MSR_IA32_MCG_EXT_CTL:
2241 		if ((!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P)) ||
2242 		    (msr->data & ~MCG_EXT_CTL_LMCE_EN))
2243 			return 1;
2244 		vcpu->arch.mcg_ext_ctl = msr->data;
2245 		return 0;
2246 	default:
2247 		if (tdx_is_read_only_msr(msr->index))
2248 			return 1;
2249 
2250 		if (!tdx_has_emulated_msr(msr->index))
2251 			return 1;
2252 
2253 		return kvm_set_msr_common(vcpu, msr);
2254 	}
2255 }
2256 
2257 static int tdx_get_capabilities(struct kvm_tdx_cmd *cmd)
2258 {
2259 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2260 	struct kvm_tdx_capabilities __user *user_caps;
2261 	struct kvm_tdx_capabilities *caps = NULL;
2262 	u32 nr_user_entries;
2263 	int ret = 0;
2264 
2265 	/* flags is reserved for future use */
2266 	if (cmd->flags)
2267 		return -EINVAL;
2268 
2269 	caps = kzalloc(sizeof(*caps) +
2270 		       sizeof(struct kvm_cpuid_entry2) * td_conf->num_cpuid_config,
2271 		       GFP_KERNEL);
2272 	if (!caps)
2273 		return -ENOMEM;
2274 
2275 	user_caps = u64_to_user_ptr(cmd->data);
2276 	if (get_user(nr_user_entries, &user_caps->cpuid.nent)) {
2277 		ret = -EFAULT;
2278 		goto out;
2279 	}
2280 
2281 	if (nr_user_entries < td_conf->num_cpuid_config) {
2282 		ret = -E2BIG;
2283 		goto out;
2284 	}
2285 
2286 	ret = init_kvm_tdx_caps(td_conf, caps);
2287 	if (ret)
2288 		goto out;
2289 
2290 	if (copy_to_user(user_caps, caps, sizeof(*caps))) {
2291 		ret = -EFAULT;
2292 		goto out;
2293 	}
2294 
2295 	if (copy_to_user(user_caps->cpuid.entries, caps->cpuid.entries,
2296 			 caps->cpuid.nent *
2297 			 sizeof(caps->cpuid.entries[0])))
2298 		ret = -EFAULT;
2299 
2300 out:
2301 	/* kfree() accepts NULL. */
2302 	kfree(caps);
2303 	return ret;
2304 }
2305 
2306 /*
2307  * KVM reports guest physical address in CPUID.0x800000008.EAX[23:16], which is
2308  * similar to TDX's GPAW. Use this field as the interface for userspace to
2309  * configure the GPAW and EPT level for TDs.
2310  *
2311  * Only values 48 and 52 are supported. Value 52 means GPAW-52 and EPT level
2312  * 5, Value 48 means GPAW-48 and EPT level 4. For value 48, GPAW-48 is always
2313  * supported. Value 52 is only supported when the platform supports 5 level
2314  * EPT.
2315  */
2316 static int setup_tdparams_eptp_controls(struct kvm_cpuid2 *cpuid,
2317 					struct td_params *td_params)
2318 {
2319 	const struct kvm_cpuid_entry2 *entry;
2320 	int guest_pa;
2321 
2322 	entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent, 0x80000008, 0);
2323 	if (!entry)
2324 		return -EINVAL;
2325 
2326 	guest_pa = tdx_get_guest_phys_addr_bits(entry->eax);
2327 
2328 	if (guest_pa != 48 && guest_pa != 52)
2329 		return -EINVAL;
2330 
2331 	if (guest_pa == 52 && !cpu_has_vmx_ept_5levels())
2332 		return -EINVAL;
2333 
2334 	td_params->eptp_controls = VMX_EPTP_MT_WB;
2335 	if (guest_pa == 52) {
2336 		td_params->eptp_controls |= VMX_EPTP_PWL_5;
2337 		td_params->config_flags |= TDX_CONFIG_FLAGS_MAX_GPAW;
2338 	} else {
2339 		td_params->eptp_controls |= VMX_EPTP_PWL_4;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 static int setup_tdparams_cpuids(struct kvm_cpuid2 *cpuid,
2346 				 struct td_params *td_params)
2347 {
2348 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2349 	const struct kvm_cpuid_entry2 *entry;
2350 	struct tdx_cpuid_value *value;
2351 	int i, copy_cnt = 0;
2352 
2353 	/*
2354 	 * td_params.cpuid_values: The number and the order of cpuid_value must
2355 	 * be same to the one of struct tdsysinfo.{num_cpuid_config, cpuid_configs}
2356 	 * It's assumed that td_params was zeroed.
2357 	 */
2358 	for (i = 0; i < td_conf->num_cpuid_config; i++) {
2359 		struct kvm_cpuid_entry2 tmp;
2360 
2361 		td_init_cpuid_entry2(&tmp, i);
2362 
2363 		entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent,
2364 					      tmp.function, tmp.index);
2365 		if (!entry)
2366 			continue;
2367 
2368 		if (tdx_unsupported_cpuid(entry))
2369 			return -EINVAL;
2370 
2371 		copy_cnt++;
2372 
2373 		value = &td_params->cpuid_values[i];
2374 		value->eax = entry->eax;
2375 		value->ebx = entry->ebx;
2376 		value->ecx = entry->ecx;
2377 		value->edx = entry->edx;
2378 
2379 		/*
2380 		 * TDX module does not accept nonzero bits 16..23 for the
2381 		 * CPUID[0x80000008].EAX, see setup_tdparams_eptp_controls().
2382 		 */
2383 		if (tmp.function == 0x80000008)
2384 			value->eax = tdx_set_guest_phys_addr_bits(value->eax, 0);
2385 	}
2386 
2387 	/*
2388 	 * Rely on the TDX module to reject invalid configuration, but it can't
2389 	 * check of leafs that don't have a proper slot in td_params->cpuid_values
2390 	 * to stick then. So fail if there were entries that didn't get copied to
2391 	 * td_params.
2392 	 */
2393 	if (copy_cnt != cpuid->nent)
2394 		return -EINVAL;
2395 
2396 	return 0;
2397 }
2398 
2399 static int setup_tdparams(struct kvm *kvm, struct td_params *td_params,
2400 			struct kvm_tdx_init_vm *init_vm)
2401 {
2402 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2403 	struct kvm_cpuid2 *cpuid = &init_vm->cpuid;
2404 	int ret;
2405 
2406 	if (kvm->created_vcpus)
2407 		return -EBUSY;
2408 
2409 	if (init_vm->attributes & ~tdx_get_supported_attrs(td_conf))
2410 		return -EINVAL;
2411 
2412 	if (init_vm->xfam & ~tdx_get_supported_xfam(td_conf))
2413 		return -EINVAL;
2414 
2415 	td_params->max_vcpus = kvm->max_vcpus;
2416 	td_params->attributes = init_vm->attributes | td_conf->attributes_fixed1;
2417 	td_params->xfam = init_vm->xfam | td_conf->xfam_fixed1;
2418 
2419 	td_params->config_flags = TDX_CONFIG_FLAGS_NO_RBP_MOD;
2420 	td_params->tsc_frequency = TDX_TSC_KHZ_TO_25MHZ(kvm->arch.default_tsc_khz);
2421 
2422 	ret = setup_tdparams_eptp_controls(cpuid, td_params);
2423 	if (ret)
2424 		return ret;
2425 
2426 	ret = setup_tdparams_cpuids(cpuid, td_params);
2427 	if (ret)
2428 		return ret;
2429 
2430 #define MEMCPY_SAME_SIZE(dst, src)				\
2431 	do {							\
2432 		BUILD_BUG_ON(sizeof(dst) != sizeof(src));	\
2433 		memcpy((dst), (src), sizeof(dst));		\
2434 	} while (0)
2435 
2436 	MEMCPY_SAME_SIZE(td_params->mrconfigid, init_vm->mrconfigid);
2437 	MEMCPY_SAME_SIZE(td_params->mrowner, init_vm->mrowner);
2438 	MEMCPY_SAME_SIZE(td_params->mrownerconfig, init_vm->mrownerconfig);
2439 
2440 	return 0;
2441 }
2442 
2443 static int __tdx_td_init(struct kvm *kvm, struct td_params *td_params,
2444 			 u64 *seamcall_err)
2445 {
2446 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2447 	cpumask_var_t packages;
2448 	struct page **tdcs_pages = NULL;
2449 	struct page *tdr_page;
2450 	int ret, i;
2451 	u64 err, rcx;
2452 
2453 	*seamcall_err = 0;
2454 	ret = tdx_guest_keyid_alloc();
2455 	if (ret < 0)
2456 		return ret;
2457 	kvm_tdx->hkid = ret;
2458 	kvm_tdx->misc_cg = get_current_misc_cg();
2459 	ret = misc_cg_try_charge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
2460 	if (ret)
2461 		goto free_hkid;
2462 
2463 	ret = -ENOMEM;
2464 
2465 	atomic_inc(&nr_configured_hkid);
2466 
2467 	tdr_page = alloc_page(GFP_KERNEL);
2468 	if (!tdr_page)
2469 		goto free_hkid;
2470 
2471 	kvm_tdx->td.tdcs_nr_pages = tdx_sysinfo->td_ctrl.tdcs_base_size / PAGE_SIZE;
2472 	/* TDVPS = TDVPR(4K page) + TDCX(multiple 4K pages), -1 for TDVPR. */
2473 	kvm_tdx->td.tdcx_nr_pages = tdx_sysinfo->td_ctrl.tdvps_base_size / PAGE_SIZE - 1;
2474 	tdcs_pages = kcalloc(kvm_tdx->td.tdcs_nr_pages, sizeof(*kvm_tdx->td.tdcs_pages),
2475 			     GFP_KERNEL | __GFP_ZERO);
2476 	if (!tdcs_pages)
2477 		goto free_tdr;
2478 
2479 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2480 		tdcs_pages[i] = alloc_page(GFP_KERNEL);
2481 		if (!tdcs_pages[i])
2482 			goto free_tdcs;
2483 	}
2484 
2485 	if (!zalloc_cpumask_var(&packages, GFP_KERNEL))
2486 		goto free_tdcs;
2487 
2488 	cpus_read_lock();
2489 
2490 	/*
2491 	 * Need at least one CPU of the package to be online in order to
2492 	 * program all packages for host key id.  Check it.
2493 	 */
2494 	for_each_present_cpu(i)
2495 		cpumask_set_cpu(topology_physical_package_id(i), packages);
2496 	for_each_online_cpu(i)
2497 		cpumask_clear_cpu(topology_physical_package_id(i), packages);
2498 	if (!cpumask_empty(packages)) {
2499 		ret = -EIO;
2500 		/*
2501 		 * Because it's hard for human operator to figure out the
2502 		 * reason, warn it.
2503 		 */
2504 #define MSG_ALLPKG	"All packages need to have online CPU to create TD. Online CPU and retry.\n"
2505 		pr_warn_ratelimited(MSG_ALLPKG);
2506 		goto free_packages;
2507 	}
2508 
2509 	/*
2510 	 * TDH.MNG.CREATE tries to grab the global TDX module and fails
2511 	 * with TDX_OPERAND_BUSY when it fails to grab.  Take the global
2512 	 * lock to prevent it from failure.
2513 	 */
2514 	mutex_lock(&tdx_lock);
2515 	kvm_tdx->td.tdr_page = tdr_page;
2516 	err = tdh_mng_create(&kvm_tdx->td, kvm_tdx->hkid);
2517 	mutex_unlock(&tdx_lock);
2518 
2519 	if (err == TDX_RND_NO_ENTROPY) {
2520 		ret = -EAGAIN;
2521 		goto free_packages;
2522 	}
2523 
2524 	if (WARN_ON_ONCE(err)) {
2525 		pr_tdx_error(TDH_MNG_CREATE, err);
2526 		ret = -EIO;
2527 		goto free_packages;
2528 	}
2529 
2530 	for_each_online_cpu(i) {
2531 		int pkg = topology_physical_package_id(i);
2532 
2533 		if (cpumask_test_and_set_cpu(pkg, packages))
2534 			continue;
2535 
2536 		/*
2537 		 * Program the memory controller in the package with an
2538 		 * encryption key associated to a TDX private host key id
2539 		 * assigned to this TDR.  Concurrent operations on same memory
2540 		 * controller results in TDX_OPERAND_BUSY. No locking needed
2541 		 * beyond the cpus_read_lock() above as it serializes against
2542 		 * hotplug and the first online CPU of the package is always
2543 		 * used. We never have two CPUs in the same socket trying to
2544 		 * program the key.
2545 		 */
2546 		ret = smp_call_on_cpu(i, tdx_do_tdh_mng_key_config,
2547 				      kvm_tdx, true);
2548 		if (ret)
2549 			break;
2550 	}
2551 	cpus_read_unlock();
2552 	free_cpumask_var(packages);
2553 	if (ret) {
2554 		i = 0;
2555 		goto teardown;
2556 	}
2557 
2558 	kvm_tdx->td.tdcs_pages = tdcs_pages;
2559 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2560 		err = tdh_mng_addcx(&kvm_tdx->td, tdcs_pages[i]);
2561 		if (err == TDX_RND_NO_ENTROPY) {
2562 			/* Here it's hard to allow userspace to retry. */
2563 			ret = -EAGAIN;
2564 			goto teardown;
2565 		}
2566 		if (WARN_ON_ONCE(err)) {
2567 			pr_tdx_error(TDH_MNG_ADDCX, err);
2568 			ret = -EIO;
2569 			goto teardown;
2570 		}
2571 	}
2572 
2573 	err = tdh_mng_init(&kvm_tdx->td, __pa(td_params), &rcx);
2574 	if ((err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_INVALID) {
2575 		/*
2576 		 * Because a user gives operands, don't warn.
2577 		 * Return a hint to the user because it's sometimes hard for the
2578 		 * user to figure out which operand is invalid.  SEAMCALL status
2579 		 * code includes which operand caused invalid operand error.
2580 		 */
2581 		*seamcall_err = err;
2582 		ret = -EINVAL;
2583 		goto teardown;
2584 	} else if (WARN_ON_ONCE(err)) {
2585 		pr_tdx_error_1(TDH_MNG_INIT, err, rcx);
2586 		ret = -EIO;
2587 		goto teardown;
2588 	}
2589 
2590 	return 0;
2591 
2592 	/*
2593 	 * The sequence for freeing resources from a partially initialized TD
2594 	 * varies based on where in the initialization flow failure occurred.
2595 	 * Simply use the full teardown and destroy, which naturally play nice
2596 	 * with partial initialization.
2597 	 */
2598 teardown:
2599 	/* Only free pages not yet added, so start at 'i' */
2600 	for (; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2601 		if (tdcs_pages[i]) {
2602 			__free_page(tdcs_pages[i]);
2603 			tdcs_pages[i] = NULL;
2604 		}
2605 	}
2606 	if (!kvm_tdx->td.tdcs_pages)
2607 		kfree(tdcs_pages);
2608 
2609 	tdx_mmu_release_hkid(kvm);
2610 	tdx_reclaim_td_control_pages(kvm);
2611 
2612 	return ret;
2613 
2614 free_packages:
2615 	cpus_read_unlock();
2616 	free_cpumask_var(packages);
2617 
2618 free_tdcs:
2619 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2620 		if (tdcs_pages[i])
2621 			__free_page(tdcs_pages[i]);
2622 	}
2623 	kfree(tdcs_pages);
2624 	kvm_tdx->td.tdcs_pages = NULL;
2625 
2626 free_tdr:
2627 	if (tdr_page)
2628 		__free_page(tdr_page);
2629 	kvm_tdx->td.tdr_page = 0;
2630 
2631 free_hkid:
2632 	tdx_hkid_free(kvm_tdx);
2633 
2634 	return ret;
2635 }
2636 
2637 static u64 tdx_td_metadata_field_read(struct kvm_tdx *tdx, u64 field_id,
2638 				      u64 *data)
2639 {
2640 	u64 err;
2641 
2642 	err = tdh_mng_rd(&tdx->td, field_id, data);
2643 
2644 	return err;
2645 }
2646 
2647 #define TDX_MD_UNREADABLE_LEAF_MASK	GENMASK(30, 7)
2648 #define TDX_MD_UNREADABLE_SUBLEAF_MASK	GENMASK(31, 7)
2649 
2650 static int tdx_read_cpuid(struct kvm_vcpu *vcpu, u32 leaf, u32 sub_leaf,
2651 			  bool sub_leaf_set, int *entry_index,
2652 			  struct kvm_cpuid_entry2 *out)
2653 {
2654 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
2655 	u64 field_id = TD_MD_FIELD_ID_CPUID_VALUES;
2656 	u64 ebx_eax, edx_ecx;
2657 	u64 err = 0;
2658 
2659 	if (sub_leaf > 0b1111111)
2660 		return -EINVAL;
2661 
2662 	if (*entry_index >= KVM_MAX_CPUID_ENTRIES)
2663 		return -EINVAL;
2664 
2665 	if (leaf & TDX_MD_UNREADABLE_LEAF_MASK ||
2666 	    sub_leaf & TDX_MD_UNREADABLE_SUBLEAF_MASK)
2667 		return -EINVAL;
2668 
2669 	/*
2670 	 * bit 23:17, REVSERVED: reserved, must be 0;
2671 	 * bit 16,    LEAF_31: leaf number bit 31;
2672 	 * bit 15:9,  LEAF_6_0: leaf number bits 6:0, leaf bits 30:7 are
2673 	 *                      implicitly 0;
2674 	 * bit 8,     SUBLEAF_NA: sub-leaf not applicable flag;
2675 	 * bit 7:1,   SUBLEAF_6_0: sub-leaf number bits 6:0. If SUBLEAF_NA is 1,
2676 	 *                         the SUBLEAF_6_0 is all-1.
2677 	 *                         sub-leaf bits 31:7 are implicitly 0;
2678 	 * bit 0,     ELEMENT_I: Element index within field;
2679 	 */
2680 	field_id |= ((leaf & 0x80000000) ? 1 : 0) << 16;
2681 	field_id |= (leaf & 0x7f) << 9;
2682 	if (sub_leaf_set)
2683 		field_id |= (sub_leaf & 0x7f) << 1;
2684 	else
2685 		field_id |= 0x1fe;
2686 
2687 	err = tdx_td_metadata_field_read(kvm_tdx, field_id, &ebx_eax);
2688 	if (err) //TODO check for specific errors
2689 		goto err_out;
2690 
2691 	out->eax = (u32) ebx_eax;
2692 	out->ebx = (u32) (ebx_eax >> 32);
2693 
2694 	field_id++;
2695 	err = tdx_td_metadata_field_read(kvm_tdx, field_id, &edx_ecx);
2696 	/*
2697 	 * It's weird that reading edx_ecx fails while reading ebx_eax
2698 	 * succeeded.
2699 	 */
2700 	if (WARN_ON_ONCE(err))
2701 		goto err_out;
2702 
2703 	out->ecx = (u32) edx_ecx;
2704 	out->edx = (u32) (edx_ecx >> 32);
2705 
2706 	out->function = leaf;
2707 	out->index = sub_leaf;
2708 	out->flags |= sub_leaf_set ? KVM_CPUID_FLAG_SIGNIFCANT_INDEX : 0;
2709 
2710 	/*
2711 	 * Work around missing support on old TDX modules, fetch
2712 	 * guest maxpa from gfn_direct_bits.
2713 	 */
2714 	if (leaf == 0x80000008) {
2715 		gpa_t gpa_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
2716 		unsigned int g_maxpa = __ffs(gpa_bits) + 1;
2717 
2718 		out->eax = tdx_set_guest_phys_addr_bits(out->eax, g_maxpa);
2719 	}
2720 
2721 	(*entry_index)++;
2722 
2723 	return 0;
2724 
2725 err_out:
2726 	out->eax = 0;
2727 	out->ebx = 0;
2728 	out->ecx = 0;
2729 	out->edx = 0;
2730 
2731 	return -EIO;
2732 }
2733 
2734 static int tdx_td_init(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
2735 {
2736 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2737 	struct kvm_tdx_init_vm *init_vm;
2738 	struct td_params *td_params = NULL;
2739 	int ret;
2740 
2741 	BUILD_BUG_ON(sizeof(*init_vm) != 256 + sizeof_field(struct kvm_tdx_init_vm, cpuid));
2742 	BUILD_BUG_ON(sizeof(struct td_params) != 1024);
2743 
2744 	if (kvm_tdx->state != TD_STATE_UNINITIALIZED)
2745 		return -EINVAL;
2746 
2747 	if (cmd->flags)
2748 		return -EINVAL;
2749 
2750 	init_vm = kmalloc(sizeof(*init_vm) +
2751 			  sizeof(init_vm->cpuid.entries[0]) * KVM_MAX_CPUID_ENTRIES,
2752 			  GFP_KERNEL);
2753 	if (!init_vm)
2754 		return -ENOMEM;
2755 
2756 	if (copy_from_user(init_vm, u64_to_user_ptr(cmd->data), sizeof(*init_vm))) {
2757 		ret = -EFAULT;
2758 		goto out;
2759 	}
2760 
2761 	if (init_vm->cpuid.nent > KVM_MAX_CPUID_ENTRIES) {
2762 		ret = -E2BIG;
2763 		goto out;
2764 	}
2765 
2766 	if (copy_from_user(init_vm->cpuid.entries,
2767 			   u64_to_user_ptr(cmd->data) + sizeof(*init_vm),
2768 			   flex_array_size(init_vm, cpuid.entries, init_vm->cpuid.nent))) {
2769 		ret = -EFAULT;
2770 		goto out;
2771 	}
2772 
2773 	if (memchr_inv(init_vm->reserved, 0, sizeof(init_vm->reserved))) {
2774 		ret = -EINVAL;
2775 		goto out;
2776 	}
2777 
2778 	if (init_vm->cpuid.padding) {
2779 		ret = -EINVAL;
2780 		goto out;
2781 	}
2782 
2783 	td_params = kzalloc(sizeof(struct td_params), GFP_KERNEL);
2784 	if (!td_params) {
2785 		ret = -ENOMEM;
2786 		goto out;
2787 	}
2788 
2789 	ret = setup_tdparams(kvm, td_params, init_vm);
2790 	if (ret)
2791 		goto out;
2792 
2793 	ret = __tdx_td_init(kvm, td_params, &cmd->hw_error);
2794 	if (ret)
2795 		goto out;
2796 
2797 	kvm_tdx->tsc_offset = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_OFFSET);
2798 	kvm_tdx->tsc_multiplier = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_MULTIPLIER);
2799 	kvm_tdx->attributes = td_params->attributes;
2800 	kvm_tdx->xfam = td_params->xfam;
2801 
2802 	if (td_params->config_flags & TDX_CONFIG_FLAGS_MAX_GPAW)
2803 		kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_5;
2804 	else
2805 		kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_4;
2806 
2807 	kvm_tdx->state = TD_STATE_INITIALIZED;
2808 out:
2809 	/* kfree() accepts NULL. */
2810 	kfree(init_vm);
2811 	kfree(td_params);
2812 
2813 	return ret;
2814 }
2815 
2816 void tdx_flush_tlb_current(struct kvm_vcpu *vcpu)
2817 {
2818 	/*
2819 	 * flush_tlb_current() is invoked when the first time for the vcpu to
2820 	 * run or when root of shared EPT is invalidated.
2821 	 * KVM only needs to flush shared EPT because the TDX module handles TLB
2822 	 * invalidation for private EPT in tdh_vp_enter();
2823 	 *
2824 	 * A single context invalidation for shared EPT can be performed here.
2825 	 * However, this single context invalidation requires the private EPTP
2826 	 * rather than the shared EPTP to flush shared EPT, as shared EPT uses
2827 	 * private EPTP as its ASID for TLB invalidation.
2828 	 *
2829 	 * To avoid reading back private EPTP, perform a global invalidation for
2830 	 * shared EPT instead to keep this function simple.
2831 	 */
2832 	ept_sync_global();
2833 }
2834 
2835 void tdx_flush_tlb_all(struct kvm_vcpu *vcpu)
2836 {
2837 	/*
2838 	 * TDX has called tdx_track() in tdx_sept_remove_private_spte() to
2839 	 * ensure that private EPT will be flushed on the next TD enter. No need
2840 	 * to call tdx_track() here again even when this callback is a result of
2841 	 * zapping private EPT.
2842 	 *
2843 	 * Due to the lack of the context to determine which EPT has been
2844 	 * affected by zapping, invoke invept() directly here for both shared
2845 	 * EPT and private EPT for simplicity, though it's not necessary for
2846 	 * private EPT.
2847 	 */
2848 	ept_sync_global();
2849 }
2850 
2851 static int tdx_td_finalize(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
2852 {
2853 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2854 
2855 	guard(mutex)(&kvm->slots_lock);
2856 
2857 	if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
2858 		return -EINVAL;
2859 	/*
2860 	 * Pages are pending for KVM_TDX_INIT_MEM_REGION to issue
2861 	 * TDH.MEM.PAGE.ADD().
2862 	 */
2863 	if (atomic64_read(&kvm_tdx->nr_premapped))
2864 		return -EINVAL;
2865 
2866 	cmd->hw_error = tdh_mr_finalize(&kvm_tdx->td);
2867 	if (tdx_operand_busy(cmd->hw_error))
2868 		return -EBUSY;
2869 	if (KVM_BUG_ON(cmd->hw_error, kvm)) {
2870 		pr_tdx_error(TDH_MR_FINALIZE, cmd->hw_error);
2871 		return -EIO;
2872 	}
2873 
2874 	kvm_tdx->state = TD_STATE_RUNNABLE;
2875 	/* TD_STATE_RUNNABLE must be set before 'pre_fault_allowed' */
2876 	smp_wmb();
2877 	kvm->arch.pre_fault_allowed = true;
2878 	return 0;
2879 }
2880 
2881 int tdx_vm_ioctl(struct kvm *kvm, void __user *argp)
2882 {
2883 	struct kvm_tdx_cmd tdx_cmd;
2884 	int r;
2885 
2886 	if (copy_from_user(&tdx_cmd, argp, sizeof(struct kvm_tdx_cmd)))
2887 		return -EFAULT;
2888 
2889 	/*
2890 	 * Userspace should never set hw_error. It is used to fill
2891 	 * hardware-defined error by the kernel.
2892 	 */
2893 	if (tdx_cmd.hw_error)
2894 		return -EINVAL;
2895 
2896 	mutex_lock(&kvm->lock);
2897 
2898 	switch (tdx_cmd.id) {
2899 	case KVM_TDX_CAPABILITIES:
2900 		r = tdx_get_capabilities(&tdx_cmd);
2901 		break;
2902 	case KVM_TDX_INIT_VM:
2903 		r = tdx_td_init(kvm, &tdx_cmd);
2904 		break;
2905 	case KVM_TDX_FINALIZE_VM:
2906 		r = tdx_td_finalize(kvm, &tdx_cmd);
2907 		break;
2908 	default:
2909 		r = -EINVAL;
2910 		goto out;
2911 	}
2912 
2913 	if (copy_to_user(argp, &tdx_cmd, sizeof(struct kvm_tdx_cmd)))
2914 		r = -EFAULT;
2915 
2916 out:
2917 	mutex_unlock(&kvm->lock);
2918 	return r;
2919 }
2920 
2921 /* VMM can pass one 64bit auxiliary data to vcpu via RCX for guest BIOS. */
2922 static int tdx_td_vcpu_init(struct kvm_vcpu *vcpu, u64 vcpu_rcx)
2923 {
2924 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
2925 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2926 	struct page *page;
2927 	int ret, i;
2928 	u64 err;
2929 
2930 	page = alloc_page(GFP_KERNEL);
2931 	if (!page)
2932 		return -ENOMEM;
2933 	tdx->vp.tdvpr_page = page;
2934 
2935 	/*
2936 	 * page_to_phys() does not work in 'noinstr' code, like guest
2937 	 * entry via tdh_vp_enter(). Precalculate and store it instead
2938 	 * of doing it at runtime later.
2939 	 */
2940 	tdx->vp.tdvpr_pa = page_to_phys(tdx->vp.tdvpr_page);
2941 
2942 	tdx->vp.tdcx_pages = kcalloc(kvm_tdx->td.tdcx_nr_pages, sizeof(*tdx->vp.tdcx_pages),
2943 			       	     GFP_KERNEL);
2944 	if (!tdx->vp.tdcx_pages) {
2945 		ret = -ENOMEM;
2946 		goto free_tdvpr;
2947 	}
2948 
2949 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2950 		page = alloc_page(GFP_KERNEL);
2951 		if (!page) {
2952 			ret = -ENOMEM;
2953 			goto free_tdcx;
2954 		}
2955 		tdx->vp.tdcx_pages[i] = page;
2956 	}
2957 
2958 	err = tdh_vp_create(&kvm_tdx->td, &tdx->vp);
2959 	if (KVM_BUG_ON(err, vcpu->kvm)) {
2960 		ret = -EIO;
2961 		pr_tdx_error(TDH_VP_CREATE, err);
2962 		goto free_tdcx;
2963 	}
2964 
2965 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2966 		err = tdh_vp_addcx(&tdx->vp, tdx->vp.tdcx_pages[i]);
2967 		if (KVM_BUG_ON(err, vcpu->kvm)) {
2968 			pr_tdx_error(TDH_VP_ADDCX, err);
2969 			/*
2970 			 * Pages already added are reclaimed by the vcpu_free
2971 			 * method, but the rest are freed here.
2972 			 */
2973 			for (; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2974 				__free_page(tdx->vp.tdcx_pages[i]);
2975 				tdx->vp.tdcx_pages[i] = NULL;
2976 			}
2977 			return -EIO;
2978 		}
2979 	}
2980 
2981 	err = tdh_vp_init(&tdx->vp, vcpu_rcx, vcpu->vcpu_id);
2982 	if (KVM_BUG_ON(err, vcpu->kvm)) {
2983 		pr_tdx_error(TDH_VP_INIT, err);
2984 		return -EIO;
2985 	}
2986 
2987 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2988 
2989 	return 0;
2990 
2991 free_tdcx:
2992 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2993 		if (tdx->vp.tdcx_pages[i])
2994 			__free_page(tdx->vp.tdcx_pages[i]);
2995 		tdx->vp.tdcx_pages[i] = NULL;
2996 	}
2997 	kfree(tdx->vp.tdcx_pages);
2998 	tdx->vp.tdcx_pages = NULL;
2999 
3000 free_tdvpr:
3001 	if (tdx->vp.tdvpr_page)
3002 		__free_page(tdx->vp.tdvpr_page);
3003 	tdx->vp.tdvpr_page = 0;
3004 	tdx->vp.tdvpr_pa = 0;
3005 
3006 	return ret;
3007 }
3008 
3009 /* Sometimes reads multipple subleafs. Return how many enties were written. */
3010 static int tdx_vcpu_get_cpuid_leaf(struct kvm_vcpu *vcpu, u32 leaf, int *entry_index,
3011 				   struct kvm_cpuid_entry2 *output_e)
3012 {
3013 	int sub_leaf = 0;
3014 	int ret;
3015 
3016 	/* First try without a subleaf */
3017 	ret = tdx_read_cpuid(vcpu, leaf, 0, false, entry_index, output_e);
3018 
3019 	/* If success, or invalid leaf, just give up */
3020 	if (ret != -EIO)
3021 		return ret;
3022 
3023 	/*
3024 	 * If the try without a subleaf failed, try reading subleafs until
3025 	 * failure. The TDX module only supports 6 bits of subleaf index.
3026 	 */
3027 	while (1) {
3028 		/* Keep reading subleafs until there is a failure. */
3029 		if (tdx_read_cpuid(vcpu, leaf, sub_leaf, true, entry_index, output_e))
3030 			return !sub_leaf;
3031 
3032 		sub_leaf++;
3033 		output_e++;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static int tdx_vcpu_get_cpuid(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3040 {
3041 	struct kvm_cpuid2 __user *output, *td_cpuid;
3042 	int r = 0, i = 0, leaf;
3043 	u32 level;
3044 
3045 	output = u64_to_user_ptr(cmd->data);
3046 	td_cpuid = kzalloc(sizeof(*td_cpuid) +
3047 			sizeof(output->entries[0]) * KVM_MAX_CPUID_ENTRIES,
3048 			GFP_KERNEL);
3049 	if (!td_cpuid)
3050 		return -ENOMEM;
3051 
3052 	if (copy_from_user(td_cpuid, output, sizeof(*output))) {
3053 		r = -EFAULT;
3054 		goto out;
3055 	}
3056 
3057 	/* Read max CPUID for normal range */
3058 	if (tdx_vcpu_get_cpuid_leaf(vcpu, 0, &i, &td_cpuid->entries[i])) {
3059 		r = -EIO;
3060 		goto out;
3061 	}
3062 	level = td_cpuid->entries[0].eax;
3063 
3064 	for (leaf = 1; leaf <= level; leaf++)
3065 		tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
3066 
3067 	/* Read max CPUID for extended range */
3068 	if (tdx_vcpu_get_cpuid_leaf(vcpu, 0x80000000, &i, &td_cpuid->entries[i])) {
3069 		r = -EIO;
3070 		goto out;
3071 	}
3072 	level = td_cpuid->entries[i - 1].eax;
3073 
3074 	for (leaf = 0x80000001; leaf <= level; leaf++)
3075 		tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
3076 
3077 	if (td_cpuid->nent < i)
3078 		r = -E2BIG;
3079 	td_cpuid->nent = i;
3080 
3081 	if (copy_to_user(output, td_cpuid, sizeof(*output))) {
3082 		r = -EFAULT;
3083 		goto out;
3084 	}
3085 
3086 	if (r == -E2BIG)
3087 		goto out;
3088 
3089 	if (copy_to_user(output->entries, td_cpuid->entries,
3090 			 td_cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
3091 		r = -EFAULT;
3092 
3093 out:
3094 	kfree(td_cpuid);
3095 
3096 	return r;
3097 }
3098 
3099 static int tdx_vcpu_init(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3100 {
3101 	u64 apic_base;
3102 	struct vcpu_tdx *tdx = to_tdx(vcpu);
3103 	int ret;
3104 
3105 	if (cmd->flags)
3106 		return -EINVAL;
3107 
3108 	if (tdx->state != VCPU_TD_STATE_UNINITIALIZED)
3109 		return -EINVAL;
3110 
3111 	/*
3112 	 * TDX requires X2APIC, userspace is responsible for configuring guest
3113 	 * CPUID accordingly.
3114 	 */
3115 	apic_base = APIC_DEFAULT_PHYS_BASE | LAPIC_MODE_X2APIC |
3116 		(kvm_vcpu_is_reset_bsp(vcpu) ? MSR_IA32_APICBASE_BSP : 0);
3117 	if (kvm_apic_set_base(vcpu, apic_base, true))
3118 		return -EINVAL;
3119 
3120 	ret = tdx_td_vcpu_init(vcpu, (u64)cmd->data);
3121 	if (ret)
3122 		return ret;
3123 
3124 	td_vmcs_write16(tdx, POSTED_INTR_NV, POSTED_INTR_VECTOR);
3125 	td_vmcs_write64(tdx, POSTED_INTR_DESC_ADDR, __pa(&tdx->vt.pi_desc));
3126 	td_vmcs_setbit32(tdx, PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_POSTED_INTR);
3127 
3128 	tdx->state = VCPU_TD_STATE_INITIALIZED;
3129 
3130 	return 0;
3131 }
3132 
3133 void tdx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
3134 {
3135 	/*
3136 	 * Yell on INIT, as TDX doesn't support INIT, i.e. KVM should drop all
3137 	 * INIT events.
3138 	 *
3139 	 * Defer initializing vCPU for RESET state until KVM_TDX_INIT_VCPU, as
3140 	 * userspace needs to define the vCPU model before KVM can initialize
3141 	 * vCPU state, e.g. to enable x2APIC.
3142 	 */
3143 	WARN_ON_ONCE(init_event);
3144 }
3145 
3146 struct tdx_gmem_post_populate_arg {
3147 	struct kvm_vcpu *vcpu;
3148 	__u32 flags;
3149 };
3150 
3151 static int tdx_gmem_post_populate(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
3152 				  void __user *src, int order, void *_arg)
3153 {
3154 	u64 error_code = PFERR_GUEST_FINAL_MASK | PFERR_PRIVATE_ACCESS;
3155 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
3156 	struct tdx_gmem_post_populate_arg *arg = _arg;
3157 	struct kvm_vcpu *vcpu = arg->vcpu;
3158 	gpa_t gpa = gfn_to_gpa(gfn);
3159 	u8 level = PG_LEVEL_4K;
3160 	struct page *src_page;
3161 	int ret, i;
3162 	u64 err, entry, level_state;
3163 
3164 	/*
3165 	 * Get the source page if it has been faulted in. Return failure if the
3166 	 * source page has been swapped out or unmapped in primary memory.
3167 	 */
3168 	ret = get_user_pages_fast((unsigned long)src, 1, 0, &src_page);
3169 	if (ret < 0)
3170 		return ret;
3171 	if (ret != 1)
3172 		return -ENOMEM;
3173 
3174 	ret = kvm_tdp_map_page(vcpu, gpa, error_code, &level);
3175 	if (ret < 0)
3176 		goto out;
3177 
3178 	/*
3179 	 * The private mem cannot be zapped after kvm_tdp_map_page()
3180 	 * because all paths are covered by slots_lock and the
3181 	 * filemap invalidate lock.  Check that they are indeed enough.
3182 	 */
3183 	if (IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
3184 		scoped_guard(read_lock, &kvm->mmu_lock) {
3185 			if (KVM_BUG_ON(!kvm_tdp_mmu_gpa_is_mapped(vcpu, gpa), kvm)) {
3186 				ret = -EIO;
3187 				goto out;
3188 			}
3189 		}
3190 	}
3191 
3192 	ret = 0;
3193 	err = tdh_mem_page_add(&kvm_tdx->td, gpa, pfn_to_page(pfn),
3194 			       src_page, &entry, &level_state);
3195 	if (err) {
3196 		ret = unlikely(tdx_operand_busy(err)) ? -EBUSY : -EIO;
3197 		goto out;
3198 	}
3199 
3200 	if (!KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm))
3201 		atomic64_dec(&kvm_tdx->nr_premapped);
3202 
3203 	if (arg->flags & KVM_TDX_MEASURE_MEMORY_REGION) {
3204 		for (i = 0; i < PAGE_SIZE; i += TDX_EXTENDMR_CHUNKSIZE) {
3205 			err = tdh_mr_extend(&kvm_tdx->td, gpa + i, &entry,
3206 					    &level_state);
3207 			if (err) {
3208 				ret = -EIO;
3209 				break;
3210 			}
3211 		}
3212 	}
3213 
3214 out:
3215 	put_page(src_page);
3216 	return ret;
3217 }
3218 
3219 static int tdx_vcpu_init_mem_region(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3220 {
3221 	struct vcpu_tdx *tdx = to_tdx(vcpu);
3222 	struct kvm *kvm = vcpu->kvm;
3223 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
3224 	struct kvm_tdx_init_mem_region region;
3225 	struct tdx_gmem_post_populate_arg arg;
3226 	long gmem_ret;
3227 	int ret;
3228 
3229 	if (tdx->state != VCPU_TD_STATE_INITIALIZED)
3230 		return -EINVAL;
3231 
3232 	guard(mutex)(&kvm->slots_lock);
3233 
3234 	/* Once TD is finalized, the initial guest memory is fixed. */
3235 	if (kvm_tdx->state == TD_STATE_RUNNABLE)
3236 		return -EINVAL;
3237 
3238 	if (cmd->flags & ~KVM_TDX_MEASURE_MEMORY_REGION)
3239 		return -EINVAL;
3240 
3241 	if (copy_from_user(&region, u64_to_user_ptr(cmd->data), sizeof(region)))
3242 		return -EFAULT;
3243 
3244 	if (!PAGE_ALIGNED(region.source_addr) || !PAGE_ALIGNED(region.gpa) ||
3245 	    !region.nr_pages ||
3246 	    region.gpa + (region.nr_pages << PAGE_SHIFT) <= region.gpa ||
3247 	    !vt_is_tdx_private_gpa(kvm, region.gpa) ||
3248 	    !vt_is_tdx_private_gpa(kvm, region.gpa + (region.nr_pages << PAGE_SHIFT) - 1))
3249 		return -EINVAL;
3250 
3251 	kvm_mmu_reload(vcpu);
3252 	ret = 0;
3253 	while (region.nr_pages) {
3254 		if (signal_pending(current)) {
3255 			ret = -EINTR;
3256 			break;
3257 		}
3258 
3259 		arg = (struct tdx_gmem_post_populate_arg) {
3260 			.vcpu = vcpu,
3261 			.flags = cmd->flags,
3262 		};
3263 		gmem_ret = kvm_gmem_populate(kvm, gpa_to_gfn(region.gpa),
3264 					     u64_to_user_ptr(region.source_addr),
3265 					     1, tdx_gmem_post_populate, &arg);
3266 		if (gmem_ret < 0) {
3267 			ret = gmem_ret;
3268 			break;
3269 		}
3270 
3271 		if (gmem_ret != 1) {
3272 			ret = -EIO;
3273 			break;
3274 		}
3275 
3276 		region.source_addr += PAGE_SIZE;
3277 		region.gpa += PAGE_SIZE;
3278 		region.nr_pages--;
3279 
3280 		cond_resched();
3281 	}
3282 
3283 	if (copy_to_user(u64_to_user_ptr(cmd->data), &region, sizeof(region)))
3284 		ret = -EFAULT;
3285 	return ret;
3286 }
3287 
3288 int tdx_vcpu_ioctl(struct kvm_vcpu *vcpu, void __user *argp)
3289 {
3290 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
3291 	struct kvm_tdx_cmd cmd;
3292 	int ret;
3293 
3294 	if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
3295 		return -EINVAL;
3296 
3297 	if (copy_from_user(&cmd, argp, sizeof(cmd)))
3298 		return -EFAULT;
3299 
3300 	if (cmd.hw_error)
3301 		return -EINVAL;
3302 
3303 	switch (cmd.id) {
3304 	case KVM_TDX_INIT_VCPU:
3305 		ret = tdx_vcpu_init(vcpu, &cmd);
3306 		break;
3307 	case KVM_TDX_INIT_MEM_REGION:
3308 		ret = tdx_vcpu_init_mem_region(vcpu, &cmd);
3309 		break;
3310 	case KVM_TDX_GET_CPUID:
3311 		ret = tdx_vcpu_get_cpuid(vcpu, &cmd);
3312 		break;
3313 	default:
3314 		ret = -EINVAL;
3315 		break;
3316 	}
3317 
3318 	return ret;
3319 }
3320 
3321 int tdx_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private)
3322 {
3323 	if (!is_private)
3324 		return 0;
3325 
3326 	return PG_LEVEL_4K;
3327 }
3328 
3329 static int tdx_online_cpu(unsigned int cpu)
3330 {
3331 	unsigned long flags;
3332 	int r;
3333 
3334 	/* Sanity check CPU is already in post-VMXON */
3335 	WARN_ON_ONCE(!(cr4_read_shadow() & X86_CR4_VMXE));
3336 
3337 	local_irq_save(flags);
3338 	r = tdx_cpu_enable();
3339 	local_irq_restore(flags);
3340 
3341 	return r;
3342 }
3343 
3344 static int tdx_offline_cpu(unsigned int cpu)
3345 {
3346 	int i;
3347 
3348 	/* No TD is running.  Allow any cpu to be offline. */
3349 	if (!atomic_read(&nr_configured_hkid))
3350 		return 0;
3351 
3352 	/*
3353 	 * In order to reclaim TDX HKID, (i.e. when deleting guest TD), need to
3354 	 * call TDH.PHYMEM.PAGE.WBINVD on all packages to program all memory
3355 	 * controller with pconfig.  If we have active TDX HKID, refuse to
3356 	 * offline the last online cpu.
3357 	 */
3358 	for_each_online_cpu(i) {
3359 		/*
3360 		 * Found another online cpu on the same package.
3361 		 * Allow to offline.
3362 		 */
3363 		if (i != cpu && topology_physical_package_id(i) ==
3364 				topology_physical_package_id(cpu))
3365 			return 0;
3366 	}
3367 
3368 	/*
3369 	 * This is the last cpu of this package.  Don't offline it.
3370 	 *
3371 	 * Because it's hard for human operator to understand the
3372 	 * reason, warn it.
3373 	 */
3374 #define MSG_ALLPKG_ONLINE \
3375 	"TDX requires all packages to have an online CPU. Delete all TDs in order to offline all CPUs of a package.\n"
3376 	pr_warn_ratelimited(MSG_ALLPKG_ONLINE);
3377 	return -EBUSY;
3378 }
3379 
3380 static void __do_tdx_cleanup(void)
3381 {
3382 	/*
3383 	 * Once TDX module is initialized, it cannot be disabled and
3384 	 * re-initialized again w/o runtime update (which isn't
3385 	 * supported by kernel).  Only need to remove the cpuhp here.
3386 	 * The TDX host core code tracks TDX status and can handle
3387 	 * 'multiple enabling' scenario.
3388 	 */
3389 	WARN_ON_ONCE(!tdx_cpuhp_state);
3390 	cpuhp_remove_state_nocalls_cpuslocked(tdx_cpuhp_state);
3391 	tdx_cpuhp_state = 0;
3392 }
3393 
3394 static void __tdx_cleanup(void)
3395 {
3396 	cpus_read_lock();
3397 	__do_tdx_cleanup();
3398 	cpus_read_unlock();
3399 }
3400 
3401 static int __init __do_tdx_bringup(void)
3402 {
3403 	int r;
3404 
3405 	/*
3406 	 * TDX-specific cpuhp callback to call tdx_cpu_enable() on all
3407 	 * online CPUs before calling tdx_enable(), and on any new
3408 	 * going-online CPU to make sure it is ready for TDX guest.
3409 	 */
3410 	r = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
3411 					 "kvm/cpu/tdx:online",
3412 					 tdx_online_cpu, tdx_offline_cpu);
3413 	if (r < 0)
3414 		return r;
3415 
3416 	tdx_cpuhp_state = r;
3417 
3418 	r = tdx_enable();
3419 	if (r)
3420 		__do_tdx_cleanup();
3421 
3422 	return r;
3423 }
3424 
3425 static int __init __tdx_bringup(void)
3426 {
3427 	const struct tdx_sys_info_td_conf *td_conf;
3428 	int r, i;
3429 
3430 	for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++) {
3431 		/*
3432 		 * Check if MSRs (tdx_uret_msrs) can be saved/restored
3433 		 * before returning to user space.
3434 		 *
3435 		 * this_cpu_ptr(user_return_msrs)->registered isn't checked
3436 		 * because the registration is done at vcpu runtime by
3437 		 * tdx_user_return_msr_update_cache().
3438 		 */
3439 		tdx_uret_msrs[i].slot = kvm_find_user_return_msr(tdx_uret_msrs[i].msr);
3440 		if (tdx_uret_msrs[i].slot == -1) {
3441 			/* If any MSR isn't supported, it is a KVM bug */
3442 			pr_err("MSR %x isn't included by kvm_find_user_return_msr\n",
3443 				tdx_uret_msrs[i].msr);
3444 			return -EIO;
3445 		}
3446 	}
3447 
3448 	/*
3449 	 * Enabling TDX requires enabling hardware virtualization first,
3450 	 * as making SEAMCALLs requires CPU being in post-VMXON state.
3451 	 */
3452 	r = kvm_enable_virtualization();
3453 	if (r)
3454 		return r;
3455 
3456 	cpus_read_lock();
3457 	r = __do_tdx_bringup();
3458 	cpus_read_unlock();
3459 
3460 	if (r)
3461 		goto tdx_bringup_err;
3462 
3463 	/* Get TDX global information for later use */
3464 	tdx_sysinfo = tdx_get_sysinfo();
3465 	if (WARN_ON_ONCE(!tdx_sysinfo)) {
3466 		r = -EINVAL;
3467 		goto get_sysinfo_err;
3468 	}
3469 
3470 	/* Check TDX module and KVM capabilities */
3471 	if (!tdx_get_supported_attrs(&tdx_sysinfo->td_conf) ||
3472 	    !tdx_get_supported_xfam(&tdx_sysinfo->td_conf))
3473 		goto get_sysinfo_err;
3474 
3475 	if (!(tdx_sysinfo->features.tdx_features0 & MD_FIELD_ID_FEATURES0_TOPOLOGY_ENUM))
3476 		goto get_sysinfo_err;
3477 
3478 	/*
3479 	 * TDX has its own limit of maximum vCPUs it can support for all
3480 	 * TDX guests in addition to KVM_MAX_VCPUS.  Userspace needs to
3481 	 * query TDX guest's maximum vCPUs by checking KVM_CAP_MAX_VCPU
3482 	 * extension on per-VM basis.
3483 	 *
3484 	 * TDX module reports such limit via the MAX_VCPU_PER_TD global
3485 	 * metadata.  Different modules may report different values.
3486 	 * Some old module may also not support this metadata (in which
3487 	 * case this limit is U16_MAX).
3488 	 *
3489 	 * In practice, the reported value reflects the maximum logical
3490 	 * CPUs that ALL the platforms that the module supports can
3491 	 * possibly have.
3492 	 *
3493 	 * Simply forwarding the MAX_VCPU_PER_TD to userspace could
3494 	 * result in an unpredictable ABI.  KVM instead always advertise
3495 	 * the number of logical CPUs the platform has as the maximum
3496 	 * vCPUs for TDX guests.
3497 	 *
3498 	 * Make sure MAX_VCPU_PER_TD reported by TDX module is not
3499 	 * smaller than the number of logical CPUs, otherwise KVM will
3500 	 * report an unsupported value to userspace.
3501 	 *
3502 	 * Note, a platform with TDX enabled in the BIOS cannot support
3503 	 * physical CPU hotplug, and TDX requires the BIOS has marked
3504 	 * all logical CPUs in MADT table as enabled.  Just use
3505 	 * num_present_cpus() for the number of logical CPUs.
3506 	 */
3507 	td_conf = &tdx_sysinfo->td_conf;
3508 	if (td_conf->max_vcpus_per_td < num_present_cpus()) {
3509 		pr_err("Disable TDX: MAX_VCPU_PER_TD (%u) smaller than number of logical CPUs (%u).\n",
3510 				td_conf->max_vcpus_per_td, num_present_cpus());
3511 		r = -EINVAL;
3512 		goto get_sysinfo_err;
3513 	}
3514 
3515 	if (misc_cg_set_capacity(MISC_CG_RES_TDX, tdx_get_nr_guest_keyids())) {
3516 		r = -EINVAL;
3517 		goto get_sysinfo_err;
3518 	}
3519 
3520 	/*
3521 	 * Leave hardware virtualization enabled after TDX is enabled
3522 	 * successfully.  TDX CPU hotplug depends on this.
3523 	 */
3524 	return 0;
3525 
3526 get_sysinfo_err:
3527 	__tdx_cleanup();
3528 tdx_bringup_err:
3529 	kvm_disable_virtualization();
3530 	return r;
3531 }
3532 
3533 void tdx_cleanup(void)
3534 {
3535 	if (enable_tdx) {
3536 		misc_cg_set_capacity(MISC_CG_RES_TDX, 0);
3537 		__tdx_cleanup();
3538 		kvm_disable_virtualization();
3539 	}
3540 }
3541 
3542 int __init tdx_bringup(void)
3543 {
3544 	int r, i;
3545 
3546 	/* tdx_disable_virtualization_cpu() uses associated_tdvcpus. */
3547 	for_each_possible_cpu(i)
3548 		INIT_LIST_HEAD(&per_cpu(associated_tdvcpus, i));
3549 
3550 	if (!enable_tdx)
3551 		return 0;
3552 
3553 	if (!enable_ept) {
3554 		pr_err("EPT is required for TDX\n");
3555 		goto success_disable_tdx;
3556 	}
3557 
3558 	if (!tdp_mmu_enabled || !enable_mmio_caching || !enable_ept_ad_bits) {
3559 		pr_err("TDP MMU and MMIO caching and EPT A/D bit is required for TDX\n");
3560 		goto success_disable_tdx;
3561 	}
3562 
3563 	if (!enable_apicv) {
3564 		pr_err("APICv is required for TDX\n");
3565 		goto success_disable_tdx;
3566 	}
3567 
3568 	if (!cpu_feature_enabled(X86_FEATURE_OSXSAVE)) {
3569 		pr_err("tdx: OSXSAVE is required for TDX\n");
3570 		goto success_disable_tdx;
3571 	}
3572 
3573 	if (!cpu_feature_enabled(X86_FEATURE_MOVDIR64B)) {
3574 		pr_err("tdx: MOVDIR64B is required for TDX\n");
3575 		goto success_disable_tdx;
3576 	}
3577 
3578 	if (!cpu_feature_enabled(X86_FEATURE_SELFSNOOP)) {
3579 		pr_err("Self-snoop is required for TDX\n");
3580 		goto success_disable_tdx;
3581 	}
3582 
3583 	if (!cpu_feature_enabled(X86_FEATURE_TDX_HOST_PLATFORM)) {
3584 		pr_err("tdx: no TDX private KeyIDs available\n");
3585 		goto success_disable_tdx;
3586 	}
3587 
3588 	if (!enable_virt_at_load) {
3589 		pr_err("tdx: tdx requires kvm.enable_virt_at_load=1\n");
3590 		goto success_disable_tdx;
3591 	}
3592 
3593 	/*
3594 	 * Ideally KVM should probe whether TDX module has been loaded
3595 	 * first and then try to bring it up.  But TDX needs to use SEAMCALL
3596 	 * to probe whether the module is loaded (there is no CPUID or MSR
3597 	 * for that), and making SEAMCALL requires enabling virtualization
3598 	 * first, just like the rest steps of bringing up TDX module.
3599 	 *
3600 	 * So, for simplicity do everything in __tdx_bringup(); the first
3601 	 * SEAMCALL will return -ENODEV when the module is not loaded.  The
3602 	 * only complication is having to make sure that initialization
3603 	 * SEAMCALLs don't return TDX_SEAMCALL_VMFAILINVALID in other
3604 	 * cases.
3605 	 */
3606 	r = __tdx_bringup();
3607 	if (r) {
3608 		/*
3609 		 * Disable TDX only but don't fail to load module if the TDX
3610 		 * module could not be loaded.  No need to print message saying
3611 		 * "module is not loaded" because it was printed when the first
3612 		 * SEAMCALL failed.  Don't bother unwinding the S-EPT hooks or
3613 		 * vm_size, as kvm_x86_ops have already been finalized (and are
3614 		 * intentionally not exported).  The S-EPT code is unreachable,
3615 		 * and allocating a few more bytes per VM in a should-be-rare
3616 		 * failure scenario is a non-issue.
3617 		 */
3618 		if (r == -ENODEV)
3619 			goto success_disable_tdx;
3620 
3621 		enable_tdx = 0;
3622 	}
3623 
3624 	return r;
3625 
3626 success_disable_tdx:
3627 	enable_tdx = 0;
3628 	return 0;
3629 }
3630 
3631 void __init tdx_hardware_setup(void)
3632 {
3633 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_tdx);
3634 
3635 	/*
3636 	 * Note, if the TDX module can't be loaded, KVM TDX support will be
3637 	 * disabled but KVM will continue loading (see tdx_bringup()).
3638 	 */
3639 	vt_x86_ops.vm_size = max_t(unsigned int, vt_x86_ops.vm_size, sizeof(struct kvm_tdx));
3640 
3641 	vt_x86_ops.link_external_spt = tdx_sept_link_private_spt;
3642 	vt_x86_ops.set_external_spte = tdx_sept_set_private_spte;
3643 	vt_x86_ops.free_external_spt = tdx_sept_free_private_spt;
3644 	vt_x86_ops.remove_external_spte = tdx_sept_remove_private_spte;
3645 	vt_x86_ops.protected_apic_has_interrupt = tdx_protected_apic_has_interrupt;
3646 }
3647