xref: /linux/arch/x86/kvm/vmx/tdx.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/cleanup.h>
3 #include <linux/cpu.h>
4 #include <asm/cpufeature.h>
5 #include <asm/fpu/xcr.h>
6 #include <linux/misc_cgroup.h>
7 #include <linux/mmu_context.h>
8 #include <asm/tdx.h>
9 #include "capabilities.h"
10 #include "mmu.h"
11 #include "x86_ops.h"
12 #include "lapic.h"
13 #include "tdx.h"
14 #include "vmx.h"
15 #include "mmu/spte.h"
16 #include "common.h"
17 #include "posted_intr.h"
18 #include "irq.h"
19 #include <trace/events/kvm.h>
20 #include "trace.h"
21 
22 #pragma GCC poison to_vmx
23 
24 #undef pr_fmt
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 
27 #define pr_tdx_error(__fn, __err)	\
28 	pr_err_ratelimited("SEAMCALL %s failed: 0x%llx\n", #__fn, __err)
29 
30 #define __pr_tdx_error_N(__fn_str, __err, __fmt, ...)		\
31 	pr_err_ratelimited("SEAMCALL " __fn_str " failed: 0x%llx, " __fmt,  __err,  __VA_ARGS__)
32 
33 #define pr_tdx_error_1(__fn, __err, __rcx)		\
34 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx\n", __rcx)
35 
36 #define pr_tdx_error_2(__fn, __err, __rcx, __rdx)	\
37 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx\n", __rcx, __rdx)
38 
39 #define pr_tdx_error_3(__fn, __err, __rcx, __rdx, __r8)	\
40 	__pr_tdx_error_N(#__fn, __err, "rcx 0x%llx, rdx 0x%llx, r8 0x%llx\n", __rcx, __rdx, __r8)
41 
42 bool enable_tdx __ro_after_init;
43 module_param_named(tdx, enable_tdx, bool, 0444);
44 
45 #define TDX_SHARED_BIT_PWL_5 gpa_to_gfn(BIT_ULL(51))
46 #define TDX_SHARED_BIT_PWL_4 gpa_to_gfn(BIT_ULL(47))
47 
48 static enum cpuhp_state tdx_cpuhp_state;
49 
50 static const struct tdx_sys_info *tdx_sysinfo;
51 
52 void tdh_vp_rd_failed(struct vcpu_tdx *tdx, char *uclass, u32 field, u64 err)
53 {
54 	KVM_BUG_ON(1, tdx->vcpu.kvm);
55 	pr_err("TDH_VP_RD[%s.0x%x] failed 0x%llx\n", uclass, field, err);
56 }
57 
58 void tdh_vp_wr_failed(struct vcpu_tdx *tdx, char *uclass, char *op, u32 field,
59 		      u64 val, u64 err)
60 {
61 	KVM_BUG_ON(1, tdx->vcpu.kvm);
62 	pr_err("TDH_VP_WR[%s.0x%x]%s0x%llx failed: 0x%llx\n", uclass, field, op, val, err);
63 }
64 
65 #define KVM_SUPPORTED_TD_ATTRS (TDX_TD_ATTR_SEPT_VE_DISABLE)
66 
67 static __always_inline struct kvm_tdx *to_kvm_tdx(struct kvm *kvm)
68 {
69 	return container_of(kvm, struct kvm_tdx, kvm);
70 }
71 
72 static __always_inline struct vcpu_tdx *to_tdx(struct kvm_vcpu *vcpu)
73 {
74 	return container_of(vcpu, struct vcpu_tdx, vcpu);
75 }
76 
77 static u64 tdx_get_supported_attrs(const struct tdx_sys_info_td_conf *td_conf)
78 {
79 	u64 val = KVM_SUPPORTED_TD_ATTRS;
80 
81 	if ((val & td_conf->attributes_fixed1) != td_conf->attributes_fixed1)
82 		return 0;
83 
84 	val &= td_conf->attributes_fixed0;
85 
86 	return val;
87 }
88 
89 static u64 tdx_get_supported_xfam(const struct tdx_sys_info_td_conf *td_conf)
90 {
91 	u64 val = kvm_caps.supported_xcr0 | kvm_caps.supported_xss;
92 
93 	if ((val & td_conf->xfam_fixed1) != td_conf->xfam_fixed1)
94 		return 0;
95 
96 	val &= td_conf->xfam_fixed0;
97 
98 	return val;
99 }
100 
101 static int tdx_get_guest_phys_addr_bits(const u32 eax)
102 {
103 	return (eax & GENMASK(23, 16)) >> 16;
104 }
105 
106 static u32 tdx_set_guest_phys_addr_bits(const u32 eax, int addr_bits)
107 {
108 	return (eax & ~GENMASK(23, 16)) | (addr_bits & 0xff) << 16;
109 }
110 
111 #define TDX_FEATURE_TSX (__feature_bit(X86_FEATURE_HLE) | __feature_bit(X86_FEATURE_RTM))
112 
113 static bool has_tsx(const struct kvm_cpuid_entry2 *entry)
114 {
115 	return entry->function == 7 && entry->index == 0 &&
116 	       (entry->ebx & TDX_FEATURE_TSX);
117 }
118 
119 static void clear_tsx(struct kvm_cpuid_entry2 *entry)
120 {
121 	entry->ebx &= ~TDX_FEATURE_TSX;
122 }
123 
124 static bool has_waitpkg(const struct kvm_cpuid_entry2 *entry)
125 {
126 	return entry->function == 7 && entry->index == 0 &&
127 	       (entry->ecx & __feature_bit(X86_FEATURE_WAITPKG));
128 }
129 
130 static void clear_waitpkg(struct kvm_cpuid_entry2 *entry)
131 {
132 	entry->ecx &= ~__feature_bit(X86_FEATURE_WAITPKG);
133 }
134 
135 static void tdx_clear_unsupported_cpuid(struct kvm_cpuid_entry2 *entry)
136 {
137 	if (has_tsx(entry))
138 		clear_tsx(entry);
139 
140 	if (has_waitpkg(entry))
141 		clear_waitpkg(entry);
142 }
143 
144 static bool tdx_unsupported_cpuid(const struct kvm_cpuid_entry2 *entry)
145 {
146 	return has_tsx(entry) || has_waitpkg(entry);
147 }
148 
149 #define KVM_TDX_CPUID_NO_SUBLEAF	((__u32)-1)
150 
151 static void td_init_cpuid_entry2(struct kvm_cpuid_entry2 *entry, unsigned char idx)
152 {
153 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
154 
155 	entry->function = (u32)td_conf->cpuid_config_leaves[idx];
156 	entry->index = td_conf->cpuid_config_leaves[idx] >> 32;
157 	entry->eax = (u32)td_conf->cpuid_config_values[idx][0];
158 	entry->ebx = td_conf->cpuid_config_values[idx][0] >> 32;
159 	entry->ecx = (u32)td_conf->cpuid_config_values[idx][1];
160 	entry->edx = td_conf->cpuid_config_values[idx][1] >> 32;
161 
162 	if (entry->index == KVM_TDX_CPUID_NO_SUBLEAF)
163 		entry->index = 0;
164 
165 	/*
166 	 * The TDX module doesn't allow configuring the guest phys addr bits
167 	 * (EAX[23:16]).  However, KVM uses it as an interface to the userspace
168 	 * to configure the GPAW.  Report these bits as configurable.
169 	 */
170 	if (entry->function == 0x80000008)
171 		entry->eax = tdx_set_guest_phys_addr_bits(entry->eax, 0xff);
172 
173 	tdx_clear_unsupported_cpuid(entry);
174 }
175 
176 #define TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT	BIT(1)
177 
178 static int init_kvm_tdx_caps(const struct tdx_sys_info_td_conf *td_conf,
179 			     struct kvm_tdx_capabilities *caps)
180 {
181 	int i;
182 
183 	caps->supported_attrs = tdx_get_supported_attrs(td_conf);
184 	if (!caps->supported_attrs)
185 		return -EIO;
186 
187 	caps->supported_xfam = tdx_get_supported_xfam(td_conf);
188 	if (!caps->supported_xfam)
189 		return -EIO;
190 
191 	caps->cpuid.nent = td_conf->num_cpuid_config;
192 
193 	caps->user_tdvmcallinfo_1_r11 =
194 		TDVMCALLINFO_SETUP_EVENT_NOTIFY_INTERRUPT;
195 
196 	for (i = 0; i < td_conf->num_cpuid_config; i++)
197 		td_init_cpuid_entry2(&caps->cpuid.entries[i], i);
198 
199 	return 0;
200 }
201 
202 /*
203  * Some SEAMCALLs acquire the TDX module globally, and can fail with
204  * TDX_OPERAND_BUSY.  Use a global mutex to serialize these SEAMCALLs.
205  */
206 static DEFINE_MUTEX(tdx_lock);
207 
208 static atomic_t nr_configured_hkid;
209 
210 static bool tdx_operand_busy(u64 err)
211 {
212 	return (err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_BUSY;
213 }
214 
215 
216 /*
217  * A per-CPU list of TD vCPUs associated with a given CPU.
218  * Protected by interrupt mask. Only manipulated by the CPU owning this per-CPU
219  * list.
220  * - When a vCPU is loaded onto a CPU, it is removed from the per-CPU list of
221  *   the old CPU during the IPI callback running on the old CPU, and then added
222  *   to the per-CPU list of the new CPU.
223  * - When a TD is tearing down, all vCPUs are disassociated from their current
224  *   running CPUs and removed from the per-CPU list during the IPI callback
225  *   running on those CPUs.
226  * - When a CPU is brought down, traverse the per-CPU list to disassociate all
227  *   associated TD vCPUs and remove them from the per-CPU list.
228  */
229 static DEFINE_PER_CPU(struct list_head, associated_tdvcpus);
230 
231 static __always_inline unsigned long tdvmcall_exit_type(struct kvm_vcpu *vcpu)
232 {
233 	return to_tdx(vcpu)->vp_enter_args.r10;
234 }
235 
236 static __always_inline unsigned long tdvmcall_leaf(struct kvm_vcpu *vcpu)
237 {
238 	return to_tdx(vcpu)->vp_enter_args.r11;
239 }
240 
241 static __always_inline void tdvmcall_set_return_code(struct kvm_vcpu *vcpu,
242 						     long val)
243 {
244 	to_tdx(vcpu)->vp_enter_args.r10 = val;
245 }
246 
247 static __always_inline void tdvmcall_set_return_val(struct kvm_vcpu *vcpu,
248 						    unsigned long val)
249 {
250 	to_tdx(vcpu)->vp_enter_args.r11 = val;
251 }
252 
253 static inline void tdx_hkid_free(struct kvm_tdx *kvm_tdx)
254 {
255 	tdx_guest_keyid_free(kvm_tdx->hkid);
256 	kvm_tdx->hkid = -1;
257 	atomic_dec(&nr_configured_hkid);
258 	misc_cg_uncharge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
259 	put_misc_cg(kvm_tdx->misc_cg);
260 	kvm_tdx->misc_cg = NULL;
261 }
262 
263 static inline bool is_hkid_assigned(struct kvm_tdx *kvm_tdx)
264 {
265 	return kvm_tdx->hkid > 0;
266 }
267 
268 static inline void tdx_disassociate_vp(struct kvm_vcpu *vcpu)
269 {
270 	lockdep_assert_irqs_disabled();
271 
272 	list_del(&to_tdx(vcpu)->cpu_list);
273 
274 	/*
275 	 * Ensure tdx->cpu_list is updated before setting vcpu->cpu to -1,
276 	 * otherwise, a different CPU can see vcpu->cpu = -1 and add the vCPU
277 	 * to its list before it's deleted from this CPU's list.
278 	 */
279 	smp_wmb();
280 
281 	vcpu->cpu = -1;
282 }
283 
284 static void tdx_clear_page(struct page *page)
285 {
286 	const void *zero_page = (const void *) page_to_virt(ZERO_PAGE(0));
287 	void *dest = page_to_virt(page);
288 	unsigned long i;
289 
290 	/*
291 	 * The page could have been poisoned.  MOVDIR64B also clears
292 	 * the poison bit so the kernel can safely use the page again.
293 	 */
294 	for (i = 0; i < PAGE_SIZE; i += 64)
295 		movdir64b(dest + i, zero_page);
296 	/*
297 	 * MOVDIR64B store uses WC buffer.  Prevent following memory reads
298 	 * from seeing potentially poisoned cache.
299 	 */
300 	__mb();
301 }
302 
303 static void tdx_no_vcpus_enter_start(struct kvm *kvm)
304 {
305 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
306 
307 	lockdep_assert_held_write(&kvm->mmu_lock);
308 
309 	WRITE_ONCE(kvm_tdx->wait_for_sept_zap, true);
310 
311 	kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
312 }
313 
314 static void tdx_no_vcpus_enter_stop(struct kvm *kvm)
315 {
316 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
317 
318 	lockdep_assert_held_write(&kvm->mmu_lock);
319 
320 	WRITE_ONCE(kvm_tdx->wait_for_sept_zap, false);
321 }
322 
323 /* TDH.PHYMEM.PAGE.RECLAIM is allowed only when destroying the TD. */
324 static int __tdx_reclaim_page(struct page *page)
325 {
326 	u64 err, rcx, rdx, r8;
327 
328 	err = tdh_phymem_page_reclaim(page, &rcx, &rdx, &r8);
329 
330 	/*
331 	 * No need to check for TDX_OPERAND_BUSY; all TD pages are freed
332 	 * before the HKID is released and control pages have also been
333 	 * released at this point, so there is no possibility of contention.
334 	 */
335 	if (WARN_ON_ONCE(err)) {
336 		pr_tdx_error_3(TDH_PHYMEM_PAGE_RECLAIM, err, rcx, rdx, r8);
337 		return -EIO;
338 	}
339 	return 0;
340 }
341 
342 static int tdx_reclaim_page(struct page *page)
343 {
344 	int r;
345 
346 	r = __tdx_reclaim_page(page);
347 	if (!r)
348 		tdx_clear_page(page);
349 	return r;
350 }
351 
352 
353 /*
354  * Reclaim the TD control page(s) which are crypto-protected by TDX guest's
355  * private KeyID.  Assume the cache associated with the TDX private KeyID has
356  * been flushed.
357  */
358 static void tdx_reclaim_control_page(struct page *ctrl_page)
359 {
360 	/*
361 	 * Leak the page if the kernel failed to reclaim the page.
362 	 * The kernel cannot use it safely anymore.
363 	 */
364 	if (tdx_reclaim_page(ctrl_page))
365 		return;
366 
367 	__free_page(ctrl_page);
368 }
369 
370 struct tdx_flush_vp_arg {
371 	struct kvm_vcpu *vcpu;
372 	u64 err;
373 };
374 
375 static void tdx_flush_vp(void *_arg)
376 {
377 	struct tdx_flush_vp_arg *arg = _arg;
378 	struct kvm_vcpu *vcpu = arg->vcpu;
379 	u64 err;
380 
381 	arg->err = 0;
382 	lockdep_assert_irqs_disabled();
383 
384 	/* Task migration can race with CPU offlining. */
385 	if (unlikely(vcpu->cpu != raw_smp_processor_id()))
386 		return;
387 
388 	/*
389 	 * No need to do TDH_VP_FLUSH if the vCPU hasn't been initialized.  The
390 	 * list tracking still needs to be updated so that it's correct if/when
391 	 * the vCPU does get initialized.
392 	 */
393 	if (to_tdx(vcpu)->state != VCPU_TD_STATE_UNINITIALIZED) {
394 		/*
395 		 * No need to retry.  TDX Resources needed for TDH.VP.FLUSH are:
396 		 * TDVPR as exclusive, TDR as shared, and TDCS as shared.  This
397 		 * vp flush function is called when destructing vCPU/TD or vCPU
398 		 * migration.  No other thread uses TDVPR in those cases.
399 		 */
400 		err = tdh_vp_flush(&to_tdx(vcpu)->vp);
401 		if (unlikely(err && err != TDX_VCPU_NOT_ASSOCIATED)) {
402 			/*
403 			 * This function is called in IPI context. Do not use
404 			 * printk to avoid console semaphore.
405 			 * The caller prints out the error message, instead.
406 			 */
407 			if (err)
408 				arg->err = err;
409 		}
410 	}
411 
412 	tdx_disassociate_vp(vcpu);
413 }
414 
415 static void tdx_flush_vp_on_cpu(struct kvm_vcpu *vcpu)
416 {
417 	struct tdx_flush_vp_arg arg = {
418 		.vcpu = vcpu,
419 	};
420 	int cpu = vcpu->cpu;
421 
422 	if (unlikely(cpu == -1))
423 		return;
424 
425 	smp_call_function_single(cpu, tdx_flush_vp, &arg, 1);
426 	if (KVM_BUG_ON(arg.err, vcpu->kvm))
427 		pr_tdx_error(TDH_VP_FLUSH, arg.err);
428 }
429 
430 void tdx_disable_virtualization_cpu(void)
431 {
432 	int cpu = raw_smp_processor_id();
433 	struct list_head *tdvcpus = &per_cpu(associated_tdvcpus, cpu);
434 	struct tdx_flush_vp_arg arg;
435 	struct vcpu_tdx *tdx, *tmp;
436 	unsigned long flags;
437 
438 	local_irq_save(flags);
439 	/* Safe variant needed as tdx_disassociate_vp() deletes the entry. */
440 	list_for_each_entry_safe(tdx, tmp, tdvcpus, cpu_list) {
441 		arg.vcpu = &tdx->vcpu;
442 		tdx_flush_vp(&arg);
443 	}
444 	local_irq_restore(flags);
445 }
446 
447 #define TDX_SEAMCALL_RETRIES 10000
448 
449 static void smp_func_do_phymem_cache_wb(void *unused)
450 {
451 	u64 err = 0;
452 	bool resume;
453 	int i;
454 
455 	/*
456 	 * TDH.PHYMEM.CACHE.WB flushes caches associated with any TDX private
457 	 * KeyID on the package or core.  The TDX module may not finish the
458 	 * cache flush but return TDX_INTERRUPTED_RESUMEABLE instead.  The
459 	 * kernel should retry it until it returns success w/o rescheduling.
460 	 */
461 	for (i = TDX_SEAMCALL_RETRIES; i > 0; i--) {
462 		resume = !!err;
463 		err = tdh_phymem_cache_wb(resume);
464 		switch (err) {
465 		case TDX_INTERRUPTED_RESUMABLE:
466 			continue;
467 		case TDX_NO_HKID_READY_TO_WBCACHE:
468 			err = TDX_SUCCESS; /* Already done by other thread */
469 			fallthrough;
470 		default:
471 			goto out;
472 		}
473 	}
474 
475 out:
476 	if (WARN_ON_ONCE(err))
477 		pr_tdx_error(TDH_PHYMEM_CACHE_WB, err);
478 }
479 
480 void tdx_mmu_release_hkid(struct kvm *kvm)
481 {
482 	bool packages_allocated, targets_allocated;
483 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
484 	cpumask_var_t packages, targets;
485 	struct kvm_vcpu *vcpu;
486 	unsigned long j;
487 	int i;
488 	u64 err;
489 
490 	if (!is_hkid_assigned(kvm_tdx))
491 		return;
492 
493 	packages_allocated = zalloc_cpumask_var(&packages, GFP_KERNEL);
494 	targets_allocated = zalloc_cpumask_var(&targets, GFP_KERNEL);
495 	cpus_read_lock();
496 
497 	kvm_for_each_vcpu(j, vcpu, kvm)
498 		tdx_flush_vp_on_cpu(vcpu);
499 
500 	/*
501 	 * TDH.PHYMEM.CACHE.WB tries to acquire the TDX module global lock
502 	 * and can fail with TDX_OPERAND_BUSY when it fails to get the lock.
503 	 * Multiple TDX guests can be destroyed simultaneously. Take the
504 	 * mutex to prevent it from getting error.
505 	 */
506 	mutex_lock(&tdx_lock);
507 
508 	/*
509 	 * Releasing HKID is in vm_destroy().
510 	 * After the above flushing vps, there should be no more vCPU
511 	 * associations, as all vCPU fds have been released at this stage.
512 	 */
513 	err = tdh_mng_vpflushdone(&kvm_tdx->td);
514 	if (err == TDX_FLUSHVP_NOT_DONE)
515 		goto out;
516 	if (KVM_BUG_ON(err, kvm)) {
517 		pr_tdx_error(TDH_MNG_VPFLUSHDONE, err);
518 		pr_err("tdh_mng_vpflushdone() failed. HKID %d is leaked.\n",
519 		       kvm_tdx->hkid);
520 		goto out;
521 	}
522 
523 	for_each_online_cpu(i) {
524 		if (packages_allocated &&
525 		    cpumask_test_and_set_cpu(topology_physical_package_id(i),
526 					     packages))
527 			continue;
528 		if (targets_allocated)
529 			cpumask_set_cpu(i, targets);
530 	}
531 	if (targets_allocated)
532 		on_each_cpu_mask(targets, smp_func_do_phymem_cache_wb, NULL, true);
533 	else
534 		on_each_cpu(smp_func_do_phymem_cache_wb, NULL, true);
535 	/*
536 	 * In the case of error in smp_func_do_phymem_cache_wb(), the following
537 	 * tdh_mng_key_freeid() will fail.
538 	 */
539 	err = tdh_mng_key_freeid(&kvm_tdx->td);
540 	if (KVM_BUG_ON(err, kvm)) {
541 		pr_tdx_error(TDH_MNG_KEY_FREEID, err);
542 		pr_err("tdh_mng_key_freeid() failed. HKID %d is leaked.\n",
543 		       kvm_tdx->hkid);
544 	} else {
545 		tdx_hkid_free(kvm_tdx);
546 	}
547 
548 out:
549 	mutex_unlock(&tdx_lock);
550 	cpus_read_unlock();
551 	free_cpumask_var(targets);
552 	free_cpumask_var(packages);
553 }
554 
555 static void tdx_reclaim_td_control_pages(struct kvm *kvm)
556 {
557 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
558 	u64 err;
559 	int i;
560 
561 	/*
562 	 * tdx_mmu_release_hkid() failed to reclaim HKID.  Something went wrong
563 	 * heavily with TDX module.  Give up freeing TD pages.  As the function
564 	 * already warned, don't warn it again.
565 	 */
566 	if (is_hkid_assigned(kvm_tdx))
567 		return;
568 
569 	if (kvm_tdx->td.tdcs_pages) {
570 		for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
571 			if (!kvm_tdx->td.tdcs_pages[i])
572 				continue;
573 
574 			tdx_reclaim_control_page(kvm_tdx->td.tdcs_pages[i]);
575 		}
576 		kfree(kvm_tdx->td.tdcs_pages);
577 		kvm_tdx->td.tdcs_pages = NULL;
578 	}
579 
580 	if (!kvm_tdx->td.tdr_page)
581 		return;
582 
583 	if (__tdx_reclaim_page(kvm_tdx->td.tdr_page))
584 		return;
585 
586 	/*
587 	 * Use a SEAMCALL to ask the TDX module to flush the cache based on the
588 	 * KeyID. TDX module may access TDR while operating on TD (Especially
589 	 * when it is reclaiming TDCS).
590 	 */
591 	err = tdh_phymem_page_wbinvd_tdr(&kvm_tdx->td);
592 	if (KVM_BUG_ON(err, kvm)) {
593 		pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
594 		return;
595 	}
596 	tdx_clear_page(kvm_tdx->td.tdr_page);
597 
598 	__free_page(kvm_tdx->td.tdr_page);
599 	kvm_tdx->td.tdr_page = NULL;
600 }
601 
602 void tdx_vm_destroy(struct kvm *kvm)
603 {
604 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
605 
606 	tdx_reclaim_td_control_pages(kvm);
607 
608 	kvm_tdx->state = TD_STATE_UNINITIALIZED;
609 }
610 
611 static int tdx_do_tdh_mng_key_config(void *param)
612 {
613 	struct kvm_tdx *kvm_tdx = param;
614 	u64 err;
615 
616 	/* TDX_RND_NO_ENTROPY related retries are handled by sc_retry() */
617 	err = tdh_mng_key_config(&kvm_tdx->td);
618 
619 	if (KVM_BUG_ON(err, &kvm_tdx->kvm)) {
620 		pr_tdx_error(TDH_MNG_KEY_CONFIG, err);
621 		return -EIO;
622 	}
623 
624 	return 0;
625 }
626 
627 int tdx_vm_init(struct kvm *kvm)
628 {
629 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
630 
631 	kvm->arch.has_protected_state = true;
632 	kvm->arch.has_private_mem = true;
633 	kvm->arch.disabled_quirks |= KVM_X86_QUIRK_IGNORE_GUEST_PAT;
634 
635 	/*
636 	 * Because guest TD is protected, VMM can't parse the instruction in TD.
637 	 * Instead, guest uses MMIO hypercall.  For unmodified device driver,
638 	 * #VE needs to be injected for MMIO and #VE handler in TD converts MMIO
639 	 * instruction into MMIO hypercall.
640 	 *
641 	 * SPTE value for MMIO needs to be setup so that #VE is injected into
642 	 * TD instead of triggering EPT MISCONFIG.
643 	 * - RWX=0 so that EPT violation is triggered.
644 	 * - suppress #VE bit is cleared to inject #VE.
645 	 */
646 	kvm_mmu_set_mmio_spte_value(kvm, 0);
647 
648 	/*
649 	 * TDX has its own limit of maximum vCPUs it can support for all
650 	 * TDX guests in addition to KVM_MAX_VCPUS.  TDX module reports
651 	 * such limit via the MAX_VCPU_PER_TD global metadata.  In
652 	 * practice, it reflects the number of logical CPUs that ALL
653 	 * platforms that the TDX module supports can possibly have.
654 	 *
655 	 * Limit TDX guest's maximum vCPUs to the number of logical CPUs
656 	 * the platform has.  Simply forwarding the MAX_VCPU_PER_TD to
657 	 * userspace would result in an unpredictable ABI.
658 	 */
659 	kvm->max_vcpus = min_t(int, kvm->max_vcpus, num_present_cpus());
660 
661 	kvm_tdx->state = TD_STATE_UNINITIALIZED;
662 
663 	return 0;
664 }
665 
666 int tdx_vcpu_create(struct kvm_vcpu *vcpu)
667 {
668 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
669 	struct vcpu_tdx *tdx = to_tdx(vcpu);
670 
671 	if (kvm_tdx->state != TD_STATE_INITIALIZED)
672 		return -EIO;
673 
674 	/*
675 	 * TDX module mandates APICv, which requires an in-kernel local APIC.
676 	 * Disallow an in-kernel I/O APIC, because level-triggered interrupts
677 	 * and thus the I/O APIC as a whole can't be faithfully emulated in KVM.
678 	 */
679 	if (!irqchip_split(vcpu->kvm))
680 		return -EINVAL;
681 
682 	fpstate_set_confidential(&vcpu->arch.guest_fpu);
683 	vcpu->arch.apic->guest_apic_protected = true;
684 	INIT_LIST_HEAD(&tdx->vt.pi_wakeup_list);
685 
686 	vcpu->arch.efer = EFER_SCE | EFER_LME | EFER_LMA | EFER_NX;
687 
688 	vcpu->arch.switch_db_regs = KVM_DEBUGREG_AUTO_SWITCH;
689 	vcpu->arch.cr0_guest_owned_bits = -1ul;
690 	vcpu->arch.cr4_guest_owned_bits = -1ul;
691 
692 	/* KVM can't change TSC offset/multiplier as TDX module manages them. */
693 	vcpu->arch.guest_tsc_protected = true;
694 	vcpu->arch.tsc_offset = kvm_tdx->tsc_offset;
695 	vcpu->arch.l1_tsc_offset = vcpu->arch.tsc_offset;
696 	vcpu->arch.tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
697 	vcpu->arch.l1_tsc_scaling_ratio = kvm_tdx->tsc_multiplier;
698 
699 	vcpu->arch.guest_state_protected =
700 		!(to_kvm_tdx(vcpu->kvm)->attributes & TDX_TD_ATTR_DEBUG);
701 
702 	if ((kvm_tdx->xfam & XFEATURE_MASK_XTILE) == XFEATURE_MASK_XTILE)
703 		vcpu->arch.xfd_no_write_intercept = true;
704 
705 	tdx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
706 	__pi_set_sn(&tdx->vt.pi_desc);
707 
708 	tdx->state = VCPU_TD_STATE_UNINITIALIZED;
709 
710 	return 0;
711 }
712 
713 void tdx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
714 {
715 	struct vcpu_tdx *tdx = to_tdx(vcpu);
716 
717 	vmx_vcpu_pi_load(vcpu, cpu);
718 	if (vcpu->cpu == cpu || !is_hkid_assigned(to_kvm_tdx(vcpu->kvm)))
719 		return;
720 
721 	tdx_flush_vp_on_cpu(vcpu);
722 
723 	KVM_BUG_ON(cpu != raw_smp_processor_id(), vcpu->kvm);
724 	local_irq_disable();
725 	/*
726 	 * Pairs with the smp_wmb() in tdx_disassociate_vp() to ensure
727 	 * vcpu->cpu is read before tdx->cpu_list.
728 	 */
729 	smp_rmb();
730 
731 	list_add(&tdx->cpu_list, &per_cpu(associated_tdvcpus, cpu));
732 	local_irq_enable();
733 }
734 
735 bool tdx_interrupt_allowed(struct kvm_vcpu *vcpu)
736 {
737 	/*
738 	 * KVM can't get the interrupt status of TDX guest and it assumes
739 	 * interrupt is always allowed unless TDX guest calls TDVMCALL with HLT,
740 	 * which passes the interrupt blocked flag.
741 	 */
742 	return vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
743 	       !to_tdx(vcpu)->vp_enter_args.r12;
744 }
745 
746 bool tdx_protected_apic_has_interrupt(struct kvm_vcpu *vcpu)
747 {
748 	u64 vcpu_state_details;
749 
750 	if (pi_has_pending_interrupt(vcpu))
751 		return true;
752 
753 	/*
754 	 * Only check RVI pending for HALTED case with IRQ enabled.
755 	 * For non-HLT cases, KVM doesn't care about STI/SS shadows.  And if the
756 	 * interrupt was pending before TD exit, then it _must_ be blocked,
757 	 * otherwise the interrupt would have been serviced at the instruction
758 	 * boundary.
759 	 */
760 	if (vmx_get_exit_reason(vcpu).basic != EXIT_REASON_HLT ||
761 	    to_tdx(vcpu)->vp_enter_args.r12)
762 		return false;
763 
764 	vcpu_state_details =
765 		td_state_non_arch_read64(to_tdx(vcpu), TD_VCPU_STATE_DETAILS_NON_ARCH);
766 
767 	return tdx_vcpu_state_details_intr_pending(vcpu_state_details);
768 }
769 
770 /*
771  * Compared to vmx_prepare_switch_to_guest(), there is not much to do
772  * as SEAMCALL/SEAMRET calls take care of most of save and restore.
773  */
774 void tdx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
775 {
776 	struct vcpu_vt *vt = to_vt(vcpu);
777 
778 	if (vt->guest_state_loaded)
779 		return;
780 
781 	if (likely(is_64bit_mm(current->mm)))
782 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
783 	else
784 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
785 
786 	vt->host_debugctlmsr = get_debugctlmsr();
787 
788 	vt->guest_state_loaded = true;
789 }
790 
791 struct tdx_uret_msr {
792 	u32 msr;
793 	unsigned int slot;
794 	u64 defval;
795 };
796 
797 static struct tdx_uret_msr tdx_uret_msrs[] = {
798 	{.msr = MSR_SYSCALL_MASK, .defval = 0x20200 },
799 	{.msr = MSR_STAR,},
800 	{.msr = MSR_LSTAR,},
801 	{.msr = MSR_TSC_AUX,},
802 };
803 
804 static void tdx_user_return_msr_update_cache(void)
805 {
806 	int i;
807 
808 	for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++)
809 		kvm_user_return_msr_update_cache(tdx_uret_msrs[i].slot,
810 						 tdx_uret_msrs[i].defval);
811 }
812 
813 static void tdx_prepare_switch_to_host(struct kvm_vcpu *vcpu)
814 {
815 	struct vcpu_vt *vt = to_vt(vcpu);
816 	struct vcpu_tdx *tdx = to_tdx(vcpu);
817 
818 	if (!vt->guest_state_loaded)
819 		return;
820 
821 	++vcpu->stat.host_state_reload;
822 	wrmsrl(MSR_KERNEL_GS_BASE, vt->msr_host_kernel_gs_base);
823 
824 	if (tdx->guest_entered) {
825 		tdx_user_return_msr_update_cache();
826 		tdx->guest_entered = false;
827 	}
828 
829 	vt->guest_state_loaded = false;
830 }
831 
832 void tdx_vcpu_put(struct kvm_vcpu *vcpu)
833 {
834 	vmx_vcpu_pi_put(vcpu);
835 	tdx_prepare_switch_to_host(vcpu);
836 }
837 
838 void tdx_vcpu_free(struct kvm_vcpu *vcpu)
839 {
840 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
841 	struct vcpu_tdx *tdx = to_tdx(vcpu);
842 	int i;
843 
844 	/*
845 	 * It is not possible to reclaim pages while hkid is assigned. It might
846 	 * be assigned if:
847 	 * 1. the TD VM is being destroyed but freeing hkid failed, in which
848 	 * case the pages are leaked
849 	 * 2. TD VCPU creation failed and this on the error path, in which case
850 	 * there is nothing to do anyway
851 	 */
852 	if (is_hkid_assigned(kvm_tdx))
853 		return;
854 
855 	if (tdx->vp.tdcx_pages) {
856 		for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
857 			if (tdx->vp.tdcx_pages[i])
858 				tdx_reclaim_control_page(tdx->vp.tdcx_pages[i]);
859 		}
860 		kfree(tdx->vp.tdcx_pages);
861 		tdx->vp.tdcx_pages = NULL;
862 	}
863 	if (tdx->vp.tdvpr_page) {
864 		tdx_reclaim_control_page(tdx->vp.tdvpr_page);
865 		tdx->vp.tdvpr_page = 0;
866 	}
867 
868 	tdx->state = VCPU_TD_STATE_UNINITIALIZED;
869 }
870 
871 int tdx_vcpu_pre_run(struct kvm_vcpu *vcpu)
872 {
873 	if (unlikely(to_tdx(vcpu)->state != VCPU_TD_STATE_INITIALIZED ||
874 		     to_kvm_tdx(vcpu->kvm)->state != TD_STATE_RUNNABLE))
875 		return -EINVAL;
876 
877 	return 1;
878 }
879 
880 static __always_inline u32 tdcall_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
881 {
882 	switch (tdvmcall_leaf(vcpu)) {
883 	case EXIT_REASON_CPUID:
884 	case EXIT_REASON_HLT:
885 	case EXIT_REASON_IO_INSTRUCTION:
886 	case EXIT_REASON_MSR_READ:
887 	case EXIT_REASON_MSR_WRITE:
888 		return tdvmcall_leaf(vcpu);
889 	case EXIT_REASON_EPT_VIOLATION:
890 		return EXIT_REASON_EPT_MISCONFIG;
891 	default:
892 		break;
893 	}
894 
895 	return EXIT_REASON_TDCALL;
896 }
897 
898 static __always_inline u32 tdx_to_vmx_exit_reason(struct kvm_vcpu *vcpu)
899 {
900 	struct vcpu_tdx *tdx = to_tdx(vcpu);
901 	u32 exit_reason;
902 
903 	switch (tdx->vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) {
904 	case TDX_SUCCESS:
905 	case TDX_NON_RECOVERABLE_VCPU:
906 	case TDX_NON_RECOVERABLE_TD:
907 	case TDX_NON_RECOVERABLE_TD_NON_ACCESSIBLE:
908 	case TDX_NON_RECOVERABLE_TD_WRONG_APIC_MODE:
909 		break;
910 	default:
911 		return -1u;
912 	}
913 
914 	exit_reason = tdx->vp_enter_ret;
915 
916 	switch (exit_reason) {
917 	case EXIT_REASON_TDCALL:
918 		if (tdvmcall_exit_type(vcpu))
919 			return EXIT_REASON_VMCALL;
920 
921 		return tdcall_to_vmx_exit_reason(vcpu);
922 	case EXIT_REASON_EPT_MISCONFIG:
923 		/*
924 		 * Defer KVM_BUG_ON() until tdx_handle_exit() because this is in
925 		 * non-instrumentable code with interrupts disabled.
926 		 */
927 		return -1u;
928 	default:
929 		break;
930 	}
931 
932 	return exit_reason;
933 }
934 
935 static noinstr void tdx_vcpu_enter_exit(struct kvm_vcpu *vcpu)
936 {
937 	struct vcpu_tdx *tdx = to_tdx(vcpu);
938 	struct vcpu_vt *vt = to_vt(vcpu);
939 
940 	guest_state_enter_irqoff();
941 
942 	tdx->vp_enter_ret = tdh_vp_enter(&tdx->vp, &tdx->vp_enter_args);
943 
944 	vt->exit_reason.full = tdx_to_vmx_exit_reason(vcpu);
945 
946 	vt->exit_qualification = tdx->vp_enter_args.rcx;
947 	tdx->ext_exit_qualification = tdx->vp_enter_args.rdx;
948 	tdx->exit_gpa = tdx->vp_enter_args.r8;
949 	vt->exit_intr_info = tdx->vp_enter_args.r9;
950 
951 	vmx_handle_nmi(vcpu);
952 
953 	guest_state_exit_irqoff();
954 }
955 
956 static bool tdx_failed_vmentry(struct kvm_vcpu *vcpu)
957 {
958 	return vmx_get_exit_reason(vcpu).failed_vmentry &&
959 	       vmx_get_exit_reason(vcpu).full != -1u;
960 }
961 
962 static fastpath_t tdx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
963 {
964 	u64 vp_enter_ret = to_tdx(vcpu)->vp_enter_ret;
965 
966 	/*
967 	 * TDX_OPERAND_BUSY could be returned for SEPT due to 0-step mitigation
968 	 * or for TD EPOCH due to contention with TDH.MEM.TRACK on TDH.VP.ENTER.
969 	 *
970 	 * When KVM requests KVM_REQ_OUTSIDE_GUEST_MODE, which has both
971 	 * KVM_REQUEST_WAIT and KVM_REQUEST_NO_ACTION set, it requires target
972 	 * vCPUs leaving fastpath so that interrupt can be enabled to ensure the
973 	 * IPIs can be delivered. Return EXIT_FASTPATH_EXIT_HANDLED instead of
974 	 * EXIT_FASTPATH_REENTER_GUEST to exit fastpath, otherwise, the
975 	 * requester may be blocked endlessly.
976 	 */
977 	if (unlikely(tdx_operand_busy(vp_enter_ret)))
978 		return EXIT_FASTPATH_EXIT_HANDLED;
979 
980 	return EXIT_FASTPATH_NONE;
981 }
982 
983 #define TDX_REGS_AVAIL_SET	(BIT_ULL(VCPU_EXREG_EXIT_INFO_1) | \
984 				 BIT_ULL(VCPU_EXREG_EXIT_INFO_2) | \
985 				 BIT_ULL(VCPU_REGS_RAX) | \
986 				 BIT_ULL(VCPU_REGS_RBX) | \
987 				 BIT_ULL(VCPU_REGS_RCX) | \
988 				 BIT_ULL(VCPU_REGS_RDX) | \
989 				 BIT_ULL(VCPU_REGS_RBP) | \
990 				 BIT_ULL(VCPU_REGS_RSI) | \
991 				 BIT_ULL(VCPU_REGS_RDI) | \
992 				 BIT_ULL(VCPU_REGS_R8) | \
993 				 BIT_ULL(VCPU_REGS_R9) | \
994 				 BIT_ULL(VCPU_REGS_R10) | \
995 				 BIT_ULL(VCPU_REGS_R11) | \
996 				 BIT_ULL(VCPU_REGS_R12) | \
997 				 BIT_ULL(VCPU_REGS_R13) | \
998 				 BIT_ULL(VCPU_REGS_R14) | \
999 				 BIT_ULL(VCPU_REGS_R15))
1000 
1001 static void tdx_load_host_xsave_state(struct kvm_vcpu *vcpu)
1002 {
1003 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
1004 
1005 	/*
1006 	 * All TDX hosts support PKRU; but even if they didn't,
1007 	 * vcpu->arch.host_pkru would be 0 and the wrpkru would be
1008 	 * skipped.
1009 	 */
1010 	if (vcpu->arch.host_pkru != 0)
1011 		wrpkru(vcpu->arch.host_pkru);
1012 
1013 	if (kvm_host.xcr0 != (kvm_tdx->xfam & kvm_caps.supported_xcr0))
1014 		xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0);
1015 
1016 	/*
1017 	 * Likewise, even if a TDX hosts didn't support XSS both arms of
1018 	 * the comparison would be 0 and the wrmsrl would be skipped.
1019 	 */
1020 	if (kvm_host.xss != (kvm_tdx->xfam & kvm_caps.supported_xss))
1021 		wrmsrl(MSR_IA32_XSS, kvm_host.xss);
1022 }
1023 
1024 #define TDX_DEBUGCTL_PRESERVED (DEBUGCTLMSR_BTF | \
1025 				DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI | \
1026 				DEBUGCTLMSR_FREEZE_IN_SMM)
1027 
1028 fastpath_t tdx_vcpu_run(struct kvm_vcpu *vcpu, bool force_immediate_exit)
1029 {
1030 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1031 	struct vcpu_vt *vt = to_vt(vcpu);
1032 
1033 	/*
1034 	 * force_immediate_exit requires vCPU entering for events injection with
1035 	 * an immediately exit followed. But The TDX module doesn't guarantee
1036 	 * entry, it's already possible for KVM to _think_ it completely entry
1037 	 * to the guest without actually having done so.
1038 	 * Since KVM never needs to force an immediate exit for TDX, and can't
1039 	 * do direct injection, just warn on force_immediate_exit.
1040 	 */
1041 	WARN_ON_ONCE(force_immediate_exit);
1042 
1043 	/*
1044 	 * Wait until retry of SEPT-zap-related SEAMCALL completes before
1045 	 * allowing vCPU entry to avoid contention with tdh_vp_enter() and
1046 	 * TDCALLs.
1047 	 */
1048 	if (unlikely(READ_ONCE(to_kvm_tdx(vcpu->kvm)->wait_for_sept_zap)))
1049 		return EXIT_FASTPATH_EXIT_HANDLED;
1050 
1051 	trace_kvm_entry(vcpu, force_immediate_exit);
1052 
1053 	if (pi_test_on(&vt->pi_desc)) {
1054 		apic->send_IPI_self(POSTED_INTR_VECTOR);
1055 
1056 		if (pi_test_pir(kvm_lapic_get_reg(vcpu->arch.apic, APIC_LVTT) &
1057 			       APIC_VECTOR_MASK, &vt->pi_desc))
1058 			kvm_wait_lapic_expire(vcpu);
1059 	}
1060 
1061 	tdx_vcpu_enter_exit(vcpu);
1062 
1063 	if (vt->host_debugctlmsr & ~TDX_DEBUGCTL_PRESERVED)
1064 		update_debugctlmsr(vt->host_debugctlmsr);
1065 
1066 	tdx_load_host_xsave_state(vcpu);
1067 	tdx->guest_entered = true;
1068 
1069 	vcpu->arch.regs_avail &= TDX_REGS_AVAIL_SET;
1070 
1071 	if (unlikely(tdx->vp_enter_ret == EXIT_REASON_EPT_MISCONFIG))
1072 		return EXIT_FASTPATH_NONE;
1073 
1074 	if (unlikely((tdx->vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR))
1075 		return EXIT_FASTPATH_NONE;
1076 
1077 	if (unlikely(vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
1078 		kvm_machine_check();
1079 
1080 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
1081 
1082 	if (unlikely(tdx_failed_vmentry(vcpu)))
1083 		return EXIT_FASTPATH_NONE;
1084 
1085 	return tdx_exit_handlers_fastpath(vcpu);
1086 }
1087 
1088 void tdx_inject_nmi(struct kvm_vcpu *vcpu)
1089 {
1090 	++vcpu->stat.nmi_injections;
1091 	td_management_write8(to_tdx(vcpu), TD_VCPU_PEND_NMI, 1);
1092 	/*
1093 	 * From KVM's perspective, NMI injection is completed right after
1094 	 * writing to PEND_NMI.  KVM doesn't care whether an NMI is injected by
1095 	 * the TDX module or not.
1096 	 */
1097 	vcpu->arch.nmi_injected = false;
1098 	/*
1099 	 * TDX doesn't support KVM to request NMI window exit.  If there is
1100 	 * still a pending vNMI, KVM is not able to inject it along with the
1101 	 * one pending in TDX module in a back-to-back way.  Since the previous
1102 	 * vNMI is still pending in TDX module, i.e. it has not been delivered
1103 	 * to TDX guest yet, it's OK to collapse the pending vNMI into the
1104 	 * previous one.  The guest is expected to handle all the NMI sources
1105 	 * when handling the first vNMI.
1106 	 */
1107 	vcpu->arch.nmi_pending = 0;
1108 }
1109 
1110 static int tdx_handle_exception_nmi(struct kvm_vcpu *vcpu)
1111 {
1112 	u32 intr_info = vmx_get_intr_info(vcpu);
1113 
1114 	/*
1115 	 * Machine checks are handled by handle_exception_irqoff(), or by
1116 	 * tdx_handle_exit() with TDX_NON_RECOVERABLE set if a #MC occurs on
1117 	 * VM-Entry.  NMIs are handled by tdx_vcpu_enter_exit().
1118 	 */
1119 	if (is_nmi(intr_info) || is_machine_check(intr_info))
1120 		return 1;
1121 
1122 	vcpu->run->exit_reason = KVM_EXIT_EXCEPTION;
1123 	vcpu->run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1124 	vcpu->run->ex.error_code = 0;
1125 
1126 	return 0;
1127 }
1128 
1129 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
1130 {
1131 	tdvmcall_set_return_code(vcpu, vcpu->run->hypercall.ret);
1132 	return 1;
1133 }
1134 
1135 static int tdx_emulate_vmcall(struct kvm_vcpu *vcpu)
1136 {
1137 	kvm_rax_write(vcpu, to_tdx(vcpu)->vp_enter_args.r10);
1138 	kvm_rbx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r11);
1139 	kvm_rcx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r12);
1140 	kvm_rdx_write(vcpu, to_tdx(vcpu)->vp_enter_args.r13);
1141 	kvm_rsi_write(vcpu, to_tdx(vcpu)->vp_enter_args.r14);
1142 
1143 	return __kvm_emulate_hypercall(vcpu, 0, complete_hypercall_exit);
1144 }
1145 
1146 /*
1147  * Split into chunks and check interrupt pending between chunks.  This allows
1148  * for timely injection of interrupts to prevent issues with guest lockup
1149  * detection.
1150  */
1151 #define TDX_MAP_GPA_MAX_LEN (2 * 1024 * 1024)
1152 static void __tdx_map_gpa(struct vcpu_tdx *tdx);
1153 
1154 static int tdx_complete_vmcall_map_gpa(struct kvm_vcpu *vcpu)
1155 {
1156 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1157 
1158 	if (vcpu->run->hypercall.ret) {
1159 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1160 		tdx->vp_enter_args.r11 = tdx->map_gpa_next;
1161 		return 1;
1162 	}
1163 
1164 	tdx->map_gpa_next += TDX_MAP_GPA_MAX_LEN;
1165 	if (tdx->map_gpa_next >= tdx->map_gpa_end)
1166 		return 1;
1167 
1168 	/*
1169 	 * Stop processing the remaining part if there is a pending interrupt,
1170 	 * which could be qualified to deliver.  Skip checking pending RVI for
1171 	 * TDVMCALL_MAP_GPA, see comments in tdx_protected_apic_has_interrupt().
1172 	 */
1173 	if (kvm_vcpu_has_events(vcpu)) {
1174 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_RETRY);
1175 		tdx->vp_enter_args.r11 = tdx->map_gpa_next;
1176 		return 1;
1177 	}
1178 
1179 	__tdx_map_gpa(tdx);
1180 	return 0;
1181 }
1182 
1183 static void __tdx_map_gpa(struct vcpu_tdx *tdx)
1184 {
1185 	u64 gpa = tdx->map_gpa_next;
1186 	u64 size = tdx->map_gpa_end - tdx->map_gpa_next;
1187 
1188 	if (size > TDX_MAP_GPA_MAX_LEN)
1189 		size = TDX_MAP_GPA_MAX_LEN;
1190 
1191 	tdx->vcpu.run->exit_reason       = KVM_EXIT_HYPERCALL;
1192 	tdx->vcpu.run->hypercall.nr      = KVM_HC_MAP_GPA_RANGE;
1193 	/*
1194 	 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
1195 	 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
1196 	 * it was always zero on KVM_EXIT_HYPERCALL.  Since KVM is now overwriting
1197 	 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
1198 	 */
1199 	tdx->vcpu.run->hypercall.ret = 0;
1200 	tdx->vcpu.run->hypercall.args[0] = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
1201 	tdx->vcpu.run->hypercall.args[1] = size / PAGE_SIZE;
1202 	tdx->vcpu.run->hypercall.args[2] = vt_is_tdx_private_gpa(tdx->vcpu.kvm, gpa) ?
1203 					   KVM_MAP_GPA_RANGE_ENCRYPTED :
1204 					   KVM_MAP_GPA_RANGE_DECRYPTED;
1205 	tdx->vcpu.run->hypercall.flags   = KVM_EXIT_HYPERCALL_LONG_MODE;
1206 
1207 	tdx->vcpu.arch.complete_userspace_io = tdx_complete_vmcall_map_gpa;
1208 }
1209 
1210 static int tdx_map_gpa(struct kvm_vcpu *vcpu)
1211 {
1212 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1213 	u64 gpa = tdx->vp_enter_args.r12;
1214 	u64 size = tdx->vp_enter_args.r13;
1215 	u64 ret;
1216 
1217 	/*
1218 	 * Converting TDVMCALL_MAP_GPA to KVM_HC_MAP_GPA_RANGE requires
1219 	 * userspace to enable KVM_CAP_EXIT_HYPERCALL with KVM_HC_MAP_GPA_RANGE
1220 	 * bit set.  This is a base call so it should always be supported, but
1221 	 * KVM has no way to ensure that userspace implements the GHCI correctly.
1222 	 * So if KVM_HC_MAP_GPA_RANGE does not cause a VMEXIT, return an error
1223 	 * to the guest.
1224 	 */
1225 	if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
1226 		ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1227 		goto error;
1228 	}
1229 
1230 	if (gpa + size <= gpa || !kvm_vcpu_is_legal_gpa(vcpu, gpa) ||
1231 	    !kvm_vcpu_is_legal_gpa(vcpu, gpa + size - 1) ||
1232 	    (vt_is_tdx_private_gpa(vcpu->kvm, gpa) !=
1233 	     vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))) {
1234 		ret = TDVMCALL_STATUS_INVALID_OPERAND;
1235 		goto error;
1236 	}
1237 
1238 	if (!PAGE_ALIGNED(gpa) || !PAGE_ALIGNED(size)) {
1239 		ret = TDVMCALL_STATUS_ALIGN_ERROR;
1240 		goto error;
1241 	}
1242 
1243 	tdx->map_gpa_end = gpa + size;
1244 	tdx->map_gpa_next = gpa;
1245 
1246 	__tdx_map_gpa(tdx);
1247 	return 0;
1248 
1249 error:
1250 	tdvmcall_set_return_code(vcpu, ret);
1251 	tdx->vp_enter_args.r11 = gpa;
1252 	return 1;
1253 }
1254 
1255 static int tdx_report_fatal_error(struct kvm_vcpu *vcpu)
1256 {
1257 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1258 	u64 *regs = vcpu->run->system_event.data;
1259 	u64 *module_regs = &tdx->vp_enter_args.r8;
1260 	int index = VCPU_REGS_RAX;
1261 
1262 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
1263 	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_TDX_FATAL;
1264 	vcpu->run->system_event.ndata = 16;
1265 
1266 	/* Dump 16 general-purpose registers to userspace in ascending order. */
1267 	regs[index++] = tdx->vp_enter_ret;
1268 	regs[index++] = tdx->vp_enter_args.rcx;
1269 	regs[index++] = tdx->vp_enter_args.rdx;
1270 	regs[index++] = tdx->vp_enter_args.rbx;
1271 	regs[index++] = 0;
1272 	regs[index++] = 0;
1273 	regs[index++] = tdx->vp_enter_args.rsi;
1274 	regs[index] = tdx->vp_enter_args.rdi;
1275 	for (index = 0; index < 8; index++)
1276 		regs[VCPU_REGS_R8 + index] = module_regs[index];
1277 
1278 	return 0;
1279 }
1280 
1281 static int tdx_emulate_cpuid(struct kvm_vcpu *vcpu)
1282 {
1283 	u32 eax, ebx, ecx, edx;
1284 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1285 
1286 	/* EAX and ECX for cpuid is stored in R12 and R13. */
1287 	eax = tdx->vp_enter_args.r12;
1288 	ecx = tdx->vp_enter_args.r13;
1289 
1290 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1291 
1292 	tdx->vp_enter_args.r12 = eax;
1293 	tdx->vp_enter_args.r13 = ebx;
1294 	tdx->vp_enter_args.r14 = ecx;
1295 	tdx->vp_enter_args.r15 = edx;
1296 
1297 	return 1;
1298 }
1299 
1300 static int tdx_complete_pio_out(struct kvm_vcpu *vcpu)
1301 {
1302 	vcpu->arch.pio.count = 0;
1303 	return 1;
1304 }
1305 
1306 static int tdx_complete_pio_in(struct kvm_vcpu *vcpu)
1307 {
1308 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
1309 	unsigned long val = 0;
1310 	int ret;
1311 
1312 	ret = ctxt->ops->pio_in_emulated(ctxt, vcpu->arch.pio.size,
1313 					 vcpu->arch.pio.port, &val, 1);
1314 
1315 	WARN_ON_ONCE(!ret);
1316 
1317 	tdvmcall_set_return_val(vcpu, val);
1318 
1319 	return 1;
1320 }
1321 
1322 static int tdx_emulate_io(struct kvm_vcpu *vcpu)
1323 {
1324 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1325 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
1326 	unsigned long val = 0;
1327 	unsigned int port;
1328 	u64 size, write;
1329 	int ret;
1330 
1331 	++vcpu->stat.io_exits;
1332 
1333 	size = tdx->vp_enter_args.r12;
1334 	write = tdx->vp_enter_args.r13;
1335 	port = tdx->vp_enter_args.r14;
1336 
1337 	if ((write != 0 && write != 1) || (size != 1 && size != 2 && size != 4)) {
1338 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1339 		return 1;
1340 	}
1341 
1342 	if (write) {
1343 		val = tdx->vp_enter_args.r15;
1344 		ret = ctxt->ops->pio_out_emulated(ctxt, size, port, &val, 1);
1345 	} else {
1346 		ret = ctxt->ops->pio_in_emulated(ctxt, size, port, &val, 1);
1347 	}
1348 
1349 	if (!ret)
1350 		vcpu->arch.complete_userspace_io = write ? tdx_complete_pio_out :
1351 							   tdx_complete_pio_in;
1352 	else if (!write)
1353 		tdvmcall_set_return_val(vcpu, val);
1354 
1355 	return ret;
1356 }
1357 
1358 static int tdx_complete_mmio_read(struct kvm_vcpu *vcpu)
1359 {
1360 	unsigned long val = 0;
1361 	gpa_t gpa;
1362 	int size;
1363 
1364 	gpa = vcpu->mmio_fragments[0].gpa;
1365 	size = vcpu->mmio_fragments[0].len;
1366 
1367 	memcpy(&val, vcpu->run->mmio.data, size);
1368 	tdvmcall_set_return_val(vcpu, val);
1369 	trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
1370 	return 1;
1371 }
1372 
1373 static inline int tdx_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, int size,
1374 				 unsigned long val)
1375 {
1376 	if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
1377 		trace_kvm_fast_mmio(gpa);
1378 		return 0;
1379 	}
1380 
1381 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, size, gpa, &val);
1382 	if (kvm_io_bus_write(vcpu, KVM_MMIO_BUS, gpa, size, &val))
1383 		return -EOPNOTSUPP;
1384 
1385 	return 0;
1386 }
1387 
1388 static inline int tdx_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, int size)
1389 {
1390 	unsigned long val;
1391 
1392 	if (kvm_io_bus_read(vcpu, KVM_MMIO_BUS, gpa, size, &val))
1393 		return -EOPNOTSUPP;
1394 
1395 	tdvmcall_set_return_val(vcpu, val);
1396 	trace_kvm_mmio(KVM_TRACE_MMIO_READ, size, gpa, &val);
1397 	return 0;
1398 }
1399 
1400 static int tdx_emulate_mmio(struct kvm_vcpu *vcpu)
1401 {
1402 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1403 	int size, write, r;
1404 	unsigned long val;
1405 	gpa_t gpa;
1406 
1407 	size = tdx->vp_enter_args.r12;
1408 	write = tdx->vp_enter_args.r13;
1409 	gpa = tdx->vp_enter_args.r14;
1410 	val = write ? tdx->vp_enter_args.r15 : 0;
1411 
1412 	if (size != 1 && size != 2 && size != 4 && size != 8)
1413 		goto error;
1414 	if (write != 0 && write != 1)
1415 		goto error;
1416 
1417 	/*
1418 	 * TDG.VP.VMCALL<MMIO> allows only shared GPA, it makes no sense to
1419 	 * do MMIO emulation for private GPA.
1420 	 */
1421 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa) ||
1422 	    vt_is_tdx_private_gpa(vcpu->kvm, gpa + size - 1))
1423 		goto error;
1424 
1425 	gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
1426 
1427 	if (write)
1428 		r = tdx_mmio_write(vcpu, gpa, size, val);
1429 	else
1430 		r = tdx_mmio_read(vcpu, gpa, size);
1431 	if (!r)
1432 		/* Kernel completed device emulation. */
1433 		return 1;
1434 
1435 	/* Request the device emulation to userspace device model. */
1436 	vcpu->mmio_is_write = write;
1437 	if (!write)
1438 		vcpu->arch.complete_userspace_io = tdx_complete_mmio_read;
1439 
1440 	vcpu->run->mmio.phys_addr = gpa;
1441 	vcpu->run->mmio.len = size;
1442 	vcpu->run->mmio.is_write = write;
1443 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
1444 
1445 	if (write) {
1446 		memcpy(vcpu->run->mmio.data, &val, size);
1447 	} else {
1448 		vcpu->mmio_fragments[0].gpa = gpa;
1449 		vcpu->mmio_fragments[0].len = size;
1450 		trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, size, gpa, NULL);
1451 	}
1452 	return 0;
1453 
1454 error:
1455 	tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1456 	return 1;
1457 }
1458 
1459 static int tdx_complete_get_td_vm_call_info(struct kvm_vcpu *vcpu)
1460 {
1461 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1462 
1463 	tdvmcall_set_return_code(vcpu, vcpu->run->tdx.get_tdvmcall_info.ret);
1464 
1465 	/*
1466 	 * For now, there is no TDVMCALL beyond GHCI base API supported by KVM
1467 	 * directly without the support from userspace, just set the value
1468 	 * returned from userspace.
1469 	 */
1470 	tdx->vp_enter_args.r11 = vcpu->run->tdx.get_tdvmcall_info.r11;
1471 	tdx->vp_enter_args.r12 = vcpu->run->tdx.get_tdvmcall_info.r12;
1472 	tdx->vp_enter_args.r13 = vcpu->run->tdx.get_tdvmcall_info.r13;
1473 	tdx->vp_enter_args.r14 = vcpu->run->tdx.get_tdvmcall_info.r14;
1474 
1475 	return 1;
1476 }
1477 
1478 static int tdx_get_td_vm_call_info(struct kvm_vcpu *vcpu)
1479 {
1480 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1481 
1482 	switch (tdx->vp_enter_args.r12) {
1483 	case 0:
1484 		tdx->vp_enter_args.r11 = 0;
1485 		tdx->vp_enter_args.r12 = 0;
1486 		tdx->vp_enter_args.r13 = 0;
1487 		tdx->vp_enter_args.r14 = 0;
1488 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUCCESS);
1489 		return 1;
1490 	case 1:
1491 		vcpu->run->tdx.get_tdvmcall_info.leaf = tdx->vp_enter_args.r12;
1492 		vcpu->run->exit_reason = KVM_EXIT_TDX;
1493 		vcpu->run->tdx.flags = 0;
1494 		vcpu->run->tdx.nr = TDVMCALL_GET_TD_VM_CALL_INFO;
1495 		vcpu->run->tdx.get_tdvmcall_info.ret = TDVMCALL_STATUS_SUCCESS;
1496 		vcpu->run->tdx.get_tdvmcall_info.r11 = 0;
1497 		vcpu->run->tdx.get_tdvmcall_info.r12 = 0;
1498 		vcpu->run->tdx.get_tdvmcall_info.r13 = 0;
1499 		vcpu->run->tdx.get_tdvmcall_info.r14 = 0;
1500 		vcpu->arch.complete_userspace_io = tdx_complete_get_td_vm_call_info;
1501 		return 0;
1502 	default:
1503 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1504 		return 1;
1505 	}
1506 }
1507 
1508 static int tdx_complete_simple(struct kvm_vcpu *vcpu)
1509 {
1510 	tdvmcall_set_return_code(vcpu, vcpu->run->tdx.unknown.ret);
1511 	return 1;
1512 }
1513 
1514 static int tdx_get_quote(struct kvm_vcpu *vcpu)
1515 {
1516 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1517 	u64 gpa = tdx->vp_enter_args.r12;
1518 	u64 size = tdx->vp_enter_args.r13;
1519 
1520 	/* The gpa of buffer must have shared bit set. */
1521 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
1522 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1523 		return 1;
1524 	}
1525 
1526 	vcpu->run->exit_reason = KVM_EXIT_TDX;
1527 	vcpu->run->tdx.flags = 0;
1528 	vcpu->run->tdx.nr = TDVMCALL_GET_QUOTE;
1529 	vcpu->run->tdx.get_quote.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1530 	vcpu->run->tdx.get_quote.gpa = gpa & ~gfn_to_gpa(kvm_gfn_direct_bits(tdx->vcpu.kvm));
1531 	vcpu->run->tdx.get_quote.size = size;
1532 
1533 	vcpu->arch.complete_userspace_io = tdx_complete_simple;
1534 
1535 	return 0;
1536 }
1537 
1538 static int tdx_setup_event_notify_interrupt(struct kvm_vcpu *vcpu)
1539 {
1540 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1541 	u64 vector = tdx->vp_enter_args.r12;
1542 
1543 	if (vector < 32 || vector > 255) {
1544 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
1545 		return 1;
1546 	}
1547 
1548 	vcpu->run->exit_reason = KVM_EXIT_TDX;
1549 	vcpu->run->tdx.flags = 0;
1550 	vcpu->run->tdx.nr = TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT;
1551 	vcpu->run->tdx.setup_event_notify.ret = TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED;
1552 	vcpu->run->tdx.setup_event_notify.vector = vector;
1553 
1554 	vcpu->arch.complete_userspace_io = tdx_complete_simple;
1555 
1556 	return 0;
1557 }
1558 
1559 static int handle_tdvmcall(struct kvm_vcpu *vcpu)
1560 {
1561 	switch (tdvmcall_leaf(vcpu)) {
1562 	case TDVMCALL_MAP_GPA:
1563 		return tdx_map_gpa(vcpu);
1564 	case TDVMCALL_REPORT_FATAL_ERROR:
1565 		return tdx_report_fatal_error(vcpu);
1566 	case TDVMCALL_GET_TD_VM_CALL_INFO:
1567 		return tdx_get_td_vm_call_info(vcpu);
1568 	case TDVMCALL_GET_QUOTE:
1569 		return tdx_get_quote(vcpu);
1570 	case TDVMCALL_SETUP_EVENT_NOTIFY_INTERRUPT:
1571 		return tdx_setup_event_notify_interrupt(vcpu);
1572 	default:
1573 		break;
1574 	}
1575 
1576 	tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_SUBFUNC_UNSUPPORTED);
1577 	return 1;
1578 }
1579 
1580 void tdx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int pgd_level)
1581 {
1582 	u64 shared_bit = (pgd_level == 5) ? TDX_SHARED_BIT_PWL_5 :
1583 			  TDX_SHARED_BIT_PWL_4;
1584 
1585 	if (KVM_BUG_ON(shared_bit != kvm_gfn_direct_bits(vcpu->kvm), vcpu->kvm))
1586 		return;
1587 
1588 	td_vmcs_write64(to_tdx(vcpu), SHARED_EPT_POINTER, root_hpa);
1589 }
1590 
1591 static void tdx_unpin(struct kvm *kvm, struct page *page)
1592 {
1593 	put_page(page);
1594 }
1595 
1596 static int tdx_mem_page_aug(struct kvm *kvm, gfn_t gfn,
1597 			    enum pg_level level, struct page *page)
1598 {
1599 	int tdx_level = pg_level_to_tdx_sept_level(level);
1600 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1601 	gpa_t gpa = gfn_to_gpa(gfn);
1602 	u64 entry, level_state;
1603 	u64 err;
1604 
1605 	err = tdh_mem_page_aug(&kvm_tdx->td, gpa, tdx_level, page, &entry, &level_state);
1606 	if (unlikely(tdx_operand_busy(err))) {
1607 		tdx_unpin(kvm, page);
1608 		return -EBUSY;
1609 	}
1610 
1611 	if (KVM_BUG_ON(err, kvm)) {
1612 		pr_tdx_error_2(TDH_MEM_PAGE_AUG, err, entry, level_state);
1613 		tdx_unpin(kvm, page);
1614 		return -EIO;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 /*
1621  * KVM_TDX_INIT_MEM_REGION calls kvm_gmem_populate() to map guest pages; the
1622  * callback tdx_gmem_post_populate() then maps pages into private memory.
1623  * through the a seamcall TDH.MEM.PAGE.ADD().  The SEAMCALL also requires the
1624  * private EPT structures for the page to have been built before, which is
1625  * done via kvm_tdp_map_page(). nr_premapped counts the number of pages that
1626  * were added to the EPT structures but not added with TDH.MEM.PAGE.ADD().
1627  * The counter has to be zero on KVM_TDX_FINALIZE_VM, to ensure that there
1628  * are no half-initialized shared EPT pages.
1629  */
1630 static int tdx_mem_page_record_premap_cnt(struct kvm *kvm, gfn_t gfn,
1631 					  enum pg_level level, kvm_pfn_t pfn)
1632 {
1633 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1634 
1635 	if (KVM_BUG_ON(kvm->arch.pre_fault_allowed, kvm))
1636 		return -EINVAL;
1637 
1638 	/* nr_premapped will be decreased when tdh_mem_page_add() is called. */
1639 	atomic64_inc(&kvm_tdx->nr_premapped);
1640 	return 0;
1641 }
1642 
1643 int tdx_sept_set_private_spte(struct kvm *kvm, gfn_t gfn,
1644 			      enum pg_level level, kvm_pfn_t pfn)
1645 {
1646 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1647 	struct page *page = pfn_to_page(pfn);
1648 
1649 	/* TODO: handle large pages. */
1650 	if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
1651 		return -EINVAL;
1652 
1653 	/*
1654 	 * Because guest_memfd doesn't support page migration with
1655 	 * a_ops->migrate_folio (yet), no callback is triggered for KVM on page
1656 	 * migration.  Until guest_memfd supports page migration, prevent page
1657 	 * migration.
1658 	 * TODO: Once guest_memfd introduces callback on page migration,
1659 	 * implement it and remove get_page/put_page().
1660 	 */
1661 	get_page(page);
1662 
1663 	/*
1664 	 * Read 'pre_fault_allowed' before 'kvm_tdx->state'; see matching
1665 	 * barrier in tdx_td_finalize().
1666 	 */
1667 	smp_rmb();
1668 	if (likely(kvm_tdx->state == TD_STATE_RUNNABLE))
1669 		return tdx_mem_page_aug(kvm, gfn, level, page);
1670 
1671 	return tdx_mem_page_record_premap_cnt(kvm, gfn, level, pfn);
1672 }
1673 
1674 static int tdx_sept_drop_private_spte(struct kvm *kvm, gfn_t gfn,
1675 				      enum pg_level level, struct page *page)
1676 {
1677 	int tdx_level = pg_level_to_tdx_sept_level(level);
1678 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1679 	gpa_t gpa = gfn_to_gpa(gfn);
1680 	u64 err, entry, level_state;
1681 
1682 	/* TODO: handle large pages. */
1683 	if (KVM_BUG_ON(level != PG_LEVEL_4K, kvm))
1684 		return -EINVAL;
1685 
1686 	if (KVM_BUG_ON(!is_hkid_assigned(kvm_tdx), kvm))
1687 		return -EINVAL;
1688 
1689 	/*
1690 	 * When zapping private page, write lock is held. So no race condition
1691 	 * with other vcpu sept operation.
1692 	 * Race with TDH.VP.ENTER due to (0-step mitigation) and Guest TDCALLs.
1693 	 */
1694 	err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
1695 				  &level_state);
1696 
1697 	if (unlikely(tdx_operand_busy(err))) {
1698 		/*
1699 		 * The second retry is expected to succeed after kicking off all
1700 		 * other vCPUs and prevent them from invoking TDH.VP.ENTER.
1701 		 */
1702 		tdx_no_vcpus_enter_start(kvm);
1703 		err = tdh_mem_page_remove(&kvm_tdx->td, gpa, tdx_level, &entry,
1704 					  &level_state);
1705 		tdx_no_vcpus_enter_stop(kvm);
1706 	}
1707 
1708 	if (KVM_BUG_ON(err, kvm)) {
1709 		pr_tdx_error_2(TDH_MEM_PAGE_REMOVE, err, entry, level_state);
1710 		return -EIO;
1711 	}
1712 
1713 	err = tdh_phymem_page_wbinvd_hkid((u16)kvm_tdx->hkid, page);
1714 
1715 	if (KVM_BUG_ON(err, kvm)) {
1716 		pr_tdx_error(TDH_PHYMEM_PAGE_WBINVD, err);
1717 		return -EIO;
1718 	}
1719 	tdx_clear_page(page);
1720 	tdx_unpin(kvm, page);
1721 	return 0;
1722 }
1723 
1724 int tdx_sept_link_private_spt(struct kvm *kvm, gfn_t gfn,
1725 			      enum pg_level level, void *private_spt)
1726 {
1727 	int tdx_level = pg_level_to_tdx_sept_level(level);
1728 	gpa_t gpa = gfn_to_gpa(gfn);
1729 	struct page *page = virt_to_page(private_spt);
1730 	u64 err, entry, level_state;
1731 
1732 	err = tdh_mem_sept_add(&to_kvm_tdx(kvm)->td, gpa, tdx_level, page, &entry,
1733 			       &level_state);
1734 	if (unlikely(tdx_operand_busy(err)))
1735 		return -EBUSY;
1736 
1737 	if (KVM_BUG_ON(err, kvm)) {
1738 		pr_tdx_error_2(TDH_MEM_SEPT_ADD, err, entry, level_state);
1739 		return -EIO;
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Check if the error returned from a SEPT zap SEAMCALL is due to that a page is
1747  * mapped by KVM_TDX_INIT_MEM_REGION without tdh_mem_page_add() being called
1748  * successfully.
1749  *
1750  * Since tdh_mem_sept_add() must have been invoked successfully before a
1751  * non-leaf entry present in the mirrored page table, the SEPT ZAP related
1752  * SEAMCALLs should not encounter err TDX_EPT_WALK_FAILED. They should instead
1753  * find TDX_EPT_ENTRY_STATE_INCORRECT due to an empty leaf entry found in the
1754  * SEPT.
1755  *
1756  * Further check if the returned entry from SEPT walking is with RWX permissions
1757  * to filter out anything unexpected.
1758  *
1759  * Note: @level is pg_level, not the tdx_level. The tdx_level extracted from
1760  * level_state returned from a SEAMCALL error is the same as that passed into
1761  * the SEAMCALL.
1762  */
1763 static int tdx_is_sept_zap_err_due_to_premap(struct kvm_tdx *kvm_tdx, u64 err,
1764 					     u64 entry, int level)
1765 {
1766 	if (!err || kvm_tdx->state == TD_STATE_RUNNABLE)
1767 		return false;
1768 
1769 	if (err != (TDX_EPT_ENTRY_STATE_INCORRECT | TDX_OPERAND_ID_RCX))
1770 		return false;
1771 
1772 	if ((is_last_spte(entry, level) && (entry & VMX_EPT_RWX_MASK)))
1773 		return false;
1774 
1775 	return true;
1776 }
1777 
1778 static int tdx_sept_zap_private_spte(struct kvm *kvm, gfn_t gfn,
1779 				     enum pg_level level, struct page *page)
1780 {
1781 	int tdx_level = pg_level_to_tdx_sept_level(level);
1782 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1783 	gpa_t gpa = gfn_to_gpa(gfn) & KVM_HPAGE_MASK(level);
1784 	u64 err, entry, level_state;
1785 
1786 	/* For now large page isn't supported yet. */
1787 	WARN_ON_ONCE(level != PG_LEVEL_4K);
1788 
1789 	err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
1790 
1791 	if (unlikely(tdx_operand_busy(err))) {
1792 		/* After no vCPUs enter, the second retry is expected to succeed */
1793 		tdx_no_vcpus_enter_start(kvm);
1794 		err = tdh_mem_range_block(&kvm_tdx->td, gpa, tdx_level, &entry, &level_state);
1795 		tdx_no_vcpus_enter_stop(kvm);
1796 	}
1797 	if (tdx_is_sept_zap_err_due_to_premap(kvm_tdx, err, entry, level) &&
1798 	    !KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm)) {
1799 		atomic64_dec(&kvm_tdx->nr_premapped);
1800 		tdx_unpin(kvm, page);
1801 		return 0;
1802 	}
1803 
1804 	if (KVM_BUG_ON(err, kvm)) {
1805 		pr_tdx_error_2(TDH_MEM_RANGE_BLOCK, err, entry, level_state);
1806 		return -EIO;
1807 	}
1808 	return 1;
1809 }
1810 
1811 /*
1812  * Ensure shared and private EPTs to be flushed on all vCPUs.
1813  * tdh_mem_track() is the only caller that increases TD epoch. An increase in
1814  * the TD epoch (e.g., to value "N + 1") is successful only if no vCPUs are
1815  * running in guest mode with the value "N - 1".
1816  *
1817  * A successful execution of tdh_mem_track() ensures that vCPUs can only run in
1818  * guest mode with TD epoch value "N" if no TD exit occurs after the TD epoch
1819  * being increased to "N + 1".
1820  *
1821  * Kicking off all vCPUs after that further results in no vCPUs can run in guest
1822  * mode with TD epoch value "N", which unblocks the next tdh_mem_track() (e.g.
1823  * to increase TD epoch to "N + 2").
1824  *
1825  * TDX module will flush EPT on the next TD enter and make vCPUs to run in
1826  * guest mode with TD epoch value "N + 1".
1827  *
1828  * kvm_make_all_cpus_request() guarantees all vCPUs are out of guest mode by
1829  * waiting empty IPI handler ack_kick().
1830  *
1831  * No action is required to the vCPUs being kicked off since the kicking off
1832  * occurs certainly after TD epoch increment and before the next
1833  * tdh_mem_track().
1834  */
1835 static void tdx_track(struct kvm *kvm)
1836 {
1837 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1838 	u64 err;
1839 
1840 	/* If TD isn't finalized, it's before any vcpu running. */
1841 	if (unlikely(kvm_tdx->state != TD_STATE_RUNNABLE))
1842 		return;
1843 
1844 	lockdep_assert_held_write(&kvm->mmu_lock);
1845 
1846 	err = tdh_mem_track(&kvm_tdx->td);
1847 	if (unlikely(tdx_operand_busy(err))) {
1848 		/* After no vCPUs enter, the second retry is expected to succeed */
1849 		tdx_no_vcpus_enter_start(kvm);
1850 		err = tdh_mem_track(&kvm_tdx->td);
1851 		tdx_no_vcpus_enter_stop(kvm);
1852 	}
1853 
1854 	if (KVM_BUG_ON(err, kvm))
1855 		pr_tdx_error(TDH_MEM_TRACK, err);
1856 
1857 	kvm_make_all_cpus_request(kvm, KVM_REQ_OUTSIDE_GUEST_MODE);
1858 }
1859 
1860 int tdx_sept_free_private_spt(struct kvm *kvm, gfn_t gfn,
1861 			      enum pg_level level, void *private_spt)
1862 {
1863 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
1864 
1865 	/*
1866 	 * free_external_spt() is only called after hkid is freed when TD is
1867 	 * tearing down.
1868 	 * KVM doesn't (yet) zap page table pages in mirror page table while
1869 	 * TD is active, though guest pages mapped in mirror page table could be
1870 	 * zapped during TD is active, e.g. for shared <-> private conversion
1871 	 * and slot move/deletion.
1872 	 */
1873 	if (KVM_BUG_ON(is_hkid_assigned(kvm_tdx), kvm))
1874 		return -EINVAL;
1875 
1876 	/*
1877 	 * The HKID assigned to this TD was already freed and cache was
1878 	 * already flushed. We don't have to flush again.
1879 	 */
1880 	return tdx_reclaim_page(virt_to_page(private_spt));
1881 }
1882 
1883 int tdx_sept_remove_private_spte(struct kvm *kvm, gfn_t gfn,
1884 				 enum pg_level level, kvm_pfn_t pfn)
1885 {
1886 	struct page *page = pfn_to_page(pfn);
1887 	int ret;
1888 
1889 	/*
1890 	 * HKID is released after all private pages have been removed, and set
1891 	 * before any might be populated. Warn if zapping is attempted when
1892 	 * there can't be anything populated in the private EPT.
1893 	 */
1894 	if (KVM_BUG_ON(!is_hkid_assigned(to_kvm_tdx(kvm)), kvm))
1895 		return -EINVAL;
1896 
1897 	ret = tdx_sept_zap_private_spte(kvm, gfn, level, page);
1898 	if (ret <= 0)
1899 		return ret;
1900 
1901 	/*
1902 	 * TDX requires TLB tracking before dropping private page.  Do
1903 	 * it here, although it is also done later.
1904 	 */
1905 	tdx_track(kvm);
1906 
1907 	return tdx_sept_drop_private_spte(kvm, gfn, level, page);
1908 }
1909 
1910 void tdx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
1911 			   int trig_mode, int vector)
1912 {
1913 	struct kvm_vcpu *vcpu = apic->vcpu;
1914 	struct vcpu_tdx *tdx = to_tdx(vcpu);
1915 
1916 	/* TDX supports only posted interrupt.  No lapic emulation. */
1917 	__vmx_deliver_posted_interrupt(vcpu, &tdx->vt.pi_desc, vector);
1918 
1919 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
1920 }
1921 
1922 static inline bool tdx_is_sept_violation_unexpected_pending(struct kvm_vcpu *vcpu)
1923 {
1924 	u64 eeq_type = to_tdx(vcpu)->ext_exit_qualification & TDX_EXT_EXIT_QUAL_TYPE_MASK;
1925 	u64 eq = vmx_get_exit_qual(vcpu);
1926 
1927 	if (eeq_type != TDX_EXT_EXIT_QUAL_TYPE_PENDING_EPT_VIOLATION)
1928 		return false;
1929 
1930 	return !(eq & EPT_VIOLATION_PROT_MASK) && !(eq & EPT_VIOLATION_EXEC_FOR_RING3_LIN);
1931 }
1932 
1933 static int tdx_handle_ept_violation(struct kvm_vcpu *vcpu)
1934 {
1935 	unsigned long exit_qual;
1936 	gpa_t gpa = to_tdx(vcpu)->exit_gpa;
1937 	bool local_retry = false;
1938 	int ret;
1939 
1940 	if (vt_is_tdx_private_gpa(vcpu->kvm, gpa)) {
1941 		if (tdx_is_sept_violation_unexpected_pending(vcpu)) {
1942 			pr_warn("Guest access before accepting 0x%llx on vCPU %d\n",
1943 				gpa, vcpu->vcpu_id);
1944 			kvm_vm_dead(vcpu->kvm);
1945 			return -EIO;
1946 		}
1947 		/*
1948 		 * Always treat SEPT violations as write faults.  Ignore the
1949 		 * EXIT_QUALIFICATION reported by TDX-SEAM for SEPT violations.
1950 		 * TD private pages are always RWX in the SEPT tables,
1951 		 * i.e. they're always mapped writable.  Just as importantly,
1952 		 * treating SEPT violations as write faults is necessary to
1953 		 * avoid COW allocations, which will cause TDAUGPAGE failures
1954 		 * due to aliasing a single HPA to multiple GPAs.
1955 		 */
1956 		exit_qual = EPT_VIOLATION_ACC_WRITE;
1957 
1958 		/* Only private GPA triggers zero-step mitigation */
1959 		local_retry = true;
1960 	} else {
1961 		exit_qual = vmx_get_exit_qual(vcpu);
1962 		/*
1963 		 * EPT violation due to instruction fetch should never be
1964 		 * triggered from shared memory in TDX guest.  If such EPT
1965 		 * violation occurs, treat it as broken hardware.
1966 		 */
1967 		if (KVM_BUG_ON(exit_qual & EPT_VIOLATION_ACC_INSTR, vcpu->kvm))
1968 			return -EIO;
1969 	}
1970 
1971 	trace_kvm_page_fault(vcpu, gpa, exit_qual);
1972 
1973 	/*
1974 	 * To minimize TDH.VP.ENTER invocations, retry locally for private GPA
1975 	 * mapping in TDX.
1976 	 *
1977 	 * KVM may return RET_PF_RETRY for private GPA due to
1978 	 * - contentions when atomically updating SPTEs of the mirror page table
1979 	 * - in-progress GFN invalidation or memslot removal.
1980 	 * - TDX_OPERAND_BUSY error from TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD,
1981 	 *   caused by contentions with TDH.VP.ENTER (with zero-step mitigation)
1982 	 *   or certain TDCALLs.
1983 	 *
1984 	 * If TDH.VP.ENTER is invoked more times than the threshold set by the
1985 	 * TDX module before KVM resolves the private GPA mapping, the TDX
1986 	 * module will activate zero-step mitigation during TDH.VP.ENTER. This
1987 	 * process acquires an SEPT tree lock in the TDX module, leading to
1988 	 * further contentions with TDH.MEM.PAGE.AUG or TDH.MEM.SEPT.ADD
1989 	 * operations on other vCPUs.
1990 	 *
1991 	 * Breaking out of local retries for kvm_vcpu_has_events() is for
1992 	 * interrupt injection. kvm_vcpu_has_events() should not see pending
1993 	 * events for TDX. Since KVM can't determine if IRQs (or NMIs) are
1994 	 * blocked by TDs, false positives are inevitable i.e., KVM may re-enter
1995 	 * the guest even if the IRQ/NMI can't be delivered.
1996 	 *
1997 	 * Note: even without breaking out of local retries, zero-step
1998 	 * mitigation may still occur due to
1999 	 * - invoking of TDH.VP.ENTER after KVM_EXIT_MEMORY_FAULT,
2000 	 * - a single RIP causing EPT violations for more GFNs than the
2001 	 *   threshold count.
2002 	 * This is safe, as triggering zero-step mitigation only introduces
2003 	 * contentions to page installation SEAMCALLs on other vCPUs, which will
2004 	 * handle retries locally in their EPT violation handlers.
2005 	 */
2006 	while (1) {
2007 		ret = __vmx_handle_ept_violation(vcpu, gpa, exit_qual);
2008 
2009 		if (ret != RET_PF_RETRY || !local_retry)
2010 			break;
2011 
2012 		if (kvm_vcpu_has_events(vcpu) || signal_pending(current))
2013 			break;
2014 
2015 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
2016 			ret = -EIO;
2017 			break;
2018 		}
2019 
2020 		cond_resched();
2021 	}
2022 	return ret;
2023 }
2024 
2025 int tdx_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2026 {
2027 	if (err) {
2028 		tdvmcall_set_return_code(vcpu, TDVMCALL_STATUS_INVALID_OPERAND);
2029 		return 1;
2030 	}
2031 
2032 	if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MSR_READ)
2033 		tdvmcall_set_return_val(vcpu, kvm_read_edx_eax(vcpu));
2034 
2035 	return 1;
2036 }
2037 
2038 
2039 int tdx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t fastpath)
2040 {
2041 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2042 	u64 vp_enter_ret = tdx->vp_enter_ret;
2043 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
2044 
2045 	if (fastpath != EXIT_FASTPATH_NONE)
2046 		return 1;
2047 
2048 	if (unlikely(vp_enter_ret == EXIT_REASON_EPT_MISCONFIG)) {
2049 		KVM_BUG_ON(1, vcpu->kvm);
2050 		return -EIO;
2051 	}
2052 
2053 	/*
2054 	 * Handle TDX SW errors, including TDX_SEAMCALL_UD, TDX_SEAMCALL_GP and
2055 	 * TDX_SEAMCALL_VMFAILINVALID.
2056 	 */
2057 	if (unlikely((vp_enter_ret & TDX_SW_ERROR) == TDX_SW_ERROR)) {
2058 		KVM_BUG_ON(!kvm_rebooting, vcpu->kvm);
2059 		goto unhandled_exit;
2060 	}
2061 
2062 	if (unlikely(tdx_failed_vmentry(vcpu))) {
2063 		/*
2064 		 * If the guest state is protected, that means off-TD debug is
2065 		 * not enabled, TDX_NON_RECOVERABLE must be set.
2066 		 */
2067 		WARN_ON_ONCE(vcpu->arch.guest_state_protected &&
2068 				!(vp_enter_ret & TDX_NON_RECOVERABLE));
2069 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2070 		vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason.full;
2071 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
2072 		return 0;
2073 	}
2074 
2075 	if (unlikely(vp_enter_ret & (TDX_ERROR | TDX_NON_RECOVERABLE)) &&
2076 		exit_reason.basic != EXIT_REASON_TRIPLE_FAULT) {
2077 		kvm_pr_unimpl("TD vp_enter_ret 0x%llx\n", vp_enter_ret);
2078 		goto unhandled_exit;
2079 	}
2080 
2081 	WARN_ON_ONCE(exit_reason.basic != EXIT_REASON_TRIPLE_FAULT &&
2082 		     (vp_enter_ret & TDX_SEAMCALL_STATUS_MASK) != TDX_SUCCESS);
2083 
2084 	switch (exit_reason.basic) {
2085 	case EXIT_REASON_TRIPLE_FAULT:
2086 		vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2087 		vcpu->mmio_needed = 0;
2088 		return 0;
2089 	case EXIT_REASON_EXCEPTION_NMI:
2090 		return tdx_handle_exception_nmi(vcpu);
2091 	case EXIT_REASON_EXTERNAL_INTERRUPT:
2092 		++vcpu->stat.irq_exits;
2093 		return 1;
2094 	case EXIT_REASON_CPUID:
2095 		return tdx_emulate_cpuid(vcpu);
2096 	case EXIT_REASON_HLT:
2097 		return kvm_emulate_halt_noskip(vcpu);
2098 	case EXIT_REASON_TDCALL:
2099 		return handle_tdvmcall(vcpu);
2100 	case EXIT_REASON_VMCALL:
2101 		return tdx_emulate_vmcall(vcpu);
2102 	case EXIT_REASON_IO_INSTRUCTION:
2103 		return tdx_emulate_io(vcpu);
2104 	case EXIT_REASON_MSR_READ:
2105 		kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
2106 		return kvm_emulate_rdmsr(vcpu);
2107 	case EXIT_REASON_MSR_WRITE:
2108 		kvm_rcx_write(vcpu, tdx->vp_enter_args.r12);
2109 		kvm_rax_write(vcpu, tdx->vp_enter_args.r13 & -1u);
2110 		kvm_rdx_write(vcpu, tdx->vp_enter_args.r13 >> 32);
2111 		return kvm_emulate_wrmsr(vcpu);
2112 	case EXIT_REASON_EPT_MISCONFIG:
2113 		return tdx_emulate_mmio(vcpu);
2114 	case EXIT_REASON_EPT_VIOLATION:
2115 		return tdx_handle_ept_violation(vcpu);
2116 	case EXIT_REASON_OTHER_SMI:
2117 		/*
2118 		 * Unlike VMX, SMI in SEAM non-root mode (i.e. when
2119 		 * TD guest vCPU is running) will cause VM exit to TDX module,
2120 		 * then SEAMRET to KVM.  Once it exits to KVM, SMI is delivered
2121 		 * and handled by kernel handler right away.
2122 		 *
2123 		 * The Other SMI exit can also be caused by the SEAM non-root
2124 		 * machine check delivered via Machine Check System Management
2125 		 * Interrupt (MSMI), but it has already been handled by the
2126 		 * kernel machine check handler, i.e., the memory page has been
2127 		 * marked as poisoned and it won't be freed to the free list
2128 		 * when the TDX guest is terminated (the TDX module marks the
2129 		 * guest as dead and prevent it from further running when
2130 		 * machine check happens in SEAM non-root).
2131 		 *
2132 		 * - A MSMI will not reach here, it's handled as non_recoverable
2133 		 *   case above.
2134 		 * - If it's not an MSMI, no need to do anything here.
2135 		 */
2136 		return 1;
2137 	default:
2138 		break;
2139 	}
2140 
2141 unhandled_exit:
2142 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2143 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2144 	vcpu->run->internal.ndata = 2;
2145 	vcpu->run->internal.data[0] = vp_enter_ret;
2146 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2147 	return 0;
2148 }
2149 
2150 void tdx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
2151 		u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
2152 {
2153 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2154 
2155 	*reason = tdx->vt.exit_reason.full;
2156 	if (*reason != -1u) {
2157 		*info1 = vmx_get_exit_qual(vcpu);
2158 		*info2 = tdx->ext_exit_qualification;
2159 		*intr_info = vmx_get_intr_info(vcpu);
2160 	} else {
2161 		*info1 = 0;
2162 		*info2 = 0;
2163 		*intr_info = 0;
2164 	}
2165 
2166 	*error_code = 0;
2167 }
2168 
2169 bool tdx_has_emulated_msr(u32 index)
2170 {
2171 	switch (index) {
2172 	case MSR_IA32_UCODE_REV:
2173 	case MSR_IA32_ARCH_CAPABILITIES:
2174 	case MSR_IA32_POWER_CTL:
2175 	case MSR_IA32_CR_PAT:
2176 	case MSR_MTRRcap:
2177 	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
2178 	case MSR_MTRRdefType:
2179 	case MSR_IA32_TSC_DEADLINE:
2180 	case MSR_IA32_MISC_ENABLE:
2181 	case MSR_PLATFORM_INFO:
2182 	case MSR_MISC_FEATURES_ENABLES:
2183 	case MSR_IA32_APICBASE:
2184 	case MSR_EFER:
2185 	case MSR_IA32_FEAT_CTL:
2186 	case MSR_IA32_MCG_CAP:
2187 	case MSR_IA32_MCG_STATUS:
2188 	case MSR_IA32_MCG_CTL:
2189 	case MSR_IA32_MCG_EXT_CTL:
2190 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2191 	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
2192 		/* MSR_IA32_MCx_{CTL, STATUS, ADDR, MISC, CTL2} */
2193 	case MSR_KVM_POLL_CONTROL:
2194 		return true;
2195 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
2196 		/*
2197 		 * x2APIC registers that are virtualized by the CPU can't be
2198 		 * emulated, KVM doesn't have access to the virtual APIC page.
2199 		 */
2200 		switch (index) {
2201 		case X2APIC_MSR(APIC_TASKPRI):
2202 		case X2APIC_MSR(APIC_PROCPRI):
2203 		case X2APIC_MSR(APIC_EOI):
2204 		case X2APIC_MSR(APIC_ISR) ... X2APIC_MSR(APIC_ISR + APIC_ISR_NR):
2205 		case X2APIC_MSR(APIC_TMR) ... X2APIC_MSR(APIC_TMR + APIC_ISR_NR):
2206 		case X2APIC_MSR(APIC_IRR) ... X2APIC_MSR(APIC_IRR + APIC_ISR_NR):
2207 			return false;
2208 		default:
2209 			return true;
2210 		}
2211 	default:
2212 		return false;
2213 	}
2214 }
2215 
2216 static bool tdx_is_read_only_msr(u32 index)
2217 {
2218 	return  index == MSR_IA32_APICBASE || index == MSR_EFER ||
2219 		index == MSR_IA32_FEAT_CTL;
2220 }
2221 
2222 int tdx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2223 {
2224 	switch (msr->index) {
2225 	case MSR_IA32_FEAT_CTL:
2226 		/*
2227 		 * MCE and MCA are advertised via cpuid. Guest kernel could
2228 		 * check if LMCE is enabled or not.
2229 		 */
2230 		msr->data = FEAT_CTL_LOCKED;
2231 		if (vcpu->arch.mcg_cap & MCG_LMCE_P)
2232 			msr->data |= FEAT_CTL_LMCE_ENABLED;
2233 		return 0;
2234 	case MSR_IA32_MCG_EXT_CTL:
2235 		if (!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P))
2236 			return 1;
2237 		msr->data = vcpu->arch.mcg_ext_ctl;
2238 		return 0;
2239 	default:
2240 		if (!tdx_has_emulated_msr(msr->index))
2241 			return 1;
2242 
2243 		return kvm_get_msr_common(vcpu, msr);
2244 	}
2245 }
2246 
2247 int tdx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2248 {
2249 	switch (msr->index) {
2250 	case MSR_IA32_MCG_EXT_CTL:
2251 		if ((!msr->host_initiated && !(vcpu->arch.mcg_cap & MCG_LMCE_P)) ||
2252 		    (msr->data & ~MCG_EXT_CTL_LMCE_EN))
2253 			return 1;
2254 		vcpu->arch.mcg_ext_ctl = msr->data;
2255 		return 0;
2256 	default:
2257 		if (tdx_is_read_only_msr(msr->index))
2258 			return 1;
2259 
2260 		if (!tdx_has_emulated_msr(msr->index))
2261 			return 1;
2262 
2263 		return kvm_set_msr_common(vcpu, msr);
2264 	}
2265 }
2266 
2267 static int tdx_get_capabilities(struct kvm_tdx_cmd *cmd)
2268 {
2269 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2270 	struct kvm_tdx_capabilities __user *user_caps;
2271 	struct kvm_tdx_capabilities *caps = NULL;
2272 	u32 nr_user_entries;
2273 	int ret = 0;
2274 
2275 	/* flags is reserved for future use */
2276 	if (cmd->flags)
2277 		return -EINVAL;
2278 
2279 	caps = kzalloc(sizeof(*caps) +
2280 		       sizeof(struct kvm_cpuid_entry2) * td_conf->num_cpuid_config,
2281 		       GFP_KERNEL);
2282 	if (!caps)
2283 		return -ENOMEM;
2284 
2285 	user_caps = u64_to_user_ptr(cmd->data);
2286 	if (get_user(nr_user_entries, &user_caps->cpuid.nent)) {
2287 		ret = -EFAULT;
2288 		goto out;
2289 	}
2290 
2291 	if (nr_user_entries < td_conf->num_cpuid_config) {
2292 		ret = -E2BIG;
2293 		goto out;
2294 	}
2295 
2296 	ret = init_kvm_tdx_caps(td_conf, caps);
2297 	if (ret)
2298 		goto out;
2299 
2300 	if (copy_to_user(user_caps, caps, sizeof(*caps))) {
2301 		ret = -EFAULT;
2302 		goto out;
2303 	}
2304 
2305 	if (copy_to_user(user_caps->cpuid.entries, caps->cpuid.entries,
2306 			 caps->cpuid.nent *
2307 			 sizeof(caps->cpuid.entries[0])))
2308 		ret = -EFAULT;
2309 
2310 out:
2311 	/* kfree() accepts NULL. */
2312 	kfree(caps);
2313 	return ret;
2314 }
2315 
2316 /*
2317  * KVM reports guest physical address in CPUID.0x800000008.EAX[23:16], which is
2318  * similar to TDX's GPAW. Use this field as the interface for userspace to
2319  * configure the GPAW and EPT level for TDs.
2320  *
2321  * Only values 48 and 52 are supported. Value 52 means GPAW-52 and EPT level
2322  * 5, Value 48 means GPAW-48 and EPT level 4. For value 48, GPAW-48 is always
2323  * supported. Value 52 is only supported when the platform supports 5 level
2324  * EPT.
2325  */
2326 static int setup_tdparams_eptp_controls(struct kvm_cpuid2 *cpuid,
2327 					struct td_params *td_params)
2328 {
2329 	const struct kvm_cpuid_entry2 *entry;
2330 	int guest_pa;
2331 
2332 	entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent, 0x80000008, 0);
2333 	if (!entry)
2334 		return -EINVAL;
2335 
2336 	guest_pa = tdx_get_guest_phys_addr_bits(entry->eax);
2337 
2338 	if (guest_pa != 48 && guest_pa != 52)
2339 		return -EINVAL;
2340 
2341 	if (guest_pa == 52 && !cpu_has_vmx_ept_5levels())
2342 		return -EINVAL;
2343 
2344 	td_params->eptp_controls = VMX_EPTP_MT_WB;
2345 	if (guest_pa == 52) {
2346 		td_params->eptp_controls |= VMX_EPTP_PWL_5;
2347 		td_params->config_flags |= TDX_CONFIG_FLAGS_MAX_GPAW;
2348 	} else {
2349 		td_params->eptp_controls |= VMX_EPTP_PWL_4;
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 static int setup_tdparams_cpuids(struct kvm_cpuid2 *cpuid,
2356 				 struct td_params *td_params)
2357 {
2358 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2359 	const struct kvm_cpuid_entry2 *entry;
2360 	struct tdx_cpuid_value *value;
2361 	int i, copy_cnt = 0;
2362 
2363 	/*
2364 	 * td_params.cpuid_values: The number and the order of cpuid_value must
2365 	 * be same to the one of struct tdsysinfo.{num_cpuid_config, cpuid_configs}
2366 	 * It's assumed that td_params was zeroed.
2367 	 */
2368 	for (i = 0; i < td_conf->num_cpuid_config; i++) {
2369 		struct kvm_cpuid_entry2 tmp;
2370 
2371 		td_init_cpuid_entry2(&tmp, i);
2372 
2373 		entry = kvm_find_cpuid_entry2(cpuid->entries, cpuid->nent,
2374 					      tmp.function, tmp.index);
2375 		if (!entry)
2376 			continue;
2377 
2378 		if (tdx_unsupported_cpuid(entry))
2379 			return -EINVAL;
2380 
2381 		copy_cnt++;
2382 
2383 		value = &td_params->cpuid_values[i];
2384 		value->eax = entry->eax;
2385 		value->ebx = entry->ebx;
2386 		value->ecx = entry->ecx;
2387 		value->edx = entry->edx;
2388 
2389 		/*
2390 		 * TDX module does not accept nonzero bits 16..23 for the
2391 		 * CPUID[0x80000008].EAX, see setup_tdparams_eptp_controls().
2392 		 */
2393 		if (tmp.function == 0x80000008)
2394 			value->eax = tdx_set_guest_phys_addr_bits(value->eax, 0);
2395 	}
2396 
2397 	/*
2398 	 * Rely on the TDX module to reject invalid configuration, but it can't
2399 	 * check of leafs that don't have a proper slot in td_params->cpuid_values
2400 	 * to stick then. So fail if there were entries that didn't get copied to
2401 	 * td_params.
2402 	 */
2403 	if (copy_cnt != cpuid->nent)
2404 		return -EINVAL;
2405 
2406 	return 0;
2407 }
2408 
2409 static int setup_tdparams(struct kvm *kvm, struct td_params *td_params,
2410 			struct kvm_tdx_init_vm *init_vm)
2411 {
2412 	const struct tdx_sys_info_td_conf *td_conf = &tdx_sysinfo->td_conf;
2413 	struct kvm_cpuid2 *cpuid = &init_vm->cpuid;
2414 	int ret;
2415 
2416 	if (kvm->created_vcpus)
2417 		return -EBUSY;
2418 
2419 	if (init_vm->attributes & ~tdx_get_supported_attrs(td_conf))
2420 		return -EINVAL;
2421 
2422 	if (init_vm->xfam & ~tdx_get_supported_xfam(td_conf))
2423 		return -EINVAL;
2424 
2425 	td_params->max_vcpus = kvm->max_vcpus;
2426 	td_params->attributes = init_vm->attributes | td_conf->attributes_fixed1;
2427 	td_params->xfam = init_vm->xfam | td_conf->xfam_fixed1;
2428 
2429 	td_params->config_flags = TDX_CONFIG_FLAGS_NO_RBP_MOD;
2430 	td_params->tsc_frequency = TDX_TSC_KHZ_TO_25MHZ(kvm->arch.default_tsc_khz);
2431 
2432 	ret = setup_tdparams_eptp_controls(cpuid, td_params);
2433 	if (ret)
2434 		return ret;
2435 
2436 	ret = setup_tdparams_cpuids(cpuid, td_params);
2437 	if (ret)
2438 		return ret;
2439 
2440 #define MEMCPY_SAME_SIZE(dst, src)				\
2441 	do {							\
2442 		BUILD_BUG_ON(sizeof(dst) != sizeof(src));	\
2443 		memcpy((dst), (src), sizeof(dst));		\
2444 	} while (0)
2445 
2446 	MEMCPY_SAME_SIZE(td_params->mrconfigid, init_vm->mrconfigid);
2447 	MEMCPY_SAME_SIZE(td_params->mrowner, init_vm->mrowner);
2448 	MEMCPY_SAME_SIZE(td_params->mrownerconfig, init_vm->mrownerconfig);
2449 
2450 	return 0;
2451 }
2452 
2453 static int __tdx_td_init(struct kvm *kvm, struct td_params *td_params,
2454 			 u64 *seamcall_err)
2455 {
2456 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2457 	cpumask_var_t packages;
2458 	struct page **tdcs_pages = NULL;
2459 	struct page *tdr_page;
2460 	int ret, i;
2461 	u64 err, rcx;
2462 
2463 	*seamcall_err = 0;
2464 	ret = tdx_guest_keyid_alloc();
2465 	if (ret < 0)
2466 		return ret;
2467 	kvm_tdx->hkid = ret;
2468 	kvm_tdx->misc_cg = get_current_misc_cg();
2469 	ret = misc_cg_try_charge(MISC_CG_RES_TDX, kvm_tdx->misc_cg, 1);
2470 	if (ret)
2471 		goto free_hkid;
2472 
2473 	ret = -ENOMEM;
2474 
2475 	atomic_inc(&nr_configured_hkid);
2476 
2477 	tdr_page = alloc_page(GFP_KERNEL);
2478 	if (!tdr_page)
2479 		goto free_hkid;
2480 
2481 	kvm_tdx->td.tdcs_nr_pages = tdx_sysinfo->td_ctrl.tdcs_base_size / PAGE_SIZE;
2482 	/* TDVPS = TDVPR(4K page) + TDCX(multiple 4K pages), -1 for TDVPR. */
2483 	kvm_tdx->td.tdcx_nr_pages = tdx_sysinfo->td_ctrl.tdvps_base_size / PAGE_SIZE - 1;
2484 	tdcs_pages = kcalloc(kvm_tdx->td.tdcs_nr_pages, sizeof(*kvm_tdx->td.tdcs_pages),
2485 			     GFP_KERNEL | __GFP_ZERO);
2486 	if (!tdcs_pages)
2487 		goto free_tdr;
2488 
2489 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2490 		tdcs_pages[i] = alloc_page(GFP_KERNEL);
2491 		if (!tdcs_pages[i])
2492 			goto free_tdcs;
2493 	}
2494 
2495 	if (!zalloc_cpumask_var(&packages, GFP_KERNEL))
2496 		goto free_tdcs;
2497 
2498 	cpus_read_lock();
2499 
2500 	/*
2501 	 * Need at least one CPU of the package to be online in order to
2502 	 * program all packages for host key id.  Check it.
2503 	 */
2504 	for_each_present_cpu(i)
2505 		cpumask_set_cpu(topology_physical_package_id(i), packages);
2506 	for_each_online_cpu(i)
2507 		cpumask_clear_cpu(topology_physical_package_id(i), packages);
2508 	if (!cpumask_empty(packages)) {
2509 		ret = -EIO;
2510 		/*
2511 		 * Because it's hard for human operator to figure out the
2512 		 * reason, warn it.
2513 		 */
2514 #define MSG_ALLPKG	"All packages need to have online CPU to create TD. Online CPU and retry.\n"
2515 		pr_warn_ratelimited(MSG_ALLPKG);
2516 		goto free_packages;
2517 	}
2518 
2519 	/*
2520 	 * TDH.MNG.CREATE tries to grab the global TDX module and fails
2521 	 * with TDX_OPERAND_BUSY when it fails to grab.  Take the global
2522 	 * lock to prevent it from failure.
2523 	 */
2524 	mutex_lock(&tdx_lock);
2525 	kvm_tdx->td.tdr_page = tdr_page;
2526 	err = tdh_mng_create(&kvm_tdx->td, kvm_tdx->hkid);
2527 	mutex_unlock(&tdx_lock);
2528 
2529 	if (err == TDX_RND_NO_ENTROPY) {
2530 		ret = -EAGAIN;
2531 		goto free_packages;
2532 	}
2533 
2534 	if (WARN_ON_ONCE(err)) {
2535 		pr_tdx_error(TDH_MNG_CREATE, err);
2536 		ret = -EIO;
2537 		goto free_packages;
2538 	}
2539 
2540 	for_each_online_cpu(i) {
2541 		int pkg = topology_physical_package_id(i);
2542 
2543 		if (cpumask_test_and_set_cpu(pkg, packages))
2544 			continue;
2545 
2546 		/*
2547 		 * Program the memory controller in the package with an
2548 		 * encryption key associated to a TDX private host key id
2549 		 * assigned to this TDR.  Concurrent operations on same memory
2550 		 * controller results in TDX_OPERAND_BUSY. No locking needed
2551 		 * beyond the cpus_read_lock() above as it serializes against
2552 		 * hotplug and the first online CPU of the package is always
2553 		 * used. We never have two CPUs in the same socket trying to
2554 		 * program the key.
2555 		 */
2556 		ret = smp_call_on_cpu(i, tdx_do_tdh_mng_key_config,
2557 				      kvm_tdx, true);
2558 		if (ret)
2559 			break;
2560 	}
2561 	cpus_read_unlock();
2562 	free_cpumask_var(packages);
2563 	if (ret) {
2564 		i = 0;
2565 		goto teardown;
2566 	}
2567 
2568 	kvm_tdx->td.tdcs_pages = tdcs_pages;
2569 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2570 		err = tdh_mng_addcx(&kvm_tdx->td, tdcs_pages[i]);
2571 		if (err == TDX_RND_NO_ENTROPY) {
2572 			/* Here it's hard to allow userspace to retry. */
2573 			ret = -EAGAIN;
2574 			goto teardown;
2575 		}
2576 		if (WARN_ON_ONCE(err)) {
2577 			pr_tdx_error(TDH_MNG_ADDCX, err);
2578 			ret = -EIO;
2579 			goto teardown;
2580 		}
2581 	}
2582 
2583 	err = tdh_mng_init(&kvm_tdx->td, __pa(td_params), &rcx);
2584 	if ((err & TDX_SEAMCALL_STATUS_MASK) == TDX_OPERAND_INVALID) {
2585 		/*
2586 		 * Because a user gives operands, don't warn.
2587 		 * Return a hint to the user because it's sometimes hard for the
2588 		 * user to figure out which operand is invalid.  SEAMCALL status
2589 		 * code includes which operand caused invalid operand error.
2590 		 */
2591 		*seamcall_err = err;
2592 		ret = -EINVAL;
2593 		goto teardown;
2594 	} else if (WARN_ON_ONCE(err)) {
2595 		pr_tdx_error_1(TDH_MNG_INIT, err, rcx);
2596 		ret = -EIO;
2597 		goto teardown;
2598 	}
2599 
2600 	return 0;
2601 
2602 	/*
2603 	 * The sequence for freeing resources from a partially initialized TD
2604 	 * varies based on where in the initialization flow failure occurred.
2605 	 * Simply use the full teardown and destroy, which naturally play nice
2606 	 * with partial initialization.
2607 	 */
2608 teardown:
2609 	/* Only free pages not yet added, so start at 'i' */
2610 	for (; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2611 		if (tdcs_pages[i]) {
2612 			__free_page(tdcs_pages[i]);
2613 			tdcs_pages[i] = NULL;
2614 		}
2615 	}
2616 	if (!kvm_tdx->td.tdcs_pages)
2617 		kfree(tdcs_pages);
2618 
2619 	tdx_mmu_release_hkid(kvm);
2620 	tdx_reclaim_td_control_pages(kvm);
2621 
2622 	return ret;
2623 
2624 free_packages:
2625 	cpus_read_unlock();
2626 	free_cpumask_var(packages);
2627 
2628 free_tdcs:
2629 	for (i = 0; i < kvm_tdx->td.tdcs_nr_pages; i++) {
2630 		if (tdcs_pages[i])
2631 			__free_page(tdcs_pages[i]);
2632 	}
2633 	kfree(tdcs_pages);
2634 	kvm_tdx->td.tdcs_pages = NULL;
2635 
2636 free_tdr:
2637 	if (tdr_page)
2638 		__free_page(tdr_page);
2639 	kvm_tdx->td.tdr_page = 0;
2640 
2641 free_hkid:
2642 	tdx_hkid_free(kvm_tdx);
2643 
2644 	return ret;
2645 }
2646 
2647 static u64 tdx_td_metadata_field_read(struct kvm_tdx *tdx, u64 field_id,
2648 				      u64 *data)
2649 {
2650 	u64 err;
2651 
2652 	err = tdh_mng_rd(&tdx->td, field_id, data);
2653 
2654 	return err;
2655 }
2656 
2657 #define TDX_MD_UNREADABLE_LEAF_MASK	GENMASK(30, 7)
2658 #define TDX_MD_UNREADABLE_SUBLEAF_MASK	GENMASK(31, 7)
2659 
2660 static int tdx_read_cpuid(struct kvm_vcpu *vcpu, u32 leaf, u32 sub_leaf,
2661 			  bool sub_leaf_set, int *entry_index,
2662 			  struct kvm_cpuid_entry2 *out)
2663 {
2664 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
2665 	u64 field_id = TD_MD_FIELD_ID_CPUID_VALUES;
2666 	u64 ebx_eax, edx_ecx;
2667 	u64 err = 0;
2668 
2669 	if (sub_leaf > 0b1111111)
2670 		return -EINVAL;
2671 
2672 	if (*entry_index >= KVM_MAX_CPUID_ENTRIES)
2673 		return -EINVAL;
2674 
2675 	if (leaf & TDX_MD_UNREADABLE_LEAF_MASK ||
2676 	    sub_leaf & TDX_MD_UNREADABLE_SUBLEAF_MASK)
2677 		return -EINVAL;
2678 
2679 	/*
2680 	 * bit 23:17, REVSERVED: reserved, must be 0;
2681 	 * bit 16,    LEAF_31: leaf number bit 31;
2682 	 * bit 15:9,  LEAF_6_0: leaf number bits 6:0, leaf bits 30:7 are
2683 	 *                      implicitly 0;
2684 	 * bit 8,     SUBLEAF_NA: sub-leaf not applicable flag;
2685 	 * bit 7:1,   SUBLEAF_6_0: sub-leaf number bits 6:0. If SUBLEAF_NA is 1,
2686 	 *                         the SUBLEAF_6_0 is all-1.
2687 	 *                         sub-leaf bits 31:7 are implicitly 0;
2688 	 * bit 0,     ELEMENT_I: Element index within field;
2689 	 */
2690 	field_id |= ((leaf & 0x80000000) ? 1 : 0) << 16;
2691 	field_id |= (leaf & 0x7f) << 9;
2692 	if (sub_leaf_set)
2693 		field_id |= (sub_leaf & 0x7f) << 1;
2694 	else
2695 		field_id |= 0x1fe;
2696 
2697 	err = tdx_td_metadata_field_read(kvm_tdx, field_id, &ebx_eax);
2698 	if (err) //TODO check for specific errors
2699 		goto err_out;
2700 
2701 	out->eax = (u32) ebx_eax;
2702 	out->ebx = (u32) (ebx_eax >> 32);
2703 
2704 	field_id++;
2705 	err = tdx_td_metadata_field_read(kvm_tdx, field_id, &edx_ecx);
2706 	/*
2707 	 * It's weird that reading edx_ecx fails while reading ebx_eax
2708 	 * succeeded.
2709 	 */
2710 	if (WARN_ON_ONCE(err))
2711 		goto err_out;
2712 
2713 	out->ecx = (u32) edx_ecx;
2714 	out->edx = (u32) (edx_ecx >> 32);
2715 
2716 	out->function = leaf;
2717 	out->index = sub_leaf;
2718 	out->flags |= sub_leaf_set ? KVM_CPUID_FLAG_SIGNIFCANT_INDEX : 0;
2719 
2720 	/*
2721 	 * Work around missing support on old TDX modules, fetch
2722 	 * guest maxpa from gfn_direct_bits.
2723 	 */
2724 	if (leaf == 0x80000008) {
2725 		gpa_t gpa_bits = gfn_to_gpa(kvm_gfn_direct_bits(vcpu->kvm));
2726 		unsigned int g_maxpa = __ffs(gpa_bits) + 1;
2727 
2728 		out->eax = tdx_set_guest_phys_addr_bits(out->eax, g_maxpa);
2729 	}
2730 
2731 	(*entry_index)++;
2732 
2733 	return 0;
2734 
2735 err_out:
2736 	out->eax = 0;
2737 	out->ebx = 0;
2738 	out->ecx = 0;
2739 	out->edx = 0;
2740 
2741 	return -EIO;
2742 }
2743 
2744 static int tdx_td_init(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
2745 {
2746 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2747 	struct kvm_tdx_init_vm *init_vm;
2748 	struct td_params *td_params = NULL;
2749 	int ret;
2750 
2751 	BUILD_BUG_ON(sizeof(*init_vm) != 256 + sizeof_field(struct kvm_tdx_init_vm, cpuid));
2752 	BUILD_BUG_ON(sizeof(struct td_params) != 1024);
2753 
2754 	if (kvm_tdx->state != TD_STATE_UNINITIALIZED)
2755 		return -EINVAL;
2756 
2757 	if (cmd->flags)
2758 		return -EINVAL;
2759 
2760 	init_vm = kmalloc(sizeof(*init_vm) +
2761 			  sizeof(init_vm->cpuid.entries[0]) * KVM_MAX_CPUID_ENTRIES,
2762 			  GFP_KERNEL);
2763 	if (!init_vm)
2764 		return -ENOMEM;
2765 
2766 	if (copy_from_user(init_vm, u64_to_user_ptr(cmd->data), sizeof(*init_vm))) {
2767 		ret = -EFAULT;
2768 		goto out;
2769 	}
2770 
2771 	if (init_vm->cpuid.nent > KVM_MAX_CPUID_ENTRIES) {
2772 		ret = -E2BIG;
2773 		goto out;
2774 	}
2775 
2776 	if (copy_from_user(init_vm->cpuid.entries,
2777 			   u64_to_user_ptr(cmd->data) + sizeof(*init_vm),
2778 			   flex_array_size(init_vm, cpuid.entries, init_vm->cpuid.nent))) {
2779 		ret = -EFAULT;
2780 		goto out;
2781 	}
2782 
2783 	if (memchr_inv(init_vm->reserved, 0, sizeof(init_vm->reserved))) {
2784 		ret = -EINVAL;
2785 		goto out;
2786 	}
2787 
2788 	if (init_vm->cpuid.padding) {
2789 		ret = -EINVAL;
2790 		goto out;
2791 	}
2792 
2793 	td_params = kzalloc(sizeof(struct td_params), GFP_KERNEL);
2794 	if (!td_params) {
2795 		ret = -ENOMEM;
2796 		goto out;
2797 	}
2798 
2799 	ret = setup_tdparams(kvm, td_params, init_vm);
2800 	if (ret)
2801 		goto out;
2802 
2803 	ret = __tdx_td_init(kvm, td_params, &cmd->hw_error);
2804 	if (ret)
2805 		goto out;
2806 
2807 	kvm_tdx->tsc_offset = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_OFFSET);
2808 	kvm_tdx->tsc_multiplier = td_tdcs_exec_read64(kvm_tdx, TD_TDCS_EXEC_TSC_MULTIPLIER);
2809 	kvm_tdx->attributes = td_params->attributes;
2810 	kvm_tdx->xfam = td_params->xfam;
2811 
2812 	if (td_params->config_flags & TDX_CONFIG_FLAGS_MAX_GPAW)
2813 		kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_5;
2814 	else
2815 		kvm->arch.gfn_direct_bits = TDX_SHARED_BIT_PWL_4;
2816 
2817 	kvm_tdx->state = TD_STATE_INITIALIZED;
2818 out:
2819 	/* kfree() accepts NULL. */
2820 	kfree(init_vm);
2821 	kfree(td_params);
2822 
2823 	return ret;
2824 }
2825 
2826 void tdx_flush_tlb_current(struct kvm_vcpu *vcpu)
2827 {
2828 	/*
2829 	 * flush_tlb_current() is invoked when the first time for the vcpu to
2830 	 * run or when root of shared EPT is invalidated.
2831 	 * KVM only needs to flush shared EPT because the TDX module handles TLB
2832 	 * invalidation for private EPT in tdh_vp_enter();
2833 	 *
2834 	 * A single context invalidation for shared EPT can be performed here.
2835 	 * However, this single context invalidation requires the private EPTP
2836 	 * rather than the shared EPTP to flush shared EPT, as shared EPT uses
2837 	 * private EPTP as its ASID for TLB invalidation.
2838 	 *
2839 	 * To avoid reading back private EPTP, perform a global invalidation for
2840 	 * shared EPT instead to keep this function simple.
2841 	 */
2842 	ept_sync_global();
2843 }
2844 
2845 void tdx_flush_tlb_all(struct kvm_vcpu *vcpu)
2846 {
2847 	/*
2848 	 * TDX has called tdx_track() in tdx_sept_remove_private_spte() to
2849 	 * ensure that private EPT will be flushed on the next TD enter. No need
2850 	 * to call tdx_track() here again even when this callback is a result of
2851 	 * zapping private EPT.
2852 	 *
2853 	 * Due to the lack of the context to determine which EPT has been
2854 	 * affected by zapping, invoke invept() directly here for both shared
2855 	 * EPT and private EPT for simplicity, though it's not necessary for
2856 	 * private EPT.
2857 	 */
2858 	ept_sync_global();
2859 }
2860 
2861 static int tdx_td_finalize(struct kvm *kvm, struct kvm_tdx_cmd *cmd)
2862 {
2863 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
2864 
2865 	guard(mutex)(&kvm->slots_lock);
2866 
2867 	if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
2868 		return -EINVAL;
2869 	/*
2870 	 * Pages are pending for KVM_TDX_INIT_MEM_REGION to issue
2871 	 * TDH.MEM.PAGE.ADD().
2872 	 */
2873 	if (atomic64_read(&kvm_tdx->nr_premapped))
2874 		return -EINVAL;
2875 
2876 	cmd->hw_error = tdh_mr_finalize(&kvm_tdx->td);
2877 	if (tdx_operand_busy(cmd->hw_error))
2878 		return -EBUSY;
2879 	if (KVM_BUG_ON(cmd->hw_error, kvm)) {
2880 		pr_tdx_error(TDH_MR_FINALIZE, cmd->hw_error);
2881 		return -EIO;
2882 	}
2883 
2884 	kvm_tdx->state = TD_STATE_RUNNABLE;
2885 	/* TD_STATE_RUNNABLE must be set before 'pre_fault_allowed' */
2886 	smp_wmb();
2887 	kvm->arch.pre_fault_allowed = true;
2888 	return 0;
2889 }
2890 
2891 int tdx_vm_ioctl(struct kvm *kvm, void __user *argp)
2892 {
2893 	struct kvm_tdx_cmd tdx_cmd;
2894 	int r;
2895 
2896 	if (copy_from_user(&tdx_cmd, argp, sizeof(struct kvm_tdx_cmd)))
2897 		return -EFAULT;
2898 
2899 	/*
2900 	 * Userspace should never set hw_error. It is used to fill
2901 	 * hardware-defined error by the kernel.
2902 	 */
2903 	if (tdx_cmd.hw_error)
2904 		return -EINVAL;
2905 
2906 	mutex_lock(&kvm->lock);
2907 
2908 	switch (tdx_cmd.id) {
2909 	case KVM_TDX_CAPABILITIES:
2910 		r = tdx_get_capabilities(&tdx_cmd);
2911 		break;
2912 	case KVM_TDX_INIT_VM:
2913 		r = tdx_td_init(kvm, &tdx_cmd);
2914 		break;
2915 	case KVM_TDX_FINALIZE_VM:
2916 		r = tdx_td_finalize(kvm, &tdx_cmd);
2917 		break;
2918 	default:
2919 		r = -EINVAL;
2920 		goto out;
2921 	}
2922 
2923 	if (copy_to_user(argp, &tdx_cmd, sizeof(struct kvm_tdx_cmd)))
2924 		r = -EFAULT;
2925 
2926 out:
2927 	mutex_unlock(&kvm->lock);
2928 	return r;
2929 }
2930 
2931 /* VMM can pass one 64bit auxiliary data to vcpu via RCX for guest BIOS. */
2932 static int tdx_td_vcpu_init(struct kvm_vcpu *vcpu, u64 vcpu_rcx)
2933 {
2934 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
2935 	struct vcpu_tdx *tdx = to_tdx(vcpu);
2936 	struct page *page;
2937 	int ret, i;
2938 	u64 err;
2939 
2940 	page = alloc_page(GFP_KERNEL);
2941 	if (!page)
2942 		return -ENOMEM;
2943 	tdx->vp.tdvpr_page = page;
2944 
2945 	tdx->vp.tdcx_pages = kcalloc(kvm_tdx->td.tdcx_nr_pages, sizeof(*tdx->vp.tdcx_pages),
2946 			       	     GFP_KERNEL);
2947 	if (!tdx->vp.tdcx_pages) {
2948 		ret = -ENOMEM;
2949 		goto free_tdvpr;
2950 	}
2951 
2952 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2953 		page = alloc_page(GFP_KERNEL);
2954 		if (!page) {
2955 			ret = -ENOMEM;
2956 			goto free_tdcx;
2957 		}
2958 		tdx->vp.tdcx_pages[i] = page;
2959 	}
2960 
2961 	err = tdh_vp_create(&kvm_tdx->td, &tdx->vp);
2962 	if (KVM_BUG_ON(err, vcpu->kvm)) {
2963 		ret = -EIO;
2964 		pr_tdx_error(TDH_VP_CREATE, err);
2965 		goto free_tdcx;
2966 	}
2967 
2968 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2969 		err = tdh_vp_addcx(&tdx->vp, tdx->vp.tdcx_pages[i]);
2970 		if (KVM_BUG_ON(err, vcpu->kvm)) {
2971 			pr_tdx_error(TDH_VP_ADDCX, err);
2972 			/*
2973 			 * Pages already added are reclaimed by the vcpu_free
2974 			 * method, but the rest are freed here.
2975 			 */
2976 			for (; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2977 				__free_page(tdx->vp.tdcx_pages[i]);
2978 				tdx->vp.tdcx_pages[i] = NULL;
2979 			}
2980 			return -EIO;
2981 		}
2982 	}
2983 
2984 	err = tdh_vp_init(&tdx->vp, vcpu_rcx, vcpu->vcpu_id);
2985 	if (KVM_BUG_ON(err, vcpu->kvm)) {
2986 		pr_tdx_error(TDH_VP_INIT, err);
2987 		return -EIO;
2988 	}
2989 
2990 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
2991 
2992 	return 0;
2993 
2994 free_tdcx:
2995 	for (i = 0; i < kvm_tdx->td.tdcx_nr_pages; i++) {
2996 		if (tdx->vp.tdcx_pages[i])
2997 			__free_page(tdx->vp.tdcx_pages[i]);
2998 		tdx->vp.tdcx_pages[i] = NULL;
2999 	}
3000 	kfree(tdx->vp.tdcx_pages);
3001 	tdx->vp.tdcx_pages = NULL;
3002 
3003 free_tdvpr:
3004 	if (tdx->vp.tdvpr_page)
3005 		__free_page(tdx->vp.tdvpr_page);
3006 	tdx->vp.tdvpr_page = 0;
3007 
3008 	return ret;
3009 }
3010 
3011 /* Sometimes reads multipple subleafs. Return how many enties were written. */
3012 static int tdx_vcpu_get_cpuid_leaf(struct kvm_vcpu *vcpu, u32 leaf, int *entry_index,
3013 				   struct kvm_cpuid_entry2 *output_e)
3014 {
3015 	int sub_leaf = 0;
3016 	int ret;
3017 
3018 	/* First try without a subleaf */
3019 	ret = tdx_read_cpuid(vcpu, leaf, 0, false, entry_index, output_e);
3020 
3021 	/* If success, or invalid leaf, just give up */
3022 	if (ret != -EIO)
3023 		return ret;
3024 
3025 	/*
3026 	 * If the try without a subleaf failed, try reading subleafs until
3027 	 * failure. The TDX module only supports 6 bits of subleaf index.
3028 	 */
3029 	while (1) {
3030 		/* Keep reading subleafs until there is a failure. */
3031 		if (tdx_read_cpuid(vcpu, leaf, sub_leaf, true, entry_index, output_e))
3032 			return !sub_leaf;
3033 
3034 		sub_leaf++;
3035 		output_e++;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 static int tdx_vcpu_get_cpuid(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3042 {
3043 	struct kvm_cpuid2 __user *output, *td_cpuid;
3044 	int r = 0, i = 0, leaf;
3045 	u32 level;
3046 
3047 	output = u64_to_user_ptr(cmd->data);
3048 	td_cpuid = kzalloc(sizeof(*td_cpuid) +
3049 			sizeof(output->entries[0]) * KVM_MAX_CPUID_ENTRIES,
3050 			GFP_KERNEL);
3051 	if (!td_cpuid)
3052 		return -ENOMEM;
3053 
3054 	if (copy_from_user(td_cpuid, output, sizeof(*output))) {
3055 		r = -EFAULT;
3056 		goto out;
3057 	}
3058 
3059 	/* Read max CPUID for normal range */
3060 	if (tdx_vcpu_get_cpuid_leaf(vcpu, 0, &i, &td_cpuid->entries[i])) {
3061 		r = -EIO;
3062 		goto out;
3063 	}
3064 	level = td_cpuid->entries[0].eax;
3065 
3066 	for (leaf = 1; leaf <= level; leaf++)
3067 		tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
3068 
3069 	/* Read max CPUID for extended range */
3070 	if (tdx_vcpu_get_cpuid_leaf(vcpu, 0x80000000, &i, &td_cpuid->entries[i])) {
3071 		r = -EIO;
3072 		goto out;
3073 	}
3074 	level = td_cpuid->entries[i - 1].eax;
3075 
3076 	for (leaf = 0x80000001; leaf <= level; leaf++)
3077 		tdx_vcpu_get_cpuid_leaf(vcpu, leaf, &i, &td_cpuid->entries[i]);
3078 
3079 	if (td_cpuid->nent < i)
3080 		r = -E2BIG;
3081 	td_cpuid->nent = i;
3082 
3083 	if (copy_to_user(output, td_cpuid, sizeof(*output))) {
3084 		r = -EFAULT;
3085 		goto out;
3086 	}
3087 
3088 	if (r == -E2BIG)
3089 		goto out;
3090 
3091 	if (copy_to_user(output->entries, td_cpuid->entries,
3092 			 td_cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
3093 		r = -EFAULT;
3094 
3095 out:
3096 	kfree(td_cpuid);
3097 
3098 	return r;
3099 }
3100 
3101 static int tdx_vcpu_init(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3102 {
3103 	u64 apic_base;
3104 	struct vcpu_tdx *tdx = to_tdx(vcpu);
3105 	int ret;
3106 
3107 	if (cmd->flags)
3108 		return -EINVAL;
3109 
3110 	if (tdx->state != VCPU_TD_STATE_UNINITIALIZED)
3111 		return -EINVAL;
3112 
3113 	/*
3114 	 * TDX requires X2APIC, userspace is responsible for configuring guest
3115 	 * CPUID accordingly.
3116 	 */
3117 	apic_base = APIC_DEFAULT_PHYS_BASE | LAPIC_MODE_X2APIC |
3118 		(kvm_vcpu_is_reset_bsp(vcpu) ? MSR_IA32_APICBASE_BSP : 0);
3119 	if (kvm_apic_set_base(vcpu, apic_base, true))
3120 		return -EINVAL;
3121 
3122 	ret = tdx_td_vcpu_init(vcpu, (u64)cmd->data);
3123 	if (ret)
3124 		return ret;
3125 
3126 	td_vmcs_write16(tdx, POSTED_INTR_NV, POSTED_INTR_VECTOR);
3127 	td_vmcs_write64(tdx, POSTED_INTR_DESC_ADDR, __pa(&tdx->vt.pi_desc));
3128 	td_vmcs_setbit32(tdx, PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_POSTED_INTR);
3129 
3130 	tdx->state = VCPU_TD_STATE_INITIALIZED;
3131 
3132 	return 0;
3133 }
3134 
3135 void tdx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
3136 {
3137 	/*
3138 	 * Yell on INIT, as TDX doesn't support INIT, i.e. KVM should drop all
3139 	 * INIT events.
3140 	 *
3141 	 * Defer initializing vCPU for RESET state until KVM_TDX_INIT_VCPU, as
3142 	 * userspace needs to define the vCPU model before KVM can initialize
3143 	 * vCPU state, e.g. to enable x2APIC.
3144 	 */
3145 	WARN_ON_ONCE(init_event);
3146 }
3147 
3148 struct tdx_gmem_post_populate_arg {
3149 	struct kvm_vcpu *vcpu;
3150 	__u32 flags;
3151 };
3152 
3153 static int tdx_gmem_post_populate(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
3154 				  void __user *src, int order, void *_arg)
3155 {
3156 	u64 error_code = PFERR_GUEST_FINAL_MASK | PFERR_PRIVATE_ACCESS;
3157 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
3158 	struct tdx_gmem_post_populate_arg *arg = _arg;
3159 	struct kvm_vcpu *vcpu = arg->vcpu;
3160 	gpa_t gpa = gfn_to_gpa(gfn);
3161 	u8 level = PG_LEVEL_4K;
3162 	struct page *src_page;
3163 	int ret, i;
3164 	u64 err, entry, level_state;
3165 
3166 	/*
3167 	 * Get the source page if it has been faulted in. Return failure if the
3168 	 * source page has been swapped out or unmapped in primary memory.
3169 	 */
3170 	ret = get_user_pages_fast((unsigned long)src, 1, 0, &src_page);
3171 	if (ret < 0)
3172 		return ret;
3173 	if (ret != 1)
3174 		return -ENOMEM;
3175 
3176 	ret = kvm_tdp_map_page(vcpu, gpa, error_code, &level);
3177 	if (ret < 0)
3178 		goto out;
3179 
3180 	/*
3181 	 * The private mem cannot be zapped after kvm_tdp_map_page()
3182 	 * because all paths are covered by slots_lock and the
3183 	 * filemap invalidate lock.  Check that they are indeed enough.
3184 	 */
3185 	if (IS_ENABLED(CONFIG_KVM_PROVE_MMU)) {
3186 		scoped_guard(read_lock, &kvm->mmu_lock) {
3187 			if (KVM_BUG_ON(!kvm_tdp_mmu_gpa_is_mapped(vcpu, gpa), kvm)) {
3188 				ret = -EIO;
3189 				goto out;
3190 			}
3191 		}
3192 	}
3193 
3194 	ret = 0;
3195 	err = tdh_mem_page_add(&kvm_tdx->td, gpa, pfn_to_page(pfn),
3196 			       src_page, &entry, &level_state);
3197 	if (err) {
3198 		ret = unlikely(tdx_operand_busy(err)) ? -EBUSY : -EIO;
3199 		goto out;
3200 	}
3201 
3202 	if (!KVM_BUG_ON(!atomic64_read(&kvm_tdx->nr_premapped), kvm))
3203 		atomic64_dec(&kvm_tdx->nr_premapped);
3204 
3205 	if (arg->flags & KVM_TDX_MEASURE_MEMORY_REGION) {
3206 		for (i = 0; i < PAGE_SIZE; i += TDX_EXTENDMR_CHUNKSIZE) {
3207 			err = tdh_mr_extend(&kvm_tdx->td, gpa + i, &entry,
3208 					    &level_state);
3209 			if (err) {
3210 				ret = -EIO;
3211 				break;
3212 			}
3213 		}
3214 	}
3215 
3216 out:
3217 	put_page(src_page);
3218 	return ret;
3219 }
3220 
3221 static int tdx_vcpu_init_mem_region(struct kvm_vcpu *vcpu, struct kvm_tdx_cmd *cmd)
3222 {
3223 	struct vcpu_tdx *tdx = to_tdx(vcpu);
3224 	struct kvm *kvm = vcpu->kvm;
3225 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(kvm);
3226 	struct kvm_tdx_init_mem_region region;
3227 	struct tdx_gmem_post_populate_arg arg;
3228 	long gmem_ret;
3229 	int ret;
3230 
3231 	if (tdx->state != VCPU_TD_STATE_INITIALIZED)
3232 		return -EINVAL;
3233 
3234 	guard(mutex)(&kvm->slots_lock);
3235 
3236 	/* Once TD is finalized, the initial guest memory is fixed. */
3237 	if (kvm_tdx->state == TD_STATE_RUNNABLE)
3238 		return -EINVAL;
3239 
3240 	if (cmd->flags & ~KVM_TDX_MEASURE_MEMORY_REGION)
3241 		return -EINVAL;
3242 
3243 	if (copy_from_user(&region, u64_to_user_ptr(cmd->data), sizeof(region)))
3244 		return -EFAULT;
3245 
3246 	if (!PAGE_ALIGNED(region.source_addr) || !PAGE_ALIGNED(region.gpa) ||
3247 	    !region.nr_pages ||
3248 	    region.gpa + (region.nr_pages << PAGE_SHIFT) <= region.gpa ||
3249 	    !vt_is_tdx_private_gpa(kvm, region.gpa) ||
3250 	    !vt_is_tdx_private_gpa(kvm, region.gpa + (region.nr_pages << PAGE_SHIFT) - 1))
3251 		return -EINVAL;
3252 
3253 	kvm_mmu_reload(vcpu);
3254 	ret = 0;
3255 	while (region.nr_pages) {
3256 		if (signal_pending(current)) {
3257 			ret = -EINTR;
3258 			break;
3259 		}
3260 
3261 		arg = (struct tdx_gmem_post_populate_arg) {
3262 			.vcpu = vcpu,
3263 			.flags = cmd->flags,
3264 		};
3265 		gmem_ret = kvm_gmem_populate(kvm, gpa_to_gfn(region.gpa),
3266 					     u64_to_user_ptr(region.source_addr),
3267 					     1, tdx_gmem_post_populate, &arg);
3268 		if (gmem_ret < 0) {
3269 			ret = gmem_ret;
3270 			break;
3271 		}
3272 
3273 		if (gmem_ret != 1) {
3274 			ret = -EIO;
3275 			break;
3276 		}
3277 
3278 		region.source_addr += PAGE_SIZE;
3279 		region.gpa += PAGE_SIZE;
3280 		region.nr_pages--;
3281 
3282 		cond_resched();
3283 	}
3284 
3285 	if (copy_to_user(u64_to_user_ptr(cmd->data), &region, sizeof(region)))
3286 		ret = -EFAULT;
3287 	return ret;
3288 }
3289 
3290 int tdx_vcpu_ioctl(struct kvm_vcpu *vcpu, void __user *argp)
3291 {
3292 	struct kvm_tdx *kvm_tdx = to_kvm_tdx(vcpu->kvm);
3293 	struct kvm_tdx_cmd cmd;
3294 	int ret;
3295 
3296 	if (!is_hkid_assigned(kvm_tdx) || kvm_tdx->state == TD_STATE_RUNNABLE)
3297 		return -EINVAL;
3298 
3299 	if (copy_from_user(&cmd, argp, sizeof(cmd)))
3300 		return -EFAULT;
3301 
3302 	if (cmd.hw_error)
3303 		return -EINVAL;
3304 
3305 	switch (cmd.id) {
3306 	case KVM_TDX_INIT_VCPU:
3307 		ret = tdx_vcpu_init(vcpu, &cmd);
3308 		break;
3309 	case KVM_TDX_INIT_MEM_REGION:
3310 		ret = tdx_vcpu_init_mem_region(vcpu, &cmd);
3311 		break;
3312 	case KVM_TDX_GET_CPUID:
3313 		ret = tdx_vcpu_get_cpuid(vcpu, &cmd);
3314 		break;
3315 	default:
3316 		ret = -EINVAL;
3317 		break;
3318 	}
3319 
3320 	return ret;
3321 }
3322 
3323 int tdx_gmem_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
3324 {
3325 	return PG_LEVEL_4K;
3326 }
3327 
3328 static int tdx_online_cpu(unsigned int cpu)
3329 {
3330 	unsigned long flags;
3331 	int r;
3332 
3333 	/* Sanity check CPU is already in post-VMXON */
3334 	WARN_ON_ONCE(!(cr4_read_shadow() & X86_CR4_VMXE));
3335 
3336 	local_irq_save(flags);
3337 	r = tdx_cpu_enable();
3338 	local_irq_restore(flags);
3339 
3340 	return r;
3341 }
3342 
3343 static int tdx_offline_cpu(unsigned int cpu)
3344 {
3345 	int i;
3346 
3347 	/* No TD is running.  Allow any cpu to be offline. */
3348 	if (!atomic_read(&nr_configured_hkid))
3349 		return 0;
3350 
3351 	/*
3352 	 * In order to reclaim TDX HKID, (i.e. when deleting guest TD), need to
3353 	 * call TDH.PHYMEM.PAGE.WBINVD on all packages to program all memory
3354 	 * controller with pconfig.  If we have active TDX HKID, refuse to
3355 	 * offline the last online cpu.
3356 	 */
3357 	for_each_online_cpu(i) {
3358 		/*
3359 		 * Found another online cpu on the same package.
3360 		 * Allow to offline.
3361 		 */
3362 		if (i != cpu && topology_physical_package_id(i) ==
3363 				topology_physical_package_id(cpu))
3364 			return 0;
3365 	}
3366 
3367 	/*
3368 	 * This is the last cpu of this package.  Don't offline it.
3369 	 *
3370 	 * Because it's hard for human operator to understand the
3371 	 * reason, warn it.
3372 	 */
3373 #define MSG_ALLPKG_ONLINE \
3374 	"TDX requires all packages to have an online CPU. Delete all TDs in order to offline all CPUs of a package.\n"
3375 	pr_warn_ratelimited(MSG_ALLPKG_ONLINE);
3376 	return -EBUSY;
3377 }
3378 
3379 static void __do_tdx_cleanup(void)
3380 {
3381 	/*
3382 	 * Once TDX module is initialized, it cannot be disabled and
3383 	 * re-initialized again w/o runtime update (which isn't
3384 	 * supported by kernel).  Only need to remove the cpuhp here.
3385 	 * The TDX host core code tracks TDX status and can handle
3386 	 * 'multiple enabling' scenario.
3387 	 */
3388 	WARN_ON_ONCE(!tdx_cpuhp_state);
3389 	cpuhp_remove_state_nocalls_cpuslocked(tdx_cpuhp_state);
3390 	tdx_cpuhp_state = 0;
3391 }
3392 
3393 static void __tdx_cleanup(void)
3394 {
3395 	cpus_read_lock();
3396 	__do_tdx_cleanup();
3397 	cpus_read_unlock();
3398 }
3399 
3400 static int __init __do_tdx_bringup(void)
3401 {
3402 	int r;
3403 
3404 	/*
3405 	 * TDX-specific cpuhp callback to call tdx_cpu_enable() on all
3406 	 * online CPUs before calling tdx_enable(), and on any new
3407 	 * going-online CPU to make sure it is ready for TDX guest.
3408 	 */
3409 	r = cpuhp_setup_state_cpuslocked(CPUHP_AP_ONLINE_DYN,
3410 					 "kvm/cpu/tdx:online",
3411 					 tdx_online_cpu, tdx_offline_cpu);
3412 	if (r < 0)
3413 		return r;
3414 
3415 	tdx_cpuhp_state = r;
3416 
3417 	r = tdx_enable();
3418 	if (r)
3419 		__do_tdx_cleanup();
3420 
3421 	return r;
3422 }
3423 
3424 static int __init __tdx_bringup(void)
3425 {
3426 	const struct tdx_sys_info_td_conf *td_conf;
3427 	int r, i;
3428 
3429 	for (i = 0; i < ARRAY_SIZE(tdx_uret_msrs); i++) {
3430 		/*
3431 		 * Check if MSRs (tdx_uret_msrs) can be saved/restored
3432 		 * before returning to user space.
3433 		 *
3434 		 * this_cpu_ptr(user_return_msrs)->registered isn't checked
3435 		 * because the registration is done at vcpu runtime by
3436 		 * tdx_user_return_msr_update_cache().
3437 		 */
3438 		tdx_uret_msrs[i].slot = kvm_find_user_return_msr(tdx_uret_msrs[i].msr);
3439 		if (tdx_uret_msrs[i].slot == -1) {
3440 			/* If any MSR isn't supported, it is a KVM bug */
3441 			pr_err("MSR %x isn't included by kvm_find_user_return_msr\n",
3442 				tdx_uret_msrs[i].msr);
3443 			return -EIO;
3444 		}
3445 	}
3446 
3447 	/*
3448 	 * Enabling TDX requires enabling hardware virtualization first,
3449 	 * as making SEAMCALLs requires CPU being in post-VMXON state.
3450 	 */
3451 	r = kvm_enable_virtualization();
3452 	if (r)
3453 		return r;
3454 
3455 	cpus_read_lock();
3456 	r = __do_tdx_bringup();
3457 	cpus_read_unlock();
3458 
3459 	if (r)
3460 		goto tdx_bringup_err;
3461 
3462 	/* Get TDX global information for later use */
3463 	tdx_sysinfo = tdx_get_sysinfo();
3464 	if (WARN_ON_ONCE(!tdx_sysinfo)) {
3465 		r = -EINVAL;
3466 		goto get_sysinfo_err;
3467 	}
3468 
3469 	/* Check TDX module and KVM capabilities */
3470 	if (!tdx_get_supported_attrs(&tdx_sysinfo->td_conf) ||
3471 	    !tdx_get_supported_xfam(&tdx_sysinfo->td_conf))
3472 		goto get_sysinfo_err;
3473 
3474 	if (!(tdx_sysinfo->features.tdx_features0 & MD_FIELD_ID_FEATURES0_TOPOLOGY_ENUM))
3475 		goto get_sysinfo_err;
3476 
3477 	/*
3478 	 * TDX has its own limit of maximum vCPUs it can support for all
3479 	 * TDX guests in addition to KVM_MAX_VCPUS.  Userspace needs to
3480 	 * query TDX guest's maximum vCPUs by checking KVM_CAP_MAX_VCPU
3481 	 * extension on per-VM basis.
3482 	 *
3483 	 * TDX module reports such limit via the MAX_VCPU_PER_TD global
3484 	 * metadata.  Different modules may report different values.
3485 	 * Some old module may also not support this metadata (in which
3486 	 * case this limit is U16_MAX).
3487 	 *
3488 	 * In practice, the reported value reflects the maximum logical
3489 	 * CPUs that ALL the platforms that the module supports can
3490 	 * possibly have.
3491 	 *
3492 	 * Simply forwarding the MAX_VCPU_PER_TD to userspace could
3493 	 * result in an unpredictable ABI.  KVM instead always advertise
3494 	 * the number of logical CPUs the platform has as the maximum
3495 	 * vCPUs for TDX guests.
3496 	 *
3497 	 * Make sure MAX_VCPU_PER_TD reported by TDX module is not
3498 	 * smaller than the number of logical CPUs, otherwise KVM will
3499 	 * report an unsupported value to userspace.
3500 	 *
3501 	 * Note, a platform with TDX enabled in the BIOS cannot support
3502 	 * physical CPU hotplug, and TDX requires the BIOS has marked
3503 	 * all logical CPUs in MADT table as enabled.  Just use
3504 	 * num_present_cpus() for the number of logical CPUs.
3505 	 */
3506 	td_conf = &tdx_sysinfo->td_conf;
3507 	if (td_conf->max_vcpus_per_td < num_present_cpus()) {
3508 		pr_err("Disable TDX: MAX_VCPU_PER_TD (%u) smaller than number of logical CPUs (%u).\n",
3509 				td_conf->max_vcpus_per_td, num_present_cpus());
3510 		r = -EINVAL;
3511 		goto get_sysinfo_err;
3512 	}
3513 
3514 	if (misc_cg_set_capacity(MISC_CG_RES_TDX, tdx_get_nr_guest_keyids())) {
3515 		r = -EINVAL;
3516 		goto get_sysinfo_err;
3517 	}
3518 
3519 	/*
3520 	 * Leave hardware virtualization enabled after TDX is enabled
3521 	 * successfully.  TDX CPU hotplug depends on this.
3522 	 */
3523 	return 0;
3524 
3525 get_sysinfo_err:
3526 	__tdx_cleanup();
3527 tdx_bringup_err:
3528 	kvm_disable_virtualization();
3529 	return r;
3530 }
3531 
3532 void tdx_cleanup(void)
3533 {
3534 	if (enable_tdx) {
3535 		misc_cg_set_capacity(MISC_CG_RES_TDX, 0);
3536 		__tdx_cleanup();
3537 		kvm_disable_virtualization();
3538 	}
3539 }
3540 
3541 int __init tdx_bringup(void)
3542 {
3543 	int r, i;
3544 
3545 	/* tdx_disable_virtualization_cpu() uses associated_tdvcpus. */
3546 	for_each_possible_cpu(i)
3547 		INIT_LIST_HEAD(&per_cpu(associated_tdvcpus, i));
3548 
3549 	if (!enable_tdx)
3550 		return 0;
3551 
3552 	if (!enable_ept) {
3553 		pr_err("EPT is required for TDX\n");
3554 		goto success_disable_tdx;
3555 	}
3556 
3557 	if (!tdp_mmu_enabled || !enable_mmio_caching || !enable_ept_ad_bits) {
3558 		pr_err("TDP MMU and MMIO caching and EPT A/D bit is required for TDX\n");
3559 		goto success_disable_tdx;
3560 	}
3561 
3562 	if (!enable_apicv) {
3563 		pr_err("APICv is required for TDX\n");
3564 		goto success_disable_tdx;
3565 	}
3566 
3567 	if (!cpu_feature_enabled(X86_FEATURE_OSXSAVE)) {
3568 		pr_err("tdx: OSXSAVE is required for TDX\n");
3569 		goto success_disable_tdx;
3570 	}
3571 
3572 	if (!cpu_feature_enabled(X86_FEATURE_MOVDIR64B)) {
3573 		pr_err("tdx: MOVDIR64B is required for TDX\n");
3574 		goto success_disable_tdx;
3575 	}
3576 
3577 	if (!cpu_feature_enabled(X86_FEATURE_SELFSNOOP)) {
3578 		pr_err("Self-snoop is required for TDX\n");
3579 		goto success_disable_tdx;
3580 	}
3581 
3582 	if (!cpu_feature_enabled(X86_FEATURE_TDX_HOST_PLATFORM)) {
3583 		pr_err("tdx: no TDX private KeyIDs available\n");
3584 		goto success_disable_tdx;
3585 	}
3586 
3587 	if (!enable_virt_at_load) {
3588 		pr_err("tdx: tdx requires kvm.enable_virt_at_load=1\n");
3589 		goto success_disable_tdx;
3590 	}
3591 
3592 	/*
3593 	 * Ideally KVM should probe whether TDX module has been loaded
3594 	 * first and then try to bring it up.  But TDX needs to use SEAMCALL
3595 	 * to probe whether the module is loaded (there is no CPUID or MSR
3596 	 * for that), and making SEAMCALL requires enabling virtualization
3597 	 * first, just like the rest steps of bringing up TDX module.
3598 	 *
3599 	 * So, for simplicity do everything in __tdx_bringup(); the first
3600 	 * SEAMCALL will return -ENODEV when the module is not loaded.  The
3601 	 * only complication is having to make sure that initialization
3602 	 * SEAMCALLs don't return TDX_SEAMCALL_VMFAILINVALID in other
3603 	 * cases.
3604 	 */
3605 	r = __tdx_bringup();
3606 	if (r) {
3607 		/*
3608 		 * Disable TDX only but don't fail to load module if
3609 		 * the TDX module could not be loaded.  No need to print
3610 		 * message saying "module is not loaded" because it was
3611 		 * printed when the first SEAMCALL failed.
3612 		 */
3613 		if (r == -ENODEV)
3614 			goto success_disable_tdx;
3615 
3616 		enable_tdx = 0;
3617 	}
3618 
3619 	return r;
3620 
3621 success_disable_tdx:
3622 	enable_tdx = 0;
3623 	return 0;
3624 }
3625