1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2021 Intel Corporation. */ 3 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 4 5 #include <asm/sgx.h> 6 7 #include "cpuid.h" 8 #include "kvm_cache_regs.h" 9 #include "nested.h" 10 #include "sgx.h" 11 #include "vmx.h" 12 #include "x86.h" 13 14 bool __read_mostly enable_sgx = 1; 15 module_param_named(sgx, enable_sgx, bool, 0444); 16 17 /* Initial value of guest's virtual SGX_LEPUBKEYHASHn MSRs */ 18 static u64 sgx_pubkey_hash[4] __ro_after_init; 19 20 /* 21 * ENCLS's memory operands use a fixed segment (DS) and a fixed 22 * address size based on the mode. Related prefixes are ignored. 23 */ 24 static int sgx_get_encls_gva(struct kvm_vcpu *vcpu, unsigned long offset, 25 int size, int alignment, gva_t *gva) 26 { 27 struct kvm_segment s; 28 bool fault; 29 30 /* Skip vmcs.GUEST_DS retrieval for 64-bit mode to avoid VMREADs. */ 31 *gva = offset; 32 if (!is_long_mode(vcpu)) { 33 vmx_get_segment(vcpu, &s, VCPU_SREG_DS); 34 *gva += s.base; 35 } 36 37 if (!IS_ALIGNED(*gva, alignment)) { 38 fault = true; 39 } else if (likely(is_long_mode(vcpu))) { 40 fault = is_noncanonical_address(*gva, vcpu); 41 } else { 42 *gva &= 0xffffffff; 43 fault = (s.unusable) || 44 (s.type != 2 && s.type != 3) || 45 (*gva > s.limit) || 46 ((s.base != 0 || s.limit != 0xffffffff) && 47 (((u64)*gva + size - 1) > s.limit + 1)); 48 } 49 if (fault) 50 kvm_inject_gp(vcpu, 0); 51 return fault ? -EINVAL : 0; 52 } 53 54 static void sgx_handle_emulation_failure(struct kvm_vcpu *vcpu, u64 addr, 55 unsigned int size) 56 { 57 uint64_t data[2] = { addr, size }; 58 59 __kvm_prepare_emulation_failure_exit(vcpu, data, ARRAY_SIZE(data)); 60 } 61 62 static int sgx_read_hva(struct kvm_vcpu *vcpu, unsigned long hva, void *data, 63 unsigned int size) 64 { 65 if (__copy_from_user(data, (void __user *)hva, size)) { 66 sgx_handle_emulation_failure(vcpu, hva, size); 67 return -EFAULT; 68 } 69 70 return 0; 71 } 72 73 static int sgx_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t gva, bool write, 74 gpa_t *gpa) 75 { 76 struct x86_exception ex; 77 78 if (write) 79 *gpa = kvm_mmu_gva_to_gpa_write(vcpu, gva, &ex); 80 else 81 *gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, &ex); 82 83 if (*gpa == INVALID_GPA) { 84 kvm_inject_emulated_page_fault(vcpu, &ex); 85 return -EFAULT; 86 } 87 88 return 0; 89 } 90 91 static int sgx_gpa_to_hva(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned long *hva) 92 { 93 *hva = kvm_vcpu_gfn_to_hva(vcpu, PFN_DOWN(gpa)); 94 if (kvm_is_error_hva(*hva)) { 95 sgx_handle_emulation_failure(vcpu, gpa, 1); 96 return -EFAULT; 97 } 98 99 *hva |= gpa & ~PAGE_MASK; 100 101 return 0; 102 } 103 104 static int sgx_inject_fault(struct kvm_vcpu *vcpu, gva_t gva, int trapnr) 105 { 106 struct x86_exception ex; 107 108 /* 109 * A non-EPCM #PF indicates a bad userspace HVA. This *should* check 110 * for PFEC.SGX and not assume any #PF on SGX2 originated in the EPC, 111 * but the error code isn't (yet) plumbed through the ENCLS helpers. 112 */ 113 if (trapnr == PF_VECTOR && !boot_cpu_has(X86_FEATURE_SGX2)) { 114 kvm_prepare_emulation_failure_exit(vcpu); 115 return 0; 116 } 117 118 /* 119 * If the guest thinks it's running on SGX2 hardware, inject an SGX 120 * #PF if the fault matches an EPCM fault signature (#GP on SGX1, 121 * #PF on SGX2). The assumption is that EPCM faults are much more 122 * likely than a bad userspace address. 123 */ 124 if ((trapnr == PF_VECTOR || !boot_cpu_has(X86_FEATURE_SGX2)) && 125 guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) { 126 memset(&ex, 0, sizeof(ex)); 127 ex.vector = PF_VECTOR; 128 ex.error_code = PFERR_PRESENT_MASK | PFERR_WRITE_MASK | 129 PFERR_SGX_MASK; 130 ex.address = gva; 131 ex.error_code_valid = true; 132 ex.nested_page_fault = false; 133 kvm_inject_emulated_page_fault(vcpu, &ex); 134 } else { 135 kvm_inject_gp(vcpu, 0); 136 } 137 return 1; 138 } 139 140 static int __handle_encls_ecreate(struct kvm_vcpu *vcpu, 141 struct sgx_pageinfo *pageinfo, 142 unsigned long secs_hva, 143 gva_t secs_gva) 144 { 145 struct sgx_secs *contents = (struct sgx_secs *)pageinfo->contents; 146 struct kvm_cpuid_entry2 *sgx_12_0, *sgx_12_1; 147 u64 attributes, xfrm, size; 148 u32 miscselect; 149 u8 max_size_log2; 150 int trapnr, ret; 151 152 sgx_12_0 = kvm_find_cpuid_entry_index(vcpu, 0x12, 0); 153 sgx_12_1 = kvm_find_cpuid_entry_index(vcpu, 0x12, 1); 154 if (!sgx_12_0 || !sgx_12_1) { 155 kvm_prepare_emulation_failure_exit(vcpu); 156 return 0; 157 } 158 159 miscselect = contents->miscselect; 160 attributes = contents->attributes; 161 xfrm = contents->xfrm; 162 size = contents->size; 163 164 /* Enforce restriction of access to the PROVISIONKEY. */ 165 if (!vcpu->kvm->arch.sgx_provisioning_allowed && 166 (attributes & SGX_ATTR_PROVISIONKEY)) { 167 if (sgx_12_1->eax & SGX_ATTR_PROVISIONKEY) 168 pr_warn_once("SGX PROVISIONKEY advertised but not allowed\n"); 169 kvm_inject_gp(vcpu, 0); 170 return 1; 171 } 172 173 /* Enforce CPUID restrictions on MISCSELECT, ATTRIBUTES and XFRM. */ 174 if ((u32)miscselect & ~sgx_12_0->ebx || 175 (u32)attributes & ~sgx_12_1->eax || 176 (u32)(attributes >> 32) & ~sgx_12_1->ebx || 177 (u32)xfrm & ~sgx_12_1->ecx || 178 (u32)(xfrm >> 32) & ~sgx_12_1->edx) { 179 kvm_inject_gp(vcpu, 0); 180 return 1; 181 } 182 183 /* Enforce CPUID restriction on max enclave size. */ 184 max_size_log2 = (attributes & SGX_ATTR_MODE64BIT) ? sgx_12_0->edx >> 8 : 185 sgx_12_0->edx; 186 if (size >= BIT_ULL(max_size_log2)) { 187 kvm_inject_gp(vcpu, 0); 188 return 1; 189 } 190 191 /* 192 * sgx_virt_ecreate() returns: 193 * 1) 0: ECREATE was successful 194 * 2) -EFAULT: ECREATE was run but faulted, and trapnr was set to the 195 * exception number. 196 * 3) -EINVAL: access_ok() on @secs_hva failed. This should never 197 * happen as KVM checks host addresses at memslot creation. 198 * sgx_virt_ecreate() has already warned in this case. 199 */ 200 ret = sgx_virt_ecreate(pageinfo, (void __user *)secs_hva, &trapnr); 201 if (!ret) 202 return kvm_skip_emulated_instruction(vcpu); 203 if (ret == -EFAULT) 204 return sgx_inject_fault(vcpu, secs_gva, trapnr); 205 206 return ret; 207 } 208 209 static int handle_encls_ecreate(struct kvm_vcpu *vcpu) 210 { 211 gva_t pageinfo_gva, secs_gva; 212 gva_t metadata_gva, contents_gva; 213 gpa_t metadata_gpa, contents_gpa, secs_gpa; 214 unsigned long metadata_hva, contents_hva, secs_hva; 215 struct sgx_pageinfo pageinfo; 216 struct sgx_secs *contents; 217 struct x86_exception ex; 218 int r; 219 220 if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 32, 32, &pageinfo_gva) || 221 sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva)) 222 return 1; 223 224 /* 225 * Copy the PAGEINFO to local memory, its pointers need to be 226 * translated, i.e. we need to do a deep copy/translate. 227 */ 228 r = kvm_read_guest_virt(vcpu, pageinfo_gva, &pageinfo, 229 sizeof(pageinfo), &ex); 230 if (r == X86EMUL_PROPAGATE_FAULT) { 231 kvm_inject_emulated_page_fault(vcpu, &ex); 232 return 1; 233 } else if (r != X86EMUL_CONTINUE) { 234 sgx_handle_emulation_failure(vcpu, pageinfo_gva, 235 sizeof(pageinfo)); 236 return 0; 237 } 238 239 if (sgx_get_encls_gva(vcpu, pageinfo.metadata, 64, 64, &metadata_gva) || 240 sgx_get_encls_gva(vcpu, pageinfo.contents, 4096, 4096, 241 &contents_gva)) 242 return 1; 243 244 /* 245 * Translate the SECINFO, SOURCE and SECS pointers from GVA to GPA. 246 * Resume the guest on failure to inject a #PF. 247 */ 248 if (sgx_gva_to_gpa(vcpu, metadata_gva, false, &metadata_gpa) || 249 sgx_gva_to_gpa(vcpu, contents_gva, false, &contents_gpa) || 250 sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa)) 251 return 1; 252 253 /* 254 * ...and then to HVA. The order of accesses isn't architectural, i.e. 255 * KVM doesn't have to fully process one address at a time. Exit to 256 * userspace if a GPA is invalid. 257 */ 258 if (sgx_gpa_to_hva(vcpu, metadata_gpa, &metadata_hva) || 259 sgx_gpa_to_hva(vcpu, contents_gpa, &contents_hva) || 260 sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva)) 261 return 0; 262 263 /* 264 * Copy contents into kernel memory to prevent TOCTOU attack. E.g. the 265 * guest could do ECREATE w/ SECS.SGX_ATTR_PROVISIONKEY=0, and 266 * simultaneously set SGX_ATTR_PROVISIONKEY to bypass the check to 267 * enforce restriction of access to the PROVISIONKEY. 268 */ 269 contents = (struct sgx_secs *)__get_free_page(GFP_KERNEL_ACCOUNT); 270 if (!contents) 271 return -ENOMEM; 272 273 /* Exit to userspace if copying from a host userspace address fails. */ 274 if (sgx_read_hva(vcpu, contents_hva, (void *)contents, PAGE_SIZE)) { 275 free_page((unsigned long)contents); 276 return 0; 277 } 278 279 pageinfo.metadata = metadata_hva; 280 pageinfo.contents = (u64)contents; 281 282 r = __handle_encls_ecreate(vcpu, &pageinfo, secs_hva, secs_gva); 283 284 free_page((unsigned long)contents); 285 286 return r; 287 } 288 289 static int handle_encls_einit(struct kvm_vcpu *vcpu) 290 { 291 unsigned long sig_hva, secs_hva, token_hva, rflags; 292 struct vcpu_vmx *vmx = to_vmx(vcpu); 293 gva_t sig_gva, secs_gva, token_gva; 294 gpa_t sig_gpa, secs_gpa, token_gpa; 295 int ret, trapnr; 296 297 if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 1808, 4096, &sig_gva) || 298 sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva) || 299 sgx_get_encls_gva(vcpu, kvm_rdx_read(vcpu), 304, 512, &token_gva)) 300 return 1; 301 302 /* 303 * Translate the SIGSTRUCT, SECS and TOKEN pointers from GVA to GPA. 304 * Resume the guest on failure to inject a #PF. 305 */ 306 if (sgx_gva_to_gpa(vcpu, sig_gva, false, &sig_gpa) || 307 sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa) || 308 sgx_gva_to_gpa(vcpu, token_gva, false, &token_gpa)) 309 return 1; 310 311 /* 312 * ...and then to HVA. The order of accesses isn't architectural, i.e. 313 * KVM doesn't have to fully process one address at a time. Exit to 314 * userspace if a GPA is invalid. Note, all structures are aligned and 315 * cannot split pages. 316 */ 317 if (sgx_gpa_to_hva(vcpu, sig_gpa, &sig_hva) || 318 sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva) || 319 sgx_gpa_to_hva(vcpu, token_gpa, &token_hva)) 320 return 0; 321 322 ret = sgx_virt_einit((void __user *)sig_hva, (void __user *)token_hva, 323 (void __user *)secs_hva, 324 vmx->msr_ia32_sgxlepubkeyhash, &trapnr); 325 326 if (ret == -EFAULT) 327 return sgx_inject_fault(vcpu, secs_gva, trapnr); 328 329 /* 330 * sgx_virt_einit() returns -EINVAL when access_ok() fails on @sig_hva, 331 * @token_hva or @secs_hva. This should never happen as KVM checks host 332 * addresses at memslot creation. sgx_virt_einit() has already warned 333 * in this case, so just return. 334 */ 335 if (ret < 0) 336 return ret; 337 338 rflags = vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | 339 X86_EFLAGS_AF | X86_EFLAGS_SF | 340 X86_EFLAGS_OF); 341 if (ret) 342 rflags |= X86_EFLAGS_ZF; 343 else 344 rflags &= ~X86_EFLAGS_ZF; 345 vmx_set_rflags(vcpu, rflags); 346 347 kvm_rax_write(vcpu, ret); 348 return kvm_skip_emulated_instruction(vcpu); 349 } 350 351 static inline bool encls_leaf_enabled_in_guest(struct kvm_vcpu *vcpu, u32 leaf) 352 { 353 if (!enable_sgx || !guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 354 return false; 355 356 if (leaf >= ECREATE && leaf <= ETRACK) 357 return guest_cpuid_has(vcpu, X86_FEATURE_SGX1); 358 359 if (leaf >= EAUG && leaf <= EMODT) 360 return guest_cpuid_has(vcpu, X86_FEATURE_SGX2); 361 362 return false; 363 } 364 365 static inline bool sgx_enabled_in_guest_bios(struct kvm_vcpu *vcpu) 366 { 367 const u64 bits = FEAT_CTL_SGX_ENABLED | FEAT_CTL_LOCKED; 368 369 return (to_vmx(vcpu)->msr_ia32_feature_control & bits) == bits; 370 } 371 372 int handle_encls(struct kvm_vcpu *vcpu) 373 { 374 u32 leaf = (u32)kvm_rax_read(vcpu); 375 376 if (!encls_leaf_enabled_in_guest(vcpu, leaf)) { 377 kvm_queue_exception(vcpu, UD_VECTOR); 378 } else if (!sgx_enabled_in_guest_bios(vcpu)) { 379 kvm_inject_gp(vcpu, 0); 380 } else { 381 if (leaf == ECREATE) 382 return handle_encls_ecreate(vcpu); 383 if (leaf == EINIT) 384 return handle_encls_einit(vcpu); 385 WARN_ONCE(1, "unexpected exit on ENCLS[%u]", leaf); 386 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; 387 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_ENCLS; 388 return 0; 389 } 390 return 1; 391 } 392 393 void setup_default_sgx_lepubkeyhash(void) 394 { 395 /* 396 * Use Intel's default value for Skylake hardware if Launch Control is 397 * not supported, i.e. Intel's hash is hardcoded into silicon, or if 398 * Launch Control is supported and enabled, i.e. mimic the reset value 399 * and let the guest write the MSRs at will. If Launch Control is 400 * supported but disabled, then use the current MSR values as the hash 401 * MSRs exist but are read-only (locked and not writable). 402 */ 403 if (!enable_sgx || boot_cpu_has(X86_FEATURE_SGX_LC) || 404 rdmsrl_safe(MSR_IA32_SGXLEPUBKEYHASH0, &sgx_pubkey_hash[0])) { 405 sgx_pubkey_hash[0] = 0xa6053e051270b7acULL; 406 sgx_pubkey_hash[1] = 0x6cfbe8ba8b3b413dULL; 407 sgx_pubkey_hash[2] = 0xc4916d99f2b3735dULL; 408 sgx_pubkey_hash[3] = 0xd4f8c05909f9bb3bULL; 409 } else { 410 /* MSR_IA32_SGXLEPUBKEYHASH0 is read above */ 411 rdmsrl(MSR_IA32_SGXLEPUBKEYHASH1, sgx_pubkey_hash[1]); 412 rdmsrl(MSR_IA32_SGXLEPUBKEYHASH2, sgx_pubkey_hash[2]); 413 rdmsrl(MSR_IA32_SGXLEPUBKEYHASH3, sgx_pubkey_hash[3]); 414 } 415 } 416 417 void vcpu_setup_sgx_lepubkeyhash(struct kvm_vcpu *vcpu) 418 { 419 struct vcpu_vmx *vmx = to_vmx(vcpu); 420 421 memcpy(vmx->msr_ia32_sgxlepubkeyhash, sgx_pubkey_hash, 422 sizeof(sgx_pubkey_hash)); 423 } 424 425 /* 426 * ECREATE must be intercepted to enforce MISCSELECT, ATTRIBUTES and XFRM 427 * restrictions if the guest's allowed-1 settings diverge from hardware. 428 */ 429 static bool sgx_intercept_encls_ecreate(struct kvm_vcpu *vcpu) 430 { 431 struct kvm_cpuid_entry2 *guest_cpuid; 432 u32 eax, ebx, ecx, edx; 433 434 if (!vcpu->kvm->arch.sgx_provisioning_allowed) 435 return true; 436 437 guest_cpuid = kvm_find_cpuid_entry_index(vcpu, 0x12, 0); 438 if (!guest_cpuid) 439 return true; 440 441 cpuid_count(0x12, 0, &eax, &ebx, &ecx, &edx); 442 if (guest_cpuid->ebx != ebx || guest_cpuid->edx != edx) 443 return true; 444 445 guest_cpuid = kvm_find_cpuid_entry_index(vcpu, 0x12, 1); 446 if (!guest_cpuid) 447 return true; 448 449 cpuid_count(0x12, 1, &eax, &ebx, &ecx, &edx); 450 if (guest_cpuid->eax != eax || guest_cpuid->ebx != ebx || 451 guest_cpuid->ecx != ecx || guest_cpuid->edx != edx) 452 return true; 453 454 return false; 455 } 456 457 void vmx_write_encls_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) 458 { 459 /* 460 * There is no software enable bit for SGX that is virtualized by 461 * hardware, e.g. there's no CR4.SGXE, so when SGX is disabled in the 462 * guest (either by the host or by the guest's BIOS) but enabled in the 463 * host, trap all ENCLS leafs and inject #UD/#GP as needed to emulate 464 * the expected system behavior for ENCLS. 465 */ 466 u64 bitmap = -1ull; 467 468 /* Nothing to do if hardware doesn't support SGX */ 469 if (!cpu_has_vmx_encls_vmexit()) 470 return; 471 472 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX) && 473 sgx_enabled_in_guest_bios(vcpu)) { 474 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX1)) { 475 bitmap &= ~GENMASK_ULL(ETRACK, ECREATE); 476 if (sgx_intercept_encls_ecreate(vcpu)) 477 bitmap |= (1 << ECREATE); 478 } 479 480 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) 481 bitmap &= ~GENMASK_ULL(EMODT, EAUG); 482 483 /* 484 * Trap and execute EINIT if launch control is enabled in the 485 * host using the guest's values for launch control MSRs, even 486 * if the guest's values are fixed to hardware default values. 487 * The MSRs are not loaded/saved on VM-Enter/VM-Exit as writing 488 * the MSRs is extraordinarily expensive. 489 */ 490 if (boot_cpu_has(X86_FEATURE_SGX_LC)) 491 bitmap |= (1 << EINIT); 492 493 if (!vmcs12 && is_guest_mode(vcpu)) 494 vmcs12 = get_vmcs12(vcpu); 495 if (vmcs12 && nested_cpu_has_encls_exit(vmcs12)) 496 bitmap |= vmcs12->encls_exiting_bitmap; 497 } 498 vmcs_write64(ENCLS_EXITING_BITMAP, bitmap); 499 } 500