xref: /linux/arch/x86/kvm/vmx/sgx.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2021 Intel Corporation. */
3 
4 #include <asm/sgx.h>
5 
6 #include "cpuid.h"
7 #include "kvm_cache_regs.h"
8 #include "nested.h"
9 #include "sgx.h"
10 #include "vmx.h"
11 #include "x86.h"
12 
13 bool __read_mostly enable_sgx = 1;
14 module_param_named(sgx, enable_sgx, bool, 0444);
15 
16 /* Initial value of guest's virtual SGX_LEPUBKEYHASHn MSRs */
17 static u64 sgx_pubkey_hash[4] __ro_after_init;
18 
19 /*
20  * ENCLS's memory operands use a fixed segment (DS) and a fixed
21  * address size based on the mode.  Related prefixes are ignored.
22  */
23 static int sgx_get_encls_gva(struct kvm_vcpu *vcpu, unsigned long offset,
24 			     int size, int alignment, gva_t *gva)
25 {
26 	struct kvm_segment s;
27 	bool fault;
28 
29 	/* Skip vmcs.GUEST_DS retrieval for 64-bit mode to avoid VMREADs. */
30 	*gva = offset;
31 	if (!is_long_mode(vcpu)) {
32 		vmx_get_segment(vcpu, &s, VCPU_SREG_DS);
33 		*gva += s.base;
34 	}
35 
36 	if (!IS_ALIGNED(*gva, alignment)) {
37 		fault = true;
38 	} else if (likely(is_long_mode(vcpu))) {
39 		fault = is_noncanonical_address(*gva, vcpu);
40 	} else {
41 		*gva &= 0xffffffff;
42 		fault = (s.unusable) ||
43 			(s.type != 2 && s.type != 3) ||
44 			(*gva > s.limit) ||
45 			((s.base != 0 || s.limit != 0xffffffff) &&
46 			(((u64)*gva + size - 1) > s.limit + 1));
47 	}
48 	if (fault)
49 		kvm_inject_gp(vcpu, 0);
50 	return fault ? -EINVAL : 0;
51 }
52 
53 static void sgx_handle_emulation_failure(struct kvm_vcpu *vcpu, u64 addr,
54 					 unsigned int size)
55 {
56 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
57 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
58 	vcpu->run->internal.ndata = 2;
59 	vcpu->run->internal.data[0] = addr;
60 	vcpu->run->internal.data[1] = size;
61 }
62 
63 static int sgx_read_hva(struct kvm_vcpu *vcpu, unsigned long hva, void *data,
64 			unsigned int size)
65 {
66 	if (__copy_from_user(data, (void __user *)hva, size)) {
67 		sgx_handle_emulation_failure(vcpu, hva, size);
68 		return -EFAULT;
69 	}
70 
71 	return 0;
72 }
73 
74 static int sgx_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t gva, bool write,
75 			  gpa_t *gpa)
76 {
77 	struct x86_exception ex;
78 
79 	if (write)
80 		*gpa = kvm_mmu_gva_to_gpa_write(vcpu, gva, &ex);
81 	else
82 		*gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, &ex);
83 
84 	if (*gpa == UNMAPPED_GVA) {
85 		kvm_inject_emulated_page_fault(vcpu, &ex);
86 		return -EFAULT;
87 	}
88 
89 	return 0;
90 }
91 
92 static int sgx_gpa_to_hva(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned long *hva)
93 {
94 	*hva = kvm_vcpu_gfn_to_hva(vcpu, PFN_DOWN(gpa));
95 	if (kvm_is_error_hva(*hva)) {
96 		sgx_handle_emulation_failure(vcpu, gpa, 1);
97 		return -EFAULT;
98 	}
99 
100 	*hva |= gpa & ~PAGE_MASK;
101 
102 	return 0;
103 }
104 
105 static int sgx_inject_fault(struct kvm_vcpu *vcpu, gva_t gva, int trapnr)
106 {
107 	struct x86_exception ex;
108 
109 	/*
110 	 * A non-EPCM #PF indicates a bad userspace HVA.  This *should* check
111 	 * for PFEC.SGX and not assume any #PF on SGX2 originated in the EPC,
112 	 * but the error code isn't (yet) plumbed through the ENCLS helpers.
113 	 */
114 	if (trapnr == PF_VECTOR && !boot_cpu_has(X86_FEATURE_SGX2)) {
115 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
116 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
117 		vcpu->run->internal.ndata = 0;
118 		return 0;
119 	}
120 
121 	/*
122 	 * If the guest thinks it's running on SGX2 hardware, inject an SGX
123 	 * #PF if the fault matches an EPCM fault signature (#GP on SGX1,
124 	 * #PF on SGX2).  The assumption is that EPCM faults are much more
125 	 * likely than a bad userspace address.
126 	 */
127 	if ((trapnr == PF_VECTOR || !boot_cpu_has(X86_FEATURE_SGX2)) &&
128 	    guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) {
129 		memset(&ex, 0, sizeof(ex));
130 		ex.vector = PF_VECTOR;
131 		ex.error_code = PFERR_PRESENT_MASK | PFERR_WRITE_MASK |
132 				PFERR_SGX_MASK;
133 		ex.address = gva;
134 		ex.error_code_valid = true;
135 		ex.nested_page_fault = false;
136 		kvm_inject_page_fault(vcpu, &ex);
137 	} else {
138 		kvm_inject_gp(vcpu, 0);
139 	}
140 	return 1;
141 }
142 
143 static int __handle_encls_ecreate(struct kvm_vcpu *vcpu,
144 				  struct sgx_pageinfo *pageinfo,
145 				  unsigned long secs_hva,
146 				  gva_t secs_gva)
147 {
148 	struct sgx_secs *contents = (struct sgx_secs *)pageinfo->contents;
149 	struct kvm_cpuid_entry2 *sgx_12_0, *sgx_12_1;
150 	u64 attributes, xfrm, size;
151 	u32 miscselect;
152 	u8 max_size_log2;
153 	int trapnr, ret;
154 
155 	sgx_12_0 = kvm_find_cpuid_entry(vcpu, 0x12, 0);
156 	sgx_12_1 = kvm_find_cpuid_entry(vcpu, 0x12, 1);
157 	if (!sgx_12_0 || !sgx_12_1) {
158 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
159 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
160 		vcpu->run->internal.ndata = 0;
161 		return 0;
162 	}
163 
164 	miscselect = contents->miscselect;
165 	attributes = contents->attributes;
166 	xfrm = contents->xfrm;
167 	size = contents->size;
168 
169 	/* Enforce restriction of access to the PROVISIONKEY. */
170 	if (!vcpu->kvm->arch.sgx_provisioning_allowed &&
171 	    (attributes & SGX_ATTR_PROVISIONKEY)) {
172 		if (sgx_12_1->eax & SGX_ATTR_PROVISIONKEY)
173 			pr_warn_once("KVM: SGX PROVISIONKEY advertised but not allowed\n");
174 		kvm_inject_gp(vcpu, 0);
175 		return 1;
176 	}
177 
178 	/* Enforce CPUID restrictions on MISCSELECT, ATTRIBUTES and XFRM. */
179 	if ((u32)miscselect & ~sgx_12_0->ebx ||
180 	    (u32)attributes & ~sgx_12_1->eax ||
181 	    (u32)(attributes >> 32) & ~sgx_12_1->ebx ||
182 	    (u32)xfrm & ~sgx_12_1->ecx ||
183 	    (u32)(xfrm >> 32) & ~sgx_12_1->edx) {
184 		kvm_inject_gp(vcpu, 0);
185 		return 1;
186 	}
187 
188 	/* Enforce CPUID restriction on max enclave size. */
189 	max_size_log2 = (attributes & SGX_ATTR_MODE64BIT) ? sgx_12_0->edx >> 8 :
190 							    sgx_12_0->edx;
191 	if (size >= BIT_ULL(max_size_log2))
192 		kvm_inject_gp(vcpu, 0);
193 
194 	/*
195 	 * sgx_virt_ecreate() returns:
196 	 *  1) 0:	ECREATE was successful
197 	 *  2) -EFAULT:	ECREATE was run but faulted, and trapnr was set to the
198 	 *		exception number.
199 	 *  3) -EINVAL:	access_ok() on @secs_hva failed. This should never
200 	 *		happen as KVM checks host addresses at memslot creation.
201 	 *		sgx_virt_ecreate() has already warned in this case.
202 	 */
203 	ret = sgx_virt_ecreate(pageinfo, (void __user *)secs_hva, &trapnr);
204 	if (!ret)
205 		return kvm_skip_emulated_instruction(vcpu);
206 	if (ret == -EFAULT)
207 		return sgx_inject_fault(vcpu, secs_gva, trapnr);
208 
209 	return ret;
210 }
211 
212 static int handle_encls_ecreate(struct kvm_vcpu *vcpu)
213 {
214 	gva_t pageinfo_gva, secs_gva;
215 	gva_t metadata_gva, contents_gva;
216 	gpa_t metadata_gpa, contents_gpa, secs_gpa;
217 	unsigned long metadata_hva, contents_hva, secs_hva;
218 	struct sgx_pageinfo pageinfo;
219 	struct sgx_secs *contents;
220 	struct x86_exception ex;
221 	int r;
222 
223 	if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 32, 32, &pageinfo_gva) ||
224 	    sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva))
225 		return 1;
226 
227 	/*
228 	 * Copy the PAGEINFO to local memory, its pointers need to be
229 	 * translated, i.e. we need to do a deep copy/translate.
230 	 */
231 	r = kvm_read_guest_virt(vcpu, pageinfo_gva, &pageinfo,
232 				sizeof(pageinfo), &ex);
233 	if (r == X86EMUL_PROPAGATE_FAULT) {
234 		kvm_inject_emulated_page_fault(vcpu, &ex);
235 		return 1;
236 	} else if (r != X86EMUL_CONTINUE) {
237 		sgx_handle_emulation_failure(vcpu, pageinfo_gva,
238 					     sizeof(pageinfo));
239 		return 0;
240 	}
241 
242 	if (sgx_get_encls_gva(vcpu, pageinfo.metadata, 64, 64, &metadata_gva) ||
243 	    sgx_get_encls_gva(vcpu, pageinfo.contents, 4096, 4096,
244 			      &contents_gva))
245 		return 1;
246 
247 	/*
248 	 * Translate the SECINFO, SOURCE and SECS pointers from GVA to GPA.
249 	 * Resume the guest on failure to inject a #PF.
250 	 */
251 	if (sgx_gva_to_gpa(vcpu, metadata_gva, false, &metadata_gpa) ||
252 	    sgx_gva_to_gpa(vcpu, contents_gva, false, &contents_gpa) ||
253 	    sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa))
254 		return 1;
255 
256 	/*
257 	 * ...and then to HVA.  The order of accesses isn't architectural, i.e.
258 	 * KVM doesn't have to fully process one address at a time.  Exit to
259 	 * userspace if a GPA is invalid.
260 	 */
261 	if (sgx_gpa_to_hva(vcpu, metadata_gpa, &metadata_hva) ||
262 	    sgx_gpa_to_hva(vcpu, contents_gpa, &contents_hva) ||
263 	    sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva))
264 		return 0;
265 
266 	/*
267 	 * Copy contents into kernel memory to prevent TOCTOU attack. E.g. the
268 	 * guest could do ECREATE w/ SECS.SGX_ATTR_PROVISIONKEY=0, and
269 	 * simultaneously set SGX_ATTR_PROVISIONKEY to bypass the check to
270 	 * enforce restriction of access to the PROVISIONKEY.
271 	 */
272 	contents = (struct sgx_secs *)__get_free_page(GFP_KERNEL_ACCOUNT);
273 	if (!contents)
274 		return -ENOMEM;
275 
276 	/* Exit to userspace if copying from a host userspace address fails. */
277 	if (sgx_read_hva(vcpu, contents_hva, (void *)contents, PAGE_SIZE)) {
278 		free_page((unsigned long)contents);
279 		return 0;
280 	}
281 
282 	pageinfo.metadata = metadata_hva;
283 	pageinfo.contents = (u64)contents;
284 
285 	r = __handle_encls_ecreate(vcpu, &pageinfo, secs_hva, secs_gva);
286 
287 	free_page((unsigned long)contents);
288 
289 	return r;
290 }
291 
292 static int handle_encls_einit(struct kvm_vcpu *vcpu)
293 {
294 	unsigned long sig_hva, secs_hva, token_hva, rflags;
295 	struct vcpu_vmx *vmx = to_vmx(vcpu);
296 	gva_t sig_gva, secs_gva, token_gva;
297 	gpa_t sig_gpa, secs_gpa, token_gpa;
298 	int ret, trapnr;
299 
300 	if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 1808, 4096, &sig_gva) ||
301 	    sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva) ||
302 	    sgx_get_encls_gva(vcpu, kvm_rdx_read(vcpu), 304, 512, &token_gva))
303 		return 1;
304 
305 	/*
306 	 * Translate the SIGSTRUCT, SECS and TOKEN pointers from GVA to GPA.
307 	 * Resume the guest on failure to inject a #PF.
308 	 */
309 	if (sgx_gva_to_gpa(vcpu, sig_gva, false, &sig_gpa) ||
310 	    sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa) ||
311 	    sgx_gva_to_gpa(vcpu, token_gva, false, &token_gpa))
312 		return 1;
313 
314 	/*
315 	 * ...and then to HVA.  The order of accesses isn't architectural, i.e.
316 	 * KVM doesn't have to fully process one address at a time.  Exit to
317 	 * userspace if a GPA is invalid.  Note, all structures are aligned and
318 	 * cannot split pages.
319 	 */
320 	if (sgx_gpa_to_hva(vcpu, sig_gpa, &sig_hva) ||
321 	    sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva) ||
322 	    sgx_gpa_to_hva(vcpu, token_gpa, &token_hva))
323 		return 0;
324 
325 	ret = sgx_virt_einit((void __user *)sig_hva, (void __user *)token_hva,
326 			     (void __user *)secs_hva,
327 			     vmx->msr_ia32_sgxlepubkeyhash, &trapnr);
328 
329 	if (ret == -EFAULT)
330 		return sgx_inject_fault(vcpu, secs_gva, trapnr);
331 
332 	/*
333 	 * sgx_virt_einit() returns -EINVAL when access_ok() fails on @sig_hva,
334 	 * @token_hva or @secs_hva. This should never happen as KVM checks host
335 	 * addresses at memslot creation. sgx_virt_einit() has already warned
336 	 * in this case, so just return.
337 	 */
338 	if (ret < 0)
339 		return ret;
340 
341 	rflags = vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF |
342 					  X86_EFLAGS_AF | X86_EFLAGS_SF |
343 					  X86_EFLAGS_OF);
344 	if (ret)
345 		rflags |= X86_EFLAGS_ZF;
346 	else
347 		rflags &= ~X86_EFLAGS_ZF;
348 	vmx_set_rflags(vcpu, rflags);
349 
350 	kvm_rax_write(vcpu, ret);
351 	return kvm_skip_emulated_instruction(vcpu);
352 }
353 
354 static inline bool encls_leaf_enabled_in_guest(struct kvm_vcpu *vcpu, u32 leaf)
355 {
356 	if (!enable_sgx || !guest_cpuid_has(vcpu, X86_FEATURE_SGX))
357 		return false;
358 
359 	if (leaf >= ECREATE && leaf <= ETRACK)
360 		return guest_cpuid_has(vcpu, X86_FEATURE_SGX1);
361 
362 	if (leaf >= EAUG && leaf <= EMODT)
363 		return guest_cpuid_has(vcpu, X86_FEATURE_SGX2);
364 
365 	return false;
366 }
367 
368 static inline bool sgx_enabled_in_guest_bios(struct kvm_vcpu *vcpu)
369 {
370 	const u64 bits = FEAT_CTL_SGX_ENABLED | FEAT_CTL_LOCKED;
371 
372 	return (to_vmx(vcpu)->msr_ia32_feature_control & bits) == bits;
373 }
374 
375 int handle_encls(struct kvm_vcpu *vcpu)
376 {
377 	u32 leaf = (u32)kvm_rax_read(vcpu);
378 
379 	if (!encls_leaf_enabled_in_guest(vcpu, leaf)) {
380 		kvm_queue_exception(vcpu, UD_VECTOR);
381 	} else if (!sgx_enabled_in_guest_bios(vcpu)) {
382 		kvm_inject_gp(vcpu, 0);
383 	} else {
384 		if (leaf == ECREATE)
385 			return handle_encls_ecreate(vcpu);
386 		if (leaf == EINIT)
387 			return handle_encls_einit(vcpu);
388 		WARN(1, "KVM: unexpected exit on ENCLS[%u]", leaf);
389 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
390 		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_ENCLS;
391 		return 0;
392 	}
393 	return 1;
394 }
395 
396 void setup_default_sgx_lepubkeyhash(void)
397 {
398 	/*
399 	 * Use Intel's default value for Skylake hardware if Launch Control is
400 	 * not supported, i.e. Intel's hash is hardcoded into silicon, or if
401 	 * Launch Control is supported and enabled, i.e. mimic the reset value
402 	 * and let the guest write the MSRs at will.  If Launch Control is
403 	 * supported but disabled, then use the current MSR values as the hash
404 	 * MSRs exist but are read-only (locked and not writable).
405 	 */
406 	if (!enable_sgx || boot_cpu_has(X86_FEATURE_SGX_LC) ||
407 	    rdmsrl_safe(MSR_IA32_SGXLEPUBKEYHASH0, &sgx_pubkey_hash[0])) {
408 		sgx_pubkey_hash[0] = 0xa6053e051270b7acULL;
409 		sgx_pubkey_hash[1] = 0x6cfbe8ba8b3b413dULL;
410 		sgx_pubkey_hash[2] = 0xc4916d99f2b3735dULL;
411 		sgx_pubkey_hash[3] = 0xd4f8c05909f9bb3bULL;
412 	} else {
413 		/* MSR_IA32_SGXLEPUBKEYHASH0 is read above */
414 		rdmsrl(MSR_IA32_SGXLEPUBKEYHASH1, sgx_pubkey_hash[1]);
415 		rdmsrl(MSR_IA32_SGXLEPUBKEYHASH2, sgx_pubkey_hash[2]);
416 		rdmsrl(MSR_IA32_SGXLEPUBKEYHASH3, sgx_pubkey_hash[3]);
417 	}
418 }
419 
420 void vcpu_setup_sgx_lepubkeyhash(struct kvm_vcpu *vcpu)
421 {
422 	struct vcpu_vmx *vmx = to_vmx(vcpu);
423 
424 	memcpy(vmx->msr_ia32_sgxlepubkeyhash, sgx_pubkey_hash,
425 	       sizeof(sgx_pubkey_hash));
426 }
427 
428 /*
429  * ECREATE must be intercepted to enforce MISCSELECT, ATTRIBUTES and XFRM
430  * restrictions if the guest's allowed-1 settings diverge from hardware.
431  */
432 static bool sgx_intercept_encls_ecreate(struct kvm_vcpu *vcpu)
433 {
434 	struct kvm_cpuid_entry2 *guest_cpuid;
435 	u32 eax, ebx, ecx, edx;
436 
437 	if (!vcpu->kvm->arch.sgx_provisioning_allowed)
438 		return true;
439 
440 	guest_cpuid = kvm_find_cpuid_entry(vcpu, 0x12, 0);
441 	if (!guest_cpuid)
442 		return true;
443 
444 	cpuid_count(0x12, 0, &eax, &ebx, &ecx, &edx);
445 	if (guest_cpuid->ebx != ebx || guest_cpuid->edx != edx)
446 		return true;
447 
448 	guest_cpuid = kvm_find_cpuid_entry(vcpu, 0x12, 1);
449 	if (!guest_cpuid)
450 		return true;
451 
452 	cpuid_count(0x12, 1, &eax, &ebx, &ecx, &edx);
453 	if (guest_cpuid->eax != eax || guest_cpuid->ebx != ebx ||
454 	    guest_cpuid->ecx != ecx || guest_cpuid->edx != edx)
455 		return true;
456 
457 	return false;
458 }
459 
460 void vmx_write_encls_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
461 {
462 	/*
463 	 * There is no software enable bit for SGX that is virtualized by
464 	 * hardware, e.g. there's no CR4.SGXE, so when SGX is disabled in the
465 	 * guest (either by the host or by the guest's BIOS) but enabled in the
466 	 * host, trap all ENCLS leafs and inject #UD/#GP as needed to emulate
467 	 * the expected system behavior for ENCLS.
468 	 */
469 	u64 bitmap = -1ull;
470 
471 	/* Nothing to do if hardware doesn't support SGX */
472 	if (!cpu_has_vmx_encls_vmexit())
473 		return;
474 
475 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX) &&
476 	    sgx_enabled_in_guest_bios(vcpu)) {
477 		if (guest_cpuid_has(vcpu, X86_FEATURE_SGX1)) {
478 			bitmap &= ~GENMASK_ULL(ETRACK, ECREATE);
479 			if (sgx_intercept_encls_ecreate(vcpu))
480 				bitmap |= (1 << ECREATE);
481 		}
482 
483 		if (guest_cpuid_has(vcpu, X86_FEATURE_SGX2))
484 			bitmap &= ~GENMASK_ULL(EMODT, EAUG);
485 
486 		/*
487 		 * Trap and execute EINIT if launch control is enabled in the
488 		 * host using the guest's values for launch control MSRs, even
489 		 * if the guest's values are fixed to hardware default values.
490 		 * The MSRs are not loaded/saved on VM-Enter/VM-Exit as writing
491 		 * the MSRs is extraordinarily expensive.
492 		 */
493 		if (boot_cpu_has(X86_FEATURE_SGX_LC))
494 			bitmap |= (1 << EINIT);
495 
496 		if (!vmcs12 && is_guest_mode(vcpu))
497 			vmcs12 = get_vmcs12(vcpu);
498 		if (vmcs12 && nested_cpu_has_encls_exit(vmcs12))
499 			bitmap |= vmcs12->encls_exiting_bitmap;
500 	}
501 	vmcs_write64(ENCLS_EXITING_BITMAP, bitmap);
502 }
503