1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/kvm_host.h> 5 6 #include <asm/irq_remapping.h> 7 #include <asm/cpu.h> 8 9 #include "lapic.h" 10 #include "irq.h" 11 #include "posted_intr.h" 12 #include "trace.h" 13 #include "vmx.h" 14 #include "tdx.h" 15 16 /* 17 * Maintain a per-CPU list of vCPUs that need to be awakened by wakeup_handler() 18 * when a WAKEUP_VECTOR interrupted is posted. vCPUs are added to the list when 19 * the vCPU is scheduled out and is blocking (e.g. in HLT) with IRQs enabled. 20 * The vCPUs posted interrupt descriptor is updated at the same time to set its 21 * notification vector to WAKEUP_VECTOR, so that posted interrupt from devices 22 * wake the target vCPUs. vCPUs are removed from the list and the notification 23 * vector is reset when the vCPU is scheduled in. 24 */ 25 static DEFINE_PER_CPU(struct list_head, wakeup_vcpus_on_cpu); 26 /* 27 * Protect the per-CPU list with a per-CPU spinlock to handle task migration. 28 * When a blocking vCPU is awakened _and_ migrated to a different pCPU, the 29 * ->sched_in() path will need to take the vCPU off the list of the _previous_ 30 * CPU. IRQs must be disabled when taking this lock, otherwise deadlock will 31 * occur if a wakeup IRQ arrives and attempts to acquire the lock. 32 */ 33 static DEFINE_PER_CPU(raw_spinlock_t, wakeup_vcpus_on_cpu_lock); 34 35 #define PI_LOCK_SCHED_OUT SINGLE_DEPTH_NESTING 36 37 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) 38 { 39 return &(to_vt(vcpu)->pi_desc); 40 } 41 42 static int pi_try_set_control(struct pi_desc *pi_desc, u64 *pold, u64 new) 43 { 44 /* 45 * PID.ON can be set at any time by a different vCPU or by hardware, 46 * e.g. a device. PID.control must be written atomically, and the 47 * update must be retried with a fresh snapshot an ON change causes 48 * the cmpxchg to fail. 49 */ 50 if (!try_cmpxchg64(&pi_desc->control, pold, new)) 51 return -EBUSY; 52 53 return 0; 54 } 55 56 void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) 57 { 58 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 59 struct vcpu_vt *vt = to_vt(vcpu); 60 struct pi_desc old, new; 61 unsigned long flags; 62 unsigned int dest; 63 64 /* 65 * To simplify hot-plug and dynamic toggling of APICv, keep PI.NDST and 66 * PI.SN up-to-date even if there is no assigned device or if APICv is 67 * deactivated due to a dynamic inhibit bit, e.g. for Hyper-V's SyncIC. 68 */ 69 if (!enable_apicv || !lapic_in_kernel(vcpu)) 70 return; 71 72 /* 73 * If the vCPU wasn't on the wakeup list and wasn't migrated, then the 74 * full update can be skipped as neither the vector nor the destination 75 * needs to be changed. 76 */ 77 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR && vcpu->cpu == cpu) { 78 /* 79 * Clear SN if it was set due to being preempted. Again, do 80 * this even if there is no assigned device for simplicity. 81 */ 82 if (pi_test_and_clear_sn(pi_desc)) 83 goto after_clear_sn; 84 return; 85 } 86 87 local_irq_save(flags); 88 89 /* 90 * If the vCPU was waiting for wakeup, remove the vCPU from the wakeup 91 * list of the _previous_ pCPU, which will not be the same as the 92 * current pCPU if the task was migrated. 93 */ 94 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR) { 95 raw_spinlock_t *spinlock = &per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu); 96 97 /* 98 * In addition to taking the wakeup lock for the regular/IRQ 99 * context, tell lockdep it is being taken for the "sched out" 100 * context as well. vCPU loads happens in task context, and 101 * this is taking the lock of the *previous* CPU, i.e. can race 102 * with both the scheduler and the wakeup handler. 103 */ 104 raw_spin_lock(spinlock); 105 spin_acquire(&spinlock->dep_map, PI_LOCK_SCHED_OUT, 0, _RET_IP_); 106 list_del(&vt->pi_wakeup_list); 107 spin_release(&spinlock->dep_map, _RET_IP_); 108 raw_spin_unlock(spinlock); 109 } 110 111 dest = cpu_physical_id(cpu); 112 if (!x2apic_mode) 113 dest = (dest << 8) & 0xFF00; 114 115 old.control = READ_ONCE(pi_desc->control); 116 do { 117 new.control = old.control; 118 119 /* 120 * Clear SN (as above) and refresh the destination APIC ID to 121 * handle task migration (@cpu != vcpu->cpu). 122 */ 123 new.ndst = dest; 124 __pi_clear_sn(&new); 125 126 /* 127 * Restore the notification vector; in the blocking case, the 128 * descriptor was modified on "put" to use the wakeup vector. 129 */ 130 new.nv = POSTED_INTR_VECTOR; 131 } while (pi_try_set_control(pi_desc, &old.control, new.control)); 132 133 local_irq_restore(flags); 134 135 after_clear_sn: 136 137 /* 138 * Clear SN before reading the bitmap. The VT-d firmware 139 * writes the bitmap and reads SN atomically (5.2.3 in the 140 * spec), so it doesn't really have a memory barrier that 141 * pairs with this, but we cannot do that and we need one. 142 */ 143 smp_mb__after_atomic(); 144 145 if (!pi_is_pir_empty(pi_desc)) 146 pi_set_on(pi_desc); 147 } 148 149 static bool vmx_can_use_vtd_pi(struct kvm *kvm) 150 { 151 return irqchip_in_kernel(kvm) && kvm_arch_has_irq_bypass() && 152 kvm_arch_has_assigned_device(kvm); 153 } 154 155 /* 156 * Put the vCPU on this pCPU's list of vCPUs that needs to be awakened and set 157 * WAKEUP as the notification vector in the PI descriptor. 158 */ 159 static void pi_enable_wakeup_handler(struct kvm_vcpu *vcpu) 160 { 161 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 162 struct vcpu_vt *vt = to_vt(vcpu); 163 struct pi_desc old, new; 164 165 lockdep_assert_irqs_disabled(); 166 167 /* 168 * Acquire the wakeup lock using the "sched out" context to workaround 169 * a lockdep false positive. When this is called, schedule() holds 170 * various per-CPU scheduler locks. When the wakeup handler runs, it 171 * holds this CPU's wakeup lock while calling try_to_wake_up(), which 172 * can eventually take the aforementioned scheduler locks, which causes 173 * lockdep to assume there is deadlock. 174 * 175 * Deadlock can't actually occur because IRQs are disabled for the 176 * entirety of the sched_out critical section, i.e. the wakeup handler 177 * can't run while the scheduler locks are held. 178 */ 179 raw_spin_lock_nested(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu), 180 PI_LOCK_SCHED_OUT); 181 list_add_tail(&vt->pi_wakeup_list, 182 &per_cpu(wakeup_vcpus_on_cpu, vcpu->cpu)); 183 raw_spin_unlock(&per_cpu(wakeup_vcpus_on_cpu_lock, vcpu->cpu)); 184 185 WARN(pi_test_sn(pi_desc), "PI descriptor SN field set before blocking"); 186 187 old.control = READ_ONCE(pi_desc->control); 188 do { 189 /* set 'NV' to 'wakeup vector' */ 190 new.control = old.control; 191 new.nv = POSTED_INTR_WAKEUP_VECTOR; 192 } while (pi_try_set_control(pi_desc, &old.control, new.control)); 193 194 /* 195 * Send a wakeup IPI to this CPU if an interrupt may have been posted 196 * before the notification vector was updated, in which case the IRQ 197 * will arrive on the non-wakeup vector. An IPI is needed as calling 198 * try_to_wake_up() from ->sched_out() isn't allowed (IRQs are not 199 * enabled until it is safe to call try_to_wake_up() on the task being 200 * scheduled out). 201 */ 202 if (pi_test_on(&new)) 203 __apic_send_IPI_self(POSTED_INTR_WAKEUP_VECTOR); 204 } 205 206 static bool vmx_needs_pi_wakeup(struct kvm_vcpu *vcpu) 207 { 208 /* 209 * The default posted interrupt vector does nothing when 210 * invoked outside guest mode. Return whether a blocked vCPU 211 * can be the target of posted interrupts, as is the case when 212 * using either IPI virtualization or VT-d PI, so that the 213 * notification vector is switched to the one that calls 214 * back to the pi_wakeup_handler() function. 215 */ 216 return (vmx_can_use_ipiv(vcpu) && !is_td_vcpu(vcpu)) || 217 vmx_can_use_vtd_pi(vcpu->kvm); 218 } 219 220 void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) 221 { 222 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 223 224 if (!vmx_needs_pi_wakeup(vcpu)) 225 return; 226 227 if (kvm_vcpu_is_blocking(vcpu) && 228 ((is_td_vcpu(vcpu) && tdx_interrupt_allowed(vcpu)) || 229 (!is_td_vcpu(vcpu) && !vmx_interrupt_blocked(vcpu)))) 230 pi_enable_wakeup_handler(vcpu); 231 232 /* 233 * Set SN when the vCPU is preempted. Note, the vCPU can both be seen 234 * as blocking and preempted, e.g. if it's preempted between setting 235 * its wait state and manually scheduling out. 236 */ 237 if (vcpu->preempted) 238 pi_set_sn(pi_desc); 239 } 240 241 /* 242 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 243 */ 244 void pi_wakeup_handler(void) 245 { 246 int cpu = smp_processor_id(); 247 struct list_head *wakeup_list = &per_cpu(wakeup_vcpus_on_cpu, cpu); 248 raw_spinlock_t *spinlock = &per_cpu(wakeup_vcpus_on_cpu_lock, cpu); 249 struct vcpu_vt *vt; 250 251 raw_spin_lock(spinlock); 252 list_for_each_entry(vt, wakeup_list, pi_wakeup_list) { 253 254 if (pi_test_on(&vt->pi_desc)) 255 kvm_vcpu_wake_up(vt_to_vcpu(vt)); 256 } 257 raw_spin_unlock(spinlock); 258 } 259 260 void __init pi_init_cpu(int cpu) 261 { 262 INIT_LIST_HEAD(&per_cpu(wakeup_vcpus_on_cpu, cpu)); 263 raw_spin_lock_init(&per_cpu(wakeup_vcpus_on_cpu_lock, cpu)); 264 } 265 266 void pi_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 267 { 268 struct pi_desc *pi = vcpu_to_pi_desc(vcpu); 269 270 pi_clear_on(pi); 271 memset(pi->pir, 0, sizeof(pi->pir)); 272 } 273 274 bool pi_has_pending_interrupt(struct kvm_vcpu *vcpu) 275 { 276 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 277 278 return pi_test_on(pi_desc) || 279 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc)); 280 } 281 282 283 /* 284 * Bail out of the block loop if the VM has an assigned 285 * device, but the blocking vCPU didn't reconfigure the 286 * PI.NV to the wakeup vector, i.e. the assigned device 287 * came along after the initial check in vmx_vcpu_pi_put(). 288 */ 289 void vmx_pi_start_assignment(struct kvm *kvm) 290 { 291 if (!kvm_arch_has_irq_bypass()) 292 return; 293 294 kvm_make_all_cpus_request(kvm, KVM_REQ_UNBLOCK); 295 } 296 297 /* 298 * vmx_pi_update_irte - set IRTE for Posted-Interrupts 299 * 300 * @kvm: kvm 301 * @host_irq: host irq of the interrupt 302 * @guest_irq: gsi of the interrupt 303 * @set: set or unset PI 304 * returns 0 on success, < 0 on failure 305 */ 306 int vmx_pi_update_irte(struct kvm *kvm, unsigned int host_irq, 307 uint32_t guest_irq, bool set) 308 { 309 struct kvm_kernel_irq_routing_entry *e; 310 struct kvm_irq_routing_table *irq_rt; 311 bool enable_remapped_mode = true; 312 struct kvm_lapic_irq irq; 313 struct kvm_vcpu *vcpu; 314 struct vcpu_data vcpu_info; 315 int idx, ret = 0; 316 317 if (!vmx_can_use_vtd_pi(kvm)) 318 return 0; 319 320 idx = srcu_read_lock(&kvm->irq_srcu); 321 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 322 if (guest_irq >= irq_rt->nr_rt_entries || 323 hlist_empty(&irq_rt->map[guest_irq])) { 324 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", 325 guest_irq, irq_rt->nr_rt_entries); 326 goto out; 327 } 328 329 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 330 if (e->type != KVM_IRQ_ROUTING_MSI) 331 continue; 332 /* 333 * VT-d PI cannot support posting multicast/broadcast 334 * interrupts to a vCPU, we still use interrupt remapping 335 * for these kind of interrupts. 336 * 337 * For lowest-priority interrupts, we only support 338 * those with single CPU as the destination, e.g. user 339 * configures the interrupts via /proc/irq or uses 340 * irqbalance to make the interrupts single-CPU. 341 * 342 * We will support full lowest-priority interrupt later. 343 * 344 * In addition, we can only inject generic interrupts using 345 * the PI mechanism, refuse to route others through it. 346 */ 347 348 kvm_set_msi_irq(kvm, e, &irq); 349 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || 350 !kvm_irq_is_postable(&irq)) 351 continue; 352 353 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); 354 vcpu_info.vector = irq.vector; 355 356 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, 357 vcpu_info.vector, vcpu_info.pi_desc_addr, set); 358 359 if (!set) 360 continue; 361 362 enable_remapped_mode = false; 363 364 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); 365 if (ret < 0) { 366 printk(KERN_INFO "%s: failed to update PI IRTE\n", 367 __func__); 368 goto out; 369 } 370 } 371 372 if (enable_remapped_mode) 373 ret = irq_set_vcpu_affinity(host_irq, NULL); 374 375 ret = 0; 376 out: 377 srcu_read_unlock(&kvm->irq_srcu, idx); 378 return ret; 379 } 380