1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * KVM PMU support for Intel CPUs 4 * 5 * Copyright 2011 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 */ 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/types.h> 14 #include <linux/kvm_host.h> 15 #include <linux/perf_event.h> 16 #include <asm/perf_event.h> 17 #include "x86.h" 18 #include "cpuid.h" 19 #include "lapic.h" 20 #include "nested.h" 21 #include "pmu.h" 22 23 /* 24 * Perf's "BASE" is wildly misleading, architectural PMUs use bits 31:16 of ECX 25 * to encode the "type" of counter to read, i.e. this is not a "base". And to 26 * further confuse things, non-architectural PMUs use bit 31 as a flag for 27 * "fast" reads, whereas the "type" is an explicit value. 28 */ 29 #define INTEL_RDPMC_GP 0 30 #define INTEL_RDPMC_FIXED INTEL_PMC_FIXED_RDPMC_BASE 31 32 #define INTEL_RDPMC_TYPE_MASK GENMASK(31, 16) 33 #define INTEL_RDPMC_INDEX_MASK GENMASK(15, 0) 34 35 #define MSR_PMC_FULL_WIDTH_BIT (MSR_IA32_PMC0 - MSR_IA32_PERFCTR0) 36 37 static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data) 38 { 39 struct kvm_pmc *pmc; 40 u64 old_fixed_ctr_ctrl = pmu->fixed_ctr_ctrl; 41 int i; 42 43 pmu->fixed_ctr_ctrl = data; 44 for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { 45 u8 new_ctrl = fixed_ctrl_field(data, i); 46 u8 old_ctrl = fixed_ctrl_field(old_fixed_ctr_ctrl, i); 47 48 if (old_ctrl == new_ctrl) 49 continue; 50 51 pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i); 52 53 __set_bit(KVM_FIXED_PMC_BASE_IDX + i, pmu->pmc_in_use); 54 kvm_pmu_request_counter_reprogram(pmc); 55 } 56 } 57 58 static struct kvm_pmc *intel_rdpmc_ecx_to_pmc(struct kvm_vcpu *vcpu, 59 unsigned int idx, u64 *mask) 60 { 61 unsigned int type = idx & INTEL_RDPMC_TYPE_MASK; 62 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 63 struct kvm_pmc *counters; 64 unsigned int num_counters; 65 u64 bitmask; 66 67 /* 68 * The encoding of ECX for RDPMC is different for architectural versus 69 * non-architecturals PMUs (PMUs with version '0'). For architectural 70 * PMUs, bits 31:16 specify the PMC type and bits 15:0 specify the PMC 71 * index. For non-architectural PMUs, bit 31 is a "fast" flag, and 72 * bits 30:0 specify the PMC index. 73 * 74 * Yell and reject attempts to read PMCs for a non-architectural PMU, 75 * as KVM doesn't support such PMUs. 76 */ 77 if (WARN_ON_ONCE(!pmu->version)) 78 return NULL; 79 80 /* 81 * General Purpose (GP) PMCs are supported on all PMUs, and fixed PMCs 82 * are supported on all architectural PMUs, i.e. on all virtual PMUs 83 * supported by KVM. Note, KVM only emulates fixed PMCs for PMU v2+, 84 * but the type itself is still valid, i.e. let RDPMC fail due to 85 * accessing a non-existent counter. Reject attempts to read all other 86 * types, which are unknown/unsupported. 87 */ 88 switch (type) { 89 case INTEL_RDPMC_FIXED: 90 counters = pmu->fixed_counters; 91 num_counters = pmu->nr_arch_fixed_counters; 92 bitmask = pmu->counter_bitmask[KVM_PMC_FIXED]; 93 break; 94 case INTEL_RDPMC_GP: 95 counters = pmu->gp_counters; 96 num_counters = pmu->nr_arch_gp_counters; 97 bitmask = pmu->counter_bitmask[KVM_PMC_GP]; 98 break; 99 default: 100 return NULL; 101 } 102 103 idx &= INTEL_RDPMC_INDEX_MASK; 104 if (idx >= num_counters) 105 return NULL; 106 107 *mask &= bitmask; 108 return &counters[array_index_nospec(idx, num_counters)]; 109 } 110 111 static inline u64 vcpu_get_perf_capabilities(struct kvm_vcpu *vcpu) 112 { 113 if (!guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 114 return 0; 115 116 return vcpu->arch.perf_capabilities; 117 } 118 119 static inline bool fw_writes_is_enabled(struct kvm_vcpu *vcpu) 120 { 121 return (vcpu_get_perf_capabilities(vcpu) & PMU_CAP_FW_WRITES) != 0; 122 } 123 124 static inline struct kvm_pmc *get_fw_gp_pmc(struct kvm_pmu *pmu, u32 msr) 125 { 126 if (!fw_writes_is_enabled(pmu_to_vcpu(pmu))) 127 return NULL; 128 129 return get_gp_pmc(pmu, msr, MSR_IA32_PMC0); 130 } 131 132 static bool intel_pmu_is_valid_lbr_msr(struct kvm_vcpu *vcpu, u32 index) 133 { 134 struct x86_pmu_lbr *records = vcpu_to_lbr_records(vcpu); 135 bool ret = false; 136 137 if (!intel_pmu_lbr_is_enabled(vcpu)) 138 return ret; 139 140 ret = (index == MSR_LBR_SELECT) || (index == MSR_LBR_TOS) || 141 (index >= records->from && index < records->from + records->nr) || 142 (index >= records->to && index < records->to + records->nr); 143 144 if (!ret && records->info) 145 ret = (index >= records->info && index < records->info + records->nr); 146 147 return ret; 148 } 149 150 static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 151 { 152 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 153 u64 perf_capabilities; 154 int ret; 155 156 switch (msr) { 157 case MSR_CORE_PERF_FIXED_CTR_CTRL: 158 return kvm_pmu_has_perf_global_ctrl(pmu); 159 case MSR_IA32_PEBS_ENABLE: 160 ret = vcpu_get_perf_capabilities(vcpu) & PERF_CAP_PEBS_FORMAT; 161 break; 162 case MSR_IA32_DS_AREA: 163 ret = guest_cpuid_has(vcpu, X86_FEATURE_DS); 164 break; 165 case MSR_PEBS_DATA_CFG: 166 perf_capabilities = vcpu_get_perf_capabilities(vcpu); 167 ret = (perf_capabilities & PERF_CAP_PEBS_BASELINE) && 168 ((perf_capabilities & PERF_CAP_PEBS_FORMAT) > 3); 169 break; 170 default: 171 ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) || 172 get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) || 173 get_fixed_pmc(pmu, msr) || get_fw_gp_pmc(pmu, msr) || 174 intel_pmu_is_valid_lbr_msr(vcpu, msr); 175 break; 176 } 177 178 return ret; 179 } 180 181 static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu, u32 msr) 182 { 183 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 184 struct kvm_pmc *pmc; 185 186 pmc = get_fixed_pmc(pmu, msr); 187 pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0); 188 pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0); 189 190 return pmc; 191 } 192 193 static inline void intel_pmu_release_guest_lbr_event(struct kvm_vcpu *vcpu) 194 { 195 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 196 197 if (lbr_desc->event) { 198 perf_event_release_kernel(lbr_desc->event); 199 lbr_desc->event = NULL; 200 vcpu_to_pmu(vcpu)->event_count--; 201 } 202 } 203 204 int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu) 205 { 206 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 207 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 208 struct perf_event *event; 209 210 /* 211 * The perf_event_attr is constructed in the minimum efficient way: 212 * - set 'pinned = true' to make it task pinned so that if another 213 * cpu pinned event reclaims LBR, the event->oncpu will be set to -1; 214 * - set '.exclude_host = true' to record guest branches behavior; 215 * 216 * - set '.config = INTEL_FIXED_VLBR_EVENT' to indicates host perf 217 * schedule the event without a real HW counter but a fake one; 218 * check is_guest_lbr_event() and __intel_get_event_constraints(); 219 * 220 * - set 'sample_type = PERF_SAMPLE_BRANCH_STACK' and 221 * 'branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK | 222 * PERF_SAMPLE_BRANCH_USER' to configure it as a LBR callstack 223 * event, which helps KVM to save/restore guest LBR records 224 * during host context switches and reduces quite a lot overhead, 225 * check branch_user_callstack() and intel_pmu_lbr_sched_task(); 226 */ 227 struct perf_event_attr attr = { 228 .type = PERF_TYPE_RAW, 229 .size = sizeof(attr), 230 .config = INTEL_FIXED_VLBR_EVENT, 231 .sample_type = PERF_SAMPLE_BRANCH_STACK, 232 .pinned = true, 233 .exclude_host = true, 234 .branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK | 235 PERF_SAMPLE_BRANCH_USER, 236 }; 237 238 if (unlikely(lbr_desc->event)) { 239 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); 240 return 0; 241 } 242 243 event = perf_event_create_kernel_counter(&attr, -1, 244 current, NULL, NULL); 245 if (IS_ERR(event)) { 246 pr_debug_ratelimited("%s: failed %ld\n", 247 __func__, PTR_ERR(event)); 248 return PTR_ERR(event); 249 } 250 lbr_desc->event = event; 251 pmu->event_count++; 252 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); 253 return 0; 254 } 255 256 /* 257 * It's safe to access LBR msrs from guest when they have not 258 * been passthrough since the host would help restore or reset 259 * the LBR msrs records when the guest LBR event is scheduled in. 260 */ 261 static bool intel_pmu_handle_lbr_msrs_access(struct kvm_vcpu *vcpu, 262 struct msr_data *msr_info, bool read) 263 { 264 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 265 u32 index = msr_info->index; 266 267 if (!intel_pmu_is_valid_lbr_msr(vcpu, index)) 268 return false; 269 270 if (!lbr_desc->event && intel_pmu_create_guest_lbr_event(vcpu) < 0) 271 goto dummy; 272 273 /* 274 * Disable irq to ensure the LBR feature doesn't get reclaimed by the 275 * host at the time the value is read from the msr, and this avoids the 276 * host LBR value to be leaked to the guest. If LBR has been reclaimed, 277 * return 0 on guest reads. 278 */ 279 local_irq_disable(); 280 if (lbr_desc->event->state == PERF_EVENT_STATE_ACTIVE) { 281 if (read) 282 rdmsrl(index, msr_info->data); 283 else 284 wrmsrl(index, msr_info->data); 285 __set_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use); 286 local_irq_enable(); 287 return true; 288 } 289 clear_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use); 290 local_irq_enable(); 291 292 dummy: 293 if (read) 294 msr_info->data = 0; 295 return true; 296 } 297 298 static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 299 { 300 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 301 struct kvm_pmc *pmc; 302 u32 msr = msr_info->index; 303 304 switch (msr) { 305 case MSR_CORE_PERF_FIXED_CTR_CTRL: 306 msr_info->data = pmu->fixed_ctr_ctrl; 307 break; 308 case MSR_IA32_PEBS_ENABLE: 309 msr_info->data = pmu->pebs_enable; 310 break; 311 case MSR_IA32_DS_AREA: 312 msr_info->data = pmu->ds_area; 313 break; 314 case MSR_PEBS_DATA_CFG: 315 msr_info->data = pmu->pebs_data_cfg; 316 break; 317 default: 318 if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) || 319 (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) { 320 u64 val = pmc_read_counter(pmc); 321 msr_info->data = 322 val & pmu->counter_bitmask[KVM_PMC_GP]; 323 break; 324 } else if ((pmc = get_fixed_pmc(pmu, msr))) { 325 u64 val = pmc_read_counter(pmc); 326 msr_info->data = 327 val & pmu->counter_bitmask[KVM_PMC_FIXED]; 328 break; 329 } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) { 330 msr_info->data = pmc->eventsel; 331 break; 332 } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, true)) { 333 break; 334 } 335 return 1; 336 } 337 338 return 0; 339 } 340 341 static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 342 { 343 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 344 struct kvm_pmc *pmc; 345 u32 msr = msr_info->index; 346 u64 data = msr_info->data; 347 u64 reserved_bits, diff; 348 349 switch (msr) { 350 case MSR_CORE_PERF_FIXED_CTR_CTRL: 351 if (data & pmu->fixed_ctr_ctrl_rsvd) 352 return 1; 353 354 if (pmu->fixed_ctr_ctrl != data) 355 reprogram_fixed_counters(pmu, data); 356 break; 357 case MSR_IA32_PEBS_ENABLE: 358 if (data & pmu->pebs_enable_rsvd) 359 return 1; 360 361 if (pmu->pebs_enable != data) { 362 diff = pmu->pebs_enable ^ data; 363 pmu->pebs_enable = data; 364 reprogram_counters(pmu, diff); 365 } 366 break; 367 case MSR_IA32_DS_AREA: 368 if (is_noncanonical_address(data, vcpu)) 369 return 1; 370 371 pmu->ds_area = data; 372 break; 373 case MSR_PEBS_DATA_CFG: 374 if (data & pmu->pebs_data_cfg_rsvd) 375 return 1; 376 377 pmu->pebs_data_cfg = data; 378 break; 379 default: 380 if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) || 381 (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) { 382 if ((msr & MSR_PMC_FULL_WIDTH_BIT) && 383 (data & ~pmu->counter_bitmask[KVM_PMC_GP])) 384 return 1; 385 386 if (!msr_info->host_initiated && 387 !(msr & MSR_PMC_FULL_WIDTH_BIT)) 388 data = (s64)(s32)data; 389 pmc_write_counter(pmc, data); 390 break; 391 } else if ((pmc = get_fixed_pmc(pmu, msr))) { 392 pmc_write_counter(pmc, data); 393 break; 394 } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) { 395 reserved_bits = pmu->reserved_bits; 396 if ((pmc->idx == 2) && 397 (pmu->raw_event_mask & HSW_IN_TX_CHECKPOINTED)) 398 reserved_bits ^= HSW_IN_TX_CHECKPOINTED; 399 if (data & reserved_bits) 400 return 1; 401 402 if (data != pmc->eventsel) { 403 pmc->eventsel = data; 404 kvm_pmu_request_counter_reprogram(pmc); 405 } 406 break; 407 } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, false)) { 408 break; 409 } 410 /* Not a known PMU MSR. */ 411 return 1; 412 } 413 414 return 0; 415 } 416 417 /* 418 * Map fixed counter events to architectural general purpose event encodings. 419 * Perf doesn't provide APIs to allow KVM to directly program a fixed counter, 420 * and so KVM instead programs the architectural event to effectively request 421 * the fixed counter. Perf isn't guaranteed to use a fixed counter and may 422 * instead program the encoding into a general purpose counter, e.g. if a 423 * different perf_event is already utilizing the requested counter, but the end 424 * result is the same (ignoring the fact that using a general purpose counter 425 * will likely exacerbate counter contention). 426 * 427 * Forcibly inlined to allow asserting on @index at build time, and there should 428 * never be more than one user. 429 */ 430 static __always_inline u64 intel_get_fixed_pmc_eventsel(unsigned int index) 431 { 432 const enum perf_hw_id fixed_pmc_perf_ids[] = { 433 [0] = PERF_COUNT_HW_INSTRUCTIONS, 434 [1] = PERF_COUNT_HW_CPU_CYCLES, 435 [2] = PERF_COUNT_HW_REF_CPU_CYCLES, 436 }; 437 u64 eventsel; 438 439 BUILD_BUG_ON(ARRAY_SIZE(fixed_pmc_perf_ids) != KVM_MAX_NR_INTEL_FIXED_COUTNERS); 440 BUILD_BUG_ON(index >= KVM_MAX_NR_INTEL_FIXED_COUTNERS); 441 442 /* 443 * Yell if perf reports support for a fixed counter but perf doesn't 444 * have a known encoding for the associated general purpose event. 445 */ 446 eventsel = perf_get_hw_event_config(fixed_pmc_perf_ids[index]); 447 WARN_ON_ONCE(!eventsel && index < kvm_pmu_cap.num_counters_fixed); 448 return eventsel; 449 } 450 451 static void intel_pmu_enable_fixed_counter_bits(struct kvm_pmu *pmu, u64 bits) 452 { 453 int i; 454 455 for (i = 0; i < pmu->nr_arch_fixed_counters; i++) 456 pmu->fixed_ctr_ctrl_rsvd &= ~intel_fixed_bits_by_idx(i, bits); 457 } 458 459 static void intel_pmu_refresh(struct kvm_vcpu *vcpu) 460 { 461 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 462 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 463 struct kvm_cpuid_entry2 *entry; 464 union cpuid10_eax eax; 465 union cpuid10_edx edx; 466 u64 perf_capabilities; 467 u64 counter_rsvd; 468 469 memset(&lbr_desc->records, 0, sizeof(lbr_desc->records)); 470 471 /* 472 * Setting passthrough of LBR MSRs is done only in the VM-Entry loop, 473 * and PMU refresh is disallowed after the vCPU has run, i.e. this code 474 * should never be reached while KVM is passing through MSRs. 475 */ 476 if (KVM_BUG_ON(lbr_desc->msr_passthrough, vcpu->kvm)) 477 return; 478 479 entry = kvm_find_cpuid_entry(vcpu, 0xa); 480 if (!entry) 481 return; 482 483 eax.full = entry->eax; 484 edx.full = entry->edx; 485 486 pmu->version = eax.split.version_id; 487 if (!pmu->version) 488 return; 489 490 pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters, 491 kvm_pmu_cap.num_counters_gp); 492 eax.split.bit_width = min_t(int, eax.split.bit_width, 493 kvm_pmu_cap.bit_width_gp); 494 pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1; 495 eax.split.mask_length = min_t(int, eax.split.mask_length, 496 kvm_pmu_cap.events_mask_len); 497 pmu->available_event_types = ~entry->ebx & 498 ((1ull << eax.split.mask_length) - 1); 499 500 if (pmu->version == 1) { 501 pmu->nr_arch_fixed_counters = 0; 502 } else { 503 pmu->nr_arch_fixed_counters = min_t(int, edx.split.num_counters_fixed, 504 kvm_pmu_cap.num_counters_fixed); 505 edx.split.bit_width_fixed = min_t(int, edx.split.bit_width_fixed, 506 kvm_pmu_cap.bit_width_fixed); 507 pmu->counter_bitmask[KVM_PMC_FIXED] = 508 ((u64)1 << edx.split.bit_width_fixed) - 1; 509 } 510 511 intel_pmu_enable_fixed_counter_bits(pmu, INTEL_FIXED_0_KERNEL | 512 INTEL_FIXED_0_USER | 513 INTEL_FIXED_0_ENABLE_PMI); 514 515 counter_rsvd = ~(((1ull << pmu->nr_arch_gp_counters) - 1) | 516 (((1ull << pmu->nr_arch_fixed_counters) - 1) << KVM_FIXED_PMC_BASE_IDX)); 517 pmu->global_ctrl_rsvd = counter_rsvd; 518 519 /* 520 * GLOBAL_STATUS and GLOBAL_OVF_CONTROL (a.k.a. GLOBAL_STATUS_RESET) 521 * share reserved bit definitions. The kernel just happens to use 522 * OVF_CTRL for the names. 523 */ 524 pmu->global_status_rsvd = pmu->global_ctrl_rsvd 525 & ~(MSR_CORE_PERF_GLOBAL_OVF_CTRL_OVF_BUF | 526 MSR_CORE_PERF_GLOBAL_OVF_CTRL_COND_CHGD); 527 if (vmx_pt_mode_is_host_guest()) 528 pmu->global_status_rsvd &= 529 ~MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI; 530 531 entry = kvm_find_cpuid_entry_index(vcpu, 7, 0); 532 if (entry && 533 (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) && 534 (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM))) { 535 pmu->reserved_bits ^= HSW_IN_TX; 536 pmu->raw_event_mask |= (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); 537 } 538 539 bitmap_set(pmu->all_valid_pmc_idx, 540 0, pmu->nr_arch_gp_counters); 541 bitmap_set(pmu->all_valid_pmc_idx, 542 INTEL_PMC_MAX_GENERIC, pmu->nr_arch_fixed_counters); 543 544 perf_capabilities = vcpu_get_perf_capabilities(vcpu); 545 if (cpuid_model_is_consistent(vcpu) && 546 (perf_capabilities & PMU_CAP_LBR_FMT)) 547 memcpy(&lbr_desc->records, &vmx_lbr_caps, sizeof(vmx_lbr_caps)); 548 else 549 lbr_desc->records.nr = 0; 550 551 if (lbr_desc->records.nr) 552 bitmap_set(pmu->all_valid_pmc_idx, INTEL_PMC_IDX_FIXED_VLBR, 1); 553 554 if (perf_capabilities & PERF_CAP_PEBS_FORMAT) { 555 if (perf_capabilities & PERF_CAP_PEBS_BASELINE) { 556 pmu->pebs_enable_rsvd = counter_rsvd; 557 pmu->reserved_bits &= ~ICL_EVENTSEL_ADAPTIVE; 558 pmu->pebs_data_cfg_rsvd = ~0xff00000full; 559 intel_pmu_enable_fixed_counter_bits(pmu, ICL_FIXED_0_ADAPTIVE); 560 } else { 561 pmu->pebs_enable_rsvd = 562 ~((1ull << pmu->nr_arch_gp_counters) - 1); 563 } 564 } 565 } 566 567 static void intel_pmu_init(struct kvm_vcpu *vcpu) 568 { 569 int i; 570 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 571 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 572 573 for (i = 0; i < KVM_MAX_NR_INTEL_GP_COUNTERS; i++) { 574 pmu->gp_counters[i].type = KVM_PMC_GP; 575 pmu->gp_counters[i].vcpu = vcpu; 576 pmu->gp_counters[i].idx = i; 577 pmu->gp_counters[i].current_config = 0; 578 } 579 580 for (i = 0; i < KVM_MAX_NR_INTEL_FIXED_COUTNERS; i++) { 581 pmu->fixed_counters[i].type = KVM_PMC_FIXED; 582 pmu->fixed_counters[i].vcpu = vcpu; 583 pmu->fixed_counters[i].idx = i + KVM_FIXED_PMC_BASE_IDX; 584 pmu->fixed_counters[i].current_config = 0; 585 pmu->fixed_counters[i].eventsel = intel_get_fixed_pmc_eventsel(i); 586 } 587 588 lbr_desc->records.nr = 0; 589 lbr_desc->event = NULL; 590 lbr_desc->msr_passthrough = false; 591 } 592 593 static void intel_pmu_reset(struct kvm_vcpu *vcpu) 594 { 595 intel_pmu_release_guest_lbr_event(vcpu); 596 } 597 598 /* 599 * Emulate LBR_On_PMI behavior for 1 < pmu.version < 4. 600 * 601 * If Freeze_LBR_On_PMI = 1, the LBR is frozen on PMI and 602 * the KVM emulates to clear the LBR bit (bit 0) in IA32_DEBUGCTL. 603 * 604 * Guest needs to re-enable LBR to resume branches recording. 605 */ 606 static void intel_pmu_legacy_freezing_lbrs_on_pmi(struct kvm_vcpu *vcpu) 607 { 608 u64 data = vmcs_read64(GUEST_IA32_DEBUGCTL); 609 610 if (data & DEBUGCTLMSR_FREEZE_LBRS_ON_PMI) { 611 data &= ~DEBUGCTLMSR_LBR; 612 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 613 } 614 } 615 616 static void intel_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 617 { 618 u8 version = vcpu_to_pmu(vcpu)->version; 619 620 if (!intel_pmu_lbr_is_enabled(vcpu)) 621 return; 622 623 if (version > 1 && version < 4) 624 intel_pmu_legacy_freezing_lbrs_on_pmi(vcpu); 625 } 626 627 static void vmx_update_intercept_for_lbr_msrs(struct kvm_vcpu *vcpu, bool set) 628 { 629 struct x86_pmu_lbr *lbr = vcpu_to_lbr_records(vcpu); 630 int i; 631 632 for (i = 0; i < lbr->nr; i++) { 633 vmx_set_intercept_for_msr(vcpu, lbr->from + i, MSR_TYPE_RW, set); 634 vmx_set_intercept_for_msr(vcpu, lbr->to + i, MSR_TYPE_RW, set); 635 if (lbr->info) 636 vmx_set_intercept_for_msr(vcpu, lbr->info + i, MSR_TYPE_RW, set); 637 } 638 639 vmx_set_intercept_for_msr(vcpu, MSR_LBR_SELECT, MSR_TYPE_RW, set); 640 vmx_set_intercept_for_msr(vcpu, MSR_LBR_TOS, MSR_TYPE_RW, set); 641 } 642 643 static inline void vmx_disable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu) 644 { 645 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 646 647 if (!lbr_desc->msr_passthrough) 648 return; 649 650 vmx_update_intercept_for_lbr_msrs(vcpu, true); 651 lbr_desc->msr_passthrough = false; 652 } 653 654 static inline void vmx_enable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu) 655 { 656 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 657 658 if (lbr_desc->msr_passthrough) 659 return; 660 661 vmx_update_intercept_for_lbr_msrs(vcpu, false); 662 lbr_desc->msr_passthrough = true; 663 } 664 665 /* 666 * Higher priority host perf events (e.g. cpu pinned) could reclaim the 667 * pmu resources (e.g. LBR) that were assigned to the guest. This is 668 * usually done via ipi calls (more details in perf_install_in_context). 669 * 670 * Before entering the non-root mode (with irq disabled here), double 671 * confirm that the pmu features enabled to the guest are not reclaimed 672 * by higher priority host events. Otherwise, disallow vcpu's access to 673 * the reclaimed features. 674 */ 675 void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu) 676 { 677 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 678 struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); 679 680 if (!lbr_desc->event) { 681 vmx_disable_lbr_msrs_passthrough(vcpu); 682 if (vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR) 683 goto warn; 684 if (test_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use)) 685 goto warn; 686 return; 687 } 688 689 if (lbr_desc->event->state < PERF_EVENT_STATE_ACTIVE) { 690 vmx_disable_lbr_msrs_passthrough(vcpu); 691 __clear_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); 692 goto warn; 693 } else 694 vmx_enable_lbr_msrs_passthrough(vcpu); 695 696 return; 697 698 warn: 699 pr_warn_ratelimited("vcpu-%d: fail to passthrough LBR.\n", vcpu->vcpu_id); 700 } 701 702 static void intel_pmu_cleanup(struct kvm_vcpu *vcpu) 703 { 704 if (!(vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR)) 705 intel_pmu_release_guest_lbr_event(vcpu); 706 } 707 708 void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu) 709 { 710 struct kvm_pmc *pmc = NULL; 711 int bit, hw_idx; 712 713 kvm_for_each_pmc(pmu, pmc, bit, (unsigned long *)&pmu->global_ctrl) { 714 if (!pmc_speculative_in_use(pmc) || 715 !pmc_is_globally_enabled(pmc) || !pmc->perf_event) 716 continue; 717 718 /* 719 * A negative index indicates the event isn't mapped to a 720 * physical counter in the host, e.g. due to contention. 721 */ 722 hw_idx = pmc->perf_event->hw.idx; 723 if (hw_idx != pmc->idx && hw_idx > -1) 724 pmu->host_cross_mapped_mask |= BIT_ULL(hw_idx); 725 } 726 } 727 728 struct kvm_pmu_ops intel_pmu_ops __initdata = { 729 .rdpmc_ecx_to_pmc = intel_rdpmc_ecx_to_pmc, 730 .msr_idx_to_pmc = intel_msr_idx_to_pmc, 731 .is_valid_msr = intel_is_valid_msr, 732 .get_msr = intel_pmu_get_msr, 733 .set_msr = intel_pmu_set_msr, 734 .refresh = intel_pmu_refresh, 735 .init = intel_pmu_init, 736 .reset = intel_pmu_reset, 737 .deliver_pmi = intel_pmu_deliver_pmi, 738 .cleanup = intel_pmu_cleanup, 739 .EVENTSEL_EVENT = ARCH_PERFMON_EVENTSEL_EVENT, 740 .MAX_NR_GP_COUNTERS = KVM_MAX_NR_INTEL_GP_COUNTERS, 741 .MIN_NR_GP_COUNTERS = 1, 742 }; 743