1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/objtool.h> 5 #include <linux/percpu.h> 6 7 #include <asm/debugreg.h> 8 #include <asm/mmu_context.h> 9 10 #include "cpuid.h" 11 #include "hyperv.h" 12 #include "mmu.h" 13 #include "nested.h" 14 #include "pmu.h" 15 #include "posted_intr.h" 16 #include "sgx.h" 17 #include "trace.h" 18 #include "vmx.h" 19 #include "x86.h" 20 #include "smm.h" 21 22 static bool __read_mostly enable_shadow_vmcs = 1; 23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); 24 25 static bool __read_mostly nested_early_check = 0; 26 module_param(nested_early_check, bool, S_IRUGO); 27 28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK 29 30 /* 31 * Hyper-V requires all of these, so mark them as supported even though 32 * they are just treated the same as all-context. 33 */ 34 #define VMX_VPID_EXTENT_SUPPORTED_MASK \ 35 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ 36 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ 37 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ 38 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) 39 40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 41 42 enum { 43 VMX_VMREAD_BITMAP, 44 VMX_VMWRITE_BITMAP, 45 VMX_BITMAP_NR 46 }; 47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; 48 49 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) 50 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) 51 52 struct shadow_vmcs_field { 53 u16 encoding; 54 u16 offset; 55 }; 56 static struct shadow_vmcs_field shadow_read_only_fields[] = { 57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) }, 58 #include "vmcs_shadow_fields.h" 59 }; 60 static int max_shadow_read_only_fields = 61 ARRAY_SIZE(shadow_read_only_fields); 62 63 static struct shadow_vmcs_field shadow_read_write_fields[] = { 64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) }, 65 #include "vmcs_shadow_fields.h" 66 }; 67 static int max_shadow_read_write_fields = 68 ARRAY_SIZE(shadow_read_write_fields); 69 70 static void init_vmcs_shadow_fields(void) 71 { 72 int i, j; 73 74 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); 75 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); 76 77 for (i = j = 0; i < max_shadow_read_only_fields; i++) { 78 struct shadow_vmcs_field entry = shadow_read_only_fields[i]; 79 u16 field = entry.encoding; 80 81 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && 82 (i + 1 == max_shadow_read_only_fields || 83 shadow_read_only_fields[i + 1].encoding != field + 1)) 84 pr_err("Missing field from shadow_read_only_field %x\n", 85 field + 1); 86 87 clear_bit(field, vmx_vmread_bitmap); 88 if (field & 1) 89 #ifdef CONFIG_X86_64 90 continue; 91 #else 92 entry.offset += sizeof(u32); 93 #endif 94 shadow_read_only_fields[j++] = entry; 95 } 96 max_shadow_read_only_fields = j; 97 98 for (i = j = 0; i < max_shadow_read_write_fields; i++) { 99 struct shadow_vmcs_field entry = shadow_read_write_fields[i]; 100 u16 field = entry.encoding; 101 102 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && 103 (i + 1 == max_shadow_read_write_fields || 104 shadow_read_write_fields[i + 1].encoding != field + 1)) 105 pr_err("Missing field from shadow_read_write_field %x\n", 106 field + 1); 107 108 WARN_ONCE(field >= GUEST_ES_AR_BYTES && 109 field <= GUEST_TR_AR_BYTES, 110 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES"); 111 112 /* 113 * PML and the preemption timer can be emulated, but the 114 * processor cannot vmwrite to fields that don't exist 115 * on bare metal. 116 */ 117 switch (field) { 118 case GUEST_PML_INDEX: 119 if (!cpu_has_vmx_pml()) 120 continue; 121 break; 122 case VMX_PREEMPTION_TIMER_VALUE: 123 if (!cpu_has_vmx_preemption_timer()) 124 continue; 125 break; 126 case GUEST_INTR_STATUS: 127 if (!cpu_has_vmx_apicv()) 128 continue; 129 break; 130 default: 131 break; 132 } 133 134 clear_bit(field, vmx_vmwrite_bitmap); 135 clear_bit(field, vmx_vmread_bitmap); 136 if (field & 1) 137 #ifdef CONFIG_X86_64 138 continue; 139 #else 140 entry.offset += sizeof(u32); 141 #endif 142 shadow_read_write_fields[j++] = entry; 143 } 144 max_shadow_read_write_fields = j; 145 } 146 147 /* 148 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), 149 * set the success or error code of an emulated VMX instruction (as specified 150 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated 151 * instruction. 152 */ 153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu) 154 { 155 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) 156 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 157 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); 158 return kvm_skip_emulated_instruction(vcpu); 159 } 160 161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) 162 { 163 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) 164 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | 165 X86_EFLAGS_SF | X86_EFLAGS_OF)) 166 | X86_EFLAGS_CF); 167 return kvm_skip_emulated_instruction(vcpu); 168 } 169 170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu, 171 u32 vm_instruction_error) 172 { 173 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) 174 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 175 X86_EFLAGS_SF | X86_EFLAGS_OF)) 176 | X86_EFLAGS_ZF); 177 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; 178 /* 179 * We don't need to force sync to shadow VMCS because 180 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all 181 * fields and thus must be synced. 182 */ 183 if (nested_vmx_is_evmptr12_set(to_vmx(vcpu))) 184 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true; 185 186 return kvm_skip_emulated_instruction(vcpu); 187 } 188 189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error) 190 { 191 struct vcpu_vmx *vmx = to_vmx(vcpu); 192 193 /* 194 * failValid writes the error number to the current VMCS, which 195 * can't be done if there isn't a current VMCS. 196 */ 197 if (vmx->nested.current_vmptr == INVALID_GPA && 198 !nested_vmx_is_evmptr12_valid(vmx)) 199 return nested_vmx_failInvalid(vcpu); 200 201 return nested_vmx_failValid(vcpu, vm_instruction_error); 202 } 203 204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) 205 { 206 /* TODO: not to reset guest simply here. */ 207 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 208 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator); 209 } 210 211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high) 212 { 213 return fixed_bits_valid(control, low, high); 214 } 215 216 static inline u64 vmx_control_msr(u32 low, u32 high) 217 { 218 return low | ((u64)high << 32); 219 } 220 221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) 222 { 223 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS); 224 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); 225 vmx->nested.need_vmcs12_to_shadow_sync = false; 226 } 227 228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) 229 { 230 #ifdef CONFIG_KVM_HYPERV 231 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 232 struct vcpu_vmx *vmx = to_vmx(vcpu); 233 234 if (nested_vmx_is_evmptr12_valid(vmx)) { 235 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true); 236 vmx->nested.hv_evmcs = NULL; 237 } 238 239 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 240 241 if (hv_vcpu) { 242 hv_vcpu->nested.pa_page_gpa = INVALID_GPA; 243 hv_vcpu->nested.vm_id = 0; 244 hv_vcpu->nested.vp_id = 0; 245 } 246 #endif 247 } 248 249 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr) 250 { 251 #ifdef CONFIG_KVM_HYPERV 252 struct vcpu_vmx *vmx = to_vmx(vcpu); 253 /* 254 * When Enlightened VMEntry is enabled on the calling CPU we treat 255 * memory area pointer by vmptr as Enlightened VMCS (as there's no good 256 * way to distinguish it from VMCS12) and we must not corrupt it by 257 * writing to the non-existent 'launch_state' field. The area doesn't 258 * have to be the currently active EVMCS on the calling CPU and there's 259 * nothing KVM has to do to transition it from 'active' to 'non-active' 260 * state. It is possible that the area will stay mapped as 261 * vmx->nested.hv_evmcs but this shouldn't be a problem. 262 */ 263 if (!guest_cpuid_has_evmcs(vcpu) || 264 !evmptr_is_valid(nested_get_evmptr(vcpu))) 265 return false; 266 267 if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr) 268 nested_release_evmcs(vcpu); 269 270 return true; 271 #else 272 return false; 273 #endif 274 } 275 276 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx, 277 struct loaded_vmcs *prev) 278 { 279 struct vmcs_host_state *dest, *src; 280 281 if (unlikely(!vmx->guest_state_loaded)) 282 return; 283 284 src = &prev->host_state; 285 dest = &vmx->loaded_vmcs->host_state; 286 287 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base); 288 dest->ldt_sel = src->ldt_sel; 289 #ifdef CONFIG_X86_64 290 dest->ds_sel = src->ds_sel; 291 dest->es_sel = src->es_sel; 292 #endif 293 } 294 295 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) 296 { 297 struct vcpu_vmx *vmx = to_vmx(vcpu); 298 struct loaded_vmcs *prev; 299 int cpu; 300 301 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs)) 302 return; 303 304 cpu = get_cpu(); 305 prev = vmx->loaded_vmcs; 306 vmx->loaded_vmcs = vmcs; 307 vmx_vcpu_load_vmcs(vcpu, cpu, prev); 308 vmx_sync_vmcs_host_state(vmx, prev); 309 put_cpu(); 310 311 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET; 312 313 /* 314 * All lazily updated registers will be reloaded from VMCS12 on both 315 * vmentry and vmexit. 316 */ 317 vcpu->arch.regs_dirty = 0; 318 } 319 320 /* 321 * Free whatever needs to be freed from vmx->nested when L1 goes down, or 322 * just stops using VMX. 323 */ 324 static void free_nested(struct kvm_vcpu *vcpu) 325 { 326 struct vcpu_vmx *vmx = to_vmx(vcpu); 327 328 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01)) 329 vmx_switch_vmcs(vcpu, &vmx->vmcs01); 330 331 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) 332 return; 333 334 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 335 336 vmx->nested.vmxon = false; 337 vmx->nested.smm.vmxon = false; 338 vmx->nested.vmxon_ptr = INVALID_GPA; 339 free_vpid(vmx->nested.vpid02); 340 vmx->nested.posted_intr_nv = -1; 341 vmx->nested.current_vmptr = INVALID_GPA; 342 if (enable_shadow_vmcs) { 343 vmx_disable_shadow_vmcs(vmx); 344 vmcs_clear(vmx->vmcs01.shadow_vmcs); 345 free_vmcs(vmx->vmcs01.shadow_vmcs); 346 vmx->vmcs01.shadow_vmcs = NULL; 347 } 348 kfree(vmx->nested.cached_vmcs12); 349 vmx->nested.cached_vmcs12 = NULL; 350 kfree(vmx->nested.cached_shadow_vmcs12); 351 vmx->nested.cached_shadow_vmcs12 = NULL; 352 /* 353 * Unpin physical memory we referred to in the vmcs02. The APIC access 354 * page's backing page (yeah, confusing) shouldn't actually be accessed, 355 * and if it is written, the contents are irrelevant. 356 */ 357 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false); 358 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true); 359 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true); 360 vmx->nested.pi_desc = NULL; 361 362 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 363 364 nested_release_evmcs(vcpu); 365 366 free_loaded_vmcs(&vmx->nested.vmcs02); 367 } 368 369 /* 370 * Ensure that the current vmcs of the logical processor is the 371 * vmcs01 of the vcpu before calling free_nested(). 372 */ 373 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu) 374 { 375 vcpu_load(vcpu); 376 vmx_leave_nested(vcpu); 377 vcpu_put(vcpu); 378 } 379 380 #define EPTP_PA_MASK GENMASK_ULL(51, 12) 381 382 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp) 383 { 384 return VALID_PAGE(root_hpa) && 385 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK)); 386 } 387 388 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp, 389 gpa_t addr) 390 { 391 unsigned long roots = 0; 392 uint i; 393 struct kvm_mmu_root_info *cached_root; 394 395 WARN_ON_ONCE(!mmu_is_nested(vcpu)); 396 397 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 398 cached_root = &vcpu->arch.mmu->prev_roots[i]; 399 400 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd, 401 eptp)) 402 roots |= KVM_MMU_ROOT_PREVIOUS(i); 403 } 404 if (roots) 405 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots); 406 } 407 408 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, 409 struct x86_exception *fault) 410 { 411 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 412 struct vcpu_vmx *vmx = to_vmx(vcpu); 413 unsigned long exit_qualification; 414 u32 vm_exit_reason; 415 416 if (vmx->nested.pml_full) { 417 vm_exit_reason = EXIT_REASON_PML_FULL; 418 vmx->nested.pml_full = false; 419 420 /* 421 * It should be impossible to trigger a nested PML Full VM-Exit 422 * for anything other than an EPT Violation from L2. KVM *can* 423 * trigger nEPT page fault injection in response to an EPT 424 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT 425 * tables also changed, but KVM should not treat EPT Misconfig 426 * VM-Exits as writes. 427 */ 428 WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION); 429 430 /* 431 * PML Full and EPT Violation VM-Exits both use bit 12 to report 432 * "NMI unblocking due to IRET", i.e. the bit can be propagated 433 * as-is from the original EXIT_QUALIFICATION. 434 */ 435 exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI; 436 } else { 437 if (fault->error_code & PFERR_RSVD_MASK) { 438 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG; 439 exit_qualification = 0; 440 } else { 441 exit_qualification = fault->exit_qualification; 442 exit_qualification |= vmx_get_exit_qual(vcpu) & 443 (EPT_VIOLATION_GVA_IS_VALID | 444 EPT_VIOLATION_GVA_TRANSLATED); 445 vm_exit_reason = EXIT_REASON_EPT_VIOLATION; 446 } 447 448 /* 449 * Although the caller (kvm_inject_emulated_page_fault) would 450 * have already synced the faulting address in the shadow EPT 451 * tables for the current EPTP12, we also need to sync it for 452 * any other cached EPTP02s based on the same EP4TA, since the 453 * TLB associates mappings to the EP4TA rather than the full EPTP. 454 */ 455 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer, 456 fault->address); 457 } 458 459 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification); 460 vmcs12->guest_physical_address = fault->address; 461 } 462 463 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu) 464 { 465 struct vcpu_vmx *vmx = to_vmx(vcpu); 466 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT; 467 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps); 468 469 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level, 470 nested_ept_ad_enabled(vcpu), 471 nested_ept_get_eptp(vcpu)); 472 } 473 474 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) 475 { 476 WARN_ON(mmu_is_nested(vcpu)); 477 478 vcpu->arch.mmu = &vcpu->arch.guest_mmu; 479 nested_ept_new_eptp(vcpu); 480 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp; 481 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; 482 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; 483 484 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; 485 } 486 487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) 488 { 489 vcpu->arch.mmu = &vcpu->arch.root_mmu; 490 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 491 } 492 493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, 494 u16 error_code) 495 { 496 bool inequality, bit; 497 498 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; 499 inequality = 500 (error_code & vmcs12->page_fault_error_code_mask) != 501 vmcs12->page_fault_error_code_match; 502 return inequality ^ bit; 503 } 504 505 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector, 506 u32 error_code) 507 { 508 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 509 510 /* 511 * Drop bits 31:16 of the error code when performing the #PF mask+match 512 * check. All VMCS fields involved are 32 bits, but Intel CPUs never 513 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected 514 * error code. Including the to-be-dropped bits in the check might 515 * result in an "impossible" or missed exit from L1's perspective. 516 */ 517 if (vector == PF_VECTOR) 518 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code); 519 520 return (vmcs12->exception_bitmap & (1u << vector)); 521 } 522 523 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, 524 struct vmcs12 *vmcs12) 525 { 526 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 527 return 0; 528 529 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) || 530 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b))) 531 return -EINVAL; 532 533 return 0; 534 } 535 536 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, 537 struct vmcs12 *vmcs12) 538 { 539 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) 540 return 0; 541 542 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap))) 543 return -EINVAL; 544 545 return 0; 546 } 547 548 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, 549 struct vmcs12 *vmcs12) 550 { 551 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 552 return 0; 553 554 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))) 555 return -EINVAL; 556 557 return 0; 558 } 559 560 /* 561 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1 562 * itself utilizing x2APIC. All MSRs were previously set to be intercepted, 563 * only the "disable intercept" case needs to be handled. 564 */ 565 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1, 566 unsigned long *msr_bitmap_l0, 567 u32 msr, int type) 568 { 569 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr)) 570 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr); 571 572 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr)) 573 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr); 574 } 575 576 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) 577 { 578 int msr; 579 580 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 581 unsigned word = msr / BITS_PER_LONG; 582 583 msr_bitmap[word] = ~0; 584 msr_bitmap[word + (0x800 / sizeof(long))] = ~0; 585 } 586 } 587 588 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \ 589 static inline \ 590 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \ 591 unsigned long *msr_bitmap_l1, \ 592 unsigned long *msr_bitmap_l0, u32 msr) \ 593 { \ 594 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \ 595 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \ 596 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \ 597 else \ 598 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \ 599 } 600 BUILD_NVMX_MSR_INTERCEPT_HELPER(read) 601 BUILD_NVMX_MSR_INTERCEPT_HELPER(write) 602 603 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx, 604 unsigned long *msr_bitmap_l1, 605 unsigned long *msr_bitmap_l0, 606 u32 msr, int types) 607 { 608 if (types & MSR_TYPE_R) 609 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1, 610 msr_bitmap_l0, msr); 611 if (types & MSR_TYPE_W) 612 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1, 613 msr_bitmap_l0, msr); 614 } 615 616 /* 617 * Merge L0's and L1's MSR bitmap, return false to indicate that 618 * we do not use the hardware. 619 */ 620 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, 621 struct vmcs12 *vmcs12) 622 { 623 struct vcpu_vmx *vmx = to_vmx(vcpu); 624 int msr; 625 unsigned long *msr_bitmap_l1; 626 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap; 627 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map; 628 629 /* Nothing to do if the MSR bitmap is not in use. */ 630 if (!cpu_has_vmx_msr_bitmap() || 631 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) 632 return false; 633 634 /* 635 * MSR bitmap update can be skipped when: 636 * - MSR bitmap for L1 hasn't changed. 637 * - Nested hypervisor (L1) is attempting to launch the same L2 as 638 * before. 639 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature 640 * and tells KVM (L0) there were no changes in MSR bitmap for L2. 641 */ 642 if (!vmx->nested.force_msr_bitmap_recalc) { 643 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); 644 645 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap && 646 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP) 647 return true; 648 } 649 650 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map)) 651 return false; 652 653 msr_bitmap_l1 = (unsigned long *)map->hva; 654 655 /* 656 * To keep the control flow simple, pay eight 8-byte writes (sixteen 657 * 4-byte writes on 32-bit systems) up front to enable intercepts for 658 * the x2APIC MSR range and selectively toggle those relevant to L2. 659 */ 660 enable_x2apic_msr_intercepts(msr_bitmap_l0); 661 662 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) { 663 if (nested_cpu_has_apic_reg_virt(vmcs12)) { 664 /* 665 * L0 need not intercept reads for MSRs between 0x800 666 * and 0x8ff, it just lets the processor take the value 667 * from the virtual-APIC page; take those 256 bits 668 * directly from the L1 bitmap. 669 */ 670 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 671 unsigned word = msr / BITS_PER_LONG; 672 673 msr_bitmap_l0[word] = msr_bitmap_l1[word]; 674 } 675 } 676 677 nested_vmx_disable_intercept_for_x2apic_msr( 678 msr_bitmap_l1, msr_bitmap_l0, 679 X2APIC_MSR(APIC_TASKPRI), 680 MSR_TYPE_R | MSR_TYPE_W); 681 682 if (nested_cpu_has_vid(vmcs12)) { 683 nested_vmx_disable_intercept_for_x2apic_msr( 684 msr_bitmap_l1, msr_bitmap_l0, 685 X2APIC_MSR(APIC_EOI), 686 MSR_TYPE_W); 687 nested_vmx_disable_intercept_for_x2apic_msr( 688 msr_bitmap_l1, msr_bitmap_l0, 689 X2APIC_MSR(APIC_SELF_IPI), 690 MSR_TYPE_W); 691 } 692 } 693 694 /* 695 * Always check vmcs01's bitmap to honor userspace MSR filters and any 696 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through. 697 */ 698 #ifdef CONFIG_X86_64 699 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, 700 MSR_FS_BASE, MSR_TYPE_RW); 701 702 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, 703 MSR_GS_BASE, MSR_TYPE_RW); 704 705 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, 706 MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 707 #endif 708 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, 709 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); 710 711 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, 712 MSR_IA32_PRED_CMD, MSR_TYPE_W); 713 714 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0, 715 MSR_IA32_FLUSH_CMD, MSR_TYPE_W); 716 717 kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false); 718 719 vmx->nested.force_msr_bitmap_recalc = false; 720 721 return true; 722 } 723 724 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, 725 struct vmcs12 *vmcs12) 726 { 727 struct vcpu_vmx *vmx = to_vmx(vcpu); 728 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; 729 730 if (!nested_cpu_has_shadow_vmcs(vmcs12) || 731 vmcs12->vmcs_link_pointer == INVALID_GPA) 732 return; 733 734 if (ghc->gpa != vmcs12->vmcs_link_pointer && 735 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, 736 vmcs12->vmcs_link_pointer, VMCS12_SIZE)) 737 return; 738 739 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu), 740 VMCS12_SIZE); 741 } 742 743 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, 744 struct vmcs12 *vmcs12) 745 { 746 struct vcpu_vmx *vmx = to_vmx(vcpu); 747 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; 748 749 if (!nested_cpu_has_shadow_vmcs(vmcs12) || 750 vmcs12->vmcs_link_pointer == INVALID_GPA) 751 return; 752 753 if (ghc->gpa != vmcs12->vmcs_link_pointer && 754 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, 755 vmcs12->vmcs_link_pointer, VMCS12_SIZE)) 756 return; 757 758 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu), 759 VMCS12_SIZE); 760 } 761 762 /* 763 * In nested virtualization, check if L1 has set 764 * VM_EXIT_ACK_INTR_ON_EXIT 765 */ 766 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) 767 { 768 return get_vmcs12(vcpu)->vm_exit_controls & 769 VM_EXIT_ACK_INTR_ON_EXIT; 770 } 771 772 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, 773 struct vmcs12 *vmcs12) 774 { 775 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && 776 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr))) 777 return -EINVAL; 778 else 779 return 0; 780 } 781 782 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, 783 struct vmcs12 *vmcs12) 784 { 785 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && 786 !nested_cpu_has_apic_reg_virt(vmcs12) && 787 !nested_cpu_has_vid(vmcs12) && 788 !nested_cpu_has_posted_intr(vmcs12)) 789 return 0; 790 791 /* 792 * If virtualize x2apic mode is enabled, 793 * virtualize apic access must be disabled. 794 */ 795 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) && 796 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))) 797 return -EINVAL; 798 799 /* 800 * If virtual interrupt delivery is enabled, 801 * we must exit on external interrupts. 802 */ 803 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu))) 804 return -EINVAL; 805 806 /* 807 * bits 15:8 should be zero in posted_intr_nv, 808 * the descriptor address has been already checked 809 * in nested_get_vmcs12_pages. 810 * 811 * bits 5:0 of posted_intr_desc_addr should be zero. 812 */ 813 if (nested_cpu_has_posted_intr(vmcs12) && 814 (CC(!nested_cpu_has_vid(vmcs12)) || 815 CC(!nested_exit_intr_ack_set(vcpu)) || 816 CC((vmcs12->posted_intr_nv & 0xff00)) || 817 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64)))) 818 return -EINVAL; 819 820 /* tpr shadow is needed by all apicv features. */ 821 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))) 822 return -EINVAL; 823 824 return 0; 825 } 826 827 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, 828 u32 count, u64 addr) 829 { 830 if (count == 0) 831 return 0; 832 833 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) || 834 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1))) 835 return -EINVAL; 836 837 return 0; 838 } 839 840 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu, 841 struct vmcs12 *vmcs12) 842 { 843 if (CC(nested_vmx_check_msr_switch(vcpu, 844 vmcs12->vm_exit_msr_load_count, 845 vmcs12->vm_exit_msr_load_addr)) || 846 CC(nested_vmx_check_msr_switch(vcpu, 847 vmcs12->vm_exit_msr_store_count, 848 vmcs12->vm_exit_msr_store_addr))) 849 return -EINVAL; 850 851 return 0; 852 } 853 854 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu, 855 struct vmcs12 *vmcs12) 856 { 857 if (CC(nested_vmx_check_msr_switch(vcpu, 858 vmcs12->vm_entry_msr_load_count, 859 vmcs12->vm_entry_msr_load_addr))) 860 return -EINVAL; 861 862 return 0; 863 } 864 865 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, 866 struct vmcs12 *vmcs12) 867 { 868 if (!nested_cpu_has_pml(vmcs12)) 869 return 0; 870 871 if (CC(!nested_cpu_has_ept(vmcs12)) || 872 CC(!page_address_valid(vcpu, vmcs12->pml_address))) 873 return -EINVAL; 874 875 return 0; 876 } 877 878 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu, 879 struct vmcs12 *vmcs12) 880 { 881 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) && 882 !nested_cpu_has_ept(vmcs12))) 883 return -EINVAL; 884 return 0; 885 } 886 887 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu, 888 struct vmcs12 *vmcs12) 889 { 890 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) && 891 !nested_cpu_has_ept(vmcs12))) 892 return -EINVAL; 893 return 0; 894 } 895 896 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, 897 struct vmcs12 *vmcs12) 898 { 899 if (!nested_cpu_has_shadow_vmcs(vmcs12)) 900 return 0; 901 902 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) || 903 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap))) 904 return -EINVAL; 905 906 return 0; 907 } 908 909 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, 910 struct vmx_msr_entry *e) 911 { 912 /* x2APIC MSR accesses are not allowed */ 913 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)) 914 return -EINVAL; 915 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */ 916 CC(e->index == MSR_IA32_UCODE_REV)) 917 return -EINVAL; 918 if (CC(e->reserved != 0)) 919 return -EINVAL; 920 return 0; 921 } 922 923 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, 924 struct vmx_msr_entry *e) 925 { 926 if (CC(e->index == MSR_FS_BASE) || 927 CC(e->index == MSR_GS_BASE) || 928 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */ 929 nested_vmx_msr_check_common(vcpu, e)) 930 return -EINVAL; 931 return 0; 932 } 933 934 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, 935 struct vmx_msr_entry *e) 936 { 937 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */ 938 nested_vmx_msr_check_common(vcpu, e)) 939 return -EINVAL; 940 return 0; 941 } 942 943 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu) 944 { 945 struct vcpu_vmx *vmx = to_vmx(vcpu); 946 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, 947 vmx->nested.msrs.misc_high); 948 949 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER; 950 } 951 952 /* 953 * Load guest's/host's msr at nested entry/exit. 954 * return 0 for success, entry index for failure. 955 * 956 * One of the failure modes for MSR load/store is when a list exceeds the 957 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch 958 * as possible, process all valid entries before failing rather than precheck 959 * for a capacity violation. 960 */ 961 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) 962 { 963 u32 i; 964 struct vmx_msr_entry e; 965 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu); 966 967 for (i = 0; i < count; i++) { 968 if (unlikely(i >= max_msr_list_size)) 969 goto fail; 970 971 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), 972 &e, sizeof(e))) { 973 pr_debug_ratelimited( 974 "%s cannot read MSR entry (%u, 0x%08llx)\n", 975 __func__, i, gpa + i * sizeof(e)); 976 goto fail; 977 } 978 if (nested_vmx_load_msr_check(vcpu, &e)) { 979 pr_debug_ratelimited( 980 "%s check failed (%u, 0x%x, 0x%x)\n", 981 __func__, i, e.index, e.reserved); 982 goto fail; 983 } 984 if (kvm_set_msr_with_filter(vcpu, e.index, e.value)) { 985 pr_debug_ratelimited( 986 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", 987 __func__, i, e.index, e.value); 988 goto fail; 989 } 990 } 991 return 0; 992 fail: 993 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */ 994 return i + 1; 995 } 996 997 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu, 998 u32 msr_index, 999 u64 *data) 1000 { 1001 struct vcpu_vmx *vmx = to_vmx(vcpu); 1002 1003 /* 1004 * If the L0 hypervisor stored a more accurate value for the TSC that 1005 * does not include the time taken for emulation of the L2->L1 1006 * VM-exit in L0, use the more accurate value. 1007 */ 1008 if (msr_index == MSR_IA32_TSC) { 1009 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest, 1010 MSR_IA32_TSC); 1011 1012 if (i >= 0) { 1013 u64 val = vmx->msr_autostore.guest.val[i].value; 1014 1015 *data = kvm_read_l1_tsc(vcpu, val); 1016 return true; 1017 } 1018 } 1019 1020 if (kvm_get_msr_with_filter(vcpu, msr_index, data)) { 1021 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__, 1022 msr_index); 1023 return false; 1024 } 1025 return true; 1026 } 1027 1028 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i, 1029 struct vmx_msr_entry *e) 1030 { 1031 if (kvm_vcpu_read_guest(vcpu, 1032 gpa + i * sizeof(*e), 1033 e, 2 * sizeof(u32))) { 1034 pr_debug_ratelimited( 1035 "%s cannot read MSR entry (%u, 0x%08llx)\n", 1036 __func__, i, gpa + i * sizeof(*e)); 1037 return false; 1038 } 1039 if (nested_vmx_store_msr_check(vcpu, e)) { 1040 pr_debug_ratelimited( 1041 "%s check failed (%u, 0x%x, 0x%x)\n", 1042 __func__, i, e->index, e->reserved); 1043 return false; 1044 } 1045 return true; 1046 } 1047 1048 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) 1049 { 1050 u64 data; 1051 u32 i; 1052 struct vmx_msr_entry e; 1053 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu); 1054 1055 for (i = 0; i < count; i++) { 1056 if (unlikely(i >= max_msr_list_size)) 1057 return -EINVAL; 1058 1059 if (!read_and_check_msr_entry(vcpu, gpa, i, &e)) 1060 return -EINVAL; 1061 1062 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data)) 1063 return -EINVAL; 1064 1065 if (kvm_vcpu_write_guest(vcpu, 1066 gpa + i * sizeof(e) + 1067 offsetof(struct vmx_msr_entry, value), 1068 &data, sizeof(data))) { 1069 pr_debug_ratelimited( 1070 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", 1071 __func__, i, e.index, data); 1072 return -EINVAL; 1073 } 1074 } 1075 return 0; 1076 } 1077 1078 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index) 1079 { 1080 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1081 u32 count = vmcs12->vm_exit_msr_store_count; 1082 u64 gpa = vmcs12->vm_exit_msr_store_addr; 1083 struct vmx_msr_entry e; 1084 u32 i; 1085 1086 for (i = 0; i < count; i++) { 1087 if (!read_and_check_msr_entry(vcpu, gpa, i, &e)) 1088 return false; 1089 1090 if (e.index == msr_index) 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu, 1097 u32 msr_index) 1098 { 1099 struct vcpu_vmx *vmx = to_vmx(vcpu); 1100 struct vmx_msrs *autostore = &vmx->msr_autostore.guest; 1101 bool in_vmcs12_store_list; 1102 int msr_autostore_slot; 1103 bool in_autostore_list; 1104 int last; 1105 1106 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index); 1107 in_autostore_list = msr_autostore_slot >= 0; 1108 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index); 1109 1110 if (in_vmcs12_store_list && !in_autostore_list) { 1111 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) { 1112 /* 1113 * Emulated VMEntry does not fail here. Instead a less 1114 * accurate value will be returned by 1115 * nested_vmx_get_vmexit_msr_value() by reading KVM's 1116 * internal MSR state instead of reading the value from 1117 * the vmcs02 VMExit MSR-store area. 1118 */ 1119 pr_warn_ratelimited( 1120 "Not enough msr entries in msr_autostore. Can't add msr %x\n", 1121 msr_index); 1122 return; 1123 } 1124 last = autostore->nr++; 1125 autostore->val[last].index = msr_index; 1126 } else if (!in_vmcs12_store_list && in_autostore_list) { 1127 last = --autostore->nr; 1128 autostore->val[msr_autostore_slot] = autostore->val[last]; 1129 } 1130 } 1131 1132 /* 1133 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are 1134 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected 1135 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to 1136 * @entry_failure_code. 1137 */ 1138 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, 1139 bool nested_ept, bool reload_pdptrs, 1140 enum vm_entry_failure_code *entry_failure_code) 1141 { 1142 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) { 1143 *entry_failure_code = ENTRY_FAIL_DEFAULT; 1144 return -EINVAL; 1145 } 1146 1147 /* 1148 * If PAE paging and EPT are both on, CR3 is not used by the CPU and 1149 * must not be dereferenced. 1150 */ 1151 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) && 1152 CC(!load_pdptrs(vcpu, cr3))) { 1153 *entry_failure_code = ENTRY_FAIL_PDPTE; 1154 return -EINVAL; 1155 } 1156 1157 vcpu->arch.cr3 = cr3; 1158 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1159 1160 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */ 1161 kvm_init_mmu(vcpu); 1162 1163 if (!nested_ept) 1164 kvm_mmu_new_pgd(vcpu, cr3); 1165 1166 return 0; 1167 } 1168 1169 /* 1170 * Returns if KVM is able to config CPU to tag TLB entries 1171 * populated by L2 differently than TLB entries populated 1172 * by L1. 1173 * 1174 * If L0 uses EPT, L1 and L2 run with different EPTP because 1175 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries 1176 * are tagged with different EPTP. 1177 * 1178 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged 1179 * with different VPID (L1 entries are tagged with vmx->vpid 1180 * while L2 entries are tagged with vmx->nested.vpid02). 1181 */ 1182 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) 1183 { 1184 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1185 1186 return enable_ept || 1187 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); 1188 } 1189 1190 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu, 1191 struct vmcs12 *vmcs12, 1192 bool is_vmenter) 1193 { 1194 struct vcpu_vmx *vmx = to_vmx(vcpu); 1195 1196 /* Handle pending Hyper-V TLB flush requests */ 1197 kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept); 1198 1199 /* 1200 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the 1201 * same VPID as the host, and so architecturally, linear and combined 1202 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM 1203 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2, 1204 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This 1205 * is required if VPID is disabled in KVM, as a TLB flush (there are no 1206 * VPIDs) still occurs from L1's perspective, and KVM may need to 1207 * synchronize the MMU in response to the guest TLB flush. 1208 * 1209 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use. 1210 * EPT is a special snowflake, as guest-physical mappings aren't 1211 * flushed on VPID invalidations, including VM-Enter or VM-Exit with 1212 * VPID disabled. As a result, KVM _never_ needs to sync nEPT 1213 * entries on VM-Enter because L1 can't rely on VM-Enter to flush 1214 * those mappings. 1215 */ 1216 if (!nested_cpu_has_vpid(vmcs12)) { 1217 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1218 return; 1219 } 1220 1221 /* L2 should never have a VPID if VPID is disabled. */ 1222 WARN_ON(!enable_vpid); 1223 1224 /* 1225 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then 1226 * emulate a guest TLB flush as KVM does not track vpid12 history nor 1227 * is the VPID incorporated into the MMU context. I.e. KVM must assume 1228 * that the new vpid12 has never been used and thus represents a new 1229 * guest ASID that cannot have entries in the TLB. 1230 */ 1231 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) { 1232 vmx->nested.last_vpid = vmcs12->virtual_processor_id; 1233 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1234 return; 1235 } 1236 1237 /* 1238 * If VPID is enabled, used by vmc12, and vpid12 is not changing but 1239 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and 1240 * KVM was unable to allocate a VPID for L2, flush the current context 1241 * as the effective ASID is common to both L1 and L2. 1242 */ 1243 if (!nested_has_guest_tlb_tag(vcpu)) 1244 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1245 } 1246 1247 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) 1248 { 1249 superset &= mask; 1250 subset &= mask; 1251 1252 return (superset | subset) == superset; 1253 } 1254 1255 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) 1256 { 1257 const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT | 1258 VMX_BASIC_INOUT | 1259 VMX_BASIC_TRUE_CTLS; 1260 1261 const u64 reserved_bits = GENMASK_ULL(63, 56) | 1262 GENMASK_ULL(47, 45) | 1263 BIT_ULL(31); 1264 1265 u64 vmx_basic = vmcs_config.nested.basic; 1266 1267 BUILD_BUG_ON(feature_bits & reserved_bits); 1268 1269 /* 1270 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has 1271 * inverted polarity), the incoming value must not set feature bits or 1272 * reserved bits that aren't allowed/supported by KVM. Fields, i.e. 1273 * multi-bit values, are explicitly checked below. 1274 */ 1275 if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits)) 1276 return -EINVAL; 1277 1278 /* 1279 * KVM does not emulate a version of VMX that constrains physical 1280 * addresses of VMX structures (e.g. VMCS) to 32-bits. 1281 */ 1282 if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY) 1283 return -EINVAL; 1284 1285 if (vmx_basic_vmcs_revision_id(vmx_basic) != 1286 vmx_basic_vmcs_revision_id(data)) 1287 return -EINVAL; 1288 1289 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) 1290 return -EINVAL; 1291 1292 vmx->nested.msrs.basic = data; 1293 return 0; 1294 } 1295 1296 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index, 1297 u32 **low, u32 **high) 1298 { 1299 switch (msr_index) { 1300 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 1301 *low = &msrs->pinbased_ctls_low; 1302 *high = &msrs->pinbased_ctls_high; 1303 break; 1304 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 1305 *low = &msrs->procbased_ctls_low; 1306 *high = &msrs->procbased_ctls_high; 1307 break; 1308 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 1309 *low = &msrs->exit_ctls_low; 1310 *high = &msrs->exit_ctls_high; 1311 break; 1312 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 1313 *low = &msrs->entry_ctls_low; 1314 *high = &msrs->entry_ctls_high; 1315 break; 1316 case MSR_IA32_VMX_PROCBASED_CTLS2: 1317 *low = &msrs->secondary_ctls_low; 1318 *high = &msrs->secondary_ctls_high; 1319 break; 1320 default: 1321 BUG(); 1322 } 1323 } 1324 1325 static int 1326 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) 1327 { 1328 u32 *lowp, *highp; 1329 u64 supported; 1330 1331 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp); 1332 1333 supported = vmx_control_msr(*lowp, *highp); 1334 1335 /* Check must-be-1 bits are still 1. */ 1336 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) 1337 return -EINVAL; 1338 1339 /* Check must-be-0 bits are still 0. */ 1340 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) 1341 return -EINVAL; 1342 1343 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp); 1344 *lowp = data; 1345 *highp = data >> 32; 1346 return 0; 1347 } 1348 1349 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) 1350 { 1351 const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA | 1352 VMX_MISC_ACTIVITY_HLT | 1353 VMX_MISC_ACTIVITY_SHUTDOWN | 1354 VMX_MISC_ACTIVITY_WAIT_SIPI | 1355 VMX_MISC_INTEL_PT | 1356 VMX_MISC_RDMSR_IN_SMM | 1357 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | 1358 VMX_MISC_VMXOFF_BLOCK_SMI | 1359 VMX_MISC_ZERO_LEN_INS; 1360 1361 const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9); 1362 1363 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low, 1364 vmcs_config.nested.misc_high); 1365 1366 BUILD_BUG_ON(feature_bits & reserved_bits); 1367 1368 /* 1369 * The incoming value must not set feature bits or reserved bits that 1370 * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are 1371 * explicitly checked below. 1372 */ 1373 if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits)) 1374 return -EINVAL; 1375 1376 if ((vmx->nested.msrs.pinbased_ctls_high & 1377 PIN_BASED_VMX_PREEMPTION_TIMER) && 1378 vmx_misc_preemption_timer_rate(data) != 1379 vmx_misc_preemption_timer_rate(vmx_misc)) 1380 return -EINVAL; 1381 1382 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) 1383 return -EINVAL; 1384 1385 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) 1386 return -EINVAL; 1387 1388 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) 1389 return -EINVAL; 1390 1391 vmx->nested.msrs.misc_low = data; 1392 vmx->nested.msrs.misc_high = data >> 32; 1393 1394 return 0; 1395 } 1396 1397 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) 1398 { 1399 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps, 1400 vmcs_config.nested.vpid_caps); 1401 1402 /* Every bit is either reserved or a feature bit. */ 1403 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) 1404 return -EINVAL; 1405 1406 vmx->nested.msrs.ept_caps = data; 1407 vmx->nested.msrs.vpid_caps = data >> 32; 1408 return 0; 1409 } 1410 1411 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index) 1412 { 1413 switch (msr_index) { 1414 case MSR_IA32_VMX_CR0_FIXED0: 1415 return &msrs->cr0_fixed0; 1416 case MSR_IA32_VMX_CR4_FIXED0: 1417 return &msrs->cr4_fixed0; 1418 default: 1419 BUG(); 1420 } 1421 } 1422 1423 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) 1424 { 1425 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index); 1426 1427 /* 1428 * 1 bits (which indicates bits which "must-be-1" during VMX operation) 1429 * must be 1 in the restored value. 1430 */ 1431 if (!is_bitwise_subset(data, *msr, -1ULL)) 1432 return -EINVAL; 1433 1434 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data; 1435 return 0; 1436 } 1437 1438 /* 1439 * Called when userspace is restoring VMX MSRs. 1440 * 1441 * Returns 0 on success, non-0 otherwise. 1442 */ 1443 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 1444 { 1445 struct vcpu_vmx *vmx = to_vmx(vcpu); 1446 1447 /* 1448 * Don't allow changes to the VMX capability MSRs while the vCPU 1449 * is in VMX operation. 1450 */ 1451 if (vmx->nested.vmxon) 1452 return -EBUSY; 1453 1454 switch (msr_index) { 1455 case MSR_IA32_VMX_BASIC: 1456 return vmx_restore_vmx_basic(vmx, data); 1457 case MSR_IA32_VMX_PINBASED_CTLS: 1458 case MSR_IA32_VMX_PROCBASED_CTLS: 1459 case MSR_IA32_VMX_EXIT_CTLS: 1460 case MSR_IA32_VMX_ENTRY_CTLS: 1461 /* 1462 * The "non-true" VMX capability MSRs are generated from the 1463 * "true" MSRs, so we do not support restoring them directly. 1464 * 1465 * If userspace wants to emulate VMX_BASIC[55]=0, userspace 1466 * should restore the "true" MSRs with the must-be-1 bits 1467 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND 1468 * DEFAULT SETTINGS". 1469 */ 1470 return -EINVAL; 1471 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 1472 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 1473 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 1474 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 1475 case MSR_IA32_VMX_PROCBASED_CTLS2: 1476 return vmx_restore_control_msr(vmx, msr_index, data); 1477 case MSR_IA32_VMX_MISC: 1478 return vmx_restore_vmx_misc(vmx, data); 1479 case MSR_IA32_VMX_CR0_FIXED0: 1480 case MSR_IA32_VMX_CR4_FIXED0: 1481 return vmx_restore_fixed0_msr(vmx, msr_index, data); 1482 case MSR_IA32_VMX_CR0_FIXED1: 1483 case MSR_IA32_VMX_CR4_FIXED1: 1484 /* 1485 * These MSRs are generated based on the vCPU's CPUID, so we 1486 * do not support restoring them directly. 1487 */ 1488 return -EINVAL; 1489 case MSR_IA32_VMX_EPT_VPID_CAP: 1490 return vmx_restore_vmx_ept_vpid_cap(vmx, data); 1491 case MSR_IA32_VMX_VMCS_ENUM: 1492 vmx->nested.msrs.vmcs_enum = data; 1493 return 0; 1494 case MSR_IA32_VMX_VMFUNC: 1495 if (data & ~vmcs_config.nested.vmfunc_controls) 1496 return -EINVAL; 1497 vmx->nested.msrs.vmfunc_controls = data; 1498 return 0; 1499 default: 1500 /* 1501 * The rest of the VMX capability MSRs do not support restore. 1502 */ 1503 return -EINVAL; 1504 } 1505 } 1506 1507 /* Returns 0 on success, non-0 otherwise. */ 1508 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) 1509 { 1510 switch (msr_index) { 1511 case MSR_IA32_VMX_BASIC: 1512 *pdata = msrs->basic; 1513 break; 1514 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 1515 case MSR_IA32_VMX_PINBASED_CTLS: 1516 *pdata = vmx_control_msr( 1517 msrs->pinbased_ctls_low, 1518 msrs->pinbased_ctls_high); 1519 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) 1520 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; 1521 break; 1522 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 1523 case MSR_IA32_VMX_PROCBASED_CTLS: 1524 *pdata = vmx_control_msr( 1525 msrs->procbased_ctls_low, 1526 msrs->procbased_ctls_high); 1527 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) 1528 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; 1529 break; 1530 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 1531 case MSR_IA32_VMX_EXIT_CTLS: 1532 *pdata = vmx_control_msr( 1533 msrs->exit_ctls_low, 1534 msrs->exit_ctls_high); 1535 if (msr_index == MSR_IA32_VMX_EXIT_CTLS) 1536 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; 1537 break; 1538 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 1539 case MSR_IA32_VMX_ENTRY_CTLS: 1540 *pdata = vmx_control_msr( 1541 msrs->entry_ctls_low, 1542 msrs->entry_ctls_high); 1543 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) 1544 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; 1545 break; 1546 case MSR_IA32_VMX_MISC: 1547 *pdata = vmx_control_msr( 1548 msrs->misc_low, 1549 msrs->misc_high); 1550 break; 1551 case MSR_IA32_VMX_CR0_FIXED0: 1552 *pdata = msrs->cr0_fixed0; 1553 break; 1554 case MSR_IA32_VMX_CR0_FIXED1: 1555 *pdata = msrs->cr0_fixed1; 1556 break; 1557 case MSR_IA32_VMX_CR4_FIXED0: 1558 *pdata = msrs->cr4_fixed0; 1559 break; 1560 case MSR_IA32_VMX_CR4_FIXED1: 1561 *pdata = msrs->cr4_fixed1; 1562 break; 1563 case MSR_IA32_VMX_VMCS_ENUM: 1564 *pdata = msrs->vmcs_enum; 1565 break; 1566 case MSR_IA32_VMX_PROCBASED_CTLS2: 1567 *pdata = vmx_control_msr( 1568 msrs->secondary_ctls_low, 1569 msrs->secondary_ctls_high); 1570 break; 1571 case MSR_IA32_VMX_EPT_VPID_CAP: 1572 *pdata = msrs->ept_caps | 1573 ((u64)msrs->vpid_caps << 32); 1574 break; 1575 case MSR_IA32_VMX_VMFUNC: 1576 *pdata = msrs->vmfunc_controls; 1577 break; 1578 default: 1579 return 1; 1580 } 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have 1587 * been modified by the L1 guest. Note, "writable" in this context means 1588 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of 1589 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only" 1590 * VM-exit information fields (which are actually writable if the vCPU is 1591 * configured to support "VMWRITE to any supported field in the VMCS"). 1592 */ 1593 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) 1594 { 1595 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; 1596 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu); 1597 struct shadow_vmcs_field field; 1598 unsigned long val; 1599 int i; 1600 1601 if (WARN_ON(!shadow_vmcs)) 1602 return; 1603 1604 preempt_disable(); 1605 1606 vmcs_load(shadow_vmcs); 1607 1608 for (i = 0; i < max_shadow_read_write_fields; i++) { 1609 field = shadow_read_write_fields[i]; 1610 val = __vmcs_readl(field.encoding); 1611 vmcs12_write_any(vmcs12, field.encoding, field.offset, val); 1612 } 1613 1614 vmcs_clear(shadow_vmcs); 1615 vmcs_load(vmx->loaded_vmcs->vmcs); 1616 1617 preempt_enable(); 1618 } 1619 1620 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) 1621 { 1622 const struct shadow_vmcs_field *fields[] = { 1623 shadow_read_write_fields, 1624 shadow_read_only_fields 1625 }; 1626 const int max_fields[] = { 1627 max_shadow_read_write_fields, 1628 max_shadow_read_only_fields 1629 }; 1630 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; 1631 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu); 1632 struct shadow_vmcs_field field; 1633 unsigned long val; 1634 int i, q; 1635 1636 if (WARN_ON(!shadow_vmcs)) 1637 return; 1638 1639 vmcs_load(shadow_vmcs); 1640 1641 for (q = 0; q < ARRAY_SIZE(fields); q++) { 1642 for (i = 0; i < max_fields[q]; i++) { 1643 field = fields[q][i]; 1644 val = vmcs12_read_any(vmcs12, field.encoding, 1645 field.offset); 1646 __vmcs_writel(field.encoding, val); 1647 } 1648 } 1649 1650 vmcs_clear(shadow_vmcs); 1651 vmcs_load(vmx->loaded_vmcs->vmcs); 1652 } 1653 1654 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields) 1655 { 1656 #ifdef CONFIG_KVM_HYPERV 1657 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; 1658 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); 1659 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu); 1660 1661 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ 1662 vmcs12->tpr_threshold = evmcs->tpr_threshold; 1663 vmcs12->guest_rip = evmcs->guest_rip; 1664 1665 if (unlikely(!(hv_clean_fields & 1666 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) { 1667 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page; 1668 hv_vcpu->nested.vm_id = evmcs->hv_vm_id; 1669 hv_vcpu->nested.vp_id = evmcs->hv_vp_id; 1670 } 1671 1672 if (unlikely(!(hv_clean_fields & 1673 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { 1674 vmcs12->guest_rsp = evmcs->guest_rsp; 1675 vmcs12->guest_rflags = evmcs->guest_rflags; 1676 vmcs12->guest_interruptibility_info = 1677 evmcs->guest_interruptibility_info; 1678 /* 1679 * Not present in struct vmcs12: 1680 * vmcs12->guest_ssp = evmcs->guest_ssp; 1681 */ 1682 } 1683 1684 if (unlikely(!(hv_clean_fields & 1685 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { 1686 vmcs12->cpu_based_vm_exec_control = 1687 evmcs->cpu_based_vm_exec_control; 1688 } 1689 1690 if (unlikely(!(hv_clean_fields & 1691 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) { 1692 vmcs12->exception_bitmap = evmcs->exception_bitmap; 1693 } 1694 1695 if (unlikely(!(hv_clean_fields & 1696 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { 1697 vmcs12->vm_entry_controls = evmcs->vm_entry_controls; 1698 } 1699 1700 if (unlikely(!(hv_clean_fields & 1701 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { 1702 vmcs12->vm_entry_intr_info_field = 1703 evmcs->vm_entry_intr_info_field; 1704 vmcs12->vm_entry_exception_error_code = 1705 evmcs->vm_entry_exception_error_code; 1706 vmcs12->vm_entry_instruction_len = 1707 evmcs->vm_entry_instruction_len; 1708 } 1709 1710 if (unlikely(!(hv_clean_fields & 1711 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { 1712 vmcs12->host_ia32_pat = evmcs->host_ia32_pat; 1713 vmcs12->host_ia32_efer = evmcs->host_ia32_efer; 1714 vmcs12->host_cr0 = evmcs->host_cr0; 1715 vmcs12->host_cr3 = evmcs->host_cr3; 1716 vmcs12->host_cr4 = evmcs->host_cr4; 1717 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp; 1718 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip; 1719 vmcs12->host_rip = evmcs->host_rip; 1720 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs; 1721 vmcs12->host_es_selector = evmcs->host_es_selector; 1722 vmcs12->host_cs_selector = evmcs->host_cs_selector; 1723 vmcs12->host_ss_selector = evmcs->host_ss_selector; 1724 vmcs12->host_ds_selector = evmcs->host_ds_selector; 1725 vmcs12->host_fs_selector = evmcs->host_fs_selector; 1726 vmcs12->host_gs_selector = evmcs->host_gs_selector; 1727 vmcs12->host_tr_selector = evmcs->host_tr_selector; 1728 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl; 1729 /* 1730 * Not present in struct vmcs12: 1731 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet; 1732 * vmcs12->host_ssp = evmcs->host_ssp; 1733 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr; 1734 */ 1735 } 1736 1737 if (unlikely(!(hv_clean_fields & 1738 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) { 1739 vmcs12->pin_based_vm_exec_control = 1740 evmcs->pin_based_vm_exec_control; 1741 vmcs12->vm_exit_controls = evmcs->vm_exit_controls; 1742 vmcs12->secondary_vm_exec_control = 1743 evmcs->secondary_vm_exec_control; 1744 } 1745 1746 if (unlikely(!(hv_clean_fields & 1747 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { 1748 vmcs12->io_bitmap_a = evmcs->io_bitmap_a; 1749 vmcs12->io_bitmap_b = evmcs->io_bitmap_b; 1750 } 1751 1752 if (unlikely(!(hv_clean_fields & 1753 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { 1754 vmcs12->msr_bitmap = evmcs->msr_bitmap; 1755 } 1756 1757 if (unlikely(!(hv_clean_fields & 1758 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { 1759 vmcs12->guest_es_base = evmcs->guest_es_base; 1760 vmcs12->guest_cs_base = evmcs->guest_cs_base; 1761 vmcs12->guest_ss_base = evmcs->guest_ss_base; 1762 vmcs12->guest_ds_base = evmcs->guest_ds_base; 1763 vmcs12->guest_fs_base = evmcs->guest_fs_base; 1764 vmcs12->guest_gs_base = evmcs->guest_gs_base; 1765 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base; 1766 vmcs12->guest_tr_base = evmcs->guest_tr_base; 1767 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base; 1768 vmcs12->guest_idtr_base = evmcs->guest_idtr_base; 1769 vmcs12->guest_es_limit = evmcs->guest_es_limit; 1770 vmcs12->guest_cs_limit = evmcs->guest_cs_limit; 1771 vmcs12->guest_ss_limit = evmcs->guest_ss_limit; 1772 vmcs12->guest_ds_limit = evmcs->guest_ds_limit; 1773 vmcs12->guest_fs_limit = evmcs->guest_fs_limit; 1774 vmcs12->guest_gs_limit = evmcs->guest_gs_limit; 1775 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit; 1776 vmcs12->guest_tr_limit = evmcs->guest_tr_limit; 1777 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit; 1778 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit; 1779 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes; 1780 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes; 1781 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes; 1782 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes; 1783 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes; 1784 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes; 1785 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes; 1786 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes; 1787 vmcs12->guest_es_selector = evmcs->guest_es_selector; 1788 vmcs12->guest_cs_selector = evmcs->guest_cs_selector; 1789 vmcs12->guest_ss_selector = evmcs->guest_ss_selector; 1790 vmcs12->guest_ds_selector = evmcs->guest_ds_selector; 1791 vmcs12->guest_fs_selector = evmcs->guest_fs_selector; 1792 vmcs12->guest_gs_selector = evmcs->guest_gs_selector; 1793 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector; 1794 vmcs12->guest_tr_selector = evmcs->guest_tr_selector; 1795 } 1796 1797 if (unlikely(!(hv_clean_fields & 1798 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { 1799 vmcs12->tsc_offset = evmcs->tsc_offset; 1800 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; 1801 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; 1802 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap; 1803 vmcs12->tsc_multiplier = evmcs->tsc_multiplier; 1804 } 1805 1806 if (unlikely(!(hv_clean_fields & 1807 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { 1808 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; 1809 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; 1810 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow; 1811 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow; 1812 vmcs12->guest_cr0 = evmcs->guest_cr0; 1813 vmcs12->guest_cr3 = evmcs->guest_cr3; 1814 vmcs12->guest_cr4 = evmcs->guest_cr4; 1815 vmcs12->guest_dr7 = evmcs->guest_dr7; 1816 } 1817 1818 if (unlikely(!(hv_clean_fields & 1819 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { 1820 vmcs12->host_fs_base = evmcs->host_fs_base; 1821 vmcs12->host_gs_base = evmcs->host_gs_base; 1822 vmcs12->host_tr_base = evmcs->host_tr_base; 1823 vmcs12->host_gdtr_base = evmcs->host_gdtr_base; 1824 vmcs12->host_idtr_base = evmcs->host_idtr_base; 1825 vmcs12->host_rsp = evmcs->host_rsp; 1826 } 1827 1828 if (unlikely(!(hv_clean_fields & 1829 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { 1830 vmcs12->ept_pointer = evmcs->ept_pointer; 1831 vmcs12->virtual_processor_id = evmcs->virtual_processor_id; 1832 } 1833 1834 if (unlikely(!(hv_clean_fields & 1835 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { 1836 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; 1837 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; 1838 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat; 1839 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer; 1840 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0; 1841 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1; 1842 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2; 1843 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3; 1844 vmcs12->guest_pending_dbg_exceptions = 1845 evmcs->guest_pending_dbg_exceptions; 1846 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp; 1847 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip; 1848 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; 1849 vmcs12->guest_activity_state = evmcs->guest_activity_state; 1850 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; 1851 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl; 1852 /* 1853 * Not present in struct vmcs12: 1854 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet; 1855 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl; 1856 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr; 1857 */ 1858 } 1859 1860 /* 1861 * Not used? 1862 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; 1863 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; 1864 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; 1865 * vmcs12->page_fault_error_code_mask = 1866 * evmcs->page_fault_error_code_mask; 1867 * vmcs12->page_fault_error_code_match = 1868 * evmcs->page_fault_error_code_match; 1869 * vmcs12->cr3_target_count = evmcs->cr3_target_count; 1870 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count; 1871 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count; 1872 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count; 1873 */ 1874 1875 /* 1876 * Read only fields: 1877 * vmcs12->guest_physical_address = evmcs->guest_physical_address; 1878 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error; 1879 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason; 1880 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info; 1881 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code; 1882 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field; 1883 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code; 1884 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len; 1885 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info; 1886 * vmcs12->exit_qualification = evmcs->exit_qualification; 1887 * vmcs12->guest_linear_address = evmcs->guest_linear_address; 1888 * 1889 * Not present in struct vmcs12: 1890 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx; 1891 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi; 1892 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi; 1893 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; 1894 */ 1895 1896 return; 1897 #else /* CONFIG_KVM_HYPERV */ 1898 KVM_BUG_ON(1, vmx->vcpu.kvm); 1899 #endif /* CONFIG_KVM_HYPERV */ 1900 } 1901 1902 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) 1903 { 1904 #ifdef CONFIG_KVM_HYPERV 1905 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; 1906 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); 1907 1908 /* 1909 * Should not be changed by KVM: 1910 * 1911 * evmcs->host_es_selector = vmcs12->host_es_selector; 1912 * evmcs->host_cs_selector = vmcs12->host_cs_selector; 1913 * evmcs->host_ss_selector = vmcs12->host_ss_selector; 1914 * evmcs->host_ds_selector = vmcs12->host_ds_selector; 1915 * evmcs->host_fs_selector = vmcs12->host_fs_selector; 1916 * evmcs->host_gs_selector = vmcs12->host_gs_selector; 1917 * evmcs->host_tr_selector = vmcs12->host_tr_selector; 1918 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat; 1919 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer; 1920 * evmcs->host_cr0 = vmcs12->host_cr0; 1921 * evmcs->host_cr3 = vmcs12->host_cr3; 1922 * evmcs->host_cr4 = vmcs12->host_cr4; 1923 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp; 1924 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip; 1925 * evmcs->host_rip = vmcs12->host_rip; 1926 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs; 1927 * evmcs->host_fs_base = vmcs12->host_fs_base; 1928 * evmcs->host_gs_base = vmcs12->host_gs_base; 1929 * evmcs->host_tr_base = vmcs12->host_tr_base; 1930 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; 1931 * evmcs->host_idtr_base = vmcs12->host_idtr_base; 1932 * evmcs->host_rsp = vmcs12->host_rsp; 1933 * sync_vmcs02_to_vmcs12() doesn't read these: 1934 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; 1935 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; 1936 * evmcs->msr_bitmap = vmcs12->msr_bitmap; 1937 * evmcs->ept_pointer = vmcs12->ept_pointer; 1938 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap; 1939 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; 1940 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; 1941 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; 1942 * evmcs->tpr_threshold = vmcs12->tpr_threshold; 1943 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; 1944 * evmcs->exception_bitmap = vmcs12->exception_bitmap; 1945 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer; 1946 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control; 1947 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls; 1948 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control; 1949 * evmcs->page_fault_error_code_mask = 1950 * vmcs12->page_fault_error_code_mask; 1951 * evmcs->page_fault_error_code_match = 1952 * vmcs12->page_fault_error_code_match; 1953 * evmcs->cr3_target_count = vmcs12->cr3_target_count; 1954 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr; 1955 * evmcs->tsc_offset = vmcs12->tsc_offset; 1956 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl; 1957 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask; 1958 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask; 1959 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow; 1960 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow; 1961 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; 1962 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; 1963 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; 1964 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl; 1965 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl; 1966 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap; 1967 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier; 1968 * 1969 * Not present in struct vmcs12: 1970 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; 1971 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; 1972 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; 1973 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; 1974 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet; 1975 * evmcs->host_ssp = vmcs12->host_ssp; 1976 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr; 1977 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet; 1978 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl; 1979 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr; 1980 * evmcs->guest_ssp = vmcs12->guest_ssp; 1981 */ 1982 1983 evmcs->guest_es_selector = vmcs12->guest_es_selector; 1984 evmcs->guest_cs_selector = vmcs12->guest_cs_selector; 1985 evmcs->guest_ss_selector = vmcs12->guest_ss_selector; 1986 evmcs->guest_ds_selector = vmcs12->guest_ds_selector; 1987 evmcs->guest_fs_selector = vmcs12->guest_fs_selector; 1988 evmcs->guest_gs_selector = vmcs12->guest_gs_selector; 1989 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector; 1990 evmcs->guest_tr_selector = vmcs12->guest_tr_selector; 1991 1992 evmcs->guest_es_limit = vmcs12->guest_es_limit; 1993 evmcs->guest_cs_limit = vmcs12->guest_cs_limit; 1994 evmcs->guest_ss_limit = vmcs12->guest_ss_limit; 1995 evmcs->guest_ds_limit = vmcs12->guest_ds_limit; 1996 evmcs->guest_fs_limit = vmcs12->guest_fs_limit; 1997 evmcs->guest_gs_limit = vmcs12->guest_gs_limit; 1998 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit; 1999 evmcs->guest_tr_limit = vmcs12->guest_tr_limit; 2000 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit; 2001 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit; 2002 2003 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes; 2004 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes; 2005 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes; 2006 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes; 2007 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes; 2008 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes; 2009 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes; 2010 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes; 2011 2012 evmcs->guest_es_base = vmcs12->guest_es_base; 2013 evmcs->guest_cs_base = vmcs12->guest_cs_base; 2014 evmcs->guest_ss_base = vmcs12->guest_ss_base; 2015 evmcs->guest_ds_base = vmcs12->guest_ds_base; 2016 evmcs->guest_fs_base = vmcs12->guest_fs_base; 2017 evmcs->guest_gs_base = vmcs12->guest_gs_base; 2018 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base; 2019 evmcs->guest_tr_base = vmcs12->guest_tr_base; 2020 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base; 2021 evmcs->guest_idtr_base = vmcs12->guest_idtr_base; 2022 2023 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat; 2024 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer; 2025 2026 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0; 2027 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1; 2028 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2; 2029 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3; 2030 2031 evmcs->guest_pending_dbg_exceptions = 2032 vmcs12->guest_pending_dbg_exceptions; 2033 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp; 2034 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip; 2035 2036 evmcs->guest_activity_state = vmcs12->guest_activity_state; 2037 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs; 2038 2039 evmcs->guest_cr0 = vmcs12->guest_cr0; 2040 evmcs->guest_cr3 = vmcs12->guest_cr3; 2041 evmcs->guest_cr4 = vmcs12->guest_cr4; 2042 evmcs->guest_dr7 = vmcs12->guest_dr7; 2043 2044 evmcs->guest_physical_address = vmcs12->guest_physical_address; 2045 2046 evmcs->vm_instruction_error = vmcs12->vm_instruction_error; 2047 evmcs->vm_exit_reason = vmcs12->vm_exit_reason; 2048 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info; 2049 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code; 2050 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field; 2051 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code; 2052 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len; 2053 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info; 2054 2055 evmcs->exit_qualification = vmcs12->exit_qualification; 2056 2057 evmcs->guest_linear_address = vmcs12->guest_linear_address; 2058 evmcs->guest_rsp = vmcs12->guest_rsp; 2059 evmcs->guest_rflags = vmcs12->guest_rflags; 2060 2061 evmcs->guest_interruptibility_info = 2062 vmcs12->guest_interruptibility_info; 2063 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control; 2064 evmcs->vm_entry_controls = vmcs12->vm_entry_controls; 2065 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field; 2066 evmcs->vm_entry_exception_error_code = 2067 vmcs12->vm_entry_exception_error_code; 2068 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len; 2069 2070 evmcs->guest_rip = vmcs12->guest_rip; 2071 2072 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; 2073 2074 return; 2075 #else /* CONFIG_KVM_HYPERV */ 2076 KVM_BUG_ON(1, vmx->vcpu.kvm); 2077 #endif /* CONFIG_KVM_HYPERV */ 2078 } 2079 2080 /* 2081 * This is an equivalent of the nested hypervisor executing the vmptrld 2082 * instruction. 2083 */ 2084 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld( 2085 struct kvm_vcpu *vcpu, bool from_launch) 2086 { 2087 #ifdef CONFIG_KVM_HYPERV 2088 struct vcpu_vmx *vmx = to_vmx(vcpu); 2089 bool evmcs_gpa_changed = false; 2090 u64 evmcs_gpa; 2091 2092 if (likely(!guest_cpuid_has_evmcs(vcpu))) 2093 return EVMPTRLD_DISABLED; 2094 2095 evmcs_gpa = nested_get_evmptr(vcpu); 2096 if (!evmptr_is_valid(evmcs_gpa)) { 2097 nested_release_evmcs(vcpu); 2098 return EVMPTRLD_DISABLED; 2099 } 2100 2101 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) { 2102 vmx->nested.current_vmptr = INVALID_GPA; 2103 2104 nested_release_evmcs(vcpu); 2105 2106 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa), 2107 &vmx->nested.hv_evmcs_map)) 2108 return EVMPTRLD_ERROR; 2109 2110 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva; 2111 2112 /* 2113 * Currently, KVM only supports eVMCS version 1 2114 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this 2115 * value to first u32 field of eVMCS which should specify eVMCS 2116 * VersionNumber. 2117 * 2118 * Guest should be aware of supported eVMCS versions by host by 2119 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is 2120 * expected to set this CPUID leaf according to the value 2121 * returned in vmcs_version from nested_enable_evmcs(). 2122 * 2123 * However, it turns out that Microsoft Hyper-V fails to comply 2124 * to their own invented interface: When Hyper-V use eVMCS, it 2125 * just sets first u32 field of eVMCS to revision_id specified 2126 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number 2127 * which is one of the supported versions specified in 2128 * CPUID.0x4000000A.EAX[0:15]. 2129 * 2130 * To overcome Hyper-V bug, we accept here either a supported 2131 * eVMCS version or VMCS12 revision_id as valid values for first 2132 * u32 field of eVMCS. 2133 */ 2134 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) && 2135 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) { 2136 nested_release_evmcs(vcpu); 2137 return EVMPTRLD_VMFAIL; 2138 } 2139 2140 vmx->nested.hv_evmcs_vmptr = evmcs_gpa; 2141 2142 evmcs_gpa_changed = true; 2143 /* 2144 * Unlike normal vmcs12, enlightened vmcs12 is not fully 2145 * reloaded from guest's memory (read only fields, fields not 2146 * present in struct hv_enlightened_vmcs, ...). Make sure there 2147 * are no leftovers. 2148 */ 2149 if (from_launch) { 2150 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 2151 memset(vmcs12, 0, sizeof(*vmcs12)); 2152 vmcs12->hdr.revision_id = VMCS12_REVISION; 2153 } 2154 2155 } 2156 2157 /* 2158 * Clean fields data can't be used on VMLAUNCH and when we switch 2159 * between different L2 guests as KVM keeps a single VMCS12 per L1. 2160 */ 2161 if (from_launch || evmcs_gpa_changed) { 2162 vmx->nested.hv_evmcs->hv_clean_fields &= 2163 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 2164 2165 vmx->nested.force_msr_bitmap_recalc = true; 2166 } 2167 2168 return EVMPTRLD_SUCCEEDED; 2169 #else 2170 return EVMPTRLD_DISABLED; 2171 #endif 2172 } 2173 2174 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu) 2175 { 2176 struct vcpu_vmx *vmx = to_vmx(vcpu); 2177 2178 if (nested_vmx_is_evmptr12_valid(vmx)) 2179 copy_vmcs12_to_enlightened(vmx); 2180 else 2181 copy_vmcs12_to_shadow(vmx); 2182 2183 vmx->nested.need_vmcs12_to_shadow_sync = false; 2184 } 2185 2186 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) 2187 { 2188 struct vcpu_vmx *vmx = 2189 container_of(timer, struct vcpu_vmx, nested.preemption_timer); 2190 2191 vmx->nested.preemption_timer_expired = true; 2192 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); 2193 kvm_vcpu_kick(&vmx->vcpu); 2194 2195 return HRTIMER_NORESTART; 2196 } 2197 2198 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu) 2199 { 2200 struct vcpu_vmx *vmx = to_vmx(vcpu); 2201 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 2202 2203 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >> 2204 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; 2205 2206 if (!vmx->nested.has_preemption_timer_deadline) { 2207 vmx->nested.preemption_timer_deadline = 2208 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc; 2209 vmx->nested.has_preemption_timer_deadline = true; 2210 } 2211 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc; 2212 } 2213 2214 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu, 2215 u64 preemption_timeout) 2216 { 2217 struct vcpu_vmx *vmx = to_vmx(vcpu); 2218 2219 /* 2220 * A timer value of zero is architecturally guaranteed to cause 2221 * a VMExit prior to executing any instructions in the guest. 2222 */ 2223 if (preemption_timeout == 0) { 2224 vmx_preemption_timer_fn(&vmx->nested.preemption_timer); 2225 return; 2226 } 2227 2228 if (vcpu->arch.virtual_tsc_khz == 0) 2229 return; 2230 2231 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; 2232 preemption_timeout *= 1000000; 2233 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); 2234 hrtimer_start(&vmx->nested.preemption_timer, 2235 ktime_add_ns(ktime_get(), preemption_timeout), 2236 HRTIMER_MODE_ABS_PINNED); 2237 } 2238 2239 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) 2240 { 2241 if (vmx->nested.nested_run_pending && 2242 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) 2243 return vmcs12->guest_ia32_efer; 2244 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) 2245 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME); 2246 else 2247 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME); 2248 } 2249 2250 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) 2251 { 2252 struct kvm *kvm = vmx->vcpu.kvm; 2253 2254 /* 2255 * If vmcs02 hasn't been initialized, set the constant vmcs02 state 2256 * according to L0's settings (vmcs12 is irrelevant here). Host 2257 * fields that come from L0 and are not constant, e.g. HOST_CR3, 2258 * will be set as needed prior to VMLAUNCH/VMRESUME. 2259 */ 2260 if (vmx->nested.vmcs02_initialized) 2261 return; 2262 vmx->nested.vmcs02_initialized = true; 2263 2264 /* 2265 * We don't care what the EPTP value is we just need to guarantee 2266 * it's valid so we don't get a false positive when doing early 2267 * consistency checks. 2268 */ 2269 if (enable_ept && nested_early_check) 2270 vmcs_write64(EPT_POINTER, 2271 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL)); 2272 2273 if (vmx->ve_info) 2274 vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info)); 2275 2276 /* All VMFUNCs are currently emulated through L0 vmexits. */ 2277 if (cpu_has_vmx_vmfunc()) 2278 vmcs_write64(VM_FUNCTION_CONTROL, 0); 2279 2280 if (cpu_has_vmx_posted_intr()) 2281 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); 2282 2283 if (cpu_has_vmx_msr_bitmap()) 2284 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); 2285 2286 /* 2287 * PML is emulated for L2, but never enabled in hardware as the MMU 2288 * handles A/D emulation. Disabling PML for L2 also avoids having to 2289 * deal with filtering out L2 GPAs from the buffer. 2290 */ 2291 if (enable_pml) { 2292 vmcs_write64(PML_ADDRESS, 0); 2293 vmcs_write16(GUEST_PML_INDEX, -1); 2294 } 2295 2296 if (cpu_has_vmx_encls_vmexit()) 2297 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA); 2298 2299 if (kvm_notify_vmexit_enabled(kvm)) 2300 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 2301 2302 /* 2303 * Set the MSR load/store lists to match L0's settings. Only the 2304 * addresses are constant (for vmcs02), the counts can change based 2305 * on L2's behavior, e.g. switching to/from long mode. 2306 */ 2307 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val)); 2308 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 2309 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 2310 2311 vmx_set_constant_host_state(vmx); 2312 } 2313 2314 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx, 2315 struct vmcs12 *vmcs12) 2316 { 2317 prepare_vmcs02_constant_state(vmx); 2318 2319 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); 2320 2321 /* 2322 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the 2323 * same VPID as the host. Emulate this behavior by using vpid01 for L2 2324 * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter 2325 * and VM-Exit are architecturally required to flush VPID=0, but *only* 2326 * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the 2327 * required flushes), but doing so would cause KVM to over-flush. E.g. 2328 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled, 2329 * and then runs L2 X again, then KVM can and should retain TLB entries 2330 * for VPID12=1. 2331 */ 2332 if (enable_vpid) { 2333 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) 2334 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); 2335 else 2336 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 2337 } 2338 } 2339 2340 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01, 2341 struct vmcs12 *vmcs12) 2342 { 2343 u32 exec_control; 2344 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); 2345 2346 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) 2347 prepare_vmcs02_early_rare(vmx, vmcs12); 2348 2349 /* 2350 * PIN CONTROLS 2351 */ 2352 exec_control = __pin_controls_get(vmcs01); 2353 exec_control |= (vmcs12->pin_based_vm_exec_control & 2354 ~PIN_BASED_VMX_PREEMPTION_TIMER); 2355 2356 /* Posted interrupts setting is only taken from vmcs12. */ 2357 vmx->nested.pi_pending = false; 2358 if (nested_cpu_has_posted_intr(vmcs12)) { 2359 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; 2360 } else { 2361 vmx->nested.posted_intr_nv = -1; 2362 exec_control &= ~PIN_BASED_POSTED_INTR; 2363 } 2364 pin_controls_set(vmx, exec_control); 2365 2366 /* 2367 * EXEC CONTROLS 2368 */ 2369 exec_control = __exec_controls_get(vmcs01); /* L0's desires */ 2370 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING; 2371 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING; 2372 exec_control &= ~CPU_BASED_TPR_SHADOW; 2373 exec_control |= vmcs12->cpu_based_vm_exec_control; 2374 2375 vmx->nested.l1_tpr_threshold = -1; 2376 if (exec_control & CPU_BASED_TPR_SHADOW) 2377 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); 2378 #ifdef CONFIG_X86_64 2379 else 2380 exec_control |= CPU_BASED_CR8_LOAD_EXITING | 2381 CPU_BASED_CR8_STORE_EXITING; 2382 #endif 2383 2384 /* 2385 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed 2386 * for I/O port accesses. 2387 */ 2388 exec_control |= CPU_BASED_UNCOND_IO_EXITING; 2389 exec_control &= ~CPU_BASED_USE_IO_BITMAPS; 2390 2391 /* 2392 * This bit will be computed in nested_get_vmcs12_pages, because 2393 * we do not have access to L1's MSR bitmap yet. For now, keep 2394 * the same bit as before, hoping to avoid multiple VMWRITEs that 2395 * only set/clear this bit. 2396 */ 2397 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; 2398 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS; 2399 2400 exec_controls_set(vmx, exec_control); 2401 2402 /* 2403 * SECONDARY EXEC CONTROLS 2404 */ 2405 if (cpu_has_secondary_exec_ctrls()) { 2406 exec_control = __secondary_exec_controls_get(vmcs01); 2407 2408 /* Take the following fields only from vmcs12 */ 2409 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2410 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2411 SECONDARY_EXEC_ENABLE_INVPCID | 2412 SECONDARY_EXEC_ENABLE_RDTSCP | 2413 SECONDARY_EXEC_ENABLE_XSAVES | 2414 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2415 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2416 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2417 SECONDARY_EXEC_ENABLE_VMFUNC | 2418 SECONDARY_EXEC_DESC); 2419 2420 if (nested_cpu_has(vmcs12, 2421 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) 2422 exec_control |= vmcs12->secondary_vm_exec_control; 2423 2424 /* PML is emulated and never enabled in hardware for L2. */ 2425 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 2426 2427 /* VMCS shadowing for L2 is emulated for now */ 2428 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 2429 2430 /* 2431 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4() 2432 * will not have to rewrite the controls just for this bit. 2433 */ 2434 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP)) 2435 exec_control |= SECONDARY_EXEC_DESC; 2436 2437 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 2438 vmcs_write16(GUEST_INTR_STATUS, 2439 vmcs12->guest_intr_status); 2440 2441 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) 2442 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 2443 2444 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) 2445 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12); 2446 2447 secondary_exec_controls_set(vmx, exec_control); 2448 } 2449 2450 /* 2451 * ENTRY CONTROLS 2452 * 2453 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE 2454 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate 2455 * on the related bits (if supported by the CPU) in the hope that 2456 * we can avoid VMWrites during vmx_set_efer(). 2457 * 2458 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is 2459 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to 2460 * do the same for L2. 2461 */ 2462 exec_control = __vm_entry_controls_get(vmcs01); 2463 exec_control |= (vmcs12->vm_entry_controls & 2464 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL); 2465 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER); 2466 if (cpu_has_load_ia32_efer()) { 2467 if (guest_efer & EFER_LMA) 2468 exec_control |= VM_ENTRY_IA32E_MODE; 2469 if (guest_efer != kvm_host.efer) 2470 exec_control |= VM_ENTRY_LOAD_IA32_EFER; 2471 } 2472 vm_entry_controls_set(vmx, exec_control); 2473 2474 /* 2475 * EXIT CONTROLS 2476 * 2477 * L2->L1 exit controls are emulated - the hardware exit is to L0 so 2478 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER 2479 * bits may be modified by vmx_set_efer() in prepare_vmcs02(). 2480 */ 2481 exec_control = __vm_exit_controls_get(vmcs01); 2482 if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer) 2483 exec_control |= VM_EXIT_LOAD_IA32_EFER; 2484 else 2485 exec_control &= ~VM_EXIT_LOAD_IA32_EFER; 2486 vm_exit_controls_set(vmx, exec_control); 2487 2488 /* 2489 * Interrupt/Exception Fields 2490 */ 2491 if (vmx->nested.nested_run_pending) { 2492 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 2493 vmcs12->vm_entry_intr_info_field); 2494 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 2495 vmcs12->vm_entry_exception_error_code); 2496 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 2497 vmcs12->vm_entry_instruction_len); 2498 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 2499 vmcs12->guest_interruptibility_info); 2500 vmx->loaded_vmcs->nmi_known_unmasked = 2501 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); 2502 } else { 2503 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 2504 } 2505 } 2506 2507 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) 2508 { 2509 struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx); 2510 2511 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & 2512 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { 2513 2514 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); 2515 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); 2516 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); 2517 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); 2518 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); 2519 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); 2520 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); 2521 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); 2522 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); 2523 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); 2524 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); 2525 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); 2526 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); 2527 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); 2528 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); 2529 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); 2530 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); 2531 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); 2532 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); 2533 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); 2534 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); 2535 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); 2536 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); 2537 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); 2538 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); 2539 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); 2540 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); 2541 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); 2542 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); 2543 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); 2544 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); 2545 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); 2546 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); 2547 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); 2548 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); 2549 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); 2550 2551 vmx_segment_cache_clear(vmx); 2552 } 2553 2554 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & 2555 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) { 2556 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); 2557 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 2558 vmcs12->guest_pending_dbg_exceptions); 2559 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); 2560 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); 2561 2562 /* 2563 * L1 may access the L2's PDPTR, so save them to construct 2564 * vmcs12 2565 */ 2566 if (enable_ept) { 2567 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); 2568 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); 2569 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); 2570 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); 2571 } 2572 2573 if (kvm_mpx_supported() && vmx->nested.nested_run_pending && 2574 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) 2575 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); 2576 } 2577 2578 if (nested_cpu_has_xsaves(vmcs12)) 2579 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); 2580 2581 /* 2582 * Whether page-faults are trapped is determined by a combination of 2583 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0 2584 * doesn't care about page faults then we should set all of these to 2585 * L1's desires. However, if L0 does care about (some) page faults, it 2586 * is not easy (if at all possible?) to merge L0 and L1's desires, we 2587 * simply ask to exit on each and every L2 page fault. This is done by 2588 * setting MASK=MATCH=0 and (see below) EB.PF=1. 2589 * Note that below we don't need special code to set EB.PF beyond the 2590 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, 2591 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when 2592 * !enable_ept, EB.PF is 1, so the "or" will always be 1. 2593 */ 2594 if (vmx_need_pf_intercept(&vmx->vcpu)) { 2595 /* 2596 * TODO: if both L0 and L1 need the same MASK and MATCH, 2597 * go ahead and use it? 2598 */ 2599 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 2600 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 2601 } else { 2602 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask); 2603 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match); 2604 } 2605 2606 if (cpu_has_vmx_apicv()) { 2607 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); 2608 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); 2609 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); 2610 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); 2611 } 2612 2613 /* 2614 * Make sure the msr_autostore list is up to date before we set the 2615 * count in the vmcs02. 2616 */ 2617 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC); 2618 2619 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr); 2620 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); 2621 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); 2622 2623 set_cr4_guest_host_mask(vmx); 2624 } 2625 2626 /* 2627 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested 2628 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it 2629 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 2630 * guest in a way that will both be appropriate to L1's requests, and our 2631 * needs. In addition to modifying the active vmcs (which is vmcs02), this 2632 * function also has additional necessary side-effects, like setting various 2633 * vcpu->arch fields. 2634 * Returns 0 on success, 1 on failure. Invalid state exit qualification code 2635 * is assigned to entry_failure_code on failure. 2636 */ 2637 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, 2638 bool from_vmentry, 2639 enum vm_entry_failure_code *entry_failure_code) 2640 { 2641 struct vcpu_vmx *vmx = to_vmx(vcpu); 2642 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); 2643 bool load_guest_pdptrs_vmcs12 = false; 2644 2645 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) { 2646 prepare_vmcs02_rare(vmx, vmcs12); 2647 vmx->nested.dirty_vmcs12 = false; 2648 2649 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) || 2650 !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1); 2651 } 2652 2653 if (vmx->nested.nested_run_pending && 2654 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { 2655 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); 2656 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); 2657 } else { 2658 kvm_set_dr(vcpu, 7, vcpu->arch.dr7); 2659 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl); 2660 } 2661 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending || 2662 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))) 2663 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs); 2664 vmx_set_rflags(vcpu, vmcs12->guest_rflags); 2665 2666 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the 2667 * bitwise-or of what L1 wants to trap for L2, and what we want to 2668 * trap. Note that CR0.TS also needs updating - we do this later. 2669 */ 2670 vmx_update_exception_bitmap(vcpu); 2671 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; 2672 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); 2673 2674 if (vmx->nested.nested_run_pending && 2675 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { 2676 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); 2677 vcpu->arch.pat = vmcs12->guest_ia32_pat; 2678 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2679 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 2680 } 2681 2682 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2683 vcpu->arch.l1_tsc_offset, 2684 vmx_get_l2_tsc_offset(vcpu), 2685 vmx_get_l2_tsc_multiplier(vcpu)); 2686 2687 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2688 vcpu->arch.l1_tsc_scaling_ratio, 2689 vmx_get_l2_tsc_multiplier(vcpu)); 2690 2691 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 2692 if (kvm_caps.has_tsc_control) 2693 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 2694 2695 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true); 2696 2697 if (nested_cpu_has_ept(vmcs12)) 2698 nested_ept_init_mmu_context(vcpu); 2699 2700 /* 2701 * Override the CR0/CR4 read shadows after setting the effective guest 2702 * CR0/CR4. The common helpers also set the shadows, but they don't 2703 * account for vmcs12's cr0/4_guest_host_mask. 2704 */ 2705 vmx_set_cr0(vcpu, vmcs12->guest_cr0); 2706 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); 2707 2708 vmx_set_cr4(vcpu, vmcs12->guest_cr4); 2709 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); 2710 2711 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12); 2712 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ 2713 vmx_set_efer(vcpu, vcpu->arch.efer); 2714 2715 /* 2716 * Guest state is invalid and unrestricted guest is disabled, 2717 * which means L1 attempted VMEntry to L2 with invalid state. 2718 * Fail the VMEntry. 2719 * 2720 * However when force loading the guest state (SMM exit or 2721 * loading nested state after migration, it is possible to 2722 * have invalid guest state now, which will be later fixed by 2723 * restoring L2 register state 2724 */ 2725 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) { 2726 *entry_failure_code = ENTRY_FAIL_DEFAULT; 2727 return -EINVAL; 2728 } 2729 2730 /* Shadow page tables on either EPT or shadow page tables. */ 2731 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), 2732 from_vmentry, entry_failure_code)) 2733 return -EINVAL; 2734 2735 /* 2736 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12 2737 * on nested VM-Exit, which can occur without actually running L2 and 2738 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with 2739 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the 2740 * transition to HLT instead of running L2. 2741 */ 2742 if (enable_ept) 2743 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3); 2744 2745 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */ 2746 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) && 2747 is_pae_paging(vcpu)) { 2748 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); 2749 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); 2750 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); 2751 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); 2752 } 2753 2754 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && 2755 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) && 2756 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL, 2757 vmcs12->guest_ia32_perf_global_ctrl))) { 2758 *entry_failure_code = ENTRY_FAIL_DEFAULT; 2759 return -EINVAL; 2760 } 2761 2762 kvm_rsp_write(vcpu, vmcs12->guest_rsp); 2763 kvm_rip_write(vcpu, vmcs12->guest_rip); 2764 2765 /* 2766 * It was observed that genuine Hyper-V running in L1 doesn't reset 2767 * 'hv_clean_fields' by itself, it only sets the corresponding dirty 2768 * bits when it changes a field in eVMCS. Mark all fields as clean 2769 * here. 2770 */ 2771 if (nested_vmx_is_evmptr12_valid(vmx)) 2772 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 2773 2774 return 0; 2775 } 2776 2777 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) 2778 { 2779 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) && 2780 nested_cpu_has_virtual_nmis(vmcs12))) 2781 return -EINVAL; 2782 2783 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) && 2784 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING))) 2785 return -EINVAL; 2786 2787 return 0; 2788 } 2789 2790 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp) 2791 { 2792 struct vcpu_vmx *vmx = to_vmx(vcpu); 2793 2794 /* Check for memory type validity */ 2795 switch (new_eptp & VMX_EPTP_MT_MASK) { 2796 case VMX_EPTP_MT_UC: 2797 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))) 2798 return false; 2799 break; 2800 case VMX_EPTP_MT_WB: 2801 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))) 2802 return false; 2803 break; 2804 default: 2805 return false; 2806 } 2807 2808 /* Page-walk levels validity. */ 2809 switch (new_eptp & VMX_EPTP_PWL_MASK) { 2810 case VMX_EPTP_PWL_5: 2811 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT))) 2812 return false; 2813 break; 2814 case VMX_EPTP_PWL_4: 2815 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT))) 2816 return false; 2817 break; 2818 default: 2819 return false; 2820 } 2821 2822 /* Reserved bits should not be set */ 2823 if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f))) 2824 return false; 2825 2826 /* AD, if set, should be supported */ 2827 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) { 2828 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))) 2829 return false; 2830 } 2831 2832 return true; 2833 } 2834 2835 /* 2836 * Checks related to VM-Execution Control Fields 2837 */ 2838 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu, 2839 struct vmcs12 *vmcs12) 2840 { 2841 struct vcpu_vmx *vmx = to_vmx(vcpu); 2842 2843 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control, 2844 vmx->nested.msrs.pinbased_ctls_low, 2845 vmx->nested.msrs.pinbased_ctls_high)) || 2846 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, 2847 vmx->nested.msrs.procbased_ctls_low, 2848 vmx->nested.msrs.procbased_ctls_high))) 2849 return -EINVAL; 2850 2851 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && 2852 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control, 2853 vmx->nested.msrs.secondary_ctls_low, 2854 vmx->nested.msrs.secondary_ctls_high))) 2855 return -EINVAL; 2856 2857 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) || 2858 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) || 2859 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) || 2860 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) || 2861 nested_vmx_check_apic_access_controls(vcpu, vmcs12) || 2862 nested_vmx_check_apicv_controls(vcpu, vmcs12) || 2863 nested_vmx_check_nmi_controls(vmcs12) || 2864 nested_vmx_check_pml_controls(vcpu, vmcs12) || 2865 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) || 2866 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) || 2867 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) || 2868 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)) 2869 return -EINVAL; 2870 2871 if (!nested_cpu_has_preemption_timer(vmcs12) && 2872 nested_cpu_has_save_preemption_timer(vmcs12)) 2873 return -EINVAL; 2874 2875 if (nested_cpu_has_ept(vmcs12) && 2876 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer))) 2877 return -EINVAL; 2878 2879 if (nested_cpu_has_vmfunc(vmcs12)) { 2880 if (CC(vmcs12->vm_function_control & 2881 ~vmx->nested.msrs.vmfunc_controls)) 2882 return -EINVAL; 2883 2884 if (nested_cpu_has_eptp_switching(vmcs12)) { 2885 if (CC(!nested_cpu_has_ept(vmcs12)) || 2886 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address))) 2887 return -EINVAL; 2888 } 2889 } 2890 2891 return 0; 2892 } 2893 2894 /* 2895 * Checks related to VM-Exit Control Fields 2896 */ 2897 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu, 2898 struct vmcs12 *vmcs12) 2899 { 2900 struct vcpu_vmx *vmx = to_vmx(vcpu); 2901 2902 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls, 2903 vmx->nested.msrs.exit_ctls_low, 2904 vmx->nested.msrs.exit_ctls_high)) || 2905 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))) 2906 return -EINVAL; 2907 2908 return 0; 2909 } 2910 2911 /* 2912 * Checks related to VM-Entry Control Fields 2913 */ 2914 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, 2915 struct vmcs12 *vmcs12) 2916 { 2917 struct vcpu_vmx *vmx = to_vmx(vcpu); 2918 2919 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls, 2920 vmx->nested.msrs.entry_ctls_low, 2921 vmx->nested.msrs.entry_ctls_high))) 2922 return -EINVAL; 2923 2924 /* 2925 * From the Intel SDM, volume 3: 2926 * Fields relevant to VM-entry event injection must be set properly. 2927 * These fields are the VM-entry interruption-information field, the 2928 * VM-entry exception error code, and the VM-entry instruction length. 2929 */ 2930 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { 2931 u32 intr_info = vmcs12->vm_entry_intr_info_field; 2932 u8 vector = intr_info & INTR_INFO_VECTOR_MASK; 2933 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; 2934 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; 2935 bool should_have_error_code; 2936 bool urg = nested_cpu_has2(vmcs12, 2937 SECONDARY_EXEC_UNRESTRICTED_GUEST); 2938 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; 2939 2940 /* VM-entry interruption-info field: interruption type */ 2941 if (CC(intr_type == INTR_TYPE_RESERVED) || 2942 CC(intr_type == INTR_TYPE_OTHER_EVENT && 2943 !nested_cpu_supports_monitor_trap_flag(vcpu))) 2944 return -EINVAL; 2945 2946 /* VM-entry interruption-info field: vector */ 2947 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || 2948 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || 2949 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) 2950 return -EINVAL; 2951 2952 /* VM-entry interruption-info field: deliver error code */ 2953 should_have_error_code = 2954 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && 2955 x86_exception_has_error_code(vector); 2956 if (CC(has_error_code != should_have_error_code)) 2957 return -EINVAL; 2958 2959 /* VM-entry exception error code */ 2960 if (CC(has_error_code && 2961 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16))) 2962 return -EINVAL; 2963 2964 /* VM-entry interruption-info field: reserved bits */ 2965 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK)) 2966 return -EINVAL; 2967 2968 /* VM-entry instruction length */ 2969 switch (intr_type) { 2970 case INTR_TYPE_SOFT_EXCEPTION: 2971 case INTR_TYPE_SOFT_INTR: 2972 case INTR_TYPE_PRIV_SW_EXCEPTION: 2973 if (CC(vmcs12->vm_entry_instruction_len > 15) || 2974 CC(vmcs12->vm_entry_instruction_len == 0 && 2975 CC(!nested_cpu_has_zero_length_injection(vcpu)))) 2976 return -EINVAL; 2977 } 2978 } 2979 2980 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12)) 2981 return -EINVAL; 2982 2983 return 0; 2984 } 2985 2986 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu, 2987 struct vmcs12 *vmcs12) 2988 { 2989 if (nested_check_vm_execution_controls(vcpu, vmcs12) || 2990 nested_check_vm_exit_controls(vcpu, vmcs12) || 2991 nested_check_vm_entry_controls(vcpu, vmcs12)) 2992 return -EINVAL; 2993 2994 #ifdef CONFIG_KVM_HYPERV 2995 if (guest_cpuid_has_evmcs(vcpu)) 2996 return nested_evmcs_check_controls(vmcs12); 2997 #endif 2998 2999 return 0; 3000 } 3001 3002 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu, 3003 struct vmcs12 *vmcs12) 3004 { 3005 #ifdef CONFIG_X86_64 3006 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) != 3007 !!(vcpu->arch.efer & EFER_LMA))) 3008 return -EINVAL; 3009 #endif 3010 return 0; 3011 } 3012 3013 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu, 3014 struct vmcs12 *vmcs12) 3015 { 3016 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE); 3017 3018 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) || 3019 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) || 3020 CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3))) 3021 return -EINVAL; 3022 3023 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) || 3024 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu))) 3025 return -EINVAL; 3026 3027 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) && 3028 CC(!kvm_pat_valid(vmcs12->host_ia32_pat))) 3029 return -EINVAL; 3030 3031 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) && 3032 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu), 3033 vmcs12->host_ia32_perf_global_ctrl))) 3034 return -EINVAL; 3035 3036 if (ia32e) { 3037 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE))) 3038 return -EINVAL; 3039 } else { 3040 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) || 3041 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) || 3042 CC((vmcs12->host_rip) >> 32)) 3043 return -EINVAL; 3044 } 3045 3046 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 3047 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 3048 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 3049 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 3050 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 3051 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 3052 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 3053 CC(vmcs12->host_cs_selector == 0) || 3054 CC(vmcs12->host_tr_selector == 0) || 3055 CC(vmcs12->host_ss_selector == 0 && !ia32e)) 3056 return -EINVAL; 3057 3058 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) || 3059 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) || 3060 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) || 3061 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) || 3062 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) || 3063 CC(is_noncanonical_address(vmcs12->host_rip, vcpu))) 3064 return -EINVAL; 3065 3066 /* 3067 * If the load IA32_EFER VM-exit control is 1, bits reserved in the 3068 * IA32_EFER MSR must be 0 in the field for that register. In addition, 3069 * the values of the LMA and LME bits in the field must each be that of 3070 * the host address-space size VM-exit control. 3071 */ 3072 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { 3073 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) || 3074 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) || 3075 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))) 3076 return -EINVAL; 3077 } 3078 3079 return 0; 3080 } 3081 3082 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, 3083 struct vmcs12 *vmcs12) 3084 { 3085 struct vcpu_vmx *vmx = to_vmx(vcpu); 3086 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache; 3087 struct vmcs_hdr hdr; 3088 3089 if (vmcs12->vmcs_link_pointer == INVALID_GPA) 3090 return 0; 3091 3092 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))) 3093 return -EINVAL; 3094 3095 if (ghc->gpa != vmcs12->vmcs_link_pointer && 3096 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, 3097 vmcs12->vmcs_link_pointer, VMCS12_SIZE))) 3098 return -EINVAL; 3099 3100 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr, 3101 offsetof(struct vmcs12, hdr), 3102 sizeof(hdr)))) 3103 return -EINVAL; 3104 3105 if (CC(hdr.revision_id != VMCS12_REVISION) || 3106 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))) 3107 return -EINVAL; 3108 3109 return 0; 3110 } 3111 3112 /* 3113 * Checks related to Guest Non-register State 3114 */ 3115 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12) 3116 { 3117 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && 3118 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT && 3119 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI)) 3120 return -EINVAL; 3121 3122 return 0; 3123 } 3124 3125 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu, 3126 struct vmcs12 *vmcs12, 3127 enum vm_entry_failure_code *entry_failure_code) 3128 { 3129 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE); 3130 3131 *entry_failure_code = ENTRY_FAIL_DEFAULT; 3132 3133 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) || 3134 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))) 3135 return -EINVAL; 3136 3137 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) && 3138 CC(!kvm_dr7_valid(vmcs12->guest_dr7))) 3139 return -EINVAL; 3140 3141 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) && 3142 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat))) 3143 return -EINVAL; 3144 3145 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { 3146 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR; 3147 return -EINVAL; 3148 } 3149 3150 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && 3151 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu), 3152 vmcs12->guest_ia32_perf_global_ctrl))) 3153 return -EINVAL; 3154 3155 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG)) 3156 return -EINVAL; 3157 3158 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) || 3159 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG))) 3160 return -EINVAL; 3161 3162 /* 3163 * If the load IA32_EFER VM-entry control is 1, the following checks 3164 * are performed on the field for the IA32_EFER MSR: 3165 * - Bits reserved in the IA32_EFER MSR must be 0. 3166 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of 3167 * the IA-32e mode guest VM-exit control. It must also be identical 3168 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to 3169 * CR0.PG) is 1. 3170 */ 3171 if (to_vmx(vcpu)->nested.nested_run_pending && 3172 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { 3173 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) || 3174 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) || 3175 CC(((vmcs12->guest_cr0 & X86_CR0_PG) && 3176 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))) 3177 return -EINVAL; 3178 } 3179 3180 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && 3181 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) || 3182 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))) 3183 return -EINVAL; 3184 3185 if (nested_check_guest_non_reg_state(vmcs12)) 3186 return -EINVAL; 3187 3188 return 0; 3189 } 3190 3191 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) 3192 { 3193 struct vcpu_vmx *vmx = to_vmx(vcpu); 3194 unsigned long cr3, cr4; 3195 bool vm_fail; 3196 3197 if (!nested_early_check) 3198 return 0; 3199 3200 if (vmx->msr_autoload.host.nr) 3201 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 3202 if (vmx->msr_autoload.guest.nr) 3203 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 3204 3205 preempt_disable(); 3206 3207 vmx_prepare_switch_to_guest(vcpu); 3208 3209 /* 3210 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, 3211 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to 3212 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e. 3213 * there is no need to preserve other bits or save/restore the field. 3214 */ 3215 vmcs_writel(GUEST_RFLAGS, 0); 3216 3217 cr3 = __get_current_cr3_fast(); 3218 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 3219 vmcs_writel(HOST_CR3, cr3); 3220 vmx->loaded_vmcs->host_state.cr3 = cr3; 3221 } 3222 3223 cr4 = cr4_read_shadow(); 3224 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 3225 vmcs_writel(HOST_CR4, cr4); 3226 vmx->loaded_vmcs->host_state.cr4 = cr4; 3227 } 3228 3229 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 3230 __vmx_vcpu_run_flags(vmx)); 3231 3232 if (vmx->msr_autoload.host.nr) 3233 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); 3234 if (vmx->msr_autoload.guest.nr) 3235 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); 3236 3237 if (vm_fail) { 3238 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR); 3239 3240 preempt_enable(); 3241 3242 trace_kvm_nested_vmenter_failed( 3243 "early hardware check VM-instruction error: ", error); 3244 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3245 return 1; 3246 } 3247 3248 /* 3249 * VMExit clears RFLAGS.IF and DR7, even on a consistency check. 3250 */ 3251 if (hw_breakpoint_active()) 3252 set_debugreg(__this_cpu_read(cpu_dr7), 7); 3253 local_irq_enable(); 3254 preempt_enable(); 3255 3256 /* 3257 * A non-failing VMEntry means we somehow entered guest mode with 3258 * an illegal RIP, and that's just the tip of the iceberg. There 3259 * is no telling what memory has been modified or what state has 3260 * been exposed to unknown code. Hitting this all but guarantees 3261 * a (very critical) hardware issue. 3262 */ 3263 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & 3264 VMX_EXIT_REASONS_FAILED_VMENTRY)); 3265 3266 return 0; 3267 } 3268 3269 #ifdef CONFIG_KVM_HYPERV 3270 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu) 3271 { 3272 struct vcpu_vmx *vmx = to_vmx(vcpu); 3273 3274 /* 3275 * hv_evmcs may end up being not mapped after migration (when 3276 * L2 was running), map it here to make sure vmcs12 changes are 3277 * properly reflected. 3278 */ 3279 if (guest_cpuid_has_evmcs(vcpu) && 3280 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) { 3281 enum nested_evmptrld_status evmptrld_status = 3282 nested_vmx_handle_enlightened_vmptrld(vcpu, false); 3283 3284 if (evmptrld_status == EVMPTRLD_VMFAIL || 3285 evmptrld_status == EVMPTRLD_ERROR) 3286 return false; 3287 3288 /* 3289 * Post migration VMCS12 always provides the most actual 3290 * information, copy it to eVMCS upon entry. 3291 */ 3292 vmx->nested.need_vmcs12_to_shadow_sync = true; 3293 } 3294 3295 return true; 3296 } 3297 #endif 3298 3299 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) 3300 { 3301 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 3302 struct vcpu_vmx *vmx = to_vmx(vcpu); 3303 struct kvm_host_map *map; 3304 3305 if (!vcpu->arch.pdptrs_from_userspace && 3306 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) { 3307 /* 3308 * Reload the guest's PDPTRs since after a migration 3309 * the guest CR3 might be restored prior to setting the nested 3310 * state which can lead to a load of wrong PDPTRs. 3311 */ 3312 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3))) 3313 return false; 3314 } 3315 3316 3317 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { 3318 map = &vmx->nested.apic_access_page_map; 3319 3320 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) { 3321 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn)); 3322 } else { 3323 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n", 3324 __func__); 3325 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3326 vcpu->run->internal.suberror = 3327 KVM_INTERNAL_ERROR_EMULATION; 3328 vcpu->run->internal.ndata = 0; 3329 return false; 3330 } 3331 } 3332 3333 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { 3334 map = &vmx->nested.virtual_apic_map; 3335 3336 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) { 3337 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn)); 3338 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) && 3339 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) && 3340 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { 3341 /* 3342 * The processor will never use the TPR shadow, simply 3343 * clear the bit from the execution control. Such a 3344 * configuration is useless, but it happens in tests. 3345 * For any other configuration, failing the vm entry is 3346 * _not_ what the processor does but it's basically the 3347 * only possibility we have. 3348 */ 3349 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW); 3350 } else { 3351 /* 3352 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to 3353 * force VM-Entry to fail. 3354 */ 3355 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA); 3356 } 3357 } 3358 3359 if (nested_cpu_has_posted_intr(vmcs12)) { 3360 map = &vmx->nested.pi_desc_map; 3361 3362 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) { 3363 vmx->nested.pi_desc = 3364 (struct pi_desc *)(((void *)map->hva) + 3365 offset_in_page(vmcs12->posted_intr_desc_addr)); 3366 vmcs_write64(POSTED_INTR_DESC_ADDR, 3367 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr)); 3368 } else { 3369 /* 3370 * Defer the KVM_INTERNAL_EXIT until KVM tries to 3371 * access the contents of the VMCS12 posted interrupt 3372 * descriptor. (Note that KVM may do this when it 3373 * should not, per the architectural specification.) 3374 */ 3375 vmx->nested.pi_desc = NULL; 3376 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR); 3377 } 3378 } 3379 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) 3380 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS); 3381 else 3382 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS); 3383 3384 return true; 3385 } 3386 3387 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu) 3388 { 3389 #ifdef CONFIG_KVM_HYPERV 3390 /* 3391 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy 3392 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory 3393 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post 3394 * migration. 3395 */ 3396 if (!nested_get_evmcs_page(vcpu)) { 3397 pr_debug_ratelimited("%s: enlightened vmptrld failed\n", 3398 __func__); 3399 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3400 vcpu->run->internal.suberror = 3401 KVM_INTERNAL_ERROR_EMULATION; 3402 vcpu->run->internal.ndata = 0; 3403 3404 return false; 3405 } 3406 #endif 3407 3408 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu)) 3409 return false; 3410 3411 return true; 3412 } 3413 3414 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa) 3415 { 3416 struct vmcs12 *vmcs12; 3417 struct vcpu_vmx *vmx = to_vmx(vcpu); 3418 gpa_t dst; 3419 3420 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) 3421 return 0; 3422 3423 if (WARN_ON_ONCE(vmx->nested.pml_full)) 3424 return 1; 3425 3426 /* 3427 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is 3428 * set is already checked as part of A/D emulation. 3429 */ 3430 vmcs12 = get_vmcs12(vcpu); 3431 if (!nested_cpu_has_pml(vmcs12)) 3432 return 0; 3433 3434 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { 3435 vmx->nested.pml_full = true; 3436 return 1; 3437 } 3438 3439 gpa &= ~0xFFFull; 3440 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index; 3441 3442 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa, 3443 offset_in_page(dst), sizeof(gpa))) 3444 return 0; 3445 3446 vmcs12->guest_pml_index--; 3447 3448 return 0; 3449 } 3450 3451 /* 3452 * Intel's VMX Instruction Reference specifies a common set of prerequisites 3453 * for running VMX instructions (except VMXON, whose prerequisites are 3454 * slightly different). It also specifies what exception to inject otherwise. 3455 * Note that many of these exceptions have priority over VM exits, so they 3456 * don't have to be checked again here. 3457 */ 3458 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) 3459 { 3460 if (!to_vmx(vcpu)->nested.vmxon) { 3461 kvm_queue_exception(vcpu, UD_VECTOR); 3462 return 0; 3463 } 3464 3465 if (vmx_get_cpl(vcpu)) { 3466 kvm_inject_gp(vcpu, 0); 3467 return 0; 3468 } 3469 3470 return 1; 3471 } 3472 3473 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) 3474 { 3475 u8 rvi = vmx_get_rvi(); 3476 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); 3477 3478 return ((rvi & 0xf0) > (vppr & 0xf0)); 3479 } 3480 3481 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, 3482 struct vmcs12 *vmcs12); 3483 3484 /* 3485 * If from_vmentry is false, this is being called from state restore (either RSM 3486 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. 3487 * 3488 * Returns: 3489 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode 3490 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail 3491 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit 3492 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error 3493 */ 3494 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, 3495 bool from_vmentry) 3496 { 3497 struct vcpu_vmx *vmx = to_vmx(vcpu); 3498 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 3499 enum vm_entry_failure_code entry_failure_code; 3500 bool evaluate_pending_interrupts; 3501 union vmx_exit_reason exit_reason = { 3502 .basic = EXIT_REASON_INVALID_STATE, 3503 .failed_vmentry = 1, 3504 }; 3505 u32 failed_index; 3506 3507 trace_kvm_nested_vmenter(kvm_rip_read(vcpu), 3508 vmx->nested.current_vmptr, 3509 vmcs12->guest_rip, 3510 vmcs12->guest_intr_status, 3511 vmcs12->vm_entry_intr_info_field, 3512 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT, 3513 vmcs12->ept_pointer, 3514 vmcs12->guest_cr3, 3515 KVM_ISA_VMX); 3516 3517 kvm_service_local_tlb_flush_requests(vcpu); 3518 3519 evaluate_pending_interrupts = exec_controls_get(vmx) & 3520 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING); 3521 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) 3522 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); 3523 if (!evaluate_pending_interrupts) 3524 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu); 3525 3526 if (!vmx->nested.nested_run_pending || 3527 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) 3528 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); 3529 if (kvm_mpx_supported() && 3530 (!vmx->nested.nested_run_pending || 3531 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))) 3532 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS); 3533 3534 /* 3535 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and* 3536 * nested early checks are disabled. In the event of a "late" VM-Fail, 3537 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its 3538 * software model to the pre-VMEntry host state. When EPT is disabled, 3539 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes 3540 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing 3541 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to 3542 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested 3543 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is 3544 * guaranteed to be overwritten with a shadow CR3 prior to re-entering 3545 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as 3546 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks 3547 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail 3548 * path would need to manually save/restore vmcs01.GUEST_CR3. 3549 */ 3550 if (!enable_ept && !nested_early_check) 3551 vmcs_writel(GUEST_CR3, vcpu->arch.cr3); 3552 3553 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); 3554 3555 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12); 3556 3557 if (from_vmentry) { 3558 if (unlikely(!nested_get_vmcs12_pages(vcpu))) { 3559 vmx_switch_vmcs(vcpu, &vmx->vmcs01); 3560 return NVMX_VMENTRY_KVM_INTERNAL_ERROR; 3561 } 3562 3563 if (nested_vmx_check_vmentry_hw(vcpu)) { 3564 vmx_switch_vmcs(vcpu, &vmx->vmcs01); 3565 return NVMX_VMENTRY_VMFAIL; 3566 } 3567 3568 if (nested_vmx_check_guest_state(vcpu, vmcs12, 3569 &entry_failure_code)) { 3570 exit_reason.basic = EXIT_REASON_INVALID_STATE; 3571 vmcs12->exit_qualification = entry_failure_code; 3572 goto vmentry_fail_vmexit; 3573 } 3574 } 3575 3576 enter_guest_mode(vcpu); 3577 3578 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) { 3579 exit_reason.basic = EXIT_REASON_INVALID_STATE; 3580 vmcs12->exit_qualification = entry_failure_code; 3581 goto vmentry_fail_vmexit_guest_mode; 3582 } 3583 3584 if (from_vmentry) { 3585 failed_index = nested_vmx_load_msr(vcpu, 3586 vmcs12->vm_entry_msr_load_addr, 3587 vmcs12->vm_entry_msr_load_count); 3588 if (failed_index) { 3589 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL; 3590 vmcs12->exit_qualification = failed_index; 3591 goto vmentry_fail_vmexit_guest_mode; 3592 } 3593 } else { 3594 /* 3595 * The MMU is not initialized to point at the right entities yet and 3596 * "get pages" would need to read data from the guest (i.e. we will 3597 * need to perform gpa to hpa translation). Request a call 3598 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs 3599 * have already been set at vmentry time and should not be reset. 3600 */ 3601 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 3602 } 3603 3604 /* 3605 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI 3606 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can 3607 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit 3608 * unconditionally. 3609 */ 3610 if (unlikely(evaluate_pending_interrupts)) 3611 kvm_make_request(KVM_REQ_EVENT, vcpu); 3612 3613 /* 3614 * Do not start the preemption timer hrtimer until after we know 3615 * we are successful, so that only nested_vmx_vmexit needs to cancel 3616 * the timer. 3617 */ 3618 vmx->nested.preemption_timer_expired = false; 3619 if (nested_cpu_has_preemption_timer(vmcs12)) { 3620 u64 timer_value = vmx_calc_preemption_timer_value(vcpu); 3621 vmx_start_preemption_timer(vcpu, timer_value); 3622 } 3623 3624 /* 3625 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point 3626 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet 3627 * returned as far as L1 is concerned. It will only return (and set 3628 * the success flag) when L2 exits (see nested_vmx_vmexit()). 3629 */ 3630 return NVMX_VMENTRY_SUCCESS; 3631 3632 /* 3633 * A failed consistency check that leads to a VMExit during L1's 3634 * VMEnter to L2 is a variation of a normal VMexit, as explained in 3635 * 26.7 "VM-entry failures during or after loading guest state". 3636 */ 3637 vmentry_fail_vmexit_guest_mode: 3638 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING) 3639 vcpu->arch.tsc_offset -= vmcs12->tsc_offset; 3640 leave_guest_mode(vcpu); 3641 3642 vmentry_fail_vmexit: 3643 vmx_switch_vmcs(vcpu, &vmx->vmcs01); 3644 3645 if (!from_vmentry) 3646 return NVMX_VMENTRY_VMEXIT; 3647 3648 load_vmcs12_host_state(vcpu, vmcs12); 3649 vmcs12->vm_exit_reason = exit_reason.full; 3650 if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)) 3651 vmx->nested.need_vmcs12_to_shadow_sync = true; 3652 return NVMX_VMENTRY_VMEXIT; 3653 } 3654 3655 /* 3656 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 3657 * for running an L2 nested guest. 3658 */ 3659 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) 3660 { 3661 struct vmcs12 *vmcs12; 3662 enum nvmx_vmentry_status status; 3663 struct vcpu_vmx *vmx = to_vmx(vcpu); 3664 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); 3665 enum nested_evmptrld_status evmptrld_status; 3666 3667 if (!nested_vmx_check_permission(vcpu)) 3668 return 1; 3669 3670 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch); 3671 if (evmptrld_status == EVMPTRLD_ERROR) { 3672 kvm_queue_exception(vcpu, UD_VECTOR); 3673 return 1; 3674 } 3675 3676 kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); 3677 3678 if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) 3679 return nested_vmx_failInvalid(vcpu); 3680 3681 if (CC(!nested_vmx_is_evmptr12_valid(vmx) && 3682 vmx->nested.current_vmptr == INVALID_GPA)) 3683 return nested_vmx_failInvalid(vcpu); 3684 3685 vmcs12 = get_vmcs12(vcpu); 3686 3687 /* 3688 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact 3689 * that there *is* a valid VMCS pointer, RFLAGS.CF is set 3690 * rather than RFLAGS.ZF, and no error number is stored to the 3691 * VM-instruction error field. 3692 */ 3693 if (CC(vmcs12->hdr.shadow_vmcs)) 3694 return nested_vmx_failInvalid(vcpu); 3695 3696 if (nested_vmx_is_evmptr12_valid(vmx)) { 3697 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx); 3698 3699 copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields); 3700 /* Enlightened VMCS doesn't have launch state */ 3701 vmcs12->launch_state = !launch; 3702 } else if (enable_shadow_vmcs) { 3703 copy_shadow_to_vmcs12(vmx); 3704 } 3705 3706 /* 3707 * The nested entry process starts with enforcing various prerequisites 3708 * on vmcs12 as required by the Intel SDM, and act appropriately when 3709 * they fail: As the SDM explains, some conditions should cause the 3710 * instruction to fail, while others will cause the instruction to seem 3711 * to succeed, but return an EXIT_REASON_INVALID_STATE. 3712 * To speed up the normal (success) code path, we should avoid checking 3713 * for misconfigurations which will anyway be caught by the processor 3714 * when using the merged vmcs02. 3715 */ 3716 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)) 3717 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); 3718 3719 if (CC(vmcs12->launch_state == launch)) 3720 return nested_vmx_fail(vcpu, 3721 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS 3722 : VMXERR_VMRESUME_NONLAUNCHED_VMCS); 3723 3724 if (nested_vmx_check_controls(vcpu, vmcs12)) 3725 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3726 3727 if (nested_vmx_check_address_space_size(vcpu, vmcs12)) 3728 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 3729 3730 if (nested_vmx_check_host_state(vcpu, vmcs12)) 3731 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 3732 3733 /* 3734 * We're finally done with prerequisite checking, and can start with 3735 * the nested entry. 3736 */ 3737 vmx->nested.nested_run_pending = 1; 3738 vmx->nested.has_preemption_timer_deadline = false; 3739 status = nested_vmx_enter_non_root_mode(vcpu, true); 3740 if (unlikely(status != NVMX_VMENTRY_SUCCESS)) 3741 goto vmentry_failed; 3742 3743 /* Emulate processing of posted interrupts on VM-Enter. */ 3744 if (nested_cpu_has_posted_intr(vmcs12) && 3745 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) { 3746 vmx->nested.pi_pending = true; 3747 kvm_make_request(KVM_REQ_EVENT, vcpu); 3748 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv); 3749 } 3750 3751 /* Hide L1D cache contents from the nested guest. */ 3752 vmx->vcpu.arch.l1tf_flush_l1d = true; 3753 3754 /* 3755 * Must happen outside of nested_vmx_enter_non_root_mode() as it will 3756 * also be used as part of restoring nVMX state for 3757 * snapshot restore (migration). 3758 * 3759 * In this flow, it is assumed that vmcs12 cache was 3760 * transferred as part of captured nVMX state and should 3761 * therefore not be read from guest memory (which may not 3762 * exist on destination host yet). 3763 */ 3764 nested_cache_shadow_vmcs12(vcpu, vmcs12); 3765 3766 switch (vmcs12->guest_activity_state) { 3767 case GUEST_ACTIVITY_HLT: 3768 /* 3769 * If we're entering a halted L2 vcpu and the L2 vcpu won't be 3770 * awakened by event injection or by an NMI-window VM-exit or 3771 * by an interrupt-window VM-exit, halt the vcpu. 3772 */ 3773 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && 3774 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) && 3775 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) && 3776 (vmcs12->guest_rflags & X86_EFLAGS_IF))) { 3777 vmx->nested.nested_run_pending = 0; 3778 return kvm_emulate_halt_noskip(vcpu); 3779 } 3780 break; 3781 case GUEST_ACTIVITY_WAIT_SIPI: 3782 vmx->nested.nested_run_pending = 0; 3783 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 3784 break; 3785 default: 3786 break; 3787 } 3788 3789 return 1; 3790 3791 vmentry_failed: 3792 vmx->nested.nested_run_pending = 0; 3793 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR) 3794 return 0; 3795 if (status == NVMX_VMENTRY_VMEXIT) 3796 return 1; 3797 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL); 3798 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3799 } 3800 3801 /* 3802 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date 3803 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK). 3804 * This function returns the new value we should put in vmcs12.guest_cr0. 3805 * It's not enough to just return the vmcs02 GUEST_CR0. Rather, 3806 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now 3807 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 3808 * didn't trap the bit, because if L1 did, so would L0). 3809 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have 3810 * been modified by L2, and L1 knows it. So just leave the old value of 3811 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 3812 * isn't relevant, because if L0 traps this bit it can set it to anything. 3813 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have 3814 * changed these bits, and therefore they need to be updated, but L0 3815 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather 3816 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. 3817 */ 3818 static inline unsigned long 3819 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) 3820 { 3821 return 3822 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | 3823 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | 3824 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | 3825 vcpu->arch.cr0_guest_owned_bits)); 3826 } 3827 3828 static inline unsigned long 3829 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) 3830 { 3831 return 3832 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | 3833 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | 3834 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | 3835 vcpu->arch.cr4_guest_owned_bits)); 3836 } 3837 3838 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, 3839 struct vmcs12 *vmcs12, 3840 u32 vm_exit_reason, u32 exit_intr_info) 3841 { 3842 u32 idt_vectoring; 3843 unsigned int nr; 3844 3845 /* 3846 * Per the SDM, VM-Exits due to double and triple faults are never 3847 * considered to occur during event delivery, even if the double/triple 3848 * fault is the result of an escalating vectoring issue. 3849 * 3850 * Note, the SDM qualifies the double fault behavior with "The original 3851 * event results in a double-fault exception". It's unclear why the 3852 * qualification exists since exits due to double fault can occur only 3853 * while vectoring a different exception (injected events are never 3854 * subject to interception), i.e. there's _always_ an original event. 3855 * 3856 * The SDM also uses NMI as a confusing example for the "original event 3857 * causes the VM exit directly" clause. NMI isn't special in any way, 3858 * the same rule applies to all events that cause an exit directly. 3859 * NMI is an odd choice for the example because NMIs can only occur on 3860 * instruction boundaries, i.e. they _can't_ occur during vectoring. 3861 */ 3862 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT || 3863 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI && 3864 is_double_fault(exit_intr_info))) { 3865 vmcs12->idt_vectoring_info_field = 0; 3866 } else if (vcpu->arch.exception.injected) { 3867 nr = vcpu->arch.exception.vector; 3868 idt_vectoring = nr | VECTORING_INFO_VALID_MASK; 3869 3870 if (kvm_exception_is_soft(nr)) { 3871 vmcs12->vm_exit_instruction_len = 3872 vcpu->arch.event_exit_inst_len; 3873 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; 3874 } else 3875 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; 3876 3877 if (vcpu->arch.exception.has_error_code) { 3878 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; 3879 vmcs12->idt_vectoring_error_code = 3880 vcpu->arch.exception.error_code; 3881 } 3882 3883 vmcs12->idt_vectoring_info_field = idt_vectoring; 3884 } else if (vcpu->arch.nmi_injected) { 3885 vmcs12->idt_vectoring_info_field = 3886 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; 3887 } else if (vcpu->arch.interrupt.injected) { 3888 nr = vcpu->arch.interrupt.nr; 3889 idt_vectoring = nr | VECTORING_INFO_VALID_MASK; 3890 3891 if (vcpu->arch.interrupt.soft) { 3892 idt_vectoring |= INTR_TYPE_SOFT_INTR; 3893 vmcs12->vm_entry_instruction_len = 3894 vcpu->arch.event_exit_inst_len; 3895 } else 3896 idt_vectoring |= INTR_TYPE_EXT_INTR; 3897 3898 vmcs12->idt_vectoring_info_field = idt_vectoring; 3899 } else { 3900 vmcs12->idt_vectoring_info_field = 0; 3901 } 3902 } 3903 3904 3905 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) 3906 { 3907 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 3908 gfn_t gfn; 3909 3910 /* 3911 * Don't need to mark the APIC access page dirty; it is never 3912 * written to by the CPU during APIC virtualization. 3913 */ 3914 3915 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { 3916 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; 3917 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3918 } 3919 3920 if (nested_cpu_has_posted_intr(vmcs12)) { 3921 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; 3922 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3923 } 3924 } 3925 3926 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) 3927 { 3928 struct vcpu_vmx *vmx = to_vmx(vcpu); 3929 int max_irr; 3930 void *vapic_page; 3931 u16 status; 3932 3933 if (!vmx->nested.pi_pending) 3934 return 0; 3935 3936 if (!vmx->nested.pi_desc) 3937 goto mmio_needed; 3938 3939 vmx->nested.pi_pending = false; 3940 3941 if (!pi_test_and_clear_on(vmx->nested.pi_desc)) 3942 return 0; 3943 3944 max_irr = pi_find_highest_vector(vmx->nested.pi_desc); 3945 if (max_irr > 0) { 3946 vapic_page = vmx->nested.virtual_apic_map.hva; 3947 if (!vapic_page) 3948 goto mmio_needed; 3949 3950 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, 3951 vapic_page, &max_irr); 3952 status = vmcs_read16(GUEST_INTR_STATUS); 3953 if ((u8)max_irr > ((u8)status & 0xff)) { 3954 status &= ~0xff; 3955 status |= (u8)max_irr; 3956 vmcs_write16(GUEST_INTR_STATUS, status); 3957 } 3958 } 3959 3960 nested_mark_vmcs12_pages_dirty(vcpu); 3961 return 0; 3962 3963 mmio_needed: 3964 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL); 3965 return -ENXIO; 3966 } 3967 3968 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu) 3969 { 3970 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; 3971 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 3972 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 3973 unsigned long exit_qual; 3974 3975 if (ex->has_payload) { 3976 exit_qual = ex->payload; 3977 } else if (ex->vector == PF_VECTOR) { 3978 exit_qual = vcpu->arch.cr2; 3979 } else if (ex->vector == DB_VECTOR) { 3980 exit_qual = vcpu->arch.dr6; 3981 exit_qual &= ~DR6_BT; 3982 exit_qual ^= DR6_ACTIVE_LOW; 3983 } else { 3984 exit_qual = 0; 3985 } 3986 3987 /* 3988 * Unlike AMD's Paged Real Mode, which reports an error code on #PF 3989 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the 3990 * "has error code" flags on VM-Exit if the CPU is in Real Mode. 3991 */ 3992 if (ex->has_error_code && is_protmode(vcpu)) { 3993 /* 3994 * Intel CPUs do not generate error codes with bits 31:16 set, 3995 * and more importantly VMX disallows setting bits 31:16 in the 3996 * injected error code for VM-Entry. Drop the bits to mimic 3997 * hardware and avoid inducing failure on nested VM-Entry if L1 3998 * chooses to inject the exception back to L2. AMD CPUs _do_ 3999 * generate "full" 32-bit error codes, so KVM allows userspace 4000 * to inject exception error codes with bits 31:16 set. 4001 */ 4002 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code; 4003 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 4004 } 4005 4006 if (kvm_exception_is_soft(ex->vector)) 4007 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 4008 else 4009 intr_info |= INTR_TYPE_HARD_EXCEPTION; 4010 4011 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && 4012 vmx_get_nmi_mask(vcpu)) 4013 intr_info |= INTR_INFO_UNBLOCK_NMI; 4014 4015 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); 4016 } 4017 4018 /* 4019 * Returns true if a debug trap is (likely) pending delivery. Infer the class 4020 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6). 4021 * Using the payload is flawed because code breakpoints (fault-like) and data 4022 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e. 4023 * this will return false positives if a to-be-injected code breakpoint #DB is 4024 * pending (from KVM's perspective, but not "pending" across an instruction 4025 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it 4026 * too is trap-like. 4027 * 4028 * KVM "works" despite these flaws as ICEBP isn't currently supported by the 4029 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the 4030 * #DB has already happened), and MTF isn't marked pending on code breakpoints 4031 * from the emulator (because such #DBs are fault-like and thus don't trigger 4032 * actions that fire on instruction retire). 4033 */ 4034 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex) 4035 { 4036 if (!ex->pending || ex->vector != DB_VECTOR) 4037 return 0; 4038 4039 /* General Detect #DBs are always fault-like. */ 4040 return ex->payload & ~DR6_BD; 4041 } 4042 4043 /* 4044 * Returns true if there's a pending #DB exception that is lower priority than 4045 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by 4046 * KVM, but could theoretically be injected by userspace. Note, this code is 4047 * imperfect, see above. 4048 */ 4049 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex) 4050 { 4051 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT; 4052 } 4053 4054 /* 4055 * Certain VM-exits set the 'pending debug exceptions' field to indicate a 4056 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM 4057 * represents these debug traps with a payload that is said to be compatible 4058 * with the 'pending debug exceptions' field, write the payload to the VMCS 4059 * field if a VM-exit is delivered before the debug trap. 4060 */ 4061 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu) 4062 { 4063 unsigned long pending_dbg; 4064 4065 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception); 4066 if (pending_dbg) 4067 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg); 4068 } 4069 4070 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu) 4071 { 4072 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && 4073 to_vmx(vcpu)->nested.preemption_timer_expired; 4074 } 4075 4076 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection) 4077 { 4078 struct vcpu_vmx *vmx = to_vmx(vcpu); 4079 void *vapic = vmx->nested.virtual_apic_map.hva; 4080 int max_irr, vppr; 4081 4082 if (nested_vmx_preemption_timer_pending(vcpu) || 4083 vmx->nested.mtf_pending) 4084 return true; 4085 4086 /* 4087 * Virtual Interrupt Delivery doesn't require manual injection. Either 4088 * the interrupt is already in GUEST_RVI and will be recognized by CPU 4089 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move 4090 * the interrupt from the PIR to RVI prior to entering the guest. 4091 */ 4092 if (for_injection) 4093 return false; 4094 4095 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) || 4096 __vmx_interrupt_blocked(vcpu)) 4097 return false; 4098 4099 if (!vapic) 4100 return false; 4101 4102 vppr = *((u32 *)(vapic + APIC_PROCPRI)); 4103 4104 max_irr = vmx_get_rvi(); 4105 if ((max_irr & 0xf0) > (vppr & 0xf0)) 4106 return true; 4107 4108 if (vmx->nested.pi_pending && vmx->nested.pi_desc && 4109 pi_test_on(vmx->nested.pi_desc)) { 4110 max_irr = pi_find_highest_vector(vmx->nested.pi_desc); 4111 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0)) 4112 return true; 4113 } 4114 4115 return false; 4116 } 4117 4118 /* 4119 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor 4120 * edits to fill in missing examples, e.g. #DB due to split-lock accesses, 4121 * and less minor edits to splice in the priority of VMX Non-Root specific 4122 * events, e.g. MTF and NMI/INTR-window exiting. 4123 * 4124 * 1 Hardware Reset and Machine Checks 4125 * - RESET 4126 * - Machine Check 4127 * 4128 * 2 Trap on Task Switch 4129 * - T flag in TSS is set (on task switch) 4130 * 4131 * 3 External Hardware Interventions 4132 * - FLUSH 4133 * - STOPCLK 4134 * - SMI 4135 * - INIT 4136 * 4137 * 3.5 Monitor Trap Flag (MTF) VM-exit[1] 4138 * 4139 * 4 Traps on Previous Instruction 4140 * - Breakpoints 4141 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O 4142 * breakpoint, or #DB due to a split-lock access) 4143 * 4144 * 4.3 VMX-preemption timer expired VM-exit 4145 * 4146 * 4.6 NMI-window exiting VM-exit[2] 4147 * 4148 * 5 Nonmaskable Interrupts (NMI) 4149 * 4150 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery 4151 * 4152 * 6 Maskable Hardware Interrupts 4153 * 4154 * 7 Code Breakpoint Fault 4155 * 4156 * 8 Faults from Fetching Next Instruction 4157 * - Code-Segment Limit Violation 4158 * - Code Page Fault 4159 * - Control protection exception (missing ENDBRANCH at target of indirect 4160 * call or jump) 4161 * 4162 * 9 Faults from Decoding Next Instruction 4163 * - Instruction length > 15 bytes 4164 * - Invalid Opcode 4165 * - Coprocessor Not Available 4166 * 4167 *10 Faults on Executing Instruction 4168 * - Overflow 4169 * - Bound error 4170 * - Invalid TSS 4171 * - Segment Not Present 4172 * - Stack fault 4173 * - General Protection 4174 * - Data Page Fault 4175 * - Alignment Check 4176 * - x86 FPU Floating-point exception 4177 * - SIMD floating-point exception 4178 * - Virtualization exception 4179 * - Control protection exception 4180 * 4181 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs), 4182 * INIT signals, and higher priority events take priority over MTF VM exits. 4183 * MTF VM exits take priority over debug-trap exceptions and lower priority 4184 * events. 4185 * 4186 * [2] Debug-trap exceptions and higher priority events take priority over VM exits 4187 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption 4188 * timer take priority over VM exits caused by the "NMI-window exiting" 4189 * VM-execution control and lower priority events. 4190 * 4191 * [3] Debug-trap exceptions and higher priority events take priority over VM exits 4192 * caused by "NMI-window exiting". VM exits caused by this control take 4193 * priority over non-maskable interrupts (NMIs) and lower priority events. 4194 * 4195 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to 4196 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus, 4197 * non-maskable interrupts (NMIs) and higher priority events take priority over 4198 * delivery of a virtual interrupt; delivery of a virtual interrupt takes 4199 * priority over external interrupts and lower priority events. 4200 */ 4201 static int vmx_check_nested_events(struct kvm_vcpu *vcpu) 4202 { 4203 struct kvm_lapic *apic = vcpu->arch.apic; 4204 struct vcpu_vmx *vmx = to_vmx(vcpu); 4205 /* 4206 * Only a pending nested run blocks a pending exception. If there is a 4207 * previously injected event, the pending exception occurred while said 4208 * event was being delivered and thus needs to be handled. 4209 */ 4210 bool block_nested_exceptions = vmx->nested.nested_run_pending; 4211 /* 4212 * New events (not exceptions) are only recognized at instruction 4213 * boundaries. If an event needs reinjection, then KVM is handling a 4214 * VM-Exit that occurred _during_ instruction execution; new events are 4215 * blocked until the instruction completes. 4216 */ 4217 bool block_nested_events = block_nested_exceptions || 4218 kvm_event_needs_reinjection(vcpu); 4219 4220 if (lapic_in_kernel(vcpu) && 4221 test_bit(KVM_APIC_INIT, &apic->pending_events)) { 4222 if (block_nested_events) 4223 return -EBUSY; 4224 nested_vmx_update_pending_dbg(vcpu); 4225 clear_bit(KVM_APIC_INIT, &apic->pending_events); 4226 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED) 4227 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0); 4228 4229 /* MTF is discarded if the vCPU is in WFS. */ 4230 vmx->nested.mtf_pending = false; 4231 return 0; 4232 } 4233 4234 if (lapic_in_kernel(vcpu) && 4235 test_bit(KVM_APIC_SIPI, &apic->pending_events)) { 4236 if (block_nested_events) 4237 return -EBUSY; 4238 4239 clear_bit(KVM_APIC_SIPI, &apic->pending_events); 4240 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 4241 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0, 4242 apic->sipi_vector & 0xFFUL); 4243 return 0; 4244 } 4245 /* Fallthrough, the SIPI is completely ignored. */ 4246 } 4247 4248 /* 4249 * Process exceptions that are higher priority than Monitor Trap Flag: 4250 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but 4251 * could theoretically come in from userspace), and ICEBP (INT1). 4252 * 4253 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except 4254 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF 4255 * across SMI/RSM as it should; that needs to be addressed in order to 4256 * prioritize SMI over MTF and trap-like #DBs. 4257 */ 4258 if (vcpu->arch.exception_vmexit.pending && 4259 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) { 4260 if (block_nested_exceptions) 4261 return -EBUSY; 4262 4263 nested_vmx_inject_exception_vmexit(vcpu); 4264 return 0; 4265 } 4266 4267 if (vcpu->arch.exception.pending && 4268 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) { 4269 if (block_nested_exceptions) 4270 return -EBUSY; 4271 goto no_vmexit; 4272 } 4273 4274 if (vmx->nested.mtf_pending) { 4275 if (block_nested_events) 4276 return -EBUSY; 4277 nested_vmx_update_pending_dbg(vcpu); 4278 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0); 4279 return 0; 4280 } 4281 4282 if (vcpu->arch.exception_vmexit.pending) { 4283 if (block_nested_exceptions) 4284 return -EBUSY; 4285 4286 nested_vmx_inject_exception_vmexit(vcpu); 4287 return 0; 4288 } 4289 4290 if (vcpu->arch.exception.pending) { 4291 if (block_nested_exceptions) 4292 return -EBUSY; 4293 goto no_vmexit; 4294 } 4295 4296 if (nested_vmx_preemption_timer_pending(vcpu)) { 4297 if (block_nested_events) 4298 return -EBUSY; 4299 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); 4300 return 0; 4301 } 4302 4303 if (vcpu->arch.smi_pending && !is_smm(vcpu)) { 4304 if (block_nested_events) 4305 return -EBUSY; 4306 goto no_vmexit; 4307 } 4308 4309 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) { 4310 if (block_nested_events) 4311 return -EBUSY; 4312 if (!nested_exit_on_nmi(vcpu)) 4313 goto no_vmexit; 4314 4315 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, 4316 NMI_VECTOR | INTR_TYPE_NMI_INTR | 4317 INTR_INFO_VALID_MASK, 0); 4318 /* 4319 * The NMI-triggered VM exit counts as injection: 4320 * clear this one and block further NMIs. 4321 */ 4322 vcpu->arch.nmi_pending = 0; 4323 vmx_set_nmi_mask(vcpu, true); 4324 return 0; 4325 } 4326 4327 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) { 4328 int irq; 4329 4330 if (block_nested_events) 4331 return -EBUSY; 4332 if (!nested_exit_on_intr(vcpu)) 4333 goto no_vmexit; 4334 4335 if (!nested_exit_intr_ack_set(vcpu)) { 4336 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); 4337 return 0; 4338 } 4339 4340 irq = kvm_cpu_get_extint(vcpu); 4341 if (irq != -1) { 4342 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 4343 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0); 4344 return 0; 4345 } 4346 4347 irq = kvm_apic_has_interrupt(vcpu); 4348 if (WARN_ON_ONCE(irq < 0)) 4349 goto no_vmexit; 4350 4351 /* 4352 * If the IRQ is L2's PI notification vector, process posted 4353 * interrupts for L2 instead of injecting VM-Exit, as the 4354 * detection/morphing architecturally occurs when the IRQ is 4355 * delivered to the CPU. Note, only interrupts that are routed 4356 * through the local APIC trigger posted interrupt processing, 4357 * and enabling posted interrupts requires ACK-on-exit. 4358 */ 4359 if (irq == vmx->nested.posted_intr_nv) { 4360 vmx->nested.pi_pending = true; 4361 kvm_apic_clear_irr(vcpu, irq); 4362 goto no_vmexit; 4363 } 4364 4365 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 4366 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0); 4367 4368 /* 4369 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must 4370 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI 4371 * if APICv is active. 4372 */ 4373 kvm_apic_ack_interrupt(vcpu, irq); 4374 return 0; 4375 } 4376 4377 no_vmexit: 4378 return vmx_complete_nested_posted_interrupt(vcpu); 4379 } 4380 4381 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) 4382 { 4383 ktime_t remaining = 4384 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); 4385 u64 value; 4386 4387 if (ktime_to_ns(remaining) <= 0) 4388 return 0; 4389 4390 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; 4391 do_div(value, 1000000); 4392 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; 4393 } 4394 4395 static bool is_vmcs12_ext_field(unsigned long field) 4396 { 4397 switch (field) { 4398 case GUEST_ES_SELECTOR: 4399 case GUEST_CS_SELECTOR: 4400 case GUEST_SS_SELECTOR: 4401 case GUEST_DS_SELECTOR: 4402 case GUEST_FS_SELECTOR: 4403 case GUEST_GS_SELECTOR: 4404 case GUEST_LDTR_SELECTOR: 4405 case GUEST_TR_SELECTOR: 4406 case GUEST_ES_LIMIT: 4407 case GUEST_CS_LIMIT: 4408 case GUEST_SS_LIMIT: 4409 case GUEST_DS_LIMIT: 4410 case GUEST_FS_LIMIT: 4411 case GUEST_GS_LIMIT: 4412 case GUEST_LDTR_LIMIT: 4413 case GUEST_TR_LIMIT: 4414 case GUEST_GDTR_LIMIT: 4415 case GUEST_IDTR_LIMIT: 4416 case GUEST_ES_AR_BYTES: 4417 case GUEST_DS_AR_BYTES: 4418 case GUEST_FS_AR_BYTES: 4419 case GUEST_GS_AR_BYTES: 4420 case GUEST_LDTR_AR_BYTES: 4421 case GUEST_TR_AR_BYTES: 4422 case GUEST_ES_BASE: 4423 case GUEST_CS_BASE: 4424 case GUEST_SS_BASE: 4425 case GUEST_DS_BASE: 4426 case GUEST_FS_BASE: 4427 case GUEST_GS_BASE: 4428 case GUEST_LDTR_BASE: 4429 case GUEST_TR_BASE: 4430 case GUEST_GDTR_BASE: 4431 case GUEST_IDTR_BASE: 4432 case GUEST_PENDING_DBG_EXCEPTIONS: 4433 case GUEST_BNDCFGS: 4434 return true; 4435 default: 4436 break; 4437 } 4438 4439 return false; 4440 } 4441 4442 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu, 4443 struct vmcs12 *vmcs12) 4444 { 4445 struct vcpu_vmx *vmx = to_vmx(vcpu); 4446 4447 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); 4448 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); 4449 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); 4450 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); 4451 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); 4452 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); 4453 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); 4454 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); 4455 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); 4456 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); 4457 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); 4458 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); 4459 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); 4460 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); 4461 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); 4462 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); 4463 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); 4464 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); 4465 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); 4466 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); 4467 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); 4468 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); 4469 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); 4470 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); 4471 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); 4472 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); 4473 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); 4474 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); 4475 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); 4476 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); 4477 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); 4478 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); 4479 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); 4480 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); 4481 vmcs12->guest_pending_dbg_exceptions = 4482 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); 4483 4484 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false; 4485 } 4486 4487 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu, 4488 struct vmcs12 *vmcs12) 4489 { 4490 struct vcpu_vmx *vmx = to_vmx(vcpu); 4491 int cpu; 4492 4493 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare) 4494 return; 4495 4496 4497 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01); 4498 4499 cpu = get_cpu(); 4500 vmx->loaded_vmcs = &vmx->nested.vmcs02; 4501 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01); 4502 4503 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 4504 4505 vmx->loaded_vmcs = &vmx->vmcs01; 4506 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02); 4507 put_cpu(); 4508 } 4509 4510 /* 4511 * Update the guest state fields of vmcs12 to reflect changes that 4512 * occurred while L2 was running. (The "IA-32e mode guest" bit of the 4513 * VM-entry controls is also updated, since this is really a guest 4514 * state bit.) 4515 */ 4516 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) 4517 { 4518 struct vcpu_vmx *vmx = to_vmx(vcpu); 4519 4520 if (nested_vmx_is_evmptr12_valid(vmx)) 4521 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 4522 4523 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = 4524 !nested_vmx_is_evmptr12_valid(vmx); 4525 4526 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); 4527 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); 4528 4529 vmcs12->guest_rsp = kvm_rsp_read(vcpu); 4530 vmcs12->guest_rip = kvm_rip_read(vcpu); 4531 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); 4532 4533 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); 4534 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); 4535 4536 vmcs12->guest_interruptibility_info = 4537 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 4538 4539 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 4540 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; 4541 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4542 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI; 4543 else 4544 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; 4545 4546 if (nested_cpu_has_preemption_timer(vmcs12) && 4547 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER && 4548 !vmx->nested.nested_run_pending) 4549 vmcs12->vmx_preemption_timer_value = 4550 vmx_get_preemption_timer_value(vcpu); 4551 4552 /* 4553 * In some cases (usually, nested EPT), L2 is allowed to change its 4554 * own CR3 without exiting. If it has changed it, we must keep it. 4555 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined 4556 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. 4557 * 4558 * Additionally, restore L2's PDPTR to vmcs12. 4559 */ 4560 if (enable_ept) { 4561 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); 4562 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) { 4563 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); 4564 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); 4565 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); 4566 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); 4567 } 4568 } 4569 4570 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); 4571 4572 if (nested_cpu_has_vid(vmcs12)) 4573 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); 4574 4575 vmcs12->vm_entry_controls = 4576 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | 4577 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); 4578 4579 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) 4580 vmcs12->guest_dr7 = vcpu->arch.dr7; 4581 4582 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) 4583 vmcs12->guest_ia32_efer = vcpu->arch.efer; 4584 } 4585 4586 /* 4587 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits 4588 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), 4589 * and this function updates it to reflect the changes to the guest state while 4590 * L2 was running (and perhaps made some exits which were handled directly by L0 4591 * without going back to L1), and to reflect the exit reason. 4592 * Note that we do not have to copy here all VMCS fields, just those that 4593 * could have changed by the L2 guest or the exit - i.e., the guest-state and 4594 * exit-information fields only. Other fields are modified by L1 with VMWRITE, 4595 * which already writes to vmcs12 directly. 4596 */ 4597 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, 4598 u32 vm_exit_reason, u32 exit_intr_info, 4599 unsigned long exit_qualification) 4600 { 4601 /* update exit information fields: */ 4602 vmcs12->vm_exit_reason = vm_exit_reason; 4603 if (to_vmx(vcpu)->exit_reason.enclave_mode) 4604 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE; 4605 vmcs12->exit_qualification = exit_qualification; 4606 4607 /* 4608 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched 4609 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other 4610 * exit info fields are unmodified. 4611 */ 4612 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { 4613 vmcs12->launch_state = 1; 4614 4615 /* vm_entry_intr_info_field is cleared on exit. Emulate this 4616 * instead of reading the real value. */ 4617 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; 4618 4619 /* 4620 * Transfer the event that L0 or L1 may wanted to inject into 4621 * L2 to IDT_VECTORING_INFO_FIELD. 4622 */ 4623 vmcs12_save_pending_event(vcpu, vmcs12, 4624 vm_exit_reason, exit_intr_info); 4625 4626 vmcs12->vm_exit_intr_info = exit_intr_info; 4627 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4628 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 4629 4630 /* 4631 * According to spec, there's no need to store the guest's 4632 * MSRs if the exit is due to a VM-entry failure that occurs 4633 * during or after loading the guest state. Since this exit 4634 * does not fall in that category, we need to save the MSRs. 4635 */ 4636 if (nested_vmx_store_msr(vcpu, 4637 vmcs12->vm_exit_msr_store_addr, 4638 vmcs12->vm_exit_msr_store_count)) 4639 nested_vmx_abort(vcpu, 4640 VMX_ABORT_SAVE_GUEST_MSR_FAIL); 4641 } 4642 } 4643 4644 /* 4645 * A part of what we need to when the nested L2 guest exits and we want to 4646 * run its L1 parent, is to reset L1's guest state to the host state specified 4647 * in vmcs12. 4648 * This function is to be called not only on normal nested exit, but also on 4649 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry 4650 * Failures During or After Loading Guest State"). 4651 * This function should be called when the active VMCS is L1's (vmcs01). 4652 */ 4653 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, 4654 struct vmcs12 *vmcs12) 4655 { 4656 enum vm_entry_failure_code ignored; 4657 struct kvm_segment seg; 4658 4659 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) 4660 vcpu->arch.efer = vmcs12->host_ia32_efer; 4661 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) 4662 vcpu->arch.efer |= (EFER_LMA | EFER_LME); 4663 else 4664 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); 4665 vmx_set_efer(vcpu, vcpu->arch.efer); 4666 4667 kvm_rsp_write(vcpu, vmcs12->host_rsp); 4668 kvm_rip_write(vcpu, vmcs12->host_rip); 4669 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); 4670 vmx_set_interrupt_shadow(vcpu, 0); 4671 4672 /* 4673 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't 4674 * actually changed, because vmx_set_cr0 refers to efer set above. 4675 * 4676 * CR0_GUEST_HOST_MASK is already set in the original vmcs01 4677 * (KVM doesn't change it); 4678 */ 4679 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4680 vmx_set_cr0(vcpu, vmcs12->host_cr0); 4681 4682 /* Same as above - no reason to call set_cr4_guest_host_mask(). */ 4683 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); 4684 vmx_set_cr4(vcpu, vmcs12->host_cr4); 4685 4686 nested_ept_uninit_mmu_context(vcpu); 4687 4688 /* 4689 * Only PDPTE load can fail as the value of cr3 was checked on entry and 4690 * couldn't have changed. 4691 */ 4692 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored)) 4693 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); 4694 4695 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false); 4696 4697 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); 4698 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); 4699 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); 4700 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); 4701 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); 4702 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); 4703 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); 4704 4705 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ 4706 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) 4707 vmcs_write64(GUEST_BNDCFGS, 0); 4708 4709 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { 4710 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); 4711 vcpu->arch.pat = vmcs12->host_ia32_pat; 4712 } 4713 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) && 4714 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu))) 4715 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL, 4716 vmcs12->host_ia32_perf_global_ctrl)); 4717 4718 /* Set L1 segment info according to Intel SDM 4719 27.5.2 Loading Host Segment and Descriptor-Table Registers */ 4720 seg = (struct kvm_segment) { 4721 .base = 0, 4722 .limit = 0xFFFFFFFF, 4723 .selector = vmcs12->host_cs_selector, 4724 .type = 11, 4725 .present = 1, 4726 .s = 1, 4727 .g = 1 4728 }; 4729 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) 4730 seg.l = 1; 4731 else 4732 seg.db = 1; 4733 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); 4734 seg = (struct kvm_segment) { 4735 .base = 0, 4736 .limit = 0xFFFFFFFF, 4737 .type = 3, 4738 .present = 1, 4739 .s = 1, 4740 .db = 1, 4741 .g = 1 4742 }; 4743 seg.selector = vmcs12->host_ds_selector; 4744 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); 4745 seg.selector = vmcs12->host_es_selector; 4746 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); 4747 seg.selector = vmcs12->host_ss_selector; 4748 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); 4749 seg.selector = vmcs12->host_fs_selector; 4750 seg.base = vmcs12->host_fs_base; 4751 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); 4752 seg.selector = vmcs12->host_gs_selector; 4753 seg.base = vmcs12->host_gs_base; 4754 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); 4755 seg = (struct kvm_segment) { 4756 .base = vmcs12->host_tr_base, 4757 .limit = 0x67, 4758 .selector = vmcs12->host_tr_selector, 4759 .type = 11, 4760 .present = 1 4761 }; 4762 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); 4763 4764 memset(&seg, 0, sizeof(seg)); 4765 seg.unusable = 1; 4766 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR); 4767 4768 kvm_set_dr(vcpu, 7, 0x400); 4769 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4770 4771 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, 4772 vmcs12->vm_exit_msr_load_count)) 4773 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); 4774 4775 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 4776 } 4777 4778 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) 4779 { 4780 struct vmx_uret_msr *efer_msr; 4781 unsigned int i; 4782 4783 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) 4784 return vmcs_read64(GUEST_IA32_EFER); 4785 4786 if (cpu_has_load_ia32_efer()) 4787 return kvm_host.efer; 4788 4789 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { 4790 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) 4791 return vmx->msr_autoload.guest.val[i].value; 4792 } 4793 4794 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER); 4795 if (efer_msr) 4796 return efer_msr->data; 4797 4798 return kvm_host.efer; 4799 } 4800 4801 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) 4802 { 4803 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4804 struct vcpu_vmx *vmx = to_vmx(vcpu); 4805 struct vmx_msr_entry g, h; 4806 gpa_t gpa; 4807 u32 i, j; 4808 4809 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); 4810 4811 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { 4812 /* 4813 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set 4814 * as vmcs01.GUEST_DR7 contains a userspace defined value 4815 * and vcpu->arch.dr7 is not squirreled away before the 4816 * nested VMENTER (not worth adding a variable in nested_vmx). 4817 */ 4818 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 4819 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 4820 else 4821 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); 4822 } 4823 4824 /* 4825 * Note that calling vmx_set_{efer,cr0,cr4} is important as they 4826 * handle a variety of side effects to KVM's software model. 4827 */ 4828 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); 4829 4830 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4831 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); 4832 4833 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); 4834 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); 4835 4836 nested_ept_uninit_mmu_context(vcpu); 4837 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 4838 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 4839 4840 /* 4841 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs 4842 * from vmcs01 (if necessary). The PDPTRs are not loaded on 4843 * VMFail, like everything else we just need to ensure our 4844 * software model is up-to-date. 4845 */ 4846 if (enable_ept && is_pae_paging(vcpu)) 4847 ept_save_pdptrs(vcpu); 4848 4849 kvm_mmu_reset_context(vcpu); 4850 4851 /* 4852 * This nasty bit of open coding is a compromise between blindly 4853 * loading L1's MSRs using the exit load lists (incorrect emulation 4854 * of VMFail), leaving the nested VM's MSRs in the software model 4855 * (incorrect behavior) and snapshotting the modified MSRs (too 4856 * expensive since the lists are unbound by hardware). For each 4857 * MSR that was (prematurely) loaded from the nested VMEntry load 4858 * list, reload it from the exit load list if it exists and differs 4859 * from the guest value. The intent is to stuff host state as 4860 * silently as possible, not to fully process the exit load list. 4861 */ 4862 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { 4863 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); 4864 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { 4865 pr_debug_ratelimited( 4866 "%s read MSR index failed (%u, 0x%08llx)\n", 4867 __func__, i, gpa); 4868 goto vmabort; 4869 } 4870 4871 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { 4872 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); 4873 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { 4874 pr_debug_ratelimited( 4875 "%s read MSR failed (%u, 0x%08llx)\n", 4876 __func__, j, gpa); 4877 goto vmabort; 4878 } 4879 if (h.index != g.index) 4880 continue; 4881 if (h.value == g.value) 4882 break; 4883 4884 if (nested_vmx_load_msr_check(vcpu, &h)) { 4885 pr_debug_ratelimited( 4886 "%s check failed (%u, 0x%x, 0x%x)\n", 4887 __func__, j, h.index, h.reserved); 4888 goto vmabort; 4889 } 4890 4891 if (kvm_set_msr_with_filter(vcpu, h.index, h.value)) { 4892 pr_debug_ratelimited( 4893 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", 4894 __func__, j, h.index, h.value); 4895 goto vmabort; 4896 } 4897 } 4898 } 4899 4900 return; 4901 4902 vmabort: 4903 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); 4904 } 4905 4906 /* 4907 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 4908 * and modify vmcs12 to make it see what it would expect to see there if 4909 * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) 4910 */ 4911 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason, 4912 u32 exit_intr_info, unsigned long exit_qualification) 4913 { 4914 struct vcpu_vmx *vmx = to_vmx(vcpu); 4915 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4916 4917 /* Pending MTF traps are discarded on VM-Exit. */ 4918 vmx->nested.mtf_pending = false; 4919 4920 /* trying to cancel vmlaunch/vmresume is a bug */ 4921 WARN_ON_ONCE(vmx->nested.nested_run_pending); 4922 4923 #ifdef CONFIG_KVM_HYPERV 4924 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 4925 /* 4926 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map 4927 * Enlightened VMCS after migration and we still need to 4928 * do that when something is forcing L2->L1 exit prior to 4929 * the first L2 run. 4930 */ 4931 (void)nested_get_evmcs_page(vcpu); 4932 } 4933 #endif 4934 4935 /* Service pending TLB flush requests for L2 before switching to L1. */ 4936 kvm_service_local_tlb_flush_requests(vcpu); 4937 4938 /* 4939 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between 4940 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are 4941 * up-to-date before switching to L1. 4942 */ 4943 if (enable_ept && is_pae_paging(vcpu)) 4944 vmx_ept_load_pdptrs(vcpu); 4945 4946 leave_guest_mode(vcpu); 4947 4948 if (nested_cpu_has_preemption_timer(vmcs12)) 4949 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); 4950 4951 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) { 4952 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset; 4953 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 4954 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio; 4955 } 4956 4957 if (likely(!vmx->fail)) { 4958 sync_vmcs02_to_vmcs12(vcpu, vmcs12); 4959 4960 if (vm_exit_reason != -1) 4961 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason, 4962 exit_intr_info, exit_qualification); 4963 4964 /* 4965 * Must happen outside of sync_vmcs02_to_vmcs12() as it will 4966 * also be used to capture vmcs12 cache as part of 4967 * capturing nVMX state for snapshot (migration). 4968 * 4969 * Otherwise, this flush will dirty guest memory at a 4970 * point it is already assumed by user-space to be 4971 * immutable. 4972 */ 4973 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); 4974 } else { 4975 /* 4976 * The only expected VM-instruction error is "VM entry with 4977 * invalid control field(s)." Anything else indicates a 4978 * problem with L0. And we should never get here with a 4979 * VMFail of any type if early consistency checks are enabled. 4980 */ 4981 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != 4982 VMXERR_ENTRY_INVALID_CONTROL_FIELD); 4983 WARN_ON_ONCE(nested_early_check); 4984 } 4985 4986 /* 4987 * Drop events/exceptions that were queued for re-injection to L2 4988 * (picked up via vmx_complete_interrupts()), as well as exceptions 4989 * that were pending for L2. Note, this must NOT be hoisted above 4990 * prepare_vmcs12(), events/exceptions queued for re-injection need to 4991 * be captured in vmcs12 (see vmcs12_save_pending_event()). 4992 */ 4993 vcpu->arch.nmi_injected = false; 4994 kvm_clear_exception_queue(vcpu); 4995 kvm_clear_interrupt_queue(vcpu); 4996 4997 vmx_switch_vmcs(vcpu, &vmx->vmcs01); 4998 4999 /* 5000 * If IBRS is advertised to the vCPU, KVM must flush the indirect 5001 * branch predictors when transitioning from L2 to L1, as L1 expects 5002 * hardware (KVM in this case) to provide separate predictor modes. 5003 * Bare metal isolates VMX root (host) from VMX non-root (guest), but 5004 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide 5005 * separate modes for L2 vs L1. 5006 */ 5007 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 5008 indirect_branch_prediction_barrier(); 5009 5010 /* Update any VMCS fields that might have changed while L2 ran */ 5011 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); 5012 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); 5013 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 5014 if (kvm_caps.has_tsc_control) 5015 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 5016 5017 if (vmx->nested.l1_tpr_threshold != -1) 5018 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold); 5019 5020 if (vmx->nested.change_vmcs01_virtual_apic_mode) { 5021 vmx->nested.change_vmcs01_virtual_apic_mode = false; 5022 vmx_set_virtual_apic_mode(vcpu); 5023 } 5024 5025 if (vmx->nested.update_vmcs01_cpu_dirty_logging) { 5026 vmx->nested.update_vmcs01_cpu_dirty_logging = false; 5027 vmx_update_cpu_dirty_logging(vcpu); 5028 } 5029 5030 /* Unpin physical memory we referred to in vmcs02 */ 5031 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false); 5032 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true); 5033 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true); 5034 vmx->nested.pi_desc = NULL; 5035 5036 if (vmx->nested.reload_vmcs01_apic_access_page) { 5037 vmx->nested.reload_vmcs01_apic_access_page = false; 5038 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 5039 } 5040 5041 if (vmx->nested.update_vmcs01_apicv_status) { 5042 vmx->nested.update_vmcs01_apicv_status = false; 5043 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 5044 } 5045 5046 if ((vm_exit_reason != -1) && 5047 (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))) 5048 vmx->nested.need_vmcs12_to_shadow_sync = true; 5049 5050 /* in case we halted in L2 */ 5051 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 5052 5053 if (likely(!vmx->fail)) { 5054 if (vm_exit_reason != -1) 5055 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, 5056 vmcs12->exit_qualification, 5057 vmcs12->idt_vectoring_info_field, 5058 vmcs12->vm_exit_intr_info, 5059 vmcs12->vm_exit_intr_error_code, 5060 KVM_ISA_VMX); 5061 5062 load_vmcs12_host_state(vcpu, vmcs12); 5063 5064 return; 5065 } 5066 5067 /* 5068 * After an early L2 VM-entry failure, we're now back 5069 * in L1 which thinks it just finished a VMLAUNCH or 5070 * VMRESUME instruction, so we need to set the failure 5071 * flag and the VM-instruction error field of the VMCS 5072 * accordingly, and skip the emulated instruction. 5073 */ 5074 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); 5075 5076 /* 5077 * Restore L1's host state to KVM's software model. We're here 5078 * because a consistency check was caught by hardware, which 5079 * means some amount of guest state has been propagated to KVM's 5080 * model and needs to be unwound to the host's state. 5081 */ 5082 nested_vmx_restore_host_state(vcpu); 5083 5084 vmx->fail = 0; 5085 } 5086 5087 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu) 5088 { 5089 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5090 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 5091 } 5092 5093 /* 5094 * Decode the memory-address operand of a vmx instruction, as recorded on an 5095 * exit caused by such an instruction (run by a guest hypervisor). 5096 * On success, returns 0. When the operand is invalid, returns 1 and throws 5097 * #UD, #GP, or #SS. 5098 */ 5099 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, 5100 u32 vmx_instruction_info, bool wr, int len, gva_t *ret) 5101 { 5102 gva_t off; 5103 bool exn; 5104 struct kvm_segment s; 5105 5106 /* 5107 * According to Vol. 3B, "Information for VM Exits Due to Instruction 5108 * Execution", on an exit, vmx_instruction_info holds most of the 5109 * addressing components of the operand. Only the displacement part 5110 * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). 5111 * For how an actual address is calculated from all these components, 5112 * refer to Vol. 1, "Operand Addressing". 5113 */ 5114 int scaling = vmx_instruction_info & 3; 5115 int addr_size = (vmx_instruction_info >> 7) & 7; 5116 bool is_reg = vmx_instruction_info & (1u << 10); 5117 int seg_reg = (vmx_instruction_info >> 15) & 7; 5118 int index_reg = (vmx_instruction_info >> 18) & 0xf; 5119 bool index_is_valid = !(vmx_instruction_info & (1u << 22)); 5120 int base_reg = (vmx_instruction_info >> 23) & 0xf; 5121 bool base_is_valid = !(vmx_instruction_info & (1u << 27)); 5122 5123 if (is_reg) { 5124 kvm_queue_exception(vcpu, UD_VECTOR); 5125 return 1; 5126 } 5127 5128 /* Addr = segment_base + offset */ 5129 /* offset = base + [index * scale] + displacement */ 5130 off = exit_qualification; /* holds the displacement */ 5131 if (addr_size == 1) 5132 off = (gva_t)sign_extend64(off, 31); 5133 else if (addr_size == 0) 5134 off = (gva_t)sign_extend64(off, 15); 5135 if (base_is_valid) 5136 off += kvm_register_read(vcpu, base_reg); 5137 if (index_is_valid) 5138 off += kvm_register_read(vcpu, index_reg) << scaling; 5139 vmx_get_segment(vcpu, &s, seg_reg); 5140 5141 /* 5142 * The effective address, i.e. @off, of a memory operand is truncated 5143 * based on the address size of the instruction. Note that this is 5144 * the *effective address*, i.e. the address prior to accounting for 5145 * the segment's base. 5146 */ 5147 if (addr_size == 1) /* 32 bit */ 5148 off &= 0xffffffff; 5149 else if (addr_size == 0) /* 16 bit */ 5150 off &= 0xffff; 5151 5152 /* Checks for #GP/#SS exceptions. */ 5153 exn = false; 5154 if (is_long_mode(vcpu)) { 5155 /* 5156 * The virtual/linear address is never truncated in 64-bit 5157 * mode, e.g. a 32-bit address size can yield a 64-bit virtual 5158 * address when using FS/GS with a non-zero base. 5159 */ 5160 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS) 5161 *ret = s.base + off; 5162 else 5163 *ret = off; 5164 5165 *ret = vmx_get_untagged_addr(vcpu, *ret, 0); 5166 /* Long mode: #GP(0)/#SS(0) if the memory address is in a 5167 * non-canonical form. This is the only check on the memory 5168 * destination for long mode! 5169 */ 5170 exn = is_noncanonical_address(*ret, vcpu); 5171 } else { 5172 /* 5173 * When not in long mode, the virtual/linear address is 5174 * unconditionally truncated to 32 bits regardless of the 5175 * address size. 5176 */ 5177 *ret = (s.base + off) & 0xffffffff; 5178 5179 /* Protected mode: apply checks for segment validity in the 5180 * following order: 5181 * - segment type check (#GP(0) may be thrown) 5182 * - usability check (#GP(0)/#SS(0)) 5183 * - limit check (#GP(0)/#SS(0)) 5184 */ 5185 if (wr) 5186 /* #GP(0) if the destination operand is located in a 5187 * read-only data segment or any code segment. 5188 */ 5189 exn = ((s.type & 0xa) == 0 || (s.type & 8)); 5190 else 5191 /* #GP(0) if the source operand is located in an 5192 * execute-only code segment 5193 */ 5194 exn = ((s.type & 0xa) == 8); 5195 if (exn) { 5196 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 5197 return 1; 5198 } 5199 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. 5200 */ 5201 exn = (s.unusable != 0); 5202 5203 /* 5204 * Protected mode: #GP(0)/#SS(0) if the memory operand is 5205 * outside the segment limit. All CPUs that support VMX ignore 5206 * limit checks for flat segments, i.e. segments with base==0, 5207 * limit==0xffffffff and of type expand-up data or code. 5208 */ 5209 if (!(s.base == 0 && s.limit == 0xffffffff && 5210 ((s.type & 8) || !(s.type & 4)))) 5211 exn = exn || ((u64)off + len - 1 > s.limit); 5212 } 5213 if (exn) { 5214 kvm_queue_exception_e(vcpu, 5215 seg_reg == VCPU_SREG_SS ? 5216 SS_VECTOR : GP_VECTOR, 5217 0); 5218 return 1; 5219 } 5220 5221 return 0; 5222 } 5223 5224 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer, 5225 int *ret) 5226 { 5227 gva_t gva; 5228 struct x86_exception e; 5229 int r; 5230 5231 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5232 vmcs_read32(VMX_INSTRUCTION_INFO), false, 5233 sizeof(*vmpointer), &gva)) { 5234 *ret = 1; 5235 return -EINVAL; 5236 } 5237 5238 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e); 5239 if (r != X86EMUL_CONTINUE) { 5240 *ret = kvm_handle_memory_failure(vcpu, r, &e); 5241 return -EINVAL; 5242 } 5243 5244 return 0; 5245 } 5246 5247 /* 5248 * Allocate a shadow VMCS and associate it with the currently loaded 5249 * VMCS, unless such a shadow VMCS already exists. The newly allocated 5250 * VMCS is also VMCLEARed, so that it is ready for use. 5251 */ 5252 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) 5253 { 5254 struct vcpu_vmx *vmx = to_vmx(vcpu); 5255 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; 5256 5257 /* 5258 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it 5259 * when L1 executes VMXOFF or the vCPU is forced out of nested 5260 * operation. VMXON faults if the CPU is already post-VMXON, so it 5261 * should be impossible to already have an allocated shadow VMCS. KVM 5262 * doesn't support virtualization of VMCS shadowing, so vmcs01 should 5263 * always be the loaded VMCS. 5264 */ 5265 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs)) 5266 return loaded_vmcs->shadow_vmcs; 5267 5268 loaded_vmcs->shadow_vmcs = alloc_vmcs(true); 5269 if (loaded_vmcs->shadow_vmcs) 5270 vmcs_clear(loaded_vmcs->shadow_vmcs); 5271 5272 return loaded_vmcs->shadow_vmcs; 5273 } 5274 5275 static int enter_vmx_operation(struct kvm_vcpu *vcpu) 5276 { 5277 struct vcpu_vmx *vmx = to_vmx(vcpu); 5278 int r; 5279 5280 r = alloc_loaded_vmcs(&vmx->nested.vmcs02); 5281 if (r < 0) 5282 goto out_vmcs02; 5283 5284 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT); 5285 if (!vmx->nested.cached_vmcs12) 5286 goto out_cached_vmcs12; 5287 5288 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA; 5289 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT); 5290 if (!vmx->nested.cached_shadow_vmcs12) 5291 goto out_cached_shadow_vmcs12; 5292 5293 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) 5294 goto out_shadow_vmcs; 5295 5296 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, 5297 HRTIMER_MODE_ABS_PINNED); 5298 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; 5299 5300 vmx->nested.vpid02 = allocate_vpid(); 5301 5302 vmx->nested.vmcs02_initialized = false; 5303 vmx->nested.vmxon = true; 5304 5305 if (vmx_pt_mode_is_host_guest()) { 5306 vmx->pt_desc.guest.ctl = 0; 5307 pt_update_intercept_for_msr(vcpu); 5308 } 5309 5310 return 0; 5311 5312 out_shadow_vmcs: 5313 kfree(vmx->nested.cached_shadow_vmcs12); 5314 5315 out_cached_shadow_vmcs12: 5316 kfree(vmx->nested.cached_vmcs12); 5317 5318 out_cached_vmcs12: 5319 free_loaded_vmcs(&vmx->nested.vmcs02); 5320 5321 out_vmcs02: 5322 return -ENOMEM; 5323 } 5324 5325 /* Emulate the VMXON instruction. */ 5326 static int handle_vmxon(struct kvm_vcpu *vcpu) 5327 { 5328 int ret; 5329 gpa_t vmptr; 5330 uint32_t revision; 5331 struct vcpu_vmx *vmx = to_vmx(vcpu); 5332 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED 5333 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 5334 5335 /* 5336 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter 5337 * the guest and so cannot rely on hardware to perform the check, 5338 * which has higher priority than VM-Exit (see Intel SDM's pseudocode 5339 * for VMXON). 5340 * 5341 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86 5342 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't 5343 * force any of the relevant guest state. For a restricted guest, KVM 5344 * does force CR0.PE=1, but only to also force VM86 in order to emulate 5345 * Real Mode, and so there's no need to check CR0.PE manually. 5346 */ 5347 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) { 5348 kvm_queue_exception(vcpu, UD_VECTOR); 5349 return 1; 5350 } 5351 5352 /* 5353 * The CPL is checked for "not in VMX operation" and for "in VMX root", 5354 * and has higher priority than the VM-Fail due to being post-VMXON, 5355 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root, 5356 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits 5357 * from L2 to L1, i.e. there's no need to check for the vCPU being in 5358 * VMX non-root. 5359 * 5360 * Forwarding the VM-Exit unconditionally, i.e. without performing the 5361 * #UD checks (see above), is functionally ok because KVM doesn't allow 5362 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's 5363 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are 5364 * missed by hardware due to shadowing CR0 and/or CR4. 5365 */ 5366 if (vmx_get_cpl(vcpu)) { 5367 kvm_inject_gp(vcpu, 0); 5368 return 1; 5369 } 5370 5371 if (vmx->nested.vmxon) 5372 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); 5373 5374 /* 5375 * Invalid CR0/CR4 generates #GP. These checks are performed if and 5376 * only if the vCPU isn't already in VMX operation, i.e. effectively 5377 * have lower priority than the VM-Fail above. 5378 */ 5379 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) || 5380 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) { 5381 kvm_inject_gp(vcpu, 0); 5382 return 1; 5383 } 5384 5385 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) 5386 != VMXON_NEEDED_FEATURES) { 5387 kvm_inject_gp(vcpu, 0); 5388 return 1; 5389 } 5390 5391 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret)) 5392 return ret; 5393 5394 /* 5395 * SDM 3: 24.11.5 5396 * The first 4 bytes of VMXON region contain the supported 5397 * VMCS revision identifier 5398 * 5399 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; 5400 * which replaces physical address width with 32 5401 */ 5402 if (!page_address_valid(vcpu, vmptr)) 5403 return nested_vmx_failInvalid(vcpu); 5404 5405 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) || 5406 revision != VMCS12_REVISION) 5407 return nested_vmx_failInvalid(vcpu); 5408 5409 vmx->nested.vmxon_ptr = vmptr; 5410 ret = enter_vmx_operation(vcpu); 5411 if (ret) 5412 return ret; 5413 5414 return nested_vmx_succeed(vcpu); 5415 } 5416 5417 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) 5418 { 5419 struct vcpu_vmx *vmx = to_vmx(vcpu); 5420 5421 if (vmx->nested.current_vmptr == INVALID_GPA) 5422 return; 5423 5424 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu)); 5425 5426 if (enable_shadow_vmcs) { 5427 /* copy to memory all shadowed fields in case 5428 they were modified */ 5429 copy_shadow_to_vmcs12(vmx); 5430 vmx_disable_shadow_vmcs(vmx); 5431 } 5432 vmx->nested.posted_intr_nv = -1; 5433 5434 /* Flush VMCS12 to guest memory */ 5435 kvm_vcpu_write_guest_page(vcpu, 5436 vmx->nested.current_vmptr >> PAGE_SHIFT, 5437 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); 5438 5439 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 5440 5441 vmx->nested.current_vmptr = INVALID_GPA; 5442 } 5443 5444 /* Emulate the VMXOFF instruction */ 5445 static int handle_vmxoff(struct kvm_vcpu *vcpu) 5446 { 5447 if (!nested_vmx_check_permission(vcpu)) 5448 return 1; 5449 5450 free_nested(vcpu); 5451 5452 if (kvm_apic_has_pending_init_or_sipi(vcpu)) 5453 kvm_make_request(KVM_REQ_EVENT, vcpu); 5454 5455 return nested_vmx_succeed(vcpu); 5456 } 5457 5458 /* Emulate the VMCLEAR instruction */ 5459 static int handle_vmclear(struct kvm_vcpu *vcpu) 5460 { 5461 struct vcpu_vmx *vmx = to_vmx(vcpu); 5462 u32 zero = 0; 5463 gpa_t vmptr; 5464 int r; 5465 5466 if (!nested_vmx_check_permission(vcpu)) 5467 return 1; 5468 5469 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r)) 5470 return r; 5471 5472 if (!page_address_valid(vcpu, vmptr)) 5473 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); 5474 5475 if (vmptr == vmx->nested.vmxon_ptr) 5476 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER); 5477 5478 if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) { 5479 if (vmptr == vmx->nested.current_vmptr) 5480 nested_release_vmcs12(vcpu); 5481 5482 /* 5483 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode 5484 * for VMCLEAR includes a "ensure that data for VMCS referenced 5485 * by the operand is in memory" clause that guards writes to 5486 * memory, i.e. doing nothing for I/O is architecturally valid. 5487 * 5488 * FIXME: Suppress failures if and only if no memslot is found, 5489 * i.e. exit to userspace if __copy_to_user() fails. 5490 */ 5491 (void)kvm_vcpu_write_guest(vcpu, 5492 vmptr + offsetof(struct vmcs12, 5493 launch_state), 5494 &zero, sizeof(zero)); 5495 } 5496 5497 return nested_vmx_succeed(vcpu); 5498 } 5499 5500 /* Emulate the VMLAUNCH instruction */ 5501 static int handle_vmlaunch(struct kvm_vcpu *vcpu) 5502 { 5503 return nested_vmx_run(vcpu, true); 5504 } 5505 5506 /* Emulate the VMRESUME instruction */ 5507 static int handle_vmresume(struct kvm_vcpu *vcpu) 5508 { 5509 5510 return nested_vmx_run(vcpu, false); 5511 } 5512 5513 static int handle_vmread(struct kvm_vcpu *vcpu) 5514 { 5515 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu) 5516 : get_vmcs12(vcpu); 5517 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5518 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5519 struct vcpu_vmx *vmx = to_vmx(vcpu); 5520 struct x86_exception e; 5521 unsigned long field; 5522 u64 value; 5523 gva_t gva = 0; 5524 short offset; 5525 int len, r; 5526 5527 if (!nested_vmx_check_permission(vcpu)) 5528 return 1; 5529 5530 /* Decode instruction info and find the field to read */ 5531 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf)); 5532 5533 if (!nested_vmx_is_evmptr12_valid(vmx)) { 5534 /* 5535 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA, 5536 * any VMREAD sets the ALU flags for VMfailInvalid. 5537 */ 5538 if (vmx->nested.current_vmptr == INVALID_GPA || 5539 (is_guest_mode(vcpu) && 5540 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA)) 5541 return nested_vmx_failInvalid(vcpu); 5542 5543 offset = get_vmcs12_field_offset(field); 5544 if (offset < 0) 5545 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 5546 5547 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field)) 5548 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 5549 5550 /* Read the field, zero-extended to a u64 value */ 5551 value = vmcs12_read_any(vmcs12, field, offset); 5552 } else { 5553 /* 5554 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an 5555 * enlightened VMCS is active VMREAD/VMWRITE instructions are 5556 * unsupported. Unfortunately, certain versions of Windows 11 5557 * don't comply with this requirement which is not enforced in 5558 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a 5559 * workaround, as misbehaving guests will panic on VM-Fail. 5560 * Note, enlightened VMCS is incompatible with shadow VMCS so 5561 * all VMREADs from L2 should go to L1. 5562 */ 5563 if (WARN_ON_ONCE(is_guest_mode(vcpu))) 5564 return nested_vmx_failInvalid(vcpu); 5565 5566 offset = evmcs_field_offset(field, NULL); 5567 if (offset < 0) 5568 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 5569 5570 /* Read the field, zero-extended to a u64 value */ 5571 value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset); 5572 } 5573 5574 /* 5575 * Now copy part of this value to register or memory, as requested. 5576 * Note that the number of bits actually copied is 32 or 64 depending 5577 * on the guest's mode (32 or 64 bit), not on the given field's length. 5578 */ 5579 if (instr_info & BIT(10)) { 5580 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value); 5581 } else { 5582 len = is_64_bit_mode(vcpu) ? 8 : 4; 5583 if (get_vmx_mem_address(vcpu, exit_qualification, 5584 instr_info, true, len, &gva)) 5585 return 1; 5586 /* _system ok, nested_vmx_check_permission has verified cpl=0 */ 5587 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e); 5588 if (r != X86EMUL_CONTINUE) 5589 return kvm_handle_memory_failure(vcpu, r, &e); 5590 } 5591 5592 return nested_vmx_succeed(vcpu); 5593 } 5594 5595 static bool is_shadow_field_rw(unsigned long field) 5596 { 5597 switch (field) { 5598 #define SHADOW_FIELD_RW(x, y) case x: 5599 #include "vmcs_shadow_fields.h" 5600 return true; 5601 default: 5602 break; 5603 } 5604 return false; 5605 } 5606 5607 static bool is_shadow_field_ro(unsigned long field) 5608 { 5609 switch (field) { 5610 #define SHADOW_FIELD_RO(x, y) case x: 5611 #include "vmcs_shadow_fields.h" 5612 return true; 5613 default: 5614 break; 5615 } 5616 return false; 5617 } 5618 5619 static int handle_vmwrite(struct kvm_vcpu *vcpu) 5620 { 5621 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu) 5622 : get_vmcs12(vcpu); 5623 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5624 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5625 struct vcpu_vmx *vmx = to_vmx(vcpu); 5626 struct x86_exception e; 5627 unsigned long field; 5628 short offset; 5629 gva_t gva; 5630 int len, r; 5631 5632 /* 5633 * The value to write might be 32 or 64 bits, depending on L1's long 5634 * mode, and eventually we need to write that into a field of several 5635 * possible lengths. The code below first zero-extends the value to 64 5636 * bit (value), and then copies only the appropriate number of 5637 * bits into the vmcs12 field. 5638 */ 5639 u64 value = 0; 5640 5641 if (!nested_vmx_check_permission(vcpu)) 5642 return 1; 5643 5644 /* 5645 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA, 5646 * any VMWRITE sets the ALU flags for VMfailInvalid. 5647 */ 5648 if (vmx->nested.current_vmptr == INVALID_GPA || 5649 (is_guest_mode(vcpu) && 5650 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA)) 5651 return nested_vmx_failInvalid(vcpu); 5652 5653 if (instr_info & BIT(10)) 5654 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf)); 5655 else { 5656 len = is_64_bit_mode(vcpu) ? 8 : 4; 5657 if (get_vmx_mem_address(vcpu, exit_qualification, 5658 instr_info, false, len, &gva)) 5659 return 1; 5660 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e); 5661 if (r != X86EMUL_CONTINUE) 5662 return kvm_handle_memory_failure(vcpu, r, &e); 5663 } 5664 5665 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf)); 5666 5667 offset = get_vmcs12_field_offset(field); 5668 if (offset < 0) 5669 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); 5670 5671 /* 5672 * If the vCPU supports "VMWRITE to any supported field in the 5673 * VMCS," then the "read-only" fields are actually read/write. 5674 */ 5675 if (vmcs_field_readonly(field) && 5676 !nested_cpu_has_vmwrite_any_field(vcpu)) 5677 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); 5678 5679 /* 5680 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties 5681 * vmcs12, else we may crush a field or consume a stale value. 5682 */ 5683 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) 5684 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 5685 5686 /* 5687 * Some Intel CPUs intentionally drop the reserved bits of the AR byte 5688 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM 5689 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE 5690 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD 5691 * from L1 will return a different value than VMREAD from L2 (L1 sees 5692 * the stripped down value, L2 sees the full value as stored by KVM). 5693 */ 5694 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES) 5695 value &= 0x1f0ff; 5696 5697 vmcs12_write_any(vmcs12, field, offset, value); 5698 5699 /* 5700 * Do not track vmcs12 dirty-state if in guest-mode as we actually 5701 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated 5702 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't 5703 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path. 5704 */ 5705 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) { 5706 /* 5707 * L1 can read these fields without exiting, ensure the 5708 * shadow VMCS is up-to-date. 5709 */ 5710 if (enable_shadow_vmcs && is_shadow_field_ro(field)) { 5711 preempt_disable(); 5712 vmcs_load(vmx->vmcs01.shadow_vmcs); 5713 5714 __vmcs_writel(field, value); 5715 5716 vmcs_clear(vmx->vmcs01.shadow_vmcs); 5717 vmcs_load(vmx->loaded_vmcs->vmcs); 5718 preempt_enable(); 5719 } 5720 vmx->nested.dirty_vmcs12 = true; 5721 } 5722 5723 return nested_vmx_succeed(vcpu); 5724 } 5725 5726 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) 5727 { 5728 vmx->nested.current_vmptr = vmptr; 5729 if (enable_shadow_vmcs) { 5730 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS); 5731 vmcs_write64(VMCS_LINK_POINTER, 5732 __pa(vmx->vmcs01.shadow_vmcs)); 5733 vmx->nested.need_vmcs12_to_shadow_sync = true; 5734 } 5735 vmx->nested.dirty_vmcs12 = true; 5736 vmx->nested.force_msr_bitmap_recalc = true; 5737 } 5738 5739 /* Emulate the VMPTRLD instruction */ 5740 static int handle_vmptrld(struct kvm_vcpu *vcpu) 5741 { 5742 struct vcpu_vmx *vmx = to_vmx(vcpu); 5743 gpa_t vmptr; 5744 int r; 5745 5746 if (!nested_vmx_check_permission(vcpu)) 5747 return 1; 5748 5749 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r)) 5750 return r; 5751 5752 if (!page_address_valid(vcpu, vmptr)) 5753 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); 5754 5755 if (vmptr == vmx->nested.vmxon_ptr) 5756 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER); 5757 5758 /* Forbid normal VMPTRLD if Enlightened version was used */ 5759 if (nested_vmx_is_evmptr12_valid(vmx)) 5760 return 1; 5761 5762 if (vmx->nested.current_vmptr != vmptr) { 5763 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache; 5764 struct vmcs_hdr hdr; 5765 5766 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) { 5767 /* 5768 * Reads from an unbacked page return all 1s, 5769 * which means that the 32 bits located at the 5770 * given physical address won't match the required 5771 * VMCS12_REVISION identifier. 5772 */ 5773 return nested_vmx_fail(vcpu, 5774 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); 5775 } 5776 5777 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr, 5778 offsetof(struct vmcs12, hdr), 5779 sizeof(hdr))) { 5780 return nested_vmx_fail(vcpu, 5781 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); 5782 } 5783 5784 if (hdr.revision_id != VMCS12_REVISION || 5785 (hdr.shadow_vmcs && 5786 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { 5787 return nested_vmx_fail(vcpu, 5788 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); 5789 } 5790 5791 nested_release_vmcs12(vcpu); 5792 5793 /* 5794 * Load VMCS12 from guest memory since it is not already 5795 * cached. 5796 */ 5797 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12, 5798 VMCS12_SIZE)) { 5799 return nested_vmx_fail(vcpu, 5800 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); 5801 } 5802 5803 set_current_vmptr(vmx, vmptr); 5804 } 5805 5806 return nested_vmx_succeed(vcpu); 5807 } 5808 5809 /* Emulate the VMPTRST instruction */ 5810 static int handle_vmptrst(struct kvm_vcpu *vcpu) 5811 { 5812 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 5813 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5814 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; 5815 struct x86_exception e; 5816 gva_t gva; 5817 int r; 5818 5819 if (!nested_vmx_check_permission(vcpu)) 5820 return 1; 5821 5822 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu)))) 5823 return 1; 5824 5825 if (get_vmx_mem_address(vcpu, exit_qual, instr_info, 5826 true, sizeof(gpa_t), &gva)) 5827 return 1; 5828 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ 5829 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, 5830 sizeof(gpa_t), &e); 5831 if (r != X86EMUL_CONTINUE) 5832 return kvm_handle_memory_failure(vcpu, r, &e); 5833 5834 return nested_vmx_succeed(vcpu); 5835 } 5836 5837 /* Emulate the INVEPT instruction */ 5838 static int handle_invept(struct kvm_vcpu *vcpu) 5839 { 5840 struct vcpu_vmx *vmx = to_vmx(vcpu); 5841 u32 vmx_instruction_info, types; 5842 unsigned long type, roots_to_free; 5843 struct kvm_mmu *mmu; 5844 gva_t gva; 5845 struct x86_exception e; 5846 struct { 5847 u64 eptp, gpa; 5848 } operand; 5849 int i, r, gpr_index; 5850 5851 if (!(vmx->nested.msrs.secondary_ctls_high & 5852 SECONDARY_EXEC_ENABLE_EPT) || 5853 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { 5854 kvm_queue_exception(vcpu, UD_VECTOR); 5855 return 1; 5856 } 5857 5858 if (!nested_vmx_check_permission(vcpu)) 5859 return 1; 5860 5861 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5862 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5863 type = kvm_register_read(vcpu, gpr_index); 5864 5865 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; 5866 5867 if (type >= 32 || !(types & (1 << type))) 5868 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5869 5870 /* According to the Intel VMX instruction reference, the memory 5871 * operand is read even if it isn't needed (e.g., for type==global) 5872 */ 5873 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5874 vmx_instruction_info, false, sizeof(operand), &gva)) 5875 return 1; 5876 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 5877 if (r != X86EMUL_CONTINUE) 5878 return kvm_handle_memory_failure(vcpu, r, &e); 5879 5880 /* 5881 * Nested EPT roots are always held through guest_mmu, 5882 * not root_mmu. 5883 */ 5884 mmu = &vcpu->arch.guest_mmu; 5885 5886 switch (type) { 5887 case VMX_EPT_EXTENT_CONTEXT: 5888 if (!nested_vmx_check_eptp(vcpu, operand.eptp)) 5889 return nested_vmx_fail(vcpu, 5890 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5891 5892 roots_to_free = 0; 5893 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd, 5894 operand.eptp)) 5895 roots_to_free |= KVM_MMU_ROOT_CURRENT; 5896 5897 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5898 if (nested_ept_root_matches(mmu->prev_roots[i].hpa, 5899 mmu->prev_roots[i].pgd, 5900 operand.eptp)) 5901 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5902 } 5903 break; 5904 case VMX_EPT_EXTENT_GLOBAL: 5905 roots_to_free = KVM_MMU_ROOTS_ALL; 5906 break; 5907 default: 5908 BUG(); 5909 break; 5910 } 5911 5912 if (roots_to_free) 5913 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 5914 5915 return nested_vmx_succeed(vcpu); 5916 } 5917 5918 static int handle_invvpid(struct kvm_vcpu *vcpu) 5919 { 5920 struct vcpu_vmx *vmx = to_vmx(vcpu); 5921 u32 vmx_instruction_info; 5922 unsigned long type, types; 5923 gva_t gva; 5924 struct x86_exception e; 5925 struct { 5926 u64 vpid; 5927 u64 gla; 5928 } operand; 5929 u16 vpid02; 5930 int r, gpr_index; 5931 5932 if (!(vmx->nested.msrs.secondary_ctls_high & 5933 SECONDARY_EXEC_ENABLE_VPID) || 5934 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { 5935 kvm_queue_exception(vcpu, UD_VECTOR); 5936 return 1; 5937 } 5938 5939 if (!nested_vmx_check_permission(vcpu)) 5940 return 1; 5941 5942 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5943 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5944 type = kvm_register_read(vcpu, gpr_index); 5945 5946 types = (vmx->nested.msrs.vpid_caps & 5947 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; 5948 5949 if (type >= 32 || !(types & (1 << type))) 5950 return nested_vmx_fail(vcpu, 5951 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5952 5953 /* according to the intel vmx instruction reference, the memory 5954 * operand is read even if it isn't needed (e.g., for type==global) 5955 */ 5956 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5957 vmx_instruction_info, false, sizeof(operand), &gva)) 5958 return 1; 5959 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 5960 if (r != X86EMUL_CONTINUE) 5961 return kvm_handle_memory_failure(vcpu, r, &e); 5962 5963 if (operand.vpid >> 16) 5964 return nested_vmx_fail(vcpu, 5965 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5966 5967 /* 5968 * Always flush the effective vpid02, i.e. never flush the current VPID 5969 * and never explicitly flush vpid01. INVVPID targets a VPID, not a 5970 * VMCS, and so whether or not the current vmcs12 has VPID enabled is 5971 * irrelevant (and there may not be a loaded vmcs12). 5972 */ 5973 vpid02 = nested_get_vpid02(vcpu); 5974 switch (type) { 5975 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: 5976 /* 5977 * LAM doesn't apply to addresses that are inputs to TLB 5978 * invalidation. 5979 */ 5980 if (!operand.vpid || 5981 is_noncanonical_address(operand.gla, vcpu)) 5982 return nested_vmx_fail(vcpu, 5983 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5984 vpid_sync_vcpu_addr(vpid02, operand.gla); 5985 break; 5986 case VMX_VPID_EXTENT_SINGLE_CONTEXT: 5987 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: 5988 if (!operand.vpid) 5989 return nested_vmx_fail(vcpu, 5990 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5991 vpid_sync_context(vpid02); 5992 break; 5993 case VMX_VPID_EXTENT_ALL_CONTEXT: 5994 vpid_sync_context(vpid02); 5995 break; 5996 default: 5997 WARN_ON_ONCE(1); 5998 return kvm_skip_emulated_instruction(vcpu); 5999 } 6000 6001 /* 6002 * Sync the shadow page tables if EPT is disabled, L1 is invalidating 6003 * linear mappings for L2 (tagged with L2's VPID). Free all guest 6004 * roots as VPIDs are not tracked in the MMU role. 6005 * 6006 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share 6007 * an MMU when EPT is disabled. 6008 * 6009 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR. 6010 */ 6011 if (!enable_ept) 6012 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu); 6013 6014 return nested_vmx_succeed(vcpu); 6015 } 6016 6017 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, 6018 struct vmcs12 *vmcs12) 6019 { 6020 u32 index = kvm_rcx_read(vcpu); 6021 u64 new_eptp; 6022 6023 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12))) 6024 return 1; 6025 if (index >= VMFUNC_EPTP_ENTRIES) 6026 return 1; 6027 6028 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, 6029 &new_eptp, index * 8, 8)) 6030 return 1; 6031 6032 /* 6033 * If the (L2) guest does a vmfunc to the currently 6034 * active ept pointer, we don't have to do anything else 6035 */ 6036 if (vmcs12->ept_pointer != new_eptp) { 6037 if (!nested_vmx_check_eptp(vcpu, new_eptp)) 6038 return 1; 6039 6040 vmcs12->ept_pointer = new_eptp; 6041 nested_ept_new_eptp(vcpu); 6042 6043 if (!nested_cpu_has_vpid(vmcs12)) 6044 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 6045 } 6046 6047 return 0; 6048 } 6049 6050 static int handle_vmfunc(struct kvm_vcpu *vcpu) 6051 { 6052 struct vcpu_vmx *vmx = to_vmx(vcpu); 6053 struct vmcs12 *vmcs12; 6054 u32 function = kvm_rax_read(vcpu); 6055 6056 /* 6057 * VMFUNC should never execute cleanly while L1 is active; KVM supports 6058 * VMFUNC for nested VMs, but not for L1. 6059 */ 6060 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) { 6061 kvm_queue_exception(vcpu, UD_VECTOR); 6062 return 1; 6063 } 6064 6065 vmcs12 = get_vmcs12(vcpu); 6066 6067 /* 6068 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC 6069 * is enabled in vmcs02 if and only if it's enabled in vmcs12. 6070 */ 6071 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) { 6072 kvm_queue_exception(vcpu, UD_VECTOR); 6073 return 1; 6074 } 6075 6076 if (!(vmcs12->vm_function_control & BIT_ULL(function))) 6077 goto fail; 6078 6079 switch (function) { 6080 case 0: 6081 if (nested_vmx_eptp_switching(vcpu, vmcs12)) 6082 goto fail; 6083 break; 6084 default: 6085 goto fail; 6086 } 6087 return kvm_skip_emulated_instruction(vcpu); 6088 6089 fail: 6090 /* 6091 * This is effectively a reflected VM-Exit, as opposed to a synthesized 6092 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode 6093 * EXIT_REASON_VMFUNC as the exit reason. 6094 */ 6095 nested_vmx_vmexit(vcpu, vmx->exit_reason.full, 6096 vmx_get_intr_info(vcpu), 6097 vmx_get_exit_qual(vcpu)); 6098 return 1; 6099 } 6100 6101 /* 6102 * Return true if an IO instruction with the specified port and size should cause 6103 * a VM-exit into L1. 6104 */ 6105 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port, 6106 int size) 6107 { 6108 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6109 gpa_t bitmap, last_bitmap; 6110 u8 b; 6111 6112 last_bitmap = INVALID_GPA; 6113 b = -1; 6114 6115 while (size > 0) { 6116 if (port < 0x8000) 6117 bitmap = vmcs12->io_bitmap_a; 6118 else if (port < 0x10000) 6119 bitmap = vmcs12->io_bitmap_b; 6120 else 6121 return true; 6122 bitmap += (port & 0x7fff) / 8; 6123 6124 if (last_bitmap != bitmap) 6125 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) 6126 return true; 6127 if (b & (1 << (port & 7))) 6128 return true; 6129 6130 port++; 6131 size--; 6132 last_bitmap = bitmap; 6133 } 6134 6135 return false; 6136 } 6137 6138 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, 6139 struct vmcs12 *vmcs12) 6140 { 6141 unsigned long exit_qualification; 6142 unsigned short port; 6143 int size; 6144 6145 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 6146 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); 6147 6148 exit_qualification = vmx_get_exit_qual(vcpu); 6149 6150 port = exit_qualification >> 16; 6151 size = (exit_qualification & 7) + 1; 6152 6153 return nested_vmx_check_io_bitmaps(vcpu, port, size); 6154 } 6155 6156 /* 6157 * Return 1 if we should exit from L2 to L1 to handle an MSR access, 6158 * rather than handle it ourselves in L0. I.e., check whether L1 expressed 6159 * disinterest in the current event (read or write a specific MSR) by using an 6160 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. 6161 */ 6162 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, 6163 struct vmcs12 *vmcs12, 6164 union vmx_exit_reason exit_reason) 6165 { 6166 u32 msr_index = kvm_rcx_read(vcpu); 6167 gpa_t bitmap; 6168 6169 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) 6170 return true; 6171 6172 /* 6173 * The MSR_BITMAP page is divided into four 1024-byte bitmaps, 6174 * for the four combinations of read/write and low/high MSR numbers. 6175 * First we need to figure out which of the four to use: 6176 */ 6177 bitmap = vmcs12->msr_bitmap; 6178 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6179 bitmap += 2048; 6180 if (msr_index >= 0xc0000000) { 6181 msr_index -= 0xc0000000; 6182 bitmap += 1024; 6183 } 6184 6185 /* Then read the msr_index'th bit from this bitmap: */ 6186 if (msr_index < 1024*8) { 6187 unsigned char b; 6188 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) 6189 return true; 6190 return 1 & (b >> (msr_index & 7)); 6191 } else 6192 return true; /* let L1 handle the wrong parameter */ 6193 } 6194 6195 /* 6196 * Return 1 if we should exit from L2 to L1 to handle a CR access exit, 6197 * rather than handle it ourselves in L0. I.e., check if L1 wanted to 6198 * intercept (via guest_host_mask etc.) the current event. 6199 */ 6200 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, 6201 struct vmcs12 *vmcs12) 6202 { 6203 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 6204 int cr = exit_qualification & 15; 6205 int reg; 6206 unsigned long val; 6207 6208 switch ((exit_qualification >> 4) & 3) { 6209 case 0: /* mov to cr */ 6210 reg = (exit_qualification >> 8) & 15; 6211 val = kvm_register_read(vcpu, reg); 6212 switch (cr) { 6213 case 0: 6214 if (vmcs12->cr0_guest_host_mask & 6215 (val ^ vmcs12->cr0_read_shadow)) 6216 return true; 6217 break; 6218 case 3: 6219 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) 6220 return true; 6221 break; 6222 case 4: 6223 if (vmcs12->cr4_guest_host_mask & 6224 (vmcs12->cr4_read_shadow ^ val)) 6225 return true; 6226 break; 6227 case 8: 6228 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) 6229 return true; 6230 break; 6231 } 6232 break; 6233 case 2: /* clts */ 6234 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && 6235 (vmcs12->cr0_read_shadow & X86_CR0_TS)) 6236 return true; 6237 break; 6238 case 1: /* mov from cr */ 6239 switch (cr) { 6240 case 3: 6241 if (vmcs12->cpu_based_vm_exec_control & 6242 CPU_BASED_CR3_STORE_EXITING) 6243 return true; 6244 break; 6245 case 8: 6246 if (vmcs12->cpu_based_vm_exec_control & 6247 CPU_BASED_CR8_STORE_EXITING) 6248 return true; 6249 break; 6250 } 6251 break; 6252 case 3: /* lmsw */ 6253 /* 6254 * lmsw can change bits 1..3 of cr0, and only set bit 0 of 6255 * cr0. Other attempted changes are ignored, with no exit. 6256 */ 6257 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 6258 if (vmcs12->cr0_guest_host_mask & 0xe & 6259 (val ^ vmcs12->cr0_read_shadow)) 6260 return true; 6261 if ((vmcs12->cr0_guest_host_mask & 0x1) && 6262 !(vmcs12->cr0_read_shadow & 0x1) && 6263 (val & 0x1)) 6264 return true; 6265 break; 6266 } 6267 return false; 6268 } 6269 6270 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu, 6271 struct vmcs12 *vmcs12) 6272 { 6273 u32 encls_leaf; 6274 6275 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) || 6276 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING)) 6277 return false; 6278 6279 encls_leaf = kvm_rax_read(vcpu); 6280 if (encls_leaf > 62) 6281 encls_leaf = 63; 6282 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf); 6283 } 6284 6285 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, 6286 struct vmcs12 *vmcs12, gpa_t bitmap) 6287 { 6288 u32 vmx_instruction_info; 6289 unsigned long field; 6290 u8 b; 6291 6292 if (!nested_cpu_has_shadow_vmcs(vmcs12)) 6293 return true; 6294 6295 /* Decode instruction info and find the field to access */ 6296 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 6297 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); 6298 6299 /* Out-of-range fields always cause a VM exit from L2 to L1 */ 6300 if (field >> 15) 6301 return true; 6302 6303 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) 6304 return true; 6305 6306 return 1 & (b >> (field & 7)); 6307 } 6308 6309 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12) 6310 { 6311 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field; 6312 6313 if (nested_cpu_has_mtf(vmcs12)) 6314 return true; 6315 6316 /* 6317 * An MTF VM-exit may be injected into the guest by setting the 6318 * interruption-type to 7 (other event) and the vector field to 0. Such 6319 * is the case regardless of the 'monitor trap flag' VM-execution 6320 * control. 6321 */ 6322 return entry_intr_info == (INTR_INFO_VALID_MASK 6323 | INTR_TYPE_OTHER_EVENT); 6324 } 6325 6326 /* 6327 * Return true if L0 wants to handle an exit from L2 regardless of whether or not 6328 * L1 wants the exit. Only call this when in is_guest_mode (L2). 6329 */ 6330 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, 6331 union vmx_exit_reason exit_reason) 6332 { 6333 u32 intr_info; 6334 6335 switch ((u16)exit_reason.basic) { 6336 case EXIT_REASON_EXCEPTION_NMI: 6337 intr_info = vmx_get_intr_info(vcpu); 6338 if (is_nmi(intr_info)) 6339 return true; 6340 else if (is_page_fault(intr_info)) 6341 return vcpu->arch.apf.host_apf_flags || 6342 vmx_need_pf_intercept(vcpu); 6343 else if (is_debug(intr_info) && 6344 vcpu->guest_debug & 6345 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) 6346 return true; 6347 else if (is_breakpoint(intr_info) && 6348 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 6349 return true; 6350 else if (is_alignment_check(intr_info) && 6351 !vmx_guest_inject_ac(vcpu)) 6352 return true; 6353 else if (is_ve_fault(intr_info)) 6354 return true; 6355 return false; 6356 case EXIT_REASON_EXTERNAL_INTERRUPT: 6357 return true; 6358 case EXIT_REASON_MCE_DURING_VMENTRY: 6359 return true; 6360 case EXIT_REASON_EPT_VIOLATION: 6361 /* 6362 * L0 always deals with the EPT violation. If nested EPT is 6363 * used, and the nested mmu code discovers that the address is 6364 * missing in the guest EPT table (EPT12), the EPT violation 6365 * will be injected with nested_ept_inject_page_fault() 6366 */ 6367 return true; 6368 case EXIT_REASON_EPT_MISCONFIG: 6369 /* 6370 * L2 never uses directly L1's EPT, but rather L0's own EPT 6371 * table (shadow on EPT) or a merged EPT table that L0 built 6372 * (EPT on EPT). So any problems with the structure of the 6373 * table is L0's fault. 6374 */ 6375 return true; 6376 case EXIT_REASON_PREEMPTION_TIMER: 6377 return true; 6378 case EXIT_REASON_PML_FULL: 6379 /* 6380 * PML is emulated for an L1 VMM and should never be enabled in 6381 * vmcs02, always "handle" PML_FULL by exiting to userspace. 6382 */ 6383 return true; 6384 case EXIT_REASON_VMFUNC: 6385 /* VM functions are emulated through L2->L0 vmexits. */ 6386 return true; 6387 case EXIT_REASON_BUS_LOCK: 6388 /* 6389 * At present, bus lock VM exit is never exposed to L1. 6390 * Handle L2's bus locks in L0 directly. 6391 */ 6392 return true; 6393 #ifdef CONFIG_KVM_HYPERV 6394 case EXIT_REASON_VMCALL: 6395 /* Hyper-V L2 TLB flush hypercall is handled by L0 */ 6396 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) && 6397 nested_evmcs_l2_tlb_flush_enabled(vcpu) && 6398 kvm_hv_is_tlb_flush_hcall(vcpu); 6399 #endif 6400 default: 6401 break; 6402 } 6403 return false; 6404 } 6405 6406 /* 6407 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in 6408 * is_guest_mode (L2). 6409 */ 6410 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, 6411 union vmx_exit_reason exit_reason) 6412 { 6413 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6414 u32 intr_info; 6415 6416 switch ((u16)exit_reason.basic) { 6417 case EXIT_REASON_EXCEPTION_NMI: 6418 intr_info = vmx_get_intr_info(vcpu); 6419 if (is_nmi(intr_info)) 6420 return true; 6421 else if (is_page_fault(intr_info)) 6422 return true; 6423 return vmcs12->exception_bitmap & 6424 (1u << (intr_info & INTR_INFO_VECTOR_MASK)); 6425 case EXIT_REASON_EXTERNAL_INTERRUPT: 6426 return nested_exit_on_intr(vcpu); 6427 case EXIT_REASON_TRIPLE_FAULT: 6428 return true; 6429 case EXIT_REASON_INTERRUPT_WINDOW: 6430 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING); 6431 case EXIT_REASON_NMI_WINDOW: 6432 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING); 6433 case EXIT_REASON_TASK_SWITCH: 6434 return true; 6435 case EXIT_REASON_CPUID: 6436 return true; 6437 case EXIT_REASON_HLT: 6438 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); 6439 case EXIT_REASON_INVD: 6440 return true; 6441 case EXIT_REASON_INVLPG: 6442 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); 6443 case EXIT_REASON_RDPMC: 6444 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); 6445 case EXIT_REASON_RDRAND: 6446 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); 6447 case EXIT_REASON_RDSEED: 6448 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); 6449 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: 6450 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); 6451 case EXIT_REASON_VMREAD: 6452 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, 6453 vmcs12->vmread_bitmap); 6454 case EXIT_REASON_VMWRITE: 6455 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, 6456 vmcs12->vmwrite_bitmap); 6457 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: 6458 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: 6459 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: 6460 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: 6461 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: 6462 /* 6463 * VMX instructions trap unconditionally. This allows L1 to 6464 * emulate them for its L2 guest, i.e., allows 3-level nesting! 6465 */ 6466 return true; 6467 case EXIT_REASON_CR_ACCESS: 6468 return nested_vmx_exit_handled_cr(vcpu, vmcs12); 6469 case EXIT_REASON_DR_ACCESS: 6470 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); 6471 case EXIT_REASON_IO_INSTRUCTION: 6472 return nested_vmx_exit_handled_io(vcpu, vmcs12); 6473 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: 6474 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); 6475 case EXIT_REASON_MSR_READ: 6476 case EXIT_REASON_MSR_WRITE: 6477 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); 6478 case EXIT_REASON_INVALID_STATE: 6479 return true; 6480 case EXIT_REASON_MWAIT_INSTRUCTION: 6481 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); 6482 case EXIT_REASON_MONITOR_TRAP_FLAG: 6483 return nested_vmx_exit_handled_mtf(vmcs12); 6484 case EXIT_REASON_MONITOR_INSTRUCTION: 6485 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); 6486 case EXIT_REASON_PAUSE_INSTRUCTION: 6487 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || 6488 nested_cpu_has2(vmcs12, 6489 SECONDARY_EXEC_PAUSE_LOOP_EXITING); 6490 case EXIT_REASON_MCE_DURING_VMENTRY: 6491 return true; 6492 case EXIT_REASON_TPR_BELOW_THRESHOLD: 6493 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); 6494 case EXIT_REASON_APIC_ACCESS: 6495 case EXIT_REASON_APIC_WRITE: 6496 case EXIT_REASON_EOI_INDUCED: 6497 /* 6498 * The controls for "virtualize APIC accesses," "APIC- 6499 * register virtualization," and "virtual-interrupt 6500 * delivery" only come from vmcs12. 6501 */ 6502 return true; 6503 case EXIT_REASON_INVPCID: 6504 return 6505 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && 6506 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); 6507 case EXIT_REASON_WBINVD: 6508 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); 6509 case EXIT_REASON_XSETBV: 6510 return true; 6511 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: 6512 /* 6513 * This should never happen, since it is not possible to 6514 * set XSS to a non-zero value---neither in L1 nor in L2. 6515 * If if it were, XSS would have to be checked against 6516 * the XSS exit bitmap in vmcs12. 6517 */ 6518 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES); 6519 case EXIT_REASON_UMWAIT: 6520 case EXIT_REASON_TPAUSE: 6521 return nested_cpu_has2(vmcs12, 6522 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE); 6523 case EXIT_REASON_ENCLS: 6524 return nested_vmx_exit_handled_encls(vcpu, vmcs12); 6525 case EXIT_REASON_NOTIFY: 6526 /* Notify VM exit is not exposed to L1 */ 6527 return false; 6528 default: 6529 return true; 6530 } 6531 } 6532 6533 /* 6534 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was 6535 * reflected into L1. 6536 */ 6537 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu) 6538 { 6539 struct vcpu_vmx *vmx = to_vmx(vcpu); 6540 union vmx_exit_reason exit_reason = vmx->exit_reason; 6541 unsigned long exit_qual; 6542 u32 exit_intr_info; 6543 6544 WARN_ON_ONCE(vmx->nested.nested_run_pending); 6545 6546 /* 6547 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM 6548 * has already loaded L2's state. 6549 */ 6550 if (unlikely(vmx->fail)) { 6551 trace_kvm_nested_vmenter_failed( 6552 "hardware VM-instruction error: ", 6553 vmcs_read32(VM_INSTRUCTION_ERROR)); 6554 exit_intr_info = 0; 6555 exit_qual = 0; 6556 goto reflect_vmexit; 6557 } 6558 6559 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX); 6560 6561 /* If L0 (KVM) wants the exit, it trumps L1's desires. */ 6562 if (nested_vmx_l0_wants_exit(vcpu, exit_reason)) 6563 return false; 6564 6565 /* If L1 doesn't want the exit, handle it in L0. */ 6566 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason)) 6567 return false; 6568 6569 /* 6570 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For 6571 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would 6572 * need to be synthesized by querying the in-kernel LAPIC, but external 6573 * interrupts are never reflected to L1 so it's a non-issue. 6574 */ 6575 exit_intr_info = vmx_get_intr_info(vcpu); 6576 if (is_exception_with_error_code(exit_intr_info)) { 6577 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6578 6579 vmcs12->vm_exit_intr_error_code = 6580 vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6581 } 6582 exit_qual = vmx_get_exit_qual(vcpu); 6583 6584 reflect_vmexit: 6585 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual); 6586 return true; 6587 } 6588 6589 static int vmx_get_nested_state(struct kvm_vcpu *vcpu, 6590 struct kvm_nested_state __user *user_kvm_nested_state, 6591 u32 user_data_size) 6592 { 6593 struct vcpu_vmx *vmx; 6594 struct vmcs12 *vmcs12; 6595 struct kvm_nested_state kvm_state = { 6596 .flags = 0, 6597 .format = KVM_STATE_NESTED_FORMAT_VMX, 6598 .size = sizeof(kvm_state), 6599 .hdr.vmx.flags = 0, 6600 .hdr.vmx.vmxon_pa = INVALID_GPA, 6601 .hdr.vmx.vmcs12_pa = INVALID_GPA, 6602 .hdr.vmx.preemption_timer_deadline = 0, 6603 }; 6604 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state = 6605 &user_kvm_nested_state->data.vmx[0]; 6606 6607 if (!vcpu) 6608 return kvm_state.size + sizeof(*user_vmx_nested_state); 6609 6610 vmx = to_vmx(vcpu); 6611 vmcs12 = get_vmcs12(vcpu); 6612 6613 if (guest_can_use(vcpu, X86_FEATURE_VMX) && 6614 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { 6615 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr; 6616 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr; 6617 6618 if (vmx_has_valid_vmcs12(vcpu)) { 6619 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12); 6620 6621 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */ 6622 if (nested_vmx_is_evmptr12_set(vmx)) 6623 kvm_state.flags |= KVM_STATE_NESTED_EVMCS; 6624 6625 if (is_guest_mode(vcpu) && 6626 nested_cpu_has_shadow_vmcs(vmcs12) && 6627 vmcs12->vmcs_link_pointer != INVALID_GPA) 6628 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12); 6629 } 6630 6631 if (vmx->nested.smm.vmxon) 6632 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; 6633 6634 if (vmx->nested.smm.guest_mode) 6635 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; 6636 6637 if (is_guest_mode(vcpu)) { 6638 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; 6639 6640 if (vmx->nested.nested_run_pending) 6641 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; 6642 6643 if (vmx->nested.mtf_pending) 6644 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING; 6645 6646 if (nested_cpu_has_preemption_timer(vmcs12) && 6647 vmx->nested.has_preemption_timer_deadline) { 6648 kvm_state.hdr.vmx.flags |= 6649 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE; 6650 kvm_state.hdr.vmx.preemption_timer_deadline = 6651 vmx->nested.preemption_timer_deadline; 6652 } 6653 } 6654 } 6655 6656 if (user_data_size < kvm_state.size) 6657 goto out; 6658 6659 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) 6660 return -EFAULT; 6661 6662 if (!vmx_has_valid_vmcs12(vcpu)) 6663 goto out; 6664 6665 /* 6666 * When running L2, the authoritative vmcs12 state is in the 6667 * vmcs02. When running L1, the authoritative vmcs12 state is 6668 * in the shadow or enlightened vmcs linked to vmcs01, unless 6669 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative 6670 * vmcs12 state is in the vmcs12 already. 6671 */ 6672 if (is_guest_mode(vcpu)) { 6673 sync_vmcs02_to_vmcs12(vcpu, vmcs12); 6674 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 6675 } else { 6676 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu)); 6677 if (!vmx->nested.need_vmcs12_to_shadow_sync) { 6678 if (nested_vmx_is_evmptr12_valid(vmx)) 6679 /* 6680 * L1 hypervisor is not obliged to keep eVMCS 6681 * clean fields data always up-to-date while 6682 * not in guest mode, 'hv_clean_fields' is only 6683 * supposed to be actual upon vmentry so we need 6684 * to ignore it here and do full copy. 6685 */ 6686 copy_enlightened_to_vmcs12(vmx, 0); 6687 else if (enable_shadow_vmcs) 6688 copy_shadow_to_vmcs12(vmx); 6689 } 6690 } 6691 6692 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE); 6693 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE); 6694 6695 /* 6696 * Copy over the full allocated size of vmcs12 rather than just the size 6697 * of the struct. 6698 */ 6699 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE)) 6700 return -EFAULT; 6701 6702 if (nested_cpu_has_shadow_vmcs(vmcs12) && 6703 vmcs12->vmcs_link_pointer != INVALID_GPA) { 6704 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12, 6705 get_shadow_vmcs12(vcpu), VMCS12_SIZE)) 6706 return -EFAULT; 6707 } 6708 out: 6709 return kvm_state.size; 6710 } 6711 6712 void vmx_leave_nested(struct kvm_vcpu *vcpu) 6713 { 6714 if (is_guest_mode(vcpu)) { 6715 to_vmx(vcpu)->nested.nested_run_pending = 0; 6716 nested_vmx_vmexit(vcpu, -1, 0, 0); 6717 } 6718 free_nested(vcpu); 6719 } 6720 6721 static int vmx_set_nested_state(struct kvm_vcpu *vcpu, 6722 struct kvm_nested_state __user *user_kvm_nested_state, 6723 struct kvm_nested_state *kvm_state) 6724 { 6725 struct vcpu_vmx *vmx = to_vmx(vcpu); 6726 struct vmcs12 *vmcs12; 6727 enum vm_entry_failure_code ignored; 6728 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state = 6729 &user_kvm_nested_state->data.vmx[0]; 6730 int ret; 6731 6732 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX) 6733 return -EINVAL; 6734 6735 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) { 6736 if (kvm_state->hdr.vmx.smm.flags) 6737 return -EINVAL; 6738 6739 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) 6740 return -EINVAL; 6741 6742 /* 6743 * KVM_STATE_NESTED_EVMCS used to signal that KVM should 6744 * enable eVMCS capability on vCPU. However, since then 6745 * code was changed such that flag signals vmcs12 should 6746 * be copied into eVMCS in guest memory. 6747 * 6748 * To preserve backwards compatibility, allow user 6749 * to set this flag even when there is no VMXON region. 6750 */ 6751 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS) 6752 return -EINVAL; 6753 } else { 6754 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 6755 return -EINVAL; 6756 6757 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa)) 6758 return -EINVAL; 6759 } 6760 6761 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && 6762 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) 6763 return -EINVAL; 6764 6765 if (kvm_state->hdr.vmx.smm.flags & 6766 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) 6767 return -EINVAL; 6768 6769 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) 6770 return -EINVAL; 6771 6772 /* 6773 * SMM temporarily disables VMX, so we cannot be in guest mode, 6774 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags 6775 * must be zero. 6776 */ 6777 if (is_smm(vcpu) ? 6778 (kvm_state->flags & 6779 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING)) 6780 : kvm_state->hdr.vmx.smm.flags) 6781 return -EINVAL; 6782 6783 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && 6784 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) 6785 return -EINVAL; 6786 6787 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) && 6788 (!guest_can_use(vcpu, X86_FEATURE_VMX) || 6789 !vmx->nested.enlightened_vmcs_enabled)) 6790 return -EINVAL; 6791 6792 vmx_leave_nested(vcpu); 6793 6794 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) 6795 return 0; 6796 6797 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa; 6798 ret = enter_vmx_operation(vcpu); 6799 if (ret) 6800 return ret; 6801 6802 /* Empty 'VMXON' state is permitted if no VMCS loaded */ 6803 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) { 6804 /* See vmx_has_valid_vmcs12. */ 6805 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) || 6806 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) || 6807 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)) 6808 return -EINVAL; 6809 else 6810 return 0; 6811 } 6812 6813 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) { 6814 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa || 6815 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa)) 6816 return -EINVAL; 6817 6818 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa); 6819 #ifdef CONFIG_KVM_HYPERV 6820 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { 6821 /* 6822 * nested_vmx_handle_enlightened_vmptrld() cannot be called 6823 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be 6824 * restored yet. EVMCS will be mapped from 6825 * nested_get_vmcs12_pages(). 6826 */ 6827 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING; 6828 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu); 6829 #endif 6830 } else { 6831 return -EINVAL; 6832 } 6833 6834 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { 6835 vmx->nested.smm.vmxon = true; 6836 vmx->nested.vmxon = false; 6837 6838 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) 6839 vmx->nested.smm.guest_mode = true; 6840 } 6841 6842 vmcs12 = get_vmcs12(vcpu); 6843 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12))) 6844 return -EFAULT; 6845 6846 if (vmcs12->hdr.revision_id != VMCS12_REVISION) 6847 return -EINVAL; 6848 6849 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) 6850 return 0; 6851 6852 vmx->nested.nested_run_pending = 6853 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); 6854 6855 vmx->nested.mtf_pending = 6856 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING); 6857 6858 ret = -EINVAL; 6859 if (nested_cpu_has_shadow_vmcs(vmcs12) && 6860 vmcs12->vmcs_link_pointer != INVALID_GPA) { 6861 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); 6862 6863 if (kvm_state->size < 6864 sizeof(*kvm_state) + 6865 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12)) 6866 goto error_guest_mode; 6867 6868 if (copy_from_user(shadow_vmcs12, 6869 user_vmx_nested_state->shadow_vmcs12, 6870 sizeof(*shadow_vmcs12))) { 6871 ret = -EFAULT; 6872 goto error_guest_mode; 6873 } 6874 6875 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || 6876 !shadow_vmcs12->hdr.shadow_vmcs) 6877 goto error_guest_mode; 6878 } 6879 6880 vmx->nested.has_preemption_timer_deadline = false; 6881 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) { 6882 vmx->nested.has_preemption_timer_deadline = true; 6883 vmx->nested.preemption_timer_deadline = 6884 kvm_state->hdr.vmx.preemption_timer_deadline; 6885 } 6886 6887 if (nested_vmx_check_controls(vcpu, vmcs12) || 6888 nested_vmx_check_host_state(vcpu, vmcs12) || 6889 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored)) 6890 goto error_guest_mode; 6891 6892 vmx->nested.dirty_vmcs12 = true; 6893 vmx->nested.force_msr_bitmap_recalc = true; 6894 ret = nested_vmx_enter_non_root_mode(vcpu, false); 6895 if (ret) 6896 goto error_guest_mode; 6897 6898 if (vmx->nested.mtf_pending) 6899 kvm_make_request(KVM_REQ_EVENT, vcpu); 6900 6901 return 0; 6902 6903 error_guest_mode: 6904 vmx->nested.nested_run_pending = 0; 6905 return ret; 6906 } 6907 6908 void nested_vmx_set_vmcs_shadowing_bitmap(void) 6909 { 6910 if (enable_shadow_vmcs) { 6911 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); 6912 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); 6913 } 6914 } 6915 6916 /* 6917 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo 6918 * that madness to get the encoding for comparison. 6919 */ 6920 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10))) 6921 6922 static u64 nested_vmx_calc_vmcs_enum_msr(void) 6923 { 6924 /* 6925 * Note these are the so called "index" of the VMCS field encoding, not 6926 * the index into vmcs12. 6927 */ 6928 unsigned int max_idx, idx; 6929 int i; 6930 6931 /* 6932 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in 6933 * vmcs12, regardless of whether or not the associated feature is 6934 * exposed to L1. Simply find the field with the highest index. 6935 */ 6936 max_idx = 0; 6937 for (i = 0; i < nr_vmcs12_fields; i++) { 6938 /* The vmcs12 table is very, very sparsely populated. */ 6939 if (!vmcs12_field_offsets[i]) 6940 continue; 6941 6942 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i)); 6943 if (idx > max_idx) 6944 max_idx = idx; 6945 } 6946 6947 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT; 6948 } 6949 6950 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf, 6951 struct nested_vmx_msrs *msrs) 6952 { 6953 msrs->pinbased_ctls_low = 6954 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; 6955 6956 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl; 6957 msrs->pinbased_ctls_high &= 6958 PIN_BASED_EXT_INTR_MASK | 6959 PIN_BASED_NMI_EXITING | 6960 PIN_BASED_VIRTUAL_NMIS | 6961 (enable_apicv ? PIN_BASED_POSTED_INTR : 0); 6962 msrs->pinbased_ctls_high |= 6963 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | 6964 PIN_BASED_VMX_PREEMPTION_TIMER; 6965 } 6966 6967 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf, 6968 struct nested_vmx_msrs *msrs) 6969 { 6970 msrs->exit_ctls_low = 6971 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; 6972 6973 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl; 6974 msrs->exit_ctls_high &= 6975 #ifdef CONFIG_X86_64 6976 VM_EXIT_HOST_ADDR_SPACE_SIZE | 6977 #endif 6978 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT | 6979 VM_EXIT_CLEAR_BNDCFGS; 6980 msrs->exit_ctls_high |= 6981 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | 6982 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | 6983 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT | 6984 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 6985 6986 /* We support free control of debug control saving. */ 6987 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; 6988 } 6989 6990 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf, 6991 struct nested_vmx_msrs *msrs) 6992 { 6993 msrs->entry_ctls_low = 6994 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; 6995 6996 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl; 6997 msrs->entry_ctls_high &= 6998 #ifdef CONFIG_X86_64 6999 VM_ENTRY_IA32E_MODE | 7000 #endif 7001 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS; 7002 msrs->entry_ctls_high |= 7003 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER | 7004 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL); 7005 7006 /* We support free control of debug control loading. */ 7007 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; 7008 } 7009 7010 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf, 7011 struct nested_vmx_msrs *msrs) 7012 { 7013 msrs->procbased_ctls_low = 7014 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; 7015 7016 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl; 7017 msrs->procbased_ctls_high &= 7018 CPU_BASED_INTR_WINDOW_EXITING | 7019 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING | 7020 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | 7021 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | 7022 CPU_BASED_CR3_STORE_EXITING | 7023 #ifdef CONFIG_X86_64 7024 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | 7025 #endif 7026 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | 7027 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | 7028 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | 7029 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | 7030 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 7031 /* 7032 * We can allow some features even when not supported by the 7033 * hardware. For example, L1 can specify an MSR bitmap - and we 7034 * can use it to avoid exits to L1 - even when L0 runs L2 7035 * without MSR bitmaps. 7036 */ 7037 msrs->procbased_ctls_high |= 7038 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | 7039 CPU_BASED_USE_MSR_BITMAPS; 7040 7041 /* We support free control of CR3 access interception. */ 7042 msrs->procbased_ctls_low &= 7043 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); 7044 } 7045 7046 static void nested_vmx_setup_secondary_ctls(u32 ept_caps, 7047 struct vmcs_config *vmcs_conf, 7048 struct nested_vmx_msrs *msrs) 7049 { 7050 msrs->secondary_ctls_low = 0; 7051 7052 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl; 7053 msrs->secondary_ctls_high &= 7054 SECONDARY_EXEC_DESC | 7055 SECONDARY_EXEC_ENABLE_RDTSCP | 7056 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7057 SECONDARY_EXEC_WBINVD_EXITING | 7058 SECONDARY_EXEC_APIC_REGISTER_VIRT | 7059 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 7060 SECONDARY_EXEC_RDRAND_EXITING | 7061 SECONDARY_EXEC_ENABLE_INVPCID | 7062 SECONDARY_EXEC_ENABLE_VMFUNC | 7063 SECONDARY_EXEC_RDSEED_EXITING | 7064 SECONDARY_EXEC_ENABLE_XSAVES | 7065 SECONDARY_EXEC_TSC_SCALING | 7066 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; 7067 7068 /* 7069 * We can emulate "VMCS shadowing," even if the hardware 7070 * doesn't support it. 7071 */ 7072 msrs->secondary_ctls_high |= 7073 SECONDARY_EXEC_SHADOW_VMCS; 7074 7075 if (enable_ept) { 7076 /* nested EPT: emulate EPT also to L1 */ 7077 msrs->secondary_ctls_high |= 7078 SECONDARY_EXEC_ENABLE_EPT; 7079 msrs->ept_caps = 7080 VMX_EPT_PAGE_WALK_4_BIT | 7081 VMX_EPT_PAGE_WALK_5_BIT | 7082 VMX_EPTP_WB_BIT | 7083 VMX_EPT_INVEPT_BIT | 7084 VMX_EPT_EXECUTE_ONLY_BIT; 7085 7086 msrs->ept_caps &= ept_caps; 7087 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | 7088 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | 7089 VMX_EPT_1GB_PAGE_BIT; 7090 if (enable_ept_ad_bits) { 7091 msrs->secondary_ctls_high |= 7092 SECONDARY_EXEC_ENABLE_PML; 7093 msrs->ept_caps |= VMX_EPT_AD_BIT; 7094 } 7095 7096 /* 7097 * Advertise EPTP switching irrespective of hardware support, 7098 * KVM emulates it in software so long as VMFUNC is supported. 7099 */ 7100 if (cpu_has_vmx_vmfunc()) 7101 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING; 7102 } 7103 7104 /* 7105 * Old versions of KVM use the single-context version without 7106 * checking for support, so declare that it is supported even 7107 * though it is treated as global context. The alternative is 7108 * not failing the single-context invvpid, and it is worse. 7109 */ 7110 if (enable_vpid) { 7111 msrs->secondary_ctls_high |= 7112 SECONDARY_EXEC_ENABLE_VPID; 7113 msrs->vpid_caps = VMX_VPID_INVVPID_BIT | 7114 VMX_VPID_EXTENT_SUPPORTED_MASK; 7115 } 7116 7117 if (enable_unrestricted_guest) 7118 msrs->secondary_ctls_high |= 7119 SECONDARY_EXEC_UNRESTRICTED_GUEST; 7120 7121 if (flexpriority_enabled) 7122 msrs->secondary_ctls_high |= 7123 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 7124 7125 if (enable_sgx) 7126 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING; 7127 } 7128 7129 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf, 7130 struct nested_vmx_msrs *msrs) 7131 { 7132 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA; 7133 msrs->misc_low |= 7134 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | 7135 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | 7136 VMX_MISC_ACTIVITY_HLT | 7137 VMX_MISC_ACTIVITY_WAIT_SIPI; 7138 msrs->misc_high = 0; 7139 } 7140 7141 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs) 7142 { 7143 /* 7144 * This MSR reports some information about VMX support. We 7145 * should return information about the VMX we emulate for the 7146 * guest, and the VMCS structure we give it - not about the 7147 * VMX support of the underlying hardware. 7148 */ 7149 msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE, 7150 X86_MEMTYPE_WB); 7151 7152 msrs->basic |= VMX_BASIC_TRUE_CTLS; 7153 if (cpu_has_vmx_basic_inout()) 7154 msrs->basic |= VMX_BASIC_INOUT; 7155 } 7156 7157 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs) 7158 { 7159 /* 7160 * These MSRs specify bits which the guest must keep fixed on 7161 * while L1 is in VMXON mode (in L1's root mode, or running an L2). 7162 * We picked the standard core2 setting. 7163 */ 7164 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) 7165 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE 7166 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; 7167 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; 7168 7169 /* These MSRs specify bits which the guest must keep fixed off. */ 7170 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); 7171 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); 7172 7173 if (vmx_umip_emulated()) 7174 msrs->cr4_fixed1 |= X86_CR4_UMIP; 7175 } 7176 7177 /* 7178 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be 7179 * returned for the various VMX controls MSRs when nested VMX is enabled. 7180 * The same values should also be used to verify that vmcs12 control fields are 7181 * valid during nested entry from L1 to L2. 7182 * Each of these control msrs has a low and high 32-bit half: A low bit is on 7183 * if the corresponding bit in the (32-bit) control field *must* be on, and a 7184 * bit in the high half is on if the corresponding bit in the control field 7185 * may be on. See also vmx_control_verify(). 7186 */ 7187 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps) 7188 { 7189 struct nested_vmx_msrs *msrs = &vmcs_conf->nested; 7190 7191 /* 7192 * Note that as a general rule, the high half of the MSRs (bits in 7193 * the control fields which may be 1) should be initialized by the 7194 * intersection of the underlying hardware's MSR (i.e., features which 7195 * can be supported) and the list of features we want to expose - 7196 * because they are known to be properly supported in our code. 7197 * Also, usually, the low half of the MSRs (bits which must be 1) can 7198 * be set to 0, meaning that L1 may turn off any of these bits. The 7199 * reason is that if one of these bits is necessary, it will appear 7200 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control 7201 * fields of vmcs01 and vmcs02, will turn these bits off - and 7202 * nested_vmx_l1_wants_exit() will not pass related exits to L1. 7203 * These rules have exceptions below. 7204 */ 7205 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs); 7206 7207 nested_vmx_setup_exit_ctls(vmcs_conf, msrs); 7208 7209 nested_vmx_setup_entry_ctls(vmcs_conf, msrs); 7210 7211 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs); 7212 7213 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs); 7214 7215 nested_vmx_setup_misc_data(vmcs_conf, msrs); 7216 7217 nested_vmx_setup_basic(msrs); 7218 7219 nested_vmx_setup_cr_fixed(msrs); 7220 7221 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr(); 7222 } 7223 7224 void nested_vmx_hardware_unsetup(void) 7225 { 7226 int i; 7227 7228 if (enable_shadow_vmcs) { 7229 for (i = 0; i < VMX_BITMAP_NR; i++) 7230 free_page((unsigned long)vmx_bitmap[i]); 7231 } 7232 } 7233 7234 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)) 7235 { 7236 int i; 7237 7238 if (!cpu_has_vmx_shadow_vmcs()) 7239 enable_shadow_vmcs = 0; 7240 if (enable_shadow_vmcs) { 7241 for (i = 0; i < VMX_BITMAP_NR; i++) { 7242 /* 7243 * The vmx_bitmap is not tied to a VM and so should 7244 * not be charged to a memcg. 7245 */ 7246 vmx_bitmap[i] = (unsigned long *) 7247 __get_free_page(GFP_KERNEL); 7248 if (!vmx_bitmap[i]) { 7249 nested_vmx_hardware_unsetup(); 7250 return -ENOMEM; 7251 } 7252 } 7253 7254 init_vmcs_shadow_fields(); 7255 } 7256 7257 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear; 7258 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch; 7259 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld; 7260 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst; 7261 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread; 7262 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume; 7263 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite; 7264 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff; 7265 exit_handlers[EXIT_REASON_VMON] = handle_vmxon; 7266 exit_handlers[EXIT_REASON_INVEPT] = handle_invept; 7267 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid; 7268 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc; 7269 7270 return 0; 7271 } 7272 7273 struct kvm_x86_nested_ops vmx_nested_ops = { 7274 .leave_nested = vmx_leave_nested, 7275 .is_exception_vmexit = nested_vmx_is_exception_vmexit, 7276 .check_events = vmx_check_nested_events, 7277 .has_events = vmx_has_nested_events, 7278 .triple_fault = nested_vmx_triple_fault, 7279 .get_state = vmx_get_nested_state, 7280 .set_state = vmx_set_nested_state, 7281 .get_nested_state_pages = vmx_get_nested_state_pages, 7282 .write_log_dirty = nested_vmx_write_pml_buffer, 7283 #ifdef CONFIG_KVM_HYPERV 7284 .enable_evmcs = nested_enable_evmcs, 7285 .get_evmcs_version = nested_get_evmcs_version, 7286 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush, 7287 #endif 7288 }; 7289