xref: /linux/arch/x86/kvm/vmx/nested.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6 
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "posted_intr.h"
16 #include "sgx.h"
17 #include "trace.h"
18 #include "vmx.h"
19 #include "x86.h"
20 #include "smm.h"
21 
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24 
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27 
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29 
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
35 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
36 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
37 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
38 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39 
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41 
42 enum {
43 	VMX_VMREAD_BITMAP,
44 	VMX_VMWRITE_BITMAP,
45 	VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48 
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51 
52 struct shadow_vmcs_field {
53 	u16	encoding;
54 	u16	offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 	ARRAY_SIZE(shadow_read_only_fields);
62 
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 	ARRAY_SIZE(shadow_read_write_fields);
69 
70 static void init_vmcs_shadow_fields(void)
71 {
72 	int i, j;
73 
74 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76 
77 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 		u16 field = entry.encoding;
80 
81 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 		    (i + 1 == max_shadow_read_only_fields ||
83 		     shadow_read_only_fields[i + 1].encoding != field + 1))
84 			pr_err("Missing field from shadow_read_only_field %x\n",
85 			       field + 1);
86 
87 		clear_bit(field, vmx_vmread_bitmap);
88 		if (field & 1)
89 #ifdef CONFIG_X86_64
90 			continue;
91 #else
92 			entry.offset += sizeof(u32);
93 #endif
94 		shadow_read_only_fields[j++] = entry;
95 	}
96 	max_shadow_read_only_fields = j;
97 
98 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 		u16 field = entry.encoding;
101 
102 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 		    (i + 1 == max_shadow_read_write_fields ||
104 		     shadow_read_write_fields[i + 1].encoding != field + 1))
105 			pr_err("Missing field from shadow_read_write_field %x\n",
106 			       field + 1);
107 
108 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 			  field <= GUEST_TR_AR_BYTES,
110 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111 
112 		/*
113 		 * PML and the preemption timer can be emulated, but the
114 		 * processor cannot vmwrite to fields that don't exist
115 		 * on bare metal.
116 		 */
117 		switch (field) {
118 		case GUEST_PML_INDEX:
119 			if (!cpu_has_vmx_pml())
120 				continue;
121 			break;
122 		case VMX_PREEMPTION_TIMER_VALUE:
123 			if (!cpu_has_vmx_preemption_timer())
124 				continue;
125 			break;
126 		case GUEST_INTR_STATUS:
127 			if (!cpu_has_vmx_apicv())
128 				continue;
129 			break;
130 		default:
131 			break;
132 		}
133 
134 		clear_bit(field, vmx_vmwrite_bitmap);
135 		clear_bit(field, vmx_vmread_bitmap);
136 		if (field & 1)
137 #ifdef CONFIG_X86_64
138 			continue;
139 #else
140 			entry.offset += sizeof(u32);
141 #endif
142 		shadow_read_write_fields[j++] = entry;
143 	}
144 	max_shadow_read_write_fields = j;
145 }
146 
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 	return kvm_skip_emulated_instruction(vcpu);
159 }
160 
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
166 			| X86_EFLAGS_CF);
167 	return kvm_skip_emulated_instruction(vcpu);
168 }
169 
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 				u32 vm_instruction_error)
172 {
173 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
176 			| X86_EFLAGS_ZF);
177 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 	/*
179 	 * We don't need to force sync to shadow VMCS because
180 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 	 * fields and thus must be synced.
182 	 */
183 	if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
184 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185 
186 	return kvm_skip_emulated_instruction(vcpu);
187 }
188 
189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 	struct vcpu_vmx *vmx = to_vmx(vcpu);
192 
193 	/*
194 	 * failValid writes the error number to the current VMCS, which
195 	 * can't be done if there isn't a current VMCS.
196 	 */
197 	if (vmx->nested.current_vmptr == INVALID_GPA &&
198 	    !nested_vmx_is_evmptr12_valid(vmx))
199 		return nested_vmx_failInvalid(vcpu);
200 
201 	return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203 
204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 	/* TODO: not to reset guest simply here. */
207 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 	pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210 
211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 	return fixed_bits_valid(control, low, high);
214 }
215 
216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 	return low | ((u64)high << 32);
219 }
220 
221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 	vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227 
228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 #ifdef CONFIG_KVM_HYPERV
231 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
232 	struct vcpu_vmx *vmx = to_vmx(vcpu);
233 
234 	if (nested_vmx_is_evmptr12_valid(vmx)) {
235 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
236 		vmx->nested.hv_evmcs = NULL;
237 	}
238 
239 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
240 
241 	if (hv_vcpu) {
242 		hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
243 		hv_vcpu->nested.vm_id = 0;
244 		hv_vcpu->nested.vp_id = 0;
245 	}
246 #endif
247 }
248 
249 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
250 {
251 #ifdef CONFIG_KVM_HYPERV
252 	struct vcpu_vmx *vmx = to_vmx(vcpu);
253 	/*
254 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
255 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
256 	 * way to distinguish it from VMCS12) and we must not corrupt it by
257 	 * writing to the non-existent 'launch_state' field. The area doesn't
258 	 * have to be the currently active EVMCS on the calling CPU and there's
259 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
260 	 * state. It is possible that the area will stay mapped as
261 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
262 	 */
263 	if (!guest_cpuid_has_evmcs(vcpu) ||
264 	    !evmptr_is_valid(nested_get_evmptr(vcpu)))
265 		return false;
266 
267 	if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
268 		nested_release_evmcs(vcpu);
269 
270 	return true;
271 #else
272 	return false;
273 #endif
274 }
275 
276 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
277 				     struct loaded_vmcs *prev)
278 {
279 	struct vmcs_host_state *dest, *src;
280 
281 	if (unlikely(!vmx->guest_state_loaded))
282 		return;
283 
284 	src = &prev->host_state;
285 	dest = &vmx->loaded_vmcs->host_state;
286 
287 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
288 	dest->ldt_sel = src->ldt_sel;
289 #ifdef CONFIG_X86_64
290 	dest->ds_sel = src->ds_sel;
291 	dest->es_sel = src->es_sel;
292 #endif
293 }
294 
295 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
296 {
297 	struct vcpu_vmx *vmx = to_vmx(vcpu);
298 	struct loaded_vmcs *prev;
299 	int cpu;
300 
301 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
302 		return;
303 
304 	cpu = get_cpu();
305 	prev = vmx->loaded_vmcs;
306 	vmx->loaded_vmcs = vmcs;
307 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
308 	vmx_sync_vmcs_host_state(vmx, prev);
309 	put_cpu();
310 
311 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
312 
313 	/*
314 	 * All lazily updated registers will be reloaded from VMCS12 on both
315 	 * vmentry and vmexit.
316 	 */
317 	vcpu->arch.regs_dirty = 0;
318 }
319 
320 /*
321  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
322  * just stops using VMX.
323  */
324 static void free_nested(struct kvm_vcpu *vcpu)
325 {
326 	struct vcpu_vmx *vmx = to_vmx(vcpu);
327 
328 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
329 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
330 
331 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
332 		return;
333 
334 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
335 
336 	vmx->nested.vmxon = false;
337 	vmx->nested.smm.vmxon = false;
338 	vmx->nested.vmxon_ptr = INVALID_GPA;
339 	free_vpid(vmx->nested.vpid02);
340 	vmx->nested.posted_intr_nv = -1;
341 	vmx->nested.current_vmptr = INVALID_GPA;
342 	if (enable_shadow_vmcs) {
343 		vmx_disable_shadow_vmcs(vmx);
344 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
345 		free_vmcs(vmx->vmcs01.shadow_vmcs);
346 		vmx->vmcs01.shadow_vmcs = NULL;
347 	}
348 	kfree(vmx->nested.cached_vmcs12);
349 	vmx->nested.cached_vmcs12 = NULL;
350 	kfree(vmx->nested.cached_shadow_vmcs12);
351 	vmx->nested.cached_shadow_vmcs12 = NULL;
352 	/*
353 	 * Unpin physical memory we referred to in the vmcs02.  The APIC access
354 	 * page's backing page (yeah, confusing) shouldn't actually be accessed,
355 	 * and if it is written, the contents are irrelevant.
356 	 */
357 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
358 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
359 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
360 	vmx->nested.pi_desc = NULL;
361 
362 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
363 
364 	nested_release_evmcs(vcpu);
365 
366 	free_loaded_vmcs(&vmx->nested.vmcs02);
367 }
368 
369 /*
370  * Ensure that the current vmcs of the logical processor is the
371  * vmcs01 of the vcpu before calling free_nested().
372  */
373 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
374 {
375 	vcpu_load(vcpu);
376 	vmx_leave_nested(vcpu);
377 	vcpu_put(vcpu);
378 }
379 
380 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
381 
382 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
383 {
384 	return VALID_PAGE(root_hpa) &&
385 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
386 }
387 
388 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
389 				       gpa_t addr)
390 {
391 	unsigned long roots = 0;
392 	uint i;
393 	struct kvm_mmu_root_info *cached_root;
394 
395 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
396 
397 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
398 		cached_root = &vcpu->arch.mmu->prev_roots[i];
399 
400 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
401 					    eptp))
402 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
403 	}
404 	if (roots)
405 		kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
406 }
407 
408 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
409 		struct x86_exception *fault)
410 {
411 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
412 	struct vcpu_vmx *vmx = to_vmx(vcpu);
413 	unsigned long exit_qualification;
414 	u32 vm_exit_reason;
415 
416 	if (vmx->nested.pml_full) {
417 		vm_exit_reason = EXIT_REASON_PML_FULL;
418 		vmx->nested.pml_full = false;
419 
420 		/*
421 		 * It should be impossible to trigger a nested PML Full VM-Exit
422 		 * for anything other than an EPT Violation from L2.  KVM *can*
423 		 * trigger nEPT page fault injection in response to an EPT
424 		 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
425 		 * tables also changed, but KVM should not treat EPT Misconfig
426 		 * VM-Exits as writes.
427 		 */
428 		WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
429 
430 		/*
431 		 * PML Full and EPT Violation VM-Exits both use bit 12 to report
432 		 * "NMI unblocking due to IRET", i.e. the bit can be propagated
433 		 * as-is from the original EXIT_QUALIFICATION.
434 		 */
435 		exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
436 	} else {
437 		if (fault->error_code & PFERR_RSVD_MASK) {
438 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
439 			exit_qualification = 0;
440 		} else {
441 			exit_qualification = fault->exit_qualification;
442 			exit_qualification |= vmx_get_exit_qual(vcpu) &
443 					      (EPT_VIOLATION_GVA_IS_VALID |
444 					       EPT_VIOLATION_GVA_TRANSLATED);
445 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
446 		}
447 
448 		/*
449 		 * Although the caller (kvm_inject_emulated_page_fault) would
450 		 * have already synced the faulting address in the shadow EPT
451 		 * tables for the current EPTP12, we also need to sync it for
452 		 * any other cached EPTP02s based on the same EP4TA, since the
453 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
454 		 */
455 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
456 					   fault->address);
457 	}
458 
459 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
460 	vmcs12->guest_physical_address = fault->address;
461 }
462 
463 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
464 {
465 	struct vcpu_vmx *vmx = to_vmx(vcpu);
466 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
467 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
468 
469 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
470 				nested_ept_ad_enabled(vcpu),
471 				nested_ept_get_eptp(vcpu));
472 }
473 
474 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
475 {
476 	WARN_ON(mmu_is_nested(vcpu));
477 
478 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
479 	nested_ept_new_eptp(vcpu);
480 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
481 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
482 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
483 
484 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
485 }
486 
487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
488 {
489 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
490 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
491 }
492 
493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
494 					    u16 error_code)
495 {
496 	bool inequality, bit;
497 
498 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
499 	inequality =
500 		(error_code & vmcs12->page_fault_error_code_mask) !=
501 		 vmcs12->page_fault_error_code_match;
502 	return inequality ^ bit;
503 }
504 
505 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
506 					   u32 error_code)
507 {
508 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
509 
510 	/*
511 	 * Drop bits 31:16 of the error code when performing the #PF mask+match
512 	 * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
513 	 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
514 	 * error code.  Including the to-be-dropped bits in the check might
515 	 * result in an "impossible" or missed exit from L1's perspective.
516 	 */
517 	if (vector == PF_VECTOR)
518 		return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
519 
520 	return (vmcs12->exception_bitmap & (1u << vector));
521 }
522 
523 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
524 					       struct vmcs12 *vmcs12)
525 {
526 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
527 		return 0;
528 
529 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
530 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
531 		return -EINVAL;
532 
533 	return 0;
534 }
535 
536 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
537 						struct vmcs12 *vmcs12)
538 {
539 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
540 		return 0;
541 
542 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
543 		return -EINVAL;
544 
545 	return 0;
546 }
547 
548 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
549 						struct vmcs12 *vmcs12)
550 {
551 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
552 		return 0;
553 
554 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
555 		return -EINVAL;
556 
557 	return 0;
558 }
559 
560 /*
561  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
562  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
563  * only the "disable intercept" case needs to be handled.
564  */
565 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
566 							unsigned long *msr_bitmap_l0,
567 							u32 msr, int type)
568 {
569 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
570 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
571 
572 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
573 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
574 }
575 
576 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
577 {
578 	int msr;
579 
580 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
581 		unsigned word = msr / BITS_PER_LONG;
582 
583 		msr_bitmap[word] = ~0;
584 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
585 	}
586 }
587 
588 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
589 static inline									\
590 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
591 					 unsigned long *msr_bitmap_l1,		\
592 					 unsigned long *msr_bitmap_l0, u32 msr)	\
593 {										\
594 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
595 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
596 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
597 	else									\
598 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
599 }
600 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
601 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
602 
603 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
604 						    unsigned long *msr_bitmap_l1,
605 						    unsigned long *msr_bitmap_l0,
606 						    u32 msr, int types)
607 {
608 	if (types & MSR_TYPE_R)
609 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
610 						  msr_bitmap_l0, msr);
611 	if (types & MSR_TYPE_W)
612 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
613 						   msr_bitmap_l0, msr);
614 }
615 
616 /*
617  * Merge L0's and L1's MSR bitmap, return false to indicate that
618  * we do not use the hardware.
619  */
620 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
621 						 struct vmcs12 *vmcs12)
622 {
623 	struct vcpu_vmx *vmx = to_vmx(vcpu);
624 	int msr;
625 	unsigned long *msr_bitmap_l1;
626 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
627 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
628 
629 	/* Nothing to do if the MSR bitmap is not in use.  */
630 	if (!cpu_has_vmx_msr_bitmap() ||
631 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
632 		return false;
633 
634 	/*
635 	 * MSR bitmap update can be skipped when:
636 	 * - MSR bitmap for L1 hasn't changed.
637 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
638 	 *   before.
639 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
640 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
641 	 */
642 	if (!vmx->nested.force_msr_bitmap_recalc) {
643 		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
644 
645 		if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
646 		    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
647 			return true;
648 	}
649 
650 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
651 		return false;
652 
653 	msr_bitmap_l1 = (unsigned long *)map->hva;
654 
655 	/*
656 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
657 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
658 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
659 	 */
660 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
661 
662 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
663 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
664 			/*
665 			 * L0 need not intercept reads for MSRs between 0x800
666 			 * and 0x8ff, it just lets the processor take the value
667 			 * from the virtual-APIC page; take those 256 bits
668 			 * directly from the L1 bitmap.
669 			 */
670 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
671 				unsigned word = msr / BITS_PER_LONG;
672 
673 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
674 			}
675 		}
676 
677 		nested_vmx_disable_intercept_for_x2apic_msr(
678 			msr_bitmap_l1, msr_bitmap_l0,
679 			X2APIC_MSR(APIC_TASKPRI),
680 			MSR_TYPE_R | MSR_TYPE_W);
681 
682 		if (nested_cpu_has_vid(vmcs12)) {
683 			nested_vmx_disable_intercept_for_x2apic_msr(
684 				msr_bitmap_l1, msr_bitmap_l0,
685 				X2APIC_MSR(APIC_EOI),
686 				MSR_TYPE_W);
687 			nested_vmx_disable_intercept_for_x2apic_msr(
688 				msr_bitmap_l1, msr_bitmap_l0,
689 				X2APIC_MSR(APIC_SELF_IPI),
690 				MSR_TYPE_W);
691 		}
692 	}
693 
694 	/*
695 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
696 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
697 	 */
698 #ifdef CONFIG_X86_64
699 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
700 					 MSR_FS_BASE, MSR_TYPE_RW);
701 
702 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
703 					 MSR_GS_BASE, MSR_TYPE_RW);
704 
705 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
706 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
707 #endif
708 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
709 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
710 
711 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
712 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
713 
714 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
715 					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
716 
717 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
718 
719 	vmx->nested.force_msr_bitmap_recalc = false;
720 
721 	return true;
722 }
723 
724 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
725 				       struct vmcs12 *vmcs12)
726 {
727 	struct vcpu_vmx *vmx = to_vmx(vcpu);
728 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
729 
730 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
731 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
732 		return;
733 
734 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
735 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
736 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
737 		return;
738 
739 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
740 			      VMCS12_SIZE);
741 }
742 
743 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
744 					      struct vmcs12 *vmcs12)
745 {
746 	struct vcpu_vmx *vmx = to_vmx(vcpu);
747 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
748 
749 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
750 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
751 		return;
752 
753 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
754 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
755 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
756 		return;
757 
758 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
759 			       VMCS12_SIZE);
760 }
761 
762 /*
763  * In nested virtualization, check if L1 has set
764  * VM_EXIT_ACK_INTR_ON_EXIT
765  */
766 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
767 {
768 	return get_vmcs12(vcpu)->vm_exit_controls &
769 		VM_EXIT_ACK_INTR_ON_EXIT;
770 }
771 
772 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
773 					  struct vmcs12 *vmcs12)
774 {
775 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
776 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
777 		return -EINVAL;
778 	else
779 		return 0;
780 }
781 
782 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
783 					   struct vmcs12 *vmcs12)
784 {
785 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
786 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
787 	    !nested_cpu_has_vid(vmcs12) &&
788 	    !nested_cpu_has_posted_intr(vmcs12))
789 		return 0;
790 
791 	/*
792 	 * If virtualize x2apic mode is enabled,
793 	 * virtualize apic access must be disabled.
794 	 */
795 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
796 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
797 		return -EINVAL;
798 
799 	/*
800 	 * If virtual interrupt delivery is enabled,
801 	 * we must exit on external interrupts.
802 	 */
803 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
804 		return -EINVAL;
805 
806 	/*
807 	 * bits 15:8 should be zero in posted_intr_nv,
808 	 * the descriptor address has been already checked
809 	 * in nested_get_vmcs12_pages.
810 	 *
811 	 * bits 5:0 of posted_intr_desc_addr should be zero.
812 	 */
813 	if (nested_cpu_has_posted_intr(vmcs12) &&
814 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
815 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
816 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
817 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
818 		return -EINVAL;
819 
820 	/* tpr shadow is needed by all apicv features. */
821 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
822 		return -EINVAL;
823 
824 	return 0;
825 }
826 
827 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
828 				       u32 count, u64 addr)
829 {
830 	if (count == 0)
831 		return 0;
832 
833 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
834 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
835 		return -EINVAL;
836 
837 	return 0;
838 }
839 
840 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
841 						     struct vmcs12 *vmcs12)
842 {
843 	if (CC(nested_vmx_check_msr_switch(vcpu,
844 					   vmcs12->vm_exit_msr_load_count,
845 					   vmcs12->vm_exit_msr_load_addr)) ||
846 	    CC(nested_vmx_check_msr_switch(vcpu,
847 					   vmcs12->vm_exit_msr_store_count,
848 					   vmcs12->vm_exit_msr_store_addr)))
849 		return -EINVAL;
850 
851 	return 0;
852 }
853 
854 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
855                                                       struct vmcs12 *vmcs12)
856 {
857 	if (CC(nested_vmx_check_msr_switch(vcpu,
858 					   vmcs12->vm_entry_msr_load_count,
859 					   vmcs12->vm_entry_msr_load_addr)))
860                 return -EINVAL;
861 
862 	return 0;
863 }
864 
865 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
866 					 struct vmcs12 *vmcs12)
867 {
868 	if (!nested_cpu_has_pml(vmcs12))
869 		return 0;
870 
871 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
872 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
873 		return -EINVAL;
874 
875 	return 0;
876 }
877 
878 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
879 							struct vmcs12 *vmcs12)
880 {
881 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
882 	       !nested_cpu_has_ept(vmcs12)))
883 		return -EINVAL;
884 	return 0;
885 }
886 
887 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
888 							 struct vmcs12 *vmcs12)
889 {
890 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
891 	       !nested_cpu_has_ept(vmcs12)))
892 		return -EINVAL;
893 	return 0;
894 }
895 
896 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
897 						 struct vmcs12 *vmcs12)
898 {
899 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
900 		return 0;
901 
902 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
903 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
904 		return -EINVAL;
905 
906 	return 0;
907 }
908 
909 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
910 				       struct vmx_msr_entry *e)
911 {
912 	/* x2APIC MSR accesses are not allowed */
913 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
914 		return -EINVAL;
915 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
916 	    CC(e->index == MSR_IA32_UCODE_REV))
917 		return -EINVAL;
918 	if (CC(e->reserved != 0))
919 		return -EINVAL;
920 	return 0;
921 }
922 
923 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
924 				     struct vmx_msr_entry *e)
925 {
926 	if (CC(e->index == MSR_FS_BASE) ||
927 	    CC(e->index == MSR_GS_BASE) ||
928 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
929 	    nested_vmx_msr_check_common(vcpu, e))
930 		return -EINVAL;
931 	return 0;
932 }
933 
934 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
935 				      struct vmx_msr_entry *e)
936 {
937 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
938 	    nested_vmx_msr_check_common(vcpu, e))
939 		return -EINVAL;
940 	return 0;
941 }
942 
943 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
944 {
945 	struct vcpu_vmx *vmx = to_vmx(vcpu);
946 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
947 				       vmx->nested.msrs.misc_high);
948 
949 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
950 }
951 
952 /*
953  * Load guest's/host's msr at nested entry/exit.
954  * return 0 for success, entry index for failure.
955  *
956  * One of the failure modes for MSR load/store is when a list exceeds the
957  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
958  * as possible, process all valid entries before failing rather than precheck
959  * for a capacity violation.
960  */
961 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
962 {
963 	u32 i;
964 	struct vmx_msr_entry e;
965 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
966 
967 	for (i = 0; i < count; i++) {
968 		if (unlikely(i >= max_msr_list_size))
969 			goto fail;
970 
971 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
972 					&e, sizeof(e))) {
973 			pr_debug_ratelimited(
974 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
975 				__func__, i, gpa + i * sizeof(e));
976 			goto fail;
977 		}
978 		if (nested_vmx_load_msr_check(vcpu, &e)) {
979 			pr_debug_ratelimited(
980 				"%s check failed (%u, 0x%x, 0x%x)\n",
981 				__func__, i, e.index, e.reserved);
982 			goto fail;
983 		}
984 		if (kvm_set_msr(vcpu, e.index, e.value)) {
985 			pr_debug_ratelimited(
986 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
987 				__func__, i, e.index, e.value);
988 			goto fail;
989 		}
990 	}
991 	return 0;
992 fail:
993 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
994 	return i + 1;
995 }
996 
997 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
998 					    u32 msr_index,
999 					    u64 *data)
1000 {
1001 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1002 
1003 	/*
1004 	 * If the L0 hypervisor stored a more accurate value for the TSC that
1005 	 * does not include the time taken for emulation of the L2->L1
1006 	 * VM-exit in L0, use the more accurate value.
1007 	 */
1008 	if (msr_index == MSR_IA32_TSC) {
1009 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1010 						    MSR_IA32_TSC);
1011 
1012 		if (i >= 0) {
1013 			u64 val = vmx->msr_autostore.guest.val[i].value;
1014 
1015 			*data = kvm_read_l1_tsc(vcpu, val);
1016 			return true;
1017 		}
1018 	}
1019 
1020 	if (kvm_get_msr(vcpu, msr_index, data)) {
1021 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1022 			msr_index);
1023 		return false;
1024 	}
1025 	return true;
1026 }
1027 
1028 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1029 				     struct vmx_msr_entry *e)
1030 {
1031 	if (kvm_vcpu_read_guest(vcpu,
1032 				gpa + i * sizeof(*e),
1033 				e, 2 * sizeof(u32))) {
1034 		pr_debug_ratelimited(
1035 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1036 			__func__, i, gpa + i * sizeof(*e));
1037 		return false;
1038 	}
1039 	if (nested_vmx_store_msr_check(vcpu, e)) {
1040 		pr_debug_ratelimited(
1041 			"%s check failed (%u, 0x%x, 0x%x)\n",
1042 			__func__, i, e->index, e->reserved);
1043 		return false;
1044 	}
1045 	return true;
1046 }
1047 
1048 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1049 {
1050 	u64 data;
1051 	u32 i;
1052 	struct vmx_msr_entry e;
1053 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1054 
1055 	for (i = 0; i < count; i++) {
1056 		if (unlikely(i >= max_msr_list_size))
1057 			return -EINVAL;
1058 
1059 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060 			return -EINVAL;
1061 
1062 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1063 			return -EINVAL;
1064 
1065 		if (kvm_vcpu_write_guest(vcpu,
1066 					 gpa + i * sizeof(e) +
1067 					     offsetof(struct vmx_msr_entry, value),
1068 					 &data, sizeof(data))) {
1069 			pr_debug_ratelimited(
1070 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1071 				__func__, i, e.index, data);
1072 			return -EINVAL;
1073 		}
1074 	}
1075 	return 0;
1076 }
1077 
1078 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1079 {
1080 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1081 	u32 count = vmcs12->vm_exit_msr_store_count;
1082 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1083 	struct vmx_msr_entry e;
1084 	u32 i;
1085 
1086 	for (i = 0; i < count; i++) {
1087 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1088 			return false;
1089 
1090 		if (e.index == msr_index)
1091 			return true;
1092 	}
1093 	return false;
1094 }
1095 
1096 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1097 					   u32 msr_index)
1098 {
1099 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1100 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1101 	bool in_vmcs12_store_list;
1102 	int msr_autostore_slot;
1103 	bool in_autostore_list;
1104 	int last;
1105 
1106 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1107 	in_autostore_list = msr_autostore_slot >= 0;
1108 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1109 
1110 	if (in_vmcs12_store_list && !in_autostore_list) {
1111 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1112 			/*
1113 			 * Emulated VMEntry does not fail here.  Instead a less
1114 			 * accurate value will be returned by
1115 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1116 			 * instead of reading the value from the vmcs02 VMExit
1117 			 * MSR-store area.
1118 			 */
1119 			pr_warn_ratelimited(
1120 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1121 				msr_index);
1122 			return;
1123 		}
1124 		last = autostore->nr++;
1125 		autostore->val[last].index = msr_index;
1126 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1127 		last = --autostore->nr;
1128 		autostore->val[msr_autostore_slot] = autostore->val[last];
1129 	}
1130 }
1131 
1132 /*
1133  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1134  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1135  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1136  * @entry_failure_code.
1137  */
1138 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1139 			       bool nested_ept, bool reload_pdptrs,
1140 			       enum vm_entry_failure_code *entry_failure_code)
1141 {
1142 	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1143 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1144 		return -EINVAL;
1145 	}
1146 
1147 	/*
1148 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1149 	 * must not be dereferenced.
1150 	 */
1151 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1152 	    CC(!load_pdptrs(vcpu, cr3))) {
1153 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1154 		return -EINVAL;
1155 	}
1156 
1157 	vcpu->arch.cr3 = cr3;
1158 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1159 
1160 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1161 	kvm_init_mmu(vcpu);
1162 
1163 	if (!nested_ept)
1164 		kvm_mmu_new_pgd(vcpu, cr3);
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Returns if KVM is able to config CPU to tag TLB entries
1171  * populated by L2 differently than TLB entries populated
1172  * by L1.
1173  *
1174  * If L0 uses EPT, L1 and L2 run with different EPTP because
1175  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1176  * are tagged with different EPTP.
1177  *
1178  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1179  * with different VPID (L1 entries are tagged with vmx->vpid
1180  * while L2 entries are tagged with vmx->nested.vpid02).
1181  */
1182 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1183 {
1184 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1185 
1186 	return enable_ept ||
1187 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1188 }
1189 
1190 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1191 					    struct vmcs12 *vmcs12,
1192 					    bool is_vmenter)
1193 {
1194 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1195 
1196 	/* Handle pending Hyper-V TLB flush requests */
1197 	kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1198 
1199 	/*
1200 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1201 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1202 	 * full TLB flush from the guest's perspective.  This is required even
1203 	 * if VPID is disabled in the host as KVM may need to synchronize the
1204 	 * MMU in response to the guest TLB flush.
1205 	 *
1206 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1207 	 * EPT is a special snowflake, as guest-physical mappings aren't
1208 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1209 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1210 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1211 	 * those mappings.
1212 	 */
1213 	if (!nested_cpu_has_vpid(vmcs12)) {
1214 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1215 		return;
1216 	}
1217 
1218 	/* L2 should never have a VPID if VPID is disabled. */
1219 	WARN_ON(!enable_vpid);
1220 
1221 	/*
1222 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1223 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1224 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1225 	 * that the new vpid12 has never been used and thus represents a new
1226 	 * guest ASID that cannot have entries in the TLB.
1227 	 */
1228 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1229 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1230 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1231 		return;
1232 	}
1233 
1234 	/*
1235 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1236 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1237 	 * KVM was unable to allocate a VPID for L2, flush the current context
1238 	 * as the effective ASID is common to both L1 and L2.
1239 	 */
1240 	if (!nested_has_guest_tlb_tag(vcpu))
1241 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1242 }
1243 
1244 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1245 {
1246 	superset &= mask;
1247 	subset &= mask;
1248 
1249 	return (superset | subset) == superset;
1250 }
1251 
1252 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1253 {
1254 	const u64 feature_and_reserved =
1255 		/* feature (except bit 48; see below) */
1256 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1257 		/* reserved */
1258 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1259 	u64 vmx_basic = vmcs_config.nested.basic;
1260 
1261 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1262 		return -EINVAL;
1263 
1264 	/*
1265 	 * KVM does not emulate a version of VMX that constrains physical
1266 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1267 	 */
1268 	if (data & BIT_ULL(48))
1269 		return -EINVAL;
1270 
1271 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1272 	    vmx_basic_vmcs_revision_id(data))
1273 		return -EINVAL;
1274 
1275 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1276 		return -EINVAL;
1277 
1278 	vmx->nested.msrs.basic = data;
1279 	return 0;
1280 }
1281 
1282 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1283 				u32 **low, u32 **high)
1284 {
1285 	switch (msr_index) {
1286 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1287 		*low = &msrs->pinbased_ctls_low;
1288 		*high = &msrs->pinbased_ctls_high;
1289 		break;
1290 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1291 		*low = &msrs->procbased_ctls_low;
1292 		*high = &msrs->procbased_ctls_high;
1293 		break;
1294 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1295 		*low = &msrs->exit_ctls_low;
1296 		*high = &msrs->exit_ctls_high;
1297 		break;
1298 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1299 		*low = &msrs->entry_ctls_low;
1300 		*high = &msrs->entry_ctls_high;
1301 		break;
1302 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1303 		*low = &msrs->secondary_ctls_low;
1304 		*high = &msrs->secondary_ctls_high;
1305 		break;
1306 	default:
1307 		BUG();
1308 	}
1309 }
1310 
1311 static int
1312 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1313 {
1314 	u32 *lowp, *highp;
1315 	u64 supported;
1316 
1317 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1318 
1319 	supported = vmx_control_msr(*lowp, *highp);
1320 
1321 	/* Check must-be-1 bits are still 1. */
1322 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1323 		return -EINVAL;
1324 
1325 	/* Check must-be-0 bits are still 0. */
1326 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1327 		return -EINVAL;
1328 
1329 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1330 	*lowp = data;
1331 	*highp = data >> 32;
1332 	return 0;
1333 }
1334 
1335 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1336 {
1337 	const u64 feature_and_reserved_bits =
1338 		/* feature */
1339 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1340 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1341 		/* reserved */
1342 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1343 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1344 				       vmcs_config.nested.misc_high);
1345 
1346 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1347 		return -EINVAL;
1348 
1349 	if ((vmx->nested.msrs.pinbased_ctls_high &
1350 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1351 	    vmx_misc_preemption_timer_rate(data) !=
1352 	    vmx_misc_preemption_timer_rate(vmx_misc))
1353 		return -EINVAL;
1354 
1355 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1356 		return -EINVAL;
1357 
1358 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1359 		return -EINVAL;
1360 
1361 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1362 		return -EINVAL;
1363 
1364 	vmx->nested.msrs.misc_low = data;
1365 	vmx->nested.msrs.misc_high = data >> 32;
1366 
1367 	return 0;
1368 }
1369 
1370 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1371 {
1372 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1373 					       vmcs_config.nested.vpid_caps);
1374 
1375 	/* Every bit is either reserved or a feature bit. */
1376 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1377 		return -EINVAL;
1378 
1379 	vmx->nested.msrs.ept_caps = data;
1380 	vmx->nested.msrs.vpid_caps = data >> 32;
1381 	return 0;
1382 }
1383 
1384 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1385 {
1386 	switch (msr_index) {
1387 	case MSR_IA32_VMX_CR0_FIXED0:
1388 		return &msrs->cr0_fixed0;
1389 	case MSR_IA32_VMX_CR4_FIXED0:
1390 		return &msrs->cr4_fixed0;
1391 	default:
1392 		BUG();
1393 	}
1394 }
1395 
1396 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1397 {
1398 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1399 
1400 	/*
1401 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1402 	 * must be 1 in the restored value.
1403 	 */
1404 	if (!is_bitwise_subset(data, *msr, -1ULL))
1405 		return -EINVAL;
1406 
1407 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1408 	return 0;
1409 }
1410 
1411 /*
1412  * Called when userspace is restoring VMX MSRs.
1413  *
1414  * Returns 0 on success, non-0 otherwise.
1415  */
1416 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1417 {
1418 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1419 
1420 	/*
1421 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1422 	 * is in VMX operation.
1423 	 */
1424 	if (vmx->nested.vmxon)
1425 		return -EBUSY;
1426 
1427 	switch (msr_index) {
1428 	case MSR_IA32_VMX_BASIC:
1429 		return vmx_restore_vmx_basic(vmx, data);
1430 	case MSR_IA32_VMX_PINBASED_CTLS:
1431 	case MSR_IA32_VMX_PROCBASED_CTLS:
1432 	case MSR_IA32_VMX_EXIT_CTLS:
1433 	case MSR_IA32_VMX_ENTRY_CTLS:
1434 		/*
1435 		 * The "non-true" VMX capability MSRs are generated from the
1436 		 * "true" MSRs, so we do not support restoring them directly.
1437 		 *
1438 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1439 		 * should restore the "true" MSRs with the must-be-1 bits
1440 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1441 		 * DEFAULT SETTINGS".
1442 		 */
1443 		return -EINVAL;
1444 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1445 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1446 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1447 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1448 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1449 		return vmx_restore_control_msr(vmx, msr_index, data);
1450 	case MSR_IA32_VMX_MISC:
1451 		return vmx_restore_vmx_misc(vmx, data);
1452 	case MSR_IA32_VMX_CR0_FIXED0:
1453 	case MSR_IA32_VMX_CR4_FIXED0:
1454 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1455 	case MSR_IA32_VMX_CR0_FIXED1:
1456 	case MSR_IA32_VMX_CR4_FIXED1:
1457 		/*
1458 		 * These MSRs are generated based on the vCPU's CPUID, so we
1459 		 * do not support restoring them directly.
1460 		 */
1461 		return -EINVAL;
1462 	case MSR_IA32_VMX_EPT_VPID_CAP:
1463 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1464 	case MSR_IA32_VMX_VMCS_ENUM:
1465 		vmx->nested.msrs.vmcs_enum = data;
1466 		return 0;
1467 	case MSR_IA32_VMX_VMFUNC:
1468 		if (data & ~vmcs_config.nested.vmfunc_controls)
1469 			return -EINVAL;
1470 		vmx->nested.msrs.vmfunc_controls = data;
1471 		return 0;
1472 	default:
1473 		/*
1474 		 * The rest of the VMX capability MSRs do not support restore.
1475 		 */
1476 		return -EINVAL;
1477 	}
1478 }
1479 
1480 /* Returns 0 on success, non-0 otherwise. */
1481 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1482 {
1483 	switch (msr_index) {
1484 	case MSR_IA32_VMX_BASIC:
1485 		*pdata = msrs->basic;
1486 		break;
1487 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1488 	case MSR_IA32_VMX_PINBASED_CTLS:
1489 		*pdata = vmx_control_msr(
1490 			msrs->pinbased_ctls_low,
1491 			msrs->pinbased_ctls_high);
1492 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1493 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1494 		break;
1495 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1496 	case MSR_IA32_VMX_PROCBASED_CTLS:
1497 		*pdata = vmx_control_msr(
1498 			msrs->procbased_ctls_low,
1499 			msrs->procbased_ctls_high);
1500 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1501 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1502 		break;
1503 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1504 	case MSR_IA32_VMX_EXIT_CTLS:
1505 		*pdata = vmx_control_msr(
1506 			msrs->exit_ctls_low,
1507 			msrs->exit_ctls_high);
1508 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1509 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1510 		break;
1511 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1512 	case MSR_IA32_VMX_ENTRY_CTLS:
1513 		*pdata = vmx_control_msr(
1514 			msrs->entry_ctls_low,
1515 			msrs->entry_ctls_high);
1516 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1517 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1518 		break;
1519 	case MSR_IA32_VMX_MISC:
1520 		*pdata = vmx_control_msr(
1521 			msrs->misc_low,
1522 			msrs->misc_high);
1523 		break;
1524 	case MSR_IA32_VMX_CR0_FIXED0:
1525 		*pdata = msrs->cr0_fixed0;
1526 		break;
1527 	case MSR_IA32_VMX_CR0_FIXED1:
1528 		*pdata = msrs->cr0_fixed1;
1529 		break;
1530 	case MSR_IA32_VMX_CR4_FIXED0:
1531 		*pdata = msrs->cr4_fixed0;
1532 		break;
1533 	case MSR_IA32_VMX_CR4_FIXED1:
1534 		*pdata = msrs->cr4_fixed1;
1535 		break;
1536 	case MSR_IA32_VMX_VMCS_ENUM:
1537 		*pdata = msrs->vmcs_enum;
1538 		break;
1539 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1540 		*pdata = vmx_control_msr(
1541 			msrs->secondary_ctls_low,
1542 			msrs->secondary_ctls_high);
1543 		break;
1544 	case MSR_IA32_VMX_EPT_VPID_CAP:
1545 		*pdata = msrs->ept_caps |
1546 			((u64)msrs->vpid_caps << 32);
1547 		break;
1548 	case MSR_IA32_VMX_VMFUNC:
1549 		*pdata = msrs->vmfunc_controls;
1550 		break;
1551 	default:
1552 		return 1;
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1560  * been modified by the L1 guest.  Note, "writable" in this context means
1561  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1562  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1563  * VM-exit information fields (which are actually writable if the vCPU is
1564  * configured to support "VMWRITE to any supported field in the VMCS").
1565  */
1566 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1567 {
1568 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1569 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1570 	struct shadow_vmcs_field field;
1571 	unsigned long val;
1572 	int i;
1573 
1574 	if (WARN_ON(!shadow_vmcs))
1575 		return;
1576 
1577 	preempt_disable();
1578 
1579 	vmcs_load(shadow_vmcs);
1580 
1581 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1582 		field = shadow_read_write_fields[i];
1583 		val = __vmcs_readl(field.encoding);
1584 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1585 	}
1586 
1587 	vmcs_clear(shadow_vmcs);
1588 	vmcs_load(vmx->loaded_vmcs->vmcs);
1589 
1590 	preempt_enable();
1591 }
1592 
1593 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1594 {
1595 	const struct shadow_vmcs_field *fields[] = {
1596 		shadow_read_write_fields,
1597 		shadow_read_only_fields
1598 	};
1599 	const int max_fields[] = {
1600 		max_shadow_read_write_fields,
1601 		max_shadow_read_only_fields
1602 	};
1603 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1604 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1605 	struct shadow_vmcs_field field;
1606 	unsigned long val;
1607 	int i, q;
1608 
1609 	if (WARN_ON(!shadow_vmcs))
1610 		return;
1611 
1612 	vmcs_load(shadow_vmcs);
1613 
1614 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1615 		for (i = 0; i < max_fields[q]; i++) {
1616 			field = fields[q][i];
1617 			val = vmcs12_read_any(vmcs12, field.encoding,
1618 					      field.offset);
1619 			__vmcs_writel(field.encoding, val);
1620 		}
1621 	}
1622 
1623 	vmcs_clear(shadow_vmcs);
1624 	vmcs_load(vmx->loaded_vmcs->vmcs);
1625 }
1626 
1627 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1628 {
1629 #ifdef CONFIG_KVM_HYPERV
1630 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1631 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1632 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1633 
1634 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1635 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1636 	vmcs12->guest_rip = evmcs->guest_rip;
1637 
1638 	if (unlikely(!(hv_clean_fields &
1639 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1640 		hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1641 		hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1642 		hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1643 	}
1644 
1645 	if (unlikely(!(hv_clean_fields &
1646 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1647 		vmcs12->guest_rsp = evmcs->guest_rsp;
1648 		vmcs12->guest_rflags = evmcs->guest_rflags;
1649 		vmcs12->guest_interruptibility_info =
1650 			evmcs->guest_interruptibility_info;
1651 		/*
1652 		 * Not present in struct vmcs12:
1653 		 * vmcs12->guest_ssp = evmcs->guest_ssp;
1654 		 */
1655 	}
1656 
1657 	if (unlikely(!(hv_clean_fields &
1658 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1659 		vmcs12->cpu_based_vm_exec_control =
1660 			evmcs->cpu_based_vm_exec_control;
1661 	}
1662 
1663 	if (unlikely(!(hv_clean_fields &
1664 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1665 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1666 	}
1667 
1668 	if (unlikely(!(hv_clean_fields &
1669 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1670 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1671 	}
1672 
1673 	if (unlikely(!(hv_clean_fields &
1674 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1675 		vmcs12->vm_entry_intr_info_field =
1676 			evmcs->vm_entry_intr_info_field;
1677 		vmcs12->vm_entry_exception_error_code =
1678 			evmcs->vm_entry_exception_error_code;
1679 		vmcs12->vm_entry_instruction_len =
1680 			evmcs->vm_entry_instruction_len;
1681 	}
1682 
1683 	if (unlikely(!(hv_clean_fields &
1684 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1685 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1686 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1687 		vmcs12->host_cr0 = evmcs->host_cr0;
1688 		vmcs12->host_cr3 = evmcs->host_cr3;
1689 		vmcs12->host_cr4 = evmcs->host_cr4;
1690 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1691 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1692 		vmcs12->host_rip = evmcs->host_rip;
1693 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1694 		vmcs12->host_es_selector = evmcs->host_es_selector;
1695 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1696 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1697 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1698 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1699 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1700 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1701 		vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1702 		/*
1703 		 * Not present in struct vmcs12:
1704 		 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1705 		 * vmcs12->host_ssp = evmcs->host_ssp;
1706 		 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1707 		 */
1708 	}
1709 
1710 	if (unlikely(!(hv_clean_fields &
1711 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1712 		vmcs12->pin_based_vm_exec_control =
1713 			evmcs->pin_based_vm_exec_control;
1714 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1715 		vmcs12->secondary_vm_exec_control =
1716 			evmcs->secondary_vm_exec_control;
1717 	}
1718 
1719 	if (unlikely(!(hv_clean_fields &
1720 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1721 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1722 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1723 	}
1724 
1725 	if (unlikely(!(hv_clean_fields &
1726 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1727 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1728 	}
1729 
1730 	if (unlikely(!(hv_clean_fields &
1731 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1732 		vmcs12->guest_es_base = evmcs->guest_es_base;
1733 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1734 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1735 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1736 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1737 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1738 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1739 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1740 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1741 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1742 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1743 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1744 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1745 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1746 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1747 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1748 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1749 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1750 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1751 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1752 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1753 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1754 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1755 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1756 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1757 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1758 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1759 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1760 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1761 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1762 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1763 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1764 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1765 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1766 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1767 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1768 	}
1769 
1770 	if (unlikely(!(hv_clean_fields &
1771 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1772 		vmcs12->tsc_offset = evmcs->tsc_offset;
1773 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1774 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1775 		vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1776 		vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1777 	}
1778 
1779 	if (unlikely(!(hv_clean_fields &
1780 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1781 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1782 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1783 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1784 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1785 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1786 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1787 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1788 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1789 	}
1790 
1791 	if (unlikely(!(hv_clean_fields &
1792 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1793 		vmcs12->host_fs_base = evmcs->host_fs_base;
1794 		vmcs12->host_gs_base = evmcs->host_gs_base;
1795 		vmcs12->host_tr_base = evmcs->host_tr_base;
1796 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1797 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1798 		vmcs12->host_rsp = evmcs->host_rsp;
1799 	}
1800 
1801 	if (unlikely(!(hv_clean_fields &
1802 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1803 		vmcs12->ept_pointer = evmcs->ept_pointer;
1804 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1805 	}
1806 
1807 	if (unlikely(!(hv_clean_fields &
1808 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1809 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1810 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1811 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1812 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1813 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1814 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1815 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1816 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1817 		vmcs12->guest_pending_dbg_exceptions =
1818 			evmcs->guest_pending_dbg_exceptions;
1819 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1820 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1821 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1822 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1823 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1824 		vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1825 		/*
1826 		 * Not present in struct vmcs12:
1827 		 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1828 		 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1829 		 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1830 		 */
1831 	}
1832 
1833 	/*
1834 	 * Not used?
1835 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1836 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1837 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1838 	 * vmcs12->page_fault_error_code_mask =
1839 	 *		evmcs->page_fault_error_code_mask;
1840 	 * vmcs12->page_fault_error_code_match =
1841 	 *		evmcs->page_fault_error_code_match;
1842 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1843 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1844 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1845 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1846 	 */
1847 
1848 	/*
1849 	 * Read only fields:
1850 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1851 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1852 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1853 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1854 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1855 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1856 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1857 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1858 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1859 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1860 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1861 	 *
1862 	 * Not present in struct vmcs12:
1863 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1864 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1865 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1866 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1867 	 */
1868 
1869 	return;
1870 #else /* CONFIG_KVM_HYPERV */
1871 	KVM_BUG_ON(1, vmx->vcpu.kvm);
1872 #endif /* CONFIG_KVM_HYPERV */
1873 }
1874 
1875 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1876 {
1877 #ifdef CONFIG_KVM_HYPERV
1878 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1879 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1880 
1881 	/*
1882 	 * Should not be changed by KVM:
1883 	 *
1884 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1885 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1886 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1887 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1888 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1889 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1890 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1891 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1892 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1893 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1894 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1895 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1896 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1897 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1898 	 * evmcs->host_rip = vmcs12->host_rip;
1899 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1900 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1901 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1902 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1903 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1904 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1905 	 * evmcs->host_rsp = vmcs12->host_rsp;
1906 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1907 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1908 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1909 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1910 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1911 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1912 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1913 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1914 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1915 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1916 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1917 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1918 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1919 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1920 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1921 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1922 	 * evmcs->page_fault_error_code_mask =
1923 	 *		vmcs12->page_fault_error_code_mask;
1924 	 * evmcs->page_fault_error_code_match =
1925 	 *		vmcs12->page_fault_error_code_match;
1926 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1927 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1928 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1929 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1930 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1931 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1932 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1933 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1934 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1935 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1936 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1937 	 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1938 	 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1939 	 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1940 	 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1941 	 *
1942 	 * Not present in struct vmcs12:
1943 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1944 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1945 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1946 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1947 	 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1948 	 * evmcs->host_ssp = vmcs12->host_ssp;
1949 	 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1950 	 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1951 	 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1952 	 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1953 	 * evmcs->guest_ssp = vmcs12->guest_ssp;
1954 	 */
1955 
1956 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1957 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1958 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1959 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1960 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1961 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1962 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1963 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1964 
1965 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1966 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1967 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1968 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1969 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1970 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1971 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1972 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1973 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1974 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1975 
1976 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1977 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1978 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1979 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1980 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1981 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1982 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1983 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1984 
1985 	evmcs->guest_es_base = vmcs12->guest_es_base;
1986 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1987 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1988 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1989 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1990 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1991 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1992 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1993 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1994 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1995 
1996 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1997 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1998 
1999 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2000 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2001 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2002 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2003 
2004 	evmcs->guest_pending_dbg_exceptions =
2005 		vmcs12->guest_pending_dbg_exceptions;
2006 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2007 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2008 
2009 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
2010 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2011 
2012 	evmcs->guest_cr0 = vmcs12->guest_cr0;
2013 	evmcs->guest_cr3 = vmcs12->guest_cr3;
2014 	evmcs->guest_cr4 = vmcs12->guest_cr4;
2015 	evmcs->guest_dr7 = vmcs12->guest_dr7;
2016 
2017 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
2018 
2019 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2020 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2021 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2022 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2023 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2024 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2025 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2026 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2027 
2028 	evmcs->exit_qualification = vmcs12->exit_qualification;
2029 
2030 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
2031 	evmcs->guest_rsp = vmcs12->guest_rsp;
2032 	evmcs->guest_rflags = vmcs12->guest_rflags;
2033 
2034 	evmcs->guest_interruptibility_info =
2035 		vmcs12->guest_interruptibility_info;
2036 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2037 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2038 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2039 	evmcs->vm_entry_exception_error_code =
2040 		vmcs12->vm_entry_exception_error_code;
2041 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2042 
2043 	evmcs->guest_rip = vmcs12->guest_rip;
2044 
2045 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2046 
2047 	return;
2048 #else /* CONFIG_KVM_HYPERV */
2049 	KVM_BUG_ON(1, vmx->vcpu.kvm);
2050 #endif /* CONFIG_KVM_HYPERV */
2051 }
2052 
2053 /*
2054  * This is an equivalent of the nested hypervisor executing the vmptrld
2055  * instruction.
2056  */
2057 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2058 	struct kvm_vcpu *vcpu, bool from_launch)
2059 {
2060 #ifdef CONFIG_KVM_HYPERV
2061 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2062 	bool evmcs_gpa_changed = false;
2063 	u64 evmcs_gpa;
2064 
2065 	if (likely(!guest_cpuid_has_evmcs(vcpu)))
2066 		return EVMPTRLD_DISABLED;
2067 
2068 	evmcs_gpa = nested_get_evmptr(vcpu);
2069 	if (!evmptr_is_valid(evmcs_gpa)) {
2070 		nested_release_evmcs(vcpu);
2071 		return EVMPTRLD_DISABLED;
2072 	}
2073 
2074 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2075 		vmx->nested.current_vmptr = INVALID_GPA;
2076 
2077 		nested_release_evmcs(vcpu);
2078 
2079 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2080 				 &vmx->nested.hv_evmcs_map))
2081 			return EVMPTRLD_ERROR;
2082 
2083 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2084 
2085 		/*
2086 		 * Currently, KVM only supports eVMCS version 1
2087 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2088 		 * value to first u32 field of eVMCS which should specify eVMCS
2089 		 * VersionNumber.
2090 		 *
2091 		 * Guest should be aware of supported eVMCS versions by host by
2092 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2093 		 * expected to set this CPUID leaf according to the value
2094 		 * returned in vmcs_version from nested_enable_evmcs().
2095 		 *
2096 		 * However, it turns out that Microsoft Hyper-V fails to comply
2097 		 * to their own invented interface: When Hyper-V use eVMCS, it
2098 		 * just sets first u32 field of eVMCS to revision_id specified
2099 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2100 		 * which is one of the supported versions specified in
2101 		 * CPUID.0x4000000A.EAX[0:15].
2102 		 *
2103 		 * To overcome Hyper-V bug, we accept here either a supported
2104 		 * eVMCS version or VMCS12 revision_id as valid values for first
2105 		 * u32 field of eVMCS.
2106 		 */
2107 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2108 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2109 			nested_release_evmcs(vcpu);
2110 			return EVMPTRLD_VMFAIL;
2111 		}
2112 
2113 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2114 
2115 		evmcs_gpa_changed = true;
2116 		/*
2117 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2118 		 * reloaded from guest's memory (read only fields, fields not
2119 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2120 		 * are no leftovers.
2121 		 */
2122 		if (from_launch) {
2123 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2124 			memset(vmcs12, 0, sizeof(*vmcs12));
2125 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2126 		}
2127 
2128 	}
2129 
2130 	/*
2131 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2132 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2133 	 */
2134 	if (from_launch || evmcs_gpa_changed) {
2135 		vmx->nested.hv_evmcs->hv_clean_fields &=
2136 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2137 
2138 		vmx->nested.force_msr_bitmap_recalc = true;
2139 	}
2140 
2141 	return EVMPTRLD_SUCCEEDED;
2142 #else
2143 	return EVMPTRLD_DISABLED;
2144 #endif
2145 }
2146 
2147 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2148 {
2149 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2150 
2151 	if (nested_vmx_is_evmptr12_valid(vmx))
2152 		copy_vmcs12_to_enlightened(vmx);
2153 	else
2154 		copy_vmcs12_to_shadow(vmx);
2155 
2156 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2157 }
2158 
2159 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2160 {
2161 	struct vcpu_vmx *vmx =
2162 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2163 
2164 	vmx->nested.preemption_timer_expired = true;
2165 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2166 	kvm_vcpu_kick(&vmx->vcpu);
2167 
2168 	return HRTIMER_NORESTART;
2169 }
2170 
2171 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2172 {
2173 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2174 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2175 
2176 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2177 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2178 
2179 	if (!vmx->nested.has_preemption_timer_deadline) {
2180 		vmx->nested.preemption_timer_deadline =
2181 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2182 		vmx->nested.has_preemption_timer_deadline = true;
2183 	}
2184 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2185 }
2186 
2187 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2188 					u64 preemption_timeout)
2189 {
2190 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2191 
2192 	/*
2193 	 * A timer value of zero is architecturally guaranteed to cause
2194 	 * a VMExit prior to executing any instructions in the guest.
2195 	 */
2196 	if (preemption_timeout == 0) {
2197 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2198 		return;
2199 	}
2200 
2201 	if (vcpu->arch.virtual_tsc_khz == 0)
2202 		return;
2203 
2204 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2205 	preemption_timeout *= 1000000;
2206 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2207 	hrtimer_start(&vmx->nested.preemption_timer,
2208 		      ktime_add_ns(ktime_get(), preemption_timeout),
2209 		      HRTIMER_MODE_ABS_PINNED);
2210 }
2211 
2212 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2213 {
2214 	if (vmx->nested.nested_run_pending &&
2215 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2216 		return vmcs12->guest_ia32_efer;
2217 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2218 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2219 	else
2220 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2221 }
2222 
2223 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2224 {
2225 	struct kvm *kvm = vmx->vcpu.kvm;
2226 
2227 	/*
2228 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2229 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2230 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2231 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2232 	 */
2233 	if (vmx->nested.vmcs02_initialized)
2234 		return;
2235 	vmx->nested.vmcs02_initialized = true;
2236 
2237 	/*
2238 	 * We don't care what the EPTP value is we just need to guarantee
2239 	 * it's valid so we don't get a false positive when doing early
2240 	 * consistency checks.
2241 	 */
2242 	if (enable_ept && nested_early_check)
2243 		vmcs_write64(EPT_POINTER,
2244 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2245 
2246 	if (vmx->ve_info)
2247 		vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2248 
2249 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2250 	if (cpu_has_vmx_vmfunc())
2251 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2252 
2253 	if (cpu_has_vmx_posted_intr())
2254 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2255 
2256 	if (cpu_has_vmx_msr_bitmap())
2257 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2258 
2259 	/*
2260 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2261 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2262 	 * deal with filtering out L2 GPAs from the buffer.
2263 	 */
2264 	if (enable_pml) {
2265 		vmcs_write64(PML_ADDRESS, 0);
2266 		vmcs_write16(GUEST_PML_INDEX, -1);
2267 	}
2268 
2269 	if (cpu_has_vmx_encls_vmexit())
2270 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2271 
2272 	if (kvm_notify_vmexit_enabled(kvm))
2273 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2274 
2275 	/*
2276 	 * Set the MSR load/store lists to match L0's settings.  Only the
2277 	 * addresses are constant (for vmcs02), the counts can change based
2278 	 * on L2's behavior, e.g. switching to/from long mode.
2279 	 */
2280 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2281 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2282 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2283 
2284 	vmx_set_constant_host_state(vmx);
2285 }
2286 
2287 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2288 				      struct vmcs12 *vmcs12)
2289 {
2290 	prepare_vmcs02_constant_state(vmx);
2291 
2292 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2293 
2294 	if (enable_vpid) {
2295 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2296 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2297 		else
2298 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2299 	}
2300 }
2301 
2302 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2303 				 struct vmcs12 *vmcs12)
2304 {
2305 	u32 exec_control;
2306 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2307 
2308 	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2309 		prepare_vmcs02_early_rare(vmx, vmcs12);
2310 
2311 	/*
2312 	 * PIN CONTROLS
2313 	 */
2314 	exec_control = __pin_controls_get(vmcs01);
2315 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2316 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2317 
2318 	/* Posted interrupts setting is only taken from vmcs12.  */
2319 	vmx->nested.pi_pending = false;
2320 	if (nested_cpu_has_posted_intr(vmcs12))
2321 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2322 	else
2323 		exec_control &= ~PIN_BASED_POSTED_INTR;
2324 	pin_controls_set(vmx, exec_control);
2325 
2326 	/*
2327 	 * EXEC CONTROLS
2328 	 */
2329 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2330 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2331 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2332 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2333 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2334 
2335 	vmx->nested.l1_tpr_threshold = -1;
2336 	if (exec_control & CPU_BASED_TPR_SHADOW)
2337 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2338 #ifdef CONFIG_X86_64
2339 	else
2340 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2341 				CPU_BASED_CR8_STORE_EXITING;
2342 #endif
2343 
2344 	/*
2345 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2346 	 * for I/O port accesses.
2347 	 */
2348 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2349 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2350 
2351 	/*
2352 	 * This bit will be computed in nested_get_vmcs12_pages, because
2353 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2354 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2355 	 * only set/clear this bit.
2356 	 */
2357 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2358 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2359 
2360 	exec_controls_set(vmx, exec_control);
2361 
2362 	/*
2363 	 * SECONDARY EXEC CONTROLS
2364 	 */
2365 	if (cpu_has_secondary_exec_ctrls()) {
2366 		exec_control = __secondary_exec_controls_get(vmcs01);
2367 
2368 		/* Take the following fields only from vmcs12 */
2369 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2370 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2371 				  SECONDARY_EXEC_ENABLE_INVPCID |
2372 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2373 				  SECONDARY_EXEC_ENABLE_XSAVES |
2374 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2375 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2376 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2377 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2378 				  SECONDARY_EXEC_DESC);
2379 
2380 		if (nested_cpu_has(vmcs12,
2381 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2382 			exec_control |= vmcs12->secondary_vm_exec_control;
2383 
2384 		/* PML is emulated and never enabled in hardware for L2. */
2385 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2386 
2387 		/* VMCS shadowing for L2 is emulated for now */
2388 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2389 
2390 		/*
2391 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2392 		 * will not have to rewrite the controls just for this bit.
2393 		 */
2394 		if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2395 			exec_control |= SECONDARY_EXEC_DESC;
2396 
2397 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2398 			vmcs_write16(GUEST_INTR_STATUS,
2399 				vmcs12->guest_intr_status);
2400 
2401 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2402 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2403 
2404 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2405 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2406 
2407 		secondary_exec_controls_set(vmx, exec_control);
2408 	}
2409 
2410 	/*
2411 	 * ENTRY CONTROLS
2412 	 *
2413 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2414 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2415 	 * on the related bits (if supported by the CPU) in the hope that
2416 	 * we can avoid VMWrites during vmx_set_efer().
2417 	 *
2418 	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2419 	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2420 	 * do the same for L2.
2421 	 */
2422 	exec_control = __vm_entry_controls_get(vmcs01);
2423 	exec_control |= (vmcs12->vm_entry_controls &
2424 			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2425 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2426 	if (cpu_has_load_ia32_efer()) {
2427 		if (guest_efer & EFER_LMA)
2428 			exec_control |= VM_ENTRY_IA32E_MODE;
2429 		if (guest_efer != kvm_host.efer)
2430 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2431 	}
2432 	vm_entry_controls_set(vmx, exec_control);
2433 
2434 	/*
2435 	 * EXIT CONTROLS
2436 	 *
2437 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2438 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2439 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2440 	 */
2441 	exec_control = __vm_exit_controls_get(vmcs01);
2442 	if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2443 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2444 	else
2445 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2446 	vm_exit_controls_set(vmx, exec_control);
2447 
2448 	/*
2449 	 * Interrupt/Exception Fields
2450 	 */
2451 	if (vmx->nested.nested_run_pending) {
2452 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2453 			     vmcs12->vm_entry_intr_info_field);
2454 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2455 			     vmcs12->vm_entry_exception_error_code);
2456 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2457 			     vmcs12->vm_entry_instruction_len);
2458 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2459 			     vmcs12->guest_interruptibility_info);
2460 		vmx->loaded_vmcs->nmi_known_unmasked =
2461 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2462 	} else {
2463 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2464 	}
2465 }
2466 
2467 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2468 {
2469 	struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2470 
2471 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2472 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2473 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2474 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2475 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2476 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2477 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2478 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2479 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2480 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2481 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2482 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2483 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2484 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2485 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2486 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2487 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2488 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2489 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2490 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2491 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2492 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2493 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2494 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2495 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2496 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2497 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2498 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2499 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2500 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2501 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2502 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2503 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2504 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2505 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2506 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2507 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2508 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2509 
2510 		vmx->segment_cache.bitmask = 0;
2511 	}
2512 
2513 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2514 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2515 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2516 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2517 			    vmcs12->guest_pending_dbg_exceptions);
2518 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2519 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2520 
2521 		/*
2522 		 * L1 may access the L2's PDPTR, so save them to construct
2523 		 * vmcs12
2524 		 */
2525 		if (enable_ept) {
2526 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2527 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2528 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2529 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2530 		}
2531 
2532 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2533 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2534 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2535 	}
2536 
2537 	if (nested_cpu_has_xsaves(vmcs12))
2538 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2539 
2540 	/*
2541 	 * Whether page-faults are trapped is determined by a combination of
2542 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2543 	 * doesn't care about page faults then we should set all of these to
2544 	 * L1's desires. However, if L0 does care about (some) page faults, it
2545 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2546 	 * simply ask to exit on each and every L2 page fault. This is done by
2547 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2548 	 * Note that below we don't need special code to set EB.PF beyond the
2549 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2550 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2551 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2552 	 */
2553 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2554 		/*
2555 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2556 		 * go ahead and use it?
2557 		 */
2558 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2559 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2560 	} else {
2561 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2562 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2563 	}
2564 
2565 	if (cpu_has_vmx_apicv()) {
2566 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2567 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2568 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2569 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2570 	}
2571 
2572 	/*
2573 	 * Make sure the msr_autostore list is up to date before we set the
2574 	 * count in the vmcs02.
2575 	 */
2576 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2577 
2578 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2579 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2580 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2581 
2582 	set_cr4_guest_host_mask(vmx);
2583 }
2584 
2585 /*
2586  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2587  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2588  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2589  * guest in a way that will both be appropriate to L1's requests, and our
2590  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2591  * function also has additional necessary side-effects, like setting various
2592  * vcpu->arch fields.
2593  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2594  * is assigned to entry_failure_code on failure.
2595  */
2596 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2597 			  bool from_vmentry,
2598 			  enum vm_entry_failure_code *entry_failure_code)
2599 {
2600 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2601 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2602 	bool load_guest_pdptrs_vmcs12 = false;
2603 
2604 	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2605 		prepare_vmcs02_rare(vmx, vmcs12);
2606 		vmx->nested.dirty_vmcs12 = false;
2607 
2608 		load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2609 			!(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2610 	}
2611 
2612 	if (vmx->nested.nested_run_pending &&
2613 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2614 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2615 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2616 	} else {
2617 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2618 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2619 	}
2620 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2621 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2622 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2623 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2624 
2625 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2626 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2627 	 * trap. Note that CR0.TS also needs updating - we do this later.
2628 	 */
2629 	vmx_update_exception_bitmap(vcpu);
2630 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2631 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2632 
2633 	if (vmx->nested.nested_run_pending &&
2634 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2635 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2636 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2637 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2638 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2639 	}
2640 
2641 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2642 			vcpu->arch.l1_tsc_offset,
2643 			vmx_get_l2_tsc_offset(vcpu),
2644 			vmx_get_l2_tsc_multiplier(vcpu));
2645 
2646 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2647 			vcpu->arch.l1_tsc_scaling_ratio,
2648 			vmx_get_l2_tsc_multiplier(vcpu));
2649 
2650 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2651 	if (kvm_caps.has_tsc_control)
2652 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2653 
2654 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2655 
2656 	if (nested_cpu_has_ept(vmcs12))
2657 		nested_ept_init_mmu_context(vcpu);
2658 
2659 	/*
2660 	 * Override the CR0/CR4 read shadows after setting the effective guest
2661 	 * CR0/CR4.  The common helpers also set the shadows, but they don't
2662 	 * account for vmcs12's cr0/4_guest_host_mask.
2663 	 */
2664 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2665 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2666 
2667 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2668 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2669 
2670 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2671 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2672 	vmx_set_efer(vcpu, vcpu->arch.efer);
2673 
2674 	/*
2675 	 * Guest state is invalid and unrestricted guest is disabled,
2676 	 * which means L1 attempted VMEntry to L2 with invalid state.
2677 	 * Fail the VMEntry.
2678 	 *
2679 	 * However when force loading the guest state (SMM exit or
2680 	 * loading nested state after migration, it is possible to
2681 	 * have invalid guest state now, which will be later fixed by
2682 	 * restoring L2 register state
2683 	 */
2684 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2685 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2686 		return -EINVAL;
2687 	}
2688 
2689 	/* Shadow page tables on either EPT or shadow page tables. */
2690 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2691 				from_vmentry, entry_failure_code))
2692 		return -EINVAL;
2693 
2694 	/*
2695 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2696 	 * on nested VM-Exit, which can occur without actually running L2 and
2697 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2698 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2699 	 * transition to HLT instead of running L2.
2700 	 */
2701 	if (enable_ept)
2702 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2703 
2704 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2705 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2706 	    is_pae_paging(vcpu)) {
2707 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2708 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2709 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2710 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2711 	}
2712 
2713 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2714 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2715 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2716 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2717 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2718 		return -EINVAL;
2719 	}
2720 
2721 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2722 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2723 
2724 	/*
2725 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2726 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2727 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2728 	 * here.
2729 	 */
2730 	if (nested_vmx_is_evmptr12_valid(vmx))
2731 		evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2732 
2733 	return 0;
2734 }
2735 
2736 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2737 {
2738 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2739 	       nested_cpu_has_virtual_nmis(vmcs12)))
2740 		return -EINVAL;
2741 
2742 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2743 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2744 		return -EINVAL;
2745 
2746 	return 0;
2747 }
2748 
2749 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2750 {
2751 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2752 
2753 	/* Check for memory type validity */
2754 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2755 	case VMX_EPTP_MT_UC:
2756 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2757 			return false;
2758 		break;
2759 	case VMX_EPTP_MT_WB:
2760 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2761 			return false;
2762 		break;
2763 	default:
2764 		return false;
2765 	}
2766 
2767 	/* Page-walk levels validity. */
2768 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2769 	case VMX_EPTP_PWL_5:
2770 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2771 			return false;
2772 		break;
2773 	case VMX_EPTP_PWL_4:
2774 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2775 			return false;
2776 		break;
2777 	default:
2778 		return false;
2779 	}
2780 
2781 	/* Reserved bits should not be set */
2782 	if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2783 		return false;
2784 
2785 	/* AD, if set, should be supported */
2786 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2787 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2788 			return false;
2789 	}
2790 
2791 	return true;
2792 }
2793 
2794 /*
2795  * Checks related to VM-Execution Control Fields
2796  */
2797 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2798                                               struct vmcs12 *vmcs12)
2799 {
2800 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2801 
2802 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2803 				   vmx->nested.msrs.pinbased_ctls_low,
2804 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2805 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2806 				   vmx->nested.msrs.procbased_ctls_low,
2807 				   vmx->nested.msrs.procbased_ctls_high)))
2808 		return -EINVAL;
2809 
2810 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2811 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2812 				   vmx->nested.msrs.secondary_ctls_low,
2813 				   vmx->nested.msrs.secondary_ctls_high)))
2814 		return -EINVAL;
2815 
2816 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2817 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2818 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2819 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2820 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2821 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2822 	    nested_vmx_check_nmi_controls(vmcs12) ||
2823 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2824 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2825 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2826 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2827 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2828 		return -EINVAL;
2829 
2830 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2831 	    nested_cpu_has_save_preemption_timer(vmcs12))
2832 		return -EINVAL;
2833 
2834 	if (nested_cpu_has_ept(vmcs12) &&
2835 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2836 		return -EINVAL;
2837 
2838 	if (nested_cpu_has_vmfunc(vmcs12)) {
2839 		if (CC(vmcs12->vm_function_control &
2840 		       ~vmx->nested.msrs.vmfunc_controls))
2841 			return -EINVAL;
2842 
2843 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2844 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2845 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2846 				return -EINVAL;
2847 		}
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 /*
2854  * Checks related to VM-Exit Control Fields
2855  */
2856 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2857                                          struct vmcs12 *vmcs12)
2858 {
2859 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2860 
2861 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2862 				    vmx->nested.msrs.exit_ctls_low,
2863 				    vmx->nested.msrs.exit_ctls_high)) ||
2864 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2865 		return -EINVAL;
2866 
2867 	return 0;
2868 }
2869 
2870 /*
2871  * Checks related to VM-Entry Control Fields
2872  */
2873 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2874 					  struct vmcs12 *vmcs12)
2875 {
2876 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2877 
2878 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2879 				    vmx->nested.msrs.entry_ctls_low,
2880 				    vmx->nested.msrs.entry_ctls_high)))
2881 		return -EINVAL;
2882 
2883 	/*
2884 	 * From the Intel SDM, volume 3:
2885 	 * Fields relevant to VM-entry event injection must be set properly.
2886 	 * These fields are the VM-entry interruption-information field, the
2887 	 * VM-entry exception error code, and the VM-entry instruction length.
2888 	 */
2889 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2890 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2891 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2892 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2893 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2894 		bool should_have_error_code;
2895 		bool urg = nested_cpu_has2(vmcs12,
2896 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2897 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2898 
2899 		/* VM-entry interruption-info field: interruption type */
2900 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2901 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2902 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2903 			return -EINVAL;
2904 
2905 		/* VM-entry interruption-info field: vector */
2906 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2907 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2908 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2909 			return -EINVAL;
2910 
2911 		/* VM-entry interruption-info field: deliver error code */
2912 		should_have_error_code =
2913 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2914 			x86_exception_has_error_code(vector);
2915 		if (CC(has_error_code != should_have_error_code))
2916 			return -EINVAL;
2917 
2918 		/* VM-entry exception error code */
2919 		if (CC(has_error_code &&
2920 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2921 			return -EINVAL;
2922 
2923 		/* VM-entry interruption-info field: reserved bits */
2924 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2925 			return -EINVAL;
2926 
2927 		/* VM-entry instruction length */
2928 		switch (intr_type) {
2929 		case INTR_TYPE_SOFT_EXCEPTION:
2930 		case INTR_TYPE_SOFT_INTR:
2931 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2932 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2933 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2934 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2935 				return -EINVAL;
2936 		}
2937 	}
2938 
2939 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2940 		return -EINVAL;
2941 
2942 	return 0;
2943 }
2944 
2945 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2946 				     struct vmcs12 *vmcs12)
2947 {
2948 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2949 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2950 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2951 		return -EINVAL;
2952 
2953 #ifdef CONFIG_KVM_HYPERV
2954 	if (guest_cpuid_has_evmcs(vcpu))
2955 		return nested_evmcs_check_controls(vmcs12);
2956 #endif
2957 
2958 	return 0;
2959 }
2960 
2961 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2962 				       struct vmcs12 *vmcs12)
2963 {
2964 #ifdef CONFIG_X86_64
2965 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2966 		!!(vcpu->arch.efer & EFER_LMA)))
2967 		return -EINVAL;
2968 #endif
2969 	return 0;
2970 }
2971 
2972 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2973 				       struct vmcs12 *vmcs12)
2974 {
2975 	bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2976 
2977 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2978 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2979 	    CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
2980 		return -EINVAL;
2981 
2982 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2983 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2984 		return -EINVAL;
2985 
2986 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2987 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2988 		return -EINVAL;
2989 
2990 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2991 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2992 					   vmcs12->host_ia32_perf_global_ctrl)))
2993 		return -EINVAL;
2994 
2995 	if (ia32e) {
2996 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2997 			return -EINVAL;
2998 	} else {
2999 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3000 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3001 		    CC((vmcs12->host_rip) >> 32))
3002 			return -EINVAL;
3003 	}
3004 
3005 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3006 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3007 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3008 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3009 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3010 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3011 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3012 	    CC(vmcs12->host_cs_selector == 0) ||
3013 	    CC(vmcs12->host_tr_selector == 0) ||
3014 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
3015 		return -EINVAL;
3016 
3017 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
3018 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
3019 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
3020 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
3021 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
3022 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
3023 		return -EINVAL;
3024 
3025 	/*
3026 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3027 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3028 	 * the values of the LMA and LME bits in the field must each be that of
3029 	 * the host address-space size VM-exit control.
3030 	 */
3031 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3032 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3033 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3034 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3035 			return -EINVAL;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3042 					  struct vmcs12 *vmcs12)
3043 {
3044 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3045 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3046 	struct vmcs_hdr hdr;
3047 
3048 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3049 		return 0;
3050 
3051 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3052 		return -EINVAL;
3053 
3054 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3055 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3056 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3057                 return -EINVAL;
3058 
3059 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3060 					    offsetof(struct vmcs12, hdr),
3061 					    sizeof(hdr))))
3062 		return -EINVAL;
3063 
3064 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
3065 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3066 		return -EINVAL;
3067 
3068 	return 0;
3069 }
3070 
3071 /*
3072  * Checks related to Guest Non-register State
3073  */
3074 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3075 {
3076 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3077 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3078 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3079 		return -EINVAL;
3080 
3081 	return 0;
3082 }
3083 
3084 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3085 					struct vmcs12 *vmcs12,
3086 					enum vm_entry_failure_code *entry_failure_code)
3087 {
3088 	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3089 
3090 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3091 
3092 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3093 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3094 		return -EINVAL;
3095 
3096 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3097 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3098 		return -EINVAL;
3099 
3100 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3101 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3102 		return -EINVAL;
3103 
3104 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3105 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3106 		return -EINVAL;
3107 	}
3108 
3109 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3110 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3111 					   vmcs12->guest_ia32_perf_global_ctrl)))
3112 		return -EINVAL;
3113 
3114 	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3115 		return -EINVAL;
3116 
3117 	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3118 	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3119 		return -EINVAL;
3120 
3121 	/*
3122 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3123 	 * are performed on the field for the IA32_EFER MSR:
3124 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3125 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3126 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3127 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3128 	 *   CR0.PG) is 1.
3129 	 */
3130 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3131 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3132 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3133 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3134 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3135 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3136 			return -EINVAL;
3137 	}
3138 
3139 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3140 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3141 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3142 		return -EINVAL;
3143 
3144 	if (nested_check_guest_non_reg_state(vmcs12))
3145 		return -EINVAL;
3146 
3147 	return 0;
3148 }
3149 
3150 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3151 {
3152 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3153 	unsigned long cr3, cr4;
3154 	bool vm_fail;
3155 
3156 	if (!nested_early_check)
3157 		return 0;
3158 
3159 	if (vmx->msr_autoload.host.nr)
3160 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3161 	if (vmx->msr_autoload.guest.nr)
3162 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3163 
3164 	preempt_disable();
3165 
3166 	vmx_prepare_switch_to_guest(vcpu);
3167 
3168 	/*
3169 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3170 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3171 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3172 	 * there is no need to preserve other bits or save/restore the field.
3173 	 */
3174 	vmcs_writel(GUEST_RFLAGS, 0);
3175 
3176 	cr3 = __get_current_cr3_fast();
3177 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3178 		vmcs_writel(HOST_CR3, cr3);
3179 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3180 	}
3181 
3182 	cr4 = cr4_read_shadow();
3183 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3184 		vmcs_writel(HOST_CR4, cr4);
3185 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3186 	}
3187 
3188 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3189 				 __vmx_vcpu_run_flags(vmx));
3190 
3191 	if (vmx->msr_autoload.host.nr)
3192 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3193 	if (vmx->msr_autoload.guest.nr)
3194 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3195 
3196 	if (vm_fail) {
3197 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3198 
3199 		preempt_enable();
3200 
3201 		trace_kvm_nested_vmenter_failed(
3202 			"early hardware check VM-instruction error: ", error);
3203 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3204 		return 1;
3205 	}
3206 
3207 	/*
3208 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3209 	 */
3210 	if (hw_breakpoint_active())
3211 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3212 	local_irq_enable();
3213 	preempt_enable();
3214 
3215 	/*
3216 	 * A non-failing VMEntry means we somehow entered guest mode with
3217 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3218 	 * is no telling what memory has been modified or what state has
3219 	 * been exposed to unknown code.  Hitting this all but guarantees
3220 	 * a (very critical) hardware issue.
3221 	 */
3222 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3223 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3224 
3225 	return 0;
3226 }
3227 
3228 #ifdef CONFIG_KVM_HYPERV
3229 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3230 {
3231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3232 
3233 	/*
3234 	 * hv_evmcs may end up being not mapped after migration (when
3235 	 * L2 was running), map it here to make sure vmcs12 changes are
3236 	 * properly reflected.
3237 	 */
3238 	if (guest_cpuid_has_evmcs(vcpu) &&
3239 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3240 		enum nested_evmptrld_status evmptrld_status =
3241 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3242 
3243 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3244 		    evmptrld_status == EVMPTRLD_ERROR)
3245 			return false;
3246 
3247 		/*
3248 		 * Post migration VMCS12 always provides the most actual
3249 		 * information, copy it to eVMCS upon entry.
3250 		 */
3251 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3252 	}
3253 
3254 	return true;
3255 }
3256 #endif
3257 
3258 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3259 {
3260 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3261 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3262 	struct kvm_host_map *map;
3263 
3264 	if (!vcpu->arch.pdptrs_from_userspace &&
3265 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3266 		/*
3267 		 * Reload the guest's PDPTRs since after a migration
3268 		 * the guest CR3 might be restored prior to setting the nested
3269 		 * state which can lead to a load of wrong PDPTRs.
3270 		 */
3271 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3272 			return false;
3273 	}
3274 
3275 
3276 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3277 		map = &vmx->nested.apic_access_page_map;
3278 
3279 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3280 			vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3281 		} else {
3282 			pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3283 					     __func__);
3284 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3285 			vcpu->run->internal.suberror =
3286 				KVM_INTERNAL_ERROR_EMULATION;
3287 			vcpu->run->internal.ndata = 0;
3288 			return false;
3289 		}
3290 	}
3291 
3292 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3293 		map = &vmx->nested.virtual_apic_map;
3294 
3295 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3296 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3297 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3298 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3299 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3300 			/*
3301 			 * The processor will never use the TPR shadow, simply
3302 			 * clear the bit from the execution control.  Such a
3303 			 * configuration is useless, but it happens in tests.
3304 			 * For any other configuration, failing the vm entry is
3305 			 * _not_ what the processor does but it's basically the
3306 			 * only possibility we have.
3307 			 */
3308 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3309 		} else {
3310 			/*
3311 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3312 			 * force VM-Entry to fail.
3313 			 */
3314 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3315 		}
3316 	}
3317 
3318 	if (nested_cpu_has_posted_intr(vmcs12)) {
3319 		map = &vmx->nested.pi_desc_map;
3320 
3321 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3322 			vmx->nested.pi_desc =
3323 				(struct pi_desc *)(((void *)map->hva) +
3324 				offset_in_page(vmcs12->posted_intr_desc_addr));
3325 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3326 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3327 		} else {
3328 			/*
3329 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3330 			 * access the contents of the VMCS12 posted interrupt
3331 			 * descriptor. (Note that KVM may do this when it
3332 			 * should not, per the architectural specification.)
3333 			 */
3334 			vmx->nested.pi_desc = NULL;
3335 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3336 		}
3337 	}
3338 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3339 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3340 	else
3341 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3342 
3343 	return true;
3344 }
3345 
3346 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3347 {
3348 #ifdef CONFIG_KVM_HYPERV
3349 	/*
3350 	 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3351 	 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3352 	 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3353 	 * migration.
3354 	 */
3355 	if (!nested_get_evmcs_page(vcpu)) {
3356 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3357 				     __func__);
3358 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3359 		vcpu->run->internal.suberror =
3360 			KVM_INTERNAL_ERROR_EMULATION;
3361 		vcpu->run->internal.ndata = 0;
3362 
3363 		return false;
3364 	}
3365 #endif
3366 
3367 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3368 		return false;
3369 
3370 	return true;
3371 }
3372 
3373 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3374 {
3375 	struct vmcs12 *vmcs12;
3376 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3377 	gpa_t dst;
3378 
3379 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3380 		return 0;
3381 
3382 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3383 		return 1;
3384 
3385 	/*
3386 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3387 	 * set is already checked as part of A/D emulation.
3388 	 */
3389 	vmcs12 = get_vmcs12(vcpu);
3390 	if (!nested_cpu_has_pml(vmcs12))
3391 		return 0;
3392 
3393 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3394 		vmx->nested.pml_full = true;
3395 		return 1;
3396 	}
3397 
3398 	gpa &= ~0xFFFull;
3399 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3400 
3401 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3402 				 offset_in_page(dst), sizeof(gpa)))
3403 		return 0;
3404 
3405 	vmcs12->guest_pml_index--;
3406 
3407 	return 0;
3408 }
3409 
3410 /*
3411  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3412  * for running VMX instructions (except VMXON, whose prerequisites are
3413  * slightly different). It also specifies what exception to inject otherwise.
3414  * Note that many of these exceptions have priority over VM exits, so they
3415  * don't have to be checked again here.
3416  */
3417 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3418 {
3419 	if (!to_vmx(vcpu)->nested.vmxon) {
3420 		kvm_queue_exception(vcpu, UD_VECTOR);
3421 		return 0;
3422 	}
3423 
3424 	if (vmx_get_cpl(vcpu)) {
3425 		kvm_inject_gp(vcpu, 0);
3426 		return 0;
3427 	}
3428 
3429 	return 1;
3430 }
3431 
3432 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3433 {
3434 	u8 rvi = vmx_get_rvi();
3435 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3436 
3437 	return ((rvi & 0xf0) > (vppr & 0xf0));
3438 }
3439 
3440 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3441 				   struct vmcs12 *vmcs12);
3442 
3443 /*
3444  * If from_vmentry is false, this is being called from state restore (either RSM
3445  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3446  *
3447  * Returns:
3448  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3449  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3450  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3451  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3452  */
3453 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3454 							bool from_vmentry)
3455 {
3456 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3457 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3458 	enum vm_entry_failure_code entry_failure_code;
3459 	bool evaluate_pending_interrupts;
3460 	union vmx_exit_reason exit_reason = {
3461 		.basic = EXIT_REASON_INVALID_STATE,
3462 		.failed_vmentry = 1,
3463 	};
3464 	u32 failed_index;
3465 
3466 	trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3467 				 vmx->nested.current_vmptr,
3468 				 vmcs12->guest_rip,
3469 				 vmcs12->guest_intr_status,
3470 				 vmcs12->vm_entry_intr_info_field,
3471 				 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3472 				 vmcs12->ept_pointer,
3473 				 vmcs12->guest_cr3,
3474 				 KVM_ISA_VMX);
3475 
3476 	kvm_service_local_tlb_flush_requests(vcpu);
3477 
3478 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3479 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3480 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3481 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3482 	if (!evaluate_pending_interrupts)
3483 		evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3484 
3485 	if (!vmx->nested.nested_run_pending ||
3486 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3487 		vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3488 	if (kvm_mpx_supported() &&
3489 	    (!vmx->nested.nested_run_pending ||
3490 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3491 		vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3492 
3493 	/*
3494 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3495 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3496 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3497 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3498 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3499 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3500 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3501 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3502 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3503 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3504 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3505 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3506 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3507 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3508 	 */
3509 	if (!enable_ept && !nested_early_check)
3510 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3511 
3512 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3513 
3514 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3515 
3516 	if (from_vmentry) {
3517 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3518 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3519 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3520 		}
3521 
3522 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3523 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3524 			return NVMX_VMENTRY_VMFAIL;
3525 		}
3526 
3527 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3528 						 &entry_failure_code)) {
3529 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3530 			vmcs12->exit_qualification = entry_failure_code;
3531 			goto vmentry_fail_vmexit;
3532 		}
3533 	}
3534 
3535 	enter_guest_mode(vcpu);
3536 
3537 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3538 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3539 		vmcs12->exit_qualification = entry_failure_code;
3540 		goto vmentry_fail_vmexit_guest_mode;
3541 	}
3542 
3543 	if (from_vmentry) {
3544 		failed_index = nested_vmx_load_msr(vcpu,
3545 						   vmcs12->vm_entry_msr_load_addr,
3546 						   vmcs12->vm_entry_msr_load_count);
3547 		if (failed_index) {
3548 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3549 			vmcs12->exit_qualification = failed_index;
3550 			goto vmentry_fail_vmexit_guest_mode;
3551 		}
3552 	} else {
3553 		/*
3554 		 * The MMU is not initialized to point at the right entities yet and
3555 		 * "get pages" would need to read data from the guest (i.e. we will
3556 		 * need to perform gpa to hpa translation). Request a call
3557 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3558 		 * have already been set at vmentry time and should not be reset.
3559 		 */
3560 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3561 	}
3562 
3563 	/*
3564 	 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3565 	 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3566 	 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3567 	 * unconditionally.
3568 	 */
3569 	if (unlikely(evaluate_pending_interrupts))
3570 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3571 
3572 	/*
3573 	 * Do not start the preemption timer hrtimer until after we know
3574 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3575 	 * the timer.
3576 	 */
3577 	vmx->nested.preemption_timer_expired = false;
3578 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3579 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3580 		vmx_start_preemption_timer(vcpu, timer_value);
3581 	}
3582 
3583 	/*
3584 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3585 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3586 	 * returned as far as L1 is concerned. It will only return (and set
3587 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3588 	 */
3589 	return NVMX_VMENTRY_SUCCESS;
3590 
3591 	/*
3592 	 * A failed consistency check that leads to a VMExit during L1's
3593 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3594 	 * 26.7 "VM-entry failures during or after loading guest state".
3595 	 */
3596 vmentry_fail_vmexit_guest_mode:
3597 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3598 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3599 	leave_guest_mode(vcpu);
3600 
3601 vmentry_fail_vmexit:
3602 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3603 
3604 	if (!from_vmentry)
3605 		return NVMX_VMENTRY_VMEXIT;
3606 
3607 	load_vmcs12_host_state(vcpu, vmcs12);
3608 	vmcs12->vm_exit_reason = exit_reason.full;
3609 	if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3610 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3611 	return NVMX_VMENTRY_VMEXIT;
3612 }
3613 
3614 /*
3615  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3616  * for running an L2 nested guest.
3617  */
3618 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3619 {
3620 	struct vmcs12 *vmcs12;
3621 	enum nvmx_vmentry_status status;
3622 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3623 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3624 	enum nested_evmptrld_status evmptrld_status;
3625 
3626 	if (!nested_vmx_check_permission(vcpu))
3627 		return 1;
3628 
3629 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3630 	if (evmptrld_status == EVMPTRLD_ERROR) {
3631 		kvm_queue_exception(vcpu, UD_VECTOR);
3632 		return 1;
3633 	}
3634 
3635 	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3636 
3637 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3638 		return nested_vmx_failInvalid(vcpu);
3639 
3640 	if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3641 	       vmx->nested.current_vmptr == INVALID_GPA))
3642 		return nested_vmx_failInvalid(vcpu);
3643 
3644 	vmcs12 = get_vmcs12(vcpu);
3645 
3646 	/*
3647 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3648 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3649 	 * rather than RFLAGS.ZF, and no error number is stored to the
3650 	 * VM-instruction error field.
3651 	 */
3652 	if (CC(vmcs12->hdr.shadow_vmcs))
3653 		return nested_vmx_failInvalid(vcpu);
3654 
3655 	if (nested_vmx_is_evmptr12_valid(vmx)) {
3656 		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3657 
3658 		copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3659 		/* Enlightened VMCS doesn't have launch state */
3660 		vmcs12->launch_state = !launch;
3661 	} else if (enable_shadow_vmcs) {
3662 		copy_shadow_to_vmcs12(vmx);
3663 	}
3664 
3665 	/*
3666 	 * The nested entry process starts with enforcing various prerequisites
3667 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3668 	 * they fail: As the SDM explains, some conditions should cause the
3669 	 * instruction to fail, while others will cause the instruction to seem
3670 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3671 	 * To speed up the normal (success) code path, we should avoid checking
3672 	 * for misconfigurations which will anyway be caught by the processor
3673 	 * when using the merged vmcs02.
3674 	 */
3675 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3676 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3677 
3678 	if (CC(vmcs12->launch_state == launch))
3679 		return nested_vmx_fail(vcpu,
3680 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3681 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3682 
3683 	if (nested_vmx_check_controls(vcpu, vmcs12))
3684 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3685 
3686 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3687 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3688 
3689 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3690 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3691 
3692 	/*
3693 	 * We're finally done with prerequisite checking, and can start with
3694 	 * the nested entry.
3695 	 */
3696 	vmx->nested.nested_run_pending = 1;
3697 	vmx->nested.has_preemption_timer_deadline = false;
3698 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3699 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3700 		goto vmentry_failed;
3701 
3702 	/* Emulate processing of posted interrupts on VM-Enter. */
3703 	if (nested_cpu_has_posted_intr(vmcs12) &&
3704 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3705 		vmx->nested.pi_pending = true;
3706 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3707 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3708 	}
3709 
3710 	/* Hide L1D cache contents from the nested guest.  */
3711 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3712 
3713 	/*
3714 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3715 	 * also be used as part of restoring nVMX state for
3716 	 * snapshot restore (migration).
3717 	 *
3718 	 * In this flow, it is assumed that vmcs12 cache was
3719 	 * transferred as part of captured nVMX state and should
3720 	 * therefore not be read from guest memory (which may not
3721 	 * exist on destination host yet).
3722 	 */
3723 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3724 
3725 	switch (vmcs12->guest_activity_state) {
3726 	case GUEST_ACTIVITY_HLT:
3727 		/*
3728 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3729 		 * awakened by event injection or by an NMI-window VM-exit or
3730 		 * by an interrupt-window VM-exit, halt the vcpu.
3731 		 */
3732 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3733 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3734 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3735 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3736 			vmx->nested.nested_run_pending = 0;
3737 			return kvm_emulate_halt_noskip(vcpu);
3738 		}
3739 		break;
3740 	case GUEST_ACTIVITY_WAIT_SIPI:
3741 		vmx->nested.nested_run_pending = 0;
3742 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3743 		break;
3744 	default:
3745 		break;
3746 	}
3747 
3748 	return 1;
3749 
3750 vmentry_failed:
3751 	vmx->nested.nested_run_pending = 0;
3752 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3753 		return 0;
3754 	if (status == NVMX_VMENTRY_VMEXIT)
3755 		return 1;
3756 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3757 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3758 }
3759 
3760 /*
3761  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3762  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3763  * This function returns the new value we should put in vmcs12.guest_cr0.
3764  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3765  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3766  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3767  *     didn't trap the bit, because if L1 did, so would L0).
3768  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3769  *     been modified by L2, and L1 knows it. So just leave the old value of
3770  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3771  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3772  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3773  *     changed these bits, and therefore they need to be updated, but L0
3774  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3775  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3776  */
3777 static inline unsigned long
3778 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3779 {
3780 	return
3781 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3782 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3783 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3784 			vcpu->arch.cr0_guest_owned_bits));
3785 }
3786 
3787 static inline unsigned long
3788 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3789 {
3790 	return
3791 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3792 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3793 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3794 			vcpu->arch.cr4_guest_owned_bits));
3795 }
3796 
3797 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3798 				      struct vmcs12 *vmcs12,
3799 				      u32 vm_exit_reason, u32 exit_intr_info)
3800 {
3801 	u32 idt_vectoring;
3802 	unsigned int nr;
3803 
3804 	/*
3805 	 * Per the SDM, VM-Exits due to double and triple faults are never
3806 	 * considered to occur during event delivery, even if the double/triple
3807 	 * fault is the result of an escalating vectoring issue.
3808 	 *
3809 	 * Note, the SDM qualifies the double fault behavior with "The original
3810 	 * event results in a double-fault exception".  It's unclear why the
3811 	 * qualification exists since exits due to double fault can occur only
3812 	 * while vectoring a different exception (injected events are never
3813 	 * subject to interception), i.e. there's _always_ an original event.
3814 	 *
3815 	 * The SDM also uses NMI as a confusing example for the "original event
3816 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3817 	 * the same rule applies to all events that cause an exit directly.
3818 	 * NMI is an odd choice for the example because NMIs can only occur on
3819 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3820 	 */
3821 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3822 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3823 	     is_double_fault(exit_intr_info))) {
3824 		vmcs12->idt_vectoring_info_field = 0;
3825 	} else if (vcpu->arch.exception.injected) {
3826 		nr = vcpu->arch.exception.vector;
3827 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3828 
3829 		if (kvm_exception_is_soft(nr)) {
3830 			vmcs12->vm_exit_instruction_len =
3831 				vcpu->arch.event_exit_inst_len;
3832 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3833 		} else
3834 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3835 
3836 		if (vcpu->arch.exception.has_error_code) {
3837 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3838 			vmcs12->idt_vectoring_error_code =
3839 				vcpu->arch.exception.error_code;
3840 		}
3841 
3842 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3843 	} else if (vcpu->arch.nmi_injected) {
3844 		vmcs12->idt_vectoring_info_field =
3845 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3846 	} else if (vcpu->arch.interrupt.injected) {
3847 		nr = vcpu->arch.interrupt.nr;
3848 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3849 
3850 		if (vcpu->arch.interrupt.soft) {
3851 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3852 			vmcs12->vm_entry_instruction_len =
3853 				vcpu->arch.event_exit_inst_len;
3854 		} else
3855 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3856 
3857 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3858 	} else {
3859 		vmcs12->idt_vectoring_info_field = 0;
3860 	}
3861 }
3862 
3863 
3864 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3865 {
3866 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3867 	gfn_t gfn;
3868 
3869 	/*
3870 	 * Don't need to mark the APIC access page dirty; it is never
3871 	 * written to by the CPU during APIC virtualization.
3872 	 */
3873 
3874 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3875 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3876 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3877 	}
3878 
3879 	if (nested_cpu_has_posted_intr(vmcs12)) {
3880 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3881 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3882 	}
3883 }
3884 
3885 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3886 {
3887 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3888 	int max_irr;
3889 	void *vapic_page;
3890 	u16 status;
3891 
3892 	if (!vmx->nested.pi_pending)
3893 		return 0;
3894 
3895 	if (!vmx->nested.pi_desc)
3896 		goto mmio_needed;
3897 
3898 	vmx->nested.pi_pending = false;
3899 
3900 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3901 		return 0;
3902 
3903 	max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3904 	if (max_irr > 0) {
3905 		vapic_page = vmx->nested.virtual_apic_map.hva;
3906 		if (!vapic_page)
3907 			goto mmio_needed;
3908 
3909 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3910 			vapic_page, &max_irr);
3911 		status = vmcs_read16(GUEST_INTR_STATUS);
3912 		if ((u8)max_irr > ((u8)status & 0xff)) {
3913 			status &= ~0xff;
3914 			status |= (u8)max_irr;
3915 			vmcs_write16(GUEST_INTR_STATUS, status);
3916 		}
3917 	}
3918 
3919 	nested_mark_vmcs12_pages_dirty(vcpu);
3920 	return 0;
3921 
3922 mmio_needed:
3923 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3924 	return -ENXIO;
3925 }
3926 
3927 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3928 {
3929 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3930 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3931 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3932 	unsigned long exit_qual;
3933 
3934 	if (ex->has_payload) {
3935 		exit_qual = ex->payload;
3936 	} else if (ex->vector == PF_VECTOR) {
3937 		exit_qual = vcpu->arch.cr2;
3938 	} else if (ex->vector == DB_VECTOR) {
3939 		exit_qual = vcpu->arch.dr6;
3940 		exit_qual &= ~DR6_BT;
3941 		exit_qual ^= DR6_ACTIVE_LOW;
3942 	} else {
3943 		exit_qual = 0;
3944 	}
3945 
3946 	/*
3947 	 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3948 	 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3949 	 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3950 	 */
3951 	if (ex->has_error_code && is_protmode(vcpu)) {
3952 		/*
3953 		 * Intel CPUs do not generate error codes with bits 31:16 set,
3954 		 * and more importantly VMX disallows setting bits 31:16 in the
3955 		 * injected error code for VM-Entry.  Drop the bits to mimic
3956 		 * hardware and avoid inducing failure on nested VM-Entry if L1
3957 		 * chooses to inject the exception back to L2.  AMD CPUs _do_
3958 		 * generate "full" 32-bit error codes, so KVM allows userspace
3959 		 * to inject exception error codes with bits 31:16 set.
3960 		 */
3961 		vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3962 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3963 	}
3964 
3965 	if (kvm_exception_is_soft(ex->vector))
3966 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3967 	else
3968 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3969 
3970 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3971 	    vmx_get_nmi_mask(vcpu))
3972 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3973 
3974 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3975 }
3976 
3977 /*
3978  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
3979  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3980  * Using the payload is flawed because code breakpoints (fault-like) and data
3981  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3982  * this will return false positives if a to-be-injected code breakpoint #DB is
3983  * pending (from KVM's perspective, but not "pending" across an instruction
3984  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
3985  * too is trap-like.
3986  *
3987  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3988  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3989  * #DB has already happened), and MTF isn't marked pending on code breakpoints
3990  * from the emulator (because such #DBs are fault-like and thus don't trigger
3991  * actions that fire on instruction retire).
3992  */
3993 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3994 {
3995 	if (!ex->pending || ex->vector != DB_VECTOR)
3996 		return 0;
3997 
3998 	/* General Detect #DBs are always fault-like. */
3999 	return ex->payload & ~DR6_BD;
4000 }
4001 
4002 /*
4003  * Returns true if there's a pending #DB exception that is lower priority than
4004  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
4005  * KVM, but could theoretically be injected by userspace.  Note, this code is
4006  * imperfect, see above.
4007  */
4008 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4009 {
4010 	return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4011 }
4012 
4013 /*
4014  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4015  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4016  * represents these debug traps with a payload that is said to be compatible
4017  * with the 'pending debug exceptions' field, write the payload to the VMCS
4018  * field if a VM-exit is delivered before the debug trap.
4019  */
4020 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4021 {
4022 	unsigned long pending_dbg;
4023 
4024 	pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4025 	if (pending_dbg)
4026 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4027 }
4028 
4029 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4030 {
4031 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4032 	       to_vmx(vcpu)->nested.preemption_timer_expired;
4033 }
4034 
4035 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4036 {
4037 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4038 	void *vapic = vmx->nested.virtual_apic_map.hva;
4039 	int max_irr, vppr;
4040 
4041 	if (nested_vmx_preemption_timer_pending(vcpu) ||
4042 	    vmx->nested.mtf_pending)
4043 		return true;
4044 
4045 	/*
4046 	 * Virtual Interrupt Delivery doesn't require manual injection.  Either
4047 	 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4048 	 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4049 	 * the interrupt from the PIR to RVI prior to entering the guest.
4050 	 */
4051 	if (for_injection)
4052 		return false;
4053 
4054 	if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4055 	    __vmx_interrupt_blocked(vcpu))
4056 		return false;
4057 
4058 	if (!vapic)
4059 		return false;
4060 
4061 	vppr = *((u32 *)(vapic + APIC_PROCPRI));
4062 
4063 	max_irr = vmx_get_rvi();
4064 	if ((max_irr & 0xf0) > (vppr & 0xf0))
4065 		return true;
4066 
4067 	if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4068 	    pi_test_on(vmx->nested.pi_desc)) {
4069 		max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4070 		if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4071 			return true;
4072 	}
4073 
4074 	return false;
4075 }
4076 
4077 /*
4078  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4079  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4080  * and less minor edits to splice in the priority of VMX Non-Root specific
4081  * events, e.g. MTF and NMI/INTR-window exiting.
4082  *
4083  * 1 Hardware Reset and Machine Checks
4084  *	- RESET
4085  *	- Machine Check
4086  *
4087  * 2 Trap on Task Switch
4088  *	- T flag in TSS is set (on task switch)
4089  *
4090  * 3 External Hardware Interventions
4091  *	- FLUSH
4092  *	- STOPCLK
4093  *	- SMI
4094  *	- INIT
4095  *
4096  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4097  *
4098  * 4 Traps on Previous Instruction
4099  *	- Breakpoints
4100  *	- Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4101  *	  breakpoint, or #DB due to a split-lock access)
4102  *
4103  * 4.3	VMX-preemption timer expired VM-exit
4104  *
4105  * 4.6	NMI-window exiting VM-exit[2]
4106  *
4107  * 5 Nonmaskable Interrupts (NMI)
4108  *
4109  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4110  *
4111  * 6 Maskable Hardware Interrupts
4112  *
4113  * 7 Code Breakpoint Fault
4114  *
4115  * 8 Faults from Fetching Next Instruction
4116  *	- Code-Segment Limit Violation
4117  *	- Code Page Fault
4118  *	- Control protection exception (missing ENDBRANCH at target of indirect
4119  *					call or jump)
4120  *
4121  * 9 Faults from Decoding Next Instruction
4122  *	- Instruction length > 15 bytes
4123  *	- Invalid Opcode
4124  *	- Coprocessor Not Available
4125  *
4126  *10 Faults on Executing Instruction
4127  *	- Overflow
4128  *	- Bound error
4129  *	- Invalid TSS
4130  *	- Segment Not Present
4131  *	- Stack fault
4132  *	- General Protection
4133  *	- Data Page Fault
4134  *	- Alignment Check
4135  *	- x86 FPU Floating-point exception
4136  *	- SIMD floating-point exception
4137  *	- Virtualization exception
4138  *	- Control protection exception
4139  *
4140  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4141  *     INIT signals, and higher priority events take priority over MTF VM exits.
4142  *     MTF VM exits take priority over debug-trap exceptions and lower priority
4143  *     events.
4144  *
4145  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4146  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4147  *     timer take priority over VM exits caused by the "NMI-window exiting"
4148  *     VM-execution control and lower priority events.
4149  *
4150  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4151  *     caused by "NMI-window exiting".  VM exits caused by this control take
4152  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4153  *
4154  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4155  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4156  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4157  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4158  *     priority over external interrupts and lower priority events.
4159  */
4160 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4161 {
4162 	struct kvm_lapic *apic = vcpu->arch.apic;
4163 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4164 	/*
4165 	 * Only a pending nested run blocks a pending exception.  If there is a
4166 	 * previously injected event, the pending exception occurred while said
4167 	 * event was being delivered and thus needs to be handled.
4168 	 */
4169 	bool block_nested_exceptions = vmx->nested.nested_run_pending;
4170 	/*
4171 	 * New events (not exceptions) are only recognized at instruction
4172 	 * boundaries.  If an event needs reinjection, then KVM is handling a
4173 	 * VM-Exit that occurred _during_ instruction execution; new events are
4174 	 * blocked until the instruction completes.
4175 	 */
4176 	bool block_nested_events = block_nested_exceptions ||
4177 				   kvm_event_needs_reinjection(vcpu);
4178 
4179 	if (lapic_in_kernel(vcpu) &&
4180 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4181 		if (block_nested_events)
4182 			return -EBUSY;
4183 		nested_vmx_update_pending_dbg(vcpu);
4184 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
4185 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4186 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4187 
4188 		/* MTF is discarded if the vCPU is in WFS. */
4189 		vmx->nested.mtf_pending = false;
4190 		return 0;
4191 	}
4192 
4193 	if (lapic_in_kernel(vcpu) &&
4194 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4195 		if (block_nested_events)
4196 			return -EBUSY;
4197 
4198 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4199 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4200 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4201 						apic->sipi_vector & 0xFFUL);
4202 			return 0;
4203 		}
4204 		/* Fallthrough, the SIPI is completely ignored. */
4205 	}
4206 
4207 	/*
4208 	 * Process exceptions that are higher priority than Monitor Trap Flag:
4209 	 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4210 	 * could theoretically come in from userspace), and ICEBP (INT1).
4211 	 *
4212 	 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4213 	 * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4214 	 * across SMI/RSM as it should; that needs to be addressed in order to
4215 	 * prioritize SMI over MTF and trap-like #DBs.
4216 	 */
4217 	if (vcpu->arch.exception_vmexit.pending &&
4218 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4219 		if (block_nested_exceptions)
4220 			return -EBUSY;
4221 
4222 		nested_vmx_inject_exception_vmexit(vcpu);
4223 		return 0;
4224 	}
4225 
4226 	if (vcpu->arch.exception.pending &&
4227 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4228 		if (block_nested_exceptions)
4229 			return -EBUSY;
4230 		goto no_vmexit;
4231 	}
4232 
4233 	if (vmx->nested.mtf_pending) {
4234 		if (block_nested_events)
4235 			return -EBUSY;
4236 		nested_vmx_update_pending_dbg(vcpu);
4237 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4238 		return 0;
4239 	}
4240 
4241 	if (vcpu->arch.exception_vmexit.pending) {
4242 		if (block_nested_exceptions)
4243 			return -EBUSY;
4244 
4245 		nested_vmx_inject_exception_vmexit(vcpu);
4246 		return 0;
4247 	}
4248 
4249 	if (vcpu->arch.exception.pending) {
4250 		if (block_nested_exceptions)
4251 			return -EBUSY;
4252 		goto no_vmexit;
4253 	}
4254 
4255 	if (nested_vmx_preemption_timer_pending(vcpu)) {
4256 		if (block_nested_events)
4257 			return -EBUSY;
4258 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4259 		return 0;
4260 	}
4261 
4262 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4263 		if (block_nested_events)
4264 			return -EBUSY;
4265 		goto no_vmexit;
4266 	}
4267 
4268 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4269 		if (block_nested_events)
4270 			return -EBUSY;
4271 		if (!nested_exit_on_nmi(vcpu))
4272 			goto no_vmexit;
4273 
4274 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4275 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
4276 				  INTR_INFO_VALID_MASK, 0);
4277 		/*
4278 		 * The NMI-triggered VM exit counts as injection:
4279 		 * clear this one and block further NMIs.
4280 		 */
4281 		vcpu->arch.nmi_pending = 0;
4282 		vmx_set_nmi_mask(vcpu, true);
4283 		return 0;
4284 	}
4285 
4286 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4287 		if (block_nested_events)
4288 			return -EBUSY;
4289 		if (!nested_exit_on_intr(vcpu))
4290 			goto no_vmexit;
4291 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4292 		return 0;
4293 	}
4294 
4295 no_vmexit:
4296 	return vmx_complete_nested_posted_interrupt(vcpu);
4297 }
4298 
4299 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4300 {
4301 	ktime_t remaining =
4302 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4303 	u64 value;
4304 
4305 	if (ktime_to_ns(remaining) <= 0)
4306 		return 0;
4307 
4308 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4309 	do_div(value, 1000000);
4310 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4311 }
4312 
4313 static bool is_vmcs12_ext_field(unsigned long field)
4314 {
4315 	switch (field) {
4316 	case GUEST_ES_SELECTOR:
4317 	case GUEST_CS_SELECTOR:
4318 	case GUEST_SS_SELECTOR:
4319 	case GUEST_DS_SELECTOR:
4320 	case GUEST_FS_SELECTOR:
4321 	case GUEST_GS_SELECTOR:
4322 	case GUEST_LDTR_SELECTOR:
4323 	case GUEST_TR_SELECTOR:
4324 	case GUEST_ES_LIMIT:
4325 	case GUEST_CS_LIMIT:
4326 	case GUEST_SS_LIMIT:
4327 	case GUEST_DS_LIMIT:
4328 	case GUEST_FS_LIMIT:
4329 	case GUEST_GS_LIMIT:
4330 	case GUEST_LDTR_LIMIT:
4331 	case GUEST_TR_LIMIT:
4332 	case GUEST_GDTR_LIMIT:
4333 	case GUEST_IDTR_LIMIT:
4334 	case GUEST_ES_AR_BYTES:
4335 	case GUEST_DS_AR_BYTES:
4336 	case GUEST_FS_AR_BYTES:
4337 	case GUEST_GS_AR_BYTES:
4338 	case GUEST_LDTR_AR_BYTES:
4339 	case GUEST_TR_AR_BYTES:
4340 	case GUEST_ES_BASE:
4341 	case GUEST_CS_BASE:
4342 	case GUEST_SS_BASE:
4343 	case GUEST_DS_BASE:
4344 	case GUEST_FS_BASE:
4345 	case GUEST_GS_BASE:
4346 	case GUEST_LDTR_BASE:
4347 	case GUEST_TR_BASE:
4348 	case GUEST_GDTR_BASE:
4349 	case GUEST_IDTR_BASE:
4350 	case GUEST_PENDING_DBG_EXCEPTIONS:
4351 	case GUEST_BNDCFGS:
4352 		return true;
4353 	default:
4354 		break;
4355 	}
4356 
4357 	return false;
4358 }
4359 
4360 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4361 				       struct vmcs12 *vmcs12)
4362 {
4363 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4364 
4365 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4366 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4367 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4368 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4369 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4370 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4371 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4372 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4373 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4374 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4375 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4376 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4377 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4378 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4379 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4380 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4381 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4382 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4383 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4384 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4385 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4386 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4387 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4388 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4389 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4390 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4391 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4392 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4393 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4394 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4395 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4396 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4397 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4398 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4399 	vmcs12->guest_pending_dbg_exceptions =
4400 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4401 
4402 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4403 }
4404 
4405 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4406 				       struct vmcs12 *vmcs12)
4407 {
4408 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4409 	int cpu;
4410 
4411 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4412 		return;
4413 
4414 
4415 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4416 
4417 	cpu = get_cpu();
4418 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4419 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4420 
4421 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4422 
4423 	vmx->loaded_vmcs = &vmx->vmcs01;
4424 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4425 	put_cpu();
4426 }
4427 
4428 /*
4429  * Update the guest state fields of vmcs12 to reflect changes that
4430  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4431  * VM-entry controls is also updated, since this is really a guest
4432  * state bit.)
4433  */
4434 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4435 {
4436 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4437 
4438 	if (nested_vmx_is_evmptr12_valid(vmx))
4439 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4440 
4441 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4442 		!nested_vmx_is_evmptr12_valid(vmx);
4443 
4444 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4445 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4446 
4447 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4448 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4449 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4450 
4451 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4452 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4453 
4454 	vmcs12->guest_interruptibility_info =
4455 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4456 
4457 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4458 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4459 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4460 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4461 	else
4462 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4463 
4464 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4465 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4466 	    !vmx->nested.nested_run_pending)
4467 		vmcs12->vmx_preemption_timer_value =
4468 			vmx_get_preemption_timer_value(vcpu);
4469 
4470 	/*
4471 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4472 	 * own CR3 without exiting. If it has changed it, we must keep it.
4473 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4474 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4475 	 *
4476 	 * Additionally, restore L2's PDPTR to vmcs12.
4477 	 */
4478 	if (enable_ept) {
4479 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4480 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4481 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4482 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4483 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4484 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4485 		}
4486 	}
4487 
4488 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4489 
4490 	if (nested_cpu_has_vid(vmcs12))
4491 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4492 
4493 	vmcs12->vm_entry_controls =
4494 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4495 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4496 
4497 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4498 		vmcs12->guest_dr7 = vcpu->arch.dr7;
4499 
4500 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4501 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4502 }
4503 
4504 /*
4505  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4506  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4507  * and this function updates it to reflect the changes to the guest state while
4508  * L2 was running (and perhaps made some exits which were handled directly by L0
4509  * without going back to L1), and to reflect the exit reason.
4510  * Note that we do not have to copy here all VMCS fields, just those that
4511  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4512  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4513  * which already writes to vmcs12 directly.
4514  */
4515 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4516 			   u32 vm_exit_reason, u32 exit_intr_info,
4517 			   unsigned long exit_qualification)
4518 {
4519 	/* update exit information fields: */
4520 	vmcs12->vm_exit_reason = vm_exit_reason;
4521 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4522 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4523 	vmcs12->exit_qualification = exit_qualification;
4524 
4525 	/*
4526 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4527 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4528 	 * exit info fields are unmodified.
4529 	 */
4530 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4531 		vmcs12->launch_state = 1;
4532 
4533 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4534 		 * instead of reading the real value. */
4535 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4536 
4537 		/*
4538 		 * Transfer the event that L0 or L1 may wanted to inject into
4539 		 * L2 to IDT_VECTORING_INFO_FIELD.
4540 		 */
4541 		vmcs12_save_pending_event(vcpu, vmcs12,
4542 					  vm_exit_reason, exit_intr_info);
4543 
4544 		vmcs12->vm_exit_intr_info = exit_intr_info;
4545 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4546 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4547 
4548 		/*
4549 		 * According to spec, there's no need to store the guest's
4550 		 * MSRs if the exit is due to a VM-entry failure that occurs
4551 		 * during or after loading the guest state. Since this exit
4552 		 * does not fall in that category, we need to save the MSRs.
4553 		 */
4554 		if (nested_vmx_store_msr(vcpu,
4555 					 vmcs12->vm_exit_msr_store_addr,
4556 					 vmcs12->vm_exit_msr_store_count))
4557 			nested_vmx_abort(vcpu,
4558 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4559 	}
4560 }
4561 
4562 /*
4563  * A part of what we need to when the nested L2 guest exits and we want to
4564  * run its L1 parent, is to reset L1's guest state to the host state specified
4565  * in vmcs12.
4566  * This function is to be called not only on normal nested exit, but also on
4567  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4568  * Failures During or After Loading Guest State").
4569  * This function should be called when the active VMCS is L1's (vmcs01).
4570  */
4571 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4572 				   struct vmcs12 *vmcs12)
4573 {
4574 	enum vm_entry_failure_code ignored;
4575 	struct kvm_segment seg;
4576 
4577 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4578 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4579 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4580 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4581 	else
4582 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4583 	vmx_set_efer(vcpu, vcpu->arch.efer);
4584 
4585 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4586 	kvm_rip_write(vcpu, vmcs12->host_rip);
4587 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4588 	vmx_set_interrupt_shadow(vcpu, 0);
4589 
4590 	/*
4591 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4592 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4593 	 *
4594 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4595 	 * (KVM doesn't change it);
4596 	 */
4597 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4598 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4599 
4600 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4601 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4602 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4603 
4604 	nested_ept_uninit_mmu_context(vcpu);
4605 
4606 	/*
4607 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4608 	 * couldn't have changed.
4609 	 */
4610 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4611 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4612 
4613 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4614 
4615 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4616 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4617 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4618 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4619 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4620 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4621 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4622 
4623 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4624 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4625 		vmcs_write64(GUEST_BNDCFGS, 0);
4626 
4627 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4628 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4629 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4630 	}
4631 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4632 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4633 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4634 					 vmcs12->host_ia32_perf_global_ctrl));
4635 
4636 	/* Set L1 segment info according to Intel SDM
4637 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4638 	seg = (struct kvm_segment) {
4639 		.base = 0,
4640 		.limit = 0xFFFFFFFF,
4641 		.selector = vmcs12->host_cs_selector,
4642 		.type = 11,
4643 		.present = 1,
4644 		.s = 1,
4645 		.g = 1
4646 	};
4647 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4648 		seg.l = 1;
4649 	else
4650 		seg.db = 1;
4651 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4652 	seg = (struct kvm_segment) {
4653 		.base = 0,
4654 		.limit = 0xFFFFFFFF,
4655 		.type = 3,
4656 		.present = 1,
4657 		.s = 1,
4658 		.db = 1,
4659 		.g = 1
4660 	};
4661 	seg.selector = vmcs12->host_ds_selector;
4662 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4663 	seg.selector = vmcs12->host_es_selector;
4664 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4665 	seg.selector = vmcs12->host_ss_selector;
4666 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4667 	seg.selector = vmcs12->host_fs_selector;
4668 	seg.base = vmcs12->host_fs_base;
4669 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4670 	seg.selector = vmcs12->host_gs_selector;
4671 	seg.base = vmcs12->host_gs_base;
4672 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4673 	seg = (struct kvm_segment) {
4674 		.base = vmcs12->host_tr_base,
4675 		.limit = 0x67,
4676 		.selector = vmcs12->host_tr_selector,
4677 		.type = 11,
4678 		.present = 1
4679 	};
4680 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4681 
4682 	memset(&seg, 0, sizeof(seg));
4683 	seg.unusable = 1;
4684 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4685 
4686 	kvm_set_dr(vcpu, 7, 0x400);
4687 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4688 
4689 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4690 				vmcs12->vm_exit_msr_load_count))
4691 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4692 
4693 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4694 }
4695 
4696 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4697 {
4698 	struct vmx_uret_msr *efer_msr;
4699 	unsigned int i;
4700 
4701 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4702 		return vmcs_read64(GUEST_IA32_EFER);
4703 
4704 	if (cpu_has_load_ia32_efer())
4705 		return kvm_host.efer;
4706 
4707 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4708 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4709 			return vmx->msr_autoload.guest.val[i].value;
4710 	}
4711 
4712 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4713 	if (efer_msr)
4714 		return efer_msr->data;
4715 
4716 	return kvm_host.efer;
4717 }
4718 
4719 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4720 {
4721 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4722 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4723 	struct vmx_msr_entry g, h;
4724 	gpa_t gpa;
4725 	u32 i, j;
4726 
4727 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4728 
4729 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4730 		/*
4731 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4732 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4733 		 * and vcpu->arch.dr7 is not squirreled away before the
4734 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4735 		 */
4736 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4737 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4738 		else
4739 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4740 	}
4741 
4742 	/*
4743 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4744 	 * handle a variety of side effects to KVM's software model.
4745 	 */
4746 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4747 
4748 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4749 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4750 
4751 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4752 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4753 
4754 	nested_ept_uninit_mmu_context(vcpu);
4755 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4756 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4757 
4758 	/*
4759 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4760 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4761 	 * VMFail, like everything else we just need to ensure our
4762 	 * software model is up-to-date.
4763 	 */
4764 	if (enable_ept && is_pae_paging(vcpu))
4765 		ept_save_pdptrs(vcpu);
4766 
4767 	kvm_mmu_reset_context(vcpu);
4768 
4769 	/*
4770 	 * This nasty bit of open coding is a compromise between blindly
4771 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4772 	 * of VMFail), leaving the nested VM's MSRs in the software model
4773 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4774 	 * expensive since the lists are unbound by hardware).  For each
4775 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4776 	 * list, reload it from the exit load list if it exists and differs
4777 	 * from the guest value.  The intent is to stuff host state as
4778 	 * silently as possible, not to fully process the exit load list.
4779 	 */
4780 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4781 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4782 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4783 			pr_debug_ratelimited(
4784 				"%s read MSR index failed (%u, 0x%08llx)\n",
4785 				__func__, i, gpa);
4786 			goto vmabort;
4787 		}
4788 
4789 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4790 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4791 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4792 				pr_debug_ratelimited(
4793 					"%s read MSR failed (%u, 0x%08llx)\n",
4794 					__func__, j, gpa);
4795 				goto vmabort;
4796 			}
4797 			if (h.index != g.index)
4798 				continue;
4799 			if (h.value == g.value)
4800 				break;
4801 
4802 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4803 				pr_debug_ratelimited(
4804 					"%s check failed (%u, 0x%x, 0x%x)\n",
4805 					__func__, j, h.index, h.reserved);
4806 				goto vmabort;
4807 			}
4808 
4809 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4810 				pr_debug_ratelimited(
4811 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4812 					__func__, j, h.index, h.value);
4813 				goto vmabort;
4814 			}
4815 		}
4816 	}
4817 
4818 	return;
4819 
4820 vmabort:
4821 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4822 }
4823 
4824 /*
4825  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4826  * and modify vmcs12 to make it see what it would expect to see there if
4827  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4828  */
4829 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4830 		       u32 exit_intr_info, unsigned long exit_qualification)
4831 {
4832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4833 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4834 
4835 	/* Pending MTF traps are discarded on VM-Exit. */
4836 	vmx->nested.mtf_pending = false;
4837 
4838 	/* trying to cancel vmlaunch/vmresume is a bug */
4839 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4840 
4841 #ifdef CONFIG_KVM_HYPERV
4842 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4843 		/*
4844 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4845 		 * Enlightened VMCS after migration and we still need to
4846 		 * do that when something is forcing L2->L1 exit prior to
4847 		 * the first L2 run.
4848 		 */
4849 		(void)nested_get_evmcs_page(vcpu);
4850 	}
4851 #endif
4852 
4853 	/* Service pending TLB flush requests for L2 before switching to L1. */
4854 	kvm_service_local_tlb_flush_requests(vcpu);
4855 
4856 	/*
4857 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4858 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4859 	 * up-to-date before switching to L1.
4860 	 */
4861 	if (enable_ept && is_pae_paging(vcpu))
4862 		vmx_ept_load_pdptrs(vcpu);
4863 
4864 	leave_guest_mode(vcpu);
4865 
4866 	if (nested_cpu_has_preemption_timer(vmcs12))
4867 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4868 
4869 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4870 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4871 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4872 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4873 	}
4874 
4875 	if (likely(!vmx->fail)) {
4876 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4877 
4878 		if (vm_exit_reason != -1)
4879 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4880 				       exit_intr_info, exit_qualification);
4881 
4882 		/*
4883 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4884 		 * also be used to capture vmcs12 cache as part of
4885 		 * capturing nVMX state for snapshot (migration).
4886 		 *
4887 		 * Otherwise, this flush will dirty guest memory at a
4888 		 * point it is already assumed by user-space to be
4889 		 * immutable.
4890 		 */
4891 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4892 	} else {
4893 		/*
4894 		 * The only expected VM-instruction error is "VM entry with
4895 		 * invalid control field(s)." Anything else indicates a
4896 		 * problem with L0.  And we should never get here with a
4897 		 * VMFail of any type if early consistency checks are enabled.
4898 		 */
4899 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4900 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4901 		WARN_ON_ONCE(nested_early_check);
4902 	}
4903 
4904 	/*
4905 	 * Drop events/exceptions that were queued for re-injection to L2
4906 	 * (picked up via vmx_complete_interrupts()), as well as exceptions
4907 	 * that were pending for L2.  Note, this must NOT be hoisted above
4908 	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4909 	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4910 	 */
4911 	vcpu->arch.nmi_injected = false;
4912 	kvm_clear_exception_queue(vcpu);
4913 	kvm_clear_interrupt_queue(vcpu);
4914 
4915 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4916 
4917 	/*
4918 	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4919 	 * branch predictors when transitioning from L2 to L1, as L1 expects
4920 	 * hardware (KVM in this case) to provide separate predictor modes.
4921 	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4922 	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4923 	 * separate modes for L2 vs L1.
4924 	 */
4925 	if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4926 		indirect_branch_prediction_barrier();
4927 
4928 	/* Update any VMCS fields that might have changed while L2 ran */
4929 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4930 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4931 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4932 	if (kvm_caps.has_tsc_control)
4933 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4934 
4935 	if (vmx->nested.l1_tpr_threshold != -1)
4936 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4937 
4938 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4939 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4940 		vmx_set_virtual_apic_mode(vcpu);
4941 	}
4942 
4943 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4944 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4945 		vmx_update_cpu_dirty_logging(vcpu);
4946 	}
4947 
4948 	/* Unpin physical memory we referred to in vmcs02 */
4949 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4950 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4951 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4952 	vmx->nested.pi_desc = NULL;
4953 
4954 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4955 		vmx->nested.reload_vmcs01_apic_access_page = false;
4956 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4957 	}
4958 
4959 	if (vmx->nested.update_vmcs01_apicv_status) {
4960 		vmx->nested.update_vmcs01_apicv_status = false;
4961 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4962 	}
4963 
4964 	if ((vm_exit_reason != -1) &&
4965 	    (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
4966 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4967 
4968 	/* in case we halted in L2 */
4969 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4970 
4971 	if (likely(!vmx->fail)) {
4972 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4973 		    nested_exit_intr_ack_set(vcpu)) {
4974 			int irq = kvm_cpu_get_interrupt(vcpu);
4975 			WARN_ON(irq < 0);
4976 			vmcs12->vm_exit_intr_info = irq |
4977 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4978 		}
4979 
4980 		if (vm_exit_reason != -1)
4981 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4982 						       vmcs12->exit_qualification,
4983 						       vmcs12->idt_vectoring_info_field,
4984 						       vmcs12->vm_exit_intr_info,
4985 						       vmcs12->vm_exit_intr_error_code,
4986 						       KVM_ISA_VMX);
4987 
4988 		load_vmcs12_host_state(vcpu, vmcs12);
4989 
4990 		return;
4991 	}
4992 
4993 	/*
4994 	 * After an early L2 VM-entry failure, we're now back
4995 	 * in L1 which thinks it just finished a VMLAUNCH or
4996 	 * VMRESUME instruction, so we need to set the failure
4997 	 * flag and the VM-instruction error field of the VMCS
4998 	 * accordingly, and skip the emulated instruction.
4999 	 */
5000 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5001 
5002 	/*
5003 	 * Restore L1's host state to KVM's software model.  We're here
5004 	 * because a consistency check was caught by hardware, which
5005 	 * means some amount of guest state has been propagated to KVM's
5006 	 * model and needs to be unwound to the host's state.
5007 	 */
5008 	nested_vmx_restore_host_state(vcpu);
5009 
5010 	vmx->fail = 0;
5011 }
5012 
5013 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5014 {
5015 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5016 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5017 }
5018 
5019 /*
5020  * Decode the memory-address operand of a vmx instruction, as recorded on an
5021  * exit caused by such an instruction (run by a guest hypervisor).
5022  * On success, returns 0. When the operand is invalid, returns 1 and throws
5023  * #UD, #GP, or #SS.
5024  */
5025 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5026 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5027 {
5028 	gva_t off;
5029 	bool exn;
5030 	struct kvm_segment s;
5031 
5032 	/*
5033 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5034 	 * Execution", on an exit, vmx_instruction_info holds most of the
5035 	 * addressing components of the operand. Only the displacement part
5036 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5037 	 * For how an actual address is calculated from all these components,
5038 	 * refer to Vol. 1, "Operand Addressing".
5039 	 */
5040 	int  scaling = vmx_instruction_info & 3;
5041 	int  addr_size = (vmx_instruction_info >> 7) & 7;
5042 	bool is_reg = vmx_instruction_info & (1u << 10);
5043 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
5044 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5045 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5046 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5047 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5048 
5049 	if (is_reg) {
5050 		kvm_queue_exception(vcpu, UD_VECTOR);
5051 		return 1;
5052 	}
5053 
5054 	/* Addr = segment_base + offset */
5055 	/* offset = base + [index * scale] + displacement */
5056 	off = exit_qualification; /* holds the displacement */
5057 	if (addr_size == 1)
5058 		off = (gva_t)sign_extend64(off, 31);
5059 	else if (addr_size == 0)
5060 		off = (gva_t)sign_extend64(off, 15);
5061 	if (base_is_valid)
5062 		off += kvm_register_read(vcpu, base_reg);
5063 	if (index_is_valid)
5064 		off += kvm_register_read(vcpu, index_reg) << scaling;
5065 	vmx_get_segment(vcpu, &s, seg_reg);
5066 
5067 	/*
5068 	 * The effective address, i.e. @off, of a memory operand is truncated
5069 	 * based on the address size of the instruction.  Note that this is
5070 	 * the *effective address*, i.e. the address prior to accounting for
5071 	 * the segment's base.
5072 	 */
5073 	if (addr_size == 1) /* 32 bit */
5074 		off &= 0xffffffff;
5075 	else if (addr_size == 0) /* 16 bit */
5076 		off &= 0xffff;
5077 
5078 	/* Checks for #GP/#SS exceptions. */
5079 	exn = false;
5080 	if (is_long_mode(vcpu)) {
5081 		/*
5082 		 * The virtual/linear address is never truncated in 64-bit
5083 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5084 		 * address when using FS/GS with a non-zero base.
5085 		 */
5086 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5087 			*ret = s.base + off;
5088 		else
5089 			*ret = off;
5090 
5091 		*ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5092 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
5093 		 * non-canonical form. This is the only check on the memory
5094 		 * destination for long mode!
5095 		 */
5096 		exn = is_noncanonical_address(*ret, vcpu);
5097 	} else {
5098 		/*
5099 		 * When not in long mode, the virtual/linear address is
5100 		 * unconditionally truncated to 32 bits regardless of the
5101 		 * address size.
5102 		 */
5103 		*ret = (s.base + off) & 0xffffffff;
5104 
5105 		/* Protected mode: apply checks for segment validity in the
5106 		 * following order:
5107 		 * - segment type check (#GP(0) may be thrown)
5108 		 * - usability check (#GP(0)/#SS(0))
5109 		 * - limit check (#GP(0)/#SS(0))
5110 		 */
5111 		if (wr)
5112 			/* #GP(0) if the destination operand is located in a
5113 			 * read-only data segment or any code segment.
5114 			 */
5115 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
5116 		else
5117 			/* #GP(0) if the source operand is located in an
5118 			 * execute-only code segment
5119 			 */
5120 			exn = ((s.type & 0xa) == 8);
5121 		if (exn) {
5122 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5123 			return 1;
5124 		}
5125 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5126 		 */
5127 		exn = (s.unusable != 0);
5128 
5129 		/*
5130 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5131 		 * outside the segment limit.  All CPUs that support VMX ignore
5132 		 * limit checks for flat segments, i.e. segments with base==0,
5133 		 * limit==0xffffffff and of type expand-up data or code.
5134 		 */
5135 		if (!(s.base == 0 && s.limit == 0xffffffff &&
5136 		     ((s.type & 8) || !(s.type & 4))))
5137 			exn = exn || ((u64)off + len - 1 > s.limit);
5138 	}
5139 	if (exn) {
5140 		kvm_queue_exception_e(vcpu,
5141 				      seg_reg == VCPU_SREG_SS ?
5142 						SS_VECTOR : GP_VECTOR,
5143 				      0);
5144 		return 1;
5145 	}
5146 
5147 	return 0;
5148 }
5149 
5150 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5151 				int *ret)
5152 {
5153 	gva_t gva;
5154 	struct x86_exception e;
5155 	int r;
5156 
5157 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5158 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
5159 				sizeof(*vmpointer), &gva)) {
5160 		*ret = 1;
5161 		return -EINVAL;
5162 	}
5163 
5164 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5165 	if (r != X86EMUL_CONTINUE) {
5166 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
5167 		return -EINVAL;
5168 	}
5169 
5170 	return 0;
5171 }
5172 
5173 /*
5174  * Allocate a shadow VMCS and associate it with the currently loaded
5175  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5176  * VMCS is also VMCLEARed, so that it is ready for use.
5177  */
5178 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5179 {
5180 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5181 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5182 
5183 	/*
5184 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5185 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
5186 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
5187 	 * should be impossible to already have an allocated shadow VMCS.  KVM
5188 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5189 	 * always be the loaded VMCS.
5190 	 */
5191 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5192 		return loaded_vmcs->shadow_vmcs;
5193 
5194 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5195 	if (loaded_vmcs->shadow_vmcs)
5196 		vmcs_clear(loaded_vmcs->shadow_vmcs);
5197 
5198 	return loaded_vmcs->shadow_vmcs;
5199 }
5200 
5201 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5202 {
5203 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5204 	int r;
5205 
5206 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5207 	if (r < 0)
5208 		goto out_vmcs02;
5209 
5210 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5211 	if (!vmx->nested.cached_vmcs12)
5212 		goto out_cached_vmcs12;
5213 
5214 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5215 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5216 	if (!vmx->nested.cached_shadow_vmcs12)
5217 		goto out_cached_shadow_vmcs12;
5218 
5219 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5220 		goto out_shadow_vmcs;
5221 
5222 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5223 		     HRTIMER_MODE_ABS_PINNED);
5224 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5225 
5226 	vmx->nested.vpid02 = allocate_vpid();
5227 
5228 	vmx->nested.vmcs02_initialized = false;
5229 	vmx->nested.vmxon = true;
5230 
5231 	if (vmx_pt_mode_is_host_guest()) {
5232 		vmx->pt_desc.guest.ctl = 0;
5233 		pt_update_intercept_for_msr(vcpu);
5234 	}
5235 
5236 	return 0;
5237 
5238 out_shadow_vmcs:
5239 	kfree(vmx->nested.cached_shadow_vmcs12);
5240 
5241 out_cached_shadow_vmcs12:
5242 	kfree(vmx->nested.cached_vmcs12);
5243 
5244 out_cached_vmcs12:
5245 	free_loaded_vmcs(&vmx->nested.vmcs02);
5246 
5247 out_vmcs02:
5248 	return -ENOMEM;
5249 }
5250 
5251 /* Emulate the VMXON instruction. */
5252 static int handle_vmxon(struct kvm_vcpu *vcpu)
5253 {
5254 	int ret;
5255 	gpa_t vmptr;
5256 	uint32_t revision;
5257 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5258 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5259 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5260 
5261 	/*
5262 	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5263 	 * the guest and so cannot rely on hardware to perform the check,
5264 	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5265 	 * for VMXON).
5266 	 *
5267 	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5268 	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5269 	 * force any of the relevant guest state.  For a restricted guest, KVM
5270 	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5271 	 * Real Mode, and so there's no need to check CR0.PE manually.
5272 	 */
5273 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5274 		kvm_queue_exception(vcpu, UD_VECTOR);
5275 		return 1;
5276 	}
5277 
5278 	/*
5279 	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5280 	 * and has higher priority than the VM-Fail due to being post-VMXON,
5281 	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5282 	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5283 	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5284 	 * VMX non-root.
5285 	 *
5286 	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5287 	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5288 	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5289 	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5290 	 * missed by hardware due to shadowing CR0 and/or CR4.
5291 	 */
5292 	if (vmx_get_cpl(vcpu)) {
5293 		kvm_inject_gp(vcpu, 0);
5294 		return 1;
5295 	}
5296 
5297 	if (vmx->nested.vmxon)
5298 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5299 
5300 	/*
5301 	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5302 	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5303 	 * have lower priority than the VM-Fail above.
5304 	 */
5305 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5306 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5307 		kvm_inject_gp(vcpu, 0);
5308 		return 1;
5309 	}
5310 
5311 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5312 			!= VMXON_NEEDED_FEATURES) {
5313 		kvm_inject_gp(vcpu, 0);
5314 		return 1;
5315 	}
5316 
5317 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5318 		return ret;
5319 
5320 	/*
5321 	 * SDM 3: 24.11.5
5322 	 * The first 4 bytes of VMXON region contain the supported
5323 	 * VMCS revision identifier
5324 	 *
5325 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5326 	 * which replaces physical address width with 32
5327 	 */
5328 	if (!page_address_valid(vcpu, vmptr))
5329 		return nested_vmx_failInvalid(vcpu);
5330 
5331 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5332 	    revision != VMCS12_REVISION)
5333 		return nested_vmx_failInvalid(vcpu);
5334 
5335 	vmx->nested.vmxon_ptr = vmptr;
5336 	ret = enter_vmx_operation(vcpu);
5337 	if (ret)
5338 		return ret;
5339 
5340 	return nested_vmx_succeed(vcpu);
5341 }
5342 
5343 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5344 {
5345 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5346 
5347 	if (vmx->nested.current_vmptr == INVALID_GPA)
5348 		return;
5349 
5350 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5351 
5352 	if (enable_shadow_vmcs) {
5353 		/* copy to memory all shadowed fields in case
5354 		   they were modified */
5355 		copy_shadow_to_vmcs12(vmx);
5356 		vmx_disable_shadow_vmcs(vmx);
5357 	}
5358 	vmx->nested.posted_intr_nv = -1;
5359 
5360 	/* Flush VMCS12 to guest memory */
5361 	kvm_vcpu_write_guest_page(vcpu,
5362 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5363 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5364 
5365 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5366 
5367 	vmx->nested.current_vmptr = INVALID_GPA;
5368 }
5369 
5370 /* Emulate the VMXOFF instruction */
5371 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5372 {
5373 	if (!nested_vmx_check_permission(vcpu))
5374 		return 1;
5375 
5376 	free_nested(vcpu);
5377 
5378 	if (kvm_apic_has_pending_init_or_sipi(vcpu))
5379 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5380 
5381 	return nested_vmx_succeed(vcpu);
5382 }
5383 
5384 /* Emulate the VMCLEAR instruction */
5385 static int handle_vmclear(struct kvm_vcpu *vcpu)
5386 {
5387 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5388 	u32 zero = 0;
5389 	gpa_t vmptr;
5390 	int r;
5391 
5392 	if (!nested_vmx_check_permission(vcpu))
5393 		return 1;
5394 
5395 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5396 		return r;
5397 
5398 	if (!page_address_valid(vcpu, vmptr))
5399 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5400 
5401 	if (vmptr == vmx->nested.vmxon_ptr)
5402 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5403 
5404 	if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5405 		if (vmptr == vmx->nested.current_vmptr)
5406 			nested_release_vmcs12(vcpu);
5407 
5408 		/*
5409 		 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5410 		 * for VMCLEAR includes a "ensure that data for VMCS referenced
5411 		 * by the operand is in memory" clause that guards writes to
5412 		 * memory, i.e. doing nothing for I/O is architecturally valid.
5413 		 *
5414 		 * FIXME: Suppress failures if and only if no memslot is found,
5415 		 * i.e. exit to userspace if __copy_to_user() fails.
5416 		 */
5417 		(void)kvm_vcpu_write_guest(vcpu,
5418 					   vmptr + offsetof(struct vmcs12,
5419 							    launch_state),
5420 					   &zero, sizeof(zero));
5421 	}
5422 
5423 	return nested_vmx_succeed(vcpu);
5424 }
5425 
5426 /* Emulate the VMLAUNCH instruction */
5427 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5428 {
5429 	return nested_vmx_run(vcpu, true);
5430 }
5431 
5432 /* Emulate the VMRESUME instruction */
5433 static int handle_vmresume(struct kvm_vcpu *vcpu)
5434 {
5435 
5436 	return nested_vmx_run(vcpu, false);
5437 }
5438 
5439 static int handle_vmread(struct kvm_vcpu *vcpu)
5440 {
5441 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5442 						    : get_vmcs12(vcpu);
5443 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5444 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5445 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5446 	struct x86_exception e;
5447 	unsigned long field;
5448 	u64 value;
5449 	gva_t gva = 0;
5450 	short offset;
5451 	int len, r;
5452 
5453 	if (!nested_vmx_check_permission(vcpu))
5454 		return 1;
5455 
5456 	/* Decode instruction info and find the field to read */
5457 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5458 
5459 	if (!nested_vmx_is_evmptr12_valid(vmx)) {
5460 		/*
5461 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5462 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5463 		 */
5464 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5465 		    (is_guest_mode(vcpu) &&
5466 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5467 			return nested_vmx_failInvalid(vcpu);
5468 
5469 		offset = get_vmcs12_field_offset(field);
5470 		if (offset < 0)
5471 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5472 
5473 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5474 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5475 
5476 		/* Read the field, zero-extended to a u64 value */
5477 		value = vmcs12_read_any(vmcs12, field, offset);
5478 	} else {
5479 		/*
5480 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5481 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5482 		 * unsupported. Unfortunately, certain versions of Windows 11
5483 		 * don't comply with this requirement which is not enforced in
5484 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5485 		 * workaround, as misbehaving guests will panic on VM-Fail.
5486 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5487 		 * all VMREADs from L2 should go to L1.
5488 		 */
5489 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5490 			return nested_vmx_failInvalid(vcpu);
5491 
5492 		offset = evmcs_field_offset(field, NULL);
5493 		if (offset < 0)
5494 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5495 
5496 		/* Read the field, zero-extended to a u64 value */
5497 		value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5498 	}
5499 
5500 	/*
5501 	 * Now copy part of this value to register or memory, as requested.
5502 	 * Note that the number of bits actually copied is 32 or 64 depending
5503 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5504 	 */
5505 	if (instr_info & BIT(10)) {
5506 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5507 	} else {
5508 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5509 		if (get_vmx_mem_address(vcpu, exit_qualification,
5510 					instr_info, true, len, &gva))
5511 			return 1;
5512 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5513 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5514 		if (r != X86EMUL_CONTINUE)
5515 			return kvm_handle_memory_failure(vcpu, r, &e);
5516 	}
5517 
5518 	return nested_vmx_succeed(vcpu);
5519 }
5520 
5521 static bool is_shadow_field_rw(unsigned long field)
5522 {
5523 	switch (field) {
5524 #define SHADOW_FIELD_RW(x, y) case x:
5525 #include "vmcs_shadow_fields.h"
5526 		return true;
5527 	default:
5528 		break;
5529 	}
5530 	return false;
5531 }
5532 
5533 static bool is_shadow_field_ro(unsigned long field)
5534 {
5535 	switch (field) {
5536 #define SHADOW_FIELD_RO(x, y) case x:
5537 #include "vmcs_shadow_fields.h"
5538 		return true;
5539 	default:
5540 		break;
5541 	}
5542 	return false;
5543 }
5544 
5545 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5546 {
5547 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5548 						    : get_vmcs12(vcpu);
5549 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5550 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5551 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5552 	struct x86_exception e;
5553 	unsigned long field;
5554 	short offset;
5555 	gva_t gva;
5556 	int len, r;
5557 
5558 	/*
5559 	 * The value to write might be 32 or 64 bits, depending on L1's long
5560 	 * mode, and eventually we need to write that into a field of several
5561 	 * possible lengths. The code below first zero-extends the value to 64
5562 	 * bit (value), and then copies only the appropriate number of
5563 	 * bits into the vmcs12 field.
5564 	 */
5565 	u64 value = 0;
5566 
5567 	if (!nested_vmx_check_permission(vcpu))
5568 		return 1;
5569 
5570 	/*
5571 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5572 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5573 	 */
5574 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5575 	    (is_guest_mode(vcpu) &&
5576 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5577 		return nested_vmx_failInvalid(vcpu);
5578 
5579 	if (instr_info & BIT(10))
5580 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5581 	else {
5582 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5583 		if (get_vmx_mem_address(vcpu, exit_qualification,
5584 					instr_info, false, len, &gva))
5585 			return 1;
5586 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5587 		if (r != X86EMUL_CONTINUE)
5588 			return kvm_handle_memory_failure(vcpu, r, &e);
5589 	}
5590 
5591 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5592 
5593 	offset = get_vmcs12_field_offset(field);
5594 	if (offset < 0)
5595 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5596 
5597 	/*
5598 	 * If the vCPU supports "VMWRITE to any supported field in the
5599 	 * VMCS," then the "read-only" fields are actually read/write.
5600 	 */
5601 	if (vmcs_field_readonly(field) &&
5602 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5603 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5604 
5605 	/*
5606 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5607 	 * vmcs12, else we may crush a field or consume a stale value.
5608 	 */
5609 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5610 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5611 
5612 	/*
5613 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5614 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5615 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5616 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5617 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5618 	 * the stripped down value, L2 sees the full value as stored by KVM).
5619 	 */
5620 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5621 		value &= 0x1f0ff;
5622 
5623 	vmcs12_write_any(vmcs12, field, offset, value);
5624 
5625 	/*
5626 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5627 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5628 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5629 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5630 	 */
5631 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5632 		/*
5633 		 * L1 can read these fields without exiting, ensure the
5634 		 * shadow VMCS is up-to-date.
5635 		 */
5636 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5637 			preempt_disable();
5638 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5639 
5640 			__vmcs_writel(field, value);
5641 
5642 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5643 			vmcs_load(vmx->loaded_vmcs->vmcs);
5644 			preempt_enable();
5645 		}
5646 		vmx->nested.dirty_vmcs12 = true;
5647 	}
5648 
5649 	return nested_vmx_succeed(vcpu);
5650 }
5651 
5652 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5653 {
5654 	vmx->nested.current_vmptr = vmptr;
5655 	if (enable_shadow_vmcs) {
5656 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5657 		vmcs_write64(VMCS_LINK_POINTER,
5658 			     __pa(vmx->vmcs01.shadow_vmcs));
5659 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5660 	}
5661 	vmx->nested.dirty_vmcs12 = true;
5662 	vmx->nested.force_msr_bitmap_recalc = true;
5663 }
5664 
5665 /* Emulate the VMPTRLD instruction */
5666 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5667 {
5668 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5669 	gpa_t vmptr;
5670 	int r;
5671 
5672 	if (!nested_vmx_check_permission(vcpu))
5673 		return 1;
5674 
5675 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5676 		return r;
5677 
5678 	if (!page_address_valid(vcpu, vmptr))
5679 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5680 
5681 	if (vmptr == vmx->nested.vmxon_ptr)
5682 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5683 
5684 	/* Forbid normal VMPTRLD if Enlightened version was used */
5685 	if (nested_vmx_is_evmptr12_valid(vmx))
5686 		return 1;
5687 
5688 	if (vmx->nested.current_vmptr != vmptr) {
5689 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5690 		struct vmcs_hdr hdr;
5691 
5692 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5693 			/*
5694 			 * Reads from an unbacked page return all 1s,
5695 			 * which means that the 32 bits located at the
5696 			 * given physical address won't match the required
5697 			 * VMCS12_REVISION identifier.
5698 			 */
5699 			return nested_vmx_fail(vcpu,
5700 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5701 		}
5702 
5703 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5704 						 offsetof(struct vmcs12, hdr),
5705 						 sizeof(hdr))) {
5706 			return nested_vmx_fail(vcpu,
5707 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5708 		}
5709 
5710 		if (hdr.revision_id != VMCS12_REVISION ||
5711 		    (hdr.shadow_vmcs &&
5712 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5713 			return nested_vmx_fail(vcpu,
5714 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5715 		}
5716 
5717 		nested_release_vmcs12(vcpu);
5718 
5719 		/*
5720 		 * Load VMCS12 from guest memory since it is not already
5721 		 * cached.
5722 		 */
5723 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5724 					  VMCS12_SIZE)) {
5725 			return nested_vmx_fail(vcpu,
5726 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5727 		}
5728 
5729 		set_current_vmptr(vmx, vmptr);
5730 	}
5731 
5732 	return nested_vmx_succeed(vcpu);
5733 }
5734 
5735 /* Emulate the VMPTRST instruction */
5736 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5737 {
5738 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5739 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5740 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5741 	struct x86_exception e;
5742 	gva_t gva;
5743 	int r;
5744 
5745 	if (!nested_vmx_check_permission(vcpu))
5746 		return 1;
5747 
5748 	if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5749 		return 1;
5750 
5751 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5752 				true, sizeof(gpa_t), &gva))
5753 		return 1;
5754 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5755 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5756 					sizeof(gpa_t), &e);
5757 	if (r != X86EMUL_CONTINUE)
5758 		return kvm_handle_memory_failure(vcpu, r, &e);
5759 
5760 	return nested_vmx_succeed(vcpu);
5761 }
5762 
5763 /* Emulate the INVEPT instruction */
5764 static int handle_invept(struct kvm_vcpu *vcpu)
5765 {
5766 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5767 	u32 vmx_instruction_info, types;
5768 	unsigned long type, roots_to_free;
5769 	struct kvm_mmu *mmu;
5770 	gva_t gva;
5771 	struct x86_exception e;
5772 	struct {
5773 		u64 eptp, gpa;
5774 	} operand;
5775 	int i, r, gpr_index;
5776 
5777 	if (!(vmx->nested.msrs.secondary_ctls_high &
5778 	      SECONDARY_EXEC_ENABLE_EPT) ||
5779 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5780 		kvm_queue_exception(vcpu, UD_VECTOR);
5781 		return 1;
5782 	}
5783 
5784 	if (!nested_vmx_check_permission(vcpu))
5785 		return 1;
5786 
5787 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5788 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5789 	type = kvm_register_read(vcpu, gpr_index);
5790 
5791 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5792 
5793 	if (type >= 32 || !(types & (1 << type)))
5794 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5795 
5796 	/* According to the Intel VMX instruction reference, the memory
5797 	 * operand is read even if it isn't needed (e.g., for type==global)
5798 	 */
5799 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5800 			vmx_instruction_info, false, sizeof(operand), &gva))
5801 		return 1;
5802 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5803 	if (r != X86EMUL_CONTINUE)
5804 		return kvm_handle_memory_failure(vcpu, r, &e);
5805 
5806 	/*
5807 	 * Nested EPT roots are always held through guest_mmu,
5808 	 * not root_mmu.
5809 	 */
5810 	mmu = &vcpu->arch.guest_mmu;
5811 
5812 	switch (type) {
5813 	case VMX_EPT_EXTENT_CONTEXT:
5814 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5815 			return nested_vmx_fail(vcpu,
5816 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5817 
5818 		roots_to_free = 0;
5819 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5820 					    operand.eptp))
5821 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5822 
5823 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5824 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5825 						    mmu->prev_roots[i].pgd,
5826 						    operand.eptp))
5827 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5828 		}
5829 		break;
5830 	case VMX_EPT_EXTENT_GLOBAL:
5831 		roots_to_free = KVM_MMU_ROOTS_ALL;
5832 		break;
5833 	default:
5834 		BUG();
5835 		break;
5836 	}
5837 
5838 	if (roots_to_free)
5839 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5840 
5841 	return nested_vmx_succeed(vcpu);
5842 }
5843 
5844 static int handle_invvpid(struct kvm_vcpu *vcpu)
5845 {
5846 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5847 	u32 vmx_instruction_info;
5848 	unsigned long type, types;
5849 	gva_t gva;
5850 	struct x86_exception e;
5851 	struct {
5852 		u64 vpid;
5853 		u64 gla;
5854 	} operand;
5855 	u16 vpid02;
5856 	int r, gpr_index;
5857 
5858 	if (!(vmx->nested.msrs.secondary_ctls_high &
5859 	      SECONDARY_EXEC_ENABLE_VPID) ||
5860 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5861 		kvm_queue_exception(vcpu, UD_VECTOR);
5862 		return 1;
5863 	}
5864 
5865 	if (!nested_vmx_check_permission(vcpu))
5866 		return 1;
5867 
5868 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5869 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5870 	type = kvm_register_read(vcpu, gpr_index);
5871 
5872 	types = (vmx->nested.msrs.vpid_caps &
5873 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5874 
5875 	if (type >= 32 || !(types & (1 << type)))
5876 		return nested_vmx_fail(vcpu,
5877 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5878 
5879 	/* according to the intel vmx instruction reference, the memory
5880 	 * operand is read even if it isn't needed (e.g., for type==global)
5881 	 */
5882 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5883 			vmx_instruction_info, false, sizeof(operand), &gva))
5884 		return 1;
5885 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5886 	if (r != X86EMUL_CONTINUE)
5887 		return kvm_handle_memory_failure(vcpu, r, &e);
5888 
5889 	if (operand.vpid >> 16)
5890 		return nested_vmx_fail(vcpu,
5891 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5892 
5893 	vpid02 = nested_get_vpid02(vcpu);
5894 	switch (type) {
5895 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5896 		/*
5897 		 * LAM doesn't apply to addresses that are inputs to TLB
5898 		 * invalidation.
5899 		 */
5900 		if (!operand.vpid ||
5901 		    is_noncanonical_address(operand.gla, vcpu))
5902 			return nested_vmx_fail(vcpu,
5903 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5904 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5905 		break;
5906 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5907 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5908 		if (!operand.vpid)
5909 			return nested_vmx_fail(vcpu,
5910 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5911 		vpid_sync_context(vpid02);
5912 		break;
5913 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5914 		vpid_sync_context(vpid02);
5915 		break;
5916 	default:
5917 		WARN_ON_ONCE(1);
5918 		return kvm_skip_emulated_instruction(vcpu);
5919 	}
5920 
5921 	/*
5922 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5923 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5924 	 * roots as VPIDs are not tracked in the MMU role.
5925 	 *
5926 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5927 	 * an MMU when EPT is disabled.
5928 	 *
5929 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5930 	 */
5931 	if (!enable_ept)
5932 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5933 
5934 	return nested_vmx_succeed(vcpu);
5935 }
5936 
5937 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5938 				     struct vmcs12 *vmcs12)
5939 {
5940 	u32 index = kvm_rcx_read(vcpu);
5941 	u64 new_eptp;
5942 
5943 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5944 		return 1;
5945 	if (index >= VMFUNC_EPTP_ENTRIES)
5946 		return 1;
5947 
5948 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5949 				     &new_eptp, index * 8, 8))
5950 		return 1;
5951 
5952 	/*
5953 	 * If the (L2) guest does a vmfunc to the currently
5954 	 * active ept pointer, we don't have to do anything else
5955 	 */
5956 	if (vmcs12->ept_pointer != new_eptp) {
5957 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5958 			return 1;
5959 
5960 		vmcs12->ept_pointer = new_eptp;
5961 		nested_ept_new_eptp(vcpu);
5962 
5963 		if (!nested_cpu_has_vpid(vmcs12))
5964 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5965 	}
5966 
5967 	return 0;
5968 }
5969 
5970 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5971 {
5972 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5973 	struct vmcs12 *vmcs12;
5974 	u32 function = kvm_rax_read(vcpu);
5975 
5976 	/*
5977 	 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5978 	 * VMFUNC for nested VMs, but not for L1.
5979 	 */
5980 	if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5981 		kvm_queue_exception(vcpu, UD_VECTOR);
5982 		return 1;
5983 	}
5984 
5985 	vmcs12 = get_vmcs12(vcpu);
5986 
5987 	/*
5988 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5989 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5990 	 */
5991 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5992 		kvm_queue_exception(vcpu, UD_VECTOR);
5993 		return 1;
5994 	}
5995 
5996 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5997 		goto fail;
5998 
5999 	switch (function) {
6000 	case 0:
6001 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
6002 			goto fail;
6003 		break;
6004 	default:
6005 		goto fail;
6006 	}
6007 	return kvm_skip_emulated_instruction(vcpu);
6008 
6009 fail:
6010 	/*
6011 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6012 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
6013 	 * EXIT_REASON_VMFUNC as the exit reason.
6014 	 */
6015 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
6016 			  vmx_get_intr_info(vcpu),
6017 			  vmx_get_exit_qual(vcpu));
6018 	return 1;
6019 }
6020 
6021 /*
6022  * Return true if an IO instruction with the specified port and size should cause
6023  * a VM-exit into L1.
6024  */
6025 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6026 				 int size)
6027 {
6028 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6029 	gpa_t bitmap, last_bitmap;
6030 	u8 b;
6031 
6032 	last_bitmap = INVALID_GPA;
6033 	b = -1;
6034 
6035 	while (size > 0) {
6036 		if (port < 0x8000)
6037 			bitmap = vmcs12->io_bitmap_a;
6038 		else if (port < 0x10000)
6039 			bitmap = vmcs12->io_bitmap_b;
6040 		else
6041 			return true;
6042 		bitmap += (port & 0x7fff) / 8;
6043 
6044 		if (last_bitmap != bitmap)
6045 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6046 				return true;
6047 		if (b & (1 << (port & 7)))
6048 			return true;
6049 
6050 		port++;
6051 		size--;
6052 		last_bitmap = bitmap;
6053 	}
6054 
6055 	return false;
6056 }
6057 
6058 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6059 				       struct vmcs12 *vmcs12)
6060 {
6061 	unsigned long exit_qualification;
6062 	unsigned short port;
6063 	int size;
6064 
6065 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6066 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6067 
6068 	exit_qualification = vmx_get_exit_qual(vcpu);
6069 
6070 	port = exit_qualification >> 16;
6071 	size = (exit_qualification & 7) + 1;
6072 
6073 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
6074 }
6075 
6076 /*
6077  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6078  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6079  * disinterest in the current event (read or write a specific MSR) by using an
6080  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6081  */
6082 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6083 					struct vmcs12 *vmcs12,
6084 					union vmx_exit_reason exit_reason)
6085 {
6086 	u32 msr_index = kvm_rcx_read(vcpu);
6087 	gpa_t bitmap;
6088 
6089 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6090 		return true;
6091 
6092 	/*
6093 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6094 	 * for the four combinations of read/write and low/high MSR numbers.
6095 	 * First we need to figure out which of the four to use:
6096 	 */
6097 	bitmap = vmcs12->msr_bitmap;
6098 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6099 		bitmap += 2048;
6100 	if (msr_index >= 0xc0000000) {
6101 		msr_index -= 0xc0000000;
6102 		bitmap += 1024;
6103 	}
6104 
6105 	/* Then read the msr_index'th bit from this bitmap: */
6106 	if (msr_index < 1024*8) {
6107 		unsigned char b;
6108 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6109 			return true;
6110 		return 1 & (b >> (msr_index & 7));
6111 	} else
6112 		return true; /* let L1 handle the wrong parameter */
6113 }
6114 
6115 /*
6116  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6117  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6118  * intercept (via guest_host_mask etc.) the current event.
6119  */
6120 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6121 	struct vmcs12 *vmcs12)
6122 {
6123 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6124 	int cr = exit_qualification & 15;
6125 	int reg;
6126 	unsigned long val;
6127 
6128 	switch ((exit_qualification >> 4) & 3) {
6129 	case 0: /* mov to cr */
6130 		reg = (exit_qualification >> 8) & 15;
6131 		val = kvm_register_read(vcpu, reg);
6132 		switch (cr) {
6133 		case 0:
6134 			if (vmcs12->cr0_guest_host_mask &
6135 			    (val ^ vmcs12->cr0_read_shadow))
6136 				return true;
6137 			break;
6138 		case 3:
6139 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6140 				return true;
6141 			break;
6142 		case 4:
6143 			if (vmcs12->cr4_guest_host_mask &
6144 			    (vmcs12->cr4_read_shadow ^ val))
6145 				return true;
6146 			break;
6147 		case 8:
6148 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6149 				return true;
6150 			break;
6151 		}
6152 		break;
6153 	case 2: /* clts */
6154 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6155 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6156 			return true;
6157 		break;
6158 	case 1: /* mov from cr */
6159 		switch (cr) {
6160 		case 3:
6161 			if (vmcs12->cpu_based_vm_exec_control &
6162 			    CPU_BASED_CR3_STORE_EXITING)
6163 				return true;
6164 			break;
6165 		case 8:
6166 			if (vmcs12->cpu_based_vm_exec_control &
6167 			    CPU_BASED_CR8_STORE_EXITING)
6168 				return true;
6169 			break;
6170 		}
6171 		break;
6172 	case 3: /* lmsw */
6173 		/*
6174 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6175 		 * cr0. Other attempted changes are ignored, with no exit.
6176 		 */
6177 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6178 		if (vmcs12->cr0_guest_host_mask & 0xe &
6179 		    (val ^ vmcs12->cr0_read_shadow))
6180 			return true;
6181 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6182 		    !(vmcs12->cr0_read_shadow & 0x1) &&
6183 		    (val & 0x1))
6184 			return true;
6185 		break;
6186 	}
6187 	return false;
6188 }
6189 
6190 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6191 					  struct vmcs12 *vmcs12)
6192 {
6193 	u32 encls_leaf;
6194 
6195 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6196 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6197 		return false;
6198 
6199 	encls_leaf = kvm_rax_read(vcpu);
6200 	if (encls_leaf > 62)
6201 		encls_leaf = 63;
6202 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6203 }
6204 
6205 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6206 	struct vmcs12 *vmcs12, gpa_t bitmap)
6207 {
6208 	u32 vmx_instruction_info;
6209 	unsigned long field;
6210 	u8 b;
6211 
6212 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
6213 		return true;
6214 
6215 	/* Decode instruction info and find the field to access */
6216 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6217 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6218 
6219 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
6220 	if (field >> 15)
6221 		return true;
6222 
6223 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6224 		return true;
6225 
6226 	return 1 & (b >> (field & 7));
6227 }
6228 
6229 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6230 {
6231 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6232 
6233 	if (nested_cpu_has_mtf(vmcs12))
6234 		return true;
6235 
6236 	/*
6237 	 * An MTF VM-exit may be injected into the guest by setting the
6238 	 * interruption-type to 7 (other event) and the vector field to 0. Such
6239 	 * is the case regardless of the 'monitor trap flag' VM-execution
6240 	 * control.
6241 	 */
6242 	return entry_intr_info == (INTR_INFO_VALID_MASK
6243 				   | INTR_TYPE_OTHER_EVENT);
6244 }
6245 
6246 /*
6247  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6248  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6249  */
6250 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6251 				     union vmx_exit_reason exit_reason)
6252 {
6253 	u32 intr_info;
6254 
6255 	switch ((u16)exit_reason.basic) {
6256 	case EXIT_REASON_EXCEPTION_NMI:
6257 		intr_info = vmx_get_intr_info(vcpu);
6258 		if (is_nmi(intr_info))
6259 			return true;
6260 		else if (is_page_fault(intr_info))
6261 			return vcpu->arch.apf.host_apf_flags ||
6262 			       vmx_need_pf_intercept(vcpu);
6263 		else if (is_debug(intr_info) &&
6264 			 vcpu->guest_debug &
6265 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6266 			return true;
6267 		else if (is_breakpoint(intr_info) &&
6268 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6269 			return true;
6270 		else if (is_alignment_check(intr_info) &&
6271 			 !vmx_guest_inject_ac(vcpu))
6272 			return true;
6273 		else if (is_ve_fault(intr_info))
6274 			return true;
6275 		return false;
6276 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6277 		return true;
6278 	case EXIT_REASON_MCE_DURING_VMENTRY:
6279 		return true;
6280 	case EXIT_REASON_EPT_VIOLATION:
6281 		/*
6282 		 * L0 always deals with the EPT violation. If nested EPT is
6283 		 * used, and the nested mmu code discovers that the address is
6284 		 * missing in the guest EPT table (EPT12), the EPT violation
6285 		 * will be injected with nested_ept_inject_page_fault()
6286 		 */
6287 		return true;
6288 	case EXIT_REASON_EPT_MISCONFIG:
6289 		/*
6290 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
6291 		 * table (shadow on EPT) or a merged EPT table that L0 built
6292 		 * (EPT on EPT). So any problems with the structure of the
6293 		 * table is L0's fault.
6294 		 */
6295 		return true;
6296 	case EXIT_REASON_PREEMPTION_TIMER:
6297 		return true;
6298 	case EXIT_REASON_PML_FULL:
6299 		/*
6300 		 * PML is emulated for an L1 VMM and should never be enabled in
6301 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6302 		 */
6303 		return true;
6304 	case EXIT_REASON_VMFUNC:
6305 		/* VM functions are emulated through L2->L0 vmexits. */
6306 		return true;
6307 	case EXIT_REASON_BUS_LOCK:
6308 		/*
6309 		 * At present, bus lock VM exit is never exposed to L1.
6310 		 * Handle L2's bus locks in L0 directly.
6311 		 */
6312 		return true;
6313 #ifdef CONFIG_KVM_HYPERV
6314 	case EXIT_REASON_VMCALL:
6315 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
6316 		return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6317 			nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6318 			kvm_hv_is_tlb_flush_hcall(vcpu);
6319 #endif
6320 	default:
6321 		break;
6322 	}
6323 	return false;
6324 }
6325 
6326 /*
6327  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6328  * is_guest_mode (L2).
6329  */
6330 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6331 				     union vmx_exit_reason exit_reason)
6332 {
6333 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6334 	u32 intr_info;
6335 
6336 	switch ((u16)exit_reason.basic) {
6337 	case EXIT_REASON_EXCEPTION_NMI:
6338 		intr_info = vmx_get_intr_info(vcpu);
6339 		if (is_nmi(intr_info))
6340 			return true;
6341 		else if (is_page_fault(intr_info))
6342 			return true;
6343 		return vmcs12->exception_bitmap &
6344 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6345 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6346 		return nested_exit_on_intr(vcpu);
6347 	case EXIT_REASON_TRIPLE_FAULT:
6348 		return true;
6349 	case EXIT_REASON_INTERRUPT_WINDOW:
6350 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6351 	case EXIT_REASON_NMI_WINDOW:
6352 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6353 	case EXIT_REASON_TASK_SWITCH:
6354 		return true;
6355 	case EXIT_REASON_CPUID:
6356 		return true;
6357 	case EXIT_REASON_HLT:
6358 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6359 	case EXIT_REASON_INVD:
6360 		return true;
6361 	case EXIT_REASON_INVLPG:
6362 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6363 	case EXIT_REASON_RDPMC:
6364 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6365 	case EXIT_REASON_RDRAND:
6366 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6367 	case EXIT_REASON_RDSEED:
6368 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6369 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6370 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6371 	case EXIT_REASON_VMREAD:
6372 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6373 			vmcs12->vmread_bitmap);
6374 	case EXIT_REASON_VMWRITE:
6375 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6376 			vmcs12->vmwrite_bitmap);
6377 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6378 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6379 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6380 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6381 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6382 		/*
6383 		 * VMX instructions trap unconditionally. This allows L1 to
6384 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6385 		 */
6386 		return true;
6387 	case EXIT_REASON_CR_ACCESS:
6388 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6389 	case EXIT_REASON_DR_ACCESS:
6390 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6391 	case EXIT_REASON_IO_INSTRUCTION:
6392 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6393 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6394 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6395 	case EXIT_REASON_MSR_READ:
6396 	case EXIT_REASON_MSR_WRITE:
6397 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6398 	case EXIT_REASON_INVALID_STATE:
6399 		return true;
6400 	case EXIT_REASON_MWAIT_INSTRUCTION:
6401 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6402 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6403 		return nested_vmx_exit_handled_mtf(vmcs12);
6404 	case EXIT_REASON_MONITOR_INSTRUCTION:
6405 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6406 	case EXIT_REASON_PAUSE_INSTRUCTION:
6407 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6408 			nested_cpu_has2(vmcs12,
6409 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6410 	case EXIT_REASON_MCE_DURING_VMENTRY:
6411 		return true;
6412 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6413 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6414 	case EXIT_REASON_APIC_ACCESS:
6415 	case EXIT_REASON_APIC_WRITE:
6416 	case EXIT_REASON_EOI_INDUCED:
6417 		/*
6418 		 * The controls for "virtualize APIC accesses," "APIC-
6419 		 * register virtualization," and "virtual-interrupt
6420 		 * delivery" only come from vmcs12.
6421 		 */
6422 		return true;
6423 	case EXIT_REASON_INVPCID:
6424 		return
6425 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6426 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6427 	case EXIT_REASON_WBINVD:
6428 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6429 	case EXIT_REASON_XSETBV:
6430 		return true;
6431 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6432 		/*
6433 		 * This should never happen, since it is not possible to
6434 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6435 		 * If if it were, XSS would have to be checked against
6436 		 * the XSS exit bitmap in vmcs12.
6437 		 */
6438 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6439 	case EXIT_REASON_UMWAIT:
6440 	case EXIT_REASON_TPAUSE:
6441 		return nested_cpu_has2(vmcs12,
6442 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6443 	case EXIT_REASON_ENCLS:
6444 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6445 	case EXIT_REASON_NOTIFY:
6446 		/* Notify VM exit is not exposed to L1 */
6447 		return false;
6448 	default:
6449 		return true;
6450 	}
6451 }
6452 
6453 /*
6454  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6455  * reflected into L1.
6456  */
6457 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6458 {
6459 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6460 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6461 	unsigned long exit_qual;
6462 	u32 exit_intr_info;
6463 
6464 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6465 
6466 	/*
6467 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6468 	 * has already loaded L2's state.
6469 	 */
6470 	if (unlikely(vmx->fail)) {
6471 		trace_kvm_nested_vmenter_failed(
6472 			"hardware VM-instruction error: ",
6473 			vmcs_read32(VM_INSTRUCTION_ERROR));
6474 		exit_intr_info = 0;
6475 		exit_qual = 0;
6476 		goto reflect_vmexit;
6477 	}
6478 
6479 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6480 
6481 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6482 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6483 		return false;
6484 
6485 	/* If L1 doesn't want the exit, handle it in L0. */
6486 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6487 		return false;
6488 
6489 	/*
6490 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6491 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6492 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6493 	 * interrupts are never reflected to L1 so it's a non-issue.
6494 	 */
6495 	exit_intr_info = vmx_get_intr_info(vcpu);
6496 	if (is_exception_with_error_code(exit_intr_info)) {
6497 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6498 
6499 		vmcs12->vm_exit_intr_error_code =
6500 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6501 	}
6502 	exit_qual = vmx_get_exit_qual(vcpu);
6503 
6504 reflect_vmexit:
6505 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6506 	return true;
6507 }
6508 
6509 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6510 				struct kvm_nested_state __user *user_kvm_nested_state,
6511 				u32 user_data_size)
6512 {
6513 	struct vcpu_vmx *vmx;
6514 	struct vmcs12 *vmcs12;
6515 	struct kvm_nested_state kvm_state = {
6516 		.flags = 0,
6517 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6518 		.size = sizeof(kvm_state),
6519 		.hdr.vmx.flags = 0,
6520 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6521 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6522 		.hdr.vmx.preemption_timer_deadline = 0,
6523 	};
6524 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6525 		&user_kvm_nested_state->data.vmx[0];
6526 
6527 	if (!vcpu)
6528 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6529 
6530 	vmx = to_vmx(vcpu);
6531 	vmcs12 = get_vmcs12(vcpu);
6532 
6533 	if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6534 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6535 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6536 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6537 
6538 		if (vmx_has_valid_vmcs12(vcpu)) {
6539 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6540 
6541 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6542 			if (nested_vmx_is_evmptr12_set(vmx))
6543 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6544 
6545 			if (is_guest_mode(vcpu) &&
6546 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6547 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6548 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6549 		}
6550 
6551 		if (vmx->nested.smm.vmxon)
6552 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6553 
6554 		if (vmx->nested.smm.guest_mode)
6555 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6556 
6557 		if (is_guest_mode(vcpu)) {
6558 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6559 
6560 			if (vmx->nested.nested_run_pending)
6561 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6562 
6563 			if (vmx->nested.mtf_pending)
6564 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6565 
6566 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6567 			    vmx->nested.has_preemption_timer_deadline) {
6568 				kvm_state.hdr.vmx.flags |=
6569 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6570 				kvm_state.hdr.vmx.preemption_timer_deadline =
6571 					vmx->nested.preemption_timer_deadline;
6572 			}
6573 		}
6574 	}
6575 
6576 	if (user_data_size < kvm_state.size)
6577 		goto out;
6578 
6579 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6580 		return -EFAULT;
6581 
6582 	if (!vmx_has_valid_vmcs12(vcpu))
6583 		goto out;
6584 
6585 	/*
6586 	 * When running L2, the authoritative vmcs12 state is in the
6587 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6588 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6589 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6590 	 * vmcs12 state is in the vmcs12 already.
6591 	 */
6592 	if (is_guest_mode(vcpu)) {
6593 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6594 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6595 	} else  {
6596 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6597 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6598 			if (nested_vmx_is_evmptr12_valid(vmx))
6599 				/*
6600 				 * L1 hypervisor is not obliged to keep eVMCS
6601 				 * clean fields data always up-to-date while
6602 				 * not in guest mode, 'hv_clean_fields' is only
6603 				 * supposed to be actual upon vmentry so we need
6604 				 * to ignore it here and do full copy.
6605 				 */
6606 				copy_enlightened_to_vmcs12(vmx, 0);
6607 			else if (enable_shadow_vmcs)
6608 				copy_shadow_to_vmcs12(vmx);
6609 		}
6610 	}
6611 
6612 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6613 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6614 
6615 	/*
6616 	 * Copy over the full allocated size of vmcs12 rather than just the size
6617 	 * of the struct.
6618 	 */
6619 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6620 		return -EFAULT;
6621 
6622 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6623 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6624 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6625 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6626 			return -EFAULT;
6627 	}
6628 out:
6629 	return kvm_state.size;
6630 }
6631 
6632 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6633 {
6634 	if (is_guest_mode(vcpu)) {
6635 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6636 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6637 	}
6638 	free_nested(vcpu);
6639 }
6640 
6641 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6642 				struct kvm_nested_state __user *user_kvm_nested_state,
6643 				struct kvm_nested_state *kvm_state)
6644 {
6645 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6646 	struct vmcs12 *vmcs12;
6647 	enum vm_entry_failure_code ignored;
6648 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6649 		&user_kvm_nested_state->data.vmx[0];
6650 	int ret;
6651 
6652 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6653 		return -EINVAL;
6654 
6655 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6656 		if (kvm_state->hdr.vmx.smm.flags)
6657 			return -EINVAL;
6658 
6659 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6660 			return -EINVAL;
6661 
6662 		/*
6663 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6664 		 * enable eVMCS capability on vCPU. However, since then
6665 		 * code was changed such that flag signals vmcs12 should
6666 		 * be copied into eVMCS in guest memory.
6667 		 *
6668 		 * To preserve backwards compatibility, allow user
6669 		 * to set this flag even when there is no VMXON region.
6670 		 */
6671 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6672 			return -EINVAL;
6673 	} else {
6674 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6675 			return -EINVAL;
6676 
6677 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6678 			return -EINVAL;
6679 	}
6680 
6681 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6682 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6683 		return -EINVAL;
6684 
6685 	if (kvm_state->hdr.vmx.smm.flags &
6686 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6687 		return -EINVAL;
6688 
6689 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6690 		return -EINVAL;
6691 
6692 	/*
6693 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6694 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6695 	 * must be zero.
6696 	 */
6697 	if (is_smm(vcpu) ?
6698 		(kvm_state->flags &
6699 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6700 		: kvm_state->hdr.vmx.smm.flags)
6701 		return -EINVAL;
6702 
6703 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6704 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6705 		return -EINVAL;
6706 
6707 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6708 	    (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6709 	     !vmx->nested.enlightened_vmcs_enabled))
6710 			return -EINVAL;
6711 
6712 	vmx_leave_nested(vcpu);
6713 
6714 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6715 		return 0;
6716 
6717 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6718 	ret = enter_vmx_operation(vcpu);
6719 	if (ret)
6720 		return ret;
6721 
6722 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6723 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6724 		/* See vmx_has_valid_vmcs12.  */
6725 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6726 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6727 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6728 			return -EINVAL;
6729 		else
6730 			return 0;
6731 	}
6732 
6733 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6734 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6735 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6736 			return -EINVAL;
6737 
6738 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6739 #ifdef CONFIG_KVM_HYPERV
6740 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6741 		/*
6742 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6743 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6744 		 * restored yet. EVMCS will be mapped from
6745 		 * nested_get_vmcs12_pages().
6746 		 */
6747 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6748 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6749 #endif
6750 	} else {
6751 		return -EINVAL;
6752 	}
6753 
6754 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6755 		vmx->nested.smm.vmxon = true;
6756 		vmx->nested.vmxon = false;
6757 
6758 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6759 			vmx->nested.smm.guest_mode = true;
6760 	}
6761 
6762 	vmcs12 = get_vmcs12(vcpu);
6763 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6764 		return -EFAULT;
6765 
6766 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6767 		return -EINVAL;
6768 
6769 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6770 		return 0;
6771 
6772 	vmx->nested.nested_run_pending =
6773 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6774 
6775 	vmx->nested.mtf_pending =
6776 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6777 
6778 	ret = -EINVAL;
6779 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6780 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6781 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6782 
6783 		if (kvm_state->size <
6784 		    sizeof(*kvm_state) +
6785 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6786 			goto error_guest_mode;
6787 
6788 		if (copy_from_user(shadow_vmcs12,
6789 				   user_vmx_nested_state->shadow_vmcs12,
6790 				   sizeof(*shadow_vmcs12))) {
6791 			ret = -EFAULT;
6792 			goto error_guest_mode;
6793 		}
6794 
6795 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6796 		    !shadow_vmcs12->hdr.shadow_vmcs)
6797 			goto error_guest_mode;
6798 	}
6799 
6800 	vmx->nested.has_preemption_timer_deadline = false;
6801 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6802 		vmx->nested.has_preemption_timer_deadline = true;
6803 		vmx->nested.preemption_timer_deadline =
6804 			kvm_state->hdr.vmx.preemption_timer_deadline;
6805 	}
6806 
6807 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6808 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6809 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6810 		goto error_guest_mode;
6811 
6812 	vmx->nested.dirty_vmcs12 = true;
6813 	vmx->nested.force_msr_bitmap_recalc = true;
6814 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6815 	if (ret)
6816 		goto error_guest_mode;
6817 
6818 	if (vmx->nested.mtf_pending)
6819 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6820 
6821 	return 0;
6822 
6823 error_guest_mode:
6824 	vmx->nested.nested_run_pending = 0;
6825 	return ret;
6826 }
6827 
6828 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6829 {
6830 	if (enable_shadow_vmcs) {
6831 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6832 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6833 	}
6834 }
6835 
6836 /*
6837  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6838  * that madness to get the encoding for comparison.
6839  */
6840 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6841 
6842 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6843 {
6844 	/*
6845 	 * Note these are the so called "index" of the VMCS field encoding, not
6846 	 * the index into vmcs12.
6847 	 */
6848 	unsigned int max_idx, idx;
6849 	int i;
6850 
6851 	/*
6852 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6853 	 * vmcs12, regardless of whether or not the associated feature is
6854 	 * exposed to L1.  Simply find the field with the highest index.
6855 	 */
6856 	max_idx = 0;
6857 	for (i = 0; i < nr_vmcs12_fields; i++) {
6858 		/* The vmcs12 table is very, very sparsely populated. */
6859 		if (!vmcs12_field_offsets[i])
6860 			continue;
6861 
6862 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6863 		if (idx > max_idx)
6864 			max_idx = idx;
6865 	}
6866 
6867 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6868 }
6869 
6870 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6871 					   struct nested_vmx_msrs *msrs)
6872 {
6873 	msrs->pinbased_ctls_low =
6874 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6875 
6876 	msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6877 	msrs->pinbased_ctls_high &=
6878 		PIN_BASED_EXT_INTR_MASK |
6879 		PIN_BASED_NMI_EXITING |
6880 		PIN_BASED_VIRTUAL_NMIS |
6881 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6882 	msrs->pinbased_ctls_high |=
6883 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6884 		PIN_BASED_VMX_PREEMPTION_TIMER;
6885 }
6886 
6887 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6888 				       struct nested_vmx_msrs *msrs)
6889 {
6890 	msrs->exit_ctls_low =
6891 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6892 
6893 	msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6894 	msrs->exit_ctls_high &=
6895 #ifdef CONFIG_X86_64
6896 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6897 #endif
6898 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6899 		VM_EXIT_CLEAR_BNDCFGS;
6900 	msrs->exit_ctls_high |=
6901 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6902 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6903 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6904 		VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6905 
6906 	/* We support free control of debug control saving. */
6907 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6908 }
6909 
6910 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6911 					struct nested_vmx_msrs *msrs)
6912 {
6913 	msrs->entry_ctls_low =
6914 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6915 
6916 	msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6917 	msrs->entry_ctls_high &=
6918 #ifdef CONFIG_X86_64
6919 		VM_ENTRY_IA32E_MODE |
6920 #endif
6921 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6922 	msrs->entry_ctls_high |=
6923 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6924 		 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6925 
6926 	/* We support free control of debug control loading. */
6927 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6928 }
6929 
6930 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6931 					   struct nested_vmx_msrs *msrs)
6932 {
6933 	msrs->procbased_ctls_low =
6934 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6935 
6936 	msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6937 	msrs->procbased_ctls_high &=
6938 		CPU_BASED_INTR_WINDOW_EXITING |
6939 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6940 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6941 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6942 		CPU_BASED_CR3_STORE_EXITING |
6943 #ifdef CONFIG_X86_64
6944 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6945 #endif
6946 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6947 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6948 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6949 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6950 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6951 	/*
6952 	 * We can allow some features even when not supported by the
6953 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6954 	 * can use it to avoid exits to L1 - even when L0 runs L2
6955 	 * without MSR bitmaps.
6956 	 */
6957 	msrs->procbased_ctls_high |=
6958 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6959 		CPU_BASED_USE_MSR_BITMAPS;
6960 
6961 	/* We support free control of CR3 access interception. */
6962 	msrs->procbased_ctls_low &=
6963 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6964 }
6965 
6966 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6967 					    struct vmcs_config *vmcs_conf,
6968 					    struct nested_vmx_msrs *msrs)
6969 {
6970 	msrs->secondary_ctls_low = 0;
6971 
6972 	msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6973 	msrs->secondary_ctls_high &=
6974 		SECONDARY_EXEC_DESC |
6975 		SECONDARY_EXEC_ENABLE_RDTSCP |
6976 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6977 		SECONDARY_EXEC_WBINVD_EXITING |
6978 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6979 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6980 		SECONDARY_EXEC_RDRAND_EXITING |
6981 		SECONDARY_EXEC_ENABLE_INVPCID |
6982 		SECONDARY_EXEC_ENABLE_VMFUNC |
6983 		SECONDARY_EXEC_RDSEED_EXITING |
6984 		SECONDARY_EXEC_ENABLE_XSAVES |
6985 		SECONDARY_EXEC_TSC_SCALING |
6986 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6987 
6988 	/*
6989 	 * We can emulate "VMCS shadowing," even if the hardware
6990 	 * doesn't support it.
6991 	 */
6992 	msrs->secondary_ctls_high |=
6993 		SECONDARY_EXEC_SHADOW_VMCS;
6994 
6995 	if (enable_ept) {
6996 		/* nested EPT: emulate EPT also to L1 */
6997 		msrs->secondary_ctls_high |=
6998 			SECONDARY_EXEC_ENABLE_EPT;
6999 		msrs->ept_caps =
7000 			VMX_EPT_PAGE_WALK_4_BIT |
7001 			VMX_EPT_PAGE_WALK_5_BIT |
7002 			VMX_EPTP_WB_BIT |
7003 			VMX_EPT_INVEPT_BIT |
7004 			VMX_EPT_EXECUTE_ONLY_BIT;
7005 
7006 		msrs->ept_caps &= ept_caps;
7007 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7008 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7009 			VMX_EPT_1GB_PAGE_BIT;
7010 		if (enable_ept_ad_bits) {
7011 			msrs->secondary_ctls_high |=
7012 				SECONDARY_EXEC_ENABLE_PML;
7013 			msrs->ept_caps |= VMX_EPT_AD_BIT;
7014 		}
7015 
7016 		/*
7017 		 * Advertise EPTP switching irrespective of hardware support,
7018 		 * KVM emulates it in software so long as VMFUNC is supported.
7019 		 */
7020 		if (cpu_has_vmx_vmfunc())
7021 			msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7022 	}
7023 
7024 	/*
7025 	 * Old versions of KVM use the single-context version without
7026 	 * checking for support, so declare that it is supported even
7027 	 * though it is treated as global context.  The alternative is
7028 	 * not failing the single-context invvpid, and it is worse.
7029 	 */
7030 	if (enable_vpid) {
7031 		msrs->secondary_ctls_high |=
7032 			SECONDARY_EXEC_ENABLE_VPID;
7033 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7034 			VMX_VPID_EXTENT_SUPPORTED_MASK;
7035 	}
7036 
7037 	if (enable_unrestricted_guest)
7038 		msrs->secondary_ctls_high |=
7039 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
7040 
7041 	if (flexpriority_enabled)
7042 		msrs->secondary_ctls_high |=
7043 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7044 
7045 	if (enable_sgx)
7046 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7047 }
7048 
7049 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7050 				       struct nested_vmx_msrs *msrs)
7051 {
7052 	msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7053 	msrs->misc_low |=
7054 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7055 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7056 		VMX_MISC_ACTIVITY_HLT |
7057 		VMX_MISC_ACTIVITY_WAIT_SIPI;
7058 	msrs->misc_high = 0;
7059 }
7060 
7061 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7062 {
7063 	/*
7064 	 * This MSR reports some information about VMX support. We
7065 	 * should return information about the VMX we emulate for the
7066 	 * guest, and the VMCS structure we give it - not about the
7067 	 * VMX support of the underlying hardware.
7068 	 */
7069 	msrs->basic =
7070 		VMCS12_REVISION |
7071 		VMX_BASIC_TRUE_CTLS |
7072 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7073 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7074 
7075 	if (cpu_has_vmx_basic_inout())
7076 		msrs->basic |= VMX_BASIC_INOUT;
7077 }
7078 
7079 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7080 {
7081 	/*
7082 	 * These MSRs specify bits which the guest must keep fixed on
7083 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7084 	 * We picked the standard core2 setting.
7085 	 */
7086 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7087 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7088 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7089 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7090 
7091 	/* These MSRs specify bits which the guest must keep fixed off. */
7092 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7093 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7094 
7095 	if (vmx_umip_emulated())
7096 		msrs->cr4_fixed1 |= X86_CR4_UMIP;
7097 }
7098 
7099 /*
7100  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7101  * returned for the various VMX controls MSRs when nested VMX is enabled.
7102  * The same values should also be used to verify that vmcs12 control fields are
7103  * valid during nested entry from L1 to L2.
7104  * Each of these control msrs has a low and high 32-bit half: A low bit is on
7105  * if the corresponding bit in the (32-bit) control field *must* be on, and a
7106  * bit in the high half is on if the corresponding bit in the control field
7107  * may be on. See also vmx_control_verify().
7108  */
7109 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7110 {
7111 	struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7112 
7113 	/*
7114 	 * Note that as a general rule, the high half of the MSRs (bits in
7115 	 * the control fields which may be 1) should be initialized by the
7116 	 * intersection of the underlying hardware's MSR (i.e., features which
7117 	 * can be supported) and the list of features we want to expose -
7118 	 * because they are known to be properly supported in our code.
7119 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
7120 	 * be set to 0, meaning that L1 may turn off any of these bits. The
7121 	 * reason is that if one of these bits is necessary, it will appear
7122 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7123 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
7124 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7125 	 * These rules have exceptions below.
7126 	 */
7127 	nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7128 
7129 	nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7130 
7131 	nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7132 
7133 	nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7134 
7135 	nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7136 
7137 	nested_vmx_setup_misc_data(vmcs_conf, msrs);
7138 
7139 	nested_vmx_setup_basic(msrs);
7140 
7141 	nested_vmx_setup_cr_fixed(msrs);
7142 
7143 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7144 }
7145 
7146 void nested_vmx_hardware_unsetup(void)
7147 {
7148 	int i;
7149 
7150 	if (enable_shadow_vmcs) {
7151 		for (i = 0; i < VMX_BITMAP_NR; i++)
7152 			free_page((unsigned long)vmx_bitmap[i]);
7153 	}
7154 }
7155 
7156 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7157 {
7158 	int i;
7159 
7160 	if (!cpu_has_vmx_shadow_vmcs())
7161 		enable_shadow_vmcs = 0;
7162 	if (enable_shadow_vmcs) {
7163 		for (i = 0; i < VMX_BITMAP_NR; i++) {
7164 			/*
7165 			 * The vmx_bitmap is not tied to a VM and so should
7166 			 * not be charged to a memcg.
7167 			 */
7168 			vmx_bitmap[i] = (unsigned long *)
7169 				__get_free_page(GFP_KERNEL);
7170 			if (!vmx_bitmap[i]) {
7171 				nested_vmx_hardware_unsetup();
7172 				return -ENOMEM;
7173 			}
7174 		}
7175 
7176 		init_vmcs_shadow_fields();
7177 	}
7178 
7179 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
7180 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
7181 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
7182 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
7183 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
7184 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
7185 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
7186 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmxoff;
7187 	exit_handlers[EXIT_REASON_VMON]		= handle_vmxon;
7188 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
7189 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
7190 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
7191 
7192 	return 0;
7193 }
7194 
7195 struct kvm_x86_nested_ops vmx_nested_ops = {
7196 	.leave_nested = vmx_leave_nested,
7197 	.is_exception_vmexit = nested_vmx_is_exception_vmexit,
7198 	.check_events = vmx_check_nested_events,
7199 	.has_events = vmx_has_nested_events,
7200 	.triple_fault = nested_vmx_triple_fault,
7201 	.get_state = vmx_get_nested_state,
7202 	.set_state = vmx_set_nested_state,
7203 	.get_nested_state_pages = vmx_get_nested_state_pages,
7204 	.write_log_dirty = nested_vmx_write_pml_buffer,
7205 #ifdef CONFIG_KVM_HYPERV
7206 	.enable_evmcs = nested_enable_evmcs,
7207 	.get_evmcs_version = nested_get_evmcs_version,
7208 	.hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7209 #endif
7210 };
7211