xref: /linux/arch/x86/kvm/vmx/nested.c (revision b61104e7a6349bd2c2b3e2fb3260d87f15eda8f4)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6 
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 #include <asm/msr.h>
10 
11 #include "x86.h"
12 #include "cpuid.h"
13 #include "hyperv.h"
14 #include "mmu.h"
15 #include "nested.h"
16 #include "pmu.h"
17 #include "posted_intr.h"
18 #include "sgx.h"
19 #include "trace.h"
20 #include "vmx.h"
21 #include "smm.h"
22 #include "x86_ops.h"
23 
24 static bool __read_mostly enable_shadow_vmcs = 1;
25 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
26 
27 static bool __ro_after_init warn_on_missed_cc;
28 module_param(warn_on_missed_cc, bool, 0444);
29 
30 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
31 
32 /*
33  * Hyper-V requires all of these, so mark them as supported even though
34  * they are just treated the same as all-context.
35  */
36 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
37 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
38 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
39 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
40 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
41 
42 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
43 
44 enum {
45 	VMX_VMREAD_BITMAP,
46 	VMX_VMWRITE_BITMAP,
47 	VMX_BITMAP_NR
48 };
49 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
50 
51 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
52 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
53 
54 struct shadow_vmcs_field {
55 	u16	encoding;
56 	u16	offset;
57 };
58 static struct shadow_vmcs_field shadow_read_only_fields[] = {
59 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
60 #include "vmcs_shadow_fields.h"
61 };
62 static int max_shadow_read_only_fields =
63 	ARRAY_SIZE(shadow_read_only_fields);
64 
65 static struct shadow_vmcs_field shadow_read_write_fields[] = {
66 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
67 #include "vmcs_shadow_fields.h"
68 };
69 static int max_shadow_read_write_fields =
70 	ARRAY_SIZE(shadow_read_write_fields);
71 
72 static void init_vmcs_shadow_fields(void)
73 {
74 	int i, j;
75 
76 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
77 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
78 
79 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
80 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
81 		u16 field = entry.encoding;
82 
83 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
84 		    (i + 1 == max_shadow_read_only_fields ||
85 		     shadow_read_only_fields[i + 1].encoding != field + 1))
86 			pr_err("Missing field from shadow_read_only_field %x\n",
87 			       field + 1);
88 
89 		clear_bit(field, vmx_vmread_bitmap);
90 		if (field & 1)
91 #ifdef CONFIG_X86_64
92 			continue;
93 #else
94 			entry.offset += sizeof(u32);
95 #endif
96 		shadow_read_only_fields[j++] = entry;
97 	}
98 	max_shadow_read_only_fields = j;
99 
100 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
101 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
102 		u16 field = entry.encoding;
103 
104 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
105 		    (i + 1 == max_shadow_read_write_fields ||
106 		     shadow_read_write_fields[i + 1].encoding != field + 1))
107 			pr_err("Missing field from shadow_read_write_field %x\n",
108 			       field + 1);
109 
110 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
111 			  field <= GUEST_TR_AR_BYTES,
112 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
113 
114 		/*
115 		 * PML and the preemption timer can be emulated, but the
116 		 * processor cannot vmwrite to fields that don't exist
117 		 * on bare metal.
118 		 */
119 		switch (field) {
120 		case GUEST_PML_INDEX:
121 			if (!cpu_has_vmx_pml())
122 				continue;
123 			break;
124 		case VMX_PREEMPTION_TIMER_VALUE:
125 			if (!cpu_has_vmx_preemption_timer())
126 				continue;
127 			break;
128 		case GUEST_INTR_STATUS:
129 			if (!cpu_has_vmx_apicv())
130 				continue;
131 			break;
132 		default:
133 			break;
134 		}
135 
136 		clear_bit(field, vmx_vmwrite_bitmap);
137 		clear_bit(field, vmx_vmread_bitmap);
138 		if (field & 1)
139 #ifdef CONFIG_X86_64
140 			continue;
141 #else
142 			entry.offset += sizeof(u32);
143 #endif
144 		shadow_read_write_fields[j++] = entry;
145 	}
146 	max_shadow_read_write_fields = j;
147 }
148 
149 /*
150  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
151  * set the success or error code of an emulated VMX instruction (as specified
152  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
153  * instruction.
154  */
155 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
156 {
157 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
158 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
159 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
160 	return kvm_skip_emulated_instruction(vcpu);
161 }
162 
163 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
164 {
165 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
166 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
167 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
168 			| X86_EFLAGS_CF);
169 	return kvm_skip_emulated_instruction(vcpu);
170 }
171 
172 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
173 				u32 vm_instruction_error)
174 {
175 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
176 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
177 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
178 			| X86_EFLAGS_ZF);
179 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
180 	/*
181 	 * We don't need to force sync to shadow VMCS because
182 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
183 	 * fields and thus must be synced.
184 	 */
185 	if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
186 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
187 
188 	return kvm_skip_emulated_instruction(vcpu);
189 }
190 
191 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
192 {
193 	struct vcpu_vmx *vmx = to_vmx(vcpu);
194 
195 	/*
196 	 * failValid writes the error number to the current VMCS, which
197 	 * can't be done if there isn't a current VMCS.
198 	 */
199 	if (vmx->nested.current_vmptr == INVALID_GPA &&
200 	    !nested_vmx_is_evmptr12_valid(vmx))
201 		return nested_vmx_failInvalid(vcpu);
202 
203 	return nested_vmx_failValid(vcpu, vm_instruction_error);
204 }
205 
206 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
207 {
208 	/* TODO: not to reset guest simply here. */
209 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
210 	pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
211 }
212 
213 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
214 {
215 	return fixed_bits_valid(control, low, high);
216 }
217 
218 static inline u64 vmx_control_msr(u32 low, u32 high)
219 {
220 	return low | ((u64)high << 32);
221 }
222 
223 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
224 {
225 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
226 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
227 	vmx->nested.need_vmcs12_to_shadow_sync = false;
228 }
229 
230 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
231 {
232 #ifdef CONFIG_KVM_HYPERV
233 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
234 	struct vcpu_vmx *vmx = to_vmx(vcpu);
235 
236 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map);
237 	vmx->nested.hv_evmcs = NULL;
238 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
239 
240 	if (hv_vcpu) {
241 		hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
242 		hv_vcpu->nested.vm_id = 0;
243 		hv_vcpu->nested.vp_id = 0;
244 	}
245 #endif
246 }
247 
248 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
249 {
250 #ifdef CONFIG_KVM_HYPERV
251 	struct vcpu_vmx *vmx = to_vmx(vcpu);
252 	/*
253 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
254 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
255 	 * way to distinguish it from VMCS12) and we must not corrupt it by
256 	 * writing to the non-existent 'launch_state' field. The area doesn't
257 	 * have to be the currently active EVMCS on the calling CPU and there's
258 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
259 	 * state. It is possible that the area will stay mapped as
260 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
261 	 */
262 	if (!guest_cpu_cap_has_evmcs(vcpu) ||
263 	    !evmptr_is_valid(nested_get_evmptr(vcpu)))
264 		return false;
265 
266 	if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
267 		nested_release_evmcs(vcpu);
268 
269 	return true;
270 #else
271 	return false;
272 #endif
273 }
274 
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276 				     struct loaded_vmcs *prev)
277 {
278 	struct vmcs_host_state *dest, *src;
279 
280 	if (unlikely(!vmx->vt.guest_state_loaded))
281 		return;
282 
283 	src = &prev->host_state;
284 	dest = &vmx->loaded_vmcs->host_state;
285 
286 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287 	dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289 	dest->ds_sel = src->ds_sel;
290 	dest->es_sel = src->es_sel;
291 #endif
292 }
293 
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296 	struct vcpu_vmx *vmx = to_vmx(vcpu);
297 	struct loaded_vmcs *prev;
298 	int cpu;
299 
300 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
301 		return;
302 
303 	cpu = get_cpu();
304 	prev = vmx->loaded_vmcs;
305 	vmx->loaded_vmcs = vmcs;
306 	vmx_vcpu_load_vmcs(vcpu, cpu);
307 	vmx_sync_vmcs_host_state(vmx, prev);
308 	put_cpu();
309 
310 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
311 
312 	/*
313 	 * All lazily updated registers will be reloaded from VMCS12 on both
314 	 * vmentry and vmexit.
315 	 */
316 	vcpu->arch.regs_dirty = 0;
317 }
318 
319 static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu)
320 {
321 	struct vcpu_vmx *vmx = to_vmx(vcpu);
322 
323 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map);
324 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map);
325 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map);
326 	vmx->nested.pi_desc = NULL;
327 }
328 
329 /*
330  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
331  * just stops using VMX.
332  */
333 static void free_nested(struct kvm_vcpu *vcpu)
334 {
335 	struct vcpu_vmx *vmx = to_vmx(vcpu);
336 
337 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
338 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
339 
340 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
341 		return;
342 
343 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
344 
345 	vmx->nested.vmxon = false;
346 	vmx->nested.smm.vmxon = false;
347 	vmx->nested.vmxon_ptr = INVALID_GPA;
348 	free_vpid(vmx->nested.vpid02);
349 	vmx->nested.posted_intr_nv = -1;
350 	vmx->nested.current_vmptr = INVALID_GPA;
351 	if (enable_shadow_vmcs) {
352 		vmx_disable_shadow_vmcs(vmx);
353 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
354 		free_vmcs(vmx->vmcs01.shadow_vmcs);
355 		vmx->vmcs01.shadow_vmcs = NULL;
356 	}
357 	kfree(vmx->nested.cached_vmcs12);
358 	vmx->nested.cached_vmcs12 = NULL;
359 	kfree(vmx->nested.cached_shadow_vmcs12);
360 	vmx->nested.cached_shadow_vmcs12 = NULL;
361 
362 	nested_put_vmcs12_pages(vcpu);
363 
364 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
365 
366 	nested_release_evmcs(vcpu);
367 
368 	free_loaded_vmcs(&vmx->nested.vmcs02);
369 }
370 
371 /*
372  * Ensure that the current vmcs of the logical processor is the
373  * vmcs01 of the vcpu before calling free_nested().
374  */
375 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
376 {
377 	vcpu_load(vcpu);
378 	vmx_leave_nested(vcpu);
379 	vcpu_put(vcpu);
380 }
381 
382 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
383 
384 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
385 {
386 	return VALID_PAGE(root_hpa) &&
387 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
388 }
389 
390 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
391 				       gpa_t addr)
392 {
393 	unsigned long roots = 0;
394 	uint i;
395 	struct kvm_mmu_root_info *cached_root;
396 
397 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
398 
399 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
400 		cached_root = &vcpu->arch.mmu->prev_roots[i];
401 
402 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
403 					    eptp))
404 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
405 	}
406 	if (roots)
407 		kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
408 }
409 
410 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
411 		struct x86_exception *fault)
412 {
413 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
414 	struct vcpu_vmx *vmx = to_vmx(vcpu);
415 	unsigned long exit_qualification;
416 	u32 vm_exit_reason;
417 
418 	if (vmx->nested.pml_full) {
419 		vm_exit_reason = EXIT_REASON_PML_FULL;
420 		vmx->nested.pml_full = false;
421 
422 		/*
423 		 * It should be impossible to trigger a nested PML Full VM-Exit
424 		 * for anything other than an EPT Violation from L2.  KVM *can*
425 		 * trigger nEPT page fault injection in response to an EPT
426 		 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
427 		 * tables also changed, but KVM should not treat EPT Misconfig
428 		 * VM-Exits as writes.
429 		 */
430 		WARN_ON_ONCE(vmx->vt.exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
431 
432 		/*
433 		 * PML Full and EPT Violation VM-Exits both use bit 12 to report
434 		 * "NMI unblocking due to IRET", i.e. the bit can be propagated
435 		 * as-is from the original EXIT_QUALIFICATION.
436 		 */
437 		exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
438 	} else {
439 		if (fault->error_code & PFERR_RSVD_MASK) {
440 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
441 			exit_qualification = 0;
442 		} else {
443 			exit_qualification = fault->exit_qualification;
444 			exit_qualification |= vmx_get_exit_qual(vcpu) &
445 					      (EPT_VIOLATION_GVA_IS_VALID |
446 					       EPT_VIOLATION_GVA_TRANSLATED);
447 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
448 		}
449 
450 		/*
451 		 * Although the caller (kvm_inject_emulated_page_fault) would
452 		 * have already synced the faulting address in the shadow EPT
453 		 * tables for the current EPTP12, we also need to sync it for
454 		 * any other cached EPTP02s based on the same EP4TA, since the
455 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
456 		 */
457 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
458 					   fault->address);
459 	}
460 
461 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
462 	vmcs12->guest_physical_address = fault->address;
463 }
464 
465 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
466 {
467 	struct vcpu_vmx *vmx = to_vmx(vcpu);
468 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
469 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
470 
471 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
472 				nested_ept_ad_enabled(vcpu),
473 				nested_ept_get_eptp(vcpu));
474 }
475 
476 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
477 {
478 	WARN_ON(mmu_is_nested(vcpu));
479 
480 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
481 	nested_ept_new_eptp(vcpu);
482 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
483 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
484 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
485 
486 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
487 }
488 
489 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
490 {
491 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
492 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
493 }
494 
495 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
496 					    u16 error_code)
497 {
498 	bool inequality, bit;
499 
500 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
501 	inequality =
502 		(error_code & vmcs12->page_fault_error_code_mask) !=
503 		 vmcs12->page_fault_error_code_match;
504 	return inequality ^ bit;
505 }
506 
507 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
508 					   u32 error_code)
509 {
510 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
511 
512 	/*
513 	 * Drop bits 31:16 of the error code when performing the #PF mask+match
514 	 * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
515 	 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
516 	 * error code.  Including the to-be-dropped bits in the check might
517 	 * result in an "impossible" or missed exit from L1's perspective.
518 	 */
519 	if (vector == PF_VECTOR)
520 		return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
521 
522 	return (vmcs12->exception_bitmap & (1u << vector));
523 }
524 
525 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
526 					       struct vmcs12 *vmcs12)
527 {
528 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
529 		return 0;
530 
531 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
532 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
533 		return -EINVAL;
534 
535 	return 0;
536 }
537 
538 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
539 						struct vmcs12 *vmcs12)
540 {
541 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
542 		return 0;
543 
544 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
545 		return -EINVAL;
546 
547 	return 0;
548 }
549 
550 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
551 						struct vmcs12 *vmcs12)
552 {
553 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
554 		return 0;
555 
556 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
557 		return -EINVAL;
558 
559 	if (CC(!nested_cpu_has_vid(vmcs12) && vmcs12->tpr_threshold >> 4))
560 		return -EINVAL;
561 
562 	return 0;
563 }
564 
565 /*
566  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
567  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
568  * only the "disable intercept" case needs to be handled.
569  */
570 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
571 							unsigned long *msr_bitmap_l0,
572 							u32 msr, int type)
573 {
574 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
575 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
576 
577 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
578 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
579 }
580 
581 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
582 {
583 	int msr;
584 
585 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
586 		unsigned word = msr / BITS_PER_LONG;
587 
588 		msr_bitmap[word] = ~0;
589 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
590 	}
591 }
592 
593 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
594 static inline									\
595 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
596 					 unsigned long *msr_bitmap_l1,		\
597 					 unsigned long *msr_bitmap_l0, u32 msr)	\
598 {										\
599 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
600 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
601 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
602 	else									\
603 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
604 }
605 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
606 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
607 
608 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
609 						    unsigned long *msr_bitmap_l1,
610 						    unsigned long *msr_bitmap_l0,
611 						    u32 msr, int types)
612 {
613 	if (types & MSR_TYPE_R)
614 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
615 						  msr_bitmap_l0, msr);
616 	if (types & MSR_TYPE_W)
617 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
618 						   msr_bitmap_l0, msr);
619 }
620 
621 /*
622  * Merge L0's and L1's MSR bitmap, return false to indicate that
623  * we do not use the hardware.
624  */
625 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
626 						 struct vmcs12 *vmcs12)
627 {
628 	struct vcpu_vmx *vmx = to_vmx(vcpu);
629 	int msr;
630 	unsigned long *msr_bitmap_l1;
631 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
632 	struct kvm_host_map map;
633 
634 	/* Nothing to do if the MSR bitmap is not in use.  */
635 	if (!cpu_has_vmx_msr_bitmap() ||
636 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
637 		return false;
638 
639 	/*
640 	 * MSR bitmap update can be skipped when:
641 	 * - MSR bitmap for L1 hasn't changed.
642 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
643 	 *   before.
644 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
645 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
646 	 */
647 	if (!vmx->nested.force_msr_bitmap_recalc) {
648 		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
649 
650 		if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
651 		    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
652 			return true;
653 	}
654 
655 	if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map))
656 		return false;
657 
658 	msr_bitmap_l1 = (unsigned long *)map.hva;
659 
660 	/*
661 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
662 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
663 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
664 	 */
665 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
666 
667 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
668 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
669 			/*
670 			 * L0 need not intercept reads for MSRs between 0x800
671 			 * and 0x8ff, it just lets the processor take the value
672 			 * from the virtual-APIC page; take those 256 bits
673 			 * directly from the L1 bitmap.
674 			 */
675 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
676 				unsigned word = msr / BITS_PER_LONG;
677 
678 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
679 			}
680 		}
681 
682 		nested_vmx_disable_intercept_for_x2apic_msr(
683 			msr_bitmap_l1, msr_bitmap_l0,
684 			X2APIC_MSR(APIC_TASKPRI),
685 			MSR_TYPE_R | MSR_TYPE_W);
686 
687 		if (nested_cpu_has_vid(vmcs12)) {
688 			nested_vmx_disable_intercept_for_x2apic_msr(
689 				msr_bitmap_l1, msr_bitmap_l0,
690 				X2APIC_MSR(APIC_EOI),
691 				MSR_TYPE_W);
692 			nested_vmx_disable_intercept_for_x2apic_msr(
693 				msr_bitmap_l1, msr_bitmap_l0,
694 				X2APIC_MSR(APIC_SELF_IPI),
695 				MSR_TYPE_W);
696 		}
697 	}
698 
699 	/*
700 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
701 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
702 	 */
703 #ifdef CONFIG_X86_64
704 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
705 					 MSR_FS_BASE, MSR_TYPE_RW);
706 
707 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
708 					 MSR_GS_BASE, MSR_TYPE_RW);
709 
710 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
711 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
712 #endif
713 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
714 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
715 
716 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
717 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
718 
719 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
720 					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
721 
722 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
723 					 MSR_IA32_APERF, MSR_TYPE_R);
724 
725 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
726 					 MSR_IA32_MPERF, MSR_TYPE_R);
727 
728 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
729 					 MSR_IA32_U_CET, MSR_TYPE_RW);
730 
731 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
732 					 MSR_IA32_S_CET, MSR_TYPE_RW);
733 
734 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
735 					 MSR_IA32_PL0_SSP, MSR_TYPE_RW);
736 
737 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
738 					 MSR_IA32_PL1_SSP, MSR_TYPE_RW);
739 
740 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
741 					 MSR_IA32_PL2_SSP, MSR_TYPE_RW);
742 
743 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
744 					 MSR_IA32_PL3_SSP, MSR_TYPE_RW);
745 
746 	kvm_vcpu_unmap(vcpu, &map);
747 
748 	vmx->nested.force_msr_bitmap_recalc = false;
749 
750 	return true;
751 }
752 
753 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
754 				       struct vmcs12 *vmcs12)
755 {
756 	struct vcpu_vmx *vmx = to_vmx(vcpu);
757 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
758 
759 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
760 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
761 		return;
762 
763 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
764 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
765 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
766 		return;
767 
768 	kvm_read_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu),
769 			      VMCS12_SIZE);
770 }
771 
772 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
773 					      struct vmcs12 *vmcs12)
774 {
775 	struct vcpu_vmx *vmx = to_vmx(vcpu);
776 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
777 
778 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
779 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
780 		return;
781 
782 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
783 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
784 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
785 		return;
786 
787 	kvm_write_guest_cached(vcpu->kvm, ghc, get_shadow_vmcs12(vcpu),
788 			       VMCS12_SIZE);
789 }
790 
791 /*
792  * In nested virtualization, check if L1 has set
793  * VM_EXIT_ACK_INTR_ON_EXIT
794  */
795 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
796 {
797 	return get_vmcs12(vcpu)->vm_exit_controls &
798 		VM_EXIT_ACK_INTR_ON_EXIT;
799 }
800 
801 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
802 					  struct vmcs12 *vmcs12)
803 {
804 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
805 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
806 		return -EINVAL;
807 	else
808 		return 0;
809 }
810 
811 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
812 					   struct vmcs12 *vmcs12)
813 {
814 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
815 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
816 	    !nested_cpu_has_vid(vmcs12) &&
817 	    !nested_cpu_has_posted_intr(vmcs12))
818 		return 0;
819 
820 	/*
821 	 * If virtualize x2apic mode is enabled,
822 	 * virtualize apic access must be disabled.
823 	 */
824 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
825 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
826 		return -EINVAL;
827 
828 	/*
829 	 * If virtual interrupt delivery is enabled,
830 	 * we must exit on external interrupts.
831 	 */
832 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
833 		return -EINVAL;
834 
835 	/*
836 	 * bits 15:8 should be zero in posted_intr_nv,
837 	 * the descriptor address has been already checked
838 	 * in nested_get_vmcs12_pages.
839 	 *
840 	 * bits 5:0 of posted_intr_desc_addr should be zero.
841 	 */
842 	if (nested_cpu_has_posted_intr(vmcs12) &&
843 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
844 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
845 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
846 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
847 		return -EINVAL;
848 
849 	/* tpr shadow is needed by all apicv features. */
850 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
851 		return -EINVAL;
852 
853 	return 0;
854 }
855 
856 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
857 {
858 	struct vcpu_vmx *vmx = to_vmx(vcpu);
859 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
860 				       vmx->nested.msrs.misc_high);
861 
862 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
863 }
864 
865 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
866 				       u32 count, u64 addr)
867 {
868 	if (count == 0)
869 		return 0;
870 
871 	/*
872 	 * Exceeding the limit results in architecturally _undefined_ behavior,
873 	 * i.e. KVM is allowed to do literally anything in response to a bad
874 	 * limit.  Immediately generate a consistency check so that code that
875 	 * consumes the count doesn't need to worry about extreme edge cases.
876 	 */
877 	if (count > nested_vmx_max_atomic_switch_msrs(vcpu))
878 		return -EINVAL;
879 
880 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
881 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
882 		return -EINVAL;
883 
884 	return 0;
885 }
886 
887 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
888 						     struct vmcs12 *vmcs12)
889 {
890 	if (CC(nested_vmx_check_msr_switch(vcpu,
891 					   vmcs12->vm_exit_msr_load_count,
892 					   vmcs12->vm_exit_msr_load_addr)) ||
893 	    CC(nested_vmx_check_msr_switch(vcpu,
894 					   vmcs12->vm_exit_msr_store_count,
895 					   vmcs12->vm_exit_msr_store_addr)))
896 		return -EINVAL;
897 
898 	return 0;
899 }
900 
901 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
902                                                       struct vmcs12 *vmcs12)
903 {
904 	if (CC(nested_vmx_check_msr_switch(vcpu,
905 					   vmcs12->vm_entry_msr_load_count,
906 					   vmcs12->vm_entry_msr_load_addr)))
907                 return -EINVAL;
908 
909 	return 0;
910 }
911 
912 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
913 					 struct vmcs12 *vmcs12)
914 {
915 	if (!nested_cpu_has_pml(vmcs12))
916 		return 0;
917 
918 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
919 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
920 		return -EINVAL;
921 
922 	return 0;
923 }
924 
925 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
926 							struct vmcs12 *vmcs12)
927 {
928 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
929 	       !nested_cpu_has_ept(vmcs12)))
930 		return -EINVAL;
931 	return 0;
932 }
933 
934 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
935 							 struct vmcs12 *vmcs12)
936 {
937 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
938 	       !nested_cpu_has_ept(vmcs12)))
939 		return -EINVAL;
940 	return 0;
941 }
942 
943 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
944 						 struct vmcs12 *vmcs12)
945 {
946 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
947 		return 0;
948 
949 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
950 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
951 		return -EINVAL;
952 
953 	return 0;
954 }
955 
956 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
957 				       struct vmx_msr_entry *e)
958 {
959 	/* x2APIC MSR accesses are not allowed */
960 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
961 		return -EINVAL;
962 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
963 	    CC(e->index == MSR_IA32_UCODE_REV))
964 		return -EINVAL;
965 	if (CC(e->reserved != 0))
966 		return -EINVAL;
967 	return 0;
968 }
969 
970 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
971 				     struct vmx_msr_entry *e)
972 {
973 	if (CC(e->index == MSR_FS_BASE) ||
974 	    CC(e->index == MSR_GS_BASE) ||
975 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
976 	    nested_vmx_msr_check_common(vcpu, e))
977 		return -EINVAL;
978 	return 0;
979 }
980 
981 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
982 				      struct vmx_msr_entry *e)
983 {
984 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
985 	    nested_vmx_msr_check_common(vcpu, e))
986 		return -EINVAL;
987 	return 0;
988 }
989 
990 /*
991  * Load guest's/host's msr at nested entry/exit.
992  * return 0 for success, entry index for failure.
993  *
994  * One of the failure modes for MSR load/store is when a list exceeds the
995  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
996  * as possible, process all valid entries before failing rather than precheck
997  * for a capacity violation.
998  */
999 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1000 {
1001 	u32 i;
1002 	struct vmx_msr_entry e;
1003 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1004 
1005 	for (i = 0; i < count; i++) {
1006 		if (WARN_ON_ONCE(i >= max_msr_list_size))
1007 			goto fail;
1008 
1009 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
1010 					&e, sizeof(e))) {
1011 			pr_debug_ratelimited(
1012 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
1013 				__func__, i, gpa + i * sizeof(e));
1014 			goto fail;
1015 		}
1016 		if (nested_vmx_load_msr_check(vcpu, &e)) {
1017 			pr_debug_ratelimited(
1018 				"%s check failed (%u, 0x%x, 0x%x)\n",
1019 				__func__, i, e.index, e.reserved);
1020 			goto fail;
1021 		}
1022 		if (kvm_emulate_msr_write(vcpu, e.index, e.value)) {
1023 			pr_debug_ratelimited(
1024 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1025 				__func__, i, e.index, e.value);
1026 			goto fail;
1027 		}
1028 	}
1029 	return 0;
1030 fail:
1031 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
1032 	return i + 1;
1033 }
1034 
1035 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
1036 					    u32 msr_index,
1037 					    u64 *data)
1038 {
1039 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1040 
1041 	/*
1042 	 * If the L0 hypervisor stored a more accurate value for the TSC that
1043 	 * does not include the time taken for emulation of the L2->L1
1044 	 * VM-exit in L0, use the more accurate value.
1045 	 */
1046 	if (msr_index == MSR_IA32_TSC) {
1047 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1048 						    MSR_IA32_TSC);
1049 
1050 		if (i >= 0) {
1051 			u64 val = vmx->msr_autostore.guest.val[i].value;
1052 
1053 			*data = kvm_read_l1_tsc(vcpu, val);
1054 			return true;
1055 		}
1056 	}
1057 
1058 	if (kvm_emulate_msr_read(vcpu, msr_index, data)) {
1059 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1060 			msr_index);
1061 		return false;
1062 	}
1063 	return true;
1064 }
1065 
1066 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1067 				     struct vmx_msr_entry *e)
1068 {
1069 	if (kvm_vcpu_read_guest(vcpu,
1070 				gpa + i * sizeof(*e),
1071 				e, 2 * sizeof(u32))) {
1072 		pr_debug_ratelimited(
1073 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1074 			__func__, i, gpa + i * sizeof(*e));
1075 		return false;
1076 	}
1077 	if (nested_vmx_store_msr_check(vcpu, e)) {
1078 		pr_debug_ratelimited(
1079 			"%s check failed (%u, 0x%x, 0x%x)\n",
1080 			__func__, i, e->index, e->reserved);
1081 		return false;
1082 	}
1083 	return true;
1084 }
1085 
1086 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1087 {
1088 	u64 data;
1089 	u32 i;
1090 	struct vmx_msr_entry e;
1091 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1092 
1093 	for (i = 0; i < count; i++) {
1094 		if (WARN_ON_ONCE(i >= max_msr_list_size))
1095 			return -EINVAL;
1096 
1097 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1098 			return -EINVAL;
1099 
1100 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1101 			return -EINVAL;
1102 
1103 		if (kvm_vcpu_write_guest(vcpu,
1104 					 gpa + i * sizeof(e) +
1105 					     offsetof(struct vmx_msr_entry, value),
1106 					 &data, sizeof(data))) {
1107 			pr_debug_ratelimited(
1108 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1109 				__func__, i, e.index, data);
1110 			return -EINVAL;
1111 		}
1112 	}
1113 	return 0;
1114 }
1115 
1116 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1117 {
1118 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1119 	u32 count = vmcs12->vm_exit_msr_store_count;
1120 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1121 	struct vmx_msr_entry e;
1122 	u32 i;
1123 
1124 	for (i = 0; i < count; i++) {
1125 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1126 			return false;
1127 
1128 		if (e.index == msr_index)
1129 			return true;
1130 	}
1131 	return false;
1132 }
1133 
1134 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1135 					   u32 msr_index)
1136 {
1137 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1138 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1139 	bool in_vmcs12_store_list;
1140 	int msr_autostore_slot;
1141 	bool in_autostore_list;
1142 	int last;
1143 
1144 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1145 	in_autostore_list = msr_autostore_slot >= 0;
1146 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1147 
1148 	if (in_vmcs12_store_list && !in_autostore_list) {
1149 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1150 			/*
1151 			 * Emulated VMEntry does not fail here.  Instead a less
1152 			 * accurate value will be returned by
1153 			 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1154 			 * internal MSR state instead of reading the value from
1155 			 * the vmcs02 VMExit MSR-store area.
1156 			 */
1157 			pr_warn_ratelimited(
1158 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1159 				msr_index);
1160 			return;
1161 		}
1162 		last = autostore->nr++;
1163 		autostore->val[last].index = msr_index;
1164 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1165 		last = --autostore->nr;
1166 		autostore->val[msr_autostore_slot] = autostore->val[last];
1167 	}
1168 }
1169 
1170 /*
1171  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1172  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1173  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1174  * @entry_failure_code.
1175  */
1176 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1177 			       bool nested_ept, bool reload_pdptrs,
1178 			       enum vm_entry_failure_code *entry_failure_code)
1179 {
1180 	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1181 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1182 		return -EINVAL;
1183 	}
1184 
1185 	/*
1186 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1187 	 * must not be dereferenced.
1188 	 */
1189 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1190 	    CC(!load_pdptrs(vcpu, cr3))) {
1191 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1192 		return -EINVAL;
1193 	}
1194 
1195 	vcpu->arch.cr3 = cr3;
1196 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1197 
1198 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1199 	kvm_init_mmu(vcpu);
1200 
1201 	if (!nested_ept)
1202 		kvm_mmu_new_pgd(vcpu, cr3);
1203 
1204 	return 0;
1205 }
1206 
1207 /*
1208  * Returns if KVM is able to config CPU to tag TLB entries
1209  * populated by L2 differently than TLB entries populated
1210  * by L1.
1211  *
1212  * If L0 uses EPT, L1 and L2 run with different EPTP because
1213  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1214  * are tagged with different EPTP.
1215  *
1216  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1217  * with different VPID (L1 entries are tagged with vmx->vpid
1218  * while L2 entries are tagged with vmx->nested.vpid02).
1219  */
1220 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1221 {
1222 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1223 
1224 	return enable_ept ||
1225 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1226 }
1227 
1228 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1229 					    struct vmcs12 *vmcs12,
1230 					    bool is_vmenter)
1231 {
1232 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1233 
1234 	/* Handle pending Hyper-V TLB flush requests */
1235 	kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1236 
1237 	/*
1238 	 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1239 	 * same VPID as the host, and so architecturally, linear and combined
1240 	 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit.  KVM
1241 	 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1242 	 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01.  This
1243 	 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1244 	 * VPIDs) still occurs from L1's perspective, and KVM may need to
1245 	 * synchronize the MMU in response to the guest TLB flush.
1246 	 *
1247 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1248 	 * EPT is a special snowflake, as guest-physical mappings aren't
1249 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1250 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1251 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1252 	 * those mappings.
1253 	 */
1254 	if (!nested_cpu_has_vpid(vmcs12)) {
1255 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1256 		return;
1257 	}
1258 
1259 	/* L2 should never have a VPID if VPID is disabled. */
1260 	WARN_ON(!enable_vpid);
1261 
1262 	/*
1263 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1264 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1265 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1266 	 * that the new vpid12 has never been used and thus represents a new
1267 	 * guest ASID that cannot have entries in the TLB.
1268 	 */
1269 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1270 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1271 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1272 		return;
1273 	}
1274 
1275 	/*
1276 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1277 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1278 	 * KVM was unable to allocate a VPID for L2, flush the current context
1279 	 * as the effective ASID is common to both L1 and L2.
1280 	 */
1281 	if (!nested_has_guest_tlb_tag(vcpu))
1282 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1283 }
1284 
1285 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1286 {
1287 	superset &= mask;
1288 	subset &= mask;
1289 
1290 	return (superset | subset) == superset;
1291 }
1292 
1293 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1294 {
1295 	const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1296 				 VMX_BASIC_INOUT |
1297 				 VMX_BASIC_TRUE_CTLS |
1298 				 VMX_BASIC_NO_HW_ERROR_CODE_CC;
1299 
1300 	const u64 reserved_bits = GENMASK_ULL(63, 57) |
1301 				  GENMASK_ULL(47, 45) |
1302 				  BIT_ULL(31);
1303 
1304 	u64 vmx_basic = vmcs_config.nested.basic;
1305 
1306 	BUILD_BUG_ON(feature_bits & reserved_bits);
1307 
1308 	/*
1309 	 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1310 	 * inverted polarity), the incoming value must not set feature bits or
1311 	 * reserved bits that aren't allowed/supported by KVM.  Fields, i.e.
1312 	 * multi-bit values, are explicitly checked below.
1313 	 */
1314 	if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1315 		return -EINVAL;
1316 
1317 	/*
1318 	 * KVM does not emulate a version of VMX that constrains physical
1319 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1320 	 */
1321 	if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1322 		return -EINVAL;
1323 
1324 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1325 	    vmx_basic_vmcs_revision_id(data))
1326 		return -EINVAL;
1327 
1328 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1329 		return -EINVAL;
1330 
1331 	vmx->nested.msrs.basic = data;
1332 	return 0;
1333 }
1334 
1335 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1336 				u32 **low, u32 **high)
1337 {
1338 	switch (msr_index) {
1339 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1340 		*low = &msrs->pinbased_ctls_low;
1341 		*high = &msrs->pinbased_ctls_high;
1342 		break;
1343 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1344 		*low = &msrs->procbased_ctls_low;
1345 		*high = &msrs->procbased_ctls_high;
1346 		break;
1347 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1348 		*low = &msrs->exit_ctls_low;
1349 		*high = &msrs->exit_ctls_high;
1350 		break;
1351 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1352 		*low = &msrs->entry_ctls_low;
1353 		*high = &msrs->entry_ctls_high;
1354 		break;
1355 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1356 		*low = &msrs->secondary_ctls_low;
1357 		*high = &msrs->secondary_ctls_high;
1358 		break;
1359 	default:
1360 		BUG();
1361 	}
1362 }
1363 
1364 static int
1365 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1366 {
1367 	u32 *lowp, *highp;
1368 	u64 supported;
1369 
1370 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1371 
1372 	supported = vmx_control_msr(*lowp, *highp);
1373 
1374 	/* Check must-be-1 bits are still 1. */
1375 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1376 		return -EINVAL;
1377 
1378 	/* Check must-be-0 bits are still 0. */
1379 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1380 		return -EINVAL;
1381 
1382 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1383 	*lowp = data;
1384 	*highp = data >> 32;
1385 	return 0;
1386 }
1387 
1388 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1389 {
1390 	const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1391 				 VMX_MISC_ACTIVITY_HLT |
1392 				 VMX_MISC_ACTIVITY_SHUTDOWN |
1393 				 VMX_MISC_ACTIVITY_WAIT_SIPI |
1394 				 VMX_MISC_INTEL_PT |
1395 				 VMX_MISC_RDMSR_IN_SMM |
1396 				 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1397 				 VMX_MISC_VMXOFF_BLOCK_SMI |
1398 				 VMX_MISC_ZERO_LEN_INS;
1399 
1400 	const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1401 
1402 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1403 				       vmcs_config.nested.misc_high);
1404 
1405 	BUILD_BUG_ON(feature_bits & reserved_bits);
1406 
1407 	/*
1408 	 * The incoming value must not set feature bits or reserved bits that
1409 	 * aren't allowed/supported by KVM.  Fields, i.e. multi-bit values, are
1410 	 * explicitly checked below.
1411 	 */
1412 	if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1413 		return -EINVAL;
1414 
1415 	if ((vmx->nested.msrs.pinbased_ctls_high &
1416 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1417 	    vmx_misc_preemption_timer_rate(data) !=
1418 	    vmx_misc_preemption_timer_rate(vmx_misc))
1419 		return -EINVAL;
1420 
1421 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1422 		return -EINVAL;
1423 
1424 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1425 		return -EINVAL;
1426 
1427 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1428 		return -EINVAL;
1429 
1430 	vmx->nested.msrs.misc_low = data;
1431 	vmx->nested.msrs.misc_high = data >> 32;
1432 
1433 	return 0;
1434 }
1435 
1436 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1437 {
1438 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1439 					       vmcs_config.nested.vpid_caps);
1440 
1441 	/* Every bit is either reserved or a feature bit. */
1442 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1443 		return -EINVAL;
1444 
1445 	vmx->nested.msrs.ept_caps = data;
1446 	vmx->nested.msrs.vpid_caps = data >> 32;
1447 	return 0;
1448 }
1449 
1450 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1451 {
1452 	switch (msr_index) {
1453 	case MSR_IA32_VMX_CR0_FIXED0:
1454 		return &msrs->cr0_fixed0;
1455 	case MSR_IA32_VMX_CR4_FIXED0:
1456 		return &msrs->cr4_fixed0;
1457 	default:
1458 		BUG();
1459 	}
1460 }
1461 
1462 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1463 {
1464 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1465 
1466 	/*
1467 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1468 	 * must be 1 in the restored value.
1469 	 */
1470 	if (!is_bitwise_subset(data, *msr, -1ULL))
1471 		return -EINVAL;
1472 
1473 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1474 	return 0;
1475 }
1476 
1477 /*
1478  * Called when userspace is restoring VMX MSRs.
1479  *
1480  * Returns 0 on success, non-0 otherwise.
1481  */
1482 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1483 {
1484 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1485 
1486 	/*
1487 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1488 	 * is in VMX operation.
1489 	 */
1490 	if (vmx->nested.vmxon)
1491 		return -EBUSY;
1492 
1493 	switch (msr_index) {
1494 	case MSR_IA32_VMX_BASIC:
1495 		return vmx_restore_vmx_basic(vmx, data);
1496 	case MSR_IA32_VMX_PINBASED_CTLS:
1497 	case MSR_IA32_VMX_PROCBASED_CTLS:
1498 	case MSR_IA32_VMX_EXIT_CTLS:
1499 	case MSR_IA32_VMX_ENTRY_CTLS:
1500 		/*
1501 		 * The "non-true" VMX capability MSRs are generated from the
1502 		 * "true" MSRs, so we do not support restoring them directly.
1503 		 *
1504 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1505 		 * should restore the "true" MSRs with the must-be-1 bits
1506 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1507 		 * DEFAULT SETTINGS".
1508 		 */
1509 		return -EINVAL;
1510 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1511 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1512 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1513 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1514 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1515 		return vmx_restore_control_msr(vmx, msr_index, data);
1516 	case MSR_IA32_VMX_MISC:
1517 		return vmx_restore_vmx_misc(vmx, data);
1518 	case MSR_IA32_VMX_CR0_FIXED0:
1519 	case MSR_IA32_VMX_CR4_FIXED0:
1520 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1521 	case MSR_IA32_VMX_CR0_FIXED1:
1522 	case MSR_IA32_VMX_CR4_FIXED1:
1523 		/*
1524 		 * These MSRs are generated based on the vCPU's CPUID, so we
1525 		 * do not support restoring them directly.
1526 		 */
1527 		return -EINVAL;
1528 	case MSR_IA32_VMX_EPT_VPID_CAP:
1529 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1530 	case MSR_IA32_VMX_VMCS_ENUM:
1531 		vmx->nested.msrs.vmcs_enum = data;
1532 		return 0;
1533 	case MSR_IA32_VMX_VMFUNC:
1534 		if (data & ~vmcs_config.nested.vmfunc_controls)
1535 			return -EINVAL;
1536 		vmx->nested.msrs.vmfunc_controls = data;
1537 		return 0;
1538 	default:
1539 		/*
1540 		 * The rest of the VMX capability MSRs do not support restore.
1541 		 */
1542 		return -EINVAL;
1543 	}
1544 }
1545 
1546 /* Returns 0 on success, non-0 otherwise. */
1547 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1548 {
1549 	switch (msr_index) {
1550 	case MSR_IA32_VMX_BASIC:
1551 		*pdata = msrs->basic;
1552 		break;
1553 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1554 	case MSR_IA32_VMX_PINBASED_CTLS:
1555 		*pdata = vmx_control_msr(
1556 			msrs->pinbased_ctls_low,
1557 			msrs->pinbased_ctls_high);
1558 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1559 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1560 		break;
1561 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1562 	case MSR_IA32_VMX_PROCBASED_CTLS:
1563 		*pdata = vmx_control_msr(
1564 			msrs->procbased_ctls_low,
1565 			msrs->procbased_ctls_high);
1566 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1567 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1568 		break;
1569 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1570 	case MSR_IA32_VMX_EXIT_CTLS:
1571 		*pdata = vmx_control_msr(
1572 			msrs->exit_ctls_low,
1573 			msrs->exit_ctls_high);
1574 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1575 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1576 		break;
1577 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1578 	case MSR_IA32_VMX_ENTRY_CTLS:
1579 		*pdata = vmx_control_msr(
1580 			msrs->entry_ctls_low,
1581 			msrs->entry_ctls_high);
1582 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1583 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1584 		break;
1585 	case MSR_IA32_VMX_MISC:
1586 		*pdata = vmx_control_msr(
1587 			msrs->misc_low,
1588 			msrs->misc_high);
1589 		break;
1590 	case MSR_IA32_VMX_CR0_FIXED0:
1591 		*pdata = msrs->cr0_fixed0;
1592 		break;
1593 	case MSR_IA32_VMX_CR0_FIXED1:
1594 		*pdata = msrs->cr0_fixed1;
1595 		break;
1596 	case MSR_IA32_VMX_CR4_FIXED0:
1597 		*pdata = msrs->cr4_fixed0;
1598 		break;
1599 	case MSR_IA32_VMX_CR4_FIXED1:
1600 		*pdata = msrs->cr4_fixed1;
1601 		break;
1602 	case MSR_IA32_VMX_VMCS_ENUM:
1603 		*pdata = msrs->vmcs_enum;
1604 		break;
1605 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1606 		*pdata = vmx_control_msr(
1607 			msrs->secondary_ctls_low,
1608 			msrs->secondary_ctls_high);
1609 		break;
1610 	case MSR_IA32_VMX_EPT_VPID_CAP:
1611 		*pdata = msrs->ept_caps |
1612 			((u64)msrs->vpid_caps << 32);
1613 		break;
1614 	case MSR_IA32_VMX_VMFUNC:
1615 		*pdata = msrs->vmfunc_controls;
1616 		break;
1617 	default:
1618 		return 1;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 /*
1625  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1626  * been modified by the L1 guest.  Note, "writable" in this context means
1627  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1628  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1629  * VM-exit information fields (which are actually writable if the vCPU is
1630  * configured to support "VMWRITE to any supported field in the VMCS").
1631  */
1632 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1633 {
1634 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1635 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1636 	struct shadow_vmcs_field field;
1637 	unsigned long val;
1638 	int i;
1639 
1640 	if (WARN_ON(!shadow_vmcs))
1641 		return;
1642 
1643 	preempt_disable();
1644 
1645 	vmcs_load(shadow_vmcs);
1646 
1647 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1648 		field = shadow_read_write_fields[i];
1649 		val = __vmcs_readl(field.encoding);
1650 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1651 	}
1652 
1653 	vmcs_clear(shadow_vmcs);
1654 	vmcs_load(vmx->loaded_vmcs->vmcs);
1655 
1656 	preempt_enable();
1657 }
1658 
1659 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1660 {
1661 	const struct shadow_vmcs_field *fields[] = {
1662 		shadow_read_write_fields,
1663 		shadow_read_only_fields
1664 	};
1665 	const int max_fields[] = {
1666 		max_shadow_read_write_fields,
1667 		max_shadow_read_only_fields
1668 	};
1669 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1670 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1671 	struct shadow_vmcs_field field;
1672 	unsigned long val;
1673 	int i, q;
1674 
1675 	if (WARN_ON(!shadow_vmcs))
1676 		return;
1677 
1678 	vmcs_load(shadow_vmcs);
1679 
1680 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1681 		for (i = 0; i < max_fields[q]; i++) {
1682 			field = fields[q][i];
1683 			val = vmcs12_read_any(vmcs12, field.encoding,
1684 					      field.offset);
1685 			__vmcs_writel(field.encoding, val);
1686 		}
1687 	}
1688 
1689 	vmcs_clear(shadow_vmcs);
1690 	vmcs_load(vmx->loaded_vmcs->vmcs);
1691 }
1692 
1693 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1694 {
1695 #ifdef CONFIG_KVM_HYPERV
1696 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1697 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1698 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1699 
1700 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1701 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1702 	vmcs12->guest_rip = evmcs->guest_rip;
1703 
1704 	if (unlikely(!(hv_clean_fields &
1705 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1706 		hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1707 		hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1708 		hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1709 	}
1710 
1711 	if (unlikely(!(hv_clean_fields &
1712 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1713 		vmcs12->guest_rsp = evmcs->guest_rsp;
1714 		vmcs12->guest_rflags = evmcs->guest_rflags;
1715 		vmcs12->guest_interruptibility_info =
1716 			evmcs->guest_interruptibility_info;
1717 		/*
1718 		 * Not present in struct vmcs12:
1719 		 * vmcs12->guest_ssp = evmcs->guest_ssp;
1720 		 */
1721 	}
1722 
1723 	if (unlikely(!(hv_clean_fields &
1724 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1725 		vmcs12->cpu_based_vm_exec_control =
1726 			evmcs->cpu_based_vm_exec_control;
1727 	}
1728 
1729 	if (unlikely(!(hv_clean_fields &
1730 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1731 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1732 	}
1733 
1734 	if (unlikely(!(hv_clean_fields &
1735 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1736 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1737 	}
1738 
1739 	if (unlikely(!(hv_clean_fields &
1740 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1741 		vmcs12->vm_entry_intr_info_field =
1742 			evmcs->vm_entry_intr_info_field;
1743 		vmcs12->vm_entry_exception_error_code =
1744 			evmcs->vm_entry_exception_error_code;
1745 		vmcs12->vm_entry_instruction_len =
1746 			evmcs->vm_entry_instruction_len;
1747 	}
1748 
1749 	if (unlikely(!(hv_clean_fields &
1750 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1751 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1752 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1753 		vmcs12->host_cr0 = evmcs->host_cr0;
1754 		vmcs12->host_cr3 = evmcs->host_cr3;
1755 		vmcs12->host_cr4 = evmcs->host_cr4;
1756 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1757 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1758 		vmcs12->host_rip = evmcs->host_rip;
1759 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1760 		vmcs12->host_es_selector = evmcs->host_es_selector;
1761 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1762 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1763 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1764 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1765 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1766 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1767 		vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1768 		/*
1769 		 * Not present in struct vmcs12:
1770 		 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1771 		 * vmcs12->host_ssp = evmcs->host_ssp;
1772 		 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1773 		 */
1774 	}
1775 
1776 	if (unlikely(!(hv_clean_fields &
1777 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1778 		vmcs12->pin_based_vm_exec_control =
1779 			evmcs->pin_based_vm_exec_control;
1780 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1781 		vmcs12->secondary_vm_exec_control =
1782 			evmcs->secondary_vm_exec_control;
1783 	}
1784 
1785 	if (unlikely(!(hv_clean_fields &
1786 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1787 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1788 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1789 	}
1790 
1791 	if (unlikely(!(hv_clean_fields &
1792 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1793 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1794 	}
1795 
1796 	if (unlikely(!(hv_clean_fields &
1797 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1798 		vmcs12->guest_es_base = evmcs->guest_es_base;
1799 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1800 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1801 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1802 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1803 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1804 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1805 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1806 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1807 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1808 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1809 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1810 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1811 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1812 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1813 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1814 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1815 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1816 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1817 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1818 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1819 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1820 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1821 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1822 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1823 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1824 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1825 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1826 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1827 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1828 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1829 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1830 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1831 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1832 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1833 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1834 	}
1835 
1836 	if (unlikely(!(hv_clean_fields &
1837 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1838 		vmcs12->tsc_offset = evmcs->tsc_offset;
1839 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1840 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1841 		vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1842 		vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1843 	}
1844 
1845 	if (unlikely(!(hv_clean_fields &
1846 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1847 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1848 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1849 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1850 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1851 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1852 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1853 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1854 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1855 	}
1856 
1857 	if (unlikely(!(hv_clean_fields &
1858 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1859 		vmcs12->host_fs_base = evmcs->host_fs_base;
1860 		vmcs12->host_gs_base = evmcs->host_gs_base;
1861 		vmcs12->host_tr_base = evmcs->host_tr_base;
1862 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1863 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1864 		vmcs12->host_rsp = evmcs->host_rsp;
1865 	}
1866 
1867 	if (unlikely(!(hv_clean_fields &
1868 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1869 		vmcs12->ept_pointer = evmcs->ept_pointer;
1870 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1871 	}
1872 
1873 	if (unlikely(!(hv_clean_fields &
1874 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1875 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1876 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1877 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1878 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1879 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1880 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1881 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1882 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1883 		vmcs12->guest_pending_dbg_exceptions =
1884 			evmcs->guest_pending_dbg_exceptions;
1885 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1886 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1887 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1888 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1889 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1890 		vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1891 		/*
1892 		 * Not present in struct vmcs12:
1893 		 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1894 		 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1895 		 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1896 		 */
1897 	}
1898 
1899 	/*
1900 	 * Not used?
1901 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1902 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1903 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1904 	 * vmcs12->page_fault_error_code_mask =
1905 	 *		evmcs->page_fault_error_code_mask;
1906 	 * vmcs12->page_fault_error_code_match =
1907 	 *		evmcs->page_fault_error_code_match;
1908 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1909 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1910 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1911 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1912 	 */
1913 
1914 	/*
1915 	 * Read only fields:
1916 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1917 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1918 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1919 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1920 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1921 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1922 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1923 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1924 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1925 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1926 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1927 	 *
1928 	 * Not present in struct vmcs12:
1929 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1930 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1931 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1932 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1933 	 */
1934 
1935 	return;
1936 #else /* CONFIG_KVM_HYPERV */
1937 	KVM_BUG_ON(1, vmx->vcpu.kvm);
1938 #endif /* CONFIG_KVM_HYPERV */
1939 }
1940 
1941 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1942 {
1943 #ifdef CONFIG_KVM_HYPERV
1944 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1945 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1946 
1947 	/*
1948 	 * Should not be changed by KVM:
1949 	 *
1950 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1951 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1952 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1953 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1954 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1955 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1956 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1957 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1958 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1959 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1960 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1961 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1962 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1963 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1964 	 * evmcs->host_rip = vmcs12->host_rip;
1965 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1966 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1967 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1968 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1969 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1970 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1971 	 * evmcs->host_rsp = vmcs12->host_rsp;
1972 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1973 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1974 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1975 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1976 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1977 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1978 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1979 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1980 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1981 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1982 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1983 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1984 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1985 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1986 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1987 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1988 	 * evmcs->page_fault_error_code_mask =
1989 	 *		vmcs12->page_fault_error_code_mask;
1990 	 * evmcs->page_fault_error_code_match =
1991 	 *		vmcs12->page_fault_error_code_match;
1992 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1993 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1994 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1995 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1996 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1997 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1998 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1999 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
2000 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
2001 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
2002 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
2003 	 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
2004 	 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
2005 	 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
2006 	 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
2007 	 *
2008 	 * Not present in struct vmcs12:
2009 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
2010 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
2011 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
2012 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
2013 	 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
2014 	 * evmcs->host_ssp = vmcs12->host_ssp;
2015 	 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
2016 	 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
2017 	 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
2018 	 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
2019 	 * evmcs->guest_ssp = vmcs12->guest_ssp;
2020 	 */
2021 
2022 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
2023 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
2024 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
2025 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
2026 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
2027 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
2028 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
2029 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
2030 
2031 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
2032 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
2033 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
2034 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
2035 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
2036 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
2037 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
2038 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
2039 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
2040 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
2041 
2042 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2043 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2044 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2045 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2046 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2047 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2048 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2049 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2050 
2051 	evmcs->guest_es_base = vmcs12->guest_es_base;
2052 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
2053 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
2054 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
2055 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
2056 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
2057 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2058 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
2059 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2060 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2061 
2062 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2063 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2064 
2065 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2066 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2067 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2068 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2069 
2070 	evmcs->guest_pending_dbg_exceptions =
2071 		vmcs12->guest_pending_dbg_exceptions;
2072 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2073 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2074 
2075 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
2076 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2077 
2078 	evmcs->guest_cr0 = vmcs12->guest_cr0;
2079 	evmcs->guest_cr3 = vmcs12->guest_cr3;
2080 	evmcs->guest_cr4 = vmcs12->guest_cr4;
2081 	evmcs->guest_dr7 = vmcs12->guest_dr7;
2082 
2083 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
2084 
2085 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2086 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2087 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2088 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2089 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2090 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2091 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2092 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2093 
2094 	evmcs->exit_qualification = vmcs12->exit_qualification;
2095 
2096 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
2097 	evmcs->guest_rsp = vmcs12->guest_rsp;
2098 	evmcs->guest_rflags = vmcs12->guest_rflags;
2099 
2100 	evmcs->guest_interruptibility_info =
2101 		vmcs12->guest_interruptibility_info;
2102 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2103 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2104 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2105 	evmcs->vm_entry_exception_error_code =
2106 		vmcs12->vm_entry_exception_error_code;
2107 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2108 
2109 	evmcs->guest_rip = vmcs12->guest_rip;
2110 
2111 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2112 
2113 	return;
2114 #else /* CONFIG_KVM_HYPERV */
2115 	KVM_BUG_ON(1, vmx->vcpu.kvm);
2116 #endif /* CONFIG_KVM_HYPERV */
2117 }
2118 
2119 /*
2120  * This is an equivalent of the nested hypervisor executing the vmptrld
2121  * instruction.
2122  */
2123 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2124 	struct kvm_vcpu *vcpu, bool from_launch)
2125 {
2126 #ifdef CONFIG_KVM_HYPERV
2127 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2128 	bool evmcs_gpa_changed = false;
2129 	u64 evmcs_gpa;
2130 
2131 	if (likely(!guest_cpu_cap_has_evmcs(vcpu)))
2132 		return EVMPTRLD_DISABLED;
2133 
2134 	evmcs_gpa = nested_get_evmptr(vcpu);
2135 	if (!evmptr_is_valid(evmcs_gpa)) {
2136 		nested_release_evmcs(vcpu);
2137 		return EVMPTRLD_DISABLED;
2138 	}
2139 
2140 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2141 		vmx->nested.current_vmptr = INVALID_GPA;
2142 
2143 		nested_release_evmcs(vcpu);
2144 
2145 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2146 				 &vmx->nested.hv_evmcs_map))
2147 			return EVMPTRLD_ERROR;
2148 
2149 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2150 
2151 		/*
2152 		 * Currently, KVM only supports eVMCS version 1
2153 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2154 		 * value to first u32 field of eVMCS which should specify eVMCS
2155 		 * VersionNumber.
2156 		 *
2157 		 * Guest should be aware of supported eVMCS versions by host by
2158 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2159 		 * expected to set this CPUID leaf according to the value
2160 		 * returned in vmcs_version from nested_enable_evmcs().
2161 		 *
2162 		 * However, it turns out that Microsoft Hyper-V fails to comply
2163 		 * to their own invented interface: When Hyper-V use eVMCS, it
2164 		 * just sets first u32 field of eVMCS to revision_id specified
2165 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2166 		 * which is one of the supported versions specified in
2167 		 * CPUID.0x4000000A.EAX[0:15].
2168 		 *
2169 		 * To overcome Hyper-V bug, we accept here either a supported
2170 		 * eVMCS version or VMCS12 revision_id as valid values for first
2171 		 * u32 field of eVMCS.
2172 		 */
2173 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2174 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2175 			nested_release_evmcs(vcpu);
2176 			return EVMPTRLD_VMFAIL;
2177 		}
2178 
2179 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2180 
2181 		evmcs_gpa_changed = true;
2182 		/*
2183 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2184 		 * reloaded from guest's memory (read only fields, fields not
2185 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2186 		 * are no leftovers.
2187 		 */
2188 		if (from_launch) {
2189 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2190 			memset(vmcs12, 0, sizeof(*vmcs12));
2191 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2192 		}
2193 
2194 	}
2195 
2196 	/*
2197 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2198 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2199 	 */
2200 	if (from_launch || evmcs_gpa_changed) {
2201 		vmx->nested.hv_evmcs->hv_clean_fields &=
2202 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2203 
2204 		vmx->nested.force_msr_bitmap_recalc = true;
2205 	}
2206 
2207 	return EVMPTRLD_SUCCEEDED;
2208 #else
2209 	return EVMPTRLD_DISABLED;
2210 #endif
2211 }
2212 
2213 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2214 {
2215 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2216 
2217 	if (nested_vmx_is_evmptr12_valid(vmx))
2218 		copy_vmcs12_to_enlightened(vmx);
2219 	else
2220 		copy_vmcs12_to_shadow(vmx);
2221 
2222 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2223 }
2224 
2225 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2226 {
2227 	struct vcpu_vmx *vmx =
2228 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2229 
2230 	vmx->nested.preemption_timer_expired = true;
2231 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2232 	kvm_vcpu_kick(&vmx->vcpu);
2233 
2234 	return HRTIMER_NORESTART;
2235 }
2236 
2237 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2238 {
2239 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2240 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2241 
2242 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2243 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2244 
2245 	if (!vmx->nested.has_preemption_timer_deadline) {
2246 		vmx->nested.preemption_timer_deadline =
2247 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2248 		vmx->nested.has_preemption_timer_deadline = true;
2249 	}
2250 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2251 }
2252 
2253 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2254 					u64 preemption_timeout)
2255 {
2256 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2257 
2258 	/*
2259 	 * A timer value of zero is architecturally guaranteed to cause
2260 	 * a VMExit prior to executing any instructions in the guest.
2261 	 */
2262 	if (preemption_timeout == 0) {
2263 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2264 		return;
2265 	}
2266 
2267 	if (vcpu->arch.virtual_tsc_khz == 0)
2268 		return;
2269 
2270 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2271 	preemption_timeout *= 1000000;
2272 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2273 	hrtimer_start(&vmx->nested.preemption_timer,
2274 		      ktime_add_ns(ktime_get(), preemption_timeout),
2275 		      HRTIMER_MODE_ABS_PINNED);
2276 }
2277 
2278 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2279 {
2280 	if (vmx->nested.nested_run_pending &&
2281 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2282 		return vmcs12->guest_ia32_efer;
2283 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2284 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2285 	else
2286 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2287 }
2288 
2289 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2290 {
2291 	struct kvm *kvm = vmx->vcpu.kvm;
2292 
2293 	/*
2294 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2295 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2296 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2297 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2298 	 */
2299 	if (vmx->nested.vmcs02_initialized)
2300 		return;
2301 	vmx->nested.vmcs02_initialized = true;
2302 
2303 	if (vmx->ve_info)
2304 		vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2305 
2306 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2307 	if (cpu_has_vmx_vmfunc())
2308 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2309 
2310 	if (cpu_has_vmx_posted_intr())
2311 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2312 
2313 	if (cpu_has_vmx_msr_bitmap())
2314 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2315 
2316 	/*
2317 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2318 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2319 	 * deal with filtering out L2 GPAs from the buffer.
2320 	 */
2321 	if (enable_pml) {
2322 		vmcs_write64(PML_ADDRESS, 0);
2323 		vmcs_write16(GUEST_PML_INDEX, -1);
2324 	}
2325 
2326 	if (cpu_has_vmx_encls_vmexit())
2327 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2328 
2329 	if (kvm_notify_vmexit_enabled(kvm))
2330 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2331 
2332 	/*
2333 	 * Set the MSR load/store lists to match L0's settings.  Only the
2334 	 * addresses are constant (for vmcs02), the counts can change based
2335 	 * on L2's behavior, e.g. switching to/from long mode.
2336 	 */
2337 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2338 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2339 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2340 
2341 	vmx_set_constant_host_state(vmx);
2342 }
2343 
2344 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2345 				      struct vmcs12 *vmcs12)
2346 {
2347 	prepare_vmcs02_constant_state(vmx);
2348 
2349 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2350 
2351 	/*
2352 	 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2353 	 * same VPID as the host.  Emulate this behavior by using vpid01 for L2
2354 	 * if VPID is disabled in vmcs12.  Note, if VPID is disabled, VM-Enter
2355 	 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2356 	 * VPID=0.  I.e. using vpid02 would be ok (so long as KVM emulates the
2357 	 * required flushes), but doing so would cause KVM to over-flush.  E.g.
2358 	 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2359 	 * and then runs L2 X again, then KVM can and should retain TLB entries
2360 	 * for VPID12=1.
2361 	 */
2362 	if (enable_vpid) {
2363 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2364 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2365 		else
2366 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2367 	}
2368 }
2369 
2370 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2371 				 struct vmcs12 *vmcs12)
2372 {
2373 	u32 exec_control;
2374 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2375 
2376 	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2377 		prepare_vmcs02_early_rare(vmx, vmcs12);
2378 
2379 	/*
2380 	 * PIN CONTROLS
2381 	 */
2382 	exec_control = __pin_controls_get(vmcs01);
2383 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2384 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2385 
2386 	/* Posted interrupts setting is only taken from vmcs12.  */
2387 	vmx->nested.pi_pending = false;
2388 	if (nested_cpu_has_posted_intr(vmcs12)) {
2389 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2390 	} else {
2391 		vmx->nested.posted_intr_nv = -1;
2392 		exec_control &= ~PIN_BASED_POSTED_INTR;
2393 	}
2394 	pin_controls_set(vmx, exec_control);
2395 
2396 	/*
2397 	 * EXEC CONTROLS
2398 	 */
2399 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2400 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2401 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2402 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2403 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2404 
2405 	vmx->nested.l1_tpr_threshold = -1;
2406 	if (exec_control & CPU_BASED_TPR_SHADOW)
2407 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2408 #ifdef CONFIG_X86_64
2409 	else
2410 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2411 				CPU_BASED_CR8_STORE_EXITING;
2412 #endif
2413 
2414 	/*
2415 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2416 	 * for I/O port accesses.
2417 	 */
2418 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2419 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2420 
2421 	/*
2422 	 * This bit will be computed in nested_get_vmcs12_pages, because
2423 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2424 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2425 	 * only set/clear this bit.
2426 	 */
2427 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2428 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2429 
2430 	exec_controls_set(vmx, exec_control);
2431 
2432 	/*
2433 	 * SECONDARY EXEC CONTROLS
2434 	 */
2435 	if (cpu_has_secondary_exec_ctrls()) {
2436 		exec_control = __secondary_exec_controls_get(vmcs01);
2437 
2438 		/* Take the following fields only from vmcs12 */
2439 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2440 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2441 				  SECONDARY_EXEC_ENABLE_INVPCID |
2442 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2443 				  SECONDARY_EXEC_ENABLE_XSAVES |
2444 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2445 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2446 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2447 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2448 				  SECONDARY_EXEC_DESC);
2449 
2450 		if (nested_cpu_has(vmcs12,
2451 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2452 			exec_control |= vmcs12->secondary_vm_exec_control;
2453 
2454 		/* PML is emulated and never enabled in hardware for L2. */
2455 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2456 
2457 		/* VMCS shadowing for L2 is emulated for now */
2458 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2459 
2460 		/*
2461 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2462 		 * will not have to rewrite the controls just for this bit.
2463 		 */
2464 		if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2465 			exec_control |= SECONDARY_EXEC_DESC;
2466 
2467 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2468 			vmcs_write16(GUEST_INTR_STATUS,
2469 				vmcs12->guest_intr_status);
2470 
2471 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2472 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2473 
2474 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2475 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2476 
2477 		secondary_exec_controls_set(vmx, exec_control);
2478 	}
2479 
2480 	/*
2481 	 * ENTRY CONTROLS
2482 	 *
2483 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2484 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2485 	 * on the related bits (if supported by the CPU) in the hope that
2486 	 * we can avoid VMWrites during vmx_set_efer().
2487 	 *
2488 	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2489 	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2490 	 * do the same for L2.
2491 	 */
2492 	exec_control = __vm_entry_controls_get(vmcs01);
2493 	exec_control |= (vmcs12->vm_entry_controls &
2494 			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2495 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2496 	if (cpu_has_load_ia32_efer()) {
2497 		if (guest_efer & EFER_LMA)
2498 			exec_control |= VM_ENTRY_IA32E_MODE;
2499 		if (guest_efer != kvm_host.efer)
2500 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2501 	}
2502 	vm_entry_controls_set(vmx, exec_control);
2503 
2504 	/*
2505 	 * EXIT CONTROLS
2506 	 *
2507 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2508 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2509 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2510 	 */
2511 	exec_control = __vm_exit_controls_get(vmcs01);
2512 	if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2513 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2514 	else
2515 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2516 	vm_exit_controls_set(vmx, exec_control);
2517 
2518 	/*
2519 	 * Interrupt/Exception Fields
2520 	 */
2521 	if (vmx->nested.nested_run_pending) {
2522 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2523 			     vmcs12->vm_entry_intr_info_field);
2524 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2525 			     vmcs12->vm_entry_exception_error_code);
2526 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2527 			     vmcs12->vm_entry_instruction_len);
2528 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2529 			     vmcs12->guest_interruptibility_info);
2530 		vmx->loaded_vmcs->nmi_known_unmasked =
2531 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2532 	} else {
2533 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2534 	}
2535 }
2536 
2537 static void vmcs_read_cet_state(struct kvm_vcpu *vcpu, u64 *s_cet,
2538 				u64 *ssp, u64 *ssp_tbl)
2539 {
2540 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
2541 	    guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
2542 		*s_cet = vmcs_readl(GUEST_S_CET);
2543 
2544 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
2545 		*ssp = vmcs_readl(GUEST_SSP);
2546 		*ssp_tbl = vmcs_readl(GUEST_INTR_SSP_TABLE);
2547 	}
2548 }
2549 
2550 static void vmcs_write_cet_state(struct kvm_vcpu *vcpu, u64 s_cet,
2551 				 u64 ssp, u64 ssp_tbl)
2552 {
2553 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) ||
2554 	    guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK))
2555 		vmcs_writel(GUEST_S_CET, s_cet);
2556 
2557 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK)) {
2558 		vmcs_writel(GUEST_SSP, ssp);
2559 		vmcs_writel(GUEST_INTR_SSP_TABLE, ssp_tbl);
2560 	}
2561 }
2562 
2563 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2564 {
2565 	struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2566 
2567 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2568 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2569 
2570 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2571 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2572 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2573 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2574 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2575 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2576 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2577 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2578 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2579 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2580 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2581 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2582 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2583 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2584 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2585 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2586 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2587 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2588 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2589 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2590 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2591 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2592 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2593 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2594 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2595 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2596 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2597 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2598 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2599 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2600 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2601 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2602 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2603 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2604 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2605 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2606 
2607 		vmx_segment_cache_clear(vmx);
2608 	}
2609 
2610 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2611 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2612 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2613 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2614 			    vmcs12->guest_pending_dbg_exceptions);
2615 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2616 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2617 
2618 		/*
2619 		 * L1 may access the L2's PDPTR, so save them to construct
2620 		 * vmcs12
2621 		 */
2622 		if (enable_ept) {
2623 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2624 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2625 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2626 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2627 		}
2628 
2629 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2630 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2631 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2632 	}
2633 
2634 	if (nested_cpu_has_xsaves(vmcs12))
2635 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2636 
2637 	/*
2638 	 * Whether page-faults are trapped is determined by a combination of
2639 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2640 	 * doesn't care about page faults then we should set all of these to
2641 	 * L1's desires. However, if L0 does care about (some) page faults, it
2642 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2643 	 * simply ask to exit on each and every L2 page fault. This is done by
2644 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2645 	 * Note that below we don't need special code to set EB.PF beyond the
2646 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2647 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2648 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2649 	 */
2650 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2651 		/*
2652 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2653 		 * go ahead and use it?
2654 		 */
2655 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2656 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2657 	} else {
2658 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2659 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2660 	}
2661 
2662 	if (cpu_has_vmx_apicv()) {
2663 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2664 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2665 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2666 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2667 	}
2668 
2669 	/*
2670 	 * Make sure the msr_autostore list is up to date before we set the
2671 	 * count in the vmcs02.
2672 	 */
2673 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2674 
2675 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2676 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2677 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2678 
2679 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE)
2680 		vmcs_write_cet_state(&vmx->vcpu, vmcs12->guest_s_cet,
2681 				     vmcs12->guest_ssp, vmcs12->guest_ssp_tbl);
2682 
2683 	set_cr4_guest_host_mask(vmx);
2684 }
2685 
2686 /*
2687  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2688  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2689  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2690  * guest in a way that will both be appropriate to L1's requests, and our
2691  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2692  * function also has additional necessary side-effects, like setting various
2693  * vcpu->arch fields.
2694  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2695  * is assigned to entry_failure_code on failure.
2696  */
2697 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2698 			  bool from_vmentry,
2699 			  enum vm_entry_failure_code *entry_failure_code)
2700 {
2701 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2702 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2703 	bool load_guest_pdptrs_vmcs12 = false;
2704 
2705 	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2706 		prepare_vmcs02_rare(vmx, vmcs12);
2707 		vmx->nested.dirty_vmcs12 = false;
2708 
2709 		load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2710 			!(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2711 	}
2712 
2713 	if (vmx->nested.nested_run_pending &&
2714 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2715 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2716 		vmx_guest_debugctl_write(vcpu, vmcs12->guest_ia32_debugctl &
2717 					       vmx_get_supported_debugctl(vcpu, false));
2718 	} else {
2719 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2720 		vmx_guest_debugctl_write(vcpu, vmx->nested.pre_vmenter_debugctl);
2721 	}
2722 
2723 	if (!vmx->nested.nested_run_pending ||
2724 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
2725 		vmcs_write_cet_state(vcpu, vmx->nested.pre_vmenter_s_cet,
2726 				     vmx->nested.pre_vmenter_ssp,
2727 				     vmx->nested.pre_vmenter_ssp_tbl);
2728 
2729 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2730 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2731 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2732 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2733 
2734 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2735 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2736 	 * trap. Note that CR0.TS also needs updating - we do this later.
2737 	 */
2738 	vmx_update_exception_bitmap(vcpu);
2739 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2740 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2741 
2742 	if (vmx->nested.nested_run_pending &&
2743 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2744 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2745 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2746 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2747 		vmcs_write64(GUEST_IA32_PAT, vcpu->arch.pat);
2748 	}
2749 
2750 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2751 			vcpu->arch.l1_tsc_offset,
2752 			vmx_get_l2_tsc_offset(vcpu),
2753 			vmx_get_l2_tsc_multiplier(vcpu));
2754 
2755 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2756 			vcpu->arch.l1_tsc_scaling_ratio,
2757 			vmx_get_l2_tsc_multiplier(vcpu));
2758 
2759 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2760 	if (kvm_caps.has_tsc_control)
2761 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2762 
2763 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2764 
2765 	if (nested_cpu_has_ept(vmcs12))
2766 		nested_ept_init_mmu_context(vcpu);
2767 
2768 	/*
2769 	 * Override the CR0/CR4 read shadows after setting the effective guest
2770 	 * CR0/CR4.  The common helpers also set the shadows, but they don't
2771 	 * account for vmcs12's cr0/4_guest_host_mask.
2772 	 */
2773 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2774 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2775 
2776 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2777 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2778 
2779 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2780 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2781 	vmx_set_efer(vcpu, vcpu->arch.efer);
2782 
2783 	/*
2784 	 * Guest state is invalid and unrestricted guest is disabled,
2785 	 * which means L1 attempted VMEntry to L2 with invalid state.
2786 	 * Fail the VMEntry.
2787 	 *
2788 	 * However when force loading the guest state (SMM exit or
2789 	 * loading nested state after migration, it is possible to
2790 	 * have invalid guest state now, which will be later fixed by
2791 	 * restoring L2 register state
2792 	 */
2793 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2794 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2795 		return -EINVAL;
2796 	}
2797 
2798 	/* Shadow page tables on either EPT or shadow page tables. */
2799 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2800 				from_vmentry, entry_failure_code))
2801 		return -EINVAL;
2802 
2803 	/*
2804 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2805 	 * on nested VM-Exit, which can occur without actually running L2 and
2806 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2807 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2808 	 * transition to HLT instead of running L2.
2809 	 */
2810 	if (enable_ept)
2811 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2812 
2813 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2814 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2815 	    is_pae_paging(vcpu)) {
2816 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2817 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2818 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2819 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2820 	}
2821 
2822 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2823 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2824 	    WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2825 						 vmcs12->guest_ia32_perf_global_ctrl))) {
2826 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2827 		return -EINVAL;
2828 	}
2829 
2830 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2831 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2832 
2833 	/*
2834 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2835 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2836 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2837 	 * here.
2838 	 */
2839 	if (nested_vmx_is_evmptr12_valid(vmx))
2840 		evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2841 
2842 	return 0;
2843 }
2844 
2845 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2846 {
2847 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2848 	       nested_cpu_has_virtual_nmis(vmcs12)))
2849 		return -EINVAL;
2850 
2851 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2852 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2853 		return -EINVAL;
2854 
2855 	return 0;
2856 }
2857 
2858 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2859 {
2860 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2861 
2862 	/* Check for memory type validity */
2863 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2864 	case VMX_EPTP_MT_UC:
2865 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2866 			return false;
2867 		break;
2868 	case VMX_EPTP_MT_WB:
2869 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2870 			return false;
2871 		break;
2872 	default:
2873 		return false;
2874 	}
2875 
2876 	/* Page-walk levels validity. */
2877 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2878 	case VMX_EPTP_PWL_5:
2879 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2880 			return false;
2881 		break;
2882 	case VMX_EPTP_PWL_4:
2883 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2884 			return false;
2885 		break;
2886 	default:
2887 		return false;
2888 	}
2889 
2890 	/* Reserved bits should not be set */
2891 	if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2892 		return false;
2893 
2894 	/* AD, if set, should be supported */
2895 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2896 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2897 			return false;
2898 	}
2899 
2900 	return true;
2901 }
2902 
2903 /*
2904  * Checks related to VM-Execution Control Fields
2905  */
2906 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2907                                               struct vmcs12 *vmcs12)
2908 {
2909 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2910 
2911 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2912 				   vmx->nested.msrs.pinbased_ctls_low,
2913 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2914 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2915 				   vmx->nested.msrs.procbased_ctls_low,
2916 				   vmx->nested.msrs.procbased_ctls_high)))
2917 		return -EINVAL;
2918 
2919 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2920 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2921 				   vmx->nested.msrs.secondary_ctls_low,
2922 				   vmx->nested.msrs.secondary_ctls_high)))
2923 		return -EINVAL;
2924 
2925 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2926 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2927 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2928 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2929 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2930 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2931 	    nested_vmx_check_nmi_controls(vmcs12) ||
2932 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2933 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2934 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2935 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2936 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2937 		return -EINVAL;
2938 
2939 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2940 	    nested_cpu_has_save_preemption_timer(vmcs12))
2941 		return -EINVAL;
2942 
2943 	if (nested_cpu_has_ept(vmcs12) &&
2944 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2945 		return -EINVAL;
2946 
2947 	if (nested_cpu_has_vmfunc(vmcs12)) {
2948 		if (CC(vmcs12->vm_function_control &
2949 		       ~vmx->nested.msrs.vmfunc_controls))
2950 			return -EINVAL;
2951 
2952 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2953 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2954 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2955 				return -EINVAL;
2956 		}
2957 	}
2958 
2959 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING) &&
2960 	    CC(!vmcs12->tsc_multiplier))
2961 		return -EINVAL;
2962 
2963 	return 0;
2964 }
2965 
2966 /*
2967  * Checks related to VM-Exit Control Fields
2968  */
2969 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2970                                          struct vmcs12 *vmcs12)
2971 {
2972 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2973 
2974 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2975 				    vmx->nested.msrs.exit_ctls_low,
2976 				    vmx->nested.msrs.exit_ctls_high)) ||
2977 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2978 		return -EINVAL;
2979 
2980 	return 0;
2981 }
2982 
2983 /*
2984  * Checks related to VM-Entry Control Fields
2985  */
2986 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2987 					  struct vmcs12 *vmcs12)
2988 {
2989 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2990 
2991 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2992 				    vmx->nested.msrs.entry_ctls_low,
2993 				    vmx->nested.msrs.entry_ctls_high)))
2994 		return -EINVAL;
2995 
2996 	/*
2997 	 * From the Intel SDM, volume 3:
2998 	 * Fields relevant to VM-entry event injection must be set properly.
2999 	 * These fields are the VM-entry interruption-information field, the
3000 	 * VM-entry exception error code, and the VM-entry instruction length.
3001 	 */
3002 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
3003 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
3004 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
3005 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
3006 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
3007 		bool urg = nested_cpu_has2(vmcs12,
3008 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
3009 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
3010 
3011 		/* VM-entry interruption-info field: interruption type */
3012 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
3013 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
3014 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
3015 			return -EINVAL;
3016 
3017 		/* VM-entry interruption-info field: vector */
3018 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
3019 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
3020 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
3021 			return -EINVAL;
3022 
3023 		/*
3024 		 * Cannot deliver error code in real mode or if the interrupt
3025 		 * type is not hardware exception. For other cases, do the
3026 		 * consistency check only if the vCPU doesn't enumerate
3027 		 * VMX_BASIC_NO_HW_ERROR_CODE_CC.
3028 		 */
3029 		if (!prot_mode || intr_type != INTR_TYPE_HARD_EXCEPTION) {
3030 			if (CC(has_error_code))
3031 				return -EINVAL;
3032 		} else if (!nested_cpu_has_no_hw_errcode_cc(vcpu)) {
3033 			if (CC(has_error_code != x86_exception_has_error_code(vector)))
3034 				return -EINVAL;
3035 		}
3036 
3037 		/* VM-entry exception error code */
3038 		if (CC(has_error_code &&
3039 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
3040 			return -EINVAL;
3041 
3042 		/* VM-entry interruption-info field: reserved bits */
3043 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
3044 			return -EINVAL;
3045 
3046 		/* VM-entry instruction length */
3047 		switch (intr_type) {
3048 		case INTR_TYPE_SOFT_EXCEPTION:
3049 		case INTR_TYPE_SOFT_INTR:
3050 		case INTR_TYPE_PRIV_SW_EXCEPTION:
3051 			if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) ||
3052 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
3053 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
3054 				return -EINVAL;
3055 		}
3056 	}
3057 
3058 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
3059 		return -EINVAL;
3060 
3061 	return 0;
3062 }
3063 
3064 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
3065 				     struct vmcs12 *vmcs12)
3066 {
3067 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
3068 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
3069 	    nested_check_vm_entry_controls(vcpu, vmcs12))
3070 		return -EINVAL;
3071 
3072 #ifdef CONFIG_KVM_HYPERV
3073 	if (guest_cpu_cap_has_evmcs(vcpu))
3074 		return nested_evmcs_check_controls(vmcs12);
3075 #endif
3076 
3077 	return 0;
3078 }
3079 
3080 static int nested_vmx_check_controls_late(struct kvm_vcpu *vcpu,
3081 					  struct vmcs12 *vmcs12)
3082 {
3083 	void *vapic = to_vmx(vcpu)->nested.virtual_apic_map.hva;
3084 	u32 vtpr = vapic ? (*(u32 *)(vapic + APIC_TASKPRI)) >> 4 : 0;
3085 
3086 	/*
3087 	 * Don't bother with the consistency checks if KVM isn't configured to
3088 	 * WARN on missed consistency checks, as KVM needs to rely on hardware
3089 	 * to fully detect an illegal vTPR vs. TRP Threshold combination due to
3090 	 * the vTPR being writable by L1 at all times (it's an in-memory value,
3091 	 * not a VMCS field).  I.e. even if the check passes now, it might fail
3092 	 * at the actual VM-Enter.
3093 	 *
3094 	 * Keying off the module param also allows treating an invalid vAPIC
3095 	 * mapping as a consistency check failure without increasing the risk
3096 	 * of breaking a "real" VM.
3097 	 */
3098 	if (!warn_on_missed_cc)
3099 		return 0;
3100 
3101 	if ((exec_controls_get(to_vmx(vcpu)) & CPU_BASED_TPR_SHADOW) &&
3102 	    nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW) &&
3103 	    !nested_cpu_has_vid(vmcs12) &&
3104 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
3105 	    (CC(!vapic) ||
3106 	     CC((vmcs12->tpr_threshold & GENMASK(3, 0)) > (vtpr & GENMASK(3, 0)))))
3107 		return -EINVAL;
3108 
3109 	return 0;
3110 }
3111 
3112 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
3113 				       struct vmcs12 *vmcs12)
3114 {
3115 #ifdef CONFIG_X86_64
3116 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
3117 		!!(vcpu->arch.efer & EFER_LMA)))
3118 		return -EINVAL;
3119 #endif
3120 	return 0;
3121 }
3122 
3123 static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12)
3124 {
3125 	/*
3126 	 * Check that the given linear address is canonical after a VM exit
3127 	 * from L2, based on HOST_CR4.LA57 value that will be loaded for L1.
3128 	 */
3129 	u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48;
3130 
3131 	return !__is_canonical_address(la, l1_address_bits_on_exit);
3132 }
3133 
3134 static int nested_vmx_check_cet_state_common(struct kvm_vcpu *vcpu, u64 s_cet,
3135 					     u64 ssp, u64 ssp_tbl)
3136 {
3137 	if (CC(!kvm_is_valid_u_s_cet(vcpu, s_cet)) || CC(!IS_ALIGNED(ssp, 4)) ||
3138 	    CC(is_noncanonical_msr_address(ssp_tbl, vcpu)))
3139 		return -EINVAL;
3140 
3141 	return 0;
3142 }
3143 
3144 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3145 				       struct vmcs12 *vmcs12)
3146 {
3147 	bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3148 
3149 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3150 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3151 	    CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3152 		return -EINVAL;
3153 
3154 	if (CC(vmcs12->host_cr4 & X86_CR4_CET && !(vmcs12->host_cr0 & X86_CR0_WP)))
3155 		return -EINVAL;
3156 
3157 	if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3158 	    CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3159 		return -EINVAL;
3160 
3161 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3162 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3163 		return -EINVAL;
3164 
3165 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3166 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3167 					   vmcs12->host_ia32_perf_global_ctrl)))
3168 		return -EINVAL;
3169 
3170 	if (ia32e) {
3171 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3172 			return -EINVAL;
3173 	} else {
3174 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3175 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3176 		    CC((vmcs12->host_rip) >> 32))
3177 			return -EINVAL;
3178 	}
3179 
3180 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3181 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3182 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3183 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3184 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3185 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3186 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3187 	    CC(vmcs12->host_cs_selector == 0) ||
3188 	    CC(vmcs12->host_tr_selector == 0) ||
3189 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
3190 		return -EINVAL;
3191 
3192 	if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
3193 	    CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
3194 	    CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
3195 	    CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
3196 	    CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
3197 	    CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12)))
3198 		return -EINVAL;
3199 
3200 	/*
3201 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3202 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3203 	 * the values of the LMA and LME bits in the field must each be that of
3204 	 * the host address-space size VM-exit control.
3205 	 */
3206 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3207 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3208 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3209 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3210 			return -EINVAL;
3211 	}
3212 
3213 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE) {
3214 		if (nested_vmx_check_cet_state_common(vcpu, vmcs12->host_s_cet,
3215 						      vmcs12->host_ssp,
3216 						      vmcs12->host_ssp_tbl))
3217 			return -EINVAL;
3218 
3219 		/*
3220 		 * IA32_S_CET and SSP must be canonical if the host will
3221 		 * enter 64-bit mode after VM-exit; otherwise, higher
3222 		 * 32-bits must be all 0s.
3223 		 */
3224 		if (ia32e) {
3225 			if (CC(is_noncanonical_msr_address(vmcs12->host_s_cet, vcpu)) ||
3226 			    CC(is_noncanonical_msr_address(vmcs12->host_ssp, vcpu)))
3227 				return -EINVAL;
3228 		} else {
3229 			if (CC(vmcs12->host_s_cet >> 32) || CC(vmcs12->host_ssp >> 32))
3230 				return -EINVAL;
3231 		}
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3238 					  struct vmcs12 *vmcs12)
3239 {
3240 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3241 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3242 	struct vmcs_hdr hdr;
3243 
3244 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3245 		return 0;
3246 
3247 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3248 		return -EINVAL;
3249 
3250 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3251 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3252 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3253                 return -EINVAL;
3254 
3255 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3256 					    offsetof(struct vmcs12, hdr),
3257 					    sizeof(hdr))))
3258 		return -EINVAL;
3259 
3260 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
3261 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3262 		return -EINVAL;
3263 
3264 	return 0;
3265 }
3266 
3267 /*
3268  * Checks related to Guest Non-register State
3269  */
3270 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3271 {
3272 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3273 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3274 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3275 		return -EINVAL;
3276 
3277 	return 0;
3278 }
3279 
3280 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3281 					struct vmcs12 *vmcs12,
3282 					enum vm_entry_failure_code *entry_failure_code)
3283 {
3284 	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3285 
3286 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3287 
3288 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3289 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3290 		return -EINVAL;
3291 
3292 	if (CC(vmcs12->guest_cr4 & X86_CR4_CET && !(vmcs12->guest_cr0 & X86_CR0_WP)))
3293 		return -EINVAL;
3294 
3295 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3296 	    (CC(!kvm_dr7_valid(vmcs12->guest_dr7)) ||
3297 	     CC(!vmx_is_valid_debugctl(vcpu, vmcs12->guest_ia32_debugctl, false))))
3298 		return -EINVAL;
3299 
3300 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3301 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3302 		return -EINVAL;
3303 
3304 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3305 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3306 		return -EINVAL;
3307 	}
3308 
3309 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3310 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3311 					   vmcs12->guest_ia32_perf_global_ctrl)))
3312 		return -EINVAL;
3313 
3314 	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3315 		return -EINVAL;
3316 
3317 	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3318 	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3319 		return -EINVAL;
3320 
3321 	/*
3322 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3323 	 * are performed on the field for the IA32_EFER MSR:
3324 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3325 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3326 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3327 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3328 	 *   CR0.PG) is 1.
3329 	 */
3330 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3331 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3332 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3333 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3334 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3335 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3336 			return -EINVAL;
3337 	}
3338 
3339 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3340 	    (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3341 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3342 		return -EINVAL;
3343 
3344 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE) {
3345 		if (nested_vmx_check_cet_state_common(vcpu, vmcs12->guest_s_cet,
3346 						      vmcs12->guest_ssp,
3347 						      vmcs12->guest_ssp_tbl))
3348 			return -EINVAL;
3349 
3350 		/*
3351 		 * Guest SSP must have 63:N bits identical, rather than
3352 		 * be canonical (i.e., 63:N-1 bits identical), where N is
3353 		 * the CPU's maximum linear-address width. Similar to
3354 		 * is_noncanonical_msr_address(), use the host's
3355 		 * linear-address width.
3356 		 */
3357 		if (CC(!__is_canonical_address(vmcs12->guest_ssp, max_host_virt_addr_bits() + 1)))
3358 			return -EINVAL;
3359 	}
3360 
3361 	if (nested_check_guest_non_reg_state(vmcs12))
3362 		return -EINVAL;
3363 
3364 	return 0;
3365 }
3366 
3367 #ifdef CONFIG_KVM_HYPERV
3368 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3369 {
3370 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3371 
3372 	/*
3373 	 * hv_evmcs may end up being not mapped after migration (when
3374 	 * L2 was running), map it here to make sure vmcs12 changes are
3375 	 * properly reflected.
3376 	 */
3377 	if (guest_cpu_cap_has_evmcs(vcpu) &&
3378 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3379 		enum nested_evmptrld_status evmptrld_status =
3380 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3381 
3382 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3383 		    evmptrld_status == EVMPTRLD_ERROR)
3384 			return false;
3385 
3386 		/*
3387 		 * Post migration VMCS12 always provides the most actual
3388 		 * information, copy it to eVMCS upon entry.
3389 		 */
3390 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3391 	}
3392 
3393 	return true;
3394 }
3395 #endif
3396 
3397 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3398 {
3399 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3400 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3401 	struct kvm_host_map *map;
3402 
3403 	if (!vcpu->arch.pdptrs_from_userspace &&
3404 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3405 		/*
3406 		 * Reload the guest's PDPTRs since after a migration
3407 		 * the guest CR3 might be restored prior to setting the nested
3408 		 * state which can lead to a load of wrong PDPTRs.
3409 		 */
3410 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3411 			return false;
3412 	}
3413 
3414 
3415 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3416 		map = &vmx->nested.apic_access_page_map;
3417 
3418 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3419 			vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3420 		} else {
3421 			pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3422 					     __func__);
3423 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3424 			vcpu->run->internal.suberror =
3425 				KVM_INTERNAL_ERROR_EMULATION;
3426 			vcpu->run->internal.ndata = 0;
3427 			return false;
3428 		}
3429 	}
3430 
3431 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3432 		map = &vmx->nested.virtual_apic_map;
3433 
3434 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3435 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3436 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3437 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3438 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3439 			/*
3440 			 * The processor will never use the TPR shadow, simply
3441 			 * clear the bit from the execution control.  Such a
3442 			 * configuration is useless, but it happens in tests.
3443 			 * For any other configuration, failing the vm entry is
3444 			 * _not_ what the processor does but it's basically the
3445 			 * only possibility we have.
3446 			 */
3447 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3448 		} else {
3449 			/*
3450 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3451 			 * force VM-Entry to fail.
3452 			 */
3453 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3454 		}
3455 	}
3456 
3457 	if (nested_cpu_has_posted_intr(vmcs12)) {
3458 		map = &vmx->nested.pi_desc_map;
3459 
3460 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3461 			vmx->nested.pi_desc =
3462 				(struct pi_desc *)(((void *)map->hva) +
3463 				offset_in_page(vmcs12->posted_intr_desc_addr));
3464 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3465 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3466 		} else {
3467 			/*
3468 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3469 			 * access the contents of the VMCS12 posted interrupt
3470 			 * descriptor. (Note that KVM may do this when it
3471 			 * should not, per the architectural specification.)
3472 			 */
3473 			vmx->nested.pi_desc = NULL;
3474 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3475 		}
3476 	}
3477 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3478 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3479 	else
3480 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3481 
3482 	return true;
3483 }
3484 
3485 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3486 {
3487 #ifdef CONFIG_KVM_HYPERV
3488 	/*
3489 	 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3490 	 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3491 	 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3492 	 * migration.
3493 	 */
3494 	if (!nested_get_evmcs_page(vcpu)) {
3495 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3496 				     __func__);
3497 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3498 		vcpu->run->internal.suberror =
3499 			KVM_INTERNAL_ERROR_EMULATION;
3500 		vcpu->run->internal.ndata = 0;
3501 
3502 		return false;
3503 	}
3504 #endif
3505 
3506 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3507 		return false;
3508 
3509 	return true;
3510 }
3511 
3512 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3513 {
3514 	struct vmcs12 *vmcs12;
3515 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3516 	gpa_t dst;
3517 
3518 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3519 		return 0;
3520 
3521 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3522 		return 1;
3523 
3524 	/*
3525 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3526 	 * set is already checked as part of A/D emulation.
3527 	 */
3528 	vmcs12 = get_vmcs12(vcpu);
3529 	if (!nested_cpu_has_pml(vmcs12))
3530 		return 0;
3531 
3532 	if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) {
3533 		vmx->nested.pml_full = true;
3534 		return 1;
3535 	}
3536 
3537 	gpa &= ~0xFFFull;
3538 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3539 
3540 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3541 				 offset_in_page(dst), sizeof(gpa)))
3542 		return 0;
3543 
3544 	vmcs12->guest_pml_index--;
3545 
3546 	return 0;
3547 }
3548 
3549 /*
3550  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3551  * for running VMX instructions (except VMXON, whose prerequisites are
3552  * slightly different). It also specifies what exception to inject otherwise.
3553  * Note that many of these exceptions have priority over VM exits, so they
3554  * don't have to be checked again here.
3555  */
3556 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3557 {
3558 	if (!to_vmx(vcpu)->nested.vmxon) {
3559 		kvm_queue_exception(vcpu, UD_VECTOR);
3560 		return 0;
3561 	}
3562 
3563 	if (vmx_get_cpl(vcpu)) {
3564 		kvm_inject_gp(vcpu, 0);
3565 		return 0;
3566 	}
3567 
3568 	return 1;
3569 }
3570 
3571 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3572 				   struct vmcs12 *vmcs12);
3573 
3574 /*
3575  * If from_vmentry is false, this is being called from state restore (either RSM
3576  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3577  *
3578  * Returns:
3579  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3580  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3581  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3582  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3583  */
3584 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3585 							bool from_vmentry)
3586 {
3587 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3588 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3589 	enum vm_entry_failure_code entry_failure_code;
3590 	union vmx_exit_reason exit_reason = {
3591 		.basic = EXIT_REASON_INVALID_STATE,
3592 		.failed_vmentry = 1,
3593 	};
3594 	u32 failed_index;
3595 
3596 	trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3597 				 vmx->nested.current_vmptr,
3598 				 vmcs12->guest_rip,
3599 				 vmcs12->guest_intr_status,
3600 				 vmcs12->vm_entry_intr_info_field,
3601 				 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3602 				 vmcs12->ept_pointer,
3603 				 vmcs12->guest_cr3,
3604 				 KVM_ISA_VMX);
3605 
3606 	kvm_service_local_tlb_flush_requests(vcpu);
3607 
3608 	if (!vmx->nested.nested_run_pending ||
3609 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3610 		vmx->nested.pre_vmenter_debugctl = vmx_guest_debugctl_read();
3611 	if (kvm_mpx_supported() &&
3612 	    (!vmx->nested.nested_run_pending ||
3613 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3614 		vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3615 
3616 	if (!vmx->nested.nested_run_pending ||
3617 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_CET_STATE))
3618 		vmcs_read_cet_state(vcpu, &vmx->nested.pre_vmenter_s_cet,
3619 				    &vmx->nested.pre_vmenter_ssp,
3620 				    &vmx->nested.pre_vmenter_ssp_tbl);
3621 
3622 	/*
3623 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled.  In the
3624 	 * event of a "late" VM-Fail, i.e. a VM-Fail detected by hardware but
3625 	 * not KVM, KVM must unwind its software model to the pre-VM-Entry host
3626 	 * state.  When EPT is disabled, GUEST_CR3 holds KVM's shadow CR3, not
3627 	 * L1's "real" CR3, which causes nested_vmx_restore_host_state() to
3628 	 * corrupt vcpu->arch.cr3.  Stuffing vmcs01.GUEST_CR3 results in the
3629 	 * unwind naturally setting arch.cr3 to the correct value.  Smashing
3630 	 * vmcs01.GUEST_CR3 is safe because nested VM-Exits, and the unwind,
3631 	 * reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is guaranteed to be
3632 	 * overwritten with a shadow CR3 prior to re-entering L1.
3633 	 */
3634 	if (!enable_ept)
3635 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3636 
3637 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3638 
3639 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3640 
3641 	if (from_vmentry) {
3642 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3643 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3644 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3645 		}
3646 
3647 		if (nested_vmx_check_controls_late(vcpu, vmcs12)) {
3648 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3649 			return NVMX_VMENTRY_VMFAIL;
3650 		}
3651 
3652 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3653 						 &entry_failure_code)) {
3654 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3655 			vmcs12->exit_qualification = entry_failure_code;
3656 			goto vmentry_fail_vmexit;
3657 		}
3658 	}
3659 
3660 	enter_guest_mode(vcpu);
3661 
3662 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3663 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3664 		vmcs12->exit_qualification = entry_failure_code;
3665 		goto vmentry_fail_vmexit_guest_mode;
3666 	}
3667 
3668 	if (from_vmentry) {
3669 		failed_index = nested_vmx_load_msr(vcpu,
3670 						   vmcs12->vm_entry_msr_load_addr,
3671 						   vmcs12->vm_entry_msr_load_count);
3672 		if (failed_index) {
3673 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3674 			vmcs12->exit_qualification = failed_index;
3675 			goto vmentry_fail_vmexit_guest_mode;
3676 		}
3677 	} else {
3678 		/*
3679 		 * The MMU is not initialized to point at the right entities yet and
3680 		 * "get pages" would need to read data from the guest (i.e. we will
3681 		 * need to perform gpa to hpa translation). Request a call
3682 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3683 		 * have already been set at vmentry time and should not be reset.
3684 		 */
3685 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3686 	}
3687 
3688 	/*
3689 	 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3690 	 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3691 	 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3692 	 * unconditionally.  Take care to pull data from vmcs01 as appropriate,
3693 	 * e.g. when checking for interrupt windows, as vmcs02 is now loaded.
3694 	 */
3695 	if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING |
3696 						  CPU_BASED_NMI_WINDOW_EXITING)) ||
3697 	    kvm_apic_has_pending_init_or_sipi(vcpu) ||
3698 	    kvm_apic_has_interrupt(vcpu))
3699 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3700 
3701 	/*
3702 	 * Do not start the preemption timer hrtimer until after we know
3703 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3704 	 * the timer.
3705 	 */
3706 	vmx->nested.preemption_timer_expired = false;
3707 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3708 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3709 		vmx_start_preemption_timer(vcpu, timer_value);
3710 	}
3711 
3712 	/*
3713 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3714 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3715 	 * returned as far as L1 is concerned. It will only return (and set
3716 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3717 	 */
3718 	return NVMX_VMENTRY_SUCCESS;
3719 
3720 	/*
3721 	 * A failed consistency check that leads to a VMExit during L1's
3722 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3723 	 * 26.7 "VM-entry failures during or after loading guest state".
3724 	 */
3725 vmentry_fail_vmexit_guest_mode:
3726 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3727 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3728 	leave_guest_mode(vcpu);
3729 
3730 vmentry_fail_vmexit:
3731 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3732 
3733 	if (!from_vmentry)
3734 		return NVMX_VMENTRY_VMEXIT;
3735 
3736 	load_vmcs12_host_state(vcpu, vmcs12);
3737 	vmcs12->vm_exit_reason = exit_reason.full;
3738 	if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3739 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3740 	return NVMX_VMENTRY_VMEXIT;
3741 }
3742 
3743 /*
3744  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3745  * for running an L2 nested guest.
3746  */
3747 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3748 {
3749 	struct vmcs12 *vmcs12;
3750 	enum nvmx_vmentry_status status;
3751 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3752 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3753 	enum nested_evmptrld_status evmptrld_status;
3754 
3755 	if (!nested_vmx_check_permission(vcpu))
3756 		return 1;
3757 
3758 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3759 	if (evmptrld_status == EVMPTRLD_ERROR) {
3760 		kvm_queue_exception(vcpu, UD_VECTOR);
3761 		return 1;
3762 	}
3763 
3764 	kvm_pmu_branch_retired(vcpu);
3765 
3766 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3767 		return nested_vmx_failInvalid(vcpu);
3768 
3769 	if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3770 	       vmx->nested.current_vmptr == INVALID_GPA))
3771 		return nested_vmx_failInvalid(vcpu);
3772 
3773 	vmcs12 = get_vmcs12(vcpu);
3774 
3775 	/*
3776 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3777 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3778 	 * rather than RFLAGS.ZF, and no error number is stored to the
3779 	 * VM-instruction error field.
3780 	 */
3781 	if (CC(vmcs12->hdr.shadow_vmcs))
3782 		return nested_vmx_failInvalid(vcpu);
3783 
3784 	if (nested_vmx_is_evmptr12_valid(vmx)) {
3785 		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3786 
3787 		copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3788 		/* Enlightened VMCS doesn't have launch state */
3789 		vmcs12->launch_state = !launch;
3790 	} else if (enable_shadow_vmcs) {
3791 		copy_shadow_to_vmcs12(vmx);
3792 	}
3793 
3794 	/*
3795 	 * The nested entry process starts with enforcing various prerequisites
3796 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3797 	 * they fail: As the SDM explains, some conditions should cause the
3798 	 * instruction to fail, while others will cause the instruction to seem
3799 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3800 	 * To speed up the normal (success) code path, we should avoid checking
3801 	 * for misconfigurations which will anyway be caught by the processor
3802 	 * when using the merged vmcs02.
3803 	 */
3804 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3805 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3806 
3807 	if (CC(vmcs12->launch_state == launch))
3808 		return nested_vmx_fail(vcpu,
3809 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3810 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3811 
3812 	if (nested_vmx_check_controls(vcpu, vmcs12))
3813 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3814 
3815 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3816 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3817 
3818 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3819 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3820 
3821 	/*
3822 	 * We're finally done with prerequisite checking, and can start with
3823 	 * the nested entry.
3824 	 */
3825 	vmx->nested.nested_run_pending = 1;
3826 	vmx->nested.has_preemption_timer_deadline = false;
3827 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3828 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3829 		goto vmentry_failed;
3830 
3831 	/* Hide L1D cache contents from the nested guest.  */
3832 	kvm_request_l1tf_flush_l1d();
3833 
3834 	/*
3835 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3836 	 * also be used as part of restoring nVMX state for
3837 	 * snapshot restore (migration).
3838 	 *
3839 	 * In this flow, it is assumed that vmcs12 cache was
3840 	 * transferred as part of captured nVMX state and should
3841 	 * therefore not be read from guest memory (which may not
3842 	 * exist on destination host yet).
3843 	 */
3844 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3845 
3846 	switch (vmcs12->guest_activity_state) {
3847 	case GUEST_ACTIVITY_HLT:
3848 		/*
3849 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3850 		 * awakened by event injection or by an NMI-window VM-exit or
3851 		 * by an interrupt-window VM-exit, halt the vcpu.
3852 		 */
3853 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3854 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3855 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3856 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3857 			vmx->nested.nested_run_pending = 0;
3858 			return kvm_emulate_halt_noskip(vcpu);
3859 		}
3860 		break;
3861 	case GUEST_ACTIVITY_WAIT_SIPI:
3862 		vmx->nested.nested_run_pending = 0;
3863 		kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3864 		break;
3865 	default:
3866 		break;
3867 	}
3868 
3869 	return 1;
3870 
3871 vmentry_failed:
3872 	vmx->nested.nested_run_pending = 0;
3873 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3874 		return 0;
3875 	if (status == NVMX_VMENTRY_VMEXIT)
3876 		return 1;
3877 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3878 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3879 }
3880 
3881 /*
3882  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3883  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3884  * This function returns the new value we should put in vmcs12.guest_cr0.
3885  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3886  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3887  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3888  *     didn't trap the bit, because if L1 did, so would L0).
3889  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3890  *     been modified by L2, and L1 knows it. So just leave the old value of
3891  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3892  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3893  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3894  *     changed these bits, and therefore they need to be updated, but L0
3895  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3896  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3897  */
3898 static inline unsigned long
3899 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3900 {
3901 	return
3902 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3903 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3904 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3905 			vcpu->arch.cr0_guest_owned_bits));
3906 }
3907 
3908 static inline unsigned long
3909 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3910 {
3911 	return
3912 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3913 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3914 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3915 			vcpu->arch.cr4_guest_owned_bits));
3916 }
3917 
3918 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3919 				      struct vmcs12 *vmcs12,
3920 				      u32 vm_exit_reason, u32 exit_intr_info)
3921 {
3922 	u32 idt_vectoring;
3923 	unsigned int nr;
3924 
3925 	/*
3926 	 * Per the SDM, VM-Exits due to double and triple faults are never
3927 	 * considered to occur during event delivery, even if the double/triple
3928 	 * fault is the result of an escalating vectoring issue.
3929 	 *
3930 	 * Note, the SDM qualifies the double fault behavior with "The original
3931 	 * event results in a double-fault exception".  It's unclear why the
3932 	 * qualification exists since exits due to double fault can occur only
3933 	 * while vectoring a different exception (injected events are never
3934 	 * subject to interception), i.e. there's _always_ an original event.
3935 	 *
3936 	 * The SDM also uses NMI as a confusing example for the "original event
3937 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3938 	 * the same rule applies to all events that cause an exit directly.
3939 	 * NMI is an odd choice for the example because NMIs can only occur on
3940 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3941 	 */
3942 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3943 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3944 	     is_double_fault(exit_intr_info))) {
3945 		vmcs12->idt_vectoring_info_field = 0;
3946 	} else if (vcpu->arch.exception.injected) {
3947 		nr = vcpu->arch.exception.vector;
3948 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3949 
3950 		if (kvm_exception_is_soft(nr)) {
3951 			vmcs12->vm_exit_instruction_len =
3952 				vcpu->arch.event_exit_inst_len;
3953 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3954 		} else
3955 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3956 
3957 		if (vcpu->arch.exception.has_error_code) {
3958 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3959 			vmcs12->idt_vectoring_error_code =
3960 				vcpu->arch.exception.error_code;
3961 		}
3962 
3963 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3964 	} else if (vcpu->arch.nmi_injected) {
3965 		vmcs12->idt_vectoring_info_field =
3966 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3967 	} else if (vcpu->arch.interrupt.injected) {
3968 		nr = vcpu->arch.interrupt.nr;
3969 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3970 
3971 		if (vcpu->arch.interrupt.soft) {
3972 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3973 			vmcs12->vm_entry_instruction_len =
3974 				vcpu->arch.event_exit_inst_len;
3975 		} else
3976 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3977 
3978 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3979 	} else {
3980 		vmcs12->idt_vectoring_info_field = 0;
3981 	}
3982 }
3983 
3984 
3985 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3986 {
3987 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3988 	gfn_t gfn;
3989 
3990 	/*
3991 	 * Don't need to mark the APIC access page dirty; it is never
3992 	 * written to by the CPU during APIC virtualization.
3993 	 */
3994 
3995 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3996 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3997 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3998 	}
3999 
4000 	if (nested_cpu_has_posted_intr(vmcs12)) {
4001 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
4002 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
4003 	}
4004 }
4005 
4006 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4007 {
4008 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4009 	int max_irr;
4010 	void *vapic_page;
4011 	u16 status;
4012 
4013 	if (!vmx->nested.pi_pending)
4014 		return 0;
4015 
4016 	if (!vmx->nested.pi_desc)
4017 		goto mmio_needed;
4018 
4019 	vmx->nested.pi_pending = false;
4020 
4021 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4022 		return 0;
4023 
4024 	max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4025 	if (max_irr > 0) {
4026 		vapic_page = vmx->nested.virtual_apic_map.hva;
4027 		if (!vapic_page)
4028 			goto mmio_needed;
4029 
4030 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
4031 			vapic_page, &max_irr);
4032 		status = vmcs_read16(GUEST_INTR_STATUS);
4033 		if ((u8)max_irr > ((u8)status & 0xff)) {
4034 			status &= ~0xff;
4035 			status |= (u8)max_irr;
4036 			vmcs_write16(GUEST_INTR_STATUS, status);
4037 		}
4038 	}
4039 
4040 	nested_mark_vmcs12_pages_dirty(vcpu);
4041 	return 0;
4042 
4043 mmio_needed:
4044 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
4045 	return -ENXIO;
4046 }
4047 
4048 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
4049 {
4050 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
4051 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
4052 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4053 	unsigned long exit_qual;
4054 
4055 	if (ex->has_payload) {
4056 		exit_qual = ex->payload;
4057 	} else if (ex->vector == PF_VECTOR) {
4058 		exit_qual = vcpu->arch.cr2;
4059 	} else if (ex->vector == DB_VECTOR) {
4060 		exit_qual = vcpu->arch.dr6;
4061 		exit_qual &= ~DR6_BT;
4062 		exit_qual ^= DR6_ACTIVE_LOW;
4063 	} else {
4064 		exit_qual = 0;
4065 	}
4066 
4067 	/*
4068 	 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
4069 	 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
4070 	 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
4071 	 */
4072 	if (ex->has_error_code && is_protmode(vcpu)) {
4073 		/*
4074 		 * Intel CPUs do not generate error codes with bits 31:16 set,
4075 		 * and more importantly VMX disallows setting bits 31:16 in the
4076 		 * injected error code for VM-Entry.  Drop the bits to mimic
4077 		 * hardware and avoid inducing failure on nested VM-Entry if L1
4078 		 * chooses to inject the exception back to L2.  AMD CPUs _do_
4079 		 * generate "full" 32-bit error codes, so KVM allows userspace
4080 		 * to inject exception error codes with bits 31:16 set.
4081 		 */
4082 		vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
4083 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
4084 	}
4085 
4086 	if (kvm_exception_is_soft(ex->vector))
4087 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
4088 	else
4089 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
4090 
4091 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
4092 	    vmx_get_nmi_mask(vcpu))
4093 		intr_info |= INTR_INFO_UNBLOCK_NMI;
4094 
4095 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4096 }
4097 
4098 /*
4099  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
4100  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4101  * Using the payload is flawed because code breakpoints (fault-like) and data
4102  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4103  * this will return false positives if a to-be-injected code breakpoint #DB is
4104  * pending (from KVM's perspective, but not "pending" across an instruction
4105  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
4106  * too is trap-like.
4107  *
4108  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4109  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4110  * #DB has already happened), and MTF isn't marked pending on code breakpoints
4111  * from the emulator (because such #DBs are fault-like and thus don't trigger
4112  * actions that fire on instruction retire).
4113  */
4114 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4115 {
4116 	if (!ex->pending || ex->vector != DB_VECTOR)
4117 		return 0;
4118 
4119 	/* General Detect #DBs are always fault-like. */
4120 	return ex->payload & ~DR6_BD;
4121 }
4122 
4123 /*
4124  * Returns true if there's a pending #DB exception that is lower priority than
4125  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
4126  * KVM, but could theoretically be injected by userspace.  Note, this code is
4127  * imperfect, see above.
4128  */
4129 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4130 {
4131 	return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4132 }
4133 
4134 /*
4135  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4136  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4137  * represents these debug traps with a payload that is said to be compatible
4138  * with the 'pending debug exceptions' field, write the payload to the VMCS
4139  * field if a VM-exit is delivered before the debug trap.
4140  */
4141 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4142 {
4143 	unsigned long pending_dbg;
4144 
4145 	pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4146 	if (pending_dbg)
4147 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4148 }
4149 
4150 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4151 {
4152 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4153 	       to_vmx(vcpu)->nested.preemption_timer_expired;
4154 }
4155 
4156 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4157 {
4158 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4159 	void *vapic = vmx->nested.virtual_apic_map.hva;
4160 	int max_irr, vppr;
4161 
4162 	if (nested_vmx_preemption_timer_pending(vcpu) ||
4163 	    vmx->nested.mtf_pending)
4164 		return true;
4165 
4166 	/*
4167 	 * Virtual Interrupt Delivery doesn't require manual injection.  Either
4168 	 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4169 	 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4170 	 * the interrupt from the PIR to RVI prior to entering the guest.
4171 	 */
4172 	if (for_injection)
4173 		return false;
4174 
4175 	if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4176 	    __vmx_interrupt_blocked(vcpu))
4177 		return false;
4178 
4179 	if (!vapic)
4180 		return false;
4181 
4182 	vppr = *((u32 *)(vapic + APIC_PROCPRI));
4183 
4184 	max_irr = vmx_get_rvi();
4185 	if ((max_irr & 0xf0) > (vppr & 0xf0))
4186 		return true;
4187 
4188 	if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4189 	    pi_test_on(vmx->nested.pi_desc)) {
4190 		max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4191 		if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4192 			return true;
4193 	}
4194 
4195 	return false;
4196 }
4197 
4198 /*
4199  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4200  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4201  * and less minor edits to splice in the priority of VMX Non-Root specific
4202  * events, e.g. MTF and NMI/INTR-window exiting.
4203  *
4204  * 1 Hardware Reset and Machine Checks
4205  *	- RESET
4206  *	- Machine Check
4207  *
4208  * 2 Trap on Task Switch
4209  *	- T flag in TSS is set (on task switch)
4210  *
4211  * 3 External Hardware Interventions
4212  *	- FLUSH
4213  *	- STOPCLK
4214  *	- SMI
4215  *	- INIT
4216  *
4217  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4218  *
4219  * 4 Traps on Previous Instruction
4220  *	- Breakpoints
4221  *	- Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4222  *	  breakpoint, or #DB due to a split-lock access)
4223  *
4224  * 4.3	VMX-preemption timer expired VM-exit
4225  *
4226  * 4.6	NMI-window exiting VM-exit[2]
4227  *
4228  * 5 Nonmaskable Interrupts (NMI)
4229  *
4230  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4231  *
4232  * 6 Maskable Hardware Interrupts
4233  *
4234  * 7 Code Breakpoint Fault
4235  *
4236  * 8 Faults from Fetching Next Instruction
4237  *	- Code-Segment Limit Violation
4238  *	- Code Page Fault
4239  *	- Control protection exception (missing ENDBRANCH at target of indirect
4240  *					call or jump)
4241  *
4242  * 9 Faults from Decoding Next Instruction
4243  *	- Instruction length > 15 bytes
4244  *	- Invalid Opcode
4245  *	- Coprocessor Not Available
4246  *
4247  *10 Faults on Executing Instruction
4248  *	- Overflow
4249  *	- Bound error
4250  *	- Invalid TSS
4251  *	- Segment Not Present
4252  *	- Stack fault
4253  *	- General Protection
4254  *	- Data Page Fault
4255  *	- Alignment Check
4256  *	- x86 FPU Floating-point exception
4257  *	- SIMD floating-point exception
4258  *	- Virtualization exception
4259  *	- Control protection exception
4260  *
4261  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4262  *     INIT signals, and higher priority events take priority over MTF VM exits.
4263  *     MTF VM exits take priority over debug-trap exceptions and lower priority
4264  *     events.
4265  *
4266  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4267  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4268  *     timer take priority over VM exits caused by the "NMI-window exiting"
4269  *     VM-execution control and lower priority events.
4270  *
4271  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4272  *     caused by "NMI-window exiting".  VM exits caused by this control take
4273  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4274  *
4275  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4276  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4277  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4278  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4279  *     priority over external interrupts and lower priority events.
4280  */
4281 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4282 {
4283 	struct kvm_lapic *apic = vcpu->arch.apic;
4284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4285 	/*
4286 	 * Only a pending nested run blocks a pending exception.  If there is a
4287 	 * previously injected event, the pending exception occurred while said
4288 	 * event was being delivered and thus needs to be handled.
4289 	 */
4290 	bool block_nested_exceptions = vmx->nested.nested_run_pending;
4291 	/*
4292 	 * Events that don't require injection, i.e. that are virtualized by
4293 	 * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need
4294 	 * to regain control in order to deliver the event, and hardware will
4295 	 * handle event ordering, e.g. with respect to injected exceptions.
4296 	 *
4297 	 * But, new events (not exceptions) are only recognized at instruction
4298 	 * boundaries.  If an event needs reinjection, then KVM is handling a
4299 	 * VM-Exit that occurred _during_ instruction execution; new events,
4300 	 * irrespective of whether or not they're injected, are blocked until
4301 	 * the instruction completes.
4302 	 */
4303 	bool block_non_injected_events = kvm_event_needs_reinjection(vcpu);
4304 	/*
4305 	 * Inject events are blocked by nested VM-Enter, as KVM is responsible
4306 	 * for managing priority between concurrent events, i.e. KVM needs to
4307 	 * wait until after VM-Enter completes to deliver injected events.
4308 	 */
4309 	bool block_nested_events = block_nested_exceptions ||
4310 				   block_non_injected_events;
4311 
4312 	if (lapic_in_kernel(vcpu) &&
4313 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4314 		if (block_nested_events)
4315 			return -EBUSY;
4316 		nested_vmx_update_pending_dbg(vcpu);
4317 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
4318 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4319 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4320 
4321 		/* MTF is discarded if the vCPU is in WFS. */
4322 		vmx->nested.mtf_pending = false;
4323 		return 0;
4324 	}
4325 
4326 	if (lapic_in_kernel(vcpu) &&
4327 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4328 		if (block_nested_events)
4329 			return -EBUSY;
4330 
4331 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4332 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4333 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4334 						apic->sipi_vector & 0xFFUL);
4335 			return 0;
4336 		}
4337 		/* Fallthrough, the SIPI is completely ignored. */
4338 	}
4339 
4340 	/*
4341 	 * Process exceptions that are higher priority than Monitor Trap Flag:
4342 	 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4343 	 * could theoretically come in from userspace), and ICEBP (INT1).
4344 	 *
4345 	 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4346 	 * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4347 	 * across SMI/RSM as it should; that needs to be addressed in order to
4348 	 * prioritize SMI over MTF and trap-like #DBs.
4349 	 */
4350 	if (vcpu->arch.exception_vmexit.pending &&
4351 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4352 		if (block_nested_exceptions)
4353 			return -EBUSY;
4354 
4355 		nested_vmx_inject_exception_vmexit(vcpu);
4356 		return 0;
4357 	}
4358 
4359 	if (vcpu->arch.exception.pending &&
4360 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4361 		if (block_nested_exceptions)
4362 			return -EBUSY;
4363 		goto no_vmexit;
4364 	}
4365 
4366 	if (vmx->nested.mtf_pending) {
4367 		if (block_nested_events)
4368 			return -EBUSY;
4369 		nested_vmx_update_pending_dbg(vcpu);
4370 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4371 		return 0;
4372 	}
4373 
4374 	if (vcpu->arch.exception_vmexit.pending) {
4375 		if (block_nested_exceptions)
4376 			return -EBUSY;
4377 
4378 		nested_vmx_inject_exception_vmexit(vcpu);
4379 		return 0;
4380 	}
4381 
4382 	if (vcpu->arch.exception.pending) {
4383 		if (block_nested_exceptions)
4384 			return -EBUSY;
4385 		goto no_vmexit;
4386 	}
4387 
4388 	if (nested_vmx_preemption_timer_pending(vcpu)) {
4389 		if (block_nested_events)
4390 			return -EBUSY;
4391 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4392 		return 0;
4393 	}
4394 
4395 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4396 		if (block_nested_events)
4397 			return -EBUSY;
4398 		goto no_vmexit;
4399 	}
4400 
4401 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4402 		if (block_nested_events)
4403 			return -EBUSY;
4404 		if (!nested_exit_on_nmi(vcpu))
4405 			goto no_vmexit;
4406 
4407 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4408 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
4409 				  INTR_INFO_VALID_MASK, 0);
4410 		/*
4411 		 * The NMI-triggered VM exit counts as injection:
4412 		 * clear this one and block further NMIs.
4413 		 */
4414 		vcpu->arch.nmi_pending = 0;
4415 		vmx_set_nmi_mask(vcpu, true);
4416 		return 0;
4417 	}
4418 
4419 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4420 		int irq;
4421 
4422 		if (!nested_exit_on_intr(vcpu)) {
4423 			if (block_nested_events)
4424 				return -EBUSY;
4425 
4426 			goto no_vmexit;
4427 		}
4428 
4429 		if (!nested_exit_intr_ack_set(vcpu)) {
4430 			if (block_nested_events)
4431 				return -EBUSY;
4432 
4433 			nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4434 			return 0;
4435 		}
4436 
4437 		irq = kvm_cpu_get_extint(vcpu);
4438 		if (irq != -1) {
4439 			if (block_nested_events)
4440 				return -EBUSY;
4441 
4442 			nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4443 					  INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4444 			return 0;
4445 		}
4446 
4447 		irq = kvm_apic_has_interrupt(vcpu);
4448 		if (WARN_ON_ONCE(irq < 0))
4449 			goto no_vmexit;
4450 
4451 		/*
4452 		 * If the IRQ is L2's PI notification vector, process posted
4453 		 * interrupts for L2 instead of injecting VM-Exit, as the
4454 		 * detection/morphing architecturally occurs when the IRQ is
4455 		 * delivered to the CPU.  Note, only interrupts that are routed
4456 		 * through the local APIC trigger posted interrupt processing,
4457 		 * and enabling posted interrupts requires ACK-on-exit.
4458 		 */
4459 		if (irq == vmx->nested.posted_intr_nv) {
4460 			/*
4461 			 * Nested posted interrupts are delivered via RVI, i.e.
4462 			 * aren't injected by KVM, and so can be queued even if
4463 			 * manual event injection is disallowed.
4464 			 */
4465 			if (block_non_injected_events)
4466 				return -EBUSY;
4467 
4468 			vmx->nested.pi_pending = true;
4469 			kvm_apic_clear_irr(vcpu, irq);
4470 			goto no_vmexit;
4471 		}
4472 
4473 		if (block_nested_events)
4474 			return -EBUSY;
4475 
4476 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4477 				  INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4478 
4479 		/*
4480 		 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4481 		 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4482 		 * if APICv is active.
4483 		 */
4484 		kvm_apic_ack_interrupt(vcpu, irq);
4485 		return 0;
4486 	}
4487 
4488 no_vmexit:
4489 	return vmx_complete_nested_posted_interrupt(vcpu);
4490 }
4491 
4492 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4493 {
4494 	ktime_t remaining =
4495 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4496 	u64 value;
4497 
4498 	if (ktime_to_ns(remaining) <= 0)
4499 		return 0;
4500 
4501 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4502 	do_div(value, 1000000);
4503 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4504 }
4505 
4506 static bool is_vmcs12_ext_field(unsigned long field)
4507 {
4508 	switch (field) {
4509 	case GUEST_ES_SELECTOR:
4510 	case GUEST_CS_SELECTOR:
4511 	case GUEST_SS_SELECTOR:
4512 	case GUEST_DS_SELECTOR:
4513 	case GUEST_FS_SELECTOR:
4514 	case GUEST_GS_SELECTOR:
4515 	case GUEST_LDTR_SELECTOR:
4516 	case GUEST_TR_SELECTOR:
4517 	case GUEST_ES_LIMIT:
4518 	case GUEST_CS_LIMIT:
4519 	case GUEST_SS_LIMIT:
4520 	case GUEST_DS_LIMIT:
4521 	case GUEST_FS_LIMIT:
4522 	case GUEST_GS_LIMIT:
4523 	case GUEST_LDTR_LIMIT:
4524 	case GUEST_TR_LIMIT:
4525 	case GUEST_GDTR_LIMIT:
4526 	case GUEST_IDTR_LIMIT:
4527 	case GUEST_ES_AR_BYTES:
4528 	case GUEST_DS_AR_BYTES:
4529 	case GUEST_FS_AR_BYTES:
4530 	case GUEST_GS_AR_BYTES:
4531 	case GUEST_LDTR_AR_BYTES:
4532 	case GUEST_TR_AR_BYTES:
4533 	case GUEST_ES_BASE:
4534 	case GUEST_CS_BASE:
4535 	case GUEST_SS_BASE:
4536 	case GUEST_DS_BASE:
4537 	case GUEST_FS_BASE:
4538 	case GUEST_GS_BASE:
4539 	case GUEST_LDTR_BASE:
4540 	case GUEST_TR_BASE:
4541 	case GUEST_GDTR_BASE:
4542 	case GUEST_IDTR_BASE:
4543 	case GUEST_PENDING_DBG_EXCEPTIONS:
4544 	case GUEST_BNDCFGS:
4545 		return true;
4546 	default:
4547 		break;
4548 	}
4549 
4550 	return false;
4551 }
4552 
4553 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4554 				       struct vmcs12 *vmcs12)
4555 {
4556 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4557 
4558 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4559 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4560 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4561 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4562 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4563 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4564 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4565 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4566 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4567 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4568 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4569 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4570 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4571 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4572 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4573 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4574 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4575 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4576 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4577 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4578 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4579 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4580 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4581 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4582 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4583 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4584 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4585 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4586 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4587 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4588 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4589 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4590 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4591 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4592 	vmcs12->guest_pending_dbg_exceptions =
4593 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4594 
4595 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4596 }
4597 
4598 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4599 				       struct vmcs12 *vmcs12)
4600 {
4601 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4602 	int cpu;
4603 
4604 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4605 		return;
4606 
4607 
4608 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4609 
4610 	cpu = get_cpu();
4611 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4612 	vmx_vcpu_load_vmcs(vcpu, cpu);
4613 
4614 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4615 
4616 	vmx->loaded_vmcs = &vmx->vmcs01;
4617 	vmx_vcpu_load_vmcs(vcpu, cpu);
4618 	put_cpu();
4619 }
4620 
4621 /*
4622  * Update the guest state fields of vmcs12 to reflect changes that
4623  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4624  * VM-entry controls is also updated, since this is really a guest
4625  * state bit.)
4626  */
4627 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4628 {
4629 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4630 
4631 	if (nested_vmx_is_evmptr12_valid(vmx))
4632 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4633 
4634 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4635 		!nested_vmx_is_evmptr12_valid(vmx);
4636 
4637 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4638 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4639 
4640 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4641 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4642 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4643 
4644 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4645 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4646 
4647 	vmcs12->guest_interruptibility_info =
4648 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4649 
4650 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4651 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4652 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4653 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4654 	else
4655 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4656 
4657 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4658 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4659 	    !vmx->nested.nested_run_pending)
4660 		vmcs12->vmx_preemption_timer_value =
4661 			vmx_get_preemption_timer_value(vcpu);
4662 
4663 	/*
4664 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4665 	 * own CR3 without exiting. If it has changed it, we must keep it.
4666 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4667 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4668 	 *
4669 	 * Additionally, restore L2's PDPTR to vmcs12.
4670 	 */
4671 	if (enable_ept) {
4672 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4673 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4674 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4675 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4676 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4677 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4678 		}
4679 	}
4680 
4681 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4682 
4683 	if (nested_cpu_has_vid(vmcs12))
4684 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4685 
4686 	vmcs12->vm_entry_controls =
4687 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4688 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4689 
4690 	/*
4691 	 * Note!  Save DR7, but intentionally don't grab DEBUGCTL from vmcs02.
4692 	 * Writes to DEBUGCTL that aren't intercepted by L1 are immediately
4693 	 * propagated to vmcs12 (see vmx_set_msr()), as the value loaded into
4694 	 * vmcs02 doesn't strictly track vmcs12.
4695 	 */
4696 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4697 		vmcs12->guest_dr7 = vcpu->arch.dr7;
4698 
4699 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4700 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4701 
4702 	vmcs_read_cet_state(&vmx->vcpu, &vmcs12->guest_s_cet,
4703 			    &vmcs12->guest_ssp,
4704 			    &vmcs12->guest_ssp_tbl);
4705 }
4706 
4707 /*
4708  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4709  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4710  * and this function updates it to reflect the changes to the guest state while
4711  * L2 was running (and perhaps made some exits which were handled directly by L0
4712  * without going back to L1), and to reflect the exit reason.
4713  * Note that we do not have to copy here all VMCS fields, just those that
4714  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4715  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4716  * which already writes to vmcs12 directly.
4717  */
4718 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4719 			   u32 vm_exit_reason, u32 exit_intr_info,
4720 			   unsigned long exit_qualification, u32 exit_insn_len)
4721 {
4722 	/* update exit information fields: */
4723 	vmcs12->vm_exit_reason = vm_exit_reason;
4724 	if (vmx_get_exit_reason(vcpu).enclave_mode)
4725 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4726 	vmcs12->exit_qualification = exit_qualification;
4727 
4728 	/*
4729 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4730 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4731 	 * exit info fields are unmodified.
4732 	 */
4733 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4734 		vmcs12->launch_state = 1;
4735 
4736 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4737 		 * instead of reading the real value. */
4738 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4739 
4740 		/*
4741 		 * Transfer the event that L0 or L1 may wanted to inject into
4742 		 * L2 to IDT_VECTORING_INFO_FIELD.
4743 		 */
4744 		vmcs12_save_pending_event(vcpu, vmcs12,
4745 					  vm_exit_reason, exit_intr_info);
4746 
4747 		vmcs12->vm_exit_intr_info = exit_intr_info;
4748 		vmcs12->vm_exit_instruction_len = exit_insn_len;
4749 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4750 
4751 		/*
4752 		 * According to spec, there's no need to store the guest's
4753 		 * MSRs if the exit is due to a VM-entry failure that occurs
4754 		 * during or after loading the guest state. Since this exit
4755 		 * does not fall in that category, we need to save the MSRs.
4756 		 */
4757 		if (nested_vmx_store_msr(vcpu,
4758 					 vmcs12->vm_exit_msr_store_addr,
4759 					 vmcs12->vm_exit_msr_store_count))
4760 			nested_vmx_abort(vcpu,
4761 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4762 	}
4763 }
4764 
4765 /*
4766  * A part of what we need to when the nested L2 guest exits and we want to
4767  * run its L1 parent, is to reset L1's guest state to the host state specified
4768  * in vmcs12.
4769  * This function is to be called not only on normal nested exit, but also on
4770  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4771  * Failures During or After Loading Guest State").
4772  * This function should be called when the active VMCS is L1's (vmcs01).
4773  */
4774 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4775 				   struct vmcs12 *vmcs12)
4776 {
4777 	enum vm_entry_failure_code ignored;
4778 	struct kvm_segment seg;
4779 
4780 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4781 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4782 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4783 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4784 	else
4785 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4786 	vmx_set_efer(vcpu, vcpu->arch.efer);
4787 
4788 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4789 	kvm_rip_write(vcpu, vmcs12->host_rip);
4790 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4791 	vmx_set_interrupt_shadow(vcpu, 0);
4792 
4793 	/*
4794 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4795 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4796 	 *
4797 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4798 	 * (KVM doesn't change it);
4799 	 */
4800 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4801 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4802 
4803 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4804 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4805 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4806 
4807 	nested_ept_uninit_mmu_context(vcpu);
4808 
4809 	/*
4810 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4811 	 * couldn't have changed.
4812 	 */
4813 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4814 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4815 
4816 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4817 
4818 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4819 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4820 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4821 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4822 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4823 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4824 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4825 
4826 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4827 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4828 		vmcs_write64(GUEST_BNDCFGS, 0);
4829 
4830 	/*
4831 	 * Load CET state from host state if VM_EXIT_LOAD_CET_STATE is set.
4832 	 * otherwise CET state should be retained across VM-exit, i.e.,
4833 	 * guest values should be propagated from vmcs12 to vmcs01.
4834 	 */
4835 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_CET_STATE)
4836 		vmcs_write_cet_state(vcpu, vmcs12->host_s_cet, vmcs12->host_ssp,
4837 				     vmcs12->host_ssp_tbl);
4838 	else
4839 		vmcs_write_cet_state(vcpu, vmcs12->guest_s_cet, vmcs12->guest_ssp,
4840 				     vmcs12->guest_ssp_tbl);
4841 
4842 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4843 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4844 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4845 	}
4846 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4847 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4848 		WARN_ON_ONCE(__kvm_emulate_msr_write(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4849 						     vmcs12->host_ia32_perf_global_ctrl));
4850 
4851 	/* Set L1 segment info according to Intel SDM
4852 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4853 	seg = (struct kvm_segment) {
4854 		.base = 0,
4855 		.limit = 0xFFFFFFFF,
4856 		.selector = vmcs12->host_cs_selector,
4857 		.type = 11,
4858 		.present = 1,
4859 		.s = 1,
4860 		.g = 1
4861 	};
4862 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4863 		seg.l = 1;
4864 	else
4865 		seg.db = 1;
4866 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4867 	seg = (struct kvm_segment) {
4868 		.base = 0,
4869 		.limit = 0xFFFFFFFF,
4870 		.type = 3,
4871 		.present = 1,
4872 		.s = 1,
4873 		.db = 1,
4874 		.g = 1
4875 	};
4876 	seg.selector = vmcs12->host_ds_selector;
4877 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4878 	seg.selector = vmcs12->host_es_selector;
4879 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4880 	seg.selector = vmcs12->host_ss_selector;
4881 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4882 	seg.selector = vmcs12->host_fs_selector;
4883 	seg.base = vmcs12->host_fs_base;
4884 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4885 	seg.selector = vmcs12->host_gs_selector;
4886 	seg.base = vmcs12->host_gs_base;
4887 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4888 	seg = (struct kvm_segment) {
4889 		.base = vmcs12->host_tr_base,
4890 		.limit = 0x67,
4891 		.selector = vmcs12->host_tr_selector,
4892 		.type = 11,
4893 		.present = 1
4894 	};
4895 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4896 
4897 	memset(&seg, 0, sizeof(seg));
4898 	seg.unusable = 1;
4899 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4900 
4901 	kvm_set_dr(vcpu, 7, 0x400);
4902 	vmx_guest_debugctl_write(vcpu, 0);
4903 
4904 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4905 				vmcs12->vm_exit_msr_load_count))
4906 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4907 
4908 	to_vt(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4909 }
4910 
4911 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4912 {
4913 	struct vmx_uret_msr *efer_msr;
4914 	unsigned int i;
4915 
4916 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4917 		return vmcs_read64(GUEST_IA32_EFER);
4918 
4919 	if (cpu_has_load_ia32_efer())
4920 		return kvm_host.efer;
4921 
4922 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4923 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4924 			return vmx->msr_autoload.guest.val[i].value;
4925 	}
4926 
4927 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4928 	if (efer_msr)
4929 		return efer_msr->data;
4930 
4931 	return kvm_host.efer;
4932 }
4933 
4934 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4935 {
4936 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4937 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4938 	struct vmx_msr_entry g, h;
4939 	gpa_t gpa;
4940 	u32 i, j;
4941 
4942 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4943 
4944 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4945 		/*
4946 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4947 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4948 		 * and vcpu->arch.dr7 is not squirreled away before the
4949 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4950 		 */
4951 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4952 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4953 		else
4954 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4955 	}
4956 
4957 	/* Reload DEBUGCTL to ensure vmcs01 has a fresh FREEZE_IN_SMM value. */
4958 	vmx_reload_guest_debugctl(vcpu);
4959 
4960 	/*
4961 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4962 	 * handle a variety of side effects to KVM's software model.
4963 	 */
4964 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4965 
4966 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4967 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4968 
4969 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4970 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4971 
4972 	nested_ept_uninit_mmu_context(vcpu);
4973 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4974 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4975 
4976 	/*
4977 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4978 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4979 	 * VMFail, like everything else we just need to ensure our
4980 	 * software model is up-to-date.
4981 	 */
4982 	if (enable_ept && is_pae_paging(vcpu))
4983 		ept_save_pdptrs(vcpu);
4984 
4985 	kvm_mmu_reset_context(vcpu);
4986 
4987 	/*
4988 	 * This nasty bit of open coding is a compromise between blindly
4989 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4990 	 * of VMFail), leaving the nested VM's MSRs in the software model
4991 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4992 	 * expensive since the lists are unbound by hardware).  For each
4993 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4994 	 * list, reload it from the exit load list if it exists and differs
4995 	 * from the guest value.  The intent is to stuff host state as
4996 	 * silently as possible, not to fully process the exit load list.
4997 	 */
4998 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4999 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
5000 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
5001 			pr_debug_ratelimited(
5002 				"%s read MSR index failed (%u, 0x%08llx)\n",
5003 				__func__, i, gpa);
5004 			goto vmabort;
5005 		}
5006 
5007 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
5008 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
5009 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
5010 				pr_debug_ratelimited(
5011 					"%s read MSR failed (%u, 0x%08llx)\n",
5012 					__func__, j, gpa);
5013 				goto vmabort;
5014 			}
5015 			if (h.index != g.index)
5016 				continue;
5017 			if (h.value == g.value)
5018 				break;
5019 
5020 			if (nested_vmx_load_msr_check(vcpu, &h)) {
5021 				pr_debug_ratelimited(
5022 					"%s check failed (%u, 0x%x, 0x%x)\n",
5023 					__func__, j, h.index, h.reserved);
5024 				goto vmabort;
5025 			}
5026 
5027 			if (kvm_emulate_msr_write(vcpu, h.index, h.value)) {
5028 				pr_debug_ratelimited(
5029 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
5030 					__func__, j, h.index, h.value);
5031 				goto vmabort;
5032 			}
5033 		}
5034 	}
5035 
5036 	return;
5037 
5038 vmabort:
5039 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
5040 }
5041 
5042 /*
5043  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
5044  * and modify vmcs12 to make it see what it would expect to see there if
5045  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
5046  */
5047 void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
5048 			 u32 exit_intr_info, unsigned long exit_qualification,
5049 			 u32 exit_insn_len)
5050 {
5051 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5052 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5053 
5054 	/* Pending MTF traps are discarded on VM-Exit. */
5055 	vmx->nested.mtf_pending = false;
5056 
5057 	/* trying to cancel vmlaunch/vmresume is a bug */
5058 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5059 
5060 #ifdef CONFIG_KVM_HYPERV
5061 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
5062 		/*
5063 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
5064 		 * Enlightened VMCS after migration and we still need to
5065 		 * do that when something is forcing L2->L1 exit prior to
5066 		 * the first L2 run.
5067 		 */
5068 		(void)nested_get_evmcs_page(vcpu);
5069 	}
5070 #endif
5071 
5072 	/* Service pending TLB flush requests for L2 before switching to L1. */
5073 	kvm_service_local_tlb_flush_requests(vcpu);
5074 
5075 	/*
5076 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
5077 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
5078 	 * up-to-date before switching to L1.
5079 	 */
5080 	if (enable_ept && is_pae_paging(vcpu))
5081 		vmx_ept_load_pdptrs(vcpu);
5082 
5083 	leave_guest_mode(vcpu);
5084 
5085 	if (nested_cpu_has_preemption_timer(vmcs12))
5086 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
5087 
5088 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
5089 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
5090 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
5091 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
5092 	}
5093 
5094 	if (likely(!vmx->fail)) {
5095 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5096 
5097 		if (vm_exit_reason != -1)
5098 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
5099 				       exit_intr_info, exit_qualification,
5100 				       exit_insn_len);
5101 
5102 		/*
5103 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
5104 		 * also be used to capture vmcs12 cache as part of
5105 		 * capturing nVMX state for snapshot (migration).
5106 		 *
5107 		 * Otherwise, this flush will dirty guest memory at a
5108 		 * point it is already assumed by user-space to be
5109 		 * immutable.
5110 		 */
5111 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
5112 	} else {
5113 		/*
5114 		 * The only expected VM-instruction error is "VM entry with
5115 		 * invalid control field(s)." Anything else indicates a
5116 		 * problem with L0.
5117 		 */
5118 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
5119 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5120 
5121 		/* VM-Fail at VM-Entry means KVM missed a consistency check. */
5122 		WARN_ON_ONCE(warn_on_missed_cc);
5123 	}
5124 
5125 	/*
5126 	 * Drop events/exceptions that were queued for re-injection to L2
5127 	 * (picked up via vmx_complete_interrupts()), as well as exceptions
5128 	 * that were pending for L2.  Note, this must NOT be hoisted above
5129 	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
5130 	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
5131 	 */
5132 	vcpu->arch.nmi_injected = false;
5133 	kvm_clear_exception_queue(vcpu);
5134 	kvm_clear_interrupt_queue(vcpu);
5135 
5136 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
5137 
5138 	kvm_nested_vmexit_handle_ibrs(vcpu);
5139 
5140 	/* Update any VMCS fields that might have changed while L2 ran */
5141 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
5142 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
5143 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5144 	if (kvm_caps.has_tsc_control)
5145 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5146 
5147 	if (vmx->nested.l1_tpr_threshold != -1)
5148 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5149 
5150 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5151 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
5152 		vmx_set_virtual_apic_mode(vcpu);
5153 	}
5154 
5155 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5156 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5157 		vmx_update_cpu_dirty_logging(vcpu);
5158 	}
5159 
5160 	nested_put_vmcs12_pages(vcpu);
5161 
5162 	if (vmx->nested.reload_vmcs01_apic_access_page) {
5163 		vmx->nested.reload_vmcs01_apic_access_page = false;
5164 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5165 	}
5166 
5167 	if (vmx->nested.update_vmcs01_apicv_status) {
5168 		vmx->nested.update_vmcs01_apicv_status = false;
5169 		vmx_refresh_apicv_exec_ctrl(vcpu);
5170 	}
5171 
5172 	if (vmx->nested.update_vmcs01_hwapic_isr) {
5173 		vmx->nested.update_vmcs01_hwapic_isr = false;
5174 		kvm_apic_update_hwapic_isr(vcpu);
5175 	}
5176 
5177 	if ((vm_exit_reason != -1) &&
5178 	    (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5179 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5180 
5181 	/* in case we halted in L2 */
5182 	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
5183 
5184 	if (likely(!vmx->fail)) {
5185 		if (vm_exit_reason != -1)
5186 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5187 						       vmcs12->exit_qualification,
5188 						       vmcs12->idt_vectoring_info_field,
5189 						       vmcs12->vm_exit_intr_info,
5190 						       vmcs12->vm_exit_intr_error_code,
5191 						       KVM_ISA_VMX);
5192 
5193 		load_vmcs12_host_state(vcpu, vmcs12);
5194 
5195 		/*
5196 		 * Process events if an injectable IRQ or NMI is pending, even
5197 		 * if the event is blocked (RFLAGS.IF is cleared on VM-Exit).
5198 		 * If an event became pending while L2 was active, KVM needs to
5199 		 * either inject the event or request an IRQ/NMI window.  SMIs
5200 		 * don't need to be processed as SMM is mutually exclusive with
5201 		 * non-root mode.  INIT/SIPI don't need to be checked as INIT
5202 		 * is blocked post-VMXON, and SIPIs are ignored.
5203 		 */
5204 		if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending)
5205 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5206 		return;
5207 	}
5208 
5209 	/*
5210 	 * After an early L2 VM-entry failure, we're now back
5211 	 * in L1 which thinks it just finished a VMLAUNCH or
5212 	 * VMRESUME instruction, so we need to set the failure
5213 	 * flag and the VM-instruction error field of the VMCS
5214 	 * accordingly, and skip the emulated instruction.
5215 	 */
5216 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5217 
5218 	/*
5219 	 * Restore L1's host state to KVM's software model.  We're here
5220 	 * because a consistency check was caught by hardware, which
5221 	 * means some amount of guest state has been propagated to KVM's
5222 	 * model and needs to be unwound to the host's state.
5223 	 */
5224 	nested_vmx_restore_host_state(vcpu);
5225 
5226 	vmx->fail = 0;
5227 }
5228 
5229 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5230 {
5231 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5232 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5233 }
5234 
5235 /*
5236  * Decode the memory-address operand of a vmx instruction, as recorded on an
5237  * exit caused by such an instruction (run by a guest hypervisor).
5238  * On success, returns 0. When the operand is invalid, returns 1 and throws
5239  * #UD, #GP, or #SS.
5240  */
5241 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5242 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5243 {
5244 	gva_t off;
5245 	bool exn;
5246 	struct kvm_segment s;
5247 
5248 	/*
5249 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5250 	 * Execution", on an exit, vmx_instruction_info holds most of the
5251 	 * addressing components of the operand. Only the displacement part
5252 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5253 	 * For how an actual address is calculated from all these components,
5254 	 * refer to Vol. 1, "Operand Addressing".
5255 	 */
5256 	int  scaling = vmx_instruction_info & 3;
5257 	int  addr_size = (vmx_instruction_info >> 7) & 7;
5258 	bool is_reg = vmx_instruction_info & (1u << 10);
5259 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
5260 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5261 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5262 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5263 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5264 
5265 	if (is_reg) {
5266 		kvm_queue_exception(vcpu, UD_VECTOR);
5267 		return 1;
5268 	}
5269 
5270 	/* Addr = segment_base + offset */
5271 	/* offset = base + [index * scale] + displacement */
5272 	off = exit_qualification; /* holds the displacement */
5273 	if (addr_size == 1)
5274 		off = (gva_t)sign_extend64(off, 31);
5275 	else if (addr_size == 0)
5276 		off = (gva_t)sign_extend64(off, 15);
5277 	if (base_is_valid)
5278 		off += kvm_register_read(vcpu, base_reg);
5279 	if (index_is_valid)
5280 		off += kvm_register_read(vcpu, index_reg) << scaling;
5281 	vmx_get_segment(vcpu, &s, seg_reg);
5282 
5283 	/*
5284 	 * The effective address, i.e. @off, of a memory operand is truncated
5285 	 * based on the address size of the instruction.  Note that this is
5286 	 * the *effective address*, i.e. the address prior to accounting for
5287 	 * the segment's base.
5288 	 */
5289 	if (addr_size == 1) /* 32 bit */
5290 		off &= 0xffffffff;
5291 	else if (addr_size == 0) /* 16 bit */
5292 		off &= 0xffff;
5293 
5294 	/* Checks for #GP/#SS exceptions. */
5295 	exn = false;
5296 	if (is_long_mode(vcpu)) {
5297 		/*
5298 		 * The virtual/linear address is never truncated in 64-bit
5299 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5300 		 * address when using FS/GS with a non-zero base.
5301 		 */
5302 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5303 			*ret = s.base + off;
5304 		else
5305 			*ret = off;
5306 
5307 		*ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5308 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
5309 		 * non-canonical form. This is the only check on the memory
5310 		 * destination for long mode!
5311 		 */
5312 		exn = is_noncanonical_address(*ret, vcpu, 0);
5313 	} else {
5314 		/*
5315 		 * When not in long mode, the virtual/linear address is
5316 		 * unconditionally truncated to 32 bits regardless of the
5317 		 * address size.
5318 		 */
5319 		*ret = (s.base + off) & 0xffffffff;
5320 
5321 		/* Protected mode: apply checks for segment validity in the
5322 		 * following order:
5323 		 * - segment type check (#GP(0) may be thrown)
5324 		 * - usability check (#GP(0)/#SS(0))
5325 		 * - limit check (#GP(0)/#SS(0))
5326 		 */
5327 		if (wr)
5328 			/* #GP(0) if the destination operand is located in a
5329 			 * read-only data segment or any code segment.
5330 			 */
5331 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
5332 		else
5333 			/* #GP(0) if the source operand is located in an
5334 			 * execute-only code segment
5335 			 */
5336 			exn = ((s.type & 0xa) == 8);
5337 		if (exn) {
5338 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5339 			return 1;
5340 		}
5341 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5342 		 */
5343 		exn = (s.unusable != 0);
5344 
5345 		/*
5346 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5347 		 * outside the segment limit.  All CPUs that support VMX ignore
5348 		 * limit checks for flat segments, i.e. segments with base==0,
5349 		 * limit==0xffffffff and of type expand-up data or code.
5350 		 */
5351 		if (!(s.base == 0 && s.limit == 0xffffffff &&
5352 		     ((s.type & 8) || !(s.type & 4))))
5353 			exn = exn || ((u64)off + len - 1 > s.limit);
5354 	}
5355 	if (exn) {
5356 		kvm_queue_exception_e(vcpu,
5357 				      seg_reg == VCPU_SREG_SS ?
5358 						SS_VECTOR : GP_VECTOR,
5359 				      0);
5360 		return 1;
5361 	}
5362 
5363 	return 0;
5364 }
5365 
5366 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5367 				int *ret)
5368 {
5369 	gva_t gva;
5370 	struct x86_exception e;
5371 	int r;
5372 
5373 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5374 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
5375 				sizeof(*vmpointer), &gva)) {
5376 		*ret = 1;
5377 		return -EINVAL;
5378 	}
5379 
5380 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5381 	if (r != X86EMUL_CONTINUE) {
5382 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
5383 		return -EINVAL;
5384 	}
5385 
5386 	return 0;
5387 }
5388 
5389 /*
5390  * Allocate a shadow VMCS and associate it with the currently loaded
5391  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5392  * VMCS is also VMCLEARed, so that it is ready for use.
5393  */
5394 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5395 {
5396 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5397 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5398 
5399 	/*
5400 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5401 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
5402 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
5403 	 * should be impossible to already have an allocated shadow VMCS.  KVM
5404 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5405 	 * always be the loaded VMCS.
5406 	 */
5407 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5408 		return loaded_vmcs->shadow_vmcs;
5409 
5410 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5411 	if (loaded_vmcs->shadow_vmcs)
5412 		vmcs_clear(loaded_vmcs->shadow_vmcs);
5413 
5414 	return loaded_vmcs->shadow_vmcs;
5415 }
5416 
5417 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5418 {
5419 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5420 	int r;
5421 
5422 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5423 	if (r < 0)
5424 		goto out_vmcs02;
5425 
5426 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5427 	if (!vmx->nested.cached_vmcs12)
5428 		goto out_cached_vmcs12;
5429 
5430 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5431 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5432 	if (!vmx->nested.cached_shadow_vmcs12)
5433 		goto out_cached_shadow_vmcs12;
5434 
5435 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5436 		goto out_shadow_vmcs;
5437 
5438 	hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC,
5439 		      HRTIMER_MODE_ABS_PINNED);
5440 
5441 	vmx->nested.vpid02 = allocate_vpid();
5442 
5443 	vmx->nested.vmcs02_initialized = false;
5444 	vmx->nested.vmxon = true;
5445 
5446 	if (vmx_pt_mode_is_host_guest()) {
5447 		vmx->pt_desc.guest.ctl = 0;
5448 		pt_update_intercept_for_msr(vcpu);
5449 	}
5450 
5451 	return 0;
5452 
5453 out_shadow_vmcs:
5454 	kfree(vmx->nested.cached_shadow_vmcs12);
5455 
5456 out_cached_shadow_vmcs12:
5457 	kfree(vmx->nested.cached_vmcs12);
5458 
5459 out_cached_vmcs12:
5460 	free_loaded_vmcs(&vmx->nested.vmcs02);
5461 
5462 out_vmcs02:
5463 	return -ENOMEM;
5464 }
5465 
5466 /* Emulate the VMXON instruction. */
5467 static int handle_vmxon(struct kvm_vcpu *vcpu)
5468 {
5469 	int ret;
5470 	gpa_t vmptr;
5471 	uint32_t revision;
5472 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5473 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5474 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5475 
5476 	/*
5477 	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5478 	 * the guest and so cannot rely on hardware to perform the check,
5479 	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5480 	 * for VMXON).
5481 	 *
5482 	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5483 	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5484 	 * force any of the relevant guest state.  For a restricted guest, KVM
5485 	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5486 	 * Real Mode, and so there's no need to check CR0.PE manually.
5487 	 */
5488 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5489 		kvm_queue_exception(vcpu, UD_VECTOR);
5490 		return 1;
5491 	}
5492 
5493 	/*
5494 	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5495 	 * and has higher priority than the VM-Fail due to being post-VMXON,
5496 	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5497 	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5498 	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5499 	 * VMX non-root.
5500 	 *
5501 	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5502 	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5503 	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5504 	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5505 	 * missed by hardware due to shadowing CR0 and/or CR4.
5506 	 */
5507 	if (vmx_get_cpl(vcpu)) {
5508 		kvm_inject_gp(vcpu, 0);
5509 		return 1;
5510 	}
5511 
5512 	if (vmx->nested.vmxon)
5513 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5514 
5515 	/*
5516 	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5517 	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5518 	 * have lower priority than the VM-Fail above.
5519 	 */
5520 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5521 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5522 		kvm_inject_gp(vcpu, 0);
5523 		return 1;
5524 	}
5525 
5526 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5527 			!= VMXON_NEEDED_FEATURES) {
5528 		kvm_inject_gp(vcpu, 0);
5529 		return 1;
5530 	}
5531 
5532 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5533 		return ret;
5534 
5535 	/*
5536 	 * SDM 3: 24.11.5
5537 	 * The first 4 bytes of VMXON region contain the supported
5538 	 * VMCS revision identifier
5539 	 *
5540 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5541 	 * which replaces physical address width with 32
5542 	 */
5543 	if (!page_address_valid(vcpu, vmptr))
5544 		return nested_vmx_failInvalid(vcpu);
5545 
5546 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5547 	    revision != VMCS12_REVISION)
5548 		return nested_vmx_failInvalid(vcpu);
5549 
5550 	vmx->nested.vmxon_ptr = vmptr;
5551 	ret = enter_vmx_operation(vcpu);
5552 	if (ret)
5553 		return ret;
5554 
5555 	return nested_vmx_succeed(vcpu);
5556 }
5557 
5558 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5559 {
5560 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5561 
5562 	if (vmx->nested.current_vmptr == INVALID_GPA)
5563 		return;
5564 
5565 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5566 
5567 	if (enable_shadow_vmcs) {
5568 		/* copy to memory all shadowed fields in case
5569 		   they were modified */
5570 		copy_shadow_to_vmcs12(vmx);
5571 		vmx_disable_shadow_vmcs(vmx);
5572 	}
5573 	vmx->nested.posted_intr_nv = -1;
5574 
5575 	/* Flush VMCS12 to guest memory */
5576 	kvm_vcpu_write_guest_page(vcpu,
5577 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5578 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5579 
5580 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5581 
5582 	vmx->nested.current_vmptr = INVALID_GPA;
5583 }
5584 
5585 /* Emulate the VMXOFF instruction */
5586 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5587 {
5588 	if (!nested_vmx_check_permission(vcpu))
5589 		return 1;
5590 
5591 	free_nested(vcpu);
5592 
5593 	if (kvm_apic_has_pending_init_or_sipi(vcpu))
5594 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5595 
5596 	return nested_vmx_succeed(vcpu);
5597 }
5598 
5599 /* Emulate the VMCLEAR instruction */
5600 static int handle_vmclear(struct kvm_vcpu *vcpu)
5601 {
5602 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5603 	u32 zero = 0;
5604 	gpa_t vmptr;
5605 	int r;
5606 
5607 	if (!nested_vmx_check_permission(vcpu))
5608 		return 1;
5609 
5610 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5611 		return r;
5612 
5613 	if (!page_address_valid(vcpu, vmptr))
5614 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5615 
5616 	if (vmptr == vmx->nested.vmxon_ptr)
5617 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5618 
5619 	if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5620 		if (vmptr == vmx->nested.current_vmptr)
5621 			nested_release_vmcs12(vcpu);
5622 
5623 		/*
5624 		 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5625 		 * for VMCLEAR includes a "ensure that data for VMCS referenced
5626 		 * by the operand is in memory" clause that guards writes to
5627 		 * memory, i.e. doing nothing for I/O is architecturally valid.
5628 		 *
5629 		 * FIXME: Suppress failures if and only if no memslot is found,
5630 		 * i.e. exit to userspace if __copy_to_user() fails.
5631 		 */
5632 		(void)kvm_vcpu_write_guest(vcpu,
5633 					   vmptr + offsetof(struct vmcs12,
5634 							    launch_state),
5635 					   &zero, sizeof(zero));
5636 	}
5637 
5638 	return nested_vmx_succeed(vcpu);
5639 }
5640 
5641 /* Emulate the VMLAUNCH instruction */
5642 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5643 {
5644 	return nested_vmx_run(vcpu, true);
5645 }
5646 
5647 /* Emulate the VMRESUME instruction */
5648 static int handle_vmresume(struct kvm_vcpu *vcpu)
5649 {
5650 
5651 	return nested_vmx_run(vcpu, false);
5652 }
5653 
5654 static int handle_vmread(struct kvm_vcpu *vcpu)
5655 {
5656 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5657 						    : get_vmcs12(vcpu);
5658 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5659 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5660 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5661 	struct x86_exception e;
5662 	unsigned long field;
5663 	u64 value;
5664 	gva_t gva = 0;
5665 	short offset;
5666 	int len, r;
5667 
5668 	if (!nested_vmx_check_permission(vcpu))
5669 		return 1;
5670 
5671 	/* Decode instruction info and find the field to read */
5672 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5673 
5674 	if (!nested_vmx_is_evmptr12_valid(vmx)) {
5675 		/*
5676 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5677 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5678 		 */
5679 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5680 		    (is_guest_mode(vcpu) &&
5681 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5682 			return nested_vmx_failInvalid(vcpu);
5683 
5684 		offset = get_vmcs12_field_offset(field);
5685 		if (offset < 0)
5686 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5687 
5688 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5689 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5690 
5691 		/* Read the field, zero-extended to a u64 value */
5692 		value = vmcs12_read_any(vmcs12, field, offset);
5693 	} else {
5694 		/*
5695 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5696 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5697 		 * unsupported. Unfortunately, certain versions of Windows 11
5698 		 * don't comply with this requirement which is not enforced in
5699 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5700 		 * workaround, as misbehaving guests will panic on VM-Fail.
5701 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5702 		 * all VMREADs from L2 should go to L1.
5703 		 */
5704 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5705 			return nested_vmx_failInvalid(vcpu);
5706 
5707 		offset = evmcs_field_offset(field, NULL);
5708 		if (offset < 0)
5709 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5710 
5711 		/* Read the field, zero-extended to a u64 value */
5712 		value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5713 	}
5714 
5715 	/*
5716 	 * Now copy part of this value to register or memory, as requested.
5717 	 * Note that the number of bits actually copied is 32 or 64 depending
5718 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5719 	 */
5720 	if (instr_info & BIT(10)) {
5721 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5722 	} else {
5723 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5724 		if (get_vmx_mem_address(vcpu, exit_qualification,
5725 					instr_info, true, len, &gva))
5726 			return 1;
5727 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5728 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5729 		if (r != X86EMUL_CONTINUE)
5730 			return kvm_handle_memory_failure(vcpu, r, &e);
5731 	}
5732 
5733 	return nested_vmx_succeed(vcpu);
5734 }
5735 
5736 static bool is_shadow_field_rw(unsigned long field)
5737 {
5738 	switch (field) {
5739 #define SHADOW_FIELD_RW(x, y) case x:
5740 #include "vmcs_shadow_fields.h"
5741 		return true;
5742 	default:
5743 		break;
5744 	}
5745 	return false;
5746 }
5747 
5748 static bool is_shadow_field_ro(unsigned long field)
5749 {
5750 	switch (field) {
5751 #define SHADOW_FIELD_RO(x, y) case x:
5752 #include "vmcs_shadow_fields.h"
5753 		return true;
5754 	default:
5755 		break;
5756 	}
5757 	return false;
5758 }
5759 
5760 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5761 {
5762 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5763 						    : get_vmcs12(vcpu);
5764 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5765 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5766 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5767 	struct x86_exception e;
5768 	unsigned long field;
5769 	short offset;
5770 	gva_t gva;
5771 	int len, r;
5772 
5773 	/*
5774 	 * The value to write might be 32 or 64 bits, depending on L1's long
5775 	 * mode, and eventually we need to write that into a field of several
5776 	 * possible lengths. The code below first zero-extends the value to 64
5777 	 * bit (value), and then copies only the appropriate number of
5778 	 * bits into the vmcs12 field.
5779 	 */
5780 	u64 value = 0;
5781 
5782 	if (!nested_vmx_check_permission(vcpu))
5783 		return 1;
5784 
5785 	/*
5786 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5787 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5788 	 */
5789 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5790 	    (is_guest_mode(vcpu) &&
5791 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5792 		return nested_vmx_failInvalid(vcpu);
5793 
5794 	if (instr_info & BIT(10))
5795 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5796 	else {
5797 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5798 		if (get_vmx_mem_address(vcpu, exit_qualification,
5799 					instr_info, false, len, &gva))
5800 			return 1;
5801 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5802 		if (r != X86EMUL_CONTINUE)
5803 			return kvm_handle_memory_failure(vcpu, r, &e);
5804 	}
5805 
5806 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5807 
5808 	offset = get_vmcs12_field_offset(field);
5809 	if (offset < 0)
5810 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5811 
5812 	/*
5813 	 * If the vCPU supports "VMWRITE to any supported field in the
5814 	 * VMCS," then the "read-only" fields are actually read/write.
5815 	 */
5816 	if (vmcs_field_readonly(field) &&
5817 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5818 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5819 
5820 	/*
5821 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5822 	 * vmcs12, else we may crush a field or consume a stale value.
5823 	 */
5824 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5825 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5826 
5827 	/*
5828 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5829 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5830 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5831 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5832 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5833 	 * the stripped down value, L2 sees the full value as stored by KVM).
5834 	 */
5835 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5836 		value &= 0x1f0ff;
5837 
5838 	vmcs12_write_any(vmcs12, field, offset, value);
5839 
5840 	/*
5841 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5842 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5843 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5844 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5845 	 */
5846 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5847 		/*
5848 		 * L1 can read these fields without exiting, ensure the
5849 		 * shadow VMCS is up-to-date.
5850 		 */
5851 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5852 			preempt_disable();
5853 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5854 
5855 			__vmcs_writel(field, value);
5856 
5857 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5858 			vmcs_load(vmx->loaded_vmcs->vmcs);
5859 			preempt_enable();
5860 		}
5861 		vmx->nested.dirty_vmcs12 = true;
5862 	}
5863 
5864 	return nested_vmx_succeed(vcpu);
5865 }
5866 
5867 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5868 {
5869 	vmx->nested.current_vmptr = vmptr;
5870 	if (enable_shadow_vmcs) {
5871 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5872 		vmcs_write64(VMCS_LINK_POINTER,
5873 			     __pa(vmx->vmcs01.shadow_vmcs));
5874 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5875 	}
5876 	vmx->nested.dirty_vmcs12 = true;
5877 	vmx->nested.force_msr_bitmap_recalc = true;
5878 }
5879 
5880 /* Emulate the VMPTRLD instruction */
5881 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5882 {
5883 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5884 	gpa_t vmptr;
5885 	int r;
5886 
5887 	if (!nested_vmx_check_permission(vcpu))
5888 		return 1;
5889 
5890 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5891 		return r;
5892 
5893 	if (!page_address_valid(vcpu, vmptr))
5894 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5895 
5896 	if (vmptr == vmx->nested.vmxon_ptr)
5897 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5898 
5899 	/* Forbid normal VMPTRLD if Enlightened version was used */
5900 	if (nested_vmx_is_evmptr12_valid(vmx))
5901 		return 1;
5902 
5903 	if (vmx->nested.current_vmptr != vmptr) {
5904 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5905 		struct vmcs_hdr hdr;
5906 
5907 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5908 			/*
5909 			 * Reads from an unbacked page return all 1s,
5910 			 * which means that the 32 bits located at the
5911 			 * given physical address won't match the required
5912 			 * VMCS12_REVISION identifier.
5913 			 */
5914 			return nested_vmx_fail(vcpu,
5915 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5916 		}
5917 
5918 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5919 						 offsetof(struct vmcs12, hdr),
5920 						 sizeof(hdr))) {
5921 			return nested_vmx_fail(vcpu,
5922 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5923 		}
5924 
5925 		if (hdr.revision_id != VMCS12_REVISION ||
5926 		    (hdr.shadow_vmcs &&
5927 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5928 			return nested_vmx_fail(vcpu,
5929 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5930 		}
5931 
5932 		nested_release_vmcs12(vcpu);
5933 
5934 		/*
5935 		 * Load VMCS12 from guest memory since it is not already
5936 		 * cached.
5937 		 */
5938 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5939 					  VMCS12_SIZE)) {
5940 			return nested_vmx_fail(vcpu,
5941 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5942 		}
5943 
5944 		set_current_vmptr(vmx, vmptr);
5945 	}
5946 
5947 	return nested_vmx_succeed(vcpu);
5948 }
5949 
5950 /* Emulate the VMPTRST instruction */
5951 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5952 {
5953 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5954 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5955 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5956 	struct x86_exception e;
5957 	gva_t gva;
5958 	int r;
5959 
5960 	if (!nested_vmx_check_permission(vcpu))
5961 		return 1;
5962 
5963 	if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5964 		return 1;
5965 
5966 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5967 				true, sizeof(gpa_t), &gva))
5968 		return 1;
5969 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5970 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5971 					sizeof(gpa_t), &e);
5972 	if (r != X86EMUL_CONTINUE)
5973 		return kvm_handle_memory_failure(vcpu, r, &e);
5974 
5975 	return nested_vmx_succeed(vcpu);
5976 }
5977 
5978 /* Emulate the INVEPT instruction */
5979 static int handle_invept(struct kvm_vcpu *vcpu)
5980 {
5981 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5982 	u32 vmx_instruction_info, types;
5983 	unsigned long type, roots_to_free;
5984 	struct kvm_mmu *mmu;
5985 	gva_t gva;
5986 	struct x86_exception e;
5987 	struct {
5988 		u64 eptp, gpa;
5989 	} operand;
5990 	int i, r, gpr_index;
5991 
5992 	if (!(vmx->nested.msrs.secondary_ctls_high &
5993 	      SECONDARY_EXEC_ENABLE_EPT) ||
5994 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5995 		kvm_queue_exception(vcpu, UD_VECTOR);
5996 		return 1;
5997 	}
5998 
5999 	if (!nested_vmx_check_permission(vcpu))
6000 		return 1;
6001 
6002 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6003 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6004 	type = kvm_register_read(vcpu, gpr_index);
6005 
6006 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6007 
6008 	if (type >= 32 || !(types & (1 << type)))
6009 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6010 
6011 	/* According to the Intel VMX instruction reference, the memory
6012 	 * operand is read even if it isn't needed (e.g., for type==global)
6013 	 */
6014 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6015 			vmx_instruction_info, false, sizeof(operand), &gva))
6016 		return 1;
6017 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6018 	if (r != X86EMUL_CONTINUE)
6019 		return kvm_handle_memory_failure(vcpu, r, &e);
6020 
6021 	/*
6022 	 * Nested EPT roots are always held through guest_mmu,
6023 	 * not root_mmu.
6024 	 */
6025 	mmu = &vcpu->arch.guest_mmu;
6026 
6027 	switch (type) {
6028 	case VMX_EPT_EXTENT_CONTEXT:
6029 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
6030 			return nested_vmx_fail(vcpu,
6031 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6032 
6033 		roots_to_free = 0;
6034 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
6035 					    operand.eptp))
6036 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
6037 
6038 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6039 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
6040 						    mmu->prev_roots[i].pgd,
6041 						    operand.eptp))
6042 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
6043 		}
6044 		break;
6045 	case VMX_EPT_EXTENT_GLOBAL:
6046 		roots_to_free = KVM_MMU_ROOTS_ALL;
6047 		break;
6048 	default:
6049 		BUG();
6050 		break;
6051 	}
6052 
6053 	if (roots_to_free)
6054 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
6055 
6056 	return nested_vmx_succeed(vcpu);
6057 }
6058 
6059 static int handle_invvpid(struct kvm_vcpu *vcpu)
6060 {
6061 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6062 	u32 vmx_instruction_info;
6063 	unsigned long type, types;
6064 	gva_t gva;
6065 	struct x86_exception e;
6066 	struct {
6067 		u64 vpid;
6068 		u64 gla;
6069 	} operand;
6070 	u16 vpid02;
6071 	int r, gpr_index;
6072 
6073 	if (!(vmx->nested.msrs.secondary_ctls_high &
6074 	      SECONDARY_EXEC_ENABLE_VPID) ||
6075 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
6076 		kvm_queue_exception(vcpu, UD_VECTOR);
6077 		return 1;
6078 	}
6079 
6080 	if (!nested_vmx_check_permission(vcpu))
6081 		return 1;
6082 
6083 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6084 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
6085 	type = kvm_register_read(vcpu, gpr_index);
6086 
6087 	types = (vmx->nested.msrs.vpid_caps &
6088 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
6089 
6090 	if (type >= 32 || !(types & (1 << type)))
6091 		return nested_vmx_fail(vcpu,
6092 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6093 
6094 	/* according to the intel vmx instruction reference, the memory
6095 	 * operand is read even if it isn't needed (e.g., for type==global)
6096 	 */
6097 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
6098 			vmx_instruction_info, false, sizeof(operand), &gva))
6099 		return 1;
6100 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
6101 	if (r != X86EMUL_CONTINUE)
6102 		return kvm_handle_memory_failure(vcpu, r, &e);
6103 
6104 	if (operand.vpid >> 16)
6105 		return nested_vmx_fail(vcpu,
6106 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6107 
6108 	/*
6109 	 * Always flush the effective vpid02, i.e. never flush the current VPID
6110 	 * and never explicitly flush vpid01.  INVVPID targets a VPID, not a
6111 	 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
6112 	 * irrelevant (and there may not be a loaded vmcs12).
6113 	 */
6114 	vpid02 = nested_get_vpid02(vcpu);
6115 	switch (type) {
6116 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
6117 		/*
6118 		 * LAM doesn't apply to addresses that are inputs to TLB
6119 		 * invalidation.
6120 		 */
6121 		if (!operand.vpid ||
6122 		    is_noncanonical_invlpg_address(operand.gla, vcpu))
6123 			return nested_vmx_fail(vcpu,
6124 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6125 		vpid_sync_vcpu_addr(vpid02, operand.gla);
6126 		break;
6127 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
6128 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
6129 		if (!operand.vpid)
6130 			return nested_vmx_fail(vcpu,
6131 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6132 		vpid_sync_context(vpid02);
6133 		break;
6134 	case VMX_VPID_EXTENT_ALL_CONTEXT:
6135 		vpid_sync_context(vpid02);
6136 		break;
6137 	default:
6138 		WARN_ON_ONCE(1);
6139 		return kvm_skip_emulated_instruction(vcpu);
6140 	}
6141 
6142 	/*
6143 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
6144 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
6145 	 * roots as VPIDs are not tracked in the MMU role.
6146 	 *
6147 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
6148 	 * an MMU when EPT is disabled.
6149 	 *
6150 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
6151 	 */
6152 	if (!enable_ept)
6153 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6154 
6155 	return nested_vmx_succeed(vcpu);
6156 }
6157 
6158 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
6159 				     struct vmcs12 *vmcs12)
6160 {
6161 	u32 index = kvm_rcx_read(vcpu);
6162 	u64 new_eptp;
6163 
6164 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6165 		return 1;
6166 	if (index >= VMFUNC_EPTP_ENTRIES)
6167 		return 1;
6168 
6169 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6170 				     &new_eptp, index * 8, 8))
6171 		return 1;
6172 
6173 	/*
6174 	 * If the (L2) guest does a vmfunc to the currently
6175 	 * active ept pointer, we don't have to do anything else
6176 	 */
6177 	if (vmcs12->ept_pointer != new_eptp) {
6178 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
6179 			return 1;
6180 
6181 		vmcs12->ept_pointer = new_eptp;
6182 		nested_ept_new_eptp(vcpu);
6183 
6184 		if (!nested_cpu_has_vpid(vmcs12))
6185 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6186 	}
6187 
6188 	return 0;
6189 }
6190 
6191 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6192 {
6193 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6194 	struct vmcs12 *vmcs12;
6195 	u32 function = kvm_rax_read(vcpu);
6196 
6197 	/*
6198 	 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6199 	 * VMFUNC for nested VMs, but not for L1.
6200 	 */
6201 	if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6202 		kvm_queue_exception(vcpu, UD_VECTOR);
6203 		return 1;
6204 	}
6205 
6206 	vmcs12 = get_vmcs12(vcpu);
6207 
6208 	/*
6209 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6210 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6211 	 */
6212 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6213 		kvm_queue_exception(vcpu, UD_VECTOR);
6214 		return 1;
6215 	}
6216 
6217 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6218 		goto fail;
6219 
6220 	switch (function) {
6221 	case 0:
6222 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
6223 			goto fail;
6224 		break;
6225 	default:
6226 		goto fail;
6227 	}
6228 	return kvm_skip_emulated_instruction(vcpu);
6229 
6230 fail:
6231 	/*
6232 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6233 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
6234 	 * EXIT_REASON_VMFUNC as the exit reason.
6235 	 */
6236 	nested_vmx_vmexit(vcpu, vmx->vt.exit_reason.full,
6237 			  vmx_get_intr_info(vcpu),
6238 			  vmx_get_exit_qual(vcpu));
6239 	return 1;
6240 }
6241 
6242 /*
6243  * Return true if an IO instruction with the specified port and size should cause
6244  * a VM-exit into L1.
6245  */
6246 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6247 				 int size)
6248 {
6249 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6250 	gpa_t bitmap, last_bitmap;
6251 	u8 b;
6252 
6253 	last_bitmap = INVALID_GPA;
6254 	b = -1;
6255 
6256 	while (size > 0) {
6257 		if (port < 0x8000)
6258 			bitmap = vmcs12->io_bitmap_a;
6259 		else if (port < 0x10000)
6260 			bitmap = vmcs12->io_bitmap_b;
6261 		else
6262 			return true;
6263 		bitmap += (port & 0x7fff) / 8;
6264 
6265 		if (last_bitmap != bitmap)
6266 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6267 				return true;
6268 		if (b & (1 << (port & 7)))
6269 			return true;
6270 
6271 		port++;
6272 		size--;
6273 		last_bitmap = bitmap;
6274 	}
6275 
6276 	return false;
6277 }
6278 
6279 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6280 				       struct vmcs12 *vmcs12)
6281 {
6282 	unsigned long exit_qualification;
6283 	unsigned short port;
6284 	int size;
6285 
6286 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6287 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6288 
6289 	exit_qualification = vmx_get_exit_qual(vcpu);
6290 
6291 	port = exit_qualification >> 16;
6292 	size = (exit_qualification & 7) + 1;
6293 
6294 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
6295 }
6296 
6297 /*
6298  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6299  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6300  * disinterest in the current event (read or write a specific MSR) by using an
6301  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6302  */
6303 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6304 					struct vmcs12 *vmcs12,
6305 					union vmx_exit_reason exit_reason)
6306 {
6307 	u32 msr_index;
6308 	gpa_t bitmap;
6309 
6310 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6311 		return true;
6312 
6313 	if (exit_reason.basic == EXIT_REASON_MSR_READ_IMM ||
6314 	    exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6315 		msr_index = vmx_get_exit_qual(vcpu);
6316 	else
6317 		msr_index = kvm_rcx_read(vcpu);
6318 
6319 	/*
6320 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6321 	 * for the four combinations of read/write and low/high MSR numbers.
6322 	 * First we need to figure out which of the four to use:
6323 	 */
6324 	bitmap = vmcs12->msr_bitmap;
6325 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE ||
6326 	    exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6327 		bitmap += 2048;
6328 	if (msr_index >= 0xc0000000) {
6329 		msr_index -= 0xc0000000;
6330 		bitmap += 1024;
6331 	}
6332 
6333 	/* Then read the msr_index'th bit from this bitmap: */
6334 	if (msr_index < 1024*8) {
6335 		unsigned char b;
6336 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6337 			return true;
6338 		return 1 & (b >> (msr_index & 7));
6339 	} else
6340 		return true; /* let L1 handle the wrong parameter */
6341 }
6342 
6343 /*
6344  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6345  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6346  * intercept (via guest_host_mask etc.) the current event.
6347  */
6348 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6349 	struct vmcs12 *vmcs12)
6350 {
6351 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6352 	int cr = exit_qualification & 15;
6353 	int reg;
6354 	unsigned long val;
6355 
6356 	switch ((exit_qualification >> 4) & 3) {
6357 	case 0: /* mov to cr */
6358 		reg = (exit_qualification >> 8) & 15;
6359 		val = kvm_register_read(vcpu, reg);
6360 		switch (cr) {
6361 		case 0:
6362 			if (vmcs12->cr0_guest_host_mask &
6363 			    (val ^ vmcs12->cr0_read_shadow))
6364 				return true;
6365 			break;
6366 		case 3:
6367 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6368 				return true;
6369 			break;
6370 		case 4:
6371 			if (vmcs12->cr4_guest_host_mask &
6372 			    (vmcs12->cr4_read_shadow ^ val))
6373 				return true;
6374 			break;
6375 		case 8:
6376 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6377 				return true;
6378 			break;
6379 		}
6380 		break;
6381 	case 2: /* clts */
6382 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6383 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6384 			return true;
6385 		break;
6386 	case 1: /* mov from cr */
6387 		switch (cr) {
6388 		case 3:
6389 			if (vmcs12->cpu_based_vm_exec_control &
6390 			    CPU_BASED_CR3_STORE_EXITING)
6391 				return true;
6392 			break;
6393 		case 8:
6394 			if (vmcs12->cpu_based_vm_exec_control &
6395 			    CPU_BASED_CR8_STORE_EXITING)
6396 				return true;
6397 			break;
6398 		}
6399 		break;
6400 	case 3: /* lmsw */
6401 		/*
6402 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6403 		 * cr0. Other attempted changes are ignored, with no exit.
6404 		 */
6405 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6406 		if (vmcs12->cr0_guest_host_mask & 0xe &
6407 		    (val ^ vmcs12->cr0_read_shadow))
6408 			return true;
6409 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6410 		    !(vmcs12->cr0_read_shadow & 0x1) &&
6411 		    (val & 0x1))
6412 			return true;
6413 		break;
6414 	}
6415 	return false;
6416 }
6417 
6418 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6419 					  struct vmcs12 *vmcs12)
6420 {
6421 	u32 encls_leaf;
6422 
6423 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) ||
6424 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6425 		return false;
6426 
6427 	encls_leaf = kvm_rax_read(vcpu);
6428 	if (encls_leaf > 62)
6429 		encls_leaf = 63;
6430 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6431 }
6432 
6433 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6434 	struct vmcs12 *vmcs12, gpa_t bitmap)
6435 {
6436 	u32 vmx_instruction_info;
6437 	unsigned long field;
6438 	u8 b;
6439 
6440 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
6441 		return true;
6442 
6443 	/* Decode instruction info and find the field to access */
6444 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6445 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6446 
6447 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
6448 	if (field >> 15)
6449 		return true;
6450 
6451 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6452 		return true;
6453 
6454 	return 1 & (b >> (field & 7));
6455 }
6456 
6457 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6458 {
6459 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6460 
6461 	if (nested_cpu_has_mtf(vmcs12))
6462 		return true;
6463 
6464 	/*
6465 	 * An MTF VM-exit may be injected into the guest by setting the
6466 	 * interruption-type to 7 (other event) and the vector field to 0. Such
6467 	 * is the case regardless of the 'monitor trap flag' VM-execution
6468 	 * control.
6469 	 */
6470 	return entry_intr_info == (INTR_INFO_VALID_MASK
6471 				   | INTR_TYPE_OTHER_EVENT);
6472 }
6473 
6474 /*
6475  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6476  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6477  */
6478 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6479 				     union vmx_exit_reason exit_reason)
6480 {
6481 	u32 intr_info;
6482 
6483 	switch ((u16)exit_reason.basic) {
6484 	case EXIT_REASON_EXCEPTION_NMI:
6485 		intr_info = vmx_get_intr_info(vcpu);
6486 		if (is_nmi(intr_info))
6487 			return true;
6488 		else if (is_page_fault(intr_info))
6489 			return vcpu->arch.apf.host_apf_flags ||
6490 			       vmx_need_pf_intercept(vcpu);
6491 		else if (is_debug(intr_info) &&
6492 			 vcpu->guest_debug &
6493 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6494 			return true;
6495 		else if (is_breakpoint(intr_info) &&
6496 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6497 			return true;
6498 		else if (is_alignment_check(intr_info) &&
6499 			 !vmx_guest_inject_ac(vcpu))
6500 			return true;
6501 		else if (is_ve_fault(intr_info))
6502 			return true;
6503 		return false;
6504 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6505 		return true;
6506 	case EXIT_REASON_MCE_DURING_VMENTRY:
6507 		return true;
6508 	case EXIT_REASON_EPT_VIOLATION:
6509 		/*
6510 		 * L0 always deals with the EPT violation. If nested EPT is
6511 		 * used, and the nested mmu code discovers that the address is
6512 		 * missing in the guest EPT table (EPT12), the EPT violation
6513 		 * will be injected with nested_ept_inject_page_fault()
6514 		 */
6515 		return true;
6516 	case EXIT_REASON_EPT_MISCONFIG:
6517 		/*
6518 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
6519 		 * table (shadow on EPT) or a merged EPT table that L0 built
6520 		 * (EPT on EPT). So any problems with the structure of the
6521 		 * table is L0's fault.
6522 		 */
6523 		return true;
6524 	case EXIT_REASON_PREEMPTION_TIMER:
6525 		return true;
6526 	case EXIT_REASON_PML_FULL:
6527 		/*
6528 		 * PML is emulated for an L1 VMM and should never be enabled in
6529 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6530 		 */
6531 		return true;
6532 	case EXIT_REASON_VMFUNC:
6533 		/* VM functions are emulated through L2->L0 vmexits. */
6534 		return true;
6535 	case EXIT_REASON_BUS_LOCK:
6536 		/*
6537 		 * At present, bus lock VM exit is never exposed to L1.
6538 		 * Handle L2's bus locks in L0 directly.
6539 		 */
6540 		return true;
6541 #ifdef CONFIG_KVM_HYPERV
6542 	case EXIT_REASON_VMCALL:
6543 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
6544 		return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6545 			nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6546 			kvm_hv_is_tlb_flush_hcall(vcpu);
6547 #endif
6548 	default:
6549 		break;
6550 	}
6551 	return false;
6552 }
6553 
6554 /*
6555  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6556  * is_guest_mode (L2).
6557  */
6558 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6559 				     union vmx_exit_reason exit_reason)
6560 {
6561 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6562 	u32 intr_info;
6563 
6564 	switch ((u16)exit_reason.basic) {
6565 	case EXIT_REASON_EXCEPTION_NMI:
6566 		intr_info = vmx_get_intr_info(vcpu);
6567 		if (is_nmi(intr_info))
6568 			return true;
6569 		else if (is_page_fault(intr_info))
6570 			return true;
6571 		return vmcs12->exception_bitmap &
6572 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6573 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6574 		return nested_exit_on_intr(vcpu);
6575 	case EXIT_REASON_TRIPLE_FAULT:
6576 		return true;
6577 	case EXIT_REASON_INTERRUPT_WINDOW:
6578 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6579 	case EXIT_REASON_NMI_WINDOW:
6580 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6581 	case EXIT_REASON_TASK_SWITCH:
6582 		return true;
6583 	case EXIT_REASON_CPUID:
6584 		return true;
6585 	case EXIT_REASON_HLT:
6586 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6587 	case EXIT_REASON_INVD:
6588 		return true;
6589 	case EXIT_REASON_INVLPG:
6590 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6591 	case EXIT_REASON_RDPMC:
6592 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6593 	case EXIT_REASON_RDRAND:
6594 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6595 	case EXIT_REASON_RDSEED:
6596 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6597 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6598 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6599 	case EXIT_REASON_VMREAD:
6600 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6601 			vmcs12->vmread_bitmap);
6602 	case EXIT_REASON_VMWRITE:
6603 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6604 			vmcs12->vmwrite_bitmap);
6605 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6606 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6607 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6608 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6609 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6610 		/*
6611 		 * VMX instructions trap unconditionally. This allows L1 to
6612 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6613 		 */
6614 		return true;
6615 	case EXIT_REASON_CR_ACCESS:
6616 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6617 	case EXIT_REASON_DR_ACCESS:
6618 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6619 	case EXIT_REASON_IO_INSTRUCTION:
6620 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6621 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6622 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6623 	case EXIT_REASON_MSR_READ:
6624 	case EXIT_REASON_MSR_WRITE:
6625 	case EXIT_REASON_MSR_READ_IMM:
6626 	case EXIT_REASON_MSR_WRITE_IMM:
6627 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6628 	case EXIT_REASON_INVALID_STATE:
6629 		return true;
6630 	case EXIT_REASON_MWAIT_INSTRUCTION:
6631 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6632 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6633 		return nested_vmx_exit_handled_mtf(vmcs12);
6634 	case EXIT_REASON_MONITOR_INSTRUCTION:
6635 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6636 	case EXIT_REASON_PAUSE_INSTRUCTION:
6637 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6638 			nested_cpu_has2(vmcs12,
6639 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6640 	case EXIT_REASON_MCE_DURING_VMENTRY:
6641 		return true;
6642 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6643 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6644 	case EXIT_REASON_APIC_ACCESS:
6645 	case EXIT_REASON_APIC_WRITE:
6646 	case EXIT_REASON_EOI_INDUCED:
6647 		/*
6648 		 * The controls for "virtualize APIC accesses," "APIC-
6649 		 * register virtualization," and "virtual-interrupt
6650 		 * delivery" only come from vmcs12.
6651 		 */
6652 		return true;
6653 	case EXIT_REASON_INVPCID:
6654 		return
6655 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6656 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6657 	case EXIT_REASON_WBINVD:
6658 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6659 	case EXIT_REASON_XSETBV:
6660 		return true;
6661 	case EXIT_REASON_XSAVES:
6662 	case EXIT_REASON_XRSTORS:
6663 		/*
6664 		 * Always forward XSAVES/XRSTORS to L1 as KVM doesn't utilize
6665 		 * XSS-bitmap, and always loads vmcs02 with vmcs12's XSS-bitmap
6666 		 * verbatim, i.e. any exit is due to L1's bitmap.  WARN if
6667 		 * XSAVES isn't enabled, as the CPU is supposed to inject #UD
6668 		 * in that case, before consulting the XSS-bitmap.
6669 		 */
6670 		WARN_ON_ONCE(!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES));
6671 		return true;
6672 	case EXIT_REASON_UMWAIT:
6673 	case EXIT_REASON_TPAUSE:
6674 		return nested_cpu_has2(vmcs12,
6675 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6676 	case EXIT_REASON_ENCLS:
6677 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6678 	case EXIT_REASON_NOTIFY:
6679 		/* Notify VM exit is not exposed to L1 */
6680 		return false;
6681 	case EXIT_REASON_SEAMCALL:
6682 	case EXIT_REASON_TDCALL:
6683 		/*
6684 		 * SEAMCALL and TDCALL unconditionally VM-Exit, but aren't
6685 		 * virtualized by KVM for L1 hypervisors, i.e. L1 should
6686 		 * never want or expect such an exit.
6687 		 */
6688 		return false;
6689 	default:
6690 		return true;
6691 	}
6692 }
6693 
6694 /*
6695  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6696  * reflected into L1.
6697  */
6698 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6699 {
6700 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6701 	union vmx_exit_reason exit_reason = vmx->vt.exit_reason;
6702 	unsigned long exit_qual;
6703 	u32 exit_intr_info;
6704 
6705 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6706 
6707 	/*
6708 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6709 	 * has already loaded L2's state.
6710 	 */
6711 	if (unlikely(vmx->fail)) {
6712 		trace_kvm_nested_vmenter_failed(
6713 			"hardware VM-instruction error: ",
6714 			vmcs_read32(VM_INSTRUCTION_ERROR));
6715 		exit_intr_info = 0;
6716 		exit_qual = 0;
6717 		goto reflect_vmexit;
6718 	}
6719 
6720 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6721 
6722 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6723 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6724 		return false;
6725 
6726 	/* If L1 doesn't want the exit, handle it in L0. */
6727 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6728 		return false;
6729 
6730 	/*
6731 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6732 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6733 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6734 	 * interrupts are never reflected to L1 so it's a non-issue.
6735 	 */
6736 	exit_intr_info = vmx_get_intr_info(vcpu);
6737 	if (is_exception_with_error_code(exit_intr_info)) {
6738 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6739 
6740 		vmcs12->vm_exit_intr_error_code =
6741 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6742 	}
6743 	exit_qual = vmx_get_exit_qual(vcpu);
6744 
6745 reflect_vmexit:
6746 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6747 	return true;
6748 }
6749 
6750 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6751 				struct kvm_nested_state __user *user_kvm_nested_state,
6752 				u32 user_data_size)
6753 {
6754 	struct vcpu_vmx *vmx;
6755 	struct vmcs12 *vmcs12;
6756 	struct kvm_nested_state kvm_state = {
6757 		.flags = 0,
6758 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6759 		.size = sizeof(kvm_state),
6760 		.hdr.vmx.flags = 0,
6761 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6762 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6763 		.hdr.vmx.preemption_timer_deadline = 0,
6764 	};
6765 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6766 		&user_kvm_nested_state->data.vmx[0];
6767 
6768 	if (!vcpu)
6769 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6770 
6771 	vmx = to_vmx(vcpu);
6772 	vmcs12 = get_vmcs12(vcpu);
6773 
6774 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) &&
6775 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6776 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6777 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6778 
6779 		if (vmx_has_valid_vmcs12(vcpu)) {
6780 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6781 
6782 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6783 			if (nested_vmx_is_evmptr12_set(vmx))
6784 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6785 
6786 			if (is_guest_mode(vcpu) &&
6787 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6788 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6789 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6790 		}
6791 
6792 		if (vmx->nested.smm.vmxon)
6793 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6794 
6795 		if (vmx->nested.smm.guest_mode)
6796 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6797 
6798 		if (is_guest_mode(vcpu)) {
6799 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6800 
6801 			if (vmx->nested.nested_run_pending)
6802 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6803 
6804 			if (vmx->nested.mtf_pending)
6805 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6806 
6807 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6808 			    vmx->nested.has_preemption_timer_deadline) {
6809 				kvm_state.hdr.vmx.flags |=
6810 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6811 				kvm_state.hdr.vmx.preemption_timer_deadline =
6812 					vmx->nested.preemption_timer_deadline;
6813 			}
6814 		}
6815 	}
6816 
6817 	if (user_data_size < kvm_state.size)
6818 		goto out;
6819 
6820 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6821 		return -EFAULT;
6822 
6823 	if (!vmx_has_valid_vmcs12(vcpu))
6824 		goto out;
6825 
6826 	/*
6827 	 * When running L2, the authoritative vmcs12 state is in the
6828 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6829 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6830 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6831 	 * vmcs12 state is in the vmcs12 already.
6832 	 */
6833 	if (is_guest_mode(vcpu)) {
6834 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6835 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6836 	} else  {
6837 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6838 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6839 			if (nested_vmx_is_evmptr12_valid(vmx))
6840 				/*
6841 				 * L1 hypervisor is not obliged to keep eVMCS
6842 				 * clean fields data always up-to-date while
6843 				 * not in guest mode, 'hv_clean_fields' is only
6844 				 * supposed to be actual upon vmentry so we need
6845 				 * to ignore it here and do full copy.
6846 				 */
6847 				copy_enlightened_to_vmcs12(vmx, 0);
6848 			else if (enable_shadow_vmcs)
6849 				copy_shadow_to_vmcs12(vmx);
6850 		}
6851 	}
6852 
6853 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6854 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6855 
6856 	/*
6857 	 * Copy over the full allocated size of vmcs12 rather than just the size
6858 	 * of the struct.
6859 	 */
6860 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6861 		return -EFAULT;
6862 
6863 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6864 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6865 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6866 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6867 			return -EFAULT;
6868 	}
6869 out:
6870 	return kvm_state.size;
6871 }
6872 
6873 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6874 {
6875 	if (is_guest_mode(vcpu)) {
6876 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6877 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6878 	}
6879 	free_nested(vcpu);
6880 }
6881 
6882 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6883 				struct kvm_nested_state __user *user_kvm_nested_state,
6884 				struct kvm_nested_state *kvm_state)
6885 {
6886 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6887 	struct vmcs12 *vmcs12;
6888 	enum vm_entry_failure_code ignored;
6889 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6890 		&user_kvm_nested_state->data.vmx[0];
6891 	int ret;
6892 
6893 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6894 		return -EINVAL;
6895 
6896 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6897 		if (kvm_state->hdr.vmx.smm.flags)
6898 			return -EINVAL;
6899 
6900 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6901 			return -EINVAL;
6902 
6903 		/*
6904 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6905 		 * enable eVMCS capability on vCPU. However, since then
6906 		 * code was changed such that flag signals vmcs12 should
6907 		 * be copied into eVMCS in guest memory.
6908 		 *
6909 		 * To preserve backwards compatibility, allow user
6910 		 * to set this flag even when there is no VMXON region.
6911 		 */
6912 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6913 			return -EINVAL;
6914 	} else {
6915 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
6916 			return -EINVAL;
6917 
6918 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6919 			return -EINVAL;
6920 	}
6921 
6922 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6923 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6924 		return -EINVAL;
6925 
6926 	if (kvm_state->hdr.vmx.smm.flags &
6927 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6928 		return -EINVAL;
6929 
6930 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6931 		return -EINVAL;
6932 
6933 	/*
6934 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6935 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6936 	 * must be zero.
6937 	 */
6938 	if (is_smm(vcpu) ?
6939 		(kvm_state->flags &
6940 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6941 		: kvm_state->hdr.vmx.smm.flags)
6942 		return -EINVAL;
6943 
6944 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6945 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6946 		return -EINVAL;
6947 
6948 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6949 	    (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) ||
6950 	     !vmx->nested.enlightened_vmcs_enabled))
6951 			return -EINVAL;
6952 
6953 	vmx_leave_nested(vcpu);
6954 
6955 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6956 		return 0;
6957 
6958 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6959 	ret = enter_vmx_operation(vcpu);
6960 	if (ret)
6961 		return ret;
6962 
6963 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6964 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6965 		/* See vmx_has_valid_vmcs12.  */
6966 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6967 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6968 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6969 			return -EINVAL;
6970 		else
6971 			return 0;
6972 	}
6973 
6974 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6975 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6976 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6977 			return -EINVAL;
6978 
6979 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6980 #ifdef CONFIG_KVM_HYPERV
6981 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6982 		/*
6983 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6984 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6985 		 * restored yet. EVMCS will be mapped from
6986 		 * nested_get_vmcs12_pages().
6987 		 */
6988 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6989 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6990 #endif
6991 	} else {
6992 		return -EINVAL;
6993 	}
6994 
6995 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6996 		vmx->nested.smm.vmxon = true;
6997 		vmx->nested.vmxon = false;
6998 
6999 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
7000 			vmx->nested.smm.guest_mode = true;
7001 	}
7002 
7003 	vmcs12 = get_vmcs12(vcpu);
7004 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
7005 		return -EFAULT;
7006 
7007 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
7008 		return -EINVAL;
7009 
7010 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
7011 		return 0;
7012 
7013 	vmx->nested.nested_run_pending =
7014 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
7015 
7016 	vmx->nested.mtf_pending =
7017 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
7018 
7019 	ret = -EINVAL;
7020 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
7021 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
7022 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
7023 
7024 		if (kvm_state->size <
7025 		    sizeof(*kvm_state) +
7026 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
7027 			goto error_guest_mode;
7028 
7029 		if (copy_from_user(shadow_vmcs12,
7030 				   user_vmx_nested_state->shadow_vmcs12,
7031 				   sizeof(*shadow_vmcs12))) {
7032 			ret = -EFAULT;
7033 			goto error_guest_mode;
7034 		}
7035 
7036 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
7037 		    !shadow_vmcs12->hdr.shadow_vmcs)
7038 			goto error_guest_mode;
7039 	}
7040 
7041 	vmx->nested.has_preemption_timer_deadline = false;
7042 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
7043 		vmx->nested.has_preemption_timer_deadline = true;
7044 		vmx->nested.preemption_timer_deadline =
7045 			kvm_state->hdr.vmx.preemption_timer_deadline;
7046 	}
7047 
7048 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
7049 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
7050 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
7051 		goto error_guest_mode;
7052 
7053 	vmx->nested.dirty_vmcs12 = true;
7054 	vmx->nested.force_msr_bitmap_recalc = true;
7055 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
7056 	if (ret)
7057 		goto error_guest_mode;
7058 
7059 	if (vmx->nested.mtf_pending)
7060 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7061 
7062 	return 0;
7063 
7064 error_guest_mode:
7065 	vmx->nested.nested_run_pending = 0;
7066 	return ret;
7067 }
7068 
7069 void nested_vmx_set_vmcs_shadowing_bitmap(void)
7070 {
7071 	if (enable_shadow_vmcs) {
7072 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
7073 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
7074 	}
7075 }
7076 
7077 /*
7078  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
7079  * that madness to get the encoding for comparison.
7080  */
7081 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
7082 
7083 static u64 nested_vmx_calc_vmcs_enum_msr(void)
7084 {
7085 	/*
7086 	 * Note these are the so called "index" of the VMCS field encoding, not
7087 	 * the index into vmcs12.
7088 	 */
7089 	unsigned int max_idx, idx;
7090 	int i;
7091 
7092 	/*
7093 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
7094 	 * vmcs12, regardless of whether or not the associated feature is
7095 	 * exposed to L1.  Simply find the field with the highest index.
7096 	 */
7097 	max_idx = 0;
7098 	for (i = 0; i < nr_vmcs12_fields; i++) {
7099 		/* The vmcs12 table is very, very sparsely populated. */
7100 		if (!vmcs12_field_offsets[i])
7101 			continue;
7102 
7103 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
7104 		if (idx > max_idx)
7105 			max_idx = idx;
7106 	}
7107 
7108 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
7109 }
7110 
7111 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
7112 					   struct nested_vmx_msrs *msrs)
7113 {
7114 	msrs->pinbased_ctls_low =
7115 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7116 
7117 	msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
7118 	msrs->pinbased_ctls_high &=
7119 		PIN_BASED_EXT_INTR_MASK |
7120 		PIN_BASED_NMI_EXITING |
7121 		PIN_BASED_VIRTUAL_NMIS |
7122 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
7123 	msrs->pinbased_ctls_high |=
7124 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7125 		PIN_BASED_VMX_PREEMPTION_TIMER;
7126 }
7127 
7128 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
7129 				       struct nested_vmx_msrs *msrs)
7130 {
7131 	msrs->exit_ctls_low =
7132 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
7133 
7134 	msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
7135 	msrs->exit_ctls_high &=
7136 #ifdef CONFIG_X86_64
7137 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
7138 #endif
7139 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
7140 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_CET_STATE;
7141 	msrs->exit_ctls_high |=
7142 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
7143 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
7144 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
7145 		VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
7146 
7147 	if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7148 	    !kvm_cpu_cap_has(X86_FEATURE_IBT))
7149 		msrs->exit_ctls_high &= ~VM_EXIT_LOAD_CET_STATE;
7150 
7151 	/* We support free control of debug control saving. */
7152 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
7153 }
7154 
7155 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
7156 					struct nested_vmx_msrs *msrs)
7157 {
7158 	msrs->entry_ctls_low =
7159 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
7160 
7161 	msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
7162 	msrs->entry_ctls_high &=
7163 #ifdef CONFIG_X86_64
7164 		VM_ENTRY_IA32E_MODE |
7165 #endif
7166 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
7167 		VM_ENTRY_LOAD_CET_STATE;
7168 	msrs->entry_ctls_high |=
7169 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
7170 		 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
7171 
7172 	if (!kvm_cpu_cap_has(X86_FEATURE_SHSTK) &&
7173 	    !kvm_cpu_cap_has(X86_FEATURE_IBT))
7174 		msrs->entry_ctls_high &= ~VM_ENTRY_LOAD_CET_STATE;
7175 
7176 	/* We support free control of debug control loading. */
7177 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
7178 }
7179 
7180 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
7181 					   struct nested_vmx_msrs *msrs)
7182 {
7183 	msrs->procbased_ctls_low =
7184 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7185 
7186 	msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
7187 	msrs->procbased_ctls_high &=
7188 		CPU_BASED_INTR_WINDOW_EXITING |
7189 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7190 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7191 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7192 		CPU_BASED_CR3_STORE_EXITING |
7193 #ifdef CONFIG_X86_64
7194 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7195 #endif
7196 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7197 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7198 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7199 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7200 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7201 	/*
7202 	 * We can allow some features even when not supported by the
7203 	 * hardware. For example, L1 can specify an MSR bitmap - and we
7204 	 * can use it to avoid exits to L1 - even when L0 runs L2
7205 	 * without MSR bitmaps.
7206 	 */
7207 	msrs->procbased_ctls_high |=
7208 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7209 		CPU_BASED_USE_MSR_BITMAPS;
7210 
7211 	/* We support free control of CR3 access interception. */
7212 	msrs->procbased_ctls_low &=
7213 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7214 }
7215 
7216 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7217 					    struct vmcs_config *vmcs_conf,
7218 					    struct nested_vmx_msrs *msrs)
7219 {
7220 	msrs->secondary_ctls_low = 0;
7221 
7222 	msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7223 	msrs->secondary_ctls_high &=
7224 		SECONDARY_EXEC_DESC |
7225 		SECONDARY_EXEC_ENABLE_RDTSCP |
7226 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7227 		SECONDARY_EXEC_WBINVD_EXITING |
7228 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
7229 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7230 		SECONDARY_EXEC_RDRAND_EXITING |
7231 		SECONDARY_EXEC_ENABLE_INVPCID |
7232 		SECONDARY_EXEC_ENABLE_VMFUNC |
7233 		SECONDARY_EXEC_RDSEED_EXITING |
7234 		SECONDARY_EXEC_ENABLE_XSAVES |
7235 		SECONDARY_EXEC_TSC_SCALING |
7236 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7237 
7238 	/*
7239 	 * We can emulate "VMCS shadowing," even if the hardware
7240 	 * doesn't support it.
7241 	 */
7242 	msrs->secondary_ctls_high |=
7243 		SECONDARY_EXEC_SHADOW_VMCS;
7244 
7245 	if (enable_ept) {
7246 		/* nested EPT: emulate EPT also to L1 */
7247 		msrs->secondary_ctls_high |=
7248 			SECONDARY_EXEC_ENABLE_EPT;
7249 		msrs->ept_caps =
7250 			VMX_EPT_PAGE_WALK_4_BIT |
7251 			VMX_EPT_PAGE_WALK_5_BIT |
7252 			VMX_EPTP_WB_BIT |
7253 			VMX_EPT_INVEPT_BIT |
7254 			VMX_EPT_EXECUTE_ONLY_BIT;
7255 
7256 		msrs->ept_caps &= ept_caps;
7257 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7258 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7259 			VMX_EPT_1GB_PAGE_BIT;
7260 		if (enable_ept_ad_bits) {
7261 			msrs->secondary_ctls_high |=
7262 				SECONDARY_EXEC_ENABLE_PML;
7263 			msrs->ept_caps |= VMX_EPT_AD_BIT;
7264 		}
7265 
7266 		/*
7267 		 * Advertise EPTP switching irrespective of hardware support,
7268 		 * KVM emulates it in software so long as VMFUNC is supported.
7269 		 */
7270 		if (cpu_has_vmx_vmfunc())
7271 			msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7272 	}
7273 
7274 	/*
7275 	 * Old versions of KVM use the single-context version without
7276 	 * checking for support, so declare that it is supported even
7277 	 * though it is treated as global context.  The alternative is
7278 	 * not failing the single-context invvpid, and it is worse.
7279 	 */
7280 	if (enable_vpid) {
7281 		msrs->secondary_ctls_high |=
7282 			SECONDARY_EXEC_ENABLE_VPID;
7283 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7284 			VMX_VPID_EXTENT_SUPPORTED_MASK;
7285 	}
7286 
7287 	if (enable_unrestricted_guest)
7288 		msrs->secondary_ctls_high |=
7289 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
7290 
7291 	if (flexpriority_enabled)
7292 		msrs->secondary_ctls_high |=
7293 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7294 
7295 	if (enable_sgx)
7296 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7297 }
7298 
7299 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7300 				       struct nested_vmx_msrs *msrs)
7301 {
7302 	msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7303 	msrs->misc_low |=
7304 		VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7305 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7306 		VMX_MISC_ACTIVITY_HLT |
7307 		VMX_MISC_ACTIVITY_WAIT_SIPI;
7308 	msrs->misc_high = 0;
7309 }
7310 
7311 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7312 {
7313 	/*
7314 	 * This MSR reports some information about VMX support. We
7315 	 * should return information about the VMX we emulate for the
7316 	 * guest, and the VMCS structure we give it - not about the
7317 	 * VMX support of the underlying hardware.
7318 	 */
7319 	msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7320 						 X86_MEMTYPE_WB);
7321 
7322 	msrs->basic |= VMX_BASIC_TRUE_CTLS;
7323 	if (cpu_has_vmx_basic_inout())
7324 		msrs->basic |= VMX_BASIC_INOUT;
7325 	if (cpu_has_vmx_basic_no_hw_errcode_cc())
7326 		msrs->basic |= VMX_BASIC_NO_HW_ERROR_CODE_CC;
7327 }
7328 
7329 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7330 {
7331 	/*
7332 	 * These MSRs specify bits which the guest must keep fixed on
7333 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7334 	 * We picked the standard core2 setting.
7335 	 */
7336 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7337 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7338 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7339 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7340 
7341 	/* These MSRs specify bits which the guest must keep fixed off. */
7342 	rdmsrq(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7343 	rdmsrq(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7344 
7345 	if (vmx_umip_emulated())
7346 		msrs->cr4_fixed1 |= X86_CR4_UMIP;
7347 }
7348 
7349 /*
7350  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7351  * returned for the various VMX controls MSRs when nested VMX is enabled.
7352  * The same values should also be used to verify that vmcs12 control fields are
7353  * valid during nested entry from L1 to L2.
7354  * Each of these control msrs has a low and high 32-bit half: A low bit is on
7355  * if the corresponding bit in the (32-bit) control field *must* be on, and a
7356  * bit in the high half is on if the corresponding bit in the control field
7357  * may be on. See also vmx_control_verify().
7358  */
7359 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7360 {
7361 	struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7362 
7363 	/*
7364 	 * Note that as a general rule, the high half of the MSRs (bits in
7365 	 * the control fields which may be 1) should be initialized by the
7366 	 * intersection of the underlying hardware's MSR (i.e., features which
7367 	 * can be supported) and the list of features we want to expose -
7368 	 * because they are known to be properly supported in our code.
7369 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
7370 	 * be set to 0, meaning that L1 may turn off any of these bits. The
7371 	 * reason is that if one of these bits is necessary, it will appear
7372 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7373 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
7374 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7375 	 * These rules have exceptions below.
7376 	 */
7377 	nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7378 
7379 	nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7380 
7381 	nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7382 
7383 	nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7384 
7385 	nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7386 
7387 	nested_vmx_setup_misc_data(vmcs_conf, msrs);
7388 
7389 	nested_vmx_setup_basic(msrs);
7390 
7391 	nested_vmx_setup_cr_fixed(msrs);
7392 
7393 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7394 }
7395 
7396 void nested_vmx_hardware_unsetup(void)
7397 {
7398 	int i;
7399 
7400 	if (enable_shadow_vmcs) {
7401 		for (i = 0; i < VMX_BITMAP_NR; i++)
7402 			free_page((unsigned long)vmx_bitmap[i]);
7403 	}
7404 }
7405 
7406 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7407 {
7408 	int i;
7409 
7410 	if (!cpu_has_vmx_shadow_vmcs())
7411 		enable_shadow_vmcs = 0;
7412 	if (enable_shadow_vmcs) {
7413 		for (i = 0; i < VMX_BITMAP_NR; i++) {
7414 			/*
7415 			 * The vmx_bitmap is not tied to a VM and so should
7416 			 * not be charged to a memcg.
7417 			 */
7418 			vmx_bitmap[i] = (unsigned long *)
7419 				__get_free_page(GFP_KERNEL);
7420 			if (!vmx_bitmap[i]) {
7421 				nested_vmx_hardware_unsetup();
7422 				return -ENOMEM;
7423 			}
7424 		}
7425 
7426 		init_vmcs_shadow_fields();
7427 	}
7428 
7429 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
7430 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
7431 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
7432 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
7433 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
7434 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
7435 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
7436 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmxoff;
7437 	exit_handlers[EXIT_REASON_VMON]		= handle_vmxon;
7438 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
7439 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
7440 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
7441 
7442 	return 0;
7443 }
7444 
7445 struct kvm_x86_nested_ops vmx_nested_ops = {
7446 	.leave_nested = vmx_leave_nested,
7447 	.is_exception_vmexit = nested_vmx_is_exception_vmexit,
7448 	.check_events = vmx_check_nested_events,
7449 	.has_events = vmx_has_nested_events,
7450 	.triple_fault = nested_vmx_triple_fault,
7451 	.get_state = vmx_get_nested_state,
7452 	.set_state = vmx_set_nested_state,
7453 	.get_nested_state_pages = vmx_get_nested_state_pages,
7454 	.write_log_dirty = nested_vmx_write_pml_buffer,
7455 #ifdef CONFIG_KVM_HYPERV
7456 	.enable_evmcs = nested_enable_evmcs,
7457 	.get_evmcs_version = nested_get_evmcs_version,
7458 	.hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7459 #endif
7460 };
7461