xref: /linux/arch/x86/kvm/vmx/nested.c (revision 9d106c6dd81bb26ad7fc3ee89cb1d62557c8e2c9)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16 
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19 
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22 
23 #define CC(consistency_check)						\
24 ({									\
25 	bool failed = (consistency_check);				\
26 	if (failed)							\
27 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
28 	failed;								\
29 })
30 
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
36 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
37 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
38 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
39 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40 
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42 
43 enum {
44 	VMX_VMREAD_BITMAP,
45 	VMX_VMWRITE_BITMAP,
46 	VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49 
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52 
53 struct shadow_vmcs_field {
54 	u16	encoding;
55 	u16	offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62 	ARRAY_SIZE(shadow_read_only_fields);
63 
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69 	ARRAY_SIZE(shadow_read_write_fields);
70 
71 static void init_vmcs_shadow_fields(void)
72 {
73 	int i, j;
74 
75 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77 
78 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80 		u16 field = entry.encoding;
81 
82 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83 		    (i + 1 == max_shadow_read_only_fields ||
84 		     shadow_read_only_fields[i + 1].encoding != field + 1))
85 			pr_err("Missing field from shadow_read_only_field %x\n",
86 			       field + 1);
87 
88 		clear_bit(field, vmx_vmread_bitmap);
89 		if (field & 1)
90 #ifdef CONFIG_X86_64
91 			continue;
92 #else
93 			entry.offset += sizeof(u32);
94 #endif
95 		shadow_read_only_fields[j++] = entry;
96 	}
97 	max_shadow_read_only_fields = j;
98 
99 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101 		u16 field = entry.encoding;
102 
103 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104 		    (i + 1 == max_shadow_read_write_fields ||
105 		     shadow_read_write_fields[i + 1].encoding != field + 1))
106 			pr_err("Missing field from shadow_read_write_field %x\n",
107 			       field + 1);
108 
109 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110 			  field <= GUEST_TR_AR_BYTES,
111 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112 
113 		/*
114 		 * PML and the preemption timer can be emulated, but the
115 		 * processor cannot vmwrite to fields that don't exist
116 		 * on bare metal.
117 		 */
118 		switch (field) {
119 		case GUEST_PML_INDEX:
120 			if (!cpu_has_vmx_pml())
121 				continue;
122 			break;
123 		case VMX_PREEMPTION_TIMER_VALUE:
124 			if (!cpu_has_vmx_preemption_timer())
125 				continue;
126 			break;
127 		case GUEST_INTR_STATUS:
128 			if (!cpu_has_vmx_apicv())
129 				continue;
130 			break;
131 		default:
132 			break;
133 		}
134 
135 		clear_bit(field, vmx_vmwrite_bitmap);
136 		clear_bit(field, vmx_vmread_bitmap);
137 		if (field & 1)
138 #ifdef CONFIG_X86_64
139 			continue;
140 #else
141 			entry.offset += sizeof(u32);
142 #endif
143 		shadow_read_write_fields[j++] = entry;
144 	}
145 	max_shadow_read_write_fields = j;
146 }
147 
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159 	return kvm_skip_emulated_instruction(vcpu);
160 }
161 
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
167 			| X86_EFLAGS_CF);
168 	return kvm_skip_emulated_instruction(vcpu);
169 }
170 
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172 				u32 vm_instruction_error)
173 {
174 	struct vcpu_vmx *vmx = to_vmx(vcpu);
175 
176 	/*
177 	 * failValid writes the error number to the current VMCS, which
178 	 * can't be done if there isn't a current VMCS.
179 	 */
180 	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181 		return nested_vmx_failInvalid(vcpu);
182 
183 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
186 			| X86_EFLAGS_ZF);
187 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
188 	/*
189 	 * We don't need to force a shadow sync because
190 	 * VM_INSTRUCTION_ERROR is not shadowed
191 	 */
192 	return kvm_skip_emulated_instruction(vcpu);
193 }
194 
195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
196 {
197 	/* TODO: not to reset guest simply here. */
198 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
200 }
201 
202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
203 {
204 	return fixed_bits_valid(control, low, high);
205 }
206 
207 static inline u64 vmx_control_msr(u32 low, u32 high)
208 {
209 	return low | ((u64)high << 32);
210 }
211 
212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
213 {
214 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
216 	vmx->nested.need_vmcs12_to_shadow_sync = false;
217 }
218 
219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
220 {
221 	struct vcpu_vmx *vmx = to_vmx(vcpu);
222 
223 	if (!vmx->nested.hv_evmcs)
224 		return;
225 
226 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227 	vmx->nested.hv_evmcs_vmptr = 0;
228 	vmx->nested.hv_evmcs = NULL;
229 }
230 
231 /*
232  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233  * just stops using VMX.
234  */
235 static void free_nested(struct kvm_vcpu *vcpu)
236 {
237 	struct vcpu_vmx *vmx = to_vmx(vcpu);
238 
239 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
240 		return;
241 
242 	kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
243 
244 	vmx->nested.vmxon = false;
245 	vmx->nested.smm.vmxon = false;
246 	free_vpid(vmx->nested.vpid02);
247 	vmx->nested.posted_intr_nv = -1;
248 	vmx->nested.current_vmptr = -1ull;
249 	if (enable_shadow_vmcs) {
250 		vmx_disable_shadow_vmcs(vmx);
251 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
252 		free_vmcs(vmx->vmcs01.shadow_vmcs);
253 		vmx->vmcs01.shadow_vmcs = NULL;
254 	}
255 	kfree(vmx->nested.cached_vmcs12);
256 	vmx->nested.cached_vmcs12 = NULL;
257 	kfree(vmx->nested.cached_shadow_vmcs12);
258 	vmx->nested.cached_shadow_vmcs12 = NULL;
259 	/* Unpin physical memory we referred to in the vmcs02 */
260 	if (vmx->nested.apic_access_page) {
261 		kvm_release_page_clean(vmx->nested.apic_access_page);
262 		vmx->nested.apic_access_page = NULL;
263 	}
264 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266 	vmx->nested.pi_desc = NULL;
267 
268 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
269 
270 	nested_release_evmcs(vcpu);
271 
272 	free_loaded_vmcs(&vmx->nested.vmcs02);
273 }
274 
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276 				     struct loaded_vmcs *prev)
277 {
278 	struct vmcs_host_state *dest, *src;
279 
280 	if (unlikely(!vmx->guest_state_loaded))
281 		return;
282 
283 	src = &prev->host_state;
284 	dest = &vmx->loaded_vmcs->host_state;
285 
286 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287 	dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289 	dest->ds_sel = src->ds_sel;
290 	dest->es_sel = src->es_sel;
291 #endif
292 }
293 
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296 	struct vcpu_vmx *vmx = to_vmx(vcpu);
297 	struct loaded_vmcs *prev;
298 	int cpu;
299 
300 	if (vmx->loaded_vmcs == vmcs)
301 		return;
302 
303 	cpu = get_cpu();
304 	prev = vmx->loaded_vmcs;
305 	vmx->loaded_vmcs = vmcs;
306 	vmx_vcpu_load_vmcs(vcpu, cpu);
307 	vmx_sync_vmcs_host_state(vmx, prev);
308 	put_cpu();
309 
310 	vmx_segment_cache_clear(vmx);
311 }
312 
313 /*
314  * Ensure that the current vmcs of the logical processor is the
315  * vmcs01 of the vcpu before calling free_nested().
316  */
317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
318 {
319 	vcpu_load(vcpu);
320 	vmx_leave_nested(vcpu);
321 	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
322 	free_nested(vcpu);
323 	vcpu_put(vcpu);
324 }
325 
326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327 		struct x86_exception *fault)
328 {
329 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330 	struct vcpu_vmx *vmx = to_vmx(vcpu);
331 	u32 exit_reason;
332 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
333 
334 	if (vmx->nested.pml_full) {
335 		exit_reason = EXIT_REASON_PML_FULL;
336 		vmx->nested.pml_full = false;
337 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338 	} else if (fault->error_code & PFERR_RSVD_MASK)
339 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
340 	else
341 		exit_reason = EXIT_REASON_EPT_VIOLATION;
342 
343 	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
344 	vmcs12->guest_physical_address = fault->address;
345 }
346 
347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
348 {
349 	WARN_ON(mmu_is_nested(vcpu));
350 
351 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352 	kvm_init_shadow_ept_mmu(vcpu,
353 			to_vmx(vcpu)->nested.msrs.ept_caps &
354 			VMX_EPT_EXECUTE_ONLY_BIT,
355 			nested_ept_ad_enabled(vcpu),
356 			nested_ept_get_cr3(vcpu));
357 	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
358 	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
359 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
360 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
361 
362 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
363 }
364 
365 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
366 {
367 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
368 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
369 }
370 
371 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
372 					    u16 error_code)
373 {
374 	bool inequality, bit;
375 
376 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
377 	inequality =
378 		(error_code & vmcs12->page_fault_error_code_mask) !=
379 		 vmcs12->page_fault_error_code_match;
380 	return inequality ^ bit;
381 }
382 
383 
384 /*
385  * KVM wants to inject page-faults which it got to the guest. This function
386  * checks whether in a nested guest, we need to inject them to L1 or L2.
387  */
388 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
389 {
390 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
391 	unsigned int nr = vcpu->arch.exception.nr;
392 	bool has_payload = vcpu->arch.exception.has_payload;
393 	unsigned long payload = vcpu->arch.exception.payload;
394 
395 	if (nr == PF_VECTOR) {
396 		if (vcpu->arch.exception.nested_apf) {
397 			*exit_qual = vcpu->arch.apf.nested_apf_token;
398 			return 1;
399 		}
400 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
401 						    vcpu->arch.exception.error_code)) {
402 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
403 			return 1;
404 		}
405 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
406 		if (nr == DB_VECTOR) {
407 			if (!has_payload) {
408 				payload = vcpu->arch.dr6;
409 				payload &= ~(DR6_FIXED_1 | DR6_BT);
410 				payload ^= DR6_RTM;
411 			}
412 			*exit_qual = payload;
413 		} else
414 			*exit_qual = 0;
415 		return 1;
416 	}
417 
418 	return 0;
419 }
420 
421 
422 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
423 		struct x86_exception *fault)
424 {
425 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
426 
427 	WARN_ON(!is_guest_mode(vcpu));
428 
429 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
430 		!to_vmx(vcpu)->nested.nested_run_pending) {
431 		vmcs12->vm_exit_intr_error_code = fault->error_code;
432 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
433 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
434 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
435 				  fault->address);
436 	} else {
437 		kvm_inject_page_fault(vcpu, fault);
438 	}
439 }
440 
441 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
442 {
443 	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
444 }
445 
446 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
447 					       struct vmcs12 *vmcs12)
448 {
449 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
450 		return 0;
451 
452 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
453 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
454 		return -EINVAL;
455 
456 	return 0;
457 }
458 
459 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
460 						struct vmcs12 *vmcs12)
461 {
462 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
463 		return 0;
464 
465 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
466 		return -EINVAL;
467 
468 	return 0;
469 }
470 
471 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
472 						struct vmcs12 *vmcs12)
473 {
474 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
475 		return 0;
476 
477 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
478 		return -EINVAL;
479 
480 	return 0;
481 }
482 
483 /*
484  * Check if MSR is intercepted for L01 MSR bitmap.
485  */
486 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
487 {
488 	unsigned long *msr_bitmap;
489 	int f = sizeof(unsigned long);
490 
491 	if (!cpu_has_vmx_msr_bitmap())
492 		return true;
493 
494 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
495 
496 	if (msr <= 0x1fff) {
497 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
498 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
499 		msr &= 0x1fff;
500 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
501 	}
502 
503 	return true;
504 }
505 
506 /*
507  * If a msr is allowed by L0, we should check whether it is allowed by L1.
508  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
509  */
510 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
511 					       unsigned long *msr_bitmap_nested,
512 					       u32 msr, int type)
513 {
514 	int f = sizeof(unsigned long);
515 
516 	/*
517 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
518 	 * have the write-low and read-high bitmap offsets the wrong way round.
519 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
520 	 */
521 	if (msr <= 0x1fff) {
522 		if (type & MSR_TYPE_R &&
523 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
524 			/* read-low */
525 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
526 
527 		if (type & MSR_TYPE_W &&
528 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
529 			/* write-low */
530 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
531 
532 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
533 		msr &= 0x1fff;
534 		if (type & MSR_TYPE_R &&
535 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
536 			/* read-high */
537 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
538 
539 		if (type & MSR_TYPE_W &&
540 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
541 			/* write-high */
542 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
543 
544 	}
545 }
546 
547 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
548 {
549 	int msr;
550 
551 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
552 		unsigned word = msr / BITS_PER_LONG;
553 
554 		msr_bitmap[word] = ~0;
555 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
556 	}
557 }
558 
559 /*
560  * Merge L0's and L1's MSR bitmap, return false to indicate that
561  * we do not use the hardware.
562  */
563 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
564 						 struct vmcs12 *vmcs12)
565 {
566 	int msr;
567 	unsigned long *msr_bitmap_l1;
568 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
569 	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
570 
571 	/* Nothing to do if the MSR bitmap is not in use.  */
572 	if (!cpu_has_vmx_msr_bitmap() ||
573 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
574 		return false;
575 
576 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
577 		return false;
578 
579 	msr_bitmap_l1 = (unsigned long *)map->hva;
580 
581 	/*
582 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
583 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
584 	 * the x2APIC MSR range and selectively disable them below.
585 	 */
586 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
587 
588 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
589 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
590 			/*
591 			 * L0 need not intercept reads for MSRs between 0x800
592 			 * and 0x8ff, it just lets the processor take the value
593 			 * from the virtual-APIC page; take those 256 bits
594 			 * directly from the L1 bitmap.
595 			 */
596 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
597 				unsigned word = msr / BITS_PER_LONG;
598 
599 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
600 			}
601 		}
602 
603 		nested_vmx_disable_intercept_for_msr(
604 			msr_bitmap_l1, msr_bitmap_l0,
605 			X2APIC_MSR(APIC_TASKPRI),
606 			MSR_TYPE_R | MSR_TYPE_W);
607 
608 		if (nested_cpu_has_vid(vmcs12)) {
609 			nested_vmx_disable_intercept_for_msr(
610 				msr_bitmap_l1, msr_bitmap_l0,
611 				X2APIC_MSR(APIC_EOI),
612 				MSR_TYPE_W);
613 			nested_vmx_disable_intercept_for_msr(
614 				msr_bitmap_l1, msr_bitmap_l0,
615 				X2APIC_MSR(APIC_SELF_IPI),
616 				MSR_TYPE_W);
617 		}
618 	}
619 
620 	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
621 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
622 					     MSR_FS_BASE, MSR_TYPE_RW);
623 
624 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
625 					     MSR_GS_BASE, MSR_TYPE_RW);
626 
627 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
628 					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
629 
630 	/*
631 	 * Checking the L0->L1 bitmap is trying to verify two things:
632 	 *
633 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
634 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
635 	 *    from the L12 MSR bitmap that is too permissive.
636 	 * 2. That L1 or L2s have actually used the MSR. This avoids
637 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
638 	 *    works properly because we only update the L01 MSR bitmap lazily.
639 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
640 	 *    updated to reflect this when L1 (or its L2s) actually write to
641 	 *    the MSR.
642 	 */
643 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
644 		nested_vmx_disable_intercept_for_msr(
645 					msr_bitmap_l1, msr_bitmap_l0,
646 					MSR_IA32_SPEC_CTRL,
647 					MSR_TYPE_R | MSR_TYPE_W);
648 
649 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
650 		nested_vmx_disable_intercept_for_msr(
651 					msr_bitmap_l1, msr_bitmap_l0,
652 					MSR_IA32_PRED_CMD,
653 					MSR_TYPE_W);
654 
655 	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
656 
657 	return true;
658 }
659 
660 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
661 				       struct vmcs12 *vmcs12)
662 {
663 	struct kvm_host_map map;
664 	struct vmcs12 *shadow;
665 
666 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
667 	    vmcs12->vmcs_link_pointer == -1ull)
668 		return;
669 
670 	shadow = get_shadow_vmcs12(vcpu);
671 
672 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
673 		return;
674 
675 	memcpy(shadow, map.hva, VMCS12_SIZE);
676 	kvm_vcpu_unmap(vcpu, &map, false);
677 }
678 
679 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
680 					      struct vmcs12 *vmcs12)
681 {
682 	struct vcpu_vmx *vmx = to_vmx(vcpu);
683 
684 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
685 	    vmcs12->vmcs_link_pointer == -1ull)
686 		return;
687 
688 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
689 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
690 }
691 
692 /*
693  * In nested virtualization, check if L1 has set
694  * VM_EXIT_ACK_INTR_ON_EXIT
695  */
696 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
697 {
698 	return get_vmcs12(vcpu)->vm_exit_controls &
699 		VM_EXIT_ACK_INTR_ON_EXIT;
700 }
701 
702 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
703 {
704 	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
705 }
706 
707 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
708 					  struct vmcs12 *vmcs12)
709 {
710 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
711 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
712 		return -EINVAL;
713 	else
714 		return 0;
715 }
716 
717 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
718 					   struct vmcs12 *vmcs12)
719 {
720 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
721 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
722 	    !nested_cpu_has_vid(vmcs12) &&
723 	    !nested_cpu_has_posted_intr(vmcs12))
724 		return 0;
725 
726 	/*
727 	 * If virtualize x2apic mode is enabled,
728 	 * virtualize apic access must be disabled.
729 	 */
730 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
731 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
732 		return -EINVAL;
733 
734 	/*
735 	 * If virtual interrupt delivery is enabled,
736 	 * we must exit on external interrupts.
737 	 */
738 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
739 		return -EINVAL;
740 
741 	/*
742 	 * bits 15:8 should be zero in posted_intr_nv,
743 	 * the descriptor address has been already checked
744 	 * in nested_get_vmcs12_pages.
745 	 *
746 	 * bits 5:0 of posted_intr_desc_addr should be zero.
747 	 */
748 	if (nested_cpu_has_posted_intr(vmcs12) &&
749 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
750 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
751 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
752 	    CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
753 	    CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
754 		return -EINVAL;
755 
756 	/* tpr shadow is needed by all apicv features. */
757 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
758 		return -EINVAL;
759 
760 	return 0;
761 }
762 
763 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
764 				       u32 count, u64 addr)
765 {
766 	int maxphyaddr;
767 
768 	if (count == 0)
769 		return 0;
770 	maxphyaddr = cpuid_maxphyaddr(vcpu);
771 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
772 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
773 		return -EINVAL;
774 
775 	return 0;
776 }
777 
778 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
779 						     struct vmcs12 *vmcs12)
780 {
781 	if (CC(nested_vmx_check_msr_switch(vcpu,
782 					   vmcs12->vm_exit_msr_load_count,
783 					   vmcs12->vm_exit_msr_load_addr)) ||
784 	    CC(nested_vmx_check_msr_switch(vcpu,
785 					   vmcs12->vm_exit_msr_store_count,
786 					   vmcs12->vm_exit_msr_store_addr)))
787 		return -EINVAL;
788 
789 	return 0;
790 }
791 
792 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
793                                                       struct vmcs12 *vmcs12)
794 {
795 	if (CC(nested_vmx_check_msr_switch(vcpu,
796 					   vmcs12->vm_entry_msr_load_count,
797 					   vmcs12->vm_entry_msr_load_addr)))
798                 return -EINVAL;
799 
800 	return 0;
801 }
802 
803 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
804 					 struct vmcs12 *vmcs12)
805 {
806 	if (!nested_cpu_has_pml(vmcs12))
807 		return 0;
808 
809 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
810 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
811 		return -EINVAL;
812 
813 	return 0;
814 }
815 
816 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
817 							struct vmcs12 *vmcs12)
818 {
819 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
820 	       !nested_cpu_has_ept(vmcs12)))
821 		return -EINVAL;
822 	return 0;
823 }
824 
825 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
826 							 struct vmcs12 *vmcs12)
827 {
828 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
829 	       !nested_cpu_has_ept(vmcs12)))
830 		return -EINVAL;
831 	return 0;
832 }
833 
834 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
835 						 struct vmcs12 *vmcs12)
836 {
837 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
838 		return 0;
839 
840 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
841 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
842 		return -EINVAL;
843 
844 	return 0;
845 }
846 
847 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
848 				       struct vmx_msr_entry *e)
849 {
850 	/* x2APIC MSR accesses are not allowed */
851 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
852 		return -EINVAL;
853 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
854 	    CC(e->index == MSR_IA32_UCODE_REV))
855 		return -EINVAL;
856 	if (CC(e->reserved != 0))
857 		return -EINVAL;
858 	return 0;
859 }
860 
861 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
862 				     struct vmx_msr_entry *e)
863 {
864 	if (CC(e->index == MSR_FS_BASE) ||
865 	    CC(e->index == MSR_GS_BASE) ||
866 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
867 	    nested_vmx_msr_check_common(vcpu, e))
868 		return -EINVAL;
869 	return 0;
870 }
871 
872 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
873 				      struct vmx_msr_entry *e)
874 {
875 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
876 	    nested_vmx_msr_check_common(vcpu, e))
877 		return -EINVAL;
878 	return 0;
879 }
880 
881 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
882 {
883 	struct vcpu_vmx *vmx = to_vmx(vcpu);
884 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
885 				       vmx->nested.msrs.misc_high);
886 
887 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
888 }
889 
890 /*
891  * Load guest's/host's msr at nested entry/exit.
892  * return 0 for success, entry index for failure.
893  *
894  * One of the failure modes for MSR load/store is when a list exceeds the
895  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
896  * as possible, process all valid entries before failing rather than precheck
897  * for a capacity violation.
898  */
899 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
900 {
901 	u32 i;
902 	struct vmx_msr_entry e;
903 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
904 
905 	for (i = 0; i < count; i++) {
906 		if (unlikely(i >= max_msr_list_size))
907 			goto fail;
908 
909 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
910 					&e, sizeof(e))) {
911 			pr_debug_ratelimited(
912 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
913 				__func__, i, gpa + i * sizeof(e));
914 			goto fail;
915 		}
916 		if (nested_vmx_load_msr_check(vcpu, &e)) {
917 			pr_debug_ratelimited(
918 				"%s check failed (%u, 0x%x, 0x%x)\n",
919 				__func__, i, e.index, e.reserved);
920 			goto fail;
921 		}
922 		if (kvm_set_msr(vcpu, e.index, e.value)) {
923 			pr_debug_ratelimited(
924 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
925 				__func__, i, e.index, e.value);
926 			goto fail;
927 		}
928 	}
929 	return 0;
930 fail:
931 	return i + 1;
932 }
933 
934 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
935 					    u32 msr_index,
936 					    u64 *data)
937 {
938 	struct vcpu_vmx *vmx = to_vmx(vcpu);
939 
940 	/*
941 	 * If the L0 hypervisor stored a more accurate value for the TSC that
942 	 * does not include the time taken for emulation of the L2->L1
943 	 * VM-exit in L0, use the more accurate value.
944 	 */
945 	if (msr_index == MSR_IA32_TSC) {
946 		int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
947 					       MSR_IA32_TSC);
948 
949 		if (index >= 0) {
950 			u64 val = vmx->msr_autostore.guest.val[index].value;
951 
952 			*data = kvm_read_l1_tsc(vcpu, val);
953 			return true;
954 		}
955 	}
956 
957 	if (kvm_get_msr(vcpu, msr_index, data)) {
958 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
959 			msr_index);
960 		return false;
961 	}
962 	return true;
963 }
964 
965 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
966 				     struct vmx_msr_entry *e)
967 {
968 	if (kvm_vcpu_read_guest(vcpu,
969 				gpa + i * sizeof(*e),
970 				e, 2 * sizeof(u32))) {
971 		pr_debug_ratelimited(
972 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
973 			__func__, i, gpa + i * sizeof(*e));
974 		return false;
975 	}
976 	if (nested_vmx_store_msr_check(vcpu, e)) {
977 		pr_debug_ratelimited(
978 			"%s check failed (%u, 0x%x, 0x%x)\n",
979 			__func__, i, e->index, e->reserved);
980 		return false;
981 	}
982 	return true;
983 }
984 
985 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
986 {
987 	u64 data;
988 	u32 i;
989 	struct vmx_msr_entry e;
990 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
991 
992 	for (i = 0; i < count; i++) {
993 		if (unlikely(i >= max_msr_list_size))
994 			return -EINVAL;
995 
996 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
997 			return -EINVAL;
998 
999 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1000 			return -EINVAL;
1001 
1002 		if (kvm_vcpu_write_guest(vcpu,
1003 					 gpa + i * sizeof(e) +
1004 					     offsetof(struct vmx_msr_entry, value),
1005 					 &data, sizeof(data))) {
1006 			pr_debug_ratelimited(
1007 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1008 				__func__, i, e.index, data);
1009 			return -EINVAL;
1010 		}
1011 	}
1012 	return 0;
1013 }
1014 
1015 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1016 {
1017 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1018 	u32 count = vmcs12->vm_exit_msr_store_count;
1019 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1020 	struct vmx_msr_entry e;
1021 	u32 i;
1022 
1023 	for (i = 0; i < count; i++) {
1024 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1025 			return false;
1026 
1027 		if (e.index == msr_index)
1028 			return true;
1029 	}
1030 	return false;
1031 }
1032 
1033 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1034 					   u32 msr_index)
1035 {
1036 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1037 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1038 	bool in_vmcs12_store_list;
1039 	int msr_autostore_index;
1040 	bool in_autostore_list;
1041 	int last;
1042 
1043 	msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1044 	in_autostore_list = msr_autostore_index >= 0;
1045 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1046 
1047 	if (in_vmcs12_store_list && !in_autostore_list) {
1048 		if (autostore->nr == NR_LOADSTORE_MSRS) {
1049 			/*
1050 			 * Emulated VMEntry does not fail here.  Instead a less
1051 			 * accurate value will be returned by
1052 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1053 			 * instead of reading the value from the vmcs02 VMExit
1054 			 * MSR-store area.
1055 			 */
1056 			pr_warn_ratelimited(
1057 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1058 				msr_index);
1059 			return;
1060 		}
1061 		last = autostore->nr++;
1062 		autostore->val[last].index = msr_index;
1063 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1064 		last = --autostore->nr;
1065 		autostore->val[msr_autostore_index] = autostore->val[last];
1066 	}
1067 }
1068 
1069 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1070 {
1071 	unsigned long invalid_mask;
1072 
1073 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1074 	return (val & invalid_mask) == 0;
1075 }
1076 
1077 /*
1078  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1079  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1080  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1081  * @entry_failure_code.
1082  */
1083 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1084 			       u32 *entry_failure_code)
1085 {
1086 	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1087 		if (CC(!nested_cr3_valid(vcpu, cr3))) {
1088 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
1089 			return -EINVAL;
1090 		}
1091 
1092 		/*
1093 		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1094 		 * must not be dereferenced.
1095 		 */
1096 		if (is_pae_paging(vcpu) && !nested_ept) {
1097 			if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1098 				*entry_failure_code = ENTRY_FAIL_PDPTE;
1099 				return -EINVAL;
1100 			}
1101 		}
1102 	}
1103 
1104 	if (!nested_ept)
1105 		kvm_mmu_new_cr3(vcpu, cr3, false);
1106 
1107 	vcpu->arch.cr3 = cr3;
1108 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1109 
1110 	kvm_init_mmu(vcpu, false);
1111 
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Returns if KVM is able to config CPU to tag TLB entries
1117  * populated by L2 differently than TLB entries populated
1118  * by L1.
1119  *
1120  * If L0 uses EPT, L1 and L2 run with different EPTP because
1121  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1122  * are tagged with different EPTP.
1123  *
1124  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1125  * with different VPID (L1 entries are tagged with vmx->vpid
1126  * while L2 entries are tagged with vmx->nested.vpid02).
1127  */
1128 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1129 {
1130 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1131 
1132 	return enable_ept ||
1133 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1134 }
1135 
1136 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1137 {
1138 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1139 
1140 	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1141 }
1142 
1143 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1144 {
1145 	superset &= mask;
1146 	subset &= mask;
1147 
1148 	return (superset | subset) == superset;
1149 }
1150 
1151 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1152 {
1153 	const u64 feature_and_reserved =
1154 		/* feature (except bit 48; see below) */
1155 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1156 		/* reserved */
1157 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1158 	u64 vmx_basic = vmx->nested.msrs.basic;
1159 
1160 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1161 		return -EINVAL;
1162 
1163 	/*
1164 	 * KVM does not emulate a version of VMX that constrains physical
1165 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1166 	 */
1167 	if (data & BIT_ULL(48))
1168 		return -EINVAL;
1169 
1170 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1171 	    vmx_basic_vmcs_revision_id(data))
1172 		return -EINVAL;
1173 
1174 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1175 		return -EINVAL;
1176 
1177 	vmx->nested.msrs.basic = data;
1178 	return 0;
1179 }
1180 
1181 static int
1182 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1183 {
1184 	u64 supported;
1185 	u32 *lowp, *highp;
1186 
1187 	switch (msr_index) {
1188 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1189 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1190 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1191 		break;
1192 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1193 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1194 		highp = &vmx->nested.msrs.procbased_ctls_high;
1195 		break;
1196 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1197 		lowp = &vmx->nested.msrs.exit_ctls_low;
1198 		highp = &vmx->nested.msrs.exit_ctls_high;
1199 		break;
1200 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1201 		lowp = &vmx->nested.msrs.entry_ctls_low;
1202 		highp = &vmx->nested.msrs.entry_ctls_high;
1203 		break;
1204 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1205 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1206 		highp = &vmx->nested.msrs.secondary_ctls_high;
1207 		break;
1208 	default:
1209 		BUG();
1210 	}
1211 
1212 	supported = vmx_control_msr(*lowp, *highp);
1213 
1214 	/* Check must-be-1 bits are still 1. */
1215 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1216 		return -EINVAL;
1217 
1218 	/* Check must-be-0 bits are still 0. */
1219 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1220 		return -EINVAL;
1221 
1222 	*lowp = data;
1223 	*highp = data >> 32;
1224 	return 0;
1225 }
1226 
1227 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1228 {
1229 	const u64 feature_and_reserved_bits =
1230 		/* feature */
1231 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1232 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1233 		/* reserved */
1234 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1235 	u64 vmx_misc;
1236 
1237 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1238 				   vmx->nested.msrs.misc_high);
1239 
1240 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1241 		return -EINVAL;
1242 
1243 	if ((vmx->nested.msrs.pinbased_ctls_high &
1244 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1245 	    vmx_misc_preemption_timer_rate(data) !=
1246 	    vmx_misc_preemption_timer_rate(vmx_misc))
1247 		return -EINVAL;
1248 
1249 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1250 		return -EINVAL;
1251 
1252 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1253 		return -EINVAL;
1254 
1255 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1256 		return -EINVAL;
1257 
1258 	vmx->nested.msrs.misc_low = data;
1259 	vmx->nested.msrs.misc_high = data >> 32;
1260 
1261 	return 0;
1262 }
1263 
1264 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1265 {
1266 	u64 vmx_ept_vpid_cap;
1267 
1268 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1269 					   vmx->nested.msrs.vpid_caps);
1270 
1271 	/* Every bit is either reserved or a feature bit. */
1272 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1273 		return -EINVAL;
1274 
1275 	vmx->nested.msrs.ept_caps = data;
1276 	vmx->nested.msrs.vpid_caps = data >> 32;
1277 	return 0;
1278 }
1279 
1280 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1281 {
1282 	u64 *msr;
1283 
1284 	switch (msr_index) {
1285 	case MSR_IA32_VMX_CR0_FIXED0:
1286 		msr = &vmx->nested.msrs.cr0_fixed0;
1287 		break;
1288 	case MSR_IA32_VMX_CR4_FIXED0:
1289 		msr = &vmx->nested.msrs.cr4_fixed0;
1290 		break;
1291 	default:
1292 		BUG();
1293 	}
1294 
1295 	/*
1296 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1297 	 * must be 1 in the restored value.
1298 	 */
1299 	if (!is_bitwise_subset(data, *msr, -1ULL))
1300 		return -EINVAL;
1301 
1302 	*msr = data;
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Called when userspace is restoring VMX MSRs.
1308  *
1309  * Returns 0 on success, non-0 otherwise.
1310  */
1311 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1312 {
1313 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1314 
1315 	/*
1316 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1317 	 * is in VMX operation.
1318 	 */
1319 	if (vmx->nested.vmxon)
1320 		return -EBUSY;
1321 
1322 	switch (msr_index) {
1323 	case MSR_IA32_VMX_BASIC:
1324 		return vmx_restore_vmx_basic(vmx, data);
1325 	case MSR_IA32_VMX_PINBASED_CTLS:
1326 	case MSR_IA32_VMX_PROCBASED_CTLS:
1327 	case MSR_IA32_VMX_EXIT_CTLS:
1328 	case MSR_IA32_VMX_ENTRY_CTLS:
1329 		/*
1330 		 * The "non-true" VMX capability MSRs are generated from the
1331 		 * "true" MSRs, so we do not support restoring them directly.
1332 		 *
1333 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1334 		 * should restore the "true" MSRs with the must-be-1 bits
1335 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1336 		 * DEFAULT SETTINGS".
1337 		 */
1338 		return -EINVAL;
1339 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1340 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1341 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1342 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1343 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1344 		return vmx_restore_control_msr(vmx, msr_index, data);
1345 	case MSR_IA32_VMX_MISC:
1346 		return vmx_restore_vmx_misc(vmx, data);
1347 	case MSR_IA32_VMX_CR0_FIXED0:
1348 	case MSR_IA32_VMX_CR4_FIXED0:
1349 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1350 	case MSR_IA32_VMX_CR0_FIXED1:
1351 	case MSR_IA32_VMX_CR4_FIXED1:
1352 		/*
1353 		 * These MSRs are generated based on the vCPU's CPUID, so we
1354 		 * do not support restoring them directly.
1355 		 */
1356 		return -EINVAL;
1357 	case MSR_IA32_VMX_EPT_VPID_CAP:
1358 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1359 	case MSR_IA32_VMX_VMCS_ENUM:
1360 		vmx->nested.msrs.vmcs_enum = data;
1361 		return 0;
1362 	case MSR_IA32_VMX_VMFUNC:
1363 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1364 			return -EINVAL;
1365 		vmx->nested.msrs.vmfunc_controls = data;
1366 		return 0;
1367 	default:
1368 		/*
1369 		 * The rest of the VMX capability MSRs do not support restore.
1370 		 */
1371 		return -EINVAL;
1372 	}
1373 }
1374 
1375 /* Returns 0 on success, non-0 otherwise. */
1376 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1377 {
1378 	switch (msr_index) {
1379 	case MSR_IA32_VMX_BASIC:
1380 		*pdata = msrs->basic;
1381 		break;
1382 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1383 	case MSR_IA32_VMX_PINBASED_CTLS:
1384 		*pdata = vmx_control_msr(
1385 			msrs->pinbased_ctls_low,
1386 			msrs->pinbased_ctls_high);
1387 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1388 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1389 		break;
1390 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1391 	case MSR_IA32_VMX_PROCBASED_CTLS:
1392 		*pdata = vmx_control_msr(
1393 			msrs->procbased_ctls_low,
1394 			msrs->procbased_ctls_high);
1395 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1396 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1397 		break;
1398 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1399 	case MSR_IA32_VMX_EXIT_CTLS:
1400 		*pdata = vmx_control_msr(
1401 			msrs->exit_ctls_low,
1402 			msrs->exit_ctls_high);
1403 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1404 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1405 		break;
1406 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1407 	case MSR_IA32_VMX_ENTRY_CTLS:
1408 		*pdata = vmx_control_msr(
1409 			msrs->entry_ctls_low,
1410 			msrs->entry_ctls_high);
1411 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1412 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1413 		break;
1414 	case MSR_IA32_VMX_MISC:
1415 		*pdata = vmx_control_msr(
1416 			msrs->misc_low,
1417 			msrs->misc_high);
1418 		break;
1419 	case MSR_IA32_VMX_CR0_FIXED0:
1420 		*pdata = msrs->cr0_fixed0;
1421 		break;
1422 	case MSR_IA32_VMX_CR0_FIXED1:
1423 		*pdata = msrs->cr0_fixed1;
1424 		break;
1425 	case MSR_IA32_VMX_CR4_FIXED0:
1426 		*pdata = msrs->cr4_fixed0;
1427 		break;
1428 	case MSR_IA32_VMX_CR4_FIXED1:
1429 		*pdata = msrs->cr4_fixed1;
1430 		break;
1431 	case MSR_IA32_VMX_VMCS_ENUM:
1432 		*pdata = msrs->vmcs_enum;
1433 		break;
1434 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1435 		*pdata = vmx_control_msr(
1436 			msrs->secondary_ctls_low,
1437 			msrs->secondary_ctls_high);
1438 		break;
1439 	case MSR_IA32_VMX_EPT_VPID_CAP:
1440 		*pdata = msrs->ept_caps |
1441 			((u64)msrs->vpid_caps << 32);
1442 		break;
1443 	case MSR_IA32_VMX_VMFUNC:
1444 		*pdata = msrs->vmfunc_controls;
1445 		break;
1446 	default:
1447 		return 1;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 /*
1454  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1455  * been modified by the L1 guest.  Note, "writable" in this context means
1456  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1457  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1458  * VM-exit information fields (which are actually writable if the vCPU is
1459  * configured to support "VMWRITE to any supported field in the VMCS").
1460  */
1461 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1462 {
1463 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1464 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1465 	struct shadow_vmcs_field field;
1466 	unsigned long val;
1467 	int i;
1468 
1469 	if (WARN_ON(!shadow_vmcs))
1470 		return;
1471 
1472 	preempt_disable();
1473 
1474 	vmcs_load(shadow_vmcs);
1475 
1476 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1477 		field = shadow_read_write_fields[i];
1478 		val = __vmcs_readl(field.encoding);
1479 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1480 	}
1481 
1482 	vmcs_clear(shadow_vmcs);
1483 	vmcs_load(vmx->loaded_vmcs->vmcs);
1484 
1485 	preempt_enable();
1486 }
1487 
1488 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1489 {
1490 	const struct shadow_vmcs_field *fields[] = {
1491 		shadow_read_write_fields,
1492 		shadow_read_only_fields
1493 	};
1494 	const int max_fields[] = {
1495 		max_shadow_read_write_fields,
1496 		max_shadow_read_only_fields
1497 	};
1498 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1499 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1500 	struct shadow_vmcs_field field;
1501 	unsigned long val;
1502 	int i, q;
1503 
1504 	if (WARN_ON(!shadow_vmcs))
1505 		return;
1506 
1507 	vmcs_load(shadow_vmcs);
1508 
1509 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1510 		for (i = 0; i < max_fields[q]; i++) {
1511 			field = fields[q][i];
1512 			val = vmcs12_read_any(vmcs12, field.encoding,
1513 					      field.offset);
1514 			__vmcs_writel(field.encoding, val);
1515 		}
1516 	}
1517 
1518 	vmcs_clear(shadow_vmcs);
1519 	vmcs_load(vmx->loaded_vmcs->vmcs);
1520 }
1521 
1522 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1523 {
1524 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1525 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1526 
1527 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1528 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1529 	vmcs12->guest_rip = evmcs->guest_rip;
1530 
1531 	if (unlikely(!(evmcs->hv_clean_fields &
1532 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1533 		vmcs12->guest_rsp = evmcs->guest_rsp;
1534 		vmcs12->guest_rflags = evmcs->guest_rflags;
1535 		vmcs12->guest_interruptibility_info =
1536 			evmcs->guest_interruptibility_info;
1537 	}
1538 
1539 	if (unlikely(!(evmcs->hv_clean_fields &
1540 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1541 		vmcs12->cpu_based_vm_exec_control =
1542 			evmcs->cpu_based_vm_exec_control;
1543 	}
1544 
1545 	if (unlikely(!(evmcs->hv_clean_fields &
1546 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1547 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1548 	}
1549 
1550 	if (unlikely(!(evmcs->hv_clean_fields &
1551 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1552 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1553 	}
1554 
1555 	if (unlikely(!(evmcs->hv_clean_fields &
1556 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1557 		vmcs12->vm_entry_intr_info_field =
1558 			evmcs->vm_entry_intr_info_field;
1559 		vmcs12->vm_entry_exception_error_code =
1560 			evmcs->vm_entry_exception_error_code;
1561 		vmcs12->vm_entry_instruction_len =
1562 			evmcs->vm_entry_instruction_len;
1563 	}
1564 
1565 	if (unlikely(!(evmcs->hv_clean_fields &
1566 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1567 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1568 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1569 		vmcs12->host_cr0 = evmcs->host_cr0;
1570 		vmcs12->host_cr3 = evmcs->host_cr3;
1571 		vmcs12->host_cr4 = evmcs->host_cr4;
1572 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1573 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1574 		vmcs12->host_rip = evmcs->host_rip;
1575 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1576 		vmcs12->host_es_selector = evmcs->host_es_selector;
1577 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1578 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1579 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1580 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1581 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1582 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1583 	}
1584 
1585 	if (unlikely(!(evmcs->hv_clean_fields &
1586 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1587 		vmcs12->pin_based_vm_exec_control =
1588 			evmcs->pin_based_vm_exec_control;
1589 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1590 		vmcs12->secondary_vm_exec_control =
1591 			evmcs->secondary_vm_exec_control;
1592 	}
1593 
1594 	if (unlikely(!(evmcs->hv_clean_fields &
1595 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1596 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1597 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1598 	}
1599 
1600 	if (unlikely(!(evmcs->hv_clean_fields &
1601 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1602 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1603 	}
1604 
1605 	if (unlikely(!(evmcs->hv_clean_fields &
1606 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1607 		vmcs12->guest_es_base = evmcs->guest_es_base;
1608 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1609 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1610 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1611 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1612 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1613 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1614 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1615 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1616 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1617 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1618 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1619 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1620 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1621 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1622 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1623 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1624 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1625 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1626 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1627 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1628 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1629 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1630 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1631 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1632 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1633 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1634 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1635 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1636 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1637 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1638 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1639 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1640 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1641 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1642 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1643 	}
1644 
1645 	if (unlikely(!(evmcs->hv_clean_fields &
1646 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1647 		vmcs12->tsc_offset = evmcs->tsc_offset;
1648 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1649 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1650 	}
1651 
1652 	if (unlikely(!(evmcs->hv_clean_fields &
1653 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1654 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1655 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1656 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1657 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1658 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1659 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1660 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1661 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1662 	}
1663 
1664 	if (unlikely(!(evmcs->hv_clean_fields &
1665 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1666 		vmcs12->host_fs_base = evmcs->host_fs_base;
1667 		vmcs12->host_gs_base = evmcs->host_gs_base;
1668 		vmcs12->host_tr_base = evmcs->host_tr_base;
1669 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1670 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1671 		vmcs12->host_rsp = evmcs->host_rsp;
1672 	}
1673 
1674 	if (unlikely(!(evmcs->hv_clean_fields &
1675 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1676 		vmcs12->ept_pointer = evmcs->ept_pointer;
1677 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1678 	}
1679 
1680 	if (unlikely(!(evmcs->hv_clean_fields &
1681 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1682 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1683 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1684 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1685 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1686 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1687 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1688 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1689 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1690 		vmcs12->guest_pending_dbg_exceptions =
1691 			evmcs->guest_pending_dbg_exceptions;
1692 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1693 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1694 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1695 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1696 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1697 	}
1698 
1699 	/*
1700 	 * Not used?
1701 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1702 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1703 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1704 	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1705 	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1706 	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1707 	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1708 	 * vmcs12->page_fault_error_code_mask =
1709 	 *		evmcs->page_fault_error_code_mask;
1710 	 * vmcs12->page_fault_error_code_match =
1711 	 *		evmcs->page_fault_error_code_match;
1712 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1713 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1714 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1715 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1716 	 */
1717 
1718 	/*
1719 	 * Read only fields:
1720 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1721 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1722 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1723 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1724 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1725 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1726 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1727 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1728 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1729 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1730 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1731 	 *
1732 	 * Not present in struct vmcs12:
1733 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1734 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1735 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1736 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1737 	 */
1738 
1739 	return 0;
1740 }
1741 
1742 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1743 {
1744 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1745 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1746 
1747 	/*
1748 	 * Should not be changed by KVM:
1749 	 *
1750 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1751 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1752 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1753 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1754 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1755 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1756 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1757 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1758 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1759 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1760 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1761 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1762 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1763 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1764 	 * evmcs->host_rip = vmcs12->host_rip;
1765 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1766 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1767 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1768 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1769 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1770 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1771 	 * evmcs->host_rsp = vmcs12->host_rsp;
1772 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1773 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1774 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1775 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1776 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1777 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1778 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1779 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1780 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1781 	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1782 	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1783 	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1784 	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1785 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1786 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1787 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1788 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1789 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1790 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1791 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1792 	 * evmcs->page_fault_error_code_mask =
1793 	 *		vmcs12->page_fault_error_code_mask;
1794 	 * evmcs->page_fault_error_code_match =
1795 	 *		vmcs12->page_fault_error_code_match;
1796 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1797 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1798 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1799 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1800 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1801 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1802 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1803 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1804 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1805 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1806 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1807 	 *
1808 	 * Not present in struct vmcs12:
1809 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1810 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1811 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1812 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1813 	 */
1814 
1815 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1816 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1817 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1818 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1819 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1820 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1821 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1822 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1823 
1824 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1825 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1826 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1827 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1828 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1829 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1830 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1831 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1832 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1833 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1834 
1835 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1836 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1837 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1838 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1839 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1840 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1841 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1842 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1843 
1844 	evmcs->guest_es_base = vmcs12->guest_es_base;
1845 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1846 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1847 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1848 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1849 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1850 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1851 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1852 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1853 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1854 
1855 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1856 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1857 
1858 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1859 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1860 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1861 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1862 
1863 	evmcs->guest_pending_dbg_exceptions =
1864 		vmcs12->guest_pending_dbg_exceptions;
1865 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1866 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1867 
1868 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1869 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1870 
1871 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1872 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1873 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1874 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1875 
1876 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1877 
1878 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1879 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1880 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1881 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1882 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1883 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1884 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1885 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1886 
1887 	evmcs->exit_qualification = vmcs12->exit_qualification;
1888 
1889 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1890 	evmcs->guest_rsp = vmcs12->guest_rsp;
1891 	evmcs->guest_rflags = vmcs12->guest_rflags;
1892 
1893 	evmcs->guest_interruptibility_info =
1894 		vmcs12->guest_interruptibility_info;
1895 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1896 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1897 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1898 	evmcs->vm_entry_exception_error_code =
1899 		vmcs12->vm_entry_exception_error_code;
1900 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1901 
1902 	evmcs->guest_rip = vmcs12->guest_rip;
1903 
1904 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1905 
1906 	return 0;
1907 }
1908 
1909 /*
1910  * This is an equivalent of the nested hypervisor executing the vmptrld
1911  * instruction.
1912  */
1913 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1914 						 bool from_launch)
1915 {
1916 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1917 	bool evmcs_gpa_changed = false;
1918 	u64 evmcs_gpa;
1919 
1920 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1921 		return 1;
1922 
1923 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1924 		return 1;
1925 
1926 	if (unlikely(!vmx->nested.hv_evmcs ||
1927 		     evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1928 		if (!vmx->nested.hv_evmcs)
1929 			vmx->nested.current_vmptr = -1ull;
1930 
1931 		nested_release_evmcs(vcpu);
1932 
1933 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1934 				 &vmx->nested.hv_evmcs_map))
1935 			return 0;
1936 
1937 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1938 
1939 		/*
1940 		 * Currently, KVM only supports eVMCS version 1
1941 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1942 		 * value to first u32 field of eVMCS which should specify eVMCS
1943 		 * VersionNumber.
1944 		 *
1945 		 * Guest should be aware of supported eVMCS versions by host by
1946 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1947 		 * expected to set this CPUID leaf according to the value
1948 		 * returned in vmcs_version from nested_enable_evmcs().
1949 		 *
1950 		 * However, it turns out that Microsoft Hyper-V fails to comply
1951 		 * to their own invented interface: When Hyper-V use eVMCS, it
1952 		 * just sets first u32 field of eVMCS to revision_id specified
1953 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1954 		 * which is one of the supported versions specified in
1955 		 * CPUID.0x4000000A.EAX[0:15].
1956 		 *
1957 		 * To overcome Hyper-V bug, we accept here either a supported
1958 		 * eVMCS version or VMCS12 revision_id as valid values for first
1959 		 * u32 field of eVMCS.
1960 		 */
1961 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1962 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1963 			nested_release_evmcs(vcpu);
1964 			return 0;
1965 		}
1966 
1967 		vmx->nested.dirty_vmcs12 = true;
1968 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1969 
1970 		evmcs_gpa_changed = true;
1971 		/*
1972 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1973 		 * reloaded from guest's memory (read only fields, fields not
1974 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
1975 		 * are no leftovers.
1976 		 */
1977 		if (from_launch) {
1978 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1979 			memset(vmcs12, 0, sizeof(*vmcs12));
1980 			vmcs12->hdr.revision_id = VMCS12_REVISION;
1981 		}
1982 
1983 	}
1984 
1985 	/*
1986 	 * Clean fields data can't be used on VMLAUNCH and when we switch
1987 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
1988 	 */
1989 	if (from_launch || evmcs_gpa_changed)
1990 		vmx->nested.hv_evmcs->hv_clean_fields &=
1991 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1992 
1993 	return 1;
1994 }
1995 
1996 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1997 {
1998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1999 
2000 	/*
2001 	 * hv_evmcs may end up being not mapped after migration (when
2002 	 * L2 was running), map it here to make sure vmcs12 changes are
2003 	 * properly reflected.
2004 	 */
2005 	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
2006 		nested_vmx_handle_enlightened_vmptrld(vcpu, false);
2007 
2008 	if (vmx->nested.hv_evmcs) {
2009 		copy_vmcs12_to_enlightened(vmx);
2010 		/* All fields are clean */
2011 		vmx->nested.hv_evmcs->hv_clean_fields |=
2012 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2013 	} else {
2014 		copy_vmcs12_to_shadow(vmx);
2015 	}
2016 
2017 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2018 }
2019 
2020 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2021 {
2022 	struct vcpu_vmx *vmx =
2023 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2024 
2025 	vmx->nested.preemption_timer_expired = true;
2026 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2027 	kvm_vcpu_kick(&vmx->vcpu);
2028 
2029 	return HRTIMER_NORESTART;
2030 }
2031 
2032 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2033 {
2034 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2035 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2036 
2037 	/*
2038 	 * A timer value of zero is architecturally guaranteed to cause
2039 	 * a VMExit prior to executing any instructions in the guest.
2040 	 */
2041 	if (preemption_timeout == 0) {
2042 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2043 		return;
2044 	}
2045 
2046 	if (vcpu->arch.virtual_tsc_khz == 0)
2047 		return;
2048 
2049 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2050 	preemption_timeout *= 1000000;
2051 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2052 	hrtimer_start(&vmx->nested.preemption_timer,
2053 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
2054 }
2055 
2056 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2057 {
2058 	if (vmx->nested.nested_run_pending &&
2059 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2060 		return vmcs12->guest_ia32_efer;
2061 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2062 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2063 	else
2064 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2065 }
2066 
2067 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2068 {
2069 	/*
2070 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2071 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2072 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2073 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2074 	 */
2075 	if (vmx->nested.vmcs02_initialized)
2076 		return;
2077 	vmx->nested.vmcs02_initialized = true;
2078 
2079 	/*
2080 	 * We don't care what the EPTP value is we just need to guarantee
2081 	 * it's valid so we don't get a false positive when doing early
2082 	 * consistency checks.
2083 	 */
2084 	if (enable_ept && nested_early_check)
2085 		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2086 
2087 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2088 	if (cpu_has_vmx_vmfunc())
2089 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2090 
2091 	if (cpu_has_vmx_posted_intr())
2092 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2093 
2094 	if (cpu_has_vmx_msr_bitmap())
2095 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2096 
2097 	/*
2098 	 * The PML address never changes, so it is constant in vmcs02.
2099 	 * Conceptually we want to copy the PML index from vmcs01 here,
2100 	 * and then back to vmcs01 on nested vmexit.  But since we flush
2101 	 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2102 	 * index is also effectively constant in vmcs02.
2103 	 */
2104 	if (enable_pml) {
2105 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2106 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2107 	}
2108 
2109 	if (cpu_has_vmx_encls_vmexit())
2110 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2111 
2112 	/*
2113 	 * Set the MSR load/store lists to match L0's settings.  Only the
2114 	 * addresses are constant (for vmcs02), the counts can change based
2115 	 * on L2's behavior, e.g. switching to/from long mode.
2116 	 */
2117 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2118 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2119 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2120 
2121 	vmx_set_constant_host_state(vmx);
2122 }
2123 
2124 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2125 				      struct vmcs12 *vmcs12)
2126 {
2127 	prepare_vmcs02_constant_state(vmx);
2128 
2129 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
2130 
2131 	if (enable_vpid) {
2132 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2133 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2134 		else
2135 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2136 	}
2137 }
2138 
2139 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2140 {
2141 	u32 exec_control, vmcs12_exec_ctrl;
2142 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2143 
2144 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2145 		prepare_vmcs02_early_rare(vmx, vmcs12);
2146 
2147 	/*
2148 	 * PIN CONTROLS
2149 	 */
2150 	exec_control = vmx_pin_based_exec_ctrl(vmx);
2151 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2152 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2153 
2154 	/* Posted interrupts setting is only taken from vmcs12.  */
2155 	if (nested_cpu_has_posted_intr(vmcs12)) {
2156 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2157 		vmx->nested.pi_pending = false;
2158 	} else {
2159 		exec_control &= ~PIN_BASED_POSTED_INTR;
2160 	}
2161 	pin_controls_set(vmx, exec_control);
2162 
2163 	/*
2164 	 * EXEC CONTROLS
2165 	 */
2166 	exec_control = vmx_exec_control(vmx); /* L0's desires */
2167 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2168 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2169 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2170 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2171 
2172 	vmx->nested.l1_tpr_threshold = -1;
2173 	if (exec_control & CPU_BASED_TPR_SHADOW)
2174 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2175 #ifdef CONFIG_X86_64
2176 	else
2177 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2178 				CPU_BASED_CR8_STORE_EXITING;
2179 #endif
2180 
2181 	/*
2182 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2183 	 * for I/O port accesses.
2184 	 */
2185 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2186 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2187 
2188 	/*
2189 	 * This bit will be computed in nested_get_vmcs12_pages, because
2190 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2191 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2192 	 * only set/clear this bit.
2193 	 */
2194 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2195 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2196 
2197 	exec_controls_set(vmx, exec_control);
2198 
2199 	/*
2200 	 * SECONDARY EXEC CONTROLS
2201 	 */
2202 	if (cpu_has_secondary_exec_ctrls()) {
2203 		exec_control = vmx->secondary_exec_control;
2204 
2205 		/* Take the following fields only from vmcs12 */
2206 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2207 				  SECONDARY_EXEC_ENABLE_INVPCID |
2208 				  SECONDARY_EXEC_RDTSCP |
2209 				  SECONDARY_EXEC_XSAVES |
2210 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2211 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2212 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2213 				  SECONDARY_EXEC_ENABLE_VMFUNC);
2214 		if (nested_cpu_has(vmcs12,
2215 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2216 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2217 				~SECONDARY_EXEC_ENABLE_PML;
2218 			exec_control |= vmcs12_exec_ctrl;
2219 		}
2220 
2221 		/* VMCS shadowing for L2 is emulated for now */
2222 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2223 
2224 		/*
2225 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2226 		 * will not have to rewrite the controls just for this bit.
2227 		 */
2228 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2229 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2230 			exec_control |= SECONDARY_EXEC_DESC;
2231 
2232 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2233 			vmcs_write16(GUEST_INTR_STATUS,
2234 				vmcs12->guest_intr_status);
2235 
2236 		secondary_exec_controls_set(vmx, exec_control);
2237 	}
2238 
2239 	/*
2240 	 * ENTRY CONTROLS
2241 	 *
2242 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2243 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2244 	 * on the related bits (if supported by the CPU) in the hope that
2245 	 * we can avoid VMWrites during vmx_set_efer().
2246 	 */
2247 	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2248 			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2249 	if (cpu_has_load_ia32_efer()) {
2250 		if (guest_efer & EFER_LMA)
2251 			exec_control |= VM_ENTRY_IA32E_MODE;
2252 		if (guest_efer != host_efer)
2253 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2254 	}
2255 	vm_entry_controls_set(vmx, exec_control);
2256 
2257 	/*
2258 	 * EXIT CONTROLS
2259 	 *
2260 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2261 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2262 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2263 	 */
2264 	exec_control = vmx_vmexit_ctrl();
2265 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2266 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2267 	vm_exit_controls_set(vmx, exec_control);
2268 
2269 	/*
2270 	 * Interrupt/Exception Fields
2271 	 */
2272 	if (vmx->nested.nested_run_pending) {
2273 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2274 			     vmcs12->vm_entry_intr_info_field);
2275 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2276 			     vmcs12->vm_entry_exception_error_code);
2277 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2278 			     vmcs12->vm_entry_instruction_len);
2279 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2280 			     vmcs12->guest_interruptibility_info);
2281 		vmx->loaded_vmcs->nmi_known_unmasked =
2282 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2283 	} else {
2284 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2285 	}
2286 }
2287 
2288 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2289 {
2290 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2291 
2292 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2293 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2294 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2295 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2296 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2297 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2298 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2299 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2300 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2301 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2302 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2303 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2304 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2305 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2306 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2307 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2308 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2309 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2310 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2311 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2312 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2313 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2314 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2315 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2316 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2317 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2318 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2319 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2320 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2321 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2322 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2323 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2324 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2325 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2326 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2327 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2328 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2329 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2330 	}
2331 
2332 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2333 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2334 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2335 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2336 			    vmcs12->guest_pending_dbg_exceptions);
2337 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2338 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2339 
2340 		/*
2341 		 * L1 may access the L2's PDPTR, so save them to construct
2342 		 * vmcs12
2343 		 */
2344 		if (enable_ept) {
2345 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2346 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2347 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2348 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2349 		}
2350 
2351 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2352 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2353 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2354 	}
2355 
2356 	if (nested_cpu_has_xsaves(vmcs12))
2357 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2358 
2359 	/*
2360 	 * Whether page-faults are trapped is determined by a combination of
2361 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2362 	 * If enable_ept, L0 doesn't care about page faults and we should
2363 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
2364 	 * care about (at least some) page faults, and because it is not easy
2365 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2366 	 * to exit on each and every L2 page fault. This is done by setting
2367 	 * MASK=MATCH=0 and (see below) EB.PF=1.
2368 	 * Note that below we don't need special code to set EB.PF beyond the
2369 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2370 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2371 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2372 	 */
2373 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2374 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2375 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2376 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
2377 
2378 	if (cpu_has_vmx_apicv()) {
2379 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2380 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2381 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2382 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2383 	}
2384 
2385 	/*
2386 	 * Make sure the msr_autostore list is up to date before we set the
2387 	 * count in the vmcs02.
2388 	 */
2389 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2390 
2391 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2392 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2393 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2394 
2395 	set_cr4_guest_host_mask(vmx);
2396 }
2397 
2398 /*
2399  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2400  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2401  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2402  * guest in a way that will both be appropriate to L1's requests, and our
2403  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2404  * function also has additional necessary side-effects, like setting various
2405  * vcpu->arch fields.
2406  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2407  * is assigned to entry_failure_code on failure.
2408  */
2409 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2410 			  u32 *entry_failure_code)
2411 {
2412 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2413 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2414 	bool load_guest_pdptrs_vmcs12 = false;
2415 
2416 	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2417 		prepare_vmcs02_rare(vmx, vmcs12);
2418 		vmx->nested.dirty_vmcs12 = false;
2419 
2420 		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2421 			!(hv_evmcs->hv_clean_fields &
2422 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2423 	}
2424 
2425 	if (vmx->nested.nested_run_pending &&
2426 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2427 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2428 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2429 	} else {
2430 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2431 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2432 	}
2433 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2434 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2435 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2436 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2437 
2438 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2439 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2440 	 * trap. Note that CR0.TS also needs updating - we do this later.
2441 	 */
2442 	update_exception_bitmap(vcpu);
2443 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2444 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2445 
2446 	if (vmx->nested.nested_run_pending &&
2447 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2448 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2449 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2450 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2451 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2452 	}
2453 
2454 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2455 
2456 	if (kvm_has_tsc_control)
2457 		decache_tsc_multiplier(vmx);
2458 
2459 	if (enable_vpid) {
2460 		/*
2461 		 * There is no direct mapping between vpid02 and vpid12, the
2462 		 * vpid02 is per-vCPU for L0 and reused while the value of
2463 		 * vpid12 is changed w/ one invvpid during nested vmentry.
2464 		 * The vpid12 is allocated by L1 for L2, so it will not
2465 		 * influence global bitmap(for vpid01 and vpid02 allocation)
2466 		 * even if spawn a lot of nested vCPUs.
2467 		 */
2468 		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2469 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2470 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2471 				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2472 			}
2473 		} else {
2474 			/*
2475 			 * If L1 use EPT, then L0 needs to execute INVEPT on
2476 			 * EPTP02 instead of EPTP01. Therefore, delay TLB
2477 			 * flush until vmcs02->eptp is fully updated by
2478 			 * KVM_REQ_LOAD_CR3. Note that this assumes
2479 			 * KVM_REQ_TLB_FLUSH is evaluated after
2480 			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2481 			 */
2482 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2483 		}
2484 	}
2485 
2486 	if (nested_cpu_has_ept(vmcs12))
2487 		nested_ept_init_mmu_context(vcpu);
2488 
2489 	/*
2490 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2491 	 * bits which we consider mandatory enabled.
2492 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2493 	 * the specifications by L1; It's not enough to take
2494 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2495 	 * have more bits than L1 expected.
2496 	 */
2497 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2498 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2499 
2500 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2501 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2502 
2503 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2504 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2505 	vmx_set_efer(vcpu, vcpu->arch.efer);
2506 
2507 	/*
2508 	 * Guest state is invalid and unrestricted guest is disabled,
2509 	 * which means L1 attempted VMEntry to L2 with invalid state.
2510 	 * Fail the VMEntry.
2511 	 */
2512 	if (vmx->emulation_required) {
2513 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2514 		return -EINVAL;
2515 	}
2516 
2517 	/* Shadow page tables on either EPT or shadow page tables. */
2518 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2519 				entry_failure_code))
2520 		return -EINVAL;
2521 
2522 	/*
2523 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2524 	 * on nested VM-Exit, which can occur without actually running L2 and
2525 	 * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2526 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2527 	 * transition to HLT instead of running L2.
2528 	 */
2529 	if (enable_ept)
2530 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2531 
2532 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2533 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2534 	    is_pae_paging(vcpu)) {
2535 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2536 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2537 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2538 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2539 	}
2540 
2541 	if (!enable_ept)
2542 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2543 
2544 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2545 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2546 				     vmcs12->guest_ia32_perf_global_ctrl)))
2547 		return -EINVAL;
2548 
2549 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2550 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2551 	return 0;
2552 }
2553 
2554 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2555 {
2556 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2557 	       nested_cpu_has_virtual_nmis(vmcs12)))
2558 		return -EINVAL;
2559 
2560 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2561 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2562 		return -EINVAL;
2563 
2564 	return 0;
2565 }
2566 
2567 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2568 {
2569 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2570 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
2571 
2572 	/* Check for memory type validity */
2573 	switch (address & VMX_EPTP_MT_MASK) {
2574 	case VMX_EPTP_MT_UC:
2575 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2576 			return false;
2577 		break;
2578 	case VMX_EPTP_MT_WB:
2579 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2580 			return false;
2581 		break;
2582 	default:
2583 		return false;
2584 	}
2585 
2586 	/* only 4 levels page-walk length are valid */
2587 	if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2588 		return false;
2589 
2590 	/* Reserved bits should not be set */
2591 	if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2592 		return false;
2593 
2594 	/* AD, if set, should be supported */
2595 	if (address & VMX_EPTP_AD_ENABLE_BIT) {
2596 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2597 			return false;
2598 	}
2599 
2600 	return true;
2601 }
2602 
2603 /*
2604  * Checks related to VM-Execution Control Fields
2605  */
2606 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2607                                               struct vmcs12 *vmcs12)
2608 {
2609 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2610 
2611 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2612 				   vmx->nested.msrs.pinbased_ctls_low,
2613 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2614 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2615 				   vmx->nested.msrs.procbased_ctls_low,
2616 				   vmx->nested.msrs.procbased_ctls_high)))
2617 		return -EINVAL;
2618 
2619 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2620 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2621 				   vmx->nested.msrs.secondary_ctls_low,
2622 				   vmx->nested.msrs.secondary_ctls_high)))
2623 		return -EINVAL;
2624 
2625 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2626 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2627 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2628 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2629 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2630 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2631 	    nested_vmx_check_nmi_controls(vmcs12) ||
2632 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2633 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2634 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2635 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2636 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2637 		return -EINVAL;
2638 
2639 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2640 	    nested_cpu_has_save_preemption_timer(vmcs12))
2641 		return -EINVAL;
2642 
2643 	if (nested_cpu_has_ept(vmcs12) &&
2644 	    CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2645 		return -EINVAL;
2646 
2647 	if (nested_cpu_has_vmfunc(vmcs12)) {
2648 		if (CC(vmcs12->vm_function_control &
2649 		       ~vmx->nested.msrs.vmfunc_controls))
2650 			return -EINVAL;
2651 
2652 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2653 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2654 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2655 				return -EINVAL;
2656 		}
2657 	}
2658 
2659 	return 0;
2660 }
2661 
2662 /*
2663  * Checks related to VM-Exit Control Fields
2664  */
2665 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2666                                          struct vmcs12 *vmcs12)
2667 {
2668 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2669 
2670 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2671 				    vmx->nested.msrs.exit_ctls_low,
2672 				    vmx->nested.msrs.exit_ctls_high)) ||
2673 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2674 		return -EINVAL;
2675 
2676 	return 0;
2677 }
2678 
2679 /*
2680  * Checks related to VM-Entry Control Fields
2681  */
2682 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2683 					  struct vmcs12 *vmcs12)
2684 {
2685 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2686 
2687 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2688 				    vmx->nested.msrs.entry_ctls_low,
2689 				    vmx->nested.msrs.entry_ctls_high)))
2690 		return -EINVAL;
2691 
2692 	/*
2693 	 * From the Intel SDM, volume 3:
2694 	 * Fields relevant to VM-entry event injection must be set properly.
2695 	 * These fields are the VM-entry interruption-information field, the
2696 	 * VM-entry exception error code, and the VM-entry instruction length.
2697 	 */
2698 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2699 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2700 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2701 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2702 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2703 		bool should_have_error_code;
2704 		bool urg = nested_cpu_has2(vmcs12,
2705 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2706 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2707 
2708 		/* VM-entry interruption-info field: interruption type */
2709 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2710 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2711 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2712 			return -EINVAL;
2713 
2714 		/* VM-entry interruption-info field: vector */
2715 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2716 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2717 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2718 			return -EINVAL;
2719 
2720 		/* VM-entry interruption-info field: deliver error code */
2721 		should_have_error_code =
2722 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2723 			x86_exception_has_error_code(vector);
2724 		if (CC(has_error_code != should_have_error_code))
2725 			return -EINVAL;
2726 
2727 		/* VM-entry exception error code */
2728 		if (CC(has_error_code &&
2729 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2730 			return -EINVAL;
2731 
2732 		/* VM-entry interruption-info field: reserved bits */
2733 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2734 			return -EINVAL;
2735 
2736 		/* VM-entry instruction length */
2737 		switch (intr_type) {
2738 		case INTR_TYPE_SOFT_EXCEPTION:
2739 		case INTR_TYPE_SOFT_INTR:
2740 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2741 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2742 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2743 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2744 				return -EINVAL;
2745 		}
2746 	}
2747 
2748 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2749 		return -EINVAL;
2750 
2751 	return 0;
2752 }
2753 
2754 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2755 				     struct vmcs12 *vmcs12)
2756 {
2757 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2758 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2759 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2760 		return -EINVAL;
2761 
2762 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2763 		return nested_evmcs_check_controls(vmcs12);
2764 
2765 	return 0;
2766 }
2767 
2768 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2769 				       struct vmcs12 *vmcs12)
2770 {
2771 	bool ia32e;
2772 
2773 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2774 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2775 	    CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2776 		return -EINVAL;
2777 
2778 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2779 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2780 		return -EINVAL;
2781 
2782 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2783 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2784 		return -EINVAL;
2785 
2786 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2787 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2788 					   vmcs12->host_ia32_perf_global_ctrl)))
2789 		return -EINVAL;
2790 
2791 #ifdef CONFIG_X86_64
2792 	ia32e = !!(vcpu->arch.efer & EFER_LMA);
2793 #else
2794 	ia32e = false;
2795 #endif
2796 
2797 	if (ia32e) {
2798 		if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2799 		    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2800 			return -EINVAL;
2801 	} else {
2802 		if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2803 		    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2804 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2805 		    CC((vmcs12->host_rip) >> 32))
2806 			return -EINVAL;
2807 	}
2808 
2809 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2810 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2811 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2812 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2813 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2814 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2815 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2816 	    CC(vmcs12->host_cs_selector == 0) ||
2817 	    CC(vmcs12->host_tr_selector == 0) ||
2818 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2819 		return -EINVAL;
2820 
2821 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2822 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2823 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2824 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2825 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2826 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2827 		return -EINVAL;
2828 
2829 	/*
2830 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2831 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2832 	 * the values of the LMA and LME bits in the field must each be that of
2833 	 * the host address-space size VM-exit control.
2834 	 */
2835 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2836 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2837 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2838 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2839 			return -EINVAL;
2840 	}
2841 
2842 	return 0;
2843 }
2844 
2845 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2846 					  struct vmcs12 *vmcs12)
2847 {
2848 	int r = 0;
2849 	struct vmcs12 *shadow;
2850 	struct kvm_host_map map;
2851 
2852 	if (vmcs12->vmcs_link_pointer == -1ull)
2853 		return 0;
2854 
2855 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2856 		return -EINVAL;
2857 
2858 	if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2859 		return -EINVAL;
2860 
2861 	shadow = map.hva;
2862 
2863 	if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2864 	    CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2865 		r = -EINVAL;
2866 
2867 	kvm_vcpu_unmap(vcpu, &map, false);
2868 	return r;
2869 }
2870 
2871 /*
2872  * Checks related to Guest Non-register State
2873  */
2874 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2875 {
2876 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2877 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2878 		return -EINVAL;
2879 
2880 	return 0;
2881 }
2882 
2883 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2884 					struct vmcs12 *vmcs12,
2885 					u32 *exit_qual)
2886 {
2887 	bool ia32e;
2888 
2889 	*exit_qual = ENTRY_FAIL_DEFAULT;
2890 
2891 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2892 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2893 		return -EINVAL;
2894 
2895 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2896 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2897 		return -EINVAL;
2898 
2899 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2900 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2901 		return -EINVAL;
2902 
2903 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2904 		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2905 		return -EINVAL;
2906 	}
2907 
2908 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2909 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2910 					   vmcs12->guest_ia32_perf_global_ctrl)))
2911 		return -EINVAL;
2912 
2913 	/*
2914 	 * If the load IA32_EFER VM-entry control is 1, the following checks
2915 	 * are performed on the field for the IA32_EFER MSR:
2916 	 * - Bits reserved in the IA32_EFER MSR must be 0.
2917 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2918 	 *   the IA-32e mode guest VM-exit control. It must also be identical
2919 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2920 	 *   CR0.PG) is 1.
2921 	 */
2922 	if (to_vmx(vcpu)->nested.nested_run_pending &&
2923 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2924 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2925 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2926 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2927 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2928 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2929 			return -EINVAL;
2930 	}
2931 
2932 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2933 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2934 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2935 		return -EINVAL;
2936 
2937 	if (nested_check_guest_non_reg_state(vmcs12))
2938 		return -EINVAL;
2939 
2940 	return 0;
2941 }
2942 
2943 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2944 {
2945 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2946 	unsigned long cr3, cr4;
2947 	bool vm_fail;
2948 
2949 	if (!nested_early_check)
2950 		return 0;
2951 
2952 	if (vmx->msr_autoload.host.nr)
2953 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2954 	if (vmx->msr_autoload.guest.nr)
2955 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2956 
2957 	preempt_disable();
2958 
2959 	vmx_prepare_switch_to_guest(vcpu);
2960 
2961 	/*
2962 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2963 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2964 	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2965 	 * there is no need to preserve other bits or save/restore the field.
2966 	 */
2967 	vmcs_writel(GUEST_RFLAGS, 0);
2968 
2969 	cr3 = __get_current_cr3_fast();
2970 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2971 		vmcs_writel(HOST_CR3, cr3);
2972 		vmx->loaded_vmcs->host_state.cr3 = cr3;
2973 	}
2974 
2975 	cr4 = cr4_read_shadow();
2976 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2977 		vmcs_writel(HOST_CR4, cr4);
2978 		vmx->loaded_vmcs->host_state.cr4 = cr4;
2979 	}
2980 
2981 	asm(
2982 		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2983 		"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2984 		"je 1f \n\t"
2985 		__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2986 		"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2987 		"1: \n\t"
2988 		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2989 
2990 		/* Check if vmlaunch or vmresume is needed */
2991 		"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2992 
2993 		/*
2994 		 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2995 		 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2996 		 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2997 		 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2998 		 */
2999 		"call vmx_vmenter\n\t"
3000 
3001 		CC_SET(be)
3002 	      : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3003 	      :	[HOST_RSP]"r"((unsigned long)HOST_RSP),
3004 		[loaded_vmcs]"r"(vmx->loaded_vmcs),
3005 		[launched]"i"(offsetof(struct loaded_vmcs, launched)),
3006 		[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3007 		[wordsize]"i"(sizeof(ulong))
3008 	      : "memory"
3009 	);
3010 
3011 	if (vmx->msr_autoload.host.nr)
3012 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3013 	if (vmx->msr_autoload.guest.nr)
3014 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3015 
3016 	if (vm_fail) {
3017 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3018 
3019 		preempt_enable();
3020 
3021 		trace_kvm_nested_vmenter_failed(
3022 			"early hardware check VM-instruction error: ", error);
3023 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3024 		return 1;
3025 	}
3026 
3027 	/*
3028 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3029 	 */
3030 	local_irq_enable();
3031 	if (hw_breakpoint_active())
3032 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3033 	preempt_enable();
3034 
3035 	/*
3036 	 * A non-failing VMEntry means we somehow entered guest mode with
3037 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3038 	 * is no telling what memory has been modified or what state has
3039 	 * been exposed to unknown code.  Hitting this all but guarantees
3040 	 * a (very critical) hardware issue.
3041 	 */
3042 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3043 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3044 
3045 	return 0;
3046 }
3047 
3048 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3049 {
3050 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3051 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3052 	struct kvm_host_map *map;
3053 	struct page *page;
3054 	u64 hpa;
3055 
3056 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3057 		/*
3058 		 * Translate L1 physical address to host physical
3059 		 * address for vmcs02. Keep the page pinned, so this
3060 		 * physical address remains valid. We keep a reference
3061 		 * to it so we can release it later.
3062 		 */
3063 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3064 			kvm_release_page_clean(vmx->nested.apic_access_page);
3065 			vmx->nested.apic_access_page = NULL;
3066 		}
3067 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3068 		if (!is_error_page(page)) {
3069 			vmx->nested.apic_access_page = page;
3070 			hpa = page_to_phys(vmx->nested.apic_access_page);
3071 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3072 		} else {
3073 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3074 					     __func__);
3075 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3076 			vcpu->run->internal.suberror =
3077 				KVM_INTERNAL_ERROR_EMULATION;
3078 			vcpu->run->internal.ndata = 0;
3079 			return false;
3080 		}
3081 	}
3082 
3083 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3084 		map = &vmx->nested.virtual_apic_map;
3085 
3086 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3087 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3088 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3089 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3090 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3091 			/*
3092 			 * The processor will never use the TPR shadow, simply
3093 			 * clear the bit from the execution control.  Such a
3094 			 * configuration is useless, but it happens in tests.
3095 			 * For any other configuration, failing the vm entry is
3096 			 * _not_ what the processor does but it's basically the
3097 			 * only possibility we have.
3098 			 */
3099 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3100 		} else {
3101 			/*
3102 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3103 			 * force VM-Entry to fail.
3104 			 */
3105 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3106 		}
3107 	}
3108 
3109 	if (nested_cpu_has_posted_intr(vmcs12)) {
3110 		map = &vmx->nested.pi_desc_map;
3111 
3112 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3113 			vmx->nested.pi_desc =
3114 				(struct pi_desc *)(((void *)map->hva) +
3115 				offset_in_page(vmcs12->posted_intr_desc_addr));
3116 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3117 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3118 		}
3119 	}
3120 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3121 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3122 	else
3123 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3124 	return true;
3125 }
3126 
3127 /*
3128  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3129  * for running VMX instructions (except VMXON, whose prerequisites are
3130  * slightly different). It also specifies what exception to inject otherwise.
3131  * Note that many of these exceptions have priority over VM exits, so they
3132  * don't have to be checked again here.
3133  */
3134 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3135 {
3136 	if (!to_vmx(vcpu)->nested.vmxon) {
3137 		kvm_queue_exception(vcpu, UD_VECTOR);
3138 		return 0;
3139 	}
3140 
3141 	if (vmx_get_cpl(vcpu)) {
3142 		kvm_inject_gp(vcpu, 0);
3143 		return 0;
3144 	}
3145 
3146 	return 1;
3147 }
3148 
3149 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3150 {
3151 	u8 rvi = vmx_get_rvi();
3152 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3153 
3154 	return ((rvi & 0xf0) > (vppr & 0xf0));
3155 }
3156 
3157 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3158 				   struct vmcs12 *vmcs12);
3159 
3160 /*
3161  * If from_vmentry is false, this is being called from state restore (either RSM
3162  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3163  *
3164  * Returns:
3165  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3166  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3167  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3168  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3169  */
3170 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3171 							bool from_vmentry)
3172 {
3173 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3174 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3175 	bool evaluate_pending_interrupts;
3176 	u32 exit_reason = EXIT_REASON_INVALID_STATE;
3177 	u32 exit_qual;
3178 
3179 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3180 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3181 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3182 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3183 
3184 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3185 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3186 	if (kvm_mpx_supported() &&
3187 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3188 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3189 
3190 	/*
3191 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3192 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3193 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3194 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3195 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3196 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3197 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3198 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3199 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3200 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3201 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3202 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3203 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3204 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3205 	 */
3206 	if (!enable_ept && !nested_early_check)
3207 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3208 
3209 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3210 
3211 	prepare_vmcs02_early(vmx, vmcs12);
3212 
3213 	if (from_vmentry) {
3214 		if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3215 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3216 
3217 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3218 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3219 			return NVMX_VMENTRY_VMFAIL;
3220 		}
3221 
3222 		if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3223 			goto vmentry_fail_vmexit;
3224 	}
3225 
3226 	enter_guest_mode(vcpu);
3227 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3228 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3229 
3230 	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3231 		goto vmentry_fail_vmexit_guest_mode;
3232 
3233 	if (from_vmentry) {
3234 		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3235 		exit_qual = nested_vmx_load_msr(vcpu,
3236 						vmcs12->vm_entry_msr_load_addr,
3237 						vmcs12->vm_entry_msr_load_count);
3238 		if (exit_qual)
3239 			goto vmentry_fail_vmexit_guest_mode;
3240 	} else {
3241 		/*
3242 		 * The MMU is not initialized to point at the right entities yet and
3243 		 * "get pages" would need to read data from the guest (i.e. we will
3244 		 * need to perform gpa to hpa translation). Request a call
3245 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3246 		 * have already been set at vmentry time and should not be reset.
3247 		 */
3248 		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3249 	}
3250 
3251 	/*
3252 	 * If L1 had a pending IRQ/NMI until it executed
3253 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3254 	 * disallowed (e.g. interrupts disabled), L0 needs to
3255 	 * evaluate if this pending event should cause an exit from L2
3256 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3257 	 * intercept EXTERNAL_INTERRUPT).
3258 	 *
3259 	 * Usually this would be handled by the processor noticing an
3260 	 * IRQ/NMI window request, or checking RVI during evaluation of
3261 	 * pending virtual interrupts.  However, this setting was done
3262 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3263 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3264 	 */
3265 	if (unlikely(evaluate_pending_interrupts))
3266 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3267 
3268 	/*
3269 	 * Do not start the preemption timer hrtimer until after we know
3270 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3271 	 * the timer.
3272 	 */
3273 	vmx->nested.preemption_timer_expired = false;
3274 	if (nested_cpu_has_preemption_timer(vmcs12))
3275 		vmx_start_preemption_timer(vcpu);
3276 
3277 	/*
3278 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3279 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3280 	 * returned as far as L1 is concerned. It will only return (and set
3281 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3282 	 */
3283 	return NVMX_VMENTRY_SUCCESS;
3284 
3285 	/*
3286 	 * A failed consistency check that leads to a VMExit during L1's
3287 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3288 	 * 26.7 "VM-entry failures during or after loading guest state".
3289 	 */
3290 vmentry_fail_vmexit_guest_mode:
3291 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3292 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3293 	leave_guest_mode(vcpu);
3294 
3295 vmentry_fail_vmexit:
3296 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3297 
3298 	if (!from_vmentry)
3299 		return NVMX_VMENTRY_VMEXIT;
3300 
3301 	load_vmcs12_host_state(vcpu, vmcs12);
3302 	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3303 	vmcs12->exit_qualification = exit_qual;
3304 	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3305 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3306 	return NVMX_VMENTRY_VMEXIT;
3307 }
3308 
3309 /*
3310  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3311  * for running an L2 nested guest.
3312  */
3313 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3314 {
3315 	struct vmcs12 *vmcs12;
3316 	enum nvmx_vmentry_status status;
3317 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3318 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3319 
3320 	if (!nested_vmx_check_permission(vcpu))
3321 		return 1;
3322 
3323 	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3324 		return 1;
3325 
3326 	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3327 		return nested_vmx_failInvalid(vcpu);
3328 
3329 	vmcs12 = get_vmcs12(vcpu);
3330 
3331 	/*
3332 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3333 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3334 	 * rather than RFLAGS.ZF, and no error number is stored to the
3335 	 * VM-instruction error field.
3336 	 */
3337 	if (vmcs12->hdr.shadow_vmcs)
3338 		return nested_vmx_failInvalid(vcpu);
3339 
3340 	if (vmx->nested.hv_evmcs) {
3341 		copy_enlightened_to_vmcs12(vmx);
3342 		/* Enlightened VMCS doesn't have launch state */
3343 		vmcs12->launch_state = !launch;
3344 	} else if (enable_shadow_vmcs) {
3345 		copy_shadow_to_vmcs12(vmx);
3346 	}
3347 
3348 	/*
3349 	 * The nested entry process starts with enforcing various prerequisites
3350 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3351 	 * they fail: As the SDM explains, some conditions should cause the
3352 	 * instruction to fail, while others will cause the instruction to seem
3353 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3354 	 * To speed up the normal (success) code path, we should avoid checking
3355 	 * for misconfigurations which will anyway be caught by the processor
3356 	 * when using the merged vmcs02.
3357 	 */
3358 	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3359 		return nested_vmx_failValid(vcpu,
3360 			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3361 
3362 	if (vmcs12->launch_state == launch)
3363 		return nested_vmx_failValid(vcpu,
3364 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3365 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3366 
3367 	if (nested_vmx_check_controls(vcpu, vmcs12))
3368 		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3369 
3370 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3371 		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3372 
3373 	/*
3374 	 * We're finally done with prerequisite checking, and can start with
3375 	 * the nested entry.
3376 	 */
3377 	vmx->nested.nested_run_pending = 1;
3378 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3379 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3380 		goto vmentry_failed;
3381 
3382 	/* Hide L1D cache contents from the nested guest.  */
3383 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3384 
3385 	/*
3386 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3387 	 * also be used as part of restoring nVMX state for
3388 	 * snapshot restore (migration).
3389 	 *
3390 	 * In this flow, it is assumed that vmcs12 cache was
3391 	 * trasferred as part of captured nVMX state and should
3392 	 * therefore not be read from guest memory (which may not
3393 	 * exist on destination host yet).
3394 	 */
3395 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3396 
3397 	/*
3398 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3399 	 * awakened by event injection or by an NMI-window VM-exit or
3400 	 * by an interrupt-window VM-exit, halt the vcpu.
3401 	 */
3402 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3403 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3404 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3405 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3406 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3407 		vmx->nested.nested_run_pending = 0;
3408 		return kvm_vcpu_halt(vcpu);
3409 	}
3410 	return 1;
3411 
3412 vmentry_failed:
3413 	vmx->nested.nested_run_pending = 0;
3414 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3415 		return 0;
3416 	if (status == NVMX_VMENTRY_VMEXIT)
3417 		return 1;
3418 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3419 	return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3420 }
3421 
3422 /*
3423  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3424  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3425  * This function returns the new value we should put in vmcs12.guest_cr0.
3426  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3427  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3428  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3429  *     didn't trap the bit, because if L1 did, so would L0).
3430  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3431  *     been modified by L2, and L1 knows it. So just leave the old value of
3432  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3433  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3434  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3435  *     changed these bits, and therefore they need to be updated, but L0
3436  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3437  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3438  */
3439 static inline unsigned long
3440 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3441 {
3442 	return
3443 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3444 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3445 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3446 			vcpu->arch.cr0_guest_owned_bits));
3447 }
3448 
3449 static inline unsigned long
3450 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3451 {
3452 	return
3453 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3454 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3455 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3456 			vcpu->arch.cr4_guest_owned_bits));
3457 }
3458 
3459 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3460 				      struct vmcs12 *vmcs12)
3461 {
3462 	u32 idt_vectoring;
3463 	unsigned int nr;
3464 
3465 	if (vcpu->arch.exception.injected) {
3466 		nr = vcpu->arch.exception.nr;
3467 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3468 
3469 		if (kvm_exception_is_soft(nr)) {
3470 			vmcs12->vm_exit_instruction_len =
3471 				vcpu->arch.event_exit_inst_len;
3472 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3473 		} else
3474 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3475 
3476 		if (vcpu->arch.exception.has_error_code) {
3477 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3478 			vmcs12->idt_vectoring_error_code =
3479 				vcpu->arch.exception.error_code;
3480 		}
3481 
3482 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3483 	} else if (vcpu->arch.nmi_injected) {
3484 		vmcs12->idt_vectoring_info_field =
3485 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3486 	} else if (vcpu->arch.interrupt.injected) {
3487 		nr = vcpu->arch.interrupt.nr;
3488 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3489 
3490 		if (vcpu->arch.interrupt.soft) {
3491 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3492 			vmcs12->vm_entry_instruction_len =
3493 				vcpu->arch.event_exit_inst_len;
3494 		} else
3495 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3496 
3497 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3498 	}
3499 }
3500 
3501 
3502 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3503 {
3504 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3505 	gfn_t gfn;
3506 
3507 	/*
3508 	 * Don't need to mark the APIC access page dirty; it is never
3509 	 * written to by the CPU during APIC virtualization.
3510 	 */
3511 
3512 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3513 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3514 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3515 	}
3516 
3517 	if (nested_cpu_has_posted_intr(vmcs12)) {
3518 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3519 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3520 	}
3521 }
3522 
3523 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3524 {
3525 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3526 	int max_irr;
3527 	void *vapic_page;
3528 	u16 status;
3529 
3530 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3531 		return;
3532 
3533 	vmx->nested.pi_pending = false;
3534 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3535 		return;
3536 
3537 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3538 	if (max_irr != 256) {
3539 		vapic_page = vmx->nested.virtual_apic_map.hva;
3540 		if (!vapic_page)
3541 			return;
3542 
3543 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3544 			vapic_page, &max_irr);
3545 		status = vmcs_read16(GUEST_INTR_STATUS);
3546 		if ((u8)max_irr > ((u8)status & 0xff)) {
3547 			status &= ~0xff;
3548 			status |= (u8)max_irr;
3549 			vmcs_write16(GUEST_INTR_STATUS, status);
3550 		}
3551 	}
3552 
3553 	nested_mark_vmcs12_pages_dirty(vcpu);
3554 }
3555 
3556 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3557 					       unsigned long exit_qual)
3558 {
3559 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3560 	unsigned int nr = vcpu->arch.exception.nr;
3561 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3562 
3563 	if (vcpu->arch.exception.has_error_code) {
3564 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3565 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3566 	}
3567 
3568 	if (kvm_exception_is_soft(nr))
3569 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3570 	else
3571 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3572 
3573 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3574 	    vmx_get_nmi_mask(vcpu))
3575 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3576 
3577 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3578 }
3579 
3580 /*
3581  * Returns true if a debug trap is pending delivery.
3582  *
3583  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3584  * exception may be inferred from the presence of an exception payload.
3585  */
3586 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3587 {
3588 	return vcpu->arch.exception.pending &&
3589 			vcpu->arch.exception.nr == DB_VECTOR &&
3590 			vcpu->arch.exception.payload;
3591 }
3592 
3593 /*
3594  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3595  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3596  * represents these debug traps with a payload that is said to be compatible
3597  * with the 'pending debug exceptions' field, write the payload to the VMCS
3598  * field if a VM-exit is delivered before the debug trap.
3599  */
3600 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3601 {
3602 	if (vmx_pending_dbg_trap(vcpu))
3603 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3604 			    vcpu->arch.exception.payload);
3605 }
3606 
3607 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3608 {
3609 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3610 	unsigned long exit_qual;
3611 	bool block_nested_events =
3612 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3613 	bool mtf_pending = vmx->nested.mtf_pending;
3614 	struct kvm_lapic *apic = vcpu->arch.apic;
3615 
3616 	/*
3617 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3618 	 * this state is discarded.
3619 	 */
3620 	vmx->nested.mtf_pending = false;
3621 
3622 	if (lapic_in_kernel(vcpu) &&
3623 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3624 		if (block_nested_events)
3625 			return -EBUSY;
3626 		nested_vmx_update_pending_dbg(vcpu);
3627 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3628 		nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3629 		return 0;
3630 	}
3631 
3632 	/*
3633 	 * Process any exceptions that are not debug traps before MTF.
3634 	 */
3635 	if (vcpu->arch.exception.pending &&
3636 	    !vmx_pending_dbg_trap(vcpu) &&
3637 	    nested_vmx_check_exception(vcpu, &exit_qual)) {
3638 		if (block_nested_events)
3639 			return -EBUSY;
3640 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3641 		return 0;
3642 	}
3643 
3644 	if (mtf_pending) {
3645 		if (block_nested_events)
3646 			return -EBUSY;
3647 		nested_vmx_update_pending_dbg(vcpu);
3648 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3649 		return 0;
3650 	}
3651 
3652 	if (vcpu->arch.exception.pending &&
3653 	    nested_vmx_check_exception(vcpu, &exit_qual)) {
3654 		if (block_nested_events)
3655 			return -EBUSY;
3656 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3657 		return 0;
3658 	}
3659 
3660 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3661 	    vmx->nested.preemption_timer_expired) {
3662 		if (block_nested_events)
3663 			return -EBUSY;
3664 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3665 		return 0;
3666 	}
3667 
3668 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3669 		if (block_nested_events)
3670 			return -EBUSY;
3671 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3672 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3673 				  INTR_INFO_VALID_MASK, 0);
3674 		/*
3675 		 * The NMI-triggered VM exit counts as injection:
3676 		 * clear this one and block further NMIs.
3677 		 */
3678 		vcpu->arch.nmi_pending = 0;
3679 		vmx_set_nmi_mask(vcpu, true);
3680 		return 0;
3681 	}
3682 
3683 	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3684 	    nested_exit_on_intr(vcpu)) {
3685 		if (block_nested_events)
3686 			return -EBUSY;
3687 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3688 		return 0;
3689 	}
3690 
3691 	vmx_complete_nested_posted_interrupt(vcpu);
3692 	return 0;
3693 }
3694 
3695 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3696 {
3697 	ktime_t remaining =
3698 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3699 	u64 value;
3700 
3701 	if (ktime_to_ns(remaining) <= 0)
3702 		return 0;
3703 
3704 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3705 	do_div(value, 1000000);
3706 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3707 }
3708 
3709 static bool is_vmcs12_ext_field(unsigned long field)
3710 {
3711 	switch (field) {
3712 	case GUEST_ES_SELECTOR:
3713 	case GUEST_CS_SELECTOR:
3714 	case GUEST_SS_SELECTOR:
3715 	case GUEST_DS_SELECTOR:
3716 	case GUEST_FS_SELECTOR:
3717 	case GUEST_GS_SELECTOR:
3718 	case GUEST_LDTR_SELECTOR:
3719 	case GUEST_TR_SELECTOR:
3720 	case GUEST_ES_LIMIT:
3721 	case GUEST_CS_LIMIT:
3722 	case GUEST_SS_LIMIT:
3723 	case GUEST_DS_LIMIT:
3724 	case GUEST_FS_LIMIT:
3725 	case GUEST_GS_LIMIT:
3726 	case GUEST_LDTR_LIMIT:
3727 	case GUEST_TR_LIMIT:
3728 	case GUEST_GDTR_LIMIT:
3729 	case GUEST_IDTR_LIMIT:
3730 	case GUEST_ES_AR_BYTES:
3731 	case GUEST_DS_AR_BYTES:
3732 	case GUEST_FS_AR_BYTES:
3733 	case GUEST_GS_AR_BYTES:
3734 	case GUEST_LDTR_AR_BYTES:
3735 	case GUEST_TR_AR_BYTES:
3736 	case GUEST_ES_BASE:
3737 	case GUEST_CS_BASE:
3738 	case GUEST_SS_BASE:
3739 	case GUEST_DS_BASE:
3740 	case GUEST_FS_BASE:
3741 	case GUEST_GS_BASE:
3742 	case GUEST_LDTR_BASE:
3743 	case GUEST_TR_BASE:
3744 	case GUEST_GDTR_BASE:
3745 	case GUEST_IDTR_BASE:
3746 	case GUEST_PENDING_DBG_EXCEPTIONS:
3747 	case GUEST_BNDCFGS:
3748 		return true;
3749 	default:
3750 		break;
3751 	}
3752 
3753 	return false;
3754 }
3755 
3756 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3757 				       struct vmcs12 *vmcs12)
3758 {
3759 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3760 
3761 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3762 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3763 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3764 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3765 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3766 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3767 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3768 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3769 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3770 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3771 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3772 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3773 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3774 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3775 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3776 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3777 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3778 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3779 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3780 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3781 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3782 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3783 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3784 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3785 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3786 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3787 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3788 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3789 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3790 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3791 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3792 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3793 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3794 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3795 	vmcs12->guest_pending_dbg_exceptions =
3796 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3797 	if (kvm_mpx_supported())
3798 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3799 
3800 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3801 }
3802 
3803 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3804 				       struct vmcs12 *vmcs12)
3805 {
3806 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3807 	int cpu;
3808 
3809 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3810 		return;
3811 
3812 
3813 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3814 
3815 	cpu = get_cpu();
3816 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
3817 	vmx_vcpu_load(&vmx->vcpu, cpu);
3818 
3819 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3820 
3821 	vmx->loaded_vmcs = &vmx->vmcs01;
3822 	vmx_vcpu_load(&vmx->vcpu, cpu);
3823 	put_cpu();
3824 }
3825 
3826 /*
3827  * Update the guest state fields of vmcs12 to reflect changes that
3828  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3829  * VM-entry controls is also updated, since this is really a guest
3830  * state bit.)
3831  */
3832 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3833 {
3834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3835 
3836 	if (vmx->nested.hv_evmcs)
3837 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3838 
3839 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3840 
3841 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3842 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3843 
3844 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3845 	vmcs12->guest_rip = kvm_rip_read(vcpu);
3846 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3847 
3848 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3849 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3850 
3851 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3852 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3853 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3854 
3855 	vmcs12->guest_interruptibility_info =
3856 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3857 
3858 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3859 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3860 	else
3861 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3862 
3863 	if (nested_cpu_has_preemption_timer(vmcs12) &&
3864 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3865 			vmcs12->vmx_preemption_timer_value =
3866 				vmx_get_preemption_timer_value(vcpu);
3867 
3868 	/*
3869 	 * In some cases (usually, nested EPT), L2 is allowed to change its
3870 	 * own CR3 without exiting. If it has changed it, we must keep it.
3871 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3872 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3873 	 *
3874 	 * Additionally, restore L2's PDPTR to vmcs12.
3875 	 */
3876 	if (enable_ept) {
3877 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3878 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3879 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3880 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3881 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3882 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3883 		}
3884 	}
3885 
3886 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3887 
3888 	if (nested_cpu_has_vid(vmcs12))
3889 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3890 
3891 	vmcs12->vm_entry_controls =
3892 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3893 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3894 
3895 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3896 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3897 
3898 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3899 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
3900 }
3901 
3902 /*
3903  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3904  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3905  * and this function updates it to reflect the changes to the guest state while
3906  * L2 was running (and perhaps made some exits which were handled directly by L0
3907  * without going back to L1), and to reflect the exit reason.
3908  * Note that we do not have to copy here all VMCS fields, just those that
3909  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3910  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3911  * which already writes to vmcs12 directly.
3912  */
3913 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3914 			   u32 exit_reason, u32 exit_intr_info,
3915 			   unsigned long exit_qualification)
3916 {
3917 	/* update exit information fields: */
3918 	vmcs12->vm_exit_reason = exit_reason;
3919 	vmcs12->exit_qualification = exit_qualification;
3920 	vmcs12->vm_exit_intr_info = exit_intr_info;
3921 
3922 	vmcs12->idt_vectoring_info_field = 0;
3923 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3924 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3925 
3926 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3927 		vmcs12->launch_state = 1;
3928 
3929 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
3930 		 * instead of reading the real value. */
3931 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3932 
3933 		/*
3934 		 * Transfer the event that L0 or L1 may wanted to inject into
3935 		 * L2 to IDT_VECTORING_INFO_FIELD.
3936 		 */
3937 		vmcs12_save_pending_event(vcpu, vmcs12);
3938 
3939 		/*
3940 		 * According to spec, there's no need to store the guest's
3941 		 * MSRs if the exit is due to a VM-entry failure that occurs
3942 		 * during or after loading the guest state. Since this exit
3943 		 * does not fall in that category, we need to save the MSRs.
3944 		 */
3945 		if (nested_vmx_store_msr(vcpu,
3946 					 vmcs12->vm_exit_msr_store_addr,
3947 					 vmcs12->vm_exit_msr_store_count))
3948 			nested_vmx_abort(vcpu,
3949 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3950 	}
3951 
3952 	/*
3953 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3954 	 * preserved above and would only end up incorrectly in L1.
3955 	 */
3956 	vcpu->arch.nmi_injected = false;
3957 	kvm_clear_exception_queue(vcpu);
3958 	kvm_clear_interrupt_queue(vcpu);
3959 }
3960 
3961 /*
3962  * A part of what we need to when the nested L2 guest exits and we want to
3963  * run its L1 parent, is to reset L1's guest state to the host state specified
3964  * in vmcs12.
3965  * This function is to be called not only on normal nested exit, but also on
3966  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3967  * Failures During or After Loading Guest State").
3968  * This function should be called when the active VMCS is L1's (vmcs01).
3969  */
3970 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3971 				   struct vmcs12 *vmcs12)
3972 {
3973 	struct kvm_segment seg;
3974 	u32 entry_failure_code;
3975 
3976 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3977 		vcpu->arch.efer = vmcs12->host_ia32_efer;
3978 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3979 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3980 	else
3981 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3982 	vmx_set_efer(vcpu, vcpu->arch.efer);
3983 
3984 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
3985 	kvm_rip_write(vcpu, vmcs12->host_rip);
3986 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3987 	vmx_set_interrupt_shadow(vcpu, 0);
3988 
3989 	/*
3990 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3991 	 * actually changed, because vmx_set_cr0 refers to efer set above.
3992 	 *
3993 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3994 	 * (KVM doesn't change it);
3995 	 */
3996 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3997 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
3998 
3999 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4000 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4001 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4002 
4003 	nested_ept_uninit_mmu_context(vcpu);
4004 
4005 	/*
4006 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4007 	 * couldn't have changed.
4008 	 */
4009 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
4010 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4011 
4012 	if (!enable_ept)
4013 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
4014 
4015 	/*
4016 	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
4017 	 * VMEntry/VMExit. Thus, no need to flush TLB.
4018 	 *
4019 	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
4020 	 * flushed on every VMEntry/VMExit.
4021 	 *
4022 	 * Otherwise, we can preserve TLB entries as long as we are
4023 	 * able to tag L1 TLB entries differently than L2 TLB entries.
4024 	 *
4025 	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
4026 	 * and therefore we request the TLB flush to happen only after VMCS EPTP
4027 	 * has been set by KVM_REQ_LOAD_CR3.
4028 	 */
4029 	if (enable_vpid &&
4030 	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
4031 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4032 	}
4033 
4034 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4035 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4036 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4037 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4038 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4039 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4040 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4041 
4042 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4043 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4044 		vmcs_write64(GUEST_BNDCFGS, 0);
4045 
4046 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4047 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4048 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4049 	}
4050 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4051 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4052 					 vmcs12->host_ia32_perf_global_ctrl));
4053 
4054 	/* Set L1 segment info according to Intel SDM
4055 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4056 	seg = (struct kvm_segment) {
4057 		.base = 0,
4058 		.limit = 0xFFFFFFFF,
4059 		.selector = vmcs12->host_cs_selector,
4060 		.type = 11,
4061 		.present = 1,
4062 		.s = 1,
4063 		.g = 1
4064 	};
4065 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4066 		seg.l = 1;
4067 	else
4068 		seg.db = 1;
4069 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4070 	seg = (struct kvm_segment) {
4071 		.base = 0,
4072 		.limit = 0xFFFFFFFF,
4073 		.type = 3,
4074 		.present = 1,
4075 		.s = 1,
4076 		.db = 1,
4077 		.g = 1
4078 	};
4079 	seg.selector = vmcs12->host_ds_selector;
4080 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4081 	seg.selector = vmcs12->host_es_selector;
4082 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4083 	seg.selector = vmcs12->host_ss_selector;
4084 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4085 	seg.selector = vmcs12->host_fs_selector;
4086 	seg.base = vmcs12->host_fs_base;
4087 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4088 	seg.selector = vmcs12->host_gs_selector;
4089 	seg.base = vmcs12->host_gs_base;
4090 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4091 	seg = (struct kvm_segment) {
4092 		.base = vmcs12->host_tr_base,
4093 		.limit = 0x67,
4094 		.selector = vmcs12->host_tr_selector,
4095 		.type = 11,
4096 		.present = 1
4097 	};
4098 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4099 
4100 	kvm_set_dr(vcpu, 7, 0x400);
4101 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4102 
4103 	if (cpu_has_vmx_msr_bitmap())
4104 		vmx_update_msr_bitmap(vcpu);
4105 
4106 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4107 				vmcs12->vm_exit_msr_load_count))
4108 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4109 }
4110 
4111 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4112 {
4113 	struct shared_msr_entry *efer_msr;
4114 	unsigned int i;
4115 
4116 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4117 		return vmcs_read64(GUEST_IA32_EFER);
4118 
4119 	if (cpu_has_load_ia32_efer())
4120 		return host_efer;
4121 
4122 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4123 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4124 			return vmx->msr_autoload.guest.val[i].value;
4125 	}
4126 
4127 	efer_msr = find_msr_entry(vmx, MSR_EFER);
4128 	if (efer_msr)
4129 		return efer_msr->data;
4130 
4131 	return host_efer;
4132 }
4133 
4134 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4135 {
4136 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4137 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4138 	struct vmx_msr_entry g, h;
4139 	gpa_t gpa;
4140 	u32 i, j;
4141 
4142 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4143 
4144 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4145 		/*
4146 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4147 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4148 		 * and vcpu->arch.dr7 is not squirreled away before the
4149 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4150 		 */
4151 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4152 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4153 		else
4154 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4155 	}
4156 
4157 	/*
4158 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4159 	 * handle a variety of side effects to KVM's software model.
4160 	 */
4161 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4162 
4163 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4164 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4165 
4166 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4167 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4168 
4169 	nested_ept_uninit_mmu_context(vcpu);
4170 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4171 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4172 
4173 	/*
4174 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4175 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4176 	 * VMFail, like everything else we just need to ensure our
4177 	 * software model is up-to-date.
4178 	 */
4179 	if (enable_ept)
4180 		ept_save_pdptrs(vcpu);
4181 
4182 	kvm_mmu_reset_context(vcpu);
4183 
4184 	if (cpu_has_vmx_msr_bitmap())
4185 		vmx_update_msr_bitmap(vcpu);
4186 
4187 	/*
4188 	 * This nasty bit of open coding is a compromise between blindly
4189 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4190 	 * of VMFail), leaving the nested VM's MSRs in the software model
4191 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4192 	 * expensive since the lists are unbound by hardware).  For each
4193 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4194 	 * list, reload it from the exit load list if it exists and differs
4195 	 * from the guest value.  The intent is to stuff host state as
4196 	 * silently as possible, not to fully process the exit load list.
4197 	 */
4198 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4199 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4200 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4201 			pr_debug_ratelimited(
4202 				"%s read MSR index failed (%u, 0x%08llx)\n",
4203 				__func__, i, gpa);
4204 			goto vmabort;
4205 		}
4206 
4207 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4208 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4209 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4210 				pr_debug_ratelimited(
4211 					"%s read MSR failed (%u, 0x%08llx)\n",
4212 					__func__, j, gpa);
4213 				goto vmabort;
4214 			}
4215 			if (h.index != g.index)
4216 				continue;
4217 			if (h.value == g.value)
4218 				break;
4219 
4220 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4221 				pr_debug_ratelimited(
4222 					"%s check failed (%u, 0x%x, 0x%x)\n",
4223 					__func__, j, h.index, h.reserved);
4224 				goto vmabort;
4225 			}
4226 
4227 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4228 				pr_debug_ratelimited(
4229 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4230 					__func__, j, h.index, h.value);
4231 				goto vmabort;
4232 			}
4233 		}
4234 	}
4235 
4236 	return;
4237 
4238 vmabort:
4239 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4240 }
4241 
4242 /*
4243  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4244  * and modify vmcs12 to make it see what it would expect to see there if
4245  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4246  */
4247 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4248 		       u32 exit_intr_info, unsigned long exit_qualification)
4249 {
4250 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4251 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4252 
4253 	/* trying to cancel vmlaunch/vmresume is a bug */
4254 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4255 
4256 	leave_guest_mode(vcpu);
4257 
4258 	if (nested_cpu_has_preemption_timer(vmcs12))
4259 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4260 
4261 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4262 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4263 
4264 	if (likely(!vmx->fail)) {
4265 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4266 
4267 		if (exit_reason != -1)
4268 			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4269 				       exit_qualification);
4270 
4271 		/*
4272 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4273 		 * also be used to capture vmcs12 cache as part of
4274 		 * capturing nVMX state for snapshot (migration).
4275 		 *
4276 		 * Otherwise, this flush will dirty guest memory at a
4277 		 * point it is already assumed by user-space to be
4278 		 * immutable.
4279 		 */
4280 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4281 	} else {
4282 		/*
4283 		 * The only expected VM-instruction error is "VM entry with
4284 		 * invalid control field(s)." Anything else indicates a
4285 		 * problem with L0.  And we should never get here with a
4286 		 * VMFail of any type if early consistency checks are enabled.
4287 		 */
4288 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4289 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4290 		WARN_ON_ONCE(nested_early_check);
4291 	}
4292 
4293 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4294 
4295 	/* Update any VMCS fields that might have changed while L2 ran */
4296 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4297 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4298 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4299 	if (vmx->nested.l1_tpr_threshold != -1)
4300 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4301 
4302 	if (kvm_has_tsc_control)
4303 		decache_tsc_multiplier(vmx);
4304 
4305 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4306 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4307 		vmx_set_virtual_apic_mode(vcpu);
4308 	}
4309 
4310 	/* Unpin physical memory we referred to in vmcs02 */
4311 	if (vmx->nested.apic_access_page) {
4312 		kvm_release_page_clean(vmx->nested.apic_access_page);
4313 		vmx->nested.apic_access_page = NULL;
4314 	}
4315 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4316 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4317 	vmx->nested.pi_desc = NULL;
4318 
4319 	/*
4320 	 * We are now running in L2, mmu_notifier will force to reload the
4321 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4322 	 */
4323 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4324 
4325 	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4326 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4327 
4328 	/* in case we halted in L2 */
4329 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4330 
4331 	if (likely(!vmx->fail)) {
4332 		/*
4333 		 * TODO: SDM says that with acknowledge interrupt on
4334 		 * exit, bit 31 of the VM-exit interrupt information
4335 		 * (valid interrupt) is always set to 1 on
4336 		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4337 		 * need kvm_cpu_has_interrupt().  See the commit
4338 		 * message for details.
4339 		 */
4340 		if (nested_exit_intr_ack_set(vcpu) &&
4341 		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4342 		    kvm_cpu_has_interrupt(vcpu)) {
4343 			int irq = kvm_cpu_get_interrupt(vcpu);
4344 			WARN_ON(irq < 0);
4345 			vmcs12->vm_exit_intr_info = irq |
4346 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4347 		}
4348 
4349 		if (exit_reason != -1)
4350 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4351 						       vmcs12->exit_qualification,
4352 						       vmcs12->idt_vectoring_info_field,
4353 						       vmcs12->vm_exit_intr_info,
4354 						       vmcs12->vm_exit_intr_error_code,
4355 						       KVM_ISA_VMX);
4356 
4357 		load_vmcs12_host_state(vcpu, vmcs12);
4358 
4359 		return;
4360 	}
4361 
4362 	/*
4363 	 * After an early L2 VM-entry failure, we're now back
4364 	 * in L1 which thinks it just finished a VMLAUNCH or
4365 	 * VMRESUME instruction, so we need to set the failure
4366 	 * flag and the VM-instruction error field of the VMCS
4367 	 * accordingly, and skip the emulated instruction.
4368 	 */
4369 	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4370 
4371 	/*
4372 	 * Restore L1's host state to KVM's software model.  We're here
4373 	 * because a consistency check was caught by hardware, which
4374 	 * means some amount of guest state has been propagated to KVM's
4375 	 * model and needs to be unwound to the host's state.
4376 	 */
4377 	nested_vmx_restore_host_state(vcpu);
4378 
4379 	vmx->fail = 0;
4380 }
4381 
4382 /*
4383  * Decode the memory-address operand of a vmx instruction, as recorded on an
4384  * exit caused by such an instruction (run by a guest hypervisor).
4385  * On success, returns 0. When the operand is invalid, returns 1 and throws
4386  * #UD or #GP.
4387  */
4388 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4389 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4390 {
4391 	gva_t off;
4392 	bool exn;
4393 	struct kvm_segment s;
4394 
4395 	/*
4396 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4397 	 * Execution", on an exit, vmx_instruction_info holds most of the
4398 	 * addressing components of the operand. Only the displacement part
4399 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4400 	 * For how an actual address is calculated from all these components,
4401 	 * refer to Vol. 1, "Operand Addressing".
4402 	 */
4403 	int  scaling = vmx_instruction_info & 3;
4404 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4405 	bool is_reg = vmx_instruction_info & (1u << 10);
4406 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4407 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4408 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4409 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4410 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4411 
4412 	if (is_reg) {
4413 		kvm_queue_exception(vcpu, UD_VECTOR);
4414 		return 1;
4415 	}
4416 
4417 	/* Addr = segment_base + offset */
4418 	/* offset = base + [index * scale] + displacement */
4419 	off = exit_qualification; /* holds the displacement */
4420 	if (addr_size == 1)
4421 		off = (gva_t)sign_extend64(off, 31);
4422 	else if (addr_size == 0)
4423 		off = (gva_t)sign_extend64(off, 15);
4424 	if (base_is_valid)
4425 		off += kvm_register_read(vcpu, base_reg);
4426 	if (index_is_valid)
4427 		off += kvm_register_read(vcpu, index_reg)<<scaling;
4428 	vmx_get_segment(vcpu, &s, seg_reg);
4429 
4430 	/*
4431 	 * The effective address, i.e. @off, of a memory operand is truncated
4432 	 * based on the address size of the instruction.  Note that this is
4433 	 * the *effective address*, i.e. the address prior to accounting for
4434 	 * the segment's base.
4435 	 */
4436 	if (addr_size == 1) /* 32 bit */
4437 		off &= 0xffffffff;
4438 	else if (addr_size == 0) /* 16 bit */
4439 		off &= 0xffff;
4440 
4441 	/* Checks for #GP/#SS exceptions. */
4442 	exn = false;
4443 	if (is_long_mode(vcpu)) {
4444 		/*
4445 		 * The virtual/linear address is never truncated in 64-bit
4446 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4447 		 * address when using FS/GS with a non-zero base.
4448 		 */
4449 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4450 			*ret = s.base + off;
4451 		else
4452 			*ret = off;
4453 
4454 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4455 		 * non-canonical form. This is the only check on the memory
4456 		 * destination for long mode!
4457 		 */
4458 		exn = is_noncanonical_address(*ret, vcpu);
4459 	} else {
4460 		/*
4461 		 * When not in long mode, the virtual/linear address is
4462 		 * unconditionally truncated to 32 bits regardless of the
4463 		 * address size.
4464 		 */
4465 		*ret = (s.base + off) & 0xffffffff;
4466 
4467 		/* Protected mode: apply checks for segment validity in the
4468 		 * following order:
4469 		 * - segment type check (#GP(0) may be thrown)
4470 		 * - usability check (#GP(0)/#SS(0))
4471 		 * - limit check (#GP(0)/#SS(0))
4472 		 */
4473 		if (wr)
4474 			/* #GP(0) if the destination operand is located in a
4475 			 * read-only data segment or any code segment.
4476 			 */
4477 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4478 		else
4479 			/* #GP(0) if the source operand is located in an
4480 			 * execute-only code segment
4481 			 */
4482 			exn = ((s.type & 0xa) == 8);
4483 		if (exn) {
4484 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4485 			return 1;
4486 		}
4487 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4488 		 */
4489 		exn = (s.unusable != 0);
4490 
4491 		/*
4492 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4493 		 * outside the segment limit.  All CPUs that support VMX ignore
4494 		 * limit checks for flat segments, i.e. segments with base==0,
4495 		 * limit==0xffffffff and of type expand-up data or code.
4496 		 */
4497 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4498 		     ((s.type & 8) || !(s.type & 4))))
4499 			exn = exn || ((u64)off + len - 1 > s.limit);
4500 	}
4501 	if (exn) {
4502 		kvm_queue_exception_e(vcpu,
4503 				      seg_reg == VCPU_SREG_SS ?
4504 						SS_VECTOR : GP_VECTOR,
4505 				      0);
4506 		return 1;
4507 	}
4508 
4509 	return 0;
4510 }
4511 
4512 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4513 {
4514 	struct vcpu_vmx *vmx;
4515 
4516 	if (!nested_vmx_allowed(vcpu))
4517 		return;
4518 
4519 	vmx = to_vmx(vcpu);
4520 	if (kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4521 		vmx->nested.msrs.entry_ctls_high |=
4522 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4523 		vmx->nested.msrs.exit_ctls_high |=
4524 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4525 	} else {
4526 		vmx->nested.msrs.entry_ctls_high &=
4527 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4528 		vmx->nested.msrs.exit_ctls_high &=
4529 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4530 	}
4531 }
4532 
4533 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4534 {
4535 	gva_t gva;
4536 	struct x86_exception e;
4537 
4538 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4539 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4540 				sizeof(*vmpointer), &gva))
4541 		return 1;
4542 
4543 	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4544 		kvm_inject_page_fault(vcpu, &e);
4545 		return 1;
4546 	}
4547 
4548 	return 0;
4549 }
4550 
4551 /*
4552  * Allocate a shadow VMCS and associate it with the currently loaded
4553  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4554  * VMCS is also VMCLEARed, so that it is ready for use.
4555  */
4556 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4557 {
4558 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4559 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4560 
4561 	/*
4562 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4563 	 * executes VMXON and free it when L1 executes VMXOFF.
4564 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4565 	 * here when vmcs01 already have an allocated shadow vmcs.
4566 	 */
4567 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4568 
4569 	if (!loaded_vmcs->shadow_vmcs) {
4570 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4571 		if (loaded_vmcs->shadow_vmcs)
4572 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4573 	}
4574 	return loaded_vmcs->shadow_vmcs;
4575 }
4576 
4577 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4578 {
4579 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4580 	int r;
4581 
4582 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4583 	if (r < 0)
4584 		goto out_vmcs02;
4585 
4586 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4587 	if (!vmx->nested.cached_vmcs12)
4588 		goto out_cached_vmcs12;
4589 
4590 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4591 	if (!vmx->nested.cached_shadow_vmcs12)
4592 		goto out_cached_shadow_vmcs12;
4593 
4594 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4595 		goto out_shadow_vmcs;
4596 
4597 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4598 		     HRTIMER_MODE_REL_PINNED);
4599 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4600 
4601 	vmx->nested.vpid02 = allocate_vpid();
4602 
4603 	vmx->nested.vmcs02_initialized = false;
4604 	vmx->nested.vmxon = true;
4605 
4606 	if (pt_mode == PT_MODE_HOST_GUEST) {
4607 		vmx->pt_desc.guest.ctl = 0;
4608 		pt_update_intercept_for_msr(vmx);
4609 	}
4610 
4611 	return 0;
4612 
4613 out_shadow_vmcs:
4614 	kfree(vmx->nested.cached_shadow_vmcs12);
4615 
4616 out_cached_shadow_vmcs12:
4617 	kfree(vmx->nested.cached_vmcs12);
4618 
4619 out_cached_vmcs12:
4620 	free_loaded_vmcs(&vmx->nested.vmcs02);
4621 
4622 out_vmcs02:
4623 	return -ENOMEM;
4624 }
4625 
4626 /*
4627  * Emulate the VMXON instruction.
4628  * Currently, we just remember that VMX is active, and do not save or even
4629  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4630  * do not currently need to store anything in that guest-allocated memory
4631  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4632  * argument is different from the VMXON pointer (which the spec says they do).
4633  */
4634 static int handle_vmon(struct kvm_vcpu *vcpu)
4635 {
4636 	int ret;
4637 	gpa_t vmptr;
4638 	uint32_t revision;
4639 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4640 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4641 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4642 
4643 	/*
4644 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4645 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4646 	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4647 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4648 	 * have already been checked by hardware, prior to the VM-exit for
4649 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4650 	 * that bit set to 1 in non-root mode.
4651 	 */
4652 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4653 		kvm_queue_exception(vcpu, UD_VECTOR);
4654 		return 1;
4655 	}
4656 
4657 	/* CPL=0 must be checked manually. */
4658 	if (vmx_get_cpl(vcpu)) {
4659 		kvm_inject_gp(vcpu, 0);
4660 		return 1;
4661 	}
4662 
4663 	if (vmx->nested.vmxon)
4664 		return nested_vmx_failValid(vcpu,
4665 			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4666 
4667 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4668 			!= VMXON_NEEDED_FEATURES) {
4669 		kvm_inject_gp(vcpu, 0);
4670 		return 1;
4671 	}
4672 
4673 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4674 		return 1;
4675 
4676 	/*
4677 	 * SDM 3: 24.11.5
4678 	 * The first 4 bytes of VMXON region contain the supported
4679 	 * VMCS revision identifier
4680 	 *
4681 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4682 	 * which replaces physical address width with 32
4683 	 */
4684 	if (!page_address_valid(vcpu, vmptr))
4685 		return nested_vmx_failInvalid(vcpu);
4686 
4687 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4688 	    revision != VMCS12_REVISION)
4689 		return nested_vmx_failInvalid(vcpu);
4690 
4691 	vmx->nested.vmxon_ptr = vmptr;
4692 	ret = enter_vmx_operation(vcpu);
4693 	if (ret)
4694 		return ret;
4695 
4696 	return nested_vmx_succeed(vcpu);
4697 }
4698 
4699 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4700 {
4701 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4702 
4703 	if (vmx->nested.current_vmptr == -1ull)
4704 		return;
4705 
4706 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4707 
4708 	if (enable_shadow_vmcs) {
4709 		/* copy to memory all shadowed fields in case
4710 		   they were modified */
4711 		copy_shadow_to_vmcs12(vmx);
4712 		vmx_disable_shadow_vmcs(vmx);
4713 	}
4714 	vmx->nested.posted_intr_nv = -1;
4715 
4716 	/* Flush VMCS12 to guest memory */
4717 	kvm_vcpu_write_guest_page(vcpu,
4718 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4719 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4720 
4721 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4722 
4723 	vmx->nested.current_vmptr = -1ull;
4724 }
4725 
4726 /* Emulate the VMXOFF instruction */
4727 static int handle_vmoff(struct kvm_vcpu *vcpu)
4728 {
4729 	if (!nested_vmx_check_permission(vcpu))
4730 		return 1;
4731 
4732 	free_nested(vcpu);
4733 
4734 	/* Process a latched INIT during time CPU was in VMX operation */
4735 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4736 
4737 	return nested_vmx_succeed(vcpu);
4738 }
4739 
4740 /* Emulate the VMCLEAR instruction */
4741 static int handle_vmclear(struct kvm_vcpu *vcpu)
4742 {
4743 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4744 	u32 zero = 0;
4745 	gpa_t vmptr;
4746 	u64 evmcs_gpa;
4747 
4748 	if (!nested_vmx_check_permission(vcpu))
4749 		return 1;
4750 
4751 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4752 		return 1;
4753 
4754 	if (!page_address_valid(vcpu, vmptr))
4755 		return nested_vmx_failValid(vcpu,
4756 			VMXERR_VMCLEAR_INVALID_ADDRESS);
4757 
4758 	if (vmptr == vmx->nested.vmxon_ptr)
4759 		return nested_vmx_failValid(vcpu,
4760 			VMXERR_VMCLEAR_VMXON_POINTER);
4761 
4762 	/*
4763 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
4764 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4765 	 * way to distinguish it from VMCS12) and we must not corrupt it by
4766 	 * writing to the non-existent 'launch_state' field. The area doesn't
4767 	 * have to be the currently active EVMCS on the calling CPU and there's
4768 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
4769 	 * state. It is possible that the area will stay mapped as
4770 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4771 	 */
4772 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4773 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4774 		if (vmptr == vmx->nested.current_vmptr)
4775 			nested_release_vmcs12(vcpu);
4776 
4777 		kvm_vcpu_write_guest(vcpu,
4778 				     vmptr + offsetof(struct vmcs12,
4779 						      launch_state),
4780 				     &zero, sizeof(zero));
4781 	}
4782 
4783 	return nested_vmx_succeed(vcpu);
4784 }
4785 
4786 /* Emulate the VMLAUNCH instruction */
4787 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4788 {
4789 	return nested_vmx_run(vcpu, true);
4790 }
4791 
4792 /* Emulate the VMRESUME instruction */
4793 static int handle_vmresume(struct kvm_vcpu *vcpu)
4794 {
4795 
4796 	return nested_vmx_run(vcpu, false);
4797 }
4798 
4799 static int handle_vmread(struct kvm_vcpu *vcpu)
4800 {
4801 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4802 						    : get_vmcs12(vcpu);
4803 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4804 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4805 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4806 	struct x86_exception e;
4807 	unsigned long field;
4808 	u64 value;
4809 	gva_t gva = 0;
4810 	short offset;
4811 	int len;
4812 
4813 	if (!nested_vmx_check_permission(vcpu))
4814 		return 1;
4815 
4816 	/*
4817 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4818 	 * any VMREAD sets the ALU flags for VMfailInvalid.
4819 	 */
4820 	if (vmx->nested.current_vmptr == -1ull ||
4821 	    (is_guest_mode(vcpu) &&
4822 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4823 		return nested_vmx_failInvalid(vcpu);
4824 
4825 	/* Decode instruction info and find the field to read */
4826 	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4827 
4828 	offset = vmcs_field_to_offset(field);
4829 	if (offset < 0)
4830 		return nested_vmx_failValid(vcpu,
4831 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4832 
4833 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4834 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4835 
4836 	/* Read the field, zero-extended to a u64 value */
4837 	value = vmcs12_read_any(vmcs12, field, offset);
4838 
4839 	/*
4840 	 * Now copy part of this value to register or memory, as requested.
4841 	 * Note that the number of bits actually copied is 32 or 64 depending
4842 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
4843 	 */
4844 	if (instr_info & BIT(10)) {
4845 		kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4846 	} else {
4847 		len = is_64_bit_mode(vcpu) ? 8 : 4;
4848 		if (get_vmx_mem_address(vcpu, exit_qualification,
4849 					instr_info, true, len, &gva))
4850 			return 1;
4851 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
4852 		if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
4853 			kvm_inject_page_fault(vcpu, &e);
4854 			return 1;
4855 		}
4856 	}
4857 
4858 	return nested_vmx_succeed(vcpu);
4859 }
4860 
4861 static bool is_shadow_field_rw(unsigned long field)
4862 {
4863 	switch (field) {
4864 #define SHADOW_FIELD_RW(x, y) case x:
4865 #include "vmcs_shadow_fields.h"
4866 		return true;
4867 	default:
4868 		break;
4869 	}
4870 	return false;
4871 }
4872 
4873 static bool is_shadow_field_ro(unsigned long field)
4874 {
4875 	switch (field) {
4876 #define SHADOW_FIELD_RO(x, y) case x:
4877 #include "vmcs_shadow_fields.h"
4878 		return true;
4879 	default:
4880 		break;
4881 	}
4882 	return false;
4883 }
4884 
4885 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4886 {
4887 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4888 						    : get_vmcs12(vcpu);
4889 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4890 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4891 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4892 	struct x86_exception e;
4893 	unsigned long field;
4894 	short offset;
4895 	gva_t gva;
4896 	int len;
4897 
4898 	/*
4899 	 * The value to write might be 32 or 64 bits, depending on L1's long
4900 	 * mode, and eventually we need to write that into a field of several
4901 	 * possible lengths. The code below first zero-extends the value to 64
4902 	 * bit (value), and then copies only the appropriate number of
4903 	 * bits into the vmcs12 field.
4904 	 */
4905 	u64 value = 0;
4906 
4907 	if (!nested_vmx_check_permission(vcpu))
4908 		return 1;
4909 
4910 	/*
4911 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4912 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
4913 	 */
4914 	if (vmx->nested.current_vmptr == -1ull ||
4915 	    (is_guest_mode(vcpu) &&
4916 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4917 		return nested_vmx_failInvalid(vcpu);
4918 
4919 	if (instr_info & BIT(10))
4920 		value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
4921 	else {
4922 		len = is_64_bit_mode(vcpu) ? 8 : 4;
4923 		if (get_vmx_mem_address(vcpu, exit_qualification,
4924 					instr_info, false, len, &gva))
4925 			return 1;
4926 		if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
4927 			kvm_inject_page_fault(vcpu, &e);
4928 			return 1;
4929 		}
4930 	}
4931 
4932 	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4933 
4934 	offset = vmcs_field_to_offset(field);
4935 	if (offset < 0)
4936 		return nested_vmx_failValid(vcpu,
4937 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4938 
4939 	/*
4940 	 * If the vCPU supports "VMWRITE to any supported field in the
4941 	 * VMCS," then the "read-only" fields are actually read/write.
4942 	 */
4943 	if (vmcs_field_readonly(field) &&
4944 	    !nested_cpu_has_vmwrite_any_field(vcpu))
4945 		return nested_vmx_failValid(vcpu,
4946 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4947 
4948 	/*
4949 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4950 	 * vmcs12, else we may crush a field or consume a stale value.
4951 	 */
4952 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
4953 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4954 
4955 	/*
4956 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4957 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4958 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4959 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4960 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
4961 	 * the stripped down value, L2 sees the full value as stored by KVM).
4962 	 */
4963 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4964 		value &= 0x1f0ff;
4965 
4966 	vmcs12_write_any(vmcs12, field, offset, value);
4967 
4968 	/*
4969 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
4970 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4971 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4972 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4973 	 */
4974 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4975 		/*
4976 		 * L1 can read these fields without exiting, ensure the
4977 		 * shadow VMCS is up-to-date.
4978 		 */
4979 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4980 			preempt_disable();
4981 			vmcs_load(vmx->vmcs01.shadow_vmcs);
4982 
4983 			__vmcs_writel(field, value);
4984 
4985 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
4986 			vmcs_load(vmx->loaded_vmcs->vmcs);
4987 			preempt_enable();
4988 		}
4989 		vmx->nested.dirty_vmcs12 = true;
4990 	}
4991 
4992 	return nested_vmx_succeed(vcpu);
4993 }
4994 
4995 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4996 {
4997 	vmx->nested.current_vmptr = vmptr;
4998 	if (enable_shadow_vmcs) {
4999 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5000 		vmcs_write64(VMCS_LINK_POINTER,
5001 			     __pa(vmx->vmcs01.shadow_vmcs));
5002 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5003 	}
5004 	vmx->nested.dirty_vmcs12 = true;
5005 }
5006 
5007 /* Emulate the VMPTRLD instruction */
5008 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5009 {
5010 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5011 	gpa_t vmptr;
5012 
5013 	if (!nested_vmx_check_permission(vcpu))
5014 		return 1;
5015 
5016 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
5017 		return 1;
5018 
5019 	if (!page_address_valid(vcpu, vmptr))
5020 		return nested_vmx_failValid(vcpu,
5021 			VMXERR_VMPTRLD_INVALID_ADDRESS);
5022 
5023 	if (vmptr == vmx->nested.vmxon_ptr)
5024 		return nested_vmx_failValid(vcpu,
5025 			VMXERR_VMPTRLD_VMXON_POINTER);
5026 
5027 	/* Forbid normal VMPTRLD if Enlightened version was used */
5028 	if (vmx->nested.hv_evmcs)
5029 		return 1;
5030 
5031 	if (vmx->nested.current_vmptr != vmptr) {
5032 		struct kvm_host_map map;
5033 		struct vmcs12 *new_vmcs12;
5034 
5035 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5036 			/*
5037 			 * Reads from an unbacked page return all 1s,
5038 			 * which means that the 32 bits located at the
5039 			 * given physical address won't match the required
5040 			 * VMCS12_REVISION identifier.
5041 			 */
5042 			return nested_vmx_failValid(vcpu,
5043 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5044 		}
5045 
5046 		new_vmcs12 = map.hva;
5047 
5048 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5049 		    (new_vmcs12->hdr.shadow_vmcs &&
5050 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5051 			kvm_vcpu_unmap(vcpu, &map, false);
5052 			return nested_vmx_failValid(vcpu,
5053 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5054 		}
5055 
5056 		nested_release_vmcs12(vcpu);
5057 
5058 		/*
5059 		 * Load VMCS12 from guest memory since it is not already
5060 		 * cached.
5061 		 */
5062 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5063 		kvm_vcpu_unmap(vcpu, &map, false);
5064 
5065 		set_current_vmptr(vmx, vmptr);
5066 	}
5067 
5068 	return nested_vmx_succeed(vcpu);
5069 }
5070 
5071 /* Emulate the VMPTRST instruction */
5072 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5073 {
5074 	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
5075 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5076 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5077 	struct x86_exception e;
5078 	gva_t gva;
5079 
5080 	if (!nested_vmx_check_permission(vcpu))
5081 		return 1;
5082 
5083 	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5084 		return 1;
5085 
5086 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5087 				true, sizeof(gpa_t), &gva))
5088 		return 1;
5089 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5090 	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5091 					sizeof(gpa_t), &e)) {
5092 		kvm_inject_page_fault(vcpu, &e);
5093 		return 1;
5094 	}
5095 	return nested_vmx_succeed(vcpu);
5096 }
5097 
5098 /* Emulate the INVEPT instruction */
5099 static int handle_invept(struct kvm_vcpu *vcpu)
5100 {
5101 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5102 	u32 vmx_instruction_info, types;
5103 	unsigned long type;
5104 	gva_t gva;
5105 	struct x86_exception e;
5106 	struct {
5107 		u64 eptp, gpa;
5108 	} operand;
5109 
5110 	if (!(vmx->nested.msrs.secondary_ctls_high &
5111 	      SECONDARY_EXEC_ENABLE_EPT) ||
5112 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5113 		kvm_queue_exception(vcpu, UD_VECTOR);
5114 		return 1;
5115 	}
5116 
5117 	if (!nested_vmx_check_permission(vcpu))
5118 		return 1;
5119 
5120 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5121 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5122 
5123 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5124 
5125 	if (type >= 32 || !(types & (1 << type)))
5126 		return nested_vmx_failValid(vcpu,
5127 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5128 
5129 	/* According to the Intel VMX instruction reference, the memory
5130 	 * operand is read even if it isn't needed (e.g., for type==global)
5131 	 */
5132 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5133 			vmx_instruction_info, false, sizeof(operand), &gva))
5134 		return 1;
5135 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5136 		kvm_inject_page_fault(vcpu, &e);
5137 		return 1;
5138 	}
5139 
5140 	switch (type) {
5141 	case VMX_EPT_EXTENT_GLOBAL:
5142 	case VMX_EPT_EXTENT_CONTEXT:
5143 	/*
5144 	 * TODO: Sync the necessary shadow EPT roots here, rather than
5145 	 * at the next emulated VM-entry.
5146 	 */
5147 		break;
5148 	default:
5149 		BUG_ON(1);
5150 		break;
5151 	}
5152 
5153 	return nested_vmx_succeed(vcpu);
5154 }
5155 
5156 static int handle_invvpid(struct kvm_vcpu *vcpu)
5157 {
5158 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5159 	u32 vmx_instruction_info;
5160 	unsigned long type, types;
5161 	gva_t gva;
5162 	struct x86_exception e;
5163 	struct {
5164 		u64 vpid;
5165 		u64 gla;
5166 	} operand;
5167 	u16 vpid02;
5168 
5169 	if (!(vmx->nested.msrs.secondary_ctls_high &
5170 	      SECONDARY_EXEC_ENABLE_VPID) ||
5171 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5172 		kvm_queue_exception(vcpu, UD_VECTOR);
5173 		return 1;
5174 	}
5175 
5176 	if (!nested_vmx_check_permission(vcpu))
5177 		return 1;
5178 
5179 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5180 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5181 
5182 	types = (vmx->nested.msrs.vpid_caps &
5183 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5184 
5185 	if (type >= 32 || !(types & (1 << type)))
5186 		return nested_vmx_failValid(vcpu,
5187 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5188 
5189 	/* according to the intel vmx instruction reference, the memory
5190 	 * operand is read even if it isn't needed (e.g., for type==global)
5191 	 */
5192 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5193 			vmx_instruction_info, false, sizeof(operand), &gva))
5194 		return 1;
5195 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5196 		kvm_inject_page_fault(vcpu, &e);
5197 		return 1;
5198 	}
5199 	if (operand.vpid >> 16)
5200 		return nested_vmx_failValid(vcpu,
5201 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5202 
5203 	vpid02 = nested_get_vpid02(vcpu);
5204 	switch (type) {
5205 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5206 		if (!operand.vpid ||
5207 		    is_noncanonical_address(operand.gla, vcpu))
5208 			return nested_vmx_failValid(vcpu,
5209 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5210 		if (cpu_has_vmx_invvpid_individual_addr()) {
5211 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5212 				vpid02, operand.gla);
5213 		} else
5214 			__vmx_flush_tlb(vcpu, vpid02, false);
5215 		break;
5216 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5217 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5218 		if (!operand.vpid)
5219 			return nested_vmx_failValid(vcpu,
5220 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5221 		__vmx_flush_tlb(vcpu, vpid02, false);
5222 		break;
5223 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5224 		__vmx_flush_tlb(vcpu, vpid02, false);
5225 		break;
5226 	default:
5227 		WARN_ON_ONCE(1);
5228 		return kvm_skip_emulated_instruction(vcpu);
5229 	}
5230 
5231 	return nested_vmx_succeed(vcpu);
5232 }
5233 
5234 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5235 				     struct vmcs12 *vmcs12)
5236 {
5237 	u32 index = kvm_rcx_read(vcpu);
5238 	u64 address;
5239 	bool accessed_dirty;
5240 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5241 
5242 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
5243 	    !nested_cpu_has_ept(vmcs12))
5244 		return 1;
5245 
5246 	if (index >= VMFUNC_EPTP_ENTRIES)
5247 		return 1;
5248 
5249 
5250 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5251 				     &address, index * 8, 8))
5252 		return 1;
5253 
5254 	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5255 
5256 	/*
5257 	 * If the (L2) guest does a vmfunc to the currently
5258 	 * active ept pointer, we don't have to do anything else
5259 	 */
5260 	if (vmcs12->ept_pointer != address) {
5261 		if (!valid_ept_address(vcpu, address))
5262 			return 1;
5263 
5264 		kvm_mmu_unload(vcpu);
5265 		mmu->ept_ad = accessed_dirty;
5266 		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5267 		vmcs12->ept_pointer = address;
5268 		/*
5269 		 * TODO: Check what's the correct approach in case
5270 		 * mmu reload fails. Currently, we just let the next
5271 		 * reload potentially fail
5272 		 */
5273 		kvm_mmu_reload(vcpu);
5274 	}
5275 
5276 	return 0;
5277 }
5278 
5279 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5280 {
5281 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5282 	struct vmcs12 *vmcs12;
5283 	u32 function = kvm_rax_read(vcpu);
5284 
5285 	/*
5286 	 * VMFUNC is only supported for nested guests, but we always enable the
5287 	 * secondary control for simplicity; for non-nested mode, fake that we
5288 	 * didn't by injecting #UD.
5289 	 */
5290 	if (!is_guest_mode(vcpu)) {
5291 		kvm_queue_exception(vcpu, UD_VECTOR);
5292 		return 1;
5293 	}
5294 
5295 	vmcs12 = get_vmcs12(vcpu);
5296 	if ((vmcs12->vm_function_control & (1 << function)) == 0)
5297 		goto fail;
5298 
5299 	switch (function) {
5300 	case 0:
5301 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5302 			goto fail;
5303 		break;
5304 	default:
5305 		goto fail;
5306 	}
5307 	return kvm_skip_emulated_instruction(vcpu);
5308 
5309 fail:
5310 	nested_vmx_vmexit(vcpu, vmx->exit_reason,
5311 			  vmcs_read32(VM_EXIT_INTR_INFO),
5312 			  vmcs_readl(EXIT_QUALIFICATION));
5313 	return 1;
5314 }
5315 
5316 /*
5317  * Return true if an IO instruction with the specified port and size should cause
5318  * a VM-exit into L1.
5319  */
5320 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5321 				 int size)
5322 {
5323 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5324 	gpa_t bitmap, last_bitmap;
5325 	u8 b;
5326 
5327 	last_bitmap = (gpa_t)-1;
5328 	b = -1;
5329 
5330 	while (size > 0) {
5331 		if (port < 0x8000)
5332 			bitmap = vmcs12->io_bitmap_a;
5333 		else if (port < 0x10000)
5334 			bitmap = vmcs12->io_bitmap_b;
5335 		else
5336 			return true;
5337 		bitmap += (port & 0x7fff) / 8;
5338 
5339 		if (last_bitmap != bitmap)
5340 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5341 				return true;
5342 		if (b & (1 << (port & 7)))
5343 			return true;
5344 
5345 		port++;
5346 		size--;
5347 		last_bitmap = bitmap;
5348 	}
5349 
5350 	return false;
5351 }
5352 
5353 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5354 				       struct vmcs12 *vmcs12)
5355 {
5356 	unsigned long exit_qualification;
5357 	unsigned short port;
5358 	int size;
5359 
5360 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5361 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5362 
5363 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5364 
5365 	port = exit_qualification >> 16;
5366 	size = (exit_qualification & 7) + 1;
5367 
5368 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5369 }
5370 
5371 /*
5372  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5373  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5374  * disinterest in the current event (read or write a specific MSR) by using an
5375  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5376  */
5377 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5378 	struct vmcs12 *vmcs12, u32 exit_reason)
5379 {
5380 	u32 msr_index = kvm_rcx_read(vcpu);
5381 	gpa_t bitmap;
5382 
5383 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5384 		return true;
5385 
5386 	/*
5387 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5388 	 * for the four combinations of read/write and low/high MSR numbers.
5389 	 * First we need to figure out which of the four to use:
5390 	 */
5391 	bitmap = vmcs12->msr_bitmap;
5392 	if (exit_reason == EXIT_REASON_MSR_WRITE)
5393 		bitmap += 2048;
5394 	if (msr_index >= 0xc0000000) {
5395 		msr_index -= 0xc0000000;
5396 		bitmap += 1024;
5397 	}
5398 
5399 	/* Then read the msr_index'th bit from this bitmap: */
5400 	if (msr_index < 1024*8) {
5401 		unsigned char b;
5402 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5403 			return true;
5404 		return 1 & (b >> (msr_index & 7));
5405 	} else
5406 		return true; /* let L1 handle the wrong parameter */
5407 }
5408 
5409 /*
5410  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5411  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5412  * intercept (via guest_host_mask etc.) the current event.
5413  */
5414 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5415 	struct vmcs12 *vmcs12)
5416 {
5417 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418 	int cr = exit_qualification & 15;
5419 	int reg;
5420 	unsigned long val;
5421 
5422 	switch ((exit_qualification >> 4) & 3) {
5423 	case 0: /* mov to cr */
5424 		reg = (exit_qualification >> 8) & 15;
5425 		val = kvm_register_readl(vcpu, reg);
5426 		switch (cr) {
5427 		case 0:
5428 			if (vmcs12->cr0_guest_host_mask &
5429 			    (val ^ vmcs12->cr0_read_shadow))
5430 				return true;
5431 			break;
5432 		case 3:
5433 			if ((vmcs12->cr3_target_count >= 1 &&
5434 					vmcs12->cr3_target_value0 == val) ||
5435 				(vmcs12->cr3_target_count >= 2 &&
5436 					vmcs12->cr3_target_value1 == val) ||
5437 				(vmcs12->cr3_target_count >= 3 &&
5438 					vmcs12->cr3_target_value2 == val) ||
5439 				(vmcs12->cr3_target_count >= 4 &&
5440 					vmcs12->cr3_target_value3 == val))
5441 				return false;
5442 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5443 				return true;
5444 			break;
5445 		case 4:
5446 			if (vmcs12->cr4_guest_host_mask &
5447 			    (vmcs12->cr4_read_shadow ^ val))
5448 				return true;
5449 			break;
5450 		case 8:
5451 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5452 				return true;
5453 			break;
5454 		}
5455 		break;
5456 	case 2: /* clts */
5457 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5458 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5459 			return true;
5460 		break;
5461 	case 1: /* mov from cr */
5462 		switch (cr) {
5463 		case 3:
5464 			if (vmcs12->cpu_based_vm_exec_control &
5465 			    CPU_BASED_CR3_STORE_EXITING)
5466 				return true;
5467 			break;
5468 		case 8:
5469 			if (vmcs12->cpu_based_vm_exec_control &
5470 			    CPU_BASED_CR8_STORE_EXITING)
5471 				return true;
5472 			break;
5473 		}
5474 		break;
5475 	case 3: /* lmsw */
5476 		/*
5477 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5478 		 * cr0. Other attempted changes are ignored, with no exit.
5479 		 */
5480 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5481 		if (vmcs12->cr0_guest_host_mask & 0xe &
5482 		    (val ^ vmcs12->cr0_read_shadow))
5483 			return true;
5484 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5485 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5486 		    (val & 0x1))
5487 			return true;
5488 		break;
5489 	}
5490 	return false;
5491 }
5492 
5493 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5494 	struct vmcs12 *vmcs12, gpa_t bitmap)
5495 {
5496 	u32 vmx_instruction_info;
5497 	unsigned long field;
5498 	u8 b;
5499 
5500 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5501 		return true;
5502 
5503 	/* Decode instruction info and find the field to access */
5504 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5505 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5506 
5507 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5508 	if (field >> 15)
5509 		return true;
5510 
5511 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5512 		return true;
5513 
5514 	return 1 & (b >> (field & 7));
5515 }
5516 
5517 /*
5518  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5519  * should handle it ourselves in L0 (and then continue L2). Only call this
5520  * when in is_guest_mode (L2).
5521  */
5522 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5523 {
5524 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5525 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5526 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5527 
5528 	if (vmx->nested.nested_run_pending)
5529 		return false;
5530 
5531 	if (unlikely(vmx->fail)) {
5532 		trace_kvm_nested_vmenter_failed(
5533 			"hardware VM-instruction error: ",
5534 			vmcs_read32(VM_INSTRUCTION_ERROR));
5535 		return true;
5536 	}
5537 
5538 	/*
5539 	 * The host physical addresses of some pages of guest memory
5540 	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5541 	 * Page). The CPU may write to these pages via their host
5542 	 * physical address while L2 is running, bypassing any
5543 	 * address-translation-based dirty tracking (e.g. EPT write
5544 	 * protection).
5545 	 *
5546 	 * Mark them dirty on every exit from L2 to prevent them from
5547 	 * getting out of sync with dirty tracking.
5548 	 */
5549 	nested_mark_vmcs12_pages_dirty(vcpu);
5550 
5551 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5552 				vmcs_readl(EXIT_QUALIFICATION),
5553 				vmx->idt_vectoring_info,
5554 				intr_info,
5555 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5556 				KVM_ISA_VMX);
5557 
5558 	switch (exit_reason) {
5559 	case EXIT_REASON_EXCEPTION_NMI:
5560 		if (is_nmi(intr_info))
5561 			return false;
5562 		else if (is_page_fault(intr_info))
5563 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5564 		else if (is_debug(intr_info) &&
5565 			 vcpu->guest_debug &
5566 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5567 			return false;
5568 		else if (is_breakpoint(intr_info) &&
5569 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5570 			return false;
5571 		return vmcs12->exception_bitmap &
5572 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5573 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5574 		return false;
5575 	case EXIT_REASON_TRIPLE_FAULT:
5576 		return true;
5577 	case EXIT_REASON_INTERRUPT_WINDOW:
5578 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5579 	case EXIT_REASON_NMI_WINDOW:
5580 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5581 	case EXIT_REASON_TASK_SWITCH:
5582 		return true;
5583 	case EXIT_REASON_CPUID:
5584 		return true;
5585 	case EXIT_REASON_HLT:
5586 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5587 	case EXIT_REASON_INVD:
5588 		return true;
5589 	case EXIT_REASON_INVLPG:
5590 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5591 	case EXIT_REASON_RDPMC:
5592 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5593 	case EXIT_REASON_RDRAND:
5594 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5595 	case EXIT_REASON_RDSEED:
5596 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5597 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5598 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5599 	case EXIT_REASON_VMREAD:
5600 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5601 			vmcs12->vmread_bitmap);
5602 	case EXIT_REASON_VMWRITE:
5603 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5604 			vmcs12->vmwrite_bitmap);
5605 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5606 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5607 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5608 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5609 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5610 		/*
5611 		 * VMX instructions trap unconditionally. This allows L1 to
5612 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5613 		 */
5614 		return true;
5615 	case EXIT_REASON_CR_ACCESS:
5616 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5617 	case EXIT_REASON_DR_ACCESS:
5618 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5619 	case EXIT_REASON_IO_INSTRUCTION:
5620 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5621 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5622 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5623 	case EXIT_REASON_MSR_READ:
5624 	case EXIT_REASON_MSR_WRITE:
5625 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5626 	case EXIT_REASON_INVALID_STATE:
5627 		return true;
5628 	case EXIT_REASON_MWAIT_INSTRUCTION:
5629 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5630 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5631 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5632 	case EXIT_REASON_MONITOR_INSTRUCTION:
5633 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5634 	case EXIT_REASON_PAUSE_INSTRUCTION:
5635 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5636 			nested_cpu_has2(vmcs12,
5637 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5638 	case EXIT_REASON_MCE_DURING_VMENTRY:
5639 		return false;
5640 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5641 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5642 	case EXIT_REASON_APIC_ACCESS:
5643 	case EXIT_REASON_APIC_WRITE:
5644 	case EXIT_REASON_EOI_INDUCED:
5645 		/*
5646 		 * The controls for "virtualize APIC accesses," "APIC-
5647 		 * register virtualization," and "virtual-interrupt
5648 		 * delivery" only come from vmcs12.
5649 		 */
5650 		return true;
5651 	case EXIT_REASON_EPT_VIOLATION:
5652 		/*
5653 		 * L0 always deals with the EPT violation. If nested EPT is
5654 		 * used, and the nested mmu code discovers that the address is
5655 		 * missing in the guest EPT table (EPT12), the EPT violation
5656 		 * will be injected with nested_ept_inject_page_fault()
5657 		 */
5658 		return false;
5659 	case EXIT_REASON_EPT_MISCONFIG:
5660 		/*
5661 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5662 		 * table (shadow on EPT) or a merged EPT table that L0 built
5663 		 * (EPT on EPT). So any problems with the structure of the
5664 		 * table is L0's fault.
5665 		 */
5666 		return false;
5667 	case EXIT_REASON_INVPCID:
5668 		return
5669 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5670 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5671 	case EXIT_REASON_WBINVD:
5672 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5673 	case EXIT_REASON_XSETBV:
5674 		return true;
5675 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5676 		/*
5677 		 * This should never happen, since it is not possible to
5678 		 * set XSS to a non-zero value---neither in L1 nor in L2.
5679 		 * If if it were, XSS would have to be checked against
5680 		 * the XSS exit bitmap in vmcs12.
5681 		 */
5682 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5683 	case EXIT_REASON_PREEMPTION_TIMER:
5684 		return false;
5685 	case EXIT_REASON_PML_FULL:
5686 		/* We emulate PML support to L1. */
5687 		return false;
5688 	case EXIT_REASON_VMFUNC:
5689 		/* VM functions are emulated through L2->L0 vmexits. */
5690 		return false;
5691 	case EXIT_REASON_ENCLS:
5692 		/* SGX is never exposed to L1 */
5693 		return false;
5694 	case EXIT_REASON_UMWAIT:
5695 	case EXIT_REASON_TPAUSE:
5696 		return nested_cpu_has2(vmcs12,
5697 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5698 	default:
5699 		return true;
5700 	}
5701 }
5702 
5703 
5704 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5705 				struct kvm_nested_state __user *user_kvm_nested_state,
5706 				u32 user_data_size)
5707 {
5708 	struct vcpu_vmx *vmx;
5709 	struct vmcs12 *vmcs12;
5710 	struct kvm_nested_state kvm_state = {
5711 		.flags = 0,
5712 		.format = KVM_STATE_NESTED_FORMAT_VMX,
5713 		.size = sizeof(kvm_state),
5714 		.hdr.vmx.vmxon_pa = -1ull,
5715 		.hdr.vmx.vmcs12_pa = -1ull,
5716 	};
5717 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5718 		&user_kvm_nested_state->data.vmx[0];
5719 
5720 	if (!vcpu)
5721 		return kvm_state.size + sizeof(*user_vmx_nested_state);
5722 
5723 	vmx = to_vmx(vcpu);
5724 	vmcs12 = get_vmcs12(vcpu);
5725 
5726 	if (nested_vmx_allowed(vcpu) &&
5727 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5728 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5729 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5730 
5731 		if (vmx_has_valid_vmcs12(vcpu)) {
5732 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5733 
5734 			if (vmx->nested.hv_evmcs)
5735 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5736 
5737 			if (is_guest_mode(vcpu) &&
5738 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
5739 			    vmcs12->vmcs_link_pointer != -1ull)
5740 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5741 		}
5742 
5743 		if (vmx->nested.smm.vmxon)
5744 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5745 
5746 		if (vmx->nested.smm.guest_mode)
5747 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5748 
5749 		if (is_guest_mode(vcpu)) {
5750 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5751 
5752 			if (vmx->nested.nested_run_pending)
5753 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5754 
5755 			if (vmx->nested.mtf_pending)
5756 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
5757 		}
5758 	}
5759 
5760 	if (user_data_size < kvm_state.size)
5761 		goto out;
5762 
5763 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5764 		return -EFAULT;
5765 
5766 	if (!vmx_has_valid_vmcs12(vcpu))
5767 		goto out;
5768 
5769 	/*
5770 	 * When running L2, the authoritative vmcs12 state is in the
5771 	 * vmcs02. When running L1, the authoritative vmcs12 state is
5772 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
5773 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5774 	 * vmcs12 state is in the vmcs12 already.
5775 	 */
5776 	if (is_guest_mode(vcpu)) {
5777 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5778 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5779 	} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5780 		if (vmx->nested.hv_evmcs)
5781 			copy_enlightened_to_vmcs12(vmx);
5782 		else if (enable_shadow_vmcs)
5783 			copy_shadow_to_vmcs12(vmx);
5784 	}
5785 
5786 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5787 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5788 
5789 	/*
5790 	 * Copy over the full allocated size of vmcs12 rather than just the size
5791 	 * of the struct.
5792 	 */
5793 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5794 		return -EFAULT;
5795 
5796 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5797 	    vmcs12->vmcs_link_pointer != -1ull) {
5798 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5799 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5800 			return -EFAULT;
5801 	}
5802 
5803 out:
5804 	return kvm_state.size;
5805 }
5806 
5807 /*
5808  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5809  */
5810 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5811 {
5812 	if (is_guest_mode(vcpu)) {
5813 		to_vmx(vcpu)->nested.nested_run_pending = 0;
5814 		nested_vmx_vmexit(vcpu, -1, 0, 0);
5815 	}
5816 	free_nested(vcpu);
5817 }
5818 
5819 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5820 				struct kvm_nested_state __user *user_kvm_nested_state,
5821 				struct kvm_nested_state *kvm_state)
5822 {
5823 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5824 	struct vmcs12 *vmcs12;
5825 	u32 exit_qual;
5826 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5827 		&user_kvm_nested_state->data.vmx[0];
5828 	int ret;
5829 
5830 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5831 		return -EINVAL;
5832 
5833 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5834 		if (kvm_state->hdr.vmx.smm.flags)
5835 			return -EINVAL;
5836 
5837 		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5838 			return -EINVAL;
5839 
5840 		/*
5841 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5842 		 * enable eVMCS capability on vCPU. However, since then
5843 		 * code was changed such that flag signals vmcs12 should
5844 		 * be copied into eVMCS in guest memory.
5845 		 *
5846 		 * To preserve backwards compatability, allow user
5847 		 * to set this flag even when there is no VMXON region.
5848 		 */
5849 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5850 			return -EINVAL;
5851 	} else {
5852 		if (!nested_vmx_allowed(vcpu))
5853 			return -EINVAL;
5854 
5855 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5856 			return -EINVAL;
5857 	}
5858 
5859 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5860 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5861 		return -EINVAL;
5862 
5863 	if (kvm_state->hdr.vmx.smm.flags &
5864 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5865 		return -EINVAL;
5866 
5867 	/*
5868 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
5869 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5870 	 * must be zero.
5871 	 */
5872 	if (is_smm(vcpu) ?
5873 		(kvm_state->flags &
5874 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5875 		: kvm_state->hdr.vmx.smm.flags)
5876 		return -EINVAL;
5877 
5878 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5879 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5880 		return -EINVAL;
5881 
5882 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5883 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5884 			return -EINVAL;
5885 
5886 	vmx_leave_nested(vcpu);
5887 
5888 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5889 		return 0;
5890 
5891 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5892 	ret = enter_vmx_operation(vcpu);
5893 	if (ret)
5894 		return ret;
5895 
5896 	/* Empty 'VMXON' state is permitted */
5897 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5898 		return 0;
5899 
5900 	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5901 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5902 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5903 			return -EINVAL;
5904 
5905 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5906 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5907 		/*
5908 		 * Sync eVMCS upon entry as we may not have
5909 		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5910 		 */
5911 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5912 	} else {
5913 		return -EINVAL;
5914 	}
5915 
5916 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5917 		vmx->nested.smm.vmxon = true;
5918 		vmx->nested.vmxon = false;
5919 
5920 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5921 			vmx->nested.smm.guest_mode = true;
5922 	}
5923 
5924 	vmcs12 = get_vmcs12(vcpu);
5925 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5926 		return -EFAULT;
5927 
5928 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5929 		return -EINVAL;
5930 
5931 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5932 		return 0;
5933 
5934 	vmx->nested.nested_run_pending =
5935 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5936 
5937 	vmx->nested.mtf_pending =
5938 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
5939 
5940 	ret = -EINVAL;
5941 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5942 	    vmcs12->vmcs_link_pointer != -1ull) {
5943 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5944 
5945 		if (kvm_state->size <
5946 		    sizeof(*kvm_state) +
5947 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5948 			goto error_guest_mode;
5949 
5950 		if (copy_from_user(shadow_vmcs12,
5951 				   user_vmx_nested_state->shadow_vmcs12,
5952 				   sizeof(*shadow_vmcs12))) {
5953 			ret = -EFAULT;
5954 			goto error_guest_mode;
5955 		}
5956 
5957 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5958 		    !shadow_vmcs12->hdr.shadow_vmcs)
5959 			goto error_guest_mode;
5960 	}
5961 
5962 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
5963 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
5964 	    nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5965 		goto error_guest_mode;
5966 
5967 	vmx->nested.dirty_vmcs12 = true;
5968 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
5969 	if (ret)
5970 		goto error_guest_mode;
5971 
5972 	return 0;
5973 
5974 error_guest_mode:
5975 	vmx->nested.nested_run_pending = 0;
5976 	return ret;
5977 }
5978 
5979 void nested_vmx_set_vmcs_shadowing_bitmap(void)
5980 {
5981 	if (enable_shadow_vmcs) {
5982 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5983 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5984 	}
5985 }
5986 
5987 /*
5988  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5989  * returned for the various VMX controls MSRs when nested VMX is enabled.
5990  * The same values should also be used to verify that vmcs12 control fields are
5991  * valid during nested entry from L1 to L2.
5992  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5993  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5994  * bit in the high half is on if the corresponding bit in the control field
5995  * may be on. See also vmx_control_verify().
5996  */
5997 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
5998 {
5999 	/*
6000 	 * Note that as a general rule, the high half of the MSRs (bits in
6001 	 * the control fields which may be 1) should be initialized by the
6002 	 * intersection of the underlying hardware's MSR (i.e., features which
6003 	 * can be supported) and the list of features we want to expose -
6004 	 * because they are known to be properly supported in our code.
6005 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6006 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6007 	 * reason is that if one of these bits is necessary, it will appear
6008 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6009 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6010 	 * nested_vmx_exit_reflected() will not pass related exits to L1.
6011 	 * These rules have exceptions below.
6012 	 */
6013 
6014 	/* pin-based controls */
6015 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6016 		msrs->pinbased_ctls_low,
6017 		msrs->pinbased_ctls_high);
6018 	msrs->pinbased_ctls_low |=
6019 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6020 	msrs->pinbased_ctls_high &=
6021 		PIN_BASED_EXT_INTR_MASK |
6022 		PIN_BASED_NMI_EXITING |
6023 		PIN_BASED_VIRTUAL_NMIS |
6024 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6025 	msrs->pinbased_ctls_high |=
6026 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6027 		PIN_BASED_VMX_PREEMPTION_TIMER;
6028 
6029 	/* exit controls */
6030 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6031 		msrs->exit_ctls_low,
6032 		msrs->exit_ctls_high);
6033 	msrs->exit_ctls_low =
6034 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6035 
6036 	msrs->exit_ctls_high &=
6037 #ifdef CONFIG_X86_64
6038 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6039 #endif
6040 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6041 	msrs->exit_ctls_high |=
6042 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6043 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6044 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6045 
6046 	/* We support free control of debug control saving. */
6047 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6048 
6049 	/* entry controls */
6050 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6051 		msrs->entry_ctls_low,
6052 		msrs->entry_ctls_high);
6053 	msrs->entry_ctls_low =
6054 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6055 	msrs->entry_ctls_high &=
6056 #ifdef CONFIG_X86_64
6057 		VM_ENTRY_IA32E_MODE |
6058 #endif
6059 		VM_ENTRY_LOAD_IA32_PAT;
6060 	msrs->entry_ctls_high |=
6061 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6062 
6063 	/* We support free control of debug control loading. */
6064 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6065 
6066 	/* cpu-based controls */
6067 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6068 		msrs->procbased_ctls_low,
6069 		msrs->procbased_ctls_high);
6070 	msrs->procbased_ctls_low =
6071 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6072 	msrs->procbased_ctls_high &=
6073 		CPU_BASED_INTR_WINDOW_EXITING |
6074 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6075 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6076 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6077 		CPU_BASED_CR3_STORE_EXITING |
6078 #ifdef CONFIG_X86_64
6079 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6080 #endif
6081 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6082 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6083 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6084 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6085 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6086 	/*
6087 	 * We can allow some features even when not supported by the
6088 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6089 	 * can use it to avoid exits to L1 - even when L0 runs L2
6090 	 * without MSR bitmaps.
6091 	 */
6092 	msrs->procbased_ctls_high |=
6093 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6094 		CPU_BASED_USE_MSR_BITMAPS;
6095 
6096 	/* We support free control of CR3 access interception. */
6097 	msrs->procbased_ctls_low &=
6098 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6099 
6100 	/*
6101 	 * secondary cpu-based controls.  Do not include those that
6102 	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
6103 	 */
6104 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6105 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6106 		      msrs->secondary_ctls_low,
6107 		      msrs->secondary_ctls_high);
6108 
6109 	msrs->secondary_ctls_low = 0;
6110 	msrs->secondary_ctls_high &=
6111 		SECONDARY_EXEC_DESC |
6112 		SECONDARY_EXEC_RDTSCP |
6113 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6114 		SECONDARY_EXEC_WBINVD_EXITING |
6115 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6116 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6117 		SECONDARY_EXEC_RDRAND_EXITING |
6118 		SECONDARY_EXEC_ENABLE_INVPCID |
6119 		SECONDARY_EXEC_RDSEED_EXITING |
6120 		SECONDARY_EXEC_XSAVES;
6121 
6122 	/*
6123 	 * We can emulate "VMCS shadowing," even if the hardware
6124 	 * doesn't support it.
6125 	 */
6126 	msrs->secondary_ctls_high |=
6127 		SECONDARY_EXEC_SHADOW_VMCS;
6128 
6129 	if (enable_ept) {
6130 		/* nested EPT: emulate EPT also to L1 */
6131 		msrs->secondary_ctls_high |=
6132 			SECONDARY_EXEC_ENABLE_EPT;
6133 		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
6134 			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
6135 		if (cpu_has_vmx_ept_execute_only())
6136 			msrs->ept_caps |=
6137 				VMX_EPT_EXECUTE_ONLY_BIT;
6138 		msrs->ept_caps &= ept_caps;
6139 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6140 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6141 			VMX_EPT_1GB_PAGE_BIT;
6142 		if (enable_ept_ad_bits) {
6143 			msrs->secondary_ctls_high |=
6144 				SECONDARY_EXEC_ENABLE_PML;
6145 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6146 		}
6147 	}
6148 
6149 	if (cpu_has_vmx_vmfunc()) {
6150 		msrs->secondary_ctls_high |=
6151 			SECONDARY_EXEC_ENABLE_VMFUNC;
6152 		/*
6153 		 * Advertise EPTP switching unconditionally
6154 		 * since we emulate it
6155 		 */
6156 		if (enable_ept)
6157 			msrs->vmfunc_controls =
6158 				VMX_VMFUNC_EPTP_SWITCHING;
6159 	}
6160 
6161 	/*
6162 	 * Old versions of KVM use the single-context version without
6163 	 * checking for support, so declare that it is supported even
6164 	 * though it is treated as global context.  The alternative is
6165 	 * not failing the single-context invvpid, and it is worse.
6166 	 */
6167 	if (enable_vpid) {
6168 		msrs->secondary_ctls_high |=
6169 			SECONDARY_EXEC_ENABLE_VPID;
6170 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6171 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6172 	}
6173 
6174 	if (enable_unrestricted_guest)
6175 		msrs->secondary_ctls_high |=
6176 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6177 
6178 	if (flexpriority_enabled)
6179 		msrs->secondary_ctls_high |=
6180 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6181 
6182 	/* miscellaneous data */
6183 	rdmsr(MSR_IA32_VMX_MISC,
6184 		msrs->misc_low,
6185 		msrs->misc_high);
6186 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6187 	msrs->misc_low |=
6188 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6189 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6190 		VMX_MISC_ACTIVITY_HLT;
6191 	msrs->misc_high = 0;
6192 
6193 	/*
6194 	 * This MSR reports some information about VMX support. We
6195 	 * should return information about the VMX we emulate for the
6196 	 * guest, and the VMCS structure we give it - not about the
6197 	 * VMX support of the underlying hardware.
6198 	 */
6199 	msrs->basic =
6200 		VMCS12_REVISION |
6201 		VMX_BASIC_TRUE_CTLS |
6202 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6203 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6204 
6205 	if (cpu_has_vmx_basic_inout())
6206 		msrs->basic |= VMX_BASIC_INOUT;
6207 
6208 	/*
6209 	 * These MSRs specify bits which the guest must keep fixed on
6210 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6211 	 * We picked the standard core2 setting.
6212 	 */
6213 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6214 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6215 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6216 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6217 
6218 	/* These MSRs specify bits which the guest must keep fixed off. */
6219 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6220 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6221 
6222 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
6223 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6224 }
6225 
6226 void nested_vmx_hardware_unsetup(void)
6227 {
6228 	int i;
6229 
6230 	if (enable_shadow_vmcs) {
6231 		for (i = 0; i < VMX_BITMAP_NR; i++)
6232 			free_page((unsigned long)vmx_bitmap[i]);
6233 	}
6234 }
6235 
6236 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6237 {
6238 	int i;
6239 
6240 	if (!cpu_has_vmx_shadow_vmcs())
6241 		enable_shadow_vmcs = 0;
6242 	if (enable_shadow_vmcs) {
6243 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6244 			/*
6245 			 * The vmx_bitmap is not tied to a VM and so should
6246 			 * not be charged to a memcg.
6247 			 */
6248 			vmx_bitmap[i] = (unsigned long *)
6249 				__get_free_page(GFP_KERNEL);
6250 			if (!vmx_bitmap[i]) {
6251 				nested_vmx_hardware_unsetup();
6252 				return -ENOMEM;
6253 			}
6254 		}
6255 
6256 		init_vmcs_shadow_fields();
6257 	}
6258 
6259 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6260 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6261 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6262 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6263 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6264 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6265 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6266 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6267 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6268 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6269 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6270 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6271 
6272 	kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6273 	kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6274 	kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6275 	kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages;
6276 	kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6277 	kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6278 
6279 	return 0;
6280 }
6281