1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/frame.h> 4 #include <linux/percpu.h> 5 6 #include <asm/debugreg.h> 7 #include <asm/mmu_context.h> 8 9 #include "cpuid.h" 10 #include "hyperv.h" 11 #include "mmu.h" 12 #include "nested.h" 13 #include "pmu.h" 14 #include "trace.h" 15 #include "x86.h" 16 17 static bool __read_mostly enable_shadow_vmcs = 1; 18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); 19 20 static bool __read_mostly nested_early_check = 0; 21 module_param(nested_early_check, bool, S_IRUGO); 22 23 #define CC(consistency_check) \ 24 ({ \ 25 bool failed = (consistency_check); \ 26 if (failed) \ 27 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \ 28 failed; \ 29 }) 30 31 /* 32 * Hyper-V requires all of these, so mark them as supported even though 33 * they are just treated the same as all-context. 34 */ 35 #define VMX_VPID_EXTENT_SUPPORTED_MASK \ 36 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ 37 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ 38 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ 39 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) 40 41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 42 43 enum { 44 VMX_VMREAD_BITMAP, 45 VMX_VMWRITE_BITMAP, 46 VMX_BITMAP_NR 47 }; 48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; 49 50 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) 51 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) 52 53 struct shadow_vmcs_field { 54 u16 encoding; 55 u16 offset; 56 }; 57 static struct shadow_vmcs_field shadow_read_only_fields[] = { 58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) }, 59 #include "vmcs_shadow_fields.h" 60 }; 61 static int max_shadow_read_only_fields = 62 ARRAY_SIZE(shadow_read_only_fields); 63 64 static struct shadow_vmcs_field shadow_read_write_fields[] = { 65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) }, 66 #include "vmcs_shadow_fields.h" 67 }; 68 static int max_shadow_read_write_fields = 69 ARRAY_SIZE(shadow_read_write_fields); 70 71 static void init_vmcs_shadow_fields(void) 72 { 73 int i, j; 74 75 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); 76 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); 77 78 for (i = j = 0; i < max_shadow_read_only_fields; i++) { 79 struct shadow_vmcs_field entry = shadow_read_only_fields[i]; 80 u16 field = entry.encoding; 81 82 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && 83 (i + 1 == max_shadow_read_only_fields || 84 shadow_read_only_fields[i + 1].encoding != field + 1)) 85 pr_err("Missing field from shadow_read_only_field %x\n", 86 field + 1); 87 88 clear_bit(field, vmx_vmread_bitmap); 89 if (field & 1) 90 #ifdef CONFIG_X86_64 91 continue; 92 #else 93 entry.offset += sizeof(u32); 94 #endif 95 shadow_read_only_fields[j++] = entry; 96 } 97 max_shadow_read_only_fields = j; 98 99 for (i = j = 0; i < max_shadow_read_write_fields; i++) { 100 struct shadow_vmcs_field entry = shadow_read_write_fields[i]; 101 u16 field = entry.encoding; 102 103 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && 104 (i + 1 == max_shadow_read_write_fields || 105 shadow_read_write_fields[i + 1].encoding != field + 1)) 106 pr_err("Missing field from shadow_read_write_field %x\n", 107 field + 1); 108 109 WARN_ONCE(field >= GUEST_ES_AR_BYTES && 110 field <= GUEST_TR_AR_BYTES, 111 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES"); 112 113 /* 114 * PML and the preemption timer can be emulated, but the 115 * processor cannot vmwrite to fields that don't exist 116 * on bare metal. 117 */ 118 switch (field) { 119 case GUEST_PML_INDEX: 120 if (!cpu_has_vmx_pml()) 121 continue; 122 break; 123 case VMX_PREEMPTION_TIMER_VALUE: 124 if (!cpu_has_vmx_preemption_timer()) 125 continue; 126 break; 127 case GUEST_INTR_STATUS: 128 if (!cpu_has_vmx_apicv()) 129 continue; 130 break; 131 default: 132 break; 133 } 134 135 clear_bit(field, vmx_vmwrite_bitmap); 136 clear_bit(field, vmx_vmread_bitmap); 137 if (field & 1) 138 #ifdef CONFIG_X86_64 139 continue; 140 #else 141 entry.offset += sizeof(u32); 142 #endif 143 shadow_read_write_fields[j++] = entry; 144 } 145 max_shadow_read_write_fields = j; 146 } 147 148 /* 149 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), 150 * set the success or error code of an emulated VMX instruction (as specified 151 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated 152 * instruction. 153 */ 154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu) 155 { 156 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) 157 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 158 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); 159 return kvm_skip_emulated_instruction(vcpu); 160 } 161 162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) 163 { 164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) 165 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | 166 X86_EFLAGS_SF | X86_EFLAGS_OF)) 167 | X86_EFLAGS_CF); 168 return kvm_skip_emulated_instruction(vcpu); 169 } 170 171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu, 172 u32 vm_instruction_error) 173 { 174 struct vcpu_vmx *vmx = to_vmx(vcpu); 175 176 /* 177 * failValid writes the error number to the current VMCS, which 178 * can't be done if there isn't a current VMCS. 179 */ 180 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs) 181 return nested_vmx_failInvalid(vcpu); 182 183 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) 184 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | 185 X86_EFLAGS_SF | X86_EFLAGS_OF)) 186 | X86_EFLAGS_ZF); 187 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; 188 /* 189 * We don't need to force a shadow sync because 190 * VM_INSTRUCTION_ERROR is not shadowed 191 */ 192 return kvm_skip_emulated_instruction(vcpu); 193 } 194 195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) 196 { 197 /* TODO: not to reset guest simply here. */ 198 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 199 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); 200 } 201 202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high) 203 { 204 return fixed_bits_valid(control, low, high); 205 } 206 207 static inline u64 vmx_control_msr(u32 low, u32 high) 208 { 209 return low | ((u64)high << 32); 210 } 211 212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) 213 { 214 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS); 215 vmcs_write64(VMCS_LINK_POINTER, -1ull); 216 vmx->nested.need_vmcs12_to_shadow_sync = false; 217 } 218 219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) 220 { 221 struct vcpu_vmx *vmx = to_vmx(vcpu); 222 223 if (!vmx->nested.hv_evmcs) 224 return; 225 226 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true); 227 vmx->nested.hv_evmcs_vmptr = 0; 228 vmx->nested.hv_evmcs = NULL; 229 } 230 231 /* 232 * Free whatever needs to be freed from vmx->nested when L1 goes down, or 233 * just stops using VMX. 234 */ 235 static void free_nested(struct kvm_vcpu *vcpu) 236 { 237 struct vcpu_vmx *vmx = to_vmx(vcpu); 238 239 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) 240 return; 241 242 kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); 243 244 vmx->nested.vmxon = false; 245 vmx->nested.smm.vmxon = false; 246 free_vpid(vmx->nested.vpid02); 247 vmx->nested.posted_intr_nv = -1; 248 vmx->nested.current_vmptr = -1ull; 249 if (enable_shadow_vmcs) { 250 vmx_disable_shadow_vmcs(vmx); 251 vmcs_clear(vmx->vmcs01.shadow_vmcs); 252 free_vmcs(vmx->vmcs01.shadow_vmcs); 253 vmx->vmcs01.shadow_vmcs = NULL; 254 } 255 kfree(vmx->nested.cached_vmcs12); 256 vmx->nested.cached_vmcs12 = NULL; 257 kfree(vmx->nested.cached_shadow_vmcs12); 258 vmx->nested.cached_shadow_vmcs12 = NULL; 259 /* Unpin physical memory we referred to in the vmcs02 */ 260 if (vmx->nested.apic_access_page) { 261 kvm_release_page_clean(vmx->nested.apic_access_page); 262 vmx->nested.apic_access_page = NULL; 263 } 264 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true); 265 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true); 266 vmx->nested.pi_desc = NULL; 267 268 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 269 270 nested_release_evmcs(vcpu); 271 272 free_loaded_vmcs(&vmx->nested.vmcs02); 273 } 274 275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx, 276 struct loaded_vmcs *prev) 277 { 278 struct vmcs_host_state *dest, *src; 279 280 if (unlikely(!vmx->guest_state_loaded)) 281 return; 282 283 src = &prev->host_state; 284 dest = &vmx->loaded_vmcs->host_state; 285 286 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base); 287 dest->ldt_sel = src->ldt_sel; 288 #ifdef CONFIG_X86_64 289 dest->ds_sel = src->ds_sel; 290 dest->es_sel = src->es_sel; 291 #endif 292 } 293 294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) 295 { 296 struct vcpu_vmx *vmx = to_vmx(vcpu); 297 struct loaded_vmcs *prev; 298 int cpu; 299 300 if (vmx->loaded_vmcs == vmcs) 301 return; 302 303 cpu = get_cpu(); 304 prev = vmx->loaded_vmcs; 305 vmx->loaded_vmcs = vmcs; 306 vmx_vcpu_load_vmcs(vcpu, cpu); 307 vmx_sync_vmcs_host_state(vmx, prev); 308 put_cpu(); 309 310 vmx_segment_cache_clear(vmx); 311 } 312 313 /* 314 * Ensure that the current vmcs of the logical processor is the 315 * vmcs01 of the vcpu before calling free_nested(). 316 */ 317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu) 318 { 319 vcpu_load(vcpu); 320 vmx_leave_nested(vcpu); 321 vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01); 322 free_nested(vcpu); 323 vcpu_put(vcpu); 324 } 325 326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, 327 struct x86_exception *fault) 328 { 329 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 330 struct vcpu_vmx *vmx = to_vmx(vcpu); 331 u32 exit_reason; 332 unsigned long exit_qualification = vcpu->arch.exit_qualification; 333 334 if (vmx->nested.pml_full) { 335 exit_reason = EXIT_REASON_PML_FULL; 336 vmx->nested.pml_full = false; 337 exit_qualification &= INTR_INFO_UNBLOCK_NMI; 338 } else if (fault->error_code & PFERR_RSVD_MASK) 339 exit_reason = EXIT_REASON_EPT_MISCONFIG; 340 else 341 exit_reason = EXIT_REASON_EPT_VIOLATION; 342 343 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); 344 vmcs12->guest_physical_address = fault->address; 345 } 346 347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) 348 { 349 WARN_ON(mmu_is_nested(vcpu)); 350 351 vcpu->arch.mmu = &vcpu->arch.guest_mmu; 352 kvm_init_shadow_ept_mmu(vcpu, 353 to_vmx(vcpu)->nested.msrs.ept_caps & 354 VMX_EPT_EXECUTE_ONLY_BIT, 355 nested_ept_ad_enabled(vcpu), 356 nested_ept_get_cr3(vcpu)); 357 vcpu->arch.mmu->set_cr3 = vmx_set_cr3; 358 vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3; 359 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; 360 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; 361 362 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; 363 } 364 365 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) 366 { 367 vcpu->arch.mmu = &vcpu->arch.root_mmu; 368 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 369 } 370 371 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, 372 u16 error_code) 373 { 374 bool inequality, bit; 375 376 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; 377 inequality = 378 (error_code & vmcs12->page_fault_error_code_mask) != 379 vmcs12->page_fault_error_code_match; 380 return inequality ^ bit; 381 } 382 383 384 /* 385 * KVM wants to inject page-faults which it got to the guest. This function 386 * checks whether in a nested guest, we need to inject them to L1 or L2. 387 */ 388 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) 389 { 390 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 391 unsigned int nr = vcpu->arch.exception.nr; 392 bool has_payload = vcpu->arch.exception.has_payload; 393 unsigned long payload = vcpu->arch.exception.payload; 394 395 if (nr == PF_VECTOR) { 396 if (vcpu->arch.exception.nested_apf) { 397 *exit_qual = vcpu->arch.apf.nested_apf_token; 398 return 1; 399 } 400 if (nested_vmx_is_page_fault_vmexit(vmcs12, 401 vcpu->arch.exception.error_code)) { 402 *exit_qual = has_payload ? payload : vcpu->arch.cr2; 403 return 1; 404 } 405 } else if (vmcs12->exception_bitmap & (1u << nr)) { 406 if (nr == DB_VECTOR) { 407 if (!has_payload) { 408 payload = vcpu->arch.dr6; 409 payload &= ~(DR6_FIXED_1 | DR6_BT); 410 payload ^= DR6_RTM; 411 } 412 *exit_qual = payload; 413 } else 414 *exit_qual = 0; 415 return 1; 416 } 417 418 return 0; 419 } 420 421 422 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, 423 struct x86_exception *fault) 424 { 425 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 426 427 WARN_ON(!is_guest_mode(vcpu)); 428 429 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && 430 !to_vmx(vcpu)->nested.nested_run_pending) { 431 vmcs12->vm_exit_intr_error_code = fault->error_code; 432 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, 433 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | 434 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, 435 fault->address); 436 } else { 437 kvm_inject_page_fault(vcpu, fault); 438 } 439 } 440 441 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) 442 { 443 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); 444 } 445 446 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, 447 struct vmcs12 *vmcs12) 448 { 449 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 450 return 0; 451 452 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) || 453 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b))) 454 return -EINVAL; 455 456 return 0; 457 } 458 459 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, 460 struct vmcs12 *vmcs12) 461 { 462 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) 463 return 0; 464 465 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap))) 466 return -EINVAL; 467 468 return 0; 469 } 470 471 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, 472 struct vmcs12 *vmcs12) 473 { 474 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 475 return 0; 476 477 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))) 478 return -EINVAL; 479 480 return 0; 481 } 482 483 /* 484 * Check if MSR is intercepted for L01 MSR bitmap. 485 */ 486 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) 487 { 488 unsigned long *msr_bitmap; 489 int f = sizeof(unsigned long); 490 491 if (!cpu_has_vmx_msr_bitmap()) 492 return true; 493 494 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 495 496 if (msr <= 0x1fff) { 497 return !!test_bit(msr, msr_bitmap + 0x800 / f); 498 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 499 msr &= 0x1fff; 500 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 501 } 502 503 return true; 504 } 505 506 /* 507 * If a msr is allowed by L0, we should check whether it is allowed by L1. 508 * The corresponding bit will be cleared unless both of L0 and L1 allow it. 509 */ 510 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, 511 unsigned long *msr_bitmap_nested, 512 u32 msr, int type) 513 { 514 int f = sizeof(unsigned long); 515 516 /* 517 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 518 * have the write-low and read-high bitmap offsets the wrong way round. 519 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 520 */ 521 if (msr <= 0x1fff) { 522 if (type & MSR_TYPE_R && 523 !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) 524 /* read-low */ 525 __clear_bit(msr, msr_bitmap_nested + 0x000 / f); 526 527 if (type & MSR_TYPE_W && 528 !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) 529 /* write-low */ 530 __clear_bit(msr, msr_bitmap_nested + 0x800 / f); 531 532 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 533 msr &= 0x1fff; 534 if (type & MSR_TYPE_R && 535 !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) 536 /* read-high */ 537 __clear_bit(msr, msr_bitmap_nested + 0x400 / f); 538 539 if (type & MSR_TYPE_W && 540 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) 541 /* write-high */ 542 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); 543 544 } 545 } 546 547 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) 548 { 549 int msr; 550 551 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 552 unsigned word = msr / BITS_PER_LONG; 553 554 msr_bitmap[word] = ~0; 555 msr_bitmap[word + (0x800 / sizeof(long))] = ~0; 556 } 557 } 558 559 /* 560 * Merge L0's and L1's MSR bitmap, return false to indicate that 561 * we do not use the hardware. 562 */ 563 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, 564 struct vmcs12 *vmcs12) 565 { 566 int msr; 567 unsigned long *msr_bitmap_l1; 568 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; 569 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map; 570 571 /* Nothing to do if the MSR bitmap is not in use. */ 572 if (!cpu_has_vmx_msr_bitmap() || 573 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) 574 return false; 575 576 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map)) 577 return false; 578 579 msr_bitmap_l1 = (unsigned long *)map->hva; 580 581 /* 582 * To keep the control flow simple, pay eight 8-byte writes (sixteen 583 * 4-byte writes on 32-bit systems) up front to enable intercepts for 584 * the x2APIC MSR range and selectively disable them below. 585 */ 586 enable_x2apic_msr_intercepts(msr_bitmap_l0); 587 588 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) { 589 if (nested_cpu_has_apic_reg_virt(vmcs12)) { 590 /* 591 * L0 need not intercept reads for MSRs between 0x800 592 * and 0x8ff, it just lets the processor take the value 593 * from the virtual-APIC page; take those 256 bits 594 * directly from the L1 bitmap. 595 */ 596 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 597 unsigned word = msr / BITS_PER_LONG; 598 599 msr_bitmap_l0[word] = msr_bitmap_l1[word]; 600 } 601 } 602 603 nested_vmx_disable_intercept_for_msr( 604 msr_bitmap_l1, msr_bitmap_l0, 605 X2APIC_MSR(APIC_TASKPRI), 606 MSR_TYPE_R | MSR_TYPE_W); 607 608 if (nested_cpu_has_vid(vmcs12)) { 609 nested_vmx_disable_intercept_for_msr( 610 msr_bitmap_l1, msr_bitmap_l0, 611 X2APIC_MSR(APIC_EOI), 612 MSR_TYPE_W); 613 nested_vmx_disable_intercept_for_msr( 614 msr_bitmap_l1, msr_bitmap_l0, 615 X2APIC_MSR(APIC_SELF_IPI), 616 MSR_TYPE_W); 617 } 618 } 619 620 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */ 621 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0, 622 MSR_FS_BASE, MSR_TYPE_RW); 623 624 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0, 625 MSR_GS_BASE, MSR_TYPE_RW); 626 627 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0, 628 MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 629 630 /* 631 * Checking the L0->L1 bitmap is trying to verify two things: 632 * 633 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This 634 * ensures that we do not accidentally generate an L02 MSR bitmap 635 * from the L12 MSR bitmap that is too permissive. 636 * 2. That L1 or L2s have actually used the MSR. This avoids 637 * unnecessarily merging of the bitmap if the MSR is unused. This 638 * works properly because we only update the L01 MSR bitmap lazily. 639 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only 640 * updated to reflect this when L1 (or its L2s) actually write to 641 * the MSR. 642 */ 643 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL)) 644 nested_vmx_disable_intercept_for_msr( 645 msr_bitmap_l1, msr_bitmap_l0, 646 MSR_IA32_SPEC_CTRL, 647 MSR_TYPE_R | MSR_TYPE_W); 648 649 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD)) 650 nested_vmx_disable_intercept_for_msr( 651 msr_bitmap_l1, msr_bitmap_l0, 652 MSR_IA32_PRED_CMD, 653 MSR_TYPE_W); 654 655 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false); 656 657 return true; 658 } 659 660 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, 661 struct vmcs12 *vmcs12) 662 { 663 struct kvm_host_map map; 664 struct vmcs12 *shadow; 665 666 if (!nested_cpu_has_shadow_vmcs(vmcs12) || 667 vmcs12->vmcs_link_pointer == -1ull) 668 return; 669 670 shadow = get_shadow_vmcs12(vcpu); 671 672 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)) 673 return; 674 675 memcpy(shadow, map.hva, VMCS12_SIZE); 676 kvm_vcpu_unmap(vcpu, &map, false); 677 } 678 679 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, 680 struct vmcs12 *vmcs12) 681 { 682 struct vcpu_vmx *vmx = to_vmx(vcpu); 683 684 if (!nested_cpu_has_shadow_vmcs(vmcs12) || 685 vmcs12->vmcs_link_pointer == -1ull) 686 return; 687 688 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer, 689 get_shadow_vmcs12(vcpu), VMCS12_SIZE); 690 } 691 692 /* 693 * In nested virtualization, check if L1 has set 694 * VM_EXIT_ACK_INTR_ON_EXIT 695 */ 696 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) 697 { 698 return get_vmcs12(vcpu)->vm_exit_controls & 699 VM_EXIT_ACK_INTR_ON_EXIT; 700 } 701 702 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) 703 { 704 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu)); 705 } 706 707 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, 708 struct vmcs12 *vmcs12) 709 { 710 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && 711 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr))) 712 return -EINVAL; 713 else 714 return 0; 715 } 716 717 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, 718 struct vmcs12 *vmcs12) 719 { 720 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && 721 !nested_cpu_has_apic_reg_virt(vmcs12) && 722 !nested_cpu_has_vid(vmcs12) && 723 !nested_cpu_has_posted_intr(vmcs12)) 724 return 0; 725 726 /* 727 * If virtualize x2apic mode is enabled, 728 * virtualize apic access must be disabled. 729 */ 730 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) && 731 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))) 732 return -EINVAL; 733 734 /* 735 * If virtual interrupt delivery is enabled, 736 * we must exit on external interrupts. 737 */ 738 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu))) 739 return -EINVAL; 740 741 /* 742 * bits 15:8 should be zero in posted_intr_nv, 743 * the descriptor address has been already checked 744 * in nested_get_vmcs12_pages. 745 * 746 * bits 5:0 of posted_intr_desc_addr should be zero. 747 */ 748 if (nested_cpu_has_posted_intr(vmcs12) && 749 (CC(!nested_cpu_has_vid(vmcs12)) || 750 CC(!nested_exit_intr_ack_set(vcpu)) || 751 CC((vmcs12->posted_intr_nv & 0xff00)) || 752 CC((vmcs12->posted_intr_desc_addr & 0x3f)) || 753 CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))) 754 return -EINVAL; 755 756 /* tpr shadow is needed by all apicv features. */ 757 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))) 758 return -EINVAL; 759 760 return 0; 761 } 762 763 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, 764 u32 count, u64 addr) 765 { 766 int maxphyaddr; 767 768 if (count == 0) 769 return 0; 770 maxphyaddr = cpuid_maxphyaddr(vcpu); 771 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || 772 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) 773 return -EINVAL; 774 775 return 0; 776 } 777 778 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu, 779 struct vmcs12 *vmcs12) 780 { 781 if (CC(nested_vmx_check_msr_switch(vcpu, 782 vmcs12->vm_exit_msr_load_count, 783 vmcs12->vm_exit_msr_load_addr)) || 784 CC(nested_vmx_check_msr_switch(vcpu, 785 vmcs12->vm_exit_msr_store_count, 786 vmcs12->vm_exit_msr_store_addr))) 787 return -EINVAL; 788 789 return 0; 790 } 791 792 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu, 793 struct vmcs12 *vmcs12) 794 { 795 if (CC(nested_vmx_check_msr_switch(vcpu, 796 vmcs12->vm_entry_msr_load_count, 797 vmcs12->vm_entry_msr_load_addr))) 798 return -EINVAL; 799 800 return 0; 801 } 802 803 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, 804 struct vmcs12 *vmcs12) 805 { 806 if (!nested_cpu_has_pml(vmcs12)) 807 return 0; 808 809 if (CC(!nested_cpu_has_ept(vmcs12)) || 810 CC(!page_address_valid(vcpu, vmcs12->pml_address))) 811 return -EINVAL; 812 813 return 0; 814 } 815 816 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu, 817 struct vmcs12 *vmcs12) 818 { 819 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) && 820 !nested_cpu_has_ept(vmcs12))) 821 return -EINVAL; 822 return 0; 823 } 824 825 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu, 826 struct vmcs12 *vmcs12) 827 { 828 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) && 829 !nested_cpu_has_ept(vmcs12))) 830 return -EINVAL; 831 return 0; 832 } 833 834 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, 835 struct vmcs12 *vmcs12) 836 { 837 if (!nested_cpu_has_shadow_vmcs(vmcs12)) 838 return 0; 839 840 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) || 841 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap))) 842 return -EINVAL; 843 844 return 0; 845 } 846 847 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, 848 struct vmx_msr_entry *e) 849 { 850 /* x2APIC MSR accesses are not allowed */ 851 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)) 852 return -EINVAL; 853 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */ 854 CC(e->index == MSR_IA32_UCODE_REV)) 855 return -EINVAL; 856 if (CC(e->reserved != 0)) 857 return -EINVAL; 858 return 0; 859 } 860 861 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, 862 struct vmx_msr_entry *e) 863 { 864 if (CC(e->index == MSR_FS_BASE) || 865 CC(e->index == MSR_GS_BASE) || 866 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */ 867 nested_vmx_msr_check_common(vcpu, e)) 868 return -EINVAL; 869 return 0; 870 } 871 872 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, 873 struct vmx_msr_entry *e) 874 { 875 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */ 876 nested_vmx_msr_check_common(vcpu, e)) 877 return -EINVAL; 878 return 0; 879 } 880 881 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu) 882 { 883 struct vcpu_vmx *vmx = to_vmx(vcpu); 884 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, 885 vmx->nested.msrs.misc_high); 886 887 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER; 888 } 889 890 /* 891 * Load guest's/host's msr at nested entry/exit. 892 * return 0 for success, entry index for failure. 893 * 894 * One of the failure modes for MSR load/store is when a list exceeds the 895 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch 896 * as possible, process all valid entries before failing rather than precheck 897 * for a capacity violation. 898 */ 899 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) 900 { 901 u32 i; 902 struct vmx_msr_entry e; 903 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu); 904 905 for (i = 0; i < count; i++) { 906 if (unlikely(i >= max_msr_list_size)) 907 goto fail; 908 909 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), 910 &e, sizeof(e))) { 911 pr_debug_ratelimited( 912 "%s cannot read MSR entry (%u, 0x%08llx)\n", 913 __func__, i, gpa + i * sizeof(e)); 914 goto fail; 915 } 916 if (nested_vmx_load_msr_check(vcpu, &e)) { 917 pr_debug_ratelimited( 918 "%s check failed (%u, 0x%x, 0x%x)\n", 919 __func__, i, e.index, e.reserved); 920 goto fail; 921 } 922 if (kvm_set_msr(vcpu, e.index, e.value)) { 923 pr_debug_ratelimited( 924 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", 925 __func__, i, e.index, e.value); 926 goto fail; 927 } 928 } 929 return 0; 930 fail: 931 return i + 1; 932 } 933 934 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu, 935 u32 msr_index, 936 u64 *data) 937 { 938 struct vcpu_vmx *vmx = to_vmx(vcpu); 939 940 /* 941 * If the L0 hypervisor stored a more accurate value for the TSC that 942 * does not include the time taken for emulation of the L2->L1 943 * VM-exit in L0, use the more accurate value. 944 */ 945 if (msr_index == MSR_IA32_TSC) { 946 int index = vmx_find_msr_index(&vmx->msr_autostore.guest, 947 MSR_IA32_TSC); 948 949 if (index >= 0) { 950 u64 val = vmx->msr_autostore.guest.val[index].value; 951 952 *data = kvm_read_l1_tsc(vcpu, val); 953 return true; 954 } 955 } 956 957 if (kvm_get_msr(vcpu, msr_index, data)) { 958 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__, 959 msr_index); 960 return false; 961 } 962 return true; 963 } 964 965 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i, 966 struct vmx_msr_entry *e) 967 { 968 if (kvm_vcpu_read_guest(vcpu, 969 gpa + i * sizeof(*e), 970 e, 2 * sizeof(u32))) { 971 pr_debug_ratelimited( 972 "%s cannot read MSR entry (%u, 0x%08llx)\n", 973 __func__, i, gpa + i * sizeof(*e)); 974 return false; 975 } 976 if (nested_vmx_store_msr_check(vcpu, e)) { 977 pr_debug_ratelimited( 978 "%s check failed (%u, 0x%x, 0x%x)\n", 979 __func__, i, e->index, e->reserved); 980 return false; 981 } 982 return true; 983 } 984 985 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) 986 { 987 u64 data; 988 u32 i; 989 struct vmx_msr_entry e; 990 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu); 991 992 for (i = 0; i < count; i++) { 993 if (unlikely(i >= max_msr_list_size)) 994 return -EINVAL; 995 996 if (!read_and_check_msr_entry(vcpu, gpa, i, &e)) 997 return -EINVAL; 998 999 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data)) 1000 return -EINVAL; 1001 1002 if (kvm_vcpu_write_guest(vcpu, 1003 gpa + i * sizeof(e) + 1004 offsetof(struct vmx_msr_entry, value), 1005 &data, sizeof(data))) { 1006 pr_debug_ratelimited( 1007 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", 1008 __func__, i, e.index, data); 1009 return -EINVAL; 1010 } 1011 } 1012 return 0; 1013 } 1014 1015 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index) 1016 { 1017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1018 u32 count = vmcs12->vm_exit_msr_store_count; 1019 u64 gpa = vmcs12->vm_exit_msr_store_addr; 1020 struct vmx_msr_entry e; 1021 u32 i; 1022 1023 for (i = 0; i < count; i++) { 1024 if (!read_and_check_msr_entry(vcpu, gpa, i, &e)) 1025 return false; 1026 1027 if (e.index == msr_index) 1028 return true; 1029 } 1030 return false; 1031 } 1032 1033 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu, 1034 u32 msr_index) 1035 { 1036 struct vcpu_vmx *vmx = to_vmx(vcpu); 1037 struct vmx_msrs *autostore = &vmx->msr_autostore.guest; 1038 bool in_vmcs12_store_list; 1039 int msr_autostore_index; 1040 bool in_autostore_list; 1041 int last; 1042 1043 msr_autostore_index = vmx_find_msr_index(autostore, msr_index); 1044 in_autostore_list = msr_autostore_index >= 0; 1045 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index); 1046 1047 if (in_vmcs12_store_list && !in_autostore_list) { 1048 if (autostore->nr == NR_LOADSTORE_MSRS) { 1049 /* 1050 * Emulated VMEntry does not fail here. Instead a less 1051 * accurate value will be returned by 1052 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr() 1053 * instead of reading the value from the vmcs02 VMExit 1054 * MSR-store area. 1055 */ 1056 pr_warn_ratelimited( 1057 "Not enough msr entries in msr_autostore. Can't add msr %x\n", 1058 msr_index); 1059 return; 1060 } 1061 last = autostore->nr++; 1062 autostore->val[last].index = msr_index; 1063 } else if (!in_vmcs12_store_list && in_autostore_list) { 1064 last = --autostore->nr; 1065 autostore->val[msr_autostore_index] = autostore->val[last]; 1066 } 1067 } 1068 1069 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) 1070 { 1071 unsigned long invalid_mask; 1072 1073 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); 1074 return (val & invalid_mask) == 0; 1075 } 1076 1077 /* 1078 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are 1079 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected 1080 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to 1081 * @entry_failure_code. 1082 */ 1083 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, 1084 u32 *entry_failure_code) 1085 { 1086 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { 1087 if (CC(!nested_cr3_valid(vcpu, cr3))) { 1088 *entry_failure_code = ENTRY_FAIL_DEFAULT; 1089 return -EINVAL; 1090 } 1091 1092 /* 1093 * If PAE paging and EPT are both on, CR3 is not used by the CPU and 1094 * must not be dereferenced. 1095 */ 1096 if (is_pae_paging(vcpu) && !nested_ept) { 1097 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) { 1098 *entry_failure_code = ENTRY_FAIL_PDPTE; 1099 return -EINVAL; 1100 } 1101 } 1102 } 1103 1104 if (!nested_ept) 1105 kvm_mmu_new_cr3(vcpu, cr3, false); 1106 1107 vcpu->arch.cr3 = cr3; 1108 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 1109 1110 kvm_init_mmu(vcpu, false); 1111 1112 return 0; 1113 } 1114 1115 /* 1116 * Returns if KVM is able to config CPU to tag TLB entries 1117 * populated by L2 differently than TLB entries populated 1118 * by L1. 1119 * 1120 * If L0 uses EPT, L1 and L2 run with different EPTP because 1121 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries 1122 * are tagged with different EPTP. 1123 * 1124 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged 1125 * with different VPID (L1 entries are tagged with vmx->vpid 1126 * while L2 entries are tagged with vmx->nested.vpid02). 1127 */ 1128 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) 1129 { 1130 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1131 1132 return enable_ept || 1133 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); 1134 } 1135 1136 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu) 1137 { 1138 struct vcpu_vmx *vmx = to_vmx(vcpu); 1139 1140 return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid; 1141 } 1142 1143 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) 1144 { 1145 superset &= mask; 1146 subset &= mask; 1147 1148 return (superset | subset) == superset; 1149 } 1150 1151 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) 1152 { 1153 const u64 feature_and_reserved = 1154 /* feature (except bit 48; see below) */ 1155 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | 1156 /* reserved */ 1157 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); 1158 u64 vmx_basic = vmx->nested.msrs.basic; 1159 1160 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) 1161 return -EINVAL; 1162 1163 /* 1164 * KVM does not emulate a version of VMX that constrains physical 1165 * addresses of VMX structures (e.g. VMCS) to 32-bits. 1166 */ 1167 if (data & BIT_ULL(48)) 1168 return -EINVAL; 1169 1170 if (vmx_basic_vmcs_revision_id(vmx_basic) != 1171 vmx_basic_vmcs_revision_id(data)) 1172 return -EINVAL; 1173 1174 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) 1175 return -EINVAL; 1176 1177 vmx->nested.msrs.basic = data; 1178 return 0; 1179 } 1180 1181 static int 1182 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) 1183 { 1184 u64 supported; 1185 u32 *lowp, *highp; 1186 1187 switch (msr_index) { 1188 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 1189 lowp = &vmx->nested.msrs.pinbased_ctls_low; 1190 highp = &vmx->nested.msrs.pinbased_ctls_high; 1191 break; 1192 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 1193 lowp = &vmx->nested.msrs.procbased_ctls_low; 1194 highp = &vmx->nested.msrs.procbased_ctls_high; 1195 break; 1196 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 1197 lowp = &vmx->nested.msrs.exit_ctls_low; 1198 highp = &vmx->nested.msrs.exit_ctls_high; 1199 break; 1200 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 1201 lowp = &vmx->nested.msrs.entry_ctls_low; 1202 highp = &vmx->nested.msrs.entry_ctls_high; 1203 break; 1204 case MSR_IA32_VMX_PROCBASED_CTLS2: 1205 lowp = &vmx->nested.msrs.secondary_ctls_low; 1206 highp = &vmx->nested.msrs.secondary_ctls_high; 1207 break; 1208 default: 1209 BUG(); 1210 } 1211 1212 supported = vmx_control_msr(*lowp, *highp); 1213 1214 /* Check must-be-1 bits are still 1. */ 1215 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) 1216 return -EINVAL; 1217 1218 /* Check must-be-0 bits are still 0. */ 1219 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) 1220 return -EINVAL; 1221 1222 *lowp = data; 1223 *highp = data >> 32; 1224 return 0; 1225 } 1226 1227 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) 1228 { 1229 const u64 feature_and_reserved_bits = 1230 /* feature */ 1231 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | 1232 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | 1233 /* reserved */ 1234 GENMASK_ULL(13, 9) | BIT_ULL(31); 1235 u64 vmx_misc; 1236 1237 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, 1238 vmx->nested.msrs.misc_high); 1239 1240 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) 1241 return -EINVAL; 1242 1243 if ((vmx->nested.msrs.pinbased_ctls_high & 1244 PIN_BASED_VMX_PREEMPTION_TIMER) && 1245 vmx_misc_preemption_timer_rate(data) != 1246 vmx_misc_preemption_timer_rate(vmx_misc)) 1247 return -EINVAL; 1248 1249 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) 1250 return -EINVAL; 1251 1252 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) 1253 return -EINVAL; 1254 1255 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) 1256 return -EINVAL; 1257 1258 vmx->nested.msrs.misc_low = data; 1259 vmx->nested.msrs.misc_high = data >> 32; 1260 1261 return 0; 1262 } 1263 1264 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) 1265 { 1266 u64 vmx_ept_vpid_cap; 1267 1268 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps, 1269 vmx->nested.msrs.vpid_caps); 1270 1271 /* Every bit is either reserved or a feature bit. */ 1272 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) 1273 return -EINVAL; 1274 1275 vmx->nested.msrs.ept_caps = data; 1276 vmx->nested.msrs.vpid_caps = data >> 32; 1277 return 0; 1278 } 1279 1280 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) 1281 { 1282 u64 *msr; 1283 1284 switch (msr_index) { 1285 case MSR_IA32_VMX_CR0_FIXED0: 1286 msr = &vmx->nested.msrs.cr0_fixed0; 1287 break; 1288 case MSR_IA32_VMX_CR4_FIXED0: 1289 msr = &vmx->nested.msrs.cr4_fixed0; 1290 break; 1291 default: 1292 BUG(); 1293 } 1294 1295 /* 1296 * 1 bits (which indicates bits which "must-be-1" during VMX operation) 1297 * must be 1 in the restored value. 1298 */ 1299 if (!is_bitwise_subset(data, *msr, -1ULL)) 1300 return -EINVAL; 1301 1302 *msr = data; 1303 return 0; 1304 } 1305 1306 /* 1307 * Called when userspace is restoring VMX MSRs. 1308 * 1309 * Returns 0 on success, non-0 otherwise. 1310 */ 1311 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) 1312 { 1313 struct vcpu_vmx *vmx = to_vmx(vcpu); 1314 1315 /* 1316 * Don't allow changes to the VMX capability MSRs while the vCPU 1317 * is in VMX operation. 1318 */ 1319 if (vmx->nested.vmxon) 1320 return -EBUSY; 1321 1322 switch (msr_index) { 1323 case MSR_IA32_VMX_BASIC: 1324 return vmx_restore_vmx_basic(vmx, data); 1325 case MSR_IA32_VMX_PINBASED_CTLS: 1326 case MSR_IA32_VMX_PROCBASED_CTLS: 1327 case MSR_IA32_VMX_EXIT_CTLS: 1328 case MSR_IA32_VMX_ENTRY_CTLS: 1329 /* 1330 * The "non-true" VMX capability MSRs are generated from the 1331 * "true" MSRs, so we do not support restoring them directly. 1332 * 1333 * If userspace wants to emulate VMX_BASIC[55]=0, userspace 1334 * should restore the "true" MSRs with the must-be-1 bits 1335 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND 1336 * DEFAULT SETTINGS". 1337 */ 1338 return -EINVAL; 1339 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 1340 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 1341 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 1342 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 1343 case MSR_IA32_VMX_PROCBASED_CTLS2: 1344 return vmx_restore_control_msr(vmx, msr_index, data); 1345 case MSR_IA32_VMX_MISC: 1346 return vmx_restore_vmx_misc(vmx, data); 1347 case MSR_IA32_VMX_CR0_FIXED0: 1348 case MSR_IA32_VMX_CR4_FIXED0: 1349 return vmx_restore_fixed0_msr(vmx, msr_index, data); 1350 case MSR_IA32_VMX_CR0_FIXED1: 1351 case MSR_IA32_VMX_CR4_FIXED1: 1352 /* 1353 * These MSRs are generated based on the vCPU's CPUID, so we 1354 * do not support restoring them directly. 1355 */ 1356 return -EINVAL; 1357 case MSR_IA32_VMX_EPT_VPID_CAP: 1358 return vmx_restore_vmx_ept_vpid_cap(vmx, data); 1359 case MSR_IA32_VMX_VMCS_ENUM: 1360 vmx->nested.msrs.vmcs_enum = data; 1361 return 0; 1362 case MSR_IA32_VMX_VMFUNC: 1363 if (data & ~vmx->nested.msrs.vmfunc_controls) 1364 return -EINVAL; 1365 vmx->nested.msrs.vmfunc_controls = data; 1366 return 0; 1367 default: 1368 /* 1369 * The rest of the VMX capability MSRs do not support restore. 1370 */ 1371 return -EINVAL; 1372 } 1373 } 1374 1375 /* Returns 0 on success, non-0 otherwise. */ 1376 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) 1377 { 1378 switch (msr_index) { 1379 case MSR_IA32_VMX_BASIC: 1380 *pdata = msrs->basic; 1381 break; 1382 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 1383 case MSR_IA32_VMX_PINBASED_CTLS: 1384 *pdata = vmx_control_msr( 1385 msrs->pinbased_ctls_low, 1386 msrs->pinbased_ctls_high); 1387 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) 1388 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; 1389 break; 1390 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 1391 case MSR_IA32_VMX_PROCBASED_CTLS: 1392 *pdata = vmx_control_msr( 1393 msrs->procbased_ctls_low, 1394 msrs->procbased_ctls_high); 1395 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) 1396 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; 1397 break; 1398 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 1399 case MSR_IA32_VMX_EXIT_CTLS: 1400 *pdata = vmx_control_msr( 1401 msrs->exit_ctls_low, 1402 msrs->exit_ctls_high); 1403 if (msr_index == MSR_IA32_VMX_EXIT_CTLS) 1404 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; 1405 break; 1406 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 1407 case MSR_IA32_VMX_ENTRY_CTLS: 1408 *pdata = vmx_control_msr( 1409 msrs->entry_ctls_low, 1410 msrs->entry_ctls_high); 1411 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) 1412 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; 1413 break; 1414 case MSR_IA32_VMX_MISC: 1415 *pdata = vmx_control_msr( 1416 msrs->misc_low, 1417 msrs->misc_high); 1418 break; 1419 case MSR_IA32_VMX_CR0_FIXED0: 1420 *pdata = msrs->cr0_fixed0; 1421 break; 1422 case MSR_IA32_VMX_CR0_FIXED1: 1423 *pdata = msrs->cr0_fixed1; 1424 break; 1425 case MSR_IA32_VMX_CR4_FIXED0: 1426 *pdata = msrs->cr4_fixed0; 1427 break; 1428 case MSR_IA32_VMX_CR4_FIXED1: 1429 *pdata = msrs->cr4_fixed1; 1430 break; 1431 case MSR_IA32_VMX_VMCS_ENUM: 1432 *pdata = msrs->vmcs_enum; 1433 break; 1434 case MSR_IA32_VMX_PROCBASED_CTLS2: 1435 *pdata = vmx_control_msr( 1436 msrs->secondary_ctls_low, 1437 msrs->secondary_ctls_high); 1438 break; 1439 case MSR_IA32_VMX_EPT_VPID_CAP: 1440 *pdata = msrs->ept_caps | 1441 ((u64)msrs->vpid_caps << 32); 1442 break; 1443 case MSR_IA32_VMX_VMFUNC: 1444 *pdata = msrs->vmfunc_controls; 1445 break; 1446 default: 1447 return 1; 1448 } 1449 1450 return 0; 1451 } 1452 1453 /* 1454 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have 1455 * been modified by the L1 guest. Note, "writable" in this context means 1456 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of 1457 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only" 1458 * VM-exit information fields (which are actually writable if the vCPU is 1459 * configured to support "VMWRITE to any supported field in the VMCS"). 1460 */ 1461 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) 1462 { 1463 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; 1464 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu); 1465 struct shadow_vmcs_field field; 1466 unsigned long val; 1467 int i; 1468 1469 if (WARN_ON(!shadow_vmcs)) 1470 return; 1471 1472 preempt_disable(); 1473 1474 vmcs_load(shadow_vmcs); 1475 1476 for (i = 0; i < max_shadow_read_write_fields; i++) { 1477 field = shadow_read_write_fields[i]; 1478 val = __vmcs_readl(field.encoding); 1479 vmcs12_write_any(vmcs12, field.encoding, field.offset, val); 1480 } 1481 1482 vmcs_clear(shadow_vmcs); 1483 vmcs_load(vmx->loaded_vmcs->vmcs); 1484 1485 preempt_enable(); 1486 } 1487 1488 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) 1489 { 1490 const struct shadow_vmcs_field *fields[] = { 1491 shadow_read_write_fields, 1492 shadow_read_only_fields 1493 }; 1494 const int max_fields[] = { 1495 max_shadow_read_write_fields, 1496 max_shadow_read_only_fields 1497 }; 1498 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; 1499 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu); 1500 struct shadow_vmcs_field field; 1501 unsigned long val; 1502 int i, q; 1503 1504 if (WARN_ON(!shadow_vmcs)) 1505 return; 1506 1507 vmcs_load(shadow_vmcs); 1508 1509 for (q = 0; q < ARRAY_SIZE(fields); q++) { 1510 for (i = 0; i < max_fields[q]; i++) { 1511 field = fields[q][i]; 1512 val = vmcs12_read_any(vmcs12, field.encoding, 1513 field.offset); 1514 __vmcs_writel(field.encoding, val); 1515 } 1516 } 1517 1518 vmcs_clear(shadow_vmcs); 1519 vmcs_load(vmx->loaded_vmcs->vmcs); 1520 } 1521 1522 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) 1523 { 1524 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; 1525 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; 1526 1527 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ 1528 vmcs12->tpr_threshold = evmcs->tpr_threshold; 1529 vmcs12->guest_rip = evmcs->guest_rip; 1530 1531 if (unlikely(!(evmcs->hv_clean_fields & 1532 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { 1533 vmcs12->guest_rsp = evmcs->guest_rsp; 1534 vmcs12->guest_rflags = evmcs->guest_rflags; 1535 vmcs12->guest_interruptibility_info = 1536 evmcs->guest_interruptibility_info; 1537 } 1538 1539 if (unlikely(!(evmcs->hv_clean_fields & 1540 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { 1541 vmcs12->cpu_based_vm_exec_control = 1542 evmcs->cpu_based_vm_exec_control; 1543 } 1544 1545 if (unlikely(!(evmcs->hv_clean_fields & 1546 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) { 1547 vmcs12->exception_bitmap = evmcs->exception_bitmap; 1548 } 1549 1550 if (unlikely(!(evmcs->hv_clean_fields & 1551 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { 1552 vmcs12->vm_entry_controls = evmcs->vm_entry_controls; 1553 } 1554 1555 if (unlikely(!(evmcs->hv_clean_fields & 1556 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { 1557 vmcs12->vm_entry_intr_info_field = 1558 evmcs->vm_entry_intr_info_field; 1559 vmcs12->vm_entry_exception_error_code = 1560 evmcs->vm_entry_exception_error_code; 1561 vmcs12->vm_entry_instruction_len = 1562 evmcs->vm_entry_instruction_len; 1563 } 1564 1565 if (unlikely(!(evmcs->hv_clean_fields & 1566 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { 1567 vmcs12->host_ia32_pat = evmcs->host_ia32_pat; 1568 vmcs12->host_ia32_efer = evmcs->host_ia32_efer; 1569 vmcs12->host_cr0 = evmcs->host_cr0; 1570 vmcs12->host_cr3 = evmcs->host_cr3; 1571 vmcs12->host_cr4 = evmcs->host_cr4; 1572 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp; 1573 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip; 1574 vmcs12->host_rip = evmcs->host_rip; 1575 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs; 1576 vmcs12->host_es_selector = evmcs->host_es_selector; 1577 vmcs12->host_cs_selector = evmcs->host_cs_selector; 1578 vmcs12->host_ss_selector = evmcs->host_ss_selector; 1579 vmcs12->host_ds_selector = evmcs->host_ds_selector; 1580 vmcs12->host_fs_selector = evmcs->host_fs_selector; 1581 vmcs12->host_gs_selector = evmcs->host_gs_selector; 1582 vmcs12->host_tr_selector = evmcs->host_tr_selector; 1583 } 1584 1585 if (unlikely(!(evmcs->hv_clean_fields & 1586 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) { 1587 vmcs12->pin_based_vm_exec_control = 1588 evmcs->pin_based_vm_exec_control; 1589 vmcs12->vm_exit_controls = evmcs->vm_exit_controls; 1590 vmcs12->secondary_vm_exec_control = 1591 evmcs->secondary_vm_exec_control; 1592 } 1593 1594 if (unlikely(!(evmcs->hv_clean_fields & 1595 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { 1596 vmcs12->io_bitmap_a = evmcs->io_bitmap_a; 1597 vmcs12->io_bitmap_b = evmcs->io_bitmap_b; 1598 } 1599 1600 if (unlikely(!(evmcs->hv_clean_fields & 1601 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { 1602 vmcs12->msr_bitmap = evmcs->msr_bitmap; 1603 } 1604 1605 if (unlikely(!(evmcs->hv_clean_fields & 1606 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { 1607 vmcs12->guest_es_base = evmcs->guest_es_base; 1608 vmcs12->guest_cs_base = evmcs->guest_cs_base; 1609 vmcs12->guest_ss_base = evmcs->guest_ss_base; 1610 vmcs12->guest_ds_base = evmcs->guest_ds_base; 1611 vmcs12->guest_fs_base = evmcs->guest_fs_base; 1612 vmcs12->guest_gs_base = evmcs->guest_gs_base; 1613 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base; 1614 vmcs12->guest_tr_base = evmcs->guest_tr_base; 1615 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base; 1616 vmcs12->guest_idtr_base = evmcs->guest_idtr_base; 1617 vmcs12->guest_es_limit = evmcs->guest_es_limit; 1618 vmcs12->guest_cs_limit = evmcs->guest_cs_limit; 1619 vmcs12->guest_ss_limit = evmcs->guest_ss_limit; 1620 vmcs12->guest_ds_limit = evmcs->guest_ds_limit; 1621 vmcs12->guest_fs_limit = evmcs->guest_fs_limit; 1622 vmcs12->guest_gs_limit = evmcs->guest_gs_limit; 1623 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit; 1624 vmcs12->guest_tr_limit = evmcs->guest_tr_limit; 1625 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit; 1626 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit; 1627 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes; 1628 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes; 1629 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes; 1630 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes; 1631 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes; 1632 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes; 1633 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes; 1634 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes; 1635 vmcs12->guest_es_selector = evmcs->guest_es_selector; 1636 vmcs12->guest_cs_selector = evmcs->guest_cs_selector; 1637 vmcs12->guest_ss_selector = evmcs->guest_ss_selector; 1638 vmcs12->guest_ds_selector = evmcs->guest_ds_selector; 1639 vmcs12->guest_fs_selector = evmcs->guest_fs_selector; 1640 vmcs12->guest_gs_selector = evmcs->guest_gs_selector; 1641 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector; 1642 vmcs12->guest_tr_selector = evmcs->guest_tr_selector; 1643 } 1644 1645 if (unlikely(!(evmcs->hv_clean_fields & 1646 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { 1647 vmcs12->tsc_offset = evmcs->tsc_offset; 1648 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; 1649 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; 1650 } 1651 1652 if (unlikely(!(evmcs->hv_clean_fields & 1653 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { 1654 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; 1655 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; 1656 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow; 1657 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow; 1658 vmcs12->guest_cr0 = evmcs->guest_cr0; 1659 vmcs12->guest_cr3 = evmcs->guest_cr3; 1660 vmcs12->guest_cr4 = evmcs->guest_cr4; 1661 vmcs12->guest_dr7 = evmcs->guest_dr7; 1662 } 1663 1664 if (unlikely(!(evmcs->hv_clean_fields & 1665 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { 1666 vmcs12->host_fs_base = evmcs->host_fs_base; 1667 vmcs12->host_gs_base = evmcs->host_gs_base; 1668 vmcs12->host_tr_base = evmcs->host_tr_base; 1669 vmcs12->host_gdtr_base = evmcs->host_gdtr_base; 1670 vmcs12->host_idtr_base = evmcs->host_idtr_base; 1671 vmcs12->host_rsp = evmcs->host_rsp; 1672 } 1673 1674 if (unlikely(!(evmcs->hv_clean_fields & 1675 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { 1676 vmcs12->ept_pointer = evmcs->ept_pointer; 1677 vmcs12->virtual_processor_id = evmcs->virtual_processor_id; 1678 } 1679 1680 if (unlikely(!(evmcs->hv_clean_fields & 1681 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { 1682 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; 1683 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; 1684 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat; 1685 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer; 1686 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0; 1687 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1; 1688 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2; 1689 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3; 1690 vmcs12->guest_pending_dbg_exceptions = 1691 evmcs->guest_pending_dbg_exceptions; 1692 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp; 1693 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip; 1694 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; 1695 vmcs12->guest_activity_state = evmcs->guest_activity_state; 1696 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; 1697 } 1698 1699 /* 1700 * Not used? 1701 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; 1702 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; 1703 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; 1704 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0; 1705 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1; 1706 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2; 1707 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3; 1708 * vmcs12->page_fault_error_code_mask = 1709 * evmcs->page_fault_error_code_mask; 1710 * vmcs12->page_fault_error_code_match = 1711 * evmcs->page_fault_error_code_match; 1712 * vmcs12->cr3_target_count = evmcs->cr3_target_count; 1713 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count; 1714 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count; 1715 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count; 1716 */ 1717 1718 /* 1719 * Read only fields: 1720 * vmcs12->guest_physical_address = evmcs->guest_physical_address; 1721 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error; 1722 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason; 1723 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info; 1724 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code; 1725 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field; 1726 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code; 1727 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len; 1728 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info; 1729 * vmcs12->exit_qualification = evmcs->exit_qualification; 1730 * vmcs12->guest_linear_address = evmcs->guest_linear_address; 1731 * 1732 * Not present in struct vmcs12: 1733 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx; 1734 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi; 1735 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi; 1736 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; 1737 */ 1738 1739 return 0; 1740 } 1741 1742 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) 1743 { 1744 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; 1745 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; 1746 1747 /* 1748 * Should not be changed by KVM: 1749 * 1750 * evmcs->host_es_selector = vmcs12->host_es_selector; 1751 * evmcs->host_cs_selector = vmcs12->host_cs_selector; 1752 * evmcs->host_ss_selector = vmcs12->host_ss_selector; 1753 * evmcs->host_ds_selector = vmcs12->host_ds_selector; 1754 * evmcs->host_fs_selector = vmcs12->host_fs_selector; 1755 * evmcs->host_gs_selector = vmcs12->host_gs_selector; 1756 * evmcs->host_tr_selector = vmcs12->host_tr_selector; 1757 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat; 1758 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer; 1759 * evmcs->host_cr0 = vmcs12->host_cr0; 1760 * evmcs->host_cr3 = vmcs12->host_cr3; 1761 * evmcs->host_cr4 = vmcs12->host_cr4; 1762 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp; 1763 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip; 1764 * evmcs->host_rip = vmcs12->host_rip; 1765 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs; 1766 * evmcs->host_fs_base = vmcs12->host_fs_base; 1767 * evmcs->host_gs_base = vmcs12->host_gs_base; 1768 * evmcs->host_tr_base = vmcs12->host_tr_base; 1769 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; 1770 * evmcs->host_idtr_base = vmcs12->host_idtr_base; 1771 * evmcs->host_rsp = vmcs12->host_rsp; 1772 * sync_vmcs02_to_vmcs12() doesn't read these: 1773 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; 1774 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; 1775 * evmcs->msr_bitmap = vmcs12->msr_bitmap; 1776 * evmcs->ept_pointer = vmcs12->ept_pointer; 1777 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap; 1778 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; 1779 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; 1780 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; 1781 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0; 1782 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1; 1783 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2; 1784 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3; 1785 * evmcs->tpr_threshold = vmcs12->tpr_threshold; 1786 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; 1787 * evmcs->exception_bitmap = vmcs12->exception_bitmap; 1788 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer; 1789 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control; 1790 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls; 1791 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control; 1792 * evmcs->page_fault_error_code_mask = 1793 * vmcs12->page_fault_error_code_mask; 1794 * evmcs->page_fault_error_code_match = 1795 * vmcs12->page_fault_error_code_match; 1796 * evmcs->cr3_target_count = vmcs12->cr3_target_count; 1797 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr; 1798 * evmcs->tsc_offset = vmcs12->tsc_offset; 1799 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl; 1800 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask; 1801 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask; 1802 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow; 1803 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow; 1804 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; 1805 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; 1806 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; 1807 * 1808 * Not present in struct vmcs12: 1809 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; 1810 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; 1811 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; 1812 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; 1813 */ 1814 1815 evmcs->guest_es_selector = vmcs12->guest_es_selector; 1816 evmcs->guest_cs_selector = vmcs12->guest_cs_selector; 1817 evmcs->guest_ss_selector = vmcs12->guest_ss_selector; 1818 evmcs->guest_ds_selector = vmcs12->guest_ds_selector; 1819 evmcs->guest_fs_selector = vmcs12->guest_fs_selector; 1820 evmcs->guest_gs_selector = vmcs12->guest_gs_selector; 1821 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector; 1822 evmcs->guest_tr_selector = vmcs12->guest_tr_selector; 1823 1824 evmcs->guest_es_limit = vmcs12->guest_es_limit; 1825 evmcs->guest_cs_limit = vmcs12->guest_cs_limit; 1826 evmcs->guest_ss_limit = vmcs12->guest_ss_limit; 1827 evmcs->guest_ds_limit = vmcs12->guest_ds_limit; 1828 evmcs->guest_fs_limit = vmcs12->guest_fs_limit; 1829 evmcs->guest_gs_limit = vmcs12->guest_gs_limit; 1830 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit; 1831 evmcs->guest_tr_limit = vmcs12->guest_tr_limit; 1832 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit; 1833 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit; 1834 1835 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes; 1836 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes; 1837 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes; 1838 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes; 1839 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes; 1840 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes; 1841 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes; 1842 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes; 1843 1844 evmcs->guest_es_base = vmcs12->guest_es_base; 1845 evmcs->guest_cs_base = vmcs12->guest_cs_base; 1846 evmcs->guest_ss_base = vmcs12->guest_ss_base; 1847 evmcs->guest_ds_base = vmcs12->guest_ds_base; 1848 evmcs->guest_fs_base = vmcs12->guest_fs_base; 1849 evmcs->guest_gs_base = vmcs12->guest_gs_base; 1850 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base; 1851 evmcs->guest_tr_base = vmcs12->guest_tr_base; 1852 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base; 1853 evmcs->guest_idtr_base = vmcs12->guest_idtr_base; 1854 1855 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat; 1856 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer; 1857 1858 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0; 1859 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1; 1860 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2; 1861 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3; 1862 1863 evmcs->guest_pending_dbg_exceptions = 1864 vmcs12->guest_pending_dbg_exceptions; 1865 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp; 1866 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip; 1867 1868 evmcs->guest_activity_state = vmcs12->guest_activity_state; 1869 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs; 1870 1871 evmcs->guest_cr0 = vmcs12->guest_cr0; 1872 evmcs->guest_cr3 = vmcs12->guest_cr3; 1873 evmcs->guest_cr4 = vmcs12->guest_cr4; 1874 evmcs->guest_dr7 = vmcs12->guest_dr7; 1875 1876 evmcs->guest_physical_address = vmcs12->guest_physical_address; 1877 1878 evmcs->vm_instruction_error = vmcs12->vm_instruction_error; 1879 evmcs->vm_exit_reason = vmcs12->vm_exit_reason; 1880 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info; 1881 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code; 1882 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field; 1883 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code; 1884 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len; 1885 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info; 1886 1887 evmcs->exit_qualification = vmcs12->exit_qualification; 1888 1889 evmcs->guest_linear_address = vmcs12->guest_linear_address; 1890 evmcs->guest_rsp = vmcs12->guest_rsp; 1891 evmcs->guest_rflags = vmcs12->guest_rflags; 1892 1893 evmcs->guest_interruptibility_info = 1894 vmcs12->guest_interruptibility_info; 1895 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control; 1896 evmcs->vm_entry_controls = vmcs12->vm_entry_controls; 1897 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field; 1898 evmcs->vm_entry_exception_error_code = 1899 vmcs12->vm_entry_exception_error_code; 1900 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len; 1901 1902 evmcs->guest_rip = vmcs12->guest_rip; 1903 1904 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; 1905 1906 return 0; 1907 } 1908 1909 /* 1910 * This is an equivalent of the nested hypervisor executing the vmptrld 1911 * instruction. 1912 */ 1913 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, 1914 bool from_launch) 1915 { 1916 struct vcpu_vmx *vmx = to_vmx(vcpu); 1917 bool evmcs_gpa_changed = false; 1918 u64 evmcs_gpa; 1919 1920 if (likely(!vmx->nested.enlightened_vmcs_enabled)) 1921 return 1; 1922 1923 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) 1924 return 1; 1925 1926 if (unlikely(!vmx->nested.hv_evmcs || 1927 evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) { 1928 if (!vmx->nested.hv_evmcs) 1929 vmx->nested.current_vmptr = -1ull; 1930 1931 nested_release_evmcs(vcpu); 1932 1933 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa), 1934 &vmx->nested.hv_evmcs_map)) 1935 return 0; 1936 1937 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva; 1938 1939 /* 1940 * Currently, KVM only supports eVMCS version 1 1941 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this 1942 * value to first u32 field of eVMCS which should specify eVMCS 1943 * VersionNumber. 1944 * 1945 * Guest should be aware of supported eVMCS versions by host by 1946 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is 1947 * expected to set this CPUID leaf according to the value 1948 * returned in vmcs_version from nested_enable_evmcs(). 1949 * 1950 * However, it turns out that Microsoft Hyper-V fails to comply 1951 * to their own invented interface: When Hyper-V use eVMCS, it 1952 * just sets first u32 field of eVMCS to revision_id specified 1953 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number 1954 * which is one of the supported versions specified in 1955 * CPUID.0x4000000A.EAX[0:15]. 1956 * 1957 * To overcome Hyper-V bug, we accept here either a supported 1958 * eVMCS version or VMCS12 revision_id as valid values for first 1959 * u32 field of eVMCS. 1960 */ 1961 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) && 1962 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) { 1963 nested_release_evmcs(vcpu); 1964 return 0; 1965 } 1966 1967 vmx->nested.dirty_vmcs12 = true; 1968 vmx->nested.hv_evmcs_vmptr = evmcs_gpa; 1969 1970 evmcs_gpa_changed = true; 1971 /* 1972 * Unlike normal vmcs12, enlightened vmcs12 is not fully 1973 * reloaded from guest's memory (read only fields, fields not 1974 * present in struct hv_enlightened_vmcs, ...). Make sure there 1975 * are no leftovers. 1976 */ 1977 if (from_launch) { 1978 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1979 memset(vmcs12, 0, sizeof(*vmcs12)); 1980 vmcs12->hdr.revision_id = VMCS12_REVISION; 1981 } 1982 1983 } 1984 1985 /* 1986 * Clean fields data can't be used on VMLAUNCH and when we switch 1987 * between different L2 guests as KVM keeps a single VMCS12 per L1. 1988 */ 1989 if (from_launch || evmcs_gpa_changed) 1990 vmx->nested.hv_evmcs->hv_clean_fields &= 1991 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 1992 1993 return 1; 1994 } 1995 1996 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu) 1997 { 1998 struct vcpu_vmx *vmx = to_vmx(vcpu); 1999 2000 /* 2001 * hv_evmcs may end up being not mapped after migration (when 2002 * L2 was running), map it here to make sure vmcs12 changes are 2003 * properly reflected. 2004 */ 2005 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) 2006 nested_vmx_handle_enlightened_vmptrld(vcpu, false); 2007 2008 if (vmx->nested.hv_evmcs) { 2009 copy_vmcs12_to_enlightened(vmx); 2010 /* All fields are clean */ 2011 vmx->nested.hv_evmcs->hv_clean_fields |= 2012 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 2013 } else { 2014 copy_vmcs12_to_shadow(vmx); 2015 } 2016 2017 vmx->nested.need_vmcs12_to_shadow_sync = false; 2018 } 2019 2020 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) 2021 { 2022 struct vcpu_vmx *vmx = 2023 container_of(timer, struct vcpu_vmx, nested.preemption_timer); 2024 2025 vmx->nested.preemption_timer_expired = true; 2026 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); 2027 kvm_vcpu_kick(&vmx->vcpu); 2028 2029 return HRTIMER_NORESTART; 2030 } 2031 2032 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) 2033 { 2034 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; 2035 struct vcpu_vmx *vmx = to_vmx(vcpu); 2036 2037 /* 2038 * A timer value of zero is architecturally guaranteed to cause 2039 * a VMExit prior to executing any instructions in the guest. 2040 */ 2041 if (preemption_timeout == 0) { 2042 vmx_preemption_timer_fn(&vmx->nested.preemption_timer); 2043 return; 2044 } 2045 2046 if (vcpu->arch.virtual_tsc_khz == 0) 2047 return; 2048 2049 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; 2050 preemption_timeout *= 1000000; 2051 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); 2052 hrtimer_start(&vmx->nested.preemption_timer, 2053 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); 2054 } 2055 2056 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) 2057 { 2058 if (vmx->nested.nested_run_pending && 2059 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) 2060 return vmcs12->guest_ia32_efer; 2061 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) 2062 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME); 2063 else 2064 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME); 2065 } 2066 2067 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) 2068 { 2069 /* 2070 * If vmcs02 hasn't been initialized, set the constant vmcs02 state 2071 * according to L0's settings (vmcs12 is irrelevant here). Host 2072 * fields that come from L0 and are not constant, e.g. HOST_CR3, 2073 * will be set as needed prior to VMLAUNCH/VMRESUME. 2074 */ 2075 if (vmx->nested.vmcs02_initialized) 2076 return; 2077 vmx->nested.vmcs02_initialized = true; 2078 2079 /* 2080 * We don't care what the EPTP value is we just need to guarantee 2081 * it's valid so we don't get a false positive when doing early 2082 * consistency checks. 2083 */ 2084 if (enable_ept && nested_early_check) 2085 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0)); 2086 2087 /* All VMFUNCs are currently emulated through L0 vmexits. */ 2088 if (cpu_has_vmx_vmfunc()) 2089 vmcs_write64(VM_FUNCTION_CONTROL, 0); 2090 2091 if (cpu_has_vmx_posted_intr()) 2092 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); 2093 2094 if (cpu_has_vmx_msr_bitmap()) 2095 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); 2096 2097 /* 2098 * The PML address never changes, so it is constant in vmcs02. 2099 * Conceptually we want to copy the PML index from vmcs01 here, 2100 * and then back to vmcs01 on nested vmexit. But since we flush 2101 * the log and reset GUEST_PML_INDEX on each vmexit, the PML 2102 * index is also effectively constant in vmcs02. 2103 */ 2104 if (enable_pml) { 2105 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 2106 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 2107 } 2108 2109 if (cpu_has_vmx_encls_vmexit()) 2110 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); 2111 2112 /* 2113 * Set the MSR load/store lists to match L0's settings. Only the 2114 * addresses are constant (for vmcs02), the counts can change based 2115 * on L2's behavior, e.g. switching to/from long mode. 2116 */ 2117 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val)); 2118 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 2119 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 2120 2121 vmx_set_constant_host_state(vmx); 2122 } 2123 2124 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx, 2125 struct vmcs12 *vmcs12) 2126 { 2127 prepare_vmcs02_constant_state(vmx); 2128 2129 vmcs_write64(VMCS_LINK_POINTER, -1ull); 2130 2131 if (enable_vpid) { 2132 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) 2133 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); 2134 else 2135 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 2136 } 2137 } 2138 2139 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) 2140 { 2141 u32 exec_control, vmcs12_exec_ctrl; 2142 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); 2143 2144 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) 2145 prepare_vmcs02_early_rare(vmx, vmcs12); 2146 2147 /* 2148 * PIN CONTROLS 2149 */ 2150 exec_control = vmx_pin_based_exec_ctrl(vmx); 2151 exec_control |= (vmcs12->pin_based_vm_exec_control & 2152 ~PIN_BASED_VMX_PREEMPTION_TIMER); 2153 2154 /* Posted interrupts setting is only taken from vmcs12. */ 2155 if (nested_cpu_has_posted_intr(vmcs12)) { 2156 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; 2157 vmx->nested.pi_pending = false; 2158 } else { 2159 exec_control &= ~PIN_BASED_POSTED_INTR; 2160 } 2161 pin_controls_set(vmx, exec_control); 2162 2163 /* 2164 * EXEC CONTROLS 2165 */ 2166 exec_control = vmx_exec_control(vmx); /* L0's desires */ 2167 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING; 2168 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING; 2169 exec_control &= ~CPU_BASED_TPR_SHADOW; 2170 exec_control |= vmcs12->cpu_based_vm_exec_control; 2171 2172 vmx->nested.l1_tpr_threshold = -1; 2173 if (exec_control & CPU_BASED_TPR_SHADOW) 2174 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); 2175 #ifdef CONFIG_X86_64 2176 else 2177 exec_control |= CPU_BASED_CR8_LOAD_EXITING | 2178 CPU_BASED_CR8_STORE_EXITING; 2179 #endif 2180 2181 /* 2182 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed 2183 * for I/O port accesses. 2184 */ 2185 exec_control |= CPU_BASED_UNCOND_IO_EXITING; 2186 exec_control &= ~CPU_BASED_USE_IO_BITMAPS; 2187 2188 /* 2189 * This bit will be computed in nested_get_vmcs12_pages, because 2190 * we do not have access to L1's MSR bitmap yet. For now, keep 2191 * the same bit as before, hoping to avoid multiple VMWRITEs that 2192 * only set/clear this bit. 2193 */ 2194 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; 2195 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS; 2196 2197 exec_controls_set(vmx, exec_control); 2198 2199 /* 2200 * SECONDARY EXEC CONTROLS 2201 */ 2202 if (cpu_has_secondary_exec_ctrls()) { 2203 exec_control = vmx->secondary_exec_control; 2204 2205 /* Take the following fields only from vmcs12 */ 2206 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2207 SECONDARY_EXEC_ENABLE_INVPCID | 2208 SECONDARY_EXEC_RDTSCP | 2209 SECONDARY_EXEC_XSAVES | 2210 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2211 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2212 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2213 SECONDARY_EXEC_ENABLE_VMFUNC); 2214 if (nested_cpu_has(vmcs12, 2215 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { 2216 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & 2217 ~SECONDARY_EXEC_ENABLE_PML; 2218 exec_control |= vmcs12_exec_ctrl; 2219 } 2220 2221 /* VMCS shadowing for L2 is emulated for now */ 2222 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 2223 2224 /* 2225 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4() 2226 * will not have to rewrite the controls just for this bit. 2227 */ 2228 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() && 2229 (vmcs12->guest_cr4 & X86_CR4_UMIP)) 2230 exec_control |= SECONDARY_EXEC_DESC; 2231 2232 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 2233 vmcs_write16(GUEST_INTR_STATUS, 2234 vmcs12->guest_intr_status); 2235 2236 secondary_exec_controls_set(vmx, exec_control); 2237 } 2238 2239 /* 2240 * ENTRY CONTROLS 2241 * 2242 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE 2243 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate 2244 * on the related bits (if supported by the CPU) in the hope that 2245 * we can avoid VMWrites during vmx_set_efer(). 2246 */ 2247 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) & 2248 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER; 2249 if (cpu_has_load_ia32_efer()) { 2250 if (guest_efer & EFER_LMA) 2251 exec_control |= VM_ENTRY_IA32E_MODE; 2252 if (guest_efer != host_efer) 2253 exec_control |= VM_ENTRY_LOAD_IA32_EFER; 2254 } 2255 vm_entry_controls_set(vmx, exec_control); 2256 2257 /* 2258 * EXIT CONTROLS 2259 * 2260 * L2->L1 exit controls are emulated - the hardware exit is to L0 so 2261 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER 2262 * bits may be modified by vmx_set_efer() in prepare_vmcs02(). 2263 */ 2264 exec_control = vmx_vmexit_ctrl(); 2265 if (cpu_has_load_ia32_efer() && guest_efer != host_efer) 2266 exec_control |= VM_EXIT_LOAD_IA32_EFER; 2267 vm_exit_controls_set(vmx, exec_control); 2268 2269 /* 2270 * Interrupt/Exception Fields 2271 */ 2272 if (vmx->nested.nested_run_pending) { 2273 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 2274 vmcs12->vm_entry_intr_info_field); 2275 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 2276 vmcs12->vm_entry_exception_error_code); 2277 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 2278 vmcs12->vm_entry_instruction_len); 2279 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 2280 vmcs12->guest_interruptibility_info); 2281 vmx->loaded_vmcs->nmi_known_unmasked = 2282 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); 2283 } else { 2284 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 2285 } 2286 } 2287 2288 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) 2289 { 2290 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; 2291 2292 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & 2293 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { 2294 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); 2295 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); 2296 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); 2297 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); 2298 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); 2299 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); 2300 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); 2301 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); 2302 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); 2303 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); 2304 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); 2305 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); 2306 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); 2307 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); 2308 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); 2309 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); 2310 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); 2311 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); 2312 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); 2313 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); 2314 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); 2315 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); 2316 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); 2317 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); 2318 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); 2319 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); 2320 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); 2321 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); 2322 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); 2323 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); 2324 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); 2325 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); 2326 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); 2327 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); 2328 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); 2329 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); 2330 } 2331 2332 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & 2333 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) { 2334 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); 2335 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 2336 vmcs12->guest_pending_dbg_exceptions); 2337 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); 2338 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); 2339 2340 /* 2341 * L1 may access the L2's PDPTR, so save them to construct 2342 * vmcs12 2343 */ 2344 if (enable_ept) { 2345 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); 2346 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); 2347 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); 2348 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); 2349 } 2350 2351 if (kvm_mpx_supported() && vmx->nested.nested_run_pending && 2352 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) 2353 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); 2354 } 2355 2356 if (nested_cpu_has_xsaves(vmcs12)) 2357 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); 2358 2359 /* 2360 * Whether page-faults are trapped is determined by a combination of 2361 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. 2362 * If enable_ept, L0 doesn't care about page faults and we should 2363 * set all of these to L1's desires. However, if !enable_ept, L0 does 2364 * care about (at least some) page faults, and because it is not easy 2365 * (if at all possible?) to merge L0 and L1's desires, we simply ask 2366 * to exit on each and every L2 page fault. This is done by setting 2367 * MASK=MATCH=0 and (see below) EB.PF=1. 2368 * Note that below we don't need special code to set EB.PF beyond the 2369 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, 2370 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when 2371 * !enable_ept, EB.PF is 1, so the "or" will always be 1. 2372 */ 2373 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 2374 enable_ept ? vmcs12->page_fault_error_code_mask : 0); 2375 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 2376 enable_ept ? vmcs12->page_fault_error_code_match : 0); 2377 2378 if (cpu_has_vmx_apicv()) { 2379 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); 2380 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); 2381 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); 2382 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); 2383 } 2384 2385 /* 2386 * Make sure the msr_autostore list is up to date before we set the 2387 * count in the vmcs02. 2388 */ 2389 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC); 2390 2391 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr); 2392 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); 2393 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); 2394 2395 set_cr4_guest_host_mask(vmx); 2396 } 2397 2398 /* 2399 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested 2400 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it 2401 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 2402 * guest in a way that will both be appropriate to L1's requests, and our 2403 * needs. In addition to modifying the active vmcs (which is vmcs02), this 2404 * function also has additional necessary side-effects, like setting various 2405 * vcpu->arch fields. 2406 * Returns 0 on success, 1 on failure. Invalid state exit qualification code 2407 * is assigned to entry_failure_code on failure. 2408 */ 2409 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, 2410 u32 *entry_failure_code) 2411 { 2412 struct vcpu_vmx *vmx = to_vmx(vcpu); 2413 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; 2414 bool load_guest_pdptrs_vmcs12 = false; 2415 2416 if (vmx->nested.dirty_vmcs12 || hv_evmcs) { 2417 prepare_vmcs02_rare(vmx, vmcs12); 2418 vmx->nested.dirty_vmcs12 = false; 2419 2420 load_guest_pdptrs_vmcs12 = !hv_evmcs || 2421 !(hv_evmcs->hv_clean_fields & 2422 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1); 2423 } 2424 2425 if (vmx->nested.nested_run_pending && 2426 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { 2427 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); 2428 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); 2429 } else { 2430 kvm_set_dr(vcpu, 7, vcpu->arch.dr7); 2431 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); 2432 } 2433 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending || 2434 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))) 2435 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs); 2436 vmx_set_rflags(vcpu, vmcs12->guest_rflags); 2437 2438 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the 2439 * bitwise-or of what L1 wants to trap for L2, and what we want to 2440 * trap. Note that CR0.TS also needs updating - we do this later. 2441 */ 2442 update_exception_bitmap(vcpu); 2443 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; 2444 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); 2445 2446 if (vmx->nested.nested_run_pending && 2447 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { 2448 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); 2449 vcpu->arch.pat = vmcs12->guest_ia32_pat; 2450 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2451 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 2452 } 2453 2454 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 2455 2456 if (kvm_has_tsc_control) 2457 decache_tsc_multiplier(vmx); 2458 2459 if (enable_vpid) { 2460 /* 2461 * There is no direct mapping between vpid02 and vpid12, the 2462 * vpid02 is per-vCPU for L0 and reused while the value of 2463 * vpid12 is changed w/ one invvpid during nested vmentry. 2464 * The vpid12 is allocated by L1 for L2, so it will not 2465 * influence global bitmap(for vpid01 and vpid02 allocation) 2466 * even if spawn a lot of nested vCPUs. 2467 */ 2468 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) { 2469 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { 2470 vmx->nested.last_vpid = vmcs12->virtual_processor_id; 2471 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false); 2472 } 2473 } else { 2474 /* 2475 * If L1 use EPT, then L0 needs to execute INVEPT on 2476 * EPTP02 instead of EPTP01. Therefore, delay TLB 2477 * flush until vmcs02->eptp is fully updated by 2478 * KVM_REQ_LOAD_CR3. Note that this assumes 2479 * KVM_REQ_TLB_FLUSH is evaluated after 2480 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest(). 2481 */ 2482 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2483 } 2484 } 2485 2486 if (nested_cpu_has_ept(vmcs12)) 2487 nested_ept_init_mmu_context(vcpu); 2488 2489 /* 2490 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those 2491 * bits which we consider mandatory enabled. 2492 * The CR0_READ_SHADOW is what L2 should have expected to read given 2493 * the specifications by L1; It's not enough to take 2494 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we 2495 * have more bits than L1 expected. 2496 */ 2497 vmx_set_cr0(vcpu, vmcs12->guest_cr0); 2498 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); 2499 2500 vmx_set_cr4(vcpu, vmcs12->guest_cr4); 2501 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); 2502 2503 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12); 2504 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ 2505 vmx_set_efer(vcpu, vcpu->arch.efer); 2506 2507 /* 2508 * Guest state is invalid and unrestricted guest is disabled, 2509 * which means L1 attempted VMEntry to L2 with invalid state. 2510 * Fail the VMEntry. 2511 */ 2512 if (vmx->emulation_required) { 2513 *entry_failure_code = ENTRY_FAIL_DEFAULT; 2514 return -EINVAL; 2515 } 2516 2517 /* Shadow page tables on either EPT or shadow page tables. */ 2518 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), 2519 entry_failure_code)) 2520 return -EINVAL; 2521 2522 /* 2523 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12 2524 * on nested VM-Exit, which can occur without actually running L2 and 2525 * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with 2526 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the 2527 * transition to HLT instead of running L2. 2528 */ 2529 if (enable_ept) 2530 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3); 2531 2532 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */ 2533 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) && 2534 is_pae_paging(vcpu)) { 2535 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); 2536 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); 2537 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); 2538 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); 2539 } 2540 2541 if (!enable_ept) 2542 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; 2543 2544 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && 2545 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL, 2546 vmcs12->guest_ia32_perf_global_ctrl))) 2547 return -EINVAL; 2548 2549 kvm_rsp_write(vcpu, vmcs12->guest_rsp); 2550 kvm_rip_write(vcpu, vmcs12->guest_rip); 2551 return 0; 2552 } 2553 2554 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) 2555 { 2556 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) && 2557 nested_cpu_has_virtual_nmis(vmcs12))) 2558 return -EINVAL; 2559 2560 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) && 2561 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING))) 2562 return -EINVAL; 2563 2564 return 0; 2565 } 2566 2567 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) 2568 { 2569 struct vcpu_vmx *vmx = to_vmx(vcpu); 2570 int maxphyaddr = cpuid_maxphyaddr(vcpu); 2571 2572 /* Check for memory type validity */ 2573 switch (address & VMX_EPTP_MT_MASK) { 2574 case VMX_EPTP_MT_UC: 2575 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))) 2576 return false; 2577 break; 2578 case VMX_EPTP_MT_WB: 2579 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))) 2580 return false; 2581 break; 2582 default: 2583 return false; 2584 } 2585 2586 /* only 4 levels page-walk length are valid */ 2587 if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)) 2588 return false; 2589 2590 /* Reserved bits should not be set */ 2591 if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f))) 2592 return false; 2593 2594 /* AD, if set, should be supported */ 2595 if (address & VMX_EPTP_AD_ENABLE_BIT) { 2596 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))) 2597 return false; 2598 } 2599 2600 return true; 2601 } 2602 2603 /* 2604 * Checks related to VM-Execution Control Fields 2605 */ 2606 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu, 2607 struct vmcs12 *vmcs12) 2608 { 2609 struct vcpu_vmx *vmx = to_vmx(vcpu); 2610 2611 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control, 2612 vmx->nested.msrs.pinbased_ctls_low, 2613 vmx->nested.msrs.pinbased_ctls_high)) || 2614 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, 2615 vmx->nested.msrs.procbased_ctls_low, 2616 vmx->nested.msrs.procbased_ctls_high))) 2617 return -EINVAL; 2618 2619 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && 2620 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control, 2621 vmx->nested.msrs.secondary_ctls_low, 2622 vmx->nested.msrs.secondary_ctls_high))) 2623 return -EINVAL; 2624 2625 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) || 2626 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) || 2627 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) || 2628 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) || 2629 nested_vmx_check_apic_access_controls(vcpu, vmcs12) || 2630 nested_vmx_check_apicv_controls(vcpu, vmcs12) || 2631 nested_vmx_check_nmi_controls(vmcs12) || 2632 nested_vmx_check_pml_controls(vcpu, vmcs12) || 2633 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) || 2634 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) || 2635 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) || 2636 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)) 2637 return -EINVAL; 2638 2639 if (!nested_cpu_has_preemption_timer(vmcs12) && 2640 nested_cpu_has_save_preemption_timer(vmcs12)) 2641 return -EINVAL; 2642 2643 if (nested_cpu_has_ept(vmcs12) && 2644 CC(!valid_ept_address(vcpu, vmcs12->ept_pointer))) 2645 return -EINVAL; 2646 2647 if (nested_cpu_has_vmfunc(vmcs12)) { 2648 if (CC(vmcs12->vm_function_control & 2649 ~vmx->nested.msrs.vmfunc_controls)) 2650 return -EINVAL; 2651 2652 if (nested_cpu_has_eptp_switching(vmcs12)) { 2653 if (CC(!nested_cpu_has_ept(vmcs12)) || 2654 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address))) 2655 return -EINVAL; 2656 } 2657 } 2658 2659 return 0; 2660 } 2661 2662 /* 2663 * Checks related to VM-Exit Control Fields 2664 */ 2665 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu, 2666 struct vmcs12 *vmcs12) 2667 { 2668 struct vcpu_vmx *vmx = to_vmx(vcpu); 2669 2670 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls, 2671 vmx->nested.msrs.exit_ctls_low, 2672 vmx->nested.msrs.exit_ctls_high)) || 2673 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))) 2674 return -EINVAL; 2675 2676 return 0; 2677 } 2678 2679 /* 2680 * Checks related to VM-Entry Control Fields 2681 */ 2682 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, 2683 struct vmcs12 *vmcs12) 2684 { 2685 struct vcpu_vmx *vmx = to_vmx(vcpu); 2686 2687 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls, 2688 vmx->nested.msrs.entry_ctls_low, 2689 vmx->nested.msrs.entry_ctls_high))) 2690 return -EINVAL; 2691 2692 /* 2693 * From the Intel SDM, volume 3: 2694 * Fields relevant to VM-entry event injection must be set properly. 2695 * These fields are the VM-entry interruption-information field, the 2696 * VM-entry exception error code, and the VM-entry instruction length. 2697 */ 2698 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { 2699 u32 intr_info = vmcs12->vm_entry_intr_info_field; 2700 u8 vector = intr_info & INTR_INFO_VECTOR_MASK; 2701 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; 2702 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; 2703 bool should_have_error_code; 2704 bool urg = nested_cpu_has2(vmcs12, 2705 SECONDARY_EXEC_UNRESTRICTED_GUEST); 2706 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; 2707 2708 /* VM-entry interruption-info field: interruption type */ 2709 if (CC(intr_type == INTR_TYPE_RESERVED) || 2710 CC(intr_type == INTR_TYPE_OTHER_EVENT && 2711 !nested_cpu_supports_monitor_trap_flag(vcpu))) 2712 return -EINVAL; 2713 2714 /* VM-entry interruption-info field: vector */ 2715 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || 2716 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || 2717 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) 2718 return -EINVAL; 2719 2720 /* VM-entry interruption-info field: deliver error code */ 2721 should_have_error_code = 2722 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && 2723 x86_exception_has_error_code(vector); 2724 if (CC(has_error_code != should_have_error_code)) 2725 return -EINVAL; 2726 2727 /* VM-entry exception error code */ 2728 if (CC(has_error_code && 2729 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16))) 2730 return -EINVAL; 2731 2732 /* VM-entry interruption-info field: reserved bits */ 2733 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK)) 2734 return -EINVAL; 2735 2736 /* VM-entry instruction length */ 2737 switch (intr_type) { 2738 case INTR_TYPE_SOFT_EXCEPTION: 2739 case INTR_TYPE_SOFT_INTR: 2740 case INTR_TYPE_PRIV_SW_EXCEPTION: 2741 if (CC(vmcs12->vm_entry_instruction_len > 15) || 2742 CC(vmcs12->vm_entry_instruction_len == 0 && 2743 CC(!nested_cpu_has_zero_length_injection(vcpu)))) 2744 return -EINVAL; 2745 } 2746 } 2747 2748 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12)) 2749 return -EINVAL; 2750 2751 return 0; 2752 } 2753 2754 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu, 2755 struct vmcs12 *vmcs12) 2756 { 2757 if (nested_check_vm_execution_controls(vcpu, vmcs12) || 2758 nested_check_vm_exit_controls(vcpu, vmcs12) || 2759 nested_check_vm_entry_controls(vcpu, vmcs12)) 2760 return -EINVAL; 2761 2762 if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled) 2763 return nested_evmcs_check_controls(vmcs12); 2764 2765 return 0; 2766 } 2767 2768 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu, 2769 struct vmcs12 *vmcs12) 2770 { 2771 bool ia32e; 2772 2773 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) || 2774 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) || 2775 CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3))) 2776 return -EINVAL; 2777 2778 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) || 2779 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu))) 2780 return -EINVAL; 2781 2782 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) && 2783 CC(!kvm_pat_valid(vmcs12->host_ia32_pat))) 2784 return -EINVAL; 2785 2786 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) && 2787 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu), 2788 vmcs12->host_ia32_perf_global_ctrl))) 2789 return -EINVAL; 2790 2791 #ifdef CONFIG_X86_64 2792 ia32e = !!(vcpu->arch.efer & EFER_LMA); 2793 #else 2794 ia32e = false; 2795 #endif 2796 2797 if (ia32e) { 2798 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) || 2799 CC(!(vmcs12->host_cr4 & X86_CR4_PAE))) 2800 return -EINVAL; 2801 } else { 2802 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) || 2803 CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) || 2804 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) || 2805 CC((vmcs12->host_rip) >> 32)) 2806 return -EINVAL; 2807 } 2808 2809 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 2810 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 2811 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 2812 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 2813 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 2814 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 2815 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) || 2816 CC(vmcs12->host_cs_selector == 0) || 2817 CC(vmcs12->host_tr_selector == 0) || 2818 CC(vmcs12->host_ss_selector == 0 && !ia32e)) 2819 return -EINVAL; 2820 2821 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) || 2822 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) || 2823 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) || 2824 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) || 2825 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) || 2826 CC(is_noncanonical_address(vmcs12->host_rip, vcpu))) 2827 return -EINVAL; 2828 2829 /* 2830 * If the load IA32_EFER VM-exit control is 1, bits reserved in the 2831 * IA32_EFER MSR must be 0 in the field for that register. In addition, 2832 * the values of the LMA and LME bits in the field must each be that of 2833 * the host address-space size VM-exit control. 2834 */ 2835 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { 2836 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) || 2837 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) || 2838 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))) 2839 return -EINVAL; 2840 } 2841 2842 return 0; 2843 } 2844 2845 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, 2846 struct vmcs12 *vmcs12) 2847 { 2848 int r = 0; 2849 struct vmcs12 *shadow; 2850 struct kvm_host_map map; 2851 2852 if (vmcs12->vmcs_link_pointer == -1ull) 2853 return 0; 2854 2855 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))) 2856 return -EINVAL; 2857 2858 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))) 2859 return -EINVAL; 2860 2861 shadow = map.hva; 2862 2863 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) || 2864 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))) 2865 r = -EINVAL; 2866 2867 kvm_vcpu_unmap(vcpu, &map, false); 2868 return r; 2869 } 2870 2871 /* 2872 * Checks related to Guest Non-register State 2873 */ 2874 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12) 2875 { 2876 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && 2877 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)) 2878 return -EINVAL; 2879 2880 return 0; 2881 } 2882 2883 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu, 2884 struct vmcs12 *vmcs12, 2885 u32 *exit_qual) 2886 { 2887 bool ia32e; 2888 2889 *exit_qual = ENTRY_FAIL_DEFAULT; 2890 2891 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) || 2892 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))) 2893 return -EINVAL; 2894 2895 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) && 2896 CC(!kvm_dr7_valid(vmcs12->guest_dr7))) 2897 return -EINVAL; 2898 2899 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) && 2900 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat))) 2901 return -EINVAL; 2902 2903 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { 2904 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; 2905 return -EINVAL; 2906 } 2907 2908 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && 2909 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu), 2910 vmcs12->guest_ia32_perf_global_ctrl))) 2911 return -EINVAL; 2912 2913 /* 2914 * If the load IA32_EFER VM-entry control is 1, the following checks 2915 * are performed on the field for the IA32_EFER MSR: 2916 * - Bits reserved in the IA32_EFER MSR must be 0. 2917 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of 2918 * the IA-32e mode guest VM-exit control. It must also be identical 2919 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to 2920 * CR0.PG) is 1. 2921 */ 2922 if (to_vmx(vcpu)->nested.nested_run_pending && 2923 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { 2924 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; 2925 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) || 2926 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) || 2927 CC(((vmcs12->guest_cr0 & X86_CR0_PG) && 2928 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))) 2929 return -EINVAL; 2930 } 2931 2932 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && 2933 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) || 2934 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))) 2935 return -EINVAL; 2936 2937 if (nested_check_guest_non_reg_state(vmcs12)) 2938 return -EINVAL; 2939 2940 return 0; 2941 } 2942 2943 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) 2944 { 2945 struct vcpu_vmx *vmx = to_vmx(vcpu); 2946 unsigned long cr3, cr4; 2947 bool vm_fail; 2948 2949 if (!nested_early_check) 2950 return 0; 2951 2952 if (vmx->msr_autoload.host.nr) 2953 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 2954 if (vmx->msr_autoload.guest.nr) 2955 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 2956 2957 preempt_disable(); 2958 2959 vmx_prepare_switch_to_guest(vcpu); 2960 2961 /* 2962 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, 2963 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to 2964 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e. 2965 * there is no need to preserve other bits or save/restore the field. 2966 */ 2967 vmcs_writel(GUEST_RFLAGS, 0); 2968 2969 cr3 = __get_current_cr3_fast(); 2970 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 2971 vmcs_writel(HOST_CR3, cr3); 2972 vmx->loaded_vmcs->host_state.cr3 = cr3; 2973 } 2974 2975 cr4 = cr4_read_shadow(); 2976 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 2977 vmcs_writel(HOST_CR4, cr4); 2978 vmx->loaded_vmcs->host_state.cr4 = cr4; 2979 } 2980 2981 asm( 2982 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */ 2983 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t" 2984 "je 1f \n\t" 2985 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t" 2986 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t" 2987 "1: \n\t" 2988 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */ 2989 2990 /* Check if vmlaunch or vmresume is needed */ 2991 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t" 2992 2993 /* 2994 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set 2995 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail 2996 * Valid. vmx_vmenter() directly "returns" RFLAGS, and so the 2997 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail. 2998 */ 2999 "call vmx_vmenter\n\t" 3000 3001 CC_SET(be) 3002 : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail) 3003 : [HOST_RSP]"r"((unsigned long)HOST_RSP), 3004 [loaded_vmcs]"r"(vmx->loaded_vmcs), 3005 [launched]"i"(offsetof(struct loaded_vmcs, launched)), 3006 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)), 3007 [wordsize]"i"(sizeof(ulong)) 3008 : "memory" 3009 ); 3010 3011 if (vmx->msr_autoload.host.nr) 3012 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); 3013 if (vmx->msr_autoload.guest.nr) 3014 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); 3015 3016 if (vm_fail) { 3017 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR); 3018 3019 preempt_enable(); 3020 3021 trace_kvm_nested_vmenter_failed( 3022 "early hardware check VM-instruction error: ", error); 3023 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3024 return 1; 3025 } 3026 3027 /* 3028 * VMExit clears RFLAGS.IF and DR7, even on a consistency check. 3029 */ 3030 local_irq_enable(); 3031 if (hw_breakpoint_active()) 3032 set_debugreg(__this_cpu_read(cpu_dr7), 7); 3033 preempt_enable(); 3034 3035 /* 3036 * A non-failing VMEntry means we somehow entered guest mode with 3037 * an illegal RIP, and that's just the tip of the iceberg. There 3038 * is no telling what memory has been modified or what state has 3039 * been exposed to unknown code. Hitting this all but guarantees 3040 * a (very critical) hardware issue. 3041 */ 3042 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & 3043 VMX_EXIT_REASONS_FAILED_VMENTRY)); 3044 3045 return 0; 3046 } 3047 3048 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) 3049 { 3050 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 3051 struct vcpu_vmx *vmx = to_vmx(vcpu); 3052 struct kvm_host_map *map; 3053 struct page *page; 3054 u64 hpa; 3055 3056 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { 3057 /* 3058 * Translate L1 physical address to host physical 3059 * address for vmcs02. Keep the page pinned, so this 3060 * physical address remains valid. We keep a reference 3061 * to it so we can release it later. 3062 */ 3063 if (vmx->nested.apic_access_page) { /* shouldn't happen */ 3064 kvm_release_page_clean(vmx->nested.apic_access_page); 3065 vmx->nested.apic_access_page = NULL; 3066 } 3067 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); 3068 if (!is_error_page(page)) { 3069 vmx->nested.apic_access_page = page; 3070 hpa = page_to_phys(vmx->nested.apic_access_page); 3071 vmcs_write64(APIC_ACCESS_ADDR, hpa); 3072 } else { 3073 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n", 3074 __func__); 3075 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3076 vcpu->run->internal.suberror = 3077 KVM_INTERNAL_ERROR_EMULATION; 3078 vcpu->run->internal.ndata = 0; 3079 return false; 3080 } 3081 } 3082 3083 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { 3084 map = &vmx->nested.virtual_apic_map; 3085 3086 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) { 3087 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn)); 3088 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) && 3089 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) && 3090 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { 3091 /* 3092 * The processor will never use the TPR shadow, simply 3093 * clear the bit from the execution control. Such a 3094 * configuration is useless, but it happens in tests. 3095 * For any other configuration, failing the vm entry is 3096 * _not_ what the processor does but it's basically the 3097 * only possibility we have. 3098 */ 3099 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW); 3100 } else { 3101 /* 3102 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to 3103 * force VM-Entry to fail. 3104 */ 3105 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); 3106 } 3107 } 3108 3109 if (nested_cpu_has_posted_intr(vmcs12)) { 3110 map = &vmx->nested.pi_desc_map; 3111 3112 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) { 3113 vmx->nested.pi_desc = 3114 (struct pi_desc *)(((void *)map->hva) + 3115 offset_in_page(vmcs12->posted_intr_desc_addr)); 3116 vmcs_write64(POSTED_INTR_DESC_ADDR, 3117 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr)); 3118 } 3119 } 3120 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) 3121 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS); 3122 else 3123 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS); 3124 return true; 3125 } 3126 3127 /* 3128 * Intel's VMX Instruction Reference specifies a common set of prerequisites 3129 * for running VMX instructions (except VMXON, whose prerequisites are 3130 * slightly different). It also specifies what exception to inject otherwise. 3131 * Note that many of these exceptions have priority over VM exits, so they 3132 * don't have to be checked again here. 3133 */ 3134 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) 3135 { 3136 if (!to_vmx(vcpu)->nested.vmxon) { 3137 kvm_queue_exception(vcpu, UD_VECTOR); 3138 return 0; 3139 } 3140 3141 if (vmx_get_cpl(vcpu)) { 3142 kvm_inject_gp(vcpu, 0); 3143 return 0; 3144 } 3145 3146 return 1; 3147 } 3148 3149 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) 3150 { 3151 u8 rvi = vmx_get_rvi(); 3152 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); 3153 3154 return ((rvi & 0xf0) > (vppr & 0xf0)); 3155 } 3156 3157 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, 3158 struct vmcs12 *vmcs12); 3159 3160 /* 3161 * If from_vmentry is false, this is being called from state restore (either RSM 3162 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. 3163 * 3164 * Returns: 3165 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode 3166 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail 3167 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit 3168 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error 3169 */ 3170 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, 3171 bool from_vmentry) 3172 { 3173 struct vcpu_vmx *vmx = to_vmx(vcpu); 3174 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 3175 bool evaluate_pending_interrupts; 3176 u32 exit_reason = EXIT_REASON_INVALID_STATE; 3177 u32 exit_qual; 3178 3179 evaluate_pending_interrupts = exec_controls_get(vmx) & 3180 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING); 3181 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) 3182 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); 3183 3184 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) 3185 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); 3186 if (kvm_mpx_supported() && 3187 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) 3188 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); 3189 3190 /* 3191 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and* 3192 * nested early checks are disabled. In the event of a "late" VM-Fail, 3193 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its 3194 * software model to the pre-VMEntry host state. When EPT is disabled, 3195 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes 3196 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing 3197 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to 3198 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested 3199 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is 3200 * guaranteed to be overwritten with a shadow CR3 prior to re-entering 3201 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as 3202 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks 3203 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail 3204 * path would need to manually save/restore vmcs01.GUEST_CR3. 3205 */ 3206 if (!enable_ept && !nested_early_check) 3207 vmcs_writel(GUEST_CR3, vcpu->arch.cr3); 3208 3209 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); 3210 3211 prepare_vmcs02_early(vmx, vmcs12); 3212 3213 if (from_vmentry) { 3214 if (unlikely(!nested_get_vmcs12_pages(vcpu))) 3215 return NVMX_VMENTRY_KVM_INTERNAL_ERROR; 3216 3217 if (nested_vmx_check_vmentry_hw(vcpu)) { 3218 vmx_switch_vmcs(vcpu, &vmx->vmcs01); 3219 return NVMX_VMENTRY_VMFAIL; 3220 } 3221 3222 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual)) 3223 goto vmentry_fail_vmexit; 3224 } 3225 3226 enter_guest_mode(vcpu); 3227 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING) 3228 vcpu->arch.tsc_offset += vmcs12->tsc_offset; 3229 3230 if (prepare_vmcs02(vcpu, vmcs12, &exit_qual)) 3231 goto vmentry_fail_vmexit_guest_mode; 3232 3233 if (from_vmentry) { 3234 exit_reason = EXIT_REASON_MSR_LOAD_FAIL; 3235 exit_qual = nested_vmx_load_msr(vcpu, 3236 vmcs12->vm_entry_msr_load_addr, 3237 vmcs12->vm_entry_msr_load_count); 3238 if (exit_qual) 3239 goto vmentry_fail_vmexit_guest_mode; 3240 } else { 3241 /* 3242 * The MMU is not initialized to point at the right entities yet and 3243 * "get pages" would need to read data from the guest (i.e. we will 3244 * need to perform gpa to hpa translation). Request a call 3245 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs 3246 * have already been set at vmentry time and should not be reset. 3247 */ 3248 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); 3249 } 3250 3251 /* 3252 * If L1 had a pending IRQ/NMI until it executed 3253 * VMLAUNCH/VMRESUME which wasn't delivered because it was 3254 * disallowed (e.g. interrupts disabled), L0 needs to 3255 * evaluate if this pending event should cause an exit from L2 3256 * to L1 or delivered directly to L2 (e.g. In case L1 don't 3257 * intercept EXTERNAL_INTERRUPT). 3258 * 3259 * Usually this would be handled by the processor noticing an 3260 * IRQ/NMI window request, or checking RVI during evaluation of 3261 * pending virtual interrupts. However, this setting was done 3262 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0 3263 * to perform pending event evaluation by requesting a KVM_REQ_EVENT. 3264 */ 3265 if (unlikely(evaluate_pending_interrupts)) 3266 kvm_make_request(KVM_REQ_EVENT, vcpu); 3267 3268 /* 3269 * Do not start the preemption timer hrtimer until after we know 3270 * we are successful, so that only nested_vmx_vmexit needs to cancel 3271 * the timer. 3272 */ 3273 vmx->nested.preemption_timer_expired = false; 3274 if (nested_cpu_has_preemption_timer(vmcs12)) 3275 vmx_start_preemption_timer(vcpu); 3276 3277 /* 3278 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point 3279 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet 3280 * returned as far as L1 is concerned. It will only return (and set 3281 * the success flag) when L2 exits (see nested_vmx_vmexit()). 3282 */ 3283 return NVMX_VMENTRY_SUCCESS; 3284 3285 /* 3286 * A failed consistency check that leads to a VMExit during L1's 3287 * VMEnter to L2 is a variation of a normal VMexit, as explained in 3288 * 26.7 "VM-entry failures during or after loading guest state". 3289 */ 3290 vmentry_fail_vmexit_guest_mode: 3291 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING) 3292 vcpu->arch.tsc_offset -= vmcs12->tsc_offset; 3293 leave_guest_mode(vcpu); 3294 3295 vmentry_fail_vmexit: 3296 vmx_switch_vmcs(vcpu, &vmx->vmcs01); 3297 3298 if (!from_vmentry) 3299 return NVMX_VMENTRY_VMEXIT; 3300 3301 load_vmcs12_host_state(vcpu, vmcs12); 3302 vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY; 3303 vmcs12->exit_qualification = exit_qual; 3304 if (enable_shadow_vmcs || vmx->nested.hv_evmcs) 3305 vmx->nested.need_vmcs12_to_shadow_sync = true; 3306 return NVMX_VMENTRY_VMEXIT; 3307 } 3308 3309 /* 3310 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 3311 * for running an L2 nested guest. 3312 */ 3313 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) 3314 { 3315 struct vmcs12 *vmcs12; 3316 enum nvmx_vmentry_status status; 3317 struct vcpu_vmx *vmx = to_vmx(vcpu); 3318 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); 3319 3320 if (!nested_vmx_check_permission(vcpu)) 3321 return 1; 3322 3323 if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch)) 3324 return 1; 3325 3326 if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull) 3327 return nested_vmx_failInvalid(vcpu); 3328 3329 vmcs12 = get_vmcs12(vcpu); 3330 3331 /* 3332 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact 3333 * that there *is* a valid VMCS pointer, RFLAGS.CF is set 3334 * rather than RFLAGS.ZF, and no error number is stored to the 3335 * VM-instruction error field. 3336 */ 3337 if (vmcs12->hdr.shadow_vmcs) 3338 return nested_vmx_failInvalid(vcpu); 3339 3340 if (vmx->nested.hv_evmcs) { 3341 copy_enlightened_to_vmcs12(vmx); 3342 /* Enlightened VMCS doesn't have launch state */ 3343 vmcs12->launch_state = !launch; 3344 } else if (enable_shadow_vmcs) { 3345 copy_shadow_to_vmcs12(vmx); 3346 } 3347 3348 /* 3349 * The nested entry process starts with enforcing various prerequisites 3350 * on vmcs12 as required by the Intel SDM, and act appropriately when 3351 * they fail: As the SDM explains, some conditions should cause the 3352 * instruction to fail, while others will cause the instruction to seem 3353 * to succeed, but return an EXIT_REASON_INVALID_STATE. 3354 * To speed up the normal (success) code path, we should avoid checking 3355 * for misconfigurations which will anyway be caught by the processor 3356 * when using the merged vmcs02. 3357 */ 3358 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) 3359 return nested_vmx_failValid(vcpu, 3360 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); 3361 3362 if (vmcs12->launch_state == launch) 3363 return nested_vmx_failValid(vcpu, 3364 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS 3365 : VMXERR_VMRESUME_NONLAUNCHED_VMCS); 3366 3367 if (nested_vmx_check_controls(vcpu, vmcs12)) 3368 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3369 3370 if (nested_vmx_check_host_state(vcpu, vmcs12)) 3371 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); 3372 3373 /* 3374 * We're finally done with prerequisite checking, and can start with 3375 * the nested entry. 3376 */ 3377 vmx->nested.nested_run_pending = 1; 3378 status = nested_vmx_enter_non_root_mode(vcpu, true); 3379 if (unlikely(status != NVMX_VMENTRY_SUCCESS)) 3380 goto vmentry_failed; 3381 3382 /* Hide L1D cache contents from the nested guest. */ 3383 vmx->vcpu.arch.l1tf_flush_l1d = true; 3384 3385 /* 3386 * Must happen outside of nested_vmx_enter_non_root_mode() as it will 3387 * also be used as part of restoring nVMX state for 3388 * snapshot restore (migration). 3389 * 3390 * In this flow, it is assumed that vmcs12 cache was 3391 * trasferred as part of captured nVMX state and should 3392 * therefore not be read from guest memory (which may not 3393 * exist on destination host yet). 3394 */ 3395 nested_cache_shadow_vmcs12(vcpu, vmcs12); 3396 3397 /* 3398 * If we're entering a halted L2 vcpu and the L2 vcpu won't be 3399 * awakened by event injection or by an NMI-window VM-exit or 3400 * by an interrupt-window VM-exit, halt the vcpu. 3401 */ 3402 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && 3403 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && 3404 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) && 3405 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) && 3406 (vmcs12->guest_rflags & X86_EFLAGS_IF))) { 3407 vmx->nested.nested_run_pending = 0; 3408 return kvm_vcpu_halt(vcpu); 3409 } 3410 return 1; 3411 3412 vmentry_failed: 3413 vmx->nested.nested_run_pending = 0; 3414 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR) 3415 return 0; 3416 if (status == NVMX_VMENTRY_VMEXIT) 3417 return 1; 3418 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL); 3419 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); 3420 } 3421 3422 /* 3423 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date 3424 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK). 3425 * This function returns the new value we should put in vmcs12.guest_cr0. 3426 * It's not enough to just return the vmcs02 GUEST_CR0. Rather, 3427 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now 3428 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 3429 * didn't trap the bit, because if L1 did, so would L0). 3430 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have 3431 * been modified by L2, and L1 knows it. So just leave the old value of 3432 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 3433 * isn't relevant, because if L0 traps this bit it can set it to anything. 3434 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have 3435 * changed these bits, and therefore they need to be updated, but L0 3436 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather 3437 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. 3438 */ 3439 static inline unsigned long 3440 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) 3441 { 3442 return 3443 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | 3444 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | 3445 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | 3446 vcpu->arch.cr0_guest_owned_bits)); 3447 } 3448 3449 static inline unsigned long 3450 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) 3451 { 3452 return 3453 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | 3454 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | 3455 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | 3456 vcpu->arch.cr4_guest_owned_bits)); 3457 } 3458 3459 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, 3460 struct vmcs12 *vmcs12) 3461 { 3462 u32 idt_vectoring; 3463 unsigned int nr; 3464 3465 if (vcpu->arch.exception.injected) { 3466 nr = vcpu->arch.exception.nr; 3467 idt_vectoring = nr | VECTORING_INFO_VALID_MASK; 3468 3469 if (kvm_exception_is_soft(nr)) { 3470 vmcs12->vm_exit_instruction_len = 3471 vcpu->arch.event_exit_inst_len; 3472 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; 3473 } else 3474 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; 3475 3476 if (vcpu->arch.exception.has_error_code) { 3477 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; 3478 vmcs12->idt_vectoring_error_code = 3479 vcpu->arch.exception.error_code; 3480 } 3481 3482 vmcs12->idt_vectoring_info_field = idt_vectoring; 3483 } else if (vcpu->arch.nmi_injected) { 3484 vmcs12->idt_vectoring_info_field = 3485 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; 3486 } else if (vcpu->arch.interrupt.injected) { 3487 nr = vcpu->arch.interrupt.nr; 3488 idt_vectoring = nr | VECTORING_INFO_VALID_MASK; 3489 3490 if (vcpu->arch.interrupt.soft) { 3491 idt_vectoring |= INTR_TYPE_SOFT_INTR; 3492 vmcs12->vm_entry_instruction_len = 3493 vcpu->arch.event_exit_inst_len; 3494 } else 3495 idt_vectoring |= INTR_TYPE_EXT_INTR; 3496 3497 vmcs12->idt_vectoring_info_field = idt_vectoring; 3498 } 3499 } 3500 3501 3502 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) 3503 { 3504 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 3505 gfn_t gfn; 3506 3507 /* 3508 * Don't need to mark the APIC access page dirty; it is never 3509 * written to by the CPU during APIC virtualization. 3510 */ 3511 3512 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { 3513 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; 3514 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3515 } 3516 3517 if (nested_cpu_has_posted_intr(vmcs12)) { 3518 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; 3519 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3520 } 3521 } 3522 3523 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) 3524 { 3525 struct vcpu_vmx *vmx = to_vmx(vcpu); 3526 int max_irr; 3527 void *vapic_page; 3528 u16 status; 3529 3530 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) 3531 return; 3532 3533 vmx->nested.pi_pending = false; 3534 if (!pi_test_and_clear_on(vmx->nested.pi_desc)) 3535 return; 3536 3537 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); 3538 if (max_irr != 256) { 3539 vapic_page = vmx->nested.virtual_apic_map.hva; 3540 if (!vapic_page) 3541 return; 3542 3543 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, 3544 vapic_page, &max_irr); 3545 status = vmcs_read16(GUEST_INTR_STATUS); 3546 if ((u8)max_irr > ((u8)status & 0xff)) { 3547 status &= ~0xff; 3548 status |= (u8)max_irr; 3549 vmcs_write16(GUEST_INTR_STATUS, status); 3550 } 3551 } 3552 3553 nested_mark_vmcs12_pages_dirty(vcpu); 3554 } 3555 3556 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, 3557 unsigned long exit_qual) 3558 { 3559 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 3560 unsigned int nr = vcpu->arch.exception.nr; 3561 u32 intr_info = nr | INTR_INFO_VALID_MASK; 3562 3563 if (vcpu->arch.exception.has_error_code) { 3564 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; 3565 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 3566 } 3567 3568 if (kvm_exception_is_soft(nr)) 3569 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 3570 else 3571 intr_info |= INTR_TYPE_HARD_EXCEPTION; 3572 3573 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && 3574 vmx_get_nmi_mask(vcpu)) 3575 intr_info |= INTR_INFO_UNBLOCK_NMI; 3576 3577 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); 3578 } 3579 3580 /* 3581 * Returns true if a debug trap is pending delivery. 3582 * 3583 * In KVM, debug traps bear an exception payload. As such, the class of a #DB 3584 * exception may be inferred from the presence of an exception payload. 3585 */ 3586 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu) 3587 { 3588 return vcpu->arch.exception.pending && 3589 vcpu->arch.exception.nr == DB_VECTOR && 3590 vcpu->arch.exception.payload; 3591 } 3592 3593 /* 3594 * Certain VM-exits set the 'pending debug exceptions' field to indicate a 3595 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM 3596 * represents these debug traps with a payload that is said to be compatible 3597 * with the 'pending debug exceptions' field, write the payload to the VMCS 3598 * field if a VM-exit is delivered before the debug trap. 3599 */ 3600 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu) 3601 { 3602 if (vmx_pending_dbg_trap(vcpu)) 3603 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 3604 vcpu->arch.exception.payload); 3605 } 3606 3607 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) 3608 { 3609 struct vcpu_vmx *vmx = to_vmx(vcpu); 3610 unsigned long exit_qual; 3611 bool block_nested_events = 3612 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); 3613 bool mtf_pending = vmx->nested.mtf_pending; 3614 struct kvm_lapic *apic = vcpu->arch.apic; 3615 3616 /* 3617 * Clear the MTF state. If a higher priority VM-exit is delivered first, 3618 * this state is discarded. 3619 */ 3620 vmx->nested.mtf_pending = false; 3621 3622 if (lapic_in_kernel(vcpu) && 3623 test_bit(KVM_APIC_INIT, &apic->pending_events)) { 3624 if (block_nested_events) 3625 return -EBUSY; 3626 nested_vmx_update_pending_dbg(vcpu); 3627 clear_bit(KVM_APIC_INIT, &apic->pending_events); 3628 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0); 3629 return 0; 3630 } 3631 3632 /* 3633 * Process any exceptions that are not debug traps before MTF. 3634 */ 3635 if (vcpu->arch.exception.pending && 3636 !vmx_pending_dbg_trap(vcpu) && 3637 nested_vmx_check_exception(vcpu, &exit_qual)) { 3638 if (block_nested_events) 3639 return -EBUSY; 3640 nested_vmx_inject_exception_vmexit(vcpu, exit_qual); 3641 return 0; 3642 } 3643 3644 if (mtf_pending) { 3645 if (block_nested_events) 3646 return -EBUSY; 3647 nested_vmx_update_pending_dbg(vcpu); 3648 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0); 3649 return 0; 3650 } 3651 3652 if (vcpu->arch.exception.pending && 3653 nested_vmx_check_exception(vcpu, &exit_qual)) { 3654 if (block_nested_events) 3655 return -EBUSY; 3656 nested_vmx_inject_exception_vmexit(vcpu, exit_qual); 3657 return 0; 3658 } 3659 3660 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && 3661 vmx->nested.preemption_timer_expired) { 3662 if (block_nested_events) 3663 return -EBUSY; 3664 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); 3665 return 0; 3666 } 3667 3668 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { 3669 if (block_nested_events) 3670 return -EBUSY; 3671 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, 3672 NMI_VECTOR | INTR_TYPE_NMI_INTR | 3673 INTR_INFO_VALID_MASK, 0); 3674 /* 3675 * The NMI-triggered VM exit counts as injection: 3676 * clear this one and block further NMIs. 3677 */ 3678 vcpu->arch.nmi_pending = 0; 3679 vmx_set_nmi_mask(vcpu, true); 3680 return 0; 3681 } 3682 3683 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && 3684 nested_exit_on_intr(vcpu)) { 3685 if (block_nested_events) 3686 return -EBUSY; 3687 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); 3688 return 0; 3689 } 3690 3691 vmx_complete_nested_posted_interrupt(vcpu); 3692 return 0; 3693 } 3694 3695 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) 3696 { 3697 ktime_t remaining = 3698 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); 3699 u64 value; 3700 3701 if (ktime_to_ns(remaining) <= 0) 3702 return 0; 3703 3704 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; 3705 do_div(value, 1000000); 3706 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; 3707 } 3708 3709 static bool is_vmcs12_ext_field(unsigned long field) 3710 { 3711 switch (field) { 3712 case GUEST_ES_SELECTOR: 3713 case GUEST_CS_SELECTOR: 3714 case GUEST_SS_SELECTOR: 3715 case GUEST_DS_SELECTOR: 3716 case GUEST_FS_SELECTOR: 3717 case GUEST_GS_SELECTOR: 3718 case GUEST_LDTR_SELECTOR: 3719 case GUEST_TR_SELECTOR: 3720 case GUEST_ES_LIMIT: 3721 case GUEST_CS_LIMIT: 3722 case GUEST_SS_LIMIT: 3723 case GUEST_DS_LIMIT: 3724 case GUEST_FS_LIMIT: 3725 case GUEST_GS_LIMIT: 3726 case GUEST_LDTR_LIMIT: 3727 case GUEST_TR_LIMIT: 3728 case GUEST_GDTR_LIMIT: 3729 case GUEST_IDTR_LIMIT: 3730 case GUEST_ES_AR_BYTES: 3731 case GUEST_DS_AR_BYTES: 3732 case GUEST_FS_AR_BYTES: 3733 case GUEST_GS_AR_BYTES: 3734 case GUEST_LDTR_AR_BYTES: 3735 case GUEST_TR_AR_BYTES: 3736 case GUEST_ES_BASE: 3737 case GUEST_CS_BASE: 3738 case GUEST_SS_BASE: 3739 case GUEST_DS_BASE: 3740 case GUEST_FS_BASE: 3741 case GUEST_GS_BASE: 3742 case GUEST_LDTR_BASE: 3743 case GUEST_TR_BASE: 3744 case GUEST_GDTR_BASE: 3745 case GUEST_IDTR_BASE: 3746 case GUEST_PENDING_DBG_EXCEPTIONS: 3747 case GUEST_BNDCFGS: 3748 return true; 3749 default: 3750 break; 3751 } 3752 3753 return false; 3754 } 3755 3756 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu, 3757 struct vmcs12 *vmcs12) 3758 { 3759 struct vcpu_vmx *vmx = to_vmx(vcpu); 3760 3761 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); 3762 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); 3763 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); 3764 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); 3765 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); 3766 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); 3767 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); 3768 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); 3769 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); 3770 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); 3771 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); 3772 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); 3773 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); 3774 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); 3775 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); 3776 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); 3777 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); 3778 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); 3779 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); 3780 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); 3781 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); 3782 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); 3783 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); 3784 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); 3785 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); 3786 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); 3787 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); 3788 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); 3789 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); 3790 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); 3791 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); 3792 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); 3793 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); 3794 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); 3795 vmcs12->guest_pending_dbg_exceptions = 3796 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); 3797 if (kvm_mpx_supported()) 3798 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); 3799 3800 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false; 3801 } 3802 3803 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu, 3804 struct vmcs12 *vmcs12) 3805 { 3806 struct vcpu_vmx *vmx = to_vmx(vcpu); 3807 int cpu; 3808 3809 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare) 3810 return; 3811 3812 3813 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01); 3814 3815 cpu = get_cpu(); 3816 vmx->loaded_vmcs = &vmx->nested.vmcs02; 3817 vmx_vcpu_load(&vmx->vcpu, cpu); 3818 3819 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 3820 3821 vmx->loaded_vmcs = &vmx->vmcs01; 3822 vmx_vcpu_load(&vmx->vcpu, cpu); 3823 put_cpu(); 3824 } 3825 3826 /* 3827 * Update the guest state fields of vmcs12 to reflect changes that 3828 * occurred while L2 was running. (The "IA-32e mode guest" bit of the 3829 * VM-entry controls is also updated, since this is really a guest 3830 * state bit.) 3831 */ 3832 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) 3833 { 3834 struct vcpu_vmx *vmx = to_vmx(vcpu); 3835 3836 if (vmx->nested.hv_evmcs) 3837 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 3838 3839 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs; 3840 3841 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); 3842 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); 3843 3844 vmcs12->guest_rsp = kvm_rsp_read(vcpu); 3845 vmcs12->guest_rip = kvm_rip_read(vcpu); 3846 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); 3847 3848 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); 3849 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); 3850 3851 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); 3852 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); 3853 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); 3854 3855 vmcs12->guest_interruptibility_info = 3856 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 3857 3858 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 3859 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; 3860 else 3861 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; 3862 3863 if (nested_cpu_has_preemption_timer(vmcs12) && 3864 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) 3865 vmcs12->vmx_preemption_timer_value = 3866 vmx_get_preemption_timer_value(vcpu); 3867 3868 /* 3869 * In some cases (usually, nested EPT), L2 is allowed to change its 3870 * own CR3 without exiting. If it has changed it, we must keep it. 3871 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined 3872 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. 3873 * 3874 * Additionally, restore L2's PDPTR to vmcs12. 3875 */ 3876 if (enable_ept) { 3877 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); 3878 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) { 3879 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); 3880 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); 3881 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); 3882 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); 3883 } 3884 } 3885 3886 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); 3887 3888 if (nested_cpu_has_vid(vmcs12)) 3889 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); 3890 3891 vmcs12->vm_entry_controls = 3892 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | 3893 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); 3894 3895 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) 3896 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); 3897 3898 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) 3899 vmcs12->guest_ia32_efer = vcpu->arch.efer; 3900 } 3901 3902 /* 3903 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits 3904 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), 3905 * and this function updates it to reflect the changes to the guest state while 3906 * L2 was running (and perhaps made some exits which were handled directly by L0 3907 * without going back to L1), and to reflect the exit reason. 3908 * Note that we do not have to copy here all VMCS fields, just those that 3909 * could have changed by the L2 guest or the exit - i.e., the guest-state and 3910 * exit-information fields only. Other fields are modified by L1 with VMWRITE, 3911 * which already writes to vmcs12 directly. 3912 */ 3913 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, 3914 u32 exit_reason, u32 exit_intr_info, 3915 unsigned long exit_qualification) 3916 { 3917 /* update exit information fields: */ 3918 vmcs12->vm_exit_reason = exit_reason; 3919 vmcs12->exit_qualification = exit_qualification; 3920 vmcs12->vm_exit_intr_info = exit_intr_info; 3921 3922 vmcs12->idt_vectoring_info_field = 0; 3923 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 3924 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 3925 3926 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { 3927 vmcs12->launch_state = 1; 3928 3929 /* vm_entry_intr_info_field is cleared on exit. Emulate this 3930 * instead of reading the real value. */ 3931 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; 3932 3933 /* 3934 * Transfer the event that L0 or L1 may wanted to inject into 3935 * L2 to IDT_VECTORING_INFO_FIELD. 3936 */ 3937 vmcs12_save_pending_event(vcpu, vmcs12); 3938 3939 /* 3940 * According to spec, there's no need to store the guest's 3941 * MSRs if the exit is due to a VM-entry failure that occurs 3942 * during or after loading the guest state. Since this exit 3943 * does not fall in that category, we need to save the MSRs. 3944 */ 3945 if (nested_vmx_store_msr(vcpu, 3946 vmcs12->vm_exit_msr_store_addr, 3947 vmcs12->vm_exit_msr_store_count)) 3948 nested_vmx_abort(vcpu, 3949 VMX_ABORT_SAVE_GUEST_MSR_FAIL); 3950 } 3951 3952 /* 3953 * Drop what we picked up for L2 via vmx_complete_interrupts. It is 3954 * preserved above and would only end up incorrectly in L1. 3955 */ 3956 vcpu->arch.nmi_injected = false; 3957 kvm_clear_exception_queue(vcpu); 3958 kvm_clear_interrupt_queue(vcpu); 3959 } 3960 3961 /* 3962 * A part of what we need to when the nested L2 guest exits and we want to 3963 * run its L1 parent, is to reset L1's guest state to the host state specified 3964 * in vmcs12. 3965 * This function is to be called not only on normal nested exit, but also on 3966 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry 3967 * Failures During or After Loading Guest State"). 3968 * This function should be called when the active VMCS is L1's (vmcs01). 3969 */ 3970 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, 3971 struct vmcs12 *vmcs12) 3972 { 3973 struct kvm_segment seg; 3974 u32 entry_failure_code; 3975 3976 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) 3977 vcpu->arch.efer = vmcs12->host_ia32_efer; 3978 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) 3979 vcpu->arch.efer |= (EFER_LMA | EFER_LME); 3980 else 3981 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); 3982 vmx_set_efer(vcpu, vcpu->arch.efer); 3983 3984 kvm_rsp_write(vcpu, vmcs12->host_rsp); 3985 kvm_rip_write(vcpu, vmcs12->host_rip); 3986 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); 3987 vmx_set_interrupt_shadow(vcpu, 0); 3988 3989 /* 3990 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't 3991 * actually changed, because vmx_set_cr0 refers to efer set above. 3992 * 3993 * CR0_GUEST_HOST_MASK is already set in the original vmcs01 3994 * (KVM doesn't change it); 3995 */ 3996 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; 3997 vmx_set_cr0(vcpu, vmcs12->host_cr0); 3998 3999 /* Same as above - no reason to call set_cr4_guest_host_mask(). */ 4000 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); 4001 vmx_set_cr4(vcpu, vmcs12->host_cr4); 4002 4003 nested_ept_uninit_mmu_context(vcpu); 4004 4005 /* 4006 * Only PDPTE load can fail as the value of cr3 was checked on entry and 4007 * couldn't have changed. 4008 */ 4009 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) 4010 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); 4011 4012 if (!enable_ept) 4013 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; 4014 4015 /* 4016 * If vmcs01 doesn't use VPID, CPU flushes TLB on every 4017 * VMEntry/VMExit. Thus, no need to flush TLB. 4018 * 4019 * If vmcs12 doesn't use VPID, L1 expects TLB to be 4020 * flushed on every VMEntry/VMExit. 4021 * 4022 * Otherwise, we can preserve TLB entries as long as we are 4023 * able to tag L1 TLB entries differently than L2 TLB entries. 4024 * 4025 * If vmcs12 uses EPT, we need to execute this flush on EPTP01 4026 * and therefore we request the TLB flush to happen only after VMCS EPTP 4027 * has been set by KVM_REQ_LOAD_CR3. 4028 */ 4029 if (enable_vpid && 4030 (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) { 4031 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4032 } 4033 4034 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); 4035 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); 4036 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); 4037 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); 4038 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); 4039 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); 4040 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); 4041 4042 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ 4043 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) 4044 vmcs_write64(GUEST_BNDCFGS, 0); 4045 4046 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { 4047 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); 4048 vcpu->arch.pat = vmcs12->host_ia32_pat; 4049 } 4050 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 4051 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL, 4052 vmcs12->host_ia32_perf_global_ctrl)); 4053 4054 /* Set L1 segment info according to Intel SDM 4055 27.5.2 Loading Host Segment and Descriptor-Table Registers */ 4056 seg = (struct kvm_segment) { 4057 .base = 0, 4058 .limit = 0xFFFFFFFF, 4059 .selector = vmcs12->host_cs_selector, 4060 .type = 11, 4061 .present = 1, 4062 .s = 1, 4063 .g = 1 4064 }; 4065 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) 4066 seg.l = 1; 4067 else 4068 seg.db = 1; 4069 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); 4070 seg = (struct kvm_segment) { 4071 .base = 0, 4072 .limit = 0xFFFFFFFF, 4073 .type = 3, 4074 .present = 1, 4075 .s = 1, 4076 .db = 1, 4077 .g = 1 4078 }; 4079 seg.selector = vmcs12->host_ds_selector; 4080 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); 4081 seg.selector = vmcs12->host_es_selector; 4082 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); 4083 seg.selector = vmcs12->host_ss_selector; 4084 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); 4085 seg.selector = vmcs12->host_fs_selector; 4086 seg.base = vmcs12->host_fs_base; 4087 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); 4088 seg.selector = vmcs12->host_gs_selector; 4089 seg.base = vmcs12->host_gs_base; 4090 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); 4091 seg = (struct kvm_segment) { 4092 .base = vmcs12->host_tr_base, 4093 .limit = 0x67, 4094 .selector = vmcs12->host_tr_selector, 4095 .type = 11, 4096 .present = 1 4097 }; 4098 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); 4099 4100 kvm_set_dr(vcpu, 7, 0x400); 4101 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4102 4103 if (cpu_has_vmx_msr_bitmap()) 4104 vmx_update_msr_bitmap(vcpu); 4105 4106 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, 4107 vmcs12->vm_exit_msr_load_count)) 4108 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); 4109 } 4110 4111 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) 4112 { 4113 struct shared_msr_entry *efer_msr; 4114 unsigned int i; 4115 4116 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) 4117 return vmcs_read64(GUEST_IA32_EFER); 4118 4119 if (cpu_has_load_ia32_efer()) 4120 return host_efer; 4121 4122 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { 4123 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) 4124 return vmx->msr_autoload.guest.val[i].value; 4125 } 4126 4127 efer_msr = find_msr_entry(vmx, MSR_EFER); 4128 if (efer_msr) 4129 return efer_msr->data; 4130 4131 return host_efer; 4132 } 4133 4134 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) 4135 { 4136 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4137 struct vcpu_vmx *vmx = to_vmx(vcpu); 4138 struct vmx_msr_entry g, h; 4139 gpa_t gpa; 4140 u32 i, j; 4141 4142 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); 4143 4144 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { 4145 /* 4146 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set 4147 * as vmcs01.GUEST_DR7 contains a userspace defined value 4148 * and vcpu->arch.dr7 is not squirreled away before the 4149 * nested VMENTER (not worth adding a variable in nested_vmx). 4150 */ 4151 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 4152 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 4153 else 4154 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); 4155 } 4156 4157 /* 4158 * Note that calling vmx_set_{efer,cr0,cr4} is important as they 4159 * handle a variety of side effects to KVM's software model. 4160 */ 4161 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); 4162 4163 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; 4164 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); 4165 4166 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); 4167 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); 4168 4169 nested_ept_uninit_mmu_context(vcpu); 4170 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 4171 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3); 4172 4173 /* 4174 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs 4175 * from vmcs01 (if necessary). The PDPTRs are not loaded on 4176 * VMFail, like everything else we just need to ensure our 4177 * software model is up-to-date. 4178 */ 4179 if (enable_ept) 4180 ept_save_pdptrs(vcpu); 4181 4182 kvm_mmu_reset_context(vcpu); 4183 4184 if (cpu_has_vmx_msr_bitmap()) 4185 vmx_update_msr_bitmap(vcpu); 4186 4187 /* 4188 * This nasty bit of open coding is a compromise between blindly 4189 * loading L1's MSRs using the exit load lists (incorrect emulation 4190 * of VMFail), leaving the nested VM's MSRs in the software model 4191 * (incorrect behavior) and snapshotting the modified MSRs (too 4192 * expensive since the lists are unbound by hardware). For each 4193 * MSR that was (prematurely) loaded from the nested VMEntry load 4194 * list, reload it from the exit load list if it exists and differs 4195 * from the guest value. The intent is to stuff host state as 4196 * silently as possible, not to fully process the exit load list. 4197 */ 4198 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { 4199 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); 4200 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { 4201 pr_debug_ratelimited( 4202 "%s read MSR index failed (%u, 0x%08llx)\n", 4203 __func__, i, gpa); 4204 goto vmabort; 4205 } 4206 4207 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { 4208 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); 4209 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { 4210 pr_debug_ratelimited( 4211 "%s read MSR failed (%u, 0x%08llx)\n", 4212 __func__, j, gpa); 4213 goto vmabort; 4214 } 4215 if (h.index != g.index) 4216 continue; 4217 if (h.value == g.value) 4218 break; 4219 4220 if (nested_vmx_load_msr_check(vcpu, &h)) { 4221 pr_debug_ratelimited( 4222 "%s check failed (%u, 0x%x, 0x%x)\n", 4223 __func__, j, h.index, h.reserved); 4224 goto vmabort; 4225 } 4226 4227 if (kvm_set_msr(vcpu, h.index, h.value)) { 4228 pr_debug_ratelimited( 4229 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", 4230 __func__, j, h.index, h.value); 4231 goto vmabort; 4232 } 4233 } 4234 } 4235 4236 return; 4237 4238 vmabort: 4239 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); 4240 } 4241 4242 /* 4243 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 4244 * and modify vmcs12 to make it see what it would expect to see there if 4245 * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) 4246 */ 4247 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, 4248 u32 exit_intr_info, unsigned long exit_qualification) 4249 { 4250 struct vcpu_vmx *vmx = to_vmx(vcpu); 4251 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4252 4253 /* trying to cancel vmlaunch/vmresume is a bug */ 4254 WARN_ON_ONCE(vmx->nested.nested_run_pending); 4255 4256 leave_guest_mode(vcpu); 4257 4258 if (nested_cpu_has_preemption_timer(vmcs12)) 4259 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); 4260 4261 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING) 4262 vcpu->arch.tsc_offset -= vmcs12->tsc_offset; 4263 4264 if (likely(!vmx->fail)) { 4265 sync_vmcs02_to_vmcs12(vcpu, vmcs12); 4266 4267 if (exit_reason != -1) 4268 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, 4269 exit_qualification); 4270 4271 /* 4272 * Must happen outside of sync_vmcs02_to_vmcs12() as it will 4273 * also be used to capture vmcs12 cache as part of 4274 * capturing nVMX state for snapshot (migration). 4275 * 4276 * Otherwise, this flush will dirty guest memory at a 4277 * point it is already assumed by user-space to be 4278 * immutable. 4279 */ 4280 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); 4281 } else { 4282 /* 4283 * The only expected VM-instruction error is "VM entry with 4284 * invalid control field(s)." Anything else indicates a 4285 * problem with L0. And we should never get here with a 4286 * VMFail of any type if early consistency checks are enabled. 4287 */ 4288 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != 4289 VMXERR_ENTRY_INVALID_CONTROL_FIELD); 4290 WARN_ON_ONCE(nested_early_check); 4291 } 4292 4293 vmx_switch_vmcs(vcpu, &vmx->vmcs01); 4294 4295 /* Update any VMCS fields that might have changed while L2 ran */ 4296 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); 4297 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); 4298 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 4299 if (vmx->nested.l1_tpr_threshold != -1) 4300 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold); 4301 4302 if (kvm_has_tsc_control) 4303 decache_tsc_multiplier(vmx); 4304 4305 if (vmx->nested.change_vmcs01_virtual_apic_mode) { 4306 vmx->nested.change_vmcs01_virtual_apic_mode = false; 4307 vmx_set_virtual_apic_mode(vcpu); 4308 } 4309 4310 /* Unpin physical memory we referred to in vmcs02 */ 4311 if (vmx->nested.apic_access_page) { 4312 kvm_release_page_clean(vmx->nested.apic_access_page); 4313 vmx->nested.apic_access_page = NULL; 4314 } 4315 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true); 4316 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true); 4317 vmx->nested.pi_desc = NULL; 4318 4319 /* 4320 * We are now running in L2, mmu_notifier will force to reload the 4321 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. 4322 */ 4323 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4324 4325 if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs)) 4326 vmx->nested.need_vmcs12_to_shadow_sync = true; 4327 4328 /* in case we halted in L2 */ 4329 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 4330 4331 if (likely(!vmx->fail)) { 4332 /* 4333 * TODO: SDM says that with acknowledge interrupt on 4334 * exit, bit 31 of the VM-exit interrupt information 4335 * (valid interrupt) is always set to 1 on 4336 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't 4337 * need kvm_cpu_has_interrupt(). See the commit 4338 * message for details. 4339 */ 4340 if (nested_exit_intr_ack_set(vcpu) && 4341 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && 4342 kvm_cpu_has_interrupt(vcpu)) { 4343 int irq = kvm_cpu_get_interrupt(vcpu); 4344 WARN_ON(irq < 0); 4345 vmcs12->vm_exit_intr_info = irq | 4346 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; 4347 } 4348 4349 if (exit_reason != -1) 4350 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, 4351 vmcs12->exit_qualification, 4352 vmcs12->idt_vectoring_info_field, 4353 vmcs12->vm_exit_intr_info, 4354 vmcs12->vm_exit_intr_error_code, 4355 KVM_ISA_VMX); 4356 4357 load_vmcs12_host_state(vcpu, vmcs12); 4358 4359 return; 4360 } 4361 4362 /* 4363 * After an early L2 VM-entry failure, we're now back 4364 * in L1 which thinks it just finished a VMLAUNCH or 4365 * VMRESUME instruction, so we need to set the failure 4366 * flag and the VM-instruction error field of the VMCS 4367 * accordingly, and skip the emulated instruction. 4368 */ 4369 (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); 4370 4371 /* 4372 * Restore L1's host state to KVM's software model. We're here 4373 * because a consistency check was caught by hardware, which 4374 * means some amount of guest state has been propagated to KVM's 4375 * model and needs to be unwound to the host's state. 4376 */ 4377 nested_vmx_restore_host_state(vcpu); 4378 4379 vmx->fail = 0; 4380 } 4381 4382 /* 4383 * Decode the memory-address operand of a vmx instruction, as recorded on an 4384 * exit caused by such an instruction (run by a guest hypervisor). 4385 * On success, returns 0. When the operand is invalid, returns 1 and throws 4386 * #UD or #GP. 4387 */ 4388 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, 4389 u32 vmx_instruction_info, bool wr, int len, gva_t *ret) 4390 { 4391 gva_t off; 4392 bool exn; 4393 struct kvm_segment s; 4394 4395 /* 4396 * According to Vol. 3B, "Information for VM Exits Due to Instruction 4397 * Execution", on an exit, vmx_instruction_info holds most of the 4398 * addressing components of the operand. Only the displacement part 4399 * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). 4400 * For how an actual address is calculated from all these components, 4401 * refer to Vol. 1, "Operand Addressing". 4402 */ 4403 int scaling = vmx_instruction_info & 3; 4404 int addr_size = (vmx_instruction_info >> 7) & 7; 4405 bool is_reg = vmx_instruction_info & (1u << 10); 4406 int seg_reg = (vmx_instruction_info >> 15) & 7; 4407 int index_reg = (vmx_instruction_info >> 18) & 0xf; 4408 bool index_is_valid = !(vmx_instruction_info & (1u << 22)); 4409 int base_reg = (vmx_instruction_info >> 23) & 0xf; 4410 bool base_is_valid = !(vmx_instruction_info & (1u << 27)); 4411 4412 if (is_reg) { 4413 kvm_queue_exception(vcpu, UD_VECTOR); 4414 return 1; 4415 } 4416 4417 /* Addr = segment_base + offset */ 4418 /* offset = base + [index * scale] + displacement */ 4419 off = exit_qualification; /* holds the displacement */ 4420 if (addr_size == 1) 4421 off = (gva_t)sign_extend64(off, 31); 4422 else if (addr_size == 0) 4423 off = (gva_t)sign_extend64(off, 15); 4424 if (base_is_valid) 4425 off += kvm_register_read(vcpu, base_reg); 4426 if (index_is_valid) 4427 off += kvm_register_read(vcpu, index_reg)<<scaling; 4428 vmx_get_segment(vcpu, &s, seg_reg); 4429 4430 /* 4431 * The effective address, i.e. @off, of a memory operand is truncated 4432 * based on the address size of the instruction. Note that this is 4433 * the *effective address*, i.e. the address prior to accounting for 4434 * the segment's base. 4435 */ 4436 if (addr_size == 1) /* 32 bit */ 4437 off &= 0xffffffff; 4438 else if (addr_size == 0) /* 16 bit */ 4439 off &= 0xffff; 4440 4441 /* Checks for #GP/#SS exceptions. */ 4442 exn = false; 4443 if (is_long_mode(vcpu)) { 4444 /* 4445 * The virtual/linear address is never truncated in 64-bit 4446 * mode, e.g. a 32-bit address size can yield a 64-bit virtual 4447 * address when using FS/GS with a non-zero base. 4448 */ 4449 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS) 4450 *ret = s.base + off; 4451 else 4452 *ret = off; 4453 4454 /* Long mode: #GP(0)/#SS(0) if the memory address is in a 4455 * non-canonical form. This is the only check on the memory 4456 * destination for long mode! 4457 */ 4458 exn = is_noncanonical_address(*ret, vcpu); 4459 } else { 4460 /* 4461 * When not in long mode, the virtual/linear address is 4462 * unconditionally truncated to 32 bits regardless of the 4463 * address size. 4464 */ 4465 *ret = (s.base + off) & 0xffffffff; 4466 4467 /* Protected mode: apply checks for segment validity in the 4468 * following order: 4469 * - segment type check (#GP(0) may be thrown) 4470 * - usability check (#GP(0)/#SS(0)) 4471 * - limit check (#GP(0)/#SS(0)) 4472 */ 4473 if (wr) 4474 /* #GP(0) if the destination operand is located in a 4475 * read-only data segment or any code segment. 4476 */ 4477 exn = ((s.type & 0xa) == 0 || (s.type & 8)); 4478 else 4479 /* #GP(0) if the source operand is located in an 4480 * execute-only code segment 4481 */ 4482 exn = ((s.type & 0xa) == 8); 4483 if (exn) { 4484 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 4485 return 1; 4486 } 4487 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. 4488 */ 4489 exn = (s.unusable != 0); 4490 4491 /* 4492 * Protected mode: #GP(0)/#SS(0) if the memory operand is 4493 * outside the segment limit. All CPUs that support VMX ignore 4494 * limit checks for flat segments, i.e. segments with base==0, 4495 * limit==0xffffffff and of type expand-up data or code. 4496 */ 4497 if (!(s.base == 0 && s.limit == 0xffffffff && 4498 ((s.type & 8) || !(s.type & 4)))) 4499 exn = exn || ((u64)off + len - 1 > s.limit); 4500 } 4501 if (exn) { 4502 kvm_queue_exception_e(vcpu, 4503 seg_reg == VCPU_SREG_SS ? 4504 SS_VECTOR : GP_VECTOR, 4505 0); 4506 return 1; 4507 } 4508 4509 return 0; 4510 } 4511 4512 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 4513 { 4514 struct vcpu_vmx *vmx; 4515 4516 if (!nested_vmx_allowed(vcpu)) 4517 return; 4518 4519 vmx = to_vmx(vcpu); 4520 if (kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) { 4521 vmx->nested.msrs.entry_ctls_high |= 4522 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4523 vmx->nested.msrs.exit_ctls_high |= 4524 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4525 } else { 4526 vmx->nested.msrs.entry_ctls_high &= 4527 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4528 vmx->nested.msrs.exit_ctls_high &= 4529 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4530 } 4531 } 4532 4533 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) 4534 { 4535 gva_t gva; 4536 struct x86_exception e; 4537 4538 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), 4539 vmcs_read32(VMX_INSTRUCTION_INFO), false, 4540 sizeof(*vmpointer), &gva)) 4541 return 1; 4542 4543 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { 4544 kvm_inject_page_fault(vcpu, &e); 4545 return 1; 4546 } 4547 4548 return 0; 4549 } 4550 4551 /* 4552 * Allocate a shadow VMCS and associate it with the currently loaded 4553 * VMCS, unless such a shadow VMCS already exists. The newly allocated 4554 * VMCS is also VMCLEARed, so that it is ready for use. 4555 */ 4556 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) 4557 { 4558 struct vcpu_vmx *vmx = to_vmx(vcpu); 4559 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; 4560 4561 /* 4562 * We should allocate a shadow vmcs for vmcs01 only when L1 4563 * executes VMXON and free it when L1 executes VMXOFF. 4564 * As it is invalid to execute VMXON twice, we shouldn't reach 4565 * here when vmcs01 already have an allocated shadow vmcs. 4566 */ 4567 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); 4568 4569 if (!loaded_vmcs->shadow_vmcs) { 4570 loaded_vmcs->shadow_vmcs = alloc_vmcs(true); 4571 if (loaded_vmcs->shadow_vmcs) 4572 vmcs_clear(loaded_vmcs->shadow_vmcs); 4573 } 4574 return loaded_vmcs->shadow_vmcs; 4575 } 4576 4577 static int enter_vmx_operation(struct kvm_vcpu *vcpu) 4578 { 4579 struct vcpu_vmx *vmx = to_vmx(vcpu); 4580 int r; 4581 4582 r = alloc_loaded_vmcs(&vmx->nested.vmcs02); 4583 if (r < 0) 4584 goto out_vmcs02; 4585 4586 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT); 4587 if (!vmx->nested.cached_vmcs12) 4588 goto out_cached_vmcs12; 4589 4590 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT); 4591 if (!vmx->nested.cached_shadow_vmcs12) 4592 goto out_cached_shadow_vmcs12; 4593 4594 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) 4595 goto out_shadow_vmcs; 4596 4597 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, 4598 HRTIMER_MODE_REL_PINNED); 4599 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; 4600 4601 vmx->nested.vpid02 = allocate_vpid(); 4602 4603 vmx->nested.vmcs02_initialized = false; 4604 vmx->nested.vmxon = true; 4605 4606 if (pt_mode == PT_MODE_HOST_GUEST) { 4607 vmx->pt_desc.guest.ctl = 0; 4608 pt_update_intercept_for_msr(vmx); 4609 } 4610 4611 return 0; 4612 4613 out_shadow_vmcs: 4614 kfree(vmx->nested.cached_shadow_vmcs12); 4615 4616 out_cached_shadow_vmcs12: 4617 kfree(vmx->nested.cached_vmcs12); 4618 4619 out_cached_vmcs12: 4620 free_loaded_vmcs(&vmx->nested.vmcs02); 4621 4622 out_vmcs02: 4623 return -ENOMEM; 4624 } 4625 4626 /* 4627 * Emulate the VMXON instruction. 4628 * Currently, we just remember that VMX is active, and do not save or even 4629 * inspect the argument to VMXON (the so-called "VMXON pointer") because we 4630 * do not currently need to store anything in that guest-allocated memory 4631 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their 4632 * argument is different from the VMXON pointer (which the spec says they do). 4633 */ 4634 static int handle_vmon(struct kvm_vcpu *vcpu) 4635 { 4636 int ret; 4637 gpa_t vmptr; 4638 uint32_t revision; 4639 struct vcpu_vmx *vmx = to_vmx(vcpu); 4640 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED 4641 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 4642 4643 /* 4644 * The Intel VMX Instruction Reference lists a bunch of bits that are 4645 * prerequisite to running VMXON, most notably cr4.VMXE must be set to 4646 * 1 (see vmx_set_cr4() for when we allow the guest to set this). 4647 * Otherwise, we should fail with #UD. But most faulting conditions 4648 * have already been checked by hardware, prior to the VM-exit for 4649 * VMXON. We do test guest cr4.VMXE because processor CR4 always has 4650 * that bit set to 1 in non-root mode. 4651 */ 4652 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { 4653 kvm_queue_exception(vcpu, UD_VECTOR); 4654 return 1; 4655 } 4656 4657 /* CPL=0 must be checked manually. */ 4658 if (vmx_get_cpl(vcpu)) { 4659 kvm_inject_gp(vcpu, 0); 4660 return 1; 4661 } 4662 4663 if (vmx->nested.vmxon) 4664 return nested_vmx_failValid(vcpu, 4665 VMXERR_VMXON_IN_VMX_ROOT_OPERATION); 4666 4667 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) 4668 != VMXON_NEEDED_FEATURES) { 4669 kvm_inject_gp(vcpu, 0); 4670 return 1; 4671 } 4672 4673 if (nested_vmx_get_vmptr(vcpu, &vmptr)) 4674 return 1; 4675 4676 /* 4677 * SDM 3: 24.11.5 4678 * The first 4 bytes of VMXON region contain the supported 4679 * VMCS revision identifier 4680 * 4681 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; 4682 * which replaces physical address width with 32 4683 */ 4684 if (!page_address_valid(vcpu, vmptr)) 4685 return nested_vmx_failInvalid(vcpu); 4686 4687 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) || 4688 revision != VMCS12_REVISION) 4689 return nested_vmx_failInvalid(vcpu); 4690 4691 vmx->nested.vmxon_ptr = vmptr; 4692 ret = enter_vmx_operation(vcpu); 4693 if (ret) 4694 return ret; 4695 4696 return nested_vmx_succeed(vcpu); 4697 } 4698 4699 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) 4700 { 4701 struct vcpu_vmx *vmx = to_vmx(vcpu); 4702 4703 if (vmx->nested.current_vmptr == -1ull) 4704 return; 4705 4706 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu)); 4707 4708 if (enable_shadow_vmcs) { 4709 /* copy to memory all shadowed fields in case 4710 they were modified */ 4711 copy_shadow_to_vmcs12(vmx); 4712 vmx_disable_shadow_vmcs(vmx); 4713 } 4714 vmx->nested.posted_intr_nv = -1; 4715 4716 /* Flush VMCS12 to guest memory */ 4717 kvm_vcpu_write_guest_page(vcpu, 4718 vmx->nested.current_vmptr >> PAGE_SHIFT, 4719 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); 4720 4721 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 4722 4723 vmx->nested.current_vmptr = -1ull; 4724 } 4725 4726 /* Emulate the VMXOFF instruction */ 4727 static int handle_vmoff(struct kvm_vcpu *vcpu) 4728 { 4729 if (!nested_vmx_check_permission(vcpu)) 4730 return 1; 4731 4732 free_nested(vcpu); 4733 4734 /* Process a latched INIT during time CPU was in VMX operation */ 4735 kvm_make_request(KVM_REQ_EVENT, vcpu); 4736 4737 return nested_vmx_succeed(vcpu); 4738 } 4739 4740 /* Emulate the VMCLEAR instruction */ 4741 static int handle_vmclear(struct kvm_vcpu *vcpu) 4742 { 4743 struct vcpu_vmx *vmx = to_vmx(vcpu); 4744 u32 zero = 0; 4745 gpa_t vmptr; 4746 u64 evmcs_gpa; 4747 4748 if (!nested_vmx_check_permission(vcpu)) 4749 return 1; 4750 4751 if (nested_vmx_get_vmptr(vcpu, &vmptr)) 4752 return 1; 4753 4754 if (!page_address_valid(vcpu, vmptr)) 4755 return nested_vmx_failValid(vcpu, 4756 VMXERR_VMCLEAR_INVALID_ADDRESS); 4757 4758 if (vmptr == vmx->nested.vmxon_ptr) 4759 return nested_vmx_failValid(vcpu, 4760 VMXERR_VMCLEAR_VMXON_POINTER); 4761 4762 /* 4763 * When Enlightened VMEntry is enabled on the calling CPU we treat 4764 * memory area pointer by vmptr as Enlightened VMCS (as there's no good 4765 * way to distinguish it from VMCS12) and we must not corrupt it by 4766 * writing to the non-existent 'launch_state' field. The area doesn't 4767 * have to be the currently active EVMCS on the calling CPU and there's 4768 * nothing KVM has to do to transition it from 'active' to 'non-active' 4769 * state. It is possible that the area will stay mapped as 4770 * vmx->nested.hv_evmcs but this shouldn't be a problem. 4771 */ 4772 if (likely(!vmx->nested.enlightened_vmcs_enabled || 4773 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) { 4774 if (vmptr == vmx->nested.current_vmptr) 4775 nested_release_vmcs12(vcpu); 4776 4777 kvm_vcpu_write_guest(vcpu, 4778 vmptr + offsetof(struct vmcs12, 4779 launch_state), 4780 &zero, sizeof(zero)); 4781 } 4782 4783 return nested_vmx_succeed(vcpu); 4784 } 4785 4786 /* Emulate the VMLAUNCH instruction */ 4787 static int handle_vmlaunch(struct kvm_vcpu *vcpu) 4788 { 4789 return nested_vmx_run(vcpu, true); 4790 } 4791 4792 /* Emulate the VMRESUME instruction */ 4793 static int handle_vmresume(struct kvm_vcpu *vcpu) 4794 { 4795 4796 return nested_vmx_run(vcpu, false); 4797 } 4798 4799 static int handle_vmread(struct kvm_vcpu *vcpu) 4800 { 4801 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu) 4802 : get_vmcs12(vcpu); 4803 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4804 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); 4805 struct vcpu_vmx *vmx = to_vmx(vcpu); 4806 struct x86_exception e; 4807 unsigned long field; 4808 u64 value; 4809 gva_t gva = 0; 4810 short offset; 4811 int len; 4812 4813 if (!nested_vmx_check_permission(vcpu)) 4814 return 1; 4815 4816 /* 4817 * In VMX non-root operation, when the VMCS-link pointer is -1ull, 4818 * any VMREAD sets the ALU flags for VMfailInvalid. 4819 */ 4820 if (vmx->nested.current_vmptr == -1ull || 4821 (is_guest_mode(vcpu) && 4822 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)) 4823 return nested_vmx_failInvalid(vcpu); 4824 4825 /* Decode instruction info and find the field to read */ 4826 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf)); 4827 4828 offset = vmcs_field_to_offset(field); 4829 if (offset < 0) 4830 return nested_vmx_failValid(vcpu, 4831 VMXERR_UNSUPPORTED_VMCS_COMPONENT); 4832 4833 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field)) 4834 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 4835 4836 /* Read the field, zero-extended to a u64 value */ 4837 value = vmcs12_read_any(vmcs12, field, offset); 4838 4839 /* 4840 * Now copy part of this value to register or memory, as requested. 4841 * Note that the number of bits actually copied is 32 or 64 depending 4842 * on the guest's mode (32 or 64 bit), not on the given field's length. 4843 */ 4844 if (instr_info & BIT(10)) { 4845 kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value); 4846 } else { 4847 len = is_64_bit_mode(vcpu) ? 8 : 4; 4848 if (get_vmx_mem_address(vcpu, exit_qualification, 4849 instr_info, true, len, &gva)) 4850 return 1; 4851 /* _system ok, nested_vmx_check_permission has verified cpl=0 */ 4852 if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) { 4853 kvm_inject_page_fault(vcpu, &e); 4854 return 1; 4855 } 4856 } 4857 4858 return nested_vmx_succeed(vcpu); 4859 } 4860 4861 static bool is_shadow_field_rw(unsigned long field) 4862 { 4863 switch (field) { 4864 #define SHADOW_FIELD_RW(x, y) case x: 4865 #include "vmcs_shadow_fields.h" 4866 return true; 4867 default: 4868 break; 4869 } 4870 return false; 4871 } 4872 4873 static bool is_shadow_field_ro(unsigned long field) 4874 { 4875 switch (field) { 4876 #define SHADOW_FIELD_RO(x, y) case x: 4877 #include "vmcs_shadow_fields.h" 4878 return true; 4879 default: 4880 break; 4881 } 4882 return false; 4883 } 4884 4885 static int handle_vmwrite(struct kvm_vcpu *vcpu) 4886 { 4887 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu) 4888 : get_vmcs12(vcpu); 4889 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4890 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); 4891 struct vcpu_vmx *vmx = to_vmx(vcpu); 4892 struct x86_exception e; 4893 unsigned long field; 4894 short offset; 4895 gva_t gva; 4896 int len; 4897 4898 /* 4899 * The value to write might be 32 or 64 bits, depending on L1's long 4900 * mode, and eventually we need to write that into a field of several 4901 * possible lengths. The code below first zero-extends the value to 64 4902 * bit (value), and then copies only the appropriate number of 4903 * bits into the vmcs12 field. 4904 */ 4905 u64 value = 0; 4906 4907 if (!nested_vmx_check_permission(vcpu)) 4908 return 1; 4909 4910 /* 4911 * In VMX non-root operation, when the VMCS-link pointer is -1ull, 4912 * any VMWRITE sets the ALU flags for VMfailInvalid. 4913 */ 4914 if (vmx->nested.current_vmptr == -1ull || 4915 (is_guest_mode(vcpu) && 4916 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)) 4917 return nested_vmx_failInvalid(vcpu); 4918 4919 if (instr_info & BIT(10)) 4920 value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf)); 4921 else { 4922 len = is_64_bit_mode(vcpu) ? 8 : 4; 4923 if (get_vmx_mem_address(vcpu, exit_qualification, 4924 instr_info, false, len, &gva)) 4925 return 1; 4926 if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) { 4927 kvm_inject_page_fault(vcpu, &e); 4928 return 1; 4929 } 4930 } 4931 4932 field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf)); 4933 4934 offset = vmcs_field_to_offset(field); 4935 if (offset < 0) 4936 return nested_vmx_failValid(vcpu, 4937 VMXERR_UNSUPPORTED_VMCS_COMPONENT); 4938 4939 /* 4940 * If the vCPU supports "VMWRITE to any supported field in the 4941 * VMCS," then the "read-only" fields are actually read/write. 4942 */ 4943 if (vmcs_field_readonly(field) && 4944 !nested_cpu_has_vmwrite_any_field(vcpu)) 4945 return nested_vmx_failValid(vcpu, 4946 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); 4947 4948 /* 4949 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties 4950 * vmcs12, else we may crush a field or consume a stale value. 4951 */ 4952 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) 4953 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 4954 4955 /* 4956 * Some Intel CPUs intentionally drop the reserved bits of the AR byte 4957 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM 4958 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE 4959 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD 4960 * from L1 will return a different value than VMREAD from L2 (L1 sees 4961 * the stripped down value, L2 sees the full value as stored by KVM). 4962 */ 4963 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES) 4964 value &= 0x1f0ff; 4965 4966 vmcs12_write_any(vmcs12, field, offset, value); 4967 4968 /* 4969 * Do not track vmcs12 dirty-state if in guest-mode as we actually 4970 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated 4971 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't 4972 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path. 4973 */ 4974 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) { 4975 /* 4976 * L1 can read these fields without exiting, ensure the 4977 * shadow VMCS is up-to-date. 4978 */ 4979 if (enable_shadow_vmcs && is_shadow_field_ro(field)) { 4980 preempt_disable(); 4981 vmcs_load(vmx->vmcs01.shadow_vmcs); 4982 4983 __vmcs_writel(field, value); 4984 4985 vmcs_clear(vmx->vmcs01.shadow_vmcs); 4986 vmcs_load(vmx->loaded_vmcs->vmcs); 4987 preempt_enable(); 4988 } 4989 vmx->nested.dirty_vmcs12 = true; 4990 } 4991 4992 return nested_vmx_succeed(vcpu); 4993 } 4994 4995 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) 4996 { 4997 vmx->nested.current_vmptr = vmptr; 4998 if (enable_shadow_vmcs) { 4999 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS); 5000 vmcs_write64(VMCS_LINK_POINTER, 5001 __pa(vmx->vmcs01.shadow_vmcs)); 5002 vmx->nested.need_vmcs12_to_shadow_sync = true; 5003 } 5004 vmx->nested.dirty_vmcs12 = true; 5005 } 5006 5007 /* Emulate the VMPTRLD instruction */ 5008 static int handle_vmptrld(struct kvm_vcpu *vcpu) 5009 { 5010 struct vcpu_vmx *vmx = to_vmx(vcpu); 5011 gpa_t vmptr; 5012 5013 if (!nested_vmx_check_permission(vcpu)) 5014 return 1; 5015 5016 if (nested_vmx_get_vmptr(vcpu, &vmptr)) 5017 return 1; 5018 5019 if (!page_address_valid(vcpu, vmptr)) 5020 return nested_vmx_failValid(vcpu, 5021 VMXERR_VMPTRLD_INVALID_ADDRESS); 5022 5023 if (vmptr == vmx->nested.vmxon_ptr) 5024 return nested_vmx_failValid(vcpu, 5025 VMXERR_VMPTRLD_VMXON_POINTER); 5026 5027 /* Forbid normal VMPTRLD if Enlightened version was used */ 5028 if (vmx->nested.hv_evmcs) 5029 return 1; 5030 5031 if (vmx->nested.current_vmptr != vmptr) { 5032 struct kvm_host_map map; 5033 struct vmcs12 *new_vmcs12; 5034 5035 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) { 5036 /* 5037 * Reads from an unbacked page return all 1s, 5038 * which means that the 32 bits located at the 5039 * given physical address won't match the required 5040 * VMCS12_REVISION identifier. 5041 */ 5042 return nested_vmx_failValid(vcpu, 5043 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); 5044 } 5045 5046 new_vmcs12 = map.hva; 5047 5048 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION || 5049 (new_vmcs12->hdr.shadow_vmcs && 5050 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { 5051 kvm_vcpu_unmap(vcpu, &map, false); 5052 return nested_vmx_failValid(vcpu, 5053 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); 5054 } 5055 5056 nested_release_vmcs12(vcpu); 5057 5058 /* 5059 * Load VMCS12 from guest memory since it is not already 5060 * cached. 5061 */ 5062 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); 5063 kvm_vcpu_unmap(vcpu, &map, false); 5064 5065 set_current_vmptr(vmx, vmptr); 5066 } 5067 5068 return nested_vmx_succeed(vcpu); 5069 } 5070 5071 /* Emulate the VMPTRST instruction */ 5072 static int handle_vmptrst(struct kvm_vcpu *vcpu) 5073 { 5074 unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); 5075 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5076 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; 5077 struct x86_exception e; 5078 gva_t gva; 5079 5080 if (!nested_vmx_check_permission(vcpu)) 5081 return 1; 5082 5083 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs)) 5084 return 1; 5085 5086 if (get_vmx_mem_address(vcpu, exit_qual, instr_info, 5087 true, sizeof(gpa_t), &gva)) 5088 return 1; 5089 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ 5090 if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, 5091 sizeof(gpa_t), &e)) { 5092 kvm_inject_page_fault(vcpu, &e); 5093 return 1; 5094 } 5095 return nested_vmx_succeed(vcpu); 5096 } 5097 5098 /* Emulate the INVEPT instruction */ 5099 static int handle_invept(struct kvm_vcpu *vcpu) 5100 { 5101 struct vcpu_vmx *vmx = to_vmx(vcpu); 5102 u32 vmx_instruction_info, types; 5103 unsigned long type; 5104 gva_t gva; 5105 struct x86_exception e; 5106 struct { 5107 u64 eptp, gpa; 5108 } operand; 5109 5110 if (!(vmx->nested.msrs.secondary_ctls_high & 5111 SECONDARY_EXEC_ENABLE_EPT) || 5112 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { 5113 kvm_queue_exception(vcpu, UD_VECTOR); 5114 return 1; 5115 } 5116 5117 if (!nested_vmx_check_permission(vcpu)) 5118 return 1; 5119 5120 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5121 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); 5122 5123 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; 5124 5125 if (type >= 32 || !(types & (1 << type))) 5126 return nested_vmx_failValid(vcpu, 5127 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5128 5129 /* According to the Intel VMX instruction reference, the memory 5130 * operand is read even if it isn't needed (e.g., for type==global) 5131 */ 5132 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), 5133 vmx_instruction_info, false, sizeof(operand), &gva)) 5134 return 1; 5135 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { 5136 kvm_inject_page_fault(vcpu, &e); 5137 return 1; 5138 } 5139 5140 switch (type) { 5141 case VMX_EPT_EXTENT_GLOBAL: 5142 case VMX_EPT_EXTENT_CONTEXT: 5143 /* 5144 * TODO: Sync the necessary shadow EPT roots here, rather than 5145 * at the next emulated VM-entry. 5146 */ 5147 break; 5148 default: 5149 BUG_ON(1); 5150 break; 5151 } 5152 5153 return nested_vmx_succeed(vcpu); 5154 } 5155 5156 static int handle_invvpid(struct kvm_vcpu *vcpu) 5157 { 5158 struct vcpu_vmx *vmx = to_vmx(vcpu); 5159 u32 vmx_instruction_info; 5160 unsigned long type, types; 5161 gva_t gva; 5162 struct x86_exception e; 5163 struct { 5164 u64 vpid; 5165 u64 gla; 5166 } operand; 5167 u16 vpid02; 5168 5169 if (!(vmx->nested.msrs.secondary_ctls_high & 5170 SECONDARY_EXEC_ENABLE_VPID) || 5171 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { 5172 kvm_queue_exception(vcpu, UD_VECTOR); 5173 return 1; 5174 } 5175 5176 if (!nested_vmx_check_permission(vcpu)) 5177 return 1; 5178 5179 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5180 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); 5181 5182 types = (vmx->nested.msrs.vpid_caps & 5183 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; 5184 5185 if (type >= 32 || !(types & (1 << type))) 5186 return nested_vmx_failValid(vcpu, 5187 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5188 5189 /* according to the intel vmx instruction reference, the memory 5190 * operand is read even if it isn't needed (e.g., for type==global) 5191 */ 5192 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), 5193 vmx_instruction_info, false, sizeof(operand), &gva)) 5194 return 1; 5195 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { 5196 kvm_inject_page_fault(vcpu, &e); 5197 return 1; 5198 } 5199 if (operand.vpid >> 16) 5200 return nested_vmx_failValid(vcpu, 5201 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5202 5203 vpid02 = nested_get_vpid02(vcpu); 5204 switch (type) { 5205 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: 5206 if (!operand.vpid || 5207 is_noncanonical_address(operand.gla, vcpu)) 5208 return nested_vmx_failValid(vcpu, 5209 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5210 if (cpu_has_vmx_invvpid_individual_addr()) { 5211 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, 5212 vpid02, operand.gla); 5213 } else 5214 __vmx_flush_tlb(vcpu, vpid02, false); 5215 break; 5216 case VMX_VPID_EXTENT_SINGLE_CONTEXT: 5217 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: 5218 if (!operand.vpid) 5219 return nested_vmx_failValid(vcpu, 5220 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); 5221 __vmx_flush_tlb(vcpu, vpid02, false); 5222 break; 5223 case VMX_VPID_EXTENT_ALL_CONTEXT: 5224 __vmx_flush_tlb(vcpu, vpid02, false); 5225 break; 5226 default: 5227 WARN_ON_ONCE(1); 5228 return kvm_skip_emulated_instruction(vcpu); 5229 } 5230 5231 return nested_vmx_succeed(vcpu); 5232 } 5233 5234 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, 5235 struct vmcs12 *vmcs12) 5236 { 5237 u32 index = kvm_rcx_read(vcpu); 5238 u64 address; 5239 bool accessed_dirty; 5240 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 5241 5242 if (!nested_cpu_has_eptp_switching(vmcs12) || 5243 !nested_cpu_has_ept(vmcs12)) 5244 return 1; 5245 5246 if (index >= VMFUNC_EPTP_ENTRIES) 5247 return 1; 5248 5249 5250 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, 5251 &address, index * 8, 8)) 5252 return 1; 5253 5254 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); 5255 5256 /* 5257 * If the (L2) guest does a vmfunc to the currently 5258 * active ept pointer, we don't have to do anything else 5259 */ 5260 if (vmcs12->ept_pointer != address) { 5261 if (!valid_ept_address(vcpu, address)) 5262 return 1; 5263 5264 kvm_mmu_unload(vcpu); 5265 mmu->ept_ad = accessed_dirty; 5266 mmu->mmu_role.base.ad_disabled = !accessed_dirty; 5267 vmcs12->ept_pointer = address; 5268 /* 5269 * TODO: Check what's the correct approach in case 5270 * mmu reload fails. Currently, we just let the next 5271 * reload potentially fail 5272 */ 5273 kvm_mmu_reload(vcpu); 5274 } 5275 5276 return 0; 5277 } 5278 5279 static int handle_vmfunc(struct kvm_vcpu *vcpu) 5280 { 5281 struct vcpu_vmx *vmx = to_vmx(vcpu); 5282 struct vmcs12 *vmcs12; 5283 u32 function = kvm_rax_read(vcpu); 5284 5285 /* 5286 * VMFUNC is only supported for nested guests, but we always enable the 5287 * secondary control for simplicity; for non-nested mode, fake that we 5288 * didn't by injecting #UD. 5289 */ 5290 if (!is_guest_mode(vcpu)) { 5291 kvm_queue_exception(vcpu, UD_VECTOR); 5292 return 1; 5293 } 5294 5295 vmcs12 = get_vmcs12(vcpu); 5296 if ((vmcs12->vm_function_control & (1 << function)) == 0) 5297 goto fail; 5298 5299 switch (function) { 5300 case 0: 5301 if (nested_vmx_eptp_switching(vcpu, vmcs12)) 5302 goto fail; 5303 break; 5304 default: 5305 goto fail; 5306 } 5307 return kvm_skip_emulated_instruction(vcpu); 5308 5309 fail: 5310 nested_vmx_vmexit(vcpu, vmx->exit_reason, 5311 vmcs_read32(VM_EXIT_INTR_INFO), 5312 vmcs_readl(EXIT_QUALIFICATION)); 5313 return 1; 5314 } 5315 5316 /* 5317 * Return true if an IO instruction with the specified port and size should cause 5318 * a VM-exit into L1. 5319 */ 5320 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port, 5321 int size) 5322 { 5323 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5324 gpa_t bitmap, last_bitmap; 5325 u8 b; 5326 5327 last_bitmap = (gpa_t)-1; 5328 b = -1; 5329 5330 while (size > 0) { 5331 if (port < 0x8000) 5332 bitmap = vmcs12->io_bitmap_a; 5333 else if (port < 0x10000) 5334 bitmap = vmcs12->io_bitmap_b; 5335 else 5336 return true; 5337 bitmap += (port & 0x7fff) / 8; 5338 5339 if (last_bitmap != bitmap) 5340 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) 5341 return true; 5342 if (b & (1 << (port & 7))) 5343 return true; 5344 5345 port++; 5346 size--; 5347 last_bitmap = bitmap; 5348 } 5349 5350 return false; 5351 } 5352 5353 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, 5354 struct vmcs12 *vmcs12) 5355 { 5356 unsigned long exit_qualification; 5357 unsigned short port; 5358 int size; 5359 5360 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 5361 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); 5362 5363 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5364 5365 port = exit_qualification >> 16; 5366 size = (exit_qualification & 7) + 1; 5367 5368 return nested_vmx_check_io_bitmaps(vcpu, port, size); 5369 } 5370 5371 /* 5372 * Return 1 if we should exit from L2 to L1 to handle an MSR access, 5373 * rather than handle it ourselves in L0. I.e., check whether L1 expressed 5374 * disinterest in the current event (read or write a specific MSR) by using an 5375 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. 5376 */ 5377 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, 5378 struct vmcs12 *vmcs12, u32 exit_reason) 5379 { 5380 u32 msr_index = kvm_rcx_read(vcpu); 5381 gpa_t bitmap; 5382 5383 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) 5384 return true; 5385 5386 /* 5387 * The MSR_BITMAP page is divided into four 1024-byte bitmaps, 5388 * for the four combinations of read/write and low/high MSR numbers. 5389 * First we need to figure out which of the four to use: 5390 */ 5391 bitmap = vmcs12->msr_bitmap; 5392 if (exit_reason == EXIT_REASON_MSR_WRITE) 5393 bitmap += 2048; 5394 if (msr_index >= 0xc0000000) { 5395 msr_index -= 0xc0000000; 5396 bitmap += 1024; 5397 } 5398 5399 /* Then read the msr_index'th bit from this bitmap: */ 5400 if (msr_index < 1024*8) { 5401 unsigned char b; 5402 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) 5403 return true; 5404 return 1 & (b >> (msr_index & 7)); 5405 } else 5406 return true; /* let L1 handle the wrong parameter */ 5407 } 5408 5409 /* 5410 * Return 1 if we should exit from L2 to L1 to handle a CR access exit, 5411 * rather than handle it ourselves in L0. I.e., check if L1 wanted to 5412 * intercept (via guest_host_mask etc.) the current event. 5413 */ 5414 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, 5415 struct vmcs12 *vmcs12) 5416 { 5417 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5418 int cr = exit_qualification & 15; 5419 int reg; 5420 unsigned long val; 5421 5422 switch ((exit_qualification >> 4) & 3) { 5423 case 0: /* mov to cr */ 5424 reg = (exit_qualification >> 8) & 15; 5425 val = kvm_register_readl(vcpu, reg); 5426 switch (cr) { 5427 case 0: 5428 if (vmcs12->cr0_guest_host_mask & 5429 (val ^ vmcs12->cr0_read_shadow)) 5430 return true; 5431 break; 5432 case 3: 5433 if ((vmcs12->cr3_target_count >= 1 && 5434 vmcs12->cr3_target_value0 == val) || 5435 (vmcs12->cr3_target_count >= 2 && 5436 vmcs12->cr3_target_value1 == val) || 5437 (vmcs12->cr3_target_count >= 3 && 5438 vmcs12->cr3_target_value2 == val) || 5439 (vmcs12->cr3_target_count >= 4 && 5440 vmcs12->cr3_target_value3 == val)) 5441 return false; 5442 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) 5443 return true; 5444 break; 5445 case 4: 5446 if (vmcs12->cr4_guest_host_mask & 5447 (vmcs12->cr4_read_shadow ^ val)) 5448 return true; 5449 break; 5450 case 8: 5451 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) 5452 return true; 5453 break; 5454 } 5455 break; 5456 case 2: /* clts */ 5457 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && 5458 (vmcs12->cr0_read_shadow & X86_CR0_TS)) 5459 return true; 5460 break; 5461 case 1: /* mov from cr */ 5462 switch (cr) { 5463 case 3: 5464 if (vmcs12->cpu_based_vm_exec_control & 5465 CPU_BASED_CR3_STORE_EXITING) 5466 return true; 5467 break; 5468 case 8: 5469 if (vmcs12->cpu_based_vm_exec_control & 5470 CPU_BASED_CR8_STORE_EXITING) 5471 return true; 5472 break; 5473 } 5474 break; 5475 case 3: /* lmsw */ 5476 /* 5477 * lmsw can change bits 1..3 of cr0, and only set bit 0 of 5478 * cr0. Other attempted changes are ignored, with no exit. 5479 */ 5480 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5481 if (vmcs12->cr0_guest_host_mask & 0xe & 5482 (val ^ vmcs12->cr0_read_shadow)) 5483 return true; 5484 if ((vmcs12->cr0_guest_host_mask & 0x1) && 5485 !(vmcs12->cr0_read_shadow & 0x1) && 5486 (val & 0x1)) 5487 return true; 5488 break; 5489 } 5490 return false; 5491 } 5492 5493 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, 5494 struct vmcs12 *vmcs12, gpa_t bitmap) 5495 { 5496 u32 vmx_instruction_info; 5497 unsigned long field; 5498 u8 b; 5499 5500 if (!nested_cpu_has_shadow_vmcs(vmcs12)) 5501 return true; 5502 5503 /* Decode instruction info and find the field to access */ 5504 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5505 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); 5506 5507 /* Out-of-range fields always cause a VM exit from L2 to L1 */ 5508 if (field >> 15) 5509 return true; 5510 5511 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) 5512 return true; 5513 5514 return 1 & (b >> (field & 7)); 5515 } 5516 5517 /* 5518 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we 5519 * should handle it ourselves in L0 (and then continue L2). Only call this 5520 * when in is_guest_mode (L2). 5521 */ 5522 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) 5523 { 5524 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 5525 struct vcpu_vmx *vmx = to_vmx(vcpu); 5526 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5527 5528 if (vmx->nested.nested_run_pending) 5529 return false; 5530 5531 if (unlikely(vmx->fail)) { 5532 trace_kvm_nested_vmenter_failed( 5533 "hardware VM-instruction error: ", 5534 vmcs_read32(VM_INSTRUCTION_ERROR)); 5535 return true; 5536 } 5537 5538 /* 5539 * The host physical addresses of some pages of guest memory 5540 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5541 * Page). The CPU may write to these pages via their host 5542 * physical address while L2 is running, bypassing any 5543 * address-translation-based dirty tracking (e.g. EPT write 5544 * protection). 5545 * 5546 * Mark them dirty on every exit from L2 to prevent them from 5547 * getting out of sync with dirty tracking. 5548 */ 5549 nested_mark_vmcs12_pages_dirty(vcpu); 5550 5551 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, 5552 vmcs_readl(EXIT_QUALIFICATION), 5553 vmx->idt_vectoring_info, 5554 intr_info, 5555 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5556 KVM_ISA_VMX); 5557 5558 switch (exit_reason) { 5559 case EXIT_REASON_EXCEPTION_NMI: 5560 if (is_nmi(intr_info)) 5561 return false; 5562 else if (is_page_fault(intr_info)) 5563 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; 5564 else if (is_debug(intr_info) && 5565 vcpu->guest_debug & 5566 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) 5567 return false; 5568 else if (is_breakpoint(intr_info) && 5569 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5570 return false; 5571 return vmcs12->exception_bitmap & 5572 (1u << (intr_info & INTR_INFO_VECTOR_MASK)); 5573 case EXIT_REASON_EXTERNAL_INTERRUPT: 5574 return false; 5575 case EXIT_REASON_TRIPLE_FAULT: 5576 return true; 5577 case EXIT_REASON_INTERRUPT_WINDOW: 5578 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING); 5579 case EXIT_REASON_NMI_WINDOW: 5580 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING); 5581 case EXIT_REASON_TASK_SWITCH: 5582 return true; 5583 case EXIT_REASON_CPUID: 5584 return true; 5585 case EXIT_REASON_HLT: 5586 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); 5587 case EXIT_REASON_INVD: 5588 return true; 5589 case EXIT_REASON_INVLPG: 5590 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); 5591 case EXIT_REASON_RDPMC: 5592 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); 5593 case EXIT_REASON_RDRAND: 5594 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); 5595 case EXIT_REASON_RDSEED: 5596 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); 5597 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: 5598 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); 5599 case EXIT_REASON_VMREAD: 5600 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, 5601 vmcs12->vmread_bitmap); 5602 case EXIT_REASON_VMWRITE: 5603 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, 5604 vmcs12->vmwrite_bitmap); 5605 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: 5606 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: 5607 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: 5608 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: 5609 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: 5610 /* 5611 * VMX instructions trap unconditionally. This allows L1 to 5612 * emulate them for its L2 guest, i.e., allows 3-level nesting! 5613 */ 5614 return true; 5615 case EXIT_REASON_CR_ACCESS: 5616 return nested_vmx_exit_handled_cr(vcpu, vmcs12); 5617 case EXIT_REASON_DR_ACCESS: 5618 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); 5619 case EXIT_REASON_IO_INSTRUCTION: 5620 return nested_vmx_exit_handled_io(vcpu, vmcs12); 5621 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: 5622 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); 5623 case EXIT_REASON_MSR_READ: 5624 case EXIT_REASON_MSR_WRITE: 5625 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); 5626 case EXIT_REASON_INVALID_STATE: 5627 return true; 5628 case EXIT_REASON_MWAIT_INSTRUCTION: 5629 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); 5630 case EXIT_REASON_MONITOR_TRAP_FLAG: 5631 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); 5632 case EXIT_REASON_MONITOR_INSTRUCTION: 5633 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); 5634 case EXIT_REASON_PAUSE_INSTRUCTION: 5635 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || 5636 nested_cpu_has2(vmcs12, 5637 SECONDARY_EXEC_PAUSE_LOOP_EXITING); 5638 case EXIT_REASON_MCE_DURING_VMENTRY: 5639 return false; 5640 case EXIT_REASON_TPR_BELOW_THRESHOLD: 5641 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); 5642 case EXIT_REASON_APIC_ACCESS: 5643 case EXIT_REASON_APIC_WRITE: 5644 case EXIT_REASON_EOI_INDUCED: 5645 /* 5646 * The controls for "virtualize APIC accesses," "APIC- 5647 * register virtualization," and "virtual-interrupt 5648 * delivery" only come from vmcs12. 5649 */ 5650 return true; 5651 case EXIT_REASON_EPT_VIOLATION: 5652 /* 5653 * L0 always deals with the EPT violation. If nested EPT is 5654 * used, and the nested mmu code discovers that the address is 5655 * missing in the guest EPT table (EPT12), the EPT violation 5656 * will be injected with nested_ept_inject_page_fault() 5657 */ 5658 return false; 5659 case EXIT_REASON_EPT_MISCONFIG: 5660 /* 5661 * L2 never uses directly L1's EPT, but rather L0's own EPT 5662 * table (shadow on EPT) or a merged EPT table that L0 built 5663 * (EPT on EPT). So any problems with the structure of the 5664 * table is L0's fault. 5665 */ 5666 return false; 5667 case EXIT_REASON_INVPCID: 5668 return 5669 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && 5670 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); 5671 case EXIT_REASON_WBINVD: 5672 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); 5673 case EXIT_REASON_XSETBV: 5674 return true; 5675 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: 5676 /* 5677 * This should never happen, since it is not possible to 5678 * set XSS to a non-zero value---neither in L1 nor in L2. 5679 * If if it were, XSS would have to be checked against 5680 * the XSS exit bitmap in vmcs12. 5681 */ 5682 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); 5683 case EXIT_REASON_PREEMPTION_TIMER: 5684 return false; 5685 case EXIT_REASON_PML_FULL: 5686 /* We emulate PML support to L1. */ 5687 return false; 5688 case EXIT_REASON_VMFUNC: 5689 /* VM functions are emulated through L2->L0 vmexits. */ 5690 return false; 5691 case EXIT_REASON_ENCLS: 5692 /* SGX is never exposed to L1 */ 5693 return false; 5694 case EXIT_REASON_UMWAIT: 5695 case EXIT_REASON_TPAUSE: 5696 return nested_cpu_has2(vmcs12, 5697 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE); 5698 default: 5699 return true; 5700 } 5701 } 5702 5703 5704 static int vmx_get_nested_state(struct kvm_vcpu *vcpu, 5705 struct kvm_nested_state __user *user_kvm_nested_state, 5706 u32 user_data_size) 5707 { 5708 struct vcpu_vmx *vmx; 5709 struct vmcs12 *vmcs12; 5710 struct kvm_nested_state kvm_state = { 5711 .flags = 0, 5712 .format = KVM_STATE_NESTED_FORMAT_VMX, 5713 .size = sizeof(kvm_state), 5714 .hdr.vmx.vmxon_pa = -1ull, 5715 .hdr.vmx.vmcs12_pa = -1ull, 5716 }; 5717 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state = 5718 &user_kvm_nested_state->data.vmx[0]; 5719 5720 if (!vcpu) 5721 return kvm_state.size + sizeof(*user_vmx_nested_state); 5722 5723 vmx = to_vmx(vcpu); 5724 vmcs12 = get_vmcs12(vcpu); 5725 5726 if (nested_vmx_allowed(vcpu) && 5727 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { 5728 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr; 5729 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr; 5730 5731 if (vmx_has_valid_vmcs12(vcpu)) { 5732 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12); 5733 5734 if (vmx->nested.hv_evmcs) 5735 kvm_state.flags |= KVM_STATE_NESTED_EVMCS; 5736 5737 if (is_guest_mode(vcpu) && 5738 nested_cpu_has_shadow_vmcs(vmcs12) && 5739 vmcs12->vmcs_link_pointer != -1ull) 5740 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12); 5741 } 5742 5743 if (vmx->nested.smm.vmxon) 5744 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; 5745 5746 if (vmx->nested.smm.guest_mode) 5747 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; 5748 5749 if (is_guest_mode(vcpu)) { 5750 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; 5751 5752 if (vmx->nested.nested_run_pending) 5753 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; 5754 5755 if (vmx->nested.mtf_pending) 5756 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING; 5757 } 5758 } 5759 5760 if (user_data_size < kvm_state.size) 5761 goto out; 5762 5763 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) 5764 return -EFAULT; 5765 5766 if (!vmx_has_valid_vmcs12(vcpu)) 5767 goto out; 5768 5769 /* 5770 * When running L2, the authoritative vmcs12 state is in the 5771 * vmcs02. When running L1, the authoritative vmcs12 state is 5772 * in the shadow or enlightened vmcs linked to vmcs01, unless 5773 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative 5774 * vmcs12 state is in the vmcs12 already. 5775 */ 5776 if (is_guest_mode(vcpu)) { 5777 sync_vmcs02_to_vmcs12(vcpu, vmcs12); 5778 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12); 5779 } else if (!vmx->nested.need_vmcs12_to_shadow_sync) { 5780 if (vmx->nested.hv_evmcs) 5781 copy_enlightened_to_vmcs12(vmx); 5782 else if (enable_shadow_vmcs) 5783 copy_shadow_to_vmcs12(vmx); 5784 } 5785 5786 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE); 5787 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE); 5788 5789 /* 5790 * Copy over the full allocated size of vmcs12 rather than just the size 5791 * of the struct. 5792 */ 5793 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE)) 5794 return -EFAULT; 5795 5796 if (nested_cpu_has_shadow_vmcs(vmcs12) && 5797 vmcs12->vmcs_link_pointer != -1ull) { 5798 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12, 5799 get_shadow_vmcs12(vcpu), VMCS12_SIZE)) 5800 return -EFAULT; 5801 } 5802 5803 out: 5804 return kvm_state.size; 5805 } 5806 5807 /* 5808 * Forcibly leave nested mode in order to be able to reset the VCPU later on. 5809 */ 5810 void vmx_leave_nested(struct kvm_vcpu *vcpu) 5811 { 5812 if (is_guest_mode(vcpu)) { 5813 to_vmx(vcpu)->nested.nested_run_pending = 0; 5814 nested_vmx_vmexit(vcpu, -1, 0, 0); 5815 } 5816 free_nested(vcpu); 5817 } 5818 5819 static int vmx_set_nested_state(struct kvm_vcpu *vcpu, 5820 struct kvm_nested_state __user *user_kvm_nested_state, 5821 struct kvm_nested_state *kvm_state) 5822 { 5823 struct vcpu_vmx *vmx = to_vmx(vcpu); 5824 struct vmcs12 *vmcs12; 5825 u32 exit_qual; 5826 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state = 5827 &user_kvm_nested_state->data.vmx[0]; 5828 int ret; 5829 5830 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX) 5831 return -EINVAL; 5832 5833 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) { 5834 if (kvm_state->hdr.vmx.smm.flags) 5835 return -EINVAL; 5836 5837 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) 5838 return -EINVAL; 5839 5840 /* 5841 * KVM_STATE_NESTED_EVMCS used to signal that KVM should 5842 * enable eVMCS capability on vCPU. However, since then 5843 * code was changed such that flag signals vmcs12 should 5844 * be copied into eVMCS in guest memory. 5845 * 5846 * To preserve backwards compatability, allow user 5847 * to set this flag even when there is no VMXON region. 5848 */ 5849 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS) 5850 return -EINVAL; 5851 } else { 5852 if (!nested_vmx_allowed(vcpu)) 5853 return -EINVAL; 5854 5855 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa)) 5856 return -EINVAL; 5857 } 5858 5859 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && 5860 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) 5861 return -EINVAL; 5862 5863 if (kvm_state->hdr.vmx.smm.flags & 5864 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) 5865 return -EINVAL; 5866 5867 /* 5868 * SMM temporarily disables VMX, so we cannot be in guest mode, 5869 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags 5870 * must be zero. 5871 */ 5872 if (is_smm(vcpu) ? 5873 (kvm_state->flags & 5874 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING)) 5875 : kvm_state->hdr.vmx.smm.flags) 5876 return -EINVAL; 5877 5878 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && 5879 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) 5880 return -EINVAL; 5881 5882 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) && 5883 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled)) 5884 return -EINVAL; 5885 5886 vmx_leave_nested(vcpu); 5887 5888 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) 5889 return 0; 5890 5891 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa; 5892 ret = enter_vmx_operation(vcpu); 5893 if (ret) 5894 return ret; 5895 5896 /* Empty 'VMXON' state is permitted */ 5897 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) 5898 return 0; 5899 5900 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) { 5901 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa || 5902 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa)) 5903 return -EINVAL; 5904 5905 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa); 5906 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { 5907 /* 5908 * Sync eVMCS upon entry as we may not have 5909 * HV_X64_MSR_VP_ASSIST_PAGE set up yet. 5910 */ 5911 vmx->nested.need_vmcs12_to_shadow_sync = true; 5912 } else { 5913 return -EINVAL; 5914 } 5915 5916 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { 5917 vmx->nested.smm.vmxon = true; 5918 vmx->nested.vmxon = false; 5919 5920 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) 5921 vmx->nested.smm.guest_mode = true; 5922 } 5923 5924 vmcs12 = get_vmcs12(vcpu); 5925 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12))) 5926 return -EFAULT; 5927 5928 if (vmcs12->hdr.revision_id != VMCS12_REVISION) 5929 return -EINVAL; 5930 5931 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) 5932 return 0; 5933 5934 vmx->nested.nested_run_pending = 5935 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); 5936 5937 vmx->nested.mtf_pending = 5938 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING); 5939 5940 ret = -EINVAL; 5941 if (nested_cpu_has_shadow_vmcs(vmcs12) && 5942 vmcs12->vmcs_link_pointer != -1ull) { 5943 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); 5944 5945 if (kvm_state->size < 5946 sizeof(*kvm_state) + 5947 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12)) 5948 goto error_guest_mode; 5949 5950 if (copy_from_user(shadow_vmcs12, 5951 user_vmx_nested_state->shadow_vmcs12, 5952 sizeof(*shadow_vmcs12))) { 5953 ret = -EFAULT; 5954 goto error_guest_mode; 5955 } 5956 5957 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || 5958 !shadow_vmcs12->hdr.shadow_vmcs) 5959 goto error_guest_mode; 5960 } 5961 5962 if (nested_vmx_check_controls(vcpu, vmcs12) || 5963 nested_vmx_check_host_state(vcpu, vmcs12) || 5964 nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual)) 5965 goto error_guest_mode; 5966 5967 vmx->nested.dirty_vmcs12 = true; 5968 ret = nested_vmx_enter_non_root_mode(vcpu, false); 5969 if (ret) 5970 goto error_guest_mode; 5971 5972 return 0; 5973 5974 error_guest_mode: 5975 vmx->nested.nested_run_pending = 0; 5976 return ret; 5977 } 5978 5979 void nested_vmx_set_vmcs_shadowing_bitmap(void) 5980 { 5981 if (enable_shadow_vmcs) { 5982 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); 5983 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); 5984 } 5985 } 5986 5987 /* 5988 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be 5989 * returned for the various VMX controls MSRs when nested VMX is enabled. 5990 * The same values should also be used to verify that vmcs12 control fields are 5991 * valid during nested entry from L1 to L2. 5992 * Each of these control msrs has a low and high 32-bit half: A low bit is on 5993 * if the corresponding bit in the (32-bit) control field *must* be on, and a 5994 * bit in the high half is on if the corresponding bit in the control field 5995 * may be on. See also vmx_control_verify(). 5996 */ 5997 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps) 5998 { 5999 /* 6000 * Note that as a general rule, the high half of the MSRs (bits in 6001 * the control fields which may be 1) should be initialized by the 6002 * intersection of the underlying hardware's MSR (i.e., features which 6003 * can be supported) and the list of features we want to expose - 6004 * because they are known to be properly supported in our code. 6005 * Also, usually, the low half of the MSRs (bits which must be 1) can 6006 * be set to 0, meaning that L1 may turn off any of these bits. The 6007 * reason is that if one of these bits is necessary, it will appear 6008 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control 6009 * fields of vmcs01 and vmcs02, will turn these bits off - and 6010 * nested_vmx_exit_reflected() will not pass related exits to L1. 6011 * These rules have exceptions below. 6012 */ 6013 6014 /* pin-based controls */ 6015 rdmsr(MSR_IA32_VMX_PINBASED_CTLS, 6016 msrs->pinbased_ctls_low, 6017 msrs->pinbased_ctls_high); 6018 msrs->pinbased_ctls_low |= 6019 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; 6020 msrs->pinbased_ctls_high &= 6021 PIN_BASED_EXT_INTR_MASK | 6022 PIN_BASED_NMI_EXITING | 6023 PIN_BASED_VIRTUAL_NMIS | 6024 (enable_apicv ? PIN_BASED_POSTED_INTR : 0); 6025 msrs->pinbased_ctls_high |= 6026 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | 6027 PIN_BASED_VMX_PREEMPTION_TIMER; 6028 6029 /* exit controls */ 6030 rdmsr(MSR_IA32_VMX_EXIT_CTLS, 6031 msrs->exit_ctls_low, 6032 msrs->exit_ctls_high); 6033 msrs->exit_ctls_low = 6034 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; 6035 6036 msrs->exit_ctls_high &= 6037 #ifdef CONFIG_X86_64 6038 VM_EXIT_HOST_ADDR_SPACE_SIZE | 6039 #endif 6040 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; 6041 msrs->exit_ctls_high |= 6042 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | 6043 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | 6044 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; 6045 6046 /* We support free control of debug control saving. */ 6047 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; 6048 6049 /* entry controls */ 6050 rdmsr(MSR_IA32_VMX_ENTRY_CTLS, 6051 msrs->entry_ctls_low, 6052 msrs->entry_ctls_high); 6053 msrs->entry_ctls_low = 6054 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; 6055 msrs->entry_ctls_high &= 6056 #ifdef CONFIG_X86_64 6057 VM_ENTRY_IA32E_MODE | 6058 #endif 6059 VM_ENTRY_LOAD_IA32_PAT; 6060 msrs->entry_ctls_high |= 6061 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); 6062 6063 /* We support free control of debug control loading. */ 6064 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; 6065 6066 /* cpu-based controls */ 6067 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, 6068 msrs->procbased_ctls_low, 6069 msrs->procbased_ctls_high); 6070 msrs->procbased_ctls_low = 6071 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; 6072 msrs->procbased_ctls_high &= 6073 CPU_BASED_INTR_WINDOW_EXITING | 6074 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING | 6075 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | 6076 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | 6077 CPU_BASED_CR3_STORE_EXITING | 6078 #ifdef CONFIG_X86_64 6079 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | 6080 #endif 6081 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | 6082 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | 6083 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | 6084 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | 6085 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 6086 /* 6087 * We can allow some features even when not supported by the 6088 * hardware. For example, L1 can specify an MSR bitmap - and we 6089 * can use it to avoid exits to L1 - even when L0 runs L2 6090 * without MSR bitmaps. 6091 */ 6092 msrs->procbased_ctls_high |= 6093 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | 6094 CPU_BASED_USE_MSR_BITMAPS; 6095 6096 /* We support free control of CR3 access interception. */ 6097 msrs->procbased_ctls_low &= 6098 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); 6099 6100 /* 6101 * secondary cpu-based controls. Do not include those that 6102 * depend on CPUID bits, they are added later by vmx_cpuid_update. 6103 */ 6104 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) 6105 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, 6106 msrs->secondary_ctls_low, 6107 msrs->secondary_ctls_high); 6108 6109 msrs->secondary_ctls_low = 0; 6110 msrs->secondary_ctls_high &= 6111 SECONDARY_EXEC_DESC | 6112 SECONDARY_EXEC_RDTSCP | 6113 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 6114 SECONDARY_EXEC_WBINVD_EXITING | 6115 SECONDARY_EXEC_APIC_REGISTER_VIRT | 6116 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 6117 SECONDARY_EXEC_RDRAND_EXITING | 6118 SECONDARY_EXEC_ENABLE_INVPCID | 6119 SECONDARY_EXEC_RDSEED_EXITING | 6120 SECONDARY_EXEC_XSAVES; 6121 6122 /* 6123 * We can emulate "VMCS shadowing," even if the hardware 6124 * doesn't support it. 6125 */ 6126 msrs->secondary_ctls_high |= 6127 SECONDARY_EXEC_SHADOW_VMCS; 6128 6129 if (enable_ept) { 6130 /* nested EPT: emulate EPT also to L1 */ 6131 msrs->secondary_ctls_high |= 6132 SECONDARY_EXEC_ENABLE_EPT; 6133 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT | 6134 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; 6135 if (cpu_has_vmx_ept_execute_only()) 6136 msrs->ept_caps |= 6137 VMX_EPT_EXECUTE_ONLY_BIT; 6138 msrs->ept_caps &= ept_caps; 6139 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | 6140 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | 6141 VMX_EPT_1GB_PAGE_BIT; 6142 if (enable_ept_ad_bits) { 6143 msrs->secondary_ctls_high |= 6144 SECONDARY_EXEC_ENABLE_PML; 6145 msrs->ept_caps |= VMX_EPT_AD_BIT; 6146 } 6147 } 6148 6149 if (cpu_has_vmx_vmfunc()) { 6150 msrs->secondary_ctls_high |= 6151 SECONDARY_EXEC_ENABLE_VMFUNC; 6152 /* 6153 * Advertise EPTP switching unconditionally 6154 * since we emulate it 6155 */ 6156 if (enable_ept) 6157 msrs->vmfunc_controls = 6158 VMX_VMFUNC_EPTP_SWITCHING; 6159 } 6160 6161 /* 6162 * Old versions of KVM use the single-context version without 6163 * checking for support, so declare that it is supported even 6164 * though it is treated as global context. The alternative is 6165 * not failing the single-context invvpid, and it is worse. 6166 */ 6167 if (enable_vpid) { 6168 msrs->secondary_ctls_high |= 6169 SECONDARY_EXEC_ENABLE_VPID; 6170 msrs->vpid_caps = VMX_VPID_INVVPID_BIT | 6171 VMX_VPID_EXTENT_SUPPORTED_MASK; 6172 } 6173 6174 if (enable_unrestricted_guest) 6175 msrs->secondary_ctls_high |= 6176 SECONDARY_EXEC_UNRESTRICTED_GUEST; 6177 6178 if (flexpriority_enabled) 6179 msrs->secondary_ctls_high |= 6180 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6181 6182 /* miscellaneous data */ 6183 rdmsr(MSR_IA32_VMX_MISC, 6184 msrs->misc_low, 6185 msrs->misc_high); 6186 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA; 6187 msrs->misc_low |= 6188 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | 6189 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | 6190 VMX_MISC_ACTIVITY_HLT; 6191 msrs->misc_high = 0; 6192 6193 /* 6194 * This MSR reports some information about VMX support. We 6195 * should return information about the VMX we emulate for the 6196 * guest, and the VMCS structure we give it - not about the 6197 * VMX support of the underlying hardware. 6198 */ 6199 msrs->basic = 6200 VMCS12_REVISION | 6201 VMX_BASIC_TRUE_CTLS | 6202 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | 6203 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); 6204 6205 if (cpu_has_vmx_basic_inout()) 6206 msrs->basic |= VMX_BASIC_INOUT; 6207 6208 /* 6209 * These MSRs specify bits which the guest must keep fixed on 6210 * while L1 is in VMXON mode (in L1's root mode, or running an L2). 6211 * We picked the standard core2 setting. 6212 */ 6213 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) 6214 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE 6215 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; 6216 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; 6217 6218 /* These MSRs specify bits which the guest must keep fixed off. */ 6219 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); 6220 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); 6221 6222 /* highest index: VMX_PREEMPTION_TIMER_VALUE */ 6223 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1; 6224 } 6225 6226 void nested_vmx_hardware_unsetup(void) 6227 { 6228 int i; 6229 6230 if (enable_shadow_vmcs) { 6231 for (i = 0; i < VMX_BITMAP_NR; i++) 6232 free_page((unsigned long)vmx_bitmap[i]); 6233 } 6234 } 6235 6236 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)) 6237 { 6238 int i; 6239 6240 if (!cpu_has_vmx_shadow_vmcs()) 6241 enable_shadow_vmcs = 0; 6242 if (enable_shadow_vmcs) { 6243 for (i = 0; i < VMX_BITMAP_NR; i++) { 6244 /* 6245 * The vmx_bitmap is not tied to a VM and so should 6246 * not be charged to a memcg. 6247 */ 6248 vmx_bitmap[i] = (unsigned long *) 6249 __get_free_page(GFP_KERNEL); 6250 if (!vmx_bitmap[i]) { 6251 nested_vmx_hardware_unsetup(); 6252 return -ENOMEM; 6253 } 6254 } 6255 6256 init_vmcs_shadow_fields(); 6257 } 6258 6259 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear; 6260 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch; 6261 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld; 6262 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst; 6263 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread; 6264 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume; 6265 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite; 6266 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff; 6267 exit_handlers[EXIT_REASON_VMON] = handle_vmon; 6268 exit_handlers[EXIT_REASON_INVEPT] = handle_invept; 6269 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid; 6270 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc; 6271 6272 kvm_x86_ops->check_nested_events = vmx_check_nested_events; 6273 kvm_x86_ops->get_nested_state = vmx_get_nested_state; 6274 kvm_x86_ops->set_nested_state = vmx_set_nested_state; 6275 kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages; 6276 kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs; 6277 kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version; 6278 6279 return 0; 6280 } 6281