xref: /linux/arch/x86/kvm/vmx/nested.c (revision 8f0d91f41000e769f16b62a4b44f1f6da6db905b)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6 
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9 
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "posted_intr.h"
16 #include "sgx.h"
17 #include "trace.h"
18 #include "vmx.h"
19 #include "x86.h"
20 #include "smm.h"
21 
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24 
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27 
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29 
30 /*
31  * Hyper-V requires all of these, so mark them as supported even though
32  * they are just treated the same as all-context.
33  */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
35 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
36 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
37 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
38 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39 
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41 
42 enum {
43 	VMX_VMREAD_BITMAP,
44 	VMX_VMWRITE_BITMAP,
45 	VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48 
49 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51 
52 struct shadow_vmcs_field {
53 	u16	encoding;
54 	u16	offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 	ARRAY_SIZE(shadow_read_only_fields);
62 
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 	ARRAY_SIZE(shadow_read_write_fields);
69 
70 static void init_vmcs_shadow_fields(void)
71 {
72 	int i, j;
73 
74 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76 
77 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 		u16 field = entry.encoding;
80 
81 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 		    (i + 1 == max_shadow_read_only_fields ||
83 		     shadow_read_only_fields[i + 1].encoding != field + 1))
84 			pr_err("Missing field from shadow_read_only_field %x\n",
85 			       field + 1);
86 
87 		clear_bit(field, vmx_vmread_bitmap);
88 		if (field & 1)
89 #ifdef CONFIG_X86_64
90 			continue;
91 #else
92 			entry.offset += sizeof(u32);
93 #endif
94 		shadow_read_only_fields[j++] = entry;
95 	}
96 	max_shadow_read_only_fields = j;
97 
98 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 		u16 field = entry.encoding;
101 
102 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 		    (i + 1 == max_shadow_read_write_fields ||
104 		     shadow_read_write_fields[i + 1].encoding != field + 1))
105 			pr_err("Missing field from shadow_read_write_field %x\n",
106 			       field + 1);
107 
108 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 			  field <= GUEST_TR_AR_BYTES,
110 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111 
112 		/*
113 		 * PML and the preemption timer can be emulated, but the
114 		 * processor cannot vmwrite to fields that don't exist
115 		 * on bare metal.
116 		 */
117 		switch (field) {
118 		case GUEST_PML_INDEX:
119 			if (!cpu_has_vmx_pml())
120 				continue;
121 			break;
122 		case VMX_PREEMPTION_TIMER_VALUE:
123 			if (!cpu_has_vmx_preemption_timer())
124 				continue;
125 			break;
126 		case GUEST_INTR_STATUS:
127 			if (!cpu_has_vmx_apicv())
128 				continue;
129 			break;
130 		default:
131 			break;
132 		}
133 
134 		clear_bit(field, vmx_vmwrite_bitmap);
135 		clear_bit(field, vmx_vmread_bitmap);
136 		if (field & 1)
137 #ifdef CONFIG_X86_64
138 			continue;
139 #else
140 			entry.offset += sizeof(u32);
141 #endif
142 		shadow_read_write_fields[j++] = entry;
143 	}
144 	max_shadow_read_write_fields = j;
145 }
146 
147 /*
148  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149  * set the success or error code of an emulated VMX instruction (as specified
150  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151  * instruction.
152  */
153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 	return kvm_skip_emulated_instruction(vcpu);
159 }
160 
161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
166 			| X86_EFLAGS_CF);
167 	return kvm_skip_emulated_instruction(vcpu);
168 }
169 
170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 				u32 vm_instruction_error)
172 {
173 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
176 			| X86_EFLAGS_ZF);
177 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 	/*
179 	 * We don't need to force sync to shadow VMCS because
180 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 	 * fields and thus must be synced.
182 	 */
183 	if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
184 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185 
186 	return kvm_skip_emulated_instruction(vcpu);
187 }
188 
189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 	struct vcpu_vmx *vmx = to_vmx(vcpu);
192 
193 	/*
194 	 * failValid writes the error number to the current VMCS, which
195 	 * can't be done if there isn't a current VMCS.
196 	 */
197 	if (vmx->nested.current_vmptr == INVALID_GPA &&
198 	    !nested_vmx_is_evmptr12_valid(vmx))
199 		return nested_vmx_failInvalid(vcpu);
200 
201 	return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203 
204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 	/* TODO: not to reset guest simply here. */
207 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 	pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210 
211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 	return fixed_bits_valid(control, low, high);
214 }
215 
216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 	return low | ((u64)high << 32);
219 }
220 
221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 	vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227 
228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 #ifdef CONFIG_KVM_HYPERV
231 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
232 	struct vcpu_vmx *vmx = to_vmx(vcpu);
233 
234 	if (nested_vmx_is_evmptr12_valid(vmx)) {
235 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
236 		vmx->nested.hv_evmcs = NULL;
237 	}
238 
239 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
240 
241 	if (hv_vcpu) {
242 		hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
243 		hv_vcpu->nested.vm_id = 0;
244 		hv_vcpu->nested.vp_id = 0;
245 	}
246 #endif
247 }
248 
249 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
250 {
251 #ifdef CONFIG_KVM_HYPERV
252 	struct vcpu_vmx *vmx = to_vmx(vcpu);
253 	/*
254 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
255 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
256 	 * way to distinguish it from VMCS12) and we must not corrupt it by
257 	 * writing to the non-existent 'launch_state' field. The area doesn't
258 	 * have to be the currently active EVMCS on the calling CPU and there's
259 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
260 	 * state. It is possible that the area will stay mapped as
261 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
262 	 */
263 	if (!guest_cpuid_has_evmcs(vcpu) ||
264 	    !evmptr_is_valid(nested_get_evmptr(vcpu)))
265 		return false;
266 
267 	if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
268 		nested_release_evmcs(vcpu);
269 
270 	return true;
271 #else
272 	return false;
273 #endif
274 }
275 
276 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
277 				     struct loaded_vmcs *prev)
278 {
279 	struct vmcs_host_state *dest, *src;
280 
281 	if (unlikely(!vmx->guest_state_loaded))
282 		return;
283 
284 	src = &prev->host_state;
285 	dest = &vmx->loaded_vmcs->host_state;
286 
287 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
288 	dest->ldt_sel = src->ldt_sel;
289 #ifdef CONFIG_X86_64
290 	dest->ds_sel = src->ds_sel;
291 	dest->es_sel = src->es_sel;
292 #endif
293 }
294 
295 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
296 {
297 	struct vcpu_vmx *vmx = to_vmx(vcpu);
298 	struct loaded_vmcs *prev;
299 	int cpu;
300 
301 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
302 		return;
303 
304 	cpu = get_cpu();
305 	prev = vmx->loaded_vmcs;
306 	vmx->loaded_vmcs = vmcs;
307 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
308 	vmx_sync_vmcs_host_state(vmx, prev);
309 	put_cpu();
310 
311 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
312 
313 	/*
314 	 * All lazily updated registers will be reloaded from VMCS12 on both
315 	 * vmentry and vmexit.
316 	 */
317 	vcpu->arch.regs_dirty = 0;
318 }
319 
320 /*
321  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
322  * just stops using VMX.
323  */
324 static void free_nested(struct kvm_vcpu *vcpu)
325 {
326 	struct vcpu_vmx *vmx = to_vmx(vcpu);
327 
328 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
329 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
330 
331 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
332 		return;
333 
334 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
335 
336 	vmx->nested.vmxon = false;
337 	vmx->nested.smm.vmxon = false;
338 	vmx->nested.vmxon_ptr = INVALID_GPA;
339 	free_vpid(vmx->nested.vpid02);
340 	vmx->nested.posted_intr_nv = -1;
341 	vmx->nested.current_vmptr = INVALID_GPA;
342 	if (enable_shadow_vmcs) {
343 		vmx_disable_shadow_vmcs(vmx);
344 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
345 		free_vmcs(vmx->vmcs01.shadow_vmcs);
346 		vmx->vmcs01.shadow_vmcs = NULL;
347 	}
348 	kfree(vmx->nested.cached_vmcs12);
349 	vmx->nested.cached_vmcs12 = NULL;
350 	kfree(vmx->nested.cached_shadow_vmcs12);
351 	vmx->nested.cached_shadow_vmcs12 = NULL;
352 	/*
353 	 * Unpin physical memory we referred to in the vmcs02.  The APIC access
354 	 * page's backing page (yeah, confusing) shouldn't actually be accessed,
355 	 * and if it is written, the contents are irrelevant.
356 	 */
357 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
358 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
359 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
360 	vmx->nested.pi_desc = NULL;
361 
362 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
363 
364 	nested_release_evmcs(vcpu);
365 
366 	free_loaded_vmcs(&vmx->nested.vmcs02);
367 }
368 
369 /*
370  * Ensure that the current vmcs of the logical processor is the
371  * vmcs01 of the vcpu before calling free_nested().
372  */
373 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
374 {
375 	vcpu_load(vcpu);
376 	vmx_leave_nested(vcpu);
377 	vcpu_put(vcpu);
378 }
379 
380 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
381 
382 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
383 {
384 	return VALID_PAGE(root_hpa) &&
385 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
386 }
387 
388 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
389 				       gpa_t addr)
390 {
391 	unsigned long roots = 0;
392 	uint i;
393 	struct kvm_mmu_root_info *cached_root;
394 
395 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
396 
397 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
398 		cached_root = &vcpu->arch.mmu->prev_roots[i];
399 
400 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
401 					    eptp))
402 			roots |= KVM_MMU_ROOT_PREVIOUS(i);
403 	}
404 	if (roots)
405 		kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
406 }
407 
408 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
409 		struct x86_exception *fault)
410 {
411 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
412 	struct vcpu_vmx *vmx = to_vmx(vcpu);
413 	unsigned long exit_qualification;
414 	u32 vm_exit_reason;
415 
416 	if (vmx->nested.pml_full) {
417 		vm_exit_reason = EXIT_REASON_PML_FULL;
418 		vmx->nested.pml_full = false;
419 
420 		/*
421 		 * It should be impossible to trigger a nested PML Full VM-Exit
422 		 * for anything other than an EPT Violation from L2.  KVM *can*
423 		 * trigger nEPT page fault injection in response to an EPT
424 		 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
425 		 * tables also changed, but KVM should not treat EPT Misconfig
426 		 * VM-Exits as writes.
427 		 */
428 		WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
429 
430 		/*
431 		 * PML Full and EPT Violation VM-Exits both use bit 12 to report
432 		 * "NMI unblocking due to IRET", i.e. the bit can be propagated
433 		 * as-is from the original EXIT_QUALIFICATION.
434 		 */
435 		exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
436 	} else {
437 		if (fault->error_code & PFERR_RSVD_MASK) {
438 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
439 			exit_qualification = 0;
440 		} else {
441 			exit_qualification = fault->exit_qualification;
442 			exit_qualification |= vmx_get_exit_qual(vcpu) &
443 					      (EPT_VIOLATION_GVA_IS_VALID |
444 					       EPT_VIOLATION_GVA_TRANSLATED);
445 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
446 		}
447 
448 		/*
449 		 * Although the caller (kvm_inject_emulated_page_fault) would
450 		 * have already synced the faulting address in the shadow EPT
451 		 * tables for the current EPTP12, we also need to sync it for
452 		 * any other cached EPTP02s based on the same EP4TA, since the
453 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
454 		 */
455 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
456 					   fault->address);
457 	}
458 
459 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
460 	vmcs12->guest_physical_address = fault->address;
461 }
462 
463 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
464 {
465 	struct vcpu_vmx *vmx = to_vmx(vcpu);
466 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
467 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
468 
469 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
470 				nested_ept_ad_enabled(vcpu),
471 				nested_ept_get_eptp(vcpu));
472 }
473 
474 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
475 {
476 	WARN_ON(mmu_is_nested(vcpu));
477 
478 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
479 	nested_ept_new_eptp(vcpu);
480 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
481 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
482 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
483 
484 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
485 }
486 
487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
488 {
489 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
490 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
491 }
492 
493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
494 					    u16 error_code)
495 {
496 	bool inequality, bit;
497 
498 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
499 	inequality =
500 		(error_code & vmcs12->page_fault_error_code_mask) !=
501 		 vmcs12->page_fault_error_code_match;
502 	return inequality ^ bit;
503 }
504 
505 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
506 					   u32 error_code)
507 {
508 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
509 
510 	/*
511 	 * Drop bits 31:16 of the error code when performing the #PF mask+match
512 	 * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
513 	 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
514 	 * error code.  Including the to-be-dropped bits in the check might
515 	 * result in an "impossible" or missed exit from L1's perspective.
516 	 */
517 	if (vector == PF_VECTOR)
518 		return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
519 
520 	return (vmcs12->exception_bitmap & (1u << vector));
521 }
522 
523 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
524 					       struct vmcs12 *vmcs12)
525 {
526 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
527 		return 0;
528 
529 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
530 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
531 		return -EINVAL;
532 
533 	return 0;
534 }
535 
536 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
537 						struct vmcs12 *vmcs12)
538 {
539 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
540 		return 0;
541 
542 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
543 		return -EINVAL;
544 
545 	return 0;
546 }
547 
548 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
549 						struct vmcs12 *vmcs12)
550 {
551 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
552 		return 0;
553 
554 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
555 		return -EINVAL;
556 
557 	return 0;
558 }
559 
560 /*
561  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
562  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
563  * only the "disable intercept" case needs to be handled.
564  */
565 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
566 							unsigned long *msr_bitmap_l0,
567 							u32 msr, int type)
568 {
569 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
570 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
571 
572 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
573 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
574 }
575 
576 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
577 {
578 	int msr;
579 
580 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
581 		unsigned word = msr / BITS_PER_LONG;
582 
583 		msr_bitmap[word] = ~0;
584 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
585 	}
586 }
587 
588 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
589 static inline									\
590 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
591 					 unsigned long *msr_bitmap_l1,		\
592 					 unsigned long *msr_bitmap_l0, u32 msr)	\
593 {										\
594 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
595 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
596 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
597 	else									\
598 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
599 }
600 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
601 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
602 
603 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
604 						    unsigned long *msr_bitmap_l1,
605 						    unsigned long *msr_bitmap_l0,
606 						    u32 msr, int types)
607 {
608 	if (types & MSR_TYPE_R)
609 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
610 						  msr_bitmap_l0, msr);
611 	if (types & MSR_TYPE_W)
612 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
613 						   msr_bitmap_l0, msr);
614 }
615 
616 /*
617  * Merge L0's and L1's MSR bitmap, return false to indicate that
618  * we do not use the hardware.
619  */
620 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
621 						 struct vmcs12 *vmcs12)
622 {
623 	struct vcpu_vmx *vmx = to_vmx(vcpu);
624 	int msr;
625 	unsigned long *msr_bitmap_l1;
626 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
627 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
628 
629 	/* Nothing to do if the MSR bitmap is not in use.  */
630 	if (!cpu_has_vmx_msr_bitmap() ||
631 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
632 		return false;
633 
634 	/*
635 	 * MSR bitmap update can be skipped when:
636 	 * - MSR bitmap for L1 hasn't changed.
637 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
638 	 *   before.
639 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
640 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
641 	 */
642 	if (!vmx->nested.force_msr_bitmap_recalc) {
643 		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
644 
645 		if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
646 		    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
647 			return true;
648 	}
649 
650 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
651 		return false;
652 
653 	msr_bitmap_l1 = (unsigned long *)map->hva;
654 
655 	/*
656 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
657 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
658 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
659 	 */
660 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
661 
662 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
663 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
664 			/*
665 			 * L0 need not intercept reads for MSRs between 0x800
666 			 * and 0x8ff, it just lets the processor take the value
667 			 * from the virtual-APIC page; take those 256 bits
668 			 * directly from the L1 bitmap.
669 			 */
670 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
671 				unsigned word = msr / BITS_PER_LONG;
672 
673 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
674 			}
675 		}
676 
677 		nested_vmx_disable_intercept_for_x2apic_msr(
678 			msr_bitmap_l1, msr_bitmap_l0,
679 			X2APIC_MSR(APIC_TASKPRI),
680 			MSR_TYPE_R | MSR_TYPE_W);
681 
682 		if (nested_cpu_has_vid(vmcs12)) {
683 			nested_vmx_disable_intercept_for_x2apic_msr(
684 				msr_bitmap_l1, msr_bitmap_l0,
685 				X2APIC_MSR(APIC_EOI),
686 				MSR_TYPE_W);
687 			nested_vmx_disable_intercept_for_x2apic_msr(
688 				msr_bitmap_l1, msr_bitmap_l0,
689 				X2APIC_MSR(APIC_SELF_IPI),
690 				MSR_TYPE_W);
691 		}
692 	}
693 
694 	/*
695 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
696 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
697 	 */
698 #ifdef CONFIG_X86_64
699 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
700 					 MSR_FS_BASE, MSR_TYPE_RW);
701 
702 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
703 					 MSR_GS_BASE, MSR_TYPE_RW);
704 
705 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
706 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
707 #endif
708 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
709 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
710 
711 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
712 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
713 
714 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
715 					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
716 
717 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
718 
719 	vmx->nested.force_msr_bitmap_recalc = false;
720 
721 	return true;
722 }
723 
724 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
725 				       struct vmcs12 *vmcs12)
726 {
727 	struct vcpu_vmx *vmx = to_vmx(vcpu);
728 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
729 
730 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
731 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
732 		return;
733 
734 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
735 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
736 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
737 		return;
738 
739 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
740 			      VMCS12_SIZE);
741 }
742 
743 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
744 					      struct vmcs12 *vmcs12)
745 {
746 	struct vcpu_vmx *vmx = to_vmx(vcpu);
747 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
748 
749 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
750 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
751 		return;
752 
753 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
754 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
755 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
756 		return;
757 
758 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
759 			       VMCS12_SIZE);
760 }
761 
762 /*
763  * In nested virtualization, check if L1 has set
764  * VM_EXIT_ACK_INTR_ON_EXIT
765  */
766 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
767 {
768 	return get_vmcs12(vcpu)->vm_exit_controls &
769 		VM_EXIT_ACK_INTR_ON_EXIT;
770 }
771 
772 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
773 					  struct vmcs12 *vmcs12)
774 {
775 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
776 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
777 		return -EINVAL;
778 	else
779 		return 0;
780 }
781 
782 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
783 					   struct vmcs12 *vmcs12)
784 {
785 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
786 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
787 	    !nested_cpu_has_vid(vmcs12) &&
788 	    !nested_cpu_has_posted_intr(vmcs12))
789 		return 0;
790 
791 	/*
792 	 * If virtualize x2apic mode is enabled,
793 	 * virtualize apic access must be disabled.
794 	 */
795 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
796 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
797 		return -EINVAL;
798 
799 	/*
800 	 * If virtual interrupt delivery is enabled,
801 	 * we must exit on external interrupts.
802 	 */
803 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
804 		return -EINVAL;
805 
806 	/*
807 	 * bits 15:8 should be zero in posted_intr_nv,
808 	 * the descriptor address has been already checked
809 	 * in nested_get_vmcs12_pages.
810 	 *
811 	 * bits 5:0 of posted_intr_desc_addr should be zero.
812 	 */
813 	if (nested_cpu_has_posted_intr(vmcs12) &&
814 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
815 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
816 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
817 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
818 		return -EINVAL;
819 
820 	/* tpr shadow is needed by all apicv features. */
821 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
822 		return -EINVAL;
823 
824 	return 0;
825 }
826 
827 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
828 				       u32 count, u64 addr)
829 {
830 	if (count == 0)
831 		return 0;
832 
833 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
834 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
835 		return -EINVAL;
836 
837 	return 0;
838 }
839 
840 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
841 						     struct vmcs12 *vmcs12)
842 {
843 	if (CC(nested_vmx_check_msr_switch(vcpu,
844 					   vmcs12->vm_exit_msr_load_count,
845 					   vmcs12->vm_exit_msr_load_addr)) ||
846 	    CC(nested_vmx_check_msr_switch(vcpu,
847 					   vmcs12->vm_exit_msr_store_count,
848 					   vmcs12->vm_exit_msr_store_addr)))
849 		return -EINVAL;
850 
851 	return 0;
852 }
853 
854 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
855                                                       struct vmcs12 *vmcs12)
856 {
857 	if (CC(nested_vmx_check_msr_switch(vcpu,
858 					   vmcs12->vm_entry_msr_load_count,
859 					   vmcs12->vm_entry_msr_load_addr)))
860                 return -EINVAL;
861 
862 	return 0;
863 }
864 
865 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
866 					 struct vmcs12 *vmcs12)
867 {
868 	if (!nested_cpu_has_pml(vmcs12))
869 		return 0;
870 
871 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
872 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
873 		return -EINVAL;
874 
875 	return 0;
876 }
877 
878 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
879 							struct vmcs12 *vmcs12)
880 {
881 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
882 	       !nested_cpu_has_ept(vmcs12)))
883 		return -EINVAL;
884 	return 0;
885 }
886 
887 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
888 							 struct vmcs12 *vmcs12)
889 {
890 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
891 	       !nested_cpu_has_ept(vmcs12)))
892 		return -EINVAL;
893 	return 0;
894 }
895 
896 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
897 						 struct vmcs12 *vmcs12)
898 {
899 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
900 		return 0;
901 
902 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
903 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
904 		return -EINVAL;
905 
906 	return 0;
907 }
908 
909 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
910 				       struct vmx_msr_entry *e)
911 {
912 	/* x2APIC MSR accesses are not allowed */
913 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
914 		return -EINVAL;
915 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
916 	    CC(e->index == MSR_IA32_UCODE_REV))
917 		return -EINVAL;
918 	if (CC(e->reserved != 0))
919 		return -EINVAL;
920 	return 0;
921 }
922 
923 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
924 				     struct vmx_msr_entry *e)
925 {
926 	if (CC(e->index == MSR_FS_BASE) ||
927 	    CC(e->index == MSR_GS_BASE) ||
928 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
929 	    nested_vmx_msr_check_common(vcpu, e))
930 		return -EINVAL;
931 	return 0;
932 }
933 
934 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
935 				      struct vmx_msr_entry *e)
936 {
937 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
938 	    nested_vmx_msr_check_common(vcpu, e))
939 		return -EINVAL;
940 	return 0;
941 }
942 
943 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
944 {
945 	struct vcpu_vmx *vmx = to_vmx(vcpu);
946 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
947 				       vmx->nested.msrs.misc_high);
948 
949 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
950 }
951 
952 /*
953  * Load guest's/host's msr at nested entry/exit.
954  * return 0 for success, entry index for failure.
955  *
956  * One of the failure modes for MSR load/store is when a list exceeds the
957  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
958  * as possible, process all valid entries before failing rather than precheck
959  * for a capacity violation.
960  */
961 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
962 {
963 	u32 i;
964 	struct vmx_msr_entry e;
965 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
966 
967 	for (i = 0; i < count; i++) {
968 		if (unlikely(i >= max_msr_list_size))
969 			goto fail;
970 
971 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
972 					&e, sizeof(e))) {
973 			pr_debug_ratelimited(
974 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
975 				__func__, i, gpa + i * sizeof(e));
976 			goto fail;
977 		}
978 		if (nested_vmx_load_msr_check(vcpu, &e)) {
979 			pr_debug_ratelimited(
980 				"%s check failed (%u, 0x%x, 0x%x)\n",
981 				__func__, i, e.index, e.reserved);
982 			goto fail;
983 		}
984 		if (kvm_set_msr_with_filter(vcpu, e.index, e.value)) {
985 			pr_debug_ratelimited(
986 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
987 				__func__, i, e.index, e.value);
988 			goto fail;
989 		}
990 	}
991 	return 0;
992 fail:
993 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
994 	return i + 1;
995 }
996 
997 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
998 					    u32 msr_index,
999 					    u64 *data)
1000 {
1001 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1002 
1003 	/*
1004 	 * If the L0 hypervisor stored a more accurate value for the TSC that
1005 	 * does not include the time taken for emulation of the L2->L1
1006 	 * VM-exit in L0, use the more accurate value.
1007 	 */
1008 	if (msr_index == MSR_IA32_TSC) {
1009 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1010 						    MSR_IA32_TSC);
1011 
1012 		if (i >= 0) {
1013 			u64 val = vmx->msr_autostore.guest.val[i].value;
1014 
1015 			*data = kvm_read_l1_tsc(vcpu, val);
1016 			return true;
1017 		}
1018 	}
1019 
1020 	if (kvm_get_msr_with_filter(vcpu, msr_index, data)) {
1021 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1022 			msr_index);
1023 		return false;
1024 	}
1025 	return true;
1026 }
1027 
1028 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1029 				     struct vmx_msr_entry *e)
1030 {
1031 	if (kvm_vcpu_read_guest(vcpu,
1032 				gpa + i * sizeof(*e),
1033 				e, 2 * sizeof(u32))) {
1034 		pr_debug_ratelimited(
1035 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1036 			__func__, i, gpa + i * sizeof(*e));
1037 		return false;
1038 	}
1039 	if (nested_vmx_store_msr_check(vcpu, e)) {
1040 		pr_debug_ratelimited(
1041 			"%s check failed (%u, 0x%x, 0x%x)\n",
1042 			__func__, i, e->index, e->reserved);
1043 		return false;
1044 	}
1045 	return true;
1046 }
1047 
1048 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1049 {
1050 	u64 data;
1051 	u32 i;
1052 	struct vmx_msr_entry e;
1053 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1054 
1055 	for (i = 0; i < count; i++) {
1056 		if (unlikely(i >= max_msr_list_size))
1057 			return -EINVAL;
1058 
1059 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060 			return -EINVAL;
1061 
1062 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1063 			return -EINVAL;
1064 
1065 		if (kvm_vcpu_write_guest(vcpu,
1066 					 gpa + i * sizeof(e) +
1067 					     offsetof(struct vmx_msr_entry, value),
1068 					 &data, sizeof(data))) {
1069 			pr_debug_ratelimited(
1070 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1071 				__func__, i, e.index, data);
1072 			return -EINVAL;
1073 		}
1074 	}
1075 	return 0;
1076 }
1077 
1078 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1079 {
1080 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1081 	u32 count = vmcs12->vm_exit_msr_store_count;
1082 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1083 	struct vmx_msr_entry e;
1084 	u32 i;
1085 
1086 	for (i = 0; i < count; i++) {
1087 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1088 			return false;
1089 
1090 		if (e.index == msr_index)
1091 			return true;
1092 	}
1093 	return false;
1094 }
1095 
1096 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1097 					   u32 msr_index)
1098 {
1099 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1100 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1101 	bool in_vmcs12_store_list;
1102 	int msr_autostore_slot;
1103 	bool in_autostore_list;
1104 	int last;
1105 
1106 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1107 	in_autostore_list = msr_autostore_slot >= 0;
1108 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1109 
1110 	if (in_vmcs12_store_list && !in_autostore_list) {
1111 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1112 			/*
1113 			 * Emulated VMEntry does not fail here.  Instead a less
1114 			 * accurate value will be returned by
1115 			 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1116 			 * internal MSR state instead of reading the value from
1117 			 * the vmcs02 VMExit MSR-store area.
1118 			 */
1119 			pr_warn_ratelimited(
1120 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1121 				msr_index);
1122 			return;
1123 		}
1124 		last = autostore->nr++;
1125 		autostore->val[last].index = msr_index;
1126 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1127 		last = --autostore->nr;
1128 		autostore->val[msr_autostore_slot] = autostore->val[last];
1129 	}
1130 }
1131 
1132 /*
1133  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1134  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1135  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1136  * @entry_failure_code.
1137  */
1138 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1139 			       bool nested_ept, bool reload_pdptrs,
1140 			       enum vm_entry_failure_code *entry_failure_code)
1141 {
1142 	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1143 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1144 		return -EINVAL;
1145 	}
1146 
1147 	/*
1148 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1149 	 * must not be dereferenced.
1150 	 */
1151 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1152 	    CC(!load_pdptrs(vcpu, cr3))) {
1153 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1154 		return -EINVAL;
1155 	}
1156 
1157 	vcpu->arch.cr3 = cr3;
1158 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1159 
1160 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1161 	kvm_init_mmu(vcpu);
1162 
1163 	if (!nested_ept)
1164 		kvm_mmu_new_pgd(vcpu, cr3);
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Returns if KVM is able to config CPU to tag TLB entries
1171  * populated by L2 differently than TLB entries populated
1172  * by L1.
1173  *
1174  * If L0 uses EPT, L1 and L2 run with different EPTP because
1175  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1176  * are tagged with different EPTP.
1177  *
1178  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1179  * with different VPID (L1 entries are tagged with vmx->vpid
1180  * while L2 entries are tagged with vmx->nested.vpid02).
1181  */
1182 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1183 {
1184 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1185 
1186 	return enable_ept ||
1187 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1188 }
1189 
1190 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1191 					    struct vmcs12 *vmcs12,
1192 					    bool is_vmenter)
1193 {
1194 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1195 
1196 	/* Handle pending Hyper-V TLB flush requests */
1197 	kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1198 
1199 	/*
1200 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1201 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1202 	 * full TLB flush from the guest's perspective.  This is required even
1203 	 * if VPID is disabled in the host as KVM may need to synchronize the
1204 	 * MMU in response to the guest TLB flush.
1205 	 *
1206 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1207 	 * EPT is a special snowflake, as guest-physical mappings aren't
1208 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1209 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1210 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1211 	 * those mappings.
1212 	 */
1213 	if (!nested_cpu_has_vpid(vmcs12)) {
1214 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1215 		return;
1216 	}
1217 
1218 	/* L2 should never have a VPID if VPID is disabled. */
1219 	WARN_ON(!enable_vpid);
1220 
1221 	/*
1222 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1223 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1224 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1225 	 * that the new vpid12 has never been used and thus represents a new
1226 	 * guest ASID that cannot have entries in the TLB.
1227 	 */
1228 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1229 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1230 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1231 		return;
1232 	}
1233 
1234 	/*
1235 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1236 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1237 	 * KVM was unable to allocate a VPID for L2, flush the current context
1238 	 * as the effective ASID is common to both L1 and L2.
1239 	 */
1240 	if (!nested_has_guest_tlb_tag(vcpu))
1241 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1242 }
1243 
1244 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1245 {
1246 	superset &= mask;
1247 	subset &= mask;
1248 
1249 	return (superset | subset) == superset;
1250 }
1251 
1252 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1253 {
1254 	const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1255 				 VMX_BASIC_INOUT |
1256 				 VMX_BASIC_TRUE_CTLS;
1257 
1258 	const u64 reserved_bits = GENMASK_ULL(63, 56) |
1259 				  GENMASK_ULL(47, 45) |
1260 				  BIT_ULL(31);
1261 
1262 	u64 vmx_basic = vmcs_config.nested.basic;
1263 
1264 	BUILD_BUG_ON(feature_bits & reserved_bits);
1265 
1266 	/*
1267 	 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1268 	 * inverted polarity), the incoming value must not set feature bits or
1269 	 * reserved bits that aren't allowed/supported by KVM.  Fields, i.e.
1270 	 * multi-bit values, are explicitly checked below.
1271 	 */
1272 	if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1273 		return -EINVAL;
1274 
1275 	/*
1276 	 * KVM does not emulate a version of VMX that constrains physical
1277 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1278 	 */
1279 	if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1280 		return -EINVAL;
1281 
1282 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1283 	    vmx_basic_vmcs_revision_id(data))
1284 		return -EINVAL;
1285 
1286 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1287 		return -EINVAL;
1288 
1289 	vmx->nested.msrs.basic = data;
1290 	return 0;
1291 }
1292 
1293 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1294 				u32 **low, u32 **high)
1295 {
1296 	switch (msr_index) {
1297 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1298 		*low = &msrs->pinbased_ctls_low;
1299 		*high = &msrs->pinbased_ctls_high;
1300 		break;
1301 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1302 		*low = &msrs->procbased_ctls_low;
1303 		*high = &msrs->procbased_ctls_high;
1304 		break;
1305 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1306 		*low = &msrs->exit_ctls_low;
1307 		*high = &msrs->exit_ctls_high;
1308 		break;
1309 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1310 		*low = &msrs->entry_ctls_low;
1311 		*high = &msrs->entry_ctls_high;
1312 		break;
1313 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1314 		*low = &msrs->secondary_ctls_low;
1315 		*high = &msrs->secondary_ctls_high;
1316 		break;
1317 	default:
1318 		BUG();
1319 	}
1320 }
1321 
1322 static int
1323 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1324 {
1325 	u32 *lowp, *highp;
1326 	u64 supported;
1327 
1328 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1329 
1330 	supported = vmx_control_msr(*lowp, *highp);
1331 
1332 	/* Check must-be-1 bits are still 1. */
1333 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1334 		return -EINVAL;
1335 
1336 	/* Check must-be-0 bits are still 0. */
1337 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1338 		return -EINVAL;
1339 
1340 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1341 	*lowp = data;
1342 	*highp = data >> 32;
1343 	return 0;
1344 }
1345 
1346 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1347 {
1348 	const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1349 				 VMX_MISC_ACTIVITY_HLT |
1350 				 VMX_MISC_ACTIVITY_SHUTDOWN |
1351 				 VMX_MISC_ACTIVITY_WAIT_SIPI |
1352 				 VMX_MISC_INTEL_PT |
1353 				 VMX_MISC_RDMSR_IN_SMM |
1354 				 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1355 				 VMX_MISC_VMXOFF_BLOCK_SMI |
1356 				 VMX_MISC_ZERO_LEN_INS;
1357 
1358 	const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1359 
1360 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1361 				       vmcs_config.nested.misc_high);
1362 
1363 	BUILD_BUG_ON(feature_bits & reserved_bits);
1364 
1365 	/*
1366 	 * The incoming value must not set feature bits or reserved bits that
1367 	 * aren't allowed/supported by KVM.  Fields, i.e. multi-bit values, are
1368 	 * explicitly checked below.
1369 	 */
1370 	if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1371 		return -EINVAL;
1372 
1373 	if ((vmx->nested.msrs.pinbased_ctls_high &
1374 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1375 	    vmx_misc_preemption_timer_rate(data) !=
1376 	    vmx_misc_preemption_timer_rate(vmx_misc))
1377 		return -EINVAL;
1378 
1379 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1380 		return -EINVAL;
1381 
1382 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1383 		return -EINVAL;
1384 
1385 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1386 		return -EINVAL;
1387 
1388 	vmx->nested.msrs.misc_low = data;
1389 	vmx->nested.msrs.misc_high = data >> 32;
1390 
1391 	return 0;
1392 }
1393 
1394 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1395 {
1396 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1397 					       vmcs_config.nested.vpid_caps);
1398 
1399 	/* Every bit is either reserved or a feature bit. */
1400 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1401 		return -EINVAL;
1402 
1403 	vmx->nested.msrs.ept_caps = data;
1404 	vmx->nested.msrs.vpid_caps = data >> 32;
1405 	return 0;
1406 }
1407 
1408 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1409 {
1410 	switch (msr_index) {
1411 	case MSR_IA32_VMX_CR0_FIXED0:
1412 		return &msrs->cr0_fixed0;
1413 	case MSR_IA32_VMX_CR4_FIXED0:
1414 		return &msrs->cr4_fixed0;
1415 	default:
1416 		BUG();
1417 	}
1418 }
1419 
1420 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1421 {
1422 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1423 
1424 	/*
1425 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1426 	 * must be 1 in the restored value.
1427 	 */
1428 	if (!is_bitwise_subset(data, *msr, -1ULL))
1429 		return -EINVAL;
1430 
1431 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1432 	return 0;
1433 }
1434 
1435 /*
1436  * Called when userspace is restoring VMX MSRs.
1437  *
1438  * Returns 0 on success, non-0 otherwise.
1439  */
1440 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1441 {
1442 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1443 
1444 	/*
1445 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1446 	 * is in VMX operation.
1447 	 */
1448 	if (vmx->nested.vmxon)
1449 		return -EBUSY;
1450 
1451 	switch (msr_index) {
1452 	case MSR_IA32_VMX_BASIC:
1453 		return vmx_restore_vmx_basic(vmx, data);
1454 	case MSR_IA32_VMX_PINBASED_CTLS:
1455 	case MSR_IA32_VMX_PROCBASED_CTLS:
1456 	case MSR_IA32_VMX_EXIT_CTLS:
1457 	case MSR_IA32_VMX_ENTRY_CTLS:
1458 		/*
1459 		 * The "non-true" VMX capability MSRs are generated from the
1460 		 * "true" MSRs, so we do not support restoring them directly.
1461 		 *
1462 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1463 		 * should restore the "true" MSRs with the must-be-1 bits
1464 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1465 		 * DEFAULT SETTINGS".
1466 		 */
1467 		return -EINVAL;
1468 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1469 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1470 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1471 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1472 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1473 		return vmx_restore_control_msr(vmx, msr_index, data);
1474 	case MSR_IA32_VMX_MISC:
1475 		return vmx_restore_vmx_misc(vmx, data);
1476 	case MSR_IA32_VMX_CR0_FIXED0:
1477 	case MSR_IA32_VMX_CR4_FIXED0:
1478 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1479 	case MSR_IA32_VMX_CR0_FIXED1:
1480 	case MSR_IA32_VMX_CR4_FIXED1:
1481 		/*
1482 		 * These MSRs are generated based on the vCPU's CPUID, so we
1483 		 * do not support restoring them directly.
1484 		 */
1485 		return -EINVAL;
1486 	case MSR_IA32_VMX_EPT_VPID_CAP:
1487 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1488 	case MSR_IA32_VMX_VMCS_ENUM:
1489 		vmx->nested.msrs.vmcs_enum = data;
1490 		return 0;
1491 	case MSR_IA32_VMX_VMFUNC:
1492 		if (data & ~vmcs_config.nested.vmfunc_controls)
1493 			return -EINVAL;
1494 		vmx->nested.msrs.vmfunc_controls = data;
1495 		return 0;
1496 	default:
1497 		/*
1498 		 * The rest of the VMX capability MSRs do not support restore.
1499 		 */
1500 		return -EINVAL;
1501 	}
1502 }
1503 
1504 /* Returns 0 on success, non-0 otherwise. */
1505 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1506 {
1507 	switch (msr_index) {
1508 	case MSR_IA32_VMX_BASIC:
1509 		*pdata = msrs->basic;
1510 		break;
1511 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1512 	case MSR_IA32_VMX_PINBASED_CTLS:
1513 		*pdata = vmx_control_msr(
1514 			msrs->pinbased_ctls_low,
1515 			msrs->pinbased_ctls_high);
1516 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1517 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1518 		break;
1519 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1520 	case MSR_IA32_VMX_PROCBASED_CTLS:
1521 		*pdata = vmx_control_msr(
1522 			msrs->procbased_ctls_low,
1523 			msrs->procbased_ctls_high);
1524 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1525 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1526 		break;
1527 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1528 	case MSR_IA32_VMX_EXIT_CTLS:
1529 		*pdata = vmx_control_msr(
1530 			msrs->exit_ctls_low,
1531 			msrs->exit_ctls_high);
1532 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1533 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1534 		break;
1535 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1536 	case MSR_IA32_VMX_ENTRY_CTLS:
1537 		*pdata = vmx_control_msr(
1538 			msrs->entry_ctls_low,
1539 			msrs->entry_ctls_high);
1540 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1541 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1542 		break;
1543 	case MSR_IA32_VMX_MISC:
1544 		*pdata = vmx_control_msr(
1545 			msrs->misc_low,
1546 			msrs->misc_high);
1547 		break;
1548 	case MSR_IA32_VMX_CR0_FIXED0:
1549 		*pdata = msrs->cr0_fixed0;
1550 		break;
1551 	case MSR_IA32_VMX_CR0_FIXED1:
1552 		*pdata = msrs->cr0_fixed1;
1553 		break;
1554 	case MSR_IA32_VMX_CR4_FIXED0:
1555 		*pdata = msrs->cr4_fixed0;
1556 		break;
1557 	case MSR_IA32_VMX_CR4_FIXED1:
1558 		*pdata = msrs->cr4_fixed1;
1559 		break;
1560 	case MSR_IA32_VMX_VMCS_ENUM:
1561 		*pdata = msrs->vmcs_enum;
1562 		break;
1563 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1564 		*pdata = vmx_control_msr(
1565 			msrs->secondary_ctls_low,
1566 			msrs->secondary_ctls_high);
1567 		break;
1568 	case MSR_IA32_VMX_EPT_VPID_CAP:
1569 		*pdata = msrs->ept_caps |
1570 			((u64)msrs->vpid_caps << 32);
1571 		break;
1572 	case MSR_IA32_VMX_VMFUNC:
1573 		*pdata = msrs->vmfunc_controls;
1574 		break;
1575 	default:
1576 		return 1;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 /*
1583  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1584  * been modified by the L1 guest.  Note, "writable" in this context means
1585  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1586  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1587  * VM-exit information fields (which are actually writable if the vCPU is
1588  * configured to support "VMWRITE to any supported field in the VMCS").
1589  */
1590 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1591 {
1592 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1593 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1594 	struct shadow_vmcs_field field;
1595 	unsigned long val;
1596 	int i;
1597 
1598 	if (WARN_ON(!shadow_vmcs))
1599 		return;
1600 
1601 	preempt_disable();
1602 
1603 	vmcs_load(shadow_vmcs);
1604 
1605 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1606 		field = shadow_read_write_fields[i];
1607 		val = __vmcs_readl(field.encoding);
1608 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1609 	}
1610 
1611 	vmcs_clear(shadow_vmcs);
1612 	vmcs_load(vmx->loaded_vmcs->vmcs);
1613 
1614 	preempt_enable();
1615 }
1616 
1617 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1618 {
1619 	const struct shadow_vmcs_field *fields[] = {
1620 		shadow_read_write_fields,
1621 		shadow_read_only_fields
1622 	};
1623 	const int max_fields[] = {
1624 		max_shadow_read_write_fields,
1625 		max_shadow_read_only_fields
1626 	};
1627 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1628 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1629 	struct shadow_vmcs_field field;
1630 	unsigned long val;
1631 	int i, q;
1632 
1633 	if (WARN_ON(!shadow_vmcs))
1634 		return;
1635 
1636 	vmcs_load(shadow_vmcs);
1637 
1638 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1639 		for (i = 0; i < max_fields[q]; i++) {
1640 			field = fields[q][i];
1641 			val = vmcs12_read_any(vmcs12, field.encoding,
1642 					      field.offset);
1643 			__vmcs_writel(field.encoding, val);
1644 		}
1645 	}
1646 
1647 	vmcs_clear(shadow_vmcs);
1648 	vmcs_load(vmx->loaded_vmcs->vmcs);
1649 }
1650 
1651 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1652 {
1653 #ifdef CONFIG_KVM_HYPERV
1654 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1655 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1656 	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1657 
1658 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1659 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1660 	vmcs12->guest_rip = evmcs->guest_rip;
1661 
1662 	if (unlikely(!(hv_clean_fields &
1663 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1664 		hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1665 		hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1666 		hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1667 	}
1668 
1669 	if (unlikely(!(hv_clean_fields &
1670 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1671 		vmcs12->guest_rsp = evmcs->guest_rsp;
1672 		vmcs12->guest_rflags = evmcs->guest_rflags;
1673 		vmcs12->guest_interruptibility_info =
1674 			evmcs->guest_interruptibility_info;
1675 		/*
1676 		 * Not present in struct vmcs12:
1677 		 * vmcs12->guest_ssp = evmcs->guest_ssp;
1678 		 */
1679 	}
1680 
1681 	if (unlikely(!(hv_clean_fields &
1682 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1683 		vmcs12->cpu_based_vm_exec_control =
1684 			evmcs->cpu_based_vm_exec_control;
1685 	}
1686 
1687 	if (unlikely(!(hv_clean_fields &
1688 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1689 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1690 	}
1691 
1692 	if (unlikely(!(hv_clean_fields &
1693 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1694 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1695 	}
1696 
1697 	if (unlikely(!(hv_clean_fields &
1698 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1699 		vmcs12->vm_entry_intr_info_field =
1700 			evmcs->vm_entry_intr_info_field;
1701 		vmcs12->vm_entry_exception_error_code =
1702 			evmcs->vm_entry_exception_error_code;
1703 		vmcs12->vm_entry_instruction_len =
1704 			evmcs->vm_entry_instruction_len;
1705 	}
1706 
1707 	if (unlikely(!(hv_clean_fields &
1708 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1709 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1710 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1711 		vmcs12->host_cr0 = evmcs->host_cr0;
1712 		vmcs12->host_cr3 = evmcs->host_cr3;
1713 		vmcs12->host_cr4 = evmcs->host_cr4;
1714 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1715 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1716 		vmcs12->host_rip = evmcs->host_rip;
1717 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1718 		vmcs12->host_es_selector = evmcs->host_es_selector;
1719 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1720 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1721 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1722 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1723 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1724 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1725 		vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1726 		/*
1727 		 * Not present in struct vmcs12:
1728 		 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1729 		 * vmcs12->host_ssp = evmcs->host_ssp;
1730 		 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1731 		 */
1732 	}
1733 
1734 	if (unlikely(!(hv_clean_fields &
1735 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1736 		vmcs12->pin_based_vm_exec_control =
1737 			evmcs->pin_based_vm_exec_control;
1738 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1739 		vmcs12->secondary_vm_exec_control =
1740 			evmcs->secondary_vm_exec_control;
1741 	}
1742 
1743 	if (unlikely(!(hv_clean_fields &
1744 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1745 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1746 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1747 	}
1748 
1749 	if (unlikely(!(hv_clean_fields &
1750 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1751 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1752 	}
1753 
1754 	if (unlikely(!(hv_clean_fields &
1755 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1756 		vmcs12->guest_es_base = evmcs->guest_es_base;
1757 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1758 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1759 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1760 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1761 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1762 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1763 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1764 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1765 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1766 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1767 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1768 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1769 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1770 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1771 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1772 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1773 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1774 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1775 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1776 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1777 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1778 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1779 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1780 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1781 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1782 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1783 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1784 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1785 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1786 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1787 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1788 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1789 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1790 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1791 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1792 	}
1793 
1794 	if (unlikely(!(hv_clean_fields &
1795 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1796 		vmcs12->tsc_offset = evmcs->tsc_offset;
1797 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1798 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1799 		vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1800 		vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1801 	}
1802 
1803 	if (unlikely(!(hv_clean_fields &
1804 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1805 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1806 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1807 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1808 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1809 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1810 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1811 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1812 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1813 	}
1814 
1815 	if (unlikely(!(hv_clean_fields &
1816 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1817 		vmcs12->host_fs_base = evmcs->host_fs_base;
1818 		vmcs12->host_gs_base = evmcs->host_gs_base;
1819 		vmcs12->host_tr_base = evmcs->host_tr_base;
1820 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1821 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1822 		vmcs12->host_rsp = evmcs->host_rsp;
1823 	}
1824 
1825 	if (unlikely(!(hv_clean_fields &
1826 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1827 		vmcs12->ept_pointer = evmcs->ept_pointer;
1828 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1829 	}
1830 
1831 	if (unlikely(!(hv_clean_fields &
1832 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1833 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1834 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1835 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1836 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1837 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1838 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1839 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1840 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1841 		vmcs12->guest_pending_dbg_exceptions =
1842 			evmcs->guest_pending_dbg_exceptions;
1843 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1844 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1845 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1846 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1847 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1848 		vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1849 		/*
1850 		 * Not present in struct vmcs12:
1851 		 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1852 		 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1853 		 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1854 		 */
1855 	}
1856 
1857 	/*
1858 	 * Not used?
1859 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1860 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1861 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1862 	 * vmcs12->page_fault_error_code_mask =
1863 	 *		evmcs->page_fault_error_code_mask;
1864 	 * vmcs12->page_fault_error_code_match =
1865 	 *		evmcs->page_fault_error_code_match;
1866 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1867 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1868 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1869 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1870 	 */
1871 
1872 	/*
1873 	 * Read only fields:
1874 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1875 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1876 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1877 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1878 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1879 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1880 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1881 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1882 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1883 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1884 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1885 	 *
1886 	 * Not present in struct vmcs12:
1887 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1888 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1889 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1890 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1891 	 */
1892 
1893 	return;
1894 #else /* CONFIG_KVM_HYPERV */
1895 	KVM_BUG_ON(1, vmx->vcpu.kvm);
1896 #endif /* CONFIG_KVM_HYPERV */
1897 }
1898 
1899 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1900 {
1901 #ifdef CONFIG_KVM_HYPERV
1902 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1903 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1904 
1905 	/*
1906 	 * Should not be changed by KVM:
1907 	 *
1908 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1909 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1910 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1911 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1912 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1913 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1914 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1915 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1916 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1917 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1918 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1919 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1920 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1921 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1922 	 * evmcs->host_rip = vmcs12->host_rip;
1923 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1924 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1925 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1926 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1927 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1928 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1929 	 * evmcs->host_rsp = vmcs12->host_rsp;
1930 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1931 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1932 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1933 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1934 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1935 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1936 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1937 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1938 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1939 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1940 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1941 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1942 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1943 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1944 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1945 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1946 	 * evmcs->page_fault_error_code_mask =
1947 	 *		vmcs12->page_fault_error_code_mask;
1948 	 * evmcs->page_fault_error_code_match =
1949 	 *		vmcs12->page_fault_error_code_match;
1950 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1951 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1952 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1953 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1954 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1955 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1956 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1957 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1958 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1959 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1960 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1961 	 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1962 	 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1963 	 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1964 	 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1965 	 *
1966 	 * Not present in struct vmcs12:
1967 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1968 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1969 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1970 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1971 	 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1972 	 * evmcs->host_ssp = vmcs12->host_ssp;
1973 	 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1974 	 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1975 	 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1976 	 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1977 	 * evmcs->guest_ssp = vmcs12->guest_ssp;
1978 	 */
1979 
1980 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1981 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1982 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1983 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1984 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1985 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1986 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1987 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1988 
1989 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1990 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1991 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1992 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1993 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1994 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1995 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1996 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1997 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1998 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1999 
2000 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2001 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2002 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2003 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2004 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2005 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2006 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2007 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2008 
2009 	evmcs->guest_es_base = vmcs12->guest_es_base;
2010 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
2011 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
2012 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
2013 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
2014 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
2015 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2016 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
2017 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2018 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2019 
2020 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2021 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2022 
2023 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2024 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2025 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2026 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2027 
2028 	evmcs->guest_pending_dbg_exceptions =
2029 		vmcs12->guest_pending_dbg_exceptions;
2030 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2031 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2032 
2033 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
2034 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2035 
2036 	evmcs->guest_cr0 = vmcs12->guest_cr0;
2037 	evmcs->guest_cr3 = vmcs12->guest_cr3;
2038 	evmcs->guest_cr4 = vmcs12->guest_cr4;
2039 	evmcs->guest_dr7 = vmcs12->guest_dr7;
2040 
2041 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
2042 
2043 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2044 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2045 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2046 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2047 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2048 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2049 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2050 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2051 
2052 	evmcs->exit_qualification = vmcs12->exit_qualification;
2053 
2054 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
2055 	evmcs->guest_rsp = vmcs12->guest_rsp;
2056 	evmcs->guest_rflags = vmcs12->guest_rflags;
2057 
2058 	evmcs->guest_interruptibility_info =
2059 		vmcs12->guest_interruptibility_info;
2060 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2061 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2062 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2063 	evmcs->vm_entry_exception_error_code =
2064 		vmcs12->vm_entry_exception_error_code;
2065 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2066 
2067 	evmcs->guest_rip = vmcs12->guest_rip;
2068 
2069 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2070 
2071 	return;
2072 #else /* CONFIG_KVM_HYPERV */
2073 	KVM_BUG_ON(1, vmx->vcpu.kvm);
2074 #endif /* CONFIG_KVM_HYPERV */
2075 }
2076 
2077 /*
2078  * This is an equivalent of the nested hypervisor executing the vmptrld
2079  * instruction.
2080  */
2081 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2082 	struct kvm_vcpu *vcpu, bool from_launch)
2083 {
2084 #ifdef CONFIG_KVM_HYPERV
2085 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2086 	bool evmcs_gpa_changed = false;
2087 	u64 evmcs_gpa;
2088 
2089 	if (likely(!guest_cpuid_has_evmcs(vcpu)))
2090 		return EVMPTRLD_DISABLED;
2091 
2092 	evmcs_gpa = nested_get_evmptr(vcpu);
2093 	if (!evmptr_is_valid(evmcs_gpa)) {
2094 		nested_release_evmcs(vcpu);
2095 		return EVMPTRLD_DISABLED;
2096 	}
2097 
2098 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2099 		vmx->nested.current_vmptr = INVALID_GPA;
2100 
2101 		nested_release_evmcs(vcpu);
2102 
2103 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2104 				 &vmx->nested.hv_evmcs_map))
2105 			return EVMPTRLD_ERROR;
2106 
2107 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2108 
2109 		/*
2110 		 * Currently, KVM only supports eVMCS version 1
2111 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2112 		 * value to first u32 field of eVMCS which should specify eVMCS
2113 		 * VersionNumber.
2114 		 *
2115 		 * Guest should be aware of supported eVMCS versions by host by
2116 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2117 		 * expected to set this CPUID leaf according to the value
2118 		 * returned in vmcs_version from nested_enable_evmcs().
2119 		 *
2120 		 * However, it turns out that Microsoft Hyper-V fails to comply
2121 		 * to their own invented interface: When Hyper-V use eVMCS, it
2122 		 * just sets first u32 field of eVMCS to revision_id specified
2123 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2124 		 * which is one of the supported versions specified in
2125 		 * CPUID.0x4000000A.EAX[0:15].
2126 		 *
2127 		 * To overcome Hyper-V bug, we accept here either a supported
2128 		 * eVMCS version or VMCS12 revision_id as valid values for first
2129 		 * u32 field of eVMCS.
2130 		 */
2131 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2132 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2133 			nested_release_evmcs(vcpu);
2134 			return EVMPTRLD_VMFAIL;
2135 		}
2136 
2137 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2138 
2139 		evmcs_gpa_changed = true;
2140 		/*
2141 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2142 		 * reloaded from guest's memory (read only fields, fields not
2143 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2144 		 * are no leftovers.
2145 		 */
2146 		if (from_launch) {
2147 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2148 			memset(vmcs12, 0, sizeof(*vmcs12));
2149 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2150 		}
2151 
2152 	}
2153 
2154 	/*
2155 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2156 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2157 	 */
2158 	if (from_launch || evmcs_gpa_changed) {
2159 		vmx->nested.hv_evmcs->hv_clean_fields &=
2160 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2161 
2162 		vmx->nested.force_msr_bitmap_recalc = true;
2163 	}
2164 
2165 	return EVMPTRLD_SUCCEEDED;
2166 #else
2167 	return EVMPTRLD_DISABLED;
2168 #endif
2169 }
2170 
2171 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2172 {
2173 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2174 
2175 	if (nested_vmx_is_evmptr12_valid(vmx))
2176 		copy_vmcs12_to_enlightened(vmx);
2177 	else
2178 		copy_vmcs12_to_shadow(vmx);
2179 
2180 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2181 }
2182 
2183 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2184 {
2185 	struct vcpu_vmx *vmx =
2186 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2187 
2188 	vmx->nested.preemption_timer_expired = true;
2189 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2190 	kvm_vcpu_kick(&vmx->vcpu);
2191 
2192 	return HRTIMER_NORESTART;
2193 }
2194 
2195 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2196 {
2197 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2198 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2199 
2200 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2201 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2202 
2203 	if (!vmx->nested.has_preemption_timer_deadline) {
2204 		vmx->nested.preemption_timer_deadline =
2205 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2206 		vmx->nested.has_preemption_timer_deadline = true;
2207 	}
2208 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2209 }
2210 
2211 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2212 					u64 preemption_timeout)
2213 {
2214 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2215 
2216 	/*
2217 	 * A timer value of zero is architecturally guaranteed to cause
2218 	 * a VMExit prior to executing any instructions in the guest.
2219 	 */
2220 	if (preemption_timeout == 0) {
2221 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2222 		return;
2223 	}
2224 
2225 	if (vcpu->arch.virtual_tsc_khz == 0)
2226 		return;
2227 
2228 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2229 	preemption_timeout *= 1000000;
2230 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2231 	hrtimer_start(&vmx->nested.preemption_timer,
2232 		      ktime_add_ns(ktime_get(), preemption_timeout),
2233 		      HRTIMER_MODE_ABS_PINNED);
2234 }
2235 
2236 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2237 {
2238 	if (vmx->nested.nested_run_pending &&
2239 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2240 		return vmcs12->guest_ia32_efer;
2241 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2242 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2243 	else
2244 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2245 }
2246 
2247 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2248 {
2249 	struct kvm *kvm = vmx->vcpu.kvm;
2250 
2251 	/*
2252 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2253 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2254 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2255 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2256 	 */
2257 	if (vmx->nested.vmcs02_initialized)
2258 		return;
2259 	vmx->nested.vmcs02_initialized = true;
2260 
2261 	/*
2262 	 * We don't care what the EPTP value is we just need to guarantee
2263 	 * it's valid so we don't get a false positive when doing early
2264 	 * consistency checks.
2265 	 */
2266 	if (enable_ept && nested_early_check)
2267 		vmcs_write64(EPT_POINTER,
2268 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2269 
2270 	if (vmx->ve_info)
2271 		vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2272 
2273 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2274 	if (cpu_has_vmx_vmfunc())
2275 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2276 
2277 	if (cpu_has_vmx_posted_intr())
2278 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2279 
2280 	if (cpu_has_vmx_msr_bitmap())
2281 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2282 
2283 	/*
2284 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2285 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2286 	 * deal with filtering out L2 GPAs from the buffer.
2287 	 */
2288 	if (enable_pml) {
2289 		vmcs_write64(PML_ADDRESS, 0);
2290 		vmcs_write16(GUEST_PML_INDEX, -1);
2291 	}
2292 
2293 	if (cpu_has_vmx_encls_vmexit())
2294 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2295 
2296 	if (kvm_notify_vmexit_enabled(kvm))
2297 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2298 
2299 	/*
2300 	 * Set the MSR load/store lists to match L0's settings.  Only the
2301 	 * addresses are constant (for vmcs02), the counts can change based
2302 	 * on L2's behavior, e.g. switching to/from long mode.
2303 	 */
2304 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2305 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2306 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2307 
2308 	vmx_set_constant_host_state(vmx);
2309 }
2310 
2311 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2312 				      struct vmcs12 *vmcs12)
2313 {
2314 	prepare_vmcs02_constant_state(vmx);
2315 
2316 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2317 
2318 	if (enable_vpid) {
2319 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2320 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2321 		else
2322 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2323 	}
2324 }
2325 
2326 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2327 				 struct vmcs12 *vmcs12)
2328 {
2329 	u32 exec_control;
2330 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2331 
2332 	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2333 		prepare_vmcs02_early_rare(vmx, vmcs12);
2334 
2335 	/*
2336 	 * PIN CONTROLS
2337 	 */
2338 	exec_control = __pin_controls_get(vmcs01);
2339 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2340 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2341 
2342 	/* Posted interrupts setting is only taken from vmcs12.  */
2343 	vmx->nested.pi_pending = false;
2344 	if (nested_cpu_has_posted_intr(vmcs12)) {
2345 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2346 	} else {
2347 		vmx->nested.posted_intr_nv = -1;
2348 		exec_control &= ~PIN_BASED_POSTED_INTR;
2349 	}
2350 	pin_controls_set(vmx, exec_control);
2351 
2352 	/*
2353 	 * EXEC CONTROLS
2354 	 */
2355 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2356 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2357 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2358 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2359 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2360 
2361 	vmx->nested.l1_tpr_threshold = -1;
2362 	if (exec_control & CPU_BASED_TPR_SHADOW)
2363 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2364 #ifdef CONFIG_X86_64
2365 	else
2366 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2367 				CPU_BASED_CR8_STORE_EXITING;
2368 #endif
2369 
2370 	/*
2371 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2372 	 * for I/O port accesses.
2373 	 */
2374 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2375 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2376 
2377 	/*
2378 	 * This bit will be computed in nested_get_vmcs12_pages, because
2379 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2380 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2381 	 * only set/clear this bit.
2382 	 */
2383 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2384 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2385 
2386 	exec_controls_set(vmx, exec_control);
2387 
2388 	/*
2389 	 * SECONDARY EXEC CONTROLS
2390 	 */
2391 	if (cpu_has_secondary_exec_ctrls()) {
2392 		exec_control = __secondary_exec_controls_get(vmcs01);
2393 
2394 		/* Take the following fields only from vmcs12 */
2395 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2396 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2397 				  SECONDARY_EXEC_ENABLE_INVPCID |
2398 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2399 				  SECONDARY_EXEC_ENABLE_XSAVES |
2400 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2401 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2402 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2403 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2404 				  SECONDARY_EXEC_DESC);
2405 
2406 		if (nested_cpu_has(vmcs12,
2407 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2408 			exec_control |= vmcs12->secondary_vm_exec_control;
2409 
2410 		/* PML is emulated and never enabled in hardware for L2. */
2411 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2412 
2413 		/* VMCS shadowing for L2 is emulated for now */
2414 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2415 
2416 		/*
2417 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2418 		 * will not have to rewrite the controls just for this bit.
2419 		 */
2420 		if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2421 			exec_control |= SECONDARY_EXEC_DESC;
2422 
2423 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2424 			vmcs_write16(GUEST_INTR_STATUS,
2425 				vmcs12->guest_intr_status);
2426 
2427 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2428 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2429 
2430 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2431 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2432 
2433 		secondary_exec_controls_set(vmx, exec_control);
2434 	}
2435 
2436 	/*
2437 	 * ENTRY CONTROLS
2438 	 *
2439 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2440 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2441 	 * on the related bits (if supported by the CPU) in the hope that
2442 	 * we can avoid VMWrites during vmx_set_efer().
2443 	 *
2444 	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2445 	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2446 	 * do the same for L2.
2447 	 */
2448 	exec_control = __vm_entry_controls_get(vmcs01);
2449 	exec_control |= (vmcs12->vm_entry_controls &
2450 			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2451 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2452 	if (cpu_has_load_ia32_efer()) {
2453 		if (guest_efer & EFER_LMA)
2454 			exec_control |= VM_ENTRY_IA32E_MODE;
2455 		if (guest_efer != kvm_host.efer)
2456 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2457 	}
2458 	vm_entry_controls_set(vmx, exec_control);
2459 
2460 	/*
2461 	 * EXIT CONTROLS
2462 	 *
2463 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2464 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2465 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2466 	 */
2467 	exec_control = __vm_exit_controls_get(vmcs01);
2468 	if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2469 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2470 	else
2471 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2472 	vm_exit_controls_set(vmx, exec_control);
2473 
2474 	/*
2475 	 * Interrupt/Exception Fields
2476 	 */
2477 	if (vmx->nested.nested_run_pending) {
2478 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2479 			     vmcs12->vm_entry_intr_info_field);
2480 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2481 			     vmcs12->vm_entry_exception_error_code);
2482 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2483 			     vmcs12->vm_entry_instruction_len);
2484 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2485 			     vmcs12->guest_interruptibility_info);
2486 		vmx->loaded_vmcs->nmi_known_unmasked =
2487 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2488 	} else {
2489 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2490 	}
2491 }
2492 
2493 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2494 {
2495 	struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2496 
2497 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2498 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2499 
2500 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2501 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2502 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2503 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2504 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2505 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2506 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2507 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2508 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2509 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2510 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2511 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2512 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2513 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2514 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2515 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2516 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2517 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2518 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2519 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2520 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2521 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2522 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2523 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2524 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2525 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2526 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2527 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2528 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2529 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2530 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2531 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2532 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2533 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2534 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2535 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2536 
2537 		vmx_segment_cache_clear(vmx);
2538 	}
2539 
2540 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2541 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2542 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2543 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2544 			    vmcs12->guest_pending_dbg_exceptions);
2545 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2546 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2547 
2548 		/*
2549 		 * L1 may access the L2's PDPTR, so save them to construct
2550 		 * vmcs12
2551 		 */
2552 		if (enable_ept) {
2553 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2554 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2555 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2556 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2557 		}
2558 
2559 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2560 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2561 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2562 	}
2563 
2564 	if (nested_cpu_has_xsaves(vmcs12))
2565 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2566 
2567 	/*
2568 	 * Whether page-faults are trapped is determined by a combination of
2569 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2570 	 * doesn't care about page faults then we should set all of these to
2571 	 * L1's desires. However, if L0 does care about (some) page faults, it
2572 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2573 	 * simply ask to exit on each and every L2 page fault. This is done by
2574 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2575 	 * Note that below we don't need special code to set EB.PF beyond the
2576 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2577 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2578 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2579 	 */
2580 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2581 		/*
2582 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2583 		 * go ahead and use it?
2584 		 */
2585 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2586 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2587 	} else {
2588 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2589 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2590 	}
2591 
2592 	if (cpu_has_vmx_apicv()) {
2593 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2594 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2595 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2596 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2597 	}
2598 
2599 	/*
2600 	 * Make sure the msr_autostore list is up to date before we set the
2601 	 * count in the vmcs02.
2602 	 */
2603 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2604 
2605 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2606 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2607 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2608 
2609 	set_cr4_guest_host_mask(vmx);
2610 }
2611 
2612 /*
2613  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2614  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2615  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2616  * guest in a way that will both be appropriate to L1's requests, and our
2617  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2618  * function also has additional necessary side-effects, like setting various
2619  * vcpu->arch fields.
2620  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2621  * is assigned to entry_failure_code on failure.
2622  */
2623 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2624 			  bool from_vmentry,
2625 			  enum vm_entry_failure_code *entry_failure_code)
2626 {
2627 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2628 	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2629 	bool load_guest_pdptrs_vmcs12 = false;
2630 
2631 	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2632 		prepare_vmcs02_rare(vmx, vmcs12);
2633 		vmx->nested.dirty_vmcs12 = false;
2634 
2635 		load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2636 			!(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2637 	}
2638 
2639 	if (vmx->nested.nested_run_pending &&
2640 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2641 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2642 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2643 	} else {
2644 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2645 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2646 	}
2647 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2648 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2649 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2650 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2651 
2652 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2653 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2654 	 * trap. Note that CR0.TS also needs updating - we do this later.
2655 	 */
2656 	vmx_update_exception_bitmap(vcpu);
2657 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2658 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2659 
2660 	if (vmx->nested.nested_run_pending &&
2661 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2662 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2663 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2664 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2665 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2666 	}
2667 
2668 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2669 			vcpu->arch.l1_tsc_offset,
2670 			vmx_get_l2_tsc_offset(vcpu),
2671 			vmx_get_l2_tsc_multiplier(vcpu));
2672 
2673 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2674 			vcpu->arch.l1_tsc_scaling_ratio,
2675 			vmx_get_l2_tsc_multiplier(vcpu));
2676 
2677 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2678 	if (kvm_caps.has_tsc_control)
2679 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2680 
2681 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2682 
2683 	if (nested_cpu_has_ept(vmcs12))
2684 		nested_ept_init_mmu_context(vcpu);
2685 
2686 	/*
2687 	 * Override the CR0/CR4 read shadows after setting the effective guest
2688 	 * CR0/CR4.  The common helpers also set the shadows, but they don't
2689 	 * account for vmcs12's cr0/4_guest_host_mask.
2690 	 */
2691 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2692 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2693 
2694 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2695 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2696 
2697 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2698 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2699 	vmx_set_efer(vcpu, vcpu->arch.efer);
2700 
2701 	/*
2702 	 * Guest state is invalid and unrestricted guest is disabled,
2703 	 * which means L1 attempted VMEntry to L2 with invalid state.
2704 	 * Fail the VMEntry.
2705 	 *
2706 	 * However when force loading the guest state (SMM exit or
2707 	 * loading nested state after migration, it is possible to
2708 	 * have invalid guest state now, which will be later fixed by
2709 	 * restoring L2 register state
2710 	 */
2711 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2712 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2713 		return -EINVAL;
2714 	}
2715 
2716 	/* Shadow page tables on either EPT or shadow page tables. */
2717 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2718 				from_vmentry, entry_failure_code))
2719 		return -EINVAL;
2720 
2721 	/*
2722 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2723 	 * on nested VM-Exit, which can occur without actually running L2 and
2724 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2725 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2726 	 * transition to HLT instead of running L2.
2727 	 */
2728 	if (enable_ept)
2729 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2730 
2731 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2732 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2733 	    is_pae_paging(vcpu)) {
2734 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2735 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2736 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2737 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2738 	}
2739 
2740 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2741 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2742 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2743 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2744 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2745 		return -EINVAL;
2746 	}
2747 
2748 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2749 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2750 
2751 	/*
2752 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2753 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2754 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2755 	 * here.
2756 	 */
2757 	if (nested_vmx_is_evmptr12_valid(vmx))
2758 		evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2759 
2760 	return 0;
2761 }
2762 
2763 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2764 {
2765 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2766 	       nested_cpu_has_virtual_nmis(vmcs12)))
2767 		return -EINVAL;
2768 
2769 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2770 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2771 		return -EINVAL;
2772 
2773 	return 0;
2774 }
2775 
2776 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2777 {
2778 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2779 
2780 	/* Check for memory type validity */
2781 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2782 	case VMX_EPTP_MT_UC:
2783 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2784 			return false;
2785 		break;
2786 	case VMX_EPTP_MT_WB:
2787 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2788 			return false;
2789 		break;
2790 	default:
2791 		return false;
2792 	}
2793 
2794 	/* Page-walk levels validity. */
2795 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2796 	case VMX_EPTP_PWL_5:
2797 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2798 			return false;
2799 		break;
2800 	case VMX_EPTP_PWL_4:
2801 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2802 			return false;
2803 		break;
2804 	default:
2805 		return false;
2806 	}
2807 
2808 	/* Reserved bits should not be set */
2809 	if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2810 		return false;
2811 
2812 	/* AD, if set, should be supported */
2813 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2814 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2815 			return false;
2816 	}
2817 
2818 	return true;
2819 }
2820 
2821 /*
2822  * Checks related to VM-Execution Control Fields
2823  */
2824 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2825                                               struct vmcs12 *vmcs12)
2826 {
2827 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2828 
2829 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2830 				   vmx->nested.msrs.pinbased_ctls_low,
2831 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2832 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2833 				   vmx->nested.msrs.procbased_ctls_low,
2834 				   vmx->nested.msrs.procbased_ctls_high)))
2835 		return -EINVAL;
2836 
2837 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2838 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2839 				   vmx->nested.msrs.secondary_ctls_low,
2840 				   vmx->nested.msrs.secondary_ctls_high)))
2841 		return -EINVAL;
2842 
2843 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2844 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2845 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2846 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2847 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2848 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2849 	    nested_vmx_check_nmi_controls(vmcs12) ||
2850 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2851 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2852 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2853 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2854 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2855 		return -EINVAL;
2856 
2857 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2858 	    nested_cpu_has_save_preemption_timer(vmcs12))
2859 		return -EINVAL;
2860 
2861 	if (nested_cpu_has_ept(vmcs12) &&
2862 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2863 		return -EINVAL;
2864 
2865 	if (nested_cpu_has_vmfunc(vmcs12)) {
2866 		if (CC(vmcs12->vm_function_control &
2867 		       ~vmx->nested.msrs.vmfunc_controls))
2868 			return -EINVAL;
2869 
2870 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2871 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2872 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2873 				return -EINVAL;
2874 		}
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 /*
2881  * Checks related to VM-Exit Control Fields
2882  */
2883 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2884                                          struct vmcs12 *vmcs12)
2885 {
2886 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2887 
2888 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2889 				    vmx->nested.msrs.exit_ctls_low,
2890 				    vmx->nested.msrs.exit_ctls_high)) ||
2891 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2892 		return -EINVAL;
2893 
2894 	return 0;
2895 }
2896 
2897 /*
2898  * Checks related to VM-Entry Control Fields
2899  */
2900 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2901 					  struct vmcs12 *vmcs12)
2902 {
2903 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2904 
2905 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2906 				    vmx->nested.msrs.entry_ctls_low,
2907 				    vmx->nested.msrs.entry_ctls_high)))
2908 		return -EINVAL;
2909 
2910 	/*
2911 	 * From the Intel SDM, volume 3:
2912 	 * Fields relevant to VM-entry event injection must be set properly.
2913 	 * These fields are the VM-entry interruption-information field, the
2914 	 * VM-entry exception error code, and the VM-entry instruction length.
2915 	 */
2916 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2917 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2918 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2919 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2920 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2921 		bool should_have_error_code;
2922 		bool urg = nested_cpu_has2(vmcs12,
2923 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2924 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2925 
2926 		/* VM-entry interruption-info field: interruption type */
2927 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2928 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2929 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2930 			return -EINVAL;
2931 
2932 		/* VM-entry interruption-info field: vector */
2933 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2934 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2935 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2936 			return -EINVAL;
2937 
2938 		/* VM-entry interruption-info field: deliver error code */
2939 		should_have_error_code =
2940 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2941 			x86_exception_has_error_code(vector);
2942 		if (CC(has_error_code != should_have_error_code))
2943 			return -EINVAL;
2944 
2945 		/* VM-entry exception error code */
2946 		if (CC(has_error_code &&
2947 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2948 			return -EINVAL;
2949 
2950 		/* VM-entry interruption-info field: reserved bits */
2951 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2952 			return -EINVAL;
2953 
2954 		/* VM-entry instruction length */
2955 		switch (intr_type) {
2956 		case INTR_TYPE_SOFT_EXCEPTION:
2957 		case INTR_TYPE_SOFT_INTR:
2958 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2959 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2960 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2961 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2962 				return -EINVAL;
2963 		}
2964 	}
2965 
2966 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2967 		return -EINVAL;
2968 
2969 	return 0;
2970 }
2971 
2972 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2973 				     struct vmcs12 *vmcs12)
2974 {
2975 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2976 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2977 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2978 		return -EINVAL;
2979 
2980 #ifdef CONFIG_KVM_HYPERV
2981 	if (guest_cpuid_has_evmcs(vcpu))
2982 		return nested_evmcs_check_controls(vmcs12);
2983 #endif
2984 
2985 	return 0;
2986 }
2987 
2988 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2989 				       struct vmcs12 *vmcs12)
2990 {
2991 #ifdef CONFIG_X86_64
2992 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2993 		!!(vcpu->arch.efer & EFER_LMA)))
2994 		return -EINVAL;
2995 #endif
2996 	return 0;
2997 }
2998 
2999 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3000 				       struct vmcs12 *vmcs12)
3001 {
3002 	bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3003 
3004 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3005 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3006 	    CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3007 		return -EINVAL;
3008 
3009 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3010 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3011 		return -EINVAL;
3012 
3013 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3014 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3015 		return -EINVAL;
3016 
3017 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3018 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3019 					   vmcs12->host_ia32_perf_global_ctrl)))
3020 		return -EINVAL;
3021 
3022 	if (ia32e) {
3023 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3024 			return -EINVAL;
3025 	} else {
3026 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3027 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3028 		    CC((vmcs12->host_rip) >> 32))
3029 			return -EINVAL;
3030 	}
3031 
3032 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3033 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3034 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3035 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3036 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3037 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3038 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3039 	    CC(vmcs12->host_cs_selector == 0) ||
3040 	    CC(vmcs12->host_tr_selector == 0) ||
3041 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
3042 		return -EINVAL;
3043 
3044 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
3045 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
3046 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
3047 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
3048 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
3049 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
3050 		return -EINVAL;
3051 
3052 	/*
3053 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3054 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3055 	 * the values of the LMA and LME bits in the field must each be that of
3056 	 * the host address-space size VM-exit control.
3057 	 */
3058 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3059 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3060 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3061 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3062 			return -EINVAL;
3063 	}
3064 
3065 	return 0;
3066 }
3067 
3068 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3069 					  struct vmcs12 *vmcs12)
3070 {
3071 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3072 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3073 	struct vmcs_hdr hdr;
3074 
3075 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3076 		return 0;
3077 
3078 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3079 		return -EINVAL;
3080 
3081 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3082 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3083 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3084                 return -EINVAL;
3085 
3086 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3087 					    offsetof(struct vmcs12, hdr),
3088 					    sizeof(hdr))))
3089 		return -EINVAL;
3090 
3091 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
3092 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3093 		return -EINVAL;
3094 
3095 	return 0;
3096 }
3097 
3098 /*
3099  * Checks related to Guest Non-register State
3100  */
3101 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3102 {
3103 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3104 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3105 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3106 		return -EINVAL;
3107 
3108 	return 0;
3109 }
3110 
3111 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3112 					struct vmcs12 *vmcs12,
3113 					enum vm_entry_failure_code *entry_failure_code)
3114 {
3115 	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3116 
3117 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3118 
3119 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3120 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3121 		return -EINVAL;
3122 
3123 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3124 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3125 		return -EINVAL;
3126 
3127 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3128 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3129 		return -EINVAL;
3130 
3131 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3132 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3133 		return -EINVAL;
3134 	}
3135 
3136 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3137 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3138 					   vmcs12->guest_ia32_perf_global_ctrl)))
3139 		return -EINVAL;
3140 
3141 	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3142 		return -EINVAL;
3143 
3144 	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3145 	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3146 		return -EINVAL;
3147 
3148 	/*
3149 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3150 	 * are performed on the field for the IA32_EFER MSR:
3151 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3152 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3153 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3154 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3155 	 *   CR0.PG) is 1.
3156 	 */
3157 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3158 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3159 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3160 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3161 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3162 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3163 			return -EINVAL;
3164 	}
3165 
3166 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3167 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3168 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3169 		return -EINVAL;
3170 
3171 	if (nested_check_guest_non_reg_state(vmcs12))
3172 		return -EINVAL;
3173 
3174 	return 0;
3175 }
3176 
3177 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3178 {
3179 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3180 	unsigned long cr3, cr4;
3181 	bool vm_fail;
3182 
3183 	if (!nested_early_check)
3184 		return 0;
3185 
3186 	if (vmx->msr_autoload.host.nr)
3187 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3188 	if (vmx->msr_autoload.guest.nr)
3189 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3190 
3191 	preempt_disable();
3192 
3193 	vmx_prepare_switch_to_guest(vcpu);
3194 
3195 	/*
3196 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3197 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3198 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3199 	 * there is no need to preserve other bits or save/restore the field.
3200 	 */
3201 	vmcs_writel(GUEST_RFLAGS, 0);
3202 
3203 	cr3 = __get_current_cr3_fast();
3204 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3205 		vmcs_writel(HOST_CR3, cr3);
3206 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3207 	}
3208 
3209 	cr4 = cr4_read_shadow();
3210 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3211 		vmcs_writel(HOST_CR4, cr4);
3212 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3213 	}
3214 
3215 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3216 				 __vmx_vcpu_run_flags(vmx));
3217 
3218 	if (vmx->msr_autoload.host.nr)
3219 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3220 	if (vmx->msr_autoload.guest.nr)
3221 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3222 
3223 	if (vm_fail) {
3224 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3225 
3226 		preempt_enable();
3227 
3228 		trace_kvm_nested_vmenter_failed(
3229 			"early hardware check VM-instruction error: ", error);
3230 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3231 		return 1;
3232 	}
3233 
3234 	/*
3235 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3236 	 */
3237 	if (hw_breakpoint_active())
3238 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3239 	local_irq_enable();
3240 	preempt_enable();
3241 
3242 	/*
3243 	 * A non-failing VMEntry means we somehow entered guest mode with
3244 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3245 	 * is no telling what memory has been modified or what state has
3246 	 * been exposed to unknown code.  Hitting this all but guarantees
3247 	 * a (very critical) hardware issue.
3248 	 */
3249 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3250 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3251 
3252 	return 0;
3253 }
3254 
3255 #ifdef CONFIG_KVM_HYPERV
3256 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3257 {
3258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3259 
3260 	/*
3261 	 * hv_evmcs may end up being not mapped after migration (when
3262 	 * L2 was running), map it here to make sure vmcs12 changes are
3263 	 * properly reflected.
3264 	 */
3265 	if (guest_cpuid_has_evmcs(vcpu) &&
3266 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3267 		enum nested_evmptrld_status evmptrld_status =
3268 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3269 
3270 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3271 		    evmptrld_status == EVMPTRLD_ERROR)
3272 			return false;
3273 
3274 		/*
3275 		 * Post migration VMCS12 always provides the most actual
3276 		 * information, copy it to eVMCS upon entry.
3277 		 */
3278 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3279 	}
3280 
3281 	return true;
3282 }
3283 #endif
3284 
3285 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3286 {
3287 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3288 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3289 	struct kvm_host_map *map;
3290 
3291 	if (!vcpu->arch.pdptrs_from_userspace &&
3292 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3293 		/*
3294 		 * Reload the guest's PDPTRs since after a migration
3295 		 * the guest CR3 might be restored prior to setting the nested
3296 		 * state which can lead to a load of wrong PDPTRs.
3297 		 */
3298 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3299 			return false;
3300 	}
3301 
3302 
3303 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3304 		map = &vmx->nested.apic_access_page_map;
3305 
3306 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3307 			vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3308 		} else {
3309 			pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3310 					     __func__);
3311 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3312 			vcpu->run->internal.suberror =
3313 				KVM_INTERNAL_ERROR_EMULATION;
3314 			vcpu->run->internal.ndata = 0;
3315 			return false;
3316 		}
3317 	}
3318 
3319 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3320 		map = &vmx->nested.virtual_apic_map;
3321 
3322 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3323 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3324 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3325 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3326 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3327 			/*
3328 			 * The processor will never use the TPR shadow, simply
3329 			 * clear the bit from the execution control.  Such a
3330 			 * configuration is useless, but it happens in tests.
3331 			 * For any other configuration, failing the vm entry is
3332 			 * _not_ what the processor does but it's basically the
3333 			 * only possibility we have.
3334 			 */
3335 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3336 		} else {
3337 			/*
3338 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3339 			 * force VM-Entry to fail.
3340 			 */
3341 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3342 		}
3343 	}
3344 
3345 	if (nested_cpu_has_posted_intr(vmcs12)) {
3346 		map = &vmx->nested.pi_desc_map;
3347 
3348 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3349 			vmx->nested.pi_desc =
3350 				(struct pi_desc *)(((void *)map->hva) +
3351 				offset_in_page(vmcs12->posted_intr_desc_addr));
3352 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3353 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3354 		} else {
3355 			/*
3356 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3357 			 * access the contents of the VMCS12 posted interrupt
3358 			 * descriptor. (Note that KVM may do this when it
3359 			 * should not, per the architectural specification.)
3360 			 */
3361 			vmx->nested.pi_desc = NULL;
3362 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3363 		}
3364 	}
3365 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3366 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3367 	else
3368 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3369 
3370 	return true;
3371 }
3372 
3373 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3374 {
3375 #ifdef CONFIG_KVM_HYPERV
3376 	/*
3377 	 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3378 	 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3379 	 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3380 	 * migration.
3381 	 */
3382 	if (!nested_get_evmcs_page(vcpu)) {
3383 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3384 				     __func__);
3385 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3386 		vcpu->run->internal.suberror =
3387 			KVM_INTERNAL_ERROR_EMULATION;
3388 		vcpu->run->internal.ndata = 0;
3389 
3390 		return false;
3391 	}
3392 #endif
3393 
3394 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3395 		return false;
3396 
3397 	return true;
3398 }
3399 
3400 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3401 {
3402 	struct vmcs12 *vmcs12;
3403 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3404 	gpa_t dst;
3405 
3406 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3407 		return 0;
3408 
3409 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3410 		return 1;
3411 
3412 	/*
3413 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3414 	 * set is already checked as part of A/D emulation.
3415 	 */
3416 	vmcs12 = get_vmcs12(vcpu);
3417 	if (!nested_cpu_has_pml(vmcs12))
3418 		return 0;
3419 
3420 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3421 		vmx->nested.pml_full = true;
3422 		return 1;
3423 	}
3424 
3425 	gpa &= ~0xFFFull;
3426 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3427 
3428 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3429 				 offset_in_page(dst), sizeof(gpa)))
3430 		return 0;
3431 
3432 	vmcs12->guest_pml_index--;
3433 
3434 	return 0;
3435 }
3436 
3437 /*
3438  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3439  * for running VMX instructions (except VMXON, whose prerequisites are
3440  * slightly different). It also specifies what exception to inject otherwise.
3441  * Note that many of these exceptions have priority over VM exits, so they
3442  * don't have to be checked again here.
3443  */
3444 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3445 {
3446 	if (!to_vmx(vcpu)->nested.vmxon) {
3447 		kvm_queue_exception(vcpu, UD_VECTOR);
3448 		return 0;
3449 	}
3450 
3451 	if (vmx_get_cpl(vcpu)) {
3452 		kvm_inject_gp(vcpu, 0);
3453 		return 0;
3454 	}
3455 
3456 	return 1;
3457 }
3458 
3459 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3460 {
3461 	u8 rvi = vmx_get_rvi();
3462 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3463 
3464 	return ((rvi & 0xf0) > (vppr & 0xf0));
3465 }
3466 
3467 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3468 				   struct vmcs12 *vmcs12);
3469 
3470 /*
3471  * If from_vmentry is false, this is being called from state restore (either RSM
3472  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3473  *
3474  * Returns:
3475  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3476  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3477  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3478  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3479  */
3480 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3481 							bool from_vmentry)
3482 {
3483 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3484 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3485 	enum vm_entry_failure_code entry_failure_code;
3486 	bool evaluate_pending_interrupts;
3487 	union vmx_exit_reason exit_reason = {
3488 		.basic = EXIT_REASON_INVALID_STATE,
3489 		.failed_vmentry = 1,
3490 	};
3491 	u32 failed_index;
3492 
3493 	trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3494 				 vmx->nested.current_vmptr,
3495 				 vmcs12->guest_rip,
3496 				 vmcs12->guest_intr_status,
3497 				 vmcs12->vm_entry_intr_info_field,
3498 				 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3499 				 vmcs12->ept_pointer,
3500 				 vmcs12->guest_cr3,
3501 				 KVM_ISA_VMX);
3502 
3503 	kvm_service_local_tlb_flush_requests(vcpu);
3504 
3505 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3506 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3507 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3508 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3509 	if (!evaluate_pending_interrupts)
3510 		evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3511 
3512 	if (!vmx->nested.nested_run_pending ||
3513 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3514 		vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3515 	if (kvm_mpx_supported() &&
3516 	    (!vmx->nested.nested_run_pending ||
3517 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3518 		vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3519 
3520 	/*
3521 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3522 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3523 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3524 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3525 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3526 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3527 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3528 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3529 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3530 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3531 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3532 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3533 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3534 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3535 	 */
3536 	if (!enable_ept && !nested_early_check)
3537 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3538 
3539 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3540 
3541 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3542 
3543 	if (from_vmentry) {
3544 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3545 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3546 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3547 		}
3548 
3549 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3550 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3551 			return NVMX_VMENTRY_VMFAIL;
3552 		}
3553 
3554 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3555 						 &entry_failure_code)) {
3556 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3557 			vmcs12->exit_qualification = entry_failure_code;
3558 			goto vmentry_fail_vmexit;
3559 		}
3560 	}
3561 
3562 	enter_guest_mode(vcpu);
3563 
3564 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3565 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3566 		vmcs12->exit_qualification = entry_failure_code;
3567 		goto vmentry_fail_vmexit_guest_mode;
3568 	}
3569 
3570 	if (from_vmentry) {
3571 		failed_index = nested_vmx_load_msr(vcpu,
3572 						   vmcs12->vm_entry_msr_load_addr,
3573 						   vmcs12->vm_entry_msr_load_count);
3574 		if (failed_index) {
3575 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3576 			vmcs12->exit_qualification = failed_index;
3577 			goto vmentry_fail_vmexit_guest_mode;
3578 		}
3579 	} else {
3580 		/*
3581 		 * The MMU is not initialized to point at the right entities yet and
3582 		 * "get pages" would need to read data from the guest (i.e. we will
3583 		 * need to perform gpa to hpa translation). Request a call
3584 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3585 		 * have already been set at vmentry time and should not be reset.
3586 		 */
3587 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3588 	}
3589 
3590 	/*
3591 	 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3592 	 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3593 	 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3594 	 * unconditionally.
3595 	 */
3596 	if (unlikely(evaluate_pending_interrupts))
3597 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3598 
3599 	/*
3600 	 * Do not start the preemption timer hrtimer until after we know
3601 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3602 	 * the timer.
3603 	 */
3604 	vmx->nested.preemption_timer_expired = false;
3605 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3606 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3607 		vmx_start_preemption_timer(vcpu, timer_value);
3608 	}
3609 
3610 	/*
3611 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3612 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3613 	 * returned as far as L1 is concerned. It will only return (and set
3614 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3615 	 */
3616 	return NVMX_VMENTRY_SUCCESS;
3617 
3618 	/*
3619 	 * A failed consistency check that leads to a VMExit during L1's
3620 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3621 	 * 26.7 "VM-entry failures during or after loading guest state".
3622 	 */
3623 vmentry_fail_vmexit_guest_mode:
3624 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3625 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3626 	leave_guest_mode(vcpu);
3627 
3628 vmentry_fail_vmexit:
3629 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3630 
3631 	if (!from_vmentry)
3632 		return NVMX_VMENTRY_VMEXIT;
3633 
3634 	load_vmcs12_host_state(vcpu, vmcs12);
3635 	vmcs12->vm_exit_reason = exit_reason.full;
3636 	if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3637 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3638 	return NVMX_VMENTRY_VMEXIT;
3639 }
3640 
3641 /*
3642  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3643  * for running an L2 nested guest.
3644  */
3645 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3646 {
3647 	struct vmcs12 *vmcs12;
3648 	enum nvmx_vmentry_status status;
3649 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3650 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3651 	enum nested_evmptrld_status evmptrld_status;
3652 
3653 	if (!nested_vmx_check_permission(vcpu))
3654 		return 1;
3655 
3656 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3657 	if (evmptrld_status == EVMPTRLD_ERROR) {
3658 		kvm_queue_exception(vcpu, UD_VECTOR);
3659 		return 1;
3660 	}
3661 
3662 	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3663 
3664 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3665 		return nested_vmx_failInvalid(vcpu);
3666 
3667 	if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3668 	       vmx->nested.current_vmptr == INVALID_GPA))
3669 		return nested_vmx_failInvalid(vcpu);
3670 
3671 	vmcs12 = get_vmcs12(vcpu);
3672 
3673 	/*
3674 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3675 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3676 	 * rather than RFLAGS.ZF, and no error number is stored to the
3677 	 * VM-instruction error field.
3678 	 */
3679 	if (CC(vmcs12->hdr.shadow_vmcs))
3680 		return nested_vmx_failInvalid(vcpu);
3681 
3682 	if (nested_vmx_is_evmptr12_valid(vmx)) {
3683 		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3684 
3685 		copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3686 		/* Enlightened VMCS doesn't have launch state */
3687 		vmcs12->launch_state = !launch;
3688 	} else if (enable_shadow_vmcs) {
3689 		copy_shadow_to_vmcs12(vmx);
3690 	}
3691 
3692 	/*
3693 	 * The nested entry process starts with enforcing various prerequisites
3694 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3695 	 * they fail: As the SDM explains, some conditions should cause the
3696 	 * instruction to fail, while others will cause the instruction to seem
3697 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3698 	 * To speed up the normal (success) code path, we should avoid checking
3699 	 * for misconfigurations which will anyway be caught by the processor
3700 	 * when using the merged vmcs02.
3701 	 */
3702 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3703 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3704 
3705 	if (CC(vmcs12->launch_state == launch))
3706 		return nested_vmx_fail(vcpu,
3707 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3708 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3709 
3710 	if (nested_vmx_check_controls(vcpu, vmcs12))
3711 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3712 
3713 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3714 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3715 
3716 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3717 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3718 
3719 	/*
3720 	 * We're finally done with prerequisite checking, and can start with
3721 	 * the nested entry.
3722 	 */
3723 	vmx->nested.nested_run_pending = 1;
3724 	vmx->nested.has_preemption_timer_deadline = false;
3725 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3726 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3727 		goto vmentry_failed;
3728 
3729 	/* Emulate processing of posted interrupts on VM-Enter. */
3730 	if (nested_cpu_has_posted_intr(vmcs12) &&
3731 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3732 		vmx->nested.pi_pending = true;
3733 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3734 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3735 	}
3736 
3737 	/* Hide L1D cache contents from the nested guest.  */
3738 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3739 
3740 	/*
3741 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3742 	 * also be used as part of restoring nVMX state for
3743 	 * snapshot restore (migration).
3744 	 *
3745 	 * In this flow, it is assumed that vmcs12 cache was
3746 	 * transferred as part of captured nVMX state and should
3747 	 * therefore not be read from guest memory (which may not
3748 	 * exist on destination host yet).
3749 	 */
3750 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3751 
3752 	switch (vmcs12->guest_activity_state) {
3753 	case GUEST_ACTIVITY_HLT:
3754 		/*
3755 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3756 		 * awakened by event injection or by an NMI-window VM-exit or
3757 		 * by an interrupt-window VM-exit, halt the vcpu.
3758 		 */
3759 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3760 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3761 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3762 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3763 			vmx->nested.nested_run_pending = 0;
3764 			return kvm_emulate_halt_noskip(vcpu);
3765 		}
3766 		break;
3767 	case GUEST_ACTIVITY_WAIT_SIPI:
3768 		vmx->nested.nested_run_pending = 0;
3769 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3770 		break;
3771 	default:
3772 		break;
3773 	}
3774 
3775 	return 1;
3776 
3777 vmentry_failed:
3778 	vmx->nested.nested_run_pending = 0;
3779 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3780 		return 0;
3781 	if (status == NVMX_VMENTRY_VMEXIT)
3782 		return 1;
3783 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3784 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3785 }
3786 
3787 /*
3788  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3789  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3790  * This function returns the new value we should put in vmcs12.guest_cr0.
3791  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3792  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3793  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3794  *     didn't trap the bit, because if L1 did, so would L0).
3795  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3796  *     been modified by L2, and L1 knows it. So just leave the old value of
3797  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3798  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3799  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3800  *     changed these bits, and therefore they need to be updated, but L0
3801  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3802  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3803  */
3804 static inline unsigned long
3805 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3806 {
3807 	return
3808 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3809 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3810 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3811 			vcpu->arch.cr0_guest_owned_bits));
3812 }
3813 
3814 static inline unsigned long
3815 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3816 {
3817 	return
3818 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3819 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3820 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3821 			vcpu->arch.cr4_guest_owned_bits));
3822 }
3823 
3824 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3825 				      struct vmcs12 *vmcs12,
3826 				      u32 vm_exit_reason, u32 exit_intr_info)
3827 {
3828 	u32 idt_vectoring;
3829 	unsigned int nr;
3830 
3831 	/*
3832 	 * Per the SDM, VM-Exits due to double and triple faults are never
3833 	 * considered to occur during event delivery, even if the double/triple
3834 	 * fault is the result of an escalating vectoring issue.
3835 	 *
3836 	 * Note, the SDM qualifies the double fault behavior with "The original
3837 	 * event results in a double-fault exception".  It's unclear why the
3838 	 * qualification exists since exits due to double fault can occur only
3839 	 * while vectoring a different exception (injected events are never
3840 	 * subject to interception), i.e. there's _always_ an original event.
3841 	 *
3842 	 * The SDM also uses NMI as a confusing example for the "original event
3843 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3844 	 * the same rule applies to all events that cause an exit directly.
3845 	 * NMI is an odd choice for the example because NMIs can only occur on
3846 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3847 	 */
3848 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3849 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3850 	     is_double_fault(exit_intr_info))) {
3851 		vmcs12->idt_vectoring_info_field = 0;
3852 	} else if (vcpu->arch.exception.injected) {
3853 		nr = vcpu->arch.exception.vector;
3854 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3855 
3856 		if (kvm_exception_is_soft(nr)) {
3857 			vmcs12->vm_exit_instruction_len =
3858 				vcpu->arch.event_exit_inst_len;
3859 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3860 		} else
3861 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3862 
3863 		if (vcpu->arch.exception.has_error_code) {
3864 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3865 			vmcs12->idt_vectoring_error_code =
3866 				vcpu->arch.exception.error_code;
3867 		}
3868 
3869 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3870 	} else if (vcpu->arch.nmi_injected) {
3871 		vmcs12->idt_vectoring_info_field =
3872 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3873 	} else if (vcpu->arch.interrupt.injected) {
3874 		nr = vcpu->arch.interrupt.nr;
3875 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3876 
3877 		if (vcpu->arch.interrupt.soft) {
3878 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3879 			vmcs12->vm_entry_instruction_len =
3880 				vcpu->arch.event_exit_inst_len;
3881 		} else
3882 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3883 
3884 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3885 	} else {
3886 		vmcs12->idt_vectoring_info_field = 0;
3887 	}
3888 }
3889 
3890 
3891 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3892 {
3893 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3894 	gfn_t gfn;
3895 
3896 	/*
3897 	 * Don't need to mark the APIC access page dirty; it is never
3898 	 * written to by the CPU during APIC virtualization.
3899 	 */
3900 
3901 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3902 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3903 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3904 	}
3905 
3906 	if (nested_cpu_has_posted_intr(vmcs12)) {
3907 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3908 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3909 	}
3910 }
3911 
3912 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3913 {
3914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3915 	int max_irr;
3916 	void *vapic_page;
3917 	u16 status;
3918 
3919 	if (!vmx->nested.pi_pending)
3920 		return 0;
3921 
3922 	if (!vmx->nested.pi_desc)
3923 		goto mmio_needed;
3924 
3925 	vmx->nested.pi_pending = false;
3926 
3927 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3928 		return 0;
3929 
3930 	max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3931 	if (max_irr > 0) {
3932 		vapic_page = vmx->nested.virtual_apic_map.hva;
3933 		if (!vapic_page)
3934 			goto mmio_needed;
3935 
3936 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3937 			vapic_page, &max_irr);
3938 		status = vmcs_read16(GUEST_INTR_STATUS);
3939 		if ((u8)max_irr > ((u8)status & 0xff)) {
3940 			status &= ~0xff;
3941 			status |= (u8)max_irr;
3942 			vmcs_write16(GUEST_INTR_STATUS, status);
3943 		}
3944 	}
3945 
3946 	nested_mark_vmcs12_pages_dirty(vcpu);
3947 	return 0;
3948 
3949 mmio_needed:
3950 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3951 	return -ENXIO;
3952 }
3953 
3954 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3955 {
3956 	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3957 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3958 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3959 	unsigned long exit_qual;
3960 
3961 	if (ex->has_payload) {
3962 		exit_qual = ex->payload;
3963 	} else if (ex->vector == PF_VECTOR) {
3964 		exit_qual = vcpu->arch.cr2;
3965 	} else if (ex->vector == DB_VECTOR) {
3966 		exit_qual = vcpu->arch.dr6;
3967 		exit_qual &= ~DR6_BT;
3968 		exit_qual ^= DR6_ACTIVE_LOW;
3969 	} else {
3970 		exit_qual = 0;
3971 	}
3972 
3973 	/*
3974 	 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3975 	 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3976 	 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3977 	 */
3978 	if (ex->has_error_code && is_protmode(vcpu)) {
3979 		/*
3980 		 * Intel CPUs do not generate error codes with bits 31:16 set,
3981 		 * and more importantly VMX disallows setting bits 31:16 in the
3982 		 * injected error code for VM-Entry.  Drop the bits to mimic
3983 		 * hardware and avoid inducing failure on nested VM-Entry if L1
3984 		 * chooses to inject the exception back to L2.  AMD CPUs _do_
3985 		 * generate "full" 32-bit error codes, so KVM allows userspace
3986 		 * to inject exception error codes with bits 31:16 set.
3987 		 */
3988 		vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3989 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3990 	}
3991 
3992 	if (kvm_exception_is_soft(ex->vector))
3993 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3994 	else
3995 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3996 
3997 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3998 	    vmx_get_nmi_mask(vcpu))
3999 		intr_info |= INTR_INFO_UNBLOCK_NMI;
4000 
4001 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4002 }
4003 
4004 /*
4005  * Returns true if a debug trap is (likely) pending delivery.  Infer the class
4006  * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4007  * Using the payload is flawed because code breakpoints (fault-like) and data
4008  * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4009  * this will return false positives if a to-be-injected code breakpoint #DB is
4010  * pending (from KVM's perspective, but not "pending" across an instruction
4011  * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
4012  * too is trap-like.
4013  *
4014  * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4015  * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4016  * #DB has already happened), and MTF isn't marked pending on code breakpoints
4017  * from the emulator (because such #DBs are fault-like and thus don't trigger
4018  * actions that fire on instruction retire).
4019  */
4020 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4021 {
4022 	if (!ex->pending || ex->vector != DB_VECTOR)
4023 		return 0;
4024 
4025 	/* General Detect #DBs are always fault-like. */
4026 	return ex->payload & ~DR6_BD;
4027 }
4028 
4029 /*
4030  * Returns true if there's a pending #DB exception that is lower priority than
4031  * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
4032  * KVM, but could theoretically be injected by userspace.  Note, this code is
4033  * imperfect, see above.
4034  */
4035 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4036 {
4037 	return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4038 }
4039 
4040 /*
4041  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4042  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4043  * represents these debug traps with a payload that is said to be compatible
4044  * with the 'pending debug exceptions' field, write the payload to the VMCS
4045  * field if a VM-exit is delivered before the debug trap.
4046  */
4047 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4048 {
4049 	unsigned long pending_dbg;
4050 
4051 	pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4052 	if (pending_dbg)
4053 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4054 }
4055 
4056 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4057 {
4058 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4059 	       to_vmx(vcpu)->nested.preemption_timer_expired;
4060 }
4061 
4062 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4063 {
4064 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4065 	void *vapic = vmx->nested.virtual_apic_map.hva;
4066 	int max_irr, vppr;
4067 
4068 	if (nested_vmx_preemption_timer_pending(vcpu) ||
4069 	    vmx->nested.mtf_pending)
4070 		return true;
4071 
4072 	/*
4073 	 * Virtual Interrupt Delivery doesn't require manual injection.  Either
4074 	 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4075 	 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4076 	 * the interrupt from the PIR to RVI prior to entering the guest.
4077 	 */
4078 	if (for_injection)
4079 		return false;
4080 
4081 	if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4082 	    __vmx_interrupt_blocked(vcpu))
4083 		return false;
4084 
4085 	if (!vapic)
4086 		return false;
4087 
4088 	vppr = *((u32 *)(vapic + APIC_PROCPRI));
4089 
4090 	max_irr = vmx_get_rvi();
4091 	if ((max_irr & 0xf0) > (vppr & 0xf0))
4092 		return true;
4093 
4094 	if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4095 	    pi_test_on(vmx->nested.pi_desc)) {
4096 		max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4097 		if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4098 			return true;
4099 	}
4100 
4101 	return false;
4102 }
4103 
4104 /*
4105  * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4106  * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4107  * and less minor edits to splice in the priority of VMX Non-Root specific
4108  * events, e.g. MTF and NMI/INTR-window exiting.
4109  *
4110  * 1 Hardware Reset and Machine Checks
4111  *	- RESET
4112  *	- Machine Check
4113  *
4114  * 2 Trap on Task Switch
4115  *	- T flag in TSS is set (on task switch)
4116  *
4117  * 3 External Hardware Interventions
4118  *	- FLUSH
4119  *	- STOPCLK
4120  *	- SMI
4121  *	- INIT
4122  *
4123  * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4124  *
4125  * 4 Traps on Previous Instruction
4126  *	- Breakpoints
4127  *	- Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4128  *	  breakpoint, or #DB due to a split-lock access)
4129  *
4130  * 4.3	VMX-preemption timer expired VM-exit
4131  *
4132  * 4.6	NMI-window exiting VM-exit[2]
4133  *
4134  * 5 Nonmaskable Interrupts (NMI)
4135  *
4136  * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4137  *
4138  * 6 Maskable Hardware Interrupts
4139  *
4140  * 7 Code Breakpoint Fault
4141  *
4142  * 8 Faults from Fetching Next Instruction
4143  *	- Code-Segment Limit Violation
4144  *	- Code Page Fault
4145  *	- Control protection exception (missing ENDBRANCH at target of indirect
4146  *					call or jump)
4147  *
4148  * 9 Faults from Decoding Next Instruction
4149  *	- Instruction length > 15 bytes
4150  *	- Invalid Opcode
4151  *	- Coprocessor Not Available
4152  *
4153  *10 Faults on Executing Instruction
4154  *	- Overflow
4155  *	- Bound error
4156  *	- Invalid TSS
4157  *	- Segment Not Present
4158  *	- Stack fault
4159  *	- General Protection
4160  *	- Data Page Fault
4161  *	- Alignment Check
4162  *	- x86 FPU Floating-point exception
4163  *	- SIMD floating-point exception
4164  *	- Virtualization exception
4165  *	- Control protection exception
4166  *
4167  * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4168  *     INIT signals, and higher priority events take priority over MTF VM exits.
4169  *     MTF VM exits take priority over debug-trap exceptions and lower priority
4170  *     events.
4171  *
4172  * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4173  *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4174  *     timer take priority over VM exits caused by the "NMI-window exiting"
4175  *     VM-execution control and lower priority events.
4176  *
4177  * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4178  *     caused by "NMI-window exiting".  VM exits caused by this control take
4179  *     priority over non-maskable interrupts (NMIs) and lower priority events.
4180  *
4181  * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4182  *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4183  *     non-maskable interrupts (NMIs) and higher priority events take priority over
4184  *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4185  *     priority over external interrupts and lower priority events.
4186  */
4187 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4188 {
4189 	struct kvm_lapic *apic = vcpu->arch.apic;
4190 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4191 	/*
4192 	 * Only a pending nested run blocks a pending exception.  If there is a
4193 	 * previously injected event, the pending exception occurred while said
4194 	 * event was being delivered and thus needs to be handled.
4195 	 */
4196 	bool block_nested_exceptions = vmx->nested.nested_run_pending;
4197 	/*
4198 	 * New events (not exceptions) are only recognized at instruction
4199 	 * boundaries.  If an event needs reinjection, then KVM is handling a
4200 	 * VM-Exit that occurred _during_ instruction execution; new events are
4201 	 * blocked until the instruction completes.
4202 	 */
4203 	bool block_nested_events = block_nested_exceptions ||
4204 				   kvm_event_needs_reinjection(vcpu);
4205 
4206 	if (lapic_in_kernel(vcpu) &&
4207 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4208 		if (block_nested_events)
4209 			return -EBUSY;
4210 		nested_vmx_update_pending_dbg(vcpu);
4211 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
4212 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4213 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4214 
4215 		/* MTF is discarded if the vCPU is in WFS. */
4216 		vmx->nested.mtf_pending = false;
4217 		return 0;
4218 	}
4219 
4220 	if (lapic_in_kernel(vcpu) &&
4221 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4222 		if (block_nested_events)
4223 			return -EBUSY;
4224 
4225 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4226 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4227 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4228 						apic->sipi_vector & 0xFFUL);
4229 			return 0;
4230 		}
4231 		/* Fallthrough, the SIPI is completely ignored. */
4232 	}
4233 
4234 	/*
4235 	 * Process exceptions that are higher priority than Monitor Trap Flag:
4236 	 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4237 	 * could theoretically come in from userspace), and ICEBP (INT1).
4238 	 *
4239 	 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4240 	 * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4241 	 * across SMI/RSM as it should; that needs to be addressed in order to
4242 	 * prioritize SMI over MTF and trap-like #DBs.
4243 	 */
4244 	if (vcpu->arch.exception_vmexit.pending &&
4245 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4246 		if (block_nested_exceptions)
4247 			return -EBUSY;
4248 
4249 		nested_vmx_inject_exception_vmexit(vcpu);
4250 		return 0;
4251 	}
4252 
4253 	if (vcpu->arch.exception.pending &&
4254 	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4255 		if (block_nested_exceptions)
4256 			return -EBUSY;
4257 		goto no_vmexit;
4258 	}
4259 
4260 	if (vmx->nested.mtf_pending) {
4261 		if (block_nested_events)
4262 			return -EBUSY;
4263 		nested_vmx_update_pending_dbg(vcpu);
4264 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4265 		return 0;
4266 	}
4267 
4268 	if (vcpu->arch.exception_vmexit.pending) {
4269 		if (block_nested_exceptions)
4270 			return -EBUSY;
4271 
4272 		nested_vmx_inject_exception_vmexit(vcpu);
4273 		return 0;
4274 	}
4275 
4276 	if (vcpu->arch.exception.pending) {
4277 		if (block_nested_exceptions)
4278 			return -EBUSY;
4279 		goto no_vmexit;
4280 	}
4281 
4282 	if (nested_vmx_preemption_timer_pending(vcpu)) {
4283 		if (block_nested_events)
4284 			return -EBUSY;
4285 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4286 		return 0;
4287 	}
4288 
4289 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4290 		if (block_nested_events)
4291 			return -EBUSY;
4292 		goto no_vmexit;
4293 	}
4294 
4295 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4296 		if (block_nested_events)
4297 			return -EBUSY;
4298 		if (!nested_exit_on_nmi(vcpu))
4299 			goto no_vmexit;
4300 
4301 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4302 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
4303 				  INTR_INFO_VALID_MASK, 0);
4304 		/*
4305 		 * The NMI-triggered VM exit counts as injection:
4306 		 * clear this one and block further NMIs.
4307 		 */
4308 		vcpu->arch.nmi_pending = 0;
4309 		vmx_set_nmi_mask(vcpu, true);
4310 		return 0;
4311 	}
4312 
4313 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4314 		int irq;
4315 
4316 		if (block_nested_events)
4317 			return -EBUSY;
4318 		if (!nested_exit_on_intr(vcpu))
4319 			goto no_vmexit;
4320 
4321 		if (!nested_exit_intr_ack_set(vcpu)) {
4322 			nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4323 			return 0;
4324 		}
4325 
4326 		irq = kvm_cpu_get_extint(vcpu);
4327 		if (irq != -1) {
4328 			nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4329 					  INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4330 			return 0;
4331 		}
4332 
4333 		irq = kvm_apic_has_interrupt(vcpu);
4334 		if (WARN_ON_ONCE(irq < 0))
4335 			goto no_vmexit;
4336 
4337 		/*
4338 		 * If the IRQ is L2's PI notification vector, process posted
4339 		 * interrupts for L2 instead of injecting VM-Exit, as the
4340 		 * detection/morphing architecturally occurs when the IRQ is
4341 		 * delivered to the CPU.  Note, only interrupts that are routed
4342 		 * through the local APIC trigger posted interrupt processing,
4343 		 * and enabling posted interrupts requires ACK-on-exit.
4344 		 */
4345 		if (irq == vmx->nested.posted_intr_nv) {
4346 			vmx->nested.pi_pending = true;
4347 			kvm_apic_clear_irr(vcpu, irq);
4348 			goto no_vmexit;
4349 		}
4350 
4351 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4352 				  INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4353 
4354 		/*
4355 		 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4356 		 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4357 		 * if APICv is active.
4358 		 */
4359 		kvm_apic_ack_interrupt(vcpu, irq);
4360 		return 0;
4361 	}
4362 
4363 no_vmexit:
4364 	return vmx_complete_nested_posted_interrupt(vcpu);
4365 }
4366 
4367 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4368 {
4369 	ktime_t remaining =
4370 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4371 	u64 value;
4372 
4373 	if (ktime_to_ns(remaining) <= 0)
4374 		return 0;
4375 
4376 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4377 	do_div(value, 1000000);
4378 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4379 }
4380 
4381 static bool is_vmcs12_ext_field(unsigned long field)
4382 {
4383 	switch (field) {
4384 	case GUEST_ES_SELECTOR:
4385 	case GUEST_CS_SELECTOR:
4386 	case GUEST_SS_SELECTOR:
4387 	case GUEST_DS_SELECTOR:
4388 	case GUEST_FS_SELECTOR:
4389 	case GUEST_GS_SELECTOR:
4390 	case GUEST_LDTR_SELECTOR:
4391 	case GUEST_TR_SELECTOR:
4392 	case GUEST_ES_LIMIT:
4393 	case GUEST_CS_LIMIT:
4394 	case GUEST_SS_LIMIT:
4395 	case GUEST_DS_LIMIT:
4396 	case GUEST_FS_LIMIT:
4397 	case GUEST_GS_LIMIT:
4398 	case GUEST_LDTR_LIMIT:
4399 	case GUEST_TR_LIMIT:
4400 	case GUEST_GDTR_LIMIT:
4401 	case GUEST_IDTR_LIMIT:
4402 	case GUEST_ES_AR_BYTES:
4403 	case GUEST_DS_AR_BYTES:
4404 	case GUEST_FS_AR_BYTES:
4405 	case GUEST_GS_AR_BYTES:
4406 	case GUEST_LDTR_AR_BYTES:
4407 	case GUEST_TR_AR_BYTES:
4408 	case GUEST_ES_BASE:
4409 	case GUEST_CS_BASE:
4410 	case GUEST_SS_BASE:
4411 	case GUEST_DS_BASE:
4412 	case GUEST_FS_BASE:
4413 	case GUEST_GS_BASE:
4414 	case GUEST_LDTR_BASE:
4415 	case GUEST_TR_BASE:
4416 	case GUEST_GDTR_BASE:
4417 	case GUEST_IDTR_BASE:
4418 	case GUEST_PENDING_DBG_EXCEPTIONS:
4419 	case GUEST_BNDCFGS:
4420 		return true;
4421 	default:
4422 		break;
4423 	}
4424 
4425 	return false;
4426 }
4427 
4428 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4429 				       struct vmcs12 *vmcs12)
4430 {
4431 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4432 
4433 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4434 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4435 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4436 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4437 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4438 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4439 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4440 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4441 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4442 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4443 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4444 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4445 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4446 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4447 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4448 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4449 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4450 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4451 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4452 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4453 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4454 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4455 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4456 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4457 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4458 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4459 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4460 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4461 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4462 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4463 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4464 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4465 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4466 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4467 	vmcs12->guest_pending_dbg_exceptions =
4468 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4469 
4470 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4471 }
4472 
4473 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4474 				       struct vmcs12 *vmcs12)
4475 {
4476 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4477 	int cpu;
4478 
4479 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4480 		return;
4481 
4482 
4483 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4484 
4485 	cpu = get_cpu();
4486 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4487 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4488 
4489 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4490 
4491 	vmx->loaded_vmcs = &vmx->vmcs01;
4492 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4493 	put_cpu();
4494 }
4495 
4496 /*
4497  * Update the guest state fields of vmcs12 to reflect changes that
4498  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4499  * VM-entry controls is also updated, since this is really a guest
4500  * state bit.)
4501  */
4502 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4503 {
4504 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4505 
4506 	if (nested_vmx_is_evmptr12_valid(vmx))
4507 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4508 
4509 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4510 		!nested_vmx_is_evmptr12_valid(vmx);
4511 
4512 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4513 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4514 
4515 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4516 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4517 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4518 
4519 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4520 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4521 
4522 	vmcs12->guest_interruptibility_info =
4523 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4524 
4525 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4526 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4527 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4528 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4529 	else
4530 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4531 
4532 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4533 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4534 	    !vmx->nested.nested_run_pending)
4535 		vmcs12->vmx_preemption_timer_value =
4536 			vmx_get_preemption_timer_value(vcpu);
4537 
4538 	/*
4539 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4540 	 * own CR3 without exiting. If it has changed it, we must keep it.
4541 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4542 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4543 	 *
4544 	 * Additionally, restore L2's PDPTR to vmcs12.
4545 	 */
4546 	if (enable_ept) {
4547 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4548 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4549 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4550 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4551 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4552 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4553 		}
4554 	}
4555 
4556 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4557 
4558 	if (nested_cpu_has_vid(vmcs12))
4559 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4560 
4561 	vmcs12->vm_entry_controls =
4562 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4563 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4564 
4565 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4566 		vmcs12->guest_dr7 = vcpu->arch.dr7;
4567 
4568 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4569 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4570 }
4571 
4572 /*
4573  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4574  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4575  * and this function updates it to reflect the changes to the guest state while
4576  * L2 was running (and perhaps made some exits which were handled directly by L0
4577  * without going back to L1), and to reflect the exit reason.
4578  * Note that we do not have to copy here all VMCS fields, just those that
4579  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4580  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4581  * which already writes to vmcs12 directly.
4582  */
4583 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4584 			   u32 vm_exit_reason, u32 exit_intr_info,
4585 			   unsigned long exit_qualification)
4586 {
4587 	/* update exit information fields: */
4588 	vmcs12->vm_exit_reason = vm_exit_reason;
4589 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4590 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4591 	vmcs12->exit_qualification = exit_qualification;
4592 
4593 	/*
4594 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4595 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4596 	 * exit info fields are unmodified.
4597 	 */
4598 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4599 		vmcs12->launch_state = 1;
4600 
4601 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4602 		 * instead of reading the real value. */
4603 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4604 
4605 		/*
4606 		 * Transfer the event that L0 or L1 may wanted to inject into
4607 		 * L2 to IDT_VECTORING_INFO_FIELD.
4608 		 */
4609 		vmcs12_save_pending_event(vcpu, vmcs12,
4610 					  vm_exit_reason, exit_intr_info);
4611 
4612 		vmcs12->vm_exit_intr_info = exit_intr_info;
4613 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4614 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4615 
4616 		/*
4617 		 * According to spec, there's no need to store the guest's
4618 		 * MSRs if the exit is due to a VM-entry failure that occurs
4619 		 * during or after loading the guest state. Since this exit
4620 		 * does not fall in that category, we need to save the MSRs.
4621 		 */
4622 		if (nested_vmx_store_msr(vcpu,
4623 					 vmcs12->vm_exit_msr_store_addr,
4624 					 vmcs12->vm_exit_msr_store_count))
4625 			nested_vmx_abort(vcpu,
4626 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4627 	}
4628 }
4629 
4630 /*
4631  * A part of what we need to when the nested L2 guest exits and we want to
4632  * run its L1 parent, is to reset L1's guest state to the host state specified
4633  * in vmcs12.
4634  * This function is to be called not only on normal nested exit, but also on
4635  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4636  * Failures During or After Loading Guest State").
4637  * This function should be called when the active VMCS is L1's (vmcs01).
4638  */
4639 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4640 				   struct vmcs12 *vmcs12)
4641 {
4642 	enum vm_entry_failure_code ignored;
4643 	struct kvm_segment seg;
4644 
4645 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4646 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4647 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4648 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4649 	else
4650 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4651 	vmx_set_efer(vcpu, vcpu->arch.efer);
4652 
4653 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4654 	kvm_rip_write(vcpu, vmcs12->host_rip);
4655 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4656 	vmx_set_interrupt_shadow(vcpu, 0);
4657 
4658 	/*
4659 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4660 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4661 	 *
4662 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4663 	 * (KVM doesn't change it);
4664 	 */
4665 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4666 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4667 
4668 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4669 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4670 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4671 
4672 	nested_ept_uninit_mmu_context(vcpu);
4673 
4674 	/*
4675 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4676 	 * couldn't have changed.
4677 	 */
4678 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4679 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4680 
4681 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4682 
4683 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4684 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4685 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4686 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4687 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4688 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4689 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4690 
4691 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4692 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4693 		vmcs_write64(GUEST_BNDCFGS, 0);
4694 
4695 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4696 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4697 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4698 	}
4699 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4700 	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4701 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4702 					 vmcs12->host_ia32_perf_global_ctrl));
4703 
4704 	/* Set L1 segment info according to Intel SDM
4705 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4706 	seg = (struct kvm_segment) {
4707 		.base = 0,
4708 		.limit = 0xFFFFFFFF,
4709 		.selector = vmcs12->host_cs_selector,
4710 		.type = 11,
4711 		.present = 1,
4712 		.s = 1,
4713 		.g = 1
4714 	};
4715 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4716 		seg.l = 1;
4717 	else
4718 		seg.db = 1;
4719 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4720 	seg = (struct kvm_segment) {
4721 		.base = 0,
4722 		.limit = 0xFFFFFFFF,
4723 		.type = 3,
4724 		.present = 1,
4725 		.s = 1,
4726 		.db = 1,
4727 		.g = 1
4728 	};
4729 	seg.selector = vmcs12->host_ds_selector;
4730 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4731 	seg.selector = vmcs12->host_es_selector;
4732 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4733 	seg.selector = vmcs12->host_ss_selector;
4734 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4735 	seg.selector = vmcs12->host_fs_selector;
4736 	seg.base = vmcs12->host_fs_base;
4737 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4738 	seg.selector = vmcs12->host_gs_selector;
4739 	seg.base = vmcs12->host_gs_base;
4740 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4741 	seg = (struct kvm_segment) {
4742 		.base = vmcs12->host_tr_base,
4743 		.limit = 0x67,
4744 		.selector = vmcs12->host_tr_selector,
4745 		.type = 11,
4746 		.present = 1
4747 	};
4748 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4749 
4750 	memset(&seg, 0, sizeof(seg));
4751 	seg.unusable = 1;
4752 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4753 
4754 	kvm_set_dr(vcpu, 7, 0x400);
4755 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4756 
4757 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4758 				vmcs12->vm_exit_msr_load_count))
4759 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4760 
4761 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4762 }
4763 
4764 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4765 {
4766 	struct vmx_uret_msr *efer_msr;
4767 	unsigned int i;
4768 
4769 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4770 		return vmcs_read64(GUEST_IA32_EFER);
4771 
4772 	if (cpu_has_load_ia32_efer())
4773 		return kvm_host.efer;
4774 
4775 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4776 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4777 			return vmx->msr_autoload.guest.val[i].value;
4778 	}
4779 
4780 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4781 	if (efer_msr)
4782 		return efer_msr->data;
4783 
4784 	return kvm_host.efer;
4785 }
4786 
4787 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4788 {
4789 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4791 	struct vmx_msr_entry g, h;
4792 	gpa_t gpa;
4793 	u32 i, j;
4794 
4795 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4796 
4797 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4798 		/*
4799 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4800 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4801 		 * and vcpu->arch.dr7 is not squirreled away before the
4802 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4803 		 */
4804 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4805 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4806 		else
4807 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4808 	}
4809 
4810 	/*
4811 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4812 	 * handle a variety of side effects to KVM's software model.
4813 	 */
4814 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4815 
4816 	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4817 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4818 
4819 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4820 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4821 
4822 	nested_ept_uninit_mmu_context(vcpu);
4823 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4824 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4825 
4826 	/*
4827 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4828 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4829 	 * VMFail, like everything else we just need to ensure our
4830 	 * software model is up-to-date.
4831 	 */
4832 	if (enable_ept && is_pae_paging(vcpu))
4833 		ept_save_pdptrs(vcpu);
4834 
4835 	kvm_mmu_reset_context(vcpu);
4836 
4837 	/*
4838 	 * This nasty bit of open coding is a compromise between blindly
4839 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4840 	 * of VMFail), leaving the nested VM's MSRs in the software model
4841 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4842 	 * expensive since the lists are unbound by hardware).  For each
4843 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4844 	 * list, reload it from the exit load list if it exists and differs
4845 	 * from the guest value.  The intent is to stuff host state as
4846 	 * silently as possible, not to fully process the exit load list.
4847 	 */
4848 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4849 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4850 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4851 			pr_debug_ratelimited(
4852 				"%s read MSR index failed (%u, 0x%08llx)\n",
4853 				__func__, i, gpa);
4854 			goto vmabort;
4855 		}
4856 
4857 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4858 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4859 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4860 				pr_debug_ratelimited(
4861 					"%s read MSR failed (%u, 0x%08llx)\n",
4862 					__func__, j, gpa);
4863 				goto vmabort;
4864 			}
4865 			if (h.index != g.index)
4866 				continue;
4867 			if (h.value == g.value)
4868 				break;
4869 
4870 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4871 				pr_debug_ratelimited(
4872 					"%s check failed (%u, 0x%x, 0x%x)\n",
4873 					__func__, j, h.index, h.reserved);
4874 				goto vmabort;
4875 			}
4876 
4877 			if (kvm_set_msr_with_filter(vcpu, h.index, h.value)) {
4878 				pr_debug_ratelimited(
4879 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4880 					__func__, j, h.index, h.value);
4881 				goto vmabort;
4882 			}
4883 		}
4884 	}
4885 
4886 	return;
4887 
4888 vmabort:
4889 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4890 }
4891 
4892 /*
4893  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4894  * and modify vmcs12 to make it see what it would expect to see there if
4895  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4896  */
4897 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4898 		       u32 exit_intr_info, unsigned long exit_qualification)
4899 {
4900 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4901 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4902 
4903 	/* Pending MTF traps are discarded on VM-Exit. */
4904 	vmx->nested.mtf_pending = false;
4905 
4906 	/* trying to cancel vmlaunch/vmresume is a bug */
4907 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4908 
4909 #ifdef CONFIG_KVM_HYPERV
4910 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4911 		/*
4912 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4913 		 * Enlightened VMCS after migration and we still need to
4914 		 * do that when something is forcing L2->L1 exit prior to
4915 		 * the first L2 run.
4916 		 */
4917 		(void)nested_get_evmcs_page(vcpu);
4918 	}
4919 #endif
4920 
4921 	/* Service pending TLB flush requests for L2 before switching to L1. */
4922 	kvm_service_local_tlb_flush_requests(vcpu);
4923 
4924 	/*
4925 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4926 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4927 	 * up-to-date before switching to L1.
4928 	 */
4929 	if (enable_ept && is_pae_paging(vcpu))
4930 		vmx_ept_load_pdptrs(vcpu);
4931 
4932 	leave_guest_mode(vcpu);
4933 
4934 	if (nested_cpu_has_preemption_timer(vmcs12))
4935 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4936 
4937 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4938 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4939 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4940 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4941 	}
4942 
4943 	if (likely(!vmx->fail)) {
4944 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4945 
4946 		if (vm_exit_reason != -1)
4947 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4948 				       exit_intr_info, exit_qualification);
4949 
4950 		/*
4951 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4952 		 * also be used to capture vmcs12 cache as part of
4953 		 * capturing nVMX state for snapshot (migration).
4954 		 *
4955 		 * Otherwise, this flush will dirty guest memory at a
4956 		 * point it is already assumed by user-space to be
4957 		 * immutable.
4958 		 */
4959 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4960 	} else {
4961 		/*
4962 		 * The only expected VM-instruction error is "VM entry with
4963 		 * invalid control field(s)." Anything else indicates a
4964 		 * problem with L0.  And we should never get here with a
4965 		 * VMFail of any type if early consistency checks are enabled.
4966 		 */
4967 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4968 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4969 		WARN_ON_ONCE(nested_early_check);
4970 	}
4971 
4972 	/*
4973 	 * Drop events/exceptions that were queued for re-injection to L2
4974 	 * (picked up via vmx_complete_interrupts()), as well as exceptions
4975 	 * that were pending for L2.  Note, this must NOT be hoisted above
4976 	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4977 	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4978 	 */
4979 	vcpu->arch.nmi_injected = false;
4980 	kvm_clear_exception_queue(vcpu);
4981 	kvm_clear_interrupt_queue(vcpu);
4982 
4983 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4984 
4985 	/*
4986 	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4987 	 * branch predictors when transitioning from L2 to L1, as L1 expects
4988 	 * hardware (KVM in this case) to provide separate predictor modes.
4989 	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4990 	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4991 	 * separate modes for L2 vs L1.
4992 	 */
4993 	if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4994 		indirect_branch_prediction_barrier();
4995 
4996 	/* Update any VMCS fields that might have changed while L2 ran */
4997 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4998 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4999 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5000 	if (kvm_caps.has_tsc_control)
5001 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5002 
5003 	if (vmx->nested.l1_tpr_threshold != -1)
5004 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5005 
5006 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5007 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
5008 		vmx_set_virtual_apic_mode(vcpu);
5009 	}
5010 
5011 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5012 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5013 		vmx_update_cpu_dirty_logging(vcpu);
5014 	}
5015 
5016 	/* Unpin physical memory we referred to in vmcs02 */
5017 	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
5018 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
5019 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
5020 	vmx->nested.pi_desc = NULL;
5021 
5022 	if (vmx->nested.reload_vmcs01_apic_access_page) {
5023 		vmx->nested.reload_vmcs01_apic_access_page = false;
5024 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5025 	}
5026 
5027 	if (vmx->nested.update_vmcs01_apicv_status) {
5028 		vmx->nested.update_vmcs01_apicv_status = false;
5029 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5030 	}
5031 
5032 	if ((vm_exit_reason != -1) &&
5033 	    (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5034 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5035 
5036 	/* in case we halted in L2 */
5037 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5038 
5039 	if (likely(!vmx->fail)) {
5040 		if (vm_exit_reason != -1)
5041 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5042 						       vmcs12->exit_qualification,
5043 						       vmcs12->idt_vectoring_info_field,
5044 						       vmcs12->vm_exit_intr_info,
5045 						       vmcs12->vm_exit_intr_error_code,
5046 						       KVM_ISA_VMX);
5047 
5048 		load_vmcs12_host_state(vcpu, vmcs12);
5049 
5050 		return;
5051 	}
5052 
5053 	/*
5054 	 * After an early L2 VM-entry failure, we're now back
5055 	 * in L1 which thinks it just finished a VMLAUNCH or
5056 	 * VMRESUME instruction, so we need to set the failure
5057 	 * flag and the VM-instruction error field of the VMCS
5058 	 * accordingly, and skip the emulated instruction.
5059 	 */
5060 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5061 
5062 	/*
5063 	 * Restore L1's host state to KVM's software model.  We're here
5064 	 * because a consistency check was caught by hardware, which
5065 	 * means some amount of guest state has been propagated to KVM's
5066 	 * model and needs to be unwound to the host's state.
5067 	 */
5068 	nested_vmx_restore_host_state(vcpu);
5069 
5070 	vmx->fail = 0;
5071 }
5072 
5073 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5074 {
5075 	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5076 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5077 }
5078 
5079 /*
5080  * Decode the memory-address operand of a vmx instruction, as recorded on an
5081  * exit caused by such an instruction (run by a guest hypervisor).
5082  * On success, returns 0. When the operand is invalid, returns 1 and throws
5083  * #UD, #GP, or #SS.
5084  */
5085 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5086 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5087 {
5088 	gva_t off;
5089 	bool exn;
5090 	struct kvm_segment s;
5091 
5092 	/*
5093 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5094 	 * Execution", on an exit, vmx_instruction_info holds most of the
5095 	 * addressing components of the operand. Only the displacement part
5096 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5097 	 * For how an actual address is calculated from all these components,
5098 	 * refer to Vol. 1, "Operand Addressing".
5099 	 */
5100 	int  scaling = vmx_instruction_info & 3;
5101 	int  addr_size = (vmx_instruction_info >> 7) & 7;
5102 	bool is_reg = vmx_instruction_info & (1u << 10);
5103 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
5104 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5105 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5106 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5107 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5108 
5109 	if (is_reg) {
5110 		kvm_queue_exception(vcpu, UD_VECTOR);
5111 		return 1;
5112 	}
5113 
5114 	/* Addr = segment_base + offset */
5115 	/* offset = base + [index * scale] + displacement */
5116 	off = exit_qualification; /* holds the displacement */
5117 	if (addr_size == 1)
5118 		off = (gva_t)sign_extend64(off, 31);
5119 	else if (addr_size == 0)
5120 		off = (gva_t)sign_extend64(off, 15);
5121 	if (base_is_valid)
5122 		off += kvm_register_read(vcpu, base_reg);
5123 	if (index_is_valid)
5124 		off += kvm_register_read(vcpu, index_reg) << scaling;
5125 	vmx_get_segment(vcpu, &s, seg_reg);
5126 
5127 	/*
5128 	 * The effective address, i.e. @off, of a memory operand is truncated
5129 	 * based on the address size of the instruction.  Note that this is
5130 	 * the *effective address*, i.e. the address prior to accounting for
5131 	 * the segment's base.
5132 	 */
5133 	if (addr_size == 1) /* 32 bit */
5134 		off &= 0xffffffff;
5135 	else if (addr_size == 0) /* 16 bit */
5136 		off &= 0xffff;
5137 
5138 	/* Checks for #GP/#SS exceptions. */
5139 	exn = false;
5140 	if (is_long_mode(vcpu)) {
5141 		/*
5142 		 * The virtual/linear address is never truncated in 64-bit
5143 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5144 		 * address when using FS/GS with a non-zero base.
5145 		 */
5146 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5147 			*ret = s.base + off;
5148 		else
5149 			*ret = off;
5150 
5151 		*ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5152 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
5153 		 * non-canonical form. This is the only check on the memory
5154 		 * destination for long mode!
5155 		 */
5156 		exn = is_noncanonical_address(*ret, vcpu);
5157 	} else {
5158 		/*
5159 		 * When not in long mode, the virtual/linear address is
5160 		 * unconditionally truncated to 32 bits regardless of the
5161 		 * address size.
5162 		 */
5163 		*ret = (s.base + off) & 0xffffffff;
5164 
5165 		/* Protected mode: apply checks for segment validity in the
5166 		 * following order:
5167 		 * - segment type check (#GP(0) may be thrown)
5168 		 * - usability check (#GP(0)/#SS(0))
5169 		 * - limit check (#GP(0)/#SS(0))
5170 		 */
5171 		if (wr)
5172 			/* #GP(0) if the destination operand is located in a
5173 			 * read-only data segment or any code segment.
5174 			 */
5175 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
5176 		else
5177 			/* #GP(0) if the source operand is located in an
5178 			 * execute-only code segment
5179 			 */
5180 			exn = ((s.type & 0xa) == 8);
5181 		if (exn) {
5182 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5183 			return 1;
5184 		}
5185 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5186 		 */
5187 		exn = (s.unusable != 0);
5188 
5189 		/*
5190 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5191 		 * outside the segment limit.  All CPUs that support VMX ignore
5192 		 * limit checks for flat segments, i.e. segments with base==0,
5193 		 * limit==0xffffffff and of type expand-up data or code.
5194 		 */
5195 		if (!(s.base == 0 && s.limit == 0xffffffff &&
5196 		     ((s.type & 8) || !(s.type & 4))))
5197 			exn = exn || ((u64)off + len - 1 > s.limit);
5198 	}
5199 	if (exn) {
5200 		kvm_queue_exception_e(vcpu,
5201 				      seg_reg == VCPU_SREG_SS ?
5202 						SS_VECTOR : GP_VECTOR,
5203 				      0);
5204 		return 1;
5205 	}
5206 
5207 	return 0;
5208 }
5209 
5210 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5211 				int *ret)
5212 {
5213 	gva_t gva;
5214 	struct x86_exception e;
5215 	int r;
5216 
5217 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5218 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
5219 				sizeof(*vmpointer), &gva)) {
5220 		*ret = 1;
5221 		return -EINVAL;
5222 	}
5223 
5224 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5225 	if (r != X86EMUL_CONTINUE) {
5226 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
5227 		return -EINVAL;
5228 	}
5229 
5230 	return 0;
5231 }
5232 
5233 /*
5234  * Allocate a shadow VMCS and associate it with the currently loaded
5235  * VMCS, unless such a shadow VMCS already exists. The newly allocated
5236  * VMCS is also VMCLEARed, so that it is ready for use.
5237  */
5238 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5239 {
5240 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5241 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5242 
5243 	/*
5244 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5245 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
5246 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
5247 	 * should be impossible to already have an allocated shadow VMCS.  KVM
5248 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5249 	 * always be the loaded VMCS.
5250 	 */
5251 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5252 		return loaded_vmcs->shadow_vmcs;
5253 
5254 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5255 	if (loaded_vmcs->shadow_vmcs)
5256 		vmcs_clear(loaded_vmcs->shadow_vmcs);
5257 
5258 	return loaded_vmcs->shadow_vmcs;
5259 }
5260 
5261 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5262 {
5263 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5264 	int r;
5265 
5266 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5267 	if (r < 0)
5268 		goto out_vmcs02;
5269 
5270 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5271 	if (!vmx->nested.cached_vmcs12)
5272 		goto out_cached_vmcs12;
5273 
5274 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5275 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5276 	if (!vmx->nested.cached_shadow_vmcs12)
5277 		goto out_cached_shadow_vmcs12;
5278 
5279 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5280 		goto out_shadow_vmcs;
5281 
5282 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5283 		     HRTIMER_MODE_ABS_PINNED);
5284 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5285 
5286 	vmx->nested.vpid02 = allocate_vpid();
5287 
5288 	vmx->nested.vmcs02_initialized = false;
5289 	vmx->nested.vmxon = true;
5290 
5291 	if (vmx_pt_mode_is_host_guest()) {
5292 		vmx->pt_desc.guest.ctl = 0;
5293 		pt_update_intercept_for_msr(vcpu);
5294 	}
5295 
5296 	return 0;
5297 
5298 out_shadow_vmcs:
5299 	kfree(vmx->nested.cached_shadow_vmcs12);
5300 
5301 out_cached_shadow_vmcs12:
5302 	kfree(vmx->nested.cached_vmcs12);
5303 
5304 out_cached_vmcs12:
5305 	free_loaded_vmcs(&vmx->nested.vmcs02);
5306 
5307 out_vmcs02:
5308 	return -ENOMEM;
5309 }
5310 
5311 /* Emulate the VMXON instruction. */
5312 static int handle_vmxon(struct kvm_vcpu *vcpu)
5313 {
5314 	int ret;
5315 	gpa_t vmptr;
5316 	uint32_t revision;
5317 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5318 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5319 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5320 
5321 	/*
5322 	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5323 	 * the guest and so cannot rely on hardware to perform the check,
5324 	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5325 	 * for VMXON).
5326 	 *
5327 	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5328 	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5329 	 * force any of the relevant guest state.  For a restricted guest, KVM
5330 	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5331 	 * Real Mode, and so there's no need to check CR0.PE manually.
5332 	 */
5333 	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5334 		kvm_queue_exception(vcpu, UD_VECTOR);
5335 		return 1;
5336 	}
5337 
5338 	/*
5339 	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5340 	 * and has higher priority than the VM-Fail due to being post-VMXON,
5341 	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5342 	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5343 	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5344 	 * VMX non-root.
5345 	 *
5346 	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5347 	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5348 	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5349 	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5350 	 * missed by hardware due to shadowing CR0 and/or CR4.
5351 	 */
5352 	if (vmx_get_cpl(vcpu)) {
5353 		kvm_inject_gp(vcpu, 0);
5354 		return 1;
5355 	}
5356 
5357 	if (vmx->nested.vmxon)
5358 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5359 
5360 	/*
5361 	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5362 	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5363 	 * have lower priority than the VM-Fail above.
5364 	 */
5365 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5366 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5367 		kvm_inject_gp(vcpu, 0);
5368 		return 1;
5369 	}
5370 
5371 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5372 			!= VMXON_NEEDED_FEATURES) {
5373 		kvm_inject_gp(vcpu, 0);
5374 		return 1;
5375 	}
5376 
5377 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5378 		return ret;
5379 
5380 	/*
5381 	 * SDM 3: 24.11.5
5382 	 * The first 4 bytes of VMXON region contain the supported
5383 	 * VMCS revision identifier
5384 	 *
5385 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5386 	 * which replaces physical address width with 32
5387 	 */
5388 	if (!page_address_valid(vcpu, vmptr))
5389 		return nested_vmx_failInvalid(vcpu);
5390 
5391 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5392 	    revision != VMCS12_REVISION)
5393 		return nested_vmx_failInvalid(vcpu);
5394 
5395 	vmx->nested.vmxon_ptr = vmptr;
5396 	ret = enter_vmx_operation(vcpu);
5397 	if (ret)
5398 		return ret;
5399 
5400 	return nested_vmx_succeed(vcpu);
5401 }
5402 
5403 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5404 {
5405 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5406 
5407 	if (vmx->nested.current_vmptr == INVALID_GPA)
5408 		return;
5409 
5410 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5411 
5412 	if (enable_shadow_vmcs) {
5413 		/* copy to memory all shadowed fields in case
5414 		   they were modified */
5415 		copy_shadow_to_vmcs12(vmx);
5416 		vmx_disable_shadow_vmcs(vmx);
5417 	}
5418 	vmx->nested.posted_intr_nv = -1;
5419 
5420 	/* Flush VMCS12 to guest memory */
5421 	kvm_vcpu_write_guest_page(vcpu,
5422 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5423 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5424 
5425 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5426 
5427 	vmx->nested.current_vmptr = INVALID_GPA;
5428 }
5429 
5430 /* Emulate the VMXOFF instruction */
5431 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5432 {
5433 	if (!nested_vmx_check_permission(vcpu))
5434 		return 1;
5435 
5436 	free_nested(vcpu);
5437 
5438 	if (kvm_apic_has_pending_init_or_sipi(vcpu))
5439 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5440 
5441 	return nested_vmx_succeed(vcpu);
5442 }
5443 
5444 /* Emulate the VMCLEAR instruction */
5445 static int handle_vmclear(struct kvm_vcpu *vcpu)
5446 {
5447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5448 	u32 zero = 0;
5449 	gpa_t vmptr;
5450 	int r;
5451 
5452 	if (!nested_vmx_check_permission(vcpu))
5453 		return 1;
5454 
5455 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5456 		return r;
5457 
5458 	if (!page_address_valid(vcpu, vmptr))
5459 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5460 
5461 	if (vmptr == vmx->nested.vmxon_ptr)
5462 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5463 
5464 	if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5465 		if (vmptr == vmx->nested.current_vmptr)
5466 			nested_release_vmcs12(vcpu);
5467 
5468 		/*
5469 		 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5470 		 * for VMCLEAR includes a "ensure that data for VMCS referenced
5471 		 * by the operand is in memory" clause that guards writes to
5472 		 * memory, i.e. doing nothing for I/O is architecturally valid.
5473 		 *
5474 		 * FIXME: Suppress failures if and only if no memslot is found,
5475 		 * i.e. exit to userspace if __copy_to_user() fails.
5476 		 */
5477 		(void)kvm_vcpu_write_guest(vcpu,
5478 					   vmptr + offsetof(struct vmcs12,
5479 							    launch_state),
5480 					   &zero, sizeof(zero));
5481 	}
5482 
5483 	return nested_vmx_succeed(vcpu);
5484 }
5485 
5486 /* Emulate the VMLAUNCH instruction */
5487 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5488 {
5489 	return nested_vmx_run(vcpu, true);
5490 }
5491 
5492 /* Emulate the VMRESUME instruction */
5493 static int handle_vmresume(struct kvm_vcpu *vcpu)
5494 {
5495 
5496 	return nested_vmx_run(vcpu, false);
5497 }
5498 
5499 static int handle_vmread(struct kvm_vcpu *vcpu)
5500 {
5501 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5502 						    : get_vmcs12(vcpu);
5503 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5504 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5505 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5506 	struct x86_exception e;
5507 	unsigned long field;
5508 	u64 value;
5509 	gva_t gva = 0;
5510 	short offset;
5511 	int len, r;
5512 
5513 	if (!nested_vmx_check_permission(vcpu))
5514 		return 1;
5515 
5516 	/* Decode instruction info and find the field to read */
5517 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5518 
5519 	if (!nested_vmx_is_evmptr12_valid(vmx)) {
5520 		/*
5521 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5522 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5523 		 */
5524 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5525 		    (is_guest_mode(vcpu) &&
5526 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5527 			return nested_vmx_failInvalid(vcpu);
5528 
5529 		offset = get_vmcs12_field_offset(field);
5530 		if (offset < 0)
5531 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5532 
5533 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5534 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5535 
5536 		/* Read the field, zero-extended to a u64 value */
5537 		value = vmcs12_read_any(vmcs12, field, offset);
5538 	} else {
5539 		/*
5540 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5541 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5542 		 * unsupported. Unfortunately, certain versions of Windows 11
5543 		 * don't comply with this requirement which is not enforced in
5544 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5545 		 * workaround, as misbehaving guests will panic on VM-Fail.
5546 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5547 		 * all VMREADs from L2 should go to L1.
5548 		 */
5549 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5550 			return nested_vmx_failInvalid(vcpu);
5551 
5552 		offset = evmcs_field_offset(field, NULL);
5553 		if (offset < 0)
5554 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5555 
5556 		/* Read the field, zero-extended to a u64 value */
5557 		value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5558 	}
5559 
5560 	/*
5561 	 * Now copy part of this value to register or memory, as requested.
5562 	 * Note that the number of bits actually copied is 32 or 64 depending
5563 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5564 	 */
5565 	if (instr_info & BIT(10)) {
5566 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5567 	} else {
5568 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5569 		if (get_vmx_mem_address(vcpu, exit_qualification,
5570 					instr_info, true, len, &gva))
5571 			return 1;
5572 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5573 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5574 		if (r != X86EMUL_CONTINUE)
5575 			return kvm_handle_memory_failure(vcpu, r, &e);
5576 	}
5577 
5578 	return nested_vmx_succeed(vcpu);
5579 }
5580 
5581 static bool is_shadow_field_rw(unsigned long field)
5582 {
5583 	switch (field) {
5584 #define SHADOW_FIELD_RW(x, y) case x:
5585 #include "vmcs_shadow_fields.h"
5586 		return true;
5587 	default:
5588 		break;
5589 	}
5590 	return false;
5591 }
5592 
5593 static bool is_shadow_field_ro(unsigned long field)
5594 {
5595 	switch (field) {
5596 #define SHADOW_FIELD_RO(x, y) case x:
5597 #include "vmcs_shadow_fields.h"
5598 		return true;
5599 	default:
5600 		break;
5601 	}
5602 	return false;
5603 }
5604 
5605 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5606 {
5607 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5608 						    : get_vmcs12(vcpu);
5609 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5610 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5611 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5612 	struct x86_exception e;
5613 	unsigned long field;
5614 	short offset;
5615 	gva_t gva;
5616 	int len, r;
5617 
5618 	/*
5619 	 * The value to write might be 32 or 64 bits, depending on L1's long
5620 	 * mode, and eventually we need to write that into a field of several
5621 	 * possible lengths. The code below first zero-extends the value to 64
5622 	 * bit (value), and then copies only the appropriate number of
5623 	 * bits into the vmcs12 field.
5624 	 */
5625 	u64 value = 0;
5626 
5627 	if (!nested_vmx_check_permission(vcpu))
5628 		return 1;
5629 
5630 	/*
5631 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5632 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5633 	 */
5634 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5635 	    (is_guest_mode(vcpu) &&
5636 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5637 		return nested_vmx_failInvalid(vcpu);
5638 
5639 	if (instr_info & BIT(10))
5640 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5641 	else {
5642 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5643 		if (get_vmx_mem_address(vcpu, exit_qualification,
5644 					instr_info, false, len, &gva))
5645 			return 1;
5646 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5647 		if (r != X86EMUL_CONTINUE)
5648 			return kvm_handle_memory_failure(vcpu, r, &e);
5649 	}
5650 
5651 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5652 
5653 	offset = get_vmcs12_field_offset(field);
5654 	if (offset < 0)
5655 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5656 
5657 	/*
5658 	 * If the vCPU supports "VMWRITE to any supported field in the
5659 	 * VMCS," then the "read-only" fields are actually read/write.
5660 	 */
5661 	if (vmcs_field_readonly(field) &&
5662 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5663 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5664 
5665 	/*
5666 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5667 	 * vmcs12, else we may crush a field or consume a stale value.
5668 	 */
5669 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5670 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5671 
5672 	/*
5673 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5674 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5675 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5676 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5677 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5678 	 * the stripped down value, L2 sees the full value as stored by KVM).
5679 	 */
5680 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5681 		value &= 0x1f0ff;
5682 
5683 	vmcs12_write_any(vmcs12, field, offset, value);
5684 
5685 	/*
5686 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5687 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5688 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5689 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5690 	 */
5691 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5692 		/*
5693 		 * L1 can read these fields without exiting, ensure the
5694 		 * shadow VMCS is up-to-date.
5695 		 */
5696 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5697 			preempt_disable();
5698 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5699 
5700 			__vmcs_writel(field, value);
5701 
5702 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5703 			vmcs_load(vmx->loaded_vmcs->vmcs);
5704 			preempt_enable();
5705 		}
5706 		vmx->nested.dirty_vmcs12 = true;
5707 	}
5708 
5709 	return nested_vmx_succeed(vcpu);
5710 }
5711 
5712 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5713 {
5714 	vmx->nested.current_vmptr = vmptr;
5715 	if (enable_shadow_vmcs) {
5716 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5717 		vmcs_write64(VMCS_LINK_POINTER,
5718 			     __pa(vmx->vmcs01.shadow_vmcs));
5719 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5720 	}
5721 	vmx->nested.dirty_vmcs12 = true;
5722 	vmx->nested.force_msr_bitmap_recalc = true;
5723 }
5724 
5725 /* Emulate the VMPTRLD instruction */
5726 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5727 {
5728 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5729 	gpa_t vmptr;
5730 	int r;
5731 
5732 	if (!nested_vmx_check_permission(vcpu))
5733 		return 1;
5734 
5735 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5736 		return r;
5737 
5738 	if (!page_address_valid(vcpu, vmptr))
5739 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5740 
5741 	if (vmptr == vmx->nested.vmxon_ptr)
5742 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5743 
5744 	/* Forbid normal VMPTRLD if Enlightened version was used */
5745 	if (nested_vmx_is_evmptr12_valid(vmx))
5746 		return 1;
5747 
5748 	if (vmx->nested.current_vmptr != vmptr) {
5749 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5750 		struct vmcs_hdr hdr;
5751 
5752 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5753 			/*
5754 			 * Reads from an unbacked page return all 1s,
5755 			 * which means that the 32 bits located at the
5756 			 * given physical address won't match the required
5757 			 * VMCS12_REVISION identifier.
5758 			 */
5759 			return nested_vmx_fail(vcpu,
5760 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5761 		}
5762 
5763 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5764 						 offsetof(struct vmcs12, hdr),
5765 						 sizeof(hdr))) {
5766 			return nested_vmx_fail(vcpu,
5767 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5768 		}
5769 
5770 		if (hdr.revision_id != VMCS12_REVISION ||
5771 		    (hdr.shadow_vmcs &&
5772 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5773 			return nested_vmx_fail(vcpu,
5774 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5775 		}
5776 
5777 		nested_release_vmcs12(vcpu);
5778 
5779 		/*
5780 		 * Load VMCS12 from guest memory since it is not already
5781 		 * cached.
5782 		 */
5783 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5784 					  VMCS12_SIZE)) {
5785 			return nested_vmx_fail(vcpu,
5786 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5787 		}
5788 
5789 		set_current_vmptr(vmx, vmptr);
5790 	}
5791 
5792 	return nested_vmx_succeed(vcpu);
5793 }
5794 
5795 /* Emulate the VMPTRST instruction */
5796 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5797 {
5798 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5799 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5800 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5801 	struct x86_exception e;
5802 	gva_t gva;
5803 	int r;
5804 
5805 	if (!nested_vmx_check_permission(vcpu))
5806 		return 1;
5807 
5808 	if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5809 		return 1;
5810 
5811 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5812 				true, sizeof(gpa_t), &gva))
5813 		return 1;
5814 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5815 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5816 					sizeof(gpa_t), &e);
5817 	if (r != X86EMUL_CONTINUE)
5818 		return kvm_handle_memory_failure(vcpu, r, &e);
5819 
5820 	return nested_vmx_succeed(vcpu);
5821 }
5822 
5823 /* Emulate the INVEPT instruction */
5824 static int handle_invept(struct kvm_vcpu *vcpu)
5825 {
5826 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5827 	u32 vmx_instruction_info, types;
5828 	unsigned long type, roots_to_free;
5829 	struct kvm_mmu *mmu;
5830 	gva_t gva;
5831 	struct x86_exception e;
5832 	struct {
5833 		u64 eptp, gpa;
5834 	} operand;
5835 	int i, r, gpr_index;
5836 
5837 	if (!(vmx->nested.msrs.secondary_ctls_high &
5838 	      SECONDARY_EXEC_ENABLE_EPT) ||
5839 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5840 		kvm_queue_exception(vcpu, UD_VECTOR);
5841 		return 1;
5842 	}
5843 
5844 	if (!nested_vmx_check_permission(vcpu))
5845 		return 1;
5846 
5847 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5848 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5849 	type = kvm_register_read(vcpu, gpr_index);
5850 
5851 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5852 
5853 	if (type >= 32 || !(types & (1 << type)))
5854 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5855 
5856 	/* According to the Intel VMX instruction reference, the memory
5857 	 * operand is read even if it isn't needed (e.g., for type==global)
5858 	 */
5859 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5860 			vmx_instruction_info, false, sizeof(operand), &gva))
5861 		return 1;
5862 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5863 	if (r != X86EMUL_CONTINUE)
5864 		return kvm_handle_memory_failure(vcpu, r, &e);
5865 
5866 	/*
5867 	 * Nested EPT roots are always held through guest_mmu,
5868 	 * not root_mmu.
5869 	 */
5870 	mmu = &vcpu->arch.guest_mmu;
5871 
5872 	switch (type) {
5873 	case VMX_EPT_EXTENT_CONTEXT:
5874 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5875 			return nested_vmx_fail(vcpu,
5876 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5877 
5878 		roots_to_free = 0;
5879 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5880 					    operand.eptp))
5881 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5882 
5883 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5884 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5885 						    mmu->prev_roots[i].pgd,
5886 						    operand.eptp))
5887 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5888 		}
5889 		break;
5890 	case VMX_EPT_EXTENT_GLOBAL:
5891 		roots_to_free = KVM_MMU_ROOTS_ALL;
5892 		break;
5893 	default:
5894 		BUG();
5895 		break;
5896 	}
5897 
5898 	if (roots_to_free)
5899 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5900 
5901 	return nested_vmx_succeed(vcpu);
5902 }
5903 
5904 static int handle_invvpid(struct kvm_vcpu *vcpu)
5905 {
5906 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5907 	u32 vmx_instruction_info;
5908 	unsigned long type, types;
5909 	gva_t gva;
5910 	struct x86_exception e;
5911 	struct {
5912 		u64 vpid;
5913 		u64 gla;
5914 	} operand;
5915 	u16 vpid02;
5916 	int r, gpr_index;
5917 
5918 	if (!(vmx->nested.msrs.secondary_ctls_high &
5919 	      SECONDARY_EXEC_ENABLE_VPID) ||
5920 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5921 		kvm_queue_exception(vcpu, UD_VECTOR);
5922 		return 1;
5923 	}
5924 
5925 	if (!nested_vmx_check_permission(vcpu))
5926 		return 1;
5927 
5928 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5929 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5930 	type = kvm_register_read(vcpu, gpr_index);
5931 
5932 	types = (vmx->nested.msrs.vpid_caps &
5933 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5934 
5935 	if (type >= 32 || !(types & (1 << type)))
5936 		return nested_vmx_fail(vcpu,
5937 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5938 
5939 	/* according to the intel vmx instruction reference, the memory
5940 	 * operand is read even if it isn't needed (e.g., for type==global)
5941 	 */
5942 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5943 			vmx_instruction_info, false, sizeof(operand), &gva))
5944 		return 1;
5945 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5946 	if (r != X86EMUL_CONTINUE)
5947 		return kvm_handle_memory_failure(vcpu, r, &e);
5948 
5949 	if (operand.vpid >> 16)
5950 		return nested_vmx_fail(vcpu,
5951 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5952 
5953 	vpid02 = nested_get_vpid02(vcpu);
5954 	switch (type) {
5955 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5956 		/*
5957 		 * LAM doesn't apply to addresses that are inputs to TLB
5958 		 * invalidation.
5959 		 */
5960 		if (!operand.vpid ||
5961 		    is_noncanonical_address(operand.gla, vcpu))
5962 			return nested_vmx_fail(vcpu,
5963 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5964 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5965 		break;
5966 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5967 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5968 		if (!operand.vpid)
5969 			return nested_vmx_fail(vcpu,
5970 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5971 		vpid_sync_context(vpid02);
5972 		break;
5973 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5974 		vpid_sync_context(vpid02);
5975 		break;
5976 	default:
5977 		WARN_ON_ONCE(1);
5978 		return kvm_skip_emulated_instruction(vcpu);
5979 	}
5980 
5981 	/*
5982 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5983 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5984 	 * roots as VPIDs are not tracked in the MMU role.
5985 	 *
5986 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5987 	 * an MMU when EPT is disabled.
5988 	 *
5989 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5990 	 */
5991 	if (!enable_ept)
5992 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5993 
5994 	return nested_vmx_succeed(vcpu);
5995 }
5996 
5997 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5998 				     struct vmcs12 *vmcs12)
5999 {
6000 	u32 index = kvm_rcx_read(vcpu);
6001 	u64 new_eptp;
6002 
6003 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6004 		return 1;
6005 	if (index >= VMFUNC_EPTP_ENTRIES)
6006 		return 1;
6007 
6008 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6009 				     &new_eptp, index * 8, 8))
6010 		return 1;
6011 
6012 	/*
6013 	 * If the (L2) guest does a vmfunc to the currently
6014 	 * active ept pointer, we don't have to do anything else
6015 	 */
6016 	if (vmcs12->ept_pointer != new_eptp) {
6017 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
6018 			return 1;
6019 
6020 		vmcs12->ept_pointer = new_eptp;
6021 		nested_ept_new_eptp(vcpu);
6022 
6023 		if (!nested_cpu_has_vpid(vmcs12))
6024 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6025 	}
6026 
6027 	return 0;
6028 }
6029 
6030 static int handle_vmfunc(struct kvm_vcpu *vcpu)
6031 {
6032 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6033 	struct vmcs12 *vmcs12;
6034 	u32 function = kvm_rax_read(vcpu);
6035 
6036 	/*
6037 	 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6038 	 * VMFUNC for nested VMs, but not for L1.
6039 	 */
6040 	if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6041 		kvm_queue_exception(vcpu, UD_VECTOR);
6042 		return 1;
6043 	}
6044 
6045 	vmcs12 = get_vmcs12(vcpu);
6046 
6047 	/*
6048 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6049 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6050 	 */
6051 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6052 		kvm_queue_exception(vcpu, UD_VECTOR);
6053 		return 1;
6054 	}
6055 
6056 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6057 		goto fail;
6058 
6059 	switch (function) {
6060 	case 0:
6061 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
6062 			goto fail;
6063 		break;
6064 	default:
6065 		goto fail;
6066 	}
6067 	return kvm_skip_emulated_instruction(vcpu);
6068 
6069 fail:
6070 	/*
6071 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6072 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
6073 	 * EXIT_REASON_VMFUNC as the exit reason.
6074 	 */
6075 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
6076 			  vmx_get_intr_info(vcpu),
6077 			  vmx_get_exit_qual(vcpu));
6078 	return 1;
6079 }
6080 
6081 /*
6082  * Return true if an IO instruction with the specified port and size should cause
6083  * a VM-exit into L1.
6084  */
6085 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6086 				 int size)
6087 {
6088 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6089 	gpa_t bitmap, last_bitmap;
6090 	u8 b;
6091 
6092 	last_bitmap = INVALID_GPA;
6093 	b = -1;
6094 
6095 	while (size > 0) {
6096 		if (port < 0x8000)
6097 			bitmap = vmcs12->io_bitmap_a;
6098 		else if (port < 0x10000)
6099 			bitmap = vmcs12->io_bitmap_b;
6100 		else
6101 			return true;
6102 		bitmap += (port & 0x7fff) / 8;
6103 
6104 		if (last_bitmap != bitmap)
6105 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6106 				return true;
6107 		if (b & (1 << (port & 7)))
6108 			return true;
6109 
6110 		port++;
6111 		size--;
6112 		last_bitmap = bitmap;
6113 	}
6114 
6115 	return false;
6116 }
6117 
6118 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6119 				       struct vmcs12 *vmcs12)
6120 {
6121 	unsigned long exit_qualification;
6122 	unsigned short port;
6123 	int size;
6124 
6125 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6126 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6127 
6128 	exit_qualification = vmx_get_exit_qual(vcpu);
6129 
6130 	port = exit_qualification >> 16;
6131 	size = (exit_qualification & 7) + 1;
6132 
6133 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
6134 }
6135 
6136 /*
6137  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6138  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6139  * disinterest in the current event (read or write a specific MSR) by using an
6140  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6141  */
6142 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6143 					struct vmcs12 *vmcs12,
6144 					union vmx_exit_reason exit_reason)
6145 {
6146 	u32 msr_index = kvm_rcx_read(vcpu);
6147 	gpa_t bitmap;
6148 
6149 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6150 		return true;
6151 
6152 	/*
6153 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6154 	 * for the four combinations of read/write and low/high MSR numbers.
6155 	 * First we need to figure out which of the four to use:
6156 	 */
6157 	bitmap = vmcs12->msr_bitmap;
6158 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6159 		bitmap += 2048;
6160 	if (msr_index >= 0xc0000000) {
6161 		msr_index -= 0xc0000000;
6162 		bitmap += 1024;
6163 	}
6164 
6165 	/* Then read the msr_index'th bit from this bitmap: */
6166 	if (msr_index < 1024*8) {
6167 		unsigned char b;
6168 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6169 			return true;
6170 		return 1 & (b >> (msr_index & 7));
6171 	} else
6172 		return true; /* let L1 handle the wrong parameter */
6173 }
6174 
6175 /*
6176  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6177  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6178  * intercept (via guest_host_mask etc.) the current event.
6179  */
6180 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6181 	struct vmcs12 *vmcs12)
6182 {
6183 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6184 	int cr = exit_qualification & 15;
6185 	int reg;
6186 	unsigned long val;
6187 
6188 	switch ((exit_qualification >> 4) & 3) {
6189 	case 0: /* mov to cr */
6190 		reg = (exit_qualification >> 8) & 15;
6191 		val = kvm_register_read(vcpu, reg);
6192 		switch (cr) {
6193 		case 0:
6194 			if (vmcs12->cr0_guest_host_mask &
6195 			    (val ^ vmcs12->cr0_read_shadow))
6196 				return true;
6197 			break;
6198 		case 3:
6199 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6200 				return true;
6201 			break;
6202 		case 4:
6203 			if (vmcs12->cr4_guest_host_mask &
6204 			    (vmcs12->cr4_read_shadow ^ val))
6205 				return true;
6206 			break;
6207 		case 8:
6208 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6209 				return true;
6210 			break;
6211 		}
6212 		break;
6213 	case 2: /* clts */
6214 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6215 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6216 			return true;
6217 		break;
6218 	case 1: /* mov from cr */
6219 		switch (cr) {
6220 		case 3:
6221 			if (vmcs12->cpu_based_vm_exec_control &
6222 			    CPU_BASED_CR3_STORE_EXITING)
6223 				return true;
6224 			break;
6225 		case 8:
6226 			if (vmcs12->cpu_based_vm_exec_control &
6227 			    CPU_BASED_CR8_STORE_EXITING)
6228 				return true;
6229 			break;
6230 		}
6231 		break;
6232 	case 3: /* lmsw */
6233 		/*
6234 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6235 		 * cr0. Other attempted changes are ignored, with no exit.
6236 		 */
6237 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6238 		if (vmcs12->cr0_guest_host_mask & 0xe &
6239 		    (val ^ vmcs12->cr0_read_shadow))
6240 			return true;
6241 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6242 		    !(vmcs12->cr0_read_shadow & 0x1) &&
6243 		    (val & 0x1))
6244 			return true;
6245 		break;
6246 	}
6247 	return false;
6248 }
6249 
6250 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6251 					  struct vmcs12 *vmcs12)
6252 {
6253 	u32 encls_leaf;
6254 
6255 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6256 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6257 		return false;
6258 
6259 	encls_leaf = kvm_rax_read(vcpu);
6260 	if (encls_leaf > 62)
6261 		encls_leaf = 63;
6262 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6263 }
6264 
6265 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6266 	struct vmcs12 *vmcs12, gpa_t bitmap)
6267 {
6268 	u32 vmx_instruction_info;
6269 	unsigned long field;
6270 	u8 b;
6271 
6272 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
6273 		return true;
6274 
6275 	/* Decode instruction info and find the field to access */
6276 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6277 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6278 
6279 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
6280 	if (field >> 15)
6281 		return true;
6282 
6283 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6284 		return true;
6285 
6286 	return 1 & (b >> (field & 7));
6287 }
6288 
6289 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6290 {
6291 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6292 
6293 	if (nested_cpu_has_mtf(vmcs12))
6294 		return true;
6295 
6296 	/*
6297 	 * An MTF VM-exit may be injected into the guest by setting the
6298 	 * interruption-type to 7 (other event) and the vector field to 0. Such
6299 	 * is the case regardless of the 'monitor trap flag' VM-execution
6300 	 * control.
6301 	 */
6302 	return entry_intr_info == (INTR_INFO_VALID_MASK
6303 				   | INTR_TYPE_OTHER_EVENT);
6304 }
6305 
6306 /*
6307  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6308  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6309  */
6310 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6311 				     union vmx_exit_reason exit_reason)
6312 {
6313 	u32 intr_info;
6314 
6315 	switch ((u16)exit_reason.basic) {
6316 	case EXIT_REASON_EXCEPTION_NMI:
6317 		intr_info = vmx_get_intr_info(vcpu);
6318 		if (is_nmi(intr_info))
6319 			return true;
6320 		else if (is_page_fault(intr_info))
6321 			return vcpu->arch.apf.host_apf_flags ||
6322 			       vmx_need_pf_intercept(vcpu);
6323 		else if (is_debug(intr_info) &&
6324 			 vcpu->guest_debug &
6325 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6326 			return true;
6327 		else if (is_breakpoint(intr_info) &&
6328 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6329 			return true;
6330 		else if (is_alignment_check(intr_info) &&
6331 			 !vmx_guest_inject_ac(vcpu))
6332 			return true;
6333 		else if (is_ve_fault(intr_info))
6334 			return true;
6335 		return false;
6336 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6337 		return true;
6338 	case EXIT_REASON_MCE_DURING_VMENTRY:
6339 		return true;
6340 	case EXIT_REASON_EPT_VIOLATION:
6341 		/*
6342 		 * L0 always deals with the EPT violation. If nested EPT is
6343 		 * used, and the nested mmu code discovers that the address is
6344 		 * missing in the guest EPT table (EPT12), the EPT violation
6345 		 * will be injected with nested_ept_inject_page_fault()
6346 		 */
6347 		return true;
6348 	case EXIT_REASON_EPT_MISCONFIG:
6349 		/*
6350 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
6351 		 * table (shadow on EPT) or a merged EPT table that L0 built
6352 		 * (EPT on EPT). So any problems with the structure of the
6353 		 * table is L0's fault.
6354 		 */
6355 		return true;
6356 	case EXIT_REASON_PREEMPTION_TIMER:
6357 		return true;
6358 	case EXIT_REASON_PML_FULL:
6359 		/*
6360 		 * PML is emulated for an L1 VMM and should never be enabled in
6361 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6362 		 */
6363 		return true;
6364 	case EXIT_REASON_VMFUNC:
6365 		/* VM functions are emulated through L2->L0 vmexits. */
6366 		return true;
6367 	case EXIT_REASON_BUS_LOCK:
6368 		/*
6369 		 * At present, bus lock VM exit is never exposed to L1.
6370 		 * Handle L2's bus locks in L0 directly.
6371 		 */
6372 		return true;
6373 #ifdef CONFIG_KVM_HYPERV
6374 	case EXIT_REASON_VMCALL:
6375 		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
6376 		return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6377 			nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6378 			kvm_hv_is_tlb_flush_hcall(vcpu);
6379 #endif
6380 	default:
6381 		break;
6382 	}
6383 	return false;
6384 }
6385 
6386 /*
6387  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6388  * is_guest_mode (L2).
6389  */
6390 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6391 				     union vmx_exit_reason exit_reason)
6392 {
6393 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6394 	u32 intr_info;
6395 
6396 	switch ((u16)exit_reason.basic) {
6397 	case EXIT_REASON_EXCEPTION_NMI:
6398 		intr_info = vmx_get_intr_info(vcpu);
6399 		if (is_nmi(intr_info))
6400 			return true;
6401 		else if (is_page_fault(intr_info))
6402 			return true;
6403 		return vmcs12->exception_bitmap &
6404 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6405 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6406 		return nested_exit_on_intr(vcpu);
6407 	case EXIT_REASON_TRIPLE_FAULT:
6408 		return true;
6409 	case EXIT_REASON_INTERRUPT_WINDOW:
6410 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6411 	case EXIT_REASON_NMI_WINDOW:
6412 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6413 	case EXIT_REASON_TASK_SWITCH:
6414 		return true;
6415 	case EXIT_REASON_CPUID:
6416 		return true;
6417 	case EXIT_REASON_HLT:
6418 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6419 	case EXIT_REASON_INVD:
6420 		return true;
6421 	case EXIT_REASON_INVLPG:
6422 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6423 	case EXIT_REASON_RDPMC:
6424 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6425 	case EXIT_REASON_RDRAND:
6426 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6427 	case EXIT_REASON_RDSEED:
6428 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6429 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6430 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6431 	case EXIT_REASON_VMREAD:
6432 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6433 			vmcs12->vmread_bitmap);
6434 	case EXIT_REASON_VMWRITE:
6435 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6436 			vmcs12->vmwrite_bitmap);
6437 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6438 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6439 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6440 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6441 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6442 		/*
6443 		 * VMX instructions trap unconditionally. This allows L1 to
6444 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6445 		 */
6446 		return true;
6447 	case EXIT_REASON_CR_ACCESS:
6448 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6449 	case EXIT_REASON_DR_ACCESS:
6450 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6451 	case EXIT_REASON_IO_INSTRUCTION:
6452 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6453 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6454 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6455 	case EXIT_REASON_MSR_READ:
6456 	case EXIT_REASON_MSR_WRITE:
6457 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6458 	case EXIT_REASON_INVALID_STATE:
6459 		return true;
6460 	case EXIT_REASON_MWAIT_INSTRUCTION:
6461 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6462 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6463 		return nested_vmx_exit_handled_mtf(vmcs12);
6464 	case EXIT_REASON_MONITOR_INSTRUCTION:
6465 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6466 	case EXIT_REASON_PAUSE_INSTRUCTION:
6467 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6468 			nested_cpu_has2(vmcs12,
6469 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6470 	case EXIT_REASON_MCE_DURING_VMENTRY:
6471 		return true;
6472 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6473 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6474 	case EXIT_REASON_APIC_ACCESS:
6475 	case EXIT_REASON_APIC_WRITE:
6476 	case EXIT_REASON_EOI_INDUCED:
6477 		/*
6478 		 * The controls for "virtualize APIC accesses," "APIC-
6479 		 * register virtualization," and "virtual-interrupt
6480 		 * delivery" only come from vmcs12.
6481 		 */
6482 		return true;
6483 	case EXIT_REASON_INVPCID:
6484 		return
6485 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6486 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6487 	case EXIT_REASON_WBINVD:
6488 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6489 	case EXIT_REASON_XSETBV:
6490 		return true;
6491 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6492 		/*
6493 		 * This should never happen, since it is not possible to
6494 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6495 		 * If if it were, XSS would have to be checked against
6496 		 * the XSS exit bitmap in vmcs12.
6497 		 */
6498 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6499 	case EXIT_REASON_UMWAIT:
6500 	case EXIT_REASON_TPAUSE:
6501 		return nested_cpu_has2(vmcs12,
6502 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6503 	case EXIT_REASON_ENCLS:
6504 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6505 	case EXIT_REASON_NOTIFY:
6506 		/* Notify VM exit is not exposed to L1 */
6507 		return false;
6508 	default:
6509 		return true;
6510 	}
6511 }
6512 
6513 /*
6514  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6515  * reflected into L1.
6516  */
6517 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6518 {
6519 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6520 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6521 	unsigned long exit_qual;
6522 	u32 exit_intr_info;
6523 
6524 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6525 
6526 	/*
6527 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6528 	 * has already loaded L2's state.
6529 	 */
6530 	if (unlikely(vmx->fail)) {
6531 		trace_kvm_nested_vmenter_failed(
6532 			"hardware VM-instruction error: ",
6533 			vmcs_read32(VM_INSTRUCTION_ERROR));
6534 		exit_intr_info = 0;
6535 		exit_qual = 0;
6536 		goto reflect_vmexit;
6537 	}
6538 
6539 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6540 
6541 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6542 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6543 		return false;
6544 
6545 	/* If L1 doesn't want the exit, handle it in L0. */
6546 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6547 		return false;
6548 
6549 	/*
6550 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6551 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6552 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6553 	 * interrupts are never reflected to L1 so it's a non-issue.
6554 	 */
6555 	exit_intr_info = vmx_get_intr_info(vcpu);
6556 	if (is_exception_with_error_code(exit_intr_info)) {
6557 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6558 
6559 		vmcs12->vm_exit_intr_error_code =
6560 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6561 	}
6562 	exit_qual = vmx_get_exit_qual(vcpu);
6563 
6564 reflect_vmexit:
6565 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6566 	return true;
6567 }
6568 
6569 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6570 				struct kvm_nested_state __user *user_kvm_nested_state,
6571 				u32 user_data_size)
6572 {
6573 	struct vcpu_vmx *vmx;
6574 	struct vmcs12 *vmcs12;
6575 	struct kvm_nested_state kvm_state = {
6576 		.flags = 0,
6577 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6578 		.size = sizeof(kvm_state),
6579 		.hdr.vmx.flags = 0,
6580 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6581 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6582 		.hdr.vmx.preemption_timer_deadline = 0,
6583 	};
6584 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6585 		&user_kvm_nested_state->data.vmx[0];
6586 
6587 	if (!vcpu)
6588 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6589 
6590 	vmx = to_vmx(vcpu);
6591 	vmcs12 = get_vmcs12(vcpu);
6592 
6593 	if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6594 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6595 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6596 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6597 
6598 		if (vmx_has_valid_vmcs12(vcpu)) {
6599 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6600 
6601 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6602 			if (nested_vmx_is_evmptr12_set(vmx))
6603 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6604 
6605 			if (is_guest_mode(vcpu) &&
6606 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6607 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6608 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6609 		}
6610 
6611 		if (vmx->nested.smm.vmxon)
6612 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6613 
6614 		if (vmx->nested.smm.guest_mode)
6615 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6616 
6617 		if (is_guest_mode(vcpu)) {
6618 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6619 
6620 			if (vmx->nested.nested_run_pending)
6621 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6622 
6623 			if (vmx->nested.mtf_pending)
6624 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6625 
6626 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6627 			    vmx->nested.has_preemption_timer_deadline) {
6628 				kvm_state.hdr.vmx.flags |=
6629 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6630 				kvm_state.hdr.vmx.preemption_timer_deadline =
6631 					vmx->nested.preemption_timer_deadline;
6632 			}
6633 		}
6634 	}
6635 
6636 	if (user_data_size < kvm_state.size)
6637 		goto out;
6638 
6639 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6640 		return -EFAULT;
6641 
6642 	if (!vmx_has_valid_vmcs12(vcpu))
6643 		goto out;
6644 
6645 	/*
6646 	 * When running L2, the authoritative vmcs12 state is in the
6647 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6648 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6649 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6650 	 * vmcs12 state is in the vmcs12 already.
6651 	 */
6652 	if (is_guest_mode(vcpu)) {
6653 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6654 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6655 	} else  {
6656 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6657 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6658 			if (nested_vmx_is_evmptr12_valid(vmx))
6659 				/*
6660 				 * L1 hypervisor is not obliged to keep eVMCS
6661 				 * clean fields data always up-to-date while
6662 				 * not in guest mode, 'hv_clean_fields' is only
6663 				 * supposed to be actual upon vmentry so we need
6664 				 * to ignore it here and do full copy.
6665 				 */
6666 				copy_enlightened_to_vmcs12(vmx, 0);
6667 			else if (enable_shadow_vmcs)
6668 				copy_shadow_to_vmcs12(vmx);
6669 		}
6670 	}
6671 
6672 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6673 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6674 
6675 	/*
6676 	 * Copy over the full allocated size of vmcs12 rather than just the size
6677 	 * of the struct.
6678 	 */
6679 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6680 		return -EFAULT;
6681 
6682 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6683 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6684 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6685 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6686 			return -EFAULT;
6687 	}
6688 out:
6689 	return kvm_state.size;
6690 }
6691 
6692 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6693 {
6694 	if (is_guest_mode(vcpu)) {
6695 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6696 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6697 	}
6698 	free_nested(vcpu);
6699 }
6700 
6701 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6702 				struct kvm_nested_state __user *user_kvm_nested_state,
6703 				struct kvm_nested_state *kvm_state)
6704 {
6705 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6706 	struct vmcs12 *vmcs12;
6707 	enum vm_entry_failure_code ignored;
6708 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6709 		&user_kvm_nested_state->data.vmx[0];
6710 	int ret;
6711 
6712 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6713 		return -EINVAL;
6714 
6715 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6716 		if (kvm_state->hdr.vmx.smm.flags)
6717 			return -EINVAL;
6718 
6719 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6720 			return -EINVAL;
6721 
6722 		/*
6723 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6724 		 * enable eVMCS capability on vCPU. However, since then
6725 		 * code was changed such that flag signals vmcs12 should
6726 		 * be copied into eVMCS in guest memory.
6727 		 *
6728 		 * To preserve backwards compatibility, allow user
6729 		 * to set this flag even when there is no VMXON region.
6730 		 */
6731 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6732 			return -EINVAL;
6733 	} else {
6734 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6735 			return -EINVAL;
6736 
6737 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6738 			return -EINVAL;
6739 	}
6740 
6741 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6742 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6743 		return -EINVAL;
6744 
6745 	if (kvm_state->hdr.vmx.smm.flags &
6746 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6747 		return -EINVAL;
6748 
6749 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6750 		return -EINVAL;
6751 
6752 	/*
6753 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6754 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6755 	 * must be zero.
6756 	 */
6757 	if (is_smm(vcpu) ?
6758 		(kvm_state->flags &
6759 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6760 		: kvm_state->hdr.vmx.smm.flags)
6761 		return -EINVAL;
6762 
6763 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6764 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6765 		return -EINVAL;
6766 
6767 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6768 	    (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6769 	     !vmx->nested.enlightened_vmcs_enabled))
6770 			return -EINVAL;
6771 
6772 	vmx_leave_nested(vcpu);
6773 
6774 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6775 		return 0;
6776 
6777 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6778 	ret = enter_vmx_operation(vcpu);
6779 	if (ret)
6780 		return ret;
6781 
6782 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6783 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6784 		/* See vmx_has_valid_vmcs12.  */
6785 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6786 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6787 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6788 			return -EINVAL;
6789 		else
6790 			return 0;
6791 	}
6792 
6793 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6794 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6795 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6796 			return -EINVAL;
6797 
6798 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6799 #ifdef CONFIG_KVM_HYPERV
6800 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6801 		/*
6802 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6803 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6804 		 * restored yet. EVMCS will be mapped from
6805 		 * nested_get_vmcs12_pages().
6806 		 */
6807 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6808 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6809 #endif
6810 	} else {
6811 		return -EINVAL;
6812 	}
6813 
6814 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6815 		vmx->nested.smm.vmxon = true;
6816 		vmx->nested.vmxon = false;
6817 
6818 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6819 			vmx->nested.smm.guest_mode = true;
6820 	}
6821 
6822 	vmcs12 = get_vmcs12(vcpu);
6823 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6824 		return -EFAULT;
6825 
6826 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6827 		return -EINVAL;
6828 
6829 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6830 		return 0;
6831 
6832 	vmx->nested.nested_run_pending =
6833 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6834 
6835 	vmx->nested.mtf_pending =
6836 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6837 
6838 	ret = -EINVAL;
6839 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6840 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6841 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6842 
6843 		if (kvm_state->size <
6844 		    sizeof(*kvm_state) +
6845 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6846 			goto error_guest_mode;
6847 
6848 		if (copy_from_user(shadow_vmcs12,
6849 				   user_vmx_nested_state->shadow_vmcs12,
6850 				   sizeof(*shadow_vmcs12))) {
6851 			ret = -EFAULT;
6852 			goto error_guest_mode;
6853 		}
6854 
6855 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6856 		    !shadow_vmcs12->hdr.shadow_vmcs)
6857 			goto error_guest_mode;
6858 	}
6859 
6860 	vmx->nested.has_preemption_timer_deadline = false;
6861 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6862 		vmx->nested.has_preemption_timer_deadline = true;
6863 		vmx->nested.preemption_timer_deadline =
6864 			kvm_state->hdr.vmx.preemption_timer_deadline;
6865 	}
6866 
6867 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6868 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6869 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6870 		goto error_guest_mode;
6871 
6872 	vmx->nested.dirty_vmcs12 = true;
6873 	vmx->nested.force_msr_bitmap_recalc = true;
6874 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6875 	if (ret)
6876 		goto error_guest_mode;
6877 
6878 	if (vmx->nested.mtf_pending)
6879 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6880 
6881 	return 0;
6882 
6883 error_guest_mode:
6884 	vmx->nested.nested_run_pending = 0;
6885 	return ret;
6886 }
6887 
6888 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6889 {
6890 	if (enable_shadow_vmcs) {
6891 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6892 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6893 	}
6894 }
6895 
6896 /*
6897  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6898  * that madness to get the encoding for comparison.
6899  */
6900 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6901 
6902 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6903 {
6904 	/*
6905 	 * Note these are the so called "index" of the VMCS field encoding, not
6906 	 * the index into vmcs12.
6907 	 */
6908 	unsigned int max_idx, idx;
6909 	int i;
6910 
6911 	/*
6912 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6913 	 * vmcs12, regardless of whether or not the associated feature is
6914 	 * exposed to L1.  Simply find the field with the highest index.
6915 	 */
6916 	max_idx = 0;
6917 	for (i = 0; i < nr_vmcs12_fields; i++) {
6918 		/* The vmcs12 table is very, very sparsely populated. */
6919 		if (!vmcs12_field_offsets[i])
6920 			continue;
6921 
6922 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6923 		if (idx > max_idx)
6924 			max_idx = idx;
6925 	}
6926 
6927 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6928 }
6929 
6930 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6931 					   struct nested_vmx_msrs *msrs)
6932 {
6933 	msrs->pinbased_ctls_low =
6934 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6935 
6936 	msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6937 	msrs->pinbased_ctls_high &=
6938 		PIN_BASED_EXT_INTR_MASK |
6939 		PIN_BASED_NMI_EXITING |
6940 		PIN_BASED_VIRTUAL_NMIS |
6941 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6942 	msrs->pinbased_ctls_high |=
6943 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6944 		PIN_BASED_VMX_PREEMPTION_TIMER;
6945 }
6946 
6947 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6948 				       struct nested_vmx_msrs *msrs)
6949 {
6950 	msrs->exit_ctls_low =
6951 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6952 
6953 	msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6954 	msrs->exit_ctls_high &=
6955 #ifdef CONFIG_X86_64
6956 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6957 #endif
6958 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6959 		VM_EXIT_CLEAR_BNDCFGS;
6960 	msrs->exit_ctls_high |=
6961 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6962 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6963 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6964 		VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6965 
6966 	/* We support free control of debug control saving. */
6967 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6968 }
6969 
6970 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6971 					struct nested_vmx_msrs *msrs)
6972 {
6973 	msrs->entry_ctls_low =
6974 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6975 
6976 	msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6977 	msrs->entry_ctls_high &=
6978 #ifdef CONFIG_X86_64
6979 		VM_ENTRY_IA32E_MODE |
6980 #endif
6981 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6982 	msrs->entry_ctls_high |=
6983 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6984 		 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6985 
6986 	/* We support free control of debug control loading. */
6987 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6988 }
6989 
6990 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6991 					   struct nested_vmx_msrs *msrs)
6992 {
6993 	msrs->procbased_ctls_low =
6994 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6995 
6996 	msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6997 	msrs->procbased_ctls_high &=
6998 		CPU_BASED_INTR_WINDOW_EXITING |
6999 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7000 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7001 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7002 		CPU_BASED_CR3_STORE_EXITING |
7003 #ifdef CONFIG_X86_64
7004 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7005 #endif
7006 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7007 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7008 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7009 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7010 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7011 	/*
7012 	 * We can allow some features even when not supported by the
7013 	 * hardware. For example, L1 can specify an MSR bitmap - and we
7014 	 * can use it to avoid exits to L1 - even when L0 runs L2
7015 	 * without MSR bitmaps.
7016 	 */
7017 	msrs->procbased_ctls_high |=
7018 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7019 		CPU_BASED_USE_MSR_BITMAPS;
7020 
7021 	/* We support free control of CR3 access interception. */
7022 	msrs->procbased_ctls_low &=
7023 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7024 }
7025 
7026 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7027 					    struct vmcs_config *vmcs_conf,
7028 					    struct nested_vmx_msrs *msrs)
7029 {
7030 	msrs->secondary_ctls_low = 0;
7031 
7032 	msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7033 	msrs->secondary_ctls_high &=
7034 		SECONDARY_EXEC_DESC |
7035 		SECONDARY_EXEC_ENABLE_RDTSCP |
7036 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7037 		SECONDARY_EXEC_WBINVD_EXITING |
7038 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
7039 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7040 		SECONDARY_EXEC_RDRAND_EXITING |
7041 		SECONDARY_EXEC_ENABLE_INVPCID |
7042 		SECONDARY_EXEC_ENABLE_VMFUNC |
7043 		SECONDARY_EXEC_RDSEED_EXITING |
7044 		SECONDARY_EXEC_ENABLE_XSAVES |
7045 		SECONDARY_EXEC_TSC_SCALING |
7046 		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7047 
7048 	/*
7049 	 * We can emulate "VMCS shadowing," even if the hardware
7050 	 * doesn't support it.
7051 	 */
7052 	msrs->secondary_ctls_high |=
7053 		SECONDARY_EXEC_SHADOW_VMCS;
7054 
7055 	if (enable_ept) {
7056 		/* nested EPT: emulate EPT also to L1 */
7057 		msrs->secondary_ctls_high |=
7058 			SECONDARY_EXEC_ENABLE_EPT;
7059 		msrs->ept_caps =
7060 			VMX_EPT_PAGE_WALK_4_BIT |
7061 			VMX_EPT_PAGE_WALK_5_BIT |
7062 			VMX_EPTP_WB_BIT |
7063 			VMX_EPT_INVEPT_BIT |
7064 			VMX_EPT_EXECUTE_ONLY_BIT;
7065 
7066 		msrs->ept_caps &= ept_caps;
7067 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7068 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7069 			VMX_EPT_1GB_PAGE_BIT;
7070 		if (enable_ept_ad_bits) {
7071 			msrs->secondary_ctls_high |=
7072 				SECONDARY_EXEC_ENABLE_PML;
7073 			msrs->ept_caps |= VMX_EPT_AD_BIT;
7074 		}
7075 
7076 		/*
7077 		 * Advertise EPTP switching irrespective of hardware support,
7078 		 * KVM emulates it in software so long as VMFUNC is supported.
7079 		 */
7080 		if (cpu_has_vmx_vmfunc())
7081 			msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7082 	}
7083 
7084 	/*
7085 	 * Old versions of KVM use the single-context version without
7086 	 * checking for support, so declare that it is supported even
7087 	 * though it is treated as global context.  The alternative is
7088 	 * not failing the single-context invvpid, and it is worse.
7089 	 */
7090 	if (enable_vpid) {
7091 		msrs->secondary_ctls_high |=
7092 			SECONDARY_EXEC_ENABLE_VPID;
7093 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7094 			VMX_VPID_EXTENT_SUPPORTED_MASK;
7095 	}
7096 
7097 	if (enable_unrestricted_guest)
7098 		msrs->secondary_ctls_high |=
7099 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
7100 
7101 	if (flexpriority_enabled)
7102 		msrs->secondary_ctls_high |=
7103 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7104 
7105 	if (enable_sgx)
7106 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7107 }
7108 
7109 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7110 				       struct nested_vmx_msrs *msrs)
7111 {
7112 	msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7113 	msrs->misc_low |=
7114 		VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7115 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7116 		VMX_MISC_ACTIVITY_HLT |
7117 		VMX_MISC_ACTIVITY_WAIT_SIPI;
7118 	msrs->misc_high = 0;
7119 }
7120 
7121 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7122 {
7123 	/*
7124 	 * This MSR reports some information about VMX support. We
7125 	 * should return information about the VMX we emulate for the
7126 	 * guest, and the VMCS structure we give it - not about the
7127 	 * VMX support of the underlying hardware.
7128 	 */
7129 	msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7130 						 X86_MEMTYPE_WB);
7131 
7132 	msrs->basic |= VMX_BASIC_TRUE_CTLS;
7133 	if (cpu_has_vmx_basic_inout())
7134 		msrs->basic |= VMX_BASIC_INOUT;
7135 }
7136 
7137 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7138 {
7139 	/*
7140 	 * These MSRs specify bits which the guest must keep fixed on
7141 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7142 	 * We picked the standard core2 setting.
7143 	 */
7144 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7145 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7146 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7147 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7148 
7149 	/* These MSRs specify bits which the guest must keep fixed off. */
7150 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7151 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7152 
7153 	if (vmx_umip_emulated())
7154 		msrs->cr4_fixed1 |= X86_CR4_UMIP;
7155 }
7156 
7157 /*
7158  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7159  * returned for the various VMX controls MSRs when nested VMX is enabled.
7160  * The same values should also be used to verify that vmcs12 control fields are
7161  * valid during nested entry from L1 to L2.
7162  * Each of these control msrs has a low and high 32-bit half: A low bit is on
7163  * if the corresponding bit in the (32-bit) control field *must* be on, and a
7164  * bit in the high half is on if the corresponding bit in the control field
7165  * may be on. See also vmx_control_verify().
7166  */
7167 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7168 {
7169 	struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7170 
7171 	/*
7172 	 * Note that as a general rule, the high half of the MSRs (bits in
7173 	 * the control fields which may be 1) should be initialized by the
7174 	 * intersection of the underlying hardware's MSR (i.e., features which
7175 	 * can be supported) and the list of features we want to expose -
7176 	 * because they are known to be properly supported in our code.
7177 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
7178 	 * be set to 0, meaning that L1 may turn off any of these bits. The
7179 	 * reason is that if one of these bits is necessary, it will appear
7180 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7181 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
7182 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7183 	 * These rules have exceptions below.
7184 	 */
7185 	nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7186 
7187 	nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7188 
7189 	nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7190 
7191 	nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7192 
7193 	nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7194 
7195 	nested_vmx_setup_misc_data(vmcs_conf, msrs);
7196 
7197 	nested_vmx_setup_basic(msrs);
7198 
7199 	nested_vmx_setup_cr_fixed(msrs);
7200 
7201 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7202 }
7203 
7204 void nested_vmx_hardware_unsetup(void)
7205 {
7206 	int i;
7207 
7208 	if (enable_shadow_vmcs) {
7209 		for (i = 0; i < VMX_BITMAP_NR; i++)
7210 			free_page((unsigned long)vmx_bitmap[i]);
7211 	}
7212 }
7213 
7214 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7215 {
7216 	int i;
7217 
7218 	if (!cpu_has_vmx_shadow_vmcs())
7219 		enable_shadow_vmcs = 0;
7220 	if (enable_shadow_vmcs) {
7221 		for (i = 0; i < VMX_BITMAP_NR; i++) {
7222 			/*
7223 			 * The vmx_bitmap is not tied to a VM and so should
7224 			 * not be charged to a memcg.
7225 			 */
7226 			vmx_bitmap[i] = (unsigned long *)
7227 				__get_free_page(GFP_KERNEL);
7228 			if (!vmx_bitmap[i]) {
7229 				nested_vmx_hardware_unsetup();
7230 				return -ENOMEM;
7231 			}
7232 		}
7233 
7234 		init_vmcs_shadow_fields();
7235 	}
7236 
7237 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
7238 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
7239 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
7240 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
7241 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
7242 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
7243 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
7244 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmxoff;
7245 	exit_handlers[EXIT_REASON_VMON]		= handle_vmxon;
7246 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
7247 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
7248 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
7249 
7250 	return 0;
7251 }
7252 
7253 struct kvm_x86_nested_ops vmx_nested_ops = {
7254 	.leave_nested = vmx_leave_nested,
7255 	.is_exception_vmexit = nested_vmx_is_exception_vmexit,
7256 	.check_events = vmx_check_nested_events,
7257 	.has_events = vmx_has_nested_events,
7258 	.triple_fault = nested_vmx_triple_fault,
7259 	.get_state = vmx_get_nested_state,
7260 	.set_state = vmx_set_nested_state,
7261 	.get_nested_state_pages = vmx_get_nested_state_pages,
7262 	.write_log_dirty = nested_vmx_write_pml_buffer,
7263 #ifdef CONFIG_KVM_HYPERV
7264 	.enable_evmcs = nested_enable_evmcs,
7265 	.get_evmcs_version = nested_get_evmcs_version,
7266 	.hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7267 #endif
7268 };
7269