xref: /linux/arch/x86/kvm/vmx/nested.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "x86.h"
15 
16 static bool __read_mostly enable_shadow_vmcs = 1;
17 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18 
19 static bool __read_mostly nested_early_check = 0;
20 module_param(nested_early_check, bool, S_IRUGO);
21 
22 /*
23  * Hyper-V requires all of these, so mark them as supported even though
24  * they are just treated the same as all-context.
25  */
26 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
27 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
28 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
29 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
30 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31 
32 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33 
34 enum {
35 	VMX_VMREAD_BITMAP,
36 	VMX_VMWRITE_BITMAP,
37 	VMX_BITMAP_NR
38 };
39 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40 
41 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
42 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
43 
44 struct shadow_vmcs_field {
45 	u16	encoding;
46 	u16	offset;
47 };
48 static struct shadow_vmcs_field shadow_read_only_fields[] = {
49 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
50 #include "vmcs_shadow_fields.h"
51 };
52 static int max_shadow_read_only_fields =
53 	ARRAY_SIZE(shadow_read_only_fields);
54 
55 static struct shadow_vmcs_field shadow_read_write_fields[] = {
56 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
57 #include "vmcs_shadow_fields.h"
58 };
59 static int max_shadow_read_write_fields =
60 	ARRAY_SIZE(shadow_read_write_fields);
61 
62 static void init_vmcs_shadow_fields(void)
63 {
64 	int i, j;
65 
66 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
67 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
68 
69 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
70 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
71 		u16 field = entry.encoding;
72 
73 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
74 		    (i + 1 == max_shadow_read_only_fields ||
75 		     shadow_read_only_fields[i + 1].encoding != field + 1))
76 			pr_err("Missing field from shadow_read_only_field %x\n",
77 			       field + 1);
78 
79 		clear_bit(field, vmx_vmread_bitmap);
80 		if (field & 1)
81 #ifdef CONFIG_X86_64
82 			continue;
83 #else
84 			entry.offset += sizeof(u32);
85 #endif
86 		shadow_read_only_fields[j++] = entry;
87 	}
88 	max_shadow_read_only_fields = j;
89 
90 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
91 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
92 		u16 field = entry.encoding;
93 
94 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
95 		    (i + 1 == max_shadow_read_write_fields ||
96 		     shadow_read_write_fields[i + 1].encoding != field + 1))
97 			pr_err("Missing field from shadow_read_write_field %x\n",
98 			       field + 1);
99 
100 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
101 			  field <= GUEST_TR_AR_BYTES,
102 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
103 
104 		/*
105 		 * PML and the preemption timer can be emulated, but the
106 		 * processor cannot vmwrite to fields that don't exist
107 		 * on bare metal.
108 		 */
109 		switch (field) {
110 		case GUEST_PML_INDEX:
111 			if (!cpu_has_vmx_pml())
112 				continue;
113 			break;
114 		case VMX_PREEMPTION_TIMER_VALUE:
115 			if (!cpu_has_vmx_preemption_timer())
116 				continue;
117 			break;
118 		case GUEST_INTR_STATUS:
119 			if (!cpu_has_vmx_apicv())
120 				continue;
121 			break;
122 		default:
123 			break;
124 		}
125 
126 		clear_bit(field, vmx_vmwrite_bitmap);
127 		clear_bit(field, vmx_vmread_bitmap);
128 		if (field & 1)
129 #ifdef CONFIG_X86_64
130 			continue;
131 #else
132 			entry.offset += sizeof(u32);
133 #endif
134 		shadow_read_write_fields[j++] = entry;
135 	}
136 	max_shadow_read_write_fields = j;
137 }
138 
139 /*
140  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
141  * set the success or error code of an emulated VMX instruction (as specified
142  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
143  * instruction.
144  */
145 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
146 {
147 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
148 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
149 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
150 	return kvm_skip_emulated_instruction(vcpu);
151 }
152 
153 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
154 {
155 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
156 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
157 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
158 			| X86_EFLAGS_CF);
159 	return kvm_skip_emulated_instruction(vcpu);
160 }
161 
162 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
163 				u32 vm_instruction_error)
164 {
165 	struct vcpu_vmx *vmx = to_vmx(vcpu);
166 
167 	/*
168 	 * failValid writes the error number to the current VMCS, which
169 	 * can't be done if there isn't a current VMCS.
170 	 */
171 	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
172 		return nested_vmx_failInvalid(vcpu);
173 
174 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
175 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
176 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
177 			| X86_EFLAGS_ZF);
178 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
179 	/*
180 	 * We don't need to force a shadow sync because
181 	 * VM_INSTRUCTION_ERROR is not shadowed
182 	 */
183 	return kvm_skip_emulated_instruction(vcpu);
184 }
185 
186 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
187 {
188 	/* TODO: not to reset guest simply here. */
189 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
190 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
191 }
192 
193 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
194 {
195 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
196 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
197 }
198 
199 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
200 {
201 	struct vcpu_vmx *vmx = to_vmx(vcpu);
202 
203 	if (!vmx->nested.hv_evmcs)
204 		return;
205 
206 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
207 	vmx->nested.hv_evmcs_vmptr = -1ull;
208 	vmx->nested.hv_evmcs = NULL;
209 }
210 
211 /*
212  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
213  * just stops using VMX.
214  */
215 static void free_nested(struct kvm_vcpu *vcpu)
216 {
217 	struct vcpu_vmx *vmx = to_vmx(vcpu);
218 
219 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
220 		return;
221 
222 	vmx->nested.vmxon = false;
223 	vmx->nested.smm.vmxon = false;
224 	free_vpid(vmx->nested.vpid02);
225 	vmx->nested.posted_intr_nv = -1;
226 	vmx->nested.current_vmptr = -1ull;
227 	if (enable_shadow_vmcs) {
228 		vmx_disable_shadow_vmcs(vmx);
229 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
230 		free_vmcs(vmx->vmcs01.shadow_vmcs);
231 		vmx->vmcs01.shadow_vmcs = NULL;
232 	}
233 	kfree(vmx->nested.cached_vmcs12);
234 	kfree(vmx->nested.cached_shadow_vmcs12);
235 	/* Unpin physical memory we referred to in the vmcs02 */
236 	if (vmx->nested.apic_access_page) {
237 		kvm_release_page_dirty(vmx->nested.apic_access_page);
238 		vmx->nested.apic_access_page = NULL;
239 	}
240 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
241 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
242 	vmx->nested.pi_desc = NULL;
243 
244 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
245 
246 	nested_release_evmcs(vcpu);
247 
248 	free_loaded_vmcs(&vmx->nested.vmcs02);
249 }
250 
251 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
252 				     struct loaded_vmcs *prev)
253 {
254 	struct vmcs_host_state *dest, *src;
255 
256 	if (unlikely(!vmx->guest_state_loaded))
257 		return;
258 
259 	src = &prev->host_state;
260 	dest = &vmx->loaded_vmcs->host_state;
261 
262 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
263 	dest->ldt_sel = src->ldt_sel;
264 #ifdef CONFIG_X86_64
265 	dest->ds_sel = src->ds_sel;
266 	dest->es_sel = src->es_sel;
267 #endif
268 }
269 
270 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
271 {
272 	struct vcpu_vmx *vmx = to_vmx(vcpu);
273 	struct loaded_vmcs *prev;
274 	int cpu;
275 
276 	if (vmx->loaded_vmcs == vmcs)
277 		return;
278 
279 	cpu = get_cpu();
280 	prev = vmx->loaded_vmcs;
281 	vmx->loaded_vmcs = vmcs;
282 	vmx_vcpu_load_vmcs(vcpu, cpu);
283 	vmx_sync_vmcs_host_state(vmx, prev);
284 	put_cpu();
285 
286 	vmx_segment_cache_clear(vmx);
287 }
288 
289 /*
290  * Ensure that the current vmcs of the logical processor is the
291  * vmcs01 of the vcpu before calling free_nested().
292  */
293 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
294 {
295 	vcpu_load(vcpu);
296 	vmx_leave_nested(vcpu);
297 	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
298 	free_nested(vcpu);
299 	vcpu_put(vcpu);
300 }
301 
302 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
303 		struct x86_exception *fault)
304 {
305 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
306 	struct vcpu_vmx *vmx = to_vmx(vcpu);
307 	u32 exit_reason;
308 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
309 
310 	if (vmx->nested.pml_full) {
311 		exit_reason = EXIT_REASON_PML_FULL;
312 		vmx->nested.pml_full = false;
313 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
314 	} else if (fault->error_code & PFERR_RSVD_MASK)
315 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
316 	else
317 		exit_reason = EXIT_REASON_EPT_VIOLATION;
318 
319 	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
320 	vmcs12->guest_physical_address = fault->address;
321 }
322 
323 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
324 {
325 	WARN_ON(mmu_is_nested(vcpu));
326 
327 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
328 	kvm_init_shadow_ept_mmu(vcpu,
329 			to_vmx(vcpu)->nested.msrs.ept_caps &
330 			VMX_EPT_EXECUTE_ONLY_BIT,
331 			nested_ept_ad_enabled(vcpu),
332 			nested_ept_get_cr3(vcpu));
333 	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
334 	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
335 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
336 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
337 
338 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
339 }
340 
341 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
342 {
343 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
344 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
345 }
346 
347 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
348 					    u16 error_code)
349 {
350 	bool inequality, bit;
351 
352 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
353 	inequality =
354 		(error_code & vmcs12->page_fault_error_code_mask) !=
355 		 vmcs12->page_fault_error_code_match;
356 	return inequality ^ bit;
357 }
358 
359 
360 /*
361  * KVM wants to inject page-faults which it got to the guest. This function
362  * checks whether in a nested guest, we need to inject them to L1 or L2.
363  */
364 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
365 {
366 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
367 	unsigned int nr = vcpu->arch.exception.nr;
368 	bool has_payload = vcpu->arch.exception.has_payload;
369 	unsigned long payload = vcpu->arch.exception.payload;
370 
371 	if (nr == PF_VECTOR) {
372 		if (vcpu->arch.exception.nested_apf) {
373 			*exit_qual = vcpu->arch.apf.nested_apf_token;
374 			return 1;
375 		}
376 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
377 						    vcpu->arch.exception.error_code)) {
378 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
379 			return 1;
380 		}
381 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
382 		if (nr == DB_VECTOR) {
383 			if (!has_payload) {
384 				payload = vcpu->arch.dr6;
385 				payload &= ~(DR6_FIXED_1 | DR6_BT);
386 				payload ^= DR6_RTM;
387 			}
388 			*exit_qual = payload;
389 		} else
390 			*exit_qual = 0;
391 		return 1;
392 	}
393 
394 	return 0;
395 }
396 
397 
398 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
399 		struct x86_exception *fault)
400 {
401 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
402 
403 	WARN_ON(!is_guest_mode(vcpu));
404 
405 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
406 		!to_vmx(vcpu)->nested.nested_run_pending) {
407 		vmcs12->vm_exit_intr_error_code = fault->error_code;
408 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
409 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
410 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
411 				  fault->address);
412 	} else {
413 		kvm_inject_page_fault(vcpu, fault);
414 	}
415 }
416 
417 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
418 {
419 	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
420 }
421 
422 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
423 					       struct vmcs12 *vmcs12)
424 {
425 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
426 		return 0;
427 
428 	if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
429 	    !page_address_valid(vcpu, vmcs12->io_bitmap_b))
430 		return -EINVAL;
431 
432 	return 0;
433 }
434 
435 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
436 						struct vmcs12 *vmcs12)
437 {
438 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
439 		return 0;
440 
441 	if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
442 		return -EINVAL;
443 
444 	return 0;
445 }
446 
447 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
448 						struct vmcs12 *vmcs12)
449 {
450 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
451 		return 0;
452 
453 	if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
454 		return -EINVAL;
455 
456 	return 0;
457 }
458 
459 /*
460  * Check if MSR is intercepted for L01 MSR bitmap.
461  */
462 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
463 {
464 	unsigned long *msr_bitmap;
465 	int f = sizeof(unsigned long);
466 
467 	if (!cpu_has_vmx_msr_bitmap())
468 		return true;
469 
470 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
471 
472 	if (msr <= 0x1fff) {
473 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
474 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
475 		msr &= 0x1fff;
476 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
477 	}
478 
479 	return true;
480 }
481 
482 /*
483  * If a msr is allowed by L0, we should check whether it is allowed by L1.
484  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
485  */
486 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
487 					       unsigned long *msr_bitmap_nested,
488 					       u32 msr, int type)
489 {
490 	int f = sizeof(unsigned long);
491 
492 	/*
493 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
494 	 * have the write-low and read-high bitmap offsets the wrong way round.
495 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
496 	 */
497 	if (msr <= 0x1fff) {
498 		if (type & MSR_TYPE_R &&
499 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
500 			/* read-low */
501 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
502 
503 		if (type & MSR_TYPE_W &&
504 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
505 			/* write-low */
506 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
507 
508 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
509 		msr &= 0x1fff;
510 		if (type & MSR_TYPE_R &&
511 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
512 			/* read-high */
513 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
514 
515 		if (type & MSR_TYPE_W &&
516 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
517 			/* write-high */
518 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
519 
520 	}
521 }
522 
523 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
524 	int msr;
525 
526 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
527 		unsigned word = msr / BITS_PER_LONG;
528 
529 		msr_bitmap[word] = ~0;
530 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
531 	}
532 }
533 
534 /*
535  * Merge L0's and L1's MSR bitmap, return false to indicate that
536  * we do not use the hardware.
537  */
538 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
539 						 struct vmcs12 *vmcs12)
540 {
541 	int msr;
542 	unsigned long *msr_bitmap_l1;
543 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
544 	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
545 
546 	/* Nothing to do if the MSR bitmap is not in use.  */
547 	if (!cpu_has_vmx_msr_bitmap() ||
548 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
549 		return false;
550 
551 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
552 		return false;
553 
554 	msr_bitmap_l1 = (unsigned long *)map->hva;
555 
556 	/*
557 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
558 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
559 	 * the x2APIC MSR range and selectively disable them below.
560 	 */
561 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
562 
563 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
564 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
565 			/*
566 			 * L0 need not intercept reads for MSRs between 0x800
567 			 * and 0x8ff, it just lets the processor take the value
568 			 * from the virtual-APIC page; take those 256 bits
569 			 * directly from the L1 bitmap.
570 			 */
571 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
572 				unsigned word = msr / BITS_PER_LONG;
573 
574 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
575 			}
576 		}
577 
578 		nested_vmx_disable_intercept_for_msr(
579 			msr_bitmap_l1, msr_bitmap_l0,
580 			X2APIC_MSR(APIC_TASKPRI),
581 			MSR_TYPE_R | MSR_TYPE_W);
582 
583 		if (nested_cpu_has_vid(vmcs12)) {
584 			nested_vmx_disable_intercept_for_msr(
585 				msr_bitmap_l1, msr_bitmap_l0,
586 				X2APIC_MSR(APIC_EOI),
587 				MSR_TYPE_W);
588 			nested_vmx_disable_intercept_for_msr(
589 				msr_bitmap_l1, msr_bitmap_l0,
590 				X2APIC_MSR(APIC_SELF_IPI),
591 				MSR_TYPE_W);
592 		}
593 	}
594 
595 	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
596 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
597 					     MSR_FS_BASE, MSR_TYPE_RW);
598 
599 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
600 					     MSR_GS_BASE, MSR_TYPE_RW);
601 
602 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
603 					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
604 
605 	/*
606 	 * Checking the L0->L1 bitmap is trying to verify two things:
607 	 *
608 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
609 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
610 	 *    from the L12 MSR bitmap that is too permissive.
611 	 * 2. That L1 or L2s have actually used the MSR. This avoids
612 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
613 	 *    works properly because we only update the L01 MSR bitmap lazily.
614 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
615 	 *    updated to reflect this when L1 (or its L2s) actually write to
616 	 *    the MSR.
617 	 */
618 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
619 		nested_vmx_disable_intercept_for_msr(
620 					msr_bitmap_l1, msr_bitmap_l0,
621 					MSR_IA32_SPEC_CTRL,
622 					MSR_TYPE_R | MSR_TYPE_W);
623 
624 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
625 		nested_vmx_disable_intercept_for_msr(
626 					msr_bitmap_l1, msr_bitmap_l0,
627 					MSR_IA32_PRED_CMD,
628 					MSR_TYPE_W);
629 
630 	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
631 
632 	return true;
633 }
634 
635 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
636 				       struct vmcs12 *vmcs12)
637 {
638 	struct kvm_host_map map;
639 	struct vmcs12 *shadow;
640 
641 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
642 	    vmcs12->vmcs_link_pointer == -1ull)
643 		return;
644 
645 	shadow = get_shadow_vmcs12(vcpu);
646 
647 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
648 		return;
649 
650 	memcpy(shadow, map.hva, VMCS12_SIZE);
651 	kvm_vcpu_unmap(vcpu, &map, false);
652 }
653 
654 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
655 					      struct vmcs12 *vmcs12)
656 {
657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
658 
659 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
660 	    vmcs12->vmcs_link_pointer == -1ull)
661 		return;
662 
663 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
664 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
665 }
666 
667 /*
668  * In nested virtualization, check if L1 has set
669  * VM_EXIT_ACK_INTR_ON_EXIT
670  */
671 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
672 {
673 	return get_vmcs12(vcpu)->vm_exit_controls &
674 		VM_EXIT_ACK_INTR_ON_EXIT;
675 }
676 
677 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
678 {
679 	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
680 }
681 
682 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
683 					  struct vmcs12 *vmcs12)
684 {
685 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
686 	    !page_address_valid(vcpu, vmcs12->apic_access_addr))
687 		return -EINVAL;
688 	else
689 		return 0;
690 }
691 
692 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
693 					   struct vmcs12 *vmcs12)
694 {
695 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
696 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
697 	    !nested_cpu_has_vid(vmcs12) &&
698 	    !nested_cpu_has_posted_intr(vmcs12))
699 		return 0;
700 
701 	/*
702 	 * If virtualize x2apic mode is enabled,
703 	 * virtualize apic access must be disabled.
704 	 */
705 	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
706 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
707 		return -EINVAL;
708 
709 	/*
710 	 * If virtual interrupt delivery is enabled,
711 	 * we must exit on external interrupts.
712 	 */
713 	if (nested_cpu_has_vid(vmcs12) &&
714 	   !nested_exit_on_intr(vcpu))
715 		return -EINVAL;
716 
717 	/*
718 	 * bits 15:8 should be zero in posted_intr_nv,
719 	 * the descriptor address has been already checked
720 	 * in nested_get_vmcs12_pages.
721 	 *
722 	 * bits 5:0 of posted_intr_desc_addr should be zero.
723 	 */
724 	if (nested_cpu_has_posted_intr(vmcs12) &&
725 	   (!nested_cpu_has_vid(vmcs12) ||
726 	    !nested_exit_intr_ack_set(vcpu) ||
727 	    (vmcs12->posted_intr_nv & 0xff00) ||
728 	    (vmcs12->posted_intr_desc_addr & 0x3f) ||
729 	    (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
730 		return -EINVAL;
731 
732 	/* tpr shadow is needed by all apicv features. */
733 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
734 		return -EINVAL;
735 
736 	return 0;
737 }
738 
739 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
740 				       u32 count, u64 addr)
741 {
742 	int maxphyaddr;
743 
744 	if (count == 0)
745 		return 0;
746 	maxphyaddr = cpuid_maxphyaddr(vcpu);
747 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
748 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
749 		return -EINVAL;
750 
751 	return 0;
752 }
753 
754 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
755 						     struct vmcs12 *vmcs12)
756 {
757 	if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
758 					vmcs12->vm_exit_msr_load_addr) ||
759 	    nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
760 					vmcs12->vm_exit_msr_store_addr))
761 		return -EINVAL;
762 
763 	return 0;
764 }
765 
766 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
767                                                       struct vmcs12 *vmcs12)
768 {
769 	if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
770                                         vmcs12->vm_entry_msr_load_addr))
771                 return -EINVAL;
772 
773 	return 0;
774 }
775 
776 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
777 					 struct vmcs12 *vmcs12)
778 {
779 	if (!nested_cpu_has_pml(vmcs12))
780 		return 0;
781 
782 	if (!nested_cpu_has_ept(vmcs12) ||
783 	    !page_address_valid(vcpu, vmcs12->pml_address))
784 		return -EINVAL;
785 
786 	return 0;
787 }
788 
789 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
790 							struct vmcs12 *vmcs12)
791 {
792 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
793 	    !nested_cpu_has_ept(vmcs12))
794 		return -EINVAL;
795 	return 0;
796 }
797 
798 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
799 							 struct vmcs12 *vmcs12)
800 {
801 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
802 	    !nested_cpu_has_ept(vmcs12))
803 		return -EINVAL;
804 	return 0;
805 }
806 
807 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
808 						 struct vmcs12 *vmcs12)
809 {
810 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
811 		return 0;
812 
813 	if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
814 	    !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
815 		return -EINVAL;
816 
817 	return 0;
818 }
819 
820 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
821 				       struct vmx_msr_entry *e)
822 {
823 	/* x2APIC MSR accesses are not allowed */
824 	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
825 		return -EINVAL;
826 	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
827 	    e->index == MSR_IA32_UCODE_REV)
828 		return -EINVAL;
829 	if (e->reserved != 0)
830 		return -EINVAL;
831 	return 0;
832 }
833 
834 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
835 				     struct vmx_msr_entry *e)
836 {
837 	if (e->index == MSR_FS_BASE ||
838 	    e->index == MSR_GS_BASE ||
839 	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
840 	    nested_vmx_msr_check_common(vcpu, e))
841 		return -EINVAL;
842 	return 0;
843 }
844 
845 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
846 				      struct vmx_msr_entry *e)
847 {
848 	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
849 	    nested_vmx_msr_check_common(vcpu, e))
850 		return -EINVAL;
851 	return 0;
852 }
853 
854 /*
855  * Load guest's/host's msr at nested entry/exit.
856  * return 0 for success, entry index for failure.
857  */
858 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
859 {
860 	u32 i;
861 	struct vmx_msr_entry e;
862 	struct msr_data msr;
863 
864 	msr.host_initiated = false;
865 	for (i = 0; i < count; i++) {
866 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
867 					&e, sizeof(e))) {
868 			pr_debug_ratelimited(
869 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
870 				__func__, i, gpa + i * sizeof(e));
871 			goto fail;
872 		}
873 		if (nested_vmx_load_msr_check(vcpu, &e)) {
874 			pr_debug_ratelimited(
875 				"%s check failed (%u, 0x%x, 0x%x)\n",
876 				__func__, i, e.index, e.reserved);
877 			goto fail;
878 		}
879 		msr.index = e.index;
880 		msr.data = e.value;
881 		if (kvm_set_msr(vcpu, &msr)) {
882 			pr_debug_ratelimited(
883 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
884 				__func__, i, e.index, e.value);
885 			goto fail;
886 		}
887 	}
888 	return 0;
889 fail:
890 	return i + 1;
891 }
892 
893 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
894 {
895 	u32 i;
896 	struct vmx_msr_entry e;
897 
898 	for (i = 0; i < count; i++) {
899 		struct msr_data msr_info;
900 		if (kvm_vcpu_read_guest(vcpu,
901 					gpa + i * sizeof(e),
902 					&e, 2 * sizeof(u32))) {
903 			pr_debug_ratelimited(
904 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
905 				__func__, i, gpa + i * sizeof(e));
906 			return -EINVAL;
907 		}
908 		if (nested_vmx_store_msr_check(vcpu, &e)) {
909 			pr_debug_ratelimited(
910 				"%s check failed (%u, 0x%x, 0x%x)\n",
911 				__func__, i, e.index, e.reserved);
912 			return -EINVAL;
913 		}
914 		msr_info.host_initiated = false;
915 		msr_info.index = e.index;
916 		if (kvm_get_msr(vcpu, &msr_info)) {
917 			pr_debug_ratelimited(
918 				"%s cannot read MSR (%u, 0x%x)\n",
919 				__func__, i, e.index);
920 			return -EINVAL;
921 		}
922 		if (kvm_vcpu_write_guest(vcpu,
923 					 gpa + i * sizeof(e) +
924 					     offsetof(struct vmx_msr_entry, value),
925 					 &msr_info.data, sizeof(msr_info.data))) {
926 			pr_debug_ratelimited(
927 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
928 				__func__, i, e.index, msr_info.data);
929 			return -EINVAL;
930 		}
931 	}
932 	return 0;
933 }
934 
935 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
936 {
937 	unsigned long invalid_mask;
938 
939 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
940 	return (val & invalid_mask) == 0;
941 }
942 
943 /*
944  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
945  * emulating VM entry into a guest with EPT enabled.
946  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
947  * is assigned to entry_failure_code on failure.
948  */
949 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
950 			       u32 *entry_failure_code)
951 {
952 	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
953 		if (!nested_cr3_valid(vcpu, cr3)) {
954 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
955 			return -EINVAL;
956 		}
957 
958 		/*
959 		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
960 		 * must not be dereferenced.
961 		 */
962 		if (is_pae_paging(vcpu) && !nested_ept) {
963 			if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
964 				*entry_failure_code = ENTRY_FAIL_PDPTE;
965 				return -EINVAL;
966 			}
967 		}
968 	}
969 
970 	if (!nested_ept)
971 		kvm_mmu_new_cr3(vcpu, cr3, false);
972 
973 	vcpu->arch.cr3 = cr3;
974 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
975 
976 	kvm_init_mmu(vcpu, false);
977 
978 	return 0;
979 }
980 
981 /*
982  * Returns if KVM is able to config CPU to tag TLB entries
983  * populated by L2 differently than TLB entries populated
984  * by L1.
985  *
986  * If L1 uses EPT, then TLB entries are tagged with different EPTP.
987  *
988  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
989  * with different VPID (L1 entries are tagged with vmx->vpid
990  * while L2 entries are tagged with vmx->nested.vpid02).
991  */
992 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
993 {
994 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
995 
996 	return nested_cpu_has_ept(vmcs12) ||
997 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
998 }
999 
1000 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1001 {
1002 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1003 
1004 	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1005 }
1006 
1007 
1008 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1009 {
1010 	return fixed_bits_valid(control, low, high);
1011 }
1012 
1013 static inline u64 vmx_control_msr(u32 low, u32 high)
1014 {
1015 	return low | ((u64)high << 32);
1016 }
1017 
1018 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1019 {
1020 	superset &= mask;
1021 	subset &= mask;
1022 
1023 	return (superset | subset) == superset;
1024 }
1025 
1026 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1027 {
1028 	const u64 feature_and_reserved =
1029 		/* feature (except bit 48; see below) */
1030 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1031 		/* reserved */
1032 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1033 	u64 vmx_basic = vmx->nested.msrs.basic;
1034 
1035 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1036 		return -EINVAL;
1037 
1038 	/*
1039 	 * KVM does not emulate a version of VMX that constrains physical
1040 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1041 	 */
1042 	if (data & BIT_ULL(48))
1043 		return -EINVAL;
1044 
1045 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1046 	    vmx_basic_vmcs_revision_id(data))
1047 		return -EINVAL;
1048 
1049 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1050 		return -EINVAL;
1051 
1052 	vmx->nested.msrs.basic = data;
1053 	return 0;
1054 }
1055 
1056 static int
1057 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1058 {
1059 	u64 supported;
1060 	u32 *lowp, *highp;
1061 
1062 	switch (msr_index) {
1063 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1064 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1065 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1066 		break;
1067 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1068 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1069 		highp = &vmx->nested.msrs.procbased_ctls_high;
1070 		break;
1071 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1072 		lowp = &vmx->nested.msrs.exit_ctls_low;
1073 		highp = &vmx->nested.msrs.exit_ctls_high;
1074 		break;
1075 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1076 		lowp = &vmx->nested.msrs.entry_ctls_low;
1077 		highp = &vmx->nested.msrs.entry_ctls_high;
1078 		break;
1079 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1080 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1081 		highp = &vmx->nested.msrs.secondary_ctls_high;
1082 		break;
1083 	default:
1084 		BUG();
1085 	}
1086 
1087 	supported = vmx_control_msr(*lowp, *highp);
1088 
1089 	/* Check must-be-1 bits are still 1. */
1090 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1091 		return -EINVAL;
1092 
1093 	/* Check must-be-0 bits are still 0. */
1094 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1095 		return -EINVAL;
1096 
1097 	*lowp = data;
1098 	*highp = data >> 32;
1099 	return 0;
1100 }
1101 
1102 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1103 {
1104 	const u64 feature_and_reserved_bits =
1105 		/* feature */
1106 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1107 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1108 		/* reserved */
1109 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1110 	u64 vmx_misc;
1111 
1112 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1113 				   vmx->nested.msrs.misc_high);
1114 
1115 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1116 		return -EINVAL;
1117 
1118 	if ((vmx->nested.msrs.pinbased_ctls_high &
1119 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1120 	    vmx_misc_preemption_timer_rate(data) !=
1121 	    vmx_misc_preemption_timer_rate(vmx_misc))
1122 		return -EINVAL;
1123 
1124 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1125 		return -EINVAL;
1126 
1127 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1128 		return -EINVAL;
1129 
1130 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1131 		return -EINVAL;
1132 
1133 	vmx->nested.msrs.misc_low = data;
1134 	vmx->nested.msrs.misc_high = data >> 32;
1135 
1136 	return 0;
1137 }
1138 
1139 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1140 {
1141 	u64 vmx_ept_vpid_cap;
1142 
1143 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1144 					   vmx->nested.msrs.vpid_caps);
1145 
1146 	/* Every bit is either reserved or a feature bit. */
1147 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1148 		return -EINVAL;
1149 
1150 	vmx->nested.msrs.ept_caps = data;
1151 	vmx->nested.msrs.vpid_caps = data >> 32;
1152 	return 0;
1153 }
1154 
1155 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1156 {
1157 	u64 *msr;
1158 
1159 	switch (msr_index) {
1160 	case MSR_IA32_VMX_CR0_FIXED0:
1161 		msr = &vmx->nested.msrs.cr0_fixed0;
1162 		break;
1163 	case MSR_IA32_VMX_CR4_FIXED0:
1164 		msr = &vmx->nested.msrs.cr4_fixed0;
1165 		break;
1166 	default:
1167 		BUG();
1168 	}
1169 
1170 	/*
1171 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1172 	 * must be 1 in the restored value.
1173 	 */
1174 	if (!is_bitwise_subset(data, *msr, -1ULL))
1175 		return -EINVAL;
1176 
1177 	*msr = data;
1178 	return 0;
1179 }
1180 
1181 /*
1182  * Called when userspace is restoring VMX MSRs.
1183  *
1184  * Returns 0 on success, non-0 otherwise.
1185  */
1186 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1187 {
1188 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1189 
1190 	/*
1191 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1192 	 * is in VMX operation.
1193 	 */
1194 	if (vmx->nested.vmxon)
1195 		return -EBUSY;
1196 
1197 	switch (msr_index) {
1198 	case MSR_IA32_VMX_BASIC:
1199 		return vmx_restore_vmx_basic(vmx, data);
1200 	case MSR_IA32_VMX_PINBASED_CTLS:
1201 	case MSR_IA32_VMX_PROCBASED_CTLS:
1202 	case MSR_IA32_VMX_EXIT_CTLS:
1203 	case MSR_IA32_VMX_ENTRY_CTLS:
1204 		/*
1205 		 * The "non-true" VMX capability MSRs are generated from the
1206 		 * "true" MSRs, so we do not support restoring them directly.
1207 		 *
1208 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1209 		 * should restore the "true" MSRs with the must-be-1 bits
1210 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1211 		 * DEFAULT SETTINGS".
1212 		 */
1213 		return -EINVAL;
1214 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1215 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1216 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1217 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1218 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1219 		return vmx_restore_control_msr(vmx, msr_index, data);
1220 	case MSR_IA32_VMX_MISC:
1221 		return vmx_restore_vmx_misc(vmx, data);
1222 	case MSR_IA32_VMX_CR0_FIXED0:
1223 	case MSR_IA32_VMX_CR4_FIXED0:
1224 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1225 	case MSR_IA32_VMX_CR0_FIXED1:
1226 	case MSR_IA32_VMX_CR4_FIXED1:
1227 		/*
1228 		 * These MSRs are generated based on the vCPU's CPUID, so we
1229 		 * do not support restoring them directly.
1230 		 */
1231 		return -EINVAL;
1232 	case MSR_IA32_VMX_EPT_VPID_CAP:
1233 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1234 	case MSR_IA32_VMX_VMCS_ENUM:
1235 		vmx->nested.msrs.vmcs_enum = data;
1236 		return 0;
1237 	case MSR_IA32_VMX_VMFUNC:
1238 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1239 			return -EINVAL;
1240 		vmx->nested.msrs.vmfunc_controls = data;
1241 		return 0;
1242 	default:
1243 		/*
1244 		 * The rest of the VMX capability MSRs do not support restore.
1245 		 */
1246 		return -EINVAL;
1247 	}
1248 }
1249 
1250 /* Returns 0 on success, non-0 otherwise. */
1251 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1252 {
1253 	switch (msr_index) {
1254 	case MSR_IA32_VMX_BASIC:
1255 		*pdata = msrs->basic;
1256 		break;
1257 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1258 	case MSR_IA32_VMX_PINBASED_CTLS:
1259 		*pdata = vmx_control_msr(
1260 			msrs->pinbased_ctls_low,
1261 			msrs->pinbased_ctls_high);
1262 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1263 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1264 		break;
1265 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1266 	case MSR_IA32_VMX_PROCBASED_CTLS:
1267 		*pdata = vmx_control_msr(
1268 			msrs->procbased_ctls_low,
1269 			msrs->procbased_ctls_high);
1270 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1271 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1272 		break;
1273 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1274 	case MSR_IA32_VMX_EXIT_CTLS:
1275 		*pdata = vmx_control_msr(
1276 			msrs->exit_ctls_low,
1277 			msrs->exit_ctls_high);
1278 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1279 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1280 		break;
1281 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1282 	case MSR_IA32_VMX_ENTRY_CTLS:
1283 		*pdata = vmx_control_msr(
1284 			msrs->entry_ctls_low,
1285 			msrs->entry_ctls_high);
1286 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1287 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1288 		break;
1289 	case MSR_IA32_VMX_MISC:
1290 		*pdata = vmx_control_msr(
1291 			msrs->misc_low,
1292 			msrs->misc_high);
1293 		break;
1294 	case MSR_IA32_VMX_CR0_FIXED0:
1295 		*pdata = msrs->cr0_fixed0;
1296 		break;
1297 	case MSR_IA32_VMX_CR0_FIXED1:
1298 		*pdata = msrs->cr0_fixed1;
1299 		break;
1300 	case MSR_IA32_VMX_CR4_FIXED0:
1301 		*pdata = msrs->cr4_fixed0;
1302 		break;
1303 	case MSR_IA32_VMX_CR4_FIXED1:
1304 		*pdata = msrs->cr4_fixed1;
1305 		break;
1306 	case MSR_IA32_VMX_VMCS_ENUM:
1307 		*pdata = msrs->vmcs_enum;
1308 		break;
1309 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1310 		*pdata = vmx_control_msr(
1311 			msrs->secondary_ctls_low,
1312 			msrs->secondary_ctls_high);
1313 		break;
1314 	case MSR_IA32_VMX_EPT_VPID_CAP:
1315 		*pdata = msrs->ept_caps |
1316 			((u64)msrs->vpid_caps << 32);
1317 		break;
1318 	case MSR_IA32_VMX_VMFUNC:
1319 		*pdata = msrs->vmfunc_controls;
1320 		break;
1321 	default:
1322 		return 1;
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 /*
1329  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1330  * been modified by the L1 guest.  Note, "writable" in this context means
1331  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1332  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1333  * VM-exit information fields (which are actually writable if the vCPU is
1334  * configured to support "VMWRITE to any supported field in the VMCS").
1335  */
1336 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1337 {
1338 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1339 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1340 	struct shadow_vmcs_field field;
1341 	unsigned long val;
1342 	int i;
1343 
1344 	preempt_disable();
1345 
1346 	vmcs_load(shadow_vmcs);
1347 
1348 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1349 		field = shadow_read_write_fields[i];
1350 		val = __vmcs_readl(field.encoding);
1351 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1352 	}
1353 
1354 	vmcs_clear(shadow_vmcs);
1355 	vmcs_load(vmx->loaded_vmcs->vmcs);
1356 
1357 	preempt_enable();
1358 }
1359 
1360 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1361 {
1362 	const struct shadow_vmcs_field *fields[] = {
1363 		shadow_read_write_fields,
1364 		shadow_read_only_fields
1365 	};
1366 	const int max_fields[] = {
1367 		max_shadow_read_write_fields,
1368 		max_shadow_read_only_fields
1369 	};
1370 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1371 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1372 	struct shadow_vmcs_field field;
1373 	unsigned long val;
1374 	int i, q;
1375 
1376 	vmcs_load(shadow_vmcs);
1377 
1378 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1379 		for (i = 0; i < max_fields[q]; i++) {
1380 			field = fields[q][i];
1381 			val = vmcs12_read_any(vmcs12, field.encoding,
1382 					      field.offset);
1383 			__vmcs_writel(field.encoding, val);
1384 		}
1385 	}
1386 
1387 	vmcs_clear(shadow_vmcs);
1388 	vmcs_load(vmx->loaded_vmcs->vmcs);
1389 }
1390 
1391 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1392 {
1393 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1394 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1395 
1396 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1397 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1398 	vmcs12->guest_rip = evmcs->guest_rip;
1399 
1400 	if (unlikely(!(evmcs->hv_clean_fields &
1401 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1402 		vmcs12->guest_rsp = evmcs->guest_rsp;
1403 		vmcs12->guest_rflags = evmcs->guest_rflags;
1404 		vmcs12->guest_interruptibility_info =
1405 			evmcs->guest_interruptibility_info;
1406 	}
1407 
1408 	if (unlikely(!(evmcs->hv_clean_fields &
1409 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1410 		vmcs12->cpu_based_vm_exec_control =
1411 			evmcs->cpu_based_vm_exec_control;
1412 	}
1413 
1414 	if (unlikely(!(evmcs->hv_clean_fields &
1415 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1416 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1417 	}
1418 
1419 	if (unlikely(!(evmcs->hv_clean_fields &
1420 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1421 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1422 	}
1423 
1424 	if (unlikely(!(evmcs->hv_clean_fields &
1425 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1426 		vmcs12->vm_entry_intr_info_field =
1427 			evmcs->vm_entry_intr_info_field;
1428 		vmcs12->vm_entry_exception_error_code =
1429 			evmcs->vm_entry_exception_error_code;
1430 		vmcs12->vm_entry_instruction_len =
1431 			evmcs->vm_entry_instruction_len;
1432 	}
1433 
1434 	if (unlikely(!(evmcs->hv_clean_fields &
1435 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1436 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1437 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1438 		vmcs12->host_cr0 = evmcs->host_cr0;
1439 		vmcs12->host_cr3 = evmcs->host_cr3;
1440 		vmcs12->host_cr4 = evmcs->host_cr4;
1441 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1442 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1443 		vmcs12->host_rip = evmcs->host_rip;
1444 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1445 		vmcs12->host_es_selector = evmcs->host_es_selector;
1446 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1447 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1448 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1449 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1450 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1451 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1452 	}
1453 
1454 	if (unlikely(!(evmcs->hv_clean_fields &
1455 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1456 		vmcs12->pin_based_vm_exec_control =
1457 			evmcs->pin_based_vm_exec_control;
1458 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1459 		vmcs12->secondary_vm_exec_control =
1460 			evmcs->secondary_vm_exec_control;
1461 	}
1462 
1463 	if (unlikely(!(evmcs->hv_clean_fields &
1464 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1465 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1466 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1467 	}
1468 
1469 	if (unlikely(!(evmcs->hv_clean_fields &
1470 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1471 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1472 	}
1473 
1474 	if (unlikely(!(evmcs->hv_clean_fields &
1475 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1476 		vmcs12->guest_es_base = evmcs->guest_es_base;
1477 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1478 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1479 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1480 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1481 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1482 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1483 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1484 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1485 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1486 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1487 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1488 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1489 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1490 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1491 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1492 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1493 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1494 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1495 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1496 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1497 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1498 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1499 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1500 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1501 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1502 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1503 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1504 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1505 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1506 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1507 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1508 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1509 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1510 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1511 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1512 	}
1513 
1514 	if (unlikely(!(evmcs->hv_clean_fields &
1515 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1516 		vmcs12->tsc_offset = evmcs->tsc_offset;
1517 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1518 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1519 	}
1520 
1521 	if (unlikely(!(evmcs->hv_clean_fields &
1522 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1523 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1524 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1525 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1526 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1527 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1528 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1529 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1530 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1531 	}
1532 
1533 	if (unlikely(!(evmcs->hv_clean_fields &
1534 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1535 		vmcs12->host_fs_base = evmcs->host_fs_base;
1536 		vmcs12->host_gs_base = evmcs->host_gs_base;
1537 		vmcs12->host_tr_base = evmcs->host_tr_base;
1538 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1539 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1540 		vmcs12->host_rsp = evmcs->host_rsp;
1541 	}
1542 
1543 	if (unlikely(!(evmcs->hv_clean_fields &
1544 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1545 		vmcs12->ept_pointer = evmcs->ept_pointer;
1546 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1547 	}
1548 
1549 	if (unlikely(!(evmcs->hv_clean_fields &
1550 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1551 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1552 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1553 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1554 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1555 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1556 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1557 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1558 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1559 		vmcs12->guest_pending_dbg_exceptions =
1560 			evmcs->guest_pending_dbg_exceptions;
1561 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1562 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1563 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1564 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1565 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1566 	}
1567 
1568 	/*
1569 	 * Not used?
1570 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1571 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1572 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1573 	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1574 	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1575 	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1576 	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1577 	 * vmcs12->page_fault_error_code_mask =
1578 	 *		evmcs->page_fault_error_code_mask;
1579 	 * vmcs12->page_fault_error_code_match =
1580 	 *		evmcs->page_fault_error_code_match;
1581 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1582 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1583 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1584 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1585 	 */
1586 
1587 	/*
1588 	 * Read only fields:
1589 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1590 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1591 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1592 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1593 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1594 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1595 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1596 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1597 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1598 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1599 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1600 	 *
1601 	 * Not present in struct vmcs12:
1602 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1603 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1604 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1605 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1606 	 */
1607 
1608 	return 0;
1609 }
1610 
1611 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1612 {
1613 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1614 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1615 
1616 	/*
1617 	 * Should not be changed by KVM:
1618 	 *
1619 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1620 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1621 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1622 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1623 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1624 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1625 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1626 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1627 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1628 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1629 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1630 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1631 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1632 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1633 	 * evmcs->host_rip = vmcs12->host_rip;
1634 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1635 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1636 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1637 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1638 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1639 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1640 	 * evmcs->host_rsp = vmcs12->host_rsp;
1641 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1642 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1643 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1644 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1645 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1646 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1647 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1648 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1649 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1650 	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1651 	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1652 	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1653 	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1654 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1655 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1656 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1657 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1658 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1659 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1660 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1661 	 * evmcs->page_fault_error_code_mask =
1662 	 *		vmcs12->page_fault_error_code_mask;
1663 	 * evmcs->page_fault_error_code_match =
1664 	 *		vmcs12->page_fault_error_code_match;
1665 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1666 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1667 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1668 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1669 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1670 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1671 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1672 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1673 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1674 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1675 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1676 	 *
1677 	 * Not present in struct vmcs12:
1678 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1679 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1680 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1681 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1682 	 */
1683 
1684 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1685 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1686 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1687 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1688 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1689 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1690 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1691 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1692 
1693 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1694 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1695 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1696 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1697 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1698 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1699 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1700 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1701 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1702 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1703 
1704 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1705 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1706 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1707 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1708 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1709 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1710 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1711 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1712 
1713 	evmcs->guest_es_base = vmcs12->guest_es_base;
1714 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1715 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1716 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1717 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1718 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1719 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1720 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1721 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1722 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1723 
1724 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1725 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1726 
1727 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1728 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1729 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1730 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1731 
1732 	evmcs->guest_pending_dbg_exceptions =
1733 		vmcs12->guest_pending_dbg_exceptions;
1734 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1735 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1736 
1737 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1738 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1739 
1740 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1741 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1742 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1743 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1744 
1745 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1746 
1747 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1748 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1749 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1750 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1751 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1752 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1753 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1754 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1755 
1756 	evmcs->exit_qualification = vmcs12->exit_qualification;
1757 
1758 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1759 	evmcs->guest_rsp = vmcs12->guest_rsp;
1760 	evmcs->guest_rflags = vmcs12->guest_rflags;
1761 
1762 	evmcs->guest_interruptibility_info =
1763 		vmcs12->guest_interruptibility_info;
1764 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1765 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1766 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1767 	evmcs->vm_entry_exception_error_code =
1768 		vmcs12->vm_entry_exception_error_code;
1769 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1770 
1771 	evmcs->guest_rip = vmcs12->guest_rip;
1772 
1773 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1774 
1775 	return 0;
1776 }
1777 
1778 /*
1779  * This is an equivalent of the nested hypervisor executing the vmptrld
1780  * instruction.
1781  */
1782 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1783 						 bool from_launch)
1784 {
1785 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1786 	bool evmcs_gpa_changed = false;
1787 	u64 evmcs_gpa;
1788 
1789 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1790 		return 1;
1791 
1792 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1793 		return 1;
1794 
1795 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1796 		if (!vmx->nested.hv_evmcs)
1797 			vmx->nested.current_vmptr = -1ull;
1798 
1799 		nested_release_evmcs(vcpu);
1800 
1801 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1802 				 &vmx->nested.hv_evmcs_map))
1803 			return 0;
1804 
1805 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1806 
1807 		/*
1808 		 * Currently, KVM only supports eVMCS version 1
1809 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1810 		 * value to first u32 field of eVMCS which should specify eVMCS
1811 		 * VersionNumber.
1812 		 *
1813 		 * Guest should be aware of supported eVMCS versions by host by
1814 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1815 		 * expected to set this CPUID leaf according to the value
1816 		 * returned in vmcs_version from nested_enable_evmcs().
1817 		 *
1818 		 * However, it turns out that Microsoft Hyper-V fails to comply
1819 		 * to their own invented interface: When Hyper-V use eVMCS, it
1820 		 * just sets first u32 field of eVMCS to revision_id specified
1821 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1822 		 * which is one of the supported versions specified in
1823 		 * CPUID.0x4000000A.EAX[0:15].
1824 		 *
1825 		 * To overcome Hyper-V bug, we accept here either a supported
1826 		 * eVMCS version or VMCS12 revision_id as valid values for first
1827 		 * u32 field of eVMCS.
1828 		 */
1829 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1830 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1831 			nested_release_evmcs(vcpu);
1832 			return 0;
1833 		}
1834 
1835 		vmx->nested.dirty_vmcs12 = true;
1836 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1837 
1838 		evmcs_gpa_changed = true;
1839 		/*
1840 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1841 		 * reloaded from guest's memory (read only fields, fields not
1842 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
1843 		 * are no leftovers.
1844 		 */
1845 		if (from_launch) {
1846 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1847 			memset(vmcs12, 0, sizeof(*vmcs12));
1848 			vmcs12->hdr.revision_id = VMCS12_REVISION;
1849 		}
1850 
1851 	}
1852 
1853 	/*
1854 	 * Clean fields data can't de used on VMLAUNCH and when we switch
1855 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
1856 	 */
1857 	if (from_launch || evmcs_gpa_changed)
1858 		vmx->nested.hv_evmcs->hv_clean_fields &=
1859 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860 
1861 	return 1;
1862 }
1863 
1864 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1865 {
1866 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1867 
1868 	/*
1869 	 * hv_evmcs may end up being not mapped after migration (when
1870 	 * L2 was running), map it here to make sure vmcs12 changes are
1871 	 * properly reflected.
1872 	 */
1873 	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1874 		nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1875 
1876 	if (vmx->nested.hv_evmcs) {
1877 		copy_vmcs12_to_enlightened(vmx);
1878 		/* All fields are clean */
1879 		vmx->nested.hv_evmcs->hv_clean_fields |=
1880 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1881 	} else {
1882 		copy_vmcs12_to_shadow(vmx);
1883 	}
1884 
1885 	vmx->nested.need_vmcs12_to_shadow_sync = false;
1886 }
1887 
1888 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1889 {
1890 	struct vcpu_vmx *vmx =
1891 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1892 
1893 	vmx->nested.preemption_timer_expired = true;
1894 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1895 	kvm_vcpu_kick(&vmx->vcpu);
1896 
1897 	return HRTIMER_NORESTART;
1898 }
1899 
1900 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1901 {
1902 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1903 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1904 
1905 	/*
1906 	 * A timer value of zero is architecturally guaranteed to cause
1907 	 * a VMExit prior to executing any instructions in the guest.
1908 	 */
1909 	if (preemption_timeout == 0) {
1910 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1911 		return;
1912 	}
1913 
1914 	if (vcpu->arch.virtual_tsc_khz == 0)
1915 		return;
1916 
1917 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1918 	preemption_timeout *= 1000000;
1919 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1920 	hrtimer_start(&vmx->nested.preemption_timer,
1921 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1922 }
1923 
1924 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1925 {
1926 	if (vmx->nested.nested_run_pending &&
1927 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1928 		return vmcs12->guest_ia32_efer;
1929 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1930 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1931 	else
1932 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1933 }
1934 
1935 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1936 {
1937 	/*
1938 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1939 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
1940 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
1941 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
1942 	 */
1943 	if (vmx->nested.vmcs02_initialized)
1944 		return;
1945 	vmx->nested.vmcs02_initialized = true;
1946 
1947 	/*
1948 	 * We don't care what the EPTP value is we just need to guarantee
1949 	 * it's valid so we don't get a false positive when doing early
1950 	 * consistency checks.
1951 	 */
1952 	if (enable_ept && nested_early_check)
1953 		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1954 
1955 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
1956 	if (cpu_has_vmx_vmfunc())
1957 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
1958 
1959 	if (cpu_has_vmx_posted_intr())
1960 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1961 
1962 	if (cpu_has_vmx_msr_bitmap())
1963 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1964 
1965 	/*
1966 	 * The PML address never changes, so it is constant in vmcs02.
1967 	 * Conceptually we want to copy the PML index from vmcs01 here,
1968 	 * and then back to vmcs01 on nested vmexit.  But since we flush
1969 	 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
1970 	 * index is also effectively constant in vmcs02.
1971 	 */
1972 	if (enable_pml) {
1973 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1974 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
1975 	}
1976 
1977 	if (cpu_has_vmx_encls_vmexit())
1978 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
1979 
1980 	/*
1981 	 * Set the MSR load/store lists to match L0's settings.  Only the
1982 	 * addresses are constant (for vmcs02), the counts can change based
1983 	 * on L2's behavior, e.g. switching to/from long mode.
1984 	 */
1985 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1986 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1987 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1988 
1989 	vmx_set_constant_host_state(vmx);
1990 }
1991 
1992 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
1993 				      struct vmcs12 *vmcs12)
1994 {
1995 	prepare_vmcs02_constant_state(vmx);
1996 
1997 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
1998 
1999 	if (enable_vpid) {
2000 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2001 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2002 		else
2003 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2004 	}
2005 }
2006 
2007 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2008 {
2009 	u32 exec_control, vmcs12_exec_ctrl;
2010 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2011 
2012 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2013 		prepare_vmcs02_early_rare(vmx, vmcs12);
2014 
2015 	/*
2016 	 * PIN CONTROLS
2017 	 */
2018 	exec_control = vmx_pin_based_exec_ctrl(vmx);
2019 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2020 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2021 
2022 	/* Posted interrupts setting is only taken from vmcs12.  */
2023 	if (nested_cpu_has_posted_intr(vmcs12)) {
2024 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2025 		vmx->nested.pi_pending = false;
2026 	} else {
2027 		exec_control &= ~PIN_BASED_POSTED_INTR;
2028 	}
2029 	pin_controls_set(vmx, exec_control);
2030 
2031 	/*
2032 	 * EXEC CONTROLS
2033 	 */
2034 	exec_control = vmx_exec_control(vmx); /* L0's desires */
2035 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2036 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2037 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2038 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2039 
2040 	if (exec_control & CPU_BASED_TPR_SHADOW)
2041 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2042 #ifdef CONFIG_X86_64
2043 	else
2044 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2045 				CPU_BASED_CR8_STORE_EXITING;
2046 #endif
2047 
2048 	/*
2049 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2050 	 * for I/O port accesses.
2051 	 */
2052 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2053 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2054 
2055 	/*
2056 	 * This bit will be computed in nested_get_vmcs12_pages, because
2057 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2058 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2059 	 * only set/clear this bit.
2060 	 */
2061 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2062 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2063 
2064 	exec_controls_set(vmx, exec_control);
2065 
2066 	/*
2067 	 * SECONDARY EXEC CONTROLS
2068 	 */
2069 	if (cpu_has_secondary_exec_ctrls()) {
2070 		exec_control = vmx->secondary_exec_control;
2071 
2072 		/* Take the following fields only from vmcs12 */
2073 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2074 				  SECONDARY_EXEC_ENABLE_INVPCID |
2075 				  SECONDARY_EXEC_RDTSCP |
2076 				  SECONDARY_EXEC_XSAVES |
2077 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2078 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2079 				  SECONDARY_EXEC_ENABLE_VMFUNC);
2080 		if (nested_cpu_has(vmcs12,
2081 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2082 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2083 				~SECONDARY_EXEC_ENABLE_PML;
2084 			exec_control |= vmcs12_exec_ctrl;
2085 		}
2086 
2087 		/* VMCS shadowing for L2 is emulated for now */
2088 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2089 
2090 		/*
2091 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2092 		 * will not have to rewrite the controls just for this bit.
2093 		 */
2094 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2095 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2096 			exec_control |= SECONDARY_EXEC_DESC;
2097 
2098 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2099 			vmcs_write16(GUEST_INTR_STATUS,
2100 				vmcs12->guest_intr_status);
2101 
2102 		secondary_exec_controls_set(vmx, exec_control);
2103 	}
2104 
2105 	/*
2106 	 * ENTRY CONTROLS
2107 	 *
2108 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2109 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2110 	 * on the related bits (if supported by the CPU) in the hope that
2111 	 * we can avoid VMWrites during vmx_set_efer().
2112 	 */
2113 	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2114 			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2115 	if (cpu_has_load_ia32_efer()) {
2116 		if (guest_efer & EFER_LMA)
2117 			exec_control |= VM_ENTRY_IA32E_MODE;
2118 		if (guest_efer != host_efer)
2119 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2120 	}
2121 	vm_entry_controls_set(vmx, exec_control);
2122 
2123 	/*
2124 	 * EXIT CONTROLS
2125 	 *
2126 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2127 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2128 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2129 	 */
2130 	exec_control = vmx_vmexit_ctrl();
2131 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2132 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2133 	vm_exit_controls_set(vmx, exec_control);
2134 
2135 	/*
2136 	 * Interrupt/Exception Fields
2137 	 */
2138 	if (vmx->nested.nested_run_pending) {
2139 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2140 			     vmcs12->vm_entry_intr_info_field);
2141 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2142 			     vmcs12->vm_entry_exception_error_code);
2143 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2144 			     vmcs12->vm_entry_instruction_len);
2145 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2146 			     vmcs12->guest_interruptibility_info);
2147 		vmx->loaded_vmcs->nmi_known_unmasked =
2148 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2149 	} else {
2150 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2151 	}
2152 }
2153 
2154 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2155 {
2156 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2157 
2158 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2159 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2160 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2161 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2162 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2163 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2164 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2165 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2166 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2167 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2168 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2169 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2170 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2171 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2172 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2173 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2174 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2175 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2176 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2177 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2178 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2179 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2180 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2181 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2182 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2183 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2184 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2185 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2186 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2187 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2188 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2189 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2190 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2191 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2192 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2193 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2194 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2195 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2196 	}
2197 
2198 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2199 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2200 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2201 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2202 			    vmcs12->guest_pending_dbg_exceptions);
2203 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2204 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2205 
2206 		/*
2207 		 * L1 may access the L2's PDPTR, so save them to construct
2208 		 * vmcs12
2209 		 */
2210 		if (enable_ept) {
2211 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2212 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2213 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2214 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2215 		}
2216 
2217 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2218 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2219 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2220 	}
2221 
2222 	if (nested_cpu_has_xsaves(vmcs12))
2223 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2224 
2225 	/*
2226 	 * Whether page-faults are trapped is determined by a combination of
2227 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2228 	 * If enable_ept, L0 doesn't care about page faults and we should
2229 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
2230 	 * care about (at least some) page faults, and because it is not easy
2231 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2232 	 * to exit on each and every L2 page fault. This is done by setting
2233 	 * MASK=MATCH=0 and (see below) EB.PF=1.
2234 	 * Note that below we don't need special code to set EB.PF beyond the
2235 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2236 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2237 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2238 	 */
2239 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2240 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2241 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2242 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
2243 
2244 	if (cpu_has_vmx_apicv()) {
2245 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2246 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2247 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2248 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2249 	}
2250 
2251 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2252 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2253 
2254 	set_cr4_guest_host_mask(vmx);
2255 }
2256 
2257 /*
2258  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2259  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2260  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2261  * guest in a way that will both be appropriate to L1's requests, and our
2262  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2263  * function also has additional necessary side-effects, like setting various
2264  * vcpu->arch fields.
2265  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2266  * is assigned to entry_failure_code on failure.
2267  */
2268 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2269 			  u32 *entry_failure_code)
2270 {
2271 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2272 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2273 	bool load_guest_pdptrs_vmcs12 = false;
2274 
2275 	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2276 		prepare_vmcs02_rare(vmx, vmcs12);
2277 		vmx->nested.dirty_vmcs12 = false;
2278 
2279 		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2280 			!(hv_evmcs->hv_clean_fields &
2281 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2282 	}
2283 
2284 	if (vmx->nested.nested_run_pending &&
2285 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2286 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2287 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2288 	} else {
2289 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2290 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2291 	}
2292 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2293 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2294 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2295 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2296 
2297 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2298 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2299 	 * trap. Note that CR0.TS also needs updating - we do this later.
2300 	 */
2301 	update_exception_bitmap(vcpu);
2302 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2303 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2304 
2305 	if (vmx->nested.nested_run_pending &&
2306 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2307 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2308 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2309 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2310 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2311 	}
2312 
2313 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2314 
2315 	if (kvm_has_tsc_control)
2316 		decache_tsc_multiplier(vmx);
2317 
2318 	if (enable_vpid) {
2319 		/*
2320 		 * There is no direct mapping between vpid02 and vpid12, the
2321 		 * vpid02 is per-vCPU for L0 and reused while the value of
2322 		 * vpid12 is changed w/ one invvpid during nested vmentry.
2323 		 * The vpid12 is allocated by L1 for L2, so it will not
2324 		 * influence global bitmap(for vpid01 and vpid02 allocation)
2325 		 * even if spawn a lot of nested vCPUs.
2326 		 */
2327 		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2328 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2329 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2330 				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2331 			}
2332 		} else {
2333 			/*
2334 			 * If L1 use EPT, then L0 needs to execute INVEPT on
2335 			 * EPTP02 instead of EPTP01. Therefore, delay TLB
2336 			 * flush until vmcs02->eptp is fully updated by
2337 			 * KVM_REQ_LOAD_CR3. Note that this assumes
2338 			 * KVM_REQ_TLB_FLUSH is evaluated after
2339 			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2340 			 */
2341 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2342 		}
2343 	}
2344 
2345 	if (nested_cpu_has_ept(vmcs12))
2346 		nested_ept_init_mmu_context(vcpu);
2347 	else if (nested_cpu_has2(vmcs12,
2348 				 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2349 		vmx_flush_tlb(vcpu, true);
2350 
2351 	/*
2352 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2353 	 * bits which we consider mandatory enabled.
2354 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2355 	 * the specifications by L1; It's not enough to take
2356 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2357 	 * have more bits than L1 expected.
2358 	 */
2359 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2360 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2361 
2362 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2363 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2364 
2365 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2366 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2367 	vmx_set_efer(vcpu, vcpu->arch.efer);
2368 
2369 	/*
2370 	 * Guest state is invalid and unrestricted guest is disabled,
2371 	 * which means L1 attempted VMEntry to L2 with invalid state.
2372 	 * Fail the VMEntry.
2373 	 */
2374 	if (vmx->emulation_required) {
2375 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2376 		return -EINVAL;
2377 	}
2378 
2379 	/* Shadow page tables on either EPT or shadow page tables. */
2380 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2381 				entry_failure_code))
2382 		return -EINVAL;
2383 
2384 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2385 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2386 	    is_pae_paging(vcpu)) {
2387 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2388 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2389 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2390 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2391 	}
2392 
2393 	if (!enable_ept)
2394 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2395 
2396 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2397 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2398 	return 0;
2399 }
2400 
2401 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2402 {
2403 	if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2404 	    nested_cpu_has_virtual_nmis(vmcs12))
2405 		return -EINVAL;
2406 
2407 	if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2408 	    nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2409 		return -EINVAL;
2410 
2411 	return 0;
2412 }
2413 
2414 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2415 {
2416 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2417 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
2418 
2419 	/* Check for memory type validity */
2420 	switch (address & VMX_EPTP_MT_MASK) {
2421 	case VMX_EPTP_MT_UC:
2422 		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2423 			return false;
2424 		break;
2425 	case VMX_EPTP_MT_WB:
2426 		if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2427 			return false;
2428 		break;
2429 	default:
2430 		return false;
2431 	}
2432 
2433 	/* only 4 levels page-walk length are valid */
2434 	if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2435 		return false;
2436 
2437 	/* Reserved bits should not be set */
2438 	if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2439 		return false;
2440 
2441 	/* AD, if set, should be supported */
2442 	if (address & VMX_EPTP_AD_ENABLE_BIT) {
2443 		if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2444 			return false;
2445 	}
2446 
2447 	return true;
2448 }
2449 
2450 /*
2451  * Checks related to VM-Execution Control Fields
2452  */
2453 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2454                                               struct vmcs12 *vmcs12)
2455 {
2456 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2457 
2458 	if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2459 				vmx->nested.msrs.pinbased_ctls_low,
2460 				vmx->nested.msrs.pinbased_ctls_high) ||
2461 	    !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2462 				vmx->nested.msrs.procbased_ctls_low,
2463 				vmx->nested.msrs.procbased_ctls_high))
2464 		return -EINVAL;
2465 
2466 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2467 	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2468 				 vmx->nested.msrs.secondary_ctls_low,
2469 				 vmx->nested.msrs.secondary_ctls_high))
2470 		return -EINVAL;
2471 
2472 	if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2473 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2474 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2475 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2476 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2477 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2478 	    nested_vmx_check_nmi_controls(vmcs12) ||
2479 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2480 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2481 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2482 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2483 	    (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2484 		return -EINVAL;
2485 
2486 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2487 	    nested_cpu_has_save_preemption_timer(vmcs12))
2488 		return -EINVAL;
2489 
2490 	if (nested_cpu_has_ept(vmcs12) &&
2491 	    !valid_ept_address(vcpu, vmcs12->ept_pointer))
2492 		return -EINVAL;
2493 
2494 	if (nested_cpu_has_vmfunc(vmcs12)) {
2495 		if (vmcs12->vm_function_control &
2496 		    ~vmx->nested.msrs.vmfunc_controls)
2497 			return -EINVAL;
2498 
2499 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2500 			if (!nested_cpu_has_ept(vmcs12) ||
2501 			    !page_address_valid(vcpu, vmcs12->eptp_list_address))
2502 				return -EINVAL;
2503 		}
2504 	}
2505 
2506 	return 0;
2507 }
2508 
2509 /*
2510  * Checks related to VM-Exit Control Fields
2511  */
2512 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2513                                          struct vmcs12 *vmcs12)
2514 {
2515 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2516 
2517 	if (!vmx_control_verify(vmcs12->vm_exit_controls,
2518 				vmx->nested.msrs.exit_ctls_low,
2519 				vmx->nested.msrs.exit_ctls_high) ||
2520 	    nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2521 		return -EINVAL;
2522 
2523 	return 0;
2524 }
2525 
2526 /*
2527  * Checks related to VM-Entry Control Fields
2528  */
2529 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2530 					  struct vmcs12 *vmcs12)
2531 {
2532 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2533 
2534 	if (!vmx_control_verify(vmcs12->vm_entry_controls,
2535 				vmx->nested.msrs.entry_ctls_low,
2536 				vmx->nested.msrs.entry_ctls_high))
2537 		return -EINVAL;
2538 
2539 	/*
2540 	 * From the Intel SDM, volume 3:
2541 	 * Fields relevant to VM-entry event injection must be set properly.
2542 	 * These fields are the VM-entry interruption-information field, the
2543 	 * VM-entry exception error code, and the VM-entry instruction length.
2544 	 */
2545 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2546 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2547 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2548 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2549 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2550 		bool should_have_error_code;
2551 		bool urg = nested_cpu_has2(vmcs12,
2552 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2553 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2554 
2555 		/* VM-entry interruption-info field: interruption type */
2556 		if (intr_type == INTR_TYPE_RESERVED ||
2557 		    (intr_type == INTR_TYPE_OTHER_EVENT &&
2558 		     !nested_cpu_supports_monitor_trap_flag(vcpu)))
2559 			return -EINVAL;
2560 
2561 		/* VM-entry interruption-info field: vector */
2562 		if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2563 		    (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2564 		    (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2565 			return -EINVAL;
2566 
2567 		/* VM-entry interruption-info field: deliver error code */
2568 		should_have_error_code =
2569 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2570 			x86_exception_has_error_code(vector);
2571 		if (has_error_code != should_have_error_code)
2572 			return -EINVAL;
2573 
2574 		/* VM-entry exception error code */
2575 		if (has_error_code &&
2576 		    vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
2577 			return -EINVAL;
2578 
2579 		/* VM-entry interruption-info field: reserved bits */
2580 		if (intr_info & INTR_INFO_RESVD_BITS_MASK)
2581 			return -EINVAL;
2582 
2583 		/* VM-entry instruction length */
2584 		switch (intr_type) {
2585 		case INTR_TYPE_SOFT_EXCEPTION:
2586 		case INTR_TYPE_SOFT_INTR:
2587 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2588 			if ((vmcs12->vm_entry_instruction_len > 15) ||
2589 			    (vmcs12->vm_entry_instruction_len == 0 &&
2590 			     !nested_cpu_has_zero_length_injection(vcpu)))
2591 				return -EINVAL;
2592 		}
2593 	}
2594 
2595 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2596 		return -EINVAL;
2597 
2598 	return 0;
2599 }
2600 
2601 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2602 				     struct vmcs12 *vmcs12)
2603 {
2604 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2605 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2606 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2607 		return -EINVAL;
2608 
2609 	return 0;
2610 }
2611 
2612 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2613 				       struct vmcs12 *vmcs12)
2614 {
2615 	bool ia32e;
2616 
2617 	if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2618 	    !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2619 	    !nested_cr3_valid(vcpu, vmcs12->host_cr3))
2620 		return -EINVAL;
2621 
2622 	if (is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu) ||
2623 	    is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu))
2624 		return -EINVAL;
2625 
2626 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2627 	    !kvm_pat_valid(vmcs12->host_ia32_pat))
2628 		return -EINVAL;
2629 
2630 	ia32e = (vmcs12->vm_exit_controls &
2631 		 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2632 
2633 	if (vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2634 	    vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2635 	    vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2636 	    vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2637 	    vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2638 	    vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2639 	    vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK) ||
2640 	    vmcs12->host_cs_selector == 0 ||
2641 	    vmcs12->host_tr_selector == 0 ||
2642 	    (vmcs12->host_ss_selector == 0 && !ia32e))
2643 		return -EINVAL;
2644 
2645 #ifdef CONFIG_X86_64
2646 	if (is_noncanonical_address(vmcs12->host_fs_base, vcpu) ||
2647 	    is_noncanonical_address(vmcs12->host_gs_base, vcpu) ||
2648 	    is_noncanonical_address(vmcs12->host_gdtr_base, vcpu) ||
2649 	    is_noncanonical_address(vmcs12->host_idtr_base, vcpu) ||
2650 	    is_noncanonical_address(vmcs12->host_tr_base, vcpu))
2651 		return -EINVAL;
2652 #endif
2653 
2654 	/*
2655 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2656 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2657 	 * the values of the LMA and LME bits in the field must each be that of
2658 	 * the host address-space size VM-exit control.
2659 	 */
2660 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2661 		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2662 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2663 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
2664 			return -EINVAL;
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2671 					  struct vmcs12 *vmcs12)
2672 {
2673 	int r = 0;
2674 	struct vmcs12 *shadow;
2675 	struct kvm_host_map map;
2676 
2677 	if (vmcs12->vmcs_link_pointer == -1ull)
2678 		return 0;
2679 
2680 	if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2681 		return -EINVAL;
2682 
2683 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
2684 		return -EINVAL;
2685 
2686 	shadow = map.hva;
2687 
2688 	if (shadow->hdr.revision_id != VMCS12_REVISION ||
2689 	    shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2690 		r = -EINVAL;
2691 
2692 	kvm_vcpu_unmap(vcpu, &map, false);
2693 	return r;
2694 }
2695 
2696 /*
2697  * Checks related to Guest Non-register State
2698  */
2699 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2700 {
2701 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2702 	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
2703 		return -EINVAL;
2704 
2705 	return 0;
2706 }
2707 
2708 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2709 					struct vmcs12 *vmcs12,
2710 					u32 *exit_qual)
2711 {
2712 	bool ia32e;
2713 
2714 	*exit_qual = ENTRY_FAIL_DEFAULT;
2715 
2716 	if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2717 	    !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2718 		return -EINVAL;
2719 
2720 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2721 	    !kvm_pat_valid(vmcs12->guest_ia32_pat))
2722 		return -EINVAL;
2723 
2724 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2725 		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2726 		return -EINVAL;
2727 	}
2728 
2729 	/*
2730 	 * If the load IA32_EFER VM-entry control is 1, the following checks
2731 	 * are performed on the field for the IA32_EFER MSR:
2732 	 * - Bits reserved in the IA32_EFER MSR must be 0.
2733 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2734 	 *   the IA-32e mode guest VM-exit control. It must also be identical
2735 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2736 	 *   CR0.PG) is 1.
2737 	 */
2738 	if (to_vmx(vcpu)->nested.nested_run_pending &&
2739 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2740 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2741 		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2742 		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2743 		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2744 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2745 			return -EINVAL;
2746 	}
2747 
2748 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2749 	    (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2750 	     (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2751 		return -EINVAL;
2752 
2753 	if (nested_check_guest_non_reg_state(vmcs12))
2754 		return -EINVAL;
2755 
2756 	return 0;
2757 }
2758 
2759 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2760 {
2761 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2762 	unsigned long cr3, cr4;
2763 	bool vm_fail;
2764 
2765 	if (!nested_early_check)
2766 		return 0;
2767 
2768 	if (vmx->msr_autoload.host.nr)
2769 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2770 	if (vmx->msr_autoload.guest.nr)
2771 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2772 
2773 	preempt_disable();
2774 
2775 	vmx_prepare_switch_to_guest(vcpu);
2776 
2777 	/*
2778 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2779 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2780 	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2781 	 * there is no need to preserve other bits or save/restore the field.
2782 	 */
2783 	vmcs_writel(GUEST_RFLAGS, 0);
2784 
2785 	cr3 = __get_current_cr3_fast();
2786 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2787 		vmcs_writel(HOST_CR3, cr3);
2788 		vmx->loaded_vmcs->host_state.cr3 = cr3;
2789 	}
2790 
2791 	cr4 = cr4_read_shadow();
2792 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2793 		vmcs_writel(HOST_CR4, cr4);
2794 		vmx->loaded_vmcs->host_state.cr4 = cr4;
2795 	}
2796 
2797 	asm(
2798 		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2799 		"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2800 		"je 1f \n\t"
2801 		__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2802 		"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2803 		"1: \n\t"
2804 		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2805 
2806 		/* Check if vmlaunch or vmresume is needed */
2807 		"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2808 
2809 		/*
2810 		 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2811 		 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2812 		 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2813 		 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2814 		 */
2815 		"call vmx_vmenter\n\t"
2816 
2817 		CC_SET(be)
2818 	      : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
2819 	      :	[HOST_RSP]"r"((unsigned long)HOST_RSP),
2820 		[loaded_vmcs]"r"(vmx->loaded_vmcs),
2821 		[launched]"i"(offsetof(struct loaded_vmcs, launched)),
2822 		[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
2823 		[wordsize]"i"(sizeof(ulong))
2824 	      : "memory"
2825 	);
2826 
2827 	if (vmx->msr_autoload.host.nr)
2828 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2829 	if (vmx->msr_autoload.guest.nr)
2830 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2831 
2832 	if (vm_fail) {
2833 		preempt_enable();
2834 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2835 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2836 		return 1;
2837 	}
2838 
2839 	/*
2840 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2841 	 */
2842 	local_irq_enable();
2843 	if (hw_breakpoint_active())
2844 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
2845 	preempt_enable();
2846 
2847 	/*
2848 	 * A non-failing VMEntry means we somehow entered guest mode with
2849 	 * an illegal RIP, and that's just the tip of the iceberg.  There
2850 	 * is no telling what memory has been modified or what state has
2851 	 * been exposed to unknown code.  Hitting this all but guarantees
2852 	 * a (very critical) hardware issue.
2853 	 */
2854 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2855 		VMX_EXIT_REASONS_FAILED_VMENTRY));
2856 
2857 	return 0;
2858 }
2859 
2860 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2861 						 struct vmcs12 *vmcs12);
2862 
2863 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2864 {
2865 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2866 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2867 	struct kvm_host_map *map;
2868 	struct page *page;
2869 	u64 hpa;
2870 
2871 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2872 		/*
2873 		 * Translate L1 physical address to host physical
2874 		 * address for vmcs02. Keep the page pinned, so this
2875 		 * physical address remains valid. We keep a reference
2876 		 * to it so we can release it later.
2877 		 */
2878 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
2879 			kvm_release_page_dirty(vmx->nested.apic_access_page);
2880 			vmx->nested.apic_access_page = NULL;
2881 		}
2882 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2883 		/*
2884 		 * If translation failed, no matter: This feature asks
2885 		 * to exit when accessing the given address, and if it
2886 		 * can never be accessed, this feature won't do
2887 		 * anything anyway.
2888 		 */
2889 		if (!is_error_page(page)) {
2890 			vmx->nested.apic_access_page = page;
2891 			hpa = page_to_phys(vmx->nested.apic_access_page);
2892 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
2893 		} else {
2894 			secondary_exec_controls_clearbit(vmx,
2895 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2896 		}
2897 	}
2898 
2899 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2900 		map = &vmx->nested.virtual_apic_map;
2901 
2902 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2903 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2904 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2905 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2906 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2907 			/*
2908 			 * The processor will never use the TPR shadow, simply
2909 			 * clear the bit from the execution control.  Such a
2910 			 * configuration is useless, but it happens in tests.
2911 			 * For any other configuration, failing the vm entry is
2912 			 * _not_ what the processor does but it's basically the
2913 			 * only possibility we have.
2914 			 */
2915 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2916 		} else {
2917 			/*
2918 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2919 			 * force VM-Entry to fail.
2920 			 */
2921 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2922 		}
2923 	}
2924 
2925 	if (nested_cpu_has_posted_intr(vmcs12)) {
2926 		map = &vmx->nested.pi_desc_map;
2927 
2928 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2929 			vmx->nested.pi_desc =
2930 				(struct pi_desc *)(((void *)map->hva) +
2931 				offset_in_page(vmcs12->posted_intr_desc_addr));
2932 			vmcs_write64(POSTED_INTR_DESC_ADDR,
2933 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2934 		}
2935 	}
2936 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2937 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2938 	else
2939 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2940 }
2941 
2942 /*
2943  * Intel's VMX Instruction Reference specifies a common set of prerequisites
2944  * for running VMX instructions (except VMXON, whose prerequisites are
2945  * slightly different). It also specifies what exception to inject otherwise.
2946  * Note that many of these exceptions have priority over VM exits, so they
2947  * don't have to be checked again here.
2948  */
2949 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2950 {
2951 	if (!to_vmx(vcpu)->nested.vmxon) {
2952 		kvm_queue_exception(vcpu, UD_VECTOR);
2953 		return 0;
2954 	}
2955 
2956 	if (vmx_get_cpl(vcpu)) {
2957 		kvm_inject_gp(vcpu, 0);
2958 		return 0;
2959 	}
2960 
2961 	return 1;
2962 }
2963 
2964 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2965 {
2966 	u8 rvi = vmx_get_rvi();
2967 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2968 
2969 	return ((rvi & 0xf0) > (vppr & 0xf0));
2970 }
2971 
2972 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2973 				   struct vmcs12 *vmcs12);
2974 
2975 /*
2976  * If from_vmentry is false, this is being called from state restore (either RSM
2977  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
2978 + *
2979 + * Returns:
2980 + *   0 - success, i.e. proceed with actual VMEnter
2981 + *   1 - consistency check VMExit
2982 + *  -1 - consistency check VMFail
2983  */
2984 int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2985 {
2986 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2987 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2988 	bool evaluate_pending_interrupts;
2989 	u32 exit_reason = EXIT_REASON_INVALID_STATE;
2990 	u32 exit_qual;
2991 
2992 	evaluate_pending_interrupts = exec_controls_get(vmx) &
2993 		(CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2994 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2995 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2996 
2997 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2998 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2999 	if (kvm_mpx_supported() &&
3000 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3001 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3002 
3003 	/*
3004 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3005 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3006 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3007 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3008 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3009 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3010 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3011 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3012 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3013 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3014 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3015 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3016 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3017 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3018 	 */
3019 	if (!enable_ept && !nested_early_check)
3020 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3021 
3022 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3023 
3024 	prepare_vmcs02_early(vmx, vmcs12);
3025 
3026 	if (from_vmentry) {
3027 		nested_get_vmcs12_pages(vcpu);
3028 
3029 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3030 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3031 			return -1;
3032 		}
3033 
3034 		if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3035 			goto vmentry_fail_vmexit;
3036 	}
3037 
3038 	enter_guest_mode(vcpu);
3039 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3040 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3041 
3042 	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3043 		goto vmentry_fail_vmexit_guest_mode;
3044 
3045 	if (from_vmentry) {
3046 		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3047 		exit_qual = nested_vmx_load_msr(vcpu,
3048 						vmcs12->vm_entry_msr_load_addr,
3049 						vmcs12->vm_entry_msr_load_count);
3050 		if (exit_qual)
3051 			goto vmentry_fail_vmexit_guest_mode;
3052 	} else {
3053 		/*
3054 		 * The MMU is not initialized to point at the right entities yet and
3055 		 * "get pages" would need to read data from the guest (i.e. we will
3056 		 * need to perform gpa to hpa translation). Request a call
3057 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3058 		 * have already been set at vmentry time and should not be reset.
3059 		 */
3060 		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3061 	}
3062 
3063 	/*
3064 	 * If L1 had a pending IRQ/NMI until it executed
3065 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3066 	 * disallowed (e.g. interrupts disabled), L0 needs to
3067 	 * evaluate if this pending event should cause an exit from L2
3068 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3069 	 * intercept EXTERNAL_INTERRUPT).
3070 	 *
3071 	 * Usually this would be handled by the processor noticing an
3072 	 * IRQ/NMI window request, or checking RVI during evaluation of
3073 	 * pending virtual interrupts.  However, this setting was done
3074 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3075 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3076 	 */
3077 	if (unlikely(evaluate_pending_interrupts))
3078 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3079 
3080 	/*
3081 	 * Do not start the preemption timer hrtimer until after we know
3082 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3083 	 * the timer.
3084 	 */
3085 	vmx->nested.preemption_timer_expired = false;
3086 	if (nested_cpu_has_preemption_timer(vmcs12))
3087 		vmx_start_preemption_timer(vcpu);
3088 
3089 	/*
3090 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3091 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3092 	 * returned as far as L1 is concerned. It will only return (and set
3093 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3094 	 */
3095 	return 0;
3096 
3097 	/*
3098 	 * A failed consistency check that leads to a VMExit during L1's
3099 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3100 	 * 26.7 "VM-entry failures during or after loading guest state".
3101 	 */
3102 vmentry_fail_vmexit_guest_mode:
3103 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3104 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3105 	leave_guest_mode(vcpu);
3106 
3107 vmentry_fail_vmexit:
3108 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3109 
3110 	if (!from_vmentry)
3111 		return 1;
3112 
3113 	load_vmcs12_host_state(vcpu, vmcs12);
3114 	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3115 	vmcs12->exit_qualification = exit_qual;
3116 	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3117 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3118 	return 1;
3119 }
3120 
3121 /*
3122  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3123  * for running an L2 nested guest.
3124  */
3125 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3126 {
3127 	struct vmcs12 *vmcs12;
3128 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3129 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3130 	int ret;
3131 
3132 	if (!nested_vmx_check_permission(vcpu))
3133 		return 1;
3134 
3135 	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3136 		return 1;
3137 
3138 	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3139 		return nested_vmx_failInvalid(vcpu);
3140 
3141 	vmcs12 = get_vmcs12(vcpu);
3142 
3143 	/*
3144 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3145 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3146 	 * rather than RFLAGS.ZF, and no error number is stored to the
3147 	 * VM-instruction error field.
3148 	 */
3149 	if (vmcs12->hdr.shadow_vmcs)
3150 		return nested_vmx_failInvalid(vcpu);
3151 
3152 	if (vmx->nested.hv_evmcs) {
3153 		copy_enlightened_to_vmcs12(vmx);
3154 		/* Enlightened VMCS doesn't have launch state */
3155 		vmcs12->launch_state = !launch;
3156 	} else if (enable_shadow_vmcs) {
3157 		copy_shadow_to_vmcs12(vmx);
3158 	}
3159 
3160 	/*
3161 	 * The nested entry process starts with enforcing various prerequisites
3162 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3163 	 * they fail: As the SDM explains, some conditions should cause the
3164 	 * instruction to fail, while others will cause the instruction to seem
3165 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3166 	 * To speed up the normal (success) code path, we should avoid checking
3167 	 * for misconfigurations which will anyway be caught by the processor
3168 	 * when using the merged vmcs02.
3169 	 */
3170 	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3171 		return nested_vmx_failValid(vcpu,
3172 			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3173 
3174 	if (vmcs12->launch_state == launch)
3175 		return nested_vmx_failValid(vcpu,
3176 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3177 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3178 
3179 	if (nested_vmx_check_controls(vcpu, vmcs12))
3180 		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3181 
3182 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3183 		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3184 
3185 	/*
3186 	 * We're finally done with prerequisite checking, and can start with
3187 	 * the nested entry.
3188 	 */
3189 	vmx->nested.nested_run_pending = 1;
3190 	ret = nested_vmx_enter_non_root_mode(vcpu, true);
3191 	vmx->nested.nested_run_pending = !ret;
3192 	if (ret > 0)
3193 		return 1;
3194 	else if (ret)
3195 		return nested_vmx_failValid(vcpu,
3196 			VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3197 
3198 	/* Hide L1D cache contents from the nested guest.  */
3199 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3200 
3201 	/*
3202 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3203 	 * also be used as part of restoring nVMX state for
3204 	 * snapshot restore (migration).
3205 	 *
3206 	 * In this flow, it is assumed that vmcs12 cache was
3207 	 * trasferred as part of captured nVMX state and should
3208 	 * therefore not be read from guest memory (which may not
3209 	 * exist on destination host yet).
3210 	 */
3211 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3212 
3213 	/*
3214 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3215 	 * awakened by event injection or by an NMI-window VM-exit or
3216 	 * by an interrupt-window VM-exit, halt the vcpu.
3217 	 */
3218 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3219 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3220 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3221 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3222 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3223 		vmx->nested.nested_run_pending = 0;
3224 		return kvm_vcpu_halt(vcpu);
3225 	}
3226 	return 1;
3227 }
3228 
3229 /*
3230  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3231  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3232  * This function returns the new value we should put in vmcs12.guest_cr0.
3233  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3234  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3235  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3236  *     didn't trap the bit, because if L1 did, so would L0).
3237  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3238  *     been modified by L2, and L1 knows it. So just leave the old value of
3239  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3240  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3241  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3242  *     changed these bits, and therefore they need to be updated, but L0
3243  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3244  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3245  */
3246 static inline unsigned long
3247 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3248 {
3249 	return
3250 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3251 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3252 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3253 			vcpu->arch.cr0_guest_owned_bits));
3254 }
3255 
3256 static inline unsigned long
3257 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3258 {
3259 	return
3260 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3261 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3262 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3263 			vcpu->arch.cr4_guest_owned_bits));
3264 }
3265 
3266 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3267 				      struct vmcs12 *vmcs12)
3268 {
3269 	u32 idt_vectoring;
3270 	unsigned int nr;
3271 
3272 	if (vcpu->arch.exception.injected) {
3273 		nr = vcpu->arch.exception.nr;
3274 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3275 
3276 		if (kvm_exception_is_soft(nr)) {
3277 			vmcs12->vm_exit_instruction_len =
3278 				vcpu->arch.event_exit_inst_len;
3279 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3280 		} else
3281 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3282 
3283 		if (vcpu->arch.exception.has_error_code) {
3284 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3285 			vmcs12->idt_vectoring_error_code =
3286 				vcpu->arch.exception.error_code;
3287 		}
3288 
3289 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3290 	} else if (vcpu->arch.nmi_injected) {
3291 		vmcs12->idt_vectoring_info_field =
3292 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3293 	} else if (vcpu->arch.interrupt.injected) {
3294 		nr = vcpu->arch.interrupt.nr;
3295 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3296 
3297 		if (vcpu->arch.interrupt.soft) {
3298 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3299 			vmcs12->vm_entry_instruction_len =
3300 				vcpu->arch.event_exit_inst_len;
3301 		} else
3302 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3303 
3304 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3305 	}
3306 }
3307 
3308 
3309 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3310 {
3311 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3312 	gfn_t gfn;
3313 
3314 	/*
3315 	 * Don't need to mark the APIC access page dirty; it is never
3316 	 * written to by the CPU during APIC virtualization.
3317 	 */
3318 
3319 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3320 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3321 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3322 	}
3323 
3324 	if (nested_cpu_has_posted_intr(vmcs12)) {
3325 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3326 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3327 	}
3328 }
3329 
3330 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3331 {
3332 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3333 	int max_irr;
3334 	void *vapic_page;
3335 	u16 status;
3336 
3337 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3338 		return;
3339 
3340 	vmx->nested.pi_pending = false;
3341 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3342 		return;
3343 
3344 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3345 	if (max_irr != 256) {
3346 		vapic_page = vmx->nested.virtual_apic_map.hva;
3347 		if (!vapic_page)
3348 			return;
3349 
3350 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3351 			vapic_page, &max_irr);
3352 		status = vmcs_read16(GUEST_INTR_STATUS);
3353 		if ((u8)max_irr > ((u8)status & 0xff)) {
3354 			status &= ~0xff;
3355 			status |= (u8)max_irr;
3356 			vmcs_write16(GUEST_INTR_STATUS, status);
3357 		}
3358 	}
3359 
3360 	nested_mark_vmcs12_pages_dirty(vcpu);
3361 }
3362 
3363 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3364 					       unsigned long exit_qual)
3365 {
3366 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3367 	unsigned int nr = vcpu->arch.exception.nr;
3368 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3369 
3370 	if (vcpu->arch.exception.has_error_code) {
3371 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3372 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3373 	}
3374 
3375 	if (kvm_exception_is_soft(nr))
3376 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3377 	else
3378 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3379 
3380 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3381 	    vmx_get_nmi_mask(vcpu))
3382 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3383 
3384 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3385 }
3386 
3387 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3388 {
3389 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3390 	unsigned long exit_qual;
3391 	bool block_nested_events =
3392 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3393 
3394 	if (vcpu->arch.exception.pending &&
3395 		nested_vmx_check_exception(vcpu, &exit_qual)) {
3396 		if (block_nested_events)
3397 			return -EBUSY;
3398 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3399 		return 0;
3400 	}
3401 
3402 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3403 	    vmx->nested.preemption_timer_expired) {
3404 		if (block_nested_events)
3405 			return -EBUSY;
3406 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3407 		return 0;
3408 	}
3409 
3410 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3411 		if (block_nested_events)
3412 			return -EBUSY;
3413 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3414 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3415 				  INTR_INFO_VALID_MASK, 0);
3416 		/*
3417 		 * The NMI-triggered VM exit counts as injection:
3418 		 * clear this one and block further NMIs.
3419 		 */
3420 		vcpu->arch.nmi_pending = 0;
3421 		vmx_set_nmi_mask(vcpu, true);
3422 		return 0;
3423 	}
3424 
3425 	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3426 	    nested_exit_on_intr(vcpu)) {
3427 		if (block_nested_events)
3428 			return -EBUSY;
3429 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3430 		return 0;
3431 	}
3432 
3433 	vmx_complete_nested_posted_interrupt(vcpu);
3434 	return 0;
3435 }
3436 
3437 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3438 {
3439 	ktime_t remaining =
3440 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3441 	u64 value;
3442 
3443 	if (ktime_to_ns(remaining) <= 0)
3444 		return 0;
3445 
3446 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3447 	do_div(value, 1000000);
3448 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3449 }
3450 
3451 static bool is_vmcs12_ext_field(unsigned long field)
3452 {
3453 	switch (field) {
3454 	case GUEST_ES_SELECTOR:
3455 	case GUEST_CS_SELECTOR:
3456 	case GUEST_SS_SELECTOR:
3457 	case GUEST_DS_SELECTOR:
3458 	case GUEST_FS_SELECTOR:
3459 	case GUEST_GS_SELECTOR:
3460 	case GUEST_LDTR_SELECTOR:
3461 	case GUEST_TR_SELECTOR:
3462 	case GUEST_ES_LIMIT:
3463 	case GUEST_CS_LIMIT:
3464 	case GUEST_SS_LIMIT:
3465 	case GUEST_DS_LIMIT:
3466 	case GUEST_FS_LIMIT:
3467 	case GUEST_GS_LIMIT:
3468 	case GUEST_LDTR_LIMIT:
3469 	case GUEST_TR_LIMIT:
3470 	case GUEST_GDTR_LIMIT:
3471 	case GUEST_IDTR_LIMIT:
3472 	case GUEST_ES_AR_BYTES:
3473 	case GUEST_DS_AR_BYTES:
3474 	case GUEST_FS_AR_BYTES:
3475 	case GUEST_GS_AR_BYTES:
3476 	case GUEST_LDTR_AR_BYTES:
3477 	case GUEST_TR_AR_BYTES:
3478 	case GUEST_ES_BASE:
3479 	case GUEST_CS_BASE:
3480 	case GUEST_SS_BASE:
3481 	case GUEST_DS_BASE:
3482 	case GUEST_FS_BASE:
3483 	case GUEST_GS_BASE:
3484 	case GUEST_LDTR_BASE:
3485 	case GUEST_TR_BASE:
3486 	case GUEST_GDTR_BASE:
3487 	case GUEST_IDTR_BASE:
3488 	case GUEST_PENDING_DBG_EXCEPTIONS:
3489 	case GUEST_BNDCFGS:
3490 		return true;
3491 	default:
3492 		break;
3493 	}
3494 
3495 	return false;
3496 }
3497 
3498 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3499 				       struct vmcs12 *vmcs12)
3500 {
3501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3502 
3503 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3504 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3505 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3506 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3507 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3508 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3509 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3510 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3511 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3512 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3513 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3514 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3515 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3516 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3517 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3518 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3519 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3520 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3521 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3522 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3523 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3524 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3525 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3526 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3527 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3528 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3529 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3530 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3531 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3532 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3533 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3534 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3535 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3536 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3537 	vmcs12->guest_pending_dbg_exceptions =
3538 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3539 	if (kvm_mpx_supported())
3540 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3541 
3542 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3543 }
3544 
3545 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3546 				       struct vmcs12 *vmcs12)
3547 {
3548 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3549 	int cpu;
3550 
3551 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3552 		return;
3553 
3554 
3555 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3556 
3557 	cpu = get_cpu();
3558 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
3559 	vmx_vcpu_load(&vmx->vcpu, cpu);
3560 
3561 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3562 
3563 	vmx->loaded_vmcs = &vmx->vmcs01;
3564 	vmx_vcpu_load(&vmx->vcpu, cpu);
3565 	put_cpu();
3566 }
3567 
3568 /*
3569  * Update the guest state fields of vmcs12 to reflect changes that
3570  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3571  * VM-entry controls is also updated, since this is really a guest
3572  * state bit.)
3573  */
3574 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3575 {
3576 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3577 
3578 	if (vmx->nested.hv_evmcs)
3579 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3580 
3581 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3582 
3583 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3584 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3585 
3586 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3587 	vmcs12->guest_rip = kvm_rip_read(vcpu);
3588 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3589 
3590 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3591 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3592 
3593 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3594 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3595 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3596 
3597 	vmcs12->guest_interruptibility_info =
3598 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3599 
3600 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3601 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3602 	else
3603 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3604 
3605 	if (nested_cpu_has_preemption_timer(vmcs12) &&
3606 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3607 			vmcs12->vmx_preemption_timer_value =
3608 				vmx_get_preemption_timer_value(vcpu);
3609 
3610 	/*
3611 	 * In some cases (usually, nested EPT), L2 is allowed to change its
3612 	 * own CR3 without exiting. If it has changed it, we must keep it.
3613 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3614 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3615 	 *
3616 	 * Additionally, restore L2's PDPTR to vmcs12.
3617 	 */
3618 	if (enable_ept) {
3619 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3620 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3621 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3622 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3623 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3624 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3625 		}
3626 	}
3627 
3628 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3629 
3630 	if (nested_cpu_has_vid(vmcs12))
3631 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3632 
3633 	vmcs12->vm_entry_controls =
3634 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3635 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3636 
3637 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3638 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3639 
3640 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3641 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
3642 }
3643 
3644 /*
3645  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3646  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3647  * and this function updates it to reflect the changes to the guest state while
3648  * L2 was running (and perhaps made some exits which were handled directly by L0
3649  * without going back to L1), and to reflect the exit reason.
3650  * Note that we do not have to copy here all VMCS fields, just those that
3651  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3652  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3653  * which already writes to vmcs12 directly.
3654  */
3655 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3656 			   u32 exit_reason, u32 exit_intr_info,
3657 			   unsigned long exit_qualification)
3658 {
3659 	/* update exit information fields: */
3660 	vmcs12->vm_exit_reason = exit_reason;
3661 	vmcs12->exit_qualification = exit_qualification;
3662 	vmcs12->vm_exit_intr_info = exit_intr_info;
3663 
3664 	vmcs12->idt_vectoring_info_field = 0;
3665 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3666 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3667 
3668 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3669 		vmcs12->launch_state = 1;
3670 
3671 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
3672 		 * instead of reading the real value. */
3673 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3674 
3675 		/*
3676 		 * Transfer the event that L0 or L1 may wanted to inject into
3677 		 * L2 to IDT_VECTORING_INFO_FIELD.
3678 		 */
3679 		vmcs12_save_pending_event(vcpu, vmcs12);
3680 
3681 		/*
3682 		 * According to spec, there's no need to store the guest's
3683 		 * MSRs if the exit is due to a VM-entry failure that occurs
3684 		 * during or after loading the guest state. Since this exit
3685 		 * does not fall in that category, we need to save the MSRs.
3686 		 */
3687 		if (nested_vmx_store_msr(vcpu,
3688 					 vmcs12->vm_exit_msr_store_addr,
3689 					 vmcs12->vm_exit_msr_store_count))
3690 			nested_vmx_abort(vcpu,
3691 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3692 	}
3693 
3694 	/*
3695 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3696 	 * preserved above and would only end up incorrectly in L1.
3697 	 */
3698 	vcpu->arch.nmi_injected = false;
3699 	kvm_clear_exception_queue(vcpu);
3700 	kvm_clear_interrupt_queue(vcpu);
3701 }
3702 
3703 /*
3704  * A part of what we need to when the nested L2 guest exits and we want to
3705  * run its L1 parent, is to reset L1's guest state to the host state specified
3706  * in vmcs12.
3707  * This function is to be called not only on normal nested exit, but also on
3708  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3709  * Failures During or After Loading Guest State").
3710  * This function should be called when the active VMCS is L1's (vmcs01).
3711  */
3712 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3713 				   struct vmcs12 *vmcs12)
3714 {
3715 	struct kvm_segment seg;
3716 	u32 entry_failure_code;
3717 
3718 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3719 		vcpu->arch.efer = vmcs12->host_ia32_efer;
3720 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3721 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3722 	else
3723 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3724 	vmx_set_efer(vcpu, vcpu->arch.efer);
3725 
3726 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
3727 	kvm_rip_write(vcpu, vmcs12->host_rip);
3728 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3729 	vmx_set_interrupt_shadow(vcpu, 0);
3730 
3731 	/*
3732 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3733 	 * actually changed, because vmx_set_cr0 refers to efer set above.
3734 	 *
3735 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3736 	 * (KVM doesn't change it);
3737 	 */
3738 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3739 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
3740 
3741 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
3742 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3743 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
3744 
3745 	nested_ept_uninit_mmu_context(vcpu);
3746 
3747 	/*
3748 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3749 	 * couldn't have changed.
3750 	 */
3751 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3752 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3753 
3754 	if (!enable_ept)
3755 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3756 
3757 	/*
3758 	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3759 	 * VMEntry/VMExit. Thus, no need to flush TLB.
3760 	 *
3761 	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3762 	 * flushed on every VMEntry/VMExit.
3763 	 *
3764 	 * Otherwise, we can preserve TLB entries as long as we are
3765 	 * able to tag L1 TLB entries differently than L2 TLB entries.
3766 	 *
3767 	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3768 	 * and therefore we request the TLB flush to happen only after VMCS EPTP
3769 	 * has been set by KVM_REQ_LOAD_CR3.
3770 	 */
3771 	if (enable_vpid &&
3772 	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3773 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3774 	}
3775 
3776 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3777 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3778 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3779 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3780 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3781 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3782 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3783 
3784 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
3785 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3786 		vmcs_write64(GUEST_BNDCFGS, 0);
3787 
3788 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3789 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3790 		vcpu->arch.pat = vmcs12->host_ia32_pat;
3791 	}
3792 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3793 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3794 			vmcs12->host_ia32_perf_global_ctrl);
3795 
3796 	/* Set L1 segment info according to Intel SDM
3797 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
3798 	seg = (struct kvm_segment) {
3799 		.base = 0,
3800 		.limit = 0xFFFFFFFF,
3801 		.selector = vmcs12->host_cs_selector,
3802 		.type = 11,
3803 		.present = 1,
3804 		.s = 1,
3805 		.g = 1
3806 	};
3807 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3808 		seg.l = 1;
3809 	else
3810 		seg.db = 1;
3811 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3812 	seg = (struct kvm_segment) {
3813 		.base = 0,
3814 		.limit = 0xFFFFFFFF,
3815 		.type = 3,
3816 		.present = 1,
3817 		.s = 1,
3818 		.db = 1,
3819 		.g = 1
3820 	};
3821 	seg.selector = vmcs12->host_ds_selector;
3822 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3823 	seg.selector = vmcs12->host_es_selector;
3824 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3825 	seg.selector = vmcs12->host_ss_selector;
3826 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3827 	seg.selector = vmcs12->host_fs_selector;
3828 	seg.base = vmcs12->host_fs_base;
3829 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3830 	seg.selector = vmcs12->host_gs_selector;
3831 	seg.base = vmcs12->host_gs_base;
3832 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3833 	seg = (struct kvm_segment) {
3834 		.base = vmcs12->host_tr_base,
3835 		.limit = 0x67,
3836 		.selector = vmcs12->host_tr_selector,
3837 		.type = 11,
3838 		.present = 1
3839 	};
3840 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3841 
3842 	kvm_set_dr(vcpu, 7, 0x400);
3843 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3844 
3845 	if (cpu_has_vmx_msr_bitmap())
3846 		vmx_update_msr_bitmap(vcpu);
3847 
3848 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3849 				vmcs12->vm_exit_msr_load_count))
3850 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3851 }
3852 
3853 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3854 {
3855 	struct shared_msr_entry *efer_msr;
3856 	unsigned int i;
3857 
3858 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3859 		return vmcs_read64(GUEST_IA32_EFER);
3860 
3861 	if (cpu_has_load_ia32_efer())
3862 		return host_efer;
3863 
3864 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3865 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3866 			return vmx->msr_autoload.guest.val[i].value;
3867 	}
3868 
3869 	efer_msr = find_msr_entry(vmx, MSR_EFER);
3870 	if (efer_msr)
3871 		return efer_msr->data;
3872 
3873 	return host_efer;
3874 }
3875 
3876 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3877 {
3878 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3879 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3880 	struct vmx_msr_entry g, h;
3881 	struct msr_data msr;
3882 	gpa_t gpa;
3883 	u32 i, j;
3884 
3885 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3886 
3887 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3888 		/*
3889 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3890 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
3891 		 * and vcpu->arch.dr7 is not squirreled away before the
3892 		 * nested VMENTER (not worth adding a variable in nested_vmx).
3893 		 */
3894 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3895 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3896 		else
3897 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3898 	}
3899 
3900 	/*
3901 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3902 	 * handle a variety of side effects to KVM's software model.
3903 	 */
3904 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3905 
3906 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3907 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3908 
3909 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3910 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3911 
3912 	nested_ept_uninit_mmu_context(vcpu);
3913 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3914 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3915 
3916 	/*
3917 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3918 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
3919 	 * VMFail, like everything else we just need to ensure our
3920 	 * software model is up-to-date.
3921 	 */
3922 	if (enable_ept)
3923 		ept_save_pdptrs(vcpu);
3924 
3925 	kvm_mmu_reset_context(vcpu);
3926 
3927 	if (cpu_has_vmx_msr_bitmap())
3928 		vmx_update_msr_bitmap(vcpu);
3929 
3930 	/*
3931 	 * This nasty bit of open coding is a compromise between blindly
3932 	 * loading L1's MSRs using the exit load lists (incorrect emulation
3933 	 * of VMFail), leaving the nested VM's MSRs in the software model
3934 	 * (incorrect behavior) and snapshotting the modified MSRs (too
3935 	 * expensive since the lists are unbound by hardware).  For each
3936 	 * MSR that was (prematurely) loaded from the nested VMEntry load
3937 	 * list, reload it from the exit load list if it exists and differs
3938 	 * from the guest value.  The intent is to stuff host state as
3939 	 * silently as possible, not to fully process the exit load list.
3940 	 */
3941 	msr.host_initiated = false;
3942 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3943 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3944 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3945 			pr_debug_ratelimited(
3946 				"%s read MSR index failed (%u, 0x%08llx)\n",
3947 				__func__, i, gpa);
3948 			goto vmabort;
3949 		}
3950 
3951 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3952 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3953 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3954 				pr_debug_ratelimited(
3955 					"%s read MSR failed (%u, 0x%08llx)\n",
3956 					__func__, j, gpa);
3957 				goto vmabort;
3958 			}
3959 			if (h.index != g.index)
3960 				continue;
3961 			if (h.value == g.value)
3962 				break;
3963 
3964 			if (nested_vmx_load_msr_check(vcpu, &h)) {
3965 				pr_debug_ratelimited(
3966 					"%s check failed (%u, 0x%x, 0x%x)\n",
3967 					__func__, j, h.index, h.reserved);
3968 				goto vmabort;
3969 			}
3970 
3971 			msr.index = h.index;
3972 			msr.data = h.value;
3973 			if (kvm_set_msr(vcpu, &msr)) {
3974 				pr_debug_ratelimited(
3975 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3976 					__func__, j, h.index, h.value);
3977 				goto vmabort;
3978 			}
3979 		}
3980 	}
3981 
3982 	return;
3983 
3984 vmabort:
3985 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3986 }
3987 
3988 /*
3989  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3990  * and modify vmcs12 to make it see what it would expect to see there if
3991  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3992  */
3993 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3994 		       u32 exit_intr_info, unsigned long exit_qualification)
3995 {
3996 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3997 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3998 
3999 	/* trying to cancel vmlaunch/vmresume is a bug */
4000 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4001 
4002 	leave_guest_mode(vcpu);
4003 
4004 	if (nested_cpu_has_preemption_timer(vmcs12))
4005 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4006 
4007 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4008 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4009 
4010 	if (likely(!vmx->fail)) {
4011 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4012 
4013 		if (exit_reason != -1)
4014 			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4015 				       exit_qualification);
4016 
4017 		/*
4018 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4019 		 * also be used to capture vmcs12 cache as part of
4020 		 * capturing nVMX state for snapshot (migration).
4021 		 *
4022 		 * Otherwise, this flush will dirty guest memory at a
4023 		 * point it is already assumed by user-space to be
4024 		 * immutable.
4025 		 */
4026 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4027 	} else {
4028 		/*
4029 		 * The only expected VM-instruction error is "VM entry with
4030 		 * invalid control field(s)." Anything else indicates a
4031 		 * problem with L0.  And we should never get here with a
4032 		 * VMFail of any type if early consistency checks are enabled.
4033 		 */
4034 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4035 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4036 		WARN_ON_ONCE(nested_early_check);
4037 	}
4038 
4039 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4040 
4041 	/* Update any VMCS fields that might have changed while L2 ran */
4042 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4043 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4044 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4045 
4046 	if (kvm_has_tsc_control)
4047 		decache_tsc_multiplier(vmx);
4048 
4049 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4050 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4051 		vmx_set_virtual_apic_mode(vcpu);
4052 	} else if (!nested_cpu_has_ept(vmcs12) &&
4053 		   nested_cpu_has2(vmcs12,
4054 				   SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4055 		vmx_flush_tlb(vcpu, true);
4056 	}
4057 
4058 	/* Unpin physical memory we referred to in vmcs02 */
4059 	if (vmx->nested.apic_access_page) {
4060 		kvm_release_page_dirty(vmx->nested.apic_access_page);
4061 		vmx->nested.apic_access_page = NULL;
4062 	}
4063 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4064 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4065 	vmx->nested.pi_desc = NULL;
4066 
4067 	/*
4068 	 * We are now running in L2, mmu_notifier will force to reload the
4069 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4070 	 */
4071 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4072 
4073 	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4074 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4075 
4076 	/* in case we halted in L2 */
4077 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4078 
4079 	if (likely(!vmx->fail)) {
4080 		/*
4081 		 * TODO: SDM says that with acknowledge interrupt on
4082 		 * exit, bit 31 of the VM-exit interrupt information
4083 		 * (valid interrupt) is always set to 1 on
4084 		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4085 		 * need kvm_cpu_has_interrupt().  See the commit
4086 		 * message for details.
4087 		 */
4088 		if (nested_exit_intr_ack_set(vcpu) &&
4089 		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4090 		    kvm_cpu_has_interrupt(vcpu)) {
4091 			int irq = kvm_cpu_get_interrupt(vcpu);
4092 			WARN_ON(irq < 0);
4093 			vmcs12->vm_exit_intr_info = irq |
4094 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4095 		}
4096 
4097 		if (exit_reason != -1)
4098 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4099 						       vmcs12->exit_qualification,
4100 						       vmcs12->idt_vectoring_info_field,
4101 						       vmcs12->vm_exit_intr_info,
4102 						       vmcs12->vm_exit_intr_error_code,
4103 						       KVM_ISA_VMX);
4104 
4105 		load_vmcs12_host_state(vcpu, vmcs12);
4106 
4107 		return;
4108 	}
4109 
4110 	/*
4111 	 * After an early L2 VM-entry failure, we're now back
4112 	 * in L1 which thinks it just finished a VMLAUNCH or
4113 	 * VMRESUME instruction, so we need to set the failure
4114 	 * flag and the VM-instruction error field of the VMCS
4115 	 * accordingly, and skip the emulated instruction.
4116 	 */
4117 	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4118 
4119 	/*
4120 	 * Restore L1's host state to KVM's software model.  We're here
4121 	 * because a consistency check was caught by hardware, which
4122 	 * means some amount of guest state has been propagated to KVM's
4123 	 * model and needs to be unwound to the host's state.
4124 	 */
4125 	nested_vmx_restore_host_state(vcpu);
4126 
4127 	vmx->fail = 0;
4128 }
4129 
4130 /*
4131  * Decode the memory-address operand of a vmx instruction, as recorded on an
4132  * exit caused by such an instruction (run by a guest hypervisor).
4133  * On success, returns 0. When the operand is invalid, returns 1 and throws
4134  * #UD or #GP.
4135  */
4136 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4137 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4138 {
4139 	gva_t off;
4140 	bool exn;
4141 	struct kvm_segment s;
4142 
4143 	/*
4144 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4145 	 * Execution", on an exit, vmx_instruction_info holds most of the
4146 	 * addressing components of the operand. Only the displacement part
4147 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4148 	 * For how an actual address is calculated from all these components,
4149 	 * refer to Vol. 1, "Operand Addressing".
4150 	 */
4151 	int  scaling = vmx_instruction_info & 3;
4152 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4153 	bool is_reg = vmx_instruction_info & (1u << 10);
4154 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4155 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4156 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4157 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4158 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4159 
4160 	if (is_reg) {
4161 		kvm_queue_exception(vcpu, UD_VECTOR);
4162 		return 1;
4163 	}
4164 
4165 	/* Addr = segment_base + offset */
4166 	/* offset = base + [index * scale] + displacement */
4167 	off = exit_qualification; /* holds the displacement */
4168 	if (addr_size == 1)
4169 		off = (gva_t)sign_extend64(off, 31);
4170 	else if (addr_size == 0)
4171 		off = (gva_t)sign_extend64(off, 15);
4172 	if (base_is_valid)
4173 		off += kvm_register_read(vcpu, base_reg);
4174 	if (index_is_valid)
4175 		off += kvm_register_read(vcpu, index_reg)<<scaling;
4176 	vmx_get_segment(vcpu, &s, seg_reg);
4177 
4178 	/*
4179 	 * The effective address, i.e. @off, of a memory operand is truncated
4180 	 * based on the address size of the instruction.  Note that this is
4181 	 * the *effective address*, i.e. the address prior to accounting for
4182 	 * the segment's base.
4183 	 */
4184 	if (addr_size == 1) /* 32 bit */
4185 		off &= 0xffffffff;
4186 	else if (addr_size == 0) /* 16 bit */
4187 		off &= 0xffff;
4188 
4189 	/* Checks for #GP/#SS exceptions. */
4190 	exn = false;
4191 	if (is_long_mode(vcpu)) {
4192 		/*
4193 		 * The virtual/linear address is never truncated in 64-bit
4194 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4195 		 * address when using FS/GS with a non-zero base.
4196 		 */
4197 		*ret = s.base + off;
4198 
4199 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4200 		 * non-canonical form. This is the only check on the memory
4201 		 * destination for long mode!
4202 		 */
4203 		exn = is_noncanonical_address(*ret, vcpu);
4204 	} else {
4205 		/*
4206 		 * When not in long mode, the virtual/linear address is
4207 		 * unconditionally truncated to 32 bits regardless of the
4208 		 * address size.
4209 		 */
4210 		*ret = (s.base + off) & 0xffffffff;
4211 
4212 		/* Protected mode: apply checks for segment validity in the
4213 		 * following order:
4214 		 * - segment type check (#GP(0) may be thrown)
4215 		 * - usability check (#GP(0)/#SS(0))
4216 		 * - limit check (#GP(0)/#SS(0))
4217 		 */
4218 		if (wr)
4219 			/* #GP(0) if the destination operand is located in a
4220 			 * read-only data segment or any code segment.
4221 			 */
4222 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4223 		else
4224 			/* #GP(0) if the source operand is located in an
4225 			 * execute-only code segment
4226 			 */
4227 			exn = ((s.type & 0xa) == 8);
4228 		if (exn) {
4229 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4230 			return 1;
4231 		}
4232 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4233 		 */
4234 		exn = (s.unusable != 0);
4235 
4236 		/*
4237 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4238 		 * outside the segment limit.  All CPUs that support VMX ignore
4239 		 * limit checks for flat segments, i.e. segments with base==0,
4240 		 * limit==0xffffffff and of type expand-up data or code.
4241 		 */
4242 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4243 		     ((s.type & 8) || !(s.type & 4))))
4244 			exn = exn || ((u64)off + len - 1 > s.limit);
4245 	}
4246 	if (exn) {
4247 		kvm_queue_exception_e(vcpu,
4248 				      seg_reg == VCPU_SREG_SS ?
4249 						SS_VECTOR : GP_VECTOR,
4250 				      0);
4251 		return 1;
4252 	}
4253 
4254 	return 0;
4255 }
4256 
4257 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4258 {
4259 	gva_t gva;
4260 	struct x86_exception e;
4261 
4262 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4263 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4264 				sizeof(*vmpointer), &gva))
4265 		return 1;
4266 
4267 	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4268 		kvm_inject_page_fault(vcpu, &e);
4269 		return 1;
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 /*
4276  * Allocate a shadow VMCS and associate it with the currently loaded
4277  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4278  * VMCS is also VMCLEARed, so that it is ready for use.
4279  */
4280 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4281 {
4282 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4283 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4284 
4285 	/*
4286 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4287 	 * executes VMXON and free it when L1 executes VMXOFF.
4288 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4289 	 * here when vmcs01 already have an allocated shadow vmcs.
4290 	 */
4291 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4292 
4293 	if (!loaded_vmcs->shadow_vmcs) {
4294 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4295 		if (loaded_vmcs->shadow_vmcs)
4296 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4297 	}
4298 	return loaded_vmcs->shadow_vmcs;
4299 }
4300 
4301 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4302 {
4303 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4304 	int r;
4305 
4306 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4307 	if (r < 0)
4308 		goto out_vmcs02;
4309 
4310 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4311 	if (!vmx->nested.cached_vmcs12)
4312 		goto out_cached_vmcs12;
4313 
4314 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4315 	if (!vmx->nested.cached_shadow_vmcs12)
4316 		goto out_cached_shadow_vmcs12;
4317 
4318 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4319 		goto out_shadow_vmcs;
4320 
4321 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4322 		     HRTIMER_MODE_REL_PINNED);
4323 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4324 
4325 	vmx->nested.vpid02 = allocate_vpid();
4326 
4327 	vmx->nested.vmcs02_initialized = false;
4328 	vmx->nested.vmxon = true;
4329 
4330 	if (pt_mode == PT_MODE_HOST_GUEST) {
4331 		vmx->pt_desc.guest.ctl = 0;
4332 		pt_update_intercept_for_msr(vmx);
4333 	}
4334 
4335 	return 0;
4336 
4337 out_shadow_vmcs:
4338 	kfree(vmx->nested.cached_shadow_vmcs12);
4339 
4340 out_cached_shadow_vmcs12:
4341 	kfree(vmx->nested.cached_vmcs12);
4342 
4343 out_cached_vmcs12:
4344 	free_loaded_vmcs(&vmx->nested.vmcs02);
4345 
4346 out_vmcs02:
4347 	return -ENOMEM;
4348 }
4349 
4350 /*
4351  * Emulate the VMXON instruction.
4352  * Currently, we just remember that VMX is active, and do not save or even
4353  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4354  * do not currently need to store anything in that guest-allocated memory
4355  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4356  * argument is different from the VMXON pointer (which the spec says they do).
4357  */
4358 static int handle_vmon(struct kvm_vcpu *vcpu)
4359 {
4360 	int ret;
4361 	gpa_t vmptr;
4362 	uint32_t revision;
4363 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4364 	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4365 		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4366 
4367 	/*
4368 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4369 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4370 	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4371 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4372 	 * have already been checked by hardware, prior to the VM-exit for
4373 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4374 	 * that bit set to 1 in non-root mode.
4375 	 */
4376 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4377 		kvm_queue_exception(vcpu, UD_VECTOR);
4378 		return 1;
4379 	}
4380 
4381 	/* CPL=0 must be checked manually. */
4382 	if (vmx_get_cpl(vcpu)) {
4383 		kvm_inject_gp(vcpu, 0);
4384 		return 1;
4385 	}
4386 
4387 	if (vmx->nested.vmxon)
4388 		return nested_vmx_failValid(vcpu,
4389 			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4390 
4391 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4392 			!= VMXON_NEEDED_FEATURES) {
4393 		kvm_inject_gp(vcpu, 0);
4394 		return 1;
4395 	}
4396 
4397 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4398 		return 1;
4399 
4400 	/*
4401 	 * SDM 3: 24.11.5
4402 	 * The first 4 bytes of VMXON region contain the supported
4403 	 * VMCS revision identifier
4404 	 *
4405 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4406 	 * which replaces physical address width with 32
4407 	 */
4408 	if (!page_address_valid(vcpu, vmptr))
4409 		return nested_vmx_failInvalid(vcpu);
4410 
4411 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4412 	    revision != VMCS12_REVISION)
4413 		return nested_vmx_failInvalid(vcpu);
4414 
4415 	vmx->nested.vmxon_ptr = vmptr;
4416 	ret = enter_vmx_operation(vcpu);
4417 	if (ret)
4418 		return ret;
4419 
4420 	return nested_vmx_succeed(vcpu);
4421 }
4422 
4423 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4424 {
4425 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4426 
4427 	if (vmx->nested.current_vmptr == -1ull)
4428 		return;
4429 
4430 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4431 
4432 	if (enable_shadow_vmcs) {
4433 		/* copy to memory all shadowed fields in case
4434 		   they were modified */
4435 		copy_shadow_to_vmcs12(vmx);
4436 		vmx->nested.need_vmcs12_to_shadow_sync = false;
4437 		vmx_disable_shadow_vmcs(vmx);
4438 	}
4439 	vmx->nested.posted_intr_nv = -1;
4440 
4441 	/* Flush VMCS12 to guest memory */
4442 	kvm_vcpu_write_guest_page(vcpu,
4443 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4444 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4445 
4446 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4447 
4448 	vmx->nested.current_vmptr = -1ull;
4449 }
4450 
4451 /* Emulate the VMXOFF instruction */
4452 static int handle_vmoff(struct kvm_vcpu *vcpu)
4453 {
4454 	if (!nested_vmx_check_permission(vcpu))
4455 		return 1;
4456 	free_nested(vcpu);
4457 	return nested_vmx_succeed(vcpu);
4458 }
4459 
4460 /* Emulate the VMCLEAR instruction */
4461 static int handle_vmclear(struct kvm_vcpu *vcpu)
4462 {
4463 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4464 	u32 zero = 0;
4465 	gpa_t vmptr;
4466 	u64 evmcs_gpa;
4467 
4468 	if (!nested_vmx_check_permission(vcpu))
4469 		return 1;
4470 
4471 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4472 		return 1;
4473 
4474 	if (!page_address_valid(vcpu, vmptr))
4475 		return nested_vmx_failValid(vcpu,
4476 			VMXERR_VMCLEAR_INVALID_ADDRESS);
4477 
4478 	if (vmptr == vmx->nested.vmxon_ptr)
4479 		return nested_vmx_failValid(vcpu,
4480 			VMXERR_VMCLEAR_VMXON_POINTER);
4481 
4482 	/*
4483 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
4484 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4485 	 * way to distinguish it from VMCS12) and we must not corrupt it by
4486 	 * writing to the non-existent 'launch_state' field. The area doesn't
4487 	 * have to be the currently active EVMCS on the calling CPU and there's
4488 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
4489 	 * state. It is possible that the area will stay mapped as
4490 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4491 	 */
4492 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4493 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4494 		if (vmptr == vmx->nested.current_vmptr)
4495 			nested_release_vmcs12(vcpu);
4496 
4497 		kvm_vcpu_write_guest(vcpu,
4498 				     vmptr + offsetof(struct vmcs12,
4499 						      launch_state),
4500 				     &zero, sizeof(zero));
4501 	}
4502 
4503 	return nested_vmx_succeed(vcpu);
4504 }
4505 
4506 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4507 
4508 /* Emulate the VMLAUNCH instruction */
4509 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4510 {
4511 	return nested_vmx_run(vcpu, true);
4512 }
4513 
4514 /* Emulate the VMRESUME instruction */
4515 static int handle_vmresume(struct kvm_vcpu *vcpu)
4516 {
4517 
4518 	return nested_vmx_run(vcpu, false);
4519 }
4520 
4521 static int handle_vmread(struct kvm_vcpu *vcpu)
4522 {
4523 	unsigned long field;
4524 	u64 field_value;
4525 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4526 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4527 	int len;
4528 	gva_t gva = 0;
4529 	struct vmcs12 *vmcs12;
4530 	short offset;
4531 
4532 	if (!nested_vmx_check_permission(vcpu))
4533 		return 1;
4534 
4535 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4536 		return nested_vmx_failInvalid(vcpu);
4537 
4538 	if (!is_guest_mode(vcpu))
4539 		vmcs12 = get_vmcs12(vcpu);
4540 	else {
4541 		/*
4542 		 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4543 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
4544 		 */
4545 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4546 			return nested_vmx_failInvalid(vcpu);
4547 		vmcs12 = get_shadow_vmcs12(vcpu);
4548 	}
4549 
4550 	/* Decode instruction info and find the field to read */
4551 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4552 
4553 	offset = vmcs_field_to_offset(field);
4554 	if (offset < 0)
4555 		return nested_vmx_failValid(vcpu,
4556 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4557 
4558 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4559 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4560 
4561 	/* Read the field, zero-extended to a u64 field_value */
4562 	field_value = vmcs12_read_any(vmcs12, field, offset);
4563 
4564 	/*
4565 	 * Now copy part of this value to register or memory, as requested.
4566 	 * Note that the number of bits actually copied is 32 or 64 depending
4567 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
4568 	 */
4569 	if (vmx_instruction_info & (1u << 10)) {
4570 		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4571 			field_value);
4572 	} else {
4573 		len = is_64_bit_mode(vcpu) ? 8 : 4;
4574 		if (get_vmx_mem_address(vcpu, exit_qualification,
4575 				vmx_instruction_info, true, len, &gva))
4576 			return 1;
4577 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
4578 		kvm_write_guest_virt_system(vcpu, gva, &field_value, len, NULL);
4579 	}
4580 
4581 	return nested_vmx_succeed(vcpu);
4582 }
4583 
4584 static bool is_shadow_field_rw(unsigned long field)
4585 {
4586 	switch (field) {
4587 #define SHADOW_FIELD_RW(x, y) case x:
4588 #include "vmcs_shadow_fields.h"
4589 		return true;
4590 	default:
4591 		break;
4592 	}
4593 	return false;
4594 }
4595 
4596 static bool is_shadow_field_ro(unsigned long field)
4597 {
4598 	switch (field) {
4599 #define SHADOW_FIELD_RO(x, y) case x:
4600 #include "vmcs_shadow_fields.h"
4601 		return true;
4602 	default:
4603 		break;
4604 	}
4605 	return false;
4606 }
4607 
4608 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4609 {
4610 	unsigned long field;
4611 	int len;
4612 	gva_t gva;
4613 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4614 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4615 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4616 
4617 	/* The value to write might be 32 or 64 bits, depending on L1's long
4618 	 * mode, and eventually we need to write that into a field of several
4619 	 * possible lengths. The code below first zero-extends the value to 64
4620 	 * bit (field_value), and then copies only the appropriate number of
4621 	 * bits into the vmcs12 field.
4622 	 */
4623 	u64 field_value = 0;
4624 	struct x86_exception e;
4625 	struct vmcs12 *vmcs12;
4626 	short offset;
4627 
4628 	if (!nested_vmx_check_permission(vcpu))
4629 		return 1;
4630 
4631 	if (vmx->nested.current_vmptr == -1ull)
4632 		return nested_vmx_failInvalid(vcpu);
4633 
4634 	if (vmx_instruction_info & (1u << 10))
4635 		field_value = kvm_register_readl(vcpu,
4636 			(((vmx_instruction_info) >> 3) & 0xf));
4637 	else {
4638 		len = is_64_bit_mode(vcpu) ? 8 : 4;
4639 		if (get_vmx_mem_address(vcpu, exit_qualification,
4640 				vmx_instruction_info, false, len, &gva))
4641 			return 1;
4642 		if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4643 			kvm_inject_page_fault(vcpu, &e);
4644 			return 1;
4645 		}
4646 	}
4647 
4648 
4649 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4650 	/*
4651 	 * If the vCPU supports "VMWRITE to any supported field in the
4652 	 * VMCS," then the "read-only" fields are actually read/write.
4653 	 */
4654 	if (vmcs_field_readonly(field) &&
4655 	    !nested_cpu_has_vmwrite_any_field(vcpu))
4656 		return nested_vmx_failValid(vcpu,
4657 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4658 
4659 	if (!is_guest_mode(vcpu)) {
4660 		vmcs12 = get_vmcs12(vcpu);
4661 
4662 		/*
4663 		 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4664 		 * vmcs12, else we may crush a field or consume a stale value.
4665 		 */
4666 		if (!is_shadow_field_rw(field))
4667 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4668 	} else {
4669 		/*
4670 		 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4671 		 * to shadowed-field sets the ALU flags for VMfailInvalid.
4672 		 */
4673 		if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4674 			return nested_vmx_failInvalid(vcpu);
4675 		vmcs12 = get_shadow_vmcs12(vcpu);
4676 	}
4677 
4678 	offset = vmcs_field_to_offset(field);
4679 	if (offset < 0)
4680 		return nested_vmx_failValid(vcpu,
4681 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4682 
4683 	/*
4684 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4685 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4686 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4687 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4688 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
4689 	 * the stripped down value, L2 sees the full value as stored by KVM).
4690 	 */
4691 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4692 		field_value &= 0x1f0ff;
4693 
4694 	vmcs12_write_any(vmcs12, field, offset, field_value);
4695 
4696 	/*
4697 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
4698 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4699 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4700 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4701 	 */
4702 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4703 		/*
4704 		 * L1 can read these fields without exiting, ensure the
4705 		 * shadow VMCS is up-to-date.
4706 		 */
4707 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4708 			preempt_disable();
4709 			vmcs_load(vmx->vmcs01.shadow_vmcs);
4710 
4711 			__vmcs_writel(field, field_value);
4712 
4713 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
4714 			vmcs_load(vmx->loaded_vmcs->vmcs);
4715 			preempt_enable();
4716 		}
4717 		vmx->nested.dirty_vmcs12 = true;
4718 	}
4719 
4720 	return nested_vmx_succeed(vcpu);
4721 }
4722 
4723 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4724 {
4725 	vmx->nested.current_vmptr = vmptr;
4726 	if (enable_shadow_vmcs) {
4727 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4728 		vmcs_write64(VMCS_LINK_POINTER,
4729 			     __pa(vmx->vmcs01.shadow_vmcs));
4730 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4731 	}
4732 	vmx->nested.dirty_vmcs12 = true;
4733 }
4734 
4735 /* Emulate the VMPTRLD instruction */
4736 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4737 {
4738 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4739 	gpa_t vmptr;
4740 
4741 	if (!nested_vmx_check_permission(vcpu))
4742 		return 1;
4743 
4744 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4745 		return 1;
4746 
4747 	if (!page_address_valid(vcpu, vmptr))
4748 		return nested_vmx_failValid(vcpu,
4749 			VMXERR_VMPTRLD_INVALID_ADDRESS);
4750 
4751 	if (vmptr == vmx->nested.vmxon_ptr)
4752 		return nested_vmx_failValid(vcpu,
4753 			VMXERR_VMPTRLD_VMXON_POINTER);
4754 
4755 	/* Forbid normal VMPTRLD if Enlightened version was used */
4756 	if (vmx->nested.hv_evmcs)
4757 		return 1;
4758 
4759 	if (vmx->nested.current_vmptr != vmptr) {
4760 		struct kvm_host_map map;
4761 		struct vmcs12 *new_vmcs12;
4762 
4763 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4764 			/*
4765 			 * Reads from an unbacked page return all 1s,
4766 			 * which means that the 32 bits located at the
4767 			 * given physical address won't match the required
4768 			 * VMCS12_REVISION identifier.
4769 			 */
4770 			return nested_vmx_failValid(vcpu,
4771 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4772 		}
4773 
4774 		new_vmcs12 = map.hva;
4775 
4776 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4777 		    (new_vmcs12->hdr.shadow_vmcs &&
4778 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4779 			kvm_vcpu_unmap(vcpu, &map, false);
4780 			return nested_vmx_failValid(vcpu,
4781 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4782 		}
4783 
4784 		nested_release_vmcs12(vcpu);
4785 
4786 		/*
4787 		 * Load VMCS12 from guest memory since it is not already
4788 		 * cached.
4789 		 */
4790 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4791 		kvm_vcpu_unmap(vcpu, &map, false);
4792 
4793 		set_current_vmptr(vmx, vmptr);
4794 	}
4795 
4796 	return nested_vmx_succeed(vcpu);
4797 }
4798 
4799 /* Emulate the VMPTRST instruction */
4800 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4801 {
4802 	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4803 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4804 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4805 	struct x86_exception e;
4806 	gva_t gva;
4807 
4808 	if (!nested_vmx_check_permission(vcpu))
4809 		return 1;
4810 
4811 	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4812 		return 1;
4813 
4814 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4815 				true, sizeof(gpa_t), &gva))
4816 		return 1;
4817 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4818 	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4819 					sizeof(gpa_t), &e)) {
4820 		kvm_inject_page_fault(vcpu, &e);
4821 		return 1;
4822 	}
4823 	return nested_vmx_succeed(vcpu);
4824 }
4825 
4826 /* Emulate the INVEPT instruction */
4827 static int handle_invept(struct kvm_vcpu *vcpu)
4828 {
4829 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4830 	u32 vmx_instruction_info, types;
4831 	unsigned long type;
4832 	gva_t gva;
4833 	struct x86_exception e;
4834 	struct {
4835 		u64 eptp, gpa;
4836 	} operand;
4837 
4838 	if (!(vmx->nested.msrs.secondary_ctls_high &
4839 	      SECONDARY_EXEC_ENABLE_EPT) ||
4840 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4841 		kvm_queue_exception(vcpu, UD_VECTOR);
4842 		return 1;
4843 	}
4844 
4845 	if (!nested_vmx_check_permission(vcpu))
4846 		return 1;
4847 
4848 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4849 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4850 
4851 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4852 
4853 	if (type >= 32 || !(types & (1 << type)))
4854 		return nested_vmx_failValid(vcpu,
4855 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4856 
4857 	/* According to the Intel VMX instruction reference, the memory
4858 	 * operand is read even if it isn't needed (e.g., for type==global)
4859 	 */
4860 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4861 			vmx_instruction_info, false, sizeof(operand), &gva))
4862 		return 1;
4863 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4864 		kvm_inject_page_fault(vcpu, &e);
4865 		return 1;
4866 	}
4867 
4868 	switch (type) {
4869 	case VMX_EPT_EXTENT_GLOBAL:
4870 	case VMX_EPT_EXTENT_CONTEXT:
4871 	/*
4872 	 * TODO: Sync the necessary shadow EPT roots here, rather than
4873 	 * at the next emulated VM-entry.
4874 	 */
4875 		break;
4876 	default:
4877 		BUG_ON(1);
4878 		break;
4879 	}
4880 
4881 	return nested_vmx_succeed(vcpu);
4882 }
4883 
4884 static int handle_invvpid(struct kvm_vcpu *vcpu)
4885 {
4886 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4887 	u32 vmx_instruction_info;
4888 	unsigned long type, types;
4889 	gva_t gva;
4890 	struct x86_exception e;
4891 	struct {
4892 		u64 vpid;
4893 		u64 gla;
4894 	} operand;
4895 	u16 vpid02;
4896 
4897 	if (!(vmx->nested.msrs.secondary_ctls_high &
4898 	      SECONDARY_EXEC_ENABLE_VPID) ||
4899 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4900 		kvm_queue_exception(vcpu, UD_VECTOR);
4901 		return 1;
4902 	}
4903 
4904 	if (!nested_vmx_check_permission(vcpu))
4905 		return 1;
4906 
4907 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4908 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4909 
4910 	types = (vmx->nested.msrs.vpid_caps &
4911 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4912 
4913 	if (type >= 32 || !(types & (1 << type)))
4914 		return nested_vmx_failValid(vcpu,
4915 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4916 
4917 	/* according to the intel vmx instruction reference, the memory
4918 	 * operand is read even if it isn't needed (e.g., for type==global)
4919 	 */
4920 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4921 			vmx_instruction_info, false, sizeof(operand), &gva))
4922 		return 1;
4923 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4924 		kvm_inject_page_fault(vcpu, &e);
4925 		return 1;
4926 	}
4927 	if (operand.vpid >> 16)
4928 		return nested_vmx_failValid(vcpu,
4929 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4930 
4931 	vpid02 = nested_get_vpid02(vcpu);
4932 	switch (type) {
4933 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4934 		if (!operand.vpid ||
4935 		    is_noncanonical_address(operand.gla, vcpu))
4936 			return nested_vmx_failValid(vcpu,
4937 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4938 		if (cpu_has_vmx_invvpid_individual_addr()) {
4939 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4940 				vpid02, operand.gla);
4941 		} else
4942 			__vmx_flush_tlb(vcpu, vpid02, false);
4943 		break;
4944 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4945 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4946 		if (!operand.vpid)
4947 			return nested_vmx_failValid(vcpu,
4948 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4949 		__vmx_flush_tlb(vcpu, vpid02, false);
4950 		break;
4951 	case VMX_VPID_EXTENT_ALL_CONTEXT:
4952 		__vmx_flush_tlb(vcpu, vpid02, false);
4953 		break;
4954 	default:
4955 		WARN_ON_ONCE(1);
4956 		return kvm_skip_emulated_instruction(vcpu);
4957 	}
4958 
4959 	return nested_vmx_succeed(vcpu);
4960 }
4961 
4962 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4963 				     struct vmcs12 *vmcs12)
4964 {
4965 	u32 index = kvm_rcx_read(vcpu);
4966 	u64 address;
4967 	bool accessed_dirty;
4968 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4969 
4970 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
4971 	    !nested_cpu_has_ept(vmcs12))
4972 		return 1;
4973 
4974 	if (index >= VMFUNC_EPTP_ENTRIES)
4975 		return 1;
4976 
4977 
4978 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4979 				     &address, index * 8, 8))
4980 		return 1;
4981 
4982 	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4983 
4984 	/*
4985 	 * If the (L2) guest does a vmfunc to the currently
4986 	 * active ept pointer, we don't have to do anything else
4987 	 */
4988 	if (vmcs12->ept_pointer != address) {
4989 		if (!valid_ept_address(vcpu, address))
4990 			return 1;
4991 
4992 		kvm_mmu_unload(vcpu);
4993 		mmu->ept_ad = accessed_dirty;
4994 		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4995 		vmcs12->ept_pointer = address;
4996 		/*
4997 		 * TODO: Check what's the correct approach in case
4998 		 * mmu reload fails. Currently, we just let the next
4999 		 * reload potentially fail
5000 		 */
5001 		kvm_mmu_reload(vcpu);
5002 	}
5003 
5004 	return 0;
5005 }
5006 
5007 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5008 {
5009 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5010 	struct vmcs12 *vmcs12;
5011 	u32 function = kvm_rax_read(vcpu);
5012 
5013 	/*
5014 	 * VMFUNC is only supported for nested guests, but we always enable the
5015 	 * secondary control for simplicity; for non-nested mode, fake that we
5016 	 * didn't by injecting #UD.
5017 	 */
5018 	if (!is_guest_mode(vcpu)) {
5019 		kvm_queue_exception(vcpu, UD_VECTOR);
5020 		return 1;
5021 	}
5022 
5023 	vmcs12 = get_vmcs12(vcpu);
5024 	if ((vmcs12->vm_function_control & (1 << function)) == 0)
5025 		goto fail;
5026 
5027 	switch (function) {
5028 	case 0:
5029 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5030 			goto fail;
5031 		break;
5032 	default:
5033 		goto fail;
5034 	}
5035 	return kvm_skip_emulated_instruction(vcpu);
5036 
5037 fail:
5038 	nested_vmx_vmexit(vcpu, vmx->exit_reason,
5039 			  vmcs_read32(VM_EXIT_INTR_INFO),
5040 			  vmcs_readl(EXIT_QUALIFICATION));
5041 	return 1;
5042 }
5043 
5044 
5045 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5046 				       struct vmcs12 *vmcs12)
5047 {
5048 	unsigned long exit_qualification;
5049 	gpa_t bitmap, last_bitmap;
5050 	unsigned int port;
5051 	int size;
5052 	u8 b;
5053 
5054 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5055 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5056 
5057 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5058 
5059 	port = exit_qualification >> 16;
5060 	size = (exit_qualification & 7) + 1;
5061 
5062 	last_bitmap = (gpa_t)-1;
5063 	b = -1;
5064 
5065 	while (size > 0) {
5066 		if (port < 0x8000)
5067 			bitmap = vmcs12->io_bitmap_a;
5068 		else if (port < 0x10000)
5069 			bitmap = vmcs12->io_bitmap_b;
5070 		else
5071 			return true;
5072 		bitmap += (port & 0x7fff) / 8;
5073 
5074 		if (last_bitmap != bitmap)
5075 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5076 				return true;
5077 		if (b & (1 << (port & 7)))
5078 			return true;
5079 
5080 		port++;
5081 		size--;
5082 		last_bitmap = bitmap;
5083 	}
5084 
5085 	return false;
5086 }
5087 
5088 /*
5089  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5090  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5091  * disinterest in the current event (read or write a specific MSR) by using an
5092  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5093  */
5094 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5095 	struct vmcs12 *vmcs12, u32 exit_reason)
5096 {
5097 	u32 msr_index = kvm_rcx_read(vcpu);
5098 	gpa_t bitmap;
5099 
5100 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5101 		return true;
5102 
5103 	/*
5104 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5105 	 * for the four combinations of read/write and low/high MSR numbers.
5106 	 * First we need to figure out which of the four to use:
5107 	 */
5108 	bitmap = vmcs12->msr_bitmap;
5109 	if (exit_reason == EXIT_REASON_MSR_WRITE)
5110 		bitmap += 2048;
5111 	if (msr_index >= 0xc0000000) {
5112 		msr_index -= 0xc0000000;
5113 		bitmap += 1024;
5114 	}
5115 
5116 	/* Then read the msr_index'th bit from this bitmap: */
5117 	if (msr_index < 1024*8) {
5118 		unsigned char b;
5119 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5120 			return true;
5121 		return 1 & (b >> (msr_index & 7));
5122 	} else
5123 		return true; /* let L1 handle the wrong parameter */
5124 }
5125 
5126 /*
5127  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5128  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5129  * intercept (via guest_host_mask etc.) the current event.
5130  */
5131 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5132 	struct vmcs12 *vmcs12)
5133 {
5134 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5135 	int cr = exit_qualification & 15;
5136 	int reg;
5137 	unsigned long val;
5138 
5139 	switch ((exit_qualification >> 4) & 3) {
5140 	case 0: /* mov to cr */
5141 		reg = (exit_qualification >> 8) & 15;
5142 		val = kvm_register_readl(vcpu, reg);
5143 		switch (cr) {
5144 		case 0:
5145 			if (vmcs12->cr0_guest_host_mask &
5146 			    (val ^ vmcs12->cr0_read_shadow))
5147 				return true;
5148 			break;
5149 		case 3:
5150 			if ((vmcs12->cr3_target_count >= 1 &&
5151 					vmcs12->cr3_target_value0 == val) ||
5152 				(vmcs12->cr3_target_count >= 2 &&
5153 					vmcs12->cr3_target_value1 == val) ||
5154 				(vmcs12->cr3_target_count >= 3 &&
5155 					vmcs12->cr3_target_value2 == val) ||
5156 				(vmcs12->cr3_target_count >= 4 &&
5157 					vmcs12->cr3_target_value3 == val))
5158 				return false;
5159 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5160 				return true;
5161 			break;
5162 		case 4:
5163 			if (vmcs12->cr4_guest_host_mask &
5164 			    (vmcs12->cr4_read_shadow ^ val))
5165 				return true;
5166 			break;
5167 		case 8:
5168 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5169 				return true;
5170 			break;
5171 		}
5172 		break;
5173 	case 2: /* clts */
5174 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5175 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5176 			return true;
5177 		break;
5178 	case 1: /* mov from cr */
5179 		switch (cr) {
5180 		case 3:
5181 			if (vmcs12->cpu_based_vm_exec_control &
5182 			    CPU_BASED_CR3_STORE_EXITING)
5183 				return true;
5184 			break;
5185 		case 8:
5186 			if (vmcs12->cpu_based_vm_exec_control &
5187 			    CPU_BASED_CR8_STORE_EXITING)
5188 				return true;
5189 			break;
5190 		}
5191 		break;
5192 	case 3: /* lmsw */
5193 		/*
5194 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5195 		 * cr0. Other attempted changes are ignored, with no exit.
5196 		 */
5197 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5198 		if (vmcs12->cr0_guest_host_mask & 0xe &
5199 		    (val ^ vmcs12->cr0_read_shadow))
5200 			return true;
5201 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5202 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5203 		    (val & 0x1))
5204 			return true;
5205 		break;
5206 	}
5207 	return false;
5208 }
5209 
5210 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5211 	struct vmcs12 *vmcs12, gpa_t bitmap)
5212 {
5213 	u32 vmx_instruction_info;
5214 	unsigned long field;
5215 	u8 b;
5216 
5217 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5218 		return true;
5219 
5220 	/* Decode instruction info and find the field to access */
5221 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5222 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5223 
5224 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5225 	if (field >> 15)
5226 		return true;
5227 
5228 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5229 		return true;
5230 
5231 	return 1 & (b >> (field & 7));
5232 }
5233 
5234 /*
5235  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5236  * should handle it ourselves in L0 (and then continue L2). Only call this
5237  * when in is_guest_mode (L2).
5238  */
5239 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5240 {
5241 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5242 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5243 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5244 
5245 	if (vmx->nested.nested_run_pending)
5246 		return false;
5247 
5248 	if (unlikely(vmx->fail)) {
5249 		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5250 				    vmcs_read32(VM_INSTRUCTION_ERROR));
5251 		return true;
5252 	}
5253 
5254 	/*
5255 	 * The host physical addresses of some pages of guest memory
5256 	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5257 	 * Page). The CPU may write to these pages via their host
5258 	 * physical address while L2 is running, bypassing any
5259 	 * address-translation-based dirty tracking (e.g. EPT write
5260 	 * protection).
5261 	 *
5262 	 * Mark them dirty on every exit from L2 to prevent them from
5263 	 * getting out of sync with dirty tracking.
5264 	 */
5265 	nested_mark_vmcs12_pages_dirty(vcpu);
5266 
5267 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5268 				vmcs_readl(EXIT_QUALIFICATION),
5269 				vmx->idt_vectoring_info,
5270 				intr_info,
5271 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5272 				KVM_ISA_VMX);
5273 
5274 	switch (exit_reason) {
5275 	case EXIT_REASON_EXCEPTION_NMI:
5276 		if (is_nmi(intr_info))
5277 			return false;
5278 		else if (is_page_fault(intr_info))
5279 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5280 		else if (is_debug(intr_info) &&
5281 			 vcpu->guest_debug &
5282 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5283 			return false;
5284 		else if (is_breakpoint(intr_info) &&
5285 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5286 			return false;
5287 		return vmcs12->exception_bitmap &
5288 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5289 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5290 		return false;
5291 	case EXIT_REASON_TRIPLE_FAULT:
5292 		return true;
5293 	case EXIT_REASON_PENDING_INTERRUPT:
5294 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5295 	case EXIT_REASON_NMI_WINDOW:
5296 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5297 	case EXIT_REASON_TASK_SWITCH:
5298 		return true;
5299 	case EXIT_REASON_CPUID:
5300 		return true;
5301 	case EXIT_REASON_HLT:
5302 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5303 	case EXIT_REASON_INVD:
5304 		return true;
5305 	case EXIT_REASON_INVLPG:
5306 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5307 	case EXIT_REASON_RDPMC:
5308 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5309 	case EXIT_REASON_RDRAND:
5310 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5311 	case EXIT_REASON_RDSEED:
5312 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5313 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5314 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5315 	case EXIT_REASON_VMREAD:
5316 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5317 			vmcs12->vmread_bitmap);
5318 	case EXIT_REASON_VMWRITE:
5319 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5320 			vmcs12->vmwrite_bitmap);
5321 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5322 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5323 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5324 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5325 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5326 		/*
5327 		 * VMX instructions trap unconditionally. This allows L1 to
5328 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5329 		 */
5330 		return true;
5331 	case EXIT_REASON_CR_ACCESS:
5332 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5333 	case EXIT_REASON_DR_ACCESS:
5334 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5335 	case EXIT_REASON_IO_INSTRUCTION:
5336 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5337 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5338 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5339 	case EXIT_REASON_MSR_READ:
5340 	case EXIT_REASON_MSR_WRITE:
5341 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5342 	case EXIT_REASON_INVALID_STATE:
5343 		return true;
5344 	case EXIT_REASON_MWAIT_INSTRUCTION:
5345 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5346 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5347 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5348 	case EXIT_REASON_MONITOR_INSTRUCTION:
5349 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5350 	case EXIT_REASON_PAUSE_INSTRUCTION:
5351 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5352 			nested_cpu_has2(vmcs12,
5353 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5354 	case EXIT_REASON_MCE_DURING_VMENTRY:
5355 		return false;
5356 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5357 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5358 	case EXIT_REASON_APIC_ACCESS:
5359 	case EXIT_REASON_APIC_WRITE:
5360 	case EXIT_REASON_EOI_INDUCED:
5361 		/*
5362 		 * The controls for "virtualize APIC accesses," "APIC-
5363 		 * register virtualization," and "virtual-interrupt
5364 		 * delivery" only come from vmcs12.
5365 		 */
5366 		return true;
5367 	case EXIT_REASON_EPT_VIOLATION:
5368 		/*
5369 		 * L0 always deals with the EPT violation. If nested EPT is
5370 		 * used, and the nested mmu code discovers that the address is
5371 		 * missing in the guest EPT table (EPT12), the EPT violation
5372 		 * will be injected with nested_ept_inject_page_fault()
5373 		 */
5374 		return false;
5375 	case EXIT_REASON_EPT_MISCONFIG:
5376 		/*
5377 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5378 		 * table (shadow on EPT) or a merged EPT table that L0 built
5379 		 * (EPT on EPT). So any problems with the structure of the
5380 		 * table is L0's fault.
5381 		 */
5382 		return false;
5383 	case EXIT_REASON_INVPCID:
5384 		return
5385 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5386 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5387 	case EXIT_REASON_WBINVD:
5388 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5389 	case EXIT_REASON_XSETBV:
5390 		return true;
5391 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5392 		/*
5393 		 * This should never happen, since it is not possible to
5394 		 * set XSS to a non-zero value---neither in L1 nor in L2.
5395 		 * If if it were, XSS would have to be checked against
5396 		 * the XSS exit bitmap in vmcs12.
5397 		 */
5398 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5399 	case EXIT_REASON_PREEMPTION_TIMER:
5400 		return false;
5401 	case EXIT_REASON_PML_FULL:
5402 		/* We emulate PML support to L1. */
5403 		return false;
5404 	case EXIT_REASON_VMFUNC:
5405 		/* VM functions are emulated through L2->L0 vmexits. */
5406 		return false;
5407 	case EXIT_REASON_ENCLS:
5408 		/* SGX is never exposed to L1 */
5409 		return false;
5410 	default:
5411 		return true;
5412 	}
5413 }
5414 
5415 
5416 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5417 				struct kvm_nested_state __user *user_kvm_nested_state,
5418 				u32 user_data_size)
5419 {
5420 	struct vcpu_vmx *vmx;
5421 	struct vmcs12 *vmcs12;
5422 	struct kvm_nested_state kvm_state = {
5423 		.flags = 0,
5424 		.format = KVM_STATE_NESTED_FORMAT_VMX,
5425 		.size = sizeof(kvm_state),
5426 		.hdr.vmx.vmxon_pa = -1ull,
5427 		.hdr.vmx.vmcs12_pa = -1ull,
5428 	};
5429 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5430 		&user_kvm_nested_state->data.vmx[0];
5431 
5432 	if (!vcpu)
5433 		return kvm_state.size + sizeof(*user_vmx_nested_state);
5434 
5435 	vmx = to_vmx(vcpu);
5436 	vmcs12 = get_vmcs12(vcpu);
5437 
5438 	if (nested_vmx_allowed(vcpu) &&
5439 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5440 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5441 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5442 
5443 		if (vmx_has_valid_vmcs12(vcpu)) {
5444 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5445 
5446 			if (vmx->nested.hv_evmcs)
5447 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5448 
5449 			if (is_guest_mode(vcpu) &&
5450 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
5451 			    vmcs12->vmcs_link_pointer != -1ull)
5452 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5453 		}
5454 
5455 		if (vmx->nested.smm.vmxon)
5456 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5457 
5458 		if (vmx->nested.smm.guest_mode)
5459 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5460 
5461 		if (is_guest_mode(vcpu)) {
5462 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5463 
5464 			if (vmx->nested.nested_run_pending)
5465 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5466 		}
5467 	}
5468 
5469 	if (user_data_size < kvm_state.size)
5470 		goto out;
5471 
5472 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5473 		return -EFAULT;
5474 
5475 	if (!vmx_has_valid_vmcs12(vcpu))
5476 		goto out;
5477 
5478 	/*
5479 	 * When running L2, the authoritative vmcs12 state is in the
5480 	 * vmcs02. When running L1, the authoritative vmcs12 state is
5481 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
5482 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5483 	 * vmcs12 state is in the vmcs12 already.
5484 	 */
5485 	if (is_guest_mode(vcpu)) {
5486 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5487 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5488 	} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5489 		if (vmx->nested.hv_evmcs)
5490 			copy_enlightened_to_vmcs12(vmx);
5491 		else if (enable_shadow_vmcs)
5492 			copy_shadow_to_vmcs12(vmx);
5493 	}
5494 
5495 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5496 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5497 
5498 	/*
5499 	 * Copy over the full allocated size of vmcs12 rather than just the size
5500 	 * of the struct.
5501 	 */
5502 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5503 		return -EFAULT;
5504 
5505 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5506 	    vmcs12->vmcs_link_pointer != -1ull) {
5507 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5508 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5509 			return -EFAULT;
5510 	}
5511 
5512 out:
5513 	return kvm_state.size;
5514 }
5515 
5516 /*
5517  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5518  */
5519 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5520 {
5521 	if (is_guest_mode(vcpu)) {
5522 		to_vmx(vcpu)->nested.nested_run_pending = 0;
5523 		nested_vmx_vmexit(vcpu, -1, 0, 0);
5524 	}
5525 	free_nested(vcpu);
5526 }
5527 
5528 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5529 				struct kvm_nested_state __user *user_kvm_nested_state,
5530 				struct kvm_nested_state *kvm_state)
5531 {
5532 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5533 	struct vmcs12 *vmcs12;
5534 	u32 exit_qual;
5535 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5536 		&user_kvm_nested_state->data.vmx[0];
5537 	int ret;
5538 
5539 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5540 		return -EINVAL;
5541 
5542 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5543 		if (kvm_state->hdr.vmx.smm.flags)
5544 			return -EINVAL;
5545 
5546 		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5547 			return -EINVAL;
5548 
5549 		/*
5550 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5551 		 * enable eVMCS capability on vCPU. However, since then
5552 		 * code was changed such that flag signals vmcs12 should
5553 		 * be copied into eVMCS in guest memory.
5554 		 *
5555 		 * To preserve backwards compatability, allow user
5556 		 * to set this flag even when there is no VMXON region.
5557 		 */
5558 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5559 			return -EINVAL;
5560 	} else {
5561 		if (!nested_vmx_allowed(vcpu))
5562 			return -EINVAL;
5563 
5564 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5565 			return -EINVAL;
5566 	}
5567 
5568 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5569 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5570 		return -EINVAL;
5571 
5572 	if (kvm_state->hdr.vmx.smm.flags &
5573 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5574 		return -EINVAL;
5575 
5576 	/*
5577 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
5578 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5579 	 * must be zero.
5580 	 */
5581 	if (is_smm(vcpu) ?
5582 		(kvm_state->flags &
5583 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5584 		: kvm_state->hdr.vmx.smm.flags)
5585 		return -EINVAL;
5586 
5587 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5588 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5589 		return -EINVAL;
5590 
5591 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5592 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5593 			return -EINVAL;
5594 
5595 	vmx_leave_nested(vcpu);
5596 
5597 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5598 		return 0;
5599 
5600 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5601 	ret = enter_vmx_operation(vcpu);
5602 	if (ret)
5603 		return ret;
5604 
5605 	/* Empty 'VMXON' state is permitted */
5606 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5607 		return 0;
5608 
5609 	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5610 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5611 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5612 			return -EINVAL;
5613 
5614 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5615 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5616 		/*
5617 		 * Sync eVMCS upon entry as we may not have
5618 		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5619 		 */
5620 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5621 	} else {
5622 		return -EINVAL;
5623 	}
5624 
5625 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5626 		vmx->nested.smm.vmxon = true;
5627 		vmx->nested.vmxon = false;
5628 
5629 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5630 			vmx->nested.smm.guest_mode = true;
5631 	}
5632 
5633 	vmcs12 = get_vmcs12(vcpu);
5634 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5635 		return -EFAULT;
5636 
5637 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5638 		return -EINVAL;
5639 
5640 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5641 		return 0;
5642 
5643 	vmx->nested.nested_run_pending =
5644 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5645 
5646 	ret = -EINVAL;
5647 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5648 	    vmcs12->vmcs_link_pointer != -1ull) {
5649 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5650 
5651 		if (kvm_state->size <
5652 		    sizeof(*kvm_state) +
5653 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5654 			goto error_guest_mode;
5655 
5656 		if (copy_from_user(shadow_vmcs12,
5657 				   user_vmx_nested_state->shadow_vmcs12,
5658 				   sizeof(*shadow_vmcs12))) {
5659 			ret = -EFAULT;
5660 			goto error_guest_mode;
5661 		}
5662 
5663 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5664 		    !shadow_vmcs12->hdr.shadow_vmcs)
5665 			goto error_guest_mode;
5666 	}
5667 
5668 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
5669 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
5670 	    nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5671 		goto error_guest_mode;
5672 
5673 	vmx->nested.dirty_vmcs12 = true;
5674 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
5675 	if (ret)
5676 		goto error_guest_mode;
5677 
5678 	return 0;
5679 
5680 error_guest_mode:
5681 	vmx->nested.nested_run_pending = 0;
5682 	return ret;
5683 }
5684 
5685 void nested_vmx_vcpu_setup(void)
5686 {
5687 	if (enable_shadow_vmcs) {
5688 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5689 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5690 	}
5691 }
5692 
5693 /*
5694  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5695  * returned for the various VMX controls MSRs when nested VMX is enabled.
5696  * The same values should also be used to verify that vmcs12 control fields are
5697  * valid during nested entry from L1 to L2.
5698  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5699  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5700  * bit in the high half is on if the corresponding bit in the control field
5701  * may be on. See also vmx_control_verify().
5702  */
5703 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5704 				bool apicv)
5705 {
5706 	/*
5707 	 * Note that as a general rule, the high half of the MSRs (bits in
5708 	 * the control fields which may be 1) should be initialized by the
5709 	 * intersection of the underlying hardware's MSR (i.e., features which
5710 	 * can be supported) and the list of features we want to expose -
5711 	 * because they are known to be properly supported in our code.
5712 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
5713 	 * be set to 0, meaning that L1 may turn off any of these bits. The
5714 	 * reason is that if one of these bits is necessary, it will appear
5715 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5716 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
5717 	 * nested_vmx_exit_reflected() will not pass related exits to L1.
5718 	 * These rules have exceptions below.
5719 	 */
5720 
5721 	/* pin-based controls */
5722 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5723 		msrs->pinbased_ctls_low,
5724 		msrs->pinbased_ctls_high);
5725 	msrs->pinbased_ctls_low |=
5726 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5727 	msrs->pinbased_ctls_high &=
5728 		PIN_BASED_EXT_INTR_MASK |
5729 		PIN_BASED_NMI_EXITING |
5730 		PIN_BASED_VIRTUAL_NMIS |
5731 		(apicv ? PIN_BASED_POSTED_INTR : 0);
5732 	msrs->pinbased_ctls_high |=
5733 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5734 		PIN_BASED_VMX_PREEMPTION_TIMER;
5735 
5736 	/* exit controls */
5737 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5738 		msrs->exit_ctls_low,
5739 		msrs->exit_ctls_high);
5740 	msrs->exit_ctls_low =
5741 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5742 
5743 	msrs->exit_ctls_high &=
5744 #ifdef CONFIG_X86_64
5745 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
5746 #endif
5747 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5748 	msrs->exit_ctls_high |=
5749 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5750 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5751 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5752 
5753 	/* We support free control of debug control saving. */
5754 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5755 
5756 	/* entry controls */
5757 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5758 		msrs->entry_ctls_low,
5759 		msrs->entry_ctls_high);
5760 	msrs->entry_ctls_low =
5761 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5762 	msrs->entry_ctls_high &=
5763 #ifdef CONFIG_X86_64
5764 		VM_ENTRY_IA32E_MODE |
5765 #endif
5766 		VM_ENTRY_LOAD_IA32_PAT;
5767 	msrs->entry_ctls_high |=
5768 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5769 
5770 	/* We support free control of debug control loading. */
5771 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5772 
5773 	/* cpu-based controls */
5774 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5775 		msrs->procbased_ctls_low,
5776 		msrs->procbased_ctls_high);
5777 	msrs->procbased_ctls_low =
5778 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5779 	msrs->procbased_ctls_high &=
5780 		CPU_BASED_VIRTUAL_INTR_PENDING |
5781 		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5782 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5783 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5784 		CPU_BASED_CR3_STORE_EXITING |
5785 #ifdef CONFIG_X86_64
5786 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5787 #endif
5788 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5789 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5790 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5791 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5792 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5793 	/*
5794 	 * We can allow some features even when not supported by the
5795 	 * hardware. For example, L1 can specify an MSR bitmap - and we
5796 	 * can use it to avoid exits to L1 - even when L0 runs L2
5797 	 * without MSR bitmaps.
5798 	 */
5799 	msrs->procbased_ctls_high |=
5800 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5801 		CPU_BASED_USE_MSR_BITMAPS;
5802 
5803 	/* We support free control of CR3 access interception. */
5804 	msrs->procbased_ctls_low &=
5805 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5806 
5807 	/*
5808 	 * secondary cpu-based controls.  Do not include those that
5809 	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
5810 	 */
5811 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5812 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5813 		      msrs->secondary_ctls_low,
5814 		      msrs->secondary_ctls_high);
5815 
5816 	msrs->secondary_ctls_low = 0;
5817 	msrs->secondary_ctls_high &=
5818 		SECONDARY_EXEC_DESC |
5819 		SECONDARY_EXEC_RDTSCP |
5820 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5821 		SECONDARY_EXEC_WBINVD_EXITING |
5822 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
5823 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5824 		SECONDARY_EXEC_RDRAND_EXITING |
5825 		SECONDARY_EXEC_ENABLE_INVPCID |
5826 		SECONDARY_EXEC_RDSEED_EXITING |
5827 		SECONDARY_EXEC_XSAVES;
5828 
5829 	/*
5830 	 * We can emulate "VMCS shadowing," even if the hardware
5831 	 * doesn't support it.
5832 	 */
5833 	msrs->secondary_ctls_high |=
5834 		SECONDARY_EXEC_SHADOW_VMCS;
5835 
5836 	if (enable_ept) {
5837 		/* nested EPT: emulate EPT also to L1 */
5838 		msrs->secondary_ctls_high |=
5839 			SECONDARY_EXEC_ENABLE_EPT;
5840 		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5841 			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5842 		if (cpu_has_vmx_ept_execute_only())
5843 			msrs->ept_caps |=
5844 				VMX_EPT_EXECUTE_ONLY_BIT;
5845 		msrs->ept_caps &= ept_caps;
5846 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5847 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5848 			VMX_EPT_1GB_PAGE_BIT;
5849 		if (enable_ept_ad_bits) {
5850 			msrs->secondary_ctls_high |=
5851 				SECONDARY_EXEC_ENABLE_PML;
5852 			msrs->ept_caps |= VMX_EPT_AD_BIT;
5853 		}
5854 	}
5855 
5856 	if (cpu_has_vmx_vmfunc()) {
5857 		msrs->secondary_ctls_high |=
5858 			SECONDARY_EXEC_ENABLE_VMFUNC;
5859 		/*
5860 		 * Advertise EPTP switching unconditionally
5861 		 * since we emulate it
5862 		 */
5863 		if (enable_ept)
5864 			msrs->vmfunc_controls =
5865 				VMX_VMFUNC_EPTP_SWITCHING;
5866 	}
5867 
5868 	/*
5869 	 * Old versions of KVM use the single-context version without
5870 	 * checking for support, so declare that it is supported even
5871 	 * though it is treated as global context.  The alternative is
5872 	 * not failing the single-context invvpid, and it is worse.
5873 	 */
5874 	if (enable_vpid) {
5875 		msrs->secondary_ctls_high |=
5876 			SECONDARY_EXEC_ENABLE_VPID;
5877 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5878 			VMX_VPID_EXTENT_SUPPORTED_MASK;
5879 	}
5880 
5881 	if (enable_unrestricted_guest)
5882 		msrs->secondary_ctls_high |=
5883 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
5884 
5885 	if (flexpriority_enabled)
5886 		msrs->secondary_ctls_high |=
5887 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5888 
5889 	/* miscellaneous data */
5890 	rdmsr(MSR_IA32_VMX_MISC,
5891 		msrs->misc_low,
5892 		msrs->misc_high);
5893 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5894 	msrs->misc_low |=
5895 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5896 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5897 		VMX_MISC_ACTIVITY_HLT;
5898 	msrs->misc_high = 0;
5899 
5900 	/*
5901 	 * This MSR reports some information about VMX support. We
5902 	 * should return information about the VMX we emulate for the
5903 	 * guest, and the VMCS structure we give it - not about the
5904 	 * VMX support of the underlying hardware.
5905 	 */
5906 	msrs->basic =
5907 		VMCS12_REVISION |
5908 		VMX_BASIC_TRUE_CTLS |
5909 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5910 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5911 
5912 	if (cpu_has_vmx_basic_inout())
5913 		msrs->basic |= VMX_BASIC_INOUT;
5914 
5915 	/*
5916 	 * These MSRs specify bits which the guest must keep fixed on
5917 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5918 	 * We picked the standard core2 setting.
5919 	 */
5920 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5921 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
5922 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5923 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5924 
5925 	/* These MSRs specify bits which the guest must keep fixed off. */
5926 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5927 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5928 
5929 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
5930 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5931 }
5932 
5933 void nested_vmx_hardware_unsetup(void)
5934 {
5935 	int i;
5936 
5937 	if (enable_shadow_vmcs) {
5938 		for (i = 0; i < VMX_BITMAP_NR; i++)
5939 			free_page((unsigned long)vmx_bitmap[i]);
5940 	}
5941 }
5942 
5943 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5944 {
5945 	int i;
5946 
5947 	if (!cpu_has_vmx_shadow_vmcs())
5948 		enable_shadow_vmcs = 0;
5949 	if (enable_shadow_vmcs) {
5950 		for (i = 0; i < VMX_BITMAP_NR; i++) {
5951 			/*
5952 			 * The vmx_bitmap is not tied to a VM and so should
5953 			 * not be charged to a memcg.
5954 			 */
5955 			vmx_bitmap[i] = (unsigned long *)
5956 				__get_free_page(GFP_KERNEL);
5957 			if (!vmx_bitmap[i]) {
5958 				nested_vmx_hardware_unsetup();
5959 				return -ENOMEM;
5960 			}
5961 		}
5962 
5963 		init_vmcs_shadow_fields();
5964 	}
5965 
5966 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear,
5967 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch,
5968 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld,
5969 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst,
5970 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread,
5971 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume,
5972 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite,
5973 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff,
5974 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon,
5975 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept,
5976 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid,
5977 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc,
5978 
5979 	kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5980 	kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5981 	kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5982 	kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5983 	kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
5984 	kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
5985 
5986 	return 0;
5987 }
5988