xref: /linux/arch/x86/kvm/vmx/nested.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "trace.h"
15 #include "x86.h"
16 
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19 
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22 
23 #define CC(consistency_check)						\
24 ({									\
25 	bool failed = (consistency_check);				\
26 	if (failed)							\
27 		trace_kvm_nested_vmenter_failed(#consistency_check, 0);	\
28 	failed;								\
29 })
30 
31 /*
32  * Hyper-V requires all of these, so mark them as supported even though
33  * they are just treated the same as all-context.
34  */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
36 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
37 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
38 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
39 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40 
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42 
43 enum {
44 	VMX_VMREAD_BITMAP,
45 	VMX_VMWRITE_BITMAP,
46 	VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49 
50 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
52 
53 struct shadow_vmcs_field {
54 	u16	encoding;
55 	u16	offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62 	ARRAY_SIZE(shadow_read_only_fields);
63 
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69 	ARRAY_SIZE(shadow_read_write_fields);
70 
71 static void init_vmcs_shadow_fields(void)
72 {
73 	int i, j;
74 
75 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77 
78 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80 		u16 field = entry.encoding;
81 
82 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83 		    (i + 1 == max_shadow_read_only_fields ||
84 		     shadow_read_only_fields[i + 1].encoding != field + 1))
85 			pr_err("Missing field from shadow_read_only_field %x\n",
86 			       field + 1);
87 
88 		clear_bit(field, vmx_vmread_bitmap);
89 		if (field & 1)
90 #ifdef CONFIG_X86_64
91 			continue;
92 #else
93 			entry.offset += sizeof(u32);
94 #endif
95 		shadow_read_only_fields[j++] = entry;
96 	}
97 	max_shadow_read_only_fields = j;
98 
99 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101 		u16 field = entry.encoding;
102 
103 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104 		    (i + 1 == max_shadow_read_write_fields ||
105 		     shadow_read_write_fields[i + 1].encoding != field + 1))
106 			pr_err("Missing field from shadow_read_write_field %x\n",
107 			       field + 1);
108 
109 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110 			  field <= GUEST_TR_AR_BYTES,
111 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112 
113 		/*
114 		 * PML and the preemption timer can be emulated, but the
115 		 * processor cannot vmwrite to fields that don't exist
116 		 * on bare metal.
117 		 */
118 		switch (field) {
119 		case GUEST_PML_INDEX:
120 			if (!cpu_has_vmx_pml())
121 				continue;
122 			break;
123 		case VMX_PREEMPTION_TIMER_VALUE:
124 			if (!cpu_has_vmx_preemption_timer())
125 				continue;
126 			break;
127 		case GUEST_INTR_STATUS:
128 			if (!cpu_has_vmx_apicv())
129 				continue;
130 			break;
131 		default:
132 			break;
133 		}
134 
135 		clear_bit(field, vmx_vmwrite_bitmap);
136 		clear_bit(field, vmx_vmread_bitmap);
137 		if (field & 1)
138 #ifdef CONFIG_X86_64
139 			continue;
140 #else
141 			entry.offset += sizeof(u32);
142 #endif
143 		shadow_read_write_fields[j++] = entry;
144 	}
145 	max_shadow_read_write_fields = j;
146 }
147 
148 /*
149  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150  * set the success or error code of an emulated VMX instruction (as specified
151  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152  * instruction.
153  */
154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159 	return kvm_skip_emulated_instruction(vcpu);
160 }
161 
162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
167 			| X86_EFLAGS_CF);
168 	return kvm_skip_emulated_instruction(vcpu);
169 }
170 
171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172 				u32 vm_instruction_error)
173 {
174 	struct vcpu_vmx *vmx = to_vmx(vcpu);
175 
176 	/*
177 	 * failValid writes the error number to the current VMCS, which
178 	 * can't be done if there isn't a current VMCS.
179 	 */
180 	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181 		return nested_vmx_failInvalid(vcpu);
182 
183 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
186 			| X86_EFLAGS_ZF);
187 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
188 	/*
189 	 * We don't need to force a shadow sync because
190 	 * VM_INSTRUCTION_ERROR is not shadowed
191 	 */
192 	return kvm_skip_emulated_instruction(vcpu);
193 }
194 
195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
196 {
197 	/* TODO: not to reset guest simply here. */
198 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
200 }
201 
202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
203 {
204 	return fixed_bits_valid(control, low, high);
205 }
206 
207 static inline u64 vmx_control_msr(u32 low, u32 high)
208 {
209 	return low | ((u64)high << 32);
210 }
211 
212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
213 {
214 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
216 	vmx->nested.need_vmcs12_to_shadow_sync = false;
217 }
218 
219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
220 {
221 	struct vcpu_vmx *vmx = to_vmx(vcpu);
222 
223 	if (!vmx->nested.hv_evmcs)
224 		return;
225 
226 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227 	vmx->nested.hv_evmcs_vmptr = -1ull;
228 	vmx->nested.hv_evmcs = NULL;
229 }
230 
231 /*
232  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233  * just stops using VMX.
234  */
235 static void free_nested(struct kvm_vcpu *vcpu)
236 {
237 	struct vcpu_vmx *vmx = to_vmx(vcpu);
238 
239 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
240 		return;
241 
242 	kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
243 
244 	vmx->nested.vmxon = false;
245 	vmx->nested.smm.vmxon = false;
246 	free_vpid(vmx->nested.vpid02);
247 	vmx->nested.posted_intr_nv = -1;
248 	vmx->nested.current_vmptr = -1ull;
249 	if (enable_shadow_vmcs) {
250 		vmx_disable_shadow_vmcs(vmx);
251 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
252 		free_vmcs(vmx->vmcs01.shadow_vmcs);
253 		vmx->vmcs01.shadow_vmcs = NULL;
254 	}
255 	kfree(vmx->nested.cached_vmcs12);
256 	vmx->nested.cached_vmcs12 = NULL;
257 	kfree(vmx->nested.cached_shadow_vmcs12);
258 	vmx->nested.cached_shadow_vmcs12 = NULL;
259 	/* Unpin physical memory we referred to in the vmcs02 */
260 	if (vmx->nested.apic_access_page) {
261 		kvm_release_page_clean(vmx->nested.apic_access_page);
262 		vmx->nested.apic_access_page = NULL;
263 	}
264 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266 	vmx->nested.pi_desc = NULL;
267 
268 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
269 
270 	nested_release_evmcs(vcpu);
271 
272 	free_loaded_vmcs(&vmx->nested.vmcs02);
273 }
274 
275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276 				     struct loaded_vmcs *prev)
277 {
278 	struct vmcs_host_state *dest, *src;
279 
280 	if (unlikely(!vmx->guest_state_loaded))
281 		return;
282 
283 	src = &prev->host_state;
284 	dest = &vmx->loaded_vmcs->host_state;
285 
286 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287 	dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289 	dest->ds_sel = src->ds_sel;
290 	dest->es_sel = src->es_sel;
291 #endif
292 }
293 
294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296 	struct vcpu_vmx *vmx = to_vmx(vcpu);
297 	struct loaded_vmcs *prev;
298 	int cpu;
299 
300 	if (vmx->loaded_vmcs == vmcs)
301 		return;
302 
303 	cpu = get_cpu();
304 	prev = vmx->loaded_vmcs;
305 	vmx->loaded_vmcs = vmcs;
306 	vmx_vcpu_load_vmcs(vcpu, cpu);
307 	vmx_sync_vmcs_host_state(vmx, prev);
308 	put_cpu();
309 
310 	vmx_segment_cache_clear(vmx);
311 }
312 
313 /*
314  * Ensure that the current vmcs of the logical processor is the
315  * vmcs01 of the vcpu before calling free_nested().
316  */
317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
318 {
319 	vcpu_load(vcpu);
320 	vmx_leave_nested(vcpu);
321 	vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
322 	free_nested(vcpu);
323 	vcpu_put(vcpu);
324 }
325 
326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327 		struct x86_exception *fault)
328 {
329 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330 	struct vcpu_vmx *vmx = to_vmx(vcpu);
331 	u32 exit_reason;
332 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
333 
334 	if (vmx->nested.pml_full) {
335 		exit_reason = EXIT_REASON_PML_FULL;
336 		vmx->nested.pml_full = false;
337 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338 	} else if (fault->error_code & PFERR_RSVD_MASK)
339 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
340 	else
341 		exit_reason = EXIT_REASON_EPT_VIOLATION;
342 
343 	nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
344 	vmcs12->guest_physical_address = fault->address;
345 }
346 
347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
348 {
349 	WARN_ON(mmu_is_nested(vcpu));
350 
351 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352 	kvm_init_shadow_ept_mmu(vcpu,
353 			to_vmx(vcpu)->nested.msrs.ept_caps &
354 			VMX_EPT_EXECUTE_ONLY_BIT,
355 			nested_ept_ad_enabled(vcpu),
356 			nested_ept_get_cr3(vcpu));
357 	vcpu->arch.mmu->set_cr3           = vmx_set_cr3;
358 	vcpu->arch.mmu->get_cr3           = nested_ept_get_cr3;
359 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
360 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
361 
362 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
363 }
364 
365 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
366 {
367 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
368 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
369 }
370 
371 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
372 					    u16 error_code)
373 {
374 	bool inequality, bit;
375 
376 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
377 	inequality =
378 		(error_code & vmcs12->page_fault_error_code_mask) !=
379 		 vmcs12->page_fault_error_code_match;
380 	return inequality ^ bit;
381 }
382 
383 
384 /*
385  * KVM wants to inject page-faults which it got to the guest. This function
386  * checks whether in a nested guest, we need to inject them to L1 or L2.
387  */
388 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
389 {
390 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
391 	unsigned int nr = vcpu->arch.exception.nr;
392 	bool has_payload = vcpu->arch.exception.has_payload;
393 	unsigned long payload = vcpu->arch.exception.payload;
394 
395 	if (nr == PF_VECTOR) {
396 		if (vcpu->arch.exception.nested_apf) {
397 			*exit_qual = vcpu->arch.apf.nested_apf_token;
398 			return 1;
399 		}
400 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
401 						    vcpu->arch.exception.error_code)) {
402 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
403 			return 1;
404 		}
405 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
406 		if (nr == DB_VECTOR) {
407 			if (!has_payload) {
408 				payload = vcpu->arch.dr6;
409 				payload &= ~(DR6_FIXED_1 | DR6_BT);
410 				payload ^= DR6_RTM;
411 			}
412 			*exit_qual = payload;
413 		} else
414 			*exit_qual = 0;
415 		return 1;
416 	}
417 
418 	return 0;
419 }
420 
421 
422 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
423 		struct x86_exception *fault)
424 {
425 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
426 
427 	WARN_ON(!is_guest_mode(vcpu));
428 
429 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
430 		!to_vmx(vcpu)->nested.nested_run_pending) {
431 		vmcs12->vm_exit_intr_error_code = fault->error_code;
432 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
433 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
434 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
435 				  fault->address);
436 	} else {
437 		kvm_inject_page_fault(vcpu, fault);
438 	}
439 }
440 
441 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
442 {
443 	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
444 }
445 
446 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
447 					       struct vmcs12 *vmcs12)
448 {
449 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
450 		return 0;
451 
452 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
453 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
454 		return -EINVAL;
455 
456 	return 0;
457 }
458 
459 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
460 						struct vmcs12 *vmcs12)
461 {
462 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
463 		return 0;
464 
465 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
466 		return -EINVAL;
467 
468 	return 0;
469 }
470 
471 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
472 						struct vmcs12 *vmcs12)
473 {
474 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
475 		return 0;
476 
477 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
478 		return -EINVAL;
479 
480 	return 0;
481 }
482 
483 /*
484  * Check if MSR is intercepted for L01 MSR bitmap.
485  */
486 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
487 {
488 	unsigned long *msr_bitmap;
489 	int f = sizeof(unsigned long);
490 
491 	if (!cpu_has_vmx_msr_bitmap())
492 		return true;
493 
494 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
495 
496 	if (msr <= 0x1fff) {
497 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
498 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
499 		msr &= 0x1fff;
500 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
501 	}
502 
503 	return true;
504 }
505 
506 /*
507  * If a msr is allowed by L0, we should check whether it is allowed by L1.
508  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
509  */
510 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
511 					       unsigned long *msr_bitmap_nested,
512 					       u32 msr, int type)
513 {
514 	int f = sizeof(unsigned long);
515 
516 	/*
517 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
518 	 * have the write-low and read-high bitmap offsets the wrong way round.
519 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
520 	 */
521 	if (msr <= 0x1fff) {
522 		if (type & MSR_TYPE_R &&
523 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
524 			/* read-low */
525 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
526 
527 		if (type & MSR_TYPE_W &&
528 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
529 			/* write-low */
530 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
531 
532 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
533 		msr &= 0x1fff;
534 		if (type & MSR_TYPE_R &&
535 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
536 			/* read-high */
537 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
538 
539 		if (type & MSR_TYPE_W &&
540 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
541 			/* write-high */
542 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
543 
544 	}
545 }
546 
547 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
548 {
549 	int msr;
550 
551 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
552 		unsigned word = msr / BITS_PER_LONG;
553 
554 		msr_bitmap[word] = ~0;
555 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
556 	}
557 }
558 
559 /*
560  * Merge L0's and L1's MSR bitmap, return false to indicate that
561  * we do not use the hardware.
562  */
563 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
564 						 struct vmcs12 *vmcs12)
565 {
566 	int msr;
567 	unsigned long *msr_bitmap_l1;
568 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
569 	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
570 
571 	/* Nothing to do if the MSR bitmap is not in use.  */
572 	if (!cpu_has_vmx_msr_bitmap() ||
573 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
574 		return false;
575 
576 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
577 		return false;
578 
579 	msr_bitmap_l1 = (unsigned long *)map->hva;
580 
581 	/*
582 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
583 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
584 	 * the x2APIC MSR range and selectively disable them below.
585 	 */
586 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
587 
588 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
589 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
590 			/*
591 			 * L0 need not intercept reads for MSRs between 0x800
592 			 * and 0x8ff, it just lets the processor take the value
593 			 * from the virtual-APIC page; take those 256 bits
594 			 * directly from the L1 bitmap.
595 			 */
596 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
597 				unsigned word = msr / BITS_PER_LONG;
598 
599 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
600 			}
601 		}
602 
603 		nested_vmx_disable_intercept_for_msr(
604 			msr_bitmap_l1, msr_bitmap_l0,
605 			X2APIC_MSR(APIC_TASKPRI),
606 			MSR_TYPE_R | MSR_TYPE_W);
607 
608 		if (nested_cpu_has_vid(vmcs12)) {
609 			nested_vmx_disable_intercept_for_msr(
610 				msr_bitmap_l1, msr_bitmap_l0,
611 				X2APIC_MSR(APIC_EOI),
612 				MSR_TYPE_W);
613 			nested_vmx_disable_intercept_for_msr(
614 				msr_bitmap_l1, msr_bitmap_l0,
615 				X2APIC_MSR(APIC_SELF_IPI),
616 				MSR_TYPE_W);
617 		}
618 	}
619 
620 	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
621 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
622 					     MSR_FS_BASE, MSR_TYPE_RW);
623 
624 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
625 					     MSR_GS_BASE, MSR_TYPE_RW);
626 
627 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
628 					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
629 
630 	/*
631 	 * Checking the L0->L1 bitmap is trying to verify two things:
632 	 *
633 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
634 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
635 	 *    from the L12 MSR bitmap that is too permissive.
636 	 * 2. That L1 or L2s have actually used the MSR. This avoids
637 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
638 	 *    works properly because we only update the L01 MSR bitmap lazily.
639 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
640 	 *    updated to reflect this when L1 (or its L2s) actually write to
641 	 *    the MSR.
642 	 */
643 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
644 		nested_vmx_disable_intercept_for_msr(
645 					msr_bitmap_l1, msr_bitmap_l0,
646 					MSR_IA32_SPEC_CTRL,
647 					MSR_TYPE_R | MSR_TYPE_W);
648 
649 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
650 		nested_vmx_disable_intercept_for_msr(
651 					msr_bitmap_l1, msr_bitmap_l0,
652 					MSR_IA32_PRED_CMD,
653 					MSR_TYPE_W);
654 
655 	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
656 
657 	return true;
658 }
659 
660 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
661 				       struct vmcs12 *vmcs12)
662 {
663 	struct kvm_host_map map;
664 	struct vmcs12 *shadow;
665 
666 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
667 	    vmcs12->vmcs_link_pointer == -1ull)
668 		return;
669 
670 	shadow = get_shadow_vmcs12(vcpu);
671 
672 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
673 		return;
674 
675 	memcpy(shadow, map.hva, VMCS12_SIZE);
676 	kvm_vcpu_unmap(vcpu, &map, false);
677 }
678 
679 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
680 					      struct vmcs12 *vmcs12)
681 {
682 	struct vcpu_vmx *vmx = to_vmx(vcpu);
683 
684 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
685 	    vmcs12->vmcs_link_pointer == -1ull)
686 		return;
687 
688 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
689 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
690 }
691 
692 /*
693  * In nested virtualization, check if L1 has set
694  * VM_EXIT_ACK_INTR_ON_EXIT
695  */
696 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
697 {
698 	return get_vmcs12(vcpu)->vm_exit_controls &
699 		VM_EXIT_ACK_INTR_ON_EXIT;
700 }
701 
702 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
703 {
704 	return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
705 }
706 
707 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
708 					  struct vmcs12 *vmcs12)
709 {
710 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
711 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
712 		return -EINVAL;
713 	else
714 		return 0;
715 }
716 
717 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
718 					   struct vmcs12 *vmcs12)
719 {
720 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
721 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
722 	    !nested_cpu_has_vid(vmcs12) &&
723 	    !nested_cpu_has_posted_intr(vmcs12))
724 		return 0;
725 
726 	/*
727 	 * If virtualize x2apic mode is enabled,
728 	 * virtualize apic access must be disabled.
729 	 */
730 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
731 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
732 		return -EINVAL;
733 
734 	/*
735 	 * If virtual interrupt delivery is enabled,
736 	 * we must exit on external interrupts.
737 	 */
738 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
739 		return -EINVAL;
740 
741 	/*
742 	 * bits 15:8 should be zero in posted_intr_nv,
743 	 * the descriptor address has been already checked
744 	 * in nested_get_vmcs12_pages.
745 	 *
746 	 * bits 5:0 of posted_intr_desc_addr should be zero.
747 	 */
748 	if (nested_cpu_has_posted_intr(vmcs12) &&
749 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
750 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
751 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
752 	    CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
753 	    CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
754 		return -EINVAL;
755 
756 	/* tpr shadow is needed by all apicv features. */
757 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
758 		return -EINVAL;
759 
760 	return 0;
761 }
762 
763 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
764 				       u32 count, u64 addr)
765 {
766 	int maxphyaddr;
767 
768 	if (count == 0)
769 		return 0;
770 	maxphyaddr = cpuid_maxphyaddr(vcpu);
771 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
772 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
773 		return -EINVAL;
774 
775 	return 0;
776 }
777 
778 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
779 						     struct vmcs12 *vmcs12)
780 {
781 	if (CC(nested_vmx_check_msr_switch(vcpu,
782 					   vmcs12->vm_exit_msr_load_count,
783 					   vmcs12->vm_exit_msr_load_addr)) ||
784 	    CC(nested_vmx_check_msr_switch(vcpu,
785 					   vmcs12->vm_exit_msr_store_count,
786 					   vmcs12->vm_exit_msr_store_addr)))
787 		return -EINVAL;
788 
789 	return 0;
790 }
791 
792 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
793                                                       struct vmcs12 *vmcs12)
794 {
795 	if (CC(nested_vmx_check_msr_switch(vcpu,
796 					   vmcs12->vm_entry_msr_load_count,
797 					   vmcs12->vm_entry_msr_load_addr)))
798                 return -EINVAL;
799 
800 	return 0;
801 }
802 
803 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
804 					 struct vmcs12 *vmcs12)
805 {
806 	if (!nested_cpu_has_pml(vmcs12))
807 		return 0;
808 
809 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
810 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
811 		return -EINVAL;
812 
813 	return 0;
814 }
815 
816 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
817 							struct vmcs12 *vmcs12)
818 {
819 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
820 	       !nested_cpu_has_ept(vmcs12)))
821 		return -EINVAL;
822 	return 0;
823 }
824 
825 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
826 							 struct vmcs12 *vmcs12)
827 {
828 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
829 	       !nested_cpu_has_ept(vmcs12)))
830 		return -EINVAL;
831 	return 0;
832 }
833 
834 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
835 						 struct vmcs12 *vmcs12)
836 {
837 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
838 		return 0;
839 
840 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
841 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
842 		return -EINVAL;
843 
844 	return 0;
845 }
846 
847 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
848 				       struct vmx_msr_entry *e)
849 {
850 	/* x2APIC MSR accesses are not allowed */
851 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
852 		return -EINVAL;
853 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
854 	    CC(e->index == MSR_IA32_UCODE_REV))
855 		return -EINVAL;
856 	if (CC(e->reserved != 0))
857 		return -EINVAL;
858 	return 0;
859 }
860 
861 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
862 				     struct vmx_msr_entry *e)
863 {
864 	if (CC(e->index == MSR_FS_BASE) ||
865 	    CC(e->index == MSR_GS_BASE) ||
866 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
867 	    nested_vmx_msr_check_common(vcpu, e))
868 		return -EINVAL;
869 	return 0;
870 }
871 
872 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
873 				      struct vmx_msr_entry *e)
874 {
875 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
876 	    nested_vmx_msr_check_common(vcpu, e))
877 		return -EINVAL;
878 	return 0;
879 }
880 
881 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
882 {
883 	struct vcpu_vmx *vmx = to_vmx(vcpu);
884 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
885 				       vmx->nested.msrs.misc_high);
886 
887 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
888 }
889 
890 /*
891  * Load guest's/host's msr at nested entry/exit.
892  * return 0 for success, entry index for failure.
893  *
894  * One of the failure modes for MSR load/store is when a list exceeds the
895  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
896  * as possible, process all valid entries before failing rather than precheck
897  * for a capacity violation.
898  */
899 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
900 {
901 	u32 i;
902 	struct vmx_msr_entry e;
903 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
904 
905 	for (i = 0; i < count; i++) {
906 		if (unlikely(i >= max_msr_list_size))
907 			goto fail;
908 
909 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
910 					&e, sizeof(e))) {
911 			pr_debug_ratelimited(
912 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
913 				__func__, i, gpa + i * sizeof(e));
914 			goto fail;
915 		}
916 		if (nested_vmx_load_msr_check(vcpu, &e)) {
917 			pr_debug_ratelimited(
918 				"%s check failed (%u, 0x%x, 0x%x)\n",
919 				__func__, i, e.index, e.reserved);
920 			goto fail;
921 		}
922 		if (kvm_set_msr(vcpu, e.index, e.value)) {
923 			pr_debug_ratelimited(
924 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
925 				__func__, i, e.index, e.value);
926 			goto fail;
927 		}
928 	}
929 	return 0;
930 fail:
931 	return i + 1;
932 }
933 
934 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
935 					    u32 msr_index,
936 					    u64 *data)
937 {
938 	struct vcpu_vmx *vmx = to_vmx(vcpu);
939 
940 	/*
941 	 * If the L0 hypervisor stored a more accurate value for the TSC that
942 	 * does not include the time taken for emulation of the L2->L1
943 	 * VM-exit in L0, use the more accurate value.
944 	 */
945 	if (msr_index == MSR_IA32_TSC) {
946 		int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
947 					       MSR_IA32_TSC);
948 
949 		if (index >= 0) {
950 			u64 val = vmx->msr_autostore.guest.val[index].value;
951 
952 			*data = kvm_read_l1_tsc(vcpu, val);
953 			return true;
954 		}
955 	}
956 
957 	if (kvm_get_msr(vcpu, msr_index, data)) {
958 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
959 			msr_index);
960 		return false;
961 	}
962 	return true;
963 }
964 
965 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
966 				     struct vmx_msr_entry *e)
967 {
968 	if (kvm_vcpu_read_guest(vcpu,
969 				gpa + i * sizeof(*e),
970 				e, 2 * sizeof(u32))) {
971 		pr_debug_ratelimited(
972 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
973 			__func__, i, gpa + i * sizeof(*e));
974 		return false;
975 	}
976 	if (nested_vmx_store_msr_check(vcpu, e)) {
977 		pr_debug_ratelimited(
978 			"%s check failed (%u, 0x%x, 0x%x)\n",
979 			__func__, i, e->index, e->reserved);
980 		return false;
981 	}
982 	return true;
983 }
984 
985 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
986 {
987 	u64 data;
988 	u32 i;
989 	struct vmx_msr_entry e;
990 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
991 
992 	for (i = 0; i < count; i++) {
993 		if (unlikely(i >= max_msr_list_size))
994 			return -EINVAL;
995 
996 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
997 			return -EINVAL;
998 
999 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1000 			return -EINVAL;
1001 
1002 		if (kvm_vcpu_write_guest(vcpu,
1003 					 gpa + i * sizeof(e) +
1004 					     offsetof(struct vmx_msr_entry, value),
1005 					 &data, sizeof(data))) {
1006 			pr_debug_ratelimited(
1007 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1008 				__func__, i, e.index, data);
1009 			return -EINVAL;
1010 		}
1011 	}
1012 	return 0;
1013 }
1014 
1015 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1016 {
1017 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1018 	u32 count = vmcs12->vm_exit_msr_store_count;
1019 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1020 	struct vmx_msr_entry e;
1021 	u32 i;
1022 
1023 	for (i = 0; i < count; i++) {
1024 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1025 			return false;
1026 
1027 		if (e.index == msr_index)
1028 			return true;
1029 	}
1030 	return false;
1031 }
1032 
1033 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1034 					   u32 msr_index)
1035 {
1036 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1037 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1038 	bool in_vmcs12_store_list;
1039 	int msr_autostore_index;
1040 	bool in_autostore_list;
1041 	int last;
1042 
1043 	msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
1044 	in_autostore_list = msr_autostore_index >= 0;
1045 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1046 
1047 	if (in_vmcs12_store_list && !in_autostore_list) {
1048 		if (autostore->nr == NR_LOADSTORE_MSRS) {
1049 			/*
1050 			 * Emulated VMEntry does not fail here.  Instead a less
1051 			 * accurate value will be returned by
1052 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1053 			 * instead of reading the value from the vmcs02 VMExit
1054 			 * MSR-store area.
1055 			 */
1056 			pr_warn_ratelimited(
1057 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1058 				msr_index);
1059 			return;
1060 		}
1061 		last = autostore->nr++;
1062 		autostore->val[last].index = msr_index;
1063 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1064 		last = --autostore->nr;
1065 		autostore->val[msr_autostore_index] = autostore->val[last];
1066 	}
1067 }
1068 
1069 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
1070 {
1071 	unsigned long invalid_mask;
1072 
1073 	invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1074 	return (val & invalid_mask) == 0;
1075 }
1076 
1077 /*
1078  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1079  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1080  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1081  * @entry_failure_code.
1082  */
1083 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1084 			       u32 *entry_failure_code)
1085 {
1086 	if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1087 		if (CC(!nested_cr3_valid(vcpu, cr3))) {
1088 			*entry_failure_code = ENTRY_FAIL_DEFAULT;
1089 			return -EINVAL;
1090 		}
1091 
1092 		/*
1093 		 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1094 		 * must not be dereferenced.
1095 		 */
1096 		if (is_pae_paging(vcpu) && !nested_ept) {
1097 			if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1098 				*entry_failure_code = ENTRY_FAIL_PDPTE;
1099 				return -EINVAL;
1100 			}
1101 		}
1102 	}
1103 
1104 	if (!nested_ept)
1105 		kvm_mmu_new_cr3(vcpu, cr3, false);
1106 
1107 	vcpu->arch.cr3 = cr3;
1108 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1109 
1110 	kvm_init_mmu(vcpu, false);
1111 
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Returns if KVM is able to config CPU to tag TLB entries
1117  * populated by L2 differently than TLB entries populated
1118  * by L1.
1119  *
1120  * If L0 uses EPT, L1 and L2 run with different EPTP because
1121  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1122  * are tagged with different EPTP.
1123  *
1124  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1125  * with different VPID (L1 entries are tagged with vmx->vpid
1126  * while L2 entries are tagged with vmx->nested.vpid02).
1127  */
1128 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1129 {
1130 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1131 
1132 	return enable_ept ||
1133 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1134 }
1135 
1136 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1137 {
1138 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1139 
1140 	return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1141 }
1142 
1143 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1144 {
1145 	superset &= mask;
1146 	subset &= mask;
1147 
1148 	return (superset | subset) == superset;
1149 }
1150 
1151 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1152 {
1153 	const u64 feature_and_reserved =
1154 		/* feature (except bit 48; see below) */
1155 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1156 		/* reserved */
1157 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1158 	u64 vmx_basic = vmx->nested.msrs.basic;
1159 
1160 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1161 		return -EINVAL;
1162 
1163 	/*
1164 	 * KVM does not emulate a version of VMX that constrains physical
1165 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1166 	 */
1167 	if (data & BIT_ULL(48))
1168 		return -EINVAL;
1169 
1170 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1171 	    vmx_basic_vmcs_revision_id(data))
1172 		return -EINVAL;
1173 
1174 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1175 		return -EINVAL;
1176 
1177 	vmx->nested.msrs.basic = data;
1178 	return 0;
1179 }
1180 
1181 static int
1182 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1183 {
1184 	u64 supported;
1185 	u32 *lowp, *highp;
1186 
1187 	switch (msr_index) {
1188 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1189 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1190 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1191 		break;
1192 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1193 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1194 		highp = &vmx->nested.msrs.procbased_ctls_high;
1195 		break;
1196 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1197 		lowp = &vmx->nested.msrs.exit_ctls_low;
1198 		highp = &vmx->nested.msrs.exit_ctls_high;
1199 		break;
1200 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1201 		lowp = &vmx->nested.msrs.entry_ctls_low;
1202 		highp = &vmx->nested.msrs.entry_ctls_high;
1203 		break;
1204 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1205 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1206 		highp = &vmx->nested.msrs.secondary_ctls_high;
1207 		break;
1208 	default:
1209 		BUG();
1210 	}
1211 
1212 	supported = vmx_control_msr(*lowp, *highp);
1213 
1214 	/* Check must-be-1 bits are still 1. */
1215 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1216 		return -EINVAL;
1217 
1218 	/* Check must-be-0 bits are still 0. */
1219 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1220 		return -EINVAL;
1221 
1222 	*lowp = data;
1223 	*highp = data >> 32;
1224 	return 0;
1225 }
1226 
1227 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1228 {
1229 	const u64 feature_and_reserved_bits =
1230 		/* feature */
1231 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1232 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1233 		/* reserved */
1234 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1235 	u64 vmx_misc;
1236 
1237 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1238 				   vmx->nested.msrs.misc_high);
1239 
1240 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1241 		return -EINVAL;
1242 
1243 	if ((vmx->nested.msrs.pinbased_ctls_high &
1244 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1245 	    vmx_misc_preemption_timer_rate(data) !=
1246 	    vmx_misc_preemption_timer_rate(vmx_misc))
1247 		return -EINVAL;
1248 
1249 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1250 		return -EINVAL;
1251 
1252 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1253 		return -EINVAL;
1254 
1255 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1256 		return -EINVAL;
1257 
1258 	vmx->nested.msrs.misc_low = data;
1259 	vmx->nested.msrs.misc_high = data >> 32;
1260 
1261 	return 0;
1262 }
1263 
1264 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1265 {
1266 	u64 vmx_ept_vpid_cap;
1267 
1268 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1269 					   vmx->nested.msrs.vpid_caps);
1270 
1271 	/* Every bit is either reserved or a feature bit. */
1272 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1273 		return -EINVAL;
1274 
1275 	vmx->nested.msrs.ept_caps = data;
1276 	vmx->nested.msrs.vpid_caps = data >> 32;
1277 	return 0;
1278 }
1279 
1280 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1281 {
1282 	u64 *msr;
1283 
1284 	switch (msr_index) {
1285 	case MSR_IA32_VMX_CR0_FIXED0:
1286 		msr = &vmx->nested.msrs.cr0_fixed0;
1287 		break;
1288 	case MSR_IA32_VMX_CR4_FIXED0:
1289 		msr = &vmx->nested.msrs.cr4_fixed0;
1290 		break;
1291 	default:
1292 		BUG();
1293 	}
1294 
1295 	/*
1296 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1297 	 * must be 1 in the restored value.
1298 	 */
1299 	if (!is_bitwise_subset(data, *msr, -1ULL))
1300 		return -EINVAL;
1301 
1302 	*msr = data;
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Called when userspace is restoring VMX MSRs.
1308  *
1309  * Returns 0 on success, non-0 otherwise.
1310  */
1311 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1312 {
1313 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1314 
1315 	/*
1316 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1317 	 * is in VMX operation.
1318 	 */
1319 	if (vmx->nested.vmxon)
1320 		return -EBUSY;
1321 
1322 	switch (msr_index) {
1323 	case MSR_IA32_VMX_BASIC:
1324 		return vmx_restore_vmx_basic(vmx, data);
1325 	case MSR_IA32_VMX_PINBASED_CTLS:
1326 	case MSR_IA32_VMX_PROCBASED_CTLS:
1327 	case MSR_IA32_VMX_EXIT_CTLS:
1328 	case MSR_IA32_VMX_ENTRY_CTLS:
1329 		/*
1330 		 * The "non-true" VMX capability MSRs are generated from the
1331 		 * "true" MSRs, so we do not support restoring them directly.
1332 		 *
1333 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1334 		 * should restore the "true" MSRs with the must-be-1 bits
1335 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1336 		 * DEFAULT SETTINGS".
1337 		 */
1338 		return -EINVAL;
1339 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1340 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1341 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1342 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1343 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1344 		return vmx_restore_control_msr(vmx, msr_index, data);
1345 	case MSR_IA32_VMX_MISC:
1346 		return vmx_restore_vmx_misc(vmx, data);
1347 	case MSR_IA32_VMX_CR0_FIXED0:
1348 	case MSR_IA32_VMX_CR4_FIXED0:
1349 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1350 	case MSR_IA32_VMX_CR0_FIXED1:
1351 	case MSR_IA32_VMX_CR4_FIXED1:
1352 		/*
1353 		 * These MSRs are generated based on the vCPU's CPUID, so we
1354 		 * do not support restoring them directly.
1355 		 */
1356 		return -EINVAL;
1357 	case MSR_IA32_VMX_EPT_VPID_CAP:
1358 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1359 	case MSR_IA32_VMX_VMCS_ENUM:
1360 		vmx->nested.msrs.vmcs_enum = data;
1361 		return 0;
1362 	case MSR_IA32_VMX_VMFUNC:
1363 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1364 			return -EINVAL;
1365 		vmx->nested.msrs.vmfunc_controls = data;
1366 		return 0;
1367 	default:
1368 		/*
1369 		 * The rest of the VMX capability MSRs do not support restore.
1370 		 */
1371 		return -EINVAL;
1372 	}
1373 }
1374 
1375 /* Returns 0 on success, non-0 otherwise. */
1376 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1377 {
1378 	switch (msr_index) {
1379 	case MSR_IA32_VMX_BASIC:
1380 		*pdata = msrs->basic;
1381 		break;
1382 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1383 	case MSR_IA32_VMX_PINBASED_CTLS:
1384 		*pdata = vmx_control_msr(
1385 			msrs->pinbased_ctls_low,
1386 			msrs->pinbased_ctls_high);
1387 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1388 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1389 		break;
1390 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1391 	case MSR_IA32_VMX_PROCBASED_CTLS:
1392 		*pdata = vmx_control_msr(
1393 			msrs->procbased_ctls_low,
1394 			msrs->procbased_ctls_high);
1395 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1396 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1397 		break;
1398 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1399 	case MSR_IA32_VMX_EXIT_CTLS:
1400 		*pdata = vmx_control_msr(
1401 			msrs->exit_ctls_low,
1402 			msrs->exit_ctls_high);
1403 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1404 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1405 		break;
1406 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1407 	case MSR_IA32_VMX_ENTRY_CTLS:
1408 		*pdata = vmx_control_msr(
1409 			msrs->entry_ctls_low,
1410 			msrs->entry_ctls_high);
1411 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1412 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1413 		break;
1414 	case MSR_IA32_VMX_MISC:
1415 		*pdata = vmx_control_msr(
1416 			msrs->misc_low,
1417 			msrs->misc_high);
1418 		break;
1419 	case MSR_IA32_VMX_CR0_FIXED0:
1420 		*pdata = msrs->cr0_fixed0;
1421 		break;
1422 	case MSR_IA32_VMX_CR0_FIXED1:
1423 		*pdata = msrs->cr0_fixed1;
1424 		break;
1425 	case MSR_IA32_VMX_CR4_FIXED0:
1426 		*pdata = msrs->cr4_fixed0;
1427 		break;
1428 	case MSR_IA32_VMX_CR4_FIXED1:
1429 		*pdata = msrs->cr4_fixed1;
1430 		break;
1431 	case MSR_IA32_VMX_VMCS_ENUM:
1432 		*pdata = msrs->vmcs_enum;
1433 		break;
1434 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1435 		*pdata = vmx_control_msr(
1436 			msrs->secondary_ctls_low,
1437 			msrs->secondary_ctls_high);
1438 		break;
1439 	case MSR_IA32_VMX_EPT_VPID_CAP:
1440 		*pdata = msrs->ept_caps |
1441 			((u64)msrs->vpid_caps << 32);
1442 		break;
1443 	case MSR_IA32_VMX_VMFUNC:
1444 		*pdata = msrs->vmfunc_controls;
1445 		break;
1446 	default:
1447 		return 1;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 /*
1454  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1455  * been modified by the L1 guest.  Note, "writable" in this context means
1456  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1457  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1458  * VM-exit information fields (which are actually writable if the vCPU is
1459  * configured to support "VMWRITE to any supported field in the VMCS").
1460  */
1461 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1462 {
1463 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1464 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1465 	struct shadow_vmcs_field field;
1466 	unsigned long val;
1467 	int i;
1468 
1469 	if (WARN_ON(!shadow_vmcs))
1470 		return;
1471 
1472 	preempt_disable();
1473 
1474 	vmcs_load(shadow_vmcs);
1475 
1476 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1477 		field = shadow_read_write_fields[i];
1478 		val = __vmcs_readl(field.encoding);
1479 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1480 	}
1481 
1482 	vmcs_clear(shadow_vmcs);
1483 	vmcs_load(vmx->loaded_vmcs->vmcs);
1484 
1485 	preempt_enable();
1486 }
1487 
1488 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1489 {
1490 	const struct shadow_vmcs_field *fields[] = {
1491 		shadow_read_write_fields,
1492 		shadow_read_only_fields
1493 	};
1494 	const int max_fields[] = {
1495 		max_shadow_read_write_fields,
1496 		max_shadow_read_only_fields
1497 	};
1498 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1499 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1500 	struct shadow_vmcs_field field;
1501 	unsigned long val;
1502 	int i, q;
1503 
1504 	if (WARN_ON(!shadow_vmcs))
1505 		return;
1506 
1507 	vmcs_load(shadow_vmcs);
1508 
1509 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1510 		for (i = 0; i < max_fields[q]; i++) {
1511 			field = fields[q][i];
1512 			val = vmcs12_read_any(vmcs12, field.encoding,
1513 					      field.offset);
1514 			__vmcs_writel(field.encoding, val);
1515 		}
1516 	}
1517 
1518 	vmcs_clear(shadow_vmcs);
1519 	vmcs_load(vmx->loaded_vmcs->vmcs);
1520 }
1521 
1522 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1523 {
1524 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1525 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1526 
1527 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1528 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1529 	vmcs12->guest_rip = evmcs->guest_rip;
1530 
1531 	if (unlikely(!(evmcs->hv_clean_fields &
1532 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1533 		vmcs12->guest_rsp = evmcs->guest_rsp;
1534 		vmcs12->guest_rflags = evmcs->guest_rflags;
1535 		vmcs12->guest_interruptibility_info =
1536 			evmcs->guest_interruptibility_info;
1537 	}
1538 
1539 	if (unlikely(!(evmcs->hv_clean_fields &
1540 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1541 		vmcs12->cpu_based_vm_exec_control =
1542 			evmcs->cpu_based_vm_exec_control;
1543 	}
1544 
1545 	if (unlikely(!(evmcs->hv_clean_fields &
1546 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1547 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1548 	}
1549 
1550 	if (unlikely(!(evmcs->hv_clean_fields &
1551 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1552 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1553 	}
1554 
1555 	if (unlikely(!(evmcs->hv_clean_fields &
1556 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1557 		vmcs12->vm_entry_intr_info_field =
1558 			evmcs->vm_entry_intr_info_field;
1559 		vmcs12->vm_entry_exception_error_code =
1560 			evmcs->vm_entry_exception_error_code;
1561 		vmcs12->vm_entry_instruction_len =
1562 			evmcs->vm_entry_instruction_len;
1563 	}
1564 
1565 	if (unlikely(!(evmcs->hv_clean_fields &
1566 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1567 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1568 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1569 		vmcs12->host_cr0 = evmcs->host_cr0;
1570 		vmcs12->host_cr3 = evmcs->host_cr3;
1571 		vmcs12->host_cr4 = evmcs->host_cr4;
1572 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1573 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1574 		vmcs12->host_rip = evmcs->host_rip;
1575 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1576 		vmcs12->host_es_selector = evmcs->host_es_selector;
1577 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1578 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1579 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1580 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1581 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1582 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1583 	}
1584 
1585 	if (unlikely(!(evmcs->hv_clean_fields &
1586 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1587 		vmcs12->pin_based_vm_exec_control =
1588 			evmcs->pin_based_vm_exec_control;
1589 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1590 		vmcs12->secondary_vm_exec_control =
1591 			evmcs->secondary_vm_exec_control;
1592 	}
1593 
1594 	if (unlikely(!(evmcs->hv_clean_fields &
1595 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1596 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1597 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1598 	}
1599 
1600 	if (unlikely(!(evmcs->hv_clean_fields &
1601 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1602 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1603 	}
1604 
1605 	if (unlikely(!(evmcs->hv_clean_fields &
1606 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1607 		vmcs12->guest_es_base = evmcs->guest_es_base;
1608 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1609 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1610 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1611 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1612 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1613 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1614 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1615 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1616 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1617 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1618 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1619 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1620 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1621 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1622 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1623 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1624 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1625 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1626 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1627 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1628 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1629 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1630 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1631 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1632 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1633 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1634 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1635 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1636 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1637 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1638 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1639 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1640 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1641 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1642 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1643 	}
1644 
1645 	if (unlikely(!(evmcs->hv_clean_fields &
1646 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1647 		vmcs12->tsc_offset = evmcs->tsc_offset;
1648 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1649 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1650 	}
1651 
1652 	if (unlikely(!(evmcs->hv_clean_fields &
1653 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1654 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1655 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1656 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1657 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1658 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1659 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1660 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1661 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1662 	}
1663 
1664 	if (unlikely(!(evmcs->hv_clean_fields &
1665 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1666 		vmcs12->host_fs_base = evmcs->host_fs_base;
1667 		vmcs12->host_gs_base = evmcs->host_gs_base;
1668 		vmcs12->host_tr_base = evmcs->host_tr_base;
1669 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1670 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1671 		vmcs12->host_rsp = evmcs->host_rsp;
1672 	}
1673 
1674 	if (unlikely(!(evmcs->hv_clean_fields &
1675 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1676 		vmcs12->ept_pointer = evmcs->ept_pointer;
1677 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1678 	}
1679 
1680 	if (unlikely(!(evmcs->hv_clean_fields &
1681 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1682 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1683 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1684 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1685 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1686 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1687 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1688 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1689 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1690 		vmcs12->guest_pending_dbg_exceptions =
1691 			evmcs->guest_pending_dbg_exceptions;
1692 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1693 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1694 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1695 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1696 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1697 	}
1698 
1699 	/*
1700 	 * Not used?
1701 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1702 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1703 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1704 	 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1705 	 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1706 	 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1707 	 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1708 	 * vmcs12->page_fault_error_code_mask =
1709 	 *		evmcs->page_fault_error_code_mask;
1710 	 * vmcs12->page_fault_error_code_match =
1711 	 *		evmcs->page_fault_error_code_match;
1712 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1713 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1714 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1715 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1716 	 */
1717 
1718 	/*
1719 	 * Read only fields:
1720 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1721 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1722 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1723 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1724 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1725 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1726 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1727 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1728 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1729 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1730 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1731 	 *
1732 	 * Not present in struct vmcs12:
1733 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1734 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1735 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1736 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1737 	 */
1738 
1739 	return 0;
1740 }
1741 
1742 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1743 {
1744 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1745 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1746 
1747 	/*
1748 	 * Should not be changed by KVM:
1749 	 *
1750 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1751 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1752 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1753 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1754 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1755 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1756 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1757 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1758 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1759 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1760 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1761 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1762 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1763 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1764 	 * evmcs->host_rip = vmcs12->host_rip;
1765 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1766 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1767 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1768 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1769 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1770 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1771 	 * evmcs->host_rsp = vmcs12->host_rsp;
1772 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1773 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1774 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1775 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1776 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1777 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1778 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1779 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1780 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1781 	 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1782 	 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1783 	 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1784 	 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1785 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1786 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1787 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1788 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1789 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1790 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1791 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1792 	 * evmcs->page_fault_error_code_mask =
1793 	 *		vmcs12->page_fault_error_code_mask;
1794 	 * evmcs->page_fault_error_code_match =
1795 	 *		vmcs12->page_fault_error_code_match;
1796 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1797 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1798 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1799 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1800 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1801 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1802 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1803 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1804 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1805 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1806 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1807 	 *
1808 	 * Not present in struct vmcs12:
1809 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1810 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1811 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1812 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1813 	 */
1814 
1815 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1816 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1817 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1818 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1819 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1820 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1821 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1822 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1823 
1824 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1825 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1826 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1827 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1828 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1829 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1830 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1831 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1832 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1833 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1834 
1835 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1836 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1837 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1838 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1839 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1840 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1841 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1842 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1843 
1844 	evmcs->guest_es_base = vmcs12->guest_es_base;
1845 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1846 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1847 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1848 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1849 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1850 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1851 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1852 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1853 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1854 
1855 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1856 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1857 
1858 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1859 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1860 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1861 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1862 
1863 	evmcs->guest_pending_dbg_exceptions =
1864 		vmcs12->guest_pending_dbg_exceptions;
1865 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1866 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1867 
1868 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1869 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1870 
1871 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1872 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1873 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1874 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1875 
1876 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1877 
1878 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1879 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1880 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1881 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1882 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1883 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1884 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1885 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1886 
1887 	evmcs->exit_qualification = vmcs12->exit_qualification;
1888 
1889 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1890 	evmcs->guest_rsp = vmcs12->guest_rsp;
1891 	evmcs->guest_rflags = vmcs12->guest_rflags;
1892 
1893 	evmcs->guest_interruptibility_info =
1894 		vmcs12->guest_interruptibility_info;
1895 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1896 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1897 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1898 	evmcs->vm_entry_exception_error_code =
1899 		vmcs12->vm_entry_exception_error_code;
1900 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1901 
1902 	evmcs->guest_rip = vmcs12->guest_rip;
1903 
1904 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1905 
1906 	return 0;
1907 }
1908 
1909 /*
1910  * This is an equivalent of the nested hypervisor executing the vmptrld
1911  * instruction.
1912  */
1913 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1914 						 bool from_launch)
1915 {
1916 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1917 	bool evmcs_gpa_changed = false;
1918 	u64 evmcs_gpa;
1919 
1920 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1921 		return 1;
1922 
1923 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1924 		return 1;
1925 
1926 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1927 		if (!vmx->nested.hv_evmcs)
1928 			vmx->nested.current_vmptr = -1ull;
1929 
1930 		nested_release_evmcs(vcpu);
1931 
1932 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1933 				 &vmx->nested.hv_evmcs_map))
1934 			return 0;
1935 
1936 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1937 
1938 		/*
1939 		 * Currently, KVM only supports eVMCS version 1
1940 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1941 		 * value to first u32 field of eVMCS which should specify eVMCS
1942 		 * VersionNumber.
1943 		 *
1944 		 * Guest should be aware of supported eVMCS versions by host by
1945 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1946 		 * expected to set this CPUID leaf according to the value
1947 		 * returned in vmcs_version from nested_enable_evmcs().
1948 		 *
1949 		 * However, it turns out that Microsoft Hyper-V fails to comply
1950 		 * to their own invented interface: When Hyper-V use eVMCS, it
1951 		 * just sets first u32 field of eVMCS to revision_id specified
1952 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1953 		 * which is one of the supported versions specified in
1954 		 * CPUID.0x4000000A.EAX[0:15].
1955 		 *
1956 		 * To overcome Hyper-V bug, we accept here either a supported
1957 		 * eVMCS version or VMCS12 revision_id as valid values for first
1958 		 * u32 field of eVMCS.
1959 		 */
1960 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1961 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1962 			nested_release_evmcs(vcpu);
1963 			return 0;
1964 		}
1965 
1966 		vmx->nested.dirty_vmcs12 = true;
1967 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1968 
1969 		evmcs_gpa_changed = true;
1970 		/*
1971 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1972 		 * reloaded from guest's memory (read only fields, fields not
1973 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
1974 		 * are no leftovers.
1975 		 */
1976 		if (from_launch) {
1977 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1978 			memset(vmcs12, 0, sizeof(*vmcs12));
1979 			vmcs12->hdr.revision_id = VMCS12_REVISION;
1980 		}
1981 
1982 	}
1983 
1984 	/*
1985 	 * Clean fields data can't be used on VMLAUNCH and when we switch
1986 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
1987 	 */
1988 	if (from_launch || evmcs_gpa_changed)
1989 		vmx->nested.hv_evmcs->hv_clean_fields &=
1990 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1991 
1992 	return 1;
1993 }
1994 
1995 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1996 {
1997 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1998 
1999 	/*
2000 	 * hv_evmcs may end up being not mapped after migration (when
2001 	 * L2 was running), map it here to make sure vmcs12 changes are
2002 	 * properly reflected.
2003 	 */
2004 	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
2005 		nested_vmx_handle_enlightened_vmptrld(vcpu, false);
2006 
2007 	if (vmx->nested.hv_evmcs) {
2008 		copy_vmcs12_to_enlightened(vmx);
2009 		/* All fields are clean */
2010 		vmx->nested.hv_evmcs->hv_clean_fields |=
2011 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2012 	} else {
2013 		copy_vmcs12_to_shadow(vmx);
2014 	}
2015 
2016 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2017 }
2018 
2019 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2020 {
2021 	struct vcpu_vmx *vmx =
2022 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2023 
2024 	vmx->nested.preemption_timer_expired = true;
2025 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2026 	kvm_vcpu_kick(&vmx->vcpu);
2027 
2028 	return HRTIMER_NORESTART;
2029 }
2030 
2031 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
2032 {
2033 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
2034 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2035 
2036 	/*
2037 	 * A timer value of zero is architecturally guaranteed to cause
2038 	 * a VMExit prior to executing any instructions in the guest.
2039 	 */
2040 	if (preemption_timeout == 0) {
2041 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2042 		return;
2043 	}
2044 
2045 	if (vcpu->arch.virtual_tsc_khz == 0)
2046 		return;
2047 
2048 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2049 	preemption_timeout *= 1000000;
2050 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2051 	hrtimer_start(&vmx->nested.preemption_timer,
2052 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
2053 }
2054 
2055 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2056 {
2057 	if (vmx->nested.nested_run_pending &&
2058 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2059 		return vmcs12->guest_ia32_efer;
2060 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2061 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2062 	else
2063 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2064 }
2065 
2066 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2067 {
2068 	/*
2069 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2070 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2071 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2072 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2073 	 */
2074 	if (vmx->nested.vmcs02_initialized)
2075 		return;
2076 	vmx->nested.vmcs02_initialized = true;
2077 
2078 	/*
2079 	 * We don't care what the EPTP value is we just need to guarantee
2080 	 * it's valid so we don't get a false positive when doing early
2081 	 * consistency checks.
2082 	 */
2083 	if (enable_ept && nested_early_check)
2084 		vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
2085 
2086 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2087 	if (cpu_has_vmx_vmfunc())
2088 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2089 
2090 	if (cpu_has_vmx_posted_intr())
2091 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2092 
2093 	if (cpu_has_vmx_msr_bitmap())
2094 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2095 
2096 	/*
2097 	 * The PML address never changes, so it is constant in vmcs02.
2098 	 * Conceptually we want to copy the PML index from vmcs01 here,
2099 	 * and then back to vmcs01 on nested vmexit.  But since we flush
2100 	 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2101 	 * index is also effectively constant in vmcs02.
2102 	 */
2103 	if (enable_pml) {
2104 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2105 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2106 	}
2107 
2108 	if (cpu_has_vmx_encls_vmexit())
2109 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2110 
2111 	/*
2112 	 * Set the MSR load/store lists to match L0's settings.  Only the
2113 	 * addresses are constant (for vmcs02), the counts can change based
2114 	 * on L2's behavior, e.g. switching to/from long mode.
2115 	 */
2116 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2117 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2118 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2119 
2120 	vmx_set_constant_host_state(vmx);
2121 }
2122 
2123 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2124 				      struct vmcs12 *vmcs12)
2125 {
2126 	prepare_vmcs02_constant_state(vmx);
2127 
2128 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
2129 
2130 	if (enable_vpid) {
2131 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2132 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2133 		else
2134 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2135 	}
2136 }
2137 
2138 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2139 {
2140 	u32 exec_control, vmcs12_exec_ctrl;
2141 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2142 
2143 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2144 		prepare_vmcs02_early_rare(vmx, vmcs12);
2145 
2146 	/*
2147 	 * PIN CONTROLS
2148 	 */
2149 	exec_control = vmx_pin_based_exec_ctrl(vmx);
2150 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2151 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2152 
2153 	/* Posted interrupts setting is only taken from vmcs12.  */
2154 	if (nested_cpu_has_posted_intr(vmcs12)) {
2155 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2156 		vmx->nested.pi_pending = false;
2157 	} else {
2158 		exec_control &= ~PIN_BASED_POSTED_INTR;
2159 	}
2160 	pin_controls_set(vmx, exec_control);
2161 
2162 	/*
2163 	 * EXEC CONTROLS
2164 	 */
2165 	exec_control = vmx_exec_control(vmx); /* L0's desires */
2166 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2167 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2168 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2169 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2170 
2171 	vmx->nested.l1_tpr_threshold = -1;
2172 	if (exec_control & CPU_BASED_TPR_SHADOW)
2173 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2174 #ifdef CONFIG_X86_64
2175 	else
2176 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2177 				CPU_BASED_CR8_STORE_EXITING;
2178 #endif
2179 
2180 	/*
2181 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2182 	 * for I/O port accesses.
2183 	 */
2184 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2185 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2186 
2187 	/*
2188 	 * This bit will be computed in nested_get_vmcs12_pages, because
2189 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2190 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2191 	 * only set/clear this bit.
2192 	 */
2193 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2194 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2195 
2196 	exec_controls_set(vmx, exec_control);
2197 
2198 	/*
2199 	 * SECONDARY EXEC CONTROLS
2200 	 */
2201 	if (cpu_has_secondary_exec_ctrls()) {
2202 		exec_control = vmx->secondary_exec_control;
2203 
2204 		/* Take the following fields only from vmcs12 */
2205 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2206 				  SECONDARY_EXEC_ENABLE_INVPCID |
2207 				  SECONDARY_EXEC_RDTSCP |
2208 				  SECONDARY_EXEC_XSAVES |
2209 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2210 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2211 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2212 				  SECONDARY_EXEC_ENABLE_VMFUNC);
2213 		if (nested_cpu_has(vmcs12,
2214 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2215 			vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2216 				~SECONDARY_EXEC_ENABLE_PML;
2217 			exec_control |= vmcs12_exec_ctrl;
2218 		}
2219 
2220 		/* VMCS shadowing for L2 is emulated for now */
2221 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2222 
2223 		/*
2224 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2225 		 * will not have to rewrite the controls just for this bit.
2226 		 */
2227 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2228 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2229 			exec_control |= SECONDARY_EXEC_DESC;
2230 
2231 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2232 			vmcs_write16(GUEST_INTR_STATUS,
2233 				vmcs12->guest_intr_status);
2234 
2235 		secondary_exec_controls_set(vmx, exec_control);
2236 	}
2237 
2238 	/*
2239 	 * ENTRY CONTROLS
2240 	 *
2241 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2242 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2243 	 * on the related bits (if supported by the CPU) in the hope that
2244 	 * we can avoid VMWrites during vmx_set_efer().
2245 	 */
2246 	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2247 			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2248 	if (cpu_has_load_ia32_efer()) {
2249 		if (guest_efer & EFER_LMA)
2250 			exec_control |= VM_ENTRY_IA32E_MODE;
2251 		if (guest_efer != host_efer)
2252 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2253 	}
2254 	vm_entry_controls_set(vmx, exec_control);
2255 
2256 	/*
2257 	 * EXIT CONTROLS
2258 	 *
2259 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2260 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2261 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2262 	 */
2263 	exec_control = vmx_vmexit_ctrl();
2264 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2265 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2266 	vm_exit_controls_set(vmx, exec_control);
2267 
2268 	/*
2269 	 * Interrupt/Exception Fields
2270 	 */
2271 	if (vmx->nested.nested_run_pending) {
2272 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2273 			     vmcs12->vm_entry_intr_info_field);
2274 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2275 			     vmcs12->vm_entry_exception_error_code);
2276 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2277 			     vmcs12->vm_entry_instruction_len);
2278 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2279 			     vmcs12->guest_interruptibility_info);
2280 		vmx->loaded_vmcs->nmi_known_unmasked =
2281 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2282 	} else {
2283 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2284 	}
2285 }
2286 
2287 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2288 {
2289 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2290 
2291 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2292 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2293 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2294 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2295 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2296 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2297 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2298 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2299 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2300 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2301 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2302 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2303 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2304 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2305 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2306 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2307 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2308 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2309 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2310 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2311 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2312 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2313 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2314 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2315 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2316 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2317 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2318 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2319 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2320 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2321 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2322 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2323 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2324 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2325 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2326 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2327 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2328 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2329 	}
2330 
2331 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2332 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2333 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2334 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2335 			    vmcs12->guest_pending_dbg_exceptions);
2336 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2337 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2338 
2339 		/*
2340 		 * L1 may access the L2's PDPTR, so save them to construct
2341 		 * vmcs12
2342 		 */
2343 		if (enable_ept) {
2344 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2345 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2346 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2347 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2348 		}
2349 
2350 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2351 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2352 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2353 	}
2354 
2355 	if (nested_cpu_has_xsaves(vmcs12))
2356 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2357 
2358 	/*
2359 	 * Whether page-faults are trapped is determined by a combination of
2360 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2361 	 * If enable_ept, L0 doesn't care about page faults and we should
2362 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
2363 	 * care about (at least some) page faults, and because it is not easy
2364 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2365 	 * to exit on each and every L2 page fault. This is done by setting
2366 	 * MASK=MATCH=0 and (see below) EB.PF=1.
2367 	 * Note that below we don't need special code to set EB.PF beyond the
2368 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2369 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2370 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2371 	 */
2372 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2373 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2374 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2375 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
2376 
2377 	if (cpu_has_vmx_apicv()) {
2378 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2379 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2380 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2381 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2382 	}
2383 
2384 	/*
2385 	 * Make sure the msr_autostore list is up to date before we set the
2386 	 * count in the vmcs02.
2387 	 */
2388 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2389 
2390 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2391 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2392 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2393 
2394 	set_cr4_guest_host_mask(vmx);
2395 }
2396 
2397 /*
2398  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2399  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2400  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2401  * guest in a way that will both be appropriate to L1's requests, and our
2402  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2403  * function also has additional necessary side-effects, like setting various
2404  * vcpu->arch fields.
2405  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2406  * is assigned to entry_failure_code on failure.
2407  */
2408 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2409 			  u32 *entry_failure_code)
2410 {
2411 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2412 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2413 	bool load_guest_pdptrs_vmcs12 = false;
2414 
2415 	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2416 		prepare_vmcs02_rare(vmx, vmcs12);
2417 		vmx->nested.dirty_vmcs12 = false;
2418 
2419 		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2420 			!(hv_evmcs->hv_clean_fields &
2421 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2422 	}
2423 
2424 	if (vmx->nested.nested_run_pending &&
2425 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2426 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2427 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2428 	} else {
2429 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2430 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2431 	}
2432 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2433 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2434 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2435 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2436 
2437 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2438 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2439 	 * trap. Note that CR0.TS also needs updating - we do this later.
2440 	 */
2441 	update_exception_bitmap(vcpu);
2442 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2443 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2444 
2445 	if (vmx->nested.nested_run_pending &&
2446 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2447 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2448 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2449 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2450 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2451 	}
2452 
2453 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2454 
2455 	if (kvm_has_tsc_control)
2456 		decache_tsc_multiplier(vmx);
2457 
2458 	if (enable_vpid) {
2459 		/*
2460 		 * There is no direct mapping between vpid02 and vpid12, the
2461 		 * vpid02 is per-vCPU for L0 and reused while the value of
2462 		 * vpid12 is changed w/ one invvpid during nested vmentry.
2463 		 * The vpid12 is allocated by L1 for L2, so it will not
2464 		 * influence global bitmap(for vpid01 and vpid02 allocation)
2465 		 * even if spawn a lot of nested vCPUs.
2466 		 */
2467 		if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2468 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2469 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2470 				__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2471 			}
2472 		} else {
2473 			/*
2474 			 * If L1 use EPT, then L0 needs to execute INVEPT on
2475 			 * EPTP02 instead of EPTP01. Therefore, delay TLB
2476 			 * flush until vmcs02->eptp is fully updated by
2477 			 * KVM_REQ_LOAD_CR3. Note that this assumes
2478 			 * KVM_REQ_TLB_FLUSH is evaluated after
2479 			 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2480 			 */
2481 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2482 		}
2483 	}
2484 
2485 	if (nested_cpu_has_ept(vmcs12))
2486 		nested_ept_init_mmu_context(vcpu);
2487 
2488 	/*
2489 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2490 	 * bits which we consider mandatory enabled.
2491 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2492 	 * the specifications by L1; It's not enough to take
2493 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2494 	 * have more bits than L1 expected.
2495 	 */
2496 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2497 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2498 
2499 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2500 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2501 
2502 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2503 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2504 	vmx_set_efer(vcpu, vcpu->arch.efer);
2505 
2506 	/*
2507 	 * Guest state is invalid and unrestricted guest is disabled,
2508 	 * which means L1 attempted VMEntry to L2 with invalid state.
2509 	 * Fail the VMEntry.
2510 	 */
2511 	if (vmx->emulation_required) {
2512 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2513 		return -EINVAL;
2514 	}
2515 
2516 	/* Shadow page tables on either EPT or shadow page tables. */
2517 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2518 				entry_failure_code))
2519 		return -EINVAL;
2520 
2521 	/*
2522 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2523 	 * on nested VM-Exit, which can occur without actually running L2 and
2524 	 * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2525 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2526 	 * transition to HLT instead of running L2.
2527 	 */
2528 	if (enable_ept)
2529 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2530 
2531 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2532 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2533 	    is_pae_paging(vcpu)) {
2534 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2535 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2536 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2537 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2538 	}
2539 
2540 	if (!enable_ept)
2541 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2542 
2543 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2544 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2545 				     vmcs12->guest_ia32_perf_global_ctrl)))
2546 		return -EINVAL;
2547 
2548 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2549 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2550 	return 0;
2551 }
2552 
2553 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2554 {
2555 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2556 	       nested_cpu_has_virtual_nmis(vmcs12)))
2557 		return -EINVAL;
2558 
2559 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2560 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2561 		return -EINVAL;
2562 
2563 	return 0;
2564 }
2565 
2566 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2567 {
2568 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2569 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
2570 
2571 	/* Check for memory type validity */
2572 	switch (address & VMX_EPTP_MT_MASK) {
2573 	case VMX_EPTP_MT_UC:
2574 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2575 			return false;
2576 		break;
2577 	case VMX_EPTP_MT_WB:
2578 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2579 			return false;
2580 		break;
2581 	default:
2582 		return false;
2583 	}
2584 
2585 	/* only 4 levels page-walk length are valid */
2586 	if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2587 		return false;
2588 
2589 	/* Reserved bits should not be set */
2590 	if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2591 		return false;
2592 
2593 	/* AD, if set, should be supported */
2594 	if (address & VMX_EPTP_AD_ENABLE_BIT) {
2595 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2596 			return false;
2597 	}
2598 
2599 	return true;
2600 }
2601 
2602 /*
2603  * Checks related to VM-Execution Control Fields
2604  */
2605 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2606                                               struct vmcs12 *vmcs12)
2607 {
2608 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2609 
2610 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2611 				   vmx->nested.msrs.pinbased_ctls_low,
2612 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2613 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2614 				   vmx->nested.msrs.procbased_ctls_low,
2615 				   vmx->nested.msrs.procbased_ctls_high)))
2616 		return -EINVAL;
2617 
2618 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2619 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2620 				   vmx->nested.msrs.secondary_ctls_low,
2621 				   vmx->nested.msrs.secondary_ctls_high)))
2622 		return -EINVAL;
2623 
2624 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2625 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2626 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2627 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2628 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2629 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2630 	    nested_vmx_check_nmi_controls(vmcs12) ||
2631 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2632 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2633 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2634 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2635 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2636 		return -EINVAL;
2637 
2638 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2639 	    nested_cpu_has_save_preemption_timer(vmcs12))
2640 		return -EINVAL;
2641 
2642 	if (nested_cpu_has_ept(vmcs12) &&
2643 	    CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2644 		return -EINVAL;
2645 
2646 	if (nested_cpu_has_vmfunc(vmcs12)) {
2647 		if (CC(vmcs12->vm_function_control &
2648 		       ~vmx->nested.msrs.vmfunc_controls))
2649 			return -EINVAL;
2650 
2651 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2652 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2653 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2654 				return -EINVAL;
2655 		}
2656 	}
2657 
2658 	return 0;
2659 }
2660 
2661 /*
2662  * Checks related to VM-Exit Control Fields
2663  */
2664 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2665                                          struct vmcs12 *vmcs12)
2666 {
2667 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2668 
2669 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2670 				    vmx->nested.msrs.exit_ctls_low,
2671 				    vmx->nested.msrs.exit_ctls_high)) ||
2672 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2673 		return -EINVAL;
2674 
2675 	return 0;
2676 }
2677 
2678 /*
2679  * Checks related to VM-Entry Control Fields
2680  */
2681 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2682 					  struct vmcs12 *vmcs12)
2683 {
2684 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2685 
2686 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2687 				    vmx->nested.msrs.entry_ctls_low,
2688 				    vmx->nested.msrs.entry_ctls_high)))
2689 		return -EINVAL;
2690 
2691 	/*
2692 	 * From the Intel SDM, volume 3:
2693 	 * Fields relevant to VM-entry event injection must be set properly.
2694 	 * These fields are the VM-entry interruption-information field, the
2695 	 * VM-entry exception error code, and the VM-entry instruction length.
2696 	 */
2697 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2698 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2699 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2700 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2701 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2702 		bool should_have_error_code;
2703 		bool urg = nested_cpu_has2(vmcs12,
2704 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2705 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2706 
2707 		/* VM-entry interruption-info field: interruption type */
2708 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2709 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2710 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2711 			return -EINVAL;
2712 
2713 		/* VM-entry interruption-info field: vector */
2714 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2715 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2716 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2717 			return -EINVAL;
2718 
2719 		/* VM-entry interruption-info field: deliver error code */
2720 		should_have_error_code =
2721 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2722 			x86_exception_has_error_code(vector);
2723 		if (CC(has_error_code != should_have_error_code))
2724 			return -EINVAL;
2725 
2726 		/* VM-entry exception error code */
2727 		if (CC(has_error_code &&
2728 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2729 			return -EINVAL;
2730 
2731 		/* VM-entry interruption-info field: reserved bits */
2732 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2733 			return -EINVAL;
2734 
2735 		/* VM-entry instruction length */
2736 		switch (intr_type) {
2737 		case INTR_TYPE_SOFT_EXCEPTION:
2738 		case INTR_TYPE_SOFT_INTR:
2739 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2740 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2741 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2742 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2743 				return -EINVAL;
2744 		}
2745 	}
2746 
2747 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2748 		return -EINVAL;
2749 
2750 	return 0;
2751 }
2752 
2753 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2754 				     struct vmcs12 *vmcs12)
2755 {
2756 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2757 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2758 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2759 		return -EINVAL;
2760 
2761 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2762 		return nested_evmcs_check_controls(vmcs12);
2763 
2764 	return 0;
2765 }
2766 
2767 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2768 				       struct vmcs12 *vmcs12)
2769 {
2770 	bool ia32e;
2771 
2772 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2773 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2774 	    CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2775 		return -EINVAL;
2776 
2777 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2778 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2779 		return -EINVAL;
2780 
2781 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2782 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2783 		return -EINVAL;
2784 
2785 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2786 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2787 					   vmcs12->host_ia32_perf_global_ctrl)))
2788 		return -EINVAL;
2789 
2790 #ifdef CONFIG_X86_64
2791 	ia32e = !!(vcpu->arch.efer & EFER_LMA);
2792 #else
2793 	ia32e = false;
2794 #endif
2795 
2796 	if (ia32e) {
2797 		if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2798 		    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2799 			return -EINVAL;
2800 	} else {
2801 		if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2802 		    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2803 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2804 		    CC((vmcs12->host_rip) >> 32))
2805 			return -EINVAL;
2806 	}
2807 
2808 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2809 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2810 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2811 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2812 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2813 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2814 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2815 	    CC(vmcs12->host_cs_selector == 0) ||
2816 	    CC(vmcs12->host_tr_selector == 0) ||
2817 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2818 		return -EINVAL;
2819 
2820 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2821 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2822 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2823 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2824 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2825 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2826 		return -EINVAL;
2827 
2828 	/*
2829 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2830 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2831 	 * the values of the LMA and LME bits in the field must each be that of
2832 	 * the host address-space size VM-exit control.
2833 	 */
2834 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2835 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2836 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2837 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2838 			return -EINVAL;
2839 	}
2840 
2841 	return 0;
2842 }
2843 
2844 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2845 					  struct vmcs12 *vmcs12)
2846 {
2847 	int r = 0;
2848 	struct vmcs12 *shadow;
2849 	struct kvm_host_map map;
2850 
2851 	if (vmcs12->vmcs_link_pointer == -1ull)
2852 		return 0;
2853 
2854 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2855 		return -EINVAL;
2856 
2857 	if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2858 		return -EINVAL;
2859 
2860 	shadow = map.hva;
2861 
2862 	if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2863 	    CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2864 		r = -EINVAL;
2865 
2866 	kvm_vcpu_unmap(vcpu, &map, false);
2867 	return r;
2868 }
2869 
2870 /*
2871  * Checks related to Guest Non-register State
2872  */
2873 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2874 {
2875 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2876 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2877 		return -EINVAL;
2878 
2879 	return 0;
2880 }
2881 
2882 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2883 					struct vmcs12 *vmcs12,
2884 					u32 *exit_qual)
2885 {
2886 	bool ia32e;
2887 
2888 	*exit_qual = ENTRY_FAIL_DEFAULT;
2889 
2890 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2891 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2892 		return -EINVAL;
2893 
2894 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2895 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2896 		return -EINVAL;
2897 
2898 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2899 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2900 		return -EINVAL;
2901 
2902 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2903 		*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2904 		return -EINVAL;
2905 	}
2906 
2907 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2908 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2909 					   vmcs12->guest_ia32_perf_global_ctrl)))
2910 		return -EINVAL;
2911 
2912 	/*
2913 	 * If the load IA32_EFER VM-entry control is 1, the following checks
2914 	 * are performed on the field for the IA32_EFER MSR:
2915 	 * - Bits reserved in the IA32_EFER MSR must be 0.
2916 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2917 	 *   the IA-32e mode guest VM-exit control. It must also be identical
2918 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2919 	 *   CR0.PG) is 1.
2920 	 */
2921 	if (to_vmx(vcpu)->nested.nested_run_pending &&
2922 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2923 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2924 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2925 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2926 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2927 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2928 			return -EINVAL;
2929 	}
2930 
2931 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2932 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2933 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2934 		return -EINVAL;
2935 
2936 	if (nested_check_guest_non_reg_state(vmcs12))
2937 		return -EINVAL;
2938 
2939 	return 0;
2940 }
2941 
2942 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2943 {
2944 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2945 	unsigned long cr3, cr4;
2946 	bool vm_fail;
2947 
2948 	if (!nested_early_check)
2949 		return 0;
2950 
2951 	if (vmx->msr_autoload.host.nr)
2952 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2953 	if (vmx->msr_autoload.guest.nr)
2954 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2955 
2956 	preempt_disable();
2957 
2958 	vmx_prepare_switch_to_guest(vcpu);
2959 
2960 	/*
2961 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2962 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
2963 	 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2964 	 * there is no need to preserve other bits or save/restore the field.
2965 	 */
2966 	vmcs_writel(GUEST_RFLAGS, 0);
2967 
2968 	cr3 = __get_current_cr3_fast();
2969 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2970 		vmcs_writel(HOST_CR3, cr3);
2971 		vmx->loaded_vmcs->host_state.cr3 = cr3;
2972 	}
2973 
2974 	cr4 = cr4_read_shadow();
2975 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2976 		vmcs_writel(HOST_CR4, cr4);
2977 		vmx->loaded_vmcs->host_state.cr4 = cr4;
2978 	}
2979 
2980 	asm(
2981 		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
2982 		"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2983 		"je 1f \n\t"
2984 		__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
2985 		"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2986 		"1: \n\t"
2987 		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
2988 
2989 		/* Check if vmlaunch or vmresume is needed */
2990 		"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
2991 
2992 		/*
2993 		 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2994 		 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2995 		 * Valid.  vmx_vmenter() directly "returns" RFLAGS, and so the
2996 		 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
2997 		 */
2998 		"call vmx_vmenter\n\t"
2999 
3000 		CC_SET(be)
3001 	      : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
3002 	      :	[HOST_RSP]"r"((unsigned long)HOST_RSP),
3003 		[loaded_vmcs]"r"(vmx->loaded_vmcs),
3004 		[launched]"i"(offsetof(struct loaded_vmcs, launched)),
3005 		[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
3006 		[wordsize]"i"(sizeof(ulong))
3007 	      : "memory"
3008 	);
3009 
3010 	if (vmx->msr_autoload.host.nr)
3011 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3012 	if (vmx->msr_autoload.guest.nr)
3013 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3014 
3015 	if (vm_fail) {
3016 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3017 
3018 		preempt_enable();
3019 
3020 		trace_kvm_nested_vmenter_failed(
3021 			"early hardware check VM-instruction error: ", error);
3022 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3023 		return 1;
3024 	}
3025 
3026 	/*
3027 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3028 	 */
3029 	local_irq_enable();
3030 	if (hw_breakpoint_active())
3031 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3032 	preempt_enable();
3033 
3034 	/*
3035 	 * A non-failing VMEntry means we somehow entered guest mode with
3036 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3037 	 * is no telling what memory has been modified or what state has
3038 	 * been exposed to unknown code.  Hitting this all but guarantees
3039 	 * a (very critical) hardware issue.
3040 	 */
3041 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3042 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3043 
3044 	return 0;
3045 }
3046 
3047 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3048 {
3049 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3050 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3051 	struct kvm_host_map *map;
3052 	struct page *page;
3053 	u64 hpa;
3054 
3055 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3056 		/*
3057 		 * Translate L1 physical address to host physical
3058 		 * address for vmcs02. Keep the page pinned, so this
3059 		 * physical address remains valid. We keep a reference
3060 		 * to it so we can release it later.
3061 		 */
3062 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3063 			kvm_release_page_clean(vmx->nested.apic_access_page);
3064 			vmx->nested.apic_access_page = NULL;
3065 		}
3066 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3067 		if (!is_error_page(page)) {
3068 			vmx->nested.apic_access_page = page;
3069 			hpa = page_to_phys(vmx->nested.apic_access_page);
3070 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3071 		} else {
3072 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3073 					     __func__);
3074 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3075 			vcpu->run->internal.suberror =
3076 				KVM_INTERNAL_ERROR_EMULATION;
3077 			vcpu->run->internal.ndata = 0;
3078 			return false;
3079 		}
3080 	}
3081 
3082 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3083 		map = &vmx->nested.virtual_apic_map;
3084 
3085 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3086 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3087 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3088 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3089 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3090 			/*
3091 			 * The processor will never use the TPR shadow, simply
3092 			 * clear the bit from the execution control.  Such a
3093 			 * configuration is useless, but it happens in tests.
3094 			 * For any other configuration, failing the vm entry is
3095 			 * _not_ what the processor does but it's basically the
3096 			 * only possibility we have.
3097 			 */
3098 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3099 		} else {
3100 			/*
3101 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3102 			 * force VM-Entry to fail.
3103 			 */
3104 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3105 		}
3106 	}
3107 
3108 	if (nested_cpu_has_posted_intr(vmcs12)) {
3109 		map = &vmx->nested.pi_desc_map;
3110 
3111 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3112 			vmx->nested.pi_desc =
3113 				(struct pi_desc *)(((void *)map->hva) +
3114 				offset_in_page(vmcs12->posted_intr_desc_addr));
3115 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3116 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3117 		}
3118 	}
3119 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3120 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3121 	else
3122 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3123 	return true;
3124 }
3125 
3126 /*
3127  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3128  * for running VMX instructions (except VMXON, whose prerequisites are
3129  * slightly different). It also specifies what exception to inject otherwise.
3130  * Note that many of these exceptions have priority over VM exits, so they
3131  * don't have to be checked again here.
3132  */
3133 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3134 {
3135 	if (!to_vmx(vcpu)->nested.vmxon) {
3136 		kvm_queue_exception(vcpu, UD_VECTOR);
3137 		return 0;
3138 	}
3139 
3140 	if (vmx_get_cpl(vcpu)) {
3141 		kvm_inject_gp(vcpu, 0);
3142 		return 0;
3143 	}
3144 
3145 	return 1;
3146 }
3147 
3148 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3149 {
3150 	u8 rvi = vmx_get_rvi();
3151 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3152 
3153 	return ((rvi & 0xf0) > (vppr & 0xf0));
3154 }
3155 
3156 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3157 				   struct vmcs12 *vmcs12);
3158 
3159 /*
3160  * If from_vmentry is false, this is being called from state restore (either RSM
3161  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3162  *
3163  * Returns:
3164  *	NVMX_ENTRY_SUCCESS: Entered VMX non-root mode
3165  *	NVMX_ENTRY_VMFAIL:  Consistency check VMFail
3166  *	NVMX_ENTRY_VMEXIT:  Consistency check VMExit
3167  *	NVMX_ENTRY_KVM_INTERNAL_ERROR: KVM internal error
3168  */
3169 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3170 							bool from_vmentry)
3171 {
3172 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3173 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3174 	bool evaluate_pending_interrupts;
3175 	u32 exit_reason = EXIT_REASON_INVALID_STATE;
3176 	u32 exit_qual;
3177 
3178 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3179 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3180 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3181 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3182 
3183 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3184 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3185 	if (kvm_mpx_supported() &&
3186 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3187 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3188 
3189 	/*
3190 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3191 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3192 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3193 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3194 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3195 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3196 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3197 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3198 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3199 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3200 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3201 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3202 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3203 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3204 	 */
3205 	if (!enable_ept && !nested_early_check)
3206 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3207 
3208 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3209 
3210 	prepare_vmcs02_early(vmx, vmcs12);
3211 
3212 	if (from_vmentry) {
3213 		if (unlikely(!nested_get_vmcs12_pages(vcpu)))
3214 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3215 
3216 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3217 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3218 			return NVMX_VMENTRY_VMFAIL;
3219 		}
3220 
3221 		if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3222 			goto vmentry_fail_vmexit;
3223 	}
3224 
3225 	enter_guest_mode(vcpu);
3226 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3227 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3228 
3229 	if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3230 		goto vmentry_fail_vmexit_guest_mode;
3231 
3232 	if (from_vmentry) {
3233 		exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3234 		exit_qual = nested_vmx_load_msr(vcpu,
3235 						vmcs12->vm_entry_msr_load_addr,
3236 						vmcs12->vm_entry_msr_load_count);
3237 		if (exit_qual)
3238 			goto vmentry_fail_vmexit_guest_mode;
3239 	} else {
3240 		/*
3241 		 * The MMU is not initialized to point at the right entities yet and
3242 		 * "get pages" would need to read data from the guest (i.e. we will
3243 		 * need to perform gpa to hpa translation). Request a call
3244 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3245 		 * have already been set at vmentry time and should not be reset.
3246 		 */
3247 		kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3248 	}
3249 
3250 	/*
3251 	 * If L1 had a pending IRQ/NMI until it executed
3252 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3253 	 * disallowed (e.g. interrupts disabled), L0 needs to
3254 	 * evaluate if this pending event should cause an exit from L2
3255 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3256 	 * intercept EXTERNAL_INTERRUPT).
3257 	 *
3258 	 * Usually this would be handled by the processor noticing an
3259 	 * IRQ/NMI window request, or checking RVI during evaluation of
3260 	 * pending virtual interrupts.  However, this setting was done
3261 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3262 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3263 	 */
3264 	if (unlikely(evaluate_pending_interrupts))
3265 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3266 
3267 	/*
3268 	 * Do not start the preemption timer hrtimer until after we know
3269 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3270 	 * the timer.
3271 	 */
3272 	vmx->nested.preemption_timer_expired = false;
3273 	if (nested_cpu_has_preemption_timer(vmcs12))
3274 		vmx_start_preemption_timer(vcpu);
3275 
3276 	/*
3277 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3278 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3279 	 * returned as far as L1 is concerned. It will only return (and set
3280 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3281 	 */
3282 	return NVMX_VMENTRY_SUCCESS;
3283 
3284 	/*
3285 	 * A failed consistency check that leads to a VMExit during L1's
3286 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3287 	 * 26.7 "VM-entry failures during or after loading guest state".
3288 	 */
3289 vmentry_fail_vmexit_guest_mode:
3290 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3291 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3292 	leave_guest_mode(vcpu);
3293 
3294 vmentry_fail_vmexit:
3295 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3296 
3297 	if (!from_vmentry)
3298 		return NVMX_VMENTRY_VMEXIT;
3299 
3300 	load_vmcs12_host_state(vcpu, vmcs12);
3301 	vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3302 	vmcs12->exit_qualification = exit_qual;
3303 	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3304 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3305 	return NVMX_VMENTRY_VMEXIT;
3306 }
3307 
3308 /*
3309  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3310  * for running an L2 nested guest.
3311  */
3312 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3313 {
3314 	struct vmcs12 *vmcs12;
3315 	enum nvmx_vmentry_status status;
3316 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3317 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3318 
3319 	if (!nested_vmx_check_permission(vcpu))
3320 		return 1;
3321 
3322 	if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3323 		return 1;
3324 
3325 	if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3326 		return nested_vmx_failInvalid(vcpu);
3327 
3328 	vmcs12 = get_vmcs12(vcpu);
3329 
3330 	/*
3331 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3332 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3333 	 * rather than RFLAGS.ZF, and no error number is stored to the
3334 	 * VM-instruction error field.
3335 	 */
3336 	if (vmcs12->hdr.shadow_vmcs)
3337 		return nested_vmx_failInvalid(vcpu);
3338 
3339 	if (vmx->nested.hv_evmcs) {
3340 		copy_enlightened_to_vmcs12(vmx);
3341 		/* Enlightened VMCS doesn't have launch state */
3342 		vmcs12->launch_state = !launch;
3343 	} else if (enable_shadow_vmcs) {
3344 		copy_shadow_to_vmcs12(vmx);
3345 	}
3346 
3347 	/*
3348 	 * The nested entry process starts with enforcing various prerequisites
3349 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3350 	 * they fail: As the SDM explains, some conditions should cause the
3351 	 * instruction to fail, while others will cause the instruction to seem
3352 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3353 	 * To speed up the normal (success) code path, we should avoid checking
3354 	 * for misconfigurations which will anyway be caught by the processor
3355 	 * when using the merged vmcs02.
3356 	 */
3357 	if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3358 		return nested_vmx_failValid(vcpu,
3359 			VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3360 
3361 	if (vmcs12->launch_state == launch)
3362 		return nested_vmx_failValid(vcpu,
3363 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3364 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3365 
3366 	if (nested_vmx_check_controls(vcpu, vmcs12))
3367 		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3368 
3369 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3370 		return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3371 
3372 	/*
3373 	 * We're finally done with prerequisite checking, and can start with
3374 	 * the nested entry.
3375 	 */
3376 	vmx->nested.nested_run_pending = 1;
3377 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3378 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3379 		goto vmentry_failed;
3380 
3381 	/* Hide L1D cache contents from the nested guest.  */
3382 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3383 
3384 	/*
3385 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3386 	 * also be used as part of restoring nVMX state for
3387 	 * snapshot restore (migration).
3388 	 *
3389 	 * In this flow, it is assumed that vmcs12 cache was
3390 	 * trasferred as part of captured nVMX state and should
3391 	 * therefore not be read from guest memory (which may not
3392 	 * exist on destination host yet).
3393 	 */
3394 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3395 
3396 	/*
3397 	 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3398 	 * awakened by event injection or by an NMI-window VM-exit or
3399 	 * by an interrupt-window VM-exit, halt the vcpu.
3400 	 */
3401 	if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3402 	    !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3403 	    !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3404 	    !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3405 	      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3406 		vmx->nested.nested_run_pending = 0;
3407 		return kvm_vcpu_halt(vcpu);
3408 	}
3409 	return 1;
3410 
3411 vmentry_failed:
3412 	vmx->nested.nested_run_pending = 0;
3413 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3414 		return 0;
3415 	if (status == NVMX_VMENTRY_VMEXIT)
3416 		return 1;
3417 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3418 	return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3419 }
3420 
3421 /*
3422  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3423  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3424  * This function returns the new value we should put in vmcs12.guest_cr0.
3425  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3426  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3427  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3428  *     didn't trap the bit, because if L1 did, so would L0).
3429  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3430  *     been modified by L2, and L1 knows it. So just leave the old value of
3431  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3432  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3433  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3434  *     changed these bits, and therefore they need to be updated, but L0
3435  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3436  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3437  */
3438 static inline unsigned long
3439 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3440 {
3441 	return
3442 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3443 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3444 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3445 			vcpu->arch.cr0_guest_owned_bits));
3446 }
3447 
3448 static inline unsigned long
3449 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3450 {
3451 	return
3452 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3453 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3454 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3455 			vcpu->arch.cr4_guest_owned_bits));
3456 }
3457 
3458 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3459 				      struct vmcs12 *vmcs12)
3460 {
3461 	u32 idt_vectoring;
3462 	unsigned int nr;
3463 
3464 	if (vcpu->arch.exception.injected) {
3465 		nr = vcpu->arch.exception.nr;
3466 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3467 
3468 		if (kvm_exception_is_soft(nr)) {
3469 			vmcs12->vm_exit_instruction_len =
3470 				vcpu->arch.event_exit_inst_len;
3471 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3472 		} else
3473 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3474 
3475 		if (vcpu->arch.exception.has_error_code) {
3476 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3477 			vmcs12->idt_vectoring_error_code =
3478 				vcpu->arch.exception.error_code;
3479 		}
3480 
3481 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3482 	} else if (vcpu->arch.nmi_injected) {
3483 		vmcs12->idt_vectoring_info_field =
3484 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3485 	} else if (vcpu->arch.interrupt.injected) {
3486 		nr = vcpu->arch.interrupt.nr;
3487 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3488 
3489 		if (vcpu->arch.interrupt.soft) {
3490 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3491 			vmcs12->vm_entry_instruction_len =
3492 				vcpu->arch.event_exit_inst_len;
3493 		} else
3494 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3495 
3496 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3497 	}
3498 }
3499 
3500 
3501 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3502 {
3503 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3504 	gfn_t gfn;
3505 
3506 	/*
3507 	 * Don't need to mark the APIC access page dirty; it is never
3508 	 * written to by the CPU during APIC virtualization.
3509 	 */
3510 
3511 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3512 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3513 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3514 	}
3515 
3516 	if (nested_cpu_has_posted_intr(vmcs12)) {
3517 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3518 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3519 	}
3520 }
3521 
3522 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3523 {
3524 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3525 	int max_irr;
3526 	void *vapic_page;
3527 	u16 status;
3528 
3529 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3530 		return;
3531 
3532 	vmx->nested.pi_pending = false;
3533 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3534 		return;
3535 
3536 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3537 	if (max_irr != 256) {
3538 		vapic_page = vmx->nested.virtual_apic_map.hva;
3539 		if (!vapic_page)
3540 			return;
3541 
3542 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3543 			vapic_page, &max_irr);
3544 		status = vmcs_read16(GUEST_INTR_STATUS);
3545 		if ((u8)max_irr > ((u8)status & 0xff)) {
3546 			status &= ~0xff;
3547 			status |= (u8)max_irr;
3548 			vmcs_write16(GUEST_INTR_STATUS, status);
3549 		}
3550 	}
3551 
3552 	nested_mark_vmcs12_pages_dirty(vcpu);
3553 }
3554 
3555 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3556 					       unsigned long exit_qual)
3557 {
3558 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3559 	unsigned int nr = vcpu->arch.exception.nr;
3560 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3561 
3562 	if (vcpu->arch.exception.has_error_code) {
3563 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3564 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3565 	}
3566 
3567 	if (kvm_exception_is_soft(nr))
3568 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3569 	else
3570 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3571 
3572 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3573 	    vmx_get_nmi_mask(vcpu))
3574 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3575 
3576 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3577 }
3578 
3579 /*
3580  * Returns true if a debug trap is pending delivery.
3581  *
3582  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3583  * exception may be inferred from the presence of an exception payload.
3584  */
3585 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3586 {
3587 	return vcpu->arch.exception.pending &&
3588 			vcpu->arch.exception.nr == DB_VECTOR &&
3589 			vcpu->arch.exception.payload;
3590 }
3591 
3592 /*
3593  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3594  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3595  * represents these debug traps with a payload that is said to be compatible
3596  * with the 'pending debug exceptions' field, write the payload to the VMCS
3597  * field if a VM-exit is delivered before the debug trap.
3598  */
3599 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3600 {
3601 	if (vmx_pending_dbg_trap(vcpu))
3602 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3603 			    vcpu->arch.exception.payload);
3604 }
3605 
3606 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3607 {
3608 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3609 	unsigned long exit_qual;
3610 	bool block_nested_events =
3611 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3612 	struct kvm_lapic *apic = vcpu->arch.apic;
3613 
3614 	if (lapic_in_kernel(vcpu) &&
3615 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3616 		if (block_nested_events)
3617 			return -EBUSY;
3618 		nested_vmx_update_pending_dbg(vcpu);
3619 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3620 		nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3621 		return 0;
3622 	}
3623 
3624 	if (vcpu->arch.exception.pending &&
3625 		nested_vmx_check_exception(vcpu, &exit_qual)) {
3626 		if (block_nested_events)
3627 			return -EBUSY;
3628 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3629 		return 0;
3630 	}
3631 
3632 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3633 	    vmx->nested.preemption_timer_expired) {
3634 		if (block_nested_events)
3635 			return -EBUSY;
3636 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3637 		return 0;
3638 	}
3639 
3640 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3641 		if (block_nested_events)
3642 			return -EBUSY;
3643 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3644 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3645 				  INTR_INFO_VALID_MASK, 0);
3646 		/*
3647 		 * The NMI-triggered VM exit counts as injection:
3648 		 * clear this one and block further NMIs.
3649 		 */
3650 		vcpu->arch.nmi_pending = 0;
3651 		vmx_set_nmi_mask(vcpu, true);
3652 		return 0;
3653 	}
3654 
3655 	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3656 	    nested_exit_on_intr(vcpu)) {
3657 		if (block_nested_events)
3658 			return -EBUSY;
3659 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3660 		return 0;
3661 	}
3662 
3663 	vmx_complete_nested_posted_interrupt(vcpu);
3664 	return 0;
3665 }
3666 
3667 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3668 {
3669 	ktime_t remaining =
3670 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3671 	u64 value;
3672 
3673 	if (ktime_to_ns(remaining) <= 0)
3674 		return 0;
3675 
3676 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3677 	do_div(value, 1000000);
3678 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3679 }
3680 
3681 static bool is_vmcs12_ext_field(unsigned long field)
3682 {
3683 	switch (field) {
3684 	case GUEST_ES_SELECTOR:
3685 	case GUEST_CS_SELECTOR:
3686 	case GUEST_SS_SELECTOR:
3687 	case GUEST_DS_SELECTOR:
3688 	case GUEST_FS_SELECTOR:
3689 	case GUEST_GS_SELECTOR:
3690 	case GUEST_LDTR_SELECTOR:
3691 	case GUEST_TR_SELECTOR:
3692 	case GUEST_ES_LIMIT:
3693 	case GUEST_CS_LIMIT:
3694 	case GUEST_SS_LIMIT:
3695 	case GUEST_DS_LIMIT:
3696 	case GUEST_FS_LIMIT:
3697 	case GUEST_GS_LIMIT:
3698 	case GUEST_LDTR_LIMIT:
3699 	case GUEST_TR_LIMIT:
3700 	case GUEST_GDTR_LIMIT:
3701 	case GUEST_IDTR_LIMIT:
3702 	case GUEST_ES_AR_BYTES:
3703 	case GUEST_DS_AR_BYTES:
3704 	case GUEST_FS_AR_BYTES:
3705 	case GUEST_GS_AR_BYTES:
3706 	case GUEST_LDTR_AR_BYTES:
3707 	case GUEST_TR_AR_BYTES:
3708 	case GUEST_ES_BASE:
3709 	case GUEST_CS_BASE:
3710 	case GUEST_SS_BASE:
3711 	case GUEST_DS_BASE:
3712 	case GUEST_FS_BASE:
3713 	case GUEST_GS_BASE:
3714 	case GUEST_LDTR_BASE:
3715 	case GUEST_TR_BASE:
3716 	case GUEST_GDTR_BASE:
3717 	case GUEST_IDTR_BASE:
3718 	case GUEST_PENDING_DBG_EXCEPTIONS:
3719 	case GUEST_BNDCFGS:
3720 		return true;
3721 	default:
3722 		break;
3723 	}
3724 
3725 	return false;
3726 }
3727 
3728 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3729 				       struct vmcs12 *vmcs12)
3730 {
3731 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3732 
3733 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3734 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3735 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3736 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3737 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3738 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3739 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3740 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3741 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3742 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3743 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3744 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3745 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3746 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3747 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3748 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3749 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3750 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3751 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3752 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3753 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3754 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3755 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3756 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3757 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3758 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3759 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3760 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3761 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3762 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3763 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3764 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3765 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3766 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3767 	vmcs12->guest_pending_dbg_exceptions =
3768 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3769 	if (kvm_mpx_supported())
3770 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3771 
3772 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3773 }
3774 
3775 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3776 				       struct vmcs12 *vmcs12)
3777 {
3778 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3779 	int cpu;
3780 
3781 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3782 		return;
3783 
3784 
3785 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3786 
3787 	cpu = get_cpu();
3788 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
3789 	vmx_vcpu_load(&vmx->vcpu, cpu);
3790 
3791 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3792 
3793 	vmx->loaded_vmcs = &vmx->vmcs01;
3794 	vmx_vcpu_load(&vmx->vcpu, cpu);
3795 	put_cpu();
3796 }
3797 
3798 /*
3799  * Update the guest state fields of vmcs12 to reflect changes that
3800  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3801  * VM-entry controls is also updated, since this is really a guest
3802  * state bit.)
3803  */
3804 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3805 {
3806 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3807 
3808 	if (vmx->nested.hv_evmcs)
3809 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3810 
3811 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3812 
3813 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3814 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3815 
3816 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3817 	vmcs12->guest_rip = kvm_rip_read(vcpu);
3818 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3819 
3820 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3821 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3822 
3823 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3824 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3825 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3826 
3827 	vmcs12->guest_interruptibility_info =
3828 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3829 
3830 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3831 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3832 	else
3833 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3834 
3835 	if (nested_cpu_has_preemption_timer(vmcs12) &&
3836 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3837 			vmcs12->vmx_preemption_timer_value =
3838 				vmx_get_preemption_timer_value(vcpu);
3839 
3840 	/*
3841 	 * In some cases (usually, nested EPT), L2 is allowed to change its
3842 	 * own CR3 without exiting. If it has changed it, we must keep it.
3843 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3844 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3845 	 *
3846 	 * Additionally, restore L2's PDPTR to vmcs12.
3847 	 */
3848 	if (enable_ept) {
3849 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3850 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3851 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3852 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3853 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3854 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3855 		}
3856 	}
3857 
3858 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3859 
3860 	if (nested_cpu_has_vid(vmcs12))
3861 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3862 
3863 	vmcs12->vm_entry_controls =
3864 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3865 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3866 
3867 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3868 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3869 
3870 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3871 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
3872 }
3873 
3874 /*
3875  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3876  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3877  * and this function updates it to reflect the changes to the guest state while
3878  * L2 was running (and perhaps made some exits which were handled directly by L0
3879  * without going back to L1), and to reflect the exit reason.
3880  * Note that we do not have to copy here all VMCS fields, just those that
3881  * could have changed by the L2 guest or the exit - i.e., the guest-state and
3882  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3883  * which already writes to vmcs12 directly.
3884  */
3885 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3886 			   u32 exit_reason, u32 exit_intr_info,
3887 			   unsigned long exit_qualification)
3888 {
3889 	/* update exit information fields: */
3890 	vmcs12->vm_exit_reason = exit_reason;
3891 	vmcs12->exit_qualification = exit_qualification;
3892 	vmcs12->vm_exit_intr_info = exit_intr_info;
3893 
3894 	vmcs12->idt_vectoring_info_field = 0;
3895 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3896 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3897 
3898 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3899 		vmcs12->launch_state = 1;
3900 
3901 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
3902 		 * instead of reading the real value. */
3903 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3904 
3905 		/*
3906 		 * Transfer the event that L0 or L1 may wanted to inject into
3907 		 * L2 to IDT_VECTORING_INFO_FIELD.
3908 		 */
3909 		vmcs12_save_pending_event(vcpu, vmcs12);
3910 
3911 		/*
3912 		 * According to spec, there's no need to store the guest's
3913 		 * MSRs if the exit is due to a VM-entry failure that occurs
3914 		 * during or after loading the guest state. Since this exit
3915 		 * does not fall in that category, we need to save the MSRs.
3916 		 */
3917 		if (nested_vmx_store_msr(vcpu,
3918 					 vmcs12->vm_exit_msr_store_addr,
3919 					 vmcs12->vm_exit_msr_store_count))
3920 			nested_vmx_abort(vcpu,
3921 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3922 	}
3923 
3924 	/*
3925 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3926 	 * preserved above and would only end up incorrectly in L1.
3927 	 */
3928 	vcpu->arch.nmi_injected = false;
3929 	kvm_clear_exception_queue(vcpu);
3930 	kvm_clear_interrupt_queue(vcpu);
3931 }
3932 
3933 /*
3934  * A part of what we need to when the nested L2 guest exits and we want to
3935  * run its L1 parent, is to reset L1's guest state to the host state specified
3936  * in vmcs12.
3937  * This function is to be called not only on normal nested exit, but also on
3938  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3939  * Failures During or After Loading Guest State").
3940  * This function should be called when the active VMCS is L1's (vmcs01).
3941  */
3942 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3943 				   struct vmcs12 *vmcs12)
3944 {
3945 	struct kvm_segment seg;
3946 	u32 entry_failure_code;
3947 
3948 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3949 		vcpu->arch.efer = vmcs12->host_ia32_efer;
3950 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3951 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3952 	else
3953 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3954 	vmx_set_efer(vcpu, vcpu->arch.efer);
3955 
3956 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
3957 	kvm_rip_write(vcpu, vmcs12->host_rip);
3958 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3959 	vmx_set_interrupt_shadow(vcpu, 0);
3960 
3961 	/*
3962 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3963 	 * actually changed, because vmx_set_cr0 refers to efer set above.
3964 	 *
3965 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3966 	 * (KVM doesn't change it);
3967 	 */
3968 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3969 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
3970 
3971 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
3972 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3973 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
3974 
3975 	nested_ept_uninit_mmu_context(vcpu);
3976 
3977 	/*
3978 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3979 	 * couldn't have changed.
3980 	 */
3981 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3982 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3983 
3984 	if (!enable_ept)
3985 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3986 
3987 	/*
3988 	 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3989 	 * VMEntry/VMExit. Thus, no need to flush TLB.
3990 	 *
3991 	 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3992 	 * flushed on every VMEntry/VMExit.
3993 	 *
3994 	 * Otherwise, we can preserve TLB entries as long as we are
3995 	 * able to tag L1 TLB entries differently than L2 TLB entries.
3996 	 *
3997 	 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3998 	 * and therefore we request the TLB flush to happen only after VMCS EPTP
3999 	 * has been set by KVM_REQ_LOAD_CR3.
4000 	 */
4001 	if (enable_vpid &&
4002 	    (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
4003 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4004 	}
4005 
4006 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4007 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4008 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4009 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4010 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4011 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4012 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4013 
4014 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4015 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4016 		vmcs_write64(GUEST_BNDCFGS, 0);
4017 
4018 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4019 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4020 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4021 	}
4022 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4023 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4024 					 vmcs12->host_ia32_perf_global_ctrl));
4025 
4026 	/* Set L1 segment info according to Intel SDM
4027 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4028 	seg = (struct kvm_segment) {
4029 		.base = 0,
4030 		.limit = 0xFFFFFFFF,
4031 		.selector = vmcs12->host_cs_selector,
4032 		.type = 11,
4033 		.present = 1,
4034 		.s = 1,
4035 		.g = 1
4036 	};
4037 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4038 		seg.l = 1;
4039 	else
4040 		seg.db = 1;
4041 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4042 	seg = (struct kvm_segment) {
4043 		.base = 0,
4044 		.limit = 0xFFFFFFFF,
4045 		.type = 3,
4046 		.present = 1,
4047 		.s = 1,
4048 		.db = 1,
4049 		.g = 1
4050 	};
4051 	seg.selector = vmcs12->host_ds_selector;
4052 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4053 	seg.selector = vmcs12->host_es_selector;
4054 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4055 	seg.selector = vmcs12->host_ss_selector;
4056 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4057 	seg.selector = vmcs12->host_fs_selector;
4058 	seg.base = vmcs12->host_fs_base;
4059 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4060 	seg.selector = vmcs12->host_gs_selector;
4061 	seg.base = vmcs12->host_gs_base;
4062 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4063 	seg = (struct kvm_segment) {
4064 		.base = vmcs12->host_tr_base,
4065 		.limit = 0x67,
4066 		.selector = vmcs12->host_tr_selector,
4067 		.type = 11,
4068 		.present = 1
4069 	};
4070 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4071 
4072 	kvm_set_dr(vcpu, 7, 0x400);
4073 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4074 
4075 	if (cpu_has_vmx_msr_bitmap())
4076 		vmx_update_msr_bitmap(vcpu);
4077 
4078 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4079 				vmcs12->vm_exit_msr_load_count))
4080 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4081 }
4082 
4083 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4084 {
4085 	struct shared_msr_entry *efer_msr;
4086 	unsigned int i;
4087 
4088 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4089 		return vmcs_read64(GUEST_IA32_EFER);
4090 
4091 	if (cpu_has_load_ia32_efer())
4092 		return host_efer;
4093 
4094 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4095 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4096 			return vmx->msr_autoload.guest.val[i].value;
4097 	}
4098 
4099 	efer_msr = find_msr_entry(vmx, MSR_EFER);
4100 	if (efer_msr)
4101 		return efer_msr->data;
4102 
4103 	return host_efer;
4104 }
4105 
4106 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4107 {
4108 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4109 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4110 	struct vmx_msr_entry g, h;
4111 	gpa_t gpa;
4112 	u32 i, j;
4113 
4114 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4115 
4116 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4117 		/*
4118 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4119 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4120 		 * and vcpu->arch.dr7 is not squirreled away before the
4121 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4122 		 */
4123 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4124 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4125 		else
4126 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4127 	}
4128 
4129 	/*
4130 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4131 	 * handle a variety of side effects to KVM's software model.
4132 	 */
4133 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4134 
4135 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
4136 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4137 
4138 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4139 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4140 
4141 	nested_ept_uninit_mmu_context(vcpu);
4142 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4143 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4144 
4145 	/*
4146 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4147 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4148 	 * VMFail, like everything else we just need to ensure our
4149 	 * software model is up-to-date.
4150 	 */
4151 	if (enable_ept)
4152 		ept_save_pdptrs(vcpu);
4153 
4154 	kvm_mmu_reset_context(vcpu);
4155 
4156 	if (cpu_has_vmx_msr_bitmap())
4157 		vmx_update_msr_bitmap(vcpu);
4158 
4159 	/*
4160 	 * This nasty bit of open coding is a compromise between blindly
4161 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4162 	 * of VMFail), leaving the nested VM's MSRs in the software model
4163 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4164 	 * expensive since the lists are unbound by hardware).  For each
4165 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4166 	 * list, reload it from the exit load list if it exists and differs
4167 	 * from the guest value.  The intent is to stuff host state as
4168 	 * silently as possible, not to fully process the exit load list.
4169 	 */
4170 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4171 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4172 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4173 			pr_debug_ratelimited(
4174 				"%s read MSR index failed (%u, 0x%08llx)\n",
4175 				__func__, i, gpa);
4176 			goto vmabort;
4177 		}
4178 
4179 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4180 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4181 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4182 				pr_debug_ratelimited(
4183 					"%s read MSR failed (%u, 0x%08llx)\n",
4184 					__func__, j, gpa);
4185 				goto vmabort;
4186 			}
4187 			if (h.index != g.index)
4188 				continue;
4189 			if (h.value == g.value)
4190 				break;
4191 
4192 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4193 				pr_debug_ratelimited(
4194 					"%s check failed (%u, 0x%x, 0x%x)\n",
4195 					__func__, j, h.index, h.reserved);
4196 				goto vmabort;
4197 			}
4198 
4199 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4200 				pr_debug_ratelimited(
4201 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4202 					__func__, j, h.index, h.value);
4203 				goto vmabort;
4204 			}
4205 		}
4206 	}
4207 
4208 	return;
4209 
4210 vmabort:
4211 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4212 }
4213 
4214 /*
4215  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4216  * and modify vmcs12 to make it see what it would expect to see there if
4217  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4218  */
4219 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4220 		       u32 exit_intr_info, unsigned long exit_qualification)
4221 {
4222 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4223 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4224 
4225 	/* trying to cancel vmlaunch/vmresume is a bug */
4226 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4227 
4228 	leave_guest_mode(vcpu);
4229 
4230 	if (nested_cpu_has_preemption_timer(vmcs12))
4231 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4232 
4233 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4234 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4235 
4236 	if (likely(!vmx->fail)) {
4237 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4238 
4239 		if (exit_reason != -1)
4240 			prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4241 				       exit_qualification);
4242 
4243 		/*
4244 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4245 		 * also be used to capture vmcs12 cache as part of
4246 		 * capturing nVMX state for snapshot (migration).
4247 		 *
4248 		 * Otherwise, this flush will dirty guest memory at a
4249 		 * point it is already assumed by user-space to be
4250 		 * immutable.
4251 		 */
4252 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4253 	} else {
4254 		/*
4255 		 * The only expected VM-instruction error is "VM entry with
4256 		 * invalid control field(s)." Anything else indicates a
4257 		 * problem with L0.  And we should never get here with a
4258 		 * VMFail of any type if early consistency checks are enabled.
4259 		 */
4260 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4261 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4262 		WARN_ON_ONCE(nested_early_check);
4263 	}
4264 
4265 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4266 
4267 	/* Update any VMCS fields that might have changed while L2 ran */
4268 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4269 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4270 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4271 	if (vmx->nested.l1_tpr_threshold != -1)
4272 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4273 
4274 	if (kvm_has_tsc_control)
4275 		decache_tsc_multiplier(vmx);
4276 
4277 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4278 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4279 		vmx_set_virtual_apic_mode(vcpu);
4280 	}
4281 
4282 	/* Unpin physical memory we referred to in vmcs02 */
4283 	if (vmx->nested.apic_access_page) {
4284 		kvm_release_page_clean(vmx->nested.apic_access_page);
4285 		vmx->nested.apic_access_page = NULL;
4286 	}
4287 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4288 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4289 	vmx->nested.pi_desc = NULL;
4290 
4291 	/*
4292 	 * We are now running in L2, mmu_notifier will force to reload the
4293 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4294 	 */
4295 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4296 
4297 	if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4298 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4299 
4300 	/* in case we halted in L2 */
4301 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4302 
4303 	if (likely(!vmx->fail)) {
4304 		/*
4305 		 * TODO: SDM says that with acknowledge interrupt on
4306 		 * exit, bit 31 of the VM-exit interrupt information
4307 		 * (valid interrupt) is always set to 1 on
4308 		 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4309 		 * need kvm_cpu_has_interrupt().  See the commit
4310 		 * message for details.
4311 		 */
4312 		if (nested_exit_intr_ack_set(vcpu) &&
4313 		    exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4314 		    kvm_cpu_has_interrupt(vcpu)) {
4315 			int irq = kvm_cpu_get_interrupt(vcpu);
4316 			WARN_ON(irq < 0);
4317 			vmcs12->vm_exit_intr_info = irq |
4318 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4319 		}
4320 
4321 		if (exit_reason != -1)
4322 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4323 						       vmcs12->exit_qualification,
4324 						       vmcs12->idt_vectoring_info_field,
4325 						       vmcs12->vm_exit_intr_info,
4326 						       vmcs12->vm_exit_intr_error_code,
4327 						       KVM_ISA_VMX);
4328 
4329 		load_vmcs12_host_state(vcpu, vmcs12);
4330 
4331 		return;
4332 	}
4333 
4334 	/*
4335 	 * After an early L2 VM-entry failure, we're now back
4336 	 * in L1 which thinks it just finished a VMLAUNCH or
4337 	 * VMRESUME instruction, so we need to set the failure
4338 	 * flag and the VM-instruction error field of the VMCS
4339 	 * accordingly, and skip the emulated instruction.
4340 	 */
4341 	(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4342 
4343 	/*
4344 	 * Restore L1's host state to KVM's software model.  We're here
4345 	 * because a consistency check was caught by hardware, which
4346 	 * means some amount of guest state has been propagated to KVM's
4347 	 * model and needs to be unwound to the host's state.
4348 	 */
4349 	nested_vmx_restore_host_state(vcpu);
4350 
4351 	vmx->fail = 0;
4352 }
4353 
4354 /*
4355  * Decode the memory-address operand of a vmx instruction, as recorded on an
4356  * exit caused by such an instruction (run by a guest hypervisor).
4357  * On success, returns 0. When the operand is invalid, returns 1 and throws
4358  * #UD or #GP.
4359  */
4360 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4361 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4362 {
4363 	gva_t off;
4364 	bool exn;
4365 	struct kvm_segment s;
4366 
4367 	/*
4368 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4369 	 * Execution", on an exit, vmx_instruction_info holds most of the
4370 	 * addressing components of the operand. Only the displacement part
4371 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4372 	 * For how an actual address is calculated from all these components,
4373 	 * refer to Vol. 1, "Operand Addressing".
4374 	 */
4375 	int  scaling = vmx_instruction_info & 3;
4376 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4377 	bool is_reg = vmx_instruction_info & (1u << 10);
4378 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4379 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4380 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4381 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4382 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4383 
4384 	if (is_reg) {
4385 		kvm_queue_exception(vcpu, UD_VECTOR);
4386 		return 1;
4387 	}
4388 
4389 	/* Addr = segment_base + offset */
4390 	/* offset = base + [index * scale] + displacement */
4391 	off = exit_qualification; /* holds the displacement */
4392 	if (addr_size == 1)
4393 		off = (gva_t)sign_extend64(off, 31);
4394 	else if (addr_size == 0)
4395 		off = (gva_t)sign_extend64(off, 15);
4396 	if (base_is_valid)
4397 		off += kvm_register_read(vcpu, base_reg);
4398 	if (index_is_valid)
4399 		off += kvm_register_read(vcpu, index_reg)<<scaling;
4400 	vmx_get_segment(vcpu, &s, seg_reg);
4401 
4402 	/*
4403 	 * The effective address, i.e. @off, of a memory operand is truncated
4404 	 * based on the address size of the instruction.  Note that this is
4405 	 * the *effective address*, i.e. the address prior to accounting for
4406 	 * the segment's base.
4407 	 */
4408 	if (addr_size == 1) /* 32 bit */
4409 		off &= 0xffffffff;
4410 	else if (addr_size == 0) /* 16 bit */
4411 		off &= 0xffff;
4412 
4413 	/* Checks for #GP/#SS exceptions. */
4414 	exn = false;
4415 	if (is_long_mode(vcpu)) {
4416 		/*
4417 		 * The virtual/linear address is never truncated in 64-bit
4418 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4419 		 * address when using FS/GS with a non-zero base.
4420 		 */
4421 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4422 			*ret = s.base + off;
4423 		else
4424 			*ret = off;
4425 
4426 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4427 		 * non-canonical form. This is the only check on the memory
4428 		 * destination for long mode!
4429 		 */
4430 		exn = is_noncanonical_address(*ret, vcpu);
4431 	} else {
4432 		/*
4433 		 * When not in long mode, the virtual/linear address is
4434 		 * unconditionally truncated to 32 bits regardless of the
4435 		 * address size.
4436 		 */
4437 		*ret = (s.base + off) & 0xffffffff;
4438 
4439 		/* Protected mode: apply checks for segment validity in the
4440 		 * following order:
4441 		 * - segment type check (#GP(0) may be thrown)
4442 		 * - usability check (#GP(0)/#SS(0))
4443 		 * - limit check (#GP(0)/#SS(0))
4444 		 */
4445 		if (wr)
4446 			/* #GP(0) if the destination operand is located in a
4447 			 * read-only data segment or any code segment.
4448 			 */
4449 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4450 		else
4451 			/* #GP(0) if the source operand is located in an
4452 			 * execute-only code segment
4453 			 */
4454 			exn = ((s.type & 0xa) == 8);
4455 		if (exn) {
4456 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4457 			return 1;
4458 		}
4459 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4460 		 */
4461 		exn = (s.unusable != 0);
4462 
4463 		/*
4464 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4465 		 * outside the segment limit.  All CPUs that support VMX ignore
4466 		 * limit checks for flat segments, i.e. segments with base==0,
4467 		 * limit==0xffffffff and of type expand-up data or code.
4468 		 */
4469 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4470 		     ((s.type & 8) || !(s.type & 4))))
4471 			exn = exn || ((u64)off + len - 1 > s.limit);
4472 	}
4473 	if (exn) {
4474 		kvm_queue_exception_e(vcpu,
4475 				      seg_reg == VCPU_SREG_SS ?
4476 						SS_VECTOR : GP_VECTOR,
4477 				      0);
4478 		return 1;
4479 	}
4480 
4481 	return 0;
4482 }
4483 
4484 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4485 {
4486 	struct vcpu_vmx *vmx;
4487 
4488 	if (!nested_vmx_allowed(vcpu))
4489 		return;
4490 
4491 	vmx = to_vmx(vcpu);
4492 	if (kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4493 		vmx->nested.msrs.entry_ctls_high |=
4494 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4495 		vmx->nested.msrs.exit_ctls_high |=
4496 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4497 	} else {
4498 		vmx->nested.msrs.entry_ctls_high &=
4499 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4500 		vmx->nested.msrs.exit_ctls_high &=
4501 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4502 	}
4503 }
4504 
4505 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4506 {
4507 	gva_t gva;
4508 	struct x86_exception e;
4509 
4510 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4511 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4512 				sizeof(*vmpointer), &gva))
4513 		return 1;
4514 
4515 	if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4516 		kvm_inject_page_fault(vcpu, &e);
4517 		return 1;
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 /*
4524  * Allocate a shadow VMCS and associate it with the currently loaded
4525  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4526  * VMCS is also VMCLEARed, so that it is ready for use.
4527  */
4528 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4529 {
4530 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4531 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4532 
4533 	/*
4534 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4535 	 * executes VMXON and free it when L1 executes VMXOFF.
4536 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4537 	 * here when vmcs01 already have an allocated shadow vmcs.
4538 	 */
4539 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4540 
4541 	if (!loaded_vmcs->shadow_vmcs) {
4542 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4543 		if (loaded_vmcs->shadow_vmcs)
4544 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4545 	}
4546 	return loaded_vmcs->shadow_vmcs;
4547 }
4548 
4549 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4550 {
4551 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4552 	int r;
4553 
4554 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4555 	if (r < 0)
4556 		goto out_vmcs02;
4557 
4558 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4559 	if (!vmx->nested.cached_vmcs12)
4560 		goto out_cached_vmcs12;
4561 
4562 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4563 	if (!vmx->nested.cached_shadow_vmcs12)
4564 		goto out_cached_shadow_vmcs12;
4565 
4566 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4567 		goto out_shadow_vmcs;
4568 
4569 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4570 		     HRTIMER_MODE_REL_PINNED);
4571 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4572 
4573 	vmx->nested.vpid02 = allocate_vpid();
4574 
4575 	vmx->nested.vmcs02_initialized = false;
4576 	vmx->nested.vmxon = true;
4577 
4578 	if (pt_mode == PT_MODE_HOST_GUEST) {
4579 		vmx->pt_desc.guest.ctl = 0;
4580 		pt_update_intercept_for_msr(vmx);
4581 	}
4582 
4583 	return 0;
4584 
4585 out_shadow_vmcs:
4586 	kfree(vmx->nested.cached_shadow_vmcs12);
4587 
4588 out_cached_shadow_vmcs12:
4589 	kfree(vmx->nested.cached_vmcs12);
4590 
4591 out_cached_vmcs12:
4592 	free_loaded_vmcs(&vmx->nested.vmcs02);
4593 
4594 out_vmcs02:
4595 	return -ENOMEM;
4596 }
4597 
4598 /*
4599  * Emulate the VMXON instruction.
4600  * Currently, we just remember that VMX is active, and do not save or even
4601  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4602  * do not currently need to store anything in that guest-allocated memory
4603  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4604  * argument is different from the VMXON pointer (which the spec says they do).
4605  */
4606 static int handle_vmon(struct kvm_vcpu *vcpu)
4607 {
4608 	int ret;
4609 	gpa_t vmptr;
4610 	uint32_t revision;
4611 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4612 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4613 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4614 
4615 	/*
4616 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4617 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4618 	 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4619 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4620 	 * have already been checked by hardware, prior to the VM-exit for
4621 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4622 	 * that bit set to 1 in non-root mode.
4623 	 */
4624 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4625 		kvm_queue_exception(vcpu, UD_VECTOR);
4626 		return 1;
4627 	}
4628 
4629 	/* CPL=0 must be checked manually. */
4630 	if (vmx_get_cpl(vcpu)) {
4631 		kvm_inject_gp(vcpu, 0);
4632 		return 1;
4633 	}
4634 
4635 	if (vmx->nested.vmxon)
4636 		return nested_vmx_failValid(vcpu,
4637 			VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4638 
4639 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4640 			!= VMXON_NEEDED_FEATURES) {
4641 		kvm_inject_gp(vcpu, 0);
4642 		return 1;
4643 	}
4644 
4645 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4646 		return 1;
4647 
4648 	/*
4649 	 * SDM 3: 24.11.5
4650 	 * The first 4 bytes of VMXON region contain the supported
4651 	 * VMCS revision identifier
4652 	 *
4653 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4654 	 * which replaces physical address width with 32
4655 	 */
4656 	if (!page_address_valid(vcpu, vmptr))
4657 		return nested_vmx_failInvalid(vcpu);
4658 
4659 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4660 	    revision != VMCS12_REVISION)
4661 		return nested_vmx_failInvalid(vcpu);
4662 
4663 	vmx->nested.vmxon_ptr = vmptr;
4664 	ret = enter_vmx_operation(vcpu);
4665 	if (ret)
4666 		return ret;
4667 
4668 	return nested_vmx_succeed(vcpu);
4669 }
4670 
4671 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4672 {
4673 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4674 
4675 	if (vmx->nested.current_vmptr == -1ull)
4676 		return;
4677 
4678 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4679 
4680 	if (enable_shadow_vmcs) {
4681 		/* copy to memory all shadowed fields in case
4682 		   they were modified */
4683 		copy_shadow_to_vmcs12(vmx);
4684 		vmx_disable_shadow_vmcs(vmx);
4685 	}
4686 	vmx->nested.posted_intr_nv = -1;
4687 
4688 	/* Flush VMCS12 to guest memory */
4689 	kvm_vcpu_write_guest_page(vcpu,
4690 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4691 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4692 
4693 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4694 
4695 	vmx->nested.current_vmptr = -1ull;
4696 }
4697 
4698 /* Emulate the VMXOFF instruction */
4699 static int handle_vmoff(struct kvm_vcpu *vcpu)
4700 {
4701 	if (!nested_vmx_check_permission(vcpu))
4702 		return 1;
4703 
4704 	free_nested(vcpu);
4705 
4706 	/* Process a latched INIT during time CPU was in VMX operation */
4707 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4708 
4709 	return nested_vmx_succeed(vcpu);
4710 }
4711 
4712 /* Emulate the VMCLEAR instruction */
4713 static int handle_vmclear(struct kvm_vcpu *vcpu)
4714 {
4715 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4716 	u32 zero = 0;
4717 	gpa_t vmptr;
4718 	u64 evmcs_gpa;
4719 
4720 	if (!nested_vmx_check_permission(vcpu))
4721 		return 1;
4722 
4723 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4724 		return 1;
4725 
4726 	if (!page_address_valid(vcpu, vmptr))
4727 		return nested_vmx_failValid(vcpu,
4728 			VMXERR_VMCLEAR_INVALID_ADDRESS);
4729 
4730 	if (vmptr == vmx->nested.vmxon_ptr)
4731 		return nested_vmx_failValid(vcpu,
4732 			VMXERR_VMCLEAR_VMXON_POINTER);
4733 
4734 	/*
4735 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
4736 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4737 	 * way to distinguish it from VMCS12) and we must not corrupt it by
4738 	 * writing to the non-existent 'launch_state' field. The area doesn't
4739 	 * have to be the currently active EVMCS on the calling CPU and there's
4740 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
4741 	 * state. It is possible that the area will stay mapped as
4742 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4743 	 */
4744 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4745 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4746 		if (vmptr == vmx->nested.current_vmptr)
4747 			nested_release_vmcs12(vcpu);
4748 
4749 		kvm_vcpu_write_guest(vcpu,
4750 				     vmptr + offsetof(struct vmcs12,
4751 						      launch_state),
4752 				     &zero, sizeof(zero));
4753 	}
4754 
4755 	return nested_vmx_succeed(vcpu);
4756 }
4757 
4758 /* Emulate the VMLAUNCH instruction */
4759 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4760 {
4761 	return nested_vmx_run(vcpu, true);
4762 }
4763 
4764 /* Emulate the VMRESUME instruction */
4765 static int handle_vmresume(struct kvm_vcpu *vcpu)
4766 {
4767 
4768 	return nested_vmx_run(vcpu, false);
4769 }
4770 
4771 static int handle_vmread(struct kvm_vcpu *vcpu)
4772 {
4773 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4774 						    : get_vmcs12(vcpu);
4775 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4776 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4777 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4778 	struct x86_exception e;
4779 	unsigned long field;
4780 	u64 value;
4781 	gva_t gva = 0;
4782 	short offset;
4783 	int len;
4784 
4785 	if (!nested_vmx_check_permission(vcpu))
4786 		return 1;
4787 
4788 	/*
4789 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4790 	 * any VMREAD sets the ALU flags for VMfailInvalid.
4791 	 */
4792 	if (vmx->nested.current_vmptr == -1ull ||
4793 	    (is_guest_mode(vcpu) &&
4794 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4795 		return nested_vmx_failInvalid(vcpu);
4796 
4797 	/* Decode instruction info and find the field to read */
4798 	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4799 
4800 	offset = vmcs_field_to_offset(field);
4801 	if (offset < 0)
4802 		return nested_vmx_failValid(vcpu,
4803 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4804 
4805 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4806 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4807 
4808 	/* Read the field, zero-extended to a u64 value */
4809 	value = vmcs12_read_any(vmcs12, field, offset);
4810 
4811 	/*
4812 	 * Now copy part of this value to register or memory, as requested.
4813 	 * Note that the number of bits actually copied is 32 or 64 depending
4814 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
4815 	 */
4816 	if (instr_info & BIT(10)) {
4817 		kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
4818 	} else {
4819 		len = is_64_bit_mode(vcpu) ? 8 : 4;
4820 		if (get_vmx_mem_address(vcpu, exit_qualification,
4821 					instr_info, true, len, &gva))
4822 			return 1;
4823 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
4824 		if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
4825 			kvm_inject_page_fault(vcpu, &e);
4826 			return 1;
4827 		}
4828 	}
4829 
4830 	return nested_vmx_succeed(vcpu);
4831 }
4832 
4833 static bool is_shadow_field_rw(unsigned long field)
4834 {
4835 	switch (field) {
4836 #define SHADOW_FIELD_RW(x, y) case x:
4837 #include "vmcs_shadow_fields.h"
4838 		return true;
4839 	default:
4840 		break;
4841 	}
4842 	return false;
4843 }
4844 
4845 static bool is_shadow_field_ro(unsigned long field)
4846 {
4847 	switch (field) {
4848 #define SHADOW_FIELD_RO(x, y) case x:
4849 #include "vmcs_shadow_fields.h"
4850 		return true;
4851 	default:
4852 		break;
4853 	}
4854 	return false;
4855 }
4856 
4857 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4858 {
4859 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4860 						    : get_vmcs12(vcpu);
4861 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4862 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4863 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4864 	struct x86_exception e;
4865 	unsigned long field;
4866 	short offset;
4867 	gva_t gva;
4868 	int len;
4869 
4870 	/*
4871 	 * The value to write might be 32 or 64 bits, depending on L1's long
4872 	 * mode, and eventually we need to write that into a field of several
4873 	 * possible lengths. The code below first zero-extends the value to 64
4874 	 * bit (value), and then copies only the appropriate number of
4875 	 * bits into the vmcs12 field.
4876 	 */
4877 	u64 value = 0;
4878 
4879 	if (!nested_vmx_check_permission(vcpu))
4880 		return 1;
4881 
4882 	/*
4883 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4884 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
4885 	 */
4886 	if (vmx->nested.current_vmptr == -1ull ||
4887 	    (is_guest_mode(vcpu) &&
4888 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4889 		return nested_vmx_failInvalid(vcpu);
4890 
4891 	if (instr_info & BIT(10))
4892 		value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
4893 	else {
4894 		len = is_64_bit_mode(vcpu) ? 8 : 4;
4895 		if (get_vmx_mem_address(vcpu, exit_qualification,
4896 					instr_info, false, len, &gva))
4897 			return 1;
4898 		if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
4899 			kvm_inject_page_fault(vcpu, &e);
4900 			return 1;
4901 		}
4902 	}
4903 
4904 	field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
4905 
4906 	offset = vmcs_field_to_offset(field);
4907 	if (offset < 0)
4908 		return nested_vmx_failValid(vcpu,
4909 			VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4910 
4911 	/*
4912 	 * If the vCPU supports "VMWRITE to any supported field in the
4913 	 * VMCS," then the "read-only" fields are actually read/write.
4914 	 */
4915 	if (vmcs_field_readonly(field) &&
4916 	    !nested_cpu_has_vmwrite_any_field(vcpu))
4917 		return nested_vmx_failValid(vcpu,
4918 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4919 
4920 	/*
4921 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4922 	 * vmcs12, else we may crush a field or consume a stale value.
4923 	 */
4924 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
4925 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4926 
4927 	/*
4928 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4929 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
4930 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4931 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4932 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
4933 	 * the stripped down value, L2 sees the full value as stored by KVM).
4934 	 */
4935 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4936 		value &= 0x1f0ff;
4937 
4938 	vmcs12_write_any(vmcs12, field, offset, value);
4939 
4940 	/*
4941 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
4942 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
4943 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4944 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4945 	 */
4946 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4947 		/*
4948 		 * L1 can read these fields without exiting, ensure the
4949 		 * shadow VMCS is up-to-date.
4950 		 */
4951 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4952 			preempt_disable();
4953 			vmcs_load(vmx->vmcs01.shadow_vmcs);
4954 
4955 			__vmcs_writel(field, value);
4956 
4957 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
4958 			vmcs_load(vmx->loaded_vmcs->vmcs);
4959 			preempt_enable();
4960 		}
4961 		vmx->nested.dirty_vmcs12 = true;
4962 	}
4963 
4964 	return nested_vmx_succeed(vcpu);
4965 }
4966 
4967 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4968 {
4969 	vmx->nested.current_vmptr = vmptr;
4970 	if (enable_shadow_vmcs) {
4971 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4972 		vmcs_write64(VMCS_LINK_POINTER,
4973 			     __pa(vmx->vmcs01.shadow_vmcs));
4974 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4975 	}
4976 	vmx->nested.dirty_vmcs12 = true;
4977 }
4978 
4979 /* Emulate the VMPTRLD instruction */
4980 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4981 {
4982 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4983 	gpa_t vmptr;
4984 
4985 	if (!nested_vmx_check_permission(vcpu))
4986 		return 1;
4987 
4988 	if (nested_vmx_get_vmptr(vcpu, &vmptr))
4989 		return 1;
4990 
4991 	if (!page_address_valid(vcpu, vmptr))
4992 		return nested_vmx_failValid(vcpu,
4993 			VMXERR_VMPTRLD_INVALID_ADDRESS);
4994 
4995 	if (vmptr == vmx->nested.vmxon_ptr)
4996 		return nested_vmx_failValid(vcpu,
4997 			VMXERR_VMPTRLD_VMXON_POINTER);
4998 
4999 	/* Forbid normal VMPTRLD if Enlightened version was used */
5000 	if (vmx->nested.hv_evmcs)
5001 		return 1;
5002 
5003 	if (vmx->nested.current_vmptr != vmptr) {
5004 		struct kvm_host_map map;
5005 		struct vmcs12 *new_vmcs12;
5006 
5007 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5008 			/*
5009 			 * Reads from an unbacked page return all 1s,
5010 			 * which means that the 32 bits located at the
5011 			 * given physical address won't match the required
5012 			 * VMCS12_REVISION identifier.
5013 			 */
5014 			return nested_vmx_failValid(vcpu,
5015 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5016 		}
5017 
5018 		new_vmcs12 = map.hva;
5019 
5020 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5021 		    (new_vmcs12->hdr.shadow_vmcs &&
5022 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5023 			kvm_vcpu_unmap(vcpu, &map, false);
5024 			return nested_vmx_failValid(vcpu,
5025 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5026 		}
5027 
5028 		nested_release_vmcs12(vcpu);
5029 
5030 		/*
5031 		 * Load VMCS12 from guest memory since it is not already
5032 		 * cached.
5033 		 */
5034 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5035 		kvm_vcpu_unmap(vcpu, &map, false);
5036 
5037 		set_current_vmptr(vmx, vmptr);
5038 	}
5039 
5040 	return nested_vmx_succeed(vcpu);
5041 }
5042 
5043 /* Emulate the VMPTRST instruction */
5044 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5045 {
5046 	unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
5047 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5048 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5049 	struct x86_exception e;
5050 	gva_t gva;
5051 
5052 	if (!nested_vmx_check_permission(vcpu))
5053 		return 1;
5054 
5055 	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5056 		return 1;
5057 
5058 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5059 				true, sizeof(gpa_t), &gva))
5060 		return 1;
5061 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5062 	if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5063 					sizeof(gpa_t), &e)) {
5064 		kvm_inject_page_fault(vcpu, &e);
5065 		return 1;
5066 	}
5067 	return nested_vmx_succeed(vcpu);
5068 }
5069 
5070 /* Emulate the INVEPT instruction */
5071 static int handle_invept(struct kvm_vcpu *vcpu)
5072 {
5073 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5074 	u32 vmx_instruction_info, types;
5075 	unsigned long type;
5076 	gva_t gva;
5077 	struct x86_exception e;
5078 	struct {
5079 		u64 eptp, gpa;
5080 	} operand;
5081 
5082 	if (!(vmx->nested.msrs.secondary_ctls_high &
5083 	      SECONDARY_EXEC_ENABLE_EPT) ||
5084 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5085 		kvm_queue_exception(vcpu, UD_VECTOR);
5086 		return 1;
5087 	}
5088 
5089 	if (!nested_vmx_check_permission(vcpu))
5090 		return 1;
5091 
5092 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5093 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5094 
5095 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5096 
5097 	if (type >= 32 || !(types & (1 << type)))
5098 		return nested_vmx_failValid(vcpu,
5099 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5100 
5101 	/* According to the Intel VMX instruction reference, the memory
5102 	 * operand is read even if it isn't needed (e.g., for type==global)
5103 	 */
5104 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5105 			vmx_instruction_info, false, sizeof(operand), &gva))
5106 		return 1;
5107 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5108 		kvm_inject_page_fault(vcpu, &e);
5109 		return 1;
5110 	}
5111 
5112 	switch (type) {
5113 	case VMX_EPT_EXTENT_GLOBAL:
5114 	case VMX_EPT_EXTENT_CONTEXT:
5115 	/*
5116 	 * TODO: Sync the necessary shadow EPT roots here, rather than
5117 	 * at the next emulated VM-entry.
5118 	 */
5119 		break;
5120 	default:
5121 		BUG_ON(1);
5122 		break;
5123 	}
5124 
5125 	return nested_vmx_succeed(vcpu);
5126 }
5127 
5128 static int handle_invvpid(struct kvm_vcpu *vcpu)
5129 {
5130 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5131 	u32 vmx_instruction_info;
5132 	unsigned long type, types;
5133 	gva_t gva;
5134 	struct x86_exception e;
5135 	struct {
5136 		u64 vpid;
5137 		u64 gla;
5138 	} operand;
5139 	u16 vpid02;
5140 
5141 	if (!(vmx->nested.msrs.secondary_ctls_high &
5142 	      SECONDARY_EXEC_ENABLE_VPID) ||
5143 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5144 		kvm_queue_exception(vcpu, UD_VECTOR);
5145 		return 1;
5146 	}
5147 
5148 	if (!nested_vmx_check_permission(vcpu))
5149 		return 1;
5150 
5151 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5152 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5153 
5154 	types = (vmx->nested.msrs.vpid_caps &
5155 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5156 
5157 	if (type >= 32 || !(types & (1 << type)))
5158 		return nested_vmx_failValid(vcpu,
5159 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5160 
5161 	/* according to the intel vmx instruction reference, the memory
5162 	 * operand is read even if it isn't needed (e.g., for type==global)
5163 	 */
5164 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5165 			vmx_instruction_info, false, sizeof(operand), &gva))
5166 		return 1;
5167 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5168 		kvm_inject_page_fault(vcpu, &e);
5169 		return 1;
5170 	}
5171 	if (operand.vpid >> 16)
5172 		return nested_vmx_failValid(vcpu,
5173 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5174 
5175 	vpid02 = nested_get_vpid02(vcpu);
5176 	switch (type) {
5177 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5178 		if (!operand.vpid ||
5179 		    is_noncanonical_address(operand.gla, vcpu))
5180 			return nested_vmx_failValid(vcpu,
5181 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5182 		if (cpu_has_vmx_invvpid_individual_addr()) {
5183 			__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5184 				vpid02, operand.gla);
5185 		} else
5186 			__vmx_flush_tlb(vcpu, vpid02, false);
5187 		break;
5188 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5189 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5190 		if (!operand.vpid)
5191 			return nested_vmx_failValid(vcpu,
5192 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5193 		__vmx_flush_tlb(vcpu, vpid02, false);
5194 		break;
5195 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5196 		__vmx_flush_tlb(vcpu, vpid02, false);
5197 		break;
5198 	default:
5199 		WARN_ON_ONCE(1);
5200 		return kvm_skip_emulated_instruction(vcpu);
5201 	}
5202 
5203 	return nested_vmx_succeed(vcpu);
5204 }
5205 
5206 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5207 				     struct vmcs12 *vmcs12)
5208 {
5209 	u32 index = kvm_rcx_read(vcpu);
5210 	u64 address;
5211 	bool accessed_dirty;
5212 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5213 
5214 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
5215 	    !nested_cpu_has_ept(vmcs12))
5216 		return 1;
5217 
5218 	if (index >= VMFUNC_EPTP_ENTRIES)
5219 		return 1;
5220 
5221 
5222 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5223 				     &address, index * 8, 8))
5224 		return 1;
5225 
5226 	accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5227 
5228 	/*
5229 	 * If the (L2) guest does a vmfunc to the currently
5230 	 * active ept pointer, we don't have to do anything else
5231 	 */
5232 	if (vmcs12->ept_pointer != address) {
5233 		if (!valid_ept_address(vcpu, address))
5234 			return 1;
5235 
5236 		kvm_mmu_unload(vcpu);
5237 		mmu->ept_ad = accessed_dirty;
5238 		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5239 		vmcs12->ept_pointer = address;
5240 		/*
5241 		 * TODO: Check what's the correct approach in case
5242 		 * mmu reload fails. Currently, we just let the next
5243 		 * reload potentially fail
5244 		 */
5245 		kvm_mmu_reload(vcpu);
5246 	}
5247 
5248 	return 0;
5249 }
5250 
5251 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5252 {
5253 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5254 	struct vmcs12 *vmcs12;
5255 	u32 function = kvm_rax_read(vcpu);
5256 
5257 	/*
5258 	 * VMFUNC is only supported for nested guests, but we always enable the
5259 	 * secondary control for simplicity; for non-nested mode, fake that we
5260 	 * didn't by injecting #UD.
5261 	 */
5262 	if (!is_guest_mode(vcpu)) {
5263 		kvm_queue_exception(vcpu, UD_VECTOR);
5264 		return 1;
5265 	}
5266 
5267 	vmcs12 = get_vmcs12(vcpu);
5268 	if ((vmcs12->vm_function_control & (1 << function)) == 0)
5269 		goto fail;
5270 
5271 	switch (function) {
5272 	case 0:
5273 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5274 			goto fail;
5275 		break;
5276 	default:
5277 		goto fail;
5278 	}
5279 	return kvm_skip_emulated_instruction(vcpu);
5280 
5281 fail:
5282 	nested_vmx_vmexit(vcpu, vmx->exit_reason,
5283 			  vmcs_read32(VM_EXIT_INTR_INFO),
5284 			  vmcs_readl(EXIT_QUALIFICATION));
5285 	return 1;
5286 }
5287 
5288 
5289 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5290 				       struct vmcs12 *vmcs12)
5291 {
5292 	unsigned long exit_qualification;
5293 	gpa_t bitmap, last_bitmap;
5294 	unsigned int port;
5295 	int size;
5296 	u8 b;
5297 
5298 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5299 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5300 
5301 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5302 
5303 	port = exit_qualification >> 16;
5304 	size = (exit_qualification & 7) + 1;
5305 
5306 	last_bitmap = (gpa_t)-1;
5307 	b = -1;
5308 
5309 	while (size > 0) {
5310 		if (port < 0x8000)
5311 			bitmap = vmcs12->io_bitmap_a;
5312 		else if (port < 0x10000)
5313 			bitmap = vmcs12->io_bitmap_b;
5314 		else
5315 			return true;
5316 		bitmap += (port & 0x7fff) / 8;
5317 
5318 		if (last_bitmap != bitmap)
5319 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5320 				return true;
5321 		if (b & (1 << (port & 7)))
5322 			return true;
5323 
5324 		port++;
5325 		size--;
5326 		last_bitmap = bitmap;
5327 	}
5328 
5329 	return false;
5330 }
5331 
5332 /*
5333  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5334  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5335  * disinterest in the current event (read or write a specific MSR) by using an
5336  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5337  */
5338 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5339 	struct vmcs12 *vmcs12, u32 exit_reason)
5340 {
5341 	u32 msr_index = kvm_rcx_read(vcpu);
5342 	gpa_t bitmap;
5343 
5344 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5345 		return true;
5346 
5347 	/*
5348 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5349 	 * for the four combinations of read/write and low/high MSR numbers.
5350 	 * First we need to figure out which of the four to use:
5351 	 */
5352 	bitmap = vmcs12->msr_bitmap;
5353 	if (exit_reason == EXIT_REASON_MSR_WRITE)
5354 		bitmap += 2048;
5355 	if (msr_index >= 0xc0000000) {
5356 		msr_index -= 0xc0000000;
5357 		bitmap += 1024;
5358 	}
5359 
5360 	/* Then read the msr_index'th bit from this bitmap: */
5361 	if (msr_index < 1024*8) {
5362 		unsigned char b;
5363 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5364 			return true;
5365 		return 1 & (b >> (msr_index & 7));
5366 	} else
5367 		return true; /* let L1 handle the wrong parameter */
5368 }
5369 
5370 /*
5371  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5372  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5373  * intercept (via guest_host_mask etc.) the current event.
5374  */
5375 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5376 	struct vmcs12 *vmcs12)
5377 {
5378 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5379 	int cr = exit_qualification & 15;
5380 	int reg;
5381 	unsigned long val;
5382 
5383 	switch ((exit_qualification >> 4) & 3) {
5384 	case 0: /* mov to cr */
5385 		reg = (exit_qualification >> 8) & 15;
5386 		val = kvm_register_readl(vcpu, reg);
5387 		switch (cr) {
5388 		case 0:
5389 			if (vmcs12->cr0_guest_host_mask &
5390 			    (val ^ vmcs12->cr0_read_shadow))
5391 				return true;
5392 			break;
5393 		case 3:
5394 			if ((vmcs12->cr3_target_count >= 1 &&
5395 					vmcs12->cr3_target_value0 == val) ||
5396 				(vmcs12->cr3_target_count >= 2 &&
5397 					vmcs12->cr3_target_value1 == val) ||
5398 				(vmcs12->cr3_target_count >= 3 &&
5399 					vmcs12->cr3_target_value2 == val) ||
5400 				(vmcs12->cr3_target_count >= 4 &&
5401 					vmcs12->cr3_target_value3 == val))
5402 				return false;
5403 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5404 				return true;
5405 			break;
5406 		case 4:
5407 			if (vmcs12->cr4_guest_host_mask &
5408 			    (vmcs12->cr4_read_shadow ^ val))
5409 				return true;
5410 			break;
5411 		case 8:
5412 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5413 				return true;
5414 			break;
5415 		}
5416 		break;
5417 	case 2: /* clts */
5418 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5419 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5420 			return true;
5421 		break;
5422 	case 1: /* mov from cr */
5423 		switch (cr) {
5424 		case 3:
5425 			if (vmcs12->cpu_based_vm_exec_control &
5426 			    CPU_BASED_CR3_STORE_EXITING)
5427 				return true;
5428 			break;
5429 		case 8:
5430 			if (vmcs12->cpu_based_vm_exec_control &
5431 			    CPU_BASED_CR8_STORE_EXITING)
5432 				return true;
5433 			break;
5434 		}
5435 		break;
5436 	case 3: /* lmsw */
5437 		/*
5438 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5439 		 * cr0. Other attempted changes are ignored, with no exit.
5440 		 */
5441 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5442 		if (vmcs12->cr0_guest_host_mask & 0xe &
5443 		    (val ^ vmcs12->cr0_read_shadow))
5444 			return true;
5445 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5446 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5447 		    (val & 0x1))
5448 			return true;
5449 		break;
5450 	}
5451 	return false;
5452 }
5453 
5454 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5455 	struct vmcs12 *vmcs12, gpa_t bitmap)
5456 {
5457 	u32 vmx_instruction_info;
5458 	unsigned long field;
5459 	u8 b;
5460 
5461 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5462 		return true;
5463 
5464 	/* Decode instruction info and find the field to access */
5465 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5466 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5467 
5468 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5469 	if (field >> 15)
5470 		return true;
5471 
5472 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5473 		return true;
5474 
5475 	return 1 & (b >> (field & 7));
5476 }
5477 
5478 /*
5479  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5480  * should handle it ourselves in L0 (and then continue L2). Only call this
5481  * when in is_guest_mode (L2).
5482  */
5483 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5484 {
5485 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5486 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5487 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5488 
5489 	if (vmx->nested.nested_run_pending)
5490 		return false;
5491 
5492 	if (unlikely(vmx->fail)) {
5493 		trace_kvm_nested_vmenter_failed(
5494 			"hardware VM-instruction error: ",
5495 			vmcs_read32(VM_INSTRUCTION_ERROR));
5496 		return true;
5497 	}
5498 
5499 	/*
5500 	 * The host physical addresses of some pages of guest memory
5501 	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5502 	 * Page). The CPU may write to these pages via their host
5503 	 * physical address while L2 is running, bypassing any
5504 	 * address-translation-based dirty tracking (e.g. EPT write
5505 	 * protection).
5506 	 *
5507 	 * Mark them dirty on every exit from L2 to prevent them from
5508 	 * getting out of sync with dirty tracking.
5509 	 */
5510 	nested_mark_vmcs12_pages_dirty(vcpu);
5511 
5512 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5513 				vmcs_readl(EXIT_QUALIFICATION),
5514 				vmx->idt_vectoring_info,
5515 				intr_info,
5516 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5517 				KVM_ISA_VMX);
5518 
5519 	switch (exit_reason) {
5520 	case EXIT_REASON_EXCEPTION_NMI:
5521 		if (is_nmi(intr_info))
5522 			return false;
5523 		else if (is_page_fault(intr_info))
5524 			return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5525 		else if (is_debug(intr_info) &&
5526 			 vcpu->guest_debug &
5527 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5528 			return false;
5529 		else if (is_breakpoint(intr_info) &&
5530 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5531 			return false;
5532 		return vmcs12->exception_bitmap &
5533 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5534 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5535 		return false;
5536 	case EXIT_REASON_TRIPLE_FAULT:
5537 		return true;
5538 	case EXIT_REASON_INTERRUPT_WINDOW:
5539 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5540 	case EXIT_REASON_NMI_WINDOW:
5541 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5542 	case EXIT_REASON_TASK_SWITCH:
5543 		return true;
5544 	case EXIT_REASON_CPUID:
5545 		return true;
5546 	case EXIT_REASON_HLT:
5547 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5548 	case EXIT_REASON_INVD:
5549 		return true;
5550 	case EXIT_REASON_INVLPG:
5551 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5552 	case EXIT_REASON_RDPMC:
5553 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5554 	case EXIT_REASON_RDRAND:
5555 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5556 	case EXIT_REASON_RDSEED:
5557 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5558 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5559 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5560 	case EXIT_REASON_VMREAD:
5561 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5562 			vmcs12->vmread_bitmap);
5563 	case EXIT_REASON_VMWRITE:
5564 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5565 			vmcs12->vmwrite_bitmap);
5566 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5567 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5568 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5569 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5570 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5571 		/*
5572 		 * VMX instructions trap unconditionally. This allows L1 to
5573 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5574 		 */
5575 		return true;
5576 	case EXIT_REASON_CR_ACCESS:
5577 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5578 	case EXIT_REASON_DR_ACCESS:
5579 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5580 	case EXIT_REASON_IO_INSTRUCTION:
5581 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5582 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5583 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5584 	case EXIT_REASON_MSR_READ:
5585 	case EXIT_REASON_MSR_WRITE:
5586 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5587 	case EXIT_REASON_INVALID_STATE:
5588 		return true;
5589 	case EXIT_REASON_MWAIT_INSTRUCTION:
5590 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5591 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5592 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5593 	case EXIT_REASON_MONITOR_INSTRUCTION:
5594 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5595 	case EXIT_REASON_PAUSE_INSTRUCTION:
5596 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5597 			nested_cpu_has2(vmcs12,
5598 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5599 	case EXIT_REASON_MCE_DURING_VMENTRY:
5600 		return false;
5601 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5602 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5603 	case EXIT_REASON_APIC_ACCESS:
5604 	case EXIT_REASON_APIC_WRITE:
5605 	case EXIT_REASON_EOI_INDUCED:
5606 		/*
5607 		 * The controls for "virtualize APIC accesses," "APIC-
5608 		 * register virtualization," and "virtual-interrupt
5609 		 * delivery" only come from vmcs12.
5610 		 */
5611 		return true;
5612 	case EXIT_REASON_EPT_VIOLATION:
5613 		/*
5614 		 * L0 always deals with the EPT violation. If nested EPT is
5615 		 * used, and the nested mmu code discovers that the address is
5616 		 * missing in the guest EPT table (EPT12), the EPT violation
5617 		 * will be injected with nested_ept_inject_page_fault()
5618 		 */
5619 		return false;
5620 	case EXIT_REASON_EPT_MISCONFIG:
5621 		/*
5622 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5623 		 * table (shadow on EPT) or a merged EPT table that L0 built
5624 		 * (EPT on EPT). So any problems with the structure of the
5625 		 * table is L0's fault.
5626 		 */
5627 		return false;
5628 	case EXIT_REASON_INVPCID:
5629 		return
5630 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5631 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5632 	case EXIT_REASON_WBINVD:
5633 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5634 	case EXIT_REASON_XSETBV:
5635 		return true;
5636 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5637 		/*
5638 		 * This should never happen, since it is not possible to
5639 		 * set XSS to a non-zero value---neither in L1 nor in L2.
5640 		 * If if it were, XSS would have to be checked against
5641 		 * the XSS exit bitmap in vmcs12.
5642 		 */
5643 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5644 	case EXIT_REASON_PREEMPTION_TIMER:
5645 		return false;
5646 	case EXIT_REASON_PML_FULL:
5647 		/* We emulate PML support to L1. */
5648 		return false;
5649 	case EXIT_REASON_VMFUNC:
5650 		/* VM functions are emulated through L2->L0 vmexits. */
5651 		return false;
5652 	case EXIT_REASON_ENCLS:
5653 		/* SGX is never exposed to L1 */
5654 		return false;
5655 	case EXIT_REASON_UMWAIT:
5656 	case EXIT_REASON_TPAUSE:
5657 		return nested_cpu_has2(vmcs12,
5658 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5659 	default:
5660 		return true;
5661 	}
5662 }
5663 
5664 
5665 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5666 				struct kvm_nested_state __user *user_kvm_nested_state,
5667 				u32 user_data_size)
5668 {
5669 	struct vcpu_vmx *vmx;
5670 	struct vmcs12 *vmcs12;
5671 	struct kvm_nested_state kvm_state = {
5672 		.flags = 0,
5673 		.format = KVM_STATE_NESTED_FORMAT_VMX,
5674 		.size = sizeof(kvm_state),
5675 		.hdr.vmx.vmxon_pa = -1ull,
5676 		.hdr.vmx.vmcs12_pa = -1ull,
5677 	};
5678 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5679 		&user_kvm_nested_state->data.vmx[0];
5680 
5681 	if (!vcpu)
5682 		return kvm_state.size + sizeof(*user_vmx_nested_state);
5683 
5684 	vmx = to_vmx(vcpu);
5685 	vmcs12 = get_vmcs12(vcpu);
5686 
5687 	if (nested_vmx_allowed(vcpu) &&
5688 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5689 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5690 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5691 
5692 		if (vmx_has_valid_vmcs12(vcpu)) {
5693 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5694 
5695 			if (vmx->nested.hv_evmcs)
5696 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5697 
5698 			if (is_guest_mode(vcpu) &&
5699 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
5700 			    vmcs12->vmcs_link_pointer != -1ull)
5701 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5702 		}
5703 
5704 		if (vmx->nested.smm.vmxon)
5705 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5706 
5707 		if (vmx->nested.smm.guest_mode)
5708 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5709 
5710 		if (is_guest_mode(vcpu)) {
5711 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5712 
5713 			if (vmx->nested.nested_run_pending)
5714 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5715 		}
5716 	}
5717 
5718 	if (user_data_size < kvm_state.size)
5719 		goto out;
5720 
5721 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5722 		return -EFAULT;
5723 
5724 	if (!vmx_has_valid_vmcs12(vcpu))
5725 		goto out;
5726 
5727 	/*
5728 	 * When running L2, the authoritative vmcs12 state is in the
5729 	 * vmcs02. When running L1, the authoritative vmcs12 state is
5730 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
5731 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5732 	 * vmcs12 state is in the vmcs12 already.
5733 	 */
5734 	if (is_guest_mode(vcpu)) {
5735 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5736 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5737 	} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5738 		if (vmx->nested.hv_evmcs)
5739 			copy_enlightened_to_vmcs12(vmx);
5740 		else if (enable_shadow_vmcs)
5741 			copy_shadow_to_vmcs12(vmx);
5742 	}
5743 
5744 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5745 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5746 
5747 	/*
5748 	 * Copy over the full allocated size of vmcs12 rather than just the size
5749 	 * of the struct.
5750 	 */
5751 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5752 		return -EFAULT;
5753 
5754 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5755 	    vmcs12->vmcs_link_pointer != -1ull) {
5756 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5757 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5758 			return -EFAULT;
5759 	}
5760 
5761 out:
5762 	return kvm_state.size;
5763 }
5764 
5765 /*
5766  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5767  */
5768 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5769 {
5770 	if (is_guest_mode(vcpu)) {
5771 		to_vmx(vcpu)->nested.nested_run_pending = 0;
5772 		nested_vmx_vmexit(vcpu, -1, 0, 0);
5773 	}
5774 	free_nested(vcpu);
5775 }
5776 
5777 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5778 				struct kvm_nested_state __user *user_kvm_nested_state,
5779 				struct kvm_nested_state *kvm_state)
5780 {
5781 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5782 	struct vmcs12 *vmcs12;
5783 	u32 exit_qual;
5784 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5785 		&user_kvm_nested_state->data.vmx[0];
5786 	int ret;
5787 
5788 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5789 		return -EINVAL;
5790 
5791 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5792 		if (kvm_state->hdr.vmx.smm.flags)
5793 			return -EINVAL;
5794 
5795 		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5796 			return -EINVAL;
5797 
5798 		/*
5799 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5800 		 * enable eVMCS capability on vCPU. However, since then
5801 		 * code was changed such that flag signals vmcs12 should
5802 		 * be copied into eVMCS in guest memory.
5803 		 *
5804 		 * To preserve backwards compatability, allow user
5805 		 * to set this flag even when there is no VMXON region.
5806 		 */
5807 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5808 			return -EINVAL;
5809 	} else {
5810 		if (!nested_vmx_allowed(vcpu))
5811 			return -EINVAL;
5812 
5813 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5814 			return -EINVAL;
5815 	}
5816 
5817 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5818 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5819 		return -EINVAL;
5820 
5821 	if (kvm_state->hdr.vmx.smm.flags &
5822 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5823 		return -EINVAL;
5824 
5825 	/*
5826 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
5827 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
5828 	 * must be zero.
5829 	 */
5830 	if (is_smm(vcpu) ?
5831 		(kvm_state->flags &
5832 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5833 		: kvm_state->hdr.vmx.smm.flags)
5834 		return -EINVAL;
5835 
5836 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5837 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5838 		return -EINVAL;
5839 
5840 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5841 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5842 			return -EINVAL;
5843 
5844 	vmx_leave_nested(vcpu);
5845 
5846 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5847 		return 0;
5848 
5849 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5850 	ret = enter_vmx_operation(vcpu);
5851 	if (ret)
5852 		return ret;
5853 
5854 	/* Empty 'VMXON' state is permitted */
5855 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5856 		return 0;
5857 
5858 	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5859 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5860 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5861 			return -EINVAL;
5862 
5863 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5864 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5865 		/*
5866 		 * Sync eVMCS upon entry as we may not have
5867 		 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5868 		 */
5869 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5870 	} else {
5871 		return -EINVAL;
5872 	}
5873 
5874 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5875 		vmx->nested.smm.vmxon = true;
5876 		vmx->nested.vmxon = false;
5877 
5878 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5879 			vmx->nested.smm.guest_mode = true;
5880 	}
5881 
5882 	vmcs12 = get_vmcs12(vcpu);
5883 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5884 		return -EFAULT;
5885 
5886 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5887 		return -EINVAL;
5888 
5889 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5890 		return 0;
5891 
5892 	vmx->nested.nested_run_pending =
5893 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5894 
5895 	ret = -EINVAL;
5896 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5897 	    vmcs12->vmcs_link_pointer != -1ull) {
5898 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5899 
5900 		if (kvm_state->size <
5901 		    sizeof(*kvm_state) +
5902 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5903 			goto error_guest_mode;
5904 
5905 		if (copy_from_user(shadow_vmcs12,
5906 				   user_vmx_nested_state->shadow_vmcs12,
5907 				   sizeof(*shadow_vmcs12))) {
5908 			ret = -EFAULT;
5909 			goto error_guest_mode;
5910 		}
5911 
5912 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5913 		    !shadow_vmcs12->hdr.shadow_vmcs)
5914 			goto error_guest_mode;
5915 	}
5916 
5917 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
5918 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
5919 	    nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5920 		goto error_guest_mode;
5921 
5922 	vmx->nested.dirty_vmcs12 = true;
5923 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
5924 	if (ret)
5925 		goto error_guest_mode;
5926 
5927 	return 0;
5928 
5929 error_guest_mode:
5930 	vmx->nested.nested_run_pending = 0;
5931 	return ret;
5932 }
5933 
5934 void nested_vmx_set_vmcs_shadowing_bitmap(void)
5935 {
5936 	if (enable_shadow_vmcs) {
5937 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5938 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5939 	}
5940 }
5941 
5942 /*
5943  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5944  * returned for the various VMX controls MSRs when nested VMX is enabled.
5945  * The same values should also be used to verify that vmcs12 control fields are
5946  * valid during nested entry from L1 to L2.
5947  * Each of these control msrs has a low and high 32-bit half: A low bit is on
5948  * if the corresponding bit in the (32-bit) control field *must* be on, and a
5949  * bit in the high half is on if the corresponding bit in the control field
5950  * may be on. See also vmx_control_verify().
5951  */
5952 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5953 				bool apicv)
5954 {
5955 	/*
5956 	 * Note that as a general rule, the high half of the MSRs (bits in
5957 	 * the control fields which may be 1) should be initialized by the
5958 	 * intersection of the underlying hardware's MSR (i.e., features which
5959 	 * can be supported) and the list of features we want to expose -
5960 	 * because they are known to be properly supported in our code.
5961 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
5962 	 * be set to 0, meaning that L1 may turn off any of these bits. The
5963 	 * reason is that if one of these bits is necessary, it will appear
5964 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5965 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
5966 	 * nested_vmx_exit_reflected() will not pass related exits to L1.
5967 	 * These rules have exceptions below.
5968 	 */
5969 
5970 	/* pin-based controls */
5971 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5972 		msrs->pinbased_ctls_low,
5973 		msrs->pinbased_ctls_high);
5974 	msrs->pinbased_ctls_low |=
5975 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5976 	msrs->pinbased_ctls_high &=
5977 		PIN_BASED_EXT_INTR_MASK |
5978 		PIN_BASED_NMI_EXITING |
5979 		PIN_BASED_VIRTUAL_NMIS |
5980 		(apicv ? PIN_BASED_POSTED_INTR : 0);
5981 	msrs->pinbased_ctls_high |=
5982 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5983 		PIN_BASED_VMX_PREEMPTION_TIMER;
5984 
5985 	/* exit controls */
5986 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5987 		msrs->exit_ctls_low,
5988 		msrs->exit_ctls_high);
5989 	msrs->exit_ctls_low =
5990 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5991 
5992 	msrs->exit_ctls_high &=
5993 #ifdef CONFIG_X86_64
5994 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
5995 #endif
5996 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5997 	msrs->exit_ctls_high |=
5998 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5999 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6000 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6001 
6002 	/* We support free control of debug control saving. */
6003 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6004 
6005 	/* entry controls */
6006 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6007 		msrs->entry_ctls_low,
6008 		msrs->entry_ctls_high);
6009 	msrs->entry_ctls_low =
6010 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6011 	msrs->entry_ctls_high &=
6012 #ifdef CONFIG_X86_64
6013 		VM_ENTRY_IA32E_MODE |
6014 #endif
6015 		VM_ENTRY_LOAD_IA32_PAT;
6016 	msrs->entry_ctls_high |=
6017 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6018 
6019 	/* We support free control of debug control loading. */
6020 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6021 
6022 	/* cpu-based controls */
6023 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6024 		msrs->procbased_ctls_low,
6025 		msrs->procbased_ctls_high);
6026 	msrs->procbased_ctls_low =
6027 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6028 	msrs->procbased_ctls_high &=
6029 		CPU_BASED_INTR_WINDOW_EXITING |
6030 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6031 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6032 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6033 		CPU_BASED_CR3_STORE_EXITING |
6034 #ifdef CONFIG_X86_64
6035 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6036 #endif
6037 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6038 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6039 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6040 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6041 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6042 	/*
6043 	 * We can allow some features even when not supported by the
6044 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6045 	 * can use it to avoid exits to L1 - even when L0 runs L2
6046 	 * without MSR bitmaps.
6047 	 */
6048 	msrs->procbased_ctls_high |=
6049 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6050 		CPU_BASED_USE_MSR_BITMAPS;
6051 
6052 	/* We support free control of CR3 access interception. */
6053 	msrs->procbased_ctls_low &=
6054 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6055 
6056 	/*
6057 	 * secondary cpu-based controls.  Do not include those that
6058 	 * depend on CPUID bits, they are added later by vmx_cpuid_update.
6059 	 */
6060 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6061 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6062 		      msrs->secondary_ctls_low,
6063 		      msrs->secondary_ctls_high);
6064 
6065 	msrs->secondary_ctls_low = 0;
6066 	msrs->secondary_ctls_high &=
6067 		SECONDARY_EXEC_DESC |
6068 		SECONDARY_EXEC_RDTSCP |
6069 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6070 		SECONDARY_EXEC_WBINVD_EXITING |
6071 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6072 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6073 		SECONDARY_EXEC_RDRAND_EXITING |
6074 		SECONDARY_EXEC_ENABLE_INVPCID |
6075 		SECONDARY_EXEC_RDSEED_EXITING |
6076 		SECONDARY_EXEC_XSAVES;
6077 
6078 	/*
6079 	 * We can emulate "VMCS shadowing," even if the hardware
6080 	 * doesn't support it.
6081 	 */
6082 	msrs->secondary_ctls_high |=
6083 		SECONDARY_EXEC_SHADOW_VMCS;
6084 
6085 	if (enable_ept) {
6086 		/* nested EPT: emulate EPT also to L1 */
6087 		msrs->secondary_ctls_high |=
6088 			SECONDARY_EXEC_ENABLE_EPT;
6089 		msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
6090 			 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
6091 		if (cpu_has_vmx_ept_execute_only())
6092 			msrs->ept_caps |=
6093 				VMX_EPT_EXECUTE_ONLY_BIT;
6094 		msrs->ept_caps &= ept_caps;
6095 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6096 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6097 			VMX_EPT_1GB_PAGE_BIT;
6098 		if (enable_ept_ad_bits) {
6099 			msrs->secondary_ctls_high |=
6100 				SECONDARY_EXEC_ENABLE_PML;
6101 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6102 		}
6103 	}
6104 
6105 	if (cpu_has_vmx_vmfunc()) {
6106 		msrs->secondary_ctls_high |=
6107 			SECONDARY_EXEC_ENABLE_VMFUNC;
6108 		/*
6109 		 * Advertise EPTP switching unconditionally
6110 		 * since we emulate it
6111 		 */
6112 		if (enable_ept)
6113 			msrs->vmfunc_controls =
6114 				VMX_VMFUNC_EPTP_SWITCHING;
6115 	}
6116 
6117 	/*
6118 	 * Old versions of KVM use the single-context version without
6119 	 * checking for support, so declare that it is supported even
6120 	 * though it is treated as global context.  The alternative is
6121 	 * not failing the single-context invvpid, and it is worse.
6122 	 */
6123 	if (enable_vpid) {
6124 		msrs->secondary_ctls_high |=
6125 			SECONDARY_EXEC_ENABLE_VPID;
6126 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6127 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6128 	}
6129 
6130 	if (enable_unrestricted_guest)
6131 		msrs->secondary_ctls_high |=
6132 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6133 
6134 	if (flexpriority_enabled)
6135 		msrs->secondary_ctls_high |=
6136 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6137 
6138 	/* miscellaneous data */
6139 	rdmsr(MSR_IA32_VMX_MISC,
6140 		msrs->misc_low,
6141 		msrs->misc_high);
6142 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6143 	msrs->misc_low |=
6144 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6145 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6146 		VMX_MISC_ACTIVITY_HLT;
6147 	msrs->misc_high = 0;
6148 
6149 	/*
6150 	 * This MSR reports some information about VMX support. We
6151 	 * should return information about the VMX we emulate for the
6152 	 * guest, and the VMCS structure we give it - not about the
6153 	 * VMX support of the underlying hardware.
6154 	 */
6155 	msrs->basic =
6156 		VMCS12_REVISION |
6157 		VMX_BASIC_TRUE_CTLS |
6158 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6159 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6160 
6161 	if (cpu_has_vmx_basic_inout())
6162 		msrs->basic |= VMX_BASIC_INOUT;
6163 
6164 	/*
6165 	 * These MSRs specify bits which the guest must keep fixed on
6166 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6167 	 * We picked the standard core2 setting.
6168 	 */
6169 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6170 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6171 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6172 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6173 
6174 	/* These MSRs specify bits which the guest must keep fixed off. */
6175 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6176 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6177 
6178 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
6179 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6180 }
6181 
6182 void nested_vmx_hardware_unsetup(void)
6183 {
6184 	int i;
6185 
6186 	if (enable_shadow_vmcs) {
6187 		for (i = 0; i < VMX_BITMAP_NR; i++)
6188 			free_page((unsigned long)vmx_bitmap[i]);
6189 	}
6190 }
6191 
6192 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6193 {
6194 	int i;
6195 
6196 	if (!cpu_has_vmx_shadow_vmcs())
6197 		enable_shadow_vmcs = 0;
6198 	if (enable_shadow_vmcs) {
6199 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6200 			/*
6201 			 * The vmx_bitmap is not tied to a VM and so should
6202 			 * not be charged to a memcg.
6203 			 */
6204 			vmx_bitmap[i] = (unsigned long *)
6205 				__get_free_page(GFP_KERNEL);
6206 			if (!vmx_bitmap[i]) {
6207 				nested_vmx_hardware_unsetup();
6208 				return -ENOMEM;
6209 			}
6210 		}
6211 
6212 		init_vmcs_shadow_fields();
6213 	}
6214 
6215 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6216 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6217 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6218 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6219 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6220 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6221 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6222 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6223 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6224 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6225 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6226 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6227 
6228 	kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6229 	kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6230 	kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6231 	kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages;
6232 	kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6233 	kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6234 
6235 	return 0;
6236 }
6237