xref: /linux/arch/x86/kvm/vmx/nested.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18 
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21 
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24 
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26 
27 /*
28  * Hyper-V requires all of these, so mark them as supported even though
29  * they are just treated the same as all-context.
30  */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
32 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
33 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
34 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
35 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36 
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38 
39 enum {
40 	VMX_VMREAD_BITMAP,
41 	VMX_VMWRITE_BITMAP,
42 	VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45 
46 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
48 
49 struct shadow_vmcs_field {
50 	u16	encoding;
51 	u16	offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58 	ARRAY_SIZE(shadow_read_only_fields);
59 
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65 	ARRAY_SIZE(shadow_read_write_fields);
66 
67 static void init_vmcs_shadow_fields(void)
68 {
69 	int i, j;
70 
71 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73 
74 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76 		u16 field = entry.encoding;
77 
78 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79 		    (i + 1 == max_shadow_read_only_fields ||
80 		     shadow_read_only_fields[i + 1].encoding != field + 1))
81 			pr_err("Missing field from shadow_read_only_field %x\n",
82 			       field + 1);
83 
84 		clear_bit(field, vmx_vmread_bitmap);
85 		if (field & 1)
86 #ifdef CONFIG_X86_64
87 			continue;
88 #else
89 			entry.offset += sizeof(u32);
90 #endif
91 		shadow_read_only_fields[j++] = entry;
92 	}
93 	max_shadow_read_only_fields = j;
94 
95 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97 		u16 field = entry.encoding;
98 
99 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100 		    (i + 1 == max_shadow_read_write_fields ||
101 		     shadow_read_write_fields[i + 1].encoding != field + 1))
102 			pr_err("Missing field from shadow_read_write_field %x\n",
103 			       field + 1);
104 
105 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106 			  field <= GUEST_TR_AR_BYTES,
107 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108 
109 		/*
110 		 * PML and the preemption timer can be emulated, but the
111 		 * processor cannot vmwrite to fields that don't exist
112 		 * on bare metal.
113 		 */
114 		switch (field) {
115 		case GUEST_PML_INDEX:
116 			if (!cpu_has_vmx_pml())
117 				continue;
118 			break;
119 		case VMX_PREEMPTION_TIMER_VALUE:
120 			if (!cpu_has_vmx_preemption_timer())
121 				continue;
122 			break;
123 		case GUEST_INTR_STATUS:
124 			if (!cpu_has_vmx_apicv())
125 				continue;
126 			break;
127 		default:
128 			break;
129 		}
130 
131 		clear_bit(field, vmx_vmwrite_bitmap);
132 		clear_bit(field, vmx_vmread_bitmap);
133 		if (field & 1)
134 #ifdef CONFIG_X86_64
135 			continue;
136 #else
137 			entry.offset += sizeof(u32);
138 #endif
139 		shadow_read_write_fields[j++] = entry;
140 	}
141 	max_shadow_read_write_fields = j;
142 }
143 
144 /*
145  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146  * set the success or error code of an emulated VMX instruction (as specified
147  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148  * instruction.
149  */
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155 	return kvm_skip_emulated_instruction(vcpu);
156 }
157 
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
163 			| X86_EFLAGS_CF);
164 	return kvm_skip_emulated_instruction(vcpu);
165 }
166 
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168 				u32 vm_instruction_error)
169 {
170 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
173 			| X86_EFLAGS_ZF);
174 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175 	/*
176 	 * We don't need to force a shadow sync because
177 	 * VM_INSTRUCTION_ERROR is not shadowed
178 	 */
179 	return kvm_skip_emulated_instruction(vcpu);
180 }
181 
182 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
183 {
184 	struct vcpu_vmx *vmx = to_vmx(vcpu);
185 
186 	/*
187 	 * failValid writes the error number to the current VMCS, which
188 	 * can't be done if there isn't a current VMCS.
189 	 */
190 	if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
191 		return nested_vmx_failInvalid(vcpu);
192 
193 	return nested_vmx_failValid(vcpu, vm_instruction_error);
194 }
195 
196 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
197 {
198 	/* TODO: not to reset guest simply here. */
199 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
200 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
201 }
202 
203 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
204 {
205 	return fixed_bits_valid(control, low, high);
206 }
207 
208 static inline u64 vmx_control_msr(u32 low, u32 high)
209 {
210 	return low | ((u64)high << 32);
211 }
212 
213 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
214 {
215 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
216 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
217 	vmx->nested.need_vmcs12_to_shadow_sync = false;
218 }
219 
220 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
221 {
222 	struct vcpu_vmx *vmx = to_vmx(vcpu);
223 
224 	if (!vmx->nested.hv_evmcs)
225 		return;
226 
227 	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
228 	vmx->nested.hv_evmcs_vmptr = 0;
229 	vmx->nested.hv_evmcs = NULL;
230 }
231 
232 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
233 				     struct loaded_vmcs *prev)
234 {
235 	struct vmcs_host_state *dest, *src;
236 
237 	if (unlikely(!vmx->guest_state_loaded))
238 		return;
239 
240 	src = &prev->host_state;
241 	dest = &vmx->loaded_vmcs->host_state;
242 
243 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
244 	dest->ldt_sel = src->ldt_sel;
245 #ifdef CONFIG_X86_64
246 	dest->ds_sel = src->ds_sel;
247 	dest->es_sel = src->es_sel;
248 #endif
249 }
250 
251 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
252 {
253 	struct vcpu_vmx *vmx = to_vmx(vcpu);
254 	struct loaded_vmcs *prev;
255 	int cpu;
256 
257 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
258 		return;
259 
260 	cpu = get_cpu();
261 	prev = vmx->loaded_vmcs;
262 	vmx->loaded_vmcs = vmcs;
263 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
264 	vmx_sync_vmcs_host_state(vmx, prev);
265 	put_cpu();
266 
267 	vmx_register_cache_reset(vcpu);
268 }
269 
270 /*
271  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
272  * just stops using VMX.
273  */
274 static void free_nested(struct kvm_vcpu *vcpu)
275 {
276 	struct vcpu_vmx *vmx = to_vmx(vcpu);
277 
278 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
279 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
280 
281 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
282 		return;
283 
284 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
285 
286 	vmx->nested.vmxon = false;
287 	vmx->nested.smm.vmxon = false;
288 	free_vpid(vmx->nested.vpid02);
289 	vmx->nested.posted_intr_nv = -1;
290 	vmx->nested.current_vmptr = -1ull;
291 	if (enable_shadow_vmcs) {
292 		vmx_disable_shadow_vmcs(vmx);
293 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
294 		free_vmcs(vmx->vmcs01.shadow_vmcs);
295 		vmx->vmcs01.shadow_vmcs = NULL;
296 	}
297 	kfree(vmx->nested.cached_vmcs12);
298 	vmx->nested.cached_vmcs12 = NULL;
299 	kfree(vmx->nested.cached_shadow_vmcs12);
300 	vmx->nested.cached_shadow_vmcs12 = NULL;
301 	/* Unpin physical memory we referred to in the vmcs02 */
302 	if (vmx->nested.apic_access_page) {
303 		kvm_release_page_clean(vmx->nested.apic_access_page);
304 		vmx->nested.apic_access_page = NULL;
305 	}
306 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
307 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
308 	vmx->nested.pi_desc = NULL;
309 
310 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
311 
312 	nested_release_evmcs(vcpu);
313 
314 	free_loaded_vmcs(&vmx->nested.vmcs02);
315 }
316 
317 /*
318  * Ensure that the current vmcs of the logical processor is the
319  * vmcs01 of the vcpu before calling free_nested().
320  */
321 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
322 {
323 	vcpu_load(vcpu);
324 	vmx_leave_nested(vcpu);
325 	vcpu_put(vcpu);
326 }
327 
328 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
329 		struct x86_exception *fault)
330 {
331 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
332 	struct vcpu_vmx *vmx = to_vmx(vcpu);
333 	u32 vm_exit_reason;
334 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
335 
336 	if (vmx->nested.pml_full) {
337 		vm_exit_reason = EXIT_REASON_PML_FULL;
338 		vmx->nested.pml_full = false;
339 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
340 	} else if (fault->error_code & PFERR_RSVD_MASK)
341 		vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
342 	else
343 		vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
344 
345 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
346 	vmcs12->guest_physical_address = fault->address;
347 }
348 
349 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
350 {
351 	WARN_ON(mmu_is_nested(vcpu));
352 
353 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
354 	kvm_init_shadow_ept_mmu(vcpu,
355 			to_vmx(vcpu)->nested.msrs.ept_caps &
356 			VMX_EPT_EXECUTE_ONLY_BIT,
357 			nested_ept_ad_enabled(vcpu),
358 			nested_ept_get_eptp(vcpu));
359 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
360 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
361 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
362 
363 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
364 }
365 
366 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
367 {
368 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
369 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
370 }
371 
372 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
373 					    u16 error_code)
374 {
375 	bool inequality, bit;
376 
377 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
378 	inequality =
379 		(error_code & vmcs12->page_fault_error_code_mask) !=
380 		 vmcs12->page_fault_error_code_match;
381 	return inequality ^ bit;
382 }
383 
384 
385 /*
386  * KVM wants to inject page-faults which it got to the guest. This function
387  * checks whether in a nested guest, we need to inject them to L1 or L2.
388  */
389 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
390 {
391 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
392 	unsigned int nr = vcpu->arch.exception.nr;
393 	bool has_payload = vcpu->arch.exception.has_payload;
394 	unsigned long payload = vcpu->arch.exception.payload;
395 
396 	if (nr == PF_VECTOR) {
397 		if (vcpu->arch.exception.nested_apf) {
398 			*exit_qual = vcpu->arch.apf.nested_apf_token;
399 			return 1;
400 		}
401 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
402 						    vcpu->arch.exception.error_code)) {
403 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
404 			return 1;
405 		}
406 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
407 		if (nr == DB_VECTOR) {
408 			if (!has_payload) {
409 				payload = vcpu->arch.dr6;
410 				payload &= ~DR6_BT;
411 				payload ^= DR6_ACTIVE_LOW;
412 			}
413 			*exit_qual = payload;
414 		} else
415 			*exit_qual = 0;
416 		return 1;
417 	}
418 
419 	return 0;
420 }
421 
422 
423 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
424 		struct x86_exception *fault)
425 {
426 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
427 
428 	WARN_ON(!is_guest_mode(vcpu));
429 
430 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
431 		!to_vmx(vcpu)->nested.nested_run_pending) {
432 		vmcs12->vm_exit_intr_error_code = fault->error_code;
433 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
434 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
435 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
436 				  fault->address);
437 	} else {
438 		kvm_inject_page_fault(vcpu, fault);
439 	}
440 }
441 
442 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
443 					       struct vmcs12 *vmcs12)
444 {
445 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
446 		return 0;
447 
448 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
449 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
450 		return -EINVAL;
451 
452 	return 0;
453 }
454 
455 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
456 						struct vmcs12 *vmcs12)
457 {
458 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
459 		return 0;
460 
461 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
462 		return -EINVAL;
463 
464 	return 0;
465 }
466 
467 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
468 						struct vmcs12 *vmcs12)
469 {
470 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
471 		return 0;
472 
473 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
474 		return -EINVAL;
475 
476 	return 0;
477 }
478 
479 /*
480  * Check if MSR is intercepted for L01 MSR bitmap.
481  */
482 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
483 {
484 	unsigned long *msr_bitmap;
485 	int f = sizeof(unsigned long);
486 
487 	if (!cpu_has_vmx_msr_bitmap())
488 		return true;
489 
490 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
491 
492 	if (msr <= 0x1fff) {
493 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
494 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
495 		msr &= 0x1fff;
496 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
497 	}
498 
499 	return true;
500 }
501 
502 /*
503  * If a msr is allowed by L0, we should check whether it is allowed by L1.
504  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
505  */
506 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
507 					       unsigned long *msr_bitmap_nested,
508 					       u32 msr, int type)
509 {
510 	int f = sizeof(unsigned long);
511 
512 	/*
513 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
514 	 * have the write-low and read-high bitmap offsets the wrong way round.
515 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
516 	 */
517 	if (msr <= 0x1fff) {
518 		if (type & MSR_TYPE_R &&
519 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
520 			/* read-low */
521 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
522 
523 		if (type & MSR_TYPE_W &&
524 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
525 			/* write-low */
526 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
527 
528 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
529 		msr &= 0x1fff;
530 		if (type & MSR_TYPE_R &&
531 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
532 			/* read-high */
533 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
534 
535 		if (type & MSR_TYPE_W &&
536 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
537 			/* write-high */
538 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
539 
540 	}
541 }
542 
543 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
544 {
545 	int msr;
546 
547 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
548 		unsigned word = msr / BITS_PER_LONG;
549 
550 		msr_bitmap[word] = ~0;
551 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
552 	}
553 }
554 
555 /*
556  * Merge L0's and L1's MSR bitmap, return false to indicate that
557  * we do not use the hardware.
558  */
559 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
560 						 struct vmcs12 *vmcs12)
561 {
562 	int msr;
563 	unsigned long *msr_bitmap_l1;
564 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
565 	struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
566 
567 	/* Nothing to do if the MSR bitmap is not in use.  */
568 	if (!cpu_has_vmx_msr_bitmap() ||
569 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
570 		return false;
571 
572 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
573 		return false;
574 
575 	msr_bitmap_l1 = (unsigned long *)map->hva;
576 
577 	/*
578 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
579 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
580 	 * the x2APIC MSR range and selectively disable them below.
581 	 */
582 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
583 
584 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
585 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
586 			/*
587 			 * L0 need not intercept reads for MSRs between 0x800
588 			 * and 0x8ff, it just lets the processor take the value
589 			 * from the virtual-APIC page; take those 256 bits
590 			 * directly from the L1 bitmap.
591 			 */
592 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
593 				unsigned word = msr / BITS_PER_LONG;
594 
595 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
596 			}
597 		}
598 
599 		nested_vmx_disable_intercept_for_msr(
600 			msr_bitmap_l1, msr_bitmap_l0,
601 			X2APIC_MSR(APIC_TASKPRI),
602 			MSR_TYPE_R | MSR_TYPE_W);
603 
604 		if (nested_cpu_has_vid(vmcs12)) {
605 			nested_vmx_disable_intercept_for_msr(
606 				msr_bitmap_l1, msr_bitmap_l0,
607 				X2APIC_MSR(APIC_EOI),
608 				MSR_TYPE_W);
609 			nested_vmx_disable_intercept_for_msr(
610 				msr_bitmap_l1, msr_bitmap_l0,
611 				X2APIC_MSR(APIC_SELF_IPI),
612 				MSR_TYPE_W);
613 		}
614 	}
615 
616 	/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
617 #ifdef CONFIG_X86_64
618 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
619 					     MSR_FS_BASE, MSR_TYPE_RW);
620 
621 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
622 					     MSR_GS_BASE, MSR_TYPE_RW);
623 
624 	nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
625 					     MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
626 #endif
627 
628 	/*
629 	 * Checking the L0->L1 bitmap is trying to verify two things:
630 	 *
631 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
632 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
633 	 *    from the L12 MSR bitmap that is too permissive.
634 	 * 2. That L1 or L2s have actually used the MSR. This avoids
635 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
636 	 *    works properly because we only update the L01 MSR bitmap lazily.
637 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
638 	 *    updated to reflect this when L1 (or its L2s) actually write to
639 	 *    the MSR.
640 	 */
641 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
642 		nested_vmx_disable_intercept_for_msr(
643 					msr_bitmap_l1, msr_bitmap_l0,
644 					MSR_IA32_SPEC_CTRL,
645 					MSR_TYPE_R | MSR_TYPE_W);
646 
647 	if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
648 		nested_vmx_disable_intercept_for_msr(
649 					msr_bitmap_l1, msr_bitmap_l0,
650 					MSR_IA32_PRED_CMD,
651 					MSR_TYPE_W);
652 
653 	kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
654 
655 	return true;
656 }
657 
658 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
659 				       struct vmcs12 *vmcs12)
660 {
661 	struct kvm_host_map map;
662 	struct vmcs12 *shadow;
663 
664 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665 	    vmcs12->vmcs_link_pointer == -1ull)
666 		return;
667 
668 	shadow = get_shadow_vmcs12(vcpu);
669 
670 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
671 		return;
672 
673 	memcpy(shadow, map.hva, VMCS12_SIZE);
674 	kvm_vcpu_unmap(vcpu, &map, false);
675 }
676 
677 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
678 					      struct vmcs12 *vmcs12)
679 {
680 	struct vcpu_vmx *vmx = to_vmx(vcpu);
681 
682 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
683 	    vmcs12->vmcs_link_pointer == -1ull)
684 		return;
685 
686 	kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
687 			get_shadow_vmcs12(vcpu), VMCS12_SIZE);
688 }
689 
690 /*
691  * In nested virtualization, check if L1 has set
692  * VM_EXIT_ACK_INTR_ON_EXIT
693  */
694 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
695 {
696 	return get_vmcs12(vcpu)->vm_exit_controls &
697 		VM_EXIT_ACK_INTR_ON_EXIT;
698 }
699 
700 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
701 					  struct vmcs12 *vmcs12)
702 {
703 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
704 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
705 		return -EINVAL;
706 	else
707 		return 0;
708 }
709 
710 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
711 					   struct vmcs12 *vmcs12)
712 {
713 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
714 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
715 	    !nested_cpu_has_vid(vmcs12) &&
716 	    !nested_cpu_has_posted_intr(vmcs12))
717 		return 0;
718 
719 	/*
720 	 * If virtualize x2apic mode is enabled,
721 	 * virtualize apic access must be disabled.
722 	 */
723 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
724 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
725 		return -EINVAL;
726 
727 	/*
728 	 * If virtual interrupt delivery is enabled,
729 	 * we must exit on external interrupts.
730 	 */
731 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
732 		return -EINVAL;
733 
734 	/*
735 	 * bits 15:8 should be zero in posted_intr_nv,
736 	 * the descriptor address has been already checked
737 	 * in nested_get_vmcs12_pages.
738 	 *
739 	 * bits 5:0 of posted_intr_desc_addr should be zero.
740 	 */
741 	if (nested_cpu_has_posted_intr(vmcs12) &&
742 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
743 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
744 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
745 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
746 		return -EINVAL;
747 
748 	/* tpr shadow is needed by all apicv features. */
749 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
750 		return -EINVAL;
751 
752 	return 0;
753 }
754 
755 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
756 				       u32 count, u64 addr)
757 {
758 	if (count == 0)
759 		return 0;
760 
761 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
762 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
763 		return -EINVAL;
764 
765 	return 0;
766 }
767 
768 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
769 						     struct vmcs12 *vmcs12)
770 {
771 	if (CC(nested_vmx_check_msr_switch(vcpu,
772 					   vmcs12->vm_exit_msr_load_count,
773 					   vmcs12->vm_exit_msr_load_addr)) ||
774 	    CC(nested_vmx_check_msr_switch(vcpu,
775 					   vmcs12->vm_exit_msr_store_count,
776 					   vmcs12->vm_exit_msr_store_addr)))
777 		return -EINVAL;
778 
779 	return 0;
780 }
781 
782 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
783                                                       struct vmcs12 *vmcs12)
784 {
785 	if (CC(nested_vmx_check_msr_switch(vcpu,
786 					   vmcs12->vm_entry_msr_load_count,
787 					   vmcs12->vm_entry_msr_load_addr)))
788                 return -EINVAL;
789 
790 	return 0;
791 }
792 
793 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
794 					 struct vmcs12 *vmcs12)
795 {
796 	if (!nested_cpu_has_pml(vmcs12))
797 		return 0;
798 
799 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
800 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
801 		return -EINVAL;
802 
803 	return 0;
804 }
805 
806 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
807 							struct vmcs12 *vmcs12)
808 {
809 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
810 	       !nested_cpu_has_ept(vmcs12)))
811 		return -EINVAL;
812 	return 0;
813 }
814 
815 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
816 							 struct vmcs12 *vmcs12)
817 {
818 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
819 	       !nested_cpu_has_ept(vmcs12)))
820 		return -EINVAL;
821 	return 0;
822 }
823 
824 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
825 						 struct vmcs12 *vmcs12)
826 {
827 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
828 		return 0;
829 
830 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
831 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
832 		return -EINVAL;
833 
834 	return 0;
835 }
836 
837 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
838 				       struct vmx_msr_entry *e)
839 {
840 	/* x2APIC MSR accesses are not allowed */
841 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
842 		return -EINVAL;
843 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
844 	    CC(e->index == MSR_IA32_UCODE_REV))
845 		return -EINVAL;
846 	if (CC(e->reserved != 0))
847 		return -EINVAL;
848 	return 0;
849 }
850 
851 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
852 				     struct vmx_msr_entry *e)
853 {
854 	if (CC(e->index == MSR_FS_BASE) ||
855 	    CC(e->index == MSR_GS_BASE) ||
856 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
857 	    nested_vmx_msr_check_common(vcpu, e))
858 		return -EINVAL;
859 	return 0;
860 }
861 
862 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
863 				      struct vmx_msr_entry *e)
864 {
865 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
866 	    nested_vmx_msr_check_common(vcpu, e))
867 		return -EINVAL;
868 	return 0;
869 }
870 
871 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
872 {
873 	struct vcpu_vmx *vmx = to_vmx(vcpu);
874 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
875 				       vmx->nested.msrs.misc_high);
876 
877 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
878 }
879 
880 /*
881  * Load guest's/host's msr at nested entry/exit.
882  * return 0 for success, entry index for failure.
883  *
884  * One of the failure modes for MSR load/store is when a list exceeds the
885  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
886  * as possible, process all valid entries before failing rather than precheck
887  * for a capacity violation.
888  */
889 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
890 {
891 	u32 i;
892 	struct vmx_msr_entry e;
893 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
894 
895 	for (i = 0; i < count; i++) {
896 		if (unlikely(i >= max_msr_list_size))
897 			goto fail;
898 
899 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
900 					&e, sizeof(e))) {
901 			pr_debug_ratelimited(
902 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
903 				__func__, i, gpa + i * sizeof(e));
904 			goto fail;
905 		}
906 		if (nested_vmx_load_msr_check(vcpu, &e)) {
907 			pr_debug_ratelimited(
908 				"%s check failed (%u, 0x%x, 0x%x)\n",
909 				__func__, i, e.index, e.reserved);
910 			goto fail;
911 		}
912 		if (kvm_set_msr(vcpu, e.index, e.value)) {
913 			pr_debug_ratelimited(
914 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
915 				__func__, i, e.index, e.value);
916 			goto fail;
917 		}
918 	}
919 	return 0;
920 fail:
921 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
922 	return i + 1;
923 }
924 
925 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
926 					    u32 msr_index,
927 					    u64 *data)
928 {
929 	struct vcpu_vmx *vmx = to_vmx(vcpu);
930 
931 	/*
932 	 * If the L0 hypervisor stored a more accurate value for the TSC that
933 	 * does not include the time taken for emulation of the L2->L1
934 	 * VM-exit in L0, use the more accurate value.
935 	 */
936 	if (msr_index == MSR_IA32_TSC) {
937 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
938 						    MSR_IA32_TSC);
939 
940 		if (i >= 0) {
941 			u64 val = vmx->msr_autostore.guest.val[i].value;
942 
943 			*data = kvm_read_l1_tsc(vcpu, val);
944 			return true;
945 		}
946 	}
947 
948 	if (kvm_get_msr(vcpu, msr_index, data)) {
949 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
950 			msr_index);
951 		return false;
952 	}
953 	return true;
954 }
955 
956 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
957 				     struct vmx_msr_entry *e)
958 {
959 	if (kvm_vcpu_read_guest(vcpu,
960 				gpa + i * sizeof(*e),
961 				e, 2 * sizeof(u32))) {
962 		pr_debug_ratelimited(
963 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
964 			__func__, i, gpa + i * sizeof(*e));
965 		return false;
966 	}
967 	if (nested_vmx_store_msr_check(vcpu, e)) {
968 		pr_debug_ratelimited(
969 			"%s check failed (%u, 0x%x, 0x%x)\n",
970 			__func__, i, e->index, e->reserved);
971 		return false;
972 	}
973 	return true;
974 }
975 
976 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
977 {
978 	u64 data;
979 	u32 i;
980 	struct vmx_msr_entry e;
981 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
982 
983 	for (i = 0; i < count; i++) {
984 		if (unlikely(i >= max_msr_list_size))
985 			return -EINVAL;
986 
987 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
988 			return -EINVAL;
989 
990 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
991 			return -EINVAL;
992 
993 		if (kvm_vcpu_write_guest(vcpu,
994 					 gpa + i * sizeof(e) +
995 					     offsetof(struct vmx_msr_entry, value),
996 					 &data, sizeof(data))) {
997 			pr_debug_ratelimited(
998 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
999 				__func__, i, e.index, data);
1000 			return -EINVAL;
1001 		}
1002 	}
1003 	return 0;
1004 }
1005 
1006 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1007 {
1008 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1009 	u32 count = vmcs12->vm_exit_msr_store_count;
1010 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1011 	struct vmx_msr_entry e;
1012 	u32 i;
1013 
1014 	for (i = 0; i < count; i++) {
1015 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1016 			return false;
1017 
1018 		if (e.index == msr_index)
1019 			return true;
1020 	}
1021 	return false;
1022 }
1023 
1024 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1025 					   u32 msr_index)
1026 {
1027 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1028 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1029 	bool in_vmcs12_store_list;
1030 	int msr_autostore_slot;
1031 	bool in_autostore_list;
1032 	int last;
1033 
1034 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1035 	in_autostore_list = msr_autostore_slot >= 0;
1036 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1037 
1038 	if (in_vmcs12_store_list && !in_autostore_list) {
1039 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1040 			/*
1041 			 * Emulated VMEntry does not fail here.  Instead a less
1042 			 * accurate value will be returned by
1043 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1044 			 * instead of reading the value from the vmcs02 VMExit
1045 			 * MSR-store area.
1046 			 */
1047 			pr_warn_ratelimited(
1048 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1049 				msr_index);
1050 			return;
1051 		}
1052 		last = autostore->nr++;
1053 		autostore->val[last].index = msr_index;
1054 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1055 		last = --autostore->nr;
1056 		autostore->val[msr_autostore_slot] = autostore->val[last];
1057 	}
1058 }
1059 
1060 /*
1061  * Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
1062  * tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
1063  * enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
1064  * Here's why.
1065  *
1066  * If EPT is enabled by L0 a sync is never needed:
1067  * - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
1068  *   cannot be unsync'd SPTEs for either L1 or L2.
1069  *
1070  * - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
1071  *   VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
1072  *   (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
1073  *   stale guest-physical mappings for L2 from the TLB.  And as above, L0 isn't
1074  *   shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
1075  *
1076  * If EPT is disabled by L0:
1077  * - if VPID is enabled by L1 (for L2), the situation is similar to when L1
1078  *   enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
1079  *   required to invalidate linear mappings (EPT is disabled so there are
1080  *   no combined or guest-physical mappings), i.e. L1 can't rely on the
1081  *   (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
1082  *
1083  * - however if VPID is disabled by L1, then a sync is needed as L1 expects all
1084  *   linear mappings (EPT is disabled so there are no combined or guest-physical
1085  *   mappings) to be invalidated on both VM-Enter and VM-Exit.
1086  *
1087  * Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
1088  * additionally checks that L2 has been assigned a VPID (when EPT is disabled).
1089  * Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
1090  * to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
1091  * doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
1092  * been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
1093  * doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
1094  * know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
1095  * stale TLB entries, at which point L0 will sync L2's MMU.
1096  */
1097 static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
1098 {
1099 	return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
1100 }
1101 
1102 /*
1103  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1104  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1105  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1106  * @entry_failure_code.
1107  */
1108 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
1109 			       enum vm_entry_failure_code *entry_failure_code)
1110 {
1111 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1112 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1113 		return -EINVAL;
1114 	}
1115 
1116 	/*
1117 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1118 	 * must not be dereferenced.
1119 	 */
1120 	if (!nested_ept && is_pae_paging(vcpu) &&
1121 	    (cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
1122 		if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1123 			*entry_failure_code = ENTRY_FAIL_PDPTE;
1124 			return -EINVAL;
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * Unconditionally skip the TLB flush on fast CR3 switch, all TLB
1130 	 * flushes are handled by nested_vmx_transition_tlb_flush().  See
1131 	 * nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
1132 	 */
1133 	if (!nested_ept)
1134 		kvm_mmu_new_pgd(vcpu, cr3, true,
1135 				!nested_vmx_transition_mmu_sync(vcpu));
1136 
1137 	vcpu->arch.cr3 = cr3;
1138 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1139 
1140 	kvm_init_mmu(vcpu, false);
1141 
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Returns if KVM is able to config CPU to tag TLB entries
1147  * populated by L2 differently than TLB entries populated
1148  * by L1.
1149  *
1150  * If L0 uses EPT, L1 and L2 run with different EPTP because
1151  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1152  * are tagged with different EPTP.
1153  *
1154  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1155  * with different VPID (L1 entries are tagged with vmx->vpid
1156  * while L2 entries are tagged with vmx->nested.vpid02).
1157  */
1158 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1159 {
1160 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1161 
1162 	return enable_ept ||
1163 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1164 }
1165 
1166 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1167 					    struct vmcs12 *vmcs12,
1168 					    bool is_vmenter)
1169 {
1170 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1171 
1172 	/*
1173 	 * If VPID is disabled, linear and combined mappings are flushed on
1174 	 * VM-Enter/VM-Exit, and guest-physical mappings are valid only for
1175 	 * their associated EPTP.
1176 	 */
1177 	if (!enable_vpid)
1178 		return;
1179 
1180 	/*
1181 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1182 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit.
1183 	 *
1184 	 * If VPID is enabled and used by vmc12, but L2 does not have a unique
1185 	 * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1186 	 * a VPID for L2, flush the current context as the effective ASID is
1187 	 * common to both L1 and L2.
1188 	 *
1189 	 * Defer the flush so that it runs after vmcs02.EPTP has been set by
1190 	 * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1191 	 * redundant flushes further down the nested pipeline.
1192 	 *
1193 	 * If a TLB flush isn't required due to any of the above, and vpid12 is
1194 	 * changing then the new "virtual" VPID (vpid12) will reuse the same
1195 	 * "real" VPID (vpid02), and so needs to be sync'd.  There is no direct
1196 	 * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1197 	 * all nested vCPUs.
1198 	 */
1199 	if (!nested_cpu_has_vpid(vmcs12)) {
1200 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1201 	} else if (!nested_has_guest_tlb_tag(vcpu)) {
1202 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1203 	} else if (is_vmenter &&
1204 		   vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1205 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1206 		vpid_sync_context(nested_get_vpid02(vcpu));
1207 	}
1208 }
1209 
1210 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1211 {
1212 	superset &= mask;
1213 	subset &= mask;
1214 
1215 	return (superset | subset) == superset;
1216 }
1217 
1218 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1219 {
1220 	const u64 feature_and_reserved =
1221 		/* feature (except bit 48; see below) */
1222 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1223 		/* reserved */
1224 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1225 	u64 vmx_basic = vmx->nested.msrs.basic;
1226 
1227 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1228 		return -EINVAL;
1229 
1230 	/*
1231 	 * KVM does not emulate a version of VMX that constrains physical
1232 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1233 	 */
1234 	if (data & BIT_ULL(48))
1235 		return -EINVAL;
1236 
1237 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1238 	    vmx_basic_vmcs_revision_id(data))
1239 		return -EINVAL;
1240 
1241 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1242 		return -EINVAL;
1243 
1244 	vmx->nested.msrs.basic = data;
1245 	return 0;
1246 }
1247 
1248 static int
1249 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1250 {
1251 	u64 supported;
1252 	u32 *lowp, *highp;
1253 
1254 	switch (msr_index) {
1255 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1256 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
1257 		highp = &vmx->nested.msrs.pinbased_ctls_high;
1258 		break;
1259 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1260 		lowp = &vmx->nested.msrs.procbased_ctls_low;
1261 		highp = &vmx->nested.msrs.procbased_ctls_high;
1262 		break;
1263 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1264 		lowp = &vmx->nested.msrs.exit_ctls_low;
1265 		highp = &vmx->nested.msrs.exit_ctls_high;
1266 		break;
1267 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1268 		lowp = &vmx->nested.msrs.entry_ctls_low;
1269 		highp = &vmx->nested.msrs.entry_ctls_high;
1270 		break;
1271 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1272 		lowp = &vmx->nested.msrs.secondary_ctls_low;
1273 		highp = &vmx->nested.msrs.secondary_ctls_high;
1274 		break;
1275 	default:
1276 		BUG();
1277 	}
1278 
1279 	supported = vmx_control_msr(*lowp, *highp);
1280 
1281 	/* Check must-be-1 bits are still 1. */
1282 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1283 		return -EINVAL;
1284 
1285 	/* Check must-be-0 bits are still 0. */
1286 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1287 		return -EINVAL;
1288 
1289 	*lowp = data;
1290 	*highp = data >> 32;
1291 	return 0;
1292 }
1293 
1294 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1295 {
1296 	const u64 feature_and_reserved_bits =
1297 		/* feature */
1298 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1299 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1300 		/* reserved */
1301 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1302 	u64 vmx_misc;
1303 
1304 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1305 				   vmx->nested.msrs.misc_high);
1306 
1307 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1308 		return -EINVAL;
1309 
1310 	if ((vmx->nested.msrs.pinbased_ctls_high &
1311 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1312 	    vmx_misc_preemption_timer_rate(data) !=
1313 	    vmx_misc_preemption_timer_rate(vmx_misc))
1314 		return -EINVAL;
1315 
1316 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1317 		return -EINVAL;
1318 
1319 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1320 		return -EINVAL;
1321 
1322 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1323 		return -EINVAL;
1324 
1325 	vmx->nested.msrs.misc_low = data;
1326 	vmx->nested.msrs.misc_high = data >> 32;
1327 
1328 	return 0;
1329 }
1330 
1331 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1332 {
1333 	u64 vmx_ept_vpid_cap;
1334 
1335 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1336 					   vmx->nested.msrs.vpid_caps);
1337 
1338 	/* Every bit is either reserved or a feature bit. */
1339 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1340 		return -EINVAL;
1341 
1342 	vmx->nested.msrs.ept_caps = data;
1343 	vmx->nested.msrs.vpid_caps = data >> 32;
1344 	return 0;
1345 }
1346 
1347 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1348 {
1349 	u64 *msr;
1350 
1351 	switch (msr_index) {
1352 	case MSR_IA32_VMX_CR0_FIXED0:
1353 		msr = &vmx->nested.msrs.cr0_fixed0;
1354 		break;
1355 	case MSR_IA32_VMX_CR4_FIXED0:
1356 		msr = &vmx->nested.msrs.cr4_fixed0;
1357 		break;
1358 	default:
1359 		BUG();
1360 	}
1361 
1362 	/*
1363 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1364 	 * must be 1 in the restored value.
1365 	 */
1366 	if (!is_bitwise_subset(data, *msr, -1ULL))
1367 		return -EINVAL;
1368 
1369 	*msr = data;
1370 	return 0;
1371 }
1372 
1373 /*
1374  * Called when userspace is restoring VMX MSRs.
1375  *
1376  * Returns 0 on success, non-0 otherwise.
1377  */
1378 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1379 {
1380 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1381 
1382 	/*
1383 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1384 	 * is in VMX operation.
1385 	 */
1386 	if (vmx->nested.vmxon)
1387 		return -EBUSY;
1388 
1389 	switch (msr_index) {
1390 	case MSR_IA32_VMX_BASIC:
1391 		return vmx_restore_vmx_basic(vmx, data);
1392 	case MSR_IA32_VMX_PINBASED_CTLS:
1393 	case MSR_IA32_VMX_PROCBASED_CTLS:
1394 	case MSR_IA32_VMX_EXIT_CTLS:
1395 	case MSR_IA32_VMX_ENTRY_CTLS:
1396 		/*
1397 		 * The "non-true" VMX capability MSRs are generated from the
1398 		 * "true" MSRs, so we do not support restoring them directly.
1399 		 *
1400 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1401 		 * should restore the "true" MSRs with the must-be-1 bits
1402 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1403 		 * DEFAULT SETTINGS".
1404 		 */
1405 		return -EINVAL;
1406 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1407 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1408 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1409 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1410 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1411 		return vmx_restore_control_msr(vmx, msr_index, data);
1412 	case MSR_IA32_VMX_MISC:
1413 		return vmx_restore_vmx_misc(vmx, data);
1414 	case MSR_IA32_VMX_CR0_FIXED0:
1415 	case MSR_IA32_VMX_CR4_FIXED0:
1416 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1417 	case MSR_IA32_VMX_CR0_FIXED1:
1418 	case MSR_IA32_VMX_CR4_FIXED1:
1419 		/*
1420 		 * These MSRs are generated based on the vCPU's CPUID, so we
1421 		 * do not support restoring them directly.
1422 		 */
1423 		return -EINVAL;
1424 	case MSR_IA32_VMX_EPT_VPID_CAP:
1425 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1426 	case MSR_IA32_VMX_VMCS_ENUM:
1427 		vmx->nested.msrs.vmcs_enum = data;
1428 		return 0;
1429 	case MSR_IA32_VMX_VMFUNC:
1430 		if (data & ~vmx->nested.msrs.vmfunc_controls)
1431 			return -EINVAL;
1432 		vmx->nested.msrs.vmfunc_controls = data;
1433 		return 0;
1434 	default:
1435 		/*
1436 		 * The rest of the VMX capability MSRs do not support restore.
1437 		 */
1438 		return -EINVAL;
1439 	}
1440 }
1441 
1442 /* Returns 0 on success, non-0 otherwise. */
1443 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1444 {
1445 	switch (msr_index) {
1446 	case MSR_IA32_VMX_BASIC:
1447 		*pdata = msrs->basic;
1448 		break;
1449 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1450 	case MSR_IA32_VMX_PINBASED_CTLS:
1451 		*pdata = vmx_control_msr(
1452 			msrs->pinbased_ctls_low,
1453 			msrs->pinbased_ctls_high);
1454 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1455 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1456 		break;
1457 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1458 	case MSR_IA32_VMX_PROCBASED_CTLS:
1459 		*pdata = vmx_control_msr(
1460 			msrs->procbased_ctls_low,
1461 			msrs->procbased_ctls_high);
1462 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1463 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1464 		break;
1465 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1466 	case MSR_IA32_VMX_EXIT_CTLS:
1467 		*pdata = vmx_control_msr(
1468 			msrs->exit_ctls_low,
1469 			msrs->exit_ctls_high);
1470 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1471 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1472 		break;
1473 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1474 	case MSR_IA32_VMX_ENTRY_CTLS:
1475 		*pdata = vmx_control_msr(
1476 			msrs->entry_ctls_low,
1477 			msrs->entry_ctls_high);
1478 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1479 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1480 		break;
1481 	case MSR_IA32_VMX_MISC:
1482 		*pdata = vmx_control_msr(
1483 			msrs->misc_low,
1484 			msrs->misc_high);
1485 		break;
1486 	case MSR_IA32_VMX_CR0_FIXED0:
1487 		*pdata = msrs->cr0_fixed0;
1488 		break;
1489 	case MSR_IA32_VMX_CR0_FIXED1:
1490 		*pdata = msrs->cr0_fixed1;
1491 		break;
1492 	case MSR_IA32_VMX_CR4_FIXED0:
1493 		*pdata = msrs->cr4_fixed0;
1494 		break;
1495 	case MSR_IA32_VMX_CR4_FIXED1:
1496 		*pdata = msrs->cr4_fixed1;
1497 		break;
1498 	case MSR_IA32_VMX_VMCS_ENUM:
1499 		*pdata = msrs->vmcs_enum;
1500 		break;
1501 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1502 		*pdata = vmx_control_msr(
1503 			msrs->secondary_ctls_low,
1504 			msrs->secondary_ctls_high);
1505 		break;
1506 	case MSR_IA32_VMX_EPT_VPID_CAP:
1507 		*pdata = msrs->ept_caps |
1508 			((u64)msrs->vpid_caps << 32);
1509 		break;
1510 	case MSR_IA32_VMX_VMFUNC:
1511 		*pdata = msrs->vmfunc_controls;
1512 		break;
1513 	default:
1514 		return 1;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 /*
1521  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1522  * been modified by the L1 guest.  Note, "writable" in this context means
1523  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1524  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1525  * VM-exit information fields (which are actually writable if the vCPU is
1526  * configured to support "VMWRITE to any supported field in the VMCS").
1527  */
1528 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1529 {
1530 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1531 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1532 	struct shadow_vmcs_field field;
1533 	unsigned long val;
1534 	int i;
1535 
1536 	if (WARN_ON(!shadow_vmcs))
1537 		return;
1538 
1539 	preempt_disable();
1540 
1541 	vmcs_load(shadow_vmcs);
1542 
1543 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1544 		field = shadow_read_write_fields[i];
1545 		val = __vmcs_readl(field.encoding);
1546 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1547 	}
1548 
1549 	vmcs_clear(shadow_vmcs);
1550 	vmcs_load(vmx->loaded_vmcs->vmcs);
1551 
1552 	preempt_enable();
1553 }
1554 
1555 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1556 {
1557 	const struct shadow_vmcs_field *fields[] = {
1558 		shadow_read_write_fields,
1559 		shadow_read_only_fields
1560 	};
1561 	const int max_fields[] = {
1562 		max_shadow_read_write_fields,
1563 		max_shadow_read_only_fields
1564 	};
1565 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1566 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1567 	struct shadow_vmcs_field field;
1568 	unsigned long val;
1569 	int i, q;
1570 
1571 	if (WARN_ON(!shadow_vmcs))
1572 		return;
1573 
1574 	vmcs_load(shadow_vmcs);
1575 
1576 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1577 		for (i = 0; i < max_fields[q]; i++) {
1578 			field = fields[q][i];
1579 			val = vmcs12_read_any(vmcs12, field.encoding,
1580 					      field.offset);
1581 			__vmcs_writel(field.encoding, val);
1582 		}
1583 	}
1584 
1585 	vmcs_clear(shadow_vmcs);
1586 	vmcs_load(vmx->loaded_vmcs->vmcs);
1587 }
1588 
1589 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1590 {
1591 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1592 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1593 
1594 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1595 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1596 	vmcs12->guest_rip = evmcs->guest_rip;
1597 
1598 	if (unlikely(!(evmcs->hv_clean_fields &
1599 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1600 		vmcs12->guest_rsp = evmcs->guest_rsp;
1601 		vmcs12->guest_rflags = evmcs->guest_rflags;
1602 		vmcs12->guest_interruptibility_info =
1603 			evmcs->guest_interruptibility_info;
1604 	}
1605 
1606 	if (unlikely(!(evmcs->hv_clean_fields &
1607 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1608 		vmcs12->cpu_based_vm_exec_control =
1609 			evmcs->cpu_based_vm_exec_control;
1610 	}
1611 
1612 	if (unlikely(!(evmcs->hv_clean_fields &
1613 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1614 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1615 	}
1616 
1617 	if (unlikely(!(evmcs->hv_clean_fields &
1618 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1619 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1620 	}
1621 
1622 	if (unlikely(!(evmcs->hv_clean_fields &
1623 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1624 		vmcs12->vm_entry_intr_info_field =
1625 			evmcs->vm_entry_intr_info_field;
1626 		vmcs12->vm_entry_exception_error_code =
1627 			evmcs->vm_entry_exception_error_code;
1628 		vmcs12->vm_entry_instruction_len =
1629 			evmcs->vm_entry_instruction_len;
1630 	}
1631 
1632 	if (unlikely(!(evmcs->hv_clean_fields &
1633 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1634 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1635 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1636 		vmcs12->host_cr0 = evmcs->host_cr0;
1637 		vmcs12->host_cr3 = evmcs->host_cr3;
1638 		vmcs12->host_cr4 = evmcs->host_cr4;
1639 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1640 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1641 		vmcs12->host_rip = evmcs->host_rip;
1642 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1643 		vmcs12->host_es_selector = evmcs->host_es_selector;
1644 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1645 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1646 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1647 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1648 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1649 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1650 	}
1651 
1652 	if (unlikely(!(evmcs->hv_clean_fields &
1653 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1654 		vmcs12->pin_based_vm_exec_control =
1655 			evmcs->pin_based_vm_exec_control;
1656 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1657 		vmcs12->secondary_vm_exec_control =
1658 			evmcs->secondary_vm_exec_control;
1659 	}
1660 
1661 	if (unlikely(!(evmcs->hv_clean_fields &
1662 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1663 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1664 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1665 	}
1666 
1667 	if (unlikely(!(evmcs->hv_clean_fields &
1668 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1669 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1670 	}
1671 
1672 	if (unlikely(!(evmcs->hv_clean_fields &
1673 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1674 		vmcs12->guest_es_base = evmcs->guest_es_base;
1675 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1676 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1677 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1678 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1679 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1680 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1681 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1682 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1683 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1684 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1685 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1686 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1687 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1688 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1689 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1690 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1691 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1692 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1693 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1694 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1695 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1696 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1697 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1698 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1699 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1700 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1701 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1702 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1703 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1704 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1705 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1706 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1707 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1708 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1709 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1710 	}
1711 
1712 	if (unlikely(!(evmcs->hv_clean_fields &
1713 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1714 		vmcs12->tsc_offset = evmcs->tsc_offset;
1715 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1716 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1717 	}
1718 
1719 	if (unlikely(!(evmcs->hv_clean_fields &
1720 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1721 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1722 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1723 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1724 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1725 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1726 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1727 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1728 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1729 	}
1730 
1731 	if (unlikely(!(evmcs->hv_clean_fields &
1732 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1733 		vmcs12->host_fs_base = evmcs->host_fs_base;
1734 		vmcs12->host_gs_base = evmcs->host_gs_base;
1735 		vmcs12->host_tr_base = evmcs->host_tr_base;
1736 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1737 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1738 		vmcs12->host_rsp = evmcs->host_rsp;
1739 	}
1740 
1741 	if (unlikely(!(evmcs->hv_clean_fields &
1742 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1743 		vmcs12->ept_pointer = evmcs->ept_pointer;
1744 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1745 	}
1746 
1747 	if (unlikely(!(evmcs->hv_clean_fields &
1748 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1749 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1750 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1751 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1752 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1753 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1754 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1755 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1756 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1757 		vmcs12->guest_pending_dbg_exceptions =
1758 			evmcs->guest_pending_dbg_exceptions;
1759 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1760 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1761 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1762 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1763 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1764 	}
1765 
1766 	/*
1767 	 * Not used?
1768 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1769 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1770 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1771 	 * vmcs12->page_fault_error_code_mask =
1772 	 *		evmcs->page_fault_error_code_mask;
1773 	 * vmcs12->page_fault_error_code_match =
1774 	 *		evmcs->page_fault_error_code_match;
1775 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1776 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1777 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1778 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1779 	 */
1780 
1781 	/*
1782 	 * Read only fields:
1783 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1784 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1785 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1786 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1787 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1788 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1789 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1790 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1791 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1792 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1793 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1794 	 *
1795 	 * Not present in struct vmcs12:
1796 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1797 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1798 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1799 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1800 	 */
1801 
1802 	return 0;
1803 }
1804 
1805 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1806 {
1807 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1808 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1809 
1810 	/*
1811 	 * Should not be changed by KVM:
1812 	 *
1813 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1814 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1815 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1816 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1817 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1818 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1819 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1820 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1821 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1822 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1823 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1824 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1825 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1826 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1827 	 * evmcs->host_rip = vmcs12->host_rip;
1828 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1829 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1830 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1831 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1832 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1833 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1834 	 * evmcs->host_rsp = vmcs12->host_rsp;
1835 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1836 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1837 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1838 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1839 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1840 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1841 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1842 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1843 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1844 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1845 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1846 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1847 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1848 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1849 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1850 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1851 	 * evmcs->page_fault_error_code_mask =
1852 	 *		vmcs12->page_fault_error_code_mask;
1853 	 * evmcs->page_fault_error_code_match =
1854 	 *		vmcs12->page_fault_error_code_match;
1855 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1856 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1857 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1858 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1859 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1860 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1861 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1862 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1863 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1864 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1865 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1866 	 *
1867 	 * Not present in struct vmcs12:
1868 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1869 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1870 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1871 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1872 	 */
1873 
1874 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1875 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1876 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1877 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1878 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1879 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1880 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1881 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1882 
1883 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1884 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1885 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1886 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1887 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1888 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1889 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1890 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1891 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1892 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1893 
1894 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1895 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1896 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1897 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1898 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1899 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1900 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1901 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1902 
1903 	evmcs->guest_es_base = vmcs12->guest_es_base;
1904 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1905 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1906 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1907 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1908 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1909 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1910 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1911 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1912 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1913 
1914 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1915 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1916 
1917 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1918 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1919 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1920 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1921 
1922 	evmcs->guest_pending_dbg_exceptions =
1923 		vmcs12->guest_pending_dbg_exceptions;
1924 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1925 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1926 
1927 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1928 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1929 
1930 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1931 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1932 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1933 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1934 
1935 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1936 
1937 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1938 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1939 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1940 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1941 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1942 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1943 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1944 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1945 
1946 	evmcs->exit_qualification = vmcs12->exit_qualification;
1947 
1948 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1949 	evmcs->guest_rsp = vmcs12->guest_rsp;
1950 	evmcs->guest_rflags = vmcs12->guest_rflags;
1951 
1952 	evmcs->guest_interruptibility_info =
1953 		vmcs12->guest_interruptibility_info;
1954 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1955 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1956 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1957 	evmcs->vm_entry_exception_error_code =
1958 		vmcs12->vm_entry_exception_error_code;
1959 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1960 
1961 	evmcs->guest_rip = vmcs12->guest_rip;
1962 
1963 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1964 
1965 	return 0;
1966 }
1967 
1968 /*
1969  * This is an equivalent of the nested hypervisor executing the vmptrld
1970  * instruction.
1971  */
1972 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1973 	struct kvm_vcpu *vcpu, bool from_launch)
1974 {
1975 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1976 	bool evmcs_gpa_changed = false;
1977 	u64 evmcs_gpa;
1978 
1979 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1980 		return EVMPTRLD_DISABLED;
1981 
1982 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1983 		return EVMPTRLD_DISABLED;
1984 
1985 	if (unlikely(!vmx->nested.hv_evmcs ||
1986 		     evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1987 		if (!vmx->nested.hv_evmcs)
1988 			vmx->nested.current_vmptr = -1ull;
1989 
1990 		nested_release_evmcs(vcpu);
1991 
1992 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1993 				 &vmx->nested.hv_evmcs_map))
1994 			return EVMPTRLD_ERROR;
1995 
1996 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1997 
1998 		/*
1999 		 * Currently, KVM only supports eVMCS version 1
2000 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2001 		 * value to first u32 field of eVMCS which should specify eVMCS
2002 		 * VersionNumber.
2003 		 *
2004 		 * Guest should be aware of supported eVMCS versions by host by
2005 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2006 		 * expected to set this CPUID leaf according to the value
2007 		 * returned in vmcs_version from nested_enable_evmcs().
2008 		 *
2009 		 * However, it turns out that Microsoft Hyper-V fails to comply
2010 		 * to their own invented interface: When Hyper-V use eVMCS, it
2011 		 * just sets first u32 field of eVMCS to revision_id specified
2012 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2013 		 * which is one of the supported versions specified in
2014 		 * CPUID.0x4000000A.EAX[0:15].
2015 		 *
2016 		 * To overcome Hyper-V bug, we accept here either a supported
2017 		 * eVMCS version or VMCS12 revision_id as valid values for first
2018 		 * u32 field of eVMCS.
2019 		 */
2020 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2021 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2022 			nested_release_evmcs(vcpu);
2023 			return EVMPTRLD_VMFAIL;
2024 		}
2025 
2026 		vmx->nested.dirty_vmcs12 = true;
2027 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2028 
2029 		evmcs_gpa_changed = true;
2030 		/*
2031 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2032 		 * reloaded from guest's memory (read only fields, fields not
2033 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2034 		 * are no leftovers.
2035 		 */
2036 		if (from_launch) {
2037 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2038 			memset(vmcs12, 0, sizeof(*vmcs12));
2039 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2040 		}
2041 
2042 	}
2043 
2044 	/*
2045 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2046 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2047 	 */
2048 	if (from_launch || evmcs_gpa_changed)
2049 		vmx->nested.hv_evmcs->hv_clean_fields &=
2050 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2051 
2052 	return EVMPTRLD_SUCCEEDED;
2053 }
2054 
2055 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2056 {
2057 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2058 
2059 	if (vmx->nested.hv_evmcs) {
2060 		copy_vmcs12_to_enlightened(vmx);
2061 		/* All fields are clean */
2062 		vmx->nested.hv_evmcs->hv_clean_fields |=
2063 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2064 	} else {
2065 		copy_vmcs12_to_shadow(vmx);
2066 	}
2067 
2068 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2069 }
2070 
2071 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2072 {
2073 	struct vcpu_vmx *vmx =
2074 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2075 
2076 	vmx->nested.preemption_timer_expired = true;
2077 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2078 	kvm_vcpu_kick(&vmx->vcpu);
2079 
2080 	return HRTIMER_NORESTART;
2081 }
2082 
2083 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2084 {
2085 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2086 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2087 
2088 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2089 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2090 
2091 	if (!vmx->nested.has_preemption_timer_deadline) {
2092 		vmx->nested.preemption_timer_deadline =
2093 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2094 		vmx->nested.has_preemption_timer_deadline = true;
2095 	}
2096 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2097 }
2098 
2099 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2100 					u64 preemption_timeout)
2101 {
2102 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2103 
2104 	/*
2105 	 * A timer value of zero is architecturally guaranteed to cause
2106 	 * a VMExit prior to executing any instructions in the guest.
2107 	 */
2108 	if (preemption_timeout == 0) {
2109 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2110 		return;
2111 	}
2112 
2113 	if (vcpu->arch.virtual_tsc_khz == 0)
2114 		return;
2115 
2116 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2117 	preemption_timeout *= 1000000;
2118 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2119 	hrtimer_start(&vmx->nested.preemption_timer,
2120 		      ktime_add_ns(ktime_get(), preemption_timeout),
2121 		      HRTIMER_MODE_ABS_PINNED);
2122 }
2123 
2124 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2125 {
2126 	if (vmx->nested.nested_run_pending &&
2127 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2128 		return vmcs12->guest_ia32_efer;
2129 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2130 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2131 	else
2132 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2133 }
2134 
2135 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2136 {
2137 	/*
2138 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2139 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2140 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2141 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2142 	 */
2143 	if (vmx->nested.vmcs02_initialized)
2144 		return;
2145 	vmx->nested.vmcs02_initialized = true;
2146 
2147 	/*
2148 	 * We don't care what the EPTP value is we just need to guarantee
2149 	 * it's valid so we don't get a false positive when doing early
2150 	 * consistency checks.
2151 	 */
2152 	if (enable_ept && nested_early_check)
2153 		vmcs_write64(EPT_POINTER,
2154 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2155 
2156 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2157 	if (cpu_has_vmx_vmfunc())
2158 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2159 
2160 	if (cpu_has_vmx_posted_intr())
2161 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2162 
2163 	if (cpu_has_vmx_msr_bitmap())
2164 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2165 
2166 	/*
2167 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2168 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2169 	 * deal with filtering out L2 GPAs from the buffer.
2170 	 */
2171 	if (enable_pml) {
2172 		vmcs_write64(PML_ADDRESS, 0);
2173 		vmcs_write16(GUEST_PML_INDEX, -1);
2174 	}
2175 
2176 	if (cpu_has_vmx_encls_vmexit())
2177 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2178 
2179 	/*
2180 	 * Set the MSR load/store lists to match L0's settings.  Only the
2181 	 * addresses are constant (for vmcs02), the counts can change based
2182 	 * on L2's behavior, e.g. switching to/from long mode.
2183 	 */
2184 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2185 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2186 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2187 
2188 	vmx_set_constant_host_state(vmx);
2189 }
2190 
2191 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2192 				      struct vmcs12 *vmcs12)
2193 {
2194 	prepare_vmcs02_constant_state(vmx);
2195 
2196 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
2197 
2198 	if (enable_vpid) {
2199 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2200 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2201 		else
2202 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2203 	}
2204 }
2205 
2206 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2207 {
2208 	u32 exec_control;
2209 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2210 
2211 	if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2212 		prepare_vmcs02_early_rare(vmx, vmcs12);
2213 
2214 	/*
2215 	 * PIN CONTROLS
2216 	 */
2217 	exec_control = vmx_pin_based_exec_ctrl(vmx);
2218 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2219 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2220 
2221 	/* Posted interrupts setting is only taken from vmcs12.  */
2222 	if (nested_cpu_has_posted_intr(vmcs12)) {
2223 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2224 		vmx->nested.pi_pending = false;
2225 	} else {
2226 		exec_control &= ~PIN_BASED_POSTED_INTR;
2227 	}
2228 	pin_controls_set(vmx, exec_control);
2229 
2230 	/*
2231 	 * EXEC CONTROLS
2232 	 */
2233 	exec_control = vmx_exec_control(vmx); /* L0's desires */
2234 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2235 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2236 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2237 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2238 
2239 	vmx->nested.l1_tpr_threshold = -1;
2240 	if (exec_control & CPU_BASED_TPR_SHADOW)
2241 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2242 #ifdef CONFIG_X86_64
2243 	else
2244 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2245 				CPU_BASED_CR8_STORE_EXITING;
2246 #endif
2247 
2248 	/*
2249 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2250 	 * for I/O port accesses.
2251 	 */
2252 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2253 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2254 
2255 	/*
2256 	 * This bit will be computed in nested_get_vmcs12_pages, because
2257 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2258 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2259 	 * only set/clear this bit.
2260 	 */
2261 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2262 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2263 
2264 	exec_controls_set(vmx, exec_control);
2265 
2266 	/*
2267 	 * SECONDARY EXEC CONTROLS
2268 	 */
2269 	if (cpu_has_secondary_exec_ctrls()) {
2270 		exec_control = vmx->secondary_exec_control;
2271 
2272 		/* Take the following fields only from vmcs12 */
2273 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2274 				  SECONDARY_EXEC_ENABLE_INVPCID |
2275 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2276 				  SECONDARY_EXEC_XSAVES |
2277 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2278 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2279 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2280 				  SECONDARY_EXEC_ENABLE_VMFUNC);
2281 		if (nested_cpu_has(vmcs12,
2282 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2283 			exec_control |= vmcs12->secondary_vm_exec_control;
2284 
2285 		/* PML is emulated and never enabled in hardware for L2. */
2286 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2287 
2288 		/* VMCS shadowing for L2 is emulated for now */
2289 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2290 
2291 		/*
2292 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2293 		 * will not have to rewrite the controls just for this bit.
2294 		 */
2295 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2296 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2297 			exec_control |= SECONDARY_EXEC_DESC;
2298 
2299 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2300 			vmcs_write16(GUEST_INTR_STATUS,
2301 				vmcs12->guest_intr_status);
2302 
2303 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2304 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2305 
2306 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2307 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2308 
2309 		secondary_exec_controls_set(vmx, exec_control);
2310 	}
2311 
2312 	/*
2313 	 * ENTRY CONTROLS
2314 	 *
2315 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2316 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2317 	 * on the related bits (if supported by the CPU) in the hope that
2318 	 * we can avoid VMWrites during vmx_set_efer().
2319 	 */
2320 	exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2321 			~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2322 	if (cpu_has_load_ia32_efer()) {
2323 		if (guest_efer & EFER_LMA)
2324 			exec_control |= VM_ENTRY_IA32E_MODE;
2325 		if (guest_efer != host_efer)
2326 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2327 	}
2328 	vm_entry_controls_set(vmx, exec_control);
2329 
2330 	/*
2331 	 * EXIT CONTROLS
2332 	 *
2333 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2334 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2335 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2336 	 */
2337 	exec_control = vmx_vmexit_ctrl();
2338 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2339 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2340 	vm_exit_controls_set(vmx, exec_control);
2341 
2342 	/*
2343 	 * Interrupt/Exception Fields
2344 	 */
2345 	if (vmx->nested.nested_run_pending) {
2346 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2347 			     vmcs12->vm_entry_intr_info_field);
2348 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2349 			     vmcs12->vm_entry_exception_error_code);
2350 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2351 			     vmcs12->vm_entry_instruction_len);
2352 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2353 			     vmcs12->guest_interruptibility_info);
2354 		vmx->loaded_vmcs->nmi_known_unmasked =
2355 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2356 	} else {
2357 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2358 	}
2359 }
2360 
2361 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2362 {
2363 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2364 
2365 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2366 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2367 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2368 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2369 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2370 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2371 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2372 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2373 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2374 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2375 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2376 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2377 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2378 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2379 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2380 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2381 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2382 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2383 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2384 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2385 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2386 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2387 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2388 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2389 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2390 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2391 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2392 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2393 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2394 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2395 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2396 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2397 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2398 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2399 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2400 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2401 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2402 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2403 
2404 		vmx->segment_cache.bitmask = 0;
2405 	}
2406 
2407 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2408 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2409 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2410 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2411 			    vmcs12->guest_pending_dbg_exceptions);
2412 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2413 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2414 
2415 		/*
2416 		 * L1 may access the L2's PDPTR, so save them to construct
2417 		 * vmcs12
2418 		 */
2419 		if (enable_ept) {
2420 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2421 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2422 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2423 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2424 		}
2425 
2426 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2427 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2428 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2429 	}
2430 
2431 	if (nested_cpu_has_xsaves(vmcs12))
2432 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2433 
2434 	/*
2435 	 * Whether page-faults are trapped is determined by a combination of
2436 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2437 	 * doesn't care about page faults then we should set all of these to
2438 	 * L1's desires. However, if L0 does care about (some) page faults, it
2439 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2440 	 * simply ask to exit on each and every L2 page fault. This is done by
2441 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2442 	 * Note that below we don't need special code to set EB.PF beyond the
2443 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2444 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2445 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2446 	 */
2447 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2448 		/*
2449 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2450 		 * go ahead and use it?
2451 		 */
2452 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2453 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2454 	} else {
2455 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2456 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2457 	}
2458 
2459 	if (cpu_has_vmx_apicv()) {
2460 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2461 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2462 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2463 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2464 	}
2465 
2466 	/*
2467 	 * Make sure the msr_autostore list is up to date before we set the
2468 	 * count in the vmcs02.
2469 	 */
2470 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2471 
2472 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2473 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2474 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2475 
2476 	set_cr4_guest_host_mask(vmx);
2477 }
2478 
2479 /*
2480  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2481  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2482  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2483  * guest in a way that will both be appropriate to L1's requests, and our
2484  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2485  * function also has additional necessary side-effects, like setting various
2486  * vcpu->arch fields.
2487  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2488  * is assigned to entry_failure_code on failure.
2489  */
2490 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2491 			  enum vm_entry_failure_code *entry_failure_code)
2492 {
2493 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2494 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2495 	bool load_guest_pdptrs_vmcs12 = false;
2496 
2497 	if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2498 		prepare_vmcs02_rare(vmx, vmcs12);
2499 		vmx->nested.dirty_vmcs12 = false;
2500 
2501 		load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2502 			!(hv_evmcs->hv_clean_fields &
2503 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2504 	}
2505 
2506 	if (vmx->nested.nested_run_pending &&
2507 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2508 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2509 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2510 	} else {
2511 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2512 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2513 	}
2514 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2515 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2516 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2517 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2518 
2519 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2520 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2521 	 * trap. Note that CR0.TS also needs updating - we do this later.
2522 	 */
2523 	vmx_update_exception_bitmap(vcpu);
2524 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2525 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2526 
2527 	if (vmx->nested.nested_run_pending &&
2528 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2529 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2530 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2531 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2532 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2533 	}
2534 
2535 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2536 
2537 	if (kvm_has_tsc_control)
2538 		decache_tsc_multiplier(vmx);
2539 
2540 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2541 
2542 	if (nested_cpu_has_ept(vmcs12))
2543 		nested_ept_init_mmu_context(vcpu);
2544 
2545 	/*
2546 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2547 	 * bits which we consider mandatory enabled.
2548 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2549 	 * the specifications by L1; It's not enough to take
2550 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2551 	 * have more bits than L1 expected.
2552 	 */
2553 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2554 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2555 
2556 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2557 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2558 
2559 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2560 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2561 	vmx_set_efer(vcpu, vcpu->arch.efer);
2562 
2563 	/*
2564 	 * Guest state is invalid and unrestricted guest is disabled,
2565 	 * which means L1 attempted VMEntry to L2 with invalid state.
2566 	 * Fail the VMEntry.
2567 	 */
2568 	if (CC(!vmx_guest_state_valid(vcpu))) {
2569 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2570 		return -EINVAL;
2571 	}
2572 
2573 	/* Shadow page tables on either EPT or shadow page tables. */
2574 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2575 				entry_failure_code))
2576 		return -EINVAL;
2577 
2578 	/*
2579 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2580 	 * on nested VM-Exit, which can occur without actually running L2 and
2581 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2582 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2583 	 * transition to HLT instead of running L2.
2584 	 */
2585 	if (enable_ept)
2586 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2587 
2588 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2589 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2590 	    is_pae_paging(vcpu)) {
2591 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2592 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2593 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2594 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2595 	}
2596 
2597 	if (!enable_ept)
2598 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2599 
2600 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2601 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2602 				     vmcs12->guest_ia32_perf_global_ctrl)))
2603 		return -EINVAL;
2604 
2605 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2606 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2607 	return 0;
2608 }
2609 
2610 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2611 {
2612 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2613 	       nested_cpu_has_virtual_nmis(vmcs12)))
2614 		return -EINVAL;
2615 
2616 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2617 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2618 		return -EINVAL;
2619 
2620 	return 0;
2621 }
2622 
2623 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2624 {
2625 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2626 
2627 	/* Check for memory type validity */
2628 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2629 	case VMX_EPTP_MT_UC:
2630 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2631 			return false;
2632 		break;
2633 	case VMX_EPTP_MT_WB:
2634 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2635 			return false;
2636 		break;
2637 	default:
2638 		return false;
2639 	}
2640 
2641 	/* Page-walk levels validity. */
2642 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2643 	case VMX_EPTP_PWL_5:
2644 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2645 			return false;
2646 		break;
2647 	case VMX_EPTP_PWL_4:
2648 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2649 			return false;
2650 		break;
2651 	default:
2652 		return false;
2653 	}
2654 
2655 	/* Reserved bits should not be set */
2656 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2657 		return false;
2658 
2659 	/* AD, if set, should be supported */
2660 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2661 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2662 			return false;
2663 	}
2664 
2665 	return true;
2666 }
2667 
2668 /*
2669  * Checks related to VM-Execution Control Fields
2670  */
2671 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2672                                               struct vmcs12 *vmcs12)
2673 {
2674 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2675 
2676 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2677 				   vmx->nested.msrs.pinbased_ctls_low,
2678 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2679 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2680 				   vmx->nested.msrs.procbased_ctls_low,
2681 				   vmx->nested.msrs.procbased_ctls_high)))
2682 		return -EINVAL;
2683 
2684 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2685 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2686 				   vmx->nested.msrs.secondary_ctls_low,
2687 				   vmx->nested.msrs.secondary_ctls_high)))
2688 		return -EINVAL;
2689 
2690 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2691 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2692 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2693 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2694 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2695 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2696 	    nested_vmx_check_nmi_controls(vmcs12) ||
2697 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2698 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2699 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2700 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2701 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2702 		return -EINVAL;
2703 
2704 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2705 	    nested_cpu_has_save_preemption_timer(vmcs12))
2706 		return -EINVAL;
2707 
2708 	if (nested_cpu_has_ept(vmcs12) &&
2709 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2710 		return -EINVAL;
2711 
2712 	if (nested_cpu_has_vmfunc(vmcs12)) {
2713 		if (CC(vmcs12->vm_function_control &
2714 		       ~vmx->nested.msrs.vmfunc_controls))
2715 			return -EINVAL;
2716 
2717 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2718 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2719 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2720 				return -EINVAL;
2721 		}
2722 	}
2723 
2724 	return 0;
2725 }
2726 
2727 /*
2728  * Checks related to VM-Exit Control Fields
2729  */
2730 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2731                                          struct vmcs12 *vmcs12)
2732 {
2733 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2734 
2735 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2736 				    vmx->nested.msrs.exit_ctls_low,
2737 				    vmx->nested.msrs.exit_ctls_high)) ||
2738 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2739 		return -EINVAL;
2740 
2741 	return 0;
2742 }
2743 
2744 /*
2745  * Checks related to VM-Entry Control Fields
2746  */
2747 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2748 					  struct vmcs12 *vmcs12)
2749 {
2750 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2751 
2752 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2753 				    vmx->nested.msrs.entry_ctls_low,
2754 				    vmx->nested.msrs.entry_ctls_high)))
2755 		return -EINVAL;
2756 
2757 	/*
2758 	 * From the Intel SDM, volume 3:
2759 	 * Fields relevant to VM-entry event injection must be set properly.
2760 	 * These fields are the VM-entry interruption-information field, the
2761 	 * VM-entry exception error code, and the VM-entry instruction length.
2762 	 */
2763 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2764 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2765 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2766 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2767 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2768 		bool should_have_error_code;
2769 		bool urg = nested_cpu_has2(vmcs12,
2770 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2771 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2772 
2773 		/* VM-entry interruption-info field: interruption type */
2774 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2775 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2776 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2777 			return -EINVAL;
2778 
2779 		/* VM-entry interruption-info field: vector */
2780 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2781 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2782 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2783 			return -EINVAL;
2784 
2785 		/* VM-entry interruption-info field: deliver error code */
2786 		should_have_error_code =
2787 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2788 			x86_exception_has_error_code(vector);
2789 		if (CC(has_error_code != should_have_error_code))
2790 			return -EINVAL;
2791 
2792 		/* VM-entry exception error code */
2793 		if (CC(has_error_code &&
2794 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2795 			return -EINVAL;
2796 
2797 		/* VM-entry interruption-info field: reserved bits */
2798 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2799 			return -EINVAL;
2800 
2801 		/* VM-entry instruction length */
2802 		switch (intr_type) {
2803 		case INTR_TYPE_SOFT_EXCEPTION:
2804 		case INTR_TYPE_SOFT_INTR:
2805 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2806 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2807 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2808 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2809 				return -EINVAL;
2810 		}
2811 	}
2812 
2813 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2814 		return -EINVAL;
2815 
2816 	return 0;
2817 }
2818 
2819 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2820 				     struct vmcs12 *vmcs12)
2821 {
2822 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2823 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2824 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2825 		return -EINVAL;
2826 
2827 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2828 		return nested_evmcs_check_controls(vmcs12);
2829 
2830 	return 0;
2831 }
2832 
2833 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2834 				       struct vmcs12 *vmcs12)
2835 {
2836 	bool ia32e;
2837 
2838 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2839 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2840 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2841 		return -EINVAL;
2842 
2843 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2844 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2845 		return -EINVAL;
2846 
2847 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2848 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2849 		return -EINVAL;
2850 
2851 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2852 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2853 					   vmcs12->host_ia32_perf_global_ctrl)))
2854 		return -EINVAL;
2855 
2856 #ifdef CONFIG_X86_64
2857 	ia32e = !!(vcpu->arch.efer & EFER_LMA);
2858 #else
2859 	ia32e = false;
2860 #endif
2861 
2862 	if (ia32e) {
2863 		if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2864 		    CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2865 			return -EINVAL;
2866 	} else {
2867 		if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2868 		    CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2869 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2870 		    CC((vmcs12->host_rip) >> 32))
2871 			return -EINVAL;
2872 	}
2873 
2874 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2875 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2876 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2877 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2878 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2879 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2880 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2881 	    CC(vmcs12->host_cs_selector == 0) ||
2882 	    CC(vmcs12->host_tr_selector == 0) ||
2883 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2884 		return -EINVAL;
2885 
2886 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2887 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2888 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2889 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2890 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2891 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2892 		return -EINVAL;
2893 
2894 	/*
2895 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2896 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2897 	 * the values of the LMA and LME bits in the field must each be that of
2898 	 * the host address-space size VM-exit control.
2899 	 */
2900 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2901 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2902 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2903 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2904 			return -EINVAL;
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2911 					  struct vmcs12 *vmcs12)
2912 {
2913 	int r = 0;
2914 	struct vmcs12 *shadow;
2915 	struct kvm_host_map map;
2916 
2917 	if (vmcs12->vmcs_link_pointer == -1ull)
2918 		return 0;
2919 
2920 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2921 		return -EINVAL;
2922 
2923 	if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2924 		return -EINVAL;
2925 
2926 	shadow = map.hva;
2927 
2928 	if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2929 	    CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2930 		r = -EINVAL;
2931 
2932 	kvm_vcpu_unmap(vcpu, &map, false);
2933 	return r;
2934 }
2935 
2936 /*
2937  * Checks related to Guest Non-register State
2938  */
2939 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2940 {
2941 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2942 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2943 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2944 		return -EINVAL;
2945 
2946 	return 0;
2947 }
2948 
2949 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2950 					struct vmcs12 *vmcs12,
2951 					enum vm_entry_failure_code *entry_failure_code)
2952 {
2953 	bool ia32e;
2954 
2955 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
2956 
2957 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2958 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2959 		return -EINVAL;
2960 
2961 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2962 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2963 		return -EINVAL;
2964 
2965 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2966 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2967 		return -EINVAL;
2968 
2969 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2970 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2971 		return -EINVAL;
2972 	}
2973 
2974 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2975 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2976 					   vmcs12->guest_ia32_perf_global_ctrl)))
2977 		return -EINVAL;
2978 
2979 	/*
2980 	 * If the load IA32_EFER VM-entry control is 1, the following checks
2981 	 * are performed on the field for the IA32_EFER MSR:
2982 	 * - Bits reserved in the IA32_EFER MSR must be 0.
2983 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2984 	 *   the IA-32e mode guest VM-exit control. It must also be identical
2985 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2986 	 *   CR0.PG) is 1.
2987 	 */
2988 	if (to_vmx(vcpu)->nested.nested_run_pending &&
2989 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2990 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2991 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2992 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2993 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2994 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2995 			return -EINVAL;
2996 	}
2997 
2998 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2999 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3000 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3001 		return -EINVAL;
3002 
3003 	if (nested_check_guest_non_reg_state(vmcs12))
3004 		return -EINVAL;
3005 
3006 	return 0;
3007 }
3008 
3009 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3010 {
3011 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3012 	unsigned long cr3, cr4;
3013 	bool vm_fail;
3014 
3015 	if (!nested_early_check)
3016 		return 0;
3017 
3018 	if (vmx->msr_autoload.host.nr)
3019 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3020 	if (vmx->msr_autoload.guest.nr)
3021 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3022 
3023 	preempt_disable();
3024 
3025 	vmx_prepare_switch_to_guest(vcpu);
3026 
3027 	/*
3028 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3029 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3030 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3031 	 * there is no need to preserve other bits or save/restore the field.
3032 	 */
3033 	vmcs_writel(GUEST_RFLAGS, 0);
3034 
3035 	cr3 = __get_current_cr3_fast();
3036 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3037 		vmcs_writel(HOST_CR3, cr3);
3038 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3039 	}
3040 
3041 	cr4 = cr4_read_shadow();
3042 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3043 		vmcs_writel(HOST_CR4, cr4);
3044 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3045 	}
3046 
3047 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3048 				 vmx->loaded_vmcs->launched);
3049 
3050 	if (vmx->msr_autoload.host.nr)
3051 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3052 	if (vmx->msr_autoload.guest.nr)
3053 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3054 
3055 	if (vm_fail) {
3056 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3057 
3058 		preempt_enable();
3059 
3060 		trace_kvm_nested_vmenter_failed(
3061 			"early hardware check VM-instruction error: ", error);
3062 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3063 		return 1;
3064 	}
3065 
3066 	/*
3067 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3068 	 */
3069 	if (hw_breakpoint_active())
3070 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3071 	local_irq_enable();
3072 	preempt_enable();
3073 
3074 	/*
3075 	 * A non-failing VMEntry means we somehow entered guest mode with
3076 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3077 	 * is no telling what memory has been modified or what state has
3078 	 * been exposed to unknown code.  Hitting this all but guarantees
3079 	 * a (very critical) hardware issue.
3080 	 */
3081 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3082 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3083 
3084 	return 0;
3085 }
3086 
3087 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3088 {
3089 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3090 
3091 	/*
3092 	 * hv_evmcs may end up being not mapped after migration (when
3093 	 * L2 was running), map it here to make sure vmcs12 changes are
3094 	 * properly reflected.
3095 	 */
3096 	if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
3097 		enum nested_evmptrld_status evmptrld_status =
3098 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3099 
3100 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3101 		    evmptrld_status == EVMPTRLD_ERROR)
3102 			return false;
3103 	}
3104 
3105 	return true;
3106 }
3107 
3108 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3109 {
3110 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3111 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3112 	struct kvm_host_map *map;
3113 	struct page *page;
3114 	u64 hpa;
3115 
3116 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3117 		/*
3118 		 * Translate L1 physical address to host physical
3119 		 * address for vmcs02. Keep the page pinned, so this
3120 		 * physical address remains valid. We keep a reference
3121 		 * to it so we can release it later.
3122 		 */
3123 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3124 			kvm_release_page_clean(vmx->nested.apic_access_page);
3125 			vmx->nested.apic_access_page = NULL;
3126 		}
3127 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3128 		if (!is_error_page(page)) {
3129 			vmx->nested.apic_access_page = page;
3130 			hpa = page_to_phys(vmx->nested.apic_access_page);
3131 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3132 		} else {
3133 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3134 					     __func__);
3135 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3136 			vcpu->run->internal.suberror =
3137 				KVM_INTERNAL_ERROR_EMULATION;
3138 			vcpu->run->internal.ndata = 0;
3139 			return false;
3140 		}
3141 	}
3142 
3143 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3144 		map = &vmx->nested.virtual_apic_map;
3145 
3146 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3147 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3148 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3149 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3150 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3151 			/*
3152 			 * The processor will never use the TPR shadow, simply
3153 			 * clear the bit from the execution control.  Such a
3154 			 * configuration is useless, but it happens in tests.
3155 			 * For any other configuration, failing the vm entry is
3156 			 * _not_ what the processor does but it's basically the
3157 			 * only possibility we have.
3158 			 */
3159 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3160 		} else {
3161 			/*
3162 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3163 			 * force VM-Entry to fail.
3164 			 */
3165 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3166 		}
3167 	}
3168 
3169 	if (nested_cpu_has_posted_intr(vmcs12)) {
3170 		map = &vmx->nested.pi_desc_map;
3171 
3172 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3173 			vmx->nested.pi_desc =
3174 				(struct pi_desc *)(((void *)map->hva) +
3175 				offset_in_page(vmcs12->posted_intr_desc_addr));
3176 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3177 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3178 		}
3179 	}
3180 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3181 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3182 	else
3183 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3184 
3185 	return true;
3186 }
3187 
3188 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3189 {
3190 	if (!nested_get_evmcs_page(vcpu)) {
3191 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3192 				     __func__);
3193 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3194 		vcpu->run->internal.suberror =
3195 			KVM_INTERNAL_ERROR_EMULATION;
3196 		vcpu->run->internal.ndata = 0;
3197 
3198 		return false;
3199 	}
3200 
3201 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3202 		return false;
3203 
3204 	return true;
3205 }
3206 
3207 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3208 {
3209 	struct vmcs12 *vmcs12;
3210 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3211 	gpa_t dst;
3212 
3213 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3214 		return 0;
3215 
3216 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3217 		return 1;
3218 
3219 	/*
3220 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3221 	 * set is already checked as part of A/D emulation.
3222 	 */
3223 	vmcs12 = get_vmcs12(vcpu);
3224 	if (!nested_cpu_has_pml(vmcs12))
3225 		return 0;
3226 
3227 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3228 		vmx->nested.pml_full = true;
3229 		return 1;
3230 	}
3231 
3232 	gpa &= ~0xFFFull;
3233 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3234 
3235 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3236 				 offset_in_page(dst), sizeof(gpa)))
3237 		return 0;
3238 
3239 	vmcs12->guest_pml_index--;
3240 
3241 	return 0;
3242 }
3243 
3244 /*
3245  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3246  * for running VMX instructions (except VMXON, whose prerequisites are
3247  * slightly different). It also specifies what exception to inject otherwise.
3248  * Note that many of these exceptions have priority over VM exits, so they
3249  * don't have to be checked again here.
3250  */
3251 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3252 {
3253 	if (!to_vmx(vcpu)->nested.vmxon) {
3254 		kvm_queue_exception(vcpu, UD_VECTOR);
3255 		return 0;
3256 	}
3257 
3258 	if (vmx_get_cpl(vcpu)) {
3259 		kvm_inject_gp(vcpu, 0);
3260 		return 0;
3261 	}
3262 
3263 	return 1;
3264 }
3265 
3266 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3267 {
3268 	u8 rvi = vmx_get_rvi();
3269 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3270 
3271 	return ((rvi & 0xf0) > (vppr & 0xf0));
3272 }
3273 
3274 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3275 				   struct vmcs12 *vmcs12);
3276 
3277 /*
3278  * If from_vmentry is false, this is being called from state restore (either RSM
3279  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3280  *
3281  * Returns:
3282  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3283  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3284  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3285  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3286  */
3287 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3288 							bool from_vmentry)
3289 {
3290 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3291 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3292 	enum vm_entry_failure_code entry_failure_code;
3293 	bool evaluate_pending_interrupts;
3294 	union vmx_exit_reason exit_reason = {
3295 		.basic = EXIT_REASON_INVALID_STATE,
3296 		.failed_vmentry = 1,
3297 	};
3298 	u32 failed_index;
3299 
3300 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3301 		kvm_vcpu_flush_tlb_current(vcpu);
3302 
3303 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3304 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3305 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3306 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3307 
3308 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3309 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3310 	if (kvm_mpx_supported() &&
3311 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3312 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3313 
3314 	/*
3315 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3316 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3317 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3318 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3319 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3320 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3321 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3322 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3323 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3324 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3325 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3326 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3327 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3328 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3329 	 */
3330 	if (!enable_ept && !nested_early_check)
3331 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3332 
3333 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3334 
3335 	prepare_vmcs02_early(vmx, vmcs12);
3336 
3337 	if (from_vmentry) {
3338 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3339 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3340 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3341 		}
3342 
3343 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3344 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3345 			return NVMX_VMENTRY_VMFAIL;
3346 		}
3347 
3348 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3349 						 &entry_failure_code)) {
3350 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3351 			vmcs12->exit_qualification = entry_failure_code;
3352 			goto vmentry_fail_vmexit;
3353 		}
3354 	}
3355 
3356 	enter_guest_mode(vcpu);
3357 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3358 		vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3359 
3360 	if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
3361 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3362 		vmcs12->exit_qualification = entry_failure_code;
3363 		goto vmentry_fail_vmexit_guest_mode;
3364 	}
3365 
3366 	if (from_vmentry) {
3367 		failed_index = nested_vmx_load_msr(vcpu,
3368 						   vmcs12->vm_entry_msr_load_addr,
3369 						   vmcs12->vm_entry_msr_load_count);
3370 		if (failed_index) {
3371 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3372 			vmcs12->exit_qualification = failed_index;
3373 			goto vmentry_fail_vmexit_guest_mode;
3374 		}
3375 	} else {
3376 		/*
3377 		 * The MMU is not initialized to point at the right entities yet and
3378 		 * "get pages" would need to read data from the guest (i.e. we will
3379 		 * need to perform gpa to hpa translation). Request a call
3380 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3381 		 * have already been set at vmentry time and should not be reset.
3382 		 */
3383 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3384 	}
3385 
3386 	/*
3387 	 * If L1 had a pending IRQ/NMI until it executed
3388 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3389 	 * disallowed (e.g. interrupts disabled), L0 needs to
3390 	 * evaluate if this pending event should cause an exit from L2
3391 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3392 	 * intercept EXTERNAL_INTERRUPT).
3393 	 *
3394 	 * Usually this would be handled by the processor noticing an
3395 	 * IRQ/NMI window request, or checking RVI during evaluation of
3396 	 * pending virtual interrupts.  However, this setting was done
3397 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3398 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3399 	 */
3400 	if (unlikely(evaluate_pending_interrupts))
3401 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3402 
3403 	/*
3404 	 * Do not start the preemption timer hrtimer until after we know
3405 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3406 	 * the timer.
3407 	 */
3408 	vmx->nested.preemption_timer_expired = false;
3409 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3410 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3411 		vmx_start_preemption_timer(vcpu, timer_value);
3412 	}
3413 
3414 	/*
3415 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3416 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3417 	 * returned as far as L1 is concerned. It will only return (and set
3418 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3419 	 */
3420 	return NVMX_VMENTRY_SUCCESS;
3421 
3422 	/*
3423 	 * A failed consistency check that leads to a VMExit during L1's
3424 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3425 	 * 26.7 "VM-entry failures during or after loading guest state".
3426 	 */
3427 vmentry_fail_vmexit_guest_mode:
3428 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3429 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3430 	leave_guest_mode(vcpu);
3431 
3432 vmentry_fail_vmexit:
3433 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3434 
3435 	if (!from_vmentry)
3436 		return NVMX_VMENTRY_VMEXIT;
3437 
3438 	load_vmcs12_host_state(vcpu, vmcs12);
3439 	vmcs12->vm_exit_reason = exit_reason.full;
3440 	if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3441 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3442 	return NVMX_VMENTRY_VMEXIT;
3443 }
3444 
3445 /*
3446  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3447  * for running an L2 nested guest.
3448  */
3449 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3450 {
3451 	struct vmcs12 *vmcs12;
3452 	enum nvmx_vmentry_status status;
3453 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3454 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3455 	enum nested_evmptrld_status evmptrld_status;
3456 
3457 	++vcpu->stat.nested_run;
3458 
3459 	if (!nested_vmx_check_permission(vcpu))
3460 		return 1;
3461 
3462 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3463 	if (evmptrld_status == EVMPTRLD_ERROR) {
3464 		kvm_queue_exception(vcpu, UD_VECTOR);
3465 		return 1;
3466 	} else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3467 		return nested_vmx_failInvalid(vcpu);
3468 	}
3469 
3470 	if (CC(!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull))
3471 		return nested_vmx_failInvalid(vcpu);
3472 
3473 	vmcs12 = get_vmcs12(vcpu);
3474 
3475 	/*
3476 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3477 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3478 	 * rather than RFLAGS.ZF, and no error number is stored to the
3479 	 * VM-instruction error field.
3480 	 */
3481 	if (CC(vmcs12->hdr.shadow_vmcs))
3482 		return nested_vmx_failInvalid(vcpu);
3483 
3484 	if (vmx->nested.hv_evmcs) {
3485 		copy_enlightened_to_vmcs12(vmx);
3486 		/* Enlightened VMCS doesn't have launch state */
3487 		vmcs12->launch_state = !launch;
3488 	} else if (enable_shadow_vmcs) {
3489 		copy_shadow_to_vmcs12(vmx);
3490 	}
3491 
3492 	/*
3493 	 * The nested entry process starts with enforcing various prerequisites
3494 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3495 	 * they fail: As the SDM explains, some conditions should cause the
3496 	 * instruction to fail, while others will cause the instruction to seem
3497 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3498 	 * To speed up the normal (success) code path, we should avoid checking
3499 	 * for misconfigurations which will anyway be caught by the processor
3500 	 * when using the merged vmcs02.
3501 	 */
3502 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3503 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3504 
3505 	if (CC(vmcs12->launch_state == launch))
3506 		return nested_vmx_fail(vcpu,
3507 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3508 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3509 
3510 	if (nested_vmx_check_controls(vcpu, vmcs12))
3511 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3512 
3513 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3514 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3515 
3516 	/*
3517 	 * We're finally done with prerequisite checking, and can start with
3518 	 * the nested entry.
3519 	 */
3520 	vmx->nested.nested_run_pending = 1;
3521 	vmx->nested.has_preemption_timer_deadline = false;
3522 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3523 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3524 		goto vmentry_failed;
3525 
3526 	/* Emulate processing of posted interrupts on VM-Enter. */
3527 	if (nested_cpu_has_posted_intr(vmcs12) &&
3528 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3529 		vmx->nested.pi_pending = true;
3530 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3531 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3532 	}
3533 
3534 	/* Hide L1D cache contents from the nested guest.  */
3535 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3536 
3537 	/*
3538 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3539 	 * also be used as part of restoring nVMX state for
3540 	 * snapshot restore (migration).
3541 	 *
3542 	 * In this flow, it is assumed that vmcs12 cache was
3543 	 * transferred as part of captured nVMX state and should
3544 	 * therefore not be read from guest memory (which may not
3545 	 * exist on destination host yet).
3546 	 */
3547 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3548 
3549 	switch (vmcs12->guest_activity_state) {
3550 	case GUEST_ACTIVITY_HLT:
3551 		/*
3552 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3553 		 * awakened by event injection or by an NMI-window VM-exit or
3554 		 * by an interrupt-window VM-exit, halt the vcpu.
3555 		 */
3556 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3557 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3558 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3559 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3560 			vmx->nested.nested_run_pending = 0;
3561 			return kvm_vcpu_halt(vcpu);
3562 		}
3563 		break;
3564 	case GUEST_ACTIVITY_WAIT_SIPI:
3565 		vmx->nested.nested_run_pending = 0;
3566 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3567 		break;
3568 	default:
3569 		break;
3570 	}
3571 
3572 	return 1;
3573 
3574 vmentry_failed:
3575 	vmx->nested.nested_run_pending = 0;
3576 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3577 		return 0;
3578 	if (status == NVMX_VMENTRY_VMEXIT)
3579 		return 1;
3580 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3581 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3582 }
3583 
3584 /*
3585  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3586  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3587  * This function returns the new value we should put in vmcs12.guest_cr0.
3588  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3589  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3590  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3591  *     didn't trap the bit, because if L1 did, so would L0).
3592  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3593  *     been modified by L2, and L1 knows it. So just leave the old value of
3594  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3595  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3596  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3597  *     changed these bits, and therefore they need to be updated, but L0
3598  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3599  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3600  */
3601 static inline unsigned long
3602 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3603 {
3604 	return
3605 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3606 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3607 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3608 			vcpu->arch.cr0_guest_owned_bits));
3609 }
3610 
3611 static inline unsigned long
3612 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3613 {
3614 	return
3615 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3616 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3617 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3618 			vcpu->arch.cr4_guest_owned_bits));
3619 }
3620 
3621 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3622 				      struct vmcs12 *vmcs12)
3623 {
3624 	u32 idt_vectoring;
3625 	unsigned int nr;
3626 
3627 	if (vcpu->arch.exception.injected) {
3628 		nr = vcpu->arch.exception.nr;
3629 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3630 
3631 		if (kvm_exception_is_soft(nr)) {
3632 			vmcs12->vm_exit_instruction_len =
3633 				vcpu->arch.event_exit_inst_len;
3634 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3635 		} else
3636 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3637 
3638 		if (vcpu->arch.exception.has_error_code) {
3639 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3640 			vmcs12->idt_vectoring_error_code =
3641 				vcpu->arch.exception.error_code;
3642 		}
3643 
3644 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3645 	} else if (vcpu->arch.nmi_injected) {
3646 		vmcs12->idt_vectoring_info_field =
3647 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3648 	} else if (vcpu->arch.interrupt.injected) {
3649 		nr = vcpu->arch.interrupt.nr;
3650 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3651 
3652 		if (vcpu->arch.interrupt.soft) {
3653 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3654 			vmcs12->vm_entry_instruction_len =
3655 				vcpu->arch.event_exit_inst_len;
3656 		} else
3657 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3658 
3659 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3660 	}
3661 }
3662 
3663 
3664 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3665 {
3666 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3667 	gfn_t gfn;
3668 
3669 	/*
3670 	 * Don't need to mark the APIC access page dirty; it is never
3671 	 * written to by the CPU during APIC virtualization.
3672 	 */
3673 
3674 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3675 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3676 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3677 	}
3678 
3679 	if (nested_cpu_has_posted_intr(vmcs12)) {
3680 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3681 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3682 	}
3683 }
3684 
3685 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3686 {
3687 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3688 	int max_irr;
3689 	void *vapic_page;
3690 	u16 status;
3691 
3692 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3693 		return;
3694 
3695 	vmx->nested.pi_pending = false;
3696 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3697 		return;
3698 
3699 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3700 	if (max_irr != 256) {
3701 		vapic_page = vmx->nested.virtual_apic_map.hva;
3702 		if (!vapic_page)
3703 			return;
3704 
3705 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3706 			vapic_page, &max_irr);
3707 		status = vmcs_read16(GUEST_INTR_STATUS);
3708 		if ((u8)max_irr > ((u8)status & 0xff)) {
3709 			status &= ~0xff;
3710 			status |= (u8)max_irr;
3711 			vmcs_write16(GUEST_INTR_STATUS, status);
3712 		}
3713 	}
3714 
3715 	nested_mark_vmcs12_pages_dirty(vcpu);
3716 }
3717 
3718 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3719 					       unsigned long exit_qual)
3720 {
3721 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3722 	unsigned int nr = vcpu->arch.exception.nr;
3723 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3724 
3725 	if (vcpu->arch.exception.has_error_code) {
3726 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3727 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3728 	}
3729 
3730 	if (kvm_exception_is_soft(nr))
3731 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3732 	else
3733 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3734 
3735 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3736 	    vmx_get_nmi_mask(vcpu))
3737 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3738 
3739 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3740 }
3741 
3742 /*
3743  * Returns true if a debug trap is pending delivery.
3744  *
3745  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3746  * exception may be inferred from the presence of an exception payload.
3747  */
3748 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3749 {
3750 	return vcpu->arch.exception.pending &&
3751 			vcpu->arch.exception.nr == DB_VECTOR &&
3752 			vcpu->arch.exception.payload;
3753 }
3754 
3755 /*
3756  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3757  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3758  * represents these debug traps with a payload that is said to be compatible
3759  * with the 'pending debug exceptions' field, write the payload to the VMCS
3760  * field if a VM-exit is delivered before the debug trap.
3761  */
3762 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3763 {
3764 	if (vmx_pending_dbg_trap(vcpu))
3765 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3766 			    vcpu->arch.exception.payload);
3767 }
3768 
3769 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3770 {
3771 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3772 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3773 }
3774 
3775 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3776 {
3777 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3778 	unsigned long exit_qual;
3779 	bool block_nested_events =
3780 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3781 	bool mtf_pending = vmx->nested.mtf_pending;
3782 	struct kvm_lapic *apic = vcpu->arch.apic;
3783 
3784 	/*
3785 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3786 	 * this state is discarded.
3787 	 */
3788 	if (!block_nested_events)
3789 		vmx->nested.mtf_pending = false;
3790 
3791 	if (lapic_in_kernel(vcpu) &&
3792 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3793 		if (block_nested_events)
3794 			return -EBUSY;
3795 		nested_vmx_update_pending_dbg(vcpu);
3796 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3797 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3798 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3799 		return 0;
3800 	}
3801 
3802 	if (lapic_in_kernel(vcpu) &&
3803 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3804 		if (block_nested_events)
3805 			return -EBUSY;
3806 
3807 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3808 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3809 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3810 						apic->sipi_vector & 0xFFUL);
3811 		return 0;
3812 	}
3813 
3814 	/*
3815 	 * Process any exceptions that are not debug traps before MTF.
3816 	 *
3817 	 * Note that only a pending nested run can block a pending exception.
3818 	 * Otherwise an injected NMI/interrupt should either be
3819 	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3820 	 * while delivering the pending exception.
3821 	 */
3822 
3823 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3824 		if (vmx->nested.nested_run_pending)
3825 			return -EBUSY;
3826 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3827 			goto no_vmexit;
3828 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3829 		return 0;
3830 	}
3831 
3832 	if (mtf_pending) {
3833 		if (block_nested_events)
3834 			return -EBUSY;
3835 		nested_vmx_update_pending_dbg(vcpu);
3836 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3837 		return 0;
3838 	}
3839 
3840 	if (vcpu->arch.exception.pending) {
3841 		if (vmx->nested.nested_run_pending)
3842 			return -EBUSY;
3843 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3844 			goto no_vmexit;
3845 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3846 		return 0;
3847 	}
3848 
3849 	if (nested_vmx_preemption_timer_pending(vcpu)) {
3850 		if (block_nested_events)
3851 			return -EBUSY;
3852 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3853 		return 0;
3854 	}
3855 
3856 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3857 		if (block_nested_events)
3858 			return -EBUSY;
3859 		goto no_vmexit;
3860 	}
3861 
3862 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3863 		if (block_nested_events)
3864 			return -EBUSY;
3865 		if (!nested_exit_on_nmi(vcpu))
3866 			goto no_vmexit;
3867 
3868 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3869 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3870 				  INTR_INFO_VALID_MASK, 0);
3871 		/*
3872 		 * The NMI-triggered VM exit counts as injection:
3873 		 * clear this one and block further NMIs.
3874 		 */
3875 		vcpu->arch.nmi_pending = 0;
3876 		vmx_set_nmi_mask(vcpu, true);
3877 		return 0;
3878 	}
3879 
3880 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3881 		if (block_nested_events)
3882 			return -EBUSY;
3883 		if (!nested_exit_on_intr(vcpu))
3884 			goto no_vmexit;
3885 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3886 		return 0;
3887 	}
3888 
3889 no_vmexit:
3890 	vmx_complete_nested_posted_interrupt(vcpu);
3891 	return 0;
3892 }
3893 
3894 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3895 {
3896 	ktime_t remaining =
3897 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3898 	u64 value;
3899 
3900 	if (ktime_to_ns(remaining) <= 0)
3901 		return 0;
3902 
3903 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3904 	do_div(value, 1000000);
3905 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3906 }
3907 
3908 static bool is_vmcs12_ext_field(unsigned long field)
3909 {
3910 	switch (field) {
3911 	case GUEST_ES_SELECTOR:
3912 	case GUEST_CS_SELECTOR:
3913 	case GUEST_SS_SELECTOR:
3914 	case GUEST_DS_SELECTOR:
3915 	case GUEST_FS_SELECTOR:
3916 	case GUEST_GS_SELECTOR:
3917 	case GUEST_LDTR_SELECTOR:
3918 	case GUEST_TR_SELECTOR:
3919 	case GUEST_ES_LIMIT:
3920 	case GUEST_CS_LIMIT:
3921 	case GUEST_SS_LIMIT:
3922 	case GUEST_DS_LIMIT:
3923 	case GUEST_FS_LIMIT:
3924 	case GUEST_GS_LIMIT:
3925 	case GUEST_LDTR_LIMIT:
3926 	case GUEST_TR_LIMIT:
3927 	case GUEST_GDTR_LIMIT:
3928 	case GUEST_IDTR_LIMIT:
3929 	case GUEST_ES_AR_BYTES:
3930 	case GUEST_DS_AR_BYTES:
3931 	case GUEST_FS_AR_BYTES:
3932 	case GUEST_GS_AR_BYTES:
3933 	case GUEST_LDTR_AR_BYTES:
3934 	case GUEST_TR_AR_BYTES:
3935 	case GUEST_ES_BASE:
3936 	case GUEST_CS_BASE:
3937 	case GUEST_SS_BASE:
3938 	case GUEST_DS_BASE:
3939 	case GUEST_FS_BASE:
3940 	case GUEST_GS_BASE:
3941 	case GUEST_LDTR_BASE:
3942 	case GUEST_TR_BASE:
3943 	case GUEST_GDTR_BASE:
3944 	case GUEST_IDTR_BASE:
3945 	case GUEST_PENDING_DBG_EXCEPTIONS:
3946 	case GUEST_BNDCFGS:
3947 		return true;
3948 	default:
3949 		break;
3950 	}
3951 
3952 	return false;
3953 }
3954 
3955 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3956 				       struct vmcs12 *vmcs12)
3957 {
3958 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3959 
3960 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3961 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3962 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3963 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3964 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3965 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3966 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3967 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3968 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3969 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3970 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3971 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3972 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3973 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3974 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3975 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3976 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3977 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3978 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3979 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3980 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3981 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3982 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3983 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3984 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3985 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3986 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3987 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3988 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3989 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3990 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3991 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3992 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3993 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3994 	vmcs12->guest_pending_dbg_exceptions =
3995 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3996 	if (kvm_mpx_supported())
3997 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3998 
3999 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4000 }
4001 
4002 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4003 				       struct vmcs12 *vmcs12)
4004 {
4005 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4006 	int cpu;
4007 
4008 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4009 		return;
4010 
4011 
4012 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4013 
4014 	cpu = get_cpu();
4015 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4016 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4017 
4018 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4019 
4020 	vmx->loaded_vmcs = &vmx->vmcs01;
4021 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4022 	put_cpu();
4023 }
4024 
4025 /*
4026  * Update the guest state fields of vmcs12 to reflect changes that
4027  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4028  * VM-entry controls is also updated, since this is really a guest
4029  * state bit.)
4030  */
4031 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4032 {
4033 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4034 
4035 	if (vmx->nested.hv_evmcs)
4036 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4037 
4038 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
4039 
4040 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4041 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4042 
4043 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4044 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4045 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4046 
4047 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4048 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4049 
4050 	vmcs12->guest_interruptibility_info =
4051 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4052 
4053 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4054 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4055 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4056 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4057 	else
4058 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4059 
4060 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4061 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4062 	    !vmx->nested.nested_run_pending)
4063 		vmcs12->vmx_preemption_timer_value =
4064 			vmx_get_preemption_timer_value(vcpu);
4065 
4066 	/*
4067 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4068 	 * own CR3 without exiting. If it has changed it, we must keep it.
4069 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4070 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4071 	 *
4072 	 * Additionally, restore L2's PDPTR to vmcs12.
4073 	 */
4074 	if (enable_ept) {
4075 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4076 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4077 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4078 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4079 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4080 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4081 		}
4082 	}
4083 
4084 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4085 
4086 	if (nested_cpu_has_vid(vmcs12))
4087 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4088 
4089 	vmcs12->vm_entry_controls =
4090 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4091 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4092 
4093 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4094 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4095 
4096 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4097 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4098 }
4099 
4100 /*
4101  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4102  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4103  * and this function updates it to reflect the changes to the guest state while
4104  * L2 was running (and perhaps made some exits which were handled directly by L0
4105  * without going back to L1), and to reflect the exit reason.
4106  * Note that we do not have to copy here all VMCS fields, just those that
4107  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4108  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4109  * which already writes to vmcs12 directly.
4110  */
4111 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4112 			   u32 vm_exit_reason, u32 exit_intr_info,
4113 			   unsigned long exit_qualification)
4114 {
4115 	/* update exit information fields: */
4116 	vmcs12->vm_exit_reason = vm_exit_reason;
4117 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4118 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4119 	vmcs12->exit_qualification = exit_qualification;
4120 	vmcs12->vm_exit_intr_info = exit_intr_info;
4121 
4122 	vmcs12->idt_vectoring_info_field = 0;
4123 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4124 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4125 
4126 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4127 		vmcs12->launch_state = 1;
4128 
4129 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4130 		 * instead of reading the real value. */
4131 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4132 
4133 		/*
4134 		 * Transfer the event that L0 or L1 may wanted to inject into
4135 		 * L2 to IDT_VECTORING_INFO_FIELD.
4136 		 */
4137 		vmcs12_save_pending_event(vcpu, vmcs12);
4138 
4139 		/*
4140 		 * According to spec, there's no need to store the guest's
4141 		 * MSRs if the exit is due to a VM-entry failure that occurs
4142 		 * during or after loading the guest state. Since this exit
4143 		 * does not fall in that category, we need to save the MSRs.
4144 		 */
4145 		if (nested_vmx_store_msr(vcpu,
4146 					 vmcs12->vm_exit_msr_store_addr,
4147 					 vmcs12->vm_exit_msr_store_count))
4148 			nested_vmx_abort(vcpu,
4149 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4150 	}
4151 
4152 	/*
4153 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4154 	 * preserved above and would only end up incorrectly in L1.
4155 	 */
4156 	vcpu->arch.nmi_injected = false;
4157 	kvm_clear_exception_queue(vcpu);
4158 	kvm_clear_interrupt_queue(vcpu);
4159 }
4160 
4161 /*
4162  * A part of what we need to when the nested L2 guest exits and we want to
4163  * run its L1 parent, is to reset L1's guest state to the host state specified
4164  * in vmcs12.
4165  * This function is to be called not only on normal nested exit, but also on
4166  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4167  * Failures During or After Loading Guest State").
4168  * This function should be called when the active VMCS is L1's (vmcs01).
4169  */
4170 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4171 				   struct vmcs12 *vmcs12)
4172 {
4173 	enum vm_entry_failure_code ignored;
4174 	struct kvm_segment seg;
4175 
4176 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4177 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4178 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4179 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4180 	else
4181 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4182 	vmx_set_efer(vcpu, vcpu->arch.efer);
4183 
4184 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4185 	kvm_rip_write(vcpu, vmcs12->host_rip);
4186 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4187 	vmx_set_interrupt_shadow(vcpu, 0);
4188 
4189 	/*
4190 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4191 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4192 	 *
4193 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4194 	 * (KVM doesn't change it);
4195 	 */
4196 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4197 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4198 
4199 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4200 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4201 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4202 
4203 	nested_ept_uninit_mmu_context(vcpu);
4204 
4205 	/*
4206 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4207 	 * couldn't have changed.
4208 	 */
4209 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
4210 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4211 
4212 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4213 
4214 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4215 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4216 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4217 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4218 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4219 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4220 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4221 
4222 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4223 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4224 		vmcs_write64(GUEST_BNDCFGS, 0);
4225 
4226 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4227 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4228 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4229 	}
4230 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4231 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4232 					 vmcs12->host_ia32_perf_global_ctrl));
4233 
4234 	/* Set L1 segment info according to Intel SDM
4235 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4236 	seg = (struct kvm_segment) {
4237 		.base = 0,
4238 		.limit = 0xFFFFFFFF,
4239 		.selector = vmcs12->host_cs_selector,
4240 		.type = 11,
4241 		.present = 1,
4242 		.s = 1,
4243 		.g = 1
4244 	};
4245 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4246 		seg.l = 1;
4247 	else
4248 		seg.db = 1;
4249 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4250 	seg = (struct kvm_segment) {
4251 		.base = 0,
4252 		.limit = 0xFFFFFFFF,
4253 		.type = 3,
4254 		.present = 1,
4255 		.s = 1,
4256 		.db = 1,
4257 		.g = 1
4258 	};
4259 	seg.selector = vmcs12->host_ds_selector;
4260 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4261 	seg.selector = vmcs12->host_es_selector;
4262 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4263 	seg.selector = vmcs12->host_ss_selector;
4264 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4265 	seg.selector = vmcs12->host_fs_selector;
4266 	seg.base = vmcs12->host_fs_base;
4267 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4268 	seg.selector = vmcs12->host_gs_selector;
4269 	seg.base = vmcs12->host_gs_base;
4270 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4271 	seg = (struct kvm_segment) {
4272 		.base = vmcs12->host_tr_base,
4273 		.limit = 0x67,
4274 		.selector = vmcs12->host_tr_selector,
4275 		.type = 11,
4276 		.present = 1
4277 	};
4278 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4279 
4280 	kvm_set_dr(vcpu, 7, 0x400);
4281 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4282 
4283 	if (cpu_has_vmx_msr_bitmap())
4284 		vmx_update_msr_bitmap(vcpu);
4285 
4286 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4287 				vmcs12->vm_exit_msr_load_count))
4288 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4289 }
4290 
4291 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4292 {
4293 	struct vmx_uret_msr *efer_msr;
4294 	unsigned int i;
4295 
4296 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4297 		return vmcs_read64(GUEST_IA32_EFER);
4298 
4299 	if (cpu_has_load_ia32_efer())
4300 		return host_efer;
4301 
4302 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4303 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4304 			return vmx->msr_autoload.guest.val[i].value;
4305 	}
4306 
4307 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4308 	if (efer_msr)
4309 		return efer_msr->data;
4310 
4311 	return host_efer;
4312 }
4313 
4314 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4315 {
4316 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4317 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4318 	struct vmx_msr_entry g, h;
4319 	gpa_t gpa;
4320 	u32 i, j;
4321 
4322 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4323 
4324 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4325 		/*
4326 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4327 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4328 		 * and vcpu->arch.dr7 is not squirreled away before the
4329 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4330 		 */
4331 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4332 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4333 		else
4334 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4335 	}
4336 
4337 	/*
4338 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4339 	 * handle a variety of side effects to KVM's software model.
4340 	 */
4341 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4342 
4343 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4344 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4345 
4346 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4347 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4348 
4349 	nested_ept_uninit_mmu_context(vcpu);
4350 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4351 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4352 
4353 	/*
4354 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4355 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4356 	 * VMFail, like everything else we just need to ensure our
4357 	 * software model is up-to-date.
4358 	 */
4359 	if (enable_ept && is_pae_paging(vcpu))
4360 		ept_save_pdptrs(vcpu);
4361 
4362 	kvm_mmu_reset_context(vcpu);
4363 
4364 	if (cpu_has_vmx_msr_bitmap())
4365 		vmx_update_msr_bitmap(vcpu);
4366 
4367 	/*
4368 	 * This nasty bit of open coding is a compromise between blindly
4369 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4370 	 * of VMFail), leaving the nested VM's MSRs in the software model
4371 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4372 	 * expensive since the lists are unbound by hardware).  For each
4373 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4374 	 * list, reload it from the exit load list if it exists and differs
4375 	 * from the guest value.  The intent is to stuff host state as
4376 	 * silently as possible, not to fully process the exit load list.
4377 	 */
4378 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4379 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4380 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4381 			pr_debug_ratelimited(
4382 				"%s read MSR index failed (%u, 0x%08llx)\n",
4383 				__func__, i, gpa);
4384 			goto vmabort;
4385 		}
4386 
4387 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4388 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4389 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4390 				pr_debug_ratelimited(
4391 					"%s read MSR failed (%u, 0x%08llx)\n",
4392 					__func__, j, gpa);
4393 				goto vmabort;
4394 			}
4395 			if (h.index != g.index)
4396 				continue;
4397 			if (h.value == g.value)
4398 				break;
4399 
4400 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4401 				pr_debug_ratelimited(
4402 					"%s check failed (%u, 0x%x, 0x%x)\n",
4403 					__func__, j, h.index, h.reserved);
4404 				goto vmabort;
4405 			}
4406 
4407 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4408 				pr_debug_ratelimited(
4409 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4410 					__func__, j, h.index, h.value);
4411 				goto vmabort;
4412 			}
4413 		}
4414 	}
4415 
4416 	return;
4417 
4418 vmabort:
4419 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4420 }
4421 
4422 /*
4423  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4424  * and modify vmcs12 to make it see what it would expect to see there if
4425  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4426  */
4427 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4428 		       u32 exit_intr_info, unsigned long exit_qualification)
4429 {
4430 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4431 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4432 
4433 	/* trying to cancel vmlaunch/vmresume is a bug */
4434 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4435 
4436 	/* Similarly, triple faults in L2 should never escape. */
4437 	WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4438 
4439 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4440 		/*
4441 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4442 		 * Enlightened VMCS after migration and we still need to
4443 		 * do that when something is forcing L2->L1 exit prior to
4444 		 * the first L2 run.
4445 		 */
4446 		(void)nested_get_evmcs_page(vcpu);
4447 	}
4448 
4449 	/* Service the TLB flush request for L2 before switching to L1. */
4450 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4451 		kvm_vcpu_flush_tlb_current(vcpu);
4452 
4453 	/*
4454 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4455 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4456 	 * up-to-date before switching to L1.
4457 	 */
4458 	if (enable_ept && is_pae_paging(vcpu))
4459 		vmx_ept_load_pdptrs(vcpu);
4460 
4461 	leave_guest_mode(vcpu);
4462 
4463 	if (nested_cpu_has_preemption_timer(vmcs12))
4464 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4465 
4466 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4467 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4468 
4469 	if (likely(!vmx->fail)) {
4470 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4471 
4472 		if (vm_exit_reason != -1)
4473 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4474 				       exit_intr_info, exit_qualification);
4475 
4476 		/*
4477 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4478 		 * also be used to capture vmcs12 cache as part of
4479 		 * capturing nVMX state for snapshot (migration).
4480 		 *
4481 		 * Otherwise, this flush will dirty guest memory at a
4482 		 * point it is already assumed by user-space to be
4483 		 * immutable.
4484 		 */
4485 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4486 	} else {
4487 		/*
4488 		 * The only expected VM-instruction error is "VM entry with
4489 		 * invalid control field(s)." Anything else indicates a
4490 		 * problem with L0.  And we should never get here with a
4491 		 * VMFail of any type if early consistency checks are enabled.
4492 		 */
4493 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4494 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4495 		WARN_ON_ONCE(nested_early_check);
4496 	}
4497 
4498 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4499 
4500 	/* Update any VMCS fields that might have changed while L2 ran */
4501 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4502 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4503 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4504 	if (vmx->nested.l1_tpr_threshold != -1)
4505 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4506 
4507 	if (kvm_has_tsc_control)
4508 		decache_tsc_multiplier(vmx);
4509 
4510 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4511 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4512 		vmx_set_virtual_apic_mode(vcpu);
4513 	}
4514 
4515 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4516 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4517 		vmx_update_cpu_dirty_logging(vcpu);
4518 	}
4519 
4520 	/* Unpin physical memory we referred to in vmcs02 */
4521 	if (vmx->nested.apic_access_page) {
4522 		kvm_release_page_clean(vmx->nested.apic_access_page);
4523 		vmx->nested.apic_access_page = NULL;
4524 	}
4525 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4526 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4527 	vmx->nested.pi_desc = NULL;
4528 
4529 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4530 		vmx->nested.reload_vmcs01_apic_access_page = false;
4531 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4532 	}
4533 
4534 	if ((vm_exit_reason != -1) &&
4535 	    (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4536 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4537 
4538 	/* in case we halted in L2 */
4539 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4540 
4541 	if (likely(!vmx->fail)) {
4542 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4543 		    nested_exit_intr_ack_set(vcpu)) {
4544 			int irq = kvm_cpu_get_interrupt(vcpu);
4545 			WARN_ON(irq < 0);
4546 			vmcs12->vm_exit_intr_info = irq |
4547 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4548 		}
4549 
4550 		if (vm_exit_reason != -1)
4551 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4552 						       vmcs12->exit_qualification,
4553 						       vmcs12->idt_vectoring_info_field,
4554 						       vmcs12->vm_exit_intr_info,
4555 						       vmcs12->vm_exit_intr_error_code,
4556 						       KVM_ISA_VMX);
4557 
4558 		load_vmcs12_host_state(vcpu, vmcs12);
4559 
4560 		return;
4561 	}
4562 
4563 	/*
4564 	 * After an early L2 VM-entry failure, we're now back
4565 	 * in L1 which thinks it just finished a VMLAUNCH or
4566 	 * VMRESUME instruction, so we need to set the failure
4567 	 * flag and the VM-instruction error field of the VMCS
4568 	 * accordingly, and skip the emulated instruction.
4569 	 */
4570 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4571 
4572 	/*
4573 	 * Restore L1's host state to KVM's software model.  We're here
4574 	 * because a consistency check was caught by hardware, which
4575 	 * means some amount of guest state has been propagated to KVM's
4576 	 * model and needs to be unwound to the host's state.
4577 	 */
4578 	nested_vmx_restore_host_state(vcpu);
4579 
4580 	vmx->fail = 0;
4581 }
4582 
4583 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4584 {
4585 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4586 }
4587 
4588 /*
4589  * Decode the memory-address operand of a vmx instruction, as recorded on an
4590  * exit caused by such an instruction (run by a guest hypervisor).
4591  * On success, returns 0. When the operand is invalid, returns 1 and throws
4592  * #UD, #GP, or #SS.
4593  */
4594 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4595 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4596 {
4597 	gva_t off;
4598 	bool exn;
4599 	struct kvm_segment s;
4600 
4601 	/*
4602 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4603 	 * Execution", on an exit, vmx_instruction_info holds most of the
4604 	 * addressing components of the operand. Only the displacement part
4605 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4606 	 * For how an actual address is calculated from all these components,
4607 	 * refer to Vol. 1, "Operand Addressing".
4608 	 */
4609 	int  scaling = vmx_instruction_info & 3;
4610 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4611 	bool is_reg = vmx_instruction_info & (1u << 10);
4612 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4613 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4614 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4615 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4616 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4617 
4618 	if (is_reg) {
4619 		kvm_queue_exception(vcpu, UD_VECTOR);
4620 		return 1;
4621 	}
4622 
4623 	/* Addr = segment_base + offset */
4624 	/* offset = base + [index * scale] + displacement */
4625 	off = exit_qualification; /* holds the displacement */
4626 	if (addr_size == 1)
4627 		off = (gva_t)sign_extend64(off, 31);
4628 	else if (addr_size == 0)
4629 		off = (gva_t)sign_extend64(off, 15);
4630 	if (base_is_valid)
4631 		off += kvm_register_read(vcpu, base_reg);
4632 	if (index_is_valid)
4633 		off += kvm_register_read(vcpu, index_reg) << scaling;
4634 	vmx_get_segment(vcpu, &s, seg_reg);
4635 
4636 	/*
4637 	 * The effective address, i.e. @off, of a memory operand is truncated
4638 	 * based on the address size of the instruction.  Note that this is
4639 	 * the *effective address*, i.e. the address prior to accounting for
4640 	 * the segment's base.
4641 	 */
4642 	if (addr_size == 1) /* 32 bit */
4643 		off &= 0xffffffff;
4644 	else if (addr_size == 0) /* 16 bit */
4645 		off &= 0xffff;
4646 
4647 	/* Checks for #GP/#SS exceptions. */
4648 	exn = false;
4649 	if (is_long_mode(vcpu)) {
4650 		/*
4651 		 * The virtual/linear address is never truncated in 64-bit
4652 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4653 		 * address when using FS/GS with a non-zero base.
4654 		 */
4655 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4656 			*ret = s.base + off;
4657 		else
4658 			*ret = off;
4659 
4660 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4661 		 * non-canonical form. This is the only check on the memory
4662 		 * destination for long mode!
4663 		 */
4664 		exn = is_noncanonical_address(*ret, vcpu);
4665 	} else {
4666 		/*
4667 		 * When not in long mode, the virtual/linear address is
4668 		 * unconditionally truncated to 32 bits regardless of the
4669 		 * address size.
4670 		 */
4671 		*ret = (s.base + off) & 0xffffffff;
4672 
4673 		/* Protected mode: apply checks for segment validity in the
4674 		 * following order:
4675 		 * - segment type check (#GP(0) may be thrown)
4676 		 * - usability check (#GP(0)/#SS(0))
4677 		 * - limit check (#GP(0)/#SS(0))
4678 		 */
4679 		if (wr)
4680 			/* #GP(0) if the destination operand is located in a
4681 			 * read-only data segment or any code segment.
4682 			 */
4683 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4684 		else
4685 			/* #GP(0) if the source operand is located in an
4686 			 * execute-only code segment
4687 			 */
4688 			exn = ((s.type & 0xa) == 8);
4689 		if (exn) {
4690 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4691 			return 1;
4692 		}
4693 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4694 		 */
4695 		exn = (s.unusable != 0);
4696 
4697 		/*
4698 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4699 		 * outside the segment limit.  All CPUs that support VMX ignore
4700 		 * limit checks for flat segments, i.e. segments with base==0,
4701 		 * limit==0xffffffff and of type expand-up data or code.
4702 		 */
4703 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4704 		     ((s.type & 8) || !(s.type & 4))))
4705 			exn = exn || ((u64)off + len - 1 > s.limit);
4706 	}
4707 	if (exn) {
4708 		kvm_queue_exception_e(vcpu,
4709 				      seg_reg == VCPU_SREG_SS ?
4710 						SS_VECTOR : GP_VECTOR,
4711 				      0);
4712 		return 1;
4713 	}
4714 
4715 	return 0;
4716 }
4717 
4718 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4719 {
4720 	struct vcpu_vmx *vmx;
4721 
4722 	if (!nested_vmx_allowed(vcpu))
4723 		return;
4724 
4725 	vmx = to_vmx(vcpu);
4726 	if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4727 		vmx->nested.msrs.entry_ctls_high |=
4728 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4729 		vmx->nested.msrs.exit_ctls_high |=
4730 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4731 	} else {
4732 		vmx->nested.msrs.entry_ctls_high &=
4733 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4734 		vmx->nested.msrs.exit_ctls_high &=
4735 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4736 	}
4737 }
4738 
4739 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4740 				int *ret)
4741 {
4742 	gva_t gva;
4743 	struct x86_exception e;
4744 	int r;
4745 
4746 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4747 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4748 				sizeof(*vmpointer), &gva)) {
4749 		*ret = 1;
4750 		return -EINVAL;
4751 	}
4752 
4753 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4754 	if (r != X86EMUL_CONTINUE) {
4755 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4756 		return -EINVAL;
4757 	}
4758 
4759 	return 0;
4760 }
4761 
4762 /*
4763  * Allocate a shadow VMCS and associate it with the currently loaded
4764  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4765  * VMCS is also VMCLEARed, so that it is ready for use.
4766  */
4767 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4768 {
4769 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4770 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4771 
4772 	/*
4773 	 * We should allocate a shadow vmcs for vmcs01 only when L1
4774 	 * executes VMXON and free it when L1 executes VMXOFF.
4775 	 * As it is invalid to execute VMXON twice, we shouldn't reach
4776 	 * here when vmcs01 already have an allocated shadow vmcs.
4777 	 */
4778 	WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4779 
4780 	if (!loaded_vmcs->shadow_vmcs) {
4781 		loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4782 		if (loaded_vmcs->shadow_vmcs)
4783 			vmcs_clear(loaded_vmcs->shadow_vmcs);
4784 	}
4785 	return loaded_vmcs->shadow_vmcs;
4786 }
4787 
4788 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4789 {
4790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4791 	int r;
4792 
4793 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4794 	if (r < 0)
4795 		goto out_vmcs02;
4796 
4797 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4798 	if (!vmx->nested.cached_vmcs12)
4799 		goto out_cached_vmcs12;
4800 
4801 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4802 	if (!vmx->nested.cached_shadow_vmcs12)
4803 		goto out_cached_shadow_vmcs12;
4804 
4805 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4806 		goto out_shadow_vmcs;
4807 
4808 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4809 		     HRTIMER_MODE_ABS_PINNED);
4810 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4811 
4812 	vmx->nested.vpid02 = allocate_vpid();
4813 
4814 	vmx->nested.vmcs02_initialized = false;
4815 	vmx->nested.vmxon = true;
4816 
4817 	if (vmx_pt_mode_is_host_guest()) {
4818 		vmx->pt_desc.guest.ctl = 0;
4819 		pt_update_intercept_for_msr(vcpu);
4820 	}
4821 
4822 	return 0;
4823 
4824 out_shadow_vmcs:
4825 	kfree(vmx->nested.cached_shadow_vmcs12);
4826 
4827 out_cached_shadow_vmcs12:
4828 	kfree(vmx->nested.cached_vmcs12);
4829 
4830 out_cached_vmcs12:
4831 	free_loaded_vmcs(&vmx->nested.vmcs02);
4832 
4833 out_vmcs02:
4834 	return -ENOMEM;
4835 }
4836 
4837 /*
4838  * Emulate the VMXON instruction.
4839  * Currently, we just remember that VMX is active, and do not save or even
4840  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4841  * do not currently need to store anything in that guest-allocated memory
4842  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4843  * argument is different from the VMXON pointer (which the spec says they do).
4844  */
4845 static int handle_vmon(struct kvm_vcpu *vcpu)
4846 {
4847 	int ret;
4848 	gpa_t vmptr;
4849 	uint32_t revision;
4850 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4851 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4852 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4853 
4854 	/*
4855 	 * The Intel VMX Instruction Reference lists a bunch of bits that are
4856 	 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4857 	 * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4858 	 * Otherwise, we should fail with #UD.  But most faulting conditions
4859 	 * have already been checked by hardware, prior to the VM-exit for
4860 	 * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4861 	 * that bit set to 1 in non-root mode.
4862 	 */
4863 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4864 		kvm_queue_exception(vcpu, UD_VECTOR);
4865 		return 1;
4866 	}
4867 
4868 	/* CPL=0 must be checked manually. */
4869 	if (vmx_get_cpl(vcpu)) {
4870 		kvm_inject_gp(vcpu, 0);
4871 		return 1;
4872 	}
4873 
4874 	if (vmx->nested.vmxon)
4875 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4876 
4877 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4878 			!= VMXON_NEEDED_FEATURES) {
4879 		kvm_inject_gp(vcpu, 0);
4880 		return 1;
4881 	}
4882 
4883 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4884 		return ret;
4885 
4886 	/*
4887 	 * SDM 3: 24.11.5
4888 	 * The first 4 bytes of VMXON region contain the supported
4889 	 * VMCS revision identifier
4890 	 *
4891 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4892 	 * which replaces physical address width with 32
4893 	 */
4894 	if (!page_address_valid(vcpu, vmptr))
4895 		return nested_vmx_failInvalid(vcpu);
4896 
4897 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4898 	    revision != VMCS12_REVISION)
4899 		return nested_vmx_failInvalid(vcpu);
4900 
4901 	vmx->nested.vmxon_ptr = vmptr;
4902 	ret = enter_vmx_operation(vcpu);
4903 	if (ret)
4904 		return ret;
4905 
4906 	return nested_vmx_succeed(vcpu);
4907 }
4908 
4909 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4910 {
4911 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4912 
4913 	if (vmx->nested.current_vmptr == -1ull)
4914 		return;
4915 
4916 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4917 
4918 	if (enable_shadow_vmcs) {
4919 		/* copy to memory all shadowed fields in case
4920 		   they were modified */
4921 		copy_shadow_to_vmcs12(vmx);
4922 		vmx_disable_shadow_vmcs(vmx);
4923 	}
4924 	vmx->nested.posted_intr_nv = -1;
4925 
4926 	/* Flush VMCS12 to guest memory */
4927 	kvm_vcpu_write_guest_page(vcpu,
4928 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
4929 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4930 
4931 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4932 
4933 	vmx->nested.current_vmptr = -1ull;
4934 }
4935 
4936 /* Emulate the VMXOFF instruction */
4937 static int handle_vmoff(struct kvm_vcpu *vcpu)
4938 {
4939 	if (!nested_vmx_check_permission(vcpu))
4940 		return 1;
4941 
4942 	free_nested(vcpu);
4943 
4944 	/* Process a latched INIT during time CPU was in VMX operation */
4945 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4946 
4947 	return nested_vmx_succeed(vcpu);
4948 }
4949 
4950 /* Emulate the VMCLEAR instruction */
4951 static int handle_vmclear(struct kvm_vcpu *vcpu)
4952 {
4953 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4954 	u32 zero = 0;
4955 	gpa_t vmptr;
4956 	u64 evmcs_gpa;
4957 	int r;
4958 
4959 	if (!nested_vmx_check_permission(vcpu))
4960 		return 1;
4961 
4962 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4963 		return r;
4964 
4965 	if (!page_address_valid(vcpu, vmptr))
4966 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4967 
4968 	if (vmptr == vmx->nested.vmxon_ptr)
4969 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4970 
4971 	/*
4972 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
4973 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4974 	 * way to distinguish it from VMCS12) and we must not corrupt it by
4975 	 * writing to the non-existent 'launch_state' field. The area doesn't
4976 	 * have to be the currently active EVMCS on the calling CPU and there's
4977 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
4978 	 * state. It is possible that the area will stay mapped as
4979 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4980 	 */
4981 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4982 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4983 		if (vmptr == vmx->nested.current_vmptr)
4984 			nested_release_vmcs12(vcpu);
4985 
4986 		kvm_vcpu_write_guest(vcpu,
4987 				     vmptr + offsetof(struct vmcs12,
4988 						      launch_state),
4989 				     &zero, sizeof(zero));
4990 	}
4991 
4992 	return nested_vmx_succeed(vcpu);
4993 }
4994 
4995 /* Emulate the VMLAUNCH instruction */
4996 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4997 {
4998 	return nested_vmx_run(vcpu, true);
4999 }
5000 
5001 /* Emulate the VMRESUME instruction */
5002 static int handle_vmresume(struct kvm_vcpu *vcpu)
5003 {
5004 
5005 	return nested_vmx_run(vcpu, false);
5006 }
5007 
5008 static int handle_vmread(struct kvm_vcpu *vcpu)
5009 {
5010 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5011 						    : get_vmcs12(vcpu);
5012 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5013 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5014 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5015 	struct x86_exception e;
5016 	unsigned long field;
5017 	u64 value;
5018 	gva_t gva = 0;
5019 	short offset;
5020 	int len, r;
5021 
5022 	if (!nested_vmx_check_permission(vcpu))
5023 		return 1;
5024 
5025 	/*
5026 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5027 	 * any VMREAD sets the ALU flags for VMfailInvalid.
5028 	 */
5029 	if (vmx->nested.current_vmptr == -1ull ||
5030 	    (is_guest_mode(vcpu) &&
5031 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5032 		return nested_vmx_failInvalid(vcpu);
5033 
5034 	/* Decode instruction info and find the field to read */
5035 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5036 
5037 	offset = vmcs_field_to_offset(field);
5038 	if (offset < 0)
5039 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5040 
5041 	if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5042 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5043 
5044 	/* Read the field, zero-extended to a u64 value */
5045 	value = vmcs12_read_any(vmcs12, field, offset);
5046 
5047 	/*
5048 	 * Now copy part of this value to register or memory, as requested.
5049 	 * Note that the number of bits actually copied is 32 or 64 depending
5050 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5051 	 */
5052 	if (instr_info & BIT(10)) {
5053 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5054 	} else {
5055 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5056 		if (get_vmx_mem_address(vcpu, exit_qualification,
5057 					instr_info, true, len, &gva))
5058 			return 1;
5059 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5060 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5061 		if (r != X86EMUL_CONTINUE)
5062 			return kvm_handle_memory_failure(vcpu, r, &e);
5063 	}
5064 
5065 	return nested_vmx_succeed(vcpu);
5066 }
5067 
5068 static bool is_shadow_field_rw(unsigned long field)
5069 {
5070 	switch (field) {
5071 #define SHADOW_FIELD_RW(x, y) case x:
5072 #include "vmcs_shadow_fields.h"
5073 		return true;
5074 	default:
5075 		break;
5076 	}
5077 	return false;
5078 }
5079 
5080 static bool is_shadow_field_ro(unsigned long field)
5081 {
5082 	switch (field) {
5083 #define SHADOW_FIELD_RO(x, y) case x:
5084 #include "vmcs_shadow_fields.h"
5085 		return true;
5086 	default:
5087 		break;
5088 	}
5089 	return false;
5090 }
5091 
5092 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5093 {
5094 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5095 						    : get_vmcs12(vcpu);
5096 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5097 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5098 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5099 	struct x86_exception e;
5100 	unsigned long field;
5101 	short offset;
5102 	gva_t gva;
5103 	int len, r;
5104 
5105 	/*
5106 	 * The value to write might be 32 or 64 bits, depending on L1's long
5107 	 * mode, and eventually we need to write that into a field of several
5108 	 * possible lengths. The code below first zero-extends the value to 64
5109 	 * bit (value), and then copies only the appropriate number of
5110 	 * bits into the vmcs12 field.
5111 	 */
5112 	u64 value = 0;
5113 
5114 	if (!nested_vmx_check_permission(vcpu))
5115 		return 1;
5116 
5117 	/*
5118 	 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5119 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5120 	 */
5121 	if (vmx->nested.current_vmptr == -1ull ||
5122 	    (is_guest_mode(vcpu) &&
5123 	     get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5124 		return nested_vmx_failInvalid(vcpu);
5125 
5126 	if (instr_info & BIT(10))
5127 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5128 	else {
5129 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5130 		if (get_vmx_mem_address(vcpu, exit_qualification,
5131 					instr_info, false, len, &gva))
5132 			return 1;
5133 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5134 		if (r != X86EMUL_CONTINUE)
5135 			return kvm_handle_memory_failure(vcpu, r, &e);
5136 	}
5137 
5138 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5139 
5140 	offset = vmcs_field_to_offset(field);
5141 	if (offset < 0)
5142 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5143 
5144 	/*
5145 	 * If the vCPU supports "VMWRITE to any supported field in the
5146 	 * VMCS," then the "read-only" fields are actually read/write.
5147 	 */
5148 	if (vmcs_field_readonly(field) &&
5149 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5150 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5151 
5152 	/*
5153 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5154 	 * vmcs12, else we may crush a field or consume a stale value.
5155 	 */
5156 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5157 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5158 
5159 	/*
5160 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5161 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5162 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5163 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5164 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5165 	 * the stripped down value, L2 sees the full value as stored by KVM).
5166 	 */
5167 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5168 		value &= 0x1f0ff;
5169 
5170 	vmcs12_write_any(vmcs12, field, offset, value);
5171 
5172 	/*
5173 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5174 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5175 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5176 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5177 	 */
5178 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5179 		/*
5180 		 * L1 can read these fields without exiting, ensure the
5181 		 * shadow VMCS is up-to-date.
5182 		 */
5183 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5184 			preempt_disable();
5185 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5186 
5187 			__vmcs_writel(field, value);
5188 
5189 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5190 			vmcs_load(vmx->loaded_vmcs->vmcs);
5191 			preempt_enable();
5192 		}
5193 		vmx->nested.dirty_vmcs12 = true;
5194 	}
5195 
5196 	return nested_vmx_succeed(vcpu);
5197 }
5198 
5199 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5200 {
5201 	vmx->nested.current_vmptr = vmptr;
5202 	if (enable_shadow_vmcs) {
5203 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5204 		vmcs_write64(VMCS_LINK_POINTER,
5205 			     __pa(vmx->vmcs01.shadow_vmcs));
5206 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5207 	}
5208 	vmx->nested.dirty_vmcs12 = true;
5209 }
5210 
5211 /* Emulate the VMPTRLD instruction */
5212 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5213 {
5214 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5215 	gpa_t vmptr;
5216 	int r;
5217 
5218 	if (!nested_vmx_check_permission(vcpu))
5219 		return 1;
5220 
5221 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5222 		return r;
5223 
5224 	if (!page_address_valid(vcpu, vmptr))
5225 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5226 
5227 	if (vmptr == vmx->nested.vmxon_ptr)
5228 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5229 
5230 	/* Forbid normal VMPTRLD if Enlightened version was used */
5231 	if (vmx->nested.hv_evmcs)
5232 		return 1;
5233 
5234 	if (vmx->nested.current_vmptr != vmptr) {
5235 		struct kvm_host_map map;
5236 		struct vmcs12 *new_vmcs12;
5237 
5238 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5239 			/*
5240 			 * Reads from an unbacked page return all 1s,
5241 			 * which means that the 32 bits located at the
5242 			 * given physical address won't match the required
5243 			 * VMCS12_REVISION identifier.
5244 			 */
5245 			return nested_vmx_fail(vcpu,
5246 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5247 		}
5248 
5249 		new_vmcs12 = map.hva;
5250 
5251 		if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5252 		    (new_vmcs12->hdr.shadow_vmcs &&
5253 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5254 			kvm_vcpu_unmap(vcpu, &map, false);
5255 			return nested_vmx_fail(vcpu,
5256 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5257 		}
5258 
5259 		nested_release_vmcs12(vcpu);
5260 
5261 		/*
5262 		 * Load VMCS12 from guest memory since it is not already
5263 		 * cached.
5264 		 */
5265 		memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5266 		kvm_vcpu_unmap(vcpu, &map, false);
5267 
5268 		set_current_vmptr(vmx, vmptr);
5269 	}
5270 
5271 	return nested_vmx_succeed(vcpu);
5272 }
5273 
5274 /* Emulate the VMPTRST instruction */
5275 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5276 {
5277 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5278 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5279 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5280 	struct x86_exception e;
5281 	gva_t gva;
5282 	int r;
5283 
5284 	if (!nested_vmx_check_permission(vcpu))
5285 		return 1;
5286 
5287 	if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
5288 		return 1;
5289 
5290 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5291 				true, sizeof(gpa_t), &gva))
5292 		return 1;
5293 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5294 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5295 					sizeof(gpa_t), &e);
5296 	if (r != X86EMUL_CONTINUE)
5297 		return kvm_handle_memory_failure(vcpu, r, &e);
5298 
5299 	return nested_vmx_succeed(vcpu);
5300 }
5301 
5302 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5303 
5304 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5305 {
5306 	return VALID_PAGE(root_hpa) &&
5307 		((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5308 }
5309 
5310 /* Emulate the INVEPT instruction */
5311 static int handle_invept(struct kvm_vcpu *vcpu)
5312 {
5313 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5314 	u32 vmx_instruction_info, types;
5315 	unsigned long type, roots_to_free;
5316 	struct kvm_mmu *mmu;
5317 	gva_t gva;
5318 	struct x86_exception e;
5319 	struct {
5320 		u64 eptp, gpa;
5321 	} operand;
5322 	int i, r;
5323 
5324 	if (!(vmx->nested.msrs.secondary_ctls_high &
5325 	      SECONDARY_EXEC_ENABLE_EPT) ||
5326 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5327 		kvm_queue_exception(vcpu, UD_VECTOR);
5328 		return 1;
5329 	}
5330 
5331 	if (!nested_vmx_check_permission(vcpu))
5332 		return 1;
5333 
5334 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5335 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5336 
5337 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5338 
5339 	if (type >= 32 || !(types & (1 << type)))
5340 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5341 
5342 	/* According to the Intel VMX instruction reference, the memory
5343 	 * operand is read even if it isn't needed (e.g., for type==global)
5344 	 */
5345 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5346 			vmx_instruction_info, false, sizeof(operand), &gva))
5347 		return 1;
5348 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5349 	if (r != X86EMUL_CONTINUE)
5350 		return kvm_handle_memory_failure(vcpu, r, &e);
5351 
5352 	/*
5353 	 * Nested EPT roots are always held through guest_mmu,
5354 	 * not root_mmu.
5355 	 */
5356 	mmu = &vcpu->arch.guest_mmu;
5357 
5358 	switch (type) {
5359 	case VMX_EPT_EXTENT_CONTEXT:
5360 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5361 			return nested_vmx_fail(vcpu,
5362 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5363 
5364 		roots_to_free = 0;
5365 		if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5366 					    operand.eptp))
5367 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5368 
5369 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5370 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5371 						    mmu->prev_roots[i].pgd,
5372 						    operand.eptp))
5373 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5374 		}
5375 		break;
5376 	case VMX_EPT_EXTENT_GLOBAL:
5377 		roots_to_free = KVM_MMU_ROOTS_ALL;
5378 		break;
5379 	default:
5380 		BUG();
5381 		break;
5382 	}
5383 
5384 	if (roots_to_free)
5385 		kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5386 
5387 	return nested_vmx_succeed(vcpu);
5388 }
5389 
5390 static int handle_invvpid(struct kvm_vcpu *vcpu)
5391 {
5392 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5393 	u32 vmx_instruction_info;
5394 	unsigned long type, types;
5395 	gva_t gva;
5396 	struct x86_exception e;
5397 	struct {
5398 		u64 vpid;
5399 		u64 gla;
5400 	} operand;
5401 	u16 vpid02;
5402 	int r;
5403 
5404 	if (!(vmx->nested.msrs.secondary_ctls_high &
5405 	      SECONDARY_EXEC_ENABLE_VPID) ||
5406 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5407 		kvm_queue_exception(vcpu, UD_VECTOR);
5408 		return 1;
5409 	}
5410 
5411 	if (!nested_vmx_check_permission(vcpu))
5412 		return 1;
5413 
5414 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5415 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5416 
5417 	types = (vmx->nested.msrs.vpid_caps &
5418 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5419 
5420 	if (type >= 32 || !(types & (1 << type)))
5421 		return nested_vmx_fail(vcpu,
5422 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5423 
5424 	/* according to the intel vmx instruction reference, the memory
5425 	 * operand is read even if it isn't needed (e.g., for type==global)
5426 	 */
5427 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5428 			vmx_instruction_info, false, sizeof(operand), &gva))
5429 		return 1;
5430 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5431 	if (r != X86EMUL_CONTINUE)
5432 		return kvm_handle_memory_failure(vcpu, r, &e);
5433 
5434 	if (operand.vpid >> 16)
5435 		return nested_vmx_fail(vcpu,
5436 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5437 
5438 	vpid02 = nested_get_vpid02(vcpu);
5439 	switch (type) {
5440 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5441 		if (!operand.vpid ||
5442 		    is_noncanonical_address(operand.gla, vcpu))
5443 			return nested_vmx_fail(vcpu,
5444 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5445 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5446 		break;
5447 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5448 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5449 		if (!operand.vpid)
5450 			return nested_vmx_fail(vcpu,
5451 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5452 		vpid_sync_context(vpid02);
5453 		break;
5454 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5455 		vpid_sync_context(vpid02);
5456 		break;
5457 	default:
5458 		WARN_ON_ONCE(1);
5459 		return kvm_skip_emulated_instruction(vcpu);
5460 	}
5461 
5462 	/*
5463 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5464 	 * linear mappings for L2 (tagged with L2's VPID).  Free all roots as
5465 	 * VPIDs are not tracked in the MMU role.
5466 	 *
5467 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5468 	 * an MMU when EPT is disabled.
5469 	 *
5470 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5471 	 */
5472 	if (!enable_ept)
5473 		kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
5474 				   KVM_MMU_ROOTS_ALL);
5475 
5476 	return nested_vmx_succeed(vcpu);
5477 }
5478 
5479 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5480 				     struct vmcs12 *vmcs12)
5481 {
5482 	u32 index = kvm_rcx_read(vcpu);
5483 	u64 new_eptp;
5484 	bool accessed_dirty;
5485 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5486 
5487 	if (!nested_cpu_has_eptp_switching(vmcs12) ||
5488 	    !nested_cpu_has_ept(vmcs12))
5489 		return 1;
5490 
5491 	if (index >= VMFUNC_EPTP_ENTRIES)
5492 		return 1;
5493 
5494 
5495 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5496 				     &new_eptp, index * 8, 8))
5497 		return 1;
5498 
5499 	accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
5500 
5501 	/*
5502 	 * If the (L2) guest does a vmfunc to the currently
5503 	 * active ept pointer, we don't have to do anything else
5504 	 */
5505 	if (vmcs12->ept_pointer != new_eptp) {
5506 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5507 			return 1;
5508 
5509 		mmu->ept_ad = accessed_dirty;
5510 		mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5511 		vmcs12->ept_pointer = new_eptp;
5512 
5513 		kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
5514 	}
5515 
5516 	return 0;
5517 }
5518 
5519 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5520 {
5521 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5522 	struct vmcs12 *vmcs12;
5523 	u32 function = kvm_rax_read(vcpu);
5524 
5525 	/*
5526 	 * VMFUNC is only supported for nested guests, but we always enable the
5527 	 * secondary control for simplicity; for non-nested mode, fake that we
5528 	 * didn't by injecting #UD.
5529 	 */
5530 	if (!is_guest_mode(vcpu)) {
5531 		kvm_queue_exception(vcpu, UD_VECTOR);
5532 		return 1;
5533 	}
5534 
5535 	vmcs12 = get_vmcs12(vcpu);
5536 	if ((vmcs12->vm_function_control & (1 << function)) == 0)
5537 		goto fail;
5538 
5539 	switch (function) {
5540 	case 0:
5541 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5542 			goto fail;
5543 		break;
5544 	default:
5545 		goto fail;
5546 	}
5547 	return kvm_skip_emulated_instruction(vcpu);
5548 
5549 fail:
5550 	/*
5551 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5552 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5553 	 * EXIT_REASON_VMFUNC as the exit reason.
5554 	 */
5555 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5556 			  vmx_get_intr_info(vcpu),
5557 			  vmx_get_exit_qual(vcpu));
5558 	return 1;
5559 }
5560 
5561 /*
5562  * Return true if an IO instruction with the specified port and size should cause
5563  * a VM-exit into L1.
5564  */
5565 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5566 				 int size)
5567 {
5568 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5569 	gpa_t bitmap, last_bitmap;
5570 	u8 b;
5571 
5572 	last_bitmap = (gpa_t)-1;
5573 	b = -1;
5574 
5575 	while (size > 0) {
5576 		if (port < 0x8000)
5577 			bitmap = vmcs12->io_bitmap_a;
5578 		else if (port < 0x10000)
5579 			bitmap = vmcs12->io_bitmap_b;
5580 		else
5581 			return true;
5582 		bitmap += (port & 0x7fff) / 8;
5583 
5584 		if (last_bitmap != bitmap)
5585 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5586 				return true;
5587 		if (b & (1 << (port & 7)))
5588 			return true;
5589 
5590 		port++;
5591 		size--;
5592 		last_bitmap = bitmap;
5593 	}
5594 
5595 	return false;
5596 }
5597 
5598 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5599 				       struct vmcs12 *vmcs12)
5600 {
5601 	unsigned long exit_qualification;
5602 	unsigned short port;
5603 	int size;
5604 
5605 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5606 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5607 
5608 	exit_qualification = vmx_get_exit_qual(vcpu);
5609 
5610 	port = exit_qualification >> 16;
5611 	size = (exit_qualification & 7) + 1;
5612 
5613 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5614 }
5615 
5616 /*
5617  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5618  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5619  * disinterest in the current event (read or write a specific MSR) by using an
5620  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5621  */
5622 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5623 					struct vmcs12 *vmcs12,
5624 					union vmx_exit_reason exit_reason)
5625 {
5626 	u32 msr_index = kvm_rcx_read(vcpu);
5627 	gpa_t bitmap;
5628 
5629 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5630 		return true;
5631 
5632 	/*
5633 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5634 	 * for the four combinations of read/write and low/high MSR numbers.
5635 	 * First we need to figure out which of the four to use:
5636 	 */
5637 	bitmap = vmcs12->msr_bitmap;
5638 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5639 		bitmap += 2048;
5640 	if (msr_index >= 0xc0000000) {
5641 		msr_index -= 0xc0000000;
5642 		bitmap += 1024;
5643 	}
5644 
5645 	/* Then read the msr_index'th bit from this bitmap: */
5646 	if (msr_index < 1024*8) {
5647 		unsigned char b;
5648 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5649 			return true;
5650 		return 1 & (b >> (msr_index & 7));
5651 	} else
5652 		return true; /* let L1 handle the wrong parameter */
5653 }
5654 
5655 /*
5656  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5657  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5658  * intercept (via guest_host_mask etc.) the current event.
5659  */
5660 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5661 	struct vmcs12 *vmcs12)
5662 {
5663 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5664 	int cr = exit_qualification & 15;
5665 	int reg;
5666 	unsigned long val;
5667 
5668 	switch ((exit_qualification >> 4) & 3) {
5669 	case 0: /* mov to cr */
5670 		reg = (exit_qualification >> 8) & 15;
5671 		val = kvm_register_read(vcpu, reg);
5672 		switch (cr) {
5673 		case 0:
5674 			if (vmcs12->cr0_guest_host_mask &
5675 			    (val ^ vmcs12->cr0_read_shadow))
5676 				return true;
5677 			break;
5678 		case 3:
5679 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5680 				return true;
5681 			break;
5682 		case 4:
5683 			if (vmcs12->cr4_guest_host_mask &
5684 			    (vmcs12->cr4_read_shadow ^ val))
5685 				return true;
5686 			break;
5687 		case 8:
5688 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5689 				return true;
5690 			break;
5691 		}
5692 		break;
5693 	case 2: /* clts */
5694 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5695 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5696 			return true;
5697 		break;
5698 	case 1: /* mov from cr */
5699 		switch (cr) {
5700 		case 3:
5701 			if (vmcs12->cpu_based_vm_exec_control &
5702 			    CPU_BASED_CR3_STORE_EXITING)
5703 				return true;
5704 			break;
5705 		case 8:
5706 			if (vmcs12->cpu_based_vm_exec_control &
5707 			    CPU_BASED_CR8_STORE_EXITING)
5708 				return true;
5709 			break;
5710 		}
5711 		break;
5712 	case 3: /* lmsw */
5713 		/*
5714 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5715 		 * cr0. Other attempted changes are ignored, with no exit.
5716 		 */
5717 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5718 		if (vmcs12->cr0_guest_host_mask & 0xe &
5719 		    (val ^ vmcs12->cr0_read_shadow))
5720 			return true;
5721 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5722 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5723 		    (val & 0x1))
5724 			return true;
5725 		break;
5726 	}
5727 	return false;
5728 }
5729 
5730 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5731 					  struct vmcs12 *vmcs12)
5732 {
5733 	u32 encls_leaf;
5734 
5735 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5736 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5737 		return false;
5738 
5739 	encls_leaf = kvm_rax_read(vcpu);
5740 	if (encls_leaf > 62)
5741 		encls_leaf = 63;
5742 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5743 }
5744 
5745 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5746 	struct vmcs12 *vmcs12, gpa_t bitmap)
5747 {
5748 	u32 vmx_instruction_info;
5749 	unsigned long field;
5750 	u8 b;
5751 
5752 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5753 		return true;
5754 
5755 	/* Decode instruction info and find the field to access */
5756 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5757 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5758 
5759 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5760 	if (field >> 15)
5761 		return true;
5762 
5763 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5764 		return true;
5765 
5766 	return 1 & (b >> (field & 7));
5767 }
5768 
5769 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5770 {
5771 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5772 
5773 	if (nested_cpu_has_mtf(vmcs12))
5774 		return true;
5775 
5776 	/*
5777 	 * An MTF VM-exit may be injected into the guest by setting the
5778 	 * interruption-type to 7 (other event) and the vector field to 0. Such
5779 	 * is the case regardless of the 'monitor trap flag' VM-execution
5780 	 * control.
5781 	 */
5782 	return entry_intr_info == (INTR_INFO_VALID_MASK
5783 				   | INTR_TYPE_OTHER_EVENT);
5784 }
5785 
5786 /*
5787  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5788  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5789  */
5790 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5791 				     union vmx_exit_reason exit_reason)
5792 {
5793 	u32 intr_info;
5794 
5795 	switch ((u16)exit_reason.basic) {
5796 	case EXIT_REASON_EXCEPTION_NMI:
5797 		intr_info = vmx_get_intr_info(vcpu);
5798 		if (is_nmi(intr_info))
5799 			return true;
5800 		else if (is_page_fault(intr_info))
5801 			return vcpu->arch.apf.host_apf_flags || !enable_ept;
5802 		else if (is_debug(intr_info) &&
5803 			 vcpu->guest_debug &
5804 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5805 			return true;
5806 		else if (is_breakpoint(intr_info) &&
5807 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5808 			return true;
5809 		return false;
5810 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5811 		return true;
5812 	case EXIT_REASON_MCE_DURING_VMENTRY:
5813 		return true;
5814 	case EXIT_REASON_EPT_VIOLATION:
5815 		/*
5816 		 * L0 always deals with the EPT violation. If nested EPT is
5817 		 * used, and the nested mmu code discovers that the address is
5818 		 * missing in the guest EPT table (EPT12), the EPT violation
5819 		 * will be injected with nested_ept_inject_page_fault()
5820 		 */
5821 		return true;
5822 	case EXIT_REASON_EPT_MISCONFIG:
5823 		/*
5824 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5825 		 * table (shadow on EPT) or a merged EPT table that L0 built
5826 		 * (EPT on EPT). So any problems with the structure of the
5827 		 * table is L0's fault.
5828 		 */
5829 		return true;
5830 	case EXIT_REASON_PREEMPTION_TIMER:
5831 		return true;
5832 	case EXIT_REASON_PML_FULL:
5833 		/*
5834 		 * PML is emulated for an L1 VMM and should never be enabled in
5835 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5836 		 */
5837 		return true;
5838 	case EXIT_REASON_VMFUNC:
5839 		/* VM functions are emulated through L2->L0 vmexits. */
5840 		return true;
5841 	default:
5842 		break;
5843 	}
5844 	return false;
5845 }
5846 
5847 /*
5848  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5849  * is_guest_mode (L2).
5850  */
5851 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5852 				     union vmx_exit_reason exit_reason)
5853 {
5854 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5855 	u32 intr_info;
5856 
5857 	switch ((u16)exit_reason.basic) {
5858 	case EXIT_REASON_EXCEPTION_NMI:
5859 		intr_info = vmx_get_intr_info(vcpu);
5860 		if (is_nmi(intr_info))
5861 			return true;
5862 		else if (is_page_fault(intr_info))
5863 			return true;
5864 		return vmcs12->exception_bitmap &
5865 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5866 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5867 		return nested_exit_on_intr(vcpu);
5868 	case EXIT_REASON_TRIPLE_FAULT:
5869 		return true;
5870 	case EXIT_REASON_INTERRUPT_WINDOW:
5871 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5872 	case EXIT_REASON_NMI_WINDOW:
5873 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5874 	case EXIT_REASON_TASK_SWITCH:
5875 		return true;
5876 	case EXIT_REASON_CPUID:
5877 		return true;
5878 	case EXIT_REASON_HLT:
5879 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5880 	case EXIT_REASON_INVD:
5881 		return true;
5882 	case EXIT_REASON_INVLPG:
5883 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5884 	case EXIT_REASON_RDPMC:
5885 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5886 	case EXIT_REASON_RDRAND:
5887 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5888 	case EXIT_REASON_RDSEED:
5889 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5890 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5891 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5892 	case EXIT_REASON_VMREAD:
5893 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5894 			vmcs12->vmread_bitmap);
5895 	case EXIT_REASON_VMWRITE:
5896 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5897 			vmcs12->vmwrite_bitmap);
5898 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5899 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5900 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5901 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5902 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5903 		/*
5904 		 * VMX instructions trap unconditionally. This allows L1 to
5905 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5906 		 */
5907 		return true;
5908 	case EXIT_REASON_CR_ACCESS:
5909 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5910 	case EXIT_REASON_DR_ACCESS:
5911 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5912 	case EXIT_REASON_IO_INSTRUCTION:
5913 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
5914 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5915 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5916 	case EXIT_REASON_MSR_READ:
5917 	case EXIT_REASON_MSR_WRITE:
5918 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5919 	case EXIT_REASON_INVALID_STATE:
5920 		return true;
5921 	case EXIT_REASON_MWAIT_INSTRUCTION:
5922 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5923 	case EXIT_REASON_MONITOR_TRAP_FLAG:
5924 		return nested_vmx_exit_handled_mtf(vmcs12);
5925 	case EXIT_REASON_MONITOR_INSTRUCTION:
5926 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5927 	case EXIT_REASON_PAUSE_INSTRUCTION:
5928 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5929 			nested_cpu_has2(vmcs12,
5930 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5931 	case EXIT_REASON_MCE_DURING_VMENTRY:
5932 		return true;
5933 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5934 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5935 	case EXIT_REASON_APIC_ACCESS:
5936 	case EXIT_REASON_APIC_WRITE:
5937 	case EXIT_REASON_EOI_INDUCED:
5938 		/*
5939 		 * The controls for "virtualize APIC accesses," "APIC-
5940 		 * register virtualization," and "virtual-interrupt
5941 		 * delivery" only come from vmcs12.
5942 		 */
5943 		return true;
5944 	case EXIT_REASON_INVPCID:
5945 		return
5946 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5947 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5948 	case EXIT_REASON_WBINVD:
5949 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5950 	case EXIT_REASON_XSETBV:
5951 		return true;
5952 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5953 		/*
5954 		 * This should never happen, since it is not possible to
5955 		 * set XSS to a non-zero value---neither in L1 nor in L2.
5956 		 * If if it were, XSS would have to be checked against
5957 		 * the XSS exit bitmap in vmcs12.
5958 		 */
5959 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5960 	case EXIT_REASON_UMWAIT:
5961 	case EXIT_REASON_TPAUSE:
5962 		return nested_cpu_has2(vmcs12,
5963 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5964 	case EXIT_REASON_ENCLS:
5965 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
5966 	default:
5967 		return true;
5968 	}
5969 }
5970 
5971 /*
5972  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
5973  * reflected into L1.
5974  */
5975 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
5976 {
5977 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5978 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5979 	unsigned long exit_qual;
5980 	u32 exit_intr_info;
5981 
5982 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5983 
5984 	/*
5985 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
5986 	 * has already loaded L2's state.
5987 	 */
5988 	if (unlikely(vmx->fail)) {
5989 		trace_kvm_nested_vmenter_failed(
5990 			"hardware VM-instruction error: ",
5991 			vmcs_read32(VM_INSTRUCTION_ERROR));
5992 		exit_intr_info = 0;
5993 		exit_qual = 0;
5994 		goto reflect_vmexit;
5995 	}
5996 
5997 	trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
5998 
5999 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6000 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6001 		return false;
6002 
6003 	/* If L1 doesn't want the exit, handle it in L0. */
6004 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6005 		return false;
6006 
6007 	/*
6008 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6009 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6010 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6011 	 * interrupts are never reflected to L1 so it's a non-issue.
6012 	 */
6013 	exit_intr_info = vmx_get_intr_info(vcpu);
6014 	if (is_exception_with_error_code(exit_intr_info)) {
6015 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6016 
6017 		vmcs12->vm_exit_intr_error_code =
6018 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6019 	}
6020 	exit_qual = vmx_get_exit_qual(vcpu);
6021 
6022 reflect_vmexit:
6023 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6024 	return true;
6025 }
6026 
6027 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6028 				struct kvm_nested_state __user *user_kvm_nested_state,
6029 				u32 user_data_size)
6030 {
6031 	struct vcpu_vmx *vmx;
6032 	struct vmcs12 *vmcs12;
6033 	struct kvm_nested_state kvm_state = {
6034 		.flags = 0,
6035 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6036 		.size = sizeof(kvm_state),
6037 		.hdr.vmx.flags = 0,
6038 		.hdr.vmx.vmxon_pa = -1ull,
6039 		.hdr.vmx.vmcs12_pa = -1ull,
6040 		.hdr.vmx.preemption_timer_deadline = 0,
6041 	};
6042 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6043 		&user_kvm_nested_state->data.vmx[0];
6044 
6045 	if (!vcpu)
6046 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6047 
6048 	vmx = to_vmx(vcpu);
6049 	vmcs12 = get_vmcs12(vcpu);
6050 
6051 	if (nested_vmx_allowed(vcpu) &&
6052 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6053 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6054 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6055 
6056 		if (vmx_has_valid_vmcs12(vcpu)) {
6057 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6058 
6059 			if (vmx->nested.hv_evmcs)
6060 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6061 
6062 			if (is_guest_mode(vcpu) &&
6063 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6064 			    vmcs12->vmcs_link_pointer != -1ull)
6065 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6066 		}
6067 
6068 		if (vmx->nested.smm.vmxon)
6069 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6070 
6071 		if (vmx->nested.smm.guest_mode)
6072 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6073 
6074 		if (is_guest_mode(vcpu)) {
6075 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6076 
6077 			if (vmx->nested.nested_run_pending)
6078 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6079 
6080 			if (vmx->nested.mtf_pending)
6081 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6082 
6083 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6084 			    vmx->nested.has_preemption_timer_deadline) {
6085 				kvm_state.hdr.vmx.flags |=
6086 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6087 				kvm_state.hdr.vmx.preemption_timer_deadline =
6088 					vmx->nested.preemption_timer_deadline;
6089 			}
6090 		}
6091 	}
6092 
6093 	if (user_data_size < kvm_state.size)
6094 		goto out;
6095 
6096 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6097 		return -EFAULT;
6098 
6099 	if (!vmx_has_valid_vmcs12(vcpu))
6100 		goto out;
6101 
6102 	/*
6103 	 * When running L2, the authoritative vmcs12 state is in the
6104 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6105 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6106 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6107 	 * vmcs12 state is in the vmcs12 already.
6108 	 */
6109 	if (is_guest_mode(vcpu)) {
6110 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6111 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6112 	} else  {
6113 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6114 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6115 			if (vmx->nested.hv_evmcs)
6116 				copy_enlightened_to_vmcs12(vmx);
6117 			else if (enable_shadow_vmcs)
6118 				copy_shadow_to_vmcs12(vmx);
6119 		}
6120 	}
6121 
6122 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6123 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6124 
6125 	/*
6126 	 * Copy over the full allocated size of vmcs12 rather than just the size
6127 	 * of the struct.
6128 	 */
6129 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6130 		return -EFAULT;
6131 
6132 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6133 	    vmcs12->vmcs_link_pointer != -1ull) {
6134 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6135 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6136 			return -EFAULT;
6137 	}
6138 out:
6139 	return kvm_state.size;
6140 }
6141 
6142 /*
6143  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6144  */
6145 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6146 {
6147 	if (is_guest_mode(vcpu)) {
6148 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6149 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6150 	}
6151 	free_nested(vcpu);
6152 }
6153 
6154 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6155 				struct kvm_nested_state __user *user_kvm_nested_state,
6156 				struct kvm_nested_state *kvm_state)
6157 {
6158 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6159 	struct vmcs12 *vmcs12;
6160 	enum vm_entry_failure_code ignored;
6161 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6162 		&user_kvm_nested_state->data.vmx[0];
6163 	int ret;
6164 
6165 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6166 		return -EINVAL;
6167 
6168 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6169 		if (kvm_state->hdr.vmx.smm.flags)
6170 			return -EINVAL;
6171 
6172 		if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6173 			return -EINVAL;
6174 
6175 		/*
6176 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6177 		 * enable eVMCS capability on vCPU. However, since then
6178 		 * code was changed such that flag signals vmcs12 should
6179 		 * be copied into eVMCS in guest memory.
6180 		 *
6181 		 * To preserve backwards compatability, allow user
6182 		 * to set this flag even when there is no VMXON region.
6183 		 */
6184 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6185 			return -EINVAL;
6186 	} else {
6187 		if (!nested_vmx_allowed(vcpu))
6188 			return -EINVAL;
6189 
6190 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6191 			return -EINVAL;
6192 	}
6193 
6194 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6195 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6196 		return -EINVAL;
6197 
6198 	if (kvm_state->hdr.vmx.smm.flags &
6199 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6200 		return -EINVAL;
6201 
6202 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6203 		return -EINVAL;
6204 
6205 	/*
6206 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6207 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6208 	 * must be zero.
6209 	 */
6210 	if (is_smm(vcpu) ?
6211 		(kvm_state->flags &
6212 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6213 		: kvm_state->hdr.vmx.smm.flags)
6214 		return -EINVAL;
6215 
6216 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6217 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6218 		return -EINVAL;
6219 
6220 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6221 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6222 			return -EINVAL;
6223 
6224 	vmx_leave_nested(vcpu);
6225 
6226 	if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6227 		return 0;
6228 
6229 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6230 	ret = enter_vmx_operation(vcpu);
6231 	if (ret)
6232 		return ret;
6233 
6234 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6235 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6236 		/* See vmx_has_valid_vmcs12.  */
6237 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6238 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6239 		    (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6240 			return -EINVAL;
6241 		else
6242 			return 0;
6243 	}
6244 
6245 	if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6246 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6247 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6248 			return -EINVAL;
6249 
6250 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6251 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6252 		/*
6253 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6254 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6255 		 * restored yet. EVMCS will be mapped from
6256 		 * nested_get_vmcs12_pages().
6257 		 */
6258 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6259 	} else {
6260 		return -EINVAL;
6261 	}
6262 
6263 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6264 		vmx->nested.smm.vmxon = true;
6265 		vmx->nested.vmxon = false;
6266 
6267 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6268 			vmx->nested.smm.guest_mode = true;
6269 	}
6270 
6271 	vmcs12 = get_vmcs12(vcpu);
6272 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6273 		return -EFAULT;
6274 
6275 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6276 		return -EINVAL;
6277 
6278 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6279 		return 0;
6280 
6281 	vmx->nested.nested_run_pending =
6282 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6283 
6284 	vmx->nested.mtf_pending =
6285 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6286 
6287 	ret = -EINVAL;
6288 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6289 	    vmcs12->vmcs_link_pointer != -1ull) {
6290 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6291 
6292 		if (kvm_state->size <
6293 		    sizeof(*kvm_state) +
6294 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6295 			goto error_guest_mode;
6296 
6297 		if (copy_from_user(shadow_vmcs12,
6298 				   user_vmx_nested_state->shadow_vmcs12,
6299 				   sizeof(*shadow_vmcs12))) {
6300 			ret = -EFAULT;
6301 			goto error_guest_mode;
6302 		}
6303 
6304 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6305 		    !shadow_vmcs12->hdr.shadow_vmcs)
6306 			goto error_guest_mode;
6307 	}
6308 
6309 	vmx->nested.has_preemption_timer_deadline = false;
6310 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6311 		vmx->nested.has_preemption_timer_deadline = true;
6312 		vmx->nested.preemption_timer_deadline =
6313 			kvm_state->hdr.vmx.preemption_timer_deadline;
6314 	}
6315 
6316 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6317 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6318 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6319 		goto error_guest_mode;
6320 
6321 	vmx->nested.dirty_vmcs12 = true;
6322 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6323 	if (ret)
6324 		goto error_guest_mode;
6325 
6326 	return 0;
6327 
6328 error_guest_mode:
6329 	vmx->nested.nested_run_pending = 0;
6330 	return ret;
6331 }
6332 
6333 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6334 {
6335 	if (enable_shadow_vmcs) {
6336 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6337 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6338 	}
6339 }
6340 
6341 /*
6342  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6343  * returned for the various VMX controls MSRs when nested VMX is enabled.
6344  * The same values should also be used to verify that vmcs12 control fields are
6345  * valid during nested entry from L1 to L2.
6346  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6347  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6348  * bit in the high half is on if the corresponding bit in the control field
6349  * may be on. See also vmx_control_verify().
6350  */
6351 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6352 {
6353 	/*
6354 	 * Note that as a general rule, the high half of the MSRs (bits in
6355 	 * the control fields which may be 1) should be initialized by the
6356 	 * intersection of the underlying hardware's MSR (i.e., features which
6357 	 * can be supported) and the list of features we want to expose -
6358 	 * because they are known to be properly supported in our code.
6359 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6360 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6361 	 * reason is that if one of these bits is necessary, it will appear
6362 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6363 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6364 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6365 	 * These rules have exceptions below.
6366 	 */
6367 
6368 	/* pin-based controls */
6369 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6370 		msrs->pinbased_ctls_low,
6371 		msrs->pinbased_ctls_high);
6372 	msrs->pinbased_ctls_low |=
6373 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6374 	msrs->pinbased_ctls_high &=
6375 		PIN_BASED_EXT_INTR_MASK |
6376 		PIN_BASED_NMI_EXITING |
6377 		PIN_BASED_VIRTUAL_NMIS |
6378 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6379 	msrs->pinbased_ctls_high |=
6380 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6381 		PIN_BASED_VMX_PREEMPTION_TIMER;
6382 
6383 	/* exit controls */
6384 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6385 		msrs->exit_ctls_low,
6386 		msrs->exit_ctls_high);
6387 	msrs->exit_ctls_low =
6388 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6389 
6390 	msrs->exit_ctls_high &=
6391 #ifdef CONFIG_X86_64
6392 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6393 #endif
6394 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6395 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6396 	msrs->exit_ctls_high |=
6397 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6398 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6399 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6400 
6401 	/* We support free control of debug control saving. */
6402 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6403 
6404 	/* entry controls */
6405 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6406 		msrs->entry_ctls_low,
6407 		msrs->entry_ctls_high);
6408 	msrs->entry_ctls_low =
6409 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6410 	msrs->entry_ctls_high &=
6411 #ifdef CONFIG_X86_64
6412 		VM_ENTRY_IA32E_MODE |
6413 #endif
6414 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6415 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6416 	msrs->entry_ctls_high |=
6417 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6418 
6419 	/* We support free control of debug control loading. */
6420 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6421 
6422 	/* cpu-based controls */
6423 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6424 		msrs->procbased_ctls_low,
6425 		msrs->procbased_ctls_high);
6426 	msrs->procbased_ctls_low =
6427 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6428 	msrs->procbased_ctls_high &=
6429 		CPU_BASED_INTR_WINDOW_EXITING |
6430 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6431 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6432 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6433 		CPU_BASED_CR3_STORE_EXITING |
6434 #ifdef CONFIG_X86_64
6435 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6436 #endif
6437 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6438 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6439 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6440 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6441 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6442 	/*
6443 	 * We can allow some features even when not supported by the
6444 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6445 	 * can use it to avoid exits to L1 - even when L0 runs L2
6446 	 * without MSR bitmaps.
6447 	 */
6448 	msrs->procbased_ctls_high |=
6449 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6450 		CPU_BASED_USE_MSR_BITMAPS;
6451 
6452 	/* We support free control of CR3 access interception. */
6453 	msrs->procbased_ctls_low &=
6454 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6455 
6456 	/*
6457 	 * secondary cpu-based controls.  Do not include those that
6458 	 * depend on CPUID bits, they are added later by
6459 	 * vmx_vcpu_after_set_cpuid.
6460 	 */
6461 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6462 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6463 		      msrs->secondary_ctls_low,
6464 		      msrs->secondary_ctls_high);
6465 
6466 	msrs->secondary_ctls_low = 0;
6467 	msrs->secondary_ctls_high &=
6468 		SECONDARY_EXEC_DESC |
6469 		SECONDARY_EXEC_ENABLE_RDTSCP |
6470 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6471 		SECONDARY_EXEC_WBINVD_EXITING |
6472 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6473 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6474 		SECONDARY_EXEC_RDRAND_EXITING |
6475 		SECONDARY_EXEC_ENABLE_INVPCID |
6476 		SECONDARY_EXEC_RDSEED_EXITING |
6477 		SECONDARY_EXEC_XSAVES;
6478 
6479 	/*
6480 	 * We can emulate "VMCS shadowing," even if the hardware
6481 	 * doesn't support it.
6482 	 */
6483 	msrs->secondary_ctls_high |=
6484 		SECONDARY_EXEC_SHADOW_VMCS;
6485 
6486 	if (enable_ept) {
6487 		/* nested EPT: emulate EPT also to L1 */
6488 		msrs->secondary_ctls_high |=
6489 			SECONDARY_EXEC_ENABLE_EPT;
6490 		msrs->ept_caps =
6491 			VMX_EPT_PAGE_WALK_4_BIT |
6492 			VMX_EPT_PAGE_WALK_5_BIT |
6493 			VMX_EPTP_WB_BIT |
6494 			VMX_EPT_INVEPT_BIT |
6495 			VMX_EPT_EXECUTE_ONLY_BIT;
6496 
6497 		msrs->ept_caps &= ept_caps;
6498 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6499 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6500 			VMX_EPT_1GB_PAGE_BIT;
6501 		if (enable_ept_ad_bits) {
6502 			msrs->secondary_ctls_high |=
6503 				SECONDARY_EXEC_ENABLE_PML;
6504 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6505 		}
6506 	}
6507 
6508 	if (cpu_has_vmx_vmfunc()) {
6509 		msrs->secondary_ctls_high |=
6510 			SECONDARY_EXEC_ENABLE_VMFUNC;
6511 		/*
6512 		 * Advertise EPTP switching unconditionally
6513 		 * since we emulate it
6514 		 */
6515 		if (enable_ept)
6516 			msrs->vmfunc_controls =
6517 				VMX_VMFUNC_EPTP_SWITCHING;
6518 	}
6519 
6520 	/*
6521 	 * Old versions of KVM use the single-context version without
6522 	 * checking for support, so declare that it is supported even
6523 	 * though it is treated as global context.  The alternative is
6524 	 * not failing the single-context invvpid, and it is worse.
6525 	 */
6526 	if (enable_vpid) {
6527 		msrs->secondary_ctls_high |=
6528 			SECONDARY_EXEC_ENABLE_VPID;
6529 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6530 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6531 	}
6532 
6533 	if (enable_unrestricted_guest)
6534 		msrs->secondary_ctls_high |=
6535 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6536 
6537 	if (flexpriority_enabled)
6538 		msrs->secondary_ctls_high |=
6539 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6540 
6541 	if (enable_sgx)
6542 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6543 
6544 	/* miscellaneous data */
6545 	rdmsr(MSR_IA32_VMX_MISC,
6546 		msrs->misc_low,
6547 		msrs->misc_high);
6548 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6549 	msrs->misc_low |=
6550 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6551 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6552 		VMX_MISC_ACTIVITY_HLT |
6553 		VMX_MISC_ACTIVITY_WAIT_SIPI;
6554 	msrs->misc_high = 0;
6555 
6556 	/*
6557 	 * This MSR reports some information about VMX support. We
6558 	 * should return information about the VMX we emulate for the
6559 	 * guest, and the VMCS structure we give it - not about the
6560 	 * VMX support of the underlying hardware.
6561 	 */
6562 	msrs->basic =
6563 		VMCS12_REVISION |
6564 		VMX_BASIC_TRUE_CTLS |
6565 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6566 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6567 
6568 	if (cpu_has_vmx_basic_inout())
6569 		msrs->basic |= VMX_BASIC_INOUT;
6570 
6571 	/*
6572 	 * These MSRs specify bits which the guest must keep fixed on
6573 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6574 	 * We picked the standard core2 setting.
6575 	 */
6576 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6577 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6578 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6579 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6580 
6581 	/* These MSRs specify bits which the guest must keep fixed off. */
6582 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6583 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6584 
6585 	/* highest index: VMX_PREEMPTION_TIMER_VALUE */
6586 	msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6587 }
6588 
6589 void nested_vmx_hardware_unsetup(void)
6590 {
6591 	int i;
6592 
6593 	if (enable_shadow_vmcs) {
6594 		for (i = 0; i < VMX_BITMAP_NR; i++)
6595 			free_page((unsigned long)vmx_bitmap[i]);
6596 	}
6597 }
6598 
6599 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6600 {
6601 	int i;
6602 
6603 	if (!cpu_has_vmx_shadow_vmcs())
6604 		enable_shadow_vmcs = 0;
6605 	if (enable_shadow_vmcs) {
6606 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6607 			/*
6608 			 * The vmx_bitmap is not tied to a VM and so should
6609 			 * not be charged to a memcg.
6610 			 */
6611 			vmx_bitmap[i] = (unsigned long *)
6612 				__get_free_page(GFP_KERNEL);
6613 			if (!vmx_bitmap[i]) {
6614 				nested_vmx_hardware_unsetup();
6615 				return -ENOMEM;
6616 			}
6617 		}
6618 
6619 		init_vmcs_shadow_fields();
6620 	}
6621 
6622 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6623 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6624 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6625 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6626 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6627 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6628 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6629 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6630 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6631 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6632 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6633 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6634 
6635 	return 0;
6636 }
6637 
6638 struct kvm_x86_nested_ops vmx_nested_ops = {
6639 	.check_events = vmx_check_nested_events,
6640 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6641 	.triple_fault = nested_vmx_triple_fault,
6642 	.get_state = vmx_get_nested_state,
6643 	.set_state = vmx_set_nested_state,
6644 	.get_nested_state_pages = vmx_get_nested_state_pages,
6645 	.write_log_dirty = nested_vmx_write_pml_buffer,
6646 	.enable_evmcs = nested_enable_evmcs,
6647 	.get_evmcs_version = nested_get_evmcs_version,
6648 };
6649