1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 57 MODULE_LICENSE("GPL"); 58 59 #ifdef MODULE 60 static const struct x86_cpu_id svm_cpu_id[] = { 61 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 62 {} 63 }; 64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 65 #endif 66 67 #define SEG_TYPE_LDT 2 68 #define SEG_TYPE_BUSY_TSS16 3 69 70 static bool erratum_383_found __read_mostly; 71 72 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 73 74 /* 75 * Set osvw_len to higher value when updated Revision Guides 76 * are published and we know what the new status bits are 77 */ 78 static uint64_t osvw_len = 4, osvw_status; 79 80 static DEFINE_PER_CPU(u64, current_tsc_ratio); 81 82 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 83 84 static const struct svm_direct_access_msrs { 85 u32 index; /* Index of the MSR */ 86 bool always; /* True if intercept is initially cleared */ 87 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 88 { .index = MSR_STAR, .always = true }, 89 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 90 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 91 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 92 #ifdef CONFIG_X86_64 93 { .index = MSR_GS_BASE, .always = true }, 94 { .index = MSR_FS_BASE, .always = true }, 95 { .index = MSR_KERNEL_GS_BASE, .always = true }, 96 { .index = MSR_LSTAR, .always = true }, 97 { .index = MSR_CSTAR, .always = true }, 98 { .index = MSR_SYSCALL_MASK, .always = true }, 99 #endif 100 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 101 { .index = MSR_IA32_PRED_CMD, .always = false }, 102 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 103 { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, 104 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 105 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 106 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 107 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 108 { .index = MSR_IA32_XSS, .always = false }, 109 { .index = MSR_EFER, .always = false }, 110 { .index = MSR_IA32_CR_PAT, .always = false }, 111 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 112 { .index = MSR_TSC_AUX, .always = false }, 113 { .index = X2APIC_MSR(APIC_ID), .always = false }, 114 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 115 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 116 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 117 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 118 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 119 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 120 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 121 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 122 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 123 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 124 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 125 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 126 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 127 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 128 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 129 130 /* 131 * Note: 132 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 133 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 134 * the AVIC hardware would generate GP fault. Therefore, always 135 * intercept the MSR 0x832, and do not setup direct_access_msr. 136 */ 137 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 139 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 140 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 141 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 142 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 143 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 144 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 145 { .index = MSR_INVALID, .always = false }, 146 }; 147 148 /* 149 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 150 * pause_filter_count: On processors that support Pause filtering(indicated 151 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 152 * count value. On VMRUN this value is loaded into an internal counter. 153 * Each time a pause instruction is executed, this counter is decremented 154 * until it reaches zero at which time a #VMEXIT is generated if pause 155 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 156 * Intercept Filtering for more details. 157 * This also indicate if ple logic enabled. 158 * 159 * pause_filter_thresh: In addition, some processor families support advanced 160 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 161 * the amount of time a guest is allowed to execute in a pause loop. 162 * In this mode, a 16-bit pause filter threshold field is added in the 163 * VMCB. The threshold value is a cycle count that is used to reset the 164 * pause counter. As with simple pause filtering, VMRUN loads the pause 165 * count value from VMCB into an internal counter. Then, on each pause 166 * instruction the hardware checks the elapsed number of cycles since 167 * the most recent pause instruction against the pause filter threshold. 168 * If the elapsed cycle count is greater than the pause filter threshold, 169 * then the internal pause count is reloaded from the VMCB and execution 170 * continues. If the elapsed cycle count is less than the pause filter 171 * threshold, then the internal pause count is decremented. If the count 172 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 173 * triggered. If advanced pause filtering is supported and pause filter 174 * threshold field is set to zero, the filter will operate in the simpler, 175 * count only mode. 176 */ 177 178 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 179 module_param(pause_filter_thresh, ushort, 0444); 180 181 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 182 module_param(pause_filter_count, ushort, 0444); 183 184 /* Default doubles per-vcpu window every exit. */ 185 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 186 module_param(pause_filter_count_grow, ushort, 0444); 187 188 /* Default resets per-vcpu window every exit to pause_filter_count. */ 189 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 190 module_param(pause_filter_count_shrink, ushort, 0444); 191 192 /* Default is to compute the maximum so we can never overflow. */ 193 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 194 module_param(pause_filter_count_max, ushort, 0444); 195 196 /* 197 * Use nested page tables by default. Note, NPT may get forced off by 198 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 199 */ 200 bool npt_enabled = true; 201 module_param_named(npt, npt_enabled, bool, 0444); 202 203 /* allow nested virtualization in KVM/SVM */ 204 static int nested = true; 205 module_param(nested, int, 0444); 206 207 /* enable/disable Next RIP Save */ 208 int nrips = true; 209 module_param(nrips, int, 0444); 210 211 /* enable/disable Virtual VMLOAD VMSAVE */ 212 static int vls = true; 213 module_param(vls, int, 0444); 214 215 /* enable/disable Virtual GIF */ 216 int vgif = true; 217 module_param(vgif, int, 0444); 218 219 /* enable/disable LBR virtualization */ 220 int lbrv = true; 221 module_param(lbrv, int, 0444); 222 223 static int tsc_scaling = true; 224 module_param(tsc_scaling, int, 0444); 225 226 /* 227 * enable / disable AVIC. Because the defaults differ for APICv 228 * support between VMX and SVM we cannot use module_param_named. 229 */ 230 static bool avic; 231 module_param(avic, bool, 0444); 232 233 bool __read_mostly dump_invalid_vmcb; 234 module_param(dump_invalid_vmcb, bool, 0644); 235 236 237 bool intercept_smi = true; 238 module_param(intercept_smi, bool, 0444); 239 240 bool vnmi = true; 241 module_param(vnmi, bool, 0444); 242 243 static bool svm_gp_erratum_intercept = true; 244 245 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 246 247 static unsigned long iopm_base; 248 249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 250 251 /* 252 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 253 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 254 * 255 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 256 * defer the restoration of TSC_AUX until the CPU returns to userspace. 257 */ 258 static int tsc_aux_uret_slot __read_mostly = -1; 259 260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 261 262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 263 #define MSRS_RANGE_SIZE 2048 264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 265 266 u32 svm_msrpm_offset(u32 msr) 267 { 268 u32 offset; 269 int i; 270 271 for (i = 0; i < NUM_MSR_MAPS; i++) { 272 if (msr < msrpm_ranges[i] || 273 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 274 continue; 275 276 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 277 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 278 279 /* Now we have the u8 offset - but need the u32 offset */ 280 return offset / 4; 281 } 282 283 /* MSR not in any range */ 284 return MSR_INVALID; 285 } 286 287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 288 289 static int get_npt_level(void) 290 { 291 #ifdef CONFIG_X86_64 292 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 293 #else 294 return PT32E_ROOT_LEVEL; 295 #endif 296 } 297 298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 299 { 300 struct vcpu_svm *svm = to_svm(vcpu); 301 u64 old_efer = vcpu->arch.efer; 302 vcpu->arch.efer = efer; 303 304 if (!npt_enabled) { 305 /* Shadow paging assumes NX to be available. */ 306 efer |= EFER_NX; 307 308 if (!(efer & EFER_LMA)) 309 efer &= ~EFER_LME; 310 } 311 312 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 313 if (!(efer & EFER_SVME)) { 314 svm_leave_nested(vcpu); 315 svm_set_gif(svm, true); 316 /* #GP intercept is still needed for vmware backdoor */ 317 if (!enable_vmware_backdoor) 318 clr_exception_intercept(svm, GP_VECTOR); 319 320 /* 321 * Free the nested guest state, unless we are in SMM. 322 * In this case we will return to the nested guest 323 * as soon as we leave SMM. 324 */ 325 if (!is_smm(vcpu)) 326 svm_free_nested(svm); 327 328 } else { 329 int ret = svm_allocate_nested(svm); 330 331 if (ret) { 332 vcpu->arch.efer = old_efer; 333 return ret; 334 } 335 336 /* 337 * Never intercept #GP for SEV guests, KVM can't 338 * decrypt guest memory to workaround the erratum. 339 */ 340 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 341 set_exception_intercept(svm, GP_VECTOR); 342 } 343 } 344 345 svm->vmcb->save.efer = efer | EFER_SVME; 346 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 347 return 0; 348 } 349 350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 351 { 352 struct vcpu_svm *svm = to_svm(vcpu); 353 u32 ret = 0; 354 355 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 356 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 357 return ret; 358 } 359 360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 361 { 362 struct vcpu_svm *svm = to_svm(vcpu); 363 364 if (mask == 0) 365 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 366 else 367 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 368 369 } 370 371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 372 bool commit_side_effects) 373 { 374 struct vcpu_svm *svm = to_svm(vcpu); 375 unsigned long old_rflags; 376 377 /* 378 * SEV-ES does not expose the next RIP. The RIP update is controlled by 379 * the type of exit and the #VC handler in the guest. 380 */ 381 if (sev_es_guest(vcpu->kvm)) 382 goto done; 383 384 if (nrips && svm->vmcb->control.next_rip != 0) { 385 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 386 svm->next_rip = svm->vmcb->control.next_rip; 387 } 388 389 if (!svm->next_rip) { 390 if (unlikely(!commit_side_effects)) 391 old_rflags = svm->vmcb->save.rflags; 392 393 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 394 return 0; 395 396 if (unlikely(!commit_side_effects)) 397 svm->vmcb->save.rflags = old_rflags; 398 } else { 399 kvm_rip_write(vcpu, svm->next_rip); 400 } 401 402 done: 403 if (likely(commit_side_effects)) 404 svm_set_interrupt_shadow(vcpu, 0); 405 406 return 1; 407 } 408 409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 410 { 411 return __svm_skip_emulated_instruction(vcpu, true); 412 } 413 414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 415 { 416 unsigned long rip, old_rip = kvm_rip_read(vcpu); 417 struct vcpu_svm *svm = to_svm(vcpu); 418 419 /* 420 * Due to architectural shortcomings, the CPU doesn't always provide 421 * NextRIP, e.g. if KVM intercepted an exception that occurred while 422 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 423 * the instruction even if NextRIP is supported to acquire the next 424 * RIP so that it can be shoved into the NextRIP field, otherwise 425 * hardware will fail to advance guest RIP during event injection. 426 * Drop the exception/interrupt if emulation fails and effectively 427 * retry the instruction, it's the least awful option. If NRIPS is 428 * in use, the skip must not commit any side effects such as clearing 429 * the interrupt shadow or RFLAGS.RF. 430 */ 431 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 432 return -EIO; 433 434 rip = kvm_rip_read(vcpu); 435 436 /* 437 * Save the injection information, even when using next_rip, as the 438 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 439 * doesn't complete due to a VM-Exit occurring while the CPU is 440 * vectoring the event. Decoding the instruction isn't guaranteed to 441 * work as there may be no backing instruction, e.g. if the event is 442 * being injected by L1 for L2, or if the guest is patching INT3 into 443 * a different instruction. 444 */ 445 svm->soft_int_injected = true; 446 svm->soft_int_csbase = svm->vmcb->save.cs.base; 447 svm->soft_int_old_rip = old_rip; 448 svm->soft_int_next_rip = rip; 449 450 if (nrips) 451 kvm_rip_write(vcpu, old_rip); 452 453 if (static_cpu_has(X86_FEATURE_NRIPS)) 454 svm->vmcb->control.next_rip = rip; 455 456 return 0; 457 } 458 459 static void svm_inject_exception(struct kvm_vcpu *vcpu) 460 { 461 struct kvm_queued_exception *ex = &vcpu->arch.exception; 462 struct vcpu_svm *svm = to_svm(vcpu); 463 464 kvm_deliver_exception_payload(vcpu, ex); 465 466 if (kvm_exception_is_soft(ex->vector) && 467 svm_update_soft_interrupt_rip(vcpu)) 468 return; 469 470 svm->vmcb->control.event_inj = ex->vector 471 | SVM_EVTINJ_VALID 472 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 473 | SVM_EVTINJ_TYPE_EXEPT; 474 svm->vmcb->control.event_inj_err = ex->error_code; 475 } 476 477 static void svm_init_erratum_383(void) 478 { 479 u32 low, high; 480 int err; 481 u64 val; 482 483 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 484 return; 485 486 /* Use _safe variants to not break nested virtualization */ 487 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 488 if (err) 489 return; 490 491 val |= (1ULL << 47); 492 493 low = lower_32_bits(val); 494 high = upper_32_bits(val); 495 496 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 497 498 erratum_383_found = true; 499 } 500 501 static void svm_init_osvw(struct kvm_vcpu *vcpu) 502 { 503 /* 504 * Guests should see errata 400 and 415 as fixed (assuming that 505 * HLT and IO instructions are intercepted). 506 */ 507 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 508 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 509 510 /* 511 * By increasing VCPU's osvw.length to 3 we are telling the guest that 512 * all osvw.status bits inside that length, including bit 0 (which is 513 * reserved for erratum 298), are valid. However, if host processor's 514 * osvw_len is 0 then osvw_status[0] carries no information. We need to 515 * be conservative here and therefore we tell the guest that erratum 298 516 * is present (because we really don't know). 517 */ 518 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 519 vcpu->arch.osvw.status |= 1; 520 } 521 522 static bool __kvm_is_svm_supported(void) 523 { 524 int cpu = smp_processor_id(); 525 struct cpuinfo_x86 *c = &cpu_data(cpu); 526 527 if (c->x86_vendor != X86_VENDOR_AMD && 528 c->x86_vendor != X86_VENDOR_HYGON) { 529 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 530 return false; 531 } 532 533 if (!cpu_has(c, X86_FEATURE_SVM)) { 534 pr_err("SVM not supported by CPU %d\n", cpu); 535 return false; 536 } 537 538 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 539 pr_info("KVM is unsupported when running as an SEV guest\n"); 540 return false; 541 } 542 543 return true; 544 } 545 546 static bool kvm_is_svm_supported(void) 547 { 548 bool supported; 549 550 migrate_disable(); 551 supported = __kvm_is_svm_supported(); 552 migrate_enable(); 553 554 return supported; 555 } 556 557 static int svm_check_processor_compat(void) 558 { 559 if (!__kvm_is_svm_supported()) 560 return -EIO; 561 562 return 0; 563 } 564 565 static void __svm_write_tsc_multiplier(u64 multiplier) 566 { 567 if (multiplier == __this_cpu_read(current_tsc_ratio)) 568 return; 569 570 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 571 __this_cpu_write(current_tsc_ratio, multiplier); 572 } 573 574 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 575 { 576 return &sd->save_area->host_sev_es_save; 577 } 578 579 static inline void kvm_cpu_svm_disable(void) 580 { 581 uint64_t efer; 582 583 wrmsrl(MSR_VM_HSAVE_PA, 0); 584 rdmsrl(MSR_EFER, efer); 585 if (efer & EFER_SVME) { 586 /* 587 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 588 * NMI aren't blocked. 589 */ 590 stgi(); 591 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 592 } 593 } 594 595 static void svm_emergency_disable_virtualization_cpu(void) 596 { 597 kvm_rebooting = true; 598 599 kvm_cpu_svm_disable(); 600 } 601 602 static void svm_disable_virtualization_cpu(void) 603 { 604 /* Make sure we clean up behind us */ 605 if (tsc_scaling) 606 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 607 608 kvm_cpu_svm_disable(); 609 610 amd_pmu_disable_virt(); 611 } 612 613 static int svm_enable_virtualization_cpu(void) 614 { 615 616 struct svm_cpu_data *sd; 617 uint64_t efer; 618 int me = raw_smp_processor_id(); 619 620 rdmsrl(MSR_EFER, efer); 621 if (efer & EFER_SVME) 622 return -EBUSY; 623 624 sd = per_cpu_ptr(&svm_data, me); 625 sd->asid_generation = 1; 626 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 627 sd->next_asid = sd->max_asid + 1; 628 sd->min_asid = max_sev_asid + 1; 629 630 wrmsrl(MSR_EFER, efer | EFER_SVME); 631 632 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 633 634 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 635 /* 636 * Set the default value, even if we don't use TSC scaling 637 * to avoid having stale value in the msr 638 */ 639 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 640 } 641 642 643 /* 644 * Get OSVW bits. 645 * 646 * Note that it is possible to have a system with mixed processor 647 * revisions and therefore different OSVW bits. If bits are not the same 648 * on different processors then choose the worst case (i.e. if erratum 649 * is present on one processor and not on another then assume that the 650 * erratum is present everywhere). 651 */ 652 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 653 uint64_t len, status = 0; 654 int err; 655 656 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 657 if (!err) 658 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 659 &err); 660 661 if (err) 662 osvw_status = osvw_len = 0; 663 else { 664 if (len < osvw_len) 665 osvw_len = len; 666 osvw_status |= status; 667 osvw_status &= (1ULL << osvw_len) - 1; 668 } 669 } else 670 osvw_status = osvw_len = 0; 671 672 svm_init_erratum_383(); 673 674 amd_pmu_enable_virt(); 675 676 /* 677 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 678 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 679 * Since Linux does not change the value of TSC_AUX once set, prime the 680 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 681 */ 682 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 683 u32 __maybe_unused msr_hi; 684 685 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi); 686 } 687 688 return 0; 689 } 690 691 static void svm_cpu_uninit(int cpu) 692 { 693 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 694 695 if (!sd->save_area) 696 return; 697 698 kfree(sd->sev_vmcbs); 699 __free_page(__sme_pa_to_page(sd->save_area_pa)); 700 sd->save_area_pa = 0; 701 sd->save_area = NULL; 702 } 703 704 static int svm_cpu_init(int cpu) 705 { 706 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 707 struct page *save_area_page; 708 int ret = -ENOMEM; 709 710 memset(sd, 0, sizeof(struct svm_cpu_data)); 711 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 712 if (!save_area_page) 713 return ret; 714 715 ret = sev_cpu_init(sd); 716 if (ret) 717 goto free_save_area; 718 719 sd->save_area = page_address(save_area_page); 720 sd->save_area_pa = __sme_page_pa(save_area_page); 721 return 0; 722 723 free_save_area: 724 __free_page(save_area_page); 725 return ret; 726 727 } 728 729 static void set_dr_intercepts(struct vcpu_svm *svm) 730 { 731 struct vmcb *vmcb = svm->vmcb01.ptr; 732 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 748 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 749 750 recalc_intercepts(svm); 751 } 752 753 static void clr_dr_intercepts(struct vcpu_svm *svm) 754 { 755 struct vmcb *vmcb = svm->vmcb01.ptr; 756 757 vmcb->control.intercepts[INTERCEPT_DR] = 0; 758 759 recalc_intercepts(svm); 760 } 761 762 static int direct_access_msr_slot(u32 msr) 763 { 764 u32 i; 765 766 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 767 if (direct_access_msrs[i].index == msr) 768 return i; 769 770 return -ENOENT; 771 } 772 773 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 774 int write) 775 { 776 struct vcpu_svm *svm = to_svm(vcpu); 777 int slot = direct_access_msr_slot(msr); 778 779 if (slot == -ENOENT) 780 return; 781 782 /* Set the shadow bitmaps to the desired intercept states */ 783 if (read) 784 set_bit(slot, svm->shadow_msr_intercept.read); 785 else 786 clear_bit(slot, svm->shadow_msr_intercept.read); 787 788 if (write) 789 set_bit(slot, svm->shadow_msr_intercept.write); 790 else 791 clear_bit(slot, svm->shadow_msr_intercept.write); 792 } 793 794 static bool valid_msr_intercept(u32 index) 795 { 796 return direct_access_msr_slot(index) != -ENOENT; 797 } 798 799 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 800 { 801 u8 bit_write; 802 unsigned long tmp; 803 u32 offset; 804 u32 *msrpm; 805 806 /* 807 * For non-nested case: 808 * If the L01 MSR bitmap does not intercept the MSR, then we need to 809 * save it. 810 * 811 * For nested case: 812 * If the L02 MSR bitmap does not intercept the MSR, then we need to 813 * save it. 814 */ 815 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 816 to_svm(vcpu)->msrpm; 817 818 offset = svm_msrpm_offset(msr); 819 bit_write = 2 * (msr & 0x0f) + 1; 820 tmp = msrpm[offset]; 821 822 BUG_ON(offset == MSR_INVALID); 823 824 return test_bit(bit_write, &tmp); 825 } 826 827 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 828 u32 msr, int read, int write) 829 { 830 struct vcpu_svm *svm = to_svm(vcpu); 831 u8 bit_read, bit_write; 832 unsigned long tmp; 833 u32 offset; 834 835 /* 836 * If this warning triggers extend the direct_access_msrs list at the 837 * beginning of the file 838 */ 839 WARN_ON(!valid_msr_intercept(msr)); 840 841 /* Enforce non allowed MSRs to trap */ 842 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 843 read = 0; 844 845 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 846 write = 0; 847 848 offset = svm_msrpm_offset(msr); 849 bit_read = 2 * (msr & 0x0f); 850 bit_write = 2 * (msr & 0x0f) + 1; 851 tmp = msrpm[offset]; 852 853 BUG_ON(offset == MSR_INVALID); 854 855 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 856 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 857 858 msrpm[offset] = tmp; 859 860 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 861 svm->nested.force_msr_bitmap_recalc = true; 862 } 863 864 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 865 int read, int write) 866 { 867 set_shadow_msr_intercept(vcpu, msr, read, write); 868 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 869 } 870 871 u32 *svm_vcpu_alloc_msrpm(void) 872 { 873 unsigned int order = get_order(MSRPM_SIZE); 874 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 875 u32 *msrpm; 876 877 if (!pages) 878 return NULL; 879 880 msrpm = page_address(pages); 881 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 882 883 return msrpm; 884 } 885 886 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 887 { 888 int i; 889 890 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 891 if (!direct_access_msrs[i].always) 892 continue; 893 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 894 } 895 } 896 897 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 898 { 899 int i; 900 901 if (intercept == svm->x2avic_msrs_intercepted) 902 return; 903 904 if (!x2avic_enabled) 905 return; 906 907 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 908 int index = direct_access_msrs[i].index; 909 910 if ((index < APIC_BASE_MSR) || 911 (index > APIC_BASE_MSR + 0xff)) 912 continue; 913 set_msr_interception(&svm->vcpu, svm->msrpm, index, 914 !intercept, !intercept); 915 } 916 917 svm->x2avic_msrs_intercepted = intercept; 918 } 919 920 void svm_vcpu_free_msrpm(u32 *msrpm) 921 { 922 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 923 } 924 925 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 926 { 927 struct vcpu_svm *svm = to_svm(vcpu); 928 u32 i; 929 930 /* 931 * Set intercept permissions for all direct access MSRs again. They 932 * will automatically get filtered through the MSR filter, so we are 933 * back in sync after this. 934 */ 935 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 936 u32 msr = direct_access_msrs[i].index; 937 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 938 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 939 940 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 941 } 942 } 943 944 static void add_msr_offset(u32 offset) 945 { 946 int i; 947 948 for (i = 0; i < MSRPM_OFFSETS; ++i) { 949 950 /* Offset already in list? */ 951 if (msrpm_offsets[i] == offset) 952 return; 953 954 /* Slot used by another offset? */ 955 if (msrpm_offsets[i] != MSR_INVALID) 956 continue; 957 958 /* Add offset to list */ 959 msrpm_offsets[i] = offset; 960 961 return; 962 } 963 964 /* 965 * If this BUG triggers the msrpm_offsets table has an overflow. Just 966 * increase MSRPM_OFFSETS in this case. 967 */ 968 BUG(); 969 } 970 971 static void init_msrpm_offsets(void) 972 { 973 int i; 974 975 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 976 977 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 978 u32 offset; 979 980 offset = svm_msrpm_offset(direct_access_msrs[i].index); 981 BUG_ON(offset == MSR_INVALID); 982 983 add_msr_offset(offset); 984 } 985 } 986 987 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 988 { 989 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 990 to_vmcb->save.br_from = from_vmcb->save.br_from; 991 to_vmcb->save.br_to = from_vmcb->save.br_to; 992 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 993 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 994 995 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 996 } 997 998 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 999 { 1000 struct vcpu_svm *svm = to_svm(vcpu); 1001 1002 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1005 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1006 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1007 1008 if (sev_es_guest(vcpu->kvm)) 1009 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); 1010 1011 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1012 if (is_guest_mode(vcpu)) 1013 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1014 } 1015 1016 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1017 { 1018 struct vcpu_svm *svm = to_svm(vcpu); 1019 1020 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 1021 1022 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1025 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1026 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1027 1028 /* 1029 * Move the LBR msrs back to the vmcb01 to avoid copying them 1030 * on nested guest entries. 1031 */ 1032 if (is_guest_mode(vcpu)) 1033 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1034 } 1035 1036 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1037 { 1038 /* 1039 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1040 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1041 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1042 */ 1043 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1044 svm->vmcb01.ptr; 1045 } 1046 1047 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1048 { 1049 struct vcpu_svm *svm = to_svm(vcpu); 1050 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1051 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1052 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1053 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1054 1055 if (enable_lbrv == current_enable_lbrv) 1056 return; 1057 1058 if (enable_lbrv) 1059 svm_enable_lbrv(vcpu); 1060 else 1061 svm_disable_lbrv(vcpu); 1062 } 1063 1064 void disable_nmi_singlestep(struct vcpu_svm *svm) 1065 { 1066 svm->nmi_singlestep = false; 1067 1068 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1069 /* Clear our flags if they were not set by the guest */ 1070 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1071 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1072 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1073 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1074 } 1075 } 1076 1077 static void grow_ple_window(struct kvm_vcpu *vcpu) 1078 { 1079 struct vcpu_svm *svm = to_svm(vcpu); 1080 struct vmcb_control_area *control = &svm->vmcb->control; 1081 int old = control->pause_filter_count; 1082 1083 if (kvm_pause_in_guest(vcpu->kvm)) 1084 return; 1085 1086 control->pause_filter_count = __grow_ple_window(old, 1087 pause_filter_count, 1088 pause_filter_count_grow, 1089 pause_filter_count_max); 1090 1091 if (control->pause_filter_count != old) { 1092 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1093 trace_kvm_ple_window_update(vcpu->vcpu_id, 1094 control->pause_filter_count, old); 1095 } 1096 } 1097 1098 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1099 { 1100 struct vcpu_svm *svm = to_svm(vcpu); 1101 struct vmcb_control_area *control = &svm->vmcb->control; 1102 int old = control->pause_filter_count; 1103 1104 if (kvm_pause_in_guest(vcpu->kvm)) 1105 return; 1106 1107 control->pause_filter_count = 1108 __shrink_ple_window(old, 1109 pause_filter_count, 1110 pause_filter_count_shrink, 1111 pause_filter_count); 1112 if (control->pause_filter_count != old) { 1113 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1114 trace_kvm_ple_window_update(vcpu->vcpu_id, 1115 control->pause_filter_count, old); 1116 } 1117 } 1118 1119 static void svm_hardware_unsetup(void) 1120 { 1121 int cpu; 1122 1123 sev_hardware_unsetup(); 1124 1125 for_each_possible_cpu(cpu) 1126 svm_cpu_uninit(cpu); 1127 1128 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); 1129 iopm_base = 0; 1130 } 1131 1132 static void init_seg(struct vmcb_seg *seg) 1133 { 1134 seg->selector = 0; 1135 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1136 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1137 seg->limit = 0xffff; 1138 seg->base = 0; 1139 } 1140 1141 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1142 { 1143 seg->selector = 0; 1144 seg->attrib = SVM_SELECTOR_P_MASK | type; 1145 seg->limit = 0xffff; 1146 seg->base = 0; 1147 } 1148 1149 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1150 { 1151 struct vcpu_svm *svm = to_svm(vcpu); 1152 1153 return svm->nested.ctl.tsc_offset; 1154 } 1155 1156 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1157 { 1158 struct vcpu_svm *svm = to_svm(vcpu); 1159 1160 return svm->tsc_ratio_msr; 1161 } 1162 1163 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1164 { 1165 struct vcpu_svm *svm = to_svm(vcpu); 1166 1167 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1168 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1169 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1170 } 1171 1172 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1173 { 1174 preempt_disable(); 1175 if (to_svm(vcpu)->guest_state_loaded) 1176 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1177 preempt_enable(); 1178 } 1179 1180 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1181 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1182 struct vcpu_svm *svm) 1183 { 1184 /* 1185 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1186 * roots, or if INVPCID is disabled in the guest to inject #UD. 1187 */ 1188 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1189 if (!npt_enabled || 1190 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1191 svm_set_intercept(svm, INTERCEPT_INVPCID); 1192 else 1193 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1194 } 1195 1196 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1197 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1198 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1199 else 1200 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1201 } 1202 } 1203 1204 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1205 { 1206 struct vcpu_svm *svm = to_svm(vcpu); 1207 1208 if (guest_cpuid_is_intel_compatible(vcpu)) { 1209 /* 1210 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1211 * accesses because the processor only stores 32 bits. 1212 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1213 */ 1214 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1215 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1216 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1217 1218 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1219 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1220 } else { 1221 /* 1222 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1223 * in VMCB and clear intercepts to avoid #VMEXIT. 1224 */ 1225 if (vls) { 1226 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1227 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1228 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1229 } 1230 /* No need to intercept these MSRs */ 1231 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1232 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1233 } 1234 } 1235 1236 static void init_vmcb(struct kvm_vcpu *vcpu) 1237 { 1238 struct vcpu_svm *svm = to_svm(vcpu); 1239 struct vmcb *vmcb = svm->vmcb01.ptr; 1240 struct vmcb_control_area *control = &vmcb->control; 1241 struct vmcb_save_area *save = &vmcb->save; 1242 1243 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1244 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1245 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1246 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1247 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1248 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1249 if (!kvm_vcpu_apicv_active(vcpu)) 1250 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1251 1252 set_dr_intercepts(svm); 1253 1254 set_exception_intercept(svm, PF_VECTOR); 1255 set_exception_intercept(svm, UD_VECTOR); 1256 set_exception_intercept(svm, MC_VECTOR); 1257 set_exception_intercept(svm, AC_VECTOR); 1258 set_exception_intercept(svm, DB_VECTOR); 1259 /* 1260 * Guest access to VMware backdoor ports could legitimately 1261 * trigger #GP because of TSS I/O permission bitmap. 1262 * We intercept those #GP and allow access to them anyway 1263 * as VMware does. 1264 */ 1265 if (enable_vmware_backdoor) 1266 set_exception_intercept(svm, GP_VECTOR); 1267 1268 svm_set_intercept(svm, INTERCEPT_INTR); 1269 svm_set_intercept(svm, INTERCEPT_NMI); 1270 1271 if (intercept_smi) 1272 svm_set_intercept(svm, INTERCEPT_SMI); 1273 1274 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1275 svm_set_intercept(svm, INTERCEPT_RDPMC); 1276 svm_set_intercept(svm, INTERCEPT_CPUID); 1277 svm_set_intercept(svm, INTERCEPT_INVD); 1278 svm_set_intercept(svm, INTERCEPT_INVLPG); 1279 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1280 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1281 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1282 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1283 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1284 svm_set_intercept(svm, INTERCEPT_VMRUN); 1285 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1286 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1287 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1288 svm_set_intercept(svm, INTERCEPT_STGI); 1289 svm_set_intercept(svm, INTERCEPT_CLGI); 1290 svm_set_intercept(svm, INTERCEPT_SKINIT); 1291 svm_set_intercept(svm, INTERCEPT_WBINVD); 1292 svm_set_intercept(svm, INTERCEPT_XSETBV); 1293 svm_set_intercept(svm, INTERCEPT_RDPRU); 1294 svm_set_intercept(svm, INTERCEPT_RSM); 1295 1296 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1297 svm_set_intercept(svm, INTERCEPT_MONITOR); 1298 svm_set_intercept(svm, INTERCEPT_MWAIT); 1299 } 1300 1301 if (!kvm_hlt_in_guest(vcpu->kvm)) 1302 svm_set_intercept(svm, INTERCEPT_HLT); 1303 1304 control->iopm_base_pa = iopm_base; 1305 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1306 control->int_ctl = V_INTR_MASKING_MASK; 1307 1308 init_seg(&save->es); 1309 init_seg(&save->ss); 1310 init_seg(&save->ds); 1311 init_seg(&save->fs); 1312 init_seg(&save->gs); 1313 1314 save->cs.selector = 0xf000; 1315 save->cs.base = 0xffff0000; 1316 /* Executable/Readable Code Segment */ 1317 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1318 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1319 save->cs.limit = 0xffff; 1320 1321 save->gdtr.base = 0; 1322 save->gdtr.limit = 0xffff; 1323 save->idtr.base = 0; 1324 save->idtr.limit = 0xffff; 1325 1326 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1327 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1328 1329 if (npt_enabled) { 1330 /* Setup VMCB for Nested Paging */ 1331 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1332 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1333 clr_exception_intercept(svm, PF_VECTOR); 1334 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1335 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1336 save->g_pat = vcpu->arch.pat; 1337 save->cr3 = 0; 1338 } 1339 svm->current_vmcb->asid_generation = 0; 1340 svm->asid = 0; 1341 1342 svm->nested.vmcb12_gpa = INVALID_GPA; 1343 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1344 1345 if (!kvm_pause_in_guest(vcpu->kvm)) { 1346 control->pause_filter_count = pause_filter_count; 1347 if (pause_filter_thresh) 1348 control->pause_filter_thresh = pause_filter_thresh; 1349 svm_set_intercept(svm, INTERCEPT_PAUSE); 1350 } else { 1351 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1352 } 1353 1354 svm_recalc_instruction_intercepts(vcpu, svm); 1355 1356 /* 1357 * If the host supports V_SPEC_CTRL then disable the interception 1358 * of MSR_IA32_SPEC_CTRL. 1359 */ 1360 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1361 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1362 1363 if (kvm_vcpu_apicv_active(vcpu)) 1364 avic_init_vmcb(svm, vmcb); 1365 1366 if (vnmi) 1367 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1368 1369 if (vgif) { 1370 svm_clr_intercept(svm, INTERCEPT_STGI); 1371 svm_clr_intercept(svm, INTERCEPT_CLGI); 1372 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1373 } 1374 1375 if (sev_guest(vcpu->kvm)) 1376 sev_init_vmcb(svm); 1377 1378 svm_hv_init_vmcb(vmcb); 1379 init_vmcb_after_set_cpuid(vcpu); 1380 1381 vmcb_mark_all_dirty(vmcb); 1382 1383 enable_gif(svm); 1384 } 1385 1386 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1387 { 1388 struct vcpu_svm *svm = to_svm(vcpu); 1389 1390 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1391 1392 svm_init_osvw(vcpu); 1393 1394 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 1395 vcpu->arch.microcode_version = 0x01000065; 1396 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1397 1398 svm->nmi_masked = false; 1399 svm->awaiting_iret_completion = false; 1400 1401 if (sev_es_guest(vcpu->kvm)) 1402 sev_es_vcpu_reset(svm); 1403 } 1404 1405 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1406 { 1407 struct vcpu_svm *svm = to_svm(vcpu); 1408 1409 svm->spec_ctrl = 0; 1410 svm->virt_spec_ctrl = 0; 1411 1412 if (init_event) 1413 sev_snp_init_protected_guest_state(vcpu); 1414 1415 init_vmcb(vcpu); 1416 1417 if (!init_event) 1418 __svm_vcpu_reset(vcpu); 1419 } 1420 1421 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1422 { 1423 svm->current_vmcb = target_vmcb; 1424 svm->vmcb = target_vmcb->ptr; 1425 } 1426 1427 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1428 { 1429 struct vcpu_svm *svm; 1430 struct page *vmcb01_page; 1431 struct page *vmsa_page = NULL; 1432 int err; 1433 1434 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1435 svm = to_svm(vcpu); 1436 1437 err = -ENOMEM; 1438 vmcb01_page = snp_safe_alloc_page(); 1439 if (!vmcb01_page) 1440 goto out; 1441 1442 if (sev_es_guest(vcpu->kvm)) { 1443 /* 1444 * SEV-ES guests require a separate VMSA page used to contain 1445 * the encrypted register state of the guest. 1446 */ 1447 vmsa_page = snp_safe_alloc_page(); 1448 if (!vmsa_page) 1449 goto error_free_vmcb_page; 1450 } 1451 1452 err = avic_init_vcpu(svm); 1453 if (err) 1454 goto error_free_vmsa_page; 1455 1456 svm->msrpm = svm_vcpu_alloc_msrpm(); 1457 if (!svm->msrpm) { 1458 err = -ENOMEM; 1459 goto error_free_vmsa_page; 1460 } 1461 1462 svm->x2avic_msrs_intercepted = true; 1463 1464 svm->vmcb01.ptr = page_address(vmcb01_page); 1465 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1466 svm_switch_vmcb(svm, &svm->vmcb01); 1467 1468 if (vmsa_page) 1469 svm->sev_es.vmsa = page_address(vmsa_page); 1470 1471 svm->guest_state_loaded = false; 1472 1473 return 0; 1474 1475 error_free_vmsa_page: 1476 if (vmsa_page) 1477 __free_page(vmsa_page); 1478 error_free_vmcb_page: 1479 __free_page(vmcb01_page); 1480 out: 1481 return err; 1482 } 1483 1484 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1485 { 1486 int i; 1487 1488 for_each_online_cpu(i) 1489 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1490 } 1491 1492 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1493 { 1494 struct vcpu_svm *svm = to_svm(vcpu); 1495 1496 /* 1497 * The vmcb page can be recycled, causing a false negative in 1498 * svm_vcpu_load(). So, ensure that no logical CPU has this 1499 * vmcb page recorded as its current vmcb. 1500 */ 1501 svm_clear_current_vmcb(svm->vmcb); 1502 1503 svm_leave_nested(vcpu); 1504 svm_free_nested(svm); 1505 1506 sev_free_vcpu(vcpu); 1507 1508 __free_page(__sme_pa_to_page(svm->vmcb01.pa)); 1509 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1510 } 1511 1512 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1513 { 1514 struct vcpu_svm *svm = to_svm(vcpu); 1515 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1516 1517 if (sev_es_guest(vcpu->kvm)) 1518 sev_es_unmap_ghcb(svm); 1519 1520 if (svm->guest_state_loaded) 1521 return; 1522 1523 /* 1524 * Save additional host state that will be restored on VMEXIT (sev-es) 1525 * or subsequent vmload of host save area. 1526 */ 1527 vmsave(sd->save_area_pa); 1528 if (sev_es_guest(vcpu->kvm)) 1529 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1530 1531 if (tsc_scaling) 1532 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1533 1534 /* 1535 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1536 * available. The user return MSR support is not required in this case 1537 * because TSC_AUX is restored on #VMEXIT from the host save area 1538 * (which has been initialized in svm_enable_virtualization_cpu()). 1539 */ 1540 if (likely(tsc_aux_uret_slot >= 0) && 1541 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1542 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1543 1544 svm->guest_state_loaded = true; 1545 } 1546 1547 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1548 { 1549 to_svm(vcpu)->guest_state_loaded = false; 1550 } 1551 1552 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1553 { 1554 struct vcpu_svm *svm = to_svm(vcpu); 1555 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1556 1557 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1558 shrink_ple_window(vcpu); 1559 1560 if (sd->current_vmcb != svm->vmcb) { 1561 sd->current_vmcb = svm->vmcb; 1562 1563 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1564 indirect_branch_prediction_barrier(); 1565 } 1566 if (kvm_vcpu_apicv_active(vcpu)) 1567 avic_vcpu_load(vcpu, cpu); 1568 } 1569 1570 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1571 { 1572 if (kvm_vcpu_apicv_active(vcpu)) 1573 avic_vcpu_put(vcpu); 1574 1575 svm_prepare_host_switch(vcpu); 1576 1577 ++vcpu->stat.host_state_reload; 1578 } 1579 1580 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1581 { 1582 struct vcpu_svm *svm = to_svm(vcpu); 1583 unsigned long rflags = svm->vmcb->save.rflags; 1584 1585 if (svm->nmi_singlestep) { 1586 /* Hide our flags if they were not set by the guest */ 1587 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1588 rflags &= ~X86_EFLAGS_TF; 1589 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1590 rflags &= ~X86_EFLAGS_RF; 1591 } 1592 return rflags; 1593 } 1594 1595 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1596 { 1597 if (to_svm(vcpu)->nmi_singlestep) 1598 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1599 1600 /* 1601 * Any change of EFLAGS.VM is accompanied by a reload of SS 1602 * (caused by either a task switch or an inter-privilege IRET), 1603 * so we do not need to update the CPL here. 1604 */ 1605 to_svm(vcpu)->vmcb->save.rflags = rflags; 1606 } 1607 1608 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1609 { 1610 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1611 1612 return sev_es_guest(vcpu->kvm) 1613 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1614 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1615 } 1616 1617 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1618 { 1619 kvm_register_mark_available(vcpu, reg); 1620 1621 switch (reg) { 1622 case VCPU_EXREG_PDPTR: 1623 /* 1624 * When !npt_enabled, mmu->pdptrs[] is already available since 1625 * it is always updated per SDM when moving to CRs. 1626 */ 1627 if (npt_enabled) 1628 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1629 break; 1630 default: 1631 KVM_BUG_ON(1, vcpu->kvm); 1632 } 1633 } 1634 1635 static void svm_set_vintr(struct vcpu_svm *svm) 1636 { 1637 struct vmcb_control_area *control; 1638 1639 /* 1640 * The following fields are ignored when AVIC is enabled 1641 */ 1642 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1643 1644 svm_set_intercept(svm, INTERCEPT_VINTR); 1645 1646 /* 1647 * Recalculating intercepts may have cleared the VINTR intercept. If 1648 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1649 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1650 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1651 * interrupts will never be unblocked while L2 is running. 1652 */ 1653 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1654 return; 1655 1656 /* 1657 * This is just a dummy VINTR to actually cause a vmexit to happen. 1658 * Actual injection of virtual interrupts happens through EVENTINJ. 1659 */ 1660 control = &svm->vmcb->control; 1661 control->int_vector = 0x0; 1662 control->int_ctl &= ~V_INTR_PRIO_MASK; 1663 control->int_ctl |= V_IRQ_MASK | 1664 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1665 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1666 } 1667 1668 static void svm_clear_vintr(struct vcpu_svm *svm) 1669 { 1670 svm_clr_intercept(svm, INTERCEPT_VINTR); 1671 1672 /* Drop int_ctl fields related to VINTR injection. */ 1673 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1674 if (is_guest_mode(&svm->vcpu)) { 1675 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1676 1677 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1678 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1679 1680 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1681 V_IRQ_INJECTION_BITS_MASK; 1682 1683 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1684 } 1685 1686 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1687 } 1688 1689 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1690 { 1691 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1692 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1693 1694 switch (seg) { 1695 case VCPU_SREG_CS: return &save->cs; 1696 case VCPU_SREG_DS: return &save->ds; 1697 case VCPU_SREG_ES: return &save->es; 1698 case VCPU_SREG_FS: return &save01->fs; 1699 case VCPU_SREG_GS: return &save01->gs; 1700 case VCPU_SREG_SS: return &save->ss; 1701 case VCPU_SREG_TR: return &save01->tr; 1702 case VCPU_SREG_LDTR: return &save01->ldtr; 1703 } 1704 BUG(); 1705 return NULL; 1706 } 1707 1708 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1709 { 1710 struct vmcb_seg *s = svm_seg(vcpu, seg); 1711 1712 return s->base; 1713 } 1714 1715 static void svm_get_segment(struct kvm_vcpu *vcpu, 1716 struct kvm_segment *var, int seg) 1717 { 1718 struct vmcb_seg *s = svm_seg(vcpu, seg); 1719 1720 var->base = s->base; 1721 var->limit = s->limit; 1722 var->selector = s->selector; 1723 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1724 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1725 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1726 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1727 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1728 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1729 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1730 1731 /* 1732 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1733 * However, the SVM spec states that the G bit is not observed by the 1734 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1735 * So let's synthesize a legal G bit for all segments, this helps 1736 * running KVM nested. It also helps cross-vendor migration, because 1737 * Intel's vmentry has a check on the 'G' bit. 1738 */ 1739 var->g = s->limit > 0xfffff; 1740 1741 /* 1742 * AMD's VMCB does not have an explicit unusable field, so emulate it 1743 * for cross vendor migration purposes by "not present" 1744 */ 1745 var->unusable = !var->present; 1746 1747 switch (seg) { 1748 case VCPU_SREG_TR: 1749 /* 1750 * Work around a bug where the busy flag in the tr selector 1751 * isn't exposed 1752 */ 1753 var->type |= 0x2; 1754 break; 1755 case VCPU_SREG_DS: 1756 case VCPU_SREG_ES: 1757 case VCPU_SREG_FS: 1758 case VCPU_SREG_GS: 1759 /* 1760 * The accessed bit must always be set in the segment 1761 * descriptor cache, although it can be cleared in the 1762 * descriptor, the cached bit always remains at 1. Since 1763 * Intel has a check on this, set it here to support 1764 * cross-vendor migration. 1765 */ 1766 if (!var->unusable) 1767 var->type |= 0x1; 1768 break; 1769 case VCPU_SREG_SS: 1770 /* 1771 * On AMD CPUs sometimes the DB bit in the segment 1772 * descriptor is left as 1, although the whole segment has 1773 * been made unusable. Clear it here to pass an Intel VMX 1774 * entry check when cross vendor migrating. 1775 */ 1776 if (var->unusable) 1777 var->db = 0; 1778 /* This is symmetric with svm_set_segment() */ 1779 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1780 break; 1781 } 1782 } 1783 1784 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1785 { 1786 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1787 1788 return save->cpl; 1789 } 1790 1791 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1792 { 1793 struct kvm_segment cs; 1794 1795 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1796 *db = cs.db; 1797 *l = cs.l; 1798 } 1799 1800 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1801 { 1802 struct vcpu_svm *svm = to_svm(vcpu); 1803 1804 dt->size = svm->vmcb->save.idtr.limit; 1805 dt->address = svm->vmcb->save.idtr.base; 1806 } 1807 1808 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1809 { 1810 struct vcpu_svm *svm = to_svm(vcpu); 1811 1812 svm->vmcb->save.idtr.limit = dt->size; 1813 svm->vmcb->save.idtr.base = dt->address ; 1814 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1815 } 1816 1817 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1818 { 1819 struct vcpu_svm *svm = to_svm(vcpu); 1820 1821 dt->size = svm->vmcb->save.gdtr.limit; 1822 dt->address = svm->vmcb->save.gdtr.base; 1823 } 1824 1825 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1826 { 1827 struct vcpu_svm *svm = to_svm(vcpu); 1828 1829 svm->vmcb->save.gdtr.limit = dt->size; 1830 svm->vmcb->save.gdtr.base = dt->address ; 1831 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1832 } 1833 1834 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1835 { 1836 struct vcpu_svm *svm = to_svm(vcpu); 1837 1838 /* 1839 * For guests that don't set guest_state_protected, the cr3 update is 1840 * handled via kvm_mmu_load() while entering the guest. For guests 1841 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1842 * VMCB save area now, since the save area will become the initial 1843 * contents of the VMSA, and future VMCB save area updates won't be 1844 * seen. 1845 */ 1846 if (sev_es_guest(vcpu->kvm)) { 1847 svm->vmcb->save.cr3 = cr3; 1848 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1849 } 1850 } 1851 1852 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1853 { 1854 return true; 1855 } 1856 1857 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1858 { 1859 struct vcpu_svm *svm = to_svm(vcpu); 1860 u64 hcr0 = cr0; 1861 bool old_paging = is_paging(vcpu); 1862 1863 #ifdef CONFIG_X86_64 1864 if (vcpu->arch.efer & EFER_LME) { 1865 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1866 vcpu->arch.efer |= EFER_LMA; 1867 if (!vcpu->arch.guest_state_protected) 1868 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1869 } 1870 1871 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1872 vcpu->arch.efer &= ~EFER_LMA; 1873 if (!vcpu->arch.guest_state_protected) 1874 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1875 } 1876 } 1877 #endif 1878 vcpu->arch.cr0 = cr0; 1879 1880 if (!npt_enabled) { 1881 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1882 if (old_paging != is_paging(vcpu)) 1883 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1884 } 1885 1886 /* 1887 * re-enable caching here because the QEMU bios 1888 * does not do it - this results in some delay at 1889 * reboot 1890 */ 1891 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1892 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1893 1894 svm->vmcb->save.cr0 = hcr0; 1895 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1896 1897 /* 1898 * SEV-ES guests must always keep the CR intercepts cleared. CR 1899 * tracking is done using the CR write traps. 1900 */ 1901 if (sev_es_guest(vcpu->kvm)) 1902 return; 1903 1904 if (hcr0 == cr0) { 1905 /* Selective CR0 write remains on. */ 1906 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1907 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1908 } else { 1909 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1910 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1911 } 1912 } 1913 1914 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1915 { 1916 return true; 1917 } 1918 1919 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1920 { 1921 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1922 unsigned long old_cr4 = vcpu->arch.cr4; 1923 1924 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1925 svm_flush_tlb_current(vcpu); 1926 1927 vcpu->arch.cr4 = cr4; 1928 if (!npt_enabled) { 1929 cr4 |= X86_CR4_PAE; 1930 1931 if (!is_paging(vcpu)) 1932 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1933 } 1934 cr4 |= host_cr4_mce; 1935 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1936 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1937 1938 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1939 kvm_update_cpuid_runtime(vcpu); 1940 } 1941 1942 static void svm_set_segment(struct kvm_vcpu *vcpu, 1943 struct kvm_segment *var, int seg) 1944 { 1945 struct vcpu_svm *svm = to_svm(vcpu); 1946 struct vmcb_seg *s = svm_seg(vcpu, seg); 1947 1948 s->base = var->base; 1949 s->limit = var->limit; 1950 s->selector = var->selector; 1951 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1952 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1953 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1954 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1955 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1956 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1957 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1958 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1959 1960 /* 1961 * This is always accurate, except if SYSRET returned to a segment 1962 * with SS.DPL != 3. Intel does not have this quirk, and always 1963 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1964 * would entail passing the CPL to userspace and back. 1965 */ 1966 if (seg == VCPU_SREG_SS) 1967 /* This is symmetric with svm_get_segment() */ 1968 svm->vmcb->save.cpl = (var->dpl & 3); 1969 1970 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1971 } 1972 1973 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1974 { 1975 struct vcpu_svm *svm = to_svm(vcpu); 1976 1977 clr_exception_intercept(svm, BP_VECTOR); 1978 1979 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1980 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1981 set_exception_intercept(svm, BP_VECTOR); 1982 } 1983 } 1984 1985 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1986 { 1987 if (sd->next_asid > sd->max_asid) { 1988 ++sd->asid_generation; 1989 sd->next_asid = sd->min_asid; 1990 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1991 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1992 } 1993 1994 svm->current_vmcb->asid_generation = sd->asid_generation; 1995 svm->asid = sd->next_asid++; 1996 } 1997 1998 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1999 { 2000 struct vmcb *vmcb = svm->vmcb; 2001 2002 if (svm->vcpu.arch.guest_state_protected) 2003 return; 2004 2005 if (unlikely(value != vmcb->save.dr6)) { 2006 vmcb->save.dr6 = value; 2007 vmcb_mark_dirty(vmcb, VMCB_DR); 2008 } 2009 } 2010 2011 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2012 { 2013 struct vcpu_svm *svm = to_svm(vcpu); 2014 2015 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2016 return; 2017 2018 get_debugreg(vcpu->arch.db[0], 0); 2019 get_debugreg(vcpu->arch.db[1], 1); 2020 get_debugreg(vcpu->arch.db[2], 2); 2021 get_debugreg(vcpu->arch.db[3], 3); 2022 /* 2023 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2024 * because db_interception might need it. We can do it before vmentry. 2025 */ 2026 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2027 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2028 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2029 set_dr_intercepts(svm); 2030 } 2031 2032 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2033 { 2034 struct vcpu_svm *svm = to_svm(vcpu); 2035 2036 if (vcpu->arch.guest_state_protected) 2037 return; 2038 2039 svm->vmcb->save.dr7 = value; 2040 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2041 } 2042 2043 static int pf_interception(struct kvm_vcpu *vcpu) 2044 { 2045 struct vcpu_svm *svm = to_svm(vcpu); 2046 2047 u64 fault_address = svm->vmcb->control.exit_info_2; 2048 u64 error_code = svm->vmcb->control.exit_info_1; 2049 2050 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2051 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2052 svm->vmcb->control.insn_bytes : NULL, 2053 svm->vmcb->control.insn_len); 2054 } 2055 2056 static int npf_interception(struct kvm_vcpu *vcpu) 2057 { 2058 struct vcpu_svm *svm = to_svm(vcpu); 2059 int rc; 2060 2061 u64 fault_address = svm->vmcb->control.exit_info_2; 2062 u64 error_code = svm->vmcb->control.exit_info_1; 2063 2064 /* 2065 * WARN if hardware generates a fault with an error code that collides 2066 * with KVM-defined sythentic flags. Clear the flags and continue on, 2067 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 2068 * flag that KVM doesn't know about. 2069 */ 2070 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 2071 error_code &= ~PFERR_SYNTHETIC_MASK; 2072 2073 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 2074 error_code |= PFERR_PRIVATE_ACCESS; 2075 2076 trace_kvm_page_fault(vcpu, fault_address, error_code); 2077 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, 2078 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2079 svm->vmcb->control.insn_bytes : NULL, 2080 svm->vmcb->control.insn_len); 2081 2082 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 2083 sev_handle_rmp_fault(vcpu, fault_address, error_code); 2084 2085 return rc; 2086 } 2087 2088 static int db_interception(struct kvm_vcpu *vcpu) 2089 { 2090 struct kvm_run *kvm_run = vcpu->run; 2091 struct vcpu_svm *svm = to_svm(vcpu); 2092 2093 if (!(vcpu->guest_debug & 2094 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2095 !svm->nmi_singlestep) { 2096 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2097 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2098 return 1; 2099 } 2100 2101 if (svm->nmi_singlestep) { 2102 disable_nmi_singlestep(svm); 2103 /* Make sure we check for pending NMIs upon entry */ 2104 kvm_make_request(KVM_REQ_EVENT, vcpu); 2105 } 2106 2107 if (vcpu->guest_debug & 2108 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2109 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2110 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2111 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2112 kvm_run->debug.arch.pc = 2113 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2114 kvm_run->debug.arch.exception = DB_VECTOR; 2115 return 0; 2116 } 2117 2118 return 1; 2119 } 2120 2121 static int bp_interception(struct kvm_vcpu *vcpu) 2122 { 2123 struct vcpu_svm *svm = to_svm(vcpu); 2124 struct kvm_run *kvm_run = vcpu->run; 2125 2126 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2127 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2128 kvm_run->debug.arch.exception = BP_VECTOR; 2129 return 0; 2130 } 2131 2132 static int ud_interception(struct kvm_vcpu *vcpu) 2133 { 2134 return handle_ud(vcpu); 2135 } 2136 2137 static int ac_interception(struct kvm_vcpu *vcpu) 2138 { 2139 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2140 return 1; 2141 } 2142 2143 static bool is_erratum_383(void) 2144 { 2145 int err, i; 2146 u64 value; 2147 2148 if (!erratum_383_found) 2149 return false; 2150 2151 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2152 if (err) 2153 return false; 2154 2155 /* Bit 62 may or may not be set for this mce */ 2156 value &= ~(1ULL << 62); 2157 2158 if (value != 0xb600000000010015ULL) 2159 return false; 2160 2161 /* Clear MCi_STATUS registers */ 2162 for (i = 0; i < 6; ++i) 2163 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2164 2165 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2166 if (!err) { 2167 u32 low, high; 2168 2169 value &= ~(1ULL << 2); 2170 low = lower_32_bits(value); 2171 high = upper_32_bits(value); 2172 2173 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2174 } 2175 2176 /* Flush tlb to evict multi-match entries */ 2177 __flush_tlb_all(); 2178 2179 return true; 2180 } 2181 2182 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2183 { 2184 if (is_erratum_383()) { 2185 /* 2186 * Erratum 383 triggered. Guest state is corrupt so kill the 2187 * guest. 2188 */ 2189 pr_err("Guest triggered AMD Erratum 383\n"); 2190 2191 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2192 2193 return; 2194 } 2195 2196 /* 2197 * On an #MC intercept the MCE handler is not called automatically in 2198 * the host. So do it by hand here. 2199 */ 2200 kvm_machine_check(); 2201 } 2202 2203 static int mc_interception(struct kvm_vcpu *vcpu) 2204 { 2205 return 1; 2206 } 2207 2208 static int shutdown_interception(struct kvm_vcpu *vcpu) 2209 { 2210 struct kvm_run *kvm_run = vcpu->run; 2211 struct vcpu_svm *svm = to_svm(vcpu); 2212 2213 2214 /* 2215 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2216 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2217 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2218 * userspace. At a platform view, INIT is acceptable behavior as 2219 * there exist bare metal platforms that automatically INIT the CPU 2220 * in response to shutdown. 2221 * 2222 * The VM save area for SEV-ES guests has already been encrypted so it 2223 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2224 */ 2225 if (!sev_es_guest(vcpu->kvm)) { 2226 clear_page(svm->vmcb); 2227 kvm_vcpu_reset(vcpu, true); 2228 } 2229 2230 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2231 return 0; 2232 } 2233 2234 static int io_interception(struct kvm_vcpu *vcpu) 2235 { 2236 struct vcpu_svm *svm = to_svm(vcpu); 2237 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2238 int size, in, string; 2239 unsigned port; 2240 2241 ++vcpu->stat.io_exits; 2242 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2243 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2244 port = io_info >> 16; 2245 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2246 2247 if (string) { 2248 if (sev_es_guest(vcpu->kvm)) 2249 return sev_es_string_io(svm, size, port, in); 2250 else 2251 return kvm_emulate_instruction(vcpu, 0); 2252 } 2253 2254 svm->next_rip = svm->vmcb->control.exit_info_2; 2255 2256 return kvm_fast_pio(vcpu, size, port, in); 2257 } 2258 2259 static int nmi_interception(struct kvm_vcpu *vcpu) 2260 { 2261 return 1; 2262 } 2263 2264 static int smi_interception(struct kvm_vcpu *vcpu) 2265 { 2266 return 1; 2267 } 2268 2269 static int intr_interception(struct kvm_vcpu *vcpu) 2270 { 2271 ++vcpu->stat.irq_exits; 2272 return 1; 2273 } 2274 2275 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2276 { 2277 struct vcpu_svm *svm = to_svm(vcpu); 2278 struct vmcb *vmcb12; 2279 struct kvm_host_map map; 2280 int ret; 2281 2282 if (nested_svm_check_permissions(vcpu)) 2283 return 1; 2284 2285 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2286 if (ret) { 2287 if (ret == -EINVAL) 2288 kvm_inject_gp(vcpu, 0); 2289 return 1; 2290 } 2291 2292 vmcb12 = map.hva; 2293 2294 ret = kvm_skip_emulated_instruction(vcpu); 2295 2296 if (vmload) { 2297 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2298 svm->sysenter_eip_hi = 0; 2299 svm->sysenter_esp_hi = 0; 2300 } else { 2301 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2302 } 2303 2304 kvm_vcpu_unmap(vcpu, &map); 2305 2306 return ret; 2307 } 2308 2309 static int vmload_interception(struct kvm_vcpu *vcpu) 2310 { 2311 return vmload_vmsave_interception(vcpu, true); 2312 } 2313 2314 static int vmsave_interception(struct kvm_vcpu *vcpu) 2315 { 2316 return vmload_vmsave_interception(vcpu, false); 2317 } 2318 2319 static int vmrun_interception(struct kvm_vcpu *vcpu) 2320 { 2321 if (nested_svm_check_permissions(vcpu)) 2322 return 1; 2323 2324 return nested_svm_vmrun(vcpu); 2325 } 2326 2327 enum { 2328 NONE_SVM_INSTR, 2329 SVM_INSTR_VMRUN, 2330 SVM_INSTR_VMLOAD, 2331 SVM_INSTR_VMSAVE, 2332 }; 2333 2334 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2335 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2336 { 2337 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2338 2339 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2340 return NONE_SVM_INSTR; 2341 2342 switch (ctxt->modrm) { 2343 case 0xd8: /* VMRUN */ 2344 return SVM_INSTR_VMRUN; 2345 case 0xda: /* VMLOAD */ 2346 return SVM_INSTR_VMLOAD; 2347 case 0xdb: /* VMSAVE */ 2348 return SVM_INSTR_VMSAVE; 2349 default: 2350 break; 2351 } 2352 2353 return NONE_SVM_INSTR; 2354 } 2355 2356 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2357 { 2358 const int guest_mode_exit_codes[] = { 2359 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2360 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2361 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2362 }; 2363 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2364 [SVM_INSTR_VMRUN] = vmrun_interception, 2365 [SVM_INSTR_VMLOAD] = vmload_interception, 2366 [SVM_INSTR_VMSAVE] = vmsave_interception, 2367 }; 2368 struct vcpu_svm *svm = to_svm(vcpu); 2369 int ret; 2370 2371 if (is_guest_mode(vcpu)) { 2372 /* Returns '1' or -errno on failure, '0' on success. */ 2373 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2374 if (ret) 2375 return ret; 2376 return 1; 2377 } 2378 return svm_instr_handlers[opcode](vcpu); 2379 } 2380 2381 /* 2382 * #GP handling code. Note that #GP can be triggered under the following two 2383 * cases: 2384 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2385 * some AMD CPUs when EAX of these instructions are in the reserved memory 2386 * regions (e.g. SMM memory on host). 2387 * 2) VMware backdoor 2388 */ 2389 static int gp_interception(struct kvm_vcpu *vcpu) 2390 { 2391 struct vcpu_svm *svm = to_svm(vcpu); 2392 u32 error_code = svm->vmcb->control.exit_info_1; 2393 int opcode; 2394 2395 /* Both #GP cases have zero error_code */ 2396 if (error_code) 2397 goto reinject; 2398 2399 /* Decode the instruction for usage later */ 2400 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2401 goto reinject; 2402 2403 opcode = svm_instr_opcode(vcpu); 2404 2405 if (opcode == NONE_SVM_INSTR) { 2406 if (!enable_vmware_backdoor) 2407 goto reinject; 2408 2409 /* 2410 * VMware backdoor emulation on #GP interception only handles 2411 * IN{S}, OUT{S}, and RDPMC. 2412 */ 2413 if (!is_guest_mode(vcpu)) 2414 return kvm_emulate_instruction(vcpu, 2415 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2416 } else { 2417 /* All SVM instructions expect page aligned RAX */ 2418 if (svm->vmcb->save.rax & ~PAGE_MASK) 2419 goto reinject; 2420 2421 return emulate_svm_instr(vcpu, opcode); 2422 } 2423 2424 reinject: 2425 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2426 return 1; 2427 } 2428 2429 void svm_set_gif(struct vcpu_svm *svm, bool value) 2430 { 2431 if (value) { 2432 /* 2433 * If VGIF is enabled, the STGI intercept is only added to 2434 * detect the opening of the SMI/NMI window; remove it now. 2435 * Likewise, clear the VINTR intercept, we will set it 2436 * again while processing KVM_REQ_EVENT if needed. 2437 */ 2438 if (vgif) 2439 svm_clr_intercept(svm, INTERCEPT_STGI); 2440 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2441 svm_clear_vintr(svm); 2442 2443 enable_gif(svm); 2444 if (svm->vcpu.arch.smi_pending || 2445 svm->vcpu.arch.nmi_pending || 2446 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2447 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2448 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2449 } else { 2450 disable_gif(svm); 2451 2452 /* 2453 * After a CLGI no interrupts should come. But if vGIF is 2454 * in use, we still rely on the VINTR intercept (rather than 2455 * STGI) to detect an open interrupt window. 2456 */ 2457 if (!vgif) 2458 svm_clear_vintr(svm); 2459 } 2460 } 2461 2462 static int stgi_interception(struct kvm_vcpu *vcpu) 2463 { 2464 int ret; 2465 2466 if (nested_svm_check_permissions(vcpu)) 2467 return 1; 2468 2469 ret = kvm_skip_emulated_instruction(vcpu); 2470 svm_set_gif(to_svm(vcpu), true); 2471 return ret; 2472 } 2473 2474 static int clgi_interception(struct kvm_vcpu *vcpu) 2475 { 2476 int ret; 2477 2478 if (nested_svm_check_permissions(vcpu)) 2479 return 1; 2480 2481 ret = kvm_skip_emulated_instruction(vcpu); 2482 svm_set_gif(to_svm(vcpu), false); 2483 return ret; 2484 } 2485 2486 static int invlpga_interception(struct kvm_vcpu *vcpu) 2487 { 2488 gva_t gva = kvm_rax_read(vcpu); 2489 u32 asid = kvm_rcx_read(vcpu); 2490 2491 /* FIXME: Handle an address size prefix. */ 2492 if (!is_long_mode(vcpu)) 2493 gva = (u32)gva; 2494 2495 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2496 2497 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2498 kvm_mmu_invlpg(vcpu, gva); 2499 2500 return kvm_skip_emulated_instruction(vcpu); 2501 } 2502 2503 static int skinit_interception(struct kvm_vcpu *vcpu) 2504 { 2505 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2506 2507 kvm_queue_exception(vcpu, UD_VECTOR); 2508 return 1; 2509 } 2510 2511 static int task_switch_interception(struct kvm_vcpu *vcpu) 2512 { 2513 struct vcpu_svm *svm = to_svm(vcpu); 2514 u16 tss_selector; 2515 int reason; 2516 int int_type = svm->vmcb->control.exit_int_info & 2517 SVM_EXITINTINFO_TYPE_MASK; 2518 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2519 uint32_t type = 2520 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2521 uint32_t idt_v = 2522 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2523 bool has_error_code = false; 2524 u32 error_code = 0; 2525 2526 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2527 2528 if (svm->vmcb->control.exit_info_2 & 2529 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2530 reason = TASK_SWITCH_IRET; 2531 else if (svm->vmcb->control.exit_info_2 & 2532 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2533 reason = TASK_SWITCH_JMP; 2534 else if (idt_v) 2535 reason = TASK_SWITCH_GATE; 2536 else 2537 reason = TASK_SWITCH_CALL; 2538 2539 if (reason == TASK_SWITCH_GATE) { 2540 switch (type) { 2541 case SVM_EXITINTINFO_TYPE_NMI: 2542 vcpu->arch.nmi_injected = false; 2543 break; 2544 case SVM_EXITINTINFO_TYPE_EXEPT: 2545 if (svm->vmcb->control.exit_info_2 & 2546 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2547 has_error_code = true; 2548 error_code = 2549 (u32)svm->vmcb->control.exit_info_2; 2550 } 2551 kvm_clear_exception_queue(vcpu); 2552 break; 2553 case SVM_EXITINTINFO_TYPE_INTR: 2554 case SVM_EXITINTINFO_TYPE_SOFT: 2555 kvm_clear_interrupt_queue(vcpu); 2556 break; 2557 default: 2558 break; 2559 } 2560 } 2561 2562 if (reason != TASK_SWITCH_GATE || 2563 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2564 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2565 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2566 if (!svm_skip_emulated_instruction(vcpu)) 2567 return 0; 2568 } 2569 2570 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2571 int_vec = -1; 2572 2573 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2574 has_error_code, error_code); 2575 } 2576 2577 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2578 { 2579 if (!sev_es_guest(svm->vcpu.kvm)) 2580 svm_clr_intercept(svm, INTERCEPT_IRET); 2581 } 2582 2583 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2584 { 2585 if (!sev_es_guest(svm->vcpu.kvm)) 2586 svm_set_intercept(svm, INTERCEPT_IRET); 2587 } 2588 2589 static int iret_interception(struct kvm_vcpu *vcpu) 2590 { 2591 struct vcpu_svm *svm = to_svm(vcpu); 2592 2593 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2594 2595 ++vcpu->stat.nmi_window_exits; 2596 svm->awaiting_iret_completion = true; 2597 2598 svm_clr_iret_intercept(svm); 2599 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2600 2601 kvm_make_request(KVM_REQ_EVENT, vcpu); 2602 return 1; 2603 } 2604 2605 static int invlpg_interception(struct kvm_vcpu *vcpu) 2606 { 2607 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2608 return kvm_emulate_instruction(vcpu, 0); 2609 2610 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2611 return kvm_skip_emulated_instruction(vcpu); 2612 } 2613 2614 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2615 { 2616 return kvm_emulate_instruction(vcpu, 0); 2617 } 2618 2619 static int rsm_interception(struct kvm_vcpu *vcpu) 2620 { 2621 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2622 } 2623 2624 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2625 unsigned long val) 2626 { 2627 struct vcpu_svm *svm = to_svm(vcpu); 2628 unsigned long cr0 = vcpu->arch.cr0; 2629 bool ret = false; 2630 2631 if (!is_guest_mode(vcpu) || 2632 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2633 return false; 2634 2635 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2636 val &= ~SVM_CR0_SELECTIVE_MASK; 2637 2638 if (cr0 ^ val) { 2639 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2640 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2641 } 2642 2643 return ret; 2644 } 2645 2646 #define CR_VALID (1ULL << 63) 2647 2648 static int cr_interception(struct kvm_vcpu *vcpu) 2649 { 2650 struct vcpu_svm *svm = to_svm(vcpu); 2651 int reg, cr; 2652 unsigned long val; 2653 int err; 2654 2655 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2656 return emulate_on_interception(vcpu); 2657 2658 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2659 return emulate_on_interception(vcpu); 2660 2661 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2662 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2663 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2664 else 2665 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2666 2667 err = 0; 2668 if (cr >= 16) { /* mov to cr */ 2669 cr -= 16; 2670 val = kvm_register_read(vcpu, reg); 2671 trace_kvm_cr_write(cr, val); 2672 switch (cr) { 2673 case 0: 2674 if (!check_selective_cr0_intercepted(vcpu, val)) 2675 err = kvm_set_cr0(vcpu, val); 2676 else 2677 return 1; 2678 2679 break; 2680 case 3: 2681 err = kvm_set_cr3(vcpu, val); 2682 break; 2683 case 4: 2684 err = kvm_set_cr4(vcpu, val); 2685 break; 2686 case 8: 2687 err = kvm_set_cr8(vcpu, val); 2688 break; 2689 default: 2690 WARN(1, "unhandled write to CR%d", cr); 2691 kvm_queue_exception(vcpu, UD_VECTOR); 2692 return 1; 2693 } 2694 } else { /* mov from cr */ 2695 switch (cr) { 2696 case 0: 2697 val = kvm_read_cr0(vcpu); 2698 break; 2699 case 2: 2700 val = vcpu->arch.cr2; 2701 break; 2702 case 3: 2703 val = kvm_read_cr3(vcpu); 2704 break; 2705 case 4: 2706 val = kvm_read_cr4(vcpu); 2707 break; 2708 case 8: 2709 val = kvm_get_cr8(vcpu); 2710 break; 2711 default: 2712 WARN(1, "unhandled read from CR%d", cr); 2713 kvm_queue_exception(vcpu, UD_VECTOR); 2714 return 1; 2715 } 2716 kvm_register_write(vcpu, reg, val); 2717 trace_kvm_cr_read(cr, val); 2718 } 2719 return kvm_complete_insn_gp(vcpu, err); 2720 } 2721 2722 static int cr_trap(struct kvm_vcpu *vcpu) 2723 { 2724 struct vcpu_svm *svm = to_svm(vcpu); 2725 unsigned long old_value, new_value; 2726 unsigned int cr; 2727 int ret = 0; 2728 2729 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2730 2731 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2732 switch (cr) { 2733 case 0: 2734 old_value = kvm_read_cr0(vcpu); 2735 svm_set_cr0(vcpu, new_value); 2736 2737 kvm_post_set_cr0(vcpu, old_value, new_value); 2738 break; 2739 case 4: 2740 old_value = kvm_read_cr4(vcpu); 2741 svm_set_cr4(vcpu, new_value); 2742 2743 kvm_post_set_cr4(vcpu, old_value, new_value); 2744 break; 2745 case 8: 2746 ret = kvm_set_cr8(vcpu, new_value); 2747 break; 2748 default: 2749 WARN(1, "unhandled CR%d write trap", cr); 2750 kvm_queue_exception(vcpu, UD_VECTOR); 2751 return 1; 2752 } 2753 2754 return kvm_complete_insn_gp(vcpu, ret); 2755 } 2756 2757 static int dr_interception(struct kvm_vcpu *vcpu) 2758 { 2759 struct vcpu_svm *svm = to_svm(vcpu); 2760 int reg, dr; 2761 int err = 0; 2762 2763 /* 2764 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2765 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2766 */ 2767 if (sev_es_guest(vcpu->kvm)) 2768 return 1; 2769 2770 if (vcpu->guest_debug == 0) { 2771 /* 2772 * No more DR vmexits; force a reload of the debug registers 2773 * and reenter on this instruction. The next vmexit will 2774 * retrieve the full state of the debug registers. 2775 */ 2776 clr_dr_intercepts(svm); 2777 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2778 return 1; 2779 } 2780 2781 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2782 return emulate_on_interception(vcpu); 2783 2784 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2785 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2786 if (dr >= 16) { /* mov to DRn */ 2787 dr -= 16; 2788 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2789 } else { 2790 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2791 } 2792 2793 return kvm_complete_insn_gp(vcpu, err); 2794 } 2795 2796 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2797 { 2798 int r; 2799 2800 u8 cr8_prev = kvm_get_cr8(vcpu); 2801 /* instruction emulation calls kvm_set_cr8() */ 2802 r = cr_interception(vcpu); 2803 if (lapic_in_kernel(vcpu)) 2804 return r; 2805 if (cr8_prev <= kvm_get_cr8(vcpu)) 2806 return r; 2807 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2808 return 0; 2809 } 2810 2811 static int efer_trap(struct kvm_vcpu *vcpu) 2812 { 2813 struct msr_data msr_info; 2814 int ret; 2815 2816 /* 2817 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2818 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2819 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2820 * the guest doesn't have X86_FEATURE_SVM. 2821 */ 2822 msr_info.host_initiated = false; 2823 msr_info.index = MSR_EFER; 2824 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2825 ret = kvm_set_msr_common(vcpu, &msr_info); 2826 2827 return kvm_complete_insn_gp(vcpu, ret); 2828 } 2829 2830 static int svm_get_feature_msr(u32 msr, u64 *data) 2831 { 2832 *data = 0; 2833 2834 switch (msr) { 2835 case MSR_AMD64_DE_CFG: 2836 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2837 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2838 break; 2839 default: 2840 return KVM_MSR_RET_UNSUPPORTED; 2841 } 2842 2843 return 0; 2844 } 2845 2846 static bool 2847 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2848 { 2849 return sev_es_guest(vcpu->kvm) && 2850 vcpu->arch.guest_state_protected && 2851 svm_msrpm_offset(msr_info->index) != MSR_INVALID && 2852 !msr_write_intercepted(vcpu, msr_info->index); 2853 } 2854 2855 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2856 { 2857 struct vcpu_svm *svm = to_svm(vcpu); 2858 2859 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2860 msr_info->data = 0; 2861 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2862 } 2863 2864 switch (msr_info->index) { 2865 case MSR_AMD64_TSC_RATIO: 2866 if (!msr_info->host_initiated && 2867 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2868 return 1; 2869 msr_info->data = svm->tsc_ratio_msr; 2870 break; 2871 case MSR_STAR: 2872 msr_info->data = svm->vmcb01.ptr->save.star; 2873 break; 2874 #ifdef CONFIG_X86_64 2875 case MSR_LSTAR: 2876 msr_info->data = svm->vmcb01.ptr->save.lstar; 2877 break; 2878 case MSR_CSTAR: 2879 msr_info->data = svm->vmcb01.ptr->save.cstar; 2880 break; 2881 case MSR_GS_BASE: 2882 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2883 break; 2884 case MSR_FS_BASE: 2885 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2886 break; 2887 case MSR_KERNEL_GS_BASE: 2888 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2889 break; 2890 case MSR_SYSCALL_MASK: 2891 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2892 break; 2893 #endif 2894 case MSR_IA32_SYSENTER_CS: 2895 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2896 break; 2897 case MSR_IA32_SYSENTER_EIP: 2898 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2899 if (guest_cpuid_is_intel_compatible(vcpu)) 2900 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2901 break; 2902 case MSR_IA32_SYSENTER_ESP: 2903 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2904 if (guest_cpuid_is_intel_compatible(vcpu)) 2905 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2906 break; 2907 case MSR_TSC_AUX: 2908 msr_info->data = svm->tsc_aux; 2909 break; 2910 case MSR_IA32_DEBUGCTLMSR: 2911 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2912 break; 2913 case MSR_IA32_LASTBRANCHFROMIP: 2914 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2915 break; 2916 case MSR_IA32_LASTBRANCHTOIP: 2917 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2918 break; 2919 case MSR_IA32_LASTINTFROMIP: 2920 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2921 break; 2922 case MSR_IA32_LASTINTTOIP: 2923 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2924 break; 2925 case MSR_VM_HSAVE_PA: 2926 msr_info->data = svm->nested.hsave_msr; 2927 break; 2928 case MSR_VM_CR: 2929 msr_info->data = svm->nested.vm_cr_msr; 2930 break; 2931 case MSR_IA32_SPEC_CTRL: 2932 if (!msr_info->host_initiated && 2933 !guest_has_spec_ctrl_msr(vcpu)) 2934 return 1; 2935 2936 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2937 msr_info->data = svm->vmcb->save.spec_ctrl; 2938 else 2939 msr_info->data = svm->spec_ctrl; 2940 break; 2941 case MSR_AMD64_VIRT_SPEC_CTRL: 2942 if (!msr_info->host_initiated && 2943 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2944 return 1; 2945 2946 msr_info->data = svm->virt_spec_ctrl; 2947 break; 2948 case MSR_F15H_IC_CFG: { 2949 2950 int family, model; 2951 2952 family = guest_cpuid_family(vcpu); 2953 model = guest_cpuid_model(vcpu); 2954 2955 if (family < 0 || model < 0) 2956 return kvm_get_msr_common(vcpu, msr_info); 2957 2958 msr_info->data = 0; 2959 2960 if (family == 0x15 && 2961 (model >= 0x2 && model < 0x20)) 2962 msr_info->data = 0x1E; 2963 } 2964 break; 2965 case MSR_AMD64_DE_CFG: 2966 msr_info->data = svm->msr_decfg; 2967 break; 2968 default: 2969 return kvm_get_msr_common(vcpu, msr_info); 2970 } 2971 return 0; 2972 } 2973 2974 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2975 { 2976 struct vcpu_svm *svm = to_svm(vcpu); 2977 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2978 return kvm_complete_insn_gp(vcpu, err); 2979 2980 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2981 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2982 X86_TRAP_GP | 2983 SVM_EVTINJ_TYPE_EXEPT | 2984 SVM_EVTINJ_VALID); 2985 return 1; 2986 } 2987 2988 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2989 { 2990 struct vcpu_svm *svm = to_svm(vcpu); 2991 int svm_dis, chg_mask; 2992 2993 if (data & ~SVM_VM_CR_VALID_MASK) 2994 return 1; 2995 2996 chg_mask = SVM_VM_CR_VALID_MASK; 2997 2998 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2999 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 3000 3001 svm->nested.vm_cr_msr &= ~chg_mask; 3002 svm->nested.vm_cr_msr |= (data & chg_mask); 3003 3004 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 3005 3006 /* check for svm_disable while efer.svme is set */ 3007 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 3008 return 1; 3009 3010 return 0; 3011 } 3012 3013 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 3014 { 3015 struct vcpu_svm *svm = to_svm(vcpu); 3016 int ret = 0; 3017 3018 u32 ecx = msr->index; 3019 u64 data = msr->data; 3020 3021 if (sev_es_prevent_msr_access(vcpu, msr)) 3022 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 3023 3024 switch (ecx) { 3025 case MSR_AMD64_TSC_RATIO: 3026 3027 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 3028 3029 if (!msr->host_initiated) 3030 return 1; 3031 /* 3032 * In case TSC scaling is not enabled, always 3033 * leave this MSR at the default value. 3034 * 3035 * Due to bug in qemu 6.2.0, it would try to set 3036 * this msr to 0 if tsc scaling is not enabled. 3037 * Ignore this value as well. 3038 */ 3039 if (data != 0 && data != svm->tsc_ratio_msr) 3040 return 1; 3041 break; 3042 } 3043 3044 if (data & SVM_TSC_RATIO_RSVD) 3045 return 1; 3046 3047 svm->tsc_ratio_msr = data; 3048 3049 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3050 is_guest_mode(vcpu)) 3051 nested_svm_update_tsc_ratio_msr(vcpu); 3052 3053 break; 3054 case MSR_IA32_CR_PAT: 3055 ret = kvm_set_msr_common(vcpu, msr); 3056 if (ret) 3057 break; 3058 3059 svm->vmcb01.ptr->save.g_pat = data; 3060 if (is_guest_mode(vcpu)) 3061 nested_vmcb02_compute_g_pat(svm); 3062 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3063 break; 3064 case MSR_IA32_SPEC_CTRL: 3065 if (!msr->host_initiated && 3066 !guest_has_spec_ctrl_msr(vcpu)) 3067 return 1; 3068 3069 if (kvm_spec_ctrl_test_value(data)) 3070 return 1; 3071 3072 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3073 svm->vmcb->save.spec_ctrl = data; 3074 else 3075 svm->spec_ctrl = data; 3076 if (!data) 3077 break; 3078 3079 /* 3080 * For non-nested: 3081 * When it's written (to non-zero) for the first time, pass 3082 * it through. 3083 * 3084 * For nested: 3085 * The handling of the MSR bitmap for L2 guests is done in 3086 * nested_svm_vmrun_msrpm. 3087 * We update the L1 MSR bit as well since it will end up 3088 * touching the MSR anyway now. 3089 */ 3090 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3091 break; 3092 case MSR_AMD64_VIRT_SPEC_CTRL: 3093 if (!msr->host_initiated && 3094 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3095 return 1; 3096 3097 if (data & ~SPEC_CTRL_SSBD) 3098 return 1; 3099 3100 svm->virt_spec_ctrl = data; 3101 break; 3102 case MSR_STAR: 3103 svm->vmcb01.ptr->save.star = data; 3104 break; 3105 #ifdef CONFIG_X86_64 3106 case MSR_LSTAR: 3107 svm->vmcb01.ptr->save.lstar = data; 3108 break; 3109 case MSR_CSTAR: 3110 svm->vmcb01.ptr->save.cstar = data; 3111 break; 3112 case MSR_GS_BASE: 3113 svm->vmcb01.ptr->save.gs.base = data; 3114 break; 3115 case MSR_FS_BASE: 3116 svm->vmcb01.ptr->save.fs.base = data; 3117 break; 3118 case MSR_KERNEL_GS_BASE: 3119 svm->vmcb01.ptr->save.kernel_gs_base = data; 3120 break; 3121 case MSR_SYSCALL_MASK: 3122 svm->vmcb01.ptr->save.sfmask = data; 3123 break; 3124 #endif 3125 case MSR_IA32_SYSENTER_CS: 3126 svm->vmcb01.ptr->save.sysenter_cs = data; 3127 break; 3128 case MSR_IA32_SYSENTER_EIP: 3129 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3130 /* 3131 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3132 * when we spoof an Intel vendor ID (for cross vendor migration). 3133 * In this case we use this intercept to track the high 3134 * 32 bit part of these msrs to support Intel's 3135 * implementation of SYSENTER/SYSEXIT. 3136 */ 3137 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3138 break; 3139 case MSR_IA32_SYSENTER_ESP: 3140 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3141 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3142 break; 3143 case MSR_TSC_AUX: 3144 /* 3145 * TSC_AUX is always virtualized for SEV-ES guests when the 3146 * feature is available. The user return MSR support is not 3147 * required in this case because TSC_AUX is restored on #VMEXIT 3148 * from the host save area (which has been initialized in 3149 * svm_enable_virtualization_cpu()). 3150 */ 3151 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3152 break; 3153 3154 /* 3155 * TSC_AUX is usually changed only during boot and never read 3156 * directly. Intercept TSC_AUX instead of exposing it to the 3157 * guest via direct_access_msrs, and switch it via user return. 3158 */ 3159 preempt_disable(); 3160 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3161 preempt_enable(); 3162 if (ret) 3163 break; 3164 3165 svm->tsc_aux = data; 3166 break; 3167 case MSR_IA32_DEBUGCTLMSR: 3168 if (!lbrv) { 3169 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3170 break; 3171 } 3172 if (data & DEBUGCTL_RESERVED_BITS) 3173 return 1; 3174 3175 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3176 svm_update_lbrv(vcpu); 3177 break; 3178 case MSR_VM_HSAVE_PA: 3179 /* 3180 * Old kernels did not validate the value written to 3181 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3182 * value to allow live migrating buggy or malicious guests 3183 * originating from those kernels. 3184 */ 3185 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3186 return 1; 3187 3188 svm->nested.hsave_msr = data & PAGE_MASK; 3189 break; 3190 case MSR_VM_CR: 3191 return svm_set_vm_cr(vcpu, data); 3192 case MSR_VM_IGNNE: 3193 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3194 break; 3195 case MSR_AMD64_DE_CFG: { 3196 u64 supported_de_cfg; 3197 3198 if (svm_get_feature_msr(ecx, &supported_de_cfg)) 3199 return 1; 3200 3201 if (data & ~supported_de_cfg) 3202 return 1; 3203 3204 svm->msr_decfg = data; 3205 break; 3206 } 3207 default: 3208 return kvm_set_msr_common(vcpu, msr); 3209 } 3210 return ret; 3211 } 3212 3213 static int msr_interception(struct kvm_vcpu *vcpu) 3214 { 3215 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3216 return kvm_emulate_wrmsr(vcpu); 3217 else 3218 return kvm_emulate_rdmsr(vcpu); 3219 } 3220 3221 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3222 { 3223 kvm_make_request(KVM_REQ_EVENT, vcpu); 3224 svm_clear_vintr(to_svm(vcpu)); 3225 3226 /* 3227 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3228 * In this case AVIC was temporarily disabled for 3229 * requesting the IRQ window and we have to re-enable it. 3230 * 3231 * If running nested, still remove the VM wide AVIC inhibit to 3232 * support case in which the interrupt window was requested when the 3233 * vCPU was not running nested. 3234 3235 * All vCPUs which run still run nested, will remain to have their 3236 * AVIC still inhibited due to per-cpu AVIC inhibition. 3237 */ 3238 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3239 3240 ++vcpu->stat.irq_window_exits; 3241 return 1; 3242 } 3243 3244 static int pause_interception(struct kvm_vcpu *vcpu) 3245 { 3246 bool in_kernel; 3247 /* 3248 * CPL is not made available for an SEV-ES guest, therefore 3249 * vcpu->arch.preempted_in_kernel can never be true. Just 3250 * set in_kernel to false as well. 3251 */ 3252 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3253 3254 grow_ple_window(vcpu); 3255 3256 kvm_vcpu_on_spin(vcpu, in_kernel); 3257 return kvm_skip_emulated_instruction(vcpu); 3258 } 3259 3260 static int invpcid_interception(struct kvm_vcpu *vcpu) 3261 { 3262 struct vcpu_svm *svm = to_svm(vcpu); 3263 unsigned long type; 3264 gva_t gva; 3265 3266 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3267 kvm_queue_exception(vcpu, UD_VECTOR); 3268 return 1; 3269 } 3270 3271 /* 3272 * For an INVPCID intercept: 3273 * EXITINFO1 provides the linear address of the memory operand. 3274 * EXITINFO2 provides the contents of the register operand. 3275 */ 3276 type = svm->vmcb->control.exit_info_2; 3277 gva = svm->vmcb->control.exit_info_1; 3278 3279 return kvm_handle_invpcid(vcpu, type, gva); 3280 } 3281 3282 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3283 [SVM_EXIT_READ_CR0] = cr_interception, 3284 [SVM_EXIT_READ_CR3] = cr_interception, 3285 [SVM_EXIT_READ_CR4] = cr_interception, 3286 [SVM_EXIT_READ_CR8] = cr_interception, 3287 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3288 [SVM_EXIT_WRITE_CR0] = cr_interception, 3289 [SVM_EXIT_WRITE_CR3] = cr_interception, 3290 [SVM_EXIT_WRITE_CR4] = cr_interception, 3291 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3292 [SVM_EXIT_READ_DR0] = dr_interception, 3293 [SVM_EXIT_READ_DR1] = dr_interception, 3294 [SVM_EXIT_READ_DR2] = dr_interception, 3295 [SVM_EXIT_READ_DR3] = dr_interception, 3296 [SVM_EXIT_READ_DR4] = dr_interception, 3297 [SVM_EXIT_READ_DR5] = dr_interception, 3298 [SVM_EXIT_READ_DR6] = dr_interception, 3299 [SVM_EXIT_READ_DR7] = dr_interception, 3300 [SVM_EXIT_WRITE_DR0] = dr_interception, 3301 [SVM_EXIT_WRITE_DR1] = dr_interception, 3302 [SVM_EXIT_WRITE_DR2] = dr_interception, 3303 [SVM_EXIT_WRITE_DR3] = dr_interception, 3304 [SVM_EXIT_WRITE_DR4] = dr_interception, 3305 [SVM_EXIT_WRITE_DR5] = dr_interception, 3306 [SVM_EXIT_WRITE_DR6] = dr_interception, 3307 [SVM_EXIT_WRITE_DR7] = dr_interception, 3308 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3309 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3310 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3311 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3312 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3313 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3314 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3315 [SVM_EXIT_INTR] = intr_interception, 3316 [SVM_EXIT_NMI] = nmi_interception, 3317 [SVM_EXIT_SMI] = smi_interception, 3318 [SVM_EXIT_VINTR] = interrupt_window_interception, 3319 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3320 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3321 [SVM_EXIT_IRET] = iret_interception, 3322 [SVM_EXIT_INVD] = kvm_emulate_invd, 3323 [SVM_EXIT_PAUSE] = pause_interception, 3324 [SVM_EXIT_HLT] = kvm_emulate_halt, 3325 [SVM_EXIT_INVLPG] = invlpg_interception, 3326 [SVM_EXIT_INVLPGA] = invlpga_interception, 3327 [SVM_EXIT_IOIO] = io_interception, 3328 [SVM_EXIT_MSR] = msr_interception, 3329 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3330 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3331 [SVM_EXIT_VMRUN] = vmrun_interception, 3332 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3333 [SVM_EXIT_VMLOAD] = vmload_interception, 3334 [SVM_EXIT_VMSAVE] = vmsave_interception, 3335 [SVM_EXIT_STGI] = stgi_interception, 3336 [SVM_EXIT_CLGI] = clgi_interception, 3337 [SVM_EXIT_SKINIT] = skinit_interception, 3338 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3339 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3340 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3341 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3342 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3343 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3344 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3345 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3346 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3347 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3348 [SVM_EXIT_INVPCID] = invpcid_interception, 3349 [SVM_EXIT_NPF] = npf_interception, 3350 [SVM_EXIT_RSM] = rsm_interception, 3351 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3352 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3353 #ifdef CONFIG_KVM_AMD_SEV 3354 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3355 #endif 3356 }; 3357 3358 static void dump_vmcb(struct kvm_vcpu *vcpu) 3359 { 3360 struct vcpu_svm *svm = to_svm(vcpu); 3361 struct vmcb_control_area *control = &svm->vmcb->control; 3362 struct vmcb_save_area *save = &svm->vmcb->save; 3363 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3364 3365 if (!dump_invalid_vmcb) { 3366 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3367 return; 3368 } 3369 3370 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3371 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3372 pr_err("VMCB Control Area:\n"); 3373 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3374 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3375 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3376 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3377 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3378 pr_err("%-20s%08x %08x\n", "intercepts:", 3379 control->intercepts[INTERCEPT_WORD3], 3380 control->intercepts[INTERCEPT_WORD4]); 3381 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3382 pr_err("%-20s%d\n", "pause filter threshold:", 3383 control->pause_filter_thresh); 3384 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3385 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3386 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3387 pr_err("%-20s%d\n", "asid:", control->asid); 3388 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3389 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3390 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3391 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3392 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3393 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3394 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3395 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3396 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3397 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3398 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3399 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3400 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3401 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3402 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3403 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3404 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3405 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3406 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3407 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3408 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3409 pr_err("VMCB State Save Area:\n"); 3410 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3411 "es:", 3412 save->es.selector, save->es.attrib, 3413 save->es.limit, save->es.base); 3414 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3415 "cs:", 3416 save->cs.selector, save->cs.attrib, 3417 save->cs.limit, save->cs.base); 3418 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3419 "ss:", 3420 save->ss.selector, save->ss.attrib, 3421 save->ss.limit, save->ss.base); 3422 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3423 "ds:", 3424 save->ds.selector, save->ds.attrib, 3425 save->ds.limit, save->ds.base); 3426 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3427 "fs:", 3428 save01->fs.selector, save01->fs.attrib, 3429 save01->fs.limit, save01->fs.base); 3430 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3431 "gs:", 3432 save01->gs.selector, save01->gs.attrib, 3433 save01->gs.limit, save01->gs.base); 3434 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3435 "gdtr:", 3436 save->gdtr.selector, save->gdtr.attrib, 3437 save->gdtr.limit, save->gdtr.base); 3438 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3439 "ldtr:", 3440 save01->ldtr.selector, save01->ldtr.attrib, 3441 save01->ldtr.limit, save01->ldtr.base); 3442 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3443 "idtr:", 3444 save->idtr.selector, save->idtr.attrib, 3445 save->idtr.limit, save->idtr.base); 3446 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3447 "tr:", 3448 save01->tr.selector, save01->tr.attrib, 3449 save01->tr.limit, save01->tr.base); 3450 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3451 save->vmpl, save->cpl, save->efer); 3452 pr_err("%-15s %016llx %-13s %016llx\n", 3453 "cr0:", save->cr0, "cr2:", save->cr2); 3454 pr_err("%-15s %016llx %-13s %016llx\n", 3455 "cr3:", save->cr3, "cr4:", save->cr4); 3456 pr_err("%-15s %016llx %-13s %016llx\n", 3457 "dr6:", save->dr6, "dr7:", save->dr7); 3458 pr_err("%-15s %016llx %-13s %016llx\n", 3459 "rip:", save->rip, "rflags:", save->rflags); 3460 pr_err("%-15s %016llx %-13s %016llx\n", 3461 "rsp:", save->rsp, "rax:", save->rax); 3462 pr_err("%-15s %016llx %-13s %016llx\n", 3463 "star:", save01->star, "lstar:", save01->lstar); 3464 pr_err("%-15s %016llx %-13s %016llx\n", 3465 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3466 pr_err("%-15s %016llx %-13s %016llx\n", 3467 "kernel_gs_base:", save01->kernel_gs_base, 3468 "sysenter_cs:", save01->sysenter_cs); 3469 pr_err("%-15s %016llx %-13s %016llx\n", 3470 "sysenter_esp:", save01->sysenter_esp, 3471 "sysenter_eip:", save01->sysenter_eip); 3472 pr_err("%-15s %016llx %-13s %016llx\n", 3473 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3474 pr_err("%-15s %016llx %-13s %016llx\n", 3475 "br_from:", save->br_from, "br_to:", save->br_to); 3476 pr_err("%-15s %016llx %-13s %016llx\n", 3477 "excp_from:", save->last_excp_from, 3478 "excp_to:", save->last_excp_to); 3479 } 3480 3481 static bool svm_check_exit_valid(u64 exit_code) 3482 { 3483 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3484 svm_exit_handlers[exit_code]); 3485 } 3486 3487 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3488 { 3489 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3490 dump_vmcb(vcpu); 3491 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3492 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3493 vcpu->run->internal.ndata = 2; 3494 vcpu->run->internal.data[0] = exit_code; 3495 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3496 return 0; 3497 } 3498 3499 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3500 { 3501 if (!svm_check_exit_valid(exit_code)) 3502 return svm_handle_invalid_exit(vcpu, exit_code); 3503 3504 #ifdef CONFIG_MITIGATION_RETPOLINE 3505 if (exit_code == SVM_EXIT_MSR) 3506 return msr_interception(vcpu); 3507 else if (exit_code == SVM_EXIT_VINTR) 3508 return interrupt_window_interception(vcpu); 3509 else if (exit_code == SVM_EXIT_INTR) 3510 return intr_interception(vcpu); 3511 else if (exit_code == SVM_EXIT_HLT) 3512 return kvm_emulate_halt(vcpu); 3513 else if (exit_code == SVM_EXIT_NPF) 3514 return npf_interception(vcpu); 3515 #endif 3516 return svm_exit_handlers[exit_code](vcpu); 3517 } 3518 3519 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3520 u64 *info1, u64 *info2, 3521 u32 *intr_info, u32 *error_code) 3522 { 3523 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3524 3525 *reason = control->exit_code; 3526 *info1 = control->exit_info_1; 3527 *info2 = control->exit_info_2; 3528 *intr_info = control->exit_int_info; 3529 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3530 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3531 *error_code = control->exit_int_info_err; 3532 else 3533 *error_code = 0; 3534 } 3535 3536 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3537 { 3538 struct vcpu_svm *svm = to_svm(vcpu); 3539 struct kvm_run *kvm_run = vcpu->run; 3540 u32 exit_code = svm->vmcb->control.exit_code; 3541 3542 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3543 if (!sev_es_guest(vcpu->kvm)) { 3544 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3545 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3546 if (npt_enabled) 3547 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3548 } 3549 3550 if (is_guest_mode(vcpu)) { 3551 int vmexit; 3552 3553 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3554 3555 vmexit = nested_svm_exit_special(svm); 3556 3557 if (vmexit == NESTED_EXIT_CONTINUE) 3558 vmexit = nested_svm_exit_handled(svm); 3559 3560 if (vmexit == NESTED_EXIT_DONE) 3561 return 1; 3562 } 3563 3564 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3565 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3566 kvm_run->fail_entry.hardware_entry_failure_reason 3567 = svm->vmcb->control.exit_code; 3568 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3569 dump_vmcb(vcpu); 3570 return 0; 3571 } 3572 3573 if (exit_fastpath != EXIT_FASTPATH_NONE) 3574 return 1; 3575 3576 return svm_invoke_exit_handler(vcpu, exit_code); 3577 } 3578 3579 static void pre_svm_run(struct kvm_vcpu *vcpu) 3580 { 3581 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3582 struct vcpu_svm *svm = to_svm(vcpu); 3583 3584 /* 3585 * If the previous vmrun of the vmcb occurred on a different physical 3586 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3587 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3588 */ 3589 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3590 svm->current_vmcb->asid_generation = 0; 3591 vmcb_mark_all_dirty(svm->vmcb); 3592 svm->current_vmcb->cpu = vcpu->cpu; 3593 } 3594 3595 if (sev_guest(vcpu->kvm)) 3596 return pre_sev_run(svm, vcpu->cpu); 3597 3598 /* FIXME: handle wraparound of asid_generation */ 3599 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3600 new_asid(svm, sd); 3601 } 3602 3603 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3604 { 3605 struct vcpu_svm *svm = to_svm(vcpu); 3606 3607 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3608 3609 if (svm->nmi_l1_to_l2) 3610 return; 3611 3612 /* 3613 * No need to manually track NMI masking when vNMI is enabled, hardware 3614 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3615 * case where software directly injects an NMI. 3616 */ 3617 if (!is_vnmi_enabled(svm)) { 3618 svm->nmi_masked = true; 3619 svm_set_iret_intercept(svm); 3620 } 3621 ++vcpu->stat.nmi_injections; 3622 } 3623 3624 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3625 { 3626 struct vcpu_svm *svm = to_svm(vcpu); 3627 3628 if (!is_vnmi_enabled(svm)) 3629 return false; 3630 3631 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3632 } 3633 3634 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3635 { 3636 struct vcpu_svm *svm = to_svm(vcpu); 3637 3638 if (!is_vnmi_enabled(svm)) 3639 return false; 3640 3641 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3642 return false; 3643 3644 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3645 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3646 3647 /* 3648 * Because the pending NMI is serviced by hardware, KVM can't know when 3649 * the NMI is "injected", but for all intents and purposes, passing the 3650 * NMI off to hardware counts as injection. 3651 */ 3652 ++vcpu->stat.nmi_injections; 3653 3654 return true; 3655 } 3656 3657 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3658 { 3659 struct vcpu_svm *svm = to_svm(vcpu); 3660 u32 type; 3661 3662 if (vcpu->arch.interrupt.soft) { 3663 if (svm_update_soft_interrupt_rip(vcpu)) 3664 return; 3665 3666 type = SVM_EVTINJ_TYPE_SOFT; 3667 } else { 3668 type = SVM_EVTINJ_TYPE_INTR; 3669 } 3670 3671 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3672 vcpu->arch.interrupt.soft, reinjected); 3673 ++vcpu->stat.irq_injections; 3674 3675 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3676 SVM_EVTINJ_VALID | type; 3677 } 3678 3679 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3680 int trig_mode, int vector) 3681 { 3682 /* 3683 * apic->apicv_active must be read after vcpu->mode. 3684 * Pairs with smp_store_release in vcpu_enter_guest. 3685 */ 3686 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3687 3688 /* Note, this is called iff the local APIC is in-kernel. */ 3689 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3690 /* Process the interrupt via kvm_check_and_inject_events(). */ 3691 kvm_make_request(KVM_REQ_EVENT, vcpu); 3692 kvm_vcpu_kick(vcpu); 3693 return; 3694 } 3695 3696 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3697 if (in_guest_mode) { 3698 /* 3699 * Signal the doorbell to tell hardware to inject the IRQ. If 3700 * the vCPU exits the guest before the doorbell chimes, hardware 3701 * will automatically process AVIC interrupts at the next VMRUN. 3702 */ 3703 avic_ring_doorbell(vcpu); 3704 } else { 3705 /* 3706 * Wake the vCPU if it was blocking. KVM will then detect the 3707 * pending IRQ when checking if the vCPU has a wake event. 3708 */ 3709 kvm_vcpu_wake_up(vcpu); 3710 } 3711 } 3712 3713 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3714 int trig_mode, int vector) 3715 { 3716 kvm_lapic_set_irr(vector, apic); 3717 3718 /* 3719 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3720 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3721 * the read of guest_mode. This guarantees that either VMRUN will see 3722 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3723 * will signal the doorbell if the CPU has already entered the guest. 3724 */ 3725 smp_mb__after_atomic(); 3726 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3727 } 3728 3729 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3730 { 3731 struct vcpu_svm *svm = to_svm(vcpu); 3732 3733 /* 3734 * SEV-ES guests must always keep the CR intercepts cleared. CR 3735 * tracking is done using the CR write traps. 3736 */ 3737 if (sev_es_guest(vcpu->kvm)) 3738 return; 3739 3740 if (nested_svm_virtualize_tpr(vcpu)) 3741 return; 3742 3743 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3744 3745 if (irr == -1) 3746 return; 3747 3748 if (tpr >= irr) 3749 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3750 } 3751 3752 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3753 { 3754 struct vcpu_svm *svm = to_svm(vcpu); 3755 3756 if (is_vnmi_enabled(svm)) 3757 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3758 else 3759 return svm->nmi_masked; 3760 } 3761 3762 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3763 { 3764 struct vcpu_svm *svm = to_svm(vcpu); 3765 3766 if (is_vnmi_enabled(svm)) { 3767 if (masked) 3768 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3769 else 3770 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3771 3772 } else { 3773 svm->nmi_masked = masked; 3774 if (masked) 3775 svm_set_iret_intercept(svm); 3776 else 3777 svm_clr_iret_intercept(svm); 3778 } 3779 } 3780 3781 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3782 { 3783 struct vcpu_svm *svm = to_svm(vcpu); 3784 struct vmcb *vmcb = svm->vmcb; 3785 3786 if (!gif_set(svm)) 3787 return true; 3788 3789 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3790 return false; 3791 3792 if (svm_get_nmi_mask(vcpu)) 3793 return true; 3794 3795 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3796 } 3797 3798 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3799 { 3800 struct vcpu_svm *svm = to_svm(vcpu); 3801 if (svm->nested.nested_run_pending) 3802 return -EBUSY; 3803 3804 if (svm_nmi_blocked(vcpu)) 3805 return 0; 3806 3807 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3808 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3809 return -EBUSY; 3810 return 1; 3811 } 3812 3813 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3814 { 3815 struct vcpu_svm *svm = to_svm(vcpu); 3816 struct vmcb *vmcb = svm->vmcb; 3817 3818 if (!gif_set(svm)) 3819 return true; 3820 3821 if (is_guest_mode(vcpu)) { 3822 /* As long as interrupts are being delivered... */ 3823 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3824 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3825 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3826 return true; 3827 3828 /* ... vmexits aren't blocked by the interrupt shadow */ 3829 if (nested_exit_on_intr(svm)) 3830 return false; 3831 } else { 3832 if (!svm_get_if_flag(vcpu)) 3833 return true; 3834 } 3835 3836 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3837 } 3838 3839 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3840 { 3841 struct vcpu_svm *svm = to_svm(vcpu); 3842 3843 if (svm->nested.nested_run_pending) 3844 return -EBUSY; 3845 3846 if (svm_interrupt_blocked(vcpu)) 3847 return 0; 3848 3849 /* 3850 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3851 * e.g. if the IRQ arrived asynchronously after checking nested events. 3852 */ 3853 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3854 return -EBUSY; 3855 3856 return 1; 3857 } 3858 3859 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3860 { 3861 struct vcpu_svm *svm = to_svm(vcpu); 3862 3863 /* 3864 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3865 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3866 * get that intercept, this function will be called again though and 3867 * we'll get the vintr intercept. However, if the vGIF feature is 3868 * enabled, the STGI interception will not occur. Enable the irq 3869 * window under the assumption that the hardware will set the GIF. 3870 */ 3871 if (vgif || gif_set(svm)) { 3872 /* 3873 * IRQ window is not needed when AVIC is enabled, 3874 * unless we have pending ExtINT since it cannot be injected 3875 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3876 * and fallback to injecting IRQ via V_IRQ. 3877 * 3878 * If running nested, AVIC is already locally inhibited 3879 * on this vCPU, therefore there is no need to request 3880 * the VM wide AVIC inhibition. 3881 */ 3882 if (!is_guest_mode(vcpu)) 3883 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3884 3885 svm_set_vintr(svm); 3886 } 3887 } 3888 3889 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3890 { 3891 struct vcpu_svm *svm = to_svm(vcpu); 3892 3893 /* 3894 * If NMIs are outright masked, i.e. the vCPU is already handling an 3895 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3896 * more to do at this time as KVM has already enabled IRET intercepts. 3897 * If KVM has already intercepted IRET, then single-step over the IRET, 3898 * as NMIs aren't architecturally unmasked until the IRET completes. 3899 * 3900 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3901 * are masked, as KVM allows at most one to-be-injected NMI and one 3902 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3903 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3904 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3905 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3906 * inject the NMI. In those situations, KVM needs to single-step over 3907 * the STI shadow or intercept STGI. 3908 */ 3909 if (svm_get_nmi_mask(vcpu)) { 3910 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3911 3912 if (!svm->awaiting_iret_completion) 3913 return; /* IRET will cause a vm exit */ 3914 } 3915 3916 /* 3917 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3918 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3919 * KVM can't intercept and single-step IRET to detect when NMIs are 3920 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3921 * 3922 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3923 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3924 * supported NAEs in the GHCB protocol. 3925 */ 3926 if (sev_es_guest(vcpu->kvm)) 3927 return; 3928 3929 if (!gif_set(svm)) { 3930 if (vgif) 3931 svm_set_intercept(svm, INTERCEPT_STGI); 3932 return; /* STGI will cause a vm exit */ 3933 } 3934 3935 /* 3936 * Something prevents NMI from been injected. Single step over possible 3937 * problem (IRET or exception injection or interrupt shadow) 3938 */ 3939 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3940 svm->nmi_singlestep = true; 3941 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3942 } 3943 3944 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3945 { 3946 struct vcpu_svm *svm = to_svm(vcpu); 3947 3948 /* 3949 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3950 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3951 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3952 */ 3953 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3954 3955 /* 3956 * Flush only the current ASID even if the TLB flush was invoked via 3957 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3958 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3959 * unconditionally does a TLB flush on both nested VM-Enter and nested 3960 * VM-Exit (via kvm_mmu_reset_context()). 3961 */ 3962 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3963 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3964 else 3965 svm->current_vmcb->asid_generation--; 3966 } 3967 3968 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3969 { 3970 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3971 3972 /* 3973 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3974 * flush the NPT mappings via hypercall as flushing the ASID only 3975 * affects virtual to physical mappings, it does not invalidate guest 3976 * physical to host physical mappings. 3977 */ 3978 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3979 hyperv_flush_guest_mapping(root_tdp); 3980 3981 svm_flush_tlb_asid(vcpu); 3982 } 3983 3984 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3985 { 3986 /* 3987 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3988 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3989 * a "regular" remote flush. Reaching this point means either there's 3990 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3991 * which might be fatal to the guest. Yell, but try to recover. 3992 */ 3993 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3994 hv_flush_remote_tlbs(vcpu->kvm); 3995 3996 svm_flush_tlb_asid(vcpu); 3997 } 3998 3999 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 4000 { 4001 struct vcpu_svm *svm = to_svm(vcpu); 4002 4003 invlpga(gva, svm->vmcb->control.asid); 4004 } 4005 4006 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 4007 { 4008 struct vcpu_svm *svm = to_svm(vcpu); 4009 4010 if (nested_svm_virtualize_tpr(vcpu)) 4011 return; 4012 4013 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 4014 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 4015 kvm_set_cr8(vcpu, cr8); 4016 } 4017 } 4018 4019 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4020 { 4021 struct vcpu_svm *svm = to_svm(vcpu); 4022 u64 cr8; 4023 4024 if (nested_svm_virtualize_tpr(vcpu) || 4025 kvm_vcpu_apicv_active(vcpu)) 4026 return; 4027 4028 cr8 = kvm_get_cr8(vcpu); 4029 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4030 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4031 } 4032 4033 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4034 int type) 4035 { 4036 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4037 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4038 struct vcpu_svm *svm = to_svm(vcpu); 4039 4040 /* 4041 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4042 * associated with the original soft exception/interrupt. next_rip is 4043 * cleared on all exits that can occur while vectoring an event, so KVM 4044 * needs to manually set next_rip for re-injection. Unlike the !nrips 4045 * case below, this needs to be done if and only if KVM is re-injecting 4046 * the same event, i.e. if the event is a soft exception/interrupt, 4047 * otherwise next_rip is unused on VMRUN. 4048 */ 4049 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4050 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4051 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4052 /* 4053 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4054 * injecting the soft exception/interrupt. That advancement needs to 4055 * be unwound if vectoring didn't complete. Note, the new event may 4056 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4057 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4058 * be the reported vectored event, but RIP still needs to be unwound. 4059 */ 4060 else if (!nrips && (is_soft || is_exception) && 4061 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4062 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4063 } 4064 4065 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4066 { 4067 struct vcpu_svm *svm = to_svm(vcpu); 4068 u8 vector; 4069 int type; 4070 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4071 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4072 bool soft_int_injected = svm->soft_int_injected; 4073 4074 svm->nmi_l1_to_l2 = false; 4075 svm->soft_int_injected = false; 4076 4077 /* 4078 * If we've made progress since setting awaiting_iret_completion, we've 4079 * executed an IRET and can allow NMI injection. 4080 */ 4081 if (svm->awaiting_iret_completion && 4082 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4083 svm->awaiting_iret_completion = false; 4084 svm->nmi_masked = false; 4085 kvm_make_request(KVM_REQ_EVENT, vcpu); 4086 } 4087 4088 vcpu->arch.nmi_injected = false; 4089 kvm_clear_exception_queue(vcpu); 4090 kvm_clear_interrupt_queue(vcpu); 4091 4092 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4093 return; 4094 4095 kvm_make_request(KVM_REQ_EVENT, vcpu); 4096 4097 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4098 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4099 4100 if (soft_int_injected) 4101 svm_complete_soft_interrupt(vcpu, vector, type); 4102 4103 switch (type) { 4104 case SVM_EXITINTINFO_TYPE_NMI: 4105 vcpu->arch.nmi_injected = true; 4106 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4107 break; 4108 case SVM_EXITINTINFO_TYPE_EXEPT: 4109 /* 4110 * Never re-inject a #VC exception. 4111 */ 4112 if (vector == X86_TRAP_VC) 4113 break; 4114 4115 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4116 u32 err = svm->vmcb->control.exit_int_info_err; 4117 kvm_requeue_exception_e(vcpu, vector, err); 4118 4119 } else 4120 kvm_requeue_exception(vcpu, vector); 4121 break; 4122 case SVM_EXITINTINFO_TYPE_INTR: 4123 kvm_queue_interrupt(vcpu, vector, false); 4124 break; 4125 case SVM_EXITINTINFO_TYPE_SOFT: 4126 kvm_queue_interrupt(vcpu, vector, true); 4127 break; 4128 default: 4129 break; 4130 } 4131 4132 } 4133 4134 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4135 { 4136 struct vcpu_svm *svm = to_svm(vcpu); 4137 struct vmcb_control_area *control = &svm->vmcb->control; 4138 4139 control->exit_int_info = control->event_inj; 4140 control->exit_int_info_err = control->event_inj_err; 4141 control->event_inj = 0; 4142 svm_complete_interrupts(vcpu); 4143 } 4144 4145 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4146 { 4147 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4148 return -EINVAL; 4149 4150 return 1; 4151 } 4152 4153 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4154 { 4155 struct vcpu_svm *svm = to_svm(vcpu); 4156 4157 if (is_guest_mode(vcpu)) 4158 return EXIT_FASTPATH_NONE; 4159 4160 switch (svm->vmcb->control.exit_code) { 4161 case SVM_EXIT_MSR: 4162 if (!svm->vmcb->control.exit_info_1) 4163 break; 4164 return handle_fastpath_set_msr_irqoff(vcpu); 4165 case SVM_EXIT_HLT: 4166 return handle_fastpath_hlt(vcpu); 4167 default: 4168 break; 4169 } 4170 4171 return EXIT_FASTPATH_NONE; 4172 } 4173 4174 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4175 { 4176 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4177 struct vcpu_svm *svm = to_svm(vcpu); 4178 4179 guest_state_enter_irqoff(); 4180 4181 amd_clear_divider(); 4182 4183 if (sev_es_guest(vcpu->kvm)) 4184 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4185 sev_es_host_save_area(sd)); 4186 else 4187 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4188 4189 guest_state_exit_irqoff(); 4190 } 4191 4192 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, 4193 bool force_immediate_exit) 4194 { 4195 struct vcpu_svm *svm = to_svm(vcpu); 4196 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4197 4198 trace_kvm_entry(vcpu, force_immediate_exit); 4199 4200 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4201 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4202 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4203 4204 /* 4205 * Disable singlestep if we're injecting an interrupt/exception. 4206 * We don't want our modified rflags to be pushed on the stack where 4207 * we might not be able to easily reset them if we disabled NMI 4208 * singlestep later. 4209 */ 4210 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4211 /* 4212 * Event injection happens before external interrupts cause a 4213 * vmexit and interrupts are disabled here, so smp_send_reschedule 4214 * is enough to force an immediate vmexit. 4215 */ 4216 disable_nmi_singlestep(svm); 4217 force_immediate_exit = true; 4218 } 4219 4220 if (force_immediate_exit) 4221 smp_send_reschedule(vcpu->cpu); 4222 4223 pre_svm_run(vcpu); 4224 4225 sync_lapic_to_cr8(vcpu); 4226 4227 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4228 svm->vmcb->control.asid = svm->asid; 4229 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4230 } 4231 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4232 4233 svm_hv_update_vp_id(svm->vmcb, vcpu); 4234 4235 /* 4236 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4237 * of a #DB. 4238 */ 4239 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4240 svm_set_dr6(svm, vcpu->arch.dr6); 4241 else 4242 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4243 4244 clgi(); 4245 kvm_load_guest_xsave_state(vcpu); 4246 4247 kvm_wait_lapic_expire(vcpu); 4248 4249 /* 4250 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4251 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4252 * is no need to worry about the conditional branch over the wrmsr 4253 * being speculatively taken. 4254 */ 4255 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4256 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4257 4258 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4259 4260 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4261 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4262 4263 if (!sev_es_guest(vcpu->kvm)) { 4264 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4265 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4266 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4267 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4268 } 4269 vcpu->arch.regs_dirty = 0; 4270 4271 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4272 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4273 4274 kvm_load_host_xsave_state(vcpu); 4275 stgi(); 4276 4277 /* Any pending NMI will happen here */ 4278 4279 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4280 kvm_after_interrupt(vcpu); 4281 4282 sync_cr8_to_lapic(vcpu); 4283 4284 svm->next_rip = 0; 4285 if (is_guest_mode(vcpu)) { 4286 nested_sync_control_from_vmcb02(svm); 4287 4288 /* Track VMRUNs that have made past consistency checking */ 4289 if (svm->nested.nested_run_pending && 4290 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4291 ++vcpu->stat.nested_run; 4292 4293 svm->nested.nested_run_pending = 0; 4294 } 4295 4296 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4297 vmcb_mark_all_clean(svm->vmcb); 4298 4299 /* if exit due to PF check for async PF */ 4300 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4301 vcpu->arch.apf.host_apf_flags = 4302 kvm_read_and_reset_apf_flags(); 4303 4304 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4305 4306 /* 4307 * We need to handle MC intercepts here before the vcpu has a chance to 4308 * change the physical cpu 4309 */ 4310 if (unlikely(svm->vmcb->control.exit_code == 4311 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4312 svm_handle_mce(vcpu); 4313 4314 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4315 4316 svm_complete_interrupts(vcpu); 4317 4318 return svm_exit_handlers_fastpath(vcpu); 4319 } 4320 4321 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4322 int root_level) 4323 { 4324 struct vcpu_svm *svm = to_svm(vcpu); 4325 unsigned long cr3; 4326 4327 if (npt_enabled) { 4328 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4329 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4330 4331 hv_track_root_tdp(vcpu, root_hpa); 4332 4333 cr3 = vcpu->arch.cr3; 4334 } else if (root_level >= PT64_ROOT_4LEVEL) { 4335 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4336 } else { 4337 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4338 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4339 cr3 = root_hpa; 4340 } 4341 4342 svm->vmcb->save.cr3 = cr3; 4343 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4344 } 4345 4346 static void 4347 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4348 { 4349 /* 4350 * Patch in the VMMCALL instruction: 4351 */ 4352 hypercall[0] = 0x0f; 4353 hypercall[1] = 0x01; 4354 hypercall[2] = 0xd9; 4355 } 4356 4357 /* 4358 * The kvm parameter can be NULL (module initialization, or invocation before 4359 * VM creation). Be sure to check the kvm parameter before using it. 4360 */ 4361 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4362 { 4363 switch (index) { 4364 case MSR_IA32_MCG_EXT_CTL: 4365 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4366 return false; 4367 case MSR_IA32_SMBASE: 4368 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4369 return false; 4370 /* SEV-ES guests do not support SMM, so report false */ 4371 if (kvm && sev_es_guest(kvm)) 4372 return false; 4373 break; 4374 default: 4375 break; 4376 } 4377 4378 return true; 4379 } 4380 4381 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4382 { 4383 struct vcpu_svm *svm = to_svm(vcpu); 4384 4385 /* 4386 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4387 * can only disable all variants of by disallowing CR4.OSXSAVE from 4388 * being set. As a result, if the host has XSAVE and XSAVES, and the 4389 * guest has XSAVE enabled, the guest can execute XSAVES without 4390 * faulting. Treat XSAVES as enabled in this case regardless of 4391 * whether it's advertised to the guest so that KVM context switches 4392 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4393 * the guest read/write access to the host's XSS. 4394 */ 4395 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4396 boot_cpu_has(X86_FEATURE_XSAVES) && 4397 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4398 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4399 4400 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4401 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4402 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4403 4404 /* 4405 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4406 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4407 * SVM on Intel is bonkers and extremely unlikely to work). 4408 */ 4409 if (!guest_cpuid_is_intel_compatible(vcpu)) 4410 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4411 4412 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4413 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4414 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4415 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4416 4417 svm_recalc_instruction_intercepts(vcpu, svm); 4418 4419 if (boot_cpu_has(X86_FEATURE_IBPB)) 4420 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4421 !!guest_has_pred_cmd_msr(vcpu)); 4422 4423 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4424 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4425 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4426 4427 if (sev_guest(vcpu->kvm)) 4428 sev_vcpu_after_set_cpuid(svm); 4429 4430 init_vmcb_after_set_cpuid(vcpu); 4431 } 4432 4433 static bool svm_has_wbinvd_exit(void) 4434 { 4435 return true; 4436 } 4437 4438 #define PRE_EX(exit) { .exit_code = (exit), \ 4439 .stage = X86_ICPT_PRE_EXCEPT, } 4440 #define POST_EX(exit) { .exit_code = (exit), \ 4441 .stage = X86_ICPT_POST_EXCEPT, } 4442 #define POST_MEM(exit) { .exit_code = (exit), \ 4443 .stage = X86_ICPT_POST_MEMACCESS, } 4444 4445 static const struct __x86_intercept { 4446 u32 exit_code; 4447 enum x86_intercept_stage stage; 4448 } x86_intercept_map[] = { 4449 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4450 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4451 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4452 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4453 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4454 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4455 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4456 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4457 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4458 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4459 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4460 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4461 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4462 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4463 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4464 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4465 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4466 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4467 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4468 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4469 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4470 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4471 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4472 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4473 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4474 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4475 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4476 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4477 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4478 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4479 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4480 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4481 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4482 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4483 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4484 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4485 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4486 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4487 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4488 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4489 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4490 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4491 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4492 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4493 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4494 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4495 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4496 }; 4497 4498 #undef PRE_EX 4499 #undef POST_EX 4500 #undef POST_MEM 4501 4502 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4503 struct x86_instruction_info *info, 4504 enum x86_intercept_stage stage, 4505 struct x86_exception *exception) 4506 { 4507 struct vcpu_svm *svm = to_svm(vcpu); 4508 int vmexit, ret = X86EMUL_CONTINUE; 4509 struct __x86_intercept icpt_info; 4510 struct vmcb *vmcb = svm->vmcb; 4511 4512 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4513 goto out; 4514 4515 icpt_info = x86_intercept_map[info->intercept]; 4516 4517 if (stage != icpt_info.stage) 4518 goto out; 4519 4520 switch (icpt_info.exit_code) { 4521 case SVM_EXIT_READ_CR0: 4522 if (info->intercept == x86_intercept_cr_read) 4523 icpt_info.exit_code += info->modrm_reg; 4524 break; 4525 case SVM_EXIT_WRITE_CR0: { 4526 unsigned long cr0, val; 4527 4528 if (info->intercept == x86_intercept_cr_write) 4529 icpt_info.exit_code += info->modrm_reg; 4530 4531 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4532 info->intercept == x86_intercept_clts) 4533 break; 4534 4535 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4536 INTERCEPT_SELECTIVE_CR0))) 4537 break; 4538 4539 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4540 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4541 4542 if (info->intercept == x86_intercept_lmsw) { 4543 cr0 &= 0xfUL; 4544 val &= 0xfUL; 4545 /* lmsw can't clear PE - catch this here */ 4546 if (cr0 & X86_CR0_PE) 4547 val |= X86_CR0_PE; 4548 } 4549 4550 if (cr0 ^ val) 4551 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4552 4553 break; 4554 } 4555 case SVM_EXIT_READ_DR0: 4556 case SVM_EXIT_WRITE_DR0: 4557 icpt_info.exit_code += info->modrm_reg; 4558 break; 4559 case SVM_EXIT_MSR: 4560 if (info->intercept == x86_intercept_wrmsr) 4561 vmcb->control.exit_info_1 = 1; 4562 else 4563 vmcb->control.exit_info_1 = 0; 4564 break; 4565 case SVM_EXIT_PAUSE: 4566 /* 4567 * We get this for NOP only, but pause 4568 * is rep not, check this here 4569 */ 4570 if (info->rep_prefix != REPE_PREFIX) 4571 goto out; 4572 break; 4573 case SVM_EXIT_IOIO: { 4574 u64 exit_info; 4575 u32 bytes; 4576 4577 if (info->intercept == x86_intercept_in || 4578 info->intercept == x86_intercept_ins) { 4579 exit_info = ((info->src_val & 0xffff) << 16) | 4580 SVM_IOIO_TYPE_MASK; 4581 bytes = info->dst_bytes; 4582 } else { 4583 exit_info = (info->dst_val & 0xffff) << 16; 4584 bytes = info->src_bytes; 4585 } 4586 4587 if (info->intercept == x86_intercept_outs || 4588 info->intercept == x86_intercept_ins) 4589 exit_info |= SVM_IOIO_STR_MASK; 4590 4591 if (info->rep_prefix) 4592 exit_info |= SVM_IOIO_REP_MASK; 4593 4594 bytes = min(bytes, 4u); 4595 4596 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4597 4598 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4599 4600 vmcb->control.exit_info_1 = exit_info; 4601 vmcb->control.exit_info_2 = info->next_rip; 4602 4603 break; 4604 } 4605 default: 4606 break; 4607 } 4608 4609 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4610 if (static_cpu_has(X86_FEATURE_NRIPS)) 4611 vmcb->control.next_rip = info->next_rip; 4612 vmcb->control.exit_code = icpt_info.exit_code; 4613 vmexit = nested_svm_exit_handled(svm); 4614 4615 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4616 : X86EMUL_CONTINUE; 4617 4618 out: 4619 return ret; 4620 } 4621 4622 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4623 { 4624 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4625 vcpu->arch.at_instruction_boundary = true; 4626 } 4627 4628 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4629 { 4630 /* [63:9] are reserved. */ 4631 vcpu->arch.mcg_cap &= 0x1ff; 4632 } 4633 4634 #ifdef CONFIG_KVM_SMM 4635 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4636 { 4637 struct vcpu_svm *svm = to_svm(vcpu); 4638 4639 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4640 if (!gif_set(svm)) 4641 return true; 4642 4643 return is_smm(vcpu); 4644 } 4645 4646 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4647 { 4648 struct vcpu_svm *svm = to_svm(vcpu); 4649 if (svm->nested.nested_run_pending) 4650 return -EBUSY; 4651 4652 if (svm_smi_blocked(vcpu)) 4653 return 0; 4654 4655 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4656 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4657 return -EBUSY; 4658 4659 return 1; 4660 } 4661 4662 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4663 { 4664 struct vcpu_svm *svm = to_svm(vcpu); 4665 struct kvm_host_map map_save; 4666 int ret; 4667 4668 if (!is_guest_mode(vcpu)) 4669 return 0; 4670 4671 /* 4672 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4673 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4674 */ 4675 4676 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4677 return 1; 4678 4679 smram->smram64.svm_guest_flag = 1; 4680 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4681 4682 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4683 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4684 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4685 4686 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4687 if (ret) 4688 return ret; 4689 4690 /* 4691 * KVM uses VMCB01 to store L1 host state while L2 runs but 4692 * VMCB01 is going to be used during SMM and thus the state will 4693 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4694 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4695 * format of the area is identical to guest save area offsetted 4696 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4697 * within 'struct vmcb'). Note: HSAVE area may also be used by 4698 * L1 hypervisor to save additional host context (e.g. KVM does 4699 * that, see svm_prepare_switch_to_guest()) which must be 4700 * preserved. 4701 */ 4702 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4703 return 1; 4704 4705 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4706 4707 svm_copy_vmrun_state(map_save.hva + 0x400, 4708 &svm->vmcb01.ptr->save); 4709 4710 kvm_vcpu_unmap(vcpu, &map_save); 4711 return 0; 4712 } 4713 4714 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4715 { 4716 struct vcpu_svm *svm = to_svm(vcpu); 4717 struct kvm_host_map map, map_save; 4718 struct vmcb *vmcb12; 4719 int ret; 4720 4721 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4722 4723 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4724 return 0; 4725 4726 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4727 if (!smram64->svm_guest_flag) 4728 return 0; 4729 4730 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4731 return 1; 4732 4733 if (!(smram64->efer & EFER_SVME)) 4734 return 1; 4735 4736 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4737 return 1; 4738 4739 ret = 1; 4740 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4741 goto unmap_map; 4742 4743 if (svm_allocate_nested(svm)) 4744 goto unmap_save; 4745 4746 /* 4747 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4748 * used during SMM (see svm_enter_smm()) 4749 */ 4750 4751 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4752 4753 /* 4754 * Enter the nested guest now 4755 */ 4756 4757 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4758 4759 vmcb12 = map.hva; 4760 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4761 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4762 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4763 4764 if (ret) 4765 goto unmap_save; 4766 4767 svm->nested.nested_run_pending = 1; 4768 4769 unmap_save: 4770 kvm_vcpu_unmap(vcpu, &map_save); 4771 unmap_map: 4772 kvm_vcpu_unmap(vcpu, &map); 4773 return ret; 4774 } 4775 4776 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4777 { 4778 struct vcpu_svm *svm = to_svm(vcpu); 4779 4780 if (!gif_set(svm)) { 4781 if (vgif) 4782 svm_set_intercept(svm, INTERCEPT_STGI); 4783 /* STGI will cause a vm exit */ 4784 } else { 4785 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4786 } 4787 } 4788 #endif 4789 4790 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4791 void *insn, int insn_len) 4792 { 4793 bool smep, smap, is_user; 4794 u64 error_code; 4795 4796 /* Emulation is always possible when KVM has access to all guest state. */ 4797 if (!sev_guest(vcpu->kvm)) 4798 return X86EMUL_CONTINUE; 4799 4800 /* #UD and #GP should never be intercepted for SEV guests. */ 4801 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4802 EMULTYPE_TRAP_UD_FORCED | 4803 EMULTYPE_VMWARE_GP)); 4804 4805 /* 4806 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4807 * to guest register state. 4808 */ 4809 if (sev_es_guest(vcpu->kvm)) 4810 return X86EMUL_RETRY_INSTR; 4811 4812 /* 4813 * Emulation is possible if the instruction is already decoded, e.g. 4814 * when completing I/O after returning from userspace. 4815 */ 4816 if (emul_type & EMULTYPE_NO_DECODE) 4817 return X86EMUL_CONTINUE; 4818 4819 /* 4820 * Emulation is possible for SEV guests if and only if a prefilled 4821 * buffer containing the bytes of the intercepted instruction is 4822 * available. SEV guest memory is encrypted with a guest specific key 4823 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4824 * decode garbage. 4825 * 4826 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4827 * KVM reached this point without an instruction buffer. In practice, 4828 * this path should never be hit by a well-behaved guest, e.g. KVM 4829 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4830 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4831 * access, and needs to be handled by KVM to avoid putting the guest 4832 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4833 * its the least awful option given lack of insight into the guest. 4834 * 4835 * If KVM is trying to skip an instruction, simply resume the guest. 4836 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4837 * will attempt to re-inject the INT3/INTO and skip the instruction. 4838 * In that scenario, retrying the INT3/INTO and hoping the guest will 4839 * make forward progress is the only option that has a chance of 4840 * success (and in practice it will work the vast majority of the time). 4841 */ 4842 if (unlikely(!insn)) { 4843 if (emul_type & EMULTYPE_SKIP) 4844 return X86EMUL_UNHANDLEABLE; 4845 4846 kvm_queue_exception(vcpu, UD_VECTOR); 4847 return X86EMUL_PROPAGATE_FAULT; 4848 } 4849 4850 /* 4851 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4852 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4853 * the faulting instruction because the code fetch itself faulted, e.g. 4854 * the guest attempted to fetch from emulated MMIO or a guest page 4855 * table used to translate CS:RIP resides in emulated MMIO. 4856 */ 4857 if (likely(insn_len)) 4858 return X86EMUL_CONTINUE; 4859 4860 /* 4861 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4862 * 4863 * Errata: 4864 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4865 * possible that CPU microcode implementing DecodeAssist will fail to 4866 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4867 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4868 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4869 * gives up and does not fill the instruction bytes buffer. 4870 * 4871 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4872 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4873 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4874 * GuestIntrBytes field of the VMCB. 4875 * 4876 * This does _not_ mean that the erratum has been encountered, as the 4877 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4878 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4879 * encountered a reserved/not-present #PF. 4880 * 4881 * To hit the erratum, the following conditions must be true: 4882 * 1. CR4.SMAP=1 (obviously). 4883 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4884 * have been hit as the guest would have encountered a SMEP 4885 * violation #PF, not a #NPF. 4886 * 3. The #NPF is not due to a code fetch, in which case failure to 4887 * retrieve the instruction bytes is legitimate (see abvoe). 4888 * 4889 * In addition, don't apply the erratum workaround if the #NPF occurred 4890 * while translating guest page tables (see below). 4891 */ 4892 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4893 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4894 goto resume_guest; 4895 4896 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4897 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4898 is_user = svm_get_cpl(vcpu) == 3; 4899 if (smap && (!smep || is_user)) { 4900 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4901 4902 /* 4903 * If the fault occurred in userspace, arbitrarily inject #GP 4904 * to avoid killing the guest and to hopefully avoid confusing 4905 * the guest kernel too much, e.g. injecting #PF would not be 4906 * coherent with respect to the guest's page tables. Request 4907 * triple fault if the fault occurred in the kernel as there's 4908 * no fault that KVM can inject without confusing the guest. 4909 * In practice, the triple fault is moot as no sane SEV kernel 4910 * will execute from user memory while also running with SMAP=1. 4911 */ 4912 if (is_user) 4913 kvm_inject_gp(vcpu, 0); 4914 else 4915 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4916 return X86EMUL_PROPAGATE_FAULT; 4917 } 4918 4919 resume_guest: 4920 /* 4921 * If the erratum was not hit, simply resume the guest and let it fault 4922 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4923 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4924 * userspace will kill the guest, and letting the emulator read garbage 4925 * will yield random behavior and potentially corrupt the guest. 4926 * 4927 * Simply resuming the guest is technically not a violation of the SEV 4928 * architecture. AMD's APM states that all code fetches and page table 4929 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4930 * APM also states that encrypted accesses to MMIO are "ignored", but 4931 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4932 * the guest spin is technically "ignoring" the access. 4933 */ 4934 return X86EMUL_RETRY_INSTR; 4935 } 4936 4937 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4938 { 4939 struct vcpu_svm *svm = to_svm(vcpu); 4940 4941 return !gif_set(svm); 4942 } 4943 4944 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4945 { 4946 if (!sev_es_guest(vcpu->kvm)) 4947 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4948 4949 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4950 } 4951 4952 static void svm_vm_destroy(struct kvm *kvm) 4953 { 4954 avic_vm_destroy(kvm); 4955 sev_vm_destroy(kvm); 4956 } 4957 4958 static int svm_vm_init(struct kvm *kvm) 4959 { 4960 int type = kvm->arch.vm_type; 4961 4962 if (type != KVM_X86_DEFAULT_VM && 4963 type != KVM_X86_SW_PROTECTED_VM) { 4964 kvm->arch.has_protected_state = 4965 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 4966 to_kvm_sev_info(kvm)->need_init = true; 4967 4968 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 4969 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 4970 } 4971 4972 if (!pause_filter_count || !pause_filter_thresh) 4973 kvm->arch.pause_in_guest = true; 4974 4975 if (enable_apicv) { 4976 int ret = avic_vm_init(kvm); 4977 if (ret) 4978 return ret; 4979 } 4980 4981 return 0; 4982 } 4983 4984 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 4985 { 4986 struct page *page = snp_safe_alloc_page(); 4987 4988 if (!page) 4989 return NULL; 4990 4991 return page_address(page); 4992 } 4993 4994 static struct kvm_x86_ops svm_x86_ops __initdata = { 4995 .name = KBUILD_MODNAME, 4996 4997 .check_processor_compatibility = svm_check_processor_compat, 4998 4999 .hardware_unsetup = svm_hardware_unsetup, 5000 .enable_virtualization_cpu = svm_enable_virtualization_cpu, 5001 .disable_virtualization_cpu = svm_disable_virtualization_cpu, 5002 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, 5003 .has_emulated_msr = svm_has_emulated_msr, 5004 5005 .vcpu_create = svm_vcpu_create, 5006 .vcpu_free = svm_vcpu_free, 5007 .vcpu_reset = svm_vcpu_reset, 5008 5009 .vm_size = sizeof(struct kvm_svm), 5010 .vm_init = svm_vm_init, 5011 .vm_destroy = svm_vm_destroy, 5012 5013 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5014 .vcpu_load = svm_vcpu_load, 5015 .vcpu_put = svm_vcpu_put, 5016 .vcpu_blocking = avic_vcpu_blocking, 5017 .vcpu_unblocking = avic_vcpu_unblocking, 5018 5019 .update_exception_bitmap = svm_update_exception_bitmap, 5020 .get_feature_msr = svm_get_feature_msr, 5021 .get_msr = svm_get_msr, 5022 .set_msr = svm_set_msr, 5023 .get_segment_base = svm_get_segment_base, 5024 .get_segment = svm_get_segment, 5025 .set_segment = svm_set_segment, 5026 .get_cpl = svm_get_cpl, 5027 .get_cpl_no_cache = svm_get_cpl, 5028 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5029 .is_valid_cr0 = svm_is_valid_cr0, 5030 .set_cr0 = svm_set_cr0, 5031 .post_set_cr3 = sev_post_set_cr3, 5032 .is_valid_cr4 = svm_is_valid_cr4, 5033 .set_cr4 = svm_set_cr4, 5034 .set_efer = svm_set_efer, 5035 .get_idt = svm_get_idt, 5036 .set_idt = svm_set_idt, 5037 .get_gdt = svm_get_gdt, 5038 .set_gdt = svm_set_gdt, 5039 .set_dr7 = svm_set_dr7, 5040 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5041 .cache_reg = svm_cache_reg, 5042 .get_rflags = svm_get_rflags, 5043 .set_rflags = svm_set_rflags, 5044 .get_if_flag = svm_get_if_flag, 5045 5046 .flush_tlb_all = svm_flush_tlb_all, 5047 .flush_tlb_current = svm_flush_tlb_current, 5048 .flush_tlb_gva = svm_flush_tlb_gva, 5049 .flush_tlb_guest = svm_flush_tlb_asid, 5050 5051 .vcpu_pre_run = svm_vcpu_pre_run, 5052 .vcpu_run = svm_vcpu_run, 5053 .handle_exit = svm_handle_exit, 5054 .skip_emulated_instruction = svm_skip_emulated_instruction, 5055 .update_emulated_instruction = NULL, 5056 .set_interrupt_shadow = svm_set_interrupt_shadow, 5057 .get_interrupt_shadow = svm_get_interrupt_shadow, 5058 .patch_hypercall = svm_patch_hypercall, 5059 .inject_irq = svm_inject_irq, 5060 .inject_nmi = svm_inject_nmi, 5061 .is_vnmi_pending = svm_is_vnmi_pending, 5062 .set_vnmi_pending = svm_set_vnmi_pending, 5063 .inject_exception = svm_inject_exception, 5064 .cancel_injection = svm_cancel_injection, 5065 .interrupt_allowed = svm_interrupt_allowed, 5066 .nmi_allowed = svm_nmi_allowed, 5067 .get_nmi_mask = svm_get_nmi_mask, 5068 .set_nmi_mask = svm_set_nmi_mask, 5069 .enable_nmi_window = svm_enable_nmi_window, 5070 .enable_irq_window = svm_enable_irq_window, 5071 .update_cr8_intercept = svm_update_cr8_intercept, 5072 5073 .x2apic_icr_is_split = true, 5074 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5075 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5076 .apicv_post_state_restore = avic_apicv_post_state_restore, 5077 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5078 5079 .get_exit_info = svm_get_exit_info, 5080 5081 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5082 5083 .has_wbinvd_exit = svm_has_wbinvd_exit, 5084 5085 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5086 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5087 .write_tsc_offset = svm_write_tsc_offset, 5088 .write_tsc_multiplier = svm_write_tsc_multiplier, 5089 5090 .load_mmu_pgd = svm_load_mmu_pgd, 5091 5092 .check_intercept = svm_check_intercept, 5093 .handle_exit_irqoff = svm_handle_exit_irqoff, 5094 5095 .nested_ops = &svm_nested_ops, 5096 5097 .deliver_interrupt = svm_deliver_interrupt, 5098 .pi_update_irte = avic_pi_update_irte, 5099 .setup_mce = svm_setup_mce, 5100 5101 #ifdef CONFIG_KVM_SMM 5102 .smi_allowed = svm_smi_allowed, 5103 .enter_smm = svm_enter_smm, 5104 .leave_smm = svm_leave_smm, 5105 .enable_smi_window = svm_enable_smi_window, 5106 #endif 5107 5108 #ifdef CONFIG_KVM_AMD_SEV 5109 .dev_get_attr = sev_dev_get_attr, 5110 .mem_enc_ioctl = sev_mem_enc_ioctl, 5111 .mem_enc_register_region = sev_mem_enc_register_region, 5112 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5113 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5114 5115 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5116 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5117 #endif 5118 .check_emulate_instruction = svm_check_emulate_instruction, 5119 5120 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5121 5122 .msr_filter_changed = svm_msr_filter_changed, 5123 .complete_emulated_msr = svm_complete_emulated_msr, 5124 5125 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5126 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5127 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5128 5129 .gmem_prepare = sev_gmem_prepare, 5130 .gmem_invalidate = sev_gmem_invalidate, 5131 .private_max_mapping_level = sev_private_max_mapping_level, 5132 }; 5133 5134 /* 5135 * The default MMIO mask is a single bit (excluding the present bit), 5136 * which could conflict with the memory encryption bit. Check for 5137 * memory encryption support and override the default MMIO mask if 5138 * memory encryption is enabled. 5139 */ 5140 static __init void svm_adjust_mmio_mask(void) 5141 { 5142 unsigned int enc_bit, mask_bit; 5143 u64 msr, mask; 5144 5145 /* If there is no memory encryption support, use existing mask */ 5146 if (cpuid_eax(0x80000000) < 0x8000001f) 5147 return; 5148 5149 /* If memory encryption is not enabled, use existing mask */ 5150 rdmsrl(MSR_AMD64_SYSCFG, msr); 5151 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5152 return; 5153 5154 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5155 mask_bit = boot_cpu_data.x86_phys_bits; 5156 5157 /* Increment the mask bit if it is the same as the encryption bit */ 5158 if (enc_bit == mask_bit) 5159 mask_bit++; 5160 5161 /* 5162 * If the mask bit location is below 52, then some bits above the 5163 * physical addressing limit will always be reserved, so use the 5164 * rsvd_bits() function to generate the mask. This mask, along with 5165 * the present bit, will be used to generate a page fault with 5166 * PFER.RSV = 1. 5167 * 5168 * If the mask bit location is 52 (or above), then clear the mask. 5169 */ 5170 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5171 5172 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5173 } 5174 5175 static __init void svm_set_cpu_caps(void) 5176 { 5177 kvm_set_cpu_caps(); 5178 5179 kvm_caps.supported_perf_cap = 0; 5180 kvm_caps.supported_xss = 0; 5181 5182 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5183 if (nested) { 5184 kvm_cpu_cap_set(X86_FEATURE_SVM); 5185 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5186 5187 /* 5188 * KVM currently flushes TLBs on *every* nested SVM transition, 5189 * and so for all intents and purposes KVM supports flushing by 5190 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5191 */ 5192 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5193 5194 if (nrips) 5195 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5196 5197 if (npt_enabled) 5198 kvm_cpu_cap_set(X86_FEATURE_NPT); 5199 5200 if (tsc_scaling) 5201 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5202 5203 if (vls) 5204 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5205 if (lbrv) 5206 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5207 5208 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5209 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5210 5211 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5212 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5213 5214 if (vgif) 5215 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5216 5217 if (vnmi) 5218 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5219 5220 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5221 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5222 } 5223 5224 /* CPUID 0x80000008 */ 5225 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5226 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5227 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5228 5229 if (enable_pmu) { 5230 /* 5231 * Enumerate support for PERFCTR_CORE if and only if KVM has 5232 * access to enough counters to virtualize "core" support, 5233 * otherwise limit vPMU support to the legacy number of counters. 5234 */ 5235 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5236 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5237 kvm_pmu_cap.num_counters_gp); 5238 else 5239 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5240 5241 if (kvm_pmu_cap.version != 2 || 5242 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5243 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5244 } 5245 5246 /* CPUID 0x8000001F (SME/SEV features) */ 5247 sev_set_cpu_caps(); 5248 5249 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */ 5250 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5251 } 5252 5253 static __init int svm_hardware_setup(void) 5254 { 5255 int cpu; 5256 struct page *iopm_pages; 5257 void *iopm_va; 5258 int r; 5259 unsigned int order = get_order(IOPM_SIZE); 5260 5261 /* 5262 * NX is required for shadow paging and for NPT if the NX huge pages 5263 * mitigation is enabled. 5264 */ 5265 if (!boot_cpu_has(X86_FEATURE_NX)) { 5266 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5267 return -EOPNOTSUPP; 5268 } 5269 kvm_enable_efer_bits(EFER_NX); 5270 5271 iopm_pages = alloc_pages(GFP_KERNEL, order); 5272 5273 if (!iopm_pages) 5274 return -ENOMEM; 5275 5276 iopm_va = page_address(iopm_pages); 5277 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5278 iopm_base = __sme_page_pa(iopm_pages); 5279 5280 init_msrpm_offsets(); 5281 5282 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5283 XFEATURE_MASK_BNDCSR); 5284 5285 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5286 kvm_enable_efer_bits(EFER_FFXSR); 5287 5288 if (tsc_scaling) { 5289 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5290 tsc_scaling = false; 5291 } else { 5292 pr_info("TSC scaling supported\n"); 5293 kvm_caps.has_tsc_control = true; 5294 } 5295 } 5296 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5297 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5298 5299 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5300 5301 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5302 kvm_enable_efer_bits(EFER_AUTOIBRS); 5303 5304 /* Check for pause filtering support */ 5305 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5306 pause_filter_count = 0; 5307 pause_filter_thresh = 0; 5308 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5309 pause_filter_thresh = 0; 5310 } 5311 5312 if (nested) { 5313 pr_info("Nested Virtualization enabled\n"); 5314 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5315 } 5316 5317 /* 5318 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5319 * NPT isn't supported if the host is using 2-level paging since host 5320 * CR4 is unchanged on VMRUN. 5321 */ 5322 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5323 npt_enabled = false; 5324 5325 if (!boot_cpu_has(X86_FEATURE_NPT)) 5326 npt_enabled = false; 5327 5328 /* Force VM NPT level equal to the host's paging level */ 5329 kvm_configure_mmu(npt_enabled, get_npt_level(), 5330 get_npt_level(), PG_LEVEL_1G); 5331 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5332 5333 /* Setup shadow_me_value and shadow_me_mask */ 5334 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5335 5336 svm_adjust_mmio_mask(); 5337 5338 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5339 5340 if (lbrv) { 5341 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5342 lbrv = false; 5343 else 5344 pr_info("LBR virtualization supported\n"); 5345 } 5346 /* 5347 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5348 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5349 */ 5350 sev_hardware_setup(); 5351 5352 svm_hv_hardware_setup(); 5353 5354 for_each_possible_cpu(cpu) { 5355 r = svm_cpu_init(cpu); 5356 if (r) 5357 goto err; 5358 } 5359 5360 enable_apicv = avic = avic && avic_hardware_setup(); 5361 5362 if (!enable_apicv) { 5363 svm_x86_ops.vcpu_blocking = NULL; 5364 svm_x86_ops.vcpu_unblocking = NULL; 5365 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5366 } else if (!x2avic_enabled) { 5367 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5368 } 5369 5370 if (vls) { 5371 if (!npt_enabled || 5372 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5373 !IS_ENABLED(CONFIG_X86_64)) { 5374 vls = false; 5375 } else { 5376 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5377 } 5378 } 5379 5380 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5381 svm_gp_erratum_intercept = false; 5382 5383 if (vgif) { 5384 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5385 vgif = false; 5386 else 5387 pr_info("Virtual GIF supported\n"); 5388 } 5389 5390 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5391 if (vnmi) 5392 pr_info("Virtual NMI enabled\n"); 5393 5394 if (!vnmi) { 5395 svm_x86_ops.is_vnmi_pending = NULL; 5396 svm_x86_ops.set_vnmi_pending = NULL; 5397 } 5398 5399 if (!enable_pmu) 5400 pr_info("PMU virtualization is disabled\n"); 5401 5402 svm_set_cpu_caps(); 5403 5404 /* 5405 * It seems that on AMD processors PTE's accessed bit is 5406 * being set by the CPU hardware before the NPF vmexit. 5407 * This is not expected behaviour and our tests fail because 5408 * of it. 5409 * A workaround here is to disable support for 5410 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5411 * In this case userspace can know if there is support using 5412 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5413 * it 5414 * If future AMD CPU models change the behaviour described above, 5415 * this variable can be changed accordingly 5416 */ 5417 allow_smaller_maxphyaddr = !npt_enabled; 5418 5419 return 0; 5420 5421 err: 5422 svm_hardware_unsetup(); 5423 return r; 5424 } 5425 5426 5427 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5428 .hardware_setup = svm_hardware_setup, 5429 5430 .runtime_ops = &svm_x86_ops, 5431 .pmu_ops = &amd_pmu_ops, 5432 }; 5433 5434 static void __svm_exit(void) 5435 { 5436 kvm_x86_vendor_exit(); 5437 } 5438 5439 static int __init svm_init(void) 5440 { 5441 int r; 5442 5443 __unused_size_checks(); 5444 5445 if (!kvm_is_svm_supported()) 5446 return -EOPNOTSUPP; 5447 5448 r = kvm_x86_vendor_init(&svm_init_ops); 5449 if (r) 5450 return r; 5451 5452 /* 5453 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5454 * exposed to userspace! 5455 */ 5456 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5457 THIS_MODULE); 5458 if (r) 5459 goto err_kvm_init; 5460 5461 return 0; 5462 5463 err_kvm_init: 5464 __svm_exit(); 5465 return r; 5466 } 5467 5468 static void __exit svm_exit(void) 5469 { 5470 kvm_exit(); 5471 __svm_exit(); 5472 } 5473 5474 module_init(svm_init) 5475 module_exit(svm_exit) 5476