xref: /linux/arch/x86/kvm/svm/svm.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39 
40 #include <asm/virtext.h>
41 #include "trace.h"
42 
43 #include "svm.h"
44 
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46 
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49 
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 	{}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57 
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60 
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63 
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71 
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73 
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN		0x0000000000000001ULL
76 #define TSC_RATIO_MAX		0x000000ffffffffffULL
77 
78 static bool erratum_383_found __read_mostly;
79 
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81 
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87 
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT	0x0100000000ULL
90 
91 static const struct svm_direct_access_msrs {
92 	u32 index;   /* Index of the MSR */
93 	bool always; /* True if intercept is initially cleared */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95 	{ .index = MSR_STAR,				.always = true  },
96 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
97 #ifdef CONFIG_X86_64
98 	{ .index = MSR_GS_BASE,				.always = true  },
99 	{ .index = MSR_FS_BASE,				.always = true  },
100 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
101 	{ .index = MSR_LSTAR,				.always = true  },
102 	{ .index = MSR_CSTAR,				.always = true  },
103 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
104 #endif
105 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
106 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
107 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
108 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
109 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
110 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
111 	{ .index = MSR_EFER,				.always = false },
112 	{ .index = MSR_IA32_CR_PAT,			.always = false },
113 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
114 	{ .index = MSR_INVALID,				.always = false },
115 };
116 
117 /* enable NPT for AMD64 and X86 with PAE */
118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
119 bool npt_enabled = true;
120 #else
121 bool npt_enabled;
122 #endif
123 
124 /*
125  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
126  * pause_filter_count: On processors that support Pause filtering(indicated
127  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
128  *	count value. On VMRUN this value is loaded into an internal counter.
129  *	Each time a pause instruction is executed, this counter is decremented
130  *	until it reaches zero at which time a #VMEXIT is generated if pause
131  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
132  *	Intercept Filtering for more details.
133  *	This also indicate if ple logic enabled.
134  *
135  * pause_filter_thresh: In addition, some processor families support advanced
136  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
137  *	the amount of time a guest is allowed to execute in a pause loop.
138  *	In this mode, a 16-bit pause filter threshold field is added in the
139  *	VMCB. The threshold value is a cycle count that is used to reset the
140  *	pause counter. As with simple pause filtering, VMRUN loads the pause
141  *	count value from VMCB into an internal counter. Then, on each pause
142  *	instruction the hardware checks the elapsed number of cycles since
143  *	the most recent pause instruction against the pause filter threshold.
144  *	If the elapsed cycle count is greater than the pause filter threshold,
145  *	then the internal pause count is reloaded from the VMCB and execution
146  *	continues. If the elapsed cycle count is less than the pause filter
147  *	threshold, then the internal pause count is decremented. If the count
148  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
149  *	triggered. If advanced pause filtering is supported and pause filter
150  *	threshold field is set to zero, the filter will operate in the simpler,
151  *	count only mode.
152  */
153 
154 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
155 module_param(pause_filter_thresh, ushort, 0444);
156 
157 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
158 module_param(pause_filter_count, ushort, 0444);
159 
160 /* Default doubles per-vcpu window every exit. */
161 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
162 module_param(pause_filter_count_grow, ushort, 0444);
163 
164 /* Default resets per-vcpu window every exit to pause_filter_count. */
165 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
166 module_param(pause_filter_count_shrink, ushort, 0444);
167 
168 /* Default is to compute the maximum so we can never overflow. */
169 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
170 module_param(pause_filter_count_max, ushort, 0444);
171 
172 /* allow nested paging (virtualized MMU) for all guests */
173 static int npt = true;
174 module_param(npt, int, S_IRUGO);
175 
176 /* allow nested virtualization in KVM/SVM */
177 static int nested = true;
178 module_param(nested, int, S_IRUGO);
179 
180 /* enable/disable Next RIP Save */
181 static int nrips = true;
182 module_param(nrips, int, 0444);
183 
184 /* enable/disable Virtual VMLOAD VMSAVE */
185 static int vls = true;
186 module_param(vls, int, 0444);
187 
188 /* enable/disable Virtual GIF */
189 static int vgif = true;
190 module_param(vgif, int, 0444);
191 
192 /* enable/disable SEV support */
193 int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
194 module_param(sev, int, 0444);
195 
196 /* enable/disable SEV-ES support */
197 int sev_es = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
198 module_param(sev_es, int, 0444);
199 
200 bool __read_mostly dump_invalid_vmcb;
201 module_param(dump_invalid_vmcb, bool, 0644);
202 
203 static u8 rsm_ins_bytes[] = "\x0f\xaa";
204 
205 static void svm_complete_interrupts(struct vcpu_svm *svm);
206 
207 static unsigned long iopm_base;
208 
209 struct kvm_ldttss_desc {
210 	u16 limit0;
211 	u16 base0;
212 	unsigned base1:8, type:5, dpl:2, p:1;
213 	unsigned limit1:4, zero0:3, g:1, base2:8;
214 	u32 base3;
215 	u32 zero1;
216 } __attribute__((packed));
217 
218 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
219 
220 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
221 
222 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
223 #define MSRS_RANGE_SIZE 2048
224 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
225 
226 u32 svm_msrpm_offset(u32 msr)
227 {
228 	u32 offset;
229 	int i;
230 
231 	for (i = 0; i < NUM_MSR_MAPS; i++) {
232 		if (msr < msrpm_ranges[i] ||
233 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
234 			continue;
235 
236 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
237 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
238 
239 		/* Now we have the u8 offset - but need the u32 offset */
240 		return offset / 4;
241 	}
242 
243 	/* MSR not in any range */
244 	return MSR_INVALID;
245 }
246 
247 #define MAX_INST_SIZE 15
248 
249 static inline void clgi(void)
250 {
251 	asm volatile (__ex("clgi"));
252 }
253 
254 static inline void stgi(void)
255 {
256 	asm volatile (__ex("stgi"));
257 }
258 
259 static inline void invlpga(unsigned long addr, u32 asid)
260 {
261 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
262 }
263 
264 static int get_max_npt_level(void)
265 {
266 #ifdef CONFIG_X86_64
267 	return PT64_ROOT_4LEVEL;
268 #else
269 	return PT32E_ROOT_LEVEL;
270 #endif
271 }
272 
273 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
274 {
275 	struct vcpu_svm *svm = to_svm(vcpu);
276 	u64 old_efer = vcpu->arch.efer;
277 	vcpu->arch.efer = efer;
278 
279 	if (!npt_enabled) {
280 		/* Shadow paging assumes NX to be available.  */
281 		efer |= EFER_NX;
282 
283 		if (!(efer & EFER_LMA))
284 			efer &= ~EFER_LME;
285 	}
286 
287 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
288 		if (!(efer & EFER_SVME)) {
289 			svm_leave_nested(svm);
290 			svm_set_gif(svm, true);
291 
292 			/*
293 			 * Free the nested guest state, unless we are in SMM.
294 			 * In this case we will return to the nested guest
295 			 * as soon as we leave SMM.
296 			 */
297 			if (!is_smm(&svm->vcpu))
298 				svm_free_nested(svm);
299 
300 		} else {
301 			int ret = svm_allocate_nested(svm);
302 
303 			if (ret) {
304 				vcpu->arch.efer = old_efer;
305 				return ret;
306 			}
307 		}
308 	}
309 
310 	svm->vmcb->save.efer = efer | EFER_SVME;
311 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
312 	return 0;
313 }
314 
315 static int is_external_interrupt(u32 info)
316 {
317 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
318 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
319 }
320 
321 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
322 {
323 	struct vcpu_svm *svm = to_svm(vcpu);
324 	u32 ret = 0;
325 
326 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
327 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
328 	return ret;
329 }
330 
331 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
332 {
333 	struct vcpu_svm *svm = to_svm(vcpu);
334 
335 	if (mask == 0)
336 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
337 	else
338 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
339 
340 }
341 
342 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
343 {
344 	struct vcpu_svm *svm = to_svm(vcpu);
345 
346 	/*
347 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
348 	 * the type of exit and the #VC handler in the guest.
349 	 */
350 	if (sev_es_guest(vcpu->kvm))
351 		goto done;
352 
353 	if (nrips && svm->vmcb->control.next_rip != 0) {
354 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
355 		svm->next_rip = svm->vmcb->control.next_rip;
356 	}
357 
358 	if (!svm->next_rip) {
359 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
360 			return 0;
361 	} else {
362 		kvm_rip_write(vcpu, svm->next_rip);
363 	}
364 
365 done:
366 	svm_set_interrupt_shadow(vcpu, 0);
367 
368 	return 1;
369 }
370 
371 static void svm_queue_exception(struct kvm_vcpu *vcpu)
372 {
373 	struct vcpu_svm *svm = to_svm(vcpu);
374 	unsigned nr = vcpu->arch.exception.nr;
375 	bool has_error_code = vcpu->arch.exception.has_error_code;
376 	u32 error_code = vcpu->arch.exception.error_code;
377 
378 	kvm_deliver_exception_payload(&svm->vcpu);
379 
380 	if (nr == BP_VECTOR && !nrips) {
381 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
382 
383 		/*
384 		 * For guest debugging where we have to reinject #BP if some
385 		 * INT3 is guest-owned:
386 		 * Emulate nRIP by moving RIP forward. Will fail if injection
387 		 * raises a fault that is not intercepted. Still better than
388 		 * failing in all cases.
389 		 */
390 		(void)skip_emulated_instruction(&svm->vcpu);
391 		rip = kvm_rip_read(&svm->vcpu);
392 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
393 		svm->int3_injected = rip - old_rip;
394 	}
395 
396 	svm->vmcb->control.event_inj = nr
397 		| SVM_EVTINJ_VALID
398 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
399 		| SVM_EVTINJ_TYPE_EXEPT;
400 	svm->vmcb->control.event_inj_err = error_code;
401 }
402 
403 static void svm_init_erratum_383(void)
404 {
405 	u32 low, high;
406 	int err;
407 	u64 val;
408 
409 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
410 		return;
411 
412 	/* Use _safe variants to not break nested virtualization */
413 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
414 	if (err)
415 		return;
416 
417 	val |= (1ULL << 47);
418 
419 	low  = lower_32_bits(val);
420 	high = upper_32_bits(val);
421 
422 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
423 
424 	erratum_383_found = true;
425 }
426 
427 static void svm_init_osvw(struct kvm_vcpu *vcpu)
428 {
429 	/*
430 	 * Guests should see errata 400 and 415 as fixed (assuming that
431 	 * HLT and IO instructions are intercepted).
432 	 */
433 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
434 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
435 
436 	/*
437 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
438 	 * all osvw.status bits inside that length, including bit 0 (which is
439 	 * reserved for erratum 298), are valid. However, if host processor's
440 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
441 	 * be conservative here and therefore we tell the guest that erratum 298
442 	 * is present (because we really don't know).
443 	 */
444 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
445 		vcpu->arch.osvw.status |= 1;
446 }
447 
448 static int has_svm(void)
449 {
450 	const char *msg;
451 
452 	if (!cpu_has_svm(&msg)) {
453 		printk(KERN_INFO "has_svm: %s\n", msg);
454 		return 0;
455 	}
456 
457 	if (sev_active()) {
458 		pr_info("KVM is unsupported when running as an SEV guest\n");
459 		return 0;
460 	}
461 
462 	return 1;
463 }
464 
465 static void svm_hardware_disable(void)
466 {
467 	/* Make sure we clean up behind us */
468 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
469 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
470 
471 	cpu_svm_disable();
472 
473 	amd_pmu_disable_virt();
474 }
475 
476 static int svm_hardware_enable(void)
477 {
478 
479 	struct svm_cpu_data *sd;
480 	uint64_t efer;
481 	struct desc_struct *gdt;
482 	int me = raw_smp_processor_id();
483 
484 	rdmsrl(MSR_EFER, efer);
485 	if (efer & EFER_SVME)
486 		return -EBUSY;
487 
488 	if (!has_svm()) {
489 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
490 		return -EINVAL;
491 	}
492 	sd = per_cpu(svm_data, me);
493 	if (!sd) {
494 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
495 		return -EINVAL;
496 	}
497 
498 	sd->asid_generation = 1;
499 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
500 	sd->next_asid = sd->max_asid + 1;
501 	sd->min_asid = max_sev_asid + 1;
502 
503 	gdt = get_current_gdt_rw();
504 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
505 
506 	wrmsrl(MSR_EFER, efer | EFER_SVME);
507 
508 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
509 
510 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
511 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
512 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
513 	}
514 
515 
516 	/*
517 	 * Get OSVW bits.
518 	 *
519 	 * Note that it is possible to have a system with mixed processor
520 	 * revisions and therefore different OSVW bits. If bits are not the same
521 	 * on different processors then choose the worst case (i.e. if erratum
522 	 * is present on one processor and not on another then assume that the
523 	 * erratum is present everywhere).
524 	 */
525 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
526 		uint64_t len, status = 0;
527 		int err;
528 
529 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
530 		if (!err)
531 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
532 						      &err);
533 
534 		if (err)
535 			osvw_status = osvw_len = 0;
536 		else {
537 			if (len < osvw_len)
538 				osvw_len = len;
539 			osvw_status |= status;
540 			osvw_status &= (1ULL << osvw_len) - 1;
541 		}
542 	} else
543 		osvw_status = osvw_len = 0;
544 
545 	svm_init_erratum_383();
546 
547 	amd_pmu_enable_virt();
548 
549 	return 0;
550 }
551 
552 static void svm_cpu_uninit(int cpu)
553 {
554 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
555 
556 	if (!sd)
557 		return;
558 
559 	per_cpu(svm_data, cpu) = NULL;
560 	kfree(sd->sev_vmcbs);
561 	__free_page(sd->save_area);
562 	kfree(sd);
563 }
564 
565 static int svm_cpu_init(int cpu)
566 {
567 	struct svm_cpu_data *sd;
568 
569 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
570 	if (!sd)
571 		return -ENOMEM;
572 	sd->cpu = cpu;
573 	sd->save_area = alloc_page(GFP_KERNEL);
574 	if (!sd->save_area)
575 		goto free_cpu_data;
576 	clear_page(page_address(sd->save_area));
577 
578 	if (svm_sev_enabled()) {
579 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
580 					      sizeof(void *),
581 					      GFP_KERNEL);
582 		if (!sd->sev_vmcbs)
583 			goto free_save_area;
584 	}
585 
586 	per_cpu(svm_data, cpu) = sd;
587 
588 	return 0;
589 
590 free_save_area:
591 	__free_page(sd->save_area);
592 free_cpu_data:
593 	kfree(sd);
594 	return -ENOMEM;
595 
596 }
597 
598 static int direct_access_msr_slot(u32 msr)
599 {
600 	u32 i;
601 
602 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
603 		if (direct_access_msrs[i].index == msr)
604 			return i;
605 
606 	return -ENOENT;
607 }
608 
609 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
610 				     int write)
611 {
612 	struct vcpu_svm *svm = to_svm(vcpu);
613 	int slot = direct_access_msr_slot(msr);
614 
615 	if (slot == -ENOENT)
616 		return;
617 
618 	/* Set the shadow bitmaps to the desired intercept states */
619 	if (read)
620 		set_bit(slot, svm->shadow_msr_intercept.read);
621 	else
622 		clear_bit(slot, svm->shadow_msr_intercept.read);
623 
624 	if (write)
625 		set_bit(slot, svm->shadow_msr_intercept.write);
626 	else
627 		clear_bit(slot, svm->shadow_msr_intercept.write);
628 }
629 
630 static bool valid_msr_intercept(u32 index)
631 {
632 	return direct_access_msr_slot(index) != -ENOENT;
633 }
634 
635 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
636 {
637 	u8 bit_write;
638 	unsigned long tmp;
639 	u32 offset;
640 	u32 *msrpm;
641 
642 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
643 				      to_svm(vcpu)->msrpm;
644 
645 	offset    = svm_msrpm_offset(msr);
646 	bit_write = 2 * (msr & 0x0f) + 1;
647 	tmp       = msrpm[offset];
648 
649 	BUG_ON(offset == MSR_INVALID);
650 
651 	return !!test_bit(bit_write,  &tmp);
652 }
653 
654 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
655 					u32 msr, int read, int write)
656 {
657 	u8 bit_read, bit_write;
658 	unsigned long tmp;
659 	u32 offset;
660 
661 	/*
662 	 * If this warning triggers extend the direct_access_msrs list at the
663 	 * beginning of the file
664 	 */
665 	WARN_ON(!valid_msr_intercept(msr));
666 
667 	/* Enforce non allowed MSRs to trap */
668 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
669 		read = 0;
670 
671 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
672 		write = 0;
673 
674 	offset    = svm_msrpm_offset(msr);
675 	bit_read  = 2 * (msr & 0x0f);
676 	bit_write = 2 * (msr & 0x0f) + 1;
677 	tmp       = msrpm[offset];
678 
679 	BUG_ON(offset == MSR_INVALID);
680 
681 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
682 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
683 
684 	msrpm[offset] = tmp;
685 }
686 
687 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
688 			  int read, int write)
689 {
690 	set_shadow_msr_intercept(vcpu, msr, read, write);
691 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
692 }
693 
694 u32 *svm_vcpu_alloc_msrpm(void)
695 {
696 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
697 	u32 *msrpm;
698 
699 	if (!pages)
700 		return NULL;
701 
702 	msrpm = page_address(pages);
703 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
704 
705 	return msrpm;
706 }
707 
708 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
709 {
710 	int i;
711 
712 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
713 		if (!direct_access_msrs[i].always)
714 			continue;
715 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
716 	}
717 }
718 
719 
720 void svm_vcpu_free_msrpm(u32 *msrpm)
721 {
722 	__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
723 }
724 
725 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
726 {
727 	struct vcpu_svm *svm = to_svm(vcpu);
728 	u32 i;
729 
730 	/*
731 	 * Set intercept permissions for all direct access MSRs again. They
732 	 * will automatically get filtered through the MSR filter, so we are
733 	 * back in sync after this.
734 	 */
735 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
736 		u32 msr = direct_access_msrs[i].index;
737 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
738 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
739 
740 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
741 	}
742 }
743 
744 static void add_msr_offset(u32 offset)
745 {
746 	int i;
747 
748 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
749 
750 		/* Offset already in list? */
751 		if (msrpm_offsets[i] == offset)
752 			return;
753 
754 		/* Slot used by another offset? */
755 		if (msrpm_offsets[i] != MSR_INVALID)
756 			continue;
757 
758 		/* Add offset to list */
759 		msrpm_offsets[i] = offset;
760 
761 		return;
762 	}
763 
764 	/*
765 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
766 	 * increase MSRPM_OFFSETS in this case.
767 	 */
768 	BUG();
769 }
770 
771 static void init_msrpm_offsets(void)
772 {
773 	int i;
774 
775 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
776 
777 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
778 		u32 offset;
779 
780 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
781 		BUG_ON(offset == MSR_INVALID);
782 
783 		add_msr_offset(offset);
784 	}
785 }
786 
787 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
788 {
789 	struct vcpu_svm *svm = to_svm(vcpu);
790 
791 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
792 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
793 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
794 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
795 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
796 }
797 
798 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
799 {
800 	struct vcpu_svm *svm = to_svm(vcpu);
801 
802 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
803 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
804 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
805 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
806 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
807 }
808 
809 void disable_nmi_singlestep(struct vcpu_svm *svm)
810 {
811 	svm->nmi_singlestep = false;
812 
813 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
814 		/* Clear our flags if they were not set by the guest */
815 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
816 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
817 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
818 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
819 	}
820 }
821 
822 static void grow_ple_window(struct kvm_vcpu *vcpu)
823 {
824 	struct vcpu_svm *svm = to_svm(vcpu);
825 	struct vmcb_control_area *control = &svm->vmcb->control;
826 	int old = control->pause_filter_count;
827 
828 	control->pause_filter_count = __grow_ple_window(old,
829 							pause_filter_count,
830 							pause_filter_count_grow,
831 							pause_filter_count_max);
832 
833 	if (control->pause_filter_count != old) {
834 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
835 		trace_kvm_ple_window_update(vcpu->vcpu_id,
836 					    control->pause_filter_count, old);
837 	}
838 }
839 
840 static void shrink_ple_window(struct kvm_vcpu *vcpu)
841 {
842 	struct vcpu_svm *svm = to_svm(vcpu);
843 	struct vmcb_control_area *control = &svm->vmcb->control;
844 	int old = control->pause_filter_count;
845 
846 	control->pause_filter_count =
847 				__shrink_ple_window(old,
848 						    pause_filter_count,
849 						    pause_filter_count_shrink,
850 						    pause_filter_count);
851 	if (control->pause_filter_count != old) {
852 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
853 		trace_kvm_ple_window_update(vcpu->vcpu_id,
854 					    control->pause_filter_count, old);
855 	}
856 }
857 
858 /*
859  * The default MMIO mask is a single bit (excluding the present bit),
860  * which could conflict with the memory encryption bit. Check for
861  * memory encryption support and override the default MMIO mask if
862  * memory encryption is enabled.
863  */
864 static __init void svm_adjust_mmio_mask(void)
865 {
866 	unsigned int enc_bit, mask_bit;
867 	u64 msr, mask;
868 
869 	/* If there is no memory encryption support, use existing mask */
870 	if (cpuid_eax(0x80000000) < 0x8000001f)
871 		return;
872 
873 	/* If memory encryption is not enabled, use existing mask */
874 	rdmsrl(MSR_K8_SYSCFG, msr);
875 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
876 		return;
877 
878 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
879 	mask_bit = boot_cpu_data.x86_phys_bits;
880 
881 	/* Increment the mask bit if it is the same as the encryption bit */
882 	if (enc_bit == mask_bit)
883 		mask_bit++;
884 
885 	/*
886 	 * If the mask bit location is below 52, then some bits above the
887 	 * physical addressing limit will always be reserved, so use the
888 	 * rsvd_bits() function to generate the mask. This mask, along with
889 	 * the present bit, will be used to generate a page fault with
890 	 * PFER.RSV = 1.
891 	 *
892 	 * If the mask bit location is 52 (or above), then clear the mask.
893 	 */
894 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
895 
896 	kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
897 }
898 
899 static void svm_hardware_teardown(void)
900 {
901 	int cpu;
902 
903 	if (svm_sev_enabled())
904 		sev_hardware_teardown();
905 
906 	for_each_possible_cpu(cpu)
907 		svm_cpu_uninit(cpu);
908 
909 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
910 	iopm_base = 0;
911 }
912 
913 static __init void svm_set_cpu_caps(void)
914 {
915 	kvm_set_cpu_caps();
916 
917 	supported_xss = 0;
918 
919 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
920 	if (nested) {
921 		kvm_cpu_cap_set(X86_FEATURE_SVM);
922 
923 		if (nrips)
924 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
925 
926 		if (npt_enabled)
927 			kvm_cpu_cap_set(X86_FEATURE_NPT);
928 	}
929 
930 	/* CPUID 0x80000008 */
931 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
932 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
933 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
934 
935 	/* Enable INVPCID feature */
936 	kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
937 }
938 
939 static __init int svm_hardware_setup(void)
940 {
941 	int cpu;
942 	struct page *iopm_pages;
943 	void *iopm_va;
944 	int r;
945 
946 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
947 
948 	if (!iopm_pages)
949 		return -ENOMEM;
950 
951 	iopm_va = page_address(iopm_pages);
952 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
953 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
954 
955 	init_msrpm_offsets();
956 
957 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
958 
959 	if (boot_cpu_has(X86_FEATURE_NX))
960 		kvm_enable_efer_bits(EFER_NX);
961 
962 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
963 		kvm_enable_efer_bits(EFER_FFXSR);
964 
965 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
966 		kvm_has_tsc_control = true;
967 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
968 		kvm_tsc_scaling_ratio_frac_bits = 32;
969 	}
970 
971 	/* Check for pause filtering support */
972 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
973 		pause_filter_count = 0;
974 		pause_filter_thresh = 0;
975 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
976 		pause_filter_thresh = 0;
977 	}
978 
979 	if (nested) {
980 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
981 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
982 	}
983 
984 	if (IS_ENABLED(CONFIG_KVM_AMD_SEV) && sev) {
985 		sev_hardware_setup();
986 	} else {
987 		sev = false;
988 		sev_es = false;
989 	}
990 
991 	svm_adjust_mmio_mask();
992 
993 	for_each_possible_cpu(cpu) {
994 		r = svm_cpu_init(cpu);
995 		if (r)
996 			goto err;
997 	}
998 
999 	if (!boot_cpu_has(X86_FEATURE_NPT))
1000 		npt_enabled = false;
1001 
1002 	if (npt_enabled && !npt)
1003 		npt_enabled = false;
1004 
1005 	kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
1006 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
1007 
1008 	if (nrips) {
1009 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1010 			nrips = false;
1011 	}
1012 
1013 	if (avic) {
1014 		if (!npt_enabled ||
1015 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1016 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1017 			avic = false;
1018 		} else {
1019 			pr_info("AVIC enabled\n");
1020 
1021 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1022 		}
1023 	}
1024 
1025 	if (vls) {
1026 		if (!npt_enabled ||
1027 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1028 		    !IS_ENABLED(CONFIG_X86_64)) {
1029 			vls = false;
1030 		} else {
1031 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1032 		}
1033 	}
1034 
1035 	if (vgif) {
1036 		if (!boot_cpu_has(X86_FEATURE_VGIF))
1037 			vgif = false;
1038 		else
1039 			pr_info("Virtual GIF supported\n");
1040 	}
1041 
1042 	svm_set_cpu_caps();
1043 
1044 	/*
1045 	 * It seems that on AMD processors PTE's accessed bit is
1046 	 * being set by the CPU hardware before the NPF vmexit.
1047 	 * This is not expected behaviour and our tests fail because
1048 	 * of it.
1049 	 * A workaround here is to disable support for
1050 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1051 	 * In this case userspace can know if there is support using
1052 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1053 	 * it
1054 	 * If future AMD CPU models change the behaviour described above,
1055 	 * this variable can be changed accordingly
1056 	 */
1057 	allow_smaller_maxphyaddr = !npt_enabled;
1058 
1059 	return 0;
1060 
1061 err:
1062 	svm_hardware_teardown();
1063 	return r;
1064 }
1065 
1066 static void init_seg(struct vmcb_seg *seg)
1067 {
1068 	seg->selector = 0;
1069 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1070 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1071 	seg->limit = 0xffff;
1072 	seg->base = 0;
1073 }
1074 
1075 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1076 {
1077 	seg->selector = 0;
1078 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1079 	seg->limit = 0xffff;
1080 	seg->base = 0;
1081 }
1082 
1083 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1084 {
1085 	struct vcpu_svm *svm = to_svm(vcpu);
1086 	u64 g_tsc_offset = 0;
1087 
1088 	if (is_guest_mode(vcpu)) {
1089 		/* Write L1's TSC offset.  */
1090 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1091 			       svm->nested.hsave->control.tsc_offset;
1092 		svm->nested.hsave->control.tsc_offset = offset;
1093 	}
1094 
1095 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1096 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1097 				   offset);
1098 
1099 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1100 
1101 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1102 	return svm->vmcb->control.tsc_offset;
1103 }
1104 
1105 static void svm_check_invpcid(struct vcpu_svm *svm)
1106 {
1107 	/*
1108 	 * Intercept INVPCID instruction only if shadow page table is
1109 	 * enabled. Interception is not required with nested page table
1110 	 * enabled.
1111 	 */
1112 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1113 		if (!npt_enabled)
1114 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1115 		else
1116 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1117 	}
1118 }
1119 
1120 static void init_vmcb(struct vcpu_svm *svm)
1121 {
1122 	struct vmcb_control_area *control = &svm->vmcb->control;
1123 	struct vmcb_save_area *save = &svm->vmcb->save;
1124 
1125 	svm->vcpu.arch.hflags = 0;
1126 
1127 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1128 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1129 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1130 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1131 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1132 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1133 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1134 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1135 
1136 	set_dr_intercepts(svm);
1137 
1138 	set_exception_intercept(svm, PF_VECTOR);
1139 	set_exception_intercept(svm, UD_VECTOR);
1140 	set_exception_intercept(svm, MC_VECTOR);
1141 	set_exception_intercept(svm, AC_VECTOR);
1142 	set_exception_intercept(svm, DB_VECTOR);
1143 	/*
1144 	 * Guest access to VMware backdoor ports could legitimately
1145 	 * trigger #GP because of TSS I/O permission bitmap.
1146 	 * We intercept those #GP and allow access to them anyway
1147 	 * as VMware does.
1148 	 */
1149 	if (enable_vmware_backdoor)
1150 		set_exception_intercept(svm, GP_VECTOR);
1151 
1152 	svm_set_intercept(svm, INTERCEPT_INTR);
1153 	svm_set_intercept(svm, INTERCEPT_NMI);
1154 	svm_set_intercept(svm, INTERCEPT_SMI);
1155 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1156 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1157 	svm_set_intercept(svm, INTERCEPT_CPUID);
1158 	svm_set_intercept(svm, INTERCEPT_INVD);
1159 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1160 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1161 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1162 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1163 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1164 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1165 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1166 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1167 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1168 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1169 	svm_set_intercept(svm, INTERCEPT_STGI);
1170 	svm_set_intercept(svm, INTERCEPT_CLGI);
1171 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1172 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1173 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1174 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1175 	svm_set_intercept(svm, INTERCEPT_RSM);
1176 
1177 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1178 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1179 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1180 	}
1181 
1182 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1183 		svm_set_intercept(svm, INTERCEPT_HLT);
1184 
1185 	control->iopm_base_pa = __sme_set(iopm_base);
1186 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1187 	control->int_ctl = V_INTR_MASKING_MASK;
1188 
1189 	init_seg(&save->es);
1190 	init_seg(&save->ss);
1191 	init_seg(&save->ds);
1192 	init_seg(&save->fs);
1193 	init_seg(&save->gs);
1194 
1195 	save->cs.selector = 0xf000;
1196 	save->cs.base = 0xffff0000;
1197 	/* Executable/Readable Code Segment */
1198 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1199 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1200 	save->cs.limit = 0xffff;
1201 
1202 	save->gdtr.limit = 0xffff;
1203 	save->idtr.limit = 0xffff;
1204 
1205 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1206 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1207 
1208 	svm_set_efer(&svm->vcpu, 0);
1209 	save->dr6 = 0xffff0ff0;
1210 	kvm_set_rflags(&svm->vcpu, 2);
1211 	save->rip = 0x0000fff0;
1212 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1213 
1214 	/*
1215 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1216 	 * It also updates the guest-visible cr0 value.
1217 	 */
1218 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1219 	kvm_mmu_reset_context(&svm->vcpu);
1220 
1221 	save->cr4 = X86_CR4_PAE;
1222 	/* rdx = ?? */
1223 
1224 	if (npt_enabled) {
1225 		/* Setup VMCB for Nested Paging */
1226 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1227 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1228 		clr_exception_intercept(svm, PF_VECTOR);
1229 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1230 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1231 		save->g_pat = svm->vcpu.arch.pat;
1232 		save->cr3 = 0;
1233 		save->cr4 = 0;
1234 	}
1235 	svm->asid_generation = 0;
1236 	svm->asid = 0;
1237 
1238 	svm->nested.vmcb12_gpa = 0;
1239 	svm->vcpu.arch.hflags = 0;
1240 
1241 	if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1242 		control->pause_filter_count = pause_filter_count;
1243 		if (pause_filter_thresh)
1244 			control->pause_filter_thresh = pause_filter_thresh;
1245 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1246 	} else {
1247 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1248 	}
1249 
1250 	svm_check_invpcid(svm);
1251 
1252 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1253 		avic_init_vmcb(svm);
1254 
1255 	/*
1256 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1257 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1258 	 */
1259 	if (vls) {
1260 		svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1261 		svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1262 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1263 	}
1264 
1265 	if (vgif) {
1266 		svm_clr_intercept(svm, INTERCEPT_STGI);
1267 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1268 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1269 	}
1270 
1271 	if (sev_guest(svm->vcpu.kvm)) {
1272 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1273 		clr_exception_intercept(svm, UD_VECTOR);
1274 
1275 		if (sev_es_guest(svm->vcpu.kvm)) {
1276 			/* Perform SEV-ES specific VMCB updates */
1277 			sev_es_init_vmcb(svm);
1278 		}
1279 	}
1280 
1281 	vmcb_mark_all_dirty(svm->vmcb);
1282 
1283 	enable_gif(svm);
1284 
1285 }
1286 
1287 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1288 {
1289 	struct vcpu_svm *svm = to_svm(vcpu);
1290 	u32 dummy;
1291 	u32 eax = 1;
1292 
1293 	svm->spec_ctrl = 0;
1294 	svm->virt_spec_ctrl = 0;
1295 
1296 	if (!init_event) {
1297 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1298 					   MSR_IA32_APICBASE_ENABLE;
1299 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1300 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1301 	}
1302 	init_vmcb(svm);
1303 
1304 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1305 	kvm_rdx_write(vcpu, eax);
1306 
1307 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1308 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1309 }
1310 
1311 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1312 {
1313 	struct vcpu_svm *svm;
1314 	struct page *vmcb_page;
1315 	struct page *vmsa_page = NULL;
1316 	int err;
1317 
1318 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1319 	svm = to_svm(vcpu);
1320 
1321 	err = -ENOMEM;
1322 	vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1323 	if (!vmcb_page)
1324 		goto out;
1325 
1326 	if (sev_es_guest(svm->vcpu.kvm)) {
1327 		/*
1328 		 * SEV-ES guests require a separate VMSA page used to contain
1329 		 * the encrypted register state of the guest.
1330 		 */
1331 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1332 		if (!vmsa_page)
1333 			goto error_free_vmcb_page;
1334 
1335 		/*
1336 		 * SEV-ES guests maintain an encrypted version of their FPU
1337 		 * state which is restored and saved on VMRUN and VMEXIT.
1338 		 * Free the fpu structure to prevent KVM from attempting to
1339 		 * access the FPU state.
1340 		 */
1341 		kvm_free_guest_fpu(vcpu);
1342 	}
1343 
1344 	err = avic_init_vcpu(svm);
1345 	if (err)
1346 		goto error_free_vmsa_page;
1347 
1348 	/* We initialize this flag to true to make sure that the is_running
1349 	 * bit would be set the first time the vcpu is loaded.
1350 	 */
1351 	if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1352 		svm->avic_is_running = true;
1353 
1354 	svm->msrpm = svm_vcpu_alloc_msrpm();
1355 	if (!svm->msrpm) {
1356 		err = -ENOMEM;
1357 		goto error_free_vmsa_page;
1358 	}
1359 
1360 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1361 
1362 	svm->vmcb = page_address(vmcb_page);
1363 	svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1364 
1365 	if (vmsa_page)
1366 		svm->vmsa = page_address(vmsa_page);
1367 
1368 	svm->asid_generation = 0;
1369 	init_vmcb(svm);
1370 
1371 	svm_init_osvw(vcpu);
1372 	vcpu->arch.microcode_version = 0x01000065;
1373 
1374 	if (sev_es_guest(svm->vcpu.kvm))
1375 		/* Perform SEV-ES specific VMCB creation updates */
1376 		sev_es_create_vcpu(svm);
1377 
1378 	return 0;
1379 
1380 error_free_vmsa_page:
1381 	if (vmsa_page)
1382 		__free_page(vmsa_page);
1383 error_free_vmcb_page:
1384 	__free_page(vmcb_page);
1385 out:
1386 	return err;
1387 }
1388 
1389 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1390 {
1391 	int i;
1392 
1393 	for_each_online_cpu(i)
1394 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1395 }
1396 
1397 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1398 {
1399 	struct vcpu_svm *svm = to_svm(vcpu);
1400 
1401 	/*
1402 	 * The vmcb page can be recycled, causing a false negative in
1403 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1404 	 * vmcb page recorded as its current vmcb.
1405 	 */
1406 	svm_clear_current_vmcb(svm->vmcb);
1407 
1408 	svm_free_nested(svm);
1409 
1410 	sev_free_vcpu(vcpu);
1411 
1412 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1413 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1414 }
1415 
1416 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1417 {
1418 	struct vcpu_svm *svm = to_svm(vcpu);
1419 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1420 	int i;
1421 
1422 	if (unlikely(cpu != vcpu->cpu)) {
1423 		svm->asid_generation = 0;
1424 		vmcb_mark_all_dirty(svm->vmcb);
1425 	}
1426 
1427 	if (sev_es_guest(svm->vcpu.kvm)) {
1428 		sev_es_vcpu_load(svm, cpu);
1429 	} else {
1430 #ifdef CONFIG_X86_64
1431 		rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1432 #endif
1433 		savesegment(fs, svm->host.fs);
1434 		savesegment(gs, svm->host.gs);
1435 		svm->host.ldt = kvm_read_ldt();
1436 
1437 		for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1438 			rdmsrl(host_save_user_msrs[i].index,
1439 			       svm->host_user_msrs[i]);
1440 	}
1441 
1442 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1443 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1444 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1445 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1446 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1447 		}
1448 	}
1449 	/* This assumes that the kernel never uses MSR_TSC_AUX */
1450 	if (static_cpu_has(X86_FEATURE_RDTSCP))
1451 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1452 
1453 	if (sd->current_vmcb != svm->vmcb) {
1454 		sd->current_vmcb = svm->vmcb;
1455 		indirect_branch_prediction_barrier();
1456 	}
1457 	avic_vcpu_load(vcpu, cpu);
1458 }
1459 
1460 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1461 {
1462 	struct vcpu_svm *svm = to_svm(vcpu);
1463 	int i;
1464 
1465 	avic_vcpu_put(vcpu);
1466 
1467 	++vcpu->stat.host_state_reload;
1468 	if (sev_es_guest(svm->vcpu.kvm)) {
1469 		sev_es_vcpu_put(svm);
1470 	} else {
1471 		kvm_load_ldt(svm->host.ldt);
1472 #ifdef CONFIG_X86_64
1473 		loadsegment(fs, svm->host.fs);
1474 		wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1475 		load_gs_index(svm->host.gs);
1476 #else
1477 #ifdef CONFIG_X86_32_LAZY_GS
1478 		loadsegment(gs, svm->host.gs);
1479 #endif
1480 #endif
1481 
1482 		for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1483 			wrmsrl(host_save_user_msrs[i].index,
1484 			       svm->host_user_msrs[i]);
1485 	}
1486 }
1487 
1488 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1489 {
1490 	struct vcpu_svm *svm = to_svm(vcpu);
1491 	unsigned long rflags = svm->vmcb->save.rflags;
1492 
1493 	if (svm->nmi_singlestep) {
1494 		/* Hide our flags if they were not set by the guest */
1495 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1496 			rflags &= ~X86_EFLAGS_TF;
1497 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1498 			rflags &= ~X86_EFLAGS_RF;
1499 	}
1500 	return rflags;
1501 }
1502 
1503 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1504 {
1505 	if (to_svm(vcpu)->nmi_singlestep)
1506 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1507 
1508        /*
1509         * Any change of EFLAGS.VM is accompanied by a reload of SS
1510         * (caused by either a task switch or an inter-privilege IRET),
1511         * so we do not need to update the CPL here.
1512         */
1513 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1514 }
1515 
1516 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1517 {
1518 	switch (reg) {
1519 	case VCPU_EXREG_PDPTR:
1520 		BUG_ON(!npt_enabled);
1521 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1522 		break;
1523 	default:
1524 		WARN_ON_ONCE(1);
1525 	}
1526 }
1527 
1528 static void svm_set_vintr(struct vcpu_svm *svm)
1529 {
1530 	struct vmcb_control_area *control;
1531 
1532 	/* The following fields are ignored when AVIC is enabled */
1533 	WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1534 	svm_set_intercept(svm, INTERCEPT_VINTR);
1535 
1536 	/*
1537 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1538 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1539 	 */
1540 	control = &svm->vmcb->control;
1541 	control->int_vector = 0x0;
1542 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1543 	control->int_ctl |= V_IRQ_MASK |
1544 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1545 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1546 }
1547 
1548 static void svm_clear_vintr(struct vcpu_svm *svm)
1549 {
1550 	const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1551 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1552 
1553 	/* Drop int_ctl fields related to VINTR injection.  */
1554 	svm->vmcb->control.int_ctl &= mask;
1555 	if (is_guest_mode(&svm->vcpu)) {
1556 		svm->nested.hsave->control.int_ctl &= mask;
1557 
1558 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1559 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1560 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1561 	}
1562 
1563 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1564 }
1565 
1566 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1567 {
1568 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1569 
1570 	switch (seg) {
1571 	case VCPU_SREG_CS: return &save->cs;
1572 	case VCPU_SREG_DS: return &save->ds;
1573 	case VCPU_SREG_ES: return &save->es;
1574 	case VCPU_SREG_FS: return &save->fs;
1575 	case VCPU_SREG_GS: return &save->gs;
1576 	case VCPU_SREG_SS: return &save->ss;
1577 	case VCPU_SREG_TR: return &save->tr;
1578 	case VCPU_SREG_LDTR: return &save->ldtr;
1579 	}
1580 	BUG();
1581 	return NULL;
1582 }
1583 
1584 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1585 {
1586 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1587 
1588 	return s->base;
1589 }
1590 
1591 static void svm_get_segment(struct kvm_vcpu *vcpu,
1592 			    struct kvm_segment *var, int seg)
1593 {
1594 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1595 
1596 	var->base = s->base;
1597 	var->limit = s->limit;
1598 	var->selector = s->selector;
1599 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1600 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1601 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1602 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1603 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1604 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1605 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1606 
1607 	/*
1608 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1609 	 * However, the SVM spec states that the G bit is not observed by the
1610 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1611 	 * So let's synthesize a legal G bit for all segments, this helps
1612 	 * running KVM nested. It also helps cross-vendor migration, because
1613 	 * Intel's vmentry has a check on the 'G' bit.
1614 	 */
1615 	var->g = s->limit > 0xfffff;
1616 
1617 	/*
1618 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1619 	 * for cross vendor migration purposes by "not present"
1620 	 */
1621 	var->unusable = !var->present;
1622 
1623 	switch (seg) {
1624 	case VCPU_SREG_TR:
1625 		/*
1626 		 * Work around a bug where the busy flag in the tr selector
1627 		 * isn't exposed
1628 		 */
1629 		var->type |= 0x2;
1630 		break;
1631 	case VCPU_SREG_DS:
1632 	case VCPU_SREG_ES:
1633 	case VCPU_SREG_FS:
1634 	case VCPU_SREG_GS:
1635 		/*
1636 		 * The accessed bit must always be set in the segment
1637 		 * descriptor cache, although it can be cleared in the
1638 		 * descriptor, the cached bit always remains at 1. Since
1639 		 * Intel has a check on this, set it here to support
1640 		 * cross-vendor migration.
1641 		 */
1642 		if (!var->unusable)
1643 			var->type |= 0x1;
1644 		break;
1645 	case VCPU_SREG_SS:
1646 		/*
1647 		 * On AMD CPUs sometimes the DB bit in the segment
1648 		 * descriptor is left as 1, although the whole segment has
1649 		 * been made unusable. Clear it here to pass an Intel VMX
1650 		 * entry check when cross vendor migrating.
1651 		 */
1652 		if (var->unusable)
1653 			var->db = 0;
1654 		/* This is symmetric with svm_set_segment() */
1655 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1656 		break;
1657 	}
1658 }
1659 
1660 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1661 {
1662 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1663 
1664 	return save->cpl;
1665 }
1666 
1667 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1668 {
1669 	struct vcpu_svm *svm = to_svm(vcpu);
1670 
1671 	dt->size = svm->vmcb->save.idtr.limit;
1672 	dt->address = svm->vmcb->save.idtr.base;
1673 }
1674 
1675 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1676 {
1677 	struct vcpu_svm *svm = to_svm(vcpu);
1678 
1679 	svm->vmcb->save.idtr.limit = dt->size;
1680 	svm->vmcb->save.idtr.base = dt->address ;
1681 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1682 }
1683 
1684 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1685 {
1686 	struct vcpu_svm *svm = to_svm(vcpu);
1687 
1688 	dt->size = svm->vmcb->save.gdtr.limit;
1689 	dt->address = svm->vmcb->save.gdtr.base;
1690 }
1691 
1692 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1693 {
1694 	struct vcpu_svm *svm = to_svm(vcpu);
1695 
1696 	svm->vmcb->save.gdtr.limit = dt->size;
1697 	svm->vmcb->save.gdtr.base = dt->address ;
1698 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1699 }
1700 
1701 static void update_cr0_intercept(struct vcpu_svm *svm)
1702 {
1703 	ulong gcr0;
1704 	u64 *hcr0;
1705 
1706 	/*
1707 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1708 	 * tracking is done using the CR write traps.
1709 	 */
1710 	if (sev_es_guest(svm->vcpu.kvm))
1711 		return;
1712 
1713 	gcr0 = svm->vcpu.arch.cr0;
1714 	hcr0 = &svm->vmcb->save.cr0;
1715 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1716 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1717 
1718 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1719 
1720 	if (gcr0 == *hcr0) {
1721 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1722 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1723 	} else {
1724 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1725 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1726 	}
1727 }
1728 
1729 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1730 {
1731 	struct vcpu_svm *svm = to_svm(vcpu);
1732 
1733 #ifdef CONFIG_X86_64
1734 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1735 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1736 			vcpu->arch.efer |= EFER_LMA;
1737 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1738 		}
1739 
1740 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1741 			vcpu->arch.efer &= ~EFER_LMA;
1742 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1743 		}
1744 	}
1745 #endif
1746 	vcpu->arch.cr0 = cr0;
1747 
1748 	if (!npt_enabled)
1749 		cr0 |= X86_CR0_PG | X86_CR0_WP;
1750 
1751 	/*
1752 	 * re-enable caching here because the QEMU bios
1753 	 * does not do it - this results in some delay at
1754 	 * reboot
1755 	 */
1756 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1757 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1758 	svm->vmcb->save.cr0 = cr0;
1759 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1760 	update_cr0_intercept(svm);
1761 }
1762 
1763 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1764 {
1765 	return true;
1766 }
1767 
1768 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1769 {
1770 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1771 	unsigned long old_cr4 = vcpu->arch.cr4;
1772 
1773 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1774 		svm_flush_tlb(vcpu);
1775 
1776 	vcpu->arch.cr4 = cr4;
1777 	if (!npt_enabled)
1778 		cr4 |= X86_CR4_PAE;
1779 	cr4 |= host_cr4_mce;
1780 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1781 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1782 
1783 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1784 		kvm_update_cpuid_runtime(vcpu);
1785 }
1786 
1787 static void svm_set_segment(struct kvm_vcpu *vcpu,
1788 			    struct kvm_segment *var, int seg)
1789 {
1790 	struct vcpu_svm *svm = to_svm(vcpu);
1791 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1792 
1793 	s->base = var->base;
1794 	s->limit = var->limit;
1795 	s->selector = var->selector;
1796 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1797 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1798 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1799 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1800 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1801 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1802 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1803 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1804 
1805 	/*
1806 	 * This is always accurate, except if SYSRET returned to a segment
1807 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1808 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1809 	 * would entail passing the CPL to userspace and back.
1810 	 */
1811 	if (seg == VCPU_SREG_SS)
1812 		/* This is symmetric with svm_get_segment() */
1813 		svm->vmcb->save.cpl = (var->dpl & 3);
1814 
1815 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1816 }
1817 
1818 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1819 {
1820 	struct vcpu_svm *svm = to_svm(vcpu);
1821 
1822 	clr_exception_intercept(svm, BP_VECTOR);
1823 
1824 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1825 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1826 			set_exception_intercept(svm, BP_VECTOR);
1827 	}
1828 }
1829 
1830 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1831 {
1832 	if (sd->next_asid > sd->max_asid) {
1833 		++sd->asid_generation;
1834 		sd->next_asid = sd->min_asid;
1835 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1836 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1837 	}
1838 
1839 	svm->asid_generation = sd->asid_generation;
1840 	svm->asid = sd->next_asid++;
1841 }
1842 
1843 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1844 {
1845 	struct vmcb *vmcb = svm->vmcb;
1846 
1847 	if (svm->vcpu.arch.guest_state_protected)
1848 		return;
1849 
1850 	if (unlikely(value != vmcb->save.dr6)) {
1851 		vmcb->save.dr6 = value;
1852 		vmcb_mark_dirty(vmcb, VMCB_DR);
1853 	}
1854 }
1855 
1856 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1857 {
1858 	struct vcpu_svm *svm = to_svm(vcpu);
1859 
1860 	if (vcpu->arch.guest_state_protected)
1861 		return;
1862 
1863 	get_debugreg(vcpu->arch.db[0], 0);
1864 	get_debugreg(vcpu->arch.db[1], 1);
1865 	get_debugreg(vcpu->arch.db[2], 2);
1866 	get_debugreg(vcpu->arch.db[3], 3);
1867 	/*
1868 	 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1869 	 * because db_interception might need it.  We can do it before vmentry.
1870 	 */
1871 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1872 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1873 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1874 	set_dr_intercepts(svm);
1875 }
1876 
1877 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1878 {
1879 	struct vcpu_svm *svm = to_svm(vcpu);
1880 
1881 	if (vcpu->arch.guest_state_protected)
1882 		return;
1883 
1884 	svm->vmcb->save.dr7 = value;
1885 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1886 }
1887 
1888 static int pf_interception(struct vcpu_svm *svm)
1889 {
1890 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1891 	u64 error_code = svm->vmcb->control.exit_info_1;
1892 
1893 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1894 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1895 			svm->vmcb->control.insn_bytes : NULL,
1896 			svm->vmcb->control.insn_len);
1897 }
1898 
1899 static int npf_interception(struct vcpu_svm *svm)
1900 {
1901 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1902 	u64 error_code = svm->vmcb->control.exit_info_1;
1903 
1904 	trace_kvm_page_fault(fault_address, error_code);
1905 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1906 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1907 			svm->vmcb->control.insn_bytes : NULL,
1908 			svm->vmcb->control.insn_len);
1909 }
1910 
1911 static int db_interception(struct vcpu_svm *svm)
1912 {
1913 	struct kvm_run *kvm_run = svm->vcpu.run;
1914 	struct kvm_vcpu *vcpu = &svm->vcpu;
1915 
1916 	if (!(svm->vcpu.guest_debug &
1917 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1918 		!svm->nmi_singlestep) {
1919 		u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1920 		kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1921 		return 1;
1922 	}
1923 
1924 	if (svm->nmi_singlestep) {
1925 		disable_nmi_singlestep(svm);
1926 		/* Make sure we check for pending NMIs upon entry */
1927 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1928 	}
1929 
1930 	if (svm->vcpu.guest_debug &
1931 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1932 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1933 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1934 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1935 		kvm_run->debug.arch.pc =
1936 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1937 		kvm_run->debug.arch.exception = DB_VECTOR;
1938 		return 0;
1939 	}
1940 
1941 	return 1;
1942 }
1943 
1944 static int bp_interception(struct vcpu_svm *svm)
1945 {
1946 	struct kvm_run *kvm_run = svm->vcpu.run;
1947 
1948 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1949 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1950 	kvm_run->debug.arch.exception = BP_VECTOR;
1951 	return 0;
1952 }
1953 
1954 static int ud_interception(struct vcpu_svm *svm)
1955 {
1956 	return handle_ud(&svm->vcpu);
1957 }
1958 
1959 static int ac_interception(struct vcpu_svm *svm)
1960 {
1961 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1962 	return 1;
1963 }
1964 
1965 static int gp_interception(struct vcpu_svm *svm)
1966 {
1967 	struct kvm_vcpu *vcpu = &svm->vcpu;
1968 	u32 error_code = svm->vmcb->control.exit_info_1;
1969 
1970 	WARN_ON_ONCE(!enable_vmware_backdoor);
1971 
1972 	/*
1973 	 * VMware backdoor emulation on #GP interception only handles IN{S},
1974 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1975 	 */
1976 	if (error_code) {
1977 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1978 		return 1;
1979 	}
1980 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1981 }
1982 
1983 static bool is_erratum_383(void)
1984 {
1985 	int err, i;
1986 	u64 value;
1987 
1988 	if (!erratum_383_found)
1989 		return false;
1990 
1991 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1992 	if (err)
1993 		return false;
1994 
1995 	/* Bit 62 may or may not be set for this mce */
1996 	value &= ~(1ULL << 62);
1997 
1998 	if (value != 0xb600000000010015ULL)
1999 		return false;
2000 
2001 	/* Clear MCi_STATUS registers */
2002 	for (i = 0; i < 6; ++i)
2003 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2004 
2005 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2006 	if (!err) {
2007 		u32 low, high;
2008 
2009 		value &= ~(1ULL << 2);
2010 		low    = lower_32_bits(value);
2011 		high   = upper_32_bits(value);
2012 
2013 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2014 	}
2015 
2016 	/* Flush tlb to evict multi-match entries */
2017 	__flush_tlb_all();
2018 
2019 	return true;
2020 }
2021 
2022 static void svm_handle_mce(struct vcpu_svm *svm)
2023 {
2024 	if (is_erratum_383()) {
2025 		/*
2026 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2027 		 * guest.
2028 		 */
2029 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2030 
2031 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2032 
2033 		return;
2034 	}
2035 
2036 	/*
2037 	 * On an #MC intercept the MCE handler is not called automatically in
2038 	 * the host. So do it by hand here.
2039 	 */
2040 	kvm_machine_check();
2041 }
2042 
2043 static int mc_interception(struct vcpu_svm *svm)
2044 {
2045 	return 1;
2046 }
2047 
2048 static int shutdown_interception(struct vcpu_svm *svm)
2049 {
2050 	struct kvm_run *kvm_run = svm->vcpu.run;
2051 
2052 	/*
2053 	 * The VM save area has already been encrypted so it
2054 	 * cannot be reinitialized - just terminate.
2055 	 */
2056 	if (sev_es_guest(svm->vcpu.kvm))
2057 		return -EINVAL;
2058 
2059 	/*
2060 	 * VMCB is undefined after a SHUTDOWN intercept
2061 	 * so reinitialize it.
2062 	 */
2063 	clear_page(svm->vmcb);
2064 	init_vmcb(svm);
2065 
2066 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2067 	return 0;
2068 }
2069 
2070 static int io_interception(struct vcpu_svm *svm)
2071 {
2072 	struct kvm_vcpu *vcpu = &svm->vcpu;
2073 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2074 	int size, in, string;
2075 	unsigned port;
2076 
2077 	++svm->vcpu.stat.io_exits;
2078 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2079 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2080 	port = io_info >> 16;
2081 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2082 
2083 	if (string) {
2084 		if (sev_es_guest(vcpu->kvm))
2085 			return sev_es_string_io(svm, size, port, in);
2086 		else
2087 			return kvm_emulate_instruction(vcpu, 0);
2088 	}
2089 
2090 	svm->next_rip = svm->vmcb->control.exit_info_2;
2091 
2092 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2093 }
2094 
2095 static int nmi_interception(struct vcpu_svm *svm)
2096 {
2097 	return 1;
2098 }
2099 
2100 static int intr_interception(struct vcpu_svm *svm)
2101 {
2102 	++svm->vcpu.stat.irq_exits;
2103 	return 1;
2104 }
2105 
2106 static int nop_on_interception(struct vcpu_svm *svm)
2107 {
2108 	return 1;
2109 }
2110 
2111 static int halt_interception(struct vcpu_svm *svm)
2112 {
2113 	return kvm_emulate_halt(&svm->vcpu);
2114 }
2115 
2116 static int vmmcall_interception(struct vcpu_svm *svm)
2117 {
2118 	return kvm_emulate_hypercall(&svm->vcpu);
2119 }
2120 
2121 static int vmload_interception(struct vcpu_svm *svm)
2122 {
2123 	struct vmcb *nested_vmcb;
2124 	struct kvm_host_map map;
2125 	int ret;
2126 
2127 	if (nested_svm_check_permissions(svm))
2128 		return 1;
2129 
2130 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2131 	if (ret) {
2132 		if (ret == -EINVAL)
2133 			kvm_inject_gp(&svm->vcpu, 0);
2134 		return 1;
2135 	}
2136 
2137 	nested_vmcb = map.hva;
2138 
2139 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2140 
2141 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2142 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2143 
2144 	return ret;
2145 }
2146 
2147 static int vmsave_interception(struct vcpu_svm *svm)
2148 {
2149 	struct vmcb *nested_vmcb;
2150 	struct kvm_host_map map;
2151 	int ret;
2152 
2153 	if (nested_svm_check_permissions(svm))
2154 		return 1;
2155 
2156 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2157 	if (ret) {
2158 		if (ret == -EINVAL)
2159 			kvm_inject_gp(&svm->vcpu, 0);
2160 		return 1;
2161 	}
2162 
2163 	nested_vmcb = map.hva;
2164 
2165 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2166 
2167 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2168 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
2169 
2170 	return ret;
2171 }
2172 
2173 static int vmrun_interception(struct vcpu_svm *svm)
2174 {
2175 	if (nested_svm_check_permissions(svm))
2176 		return 1;
2177 
2178 	return nested_svm_vmrun(svm);
2179 }
2180 
2181 void svm_set_gif(struct vcpu_svm *svm, bool value)
2182 {
2183 	if (value) {
2184 		/*
2185 		 * If VGIF is enabled, the STGI intercept is only added to
2186 		 * detect the opening of the SMI/NMI window; remove it now.
2187 		 * Likewise, clear the VINTR intercept, we will set it
2188 		 * again while processing KVM_REQ_EVENT if needed.
2189 		 */
2190 		if (vgif_enabled(svm))
2191 			svm_clr_intercept(svm, INTERCEPT_STGI);
2192 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2193 			svm_clear_vintr(svm);
2194 
2195 		enable_gif(svm);
2196 		if (svm->vcpu.arch.smi_pending ||
2197 		    svm->vcpu.arch.nmi_pending ||
2198 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2199 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2200 	} else {
2201 		disable_gif(svm);
2202 
2203 		/*
2204 		 * After a CLGI no interrupts should come.  But if vGIF is
2205 		 * in use, we still rely on the VINTR intercept (rather than
2206 		 * STGI) to detect an open interrupt window.
2207 		*/
2208 		if (!vgif_enabled(svm))
2209 			svm_clear_vintr(svm);
2210 	}
2211 }
2212 
2213 static int stgi_interception(struct vcpu_svm *svm)
2214 {
2215 	int ret;
2216 
2217 	if (nested_svm_check_permissions(svm))
2218 		return 1;
2219 
2220 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2221 	svm_set_gif(svm, true);
2222 	return ret;
2223 }
2224 
2225 static int clgi_interception(struct vcpu_svm *svm)
2226 {
2227 	int ret;
2228 
2229 	if (nested_svm_check_permissions(svm))
2230 		return 1;
2231 
2232 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
2233 	svm_set_gif(svm, false);
2234 	return ret;
2235 }
2236 
2237 static int invlpga_interception(struct vcpu_svm *svm)
2238 {
2239 	struct kvm_vcpu *vcpu = &svm->vcpu;
2240 
2241 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2242 			  kvm_rax_read(&svm->vcpu));
2243 
2244 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2245 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2246 
2247 	return kvm_skip_emulated_instruction(&svm->vcpu);
2248 }
2249 
2250 static int skinit_interception(struct vcpu_svm *svm)
2251 {
2252 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2253 
2254 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2255 	return 1;
2256 }
2257 
2258 static int wbinvd_interception(struct vcpu_svm *svm)
2259 {
2260 	return kvm_emulate_wbinvd(&svm->vcpu);
2261 }
2262 
2263 static int xsetbv_interception(struct vcpu_svm *svm)
2264 {
2265 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2266 	u32 index = kvm_rcx_read(&svm->vcpu);
2267 
2268 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2269 		return kvm_skip_emulated_instruction(&svm->vcpu);
2270 	}
2271 
2272 	return 1;
2273 }
2274 
2275 static int rdpru_interception(struct vcpu_svm *svm)
2276 {
2277 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2278 	return 1;
2279 }
2280 
2281 static int task_switch_interception(struct vcpu_svm *svm)
2282 {
2283 	u16 tss_selector;
2284 	int reason;
2285 	int int_type = svm->vmcb->control.exit_int_info &
2286 		SVM_EXITINTINFO_TYPE_MASK;
2287 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2288 	uint32_t type =
2289 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2290 	uint32_t idt_v =
2291 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2292 	bool has_error_code = false;
2293 	u32 error_code = 0;
2294 
2295 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2296 
2297 	if (svm->vmcb->control.exit_info_2 &
2298 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2299 		reason = TASK_SWITCH_IRET;
2300 	else if (svm->vmcb->control.exit_info_2 &
2301 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2302 		reason = TASK_SWITCH_JMP;
2303 	else if (idt_v)
2304 		reason = TASK_SWITCH_GATE;
2305 	else
2306 		reason = TASK_SWITCH_CALL;
2307 
2308 	if (reason == TASK_SWITCH_GATE) {
2309 		switch (type) {
2310 		case SVM_EXITINTINFO_TYPE_NMI:
2311 			svm->vcpu.arch.nmi_injected = false;
2312 			break;
2313 		case SVM_EXITINTINFO_TYPE_EXEPT:
2314 			if (svm->vmcb->control.exit_info_2 &
2315 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2316 				has_error_code = true;
2317 				error_code =
2318 					(u32)svm->vmcb->control.exit_info_2;
2319 			}
2320 			kvm_clear_exception_queue(&svm->vcpu);
2321 			break;
2322 		case SVM_EXITINTINFO_TYPE_INTR:
2323 			kvm_clear_interrupt_queue(&svm->vcpu);
2324 			break;
2325 		default:
2326 			break;
2327 		}
2328 	}
2329 
2330 	if (reason != TASK_SWITCH_GATE ||
2331 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2332 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2333 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2334 		if (!skip_emulated_instruction(&svm->vcpu))
2335 			return 0;
2336 	}
2337 
2338 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2339 		int_vec = -1;
2340 
2341 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2342 			       has_error_code, error_code);
2343 }
2344 
2345 static int cpuid_interception(struct vcpu_svm *svm)
2346 {
2347 	return kvm_emulate_cpuid(&svm->vcpu);
2348 }
2349 
2350 static int iret_interception(struct vcpu_svm *svm)
2351 {
2352 	++svm->vcpu.stat.nmi_window_exits;
2353 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2354 	if (!sev_es_guest(svm->vcpu.kvm)) {
2355 		svm_clr_intercept(svm, INTERCEPT_IRET);
2356 		svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2357 	}
2358 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2359 	return 1;
2360 }
2361 
2362 static int invd_interception(struct vcpu_svm *svm)
2363 {
2364 	/* Treat an INVD instruction as a NOP and just skip it. */
2365 	return kvm_skip_emulated_instruction(&svm->vcpu);
2366 }
2367 
2368 static int invlpg_interception(struct vcpu_svm *svm)
2369 {
2370 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2371 		return kvm_emulate_instruction(&svm->vcpu, 0);
2372 
2373 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2374 	return kvm_skip_emulated_instruction(&svm->vcpu);
2375 }
2376 
2377 static int emulate_on_interception(struct vcpu_svm *svm)
2378 {
2379 	return kvm_emulate_instruction(&svm->vcpu, 0);
2380 }
2381 
2382 static int rsm_interception(struct vcpu_svm *svm)
2383 {
2384 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2385 }
2386 
2387 static int rdpmc_interception(struct vcpu_svm *svm)
2388 {
2389 	int err;
2390 
2391 	if (!nrips)
2392 		return emulate_on_interception(svm);
2393 
2394 	err = kvm_rdpmc(&svm->vcpu);
2395 	return kvm_complete_insn_gp(&svm->vcpu, err);
2396 }
2397 
2398 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2399 					    unsigned long val)
2400 {
2401 	unsigned long cr0 = svm->vcpu.arch.cr0;
2402 	bool ret = false;
2403 
2404 	if (!is_guest_mode(&svm->vcpu) ||
2405 	    (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2406 		return false;
2407 
2408 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2409 	val &= ~SVM_CR0_SELECTIVE_MASK;
2410 
2411 	if (cr0 ^ val) {
2412 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2413 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2414 	}
2415 
2416 	return ret;
2417 }
2418 
2419 #define CR_VALID (1ULL << 63)
2420 
2421 static int cr_interception(struct vcpu_svm *svm)
2422 {
2423 	int reg, cr;
2424 	unsigned long val;
2425 	int err;
2426 
2427 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2428 		return emulate_on_interception(svm);
2429 
2430 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2431 		return emulate_on_interception(svm);
2432 
2433 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2434 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2435 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2436 	else
2437 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2438 
2439 	err = 0;
2440 	if (cr >= 16) { /* mov to cr */
2441 		cr -= 16;
2442 		val = kvm_register_read(&svm->vcpu, reg);
2443 		trace_kvm_cr_write(cr, val);
2444 		switch (cr) {
2445 		case 0:
2446 			if (!check_selective_cr0_intercepted(svm, val))
2447 				err = kvm_set_cr0(&svm->vcpu, val);
2448 			else
2449 				return 1;
2450 
2451 			break;
2452 		case 3:
2453 			err = kvm_set_cr3(&svm->vcpu, val);
2454 			break;
2455 		case 4:
2456 			err = kvm_set_cr4(&svm->vcpu, val);
2457 			break;
2458 		case 8:
2459 			err = kvm_set_cr8(&svm->vcpu, val);
2460 			break;
2461 		default:
2462 			WARN(1, "unhandled write to CR%d", cr);
2463 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2464 			return 1;
2465 		}
2466 	} else { /* mov from cr */
2467 		switch (cr) {
2468 		case 0:
2469 			val = kvm_read_cr0(&svm->vcpu);
2470 			break;
2471 		case 2:
2472 			val = svm->vcpu.arch.cr2;
2473 			break;
2474 		case 3:
2475 			val = kvm_read_cr3(&svm->vcpu);
2476 			break;
2477 		case 4:
2478 			val = kvm_read_cr4(&svm->vcpu);
2479 			break;
2480 		case 8:
2481 			val = kvm_get_cr8(&svm->vcpu);
2482 			break;
2483 		default:
2484 			WARN(1, "unhandled read from CR%d", cr);
2485 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2486 			return 1;
2487 		}
2488 		kvm_register_write(&svm->vcpu, reg, val);
2489 		trace_kvm_cr_read(cr, val);
2490 	}
2491 	return kvm_complete_insn_gp(&svm->vcpu, err);
2492 }
2493 
2494 static int cr_trap(struct vcpu_svm *svm)
2495 {
2496 	struct kvm_vcpu *vcpu = &svm->vcpu;
2497 	unsigned long old_value, new_value;
2498 	unsigned int cr;
2499 	int ret = 0;
2500 
2501 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2502 
2503 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2504 	switch (cr) {
2505 	case 0:
2506 		old_value = kvm_read_cr0(vcpu);
2507 		svm_set_cr0(vcpu, new_value);
2508 
2509 		kvm_post_set_cr0(vcpu, old_value, new_value);
2510 		break;
2511 	case 4:
2512 		old_value = kvm_read_cr4(vcpu);
2513 		svm_set_cr4(vcpu, new_value);
2514 
2515 		kvm_post_set_cr4(vcpu, old_value, new_value);
2516 		break;
2517 	case 8:
2518 		ret = kvm_set_cr8(&svm->vcpu, new_value);
2519 		break;
2520 	default:
2521 		WARN(1, "unhandled CR%d write trap", cr);
2522 		kvm_queue_exception(vcpu, UD_VECTOR);
2523 		return 1;
2524 	}
2525 
2526 	return kvm_complete_insn_gp(vcpu, ret);
2527 }
2528 
2529 static int dr_interception(struct vcpu_svm *svm)
2530 {
2531 	int reg, dr;
2532 	unsigned long val;
2533 
2534 	if (svm->vcpu.guest_debug == 0) {
2535 		/*
2536 		 * No more DR vmexits; force a reload of the debug registers
2537 		 * and reenter on this instruction.  The next vmexit will
2538 		 * retrieve the full state of the debug registers.
2539 		 */
2540 		clr_dr_intercepts(svm);
2541 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2542 		return 1;
2543 	}
2544 
2545 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2546 		return emulate_on_interception(svm);
2547 
2548 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2549 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2550 
2551 	if (dr >= 16) { /* mov to DRn */
2552 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2553 			return 1;
2554 		val = kvm_register_read(&svm->vcpu, reg);
2555 		kvm_set_dr(&svm->vcpu, dr - 16, val);
2556 	} else {
2557 		if (!kvm_require_dr(&svm->vcpu, dr))
2558 			return 1;
2559 		kvm_get_dr(&svm->vcpu, dr, &val);
2560 		kvm_register_write(&svm->vcpu, reg, val);
2561 	}
2562 
2563 	return kvm_skip_emulated_instruction(&svm->vcpu);
2564 }
2565 
2566 static int cr8_write_interception(struct vcpu_svm *svm)
2567 {
2568 	struct kvm_run *kvm_run = svm->vcpu.run;
2569 	int r;
2570 
2571 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2572 	/* instruction emulation calls kvm_set_cr8() */
2573 	r = cr_interception(svm);
2574 	if (lapic_in_kernel(&svm->vcpu))
2575 		return r;
2576 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2577 		return r;
2578 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2579 	return 0;
2580 }
2581 
2582 static int efer_trap(struct vcpu_svm *svm)
2583 {
2584 	struct msr_data msr_info;
2585 	int ret;
2586 
2587 	/*
2588 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2589 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2590 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2591 	 * the guest doesn't have X86_FEATURE_SVM.
2592 	 */
2593 	msr_info.host_initiated = false;
2594 	msr_info.index = MSR_EFER;
2595 	msr_info.data = svm->vmcb->control.exit_info_1 & ~EFER_SVME;
2596 	ret = kvm_set_msr_common(&svm->vcpu, &msr_info);
2597 
2598 	return kvm_complete_insn_gp(&svm->vcpu, ret);
2599 }
2600 
2601 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2602 {
2603 	msr->data = 0;
2604 
2605 	switch (msr->index) {
2606 	case MSR_F10H_DECFG:
2607 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2608 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2609 		break;
2610 	case MSR_IA32_PERF_CAPABILITIES:
2611 		return 0;
2612 	default:
2613 		return KVM_MSR_RET_INVALID;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2620 {
2621 	struct vcpu_svm *svm = to_svm(vcpu);
2622 
2623 	switch (msr_info->index) {
2624 	case MSR_STAR:
2625 		msr_info->data = svm->vmcb->save.star;
2626 		break;
2627 #ifdef CONFIG_X86_64
2628 	case MSR_LSTAR:
2629 		msr_info->data = svm->vmcb->save.lstar;
2630 		break;
2631 	case MSR_CSTAR:
2632 		msr_info->data = svm->vmcb->save.cstar;
2633 		break;
2634 	case MSR_KERNEL_GS_BASE:
2635 		msr_info->data = svm->vmcb->save.kernel_gs_base;
2636 		break;
2637 	case MSR_SYSCALL_MASK:
2638 		msr_info->data = svm->vmcb->save.sfmask;
2639 		break;
2640 #endif
2641 	case MSR_IA32_SYSENTER_CS:
2642 		msr_info->data = svm->vmcb->save.sysenter_cs;
2643 		break;
2644 	case MSR_IA32_SYSENTER_EIP:
2645 		msr_info->data = svm->sysenter_eip;
2646 		break;
2647 	case MSR_IA32_SYSENTER_ESP:
2648 		msr_info->data = svm->sysenter_esp;
2649 		break;
2650 	case MSR_TSC_AUX:
2651 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2652 			return 1;
2653 		msr_info->data = svm->tsc_aux;
2654 		break;
2655 	/*
2656 	 * Nobody will change the following 5 values in the VMCB so we can
2657 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2658 	 * implemented.
2659 	 */
2660 	case MSR_IA32_DEBUGCTLMSR:
2661 		msr_info->data = svm->vmcb->save.dbgctl;
2662 		break;
2663 	case MSR_IA32_LASTBRANCHFROMIP:
2664 		msr_info->data = svm->vmcb->save.br_from;
2665 		break;
2666 	case MSR_IA32_LASTBRANCHTOIP:
2667 		msr_info->data = svm->vmcb->save.br_to;
2668 		break;
2669 	case MSR_IA32_LASTINTFROMIP:
2670 		msr_info->data = svm->vmcb->save.last_excp_from;
2671 		break;
2672 	case MSR_IA32_LASTINTTOIP:
2673 		msr_info->data = svm->vmcb->save.last_excp_to;
2674 		break;
2675 	case MSR_VM_HSAVE_PA:
2676 		msr_info->data = svm->nested.hsave_msr;
2677 		break;
2678 	case MSR_VM_CR:
2679 		msr_info->data = svm->nested.vm_cr_msr;
2680 		break;
2681 	case MSR_IA32_SPEC_CTRL:
2682 		if (!msr_info->host_initiated &&
2683 		    !guest_has_spec_ctrl_msr(vcpu))
2684 			return 1;
2685 
2686 		msr_info->data = svm->spec_ctrl;
2687 		break;
2688 	case MSR_AMD64_VIRT_SPEC_CTRL:
2689 		if (!msr_info->host_initiated &&
2690 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2691 			return 1;
2692 
2693 		msr_info->data = svm->virt_spec_ctrl;
2694 		break;
2695 	case MSR_F15H_IC_CFG: {
2696 
2697 		int family, model;
2698 
2699 		family = guest_cpuid_family(vcpu);
2700 		model  = guest_cpuid_model(vcpu);
2701 
2702 		if (family < 0 || model < 0)
2703 			return kvm_get_msr_common(vcpu, msr_info);
2704 
2705 		msr_info->data = 0;
2706 
2707 		if (family == 0x15 &&
2708 		    (model >= 0x2 && model < 0x20))
2709 			msr_info->data = 0x1E;
2710 		}
2711 		break;
2712 	case MSR_F10H_DECFG:
2713 		msr_info->data = svm->msr_decfg;
2714 		break;
2715 	default:
2716 		return kvm_get_msr_common(vcpu, msr_info);
2717 	}
2718 	return 0;
2719 }
2720 
2721 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2722 {
2723 	struct vcpu_svm *svm = to_svm(vcpu);
2724 	if (!sev_es_guest(svm->vcpu.kvm) || !err)
2725 		return kvm_complete_insn_gp(&svm->vcpu, err);
2726 
2727 	ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2728 	ghcb_set_sw_exit_info_2(svm->ghcb,
2729 				X86_TRAP_GP |
2730 				SVM_EVTINJ_TYPE_EXEPT |
2731 				SVM_EVTINJ_VALID);
2732 	return 1;
2733 }
2734 
2735 static int rdmsr_interception(struct vcpu_svm *svm)
2736 {
2737 	return kvm_emulate_rdmsr(&svm->vcpu);
2738 }
2739 
2740 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2741 {
2742 	struct vcpu_svm *svm = to_svm(vcpu);
2743 	int svm_dis, chg_mask;
2744 
2745 	if (data & ~SVM_VM_CR_VALID_MASK)
2746 		return 1;
2747 
2748 	chg_mask = SVM_VM_CR_VALID_MASK;
2749 
2750 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2751 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2752 
2753 	svm->nested.vm_cr_msr &= ~chg_mask;
2754 	svm->nested.vm_cr_msr |= (data & chg_mask);
2755 
2756 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2757 
2758 	/* check for svm_disable while efer.svme is set */
2759 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2760 		return 1;
2761 
2762 	return 0;
2763 }
2764 
2765 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2766 {
2767 	struct vcpu_svm *svm = to_svm(vcpu);
2768 
2769 	u32 ecx = msr->index;
2770 	u64 data = msr->data;
2771 	switch (ecx) {
2772 	case MSR_IA32_CR_PAT:
2773 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2774 			return 1;
2775 		vcpu->arch.pat = data;
2776 		svm->vmcb->save.g_pat = data;
2777 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2778 		break;
2779 	case MSR_IA32_SPEC_CTRL:
2780 		if (!msr->host_initiated &&
2781 		    !guest_has_spec_ctrl_msr(vcpu))
2782 			return 1;
2783 
2784 		if (kvm_spec_ctrl_test_value(data))
2785 			return 1;
2786 
2787 		svm->spec_ctrl = data;
2788 		if (!data)
2789 			break;
2790 
2791 		/*
2792 		 * For non-nested:
2793 		 * When it's written (to non-zero) for the first time, pass
2794 		 * it through.
2795 		 *
2796 		 * For nested:
2797 		 * The handling of the MSR bitmap for L2 guests is done in
2798 		 * nested_svm_vmrun_msrpm.
2799 		 * We update the L1 MSR bit as well since it will end up
2800 		 * touching the MSR anyway now.
2801 		 */
2802 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2803 		break;
2804 	case MSR_IA32_PRED_CMD:
2805 		if (!msr->host_initiated &&
2806 		    !guest_has_pred_cmd_msr(vcpu))
2807 			return 1;
2808 
2809 		if (data & ~PRED_CMD_IBPB)
2810 			return 1;
2811 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2812 			return 1;
2813 		if (!data)
2814 			break;
2815 
2816 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2817 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2818 		break;
2819 	case MSR_AMD64_VIRT_SPEC_CTRL:
2820 		if (!msr->host_initiated &&
2821 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2822 			return 1;
2823 
2824 		if (data & ~SPEC_CTRL_SSBD)
2825 			return 1;
2826 
2827 		svm->virt_spec_ctrl = data;
2828 		break;
2829 	case MSR_STAR:
2830 		svm->vmcb->save.star = data;
2831 		break;
2832 #ifdef CONFIG_X86_64
2833 	case MSR_LSTAR:
2834 		svm->vmcb->save.lstar = data;
2835 		break;
2836 	case MSR_CSTAR:
2837 		svm->vmcb->save.cstar = data;
2838 		break;
2839 	case MSR_KERNEL_GS_BASE:
2840 		svm->vmcb->save.kernel_gs_base = data;
2841 		break;
2842 	case MSR_SYSCALL_MASK:
2843 		svm->vmcb->save.sfmask = data;
2844 		break;
2845 #endif
2846 	case MSR_IA32_SYSENTER_CS:
2847 		svm->vmcb->save.sysenter_cs = data;
2848 		break;
2849 	case MSR_IA32_SYSENTER_EIP:
2850 		svm->sysenter_eip = data;
2851 		svm->vmcb->save.sysenter_eip = data;
2852 		break;
2853 	case MSR_IA32_SYSENTER_ESP:
2854 		svm->sysenter_esp = data;
2855 		svm->vmcb->save.sysenter_esp = data;
2856 		break;
2857 	case MSR_TSC_AUX:
2858 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2859 			return 1;
2860 
2861 		/*
2862 		 * This is rare, so we update the MSR here instead of using
2863 		 * direct_access_msrs.  Doing that would require a rdmsr in
2864 		 * svm_vcpu_put.
2865 		 */
2866 		svm->tsc_aux = data;
2867 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2868 		break;
2869 	case MSR_IA32_DEBUGCTLMSR:
2870 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2871 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2872 				    __func__, data);
2873 			break;
2874 		}
2875 		if (data & DEBUGCTL_RESERVED_BITS)
2876 			return 1;
2877 
2878 		svm->vmcb->save.dbgctl = data;
2879 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2880 		if (data & (1ULL<<0))
2881 			svm_enable_lbrv(vcpu);
2882 		else
2883 			svm_disable_lbrv(vcpu);
2884 		break;
2885 	case MSR_VM_HSAVE_PA:
2886 		svm->nested.hsave_msr = data;
2887 		break;
2888 	case MSR_VM_CR:
2889 		return svm_set_vm_cr(vcpu, data);
2890 	case MSR_VM_IGNNE:
2891 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2892 		break;
2893 	case MSR_F10H_DECFG: {
2894 		struct kvm_msr_entry msr_entry;
2895 
2896 		msr_entry.index = msr->index;
2897 		if (svm_get_msr_feature(&msr_entry))
2898 			return 1;
2899 
2900 		/* Check the supported bits */
2901 		if (data & ~msr_entry.data)
2902 			return 1;
2903 
2904 		/* Don't allow the guest to change a bit, #GP */
2905 		if (!msr->host_initiated && (data ^ msr_entry.data))
2906 			return 1;
2907 
2908 		svm->msr_decfg = data;
2909 		break;
2910 	}
2911 	case MSR_IA32_APICBASE:
2912 		if (kvm_vcpu_apicv_active(vcpu))
2913 			avic_update_vapic_bar(to_svm(vcpu), data);
2914 		fallthrough;
2915 	default:
2916 		return kvm_set_msr_common(vcpu, msr);
2917 	}
2918 	return 0;
2919 }
2920 
2921 static int wrmsr_interception(struct vcpu_svm *svm)
2922 {
2923 	return kvm_emulate_wrmsr(&svm->vcpu);
2924 }
2925 
2926 static int msr_interception(struct vcpu_svm *svm)
2927 {
2928 	if (svm->vmcb->control.exit_info_1)
2929 		return wrmsr_interception(svm);
2930 	else
2931 		return rdmsr_interception(svm);
2932 }
2933 
2934 static int interrupt_window_interception(struct vcpu_svm *svm)
2935 {
2936 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2937 	svm_clear_vintr(svm);
2938 
2939 	/*
2940 	 * For AVIC, the only reason to end up here is ExtINTs.
2941 	 * In this case AVIC was temporarily disabled for
2942 	 * requesting the IRQ window and we have to re-enable it.
2943 	 */
2944 	svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2945 
2946 	++svm->vcpu.stat.irq_window_exits;
2947 	return 1;
2948 }
2949 
2950 static int pause_interception(struct vcpu_svm *svm)
2951 {
2952 	struct kvm_vcpu *vcpu = &svm->vcpu;
2953 	bool in_kernel;
2954 
2955 	/*
2956 	 * CPL is not made available for an SEV-ES guest, therefore
2957 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
2958 	 * set in_kernel to false as well.
2959 	 */
2960 	in_kernel = !sev_es_guest(svm->vcpu.kvm) && svm_get_cpl(vcpu) == 0;
2961 
2962 	if (!kvm_pause_in_guest(vcpu->kvm))
2963 		grow_ple_window(vcpu);
2964 
2965 	kvm_vcpu_on_spin(vcpu, in_kernel);
2966 	return 1;
2967 }
2968 
2969 static int nop_interception(struct vcpu_svm *svm)
2970 {
2971 	return kvm_skip_emulated_instruction(&(svm->vcpu));
2972 }
2973 
2974 static int monitor_interception(struct vcpu_svm *svm)
2975 {
2976 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2977 	return nop_interception(svm);
2978 }
2979 
2980 static int mwait_interception(struct vcpu_svm *svm)
2981 {
2982 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2983 	return nop_interception(svm);
2984 }
2985 
2986 static int invpcid_interception(struct vcpu_svm *svm)
2987 {
2988 	struct kvm_vcpu *vcpu = &svm->vcpu;
2989 	unsigned long type;
2990 	gva_t gva;
2991 
2992 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2993 		kvm_queue_exception(vcpu, UD_VECTOR);
2994 		return 1;
2995 	}
2996 
2997 	/*
2998 	 * For an INVPCID intercept:
2999 	 * EXITINFO1 provides the linear address of the memory operand.
3000 	 * EXITINFO2 provides the contents of the register operand.
3001 	 */
3002 	type = svm->vmcb->control.exit_info_2;
3003 	gva = svm->vmcb->control.exit_info_1;
3004 
3005 	if (type > 3) {
3006 		kvm_inject_gp(vcpu, 0);
3007 		return 1;
3008 	}
3009 
3010 	return kvm_handle_invpcid(vcpu, type, gva);
3011 }
3012 
3013 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3014 	[SVM_EXIT_READ_CR0]			= cr_interception,
3015 	[SVM_EXIT_READ_CR3]			= cr_interception,
3016 	[SVM_EXIT_READ_CR4]			= cr_interception,
3017 	[SVM_EXIT_READ_CR8]			= cr_interception,
3018 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3019 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3020 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3021 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3022 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3023 	[SVM_EXIT_READ_DR0]			= dr_interception,
3024 	[SVM_EXIT_READ_DR1]			= dr_interception,
3025 	[SVM_EXIT_READ_DR2]			= dr_interception,
3026 	[SVM_EXIT_READ_DR3]			= dr_interception,
3027 	[SVM_EXIT_READ_DR4]			= dr_interception,
3028 	[SVM_EXIT_READ_DR5]			= dr_interception,
3029 	[SVM_EXIT_READ_DR6]			= dr_interception,
3030 	[SVM_EXIT_READ_DR7]			= dr_interception,
3031 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3032 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3033 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3034 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3035 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3036 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3037 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3038 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3039 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3040 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3041 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3042 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3043 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3044 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3045 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3046 	[SVM_EXIT_INTR]				= intr_interception,
3047 	[SVM_EXIT_NMI]				= nmi_interception,
3048 	[SVM_EXIT_SMI]				= nop_on_interception,
3049 	[SVM_EXIT_INIT]				= nop_on_interception,
3050 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3051 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3052 	[SVM_EXIT_CPUID]			= cpuid_interception,
3053 	[SVM_EXIT_IRET]                         = iret_interception,
3054 	[SVM_EXIT_INVD]                         = invd_interception,
3055 	[SVM_EXIT_PAUSE]			= pause_interception,
3056 	[SVM_EXIT_HLT]				= halt_interception,
3057 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3058 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3059 	[SVM_EXIT_IOIO]				= io_interception,
3060 	[SVM_EXIT_MSR]				= msr_interception,
3061 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3062 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3063 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3064 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3065 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3066 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3067 	[SVM_EXIT_STGI]				= stgi_interception,
3068 	[SVM_EXIT_CLGI]				= clgi_interception,
3069 	[SVM_EXIT_SKINIT]			= skinit_interception,
3070 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
3071 	[SVM_EXIT_MONITOR]			= monitor_interception,
3072 	[SVM_EXIT_MWAIT]			= mwait_interception,
3073 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3074 	[SVM_EXIT_RDPRU]			= rdpru_interception,
3075 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3076 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3077 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3078 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3079 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3080 	[SVM_EXIT_NPF]				= npf_interception,
3081 	[SVM_EXIT_RSM]                          = rsm_interception,
3082 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3083 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3084 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3085 };
3086 
3087 static void dump_vmcb(struct kvm_vcpu *vcpu)
3088 {
3089 	struct vcpu_svm *svm = to_svm(vcpu);
3090 	struct vmcb_control_area *control = &svm->vmcb->control;
3091 	struct vmcb_save_area *save = &svm->vmcb->save;
3092 
3093 	if (!dump_invalid_vmcb) {
3094 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3095 		return;
3096 	}
3097 
3098 	pr_err("VMCB Control Area:\n");
3099 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3100 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3101 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3102 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3103 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3104 	pr_err("%-20s%08x %08x\n", "intercepts:",
3105               control->intercepts[INTERCEPT_WORD3],
3106 	       control->intercepts[INTERCEPT_WORD4]);
3107 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3108 	pr_err("%-20s%d\n", "pause filter threshold:",
3109 	       control->pause_filter_thresh);
3110 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3111 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3112 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3113 	pr_err("%-20s%d\n", "asid:", control->asid);
3114 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3115 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3116 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3117 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3118 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3119 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3120 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3121 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3122 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3123 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3124 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3125 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3126 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3127 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3128 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3129 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3130 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3131 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3132 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3133 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3134 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3135 	pr_err("VMCB State Save Area:\n");
3136 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3137 	       "es:",
3138 	       save->es.selector, save->es.attrib,
3139 	       save->es.limit, save->es.base);
3140 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3141 	       "cs:",
3142 	       save->cs.selector, save->cs.attrib,
3143 	       save->cs.limit, save->cs.base);
3144 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3145 	       "ss:",
3146 	       save->ss.selector, save->ss.attrib,
3147 	       save->ss.limit, save->ss.base);
3148 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3149 	       "ds:",
3150 	       save->ds.selector, save->ds.attrib,
3151 	       save->ds.limit, save->ds.base);
3152 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3153 	       "fs:",
3154 	       save->fs.selector, save->fs.attrib,
3155 	       save->fs.limit, save->fs.base);
3156 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3157 	       "gs:",
3158 	       save->gs.selector, save->gs.attrib,
3159 	       save->gs.limit, save->gs.base);
3160 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3161 	       "gdtr:",
3162 	       save->gdtr.selector, save->gdtr.attrib,
3163 	       save->gdtr.limit, save->gdtr.base);
3164 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3165 	       "ldtr:",
3166 	       save->ldtr.selector, save->ldtr.attrib,
3167 	       save->ldtr.limit, save->ldtr.base);
3168 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3169 	       "idtr:",
3170 	       save->idtr.selector, save->idtr.attrib,
3171 	       save->idtr.limit, save->idtr.base);
3172 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3173 	       "tr:",
3174 	       save->tr.selector, save->tr.attrib,
3175 	       save->tr.limit, save->tr.base);
3176 	pr_err("cpl:            %d                efer:         %016llx\n",
3177 		save->cpl, save->efer);
3178 	pr_err("%-15s %016llx %-13s %016llx\n",
3179 	       "cr0:", save->cr0, "cr2:", save->cr2);
3180 	pr_err("%-15s %016llx %-13s %016llx\n",
3181 	       "cr3:", save->cr3, "cr4:", save->cr4);
3182 	pr_err("%-15s %016llx %-13s %016llx\n",
3183 	       "dr6:", save->dr6, "dr7:", save->dr7);
3184 	pr_err("%-15s %016llx %-13s %016llx\n",
3185 	       "rip:", save->rip, "rflags:", save->rflags);
3186 	pr_err("%-15s %016llx %-13s %016llx\n",
3187 	       "rsp:", save->rsp, "rax:", save->rax);
3188 	pr_err("%-15s %016llx %-13s %016llx\n",
3189 	       "star:", save->star, "lstar:", save->lstar);
3190 	pr_err("%-15s %016llx %-13s %016llx\n",
3191 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3192 	pr_err("%-15s %016llx %-13s %016llx\n",
3193 	       "kernel_gs_base:", save->kernel_gs_base,
3194 	       "sysenter_cs:", save->sysenter_cs);
3195 	pr_err("%-15s %016llx %-13s %016llx\n",
3196 	       "sysenter_esp:", save->sysenter_esp,
3197 	       "sysenter_eip:", save->sysenter_eip);
3198 	pr_err("%-15s %016llx %-13s %016llx\n",
3199 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3200 	pr_err("%-15s %016llx %-13s %016llx\n",
3201 	       "br_from:", save->br_from, "br_to:", save->br_to);
3202 	pr_err("%-15s %016llx %-13s %016llx\n",
3203 	       "excp_from:", save->last_excp_from,
3204 	       "excp_to:", save->last_excp_to);
3205 }
3206 
3207 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3208 {
3209 	if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3210 	    svm_exit_handlers[exit_code])
3211 		return 0;
3212 
3213 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3214 	dump_vmcb(vcpu);
3215 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3216 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3217 	vcpu->run->internal.ndata = 2;
3218 	vcpu->run->internal.data[0] = exit_code;
3219 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3220 
3221 	return -EINVAL;
3222 }
3223 
3224 int svm_invoke_exit_handler(struct vcpu_svm *svm, u64 exit_code)
3225 {
3226 	if (svm_handle_invalid_exit(&svm->vcpu, exit_code))
3227 		return 0;
3228 
3229 #ifdef CONFIG_RETPOLINE
3230 	if (exit_code == SVM_EXIT_MSR)
3231 		return msr_interception(svm);
3232 	else if (exit_code == SVM_EXIT_VINTR)
3233 		return interrupt_window_interception(svm);
3234 	else if (exit_code == SVM_EXIT_INTR)
3235 		return intr_interception(svm);
3236 	else if (exit_code == SVM_EXIT_HLT)
3237 		return halt_interception(svm);
3238 	else if (exit_code == SVM_EXIT_NPF)
3239 		return npf_interception(svm);
3240 #endif
3241 	return svm_exit_handlers[exit_code](svm);
3242 }
3243 
3244 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3245 			      u32 *intr_info, u32 *error_code)
3246 {
3247 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3248 
3249 	*info1 = control->exit_info_1;
3250 	*info2 = control->exit_info_2;
3251 	*intr_info = control->exit_int_info;
3252 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3253 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3254 		*error_code = control->exit_int_info_err;
3255 	else
3256 		*error_code = 0;
3257 }
3258 
3259 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3260 {
3261 	struct vcpu_svm *svm = to_svm(vcpu);
3262 	struct kvm_run *kvm_run = vcpu->run;
3263 	u32 exit_code = svm->vmcb->control.exit_code;
3264 
3265 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3266 
3267 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3268 	if (!sev_es_guest(vcpu->kvm)) {
3269 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3270 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3271 		if (npt_enabled)
3272 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3273 	}
3274 
3275 	if (is_guest_mode(vcpu)) {
3276 		int vmexit;
3277 
3278 		trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3279 
3280 		vmexit = nested_svm_exit_special(svm);
3281 
3282 		if (vmexit == NESTED_EXIT_CONTINUE)
3283 			vmexit = nested_svm_exit_handled(svm);
3284 
3285 		if (vmexit == NESTED_EXIT_DONE)
3286 			return 1;
3287 	}
3288 
3289 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3290 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3291 		kvm_run->fail_entry.hardware_entry_failure_reason
3292 			= svm->vmcb->control.exit_code;
3293 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3294 		dump_vmcb(vcpu);
3295 		return 0;
3296 	}
3297 
3298 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3299 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3300 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3301 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3302 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3303 		       "exit_code 0x%x\n",
3304 		       __func__, svm->vmcb->control.exit_int_info,
3305 		       exit_code);
3306 
3307 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3308 		return 1;
3309 
3310 	return svm_invoke_exit_handler(svm, exit_code);
3311 }
3312 
3313 static void reload_tss(struct kvm_vcpu *vcpu)
3314 {
3315 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3316 
3317 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3318 	load_TR_desc();
3319 }
3320 
3321 static void pre_svm_run(struct vcpu_svm *svm)
3322 {
3323 	struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3324 
3325 	if (sev_guest(svm->vcpu.kvm))
3326 		return pre_sev_run(svm, svm->vcpu.cpu);
3327 
3328 	/* FIXME: handle wraparound of asid_generation */
3329 	if (svm->asid_generation != sd->asid_generation)
3330 		new_asid(svm, sd);
3331 }
3332 
3333 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3334 {
3335 	struct vcpu_svm *svm = to_svm(vcpu);
3336 
3337 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3338 	vcpu->arch.hflags |= HF_NMI_MASK;
3339 	if (!sev_es_guest(svm->vcpu.kvm))
3340 		svm_set_intercept(svm, INTERCEPT_IRET);
3341 	++vcpu->stat.nmi_injections;
3342 }
3343 
3344 static void svm_set_irq(struct kvm_vcpu *vcpu)
3345 {
3346 	struct vcpu_svm *svm = to_svm(vcpu);
3347 
3348 	BUG_ON(!(gif_set(svm)));
3349 
3350 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3351 	++vcpu->stat.irq_injections;
3352 
3353 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3354 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3355 }
3356 
3357 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3358 {
3359 	struct vcpu_svm *svm = to_svm(vcpu);
3360 
3361 	/*
3362 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3363 	 * tracking is done using the CR write traps.
3364 	 */
3365 	if (sev_es_guest(vcpu->kvm))
3366 		return;
3367 
3368 	if (nested_svm_virtualize_tpr(vcpu))
3369 		return;
3370 
3371 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3372 
3373 	if (irr == -1)
3374 		return;
3375 
3376 	if (tpr >= irr)
3377 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3378 }
3379 
3380 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3381 {
3382 	struct vcpu_svm *svm = to_svm(vcpu);
3383 	struct vmcb *vmcb = svm->vmcb;
3384 	bool ret;
3385 
3386 	if (!gif_set(svm))
3387 		return true;
3388 
3389 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3390 		return false;
3391 
3392 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3393 	      (svm->vcpu.arch.hflags & HF_NMI_MASK);
3394 
3395 	return ret;
3396 }
3397 
3398 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3399 {
3400 	struct vcpu_svm *svm = to_svm(vcpu);
3401 	if (svm->nested.nested_run_pending)
3402 		return -EBUSY;
3403 
3404 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3405 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3406 		return -EBUSY;
3407 
3408 	return !svm_nmi_blocked(vcpu);
3409 }
3410 
3411 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3412 {
3413 	struct vcpu_svm *svm = to_svm(vcpu);
3414 
3415 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3416 }
3417 
3418 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3419 {
3420 	struct vcpu_svm *svm = to_svm(vcpu);
3421 
3422 	if (masked) {
3423 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3424 		if (!sev_es_guest(svm->vcpu.kvm))
3425 			svm_set_intercept(svm, INTERCEPT_IRET);
3426 	} else {
3427 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3428 		if (!sev_es_guest(svm->vcpu.kvm))
3429 			svm_clr_intercept(svm, INTERCEPT_IRET);
3430 	}
3431 }
3432 
3433 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3434 {
3435 	struct vcpu_svm *svm = to_svm(vcpu);
3436 	struct vmcb *vmcb = svm->vmcb;
3437 
3438 	if (!gif_set(svm))
3439 		return true;
3440 
3441 	if (sev_es_guest(svm->vcpu.kvm)) {
3442 		/*
3443 		 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3444 		 * bit to determine the state of the IF flag.
3445 		 */
3446 		if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3447 			return true;
3448 	} else if (is_guest_mode(vcpu)) {
3449 		/* As long as interrupts are being delivered...  */
3450 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3451 		    ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3452 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3453 			return true;
3454 
3455 		/* ... vmexits aren't blocked by the interrupt shadow  */
3456 		if (nested_exit_on_intr(svm))
3457 			return false;
3458 	} else {
3459 		if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3460 			return true;
3461 	}
3462 
3463 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3464 }
3465 
3466 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3467 {
3468 	struct vcpu_svm *svm = to_svm(vcpu);
3469 	if (svm->nested.nested_run_pending)
3470 		return -EBUSY;
3471 
3472 	/*
3473 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3474 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3475 	 */
3476 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3477 		return -EBUSY;
3478 
3479 	return !svm_interrupt_blocked(vcpu);
3480 }
3481 
3482 static void enable_irq_window(struct kvm_vcpu *vcpu)
3483 {
3484 	struct vcpu_svm *svm = to_svm(vcpu);
3485 
3486 	/*
3487 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3488 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3489 	 * get that intercept, this function will be called again though and
3490 	 * we'll get the vintr intercept. However, if the vGIF feature is
3491 	 * enabled, the STGI interception will not occur. Enable the irq
3492 	 * window under the assumption that the hardware will set the GIF.
3493 	 */
3494 	if (vgif_enabled(svm) || gif_set(svm)) {
3495 		/*
3496 		 * IRQ window is not needed when AVIC is enabled,
3497 		 * unless we have pending ExtINT since it cannot be injected
3498 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3499 		 * and fallback to injecting IRQ via V_IRQ.
3500 		 */
3501 		svm_toggle_avic_for_irq_window(vcpu, false);
3502 		svm_set_vintr(svm);
3503 	}
3504 }
3505 
3506 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3507 {
3508 	struct vcpu_svm *svm = to_svm(vcpu);
3509 
3510 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3511 	    == HF_NMI_MASK)
3512 		return; /* IRET will cause a vm exit */
3513 
3514 	if (!gif_set(svm)) {
3515 		if (vgif_enabled(svm))
3516 			svm_set_intercept(svm, INTERCEPT_STGI);
3517 		return; /* STGI will cause a vm exit */
3518 	}
3519 
3520 	/*
3521 	 * Something prevents NMI from been injected. Single step over possible
3522 	 * problem (IRET or exception injection or interrupt shadow)
3523 	 */
3524 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3525 	svm->nmi_singlestep = true;
3526 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3527 }
3528 
3529 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3530 {
3531 	return 0;
3532 }
3533 
3534 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3535 {
3536 	return 0;
3537 }
3538 
3539 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3540 {
3541 	struct vcpu_svm *svm = to_svm(vcpu);
3542 
3543 	/*
3544 	 * Flush only the current ASID even if the TLB flush was invoked via
3545 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3546 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3547 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3548 	 * VM-Exit (via kvm_mmu_reset_context()).
3549 	 */
3550 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3551 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3552 	else
3553 		svm->asid_generation--;
3554 }
3555 
3556 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3557 {
3558 	struct vcpu_svm *svm = to_svm(vcpu);
3559 
3560 	invlpga(gva, svm->vmcb->control.asid);
3561 }
3562 
3563 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3564 {
3565 }
3566 
3567 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3568 {
3569 	struct vcpu_svm *svm = to_svm(vcpu);
3570 
3571 	if (nested_svm_virtualize_tpr(vcpu))
3572 		return;
3573 
3574 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3575 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3576 		kvm_set_cr8(vcpu, cr8);
3577 	}
3578 }
3579 
3580 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3581 {
3582 	struct vcpu_svm *svm = to_svm(vcpu);
3583 	u64 cr8;
3584 
3585 	if (nested_svm_virtualize_tpr(vcpu) ||
3586 	    kvm_vcpu_apicv_active(vcpu))
3587 		return;
3588 
3589 	cr8 = kvm_get_cr8(vcpu);
3590 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3591 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3592 }
3593 
3594 static void svm_complete_interrupts(struct vcpu_svm *svm)
3595 {
3596 	u8 vector;
3597 	int type;
3598 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3599 	unsigned int3_injected = svm->int3_injected;
3600 
3601 	svm->int3_injected = 0;
3602 
3603 	/*
3604 	 * If we've made progress since setting HF_IRET_MASK, we've
3605 	 * executed an IRET and can allow NMI injection.
3606 	 */
3607 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK) &&
3608 	    (sev_es_guest(svm->vcpu.kvm) ||
3609 	     kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip)) {
3610 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3611 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3612 	}
3613 
3614 	svm->vcpu.arch.nmi_injected = false;
3615 	kvm_clear_exception_queue(&svm->vcpu);
3616 	kvm_clear_interrupt_queue(&svm->vcpu);
3617 
3618 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3619 		return;
3620 
3621 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3622 
3623 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3624 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3625 
3626 	switch (type) {
3627 	case SVM_EXITINTINFO_TYPE_NMI:
3628 		svm->vcpu.arch.nmi_injected = true;
3629 		break;
3630 	case SVM_EXITINTINFO_TYPE_EXEPT:
3631 		/*
3632 		 * Never re-inject a #VC exception.
3633 		 */
3634 		if (vector == X86_TRAP_VC)
3635 			break;
3636 
3637 		/*
3638 		 * In case of software exceptions, do not reinject the vector,
3639 		 * but re-execute the instruction instead. Rewind RIP first
3640 		 * if we emulated INT3 before.
3641 		 */
3642 		if (kvm_exception_is_soft(vector)) {
3643 			if (vector == BP_VECTOR && int3_injected &&
3644 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3645 				kvm_rip_write(&svm->vcpu,
3646 					      kvm_rip_read(&svm->vcpu) -
3647 					      int3_injected);
3648 			break;
3649 		}
3650 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3651 			u32 err = svm->vmcb->control.exit_int_info_err;
3652 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3653 
3654 		} else
3655 			kvm_requeue_exception(&svm->vcpu, vector);
3656 		break;
3657 	case SVM_EXITINTINFO_TYPE_INTR:
3658 		kvm_queue_interrupt(&svm->vcpu, vector, false);
3659 		break;
3660 	default:
3661 		break;
3662 	}
3663 }
3664 
3665 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3666 {
3667 	struct vcpu_svm *svm = to_svm(vcpu);
3668 	struct vmcb_control_area *control = &svm->vmcb->control;
3669 
3670 	control->exit_int_info = control->event_inj;
3671 	control->exit_int_info_err = control->event_inj_err;
3672 	control->event_inj = 0;
3673 	svm_complete_interrupts(svm);
3674 }
3675 
3676 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3677 {
3678 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3679 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3680 		return handle_fastpath_set_msr_irqoff(vcpu);
3681 
3682 	return EXIT_FASTPATH_NONE;
3683 }
3684 
3685 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3686 					struct vcpu_svm *svm)
3687 {
3688 	/*
3689 	 * VMENTER enables interrupts (host state), but the kernel state is
3690 	 * interrupts disabled when this is invoked. Also tell RCU about
3691 	 * it. This is the same logic as for exit_to_user_mode().
3692 	 *
3693 	 * This ensures that e.g. latency analysis on the host observes
3694 	 * guest mode as interrupt enabled.
3695 	 *
3696 	 * guest_enter_irqoff() informs context tracking about the
3697 	 * transition to guest mode and if enabled adjusts RCU state
3698 	 * accordingly.
3699 	 */
3700 	instrumentation_begin();
3701 	trace_hardirqs_on_prepare();
3702 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3703 	instrumentation_end();
3704 
3705 	guest_enter_irqoff();
3706 	lockdep_hardirqs_on(CALLER_ADDR0);
3707 
3708 	if (sev_es_guest(svm->vcpu.kvm)) {
3709 		__svm_sev_es_vcpu_run(svm->vmcb_pa);
3710 	} else {
3711 		__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3712 
3713 #ifdef CONFIG_X86_64
3714 		native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3715 #else
3716 		loadsegment(fs, svm->host.fs);
3717 #ifndef CONFIG_X86_32_LAZY_GS
3718 		loadsegment(gs, svm->host.gs);
3719 #endif
3720 #endif
3721 	}
3722 
3723 	/*
3724 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
3725 	 * have them in state 'on' as recorded before entering guest mode.
3726 	 * Same as enter_from_user_mode().
3727 	 *
3728 	 * guest_exit_irqoff() restores host context and reinstates RCU if
3729 	 * enabled and required.
3730 	 *
3731 	 * This needs to be done before the below as native_read_msr()
3732 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3733 	 * into world and some more.
3734 	 */
3735 	lockdep_hardirqs_off(CALLER_ADDR0);
3736 	guest_exit_irqoff();
3737 
3738 	instrumentation_begin();
3739 	trace_hardirqs_off_finish();
3740 	instrumentation_end();
3741 }
3742 
3743 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3744 {
3745 	struct vcpu_svm *svm = to_svm(vcpu);
3746 
3747 	trace_kvm_entry(vcpu);
3748 
3749 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3750 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3751 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3752 
3753 	/*
3754 	 * Disable singlestep if we're injecting an interrupt/exception.
3755 	 * We don't want our modified rflags to be pushed on the stack where
3756 	 * we might not be able to easily reset them if we disabled NMI
3757 	 * singlestep later.
3758 	 */
3759 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3760 		/*
3761 		 * Event injection happens before external interrupts cause a
3762 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3763 		 * is enough to force an immediate vmexit.
3764 		 */
3765 		disable_nmi_singlestep(svm);
3766 		smp_send_reschedule(vcpu->cpu);
3767 	}
3768 
3769 	pre_svm_run(svm);
3770 
3771 	sync_lapic_to_cr8(vcpu);
3772 
3773 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3774 		svm->vmcb->control.asid = svm->asid;
3775 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3776 	}
3777 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3778 
3779 	/*
3780 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3781 	 * of a #DB.
3782 	 */
3783 	if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3784 		svm_set_dr6(svm, vcpu->arch.dr6);
3785 	else
3786 		svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3787 
3788 	clgi();
3789 	kvm_load_guest_xsave_state(vcpu);
3790 
3791 	kvm_wait_lapic_expire(vcpu);
3792 
3793 	/*
3794 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3795 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3796 	 * is no need to worry about the conditional branch over the wrmsr
3797 	 * being speculatively taken.
3798 	 */
3799 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3800 
3801 	svm_vcpu_enter_exit(vcpu, svm);
3802 
3803 	/*
3804 	 * We do not use IBRS in the kernel. If this vCPU has used the
3805 	 * SPEC_CTRL MSR it may have left it on; save the value and
3806 	 * turn it off. This is much more efficient than blindly adding
3807 	 * it to the atomic save/restore list. Especially as the former
3808 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3809 	 *
3810 	 * For non-nested case:
3811 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3812 	 * save it.
3813 	 *
3814 	 * For nested case:
3815 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3816 	 * save it.
3817 	 */
3818 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3819 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3820 
3821 	if (!sev_es_guest(svm->vcpu.kvm))
3822 		reload_tss(vcpu);
3823 
3824 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3825 
3826 	if (!sev_es_guest(svm->vcpu.kvm)) {
3827 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3828 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3829 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3830 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3831 	}
3832 
3833 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3834 		kvm_before_interrupt(&svm->vcpu);
3835 
3836 	kvm_load_host_xsave_state(vcpu);
3837 	stgi();
3838 
3839 	/* Any pending NMI will happen here */
3840 
3841 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3842 		kvm_after_interrupt(&svm->vcpu);
3843 
3844 	sync_cr8_to_lapic(vcpu);
3845 
3846 	svm->next_rip = 0;
3847 	if (is_guest_mode(&svm->vcpu)) {
3848 		sync_nested_vmcb_control(svm);
3849 		svm->nested.nested_run_pending = 0;
3850 	}
3851 
3852 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3853 	vmcb_mark_all_clean(svm->vmcb);
3854 
3855 	/* if exit due to PF check for async PF */
3856 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3857 		svm->vcpu.arch.apf.host_apf_flags =
3858 			kvm_read_and_reset_apf_flags();
3859 
3860 	if (npt_enabled) {
3861 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3862 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3863 	}
3864 
3865 	/*
3866 	 * We need to handle MC intercepts here before the vcpu has a chance to
3867 	 * change the physical cpu
3868 	 */
3869 	if (unlikely(svm->vmcb->control.exit_code ==
3870 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3871 		svm_handle_mce(svm);
3872 
3873 	svm_complete_interrupts(svm);
3874 
3875 	if (is_guest_mode(vcpu))
3876 		return EXIT_FASTPATH_NONE;
3877 
3878 	return svm_exit_handlers_fastpath(vcpu);
3879 }
3880 
3881 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3882 			     int root_level)
3883 {
3884 	struct vcpu_svm *svm = to_svm(vcpu);
3885 	unsigned long cr3;
3886 
3887 	cr3 = __sme_set(root);
3888 	if (npt_enabled) {
3889 		svm->vmcb->control.nested_cr3 = cr3;
3890 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3891 
3892 		/* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3893 		if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3894 			return;
3895 		cr3 = vcpu->arch.cr3;
3896 	}
3897 
3898 	svm->vmcb->save.cr3 = cr3;
3899 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3900 }
3901 
3902 static int is_disabled(void)
3903 {
3904 	u64 vm_cr;
3905 
3906 	rdmsrl(MSR_VM_CR, vm_cr);
3907 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3908 		return 1;
3909 
3910 	return 0;
3911 }
3912 
3913 static void
3914 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3915 {
3916 	/*
3917 	 * Patch in the VMMCALL instruction:
3918 	 */
3919 	hypercall[0] = 0x0f;
3920 	hypercall[1] = 0x01;
3921 	hypercall[2] = 0xd9;
3922 }
3923 
3924 static int __init svm_check_processor_compat(void)
3925 {
3926 	return 0;
3927 }
3928 
3929 static bool svm_cpu_has_accelerated_tpr(void)
3930 {
3931 	return false;
3932 }
3933 
3934 /*
3935  * The kvm parameter can be NULL (module initialization, or invocation before
3936  * VM creation). Be sure to check the kvm parameter before using it.
3937  */
3938 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3939 {
3940 	switch (index) {
3941 	case MSR_IA32_MCG_EXT_CTL:
3942 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3943 		return false;
3944 	case MSR_IA32_SMBASE:
3945 		/* SEV-ES guests do not support SMM, so report false */
3946 		if (kvm && sev_es_guest(kvm))
3947 			return false;
3948 		break;
3949 	default:
3950 		break;
3951 	}
3952 
3953 	return true;
3954 }
3955 
3956 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3957 {
3958 	return 0;
3959 }
3960 
3961 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3962 {
3963 	struct vcpu_svm *svm = to_svm(vcpu);
3964 	struct kvm_cpuid_entry2 *best;
3965 
3966 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3967 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3968 				    boot_cpu_has(X86_FEATURE_XSAVES);
3969 
3970 	/* Update nrips enabled cache */
3971 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3972 			     guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3973 
3974 	/* Check again if INVPCID interception if required */
3975 	svm_check_invpcid(svm);
3976 
3977 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3978 	if (sev_guest(vcpu->kvm)) {
3979 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3980 		if (best)
3981 			vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
3982 	}
3983 
3984 	if (!kvm_vcpu_apicv_active(vcpu))
3985 		return;
3986 
3987 	/*
3988 	 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3989 	 * is exposed to the guest, disable AVIC.
3990 	 */
3991 	if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3992 		kvm_request_apicv_update(vcpu->kvm, false,
3993 					 APICV_INHIBIT_REASON_X2APIC);
3994 
3995 	/*
3996 	 * Currently, AVIC does not work with nested virtualization.
3997 	 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3998 	 */
3999 	if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4000 		kvm_request_apicv_update(vcpu->kvm, false,
4001 					 APICV_INHIBIT_REASON_NESTED);
4002 }
4003 
4004 static bool svm_has_wbinvd_exit(void)
4005 {
4006 	return true;
4007 }
4008 
4009 #define PRE_EX(exit)  { .exit_code = (exit), \
4010 			.stage = X86_ICPT_PRE_EXCEPT, }
4011 #define POST_EX(exit) { .exit_code = (exit), \
4012 			.stage = X86_ICPT_POST_EXCEPT, }
4013 #define POST_MEM(exit) { .exit_code = (exit), \
4014 			.stage = X86_ICPT_POST_MEMACCESS, }
4015 
4016 static const struct __x86_intercept {
4017 	u32 exit_code;
4018 	enum x86_intercept_stage stage;
4019 } x86_intercept_map[] = {
4020 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4021 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4022 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4023 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4024 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4025 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4026 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4027 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4028 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4029 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4030 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4031 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4032 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4033 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4034 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4035 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4036 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4037 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4038 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4039 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4040 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4041 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4042 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4043 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4044 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4045 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4046 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4047 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4048 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4049 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4050 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4051 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4052 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4053 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4054 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4055 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4056 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4057 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4058 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4059 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4060 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4061 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4062 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4063 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4064 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4065 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4066 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4067 };
4068 
4069 #undef PRE_EX
4070 #undef POST_EX
4071 #undef POST_MEM
4072 
4073 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4074 			       struct x86_instruction_info *info,
4075 			       enum x86_intercept_stage stage,
4076 			       struct x86_exception *exception)
4077 {
4078 	struct vcpu_svm *svm = to_svm(vcpu);
4079 	int vmexit, ret = X86EMUL_CONTINUE;
4080 	struct __x86_intercept icpt_info;
4081 	struct vmcb *vmcb = svm->vmcb;
4082 
4083 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4084 		goto out;
4085 
4086 	icpt_info = x86_intercept_map[info->intercept];
4087 
4088 	if (stage != icpt_info.stage)
4089 		goto out;
4090 
4091 	switch (icpt_info.exit_code) {
4092 	case SVM_EXIT_READ_CR0:
4093 		if (info->intercept == x86_intercept_cr_read)
4094 			icpt_info.exit_code += info->modrm_reg;
4095 		break;
4096 	case SVM_EXIT_WRITE_CR0: {
4097 		unsigned long cr0, val;
4098 
4099 		if (info->intercept == x86_intercept_cr_write)
4100 			icpt_info.exit_code += info->modrm_reg;
4101 
4102 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4103 		    info->intercept == x86_intercept_clts)
4104 			break;
4105 
4106 		if (!(vmcb_is_intercept(&svm->nested.ctl,
4107 					INTERCEPT_SELECTIVE_CR0)))
4108 			break;
4109 
4110 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4111 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4112 
4113 		if (info->intercept == x86_intercept_lmsw) {
4114 			cr0 &= 0xfUL;
4115 			val &= 0xfUL;
4116 			/* lmsw can't clear PE - catch this here */
4117 			if (cr0 & X86_CR0_PE)
4118 				val |= X86_CR0_PE;
4119 		}
4120 
4121 		if (cr0 ^ val)
4122 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4123 
4124 		break;
4125 	}
4126 	case SVM_EXIT_READ_DR0:
4127 	case SVM_EXIT_WRITE_DR0:
4128 		icpt_info.exit_code += info->modrm_reg;
4129 		break;
4130 	case SVM_EXIT_MSR:
4131 		if (info->intercept == x86_intercept_wrmsr)
4132 			vmcb->control.exit_info_1 = 1;
4133 		else
4134 			vmcb->control.exit_info_1 = 0;
4135 		break;
4136 	case SVM_EXIT_PAUSE:
4137 		/*
4138 		 * We get this for NOP only, but pause
4139 		 * is rep not, check this here
4140 		 */
4141 		if (info->rep_prefix != REPE_PREFIX)
4142 			goto out;
4143 		break;
4144 	case SVM_EXIT_IOIO: {
4145 		u64 exit_info;
4146 		u32 bytes;
4147 
4148 		if (info->intercept == x86_intercept_in ||
4149 		    info->intercept == x86_intercept_ins) {
4150 			exit_info = ((info->src_val & 0xffff) << 16) |
4151 				SVM_IOIO_TYPE_MASK;
4152 			bytes = info->dst_bytes;
4153 		} else {
4154 			exit_info = (info->dst_val & 0xffff) << 16;
4155 			bytes = info->src_bytes;
4156 		}
4157 
4158 		if (info->intercept == x86_intercept_outs ||
4159 		    info->intercept == x86_intercept_ins)
4160 			exit_info |= SVM_IOIO_STR_MASK;
4161 
4162 		if (info->rep_prefix)
4163 			exit_info |= SVM_IOIO_REP_MASK;
4164 
4165 		bytes = min(bytes, 4u);
4166 
4167 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4168 
4169 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4170 
4171 		vmcb->control.exit_info_1 = exit_info;
4172 		vmcb->control.exit_info_2 = info->next_rip;
4173 
4174 		break;
4175 	}
4176 	default:
4177 		break;
4178 	}
4179 
4180 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4181 	if (static_cpu_has(X86_FEATURE_NRIPS))
4182 		vmcb->control.next_rip  = info->next_rip;
4183 	vmcb->control.exit_code = icpt_info.exit_code;
4184 	vmexit = nested_svm_exit_handled(svm);
4185 
4186 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4187 					   : X86EMUL_CONTINUE;
4188 
4189 out:
4190 	return ret;
4191 }
4192 
4193 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4194 {
4195 }
4196 
4197 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4198 {
4199 	if (!kvm_pause_in_guest(vcpu->kvm))
4200 		shrink_ple_window(vcpu);
4201 }
4202 
4203 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4204 {
4205 	/* [63:9] are reserved. */
4206 	vcpu->arch.mcg_cap &= 0x1ff;
4207 }
4208 
4209 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4210 {
4211 	struct vcpu_svm *svm = to_svm(vcpu);
4212 
4213 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4214 	if (!gif_set(svm))
4215 		return true;
4216 
4217 	return is_smm(vcpu);
4218 }
4219 
4220 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4221 {
4222 	struct vcpu_svm *svm = to_svm(vcpu);
4223 	if (svm->nested.nested_run_pending)
4224 		return -EBUSY;
4225 
4226 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4227 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4228 		return -EBUSY;
4229 
4230 	return !svm_smi_blocked(vcpu);
4231 }
4232 
4233 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4234 {
4235 	struct vcpu_svm *svm = to_svm(vcpu);
4236 	int ret;
4237 
4238 	if (is_guest_mode(vcpu)) {
4239 		/* FED8h - SVM Guest */
4240 		put_smstate(u64, smstate, 0x7ed8, 1);
4241 		/* FEE0h - SVM Guest VMCB Physical Address */
4242 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4243 
4244 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4245 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4246 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4247 
4248 		ret = nested_svm_vmexit(svm);
4249 		if (ret)
4250 			return ret;
4251 	}
4252 	return 0;
4253 }
4254 
4255 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4256 {
4257 	struct vcpu_svm *svm = to_svm(vcpu);
4258 	struct kvm_host_map map;
4259 	int ret = 0;
4260 
4261 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4262 		u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4263 		u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4264 		u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4265 
4266 		if (guest) {
4267 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4268 				return 1;
4269 
4270 			if (!(saved_efer & EFER_SVME))
4271 				return 1;
4272 
4273 			if (kvm_vcpu_map(&svm->vcpu,
4274 					 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4275 				return 1;
4276 
4277 			if (svm_allocate_nested(svm))
4278 				return 1;
4279 
4280 			ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4281 			kvm_vcpu_unmap(&svm->vcpu, &map, true);
4282 		}
4283 	}
4284 
4285 	return ret;
4286 }
4287 
4288 static void enable_smi_window(struct kvm_vcpu *vcpu)
4289 {
4290 	struct vcpu_svm *svm = to_svm(vcpu);
4291 
4292 	if (!gif_set(svm)) {
4293 		if (vgif_enabled(svm))
4294 			svm_set_intercept(svm, INTERCEPT_STGI);
4295 		/* STGI will cause a vm exit */
4296 	} else {
4297 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4298 	}
4299 }
4300 
4301 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4302 {
4303 	bool smep, smap, is_user;
4304 	unsigned long cr4;
4305 
4306 	/*
4307 	 * When the guest is an SEV-ES guest, emulation is not possible.
4308 	 */
4309 	if (sev_es_guest(vcpu->kvm))
4310 		return false;
4311 
4312 	/*
4313 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4314 	 *
4315 	 * Errata:
4316 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4317 	 * possible that CPU microcode implementing DecodeAssist will fail
4318 	 * to read bytes of instruction which caused #NPF. In this case,
4319 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4320 	 * return 0 instead of the correct guest instruction bytes.
4321 	 *
4322 	 * This happens because CPU microcode reading instruction bytes
4323 	 * uses a special opcode which attempts to read data using CPL=0
4324 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4325 	 * fault, it gives up and returns no instruction bytes.
4326 	 *
4327 	 * Detection:
4328 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4329 	 * returned 0 in GuestIntrBytes field of the VMCB.
4330 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4331 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4332 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4333 	 * a SMEP fault instead of #NPF).
4334 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4335 	 * As most guests enable SMAP if they have also enabled SMEP, use above
4336 	 * logic in order to attempt minimize false-positive of detecting errata
4337 	 * while still preserving all cases semantic correctness.
4338 	 *
4339 	 * Workaround:
4340 	 * To determine what instruction the guest was executing, the hypervisor
4341 	 * will have to decode the instruction at the instruction pointer.
4342 	 *
4343 	 * In non SEV guest, hypervisor will be able to read the guest
4344 	 * memory to decode the instruction pointer when insn_len is zero
4345 	 * so we return true to indicate that decoding is possible.
4346 	 *
4347 	 * But in the SEV guest, the guest memory is encrypted with the
4348 	 * guest specific key and hypervisor will not be able to decode the
4349 	 * instruction pointer so we will not able to workaround it. Lets
4350 	 * print the error and request to kill the guest.
4351 	 */
4352 	if (likely(!insn || insn_len))
4353 		return true;
4354 
4355 	/*
4356 	 * If RIP is invalid, go ahead with emulation which will cause an
4357 	 * internal error exit.
4358 	 */
4359 	if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4360 		return true;
4361 
4362 	cr4 = kvm_read_cr4(vcpu);
4363 	smep = cr4 & X86_CR4_SMEP;
4364 	smap = cr4 & X86_CR4_SMAP;
4365 	is_user = svm_get_cpl(vcpu) == 3;
4366 	if (smap && (!smep || is_user)) {
4367 		if (!sev_guest(vcpu->kvm))
4368 			return true;
4369 
4370 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4371 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4372 	}
4373 
4374 	return false;
4375 }
4376 
4377 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4378 {
4379 	struct vcpu_svm *svm = to_svm(vcpu);
4380 
4381 	/*
4382 	 * TODO: Last condition latch INIT signals on vCPU when
4383 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4384 	 * To properly emulate the INIT intercept,
4385 	 * svm_check_nested_events() should call nested_svm_vmexit()
4386 	 * if an INIT signal is pending.
4387 	 */
4388 	return !gif_set(svm) ||
4389 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4390 }
4391 
4392 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4393 {
4394 	if (!sev_es_guest(vcpu->kvm))
4395 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4396 
4397 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4398 }
4399 
4400 static void svm_vm_destroy(struct kvm *kvm)
4401 {
4402 	avic_vm_destroy(kvm);
4403 	sev_vm_destroy(kvm);
4404 }
4405 
4406 static int svm_vm_init(struct kvm *kvm)
4407 {
4408 	if (!pause_filter_count || !pause_filter_thresh)
4409 		kvm->arch.pause_in_guest = true;
4410 
4411 	if (avic) {
4412 		int ret = avic_vm_init(kvm);
4413 		if (ret)
4414 			return ret;
4415 	}
4416 
4417 	kvm_apicv_init(kvm, avic);
4418 	return 0;
4419 }
4420 
4421 static struct kvm_x86_ops svm_x86_ops __initdata = {
4422 	.hardware_unsetup = svm_hardware_teardown,
4423 	.hardware_enable = svm_hardware_enable,
4424 	.hardware_disable = svm_hardware_disable,
4425 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4426 	.has_emulated_msr = svm_has_emulated_msr,
4427 
4428 	.vcpu_create = svm_create_vcpu,
4429 	.vcpu_free = svm_free_vcpu,
4430 	.vcpu_reset = svm_vcpu_reset,
4431 
4432 	.vm_size = sizeof(struct kvm_svm),
4433 	.vm_init = svm_vm_init,
4434 	.vm_destroy = svm_vm_destroy,
4435 
4436 	.prepare_guest_switch = svm_prepare_guest_switch,
4437 	.vcpu_load = svm_vcpu_load,
4438 	.vcpu_put = svm_vcpu_put,
4439 	.vcpu_blocking = svm_vcpu_blocking,
4440 	.vcpu_unblocking = svm_vcpu_unblocking,
4441 
4442 	.update_exception_bitmap = update_exception_bitmap,
4443 	.get_msr_feature = svm_get_msr_feature,
4444 	.get_msr = svm_get_msr,
4445 	.set_msr = svm_set_msr,
4446 	.get_segment_base = svm_get_segment_base,
4447 	.get_segment = svm_get_segment,
4448 	.set_segment = svm_set_segment,
4449 	.get_cpl = svm_get_cpl,
4450 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4451 	.set_cr0 = svm_set_cr0,
4452 	.is_valid_cr4 = svm_is_valid_cr4,
4453 	.set_cr4 = svm_set_cr4,
4454 	.set_efer = svm_set_efer,
4455 	.get_idt = svm_get_idt,
4456 	.set_idt = svm_set_idt,
4457 	.get_gdt = svm_get_gdt,
4458 	.set_gdt = svm_set_gdt,
4459 	.set_dr7 = svm_set_dr7,
4460 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4461 	.cache_reg = svm_cache_reg,
4462 	.get_rflags = svm_get_rflags,
4463 	.set_rflags = svm_set_rflags,
4464 
4465 	.tlb_flush_all = svm_flush_tlb,
4466 	.tlb_flush_current = svm_flush_tlb,
4467 	.tlb_flush_gva = svm_flush_tlb_gva,
4468 	.tlb_flush_guest = svm_flush_tlb,
4469 
4470 	.run = svm_vcpu_run,
4471 	.handle_exit = handle_exit,
4472 	.skip_emulated_instruction = skip_emulated_instruction,
4473 	.update_emulated_instruction = NULL,
4474 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4475 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4476 	.patch_hypercall = svm_patch_hypercall,
4477 	.set_irq = svm_set_irq,
4478 	.set_nmi = svm_inject_nmi,
4479 	.queue_exception = svm_queue_exception,
4480 	.cancel_injection = svm_cancel_injection,
4481 	.interrupt_allowed = svm_interrupt_allowed,
4482 	.nmi_allowed = svm_nmi_allowed,
4483 	.get_nmi_mask = svm_get_nmi_mask,
4484 	.set_nmi_mask = svm_set_nmi_mask,
4485 	.enable_nmi_window = enable_nmi_window,
4486 	.enable_irq_window = enable_irq_window,
4487 	.update_cr8_intercept = update_cr8_intercept,
4488 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
4489 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4490 	.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4491 	.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4492 	.load_eoi_exitmap = svm_load_eoi_exitmap,
4493 	.hwapic_irr_update = svm_hwapic_irr_update,
4494 	.hwapic_isr_update = svm_hwapic_isr_update,
4495 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
4496 	.apicv_post_state_restore = avic_post_state_restore,
4497 
4498 	.set_tss_addr = svm_set_tss_addr,
4499 	.set_identity_map_addr = svm_set_identity_map_addr,
4500 	.get_mt_mask = svm_get_mt_mask,
4501 
4502 	.get_exit_info = svm_get_exit_info,
4503 
4504 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4505 
4506 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4507 
4508 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
4509 
4510 	.load_mmu_pgd = svm_load_mmu_pgd,
4511 
4512 	.check_intercept = svm_check_intercept,
4513 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4514 
4515 	.request_immediate_exit = __kvm_request_immediate_exit,
4516 
4517 	.sched_in = svm_sched_in,
4518 
4519 	.pmu_ops = &amd_pmu_ops,
4520 	.nested_ops = &svm_nested_ops,
4521 
4522 	.deliver_posted_interrupt = svm_deliver_avic_intr,
4523 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4524 	.update_pi_irte = svm_update_pi_irte,
4525 	.setup_mce = svm_setup_mce,
4526 
4527 	.smi_allowed = svm_smi_allowed,
4528 	.pre_enter_smm = svm_pre_enter_smm,
4529 	.pre_leave_smm = svm_pre_leave_smm,
4530 	.enable_smi_window = enable_smi_window,
4531 
4532 	.mem_enc_op = svm_mem_enc_op,
4533 	.mem_enc_reg_region = svm_register_enc_region,
4534 	.mem_enc_unreg_region = svm_unregister_enc_region,
4535 
4536 	.can_emulate_instruction = svm_can_emulate_instruction,
4537 
4538 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4539 
4540 	.msr_filter_changed = svm_msr_filter_changed,
4541 	.complete_emulated_msr = svm_complete_emulated_msr,
4542 
4543 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4544 };
4545 
4546 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4547 	.cpu_has_kvm_support = has_svm,
4548 	.disabled_by_bios = is_disabled,
4549 	.hardware_setup = svm_hardware_setup,
4550 	.check_processor_compatibility = svm_check_processor_compat,
4551 
4552 	.runtime_ops = &svm_x86_ops,
4553 };
4554 
4555 static int __init svm_init(void)
4556 {
4557 	__unused_size_checks();
4558 
4559 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4560 			__alignof__(struct vcpu_svm), THIS_MODULE);
4561 }
4562 
4563 static void __exit svm_exit(void)
4564 {
4565 	kvm_exit();
4566 }
4567 
4568 module_init(svm_init)
4569 module_exit(svm_exit)
4570