1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_LICENSE("GPL"); 57 58 #ifdef MODULE 59 static const struct x86_cpu_id svm_cpu_id[] = { 60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 61 {} 62 }; 63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 64 #endif 65 66 #define SEG_TYPE_LDT 2 67 #define SEG_TYPE_BUSY_TSS16 3 68 69 static bool erratum_383_found __read_mostly; 70 71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 72 73 /* 74 * Set osvw_len to higher value when updated Revision Guides 75 * are published and we know what the new status bits are 76 */ 77 static uint64_t osvw_len = 4, osvw_status; 78 79 static DEFINE_PER_CPU(u64, current_tsc_ratio); 80 81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 82 83 static const struct svm_direct_access_msrs { 84 u32 index; /* Index of the MSR */ 85 bool always; /* True if intercept is initially cleared */ 86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 87 { .index = MSR_STAR, .always = true }, 88 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 89 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 90 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 91 #ifdef CONFIG_X86_64 92 { .index = MSR_GS_BASE, .always = true }, 93 { .index = MSR_FS_BASE, .always = true }, 94 { .index = MSR_KERNEL_GS_BASE, .always = true }, 95 { .index = MSR_LSTAR, .always = true }, 96 { .index = MSR_CSTAR, .always = true }, 97 { .index = MSR_SYSCALL_MASK, .always = true }, 98 #endif 99 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 100 { .index = MSR_IA32_PRED_CMD, .always = false }, 101 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 102 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 104 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 105 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 106 { .index = MSR_EFER, .always = false }, 107 { .index = MSR_IA32_CR_PAT, .always = false }, 108 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 109 { .index = MSR_TSC_AUX, .always = false }, 110 { .index = X2APIC_MSR(APIC_ID), .always = false }, 111 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 112 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 113 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 114 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 116 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 117 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 118 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 119 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 120 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 121 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 122 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 123 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 124 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 126 127 /* 128 * Note: 129 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 130 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 131 * the AVIC hardware would generate GP fault. Therefore, always 132 * intercept the MSR 0x832, and do not setup direct_access_msr. 133 */ 134 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 135 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 136 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 139 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 140 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 141 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 142 { .index = MSR_INVALID, .always = false }, 143 }; 144 145 /* 146 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 147 * pause_filter_count: On processors that support Pause filtering(indicated 148 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 149 * count value. On VMRUN this value is loaded into an internal counter. 150 * Each time a pause instruction is executed, this counter is decremented 151 * until it reaches zero at which time a #VMEXIT is generated if pause 152 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 153 * Intercept Filtering for more details. 154 * This also indicate if ple logic enabled. 155 * 156 * pause_filter_thresh: In addition, some processor families support advanced 157 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 158 * the amount of time a guest is allowed to execute in a pause loop. 159 * In this mode, a 16-bit pause filter threshold field is added in the 160 * VMCB. The threshold value is a cycle count that is used to reset the 161 * pause counter. As with simple pause filtering, VMRUN loads the pause 162 * count value from VMCB into an internal counter. Then, on each pause 163 * instruction the hardware checks the elapsed number of cycles since 164 * the most recent pause instruction against the pause filter threshold. 165 * If the elapsed cycle count is greater than the pause filter threshold, 166 * then the internal pause count is reloaded from the VMCB and execution 167 * continues. If the elapsed cycle count is less than the pause filter 168 * threshold, then the internal pause count is decremented. If the count 169 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 170 * triggered. If advanced pause filtering is supported and pause filter 171 * threshold field is set to zero, the filter will operate in the simpler, 172 * count only mode. 173 */ 174 175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 176 module_param(pause_filter_thresh, ushort, 0444); 177 178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 179 module_param(pause_filter_count, ushort, 0444); 180 181 /* Default doubles per-vcpu window every exit. */ 182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 183 module_param(pause_filter_count_grow, ushort, 0444); 184 185 /* Default resets per-vcpu window every exit to pause_filter_count. */ 186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 187 module_param(pause_filter_count_shrink, ushort, 0444); 188 189 /* Default is to compute the maximum so we can never overflow. */ 190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 191 module_param(pause_filter_count_max, ushort, 0444); 192 193 /* 194 * Use nested page tables by default. Note, NPT may get forced off by 195 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 196 */ 197 bool npt_enabled = true; 198 module_param_named(npt, npt_enabled, bool, 0444); 199 200 /* allow nested virtualization in KVM/SVM */ 201 static int nested = true; 202 module_param(nested, int, 0444); 203 204 /* enable/disable Next RIP Save */ 205 int nrips = true; 206 module_param(nrips, int, 0444); 207 208 /* enable/disable Virtual VMLOAD VMSAVE */ 209 static int vls = true; 210 module_param(vls, int, 0444); 211 212 /* enable/disable Virtual GIF */ 213 int vgif = true; 214 module_param(vgif, int, 0444); 215 216 /* enable/disable LBR virtualization */ 217 static int lbrv = true; 218 module_param(lbrv, int, 0444); 219 220 static int tsc_scaling = true; 221 module_param(tsc_scaling, int, 0444); 222 223 /* 224 * enable / disable AVIC. Because the defaults differ for APICv 225 * support between VMX and SVM we cannot use module_param_named. 226 */ 227 static bool avic; 228 module_param(avic, bool, 0444); 229 230 bool __read_mostly dump_invalid_vmcb; 231 module_param(dump_invalid_vmcb, bool, 0644); 232 233 234 bool intercept_smi = true; 235 module_param(intercept_smi, bool, 0444); 236 237 bool vnmi = true; 238 module_param(vnmi, bool, 0444); 239 240 static bool svm_gp_erratum_intercept = true; 241 242 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 243 244 static unsigned long iopm_base; 245 246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 247 248 /* 249 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 250 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 251 * 252 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 253 * defer the restoration of TSC_AUX until the CPU returns to userspace. 254 */ 255 static int tsc_aux_uret_slot __read_mostly = -1; 256 257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 258 259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 260 #define MSRS_RANGE_SIZE 2048 261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 262 263 u32 svm_msrpm_offset(u32 msr) 264 { 265 u32 offset; 266 int i; 267 268 for (i = 0; i < NUM_MSR_MAPS; i++) { 269 if (msr < msrpm_ranges[i] || 270 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 271 continue; 272 273 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 274 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 275 276 /* Now we have the u8 offset - but need the u32 offset */ 277 return offset / 4; 278 } 279 280 /* MSR not in any range */ 281 return MSR_INVALID; 282 } 283 284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 285 286 static int get_npt_level(void) 287 { 288 #ifdef CONFIG_X86_64 289 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 290 #else 291 return PT32E_ROOT_LEVEL; 292 #endif 293 } 294 295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 296 { 297 struct vcpu_svm *svm = to_svm(vcpu); 298 u64 old_efer = vcpu->arch.efer; 299 vcpu->arch.efer = efer; 300 301 if (!npt_enabled) { 302 /* Shadow paging assumes NX to be available. */ 303 efer |= EFER_NX; 304 305 if (!(efer & EFER_LMA)) 306 efer &= ~EFER_LME; 307 } 308 309 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 310 if (!(efer & EFER_SVME)) { 311 svm_leave_nested(vcpu); 312 svm_set_gif(svm, true); 313 /* #GP intercept is still needed for vmware backdoor */ 314 if (!enable_vmware_backdoor) 315 clr_exception_intercept(svm, GP_VECTOR); 316 317 /* 318 * Free the nested guest state, unless we are in SMM. 319 * In this case we will return to the nested guest 320 * as soon as we leave SMM. 321 */ 322 if (!is_smm(vcpu)) 323 svm_free_nested(svm); 324 325 } else { 326 int ret = svm_allocate_nested(svm); 327 328 if (ret) { 329 vcpu->arch.efer = old_efer; 330 return ret; 331 } 332 333 /* 334 * Never intercept #GP for SEV guests, KVM can't 335 * decrypt guest memory to workaround the erratum. 336 */ 337 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 338 set_exception_intercept(svm, GP_VECTOR); 339 } 340 } 341 342 svm->vmcb->save.efer = efer | EFER_SVME; 343 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 344 return 0; 345 } 346 347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 348 { 349 struct vcpu_svm *svm = to_svm(vcpu); 350 u32 ret = 0; 351 352 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 353 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 354 return ret; 355 } 356 357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 358 { 359 struct vcpu_svm *svm = to_svm(vcpu); 360 361 if (mask == 0) 362 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 363 else 364 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 365 366 } 367 368 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 369 bool commit_side_effects) 370 { 371 struct vcpu_svm *svm = to_svm(vcpu); 372 unsigned long old_rflags; 373 374 /* 375 * SEV-ES does not expose the next RIP. The RIP update is controlled by 376 * the type of exit and the #VC handler in the guest. 377 */ 378 if (sev_es_guest(vcpu->kvm)) 379 goto done; 380 381 if (nrips && svm->vmcb->control.next_rip != 0) { 382 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 383 svm->next_rip = svm->vmcb->control.next_rip; 384 } 385 386 if (!svm->next_rip) { 387 if (unlikely(!commit_side_effects)) 388 old_rflags = svm->vmcb->save.rflags; 389 390 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 391 return 0; 392 393 if (unlikely(!commit_side_effects)) 394 svm->vmcb->save.rflags = old_rflags; 395 } else { 396 kvm_rip_write(vcpu, svm->next_rip); 397 } 398 399 done: 400 if (likely(commit_side_effects)) 401 svm_set_interrupt_shadow(vcpu, 0); 402 403 return 1; 404 } 405 406 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 407 { 408 return __svm_skip_emulated_instruction(vcpu, true); 409 } 410 411 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 412 { 413 unsigned long rip, old_rip = kvm_rip_read(vcpu); 414 struct vcpu_svm *svm = to_svm(vcpu); 415 416 /* 417 * Due to architectural shortcomings, the CPU doesn't always provide 418 * NextRIP, e.g. if KVM intercepted an exception that occurred while 419 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 420 * the instruction even if NextRIP is supported to acquire the next 421 * RIP so that it can be shoved into the NextRIP field, otherwise 422 * hardware will fail to advance guest RIP during event injection. 423 * Drop the exception/interrupt if emulation fails and effectively 424 * retry the instruction, it's the least awful option. If NRIPS is 425 * in use, the skip must not commit any side effects such as clearing 426 * the interrupt shadow or RFLAGS.RF. 427 */ 428 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 429 return -EIO; 430 431 rip = kvm_rip_read(vcpu); 432 433 /* 434 * Save the injection information, even when using next_rip, as the 435 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 436 * doesn't complete due to a VM-Exit occurring while the CPU is 437 * vectoring the event. Decoding the instruction isn't guaranteed to 438 * work as there may be no backing instruction, e.g. if the event is 439 * being injected by L1 for L2, or if the guest is patching INT3 into 440 * a different instruction. 441 */ 442 svm->soft_int_injected = true; 443 svm->soft_int_csbase = svm->vmcb->save.cs.base; 444 svm->soft_int_old_rip = old_rip; 445 svm->soft_int_next_rip = rip; 446 447 if (nrips) 448 kvm_rip_write(vcpu, old_rip); 449 450 if (static_cpu_has(X86_FEATURE_NRIPS)) 451 svm->vmcb->control.next_rip = rip; 452 453 return 0; 454 } 455 456 static void svm_inject_exception(struct kvm_vcpu *vcpu) 457 { 458 struct kvm_queued_exception *ex = &vcpu->arch.exception; 459 struct vcpu_svm *svm = to_svm(vcpu); 460 461 kvm_deliver_exception_payload(vcpu, ex); 462 463 if (kvm_exception_is_soft(ex->vector) && 464 svm_update_soft_interrupt_rip(vcpu)) 465 return; 466 467 svm->vmcb->control.event_inj = ex->vector 468 | SVM_EVTINJ_VALID 469 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 470 | SVM_EVTINJ_TYPE_EXEPT; 471 svm->vmcb->control.event_inj_err = ex->error_code; 472 } 473 474 static void svm_init_erratum_383(void) 475 { 476 u32 low, high; 477 int err; 478 u64 val; 479 480 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 481 return; 482 483 /* Use _safe variants to not break nested virtualization */ 484 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 485 if (err) 486 return; 487 488 val |= (1ULL << 47); 489 490 low = lower_32_bits(val); 491 high = upper_32_bits(val); 492 493 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 494 495 erratum_383_found = true; 496 } 497 498 static void svm_init_osvw(struct kvm_vcpu *vcpu) 499 { 500 /* 501 * Guests should see errata 400 and 415 as fixed (assuming that 502 * HLT and IO instructions are intercepted). 503 */ 504 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 505 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 506 507 /* 508 * By increasing VCPU's osvw.length to 3 we are telling the guest that 509 * all osvw.status bits inside that length, including bit 0 (which is 510 * reserved for erratum 298), are valid. However, if host processor's 511 * osvw_len is 0 then osvw_status[0] carries no information. We need to 512 * be conservative here and therefore we tell the guest that erratum 298 513 * is present (because we really don't know). 514 */ 515 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 516 vcpu->arch.osvw.status |= 1; 517 } 518 519 static bool __kvm_is_svm_supported(void) 520 { 521 int cpu = smp_processor_id(); 522 struct cpuinfo_x86 *c = &cpu_data(cpu); 523 524 if (c->x86_vendor != X86_VENDOR_AMD && 525 c->x86_vendor != X86_VENDOR_HYGON) { 526 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 527 return false; 528 } 529 530 if (!cpu_has(c, X86_FEATURE_SVM)) { 531 pr_err("SVM not supported by CPU %d\n", cpu); 532 return false; 533 } 534 535 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 536 pr_info("KVM is unsupported when running as an SEV guest\n"); 537 return false; 538 } 539 540 return true; 541 } 542 543 static bool kvm_is_svm_supported(void) 544 { 545 bool supported; 546 547 migrate_disable(); 548 supported = __kvm_is_svm_supported(); 549 migrate_enable(); 550 551 return supported; 552 } 553 554 static int svm_check_processor_compat(void) 555 { 556 if (!__kvm_is_svm_supported()) 557 return -EIO; 558 559 return 0; 560 } 561 562 static void __svm_write_tsc_multiplier(u64 multiplier) 563 { 564 if (multiplier == __this_cpu_read(current_tsc_ratio)) 565 return; 566 567 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 568 __this_cpu_write(current_tsc_ratio, multiplier); 569 } 570 571 static inline void kvm_cpu_svm_disable(void) 572 { 573 uint64_t efer; 574 575 wrmsrl(MSR_VM_HSAVE_PA, 0); 576 rdmsrl(MSR_EFER, efer); 577 if (efer & EFER_SVME) { 578 /* 579 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 580 * NMI aren't blocked. 581 */ 582 stgi(); 583 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 584 } 585 } 586 587 static void svm_emergency_disable(void) 588 { 589 kvm_rebooting = true; 590 591 kvm_cpu_svm_disable(); 592 } 593 594 static void svm_hardware_disable(void) 595 { 596 /* Make sure we clean up behind us */ 597 if (tsc_scaling) 598 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 599 600 kvm_cpu_svm_disable(); 601 602 amd_pmu_disable_virt(); 603 } 604 605 static int svm_hardware_enable(void) 606 { 607 608 struct svm_cpu_data *sd; 609 uint64_t efer; 610 int me = raw_smp_processor_id(); 611 612 rdmsrl(MSR_EFER, efer); 613 if (efer & EFER_SVME) 614 return -EBUSY; 615 616 sd = per_cpu_ptr(&svm_data, me); 617 sd->asid_generation = 1; 618 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 619 sd->next_asid = sd->max_asid + 1; 620 sd->min_asid = max_sev_asid + 1; 621 622 wrmsrl(MSR_EFER, efer | EFER_SVME); 623 624 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 625 626 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 627 /* 628 * Set the default value, even if we don't use TSC scaling 629 * to avoid having stale value in the msr 630 */ 631 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 632 } 633 634 635 /* 636 * Get OSVW bits. 637 * 638 * Note that it is possible to have a system with mixed processor 639 * revisions and therefore different OSVW bits. If bits are not the same 640 * on different processors then choose the worst case (i.e. if erratum 641 * is present on one processor and not on another then assume that the 642 * erratum is present everywhere). 643 */ 644 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 645 uint64_t len, status = 0; 646 int err; 647 648 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 649 if (!err) 650 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 651 &err); 652 653 if (err) 654 osvw_status = osvw_len = 0; 655 else { 656 if (len < osvw_len) 657 osvw_len = len; 658 osvw_status |= status; 659 osvw_status &= (1ULL << osvw_len) - 1; 660 } 661 } else 662 osvw_status = osvw_len = 0; 663 664 svm_init_erratum_383(); 665 666 amd_pmu_enable_virt(); 667 668 /* 669 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 670 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 671 * Since Linux does not change the value of TSC_AUX once set, prime the 672 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 673 */ 674 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 675 struct sev_es_save_area *hostsa; 676 u32 __maybe_unused msr_hi; 677 678 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 679 680 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); 681 } 682 683 return 0; 684 } 685 686 static void svm_cpu_uninit(int cpu) 687 { 688 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 689 690 if (!sd->save_area) 691 return; 692 693 kfree(sd->sev_vmcbs); 694 __free_page(sd->save_area); 695 sd->save_area_pa = 0; 696 sd->save_area = NULL; 697 } 698 699 static int svm_cpu_init(int cpu) 700 { 701 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 702 int ret = -ENOMEM; 703 704 memset(sd, 0, sizeof(struct svm_cpu_data)); 705 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 706 if (!sd->save_area) 707 return ret; 708 709 ret = sev_cpu_init(sd); 710 if (ret) 711 goto free_save_area; 712 713 sd->save_area_pa = __sme_page_pa(sd->save_area); 714 return 0; 715 716 free_save_area: 717 __free_page(sd->save_area); 718 sd->save_area = NULL; 719 return ret; 720 721 } 722 723 static void set_dr_intercepts(struct vcpu_svm *svm) 724 { 725 struct vmcb *vmcb = svm->vmcb01.ptr; 726 727 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 728 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 729 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 730 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 731 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 743 744 recalc_intercepts(svm); 745 } 746 747 static void clr_dr_intercepts(struct vcpu_svm *svm) 748 { 749 struct vmcb *vmcb = svm->vmcb01.ptr; 750 751 vmcb->control.intercepts[INTERCEPT_DR] = 0; 752 753 recalc_intercepts(svm); 754 } 755 756 static int direct_access_msr_slot(u32 msr) 757 { 758 u32 i; 759 760 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 761 if (direct_access_msrs[i].index == msr) 762 return i; 763 764 return -ENOENT; 765 } 766 767 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 768 int write) 769 { 770 struct vcpu_svm *svm = to_svm(vcpu); 771 int slot = direct_access_msr_slot(msr); 772 773 if (slot == -ENOENT) 774 return; 775 776 /* Set the shadow bitmaps to the desired intercept states */ 777 if (read) 778 set_bit(slot, svm->shadow_msr_intercept.read); 779 else 780 clear_bit(slot, svm->shadow_msr_intercept.read); 781 782 if (write) 783 set_bit(slot, svm->shadow_msr_intercept.write); 784 else 785 clear_bit(slot, svm->shadow_msr_intercept.write); 786 } 787 788 static bool valid_msr_intercept(u32 index) 789 { 790 return direct_access_msr_slot(index) != -ENOENT; 791 } 792 793 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 794 { 795 u8 bit_write; 796 unsigned long tmp; 797 u32 offset; 798 u32 *msrpm; 799 800 /* 801 * For non-nested case: 802 * If the L01 MSR bitmap does not intercept the MSR, then we need to 803 * save it. 804 * 805 * For nested case: 806 * If the L02 MSR bitmap does not intercept the MSR, then we need to 807 * save it. 808 */ 809 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 810 to_svm(vcpu)->msrpm; 811 812 offset = svm_msrpm_offset(msr); 813 bit_write = 2 * (msr & 0x0f) + 1; 814 tmp = msrpm[offset]; 815 816 BUG_ON(offset == MSR_INVALID); 817 818 return test_bit(bit_write, &tmp); 819 } 820 821 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 822 u32 msr, int read, int write) 823 { 824 struct vcpu_svm *svm = to_svm(vcpu); 825 u8 bit_read, bit_write; 826 unsigned long tmp; 827 u32 offset; 828 829 /* 830 * If this warning triggers extend the direct_access_msrs list at the 831 * beginning of the file 832 */ 833 WARN_ON(!valid_msr_intercept(msr)); 834 835 /* Enforce non allowed MSRs to trap */ 836 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 837 read = 0; 838 839 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 840 write = 0; 841 842 offset = svm_msrpm_offset(msr); 843 bit_read = 2 * (msr & 0x0f); 844 bit_write = 2 * (msr & 0x0f) + 1; 845 tmp = msrpm[offset]; 846 847 BUG_ON(offset == MSR_INVALID); 848 849 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 850 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 851 852 msrpm[offset] = tmp; 853 854 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 855 svm->nested.force_msr_bitmap_recalc = true; 856 } 857 858 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 859 int read, int write) 860 { 861 set_shadow_msr_intercept(vcpu, msr, read, write); 862 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 863 } 864 865 u32 *svm_vcpu_alloc_msrpm(void) 866 { 867 unsigned int order = get_order(MSRPM_SIZE); 868 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 869 u32 *msrpm; 870 871 if (!pages) 872 return NULL; 873 874 msrpm = page_address(pages); 875 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 876 877 return msrpm; 878 } 879 880 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 881 { 882 int i; 883 884 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 885 if (!direct_access_msrs[i].always) 886 continue; 887 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 888 } 889 } 890 891 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 892 { 893 int i; 894 895 if (intercept == svm->x2avic_msrs_intercepted) 896 return; 897 898 if (!x2avic_enabled) 899 return; 900 901 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 902 int index = direct_access_msrs[i].index; 903 904 if ((index < APIC_BASE_MSR) || 905 (index > APIC_BASE_MSR + 0xff)) 906 continue; 907 set_msr_interception(&svm->vcpu, svm->msrpm, index, 908 !intercept, !intercept); 909 } 910 911 svm->x2avic_msrs_intercepted = intercept; 912 } 913 914 void svm_vcpu_free_msrpm(u32 *msrpm) 915 { 916 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 917 } 918 919 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 920 { 921 struct vcpu_svm *svm = to_svm(vcpu); 922 u32 i; 923 924 /* 925 * Set intercept permissions for all direct access MSRs again. They 926 * will automatically get filtered through the MSR filter, so we are 927 * back in sync after this. 928 */ 929 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 930 u32 msr = direct_access_msrs[i].index; 931 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 932 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 933 934 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 935 } 936 } 937 938 static void add_msr_offset(u32 offset) 939 { 940 int i; 941 942 for (i = 0; i < MSRPM_OFFSETS; ++i) { 943 944 /* Offset already in list? */ 945 if (msrpm_offsets[i] == offset) 946 return; 947 948 /* Slot used by another offset? */ 949 if (msrpm_offsets[i] != MSR_INVALID) 950 continue; 951 952 /* Add offset to list */ 953 msrpm_offsets[i] = offset; 954 955 return; 956 } 957 958 /* 959 * If this BUG triggers the msrpm_offsets table has an overflow. Just 960 * increase MSRPM_OFFSETS in this case. 961 */ 962 BUG(); 963 } 964 965 static void init_msrpm_offsets(void) 966 { 967 int i; 968 969 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 970 971 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 972 u32 offset; 973 974 offset = svm_msrpm_offset(direct_access_msrs[i].index); 975 BUG_ON(offset == MSR_INVALID); 976 977 add_msr_offset(offset); 978 } 979 } 980 981 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 982 { 983 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 984 to_vmcb->save.br_from = from_vmcb->save.br_from; 985 to_vmcb->save.br_to = from_vmcb->save.br_to; 986 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 987 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 988 989 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 990 } 991 992 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 993 { 994 struct vcpu_svm *svm = to_svm(vcpu); 995 996 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 997 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 998 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 999 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1000 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1001 1002 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1003 if (is_guest_mode(vcpu)) 1004 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1005 } 1006 1007 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1008 { 1009 struct vcpu_svm *svm = to_svm(vcpu); 1010 1011 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1012 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1013 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1014 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1015 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1016 1017 /* 1018 * Move the LBR msrs back to the vmcb01 to avoid copying them 1019 * on nested guest entries. 1020 */ 1021 if (is_guest_mode(vcpu)) 1022 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1023 } 1024 1025 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1026 { 1027 /* 1028 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1029 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1030 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1031 */ 1032 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1033 svm->vmcb01.ptr; 1034 } 1035 1036 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1037 { 1038 struct vcpu_svm *svm = to_svm(vcpu); 1039 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1040 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1041 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1042 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1043 1044 if (enable_lbrv == current_enable_lbrv) 1045 return; 1046 1047 if (enable_lbrv) 1048 svm_enable_lbrv(vcpu); 1049 else 1050 svm_disable_lbrv(vcpu); 1051 } 1052 1053 void disable_nmi_singlestep(struct vcpu_svm *svm) 1054 { 1055 svm->nmi_singlestep = false; 1056 1057 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1058 /* Clear our flags if they were not set by the guest */ 1059 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1060 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1061 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1062 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1063 } 1064 } 1065 1066 static void grow_ple_window(struct kvm_vcpu *vcpu) 1067 { 1068 struct vcpu_svm *svm = to_svm(vcpu); 1069 struct vmcb_control_area *control = &svm->vmcb->control; 1070 int old = control->pause_filter_count; 1071 1072 if (kvm_pause_in_guest(vcpu->kvm)) 1073 return; 1074 1075 control->pause_filter_count = __grow_ple_window(old, 1076 pause_filter_count, 1077 pause_filter_count_grow, 1078 pause_filter_count_max); 1079 1080 if (control->pause_filter_count != old) { 1081 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1082 trace_kvm_ple_window_update(vcpu->vcpu_id, 1083 control->pause_filter_count, old); 1084 } 1085 } 1086 1087 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1088 { 1089 struct vcpu_svm *svm = to_svm(vcpu); 1090 struct vmcb_control_area *control = &svm->vmcb->control; 1091 int old = control->pause_filter_count; 1092 1093 if (kvm_pause_in_guest(vcpu->kvm)) 1094 return; 1095 1096 control->pause_filter_count = 1097 __shrink_ple_window(old, 1098 pause_filter_count, 1099 pause_filter_count_shrink, 1100 pause_filter_count); 1101 if (control->pause_filter_count != old) { 1102 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1103 trace_kvm_ple_window_update(vcpu->vcpu_id, 1104 control->pause_filter_count, old); 1105 } 1106 } 1107 1108 static void svm_hardware_unsetup(void) 1109 { 1110 int cpu; 1111 1112 sev_hardware_unsetup(); 1113 1114 for_each_possible_cpu(cpu) 1115 svm_cpu_uninit(cpu); 1116 1117 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1118 get_order(IOPM_SIZE)); 1119 iopm_base = 0; 1120 } 1121 1122 static void init_seg(struct vmcb_seg *seg) 1123 { 1124 seg->selector = 0; 1125 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1126 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1127 seg->limit = 0xffff; 1128 seg->base = 0; 1129 } 1130 1131 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1132 { 1133 seg->selector = 0; 1134 seg->attrib = SVM_SELECTOR_P_MASK | type; 1135 seg->limit = 0xffff; 1136 seg->base = 0; 1137 } 1138 1139 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1140 { 1141 struct vcpu_svm *svm = to_svm(vcpu); 1142 1143 return svm->nested.ctl.tsc_offset; 1144 } 1145 1146 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1147 { 1148 struct vcpu_svm *svm = to_svm(vcpu); 1149 1150 return svm->tsc_ratio_msr; 1151 } 1152 1153 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1154 { 1155 struct vcpu_svm *svm = to_svm(vcpu); 1156 1157 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1158 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1159 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1160 } 1161 1162 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1163 { 1164 preempt_disable(); 1165 if (to_svm(vcpu)->guest_state_loaded) 1166 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1167 preempt_enable(); 1168 } 1169 1170 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1171 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1172 struct vcpu_svm *svm) 1173 { 1174 /* 1175 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1176 * roots, or if INVPCID is disabled in the guest to inject #UD. 1177 */ 1178 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1179 if (!npt_enabled || 1180 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1181 svm_set_intercept(svm, INTERCEPT_INVPCID); 1182 else 1183 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1184 } 1185 1186 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1187 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1188 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1189 else 1190 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1191 } 1192 } 1193 1194 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1195 { 1196 struct vcpu_svm *svm = to_svm(vcpu); 1197 1198 if (guest_cpuid_is_intel(vcpu)) { 1199 /* 1200 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1201 * accesses because the processor only stores 32 bits. 1202 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1203 */ 1204 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1205 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1206 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1207 1208 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1209 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1210 } else { 1211 /* 1212 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1213 * in VMCB and clear intercepts to avoid #VMEXIT. 1214 */ 1215 if (vls) { 1216 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1217 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1218 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1219 } 1220 /* No need to intercept these MSRs */ 1221 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1222 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1223 } 1224 } 1225 1226 static void init_vmcb(struct kvm_vcpu *vcpu) 1227 { 1228 struct vcpu_svm *svm = to_svm(vcpu); 1229 struct vmcb *vmcb = svm->vmcb01.ptr; 1230 struct vmcb_control_area *control = &vmcb->control; 1231 struct vmcb_save_area *save = &vmcb->save; 1232 1233 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1234 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1235 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1236 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1237 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1238 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1239 if (!kvm_vcpu_apicv_active(vcpu)) 1240 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1241 1242 set_dr_intercepts(svm); 1243 1244 set_exception_intercept(svm, PF_VECTOR); 1245 set_exception_intercept(svm, UD_VECTOR); 1246 set_exception_intercept(svm, MC_VECTOR); 1247 set_exception_intercept(svm, AC_VECTOR); 1248 set_exception_intercept(svm, DB_VECTOR); 1249 /* 1250 * Guest access to VMware backdoor ports could legitimately 1251 * trigger #GP because of TSS I/O permission bitmap. 1252 * We intercept those #GP and allow access to them anyway 1253 * as VMware does. 1254 */ 1255 if (enable_vmware_backdoor) 1256 set_exception_intercept(svm, GP_VECTOR); 1257 1258 svm_set_intercept(svm, INTERCEPT_INTR); 1259 svm_set_intercept(svm, INTERCEPT_NMI); 1260 1261 if (intercept_smi) 1262 svm_set_intercept(svm, INTERCEPT_SMI); 1263 1264 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1265 svm_set_intercept(svm, INTERCEPT_RDPMC); 1266 svm_set_intercept(svm, INTERCEPT_CPUID); 1267 svm_set_intercept(svm, INTERCEPT_INVD); 1268 svm_set_intercept(svm, INTERCEPT_INVLPG); 1269 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1270 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1271 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1272 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1273 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1274 svm_set_intercept(svm, INTERCEPT_VMRUN); 1275 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1276 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1277 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1278 svm_set_intercept(svm, INTERCEPT_STGI); 1279 svm_set_intercept(svm, INTERCEPT_CLGI); 1280 svm_set_intercept(svm, INTERCEPT_SKINIT); 1281 svm_set_intercept(svm, INTERCEPT_WBINVD); 1282 svm_set_intercept(svm, INTERCEPT_XSETBV); 1283 svm_set_intercept(svm, INTERCEPT_RDPRU); 1284 svm_set_intercept(svm, INTERCEPT_RSM); 1285 1286 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1287 svm_set_intercept(svm, INTERCEPT_MONITOR); 1288 svm_set_intercept(svm, INTERCEPT_MWAIT); 1289 } 1290 1291 if (!kvm_hlt_in_guest(vcpu->kvm)) 1292 svm_set_intercept(svm, INTERCEPT_HLT); 1293 1294 control->iopm_base_pa = __sme_set(iopm_base); 1295 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1296 control->int_ctl = V_INTR_MASKING_MASK; 1297 1298 init_seg(&save->es); 1299 init_seg(&save->ss); 1300 init_seg(&save->ds); 1301 init_seg(&save->fs); 1302 init_seg(&save->gs); 1303 1304 save->cs.selector = 0xf000; 1305 save->cs.base = 0xffff0000; 1306 /* Executable/Readable Code Segment */ 1307 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1308 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1309 save->cs.limit = 0xffff; 1310 1311 save->gdtr.base = 0; 1312 save->gdtr.limit = 0xffff; 1313 save->idtr.base = 0; 1314 save->idtr.limit = 0xffff; 1315 1316 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1317 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1318 1319 if (npt_enabled) { 1320 /* Setup VMCB for Nested Paging */ 1321 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1322 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1323 clr_exception_intercept(svm, PF_VECTOR); 1324 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1325 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1326 save->g_pat = vcpu->arch.pat; 1327 save->cr3 = 0; 1328 } 1329 svm->current_vmcb->asid_generation = 0; 1330 svm->asid = 0; 1331 1332 svm->nested.vmcb12_gpa = INVALID_GPA; 1333 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1334 1335 if (!kvm_pause_in_guest(vcpu->kvm)) { 1336 control->pause_filter_count = pause_filter_count; 1337 if (pause_filter_thresh) 1338 control->pause_filter_thresh = pause_filter_thresh; 1339 svm_set_intercept(svm, INTERCEPT_PAUSE); 1340 } else { 1341 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1342 } 1343 1344 svm_recalc_instruction_intercepts(vcpu, svm); 1345 1346 /* 1347 * If the host supports V_SPEC_CTRL then disable the interception 1348 * of MSR_IA32_SPEC_CTRL. 1349 */ 1350 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1351 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1352 1353 if (kvm_vcpu_apicv_active(vcpu)) 1354 avic_init_vmcb(svm, vmcb); 1355 1356 if (vnmi) 1357 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1358 1359 if (vgif) { 1360 svm_clr_intercept(svm, INTERCEPT_STGI); 1361 svm_clr_intercept(svm, INTERCEPT_CLGI); 1362 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1363 } 1364 1365 if (sev_guest(vcpu->kvm)) 1366 sev_init_vmcb(svm); 1367 1368 svm_hv_init_vmcb(vmcb); 1369 init_vmcb_after_set_cpuid(vcpu); 1370 1371 vmcb_mark_all_dirty(vmcb); 1372 1373 enable_gif(svm); 1374 } 1375 1376 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1377 { 1378 struct vcpu_svm *svm = to_svm(vcpu); 1379 1380 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1381 1382 svm_init_osvw(vcpu); 1383 vcpu->arch.microcode_version = 0x01000065; 1384 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1385 1386 svm->nmi_masked = false; 1387 svm->awaiting_iret_completion = false; 1388 1389 if (sev_es_guest(vcpu->kvm)) 1390 sev_es_vcpu_reset(svm); 1391 } 1392 1393 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1394 { 1395 struct vcpu_svm *svm = to_svm(vcpu); 1396 1397 svm->spec_ctrl = 0; 1398 svm->virt_spec_ctrl = 0; 1399 1400 init_vmcb(vcpu); 1401 1402 if (!init_event) 1403 __svm_vcpu_reset(vcpu); 1404 } 1405 1406 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1407 { 1408 svm->current_vmcb = target_vmcb; 1409 svm->vmcb = target_vmcb->ptr; 1410 } 1411 1412 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1413 { 1414 struct vcpu_svm *svm; 1415 struct page *vmcb01_page; 1416 struct page *vmsa_page = NULL; 1417 int err; 1418 1419 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1420 svm = to_svm(vcpu); 1421 1422 err = -ENOMEM; 1423 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1424 if (!vmcb01_page) 1425 goto out; 1426 1427 if (sev_es_guest(vcpu->kvm)) { 1428 /* 1429 * SEV-ES guests require a separate VMSA page used to contain 1430 * the encrypted register state of the guest. 1431 */ 1432 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1433 if (!vmsa_page) 1434 goto error_free_vmcb_page; 1435 1436 /* 1437 * SEV-ES guests maintain an encrypted version of their FPU 1438 * state which is restored and saved on VMRUN and VMEXIT. 1439 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1440 * do xsave/xrstor on it. 1441 */ 1442 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1443 } 1444 1445 err = avic_init_vcpu(svm); 1446 if (err) 1447 goto error_free_vmsa_page; 1448 1449 svm->msrpm = svm_vcpu_alloc_msrpm(); 1450 if (!svm->msrpm) { 1451 err = -ENOMEM; 1452 goto error_free_vmsa_page; 1453 } 1454 1455 svm->x2avic_msrs_intercepted = true; 1456 1457 svm->vmcb01.ptr = page_address(vmcb01_page); 1458 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1459 svm_switch_vmcb(svm, &svm->vmcb01); 1460 1461 if (vmsa_page) 1462 svm->sev_es.vmsa = page_address(vmsa_page); 1463 1464 svm->guest_state_loaded = false; 1465 1466 return 0; 1467 1468 error_free_vmsa_page: 1469 if (vmsa_page) 1470 __free_page(vmsa_page); 1471 error_free_vmcb_page: 1472 __free_page(vmcb01_page); 1473 out: 1474 return err; 1475 } 1476 1477 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1478 { 1479 int i; 1480 1481 for_each_online_cpu(i) 1482 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1483 } 1484 1485 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1486 { 1487 struct vcpu_svm *svm = to_svm(vcpu); 1488 1489 /* 1490 * The vmcb page can be recycled, causing a false negative in 1491 * svm_vcpu_load(). So, ensure that no logical CPU has this 1492 * vmcb page recorded as its current vmcb. 1493 */ 1494 svm_clear_current_vmcb(svm->vmcb); 1495 1496 svm_leave_nested(vcpu); 1497 svm_free_nested(svm); 1498 1499 sev_free_vcpu(vcpu); 1500 1501 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1502 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1503 } 1504 1505 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1506 { 1507 struct vcpu_svm *svm = to_svm(vcpu); 1508 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1509 1510 if (sev_es_guest(vcpu->kvm)) 1511 sev_es_unmap_ghcb(svm); 1512 1513 if (svm->guest_state_loaded) 1514 return; 1515 1516 /* 1517 * Save additional host state that will be restored on VMEXIT (sev-es) 1518 * or subsequent vmload of host save area. 1519 */ 1520 vmsave(sd->save_area_pa); 1521 if (sev_es_guest(vcpu->kvm)) { 1522 struct sev_es_save_area *hostsa; 1523 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1524 1525 sev_es_prepare_switch_to_guest(hostsa); 1526 } 1527 1528 if (tsc_scaling) 1529 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1530 1531 /* 1532 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1533 * available. The user return MSR support is not required in this case 1534 * because TSC_AUX is restored on #VMEXIT from the host save area 1535 * (which has been initialized in svm_hardware_enable()). 1536 */ 1537 if (likely(tsc_aux_uret_slot >= 0) && 1538 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1539 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1540 1541 svm->guest_state_loaded = true; 1542 } 1543 1544 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1545 { 1546 to_svm(vcpu)->guest_state_loaded = false; 1547 } 1548 1549 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1550 { 1551 struct vcpu_svm *svm = to_svm(vcpu); 1552 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1553 1554 if (sd->current_vmcb != svm->vmcb) { 1555 sd->current_vmcb = svm->vmcb; 1556 1557 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1558 indirect_branch_prediction_barrier(); 1559 } 1560 if (kvm_vcpu_apicv_active(vcpu)) 1561 avic_vcpu_load(vcpu, cpu); 1562 } 1563 1564 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1565 { 1566 if (kvm_vcpu_apicv_active(vcpu)) 1567 avic_vcpu_put(vcpu); 1568 1569 svm_prepare_host_switch(vcpu); 1570 1571 ++vcpu->stat.host_state_reload; 1572 } 1573 1574 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1575 { 1576 struct vcpu_svm *svm = to_svm(vcpu); 1577 unsigned long rflags = svm->vmcb->save.rflags; 1578 1579 if (svm->nmi_singlestep) { 1580 /* Hide our flags if they were not set by the guest */ 1581 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1582 rflags &= ~X86_EFLAGS_TF; 1583 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1584 rflags &= ~X86_EFLAGS_RF; 1585 } 1586 return rflags; 1587 } 1588 1589 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1590 { 1591 if (to_svm(vcpu)->nmi_singlestep) 1592 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1593 1594 /* 1595 * Any change of EFLAGS.VM is accompanied by a reload of SS 1596 * (caused by either a task switch or an inter-privilege IRET), 1597 * so we do not need to update the CPL here. 1598 */ 1599 to_svm(vcpu)->vmcb->save.rflags = rflags; 1600 } 1601 1602 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1603 { 1604 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1605 1606 return sev_es_guest(vcpu->kvm) 1607 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1608 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1609 } 1610 1611 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1612 { 1613 kvm_register_mark_available(vcpu, reg); 1614 1615 switch (reg) { 1616 case VCPU_EXREG_PDPTR: 1617 /* 1618 * When !npt_enabled, mmu->pdptrs[] is already available since 1619 * it is always updated per SDM when moving to CRs. 1620 */ 1621 if (npt_enabled) 1622 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1623 break; 1624 default: 1625 KVM_BUG_ON(1, vcpu->kvm); 1626 } 1627 } 1628 1629 static void svm_set_vintr(struct vcpu_svm *svm) 1630 { 1631 struct vmcb_control_area *control; 1632 1633 /* 1634 * The following fields are ignored when AVIC is enabled 1635 */ 1636 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1637 1638 svm_set_intercept(svm, INTERCEPT_VINTR); 1639 1640 /* 1641 * Recalculating intercepts may have cleared the VINTR intercept. If 1642 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1643 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1644 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1645 * interrupts will never be unblocked while L2 is running. 1646 */ 1647 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1648 return; 1649 1650 /* 1651 * This is just a dummy VINTR to actually cause a vmexit to happen. 1652 * Actual injection of virtual interrupts happens through EVENTINJ. 1653 */ 1654 control = &svm->vmcb->control; 1655 control->int_vector = 0x0; 1656 control->int_ctl &= ~V_INTR_PRIO_MASK; 1657 control->int_ctl |= V_IRQ_MASK | 1658 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1659 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1660 } 1661 1662 static void svm_clear_vintr(struct vcpu_svm *svm) 1663 { 1664 svm_clr_intercept(svm, INTERCEPT_VINTR); 1665 1666 /* Drop int_ctl fields related to VINTR injection. */ 1667 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1668 if (is_guest_mode(&svm->vcpu)) { 1669 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1670 1671 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1672 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1673 1674 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1675 V_IRQ_INJECTION_BITS_MASK; 1676 1677 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1678 } 1679 1680 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1681 } 1682 1683 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1684 { 1685 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1686 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1687 1688 switch (seg) { 1689 case VCPU_SREG_CS: return &save->cs; 1690 case VCPU_SREG_DS: return &save->ds; 1691 case VCPU_SREG_ES: return &save->es; 1692 case VCPU_SREG_FS: return &save01->fs; 1693 case VCPU_SREG_GS: return &save01->gs; 1694 case VCPU_SREG_SS: return &save->ss; 1695 case VCPU_SREG_TR: return &save01->tr; 1696 case VCPU_SREG_LDTR: return &save01->ldtr; 1697 } 1698 BUG(); 1699 return NULL; 1700 } 1701 1702 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1703 { 1704 struct vmcb_seg *s = svm_seg(vcpu, seg); 1705 1706 return s->base; 1707 } 1708 1709 static void svm_get_segment(struct kvm_vcpu *vcpu, 1710 struct kvm_segment *var, int seg) 1711 { 1712 struct vmcb_seg *s = svm_seg(vcpu, seg); 1713 1714 var->base = s->base; 1715 var->limit = s->limit; 1716 var->selector = s->selector; 1717 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1718 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1719 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1720 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1721 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1722 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1723 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1724 1725 /* 1726 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1727 * However, the SVM spec states that the G bit is not observed by the 1728 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1729 * So let's synthesize a legal G bit for all segments, this helps 1730 * running KVM nested. It also helps cross-vendor migration, because 1731 * Intel's vmentry has a check on the 'G' bit. 1732 */ 1733 var->g = s->limit > 0xfffff; 1734 1735 /* 1736 * AMD's VMCB does not have an explicit unusable field, so emulate it 1737 * for cross vendor migration purposes by "not present" 1738 */ 1739 var->unusable = !var->present; 1740 1741 switch (seg) { 1742 case VCPU_SREG_TR: 1743 /* 1744 * Work around a bug where the busy flag in the tr selector 1745 * isn't exposed 1746 */ 1747 var->type |= 0x2; 1748 break; 1749 case VCPU_SREG_DS: 1750 case VCPU_SREG_ES: 1751 case VCPU_SREG_FS: 1752 case VCPU_SREG_GS: 1753 /* 1754 * The accessed bit must always be set in the segment 1755 * descriptor cache, although it can be cleared in the 1756 * descriptor, the cached bit always remains at 1. Since 1757 * Intel has a check on this, set it here to support 1758 * cross-vendor migration. 1759 */ 1760 if (!var->unusable) 1761 var->type |= 0x1; 1762 break; 1763 case VCPU_SREG_SS: 1764 /* 1765 * On AMD CPUs sometimes the DB bit in the segment 1766 * descriptor is left as 1, although the whole segment has 1767 * been made unusable. Clear it here to pass an Intel VMX 1768 * entry check when cross vendor migrating. 1769 */ 1770 if (var->unusable) 1771 var->db = 0; 1772 /* This is symmetric with svm_set_segment() */ 1773 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1774 break; 1775 } 1776 } 1777 1778 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1779 { 1780 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1781 1782 return save->cpl; 1783 } 1784 1785 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1786 { 1787 struct kvm_segment cs; 1788 1789 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1790 *db = cs.db; 1791 *l = cs.l; 1792 } 1793 1794 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1795 { 1796 struct vcpu_svm *svm = to_svm(vcpu); 1797 1798 dt->size = svm->vmcb->save.idtr.limit; 1799 dt->address = svm->vmcb->save.idtr.base; 1800 } 1801 1802 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1803 { 1804 struct vcpu_svm *svm = to_svm(vcpu); 1805 1806 svm->vmcb->save.idtr.limit = dt->size; 1807 svm->vmcb->save.idtr.base = dt->address ; 1808 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1809 } 1810 1811 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1812 { 1813 struct vcpu_svm *svm = to_svm(vcpu); 1814 1815 dt->size = svm->vmcb->save.gdtr.limit; 1816 dt->address = svm->vmcb->save.gdtr.base; 1817 } 1818 1819 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1820 { 1821 struct vcpu_svm *svm = to_svm(vcpu); 1822 1823 svm->vmcb->save.gdtr.limit = dt->size; 1824 svm->vmcb->save.gdtr.base = dt->address ; 1825 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1826 } 1827 1828 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1829 { 1830 struct vcpu_svm *svm = to_svm(vcpu); 1831 1832 /* 1833 * For guests that don't set guest_state_protected, the cr3 update is 1834 * handled via kvm_mmu_load() while entering the guest. For guests 1835 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1836 * VMCB save area now, since the save area will become the initial 1837 * contents of the VMSA, and future VMCB save area updates won't be 1838 * seen. 1839 */ 1840 if (sev_es_guest(vcpu->kvm)) { 1841 svm->vmcb->save.cr3 = cr3; 1842 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1843 } 1844 } 1845 1846 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1847 { 1848 return true; 1849 } 1850 1851 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1852 { 1853 struct vcpu_svm *svm = to_svm(vcpu); 1854 u64 hcr0 = cr0; 1855 bool old_paging = is_paging(vcpu); 1856 1857 #ifdef CONFIG_X86_64 1858 if (vcpu->arch.efer & EFER_LME) { 1859 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1860 vcpu->arch.efer |= EFER_LMA; 1861 if (!vcpu->arch.guest_state_protected) 1862 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1863 } 1864 1865 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1866 vcpu->arch.efer &= ~EFER_LMA; 1867 if (!vcpu->arch.guest_state_protected) 1868 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1869 } 1870 } 1871 #endif 1872 vcpu->arch.cr0 = cr0; 1873 1874 if (!npt_enabled) { 1875 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1876 if (old_paging != is_paging(vcpu)) 1877 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1878 } 1879 1880 /* 1881 * re-enable caching here because the QEMU bios 1882 * does not do it - this results in some delay at 1883 * reboot 1884 */ 1885 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1886 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1887 1888 svm->vmcb->save.cr0 = hcr0; 1889 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1890 1891 /* 1892 * SEV-ES guests must always keep the CR intercepts cleared. CR 1893 * tracking is done using the CR write traps. 1894 */ 1895 if (sev_es_guest(vcpu->kvm)) 1896 return; 1897 1898 if (hcr0 == cr0) { 1899 /* Selective CR0 write remains on. */ 1900 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1901 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1902 } else { 1903 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1904 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1905 } 1906 } 1907 1908 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1909 { 1910 return true; 1911 } 1912 1913 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1914 { 1915 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1916 unsigned long old_cr4 = vcpu->arch.cr4; 1917 1918 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1919 svm_flush_tlb_current(vcpu); 1920 1921 vcpu->arch.cr4 = cr4; 1922 if (!npt_enabled) { 1923 cr4 |= X86_CR4_PAE; 1924 1925 if (!is_paging(vcpu)) 1926 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1927 } 1928 cr4 |= host_cr4_mce; 1929 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1930 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1931 1932 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1933 kvm_update_cpuid_runtime(vcpu); 1934 } 1935 1936 static void svm_set_segment(struct kvm_vcpu *vcpu, 1937 struct kvm_segment *var, int seg) 1938 { 1939 struct vcpu_svm *svm = to_svm(vcpu); 1940 struct vmcb_seg *s = svm_seg(vcpu, seg); 1941 1942 s->base = var->base; 1943 s->limit = var->limit; 1944 s->selector = var->selector; 1945 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1946 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1947 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1948 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1949 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1950 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1951 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1952 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1953 1954 /* 1955 * This is always accurate, except if SYSRET returned to a segment 1956 * with SS.DPL != 3. Intel does not have this quirk, and always 1957 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1958 * would entail passing the CPL to userspace and back. 1959 */ 1960 if (seg == VCPU_SREG_SS) 1961 /* This is symmetric with svm_get_segment() */ 1962 svm->vmcb->save.cpl = (var->dpl & 3); 1963 1964 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1965 } 1966 1967 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1968 { 1969 struct vcpu_svm *svm = to_svm(vcpu); 1970 1971 clr_exception_intercept(svm, BP_VECTOR); 1972 1973 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1974 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1975 set_exception_intercept(svm, BP_VECTOR); 1976 } 1977 } 1978 1979 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1980 { 1981 if (sd->next_asid > sd->max_asid) { 1982 ++sd->asid_generation; 1983 sd->next_asid = sd->min_asid; 1984 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1985 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1986 } 1987 1988 svm->current_vmcb->asid_generation = sd->asid_generation; 1989 svm->asid = sd->next_asid++; 1990 } 1991 1992 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1993 { 1994 struct vmcb *vmcb = svm->vmcb; 1995 1996 if (svm->vcpu.arch.guest_state_protected) 1997 return; 1998 1999 if (unlikely(value != vmcb->save.dr6)) { 2000 vmcb->save.dr6 = value; 2001 vmcb_mark_dirty(vmcb, VMCB_DR); 2002 } 2003 } 2004 2005 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2006 { 2007 struct vcpu_svm *svm = to_svm(vcpu); 2008 2009 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2010 return; 2011 2012 get_debugreg(vcpu->arch.db[0], 0); 2013 get_debugreg(vcpu->arch.db[1], 1); 2014 get_debugreg(vcpu->arch.db[2], 2); 2015 get_debugreg(vcpu->arch.db[3], 3); 2016 /* 2017 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2018 * because db_interception might need it. We can do it before vmentry. 2019 */ 2020 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2021 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2022 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2023 set_dr_intercepts(svm); 2024 } 2025 2026 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2027 { 2028 struct vcpu_svm *svm = to_svm(vcpu); 2029 2030 if (vcpu->arch.guest_state_protected) 2031 return; 2032 2033 svm->vmcb->save.dr7 = value; 2034 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2035 } 2036 2037 static int pf_interception(struct kvm_vcpu *vcpu) 2038 { 2039 struct vcpu_svm *svm = to_svm(vcpu); 2040 2041 u64 fault_address = svm->vmcb->control.exit_info_2; 2042 u64 error_code = svm->vmcb->control.exit_info_1; 2043 2044 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2045 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2046 svm->vmcb->control.insn_bytes : NULL, 2047 svm->vmcb->control.insn_len); 2048 } 2049 2050 static int npf_interception(struct kvm_vcpu *vcpu) 2051 { 2052 struct vcpu_svm *svm = to_svm(vcpu); 2053 2054 u64 fault_address = svm->vmcb->control.exit_info_2; 2055 u64 error_code = svm->vmcb->control.exit_info_1; 2056 2057 trace_kvm_page_fault(vcpu, fault_address, error_code); 2058 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2059 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2060 svm->vmcb->control.insn_bytes : NULL, 2061 svm->vmcb->control.insn_len); 2062 } 2063 2064 static int db_interception(struct kvm_vcpu *vcpu) 2065 { 2066 struct kvm_run *kvm_run = vcpu->run; 2067 struct vcpu_svm *svm = to_svm(vcpu); 2068 2069 if (!(vcpu->guest_debug & 2070 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2071 !svm->nmi_singlestep) { 2072 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2073 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2074 return 1; 2075 } 2076 2077 if (svm->nmi_singlestep) { 2078 disable_nmi_singlestep(svm); 2079 /* Make sure we check for pending NMIs upon entry */ 2080 kvm_make_request(KVM_REQ_EVENT, vcpu); 2081 } 2082 2083 if (vcpu->guest_debug & 2084 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2085 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2086 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2087 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2088 kvm_run->debug.arch.pc = 2089 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2090 kvm_run->debug.arch.exception = DB_VECTOR; 2091 return 0; 2092 } 2093 2094 return 1; 2095 } 2096 2097 static int bp_interception(struct kvm_vcpu *vcpu) 2098 { 2099 struct vcpu_svm *svm = to_svm(vcpu); 2100 struct kvm_run *kvm_run = vcpu->run; 2101 2102 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2103 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2104 kvm_run->debug.arch.exception = BP_VECTOR; 2105 return 0; 2106 } 2107 2108 static int ud_interception(struct kvm_vcpu *vcpu) 2109 { 2110 return handle_ud(vcpu); 2111 } 2112 2113 static int ac_interception(struct kvm_vcpu *vcpu) 2114 { 2115 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2116 return 1; 2117 } 2118 2119 static bool is_erratum_383(void) 2120 { 2121 int err, i; 2122 u64 value; 2123 2124 if (!erratum_383_found) 2125 return false; 2126 2127 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2128 if (err) 2129 return false; 2130 2131 /* Bit 62 may or may not be set for this mce */ 2132 value &= ~(1ULL << 62); 2133 2134 if (value != 0xb600000000010015ULL) 2135 return false; 2136 2137 /* Clear MCi_STATUS registers */ 2138 for (i = 0; i < 6; ++i) 2139 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2140 2141 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2142 if (!err) { 2143 u32 low, high; 2144 2145 value &= ~(1ULL << 2); 2146 low = lower_32_bits(value); 2147 high = upper_32_bits(value); 2148 2149 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2150 } 2151 2152 /* Flush tlb to evict multi-match entries */ 2153 __flush_tlb_all(); 2154 2155 return true; 2156 } 2157 2158 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2159 { 2160 if (is_erratum_383()) { 2161 /* 2162 * Erratum 383 triggered. Guest state is corrupt so kill the 2163 * guest. 2164 */ 2165 pr_err("Guest triggered AMD Erratum 383\n"); 2166 2167 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2168 2169 return; 2170 } 2171 2172 /* 2173 * On an #MC intercept the MCE handler is not called automatically in 2174 * the host. So do it by hand here. 2175 */ 2176 kvm_machine_check(); 2177 } 2178 2179 static int mc_interception(struct kvm_vcpu *vcpu) 2180 { 2181 return 1; 2182 } 2183 2184 static int shutdown_interception(struct kvm_vcpu *vcpu) 2185 { 2186 struct kvm_run *kvm_run = vcpu->run; 2187 struct vcpu_svm *svm = to_svm(vcpu); 2188 2189 2190 /* 2191 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2192 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2193 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2194 * userspace. At a platform view, INIT is acceptable behavior as 2195 * there exist bare metal platforms that automatically INIT the CPU 2196 * in response to shutdown. 2197 * 2198 * The VM save area for SEV-ES guests has already been encrypted so it 2199 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2200 */ 2201 if (!sev_es_guest(vcpu->kvm)) { 2202 clear_page(svm->vmcb); 2203 kvm_vcpu_reset(vcpu, true); 2204 } 2205 2206 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2207 return 0; 2208 } 2209 2210 static int io_interception(struct kvm_vcpu *vcpu) 2211 { 2212 struct vcpu_svm *svm = to_svm(vcpu); 2213 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2214 int size, in, string; 2215 unsigned port; 2216 2217 ++vcpu->stat.io_exits; 2218 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2219 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2220 port = io_info >> 16; 2221 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2222 2223 if (string) { 2224 if (sev_es_guest(vcpu->kvm)) 2225 return sev_es_string_io(svm, size, port, in); 2226 else 2227 return kvm_emulate_instruction(vcpu, 0); 2228 } 2229 2230 svm->next_rip = svm->vmcb->control.exit_info_2; 2231 2232 return kvm_fast_pio(vcpu, size, port, in); 2233 } 2234 2235 static int nmi_interception(struct kvm_vcpu *vcpu) 2236 { 2237 return 1; 2238 } 2239 2240 static int smi_interception(struct kvm_vcpu *vcpu) 2241 { 2242 return 1; 2243 } 2244 2245 static int intr_interception(struct kvm_vcpu *vcpu) 2246 { 2247 ++vcpu->stat.irq_exits; 2248 return 1; 2249 } 2250 2251 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2252 { 2253 struct vcpu_svm *svm = to_svm(vcpu); 2254 struct vmcb *vmcb12; 2255 struct kvm_host_map map; 2256 int ret; 2257 2258 if (nested_svm_check_permissions(vcpu)) 2259 return 1; 2260 2261 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2262 if (ret) { 2263 if (ret == -EINVAL) 2264 kvm_inject_gp(vcpu, 0); 2265 return 1; 2266 } 2267 2268 vmcb12 = map.hva; 2269 2270 ret = kvm_skip_emulated_instruction(vcpu); 2271 2272 if (vmload) { 2273 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2274 svm->sysenter_eip_hi = 0; 2275 svm->sysenter_esp_hi = 0; 2276 } else { 2277 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2278 } 2279 2280 kvm_vcpu_unmap(vcpu, &map, true); 2281 2282 return ret; 2283 } 2284 2285 static int vmload_interception(struct kvm_vcpu *vcpu) 2286 { 2287 return vmload_vmsave_interception(vcpu, true); 2288 } 2289 2290 static int vmsave_interception(struct kvm_vcpu *vcpu) 2291 { 2292 return vmload_vmsave_interception(vcpu, false); 2293 } 2294 2295 static int vmrun_interception(struct kvm_vcpu *vcpu) 2296 { 2297 if (nested_svm_check_permissions(vcpu)) 2298 return 1; 2299 2300 return nested_svm_vmrun(vcpu); 2301 } 2302 2303 enum { 2304 NONE_SVM_INSTR, 2305 SVM_INSTR_VMRUN, 2306 SVM_INSTR_VMLOAD, 2307 SVM_INSTR_VMSAVE, 2308 }; 2309 2310 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2311 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2312 { 2313 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2314 2315 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2316 return NONE_SVM_INSTR; 2317 2318 switch (ctxt->modrm) { 2319 case 0xd8: /* VMRUN */ 2320 return SVM_INSTR_VMRUN; 2321 case 0xda: /* VMLOAD */ 2322 return SVM_INSTR_VMLOAD; 2323 case 0xdb: /* VMSAVE */ 2324 return SVM_INSTR_VMSAVE; 2325 default: 2326 break; 2327 } 2328 2329 return NONE_SVM_INSTR; 2330 } 2331 2332 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2333 { 2334 const int guest_mode_exit_codes[] = { 2335 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2336 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2337 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2338 }; 2339 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2340 [SVM_INSTR_VMRUN] = vmrun_interception, 2341 [SVM_INSTR_VMLOAD] = vmload_interception, 2342 [SVM_INSTR_VMSAVE] = vmsave_interception, 2343 }; 2344 struct vcpu_svm *svm = to_svm(vcpu); 2345 int ret; 2346 2347 if (is_guest_mode(vcpu)) { 2348 /* Returns '1' or -errno on failure, '0' on success. */ 2349 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2350 if (ret) 2351 return ret; 2352 return 1; 2353 } 2354 return svm_instr_handlers[opcode](vcpu); 2355 } 2356 2357 /* 2358 * #GP handling code. Note that #GP can be triggered under the following two 2359 * cases: 2360 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2361 * some AMD CPUs when EAX of these instructions are in the reserved memory 2362 * regions (e.g. SMM memory on host). 2363 * 2) VMware backdoor 2364 */ 2365 static int gp_interception(struct kvm_vcpu *vcpu) 2366 { 2367 struct vcpu_svm *svm = to_svm(vcpu); 2368 u32 error_code = svm->vmcb->control.exit_info_1; 2369 int opcode; 2370 2371 /* Both #GP cases have zero error_code */ 2372 if (error_code) 2373 goto reinject; 2374 2375 /* Decode the instruction for usage later */ 2376 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2377 goto reinject; 2378 2379 opcode = svm_instr_opcode(vcpu); 2380 2381 if (opcode == NONE_SVM_INSTR) { 2382 if (!enable_vmware_backdoor) 2383 goto reinject; 2384 2385 /* 2386 * VMware backdoor emulation on #GP interception only handles 2387 * IN{S}, OUT{S}, and RDPMC. 2388 */ 2389 if (!is_guest_mode(vcpu)) 2390 return kvm_emulate_instruction(vcpu, 2391 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2392 } else { 2393 /* All SVM instructions expect page aligned RAX */ 2394 if (svm->vmcb->save.rax & ~PAGE_MASK) 2395 goto reinject; 2396 2397 return emulate_svm_instr(vcpu, opcode); 2398 } 2399 2400 reinject: 2401 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2402 return 1; 2403 } 2404 2405 void svm_set_gif(struct vcpu_svm *svm, bool value) 2406 { 2407 if (value) { 2408 /* 2409 * If VGIF is enabled, the STGI intercept is only added to 2410 * detect the opening of the SMI/NMI window; remove it now. 2411 * Likewise, clear the VINTR intercept, we will set it 2412 * again while processing KVM_REQ_EVENT if needed. 2413 */ 2414 if (vgif) 2415 svm_clr_intercept(svm, INTERCEPT_STGI); 2416 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2417 svm_clear_vintr(svm); 2418 2419 enable_gif(svm); 2420 if (svm->vcpu.arch.smi_pending || 2421 svm->vcpu.arch.nmi_pending || 2422 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2423 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2424 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2425 } else { 2426 disable_gif(svm); 2427 2428 /* 2429 * After a CLGI no interrupts should come. But if vGIF is 2430 * in use, we still rely on the VINTR intercept (rather than 2431 * STGI) to detect an open interrupt window. 2432 */ 2433 if (!vgif) 2434 svm_clear_vintr(svm); 2435 } 2436 } 2437 2438 static int stgi_interception(struct kvm_vcpu *vcpu) 2439 { 2440 int ret; 2441 2442 if (nested_svm_check_permissions(vcpu)) 2443 return 1; 2444 2445 ret = kvm_skip_emulated_instruction(vcpu); 2446 svm_set_gif(to_svm(vcpu), true); 2447 return ret; 2448 } 2449 2450 static int clgi_interception(struct kvm_vcpu *vcpu) 2451 { 2452 int ret; 2453 2454 if (nested_svm_check_permissions(vcpu)) 2455 return 1; 2456 2457 ret = kvm_skip_emulated_instruction(vcpu); 2458 svm_set_gif(to_svm(vcpu), false); 2459 return ret; 2460 } 2461 2462 static int invlpga_interception(struct kvm_vcpu *vcpu) 2463 { 2464 gva_t gva = kvm_rax_read(vcpu); 2465 u32 asid = kvm_rcx_read(vcpu); 2466 2467 /* FIXME: Handle an address size prefix. */ 2468 if (!is_long_mode(vcpu)) 2469 gva = (u32)gva; 2470 2471 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2472 2473 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2474 kvm_mmu_invlpg(vcpu, gva); 2475 2476 return kvm_skip_emulated_instruction(vcpu); 2477 } 2478 2479 static int skinit_interception(struct kvm_vcpu *vcpu) 2480 { 2481 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2482 2483 kvm_queue_exception(vcpu, UD_VECTOR); 2484 return 1; 2485 } 2486 2487 static int task_switch_interception(struct kvm_vcpu *vcpu) 2488 { 2489 struct vcpu_svm *svm = to_svm(vcpu); 2490 u16 tss_selector; 2491 int reason; 2492 int int_type = svm->vmcb->control.exit_int_info & 2493 SVM_EXITINTINFO_TYPE_MASK; 2494 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2495 uint32_t type = 2496 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2497 uint32_t idt_v = 2498 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2499 bool has_error_code = false; 2500 u32 error_code = 0; 2501 2502 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2503 2504 if (svm->vmcb->control.exit_info_2 & 2505 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2506 reason = TASK_SWITCH_IRET; 2507 else if (svm->vmcb->control.exit_info_2 & 2508 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2509 reason = TASK_SWITCH_JMP; 2510 else if (idt_v) 2511 reason = TASK_SWITCH_GATE; 2512 else 2513 reason = TASK_SWITCH_CALL; 2514 2515 if (reason == TASK_SWITCH_GATE) { 2516 switch (type) { 2517 case SVM_EXITINTINFO_TYPE_NMI: 2518 vcpu->arch.nmi_injected = false; 2519 break; 2520 case SVM_EXITINTINFO_TYPE_EXEPT: 2521 if (svm->vmcb->control.exit_info_2 & 2522 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2523 has_error_code = true; 2524 error_code = 2525 (u32)svm->vmcb->control.exit_info_2; 2526 } 2527 kvm_clear_exception_queue(vcpu); 2528 break; 2529 case SVM_EXITINTINFO_TYPE_INTR: 2530 case SVM_EXITINTINFO_TYPE_SOFT: 2531 kvm_clear_interrupt_queue(vcpu); 2532 break; 2533 default: 2534 break; 2535 } 2536 } 2537 2538 if (reason != TASK_SWITCH_GATE || 2539 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2540 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2541 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2542 if (!svm_skip_emulated_instruction(vcpu)) 2543 return 0; 2544 } 2545 2546 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2547 int_vec = -1; 2548 2549 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2550 has_error_code, error_code); 2551 } 2552 2553 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2554 { 2555 if (!sev_es_guest(svm->vcpu.kvm)) 2556 svm_clr_intercept(svm, INTERCEPT_IRET); 2557 } 2558 2559 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2560 { 2561 if (!sev_es_guest(svm->vcpu.kvm)) 2562 svm_set_intercept(svm, INTERCEPT_IRET); 2563 } 2564 2565 static int iret_interception(struct kvm_vcpu *vcpu) 2566 { 2567 struct vcpu_svm *svm = to_svm(vcpu); 2568 2569 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2570 2571 ++vcpu->stat.nmi_window_exits; 2572 svm->awaiting_iret_completion = true; 2573 2574 svm_clr_iret_intercept(svm); 2575 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2576 2577 kvm_make_request(KVM_REQ_EVENT, vcpu); 2578 return 1; 2579 } 2580 2581 static int invlpg_interception(struct kvm_vcpu *vcpu) 2582 { 2583 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2584 return kvm_emulate_instruction(vcpu, 0); 2585 2586 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2587 return kvm_skip_emulated_instruction(vcpu); 2588 } 2589 2590 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2591 { 2592 return kvm_emulate_instruction(vcpu, 0); 2593 } 2594 2595 static int rsm_interception(struct kvm_vcpu *vcpu) 2596 { 2597 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2598 } 2599 2600 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2601 unsigned long val) 2602 { 2603 struct vcpu_svm *svm = to_svm(vcpu); 2604 unsigned long cr0 = vcpu->arch.cr0; 2605 bool ret = false; 2606 2607 if (!is_guest_mode(vcpu) || 2608 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2609 return false; 2610 2611 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2612 val &= ~SVM_CR0_SELECTIVE_MASK; 2613 2614 if (cr0 ^ val) { 2615 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2616 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2617 } 2618 2619 return ret; 2620 } 2621 2622 #define CR_VALID (1ULL << 63) 2623 2624 static int cr_interception(struct kvm_vcpu *vcpu) 2625 { 2626 struct vcpu_svm *svm = to_svm(vcpu); 2627 int reg, cr; 2628 unsigned long val; 2629 int err; 2630 2631 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2632 return emulate_on_interception(vcpu); 2633 2634 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2635 return emulate_on_interception(vcpu); 2636 2637 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2638 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2639 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2640 else 2641 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2642 2643 err = 0; 2644 if (cr >= 16) { /* mov to cr */ 2645 cr -= 16; 2646 val = kvm_register_read(vcpu, reg); 2647 trace_kvm_cr_write(cr, val); 2648 switch (cr) { 2649 case 0: 2650 if (!check_selective_cr0_intercepted(vcpu, val)) 2651 err = kvm_set_cr0(vcpu, val); 2652 else 2653 return 1; 2654 2655 break; 2656 case 3: 2657 err = kvm_set_cr3(vcpu, val); 2658 break; 2659 case 4: 2660 err = kvm_set_cr4(vcpu, val); 2661 break; 2662 case 8: 2663 err = kvm_set_cr8(vcpu, val); 2664 break; 2665 default: 2666 WARN(1, "unhandled write to CR%d", cr); 2667 kvm_queue_exception(vcpu, UD_VECTOR); 2668 return 1; 2669 } 2670 } else { /* mov from cr */ 2671 switch (cr) { 2672 case 0: 2673 val = kvm_read_cr0(vcpu); 2674 break; 2675 case 2: 2676 val = vcpu->arch.cr2; 2677 break; 2678 case 3: 2679 val = kvm_read_cr3(vcpu); 2680 break; 2681 case 4: 2682 val = kvm_read_cr4(vcpu); 2683 break; 2684 case 8: 2685 val = kvm_get_cr8(vcpu); 2686 break; 2687 default: 2688 WARN(1, "unhandled read from CR%d", cr); 2689 kvm_queue_exception(vcpu, UD_VECTOR); 2690 return 1; 2691 } 2692 kvm_register_write(vcpu, reg, val); 2693 trace_kvm_cr_read(cr, val); 2694 } 2695 return kvm_complete_insn_gp(vcpu, err); 2696 } 2697 2698 static int cr_trap(struct kvm_vcpu *vcpu) 2699 { 2700 struct vcpu_svm *svm = to_svm(vcpu); 2701 unsigned long old_value, new_value; 2702 unsigned int cr; 2703 int ret = 0; 2704 2705 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2706 2707 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2708 switch (cr) { 2709 case 0: 2710 old_value = kvm_read_cr0(vcpu); 2711 svm_set_cr0(vcpu, new_value); 2712 2713 kvm_post_set_cr0(vcpu, old_value, new_value); 2714 break; 2715 case 4: 2716 old_value = kvm_read_cr4(vcpu); 2717 svm_set_cr4(vcpu, new_value); 2718 2719 kvm_post_set_cr4(vcpu, old_value, new_value); 2720 break; 2721 case 8: 2722 ret = kvm_set_cr8(vcpu, new_value); 2723 break; 2724 default: 2725 WARN(1, "unhandled CR%d write trap", cr); 2726 kvm_queue_exception(vcpu, UD_VECTOR); 2727 return 1; 2728 } 2729 2730 return kvm_complete_insn_gp(vcpu, ret); 2731 } 2732 2733 static int dr_interception(struct kvm_vcpu *vcpu) 2734 { 2735 struct vcpu_svm *svm = to_svm(vcpu); 2736 int reg, dr; 2737 unsigned long val; 2738 int err = 0; 2739 2740 /* 2741 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2742 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2743 */ 2744 if (sev_es_guest(vcpu->kvm)) 2745 return 1; 2746 2747 if (vcpu->guest_debug == 0) { 2748 /* 2749 * No more DR vmexits; force a reload of the debug registers 2750 * and reenter on this instruction. The next vmexit will 2751 * retrieve the full state of the debug registers. 2752 */ 2753 clr_dr_intercepts(svm); 2754 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2755 return 1; 2756 } 2757 2758 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2759 return emulate_on_interception(vcpu); 2760 2761 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2762 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2763 if (dr >= 16) { /* mov to DRn */ 2764 dr -= 16; 2765 val = kvm_register_read(vcpu, reg); 2766 err = kvm_set_dr(vcpu, dr, val); 2767 } else { 2768 kvm_get_dr(vcpu, dr, &val); 2769 kvm_register_write(vcpu, reg, val); 2770 } 2771 2772 return kvm_complete_insn_gp(vcpu, err); 2773 } 2774 2775 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2776 { 2777 int r; 2778 2779 u8 cr8_prev = kvm_get_cr8(vcpu); 2780 /* instruction emulation calls kvm_set_cr8() */ 2781 r = cr_interception(vcpu); 2782 if (lapic_in_kernel(vcpu)) 2783 return r; 2784 if (cr8_prev <= kvm_get_cr8(vcpu)) 2785 return r; 2786 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2787 return 0; 2788 } 2789 2790 static int efer_trap(struct kvm_vcpu *vcpu) 2791 { 2792 struct msr_data msr_info; 2793 int ret; 2794 2795 /* 2796 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2797 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2798 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2799 * the guest doesn't have X86_FEATURE_SVM. 2800 */ 2801 msr_info.host_initiated = false; 2802 msr_info.index = MSR_EFER; 2803 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2804 ret = kvm_set_msr_common(vcpu, &msr_info); 2805 2806 return kvm_complete_insn_gp(vcpu, ret); 2807 } 2808 2809 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2810 { 2811 msr->data = 0; 2812 2813 switch (msr->index) { 2814 case MSR_AMD64_DE_CFG: 2815 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2816 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2817 break; 2818 default: 2819 return KVM_MSR_RET_INVALID; 2820 } 2821 2822 return 0; 2823 } 2824 2825 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2826 { 2827 struct vcpu_svm *svm = to_svm(vcpu); 2828 2829 switch (msr_info->index) { 2830 case MSR_AMD64_TSC_RATIO: 2831 if (!msr_info->host_initiated && 2832 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2833 return 1; 2834 msr_info->data = svm->tsc_ratio_msr; 2835 break; 2836 case MSR_STAR: 2837 msr_info->data = svm->vmcb01.ptr->save.star; 2838 break; 2839 #ifdef CONFIG_X86_64 2840 case MSR_LSTAR: 2841 msr_info->data = svm->vmcb01.ptr->save.lstar; 2842 break; 2843 case MSR_CSTAR: 2844 msr_info->data = svm->vmcb01.ptr->save.cstar; 2845 break; 2846 case MSR_KERNEL_GS_BASE: 2847 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2848 break; 2849 case MSR_SYSCALL_MASK: 2850 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2851 break; 2852 #endif 2853 case MSR_IA32_SYSENTER_CS: 2854 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2855 break; 2856 case MSR_IA32_SYSENTER_EIP: 2857 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2858 if (guest_cpuid_is_intel(vcpu)) 2859 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2860 break; 2861 case MSR_IA32_SYSENTER_ESP: 2862 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2863 if (guest_cpuid_is_intel(vcpu)) 2864 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2865 break; 2866 case MSR_TSC_AUX: 2867 msr_info->data = svm->tsc_aux; 2868 break; 2869 case MSR_IA32_DEBUGCTLMSR: 2870 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2871 break; 2872 case MSR_IA32_LASTBRANCHFROMIP: 2873 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2874 break; 2875 case MSR_IA32_LASTBRANCHTOIP: 2876 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2877 break; 2878 case MSR_IA32_LASTINTFROMIP: 2879 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2880 break; 2881 case MSR_IA32_LASTINTTOIP: 2882 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2883 break; 2884 case MSR_VM_HSAVE_PA: 2885 msr_info->data = svm->nested.hsave_msr; 2886 break; 2887 case MSR_VM_CR: 2888 msr_info->data = svm->nested.vm_cr_msr; 2889 break; 2890 case MSR_IA32_SPEC_CTRL: 2891 if (!msr_info->host_initiated && 2892 !guest_has_spec_ctrl_msr(vcpu)) 2893 return 1; 2894 2895 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2896 msr_info->data = svm->vmcb->save.spec_ctrl; 2897 else 2898 msr_info->data = svm->spec_ctrl; 2899 break; 2900 case MSR_AMD64_VIRT_SPEC_CTRL: 2901 if (!msr_info->host_initiated && 2902 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2903 return 1; 2904 2905 msr_info->data = svm->virt_spec_ctrl; 2906 break; 2907 case MSR_F15H_IC_CFG: { 2908 2909 int family, model; 2910 2911 family = guest_cpuid_family(vcpu); 2912 model = guest_cpuid_model(vcpu); 2913 2914 if (family < 0 || model < 0) 2915 return kvm_get_msr_common(vcpu, msr_info); 2916 2917 msr_info->data = 0; 2918 2919 if (family == 0x15 && 2920 (model >= 0x2 && model < 0x20)) 2921 msr_info->data = 0x1E; 2922 } 2923 break; 2924 case MSR_AMD64_DE_CFG: 2925 msr_info->data = svm->msr_decfg; 2926 break; 2927 default: 2928 return kvm_get_msr_common(vcpu, msr_info); 2929 } 2930 return 0; 2931 } 2932 2933 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2934 { 2935 struct vcpu_svm *svm = to_svm(vcpu); 2936 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2937 return kvm_complete_insn_gp(vcpu, err); 2938 2939 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2940 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2941 X86_TRAP_GP | 2942 SVM_EVTINJ_TYPE_EXEPT | 2943 SVM_EVTINJ_VALID); 2944 return 1; 2945 } 2946 2947 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2948 { 2949 struct vcpu_svm *svm = to_svm(vcpu); 2950 int svm_dis, chg_mask; 2951 2952 if (data & ~SVM_VM_CR_VALID_MASK) 2953 return 1; 2954 2955 chg_mask = SVM_VM_CR_VALID_MASK; 2956 2957 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2958 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2959 2960 svm->nested.vm_cr_msr &= ~chg_mask; 2961 svm->nested.vm_cr_msr |= (data & chg_mask); 2962 2963 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2964 2965 /* check for svm_disable while efer.svme is set */ 2966 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2967 return 1; 2968 2969 return 0; 2970 } 2971 2972 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2973 { 2974 struct vcpu_svm *svm = to_svm(vcpu); 2975 int ret = 0; 2976 2977 u32 ecx = msr->index; 2978 u64 data = msr->data; 2979 switch (ecx) { 2980 case MSR_AMD64_TSC_RATIO: 2981 2982 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 2983 2984 if (!msr->host_initiated) 2985 return 1; 2986 /* 2987 * In case TSC scaling is not enabled, always 2988 * leave this MSR at the default value. 2989 * 2990 * Due to bug in qemu 6.2.0, it would try to set 2991 * this msr to 0 if tsc scaling is not enabled. 2992 * Ignore this value as well. 2993 */ 2994 if (data != 0 && data != svm->tsc_ratio_msr) 2995 return 1; 2996 break; 2997 } 2998 2999 if (data & SVM_TSC_RATIO_RSVD) 3000 return 1; 3001 3002 svm->tsc_ratio_msr = data; 3003 3004 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3005 is_guest_mode(vcpu)) 3006 nested_svm_update_tsc_ratio_msr(vcpu); 3007 3008 break; 3009 case MSR_IA32_CR_PAT: 3010 ret = kvm_set_msr_common(vcpu, msr); 3011 if (ret) 3012 break; 3013 3014 svm->vmcb01.ptr->save.g_pat = data; 3015 if (is_guest_mode(vcpu)) 3016 nested_vmcb02_compute_g_pat(svm); 3017 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3018 break; 3019 case MSR_IA32_SPEC_CTRL: 3020 if (!msr->host_initiated && 3021 !guest_has_spec_ctrl_msr(vcpu)) 3022 return 1; 3023 3024 if (kvm_spec_ctrl_test_value(data)) 3025 return 1; 3026 3027 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3028 svm->vmcb->save.spec_ctrl = data; 3029 else 3030 svm->spec_ctrl = data; 3031 if (!data) 3032 break; 3033 3034 /* 3035 * For non-nested: 3036 * When it's written (to non-zero) for the first time, pass 3037 * it through. 3038 * 3039 * For nested: 3040 * The handling of the MSR bitmap for L2 guests is done in 3041 * nested_svm_vmrun_msrpm. 3042 * We update the L1 MSR bit as well since it will end up 3043 * touching the MSR anyway now. 3044 */ 3045 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3046 break; 3047 case MSR_AMD64_VIRT_SPEC_CTRL: 3048 if (!msr->host_initiated && 3049 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3050 return 1; 3051 3052 if (data & ~SPEC_CTRL_SSBD) 3053 return 1; 3054 3055 svm->virt_spec_ctrl = data; 3056 break; 3057 case MSR_STAR: 3058 svm->vmcb01.ptr->save.star = data; 3059 break; 3060 #ifdef CONFIG_X86_64 3061 case MSR_LSTAR: 3062 svm->vmcb01.ptr->save.lstar = data; 3063 break; 3064 case MSR_CSTAR: 3065 svm->vmcb01.ptr->save.cstar = data; 3066 break; 3067 case MSR_KERNEL_GS_BASE: 3068 svm->vmcb01.ptr->save.kernel_gs_base = data; 3069 break; 3070 case MSR_SYSCALL_MASK: 3071 svm->vmcb01.ptr->save.sfmask = data; 3072 break; 3073 #endif 3074 case MSR_IA32_SYSENTER_CS: 3075 svm->vmcb01.ptr->save.sysenter_cs = data; 3076 break; 3077 case MSR_IA32_SYSENTER_EIP: 3078 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3079 /* 3080 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3081 * when we spoof an Intel vendor ID (for cross vendor migration). 3082 * In this case we use this intercept to track the high 3083 * 32 bit part of these msrs to support Intel's 3084 * implementation of SYSENTER/SYSEXIT. 3085 */ 3086 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3087 break; 3088 case MSR_IA32_SYSENTER_ESP: 3089 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3090 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3091 break; 3092 case MSR_TSC_AUX: 3093 /* 3094 * TSC_AUX is always virtualized for SEV-ES guests when the 3095 * feature is available. The user return MSR support is not 3096 * required in this case because TSC_AUX is restored on #VMEXIT 3097 * from the host save area (which has been initialized in 3098 * svm_hardware_enable()). 3099 */ 3100 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3101 break; 3102 3103 /* 3104 * TSC_AUX is usually changed only during boot and never read 3105 * directly. Intercept TSC_AUX instead of exposing it to the 3106 * guest via direct_access_msrs, and switch it via user return. 3107 */ 3108 preempt_disable(); 3109 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3110 preempt_enable(); 3111 if (ret) 3112 break; 3113 3114 svm->tsc_aux = data; 3115 break; 3116 case MSR_IA32_DEBUGCTLMSR: 3117 if (!lbrv) { 3118 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3119 break; 3120 } 3121 if (data & DEBUGCTL_RESERVED_BITS) 3122 return 1; 3123 3124 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3125 svm_update_lbrv(vcpu); 3126 break; 3127 case MSR_VM_HSAVE_PA: 3128 /* 3129 * Old kernels did not validate the value written to 3130 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3131 * value to allow live migrating buggy or malicious guests 3132 * originating from those kernels. 3133 */ 3134 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3135 return 1; 3136 3137 svm->nested.hsave_msr = data & PAGE_MASK; 3138 break; 3139 case MSR_VM_CR: 3140 return svm_set_vm_cr(vcpu, data); 3141 case MSR_VM_IGNNE: 3142 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3143 break; 3144 case MSR_AMD64_DE_CFG: { 3145 struct kvm_msr_entry msr_entry; 3146 3147 msr_entry.index = msr->index; 3148 if (svm_get_msr_feature(&msr_entry)) 3149 return 1; 3150 3151 /* Check the supported bits */ 3152 if (data & ~msr_entry.data) 3153 return 1; 3154 3155 /* Don't allow the guest to change a bit, #GP */ 3156 if (!msr->host_initiated && (data ^ msr_entry.data)) 3157 return 1; 3158 3159 svm->msr_decfg = data; 3160 break; 3161 } 3162 default: 3163 return kvm_set_msr_common(vcpu, msr); 3164 } 3165 return ret; 3166 } 3167 3168 static int msr_interception(struct kvm_vcpu *vcpu) 3169 { 3170 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3171 return kvm_emulate_wrmsr(vcpu); 3172 else 3173 return kvm_emulate_rdmsr(vcpu); 3174 } 3175 3176 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3177 { 3178 kvm_make_request(KVM_REQ_EVENT, vcpu); 3179 svm_clear_vintr(to_svm(vcpu)); 3180 3181 /* 3182 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3183 * In this case AVIC was temporarily disabled for 3184 * requesting the IRQ window and we have to re-enable it. 3185 * 3186 * If running nested, still remove the VM wide AVIC inhibit to 3187 * support case in which the interrupt window was requested when the 3188 * vCPU was not running nested. 3189 3190 * All vCPUs which run still run nested, will remain to have their 3191 * AVIC still inhibited due to per-cpu AVIC inhibition. 3192 */ 3193 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3194 3195 ++vcpu->stat.irq_window_exits; 3196 return 1; 3197 } 3198 3199 static int pause_interception(struct kvm_vcpu *vcpu) 3200 { 3201 bool in_kernel; 3202 /* 3203 * CPL is not made available for an SEV-ES guest, therefore 3204 * vcpu->arch.preempted_in_kernel can never be true. Just 3205 * set in_kernel to false as well. 3206 */ 3207 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3208 3209 grow_ple_window(vcpu); 3210 3211 kvm_vcpu_on_spin(vcpu, in_kernel); 3212 return kvm_skip_emulated_instruction(vcpu); 3213 } 3214 3215 static int invpcid_interception(struct kvm_vcpu *vcpu) 3216 { 3217 struct vcpu_svm *svm = to_svm(vcpu); 3218 unsigned long type; 3219 gva_t gva; 3220 3221 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3222 kvm_queue_exception(vcpu, UD_VECTOR); 3223 return 1; 3224 } 3225 3226 /* 3227 * For an INVPCID intercept: 3228 * EXITINFO1 provides the linear address of the memory operand. 3229 * EXITINFO2 provides the contents of the register operand. 3230 */ 3231 type = svm->vmcb->control.exit_info_2; 3232 gva = svm->vmcb->control.exit_info_1; 3233 3234 return kvm_handle_invpcid(vcpu, type, gva); 3235 } 3236 3237 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3238 [SVM_EXIT_READ_CR0] = cr_interception, 3239 [SVM_EXIT_READ_CR3] = cr_interception, 3240 [SVM_EXIT_READ_CR4] = cr_interception, 3241 [SVM_EXIT_READ_CR8] = cr_interception, 3242 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3243 [SVM_EXIT_WRITE_CR0] = cr_interception, 3244 [SVM_EXIT_WRITE_CR3] = cr_interception, 3245 [SVM_EXIT_WRITE_CR4] = cr_interception, 3246 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3247 [SVM_EXIT_READ_DR0] = dr_interception, 3248 [SVM_EXIT_READ_DR1] = dr_interception, 3249 [SVM_EXIT_READ_DR2] = dr_interception, 3250 [SVM_EXIT_READ_DR3] = dr_interception, 3251 [SVM_EXIT_READ_DR4] = dr_interception, 3252 [SVM_EXIT_READ_DR5] = dr_interception, 3253 [SVM_EXIT_READ_DR6] = dr_interception, 3254 [SVM_EXIT_READ_DR7] = dr_interception, 3255 [SVM_EXIT_WRITE_DR0] = dr_interception, 3256 [SVM_EXIT_WRITE_DR1] = dr_interception, 3257 [SVM_EXIT_WRITE_DR2] = dr_interception, 3258 [SVM_EXIT_WRITE_DR3] = dr_interception, 3259 [SVM_EXIT_WRITE_DR4] = dr_interception, 3260 [SVM_EXIT_WRITE_DR5] = dr_interception, 3261 [SVM_EXIT_WRITE_DR6] = dr_interception, 3262 [SVM_EXIT_WRITE_DR7] = dr_interception, 3263 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3264 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3265 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3266 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3267 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3268 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3269 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3270 [SVM_EXIT_INTR] = intr_interception, 3271 [SVM_EXIT_NMI] = nmi_interception, 3272 [SVM_EXIT_SMI] = smi_interception, 3273 [SVM_EXIT_VINTR] = interrupt_window_interception, 3274 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3275 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3276 [SVM_EXIT_IRET] = iret_interception, 3277 [SVM_EXIT_INVD] = kvm_emulate_invd, 3278 [SVM_EXIT_PAUSE] = pause_interception, 3279 [SVM_EXIT_HLT] = kvm_emulate_halt, 3280 [SVM_EXIT_INVLPG] = invlpg_interception, 3281 [SVM_EXIT_INVLPGA] = invlpga_interception, 3282 [SVM_EXIT_IOIO] = io_interception, 3283 [SVM_EXIT_MSR] = msr_interception, 3284 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3285 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3286 [SVM_EXIT_VMRUN] = vmrun_interception, 3287 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3288 [SVM_EXIT_VMLOAD] = vmload_interception, 3289 [SVM_EXIT_VMSAVE] = vmsave_interception, 3290 [SVM_EXIT_STGI] = stgi_interception, 3291 [SVM_EXIT_CLGI] = clgi_interception, 3292 [SVM_EXIT_SKINIT] = skinit_interception, 3293 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3294 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3295 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3296 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3297 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3298 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3299 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3300 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3301 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3302 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3303 [SVM_EXIT_INVPCID] = invpcid_interception, 3304 [SVM_EXIT_NPF] = npf_interception, 3305 [SVM_EXIT_RSM] = rsm_interception, 3306 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3307 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3308 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3309 }; 3310 3311 static void dump_vmcb(struct kvm_vcpu *vcpu) 3312 { 3313 struct vcpu_svm *svm = to_svm(vcpu); 3314 struct vmcb_control_area *control = &svm->vmcb->control; 3315 struct vmcb_save_area *save = &svm->vmcb->save; 3316 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3317 3318 if (!dump_invalid_vmcb) { 3319 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3320 return; 3321 } 3322 3323 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3324 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3325 pr_err("VMCB Control Area:\n"); 3326 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3327 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3328 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3329 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3330 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3331 pr_err("%-20s%08x %08x\n", "intercepts:", 3332 control->intercepts[INTERCEPT_WORD3], 3333 control->intercepts[INTERCEPT_WORD4]); 3334 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3335 pr_err("%-20s%d\n", "pause filter threshold:", 3336 control->pause_filter_thresh); 3337 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3338 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3339 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3340 pr_err("%-20s%d\n", "asid:", control->asid); 3341 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3342 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3343 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3344 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3345 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3346 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3347 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3348 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3349 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3350 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3351 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3352 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3353 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3354 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3355 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3356 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3357 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3358 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3359 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3360 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3361 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3362 pr_err("VMCB State Save Area:\n"); 3363 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3364 "es:", 3365 save->es.selector, save->es.attrib, 3366 save->es.limit, save->es.base); 3367 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3368 "cs:", 3369 save->cs.selector, save->cs.attrib, 3370 save->cs.limit, save->cs.base); 3371 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3372 "ss:", 3373 save->ss.selector, save->ss.attrib, 3374 save->ss.limit, save->ss.base); 3375 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3376 "ds:", 3377 save->ds.selector, save->ds.attrib, 3378 save->ds.limit, save->ds.base); 3379 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3380 "fs:", 3381 save01->fs.selector, save01->fs.attrib, 3382 save01->fs.limit, save01->fs.base); 3383 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3384 "gs:", 3385 save01->gs.selector, save01->gs.attrib, 3386 save01->gs.limit, save01->gs.base); 3387 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3388 "gdtr:", 3389 save->gdtr.selector, save->gdtr.attrib, 3390 save->gdtr.limit, save->gdtr.base); 3391 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3392 "ldtr:", 3393 save01->ldtr.selector, save01->ldtr.attrib, 3394 save01->ldtr.limit, save01->ldtr.base); 3395 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3396 "idtr:", 3397 save->idtr.selector, save->idtr.attrib, 3398 save->idtr.limit, save->idtr.base); 3399 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3400 "tr:", 3401 save01->tr.selector, save01->tr.attrib, 3402 save01->tr.limit, save01->tr.base); 3403 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3404 save->vmpl, save->cpl, save->efer); 3405 pr_err("%-15s %016llx %-13s %016llx\n", 3406 "cr0:", save->cr0, "cr2:", save->cr2); 3407 pr_err("%-15s %016llx %-13s %016llx\n", 3408 "cr3:", save->cr3, "cr4:", save->cr4); 3409 pr_err("%-15s %016llx %-13s %016llx\n", 3410 "dr6:", save->dr6, "dr7:", save->dr7); 3411 pr_err("%-15s %016llx %-13s %016llx\n", 3412 "rip:", save->rip, "rflags:", save->rflags); 3413 pr_err("%-15s %016llx %-13s %016llx\n", 3414 "rsp:", save->rsp, "rax:", save->rax); 3415 pr_err("%-15s %016llx %-13s %016llx\n", 3416 "star:", save01->star, "lstar:", save01->lstar); 3417 pr_err("%-15s %016llx %-13s %016llx\n", 3418 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3419 pr_err("%-15s %016llx %-13s %016llx\n", 3420 "kernel_gs_base:", save01->kernel_gs_base, 3421 "sysenter_cs:", save01->sysenter_cs); 3422 pr_err("%-15s %016llx %-13s %016llx\n", 3423 "sysenter_esp:", save01->sysenter_esp, 3424 "sysenter_eip:", save01->sysenter_eip); 3425 pr_err("%-15s %016llx %-13s %016llx\n", 3426 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3427 pr_err("%-15s %016llx %-13s %016llx\n", 3428 "br_from:", save->br_from, "br_to:", save->br_to); 3429 pr_err("%-15s %016llx %-13s %016llx\n", 3430 "excp_from:", save->last_excp_from, 3431 "excp_to:", save->last_excp_to); 3432 } 3433 3434 static bool svm_check_exit_valid(u64 exit_code) 3435 { 3436 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3437 svm_exit_handlers[exit_code]); 3438 } 3439 3440 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3441 { 3442 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3443 dump_vmcb(vcpu); 3444 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3445 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3446 vcpu->run->internal.ndata = 2; 3447 vcpu->run->internal.data[0] = exit_code; 3448 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3449 return 0; 3450 } 3451 3452 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3453 { 3454 if (!svm_check_exit_valid(exit_code)) 3455 return svm_handle_invalid_exit(vcpu, exit_code); 3456 3457 #ifdef CONFIG_RETPOLINE 3458 if (exit_code == SVM_EXIT_MSR) 3459 return msr_interception(vcpu); 3460 else if (exit_code == SVM_EXIT_VINTR) 3461 return interrupt_window_interception(vcpu); 3462 else if (exit_code == SVM_EXIT_INTR) 3463 return intr_interception(vcpu); 3464 else if (exit_code == SVM_EXIT_HLT) 3465 return kvm_emulate_halt(vcpu); 3466 else if (exit_code == SVM_EXIT_NPF) 3467 return npf_interception(vcpu); 3468 #endif 3469 return svm_exit_handlers[exit_code](vcpu); 3470 } 3471 3472 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3473 u64 *info1, u64 *info2, 3474 u32 *intr_info, u32 *error_code) 3475 { 3476 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3477 3478 *reason = control->exit_code; 3479 *info1 = control->exit_info_1; 3480 *info2 = control->exit_info_2; 3481 *intr_info = control->exit_int_info; 3482 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3483 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3484 *error_code = control->exit_int_info_err; 3485 else 3486 *error_code = 0; 3487 } 3488 3489 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3490 { 3491 struct vcpu_svm *svm = to_svm(vcpu); 3492 struct kvm_run *kvm_run = vcpu->run; 3493 u32 exit_code = svm->vmcb->control.exit_code; 3494 3495 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3496 if (!sev_es_guest(vcpu->kvm)) { 3497 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3498 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3499 if (npt_enabled) 3500 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3501 } 3502 3503 if (is_guest_mode(vcpu)) { 3504 int vmexit; 3505 3506 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3507 3508 vmexit = nested_svm_exit_special(svm); 3509 3510 if (vmexit == NESTED_EXIT_CONTINUE) 3511 vmexit = nested_svm_exit_handled(svm); 3512 3513 if (vmexit == NESTED_EXIT_DONE) 3514 return 1; 3515 } 3516 3517 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3518 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3519 kvm_run->fail_entry.hardware_entry_failure_reason 3520 = svm->vmcb->control.exit_code; 3521 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3522 dump_vmcb(vcpu); 3523 return 0; 3524 } 3525 3526 if (exit_fastpath != EXIT_FASTPATH_NONE) 3527 return 1; 3528 3529 return svm_invoke_exit_handler(vcpu, exit_code); 3530 } 3531 3532 static void pre_svm_run(struct kvm_vcpu *vcpu) 3533 { 3534 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3535 struct vcpu_svm *svm = to_svm(vcpu); 3536 3537 /* 3538 * If the previous vmrun of the vmcb occurred on a different physical 3539 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3540 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3541 */ 3542 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3543 svm->current_vmcb->asid_generation = 0; 3544 vmcb_mark_all_dirty(svm->vmcb); 3545 svm->current_vmcb->cpu = vcpu->cpu; 3546 } 3547 3548 if (sev_guest(vcpu->kvm)) 3549 return pre_sev_run(svm, vcpu->cpu); 3550 3551 /* FIXME: handle wraparound of asid_generation */ 3552 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3553 new_asid(svm, sd); 3554 } 3555 3556 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3557 { 3558 struct vcpu_svm *svm = to_svm(vcpu); 3559 3560 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3561 3562 if (svm->nmi_l1_to_l2) 3563 return; 3564 3565 svm->nmi_masked = true; 3566 svm_set_iret_intercept(svm); 3567 ++vcpu->stat.nmi_injections; 3568 } 3569 3570 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3571 { 3572 struct vcpu_svm *svm = to_svm(vcpu); 3573 3574 if (!is_vnmi_enabled(svm)) 3575 return false; 3576 3577 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3578 } 3579 3580 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3581 { 3582 struct vcpu_svm *svm = to_svm(vcpu); 3583 3584 if (!is_vnmi_enabled(svm)) 3585 return false; 3586 3587 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3588 return false; 3589 3590 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3591 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3592 3593 /* 3594 * Because the pending NMI is serviced by hardware, KVM can't know when 3595 * the NMI is "injected", but for all intents and purposes, passing the 3596 * NMI off to hardware counts as injection. 3597 */ 3598 ++vcpu->stat.nmi_injections; 3599 3600 return true; 3601 } 3602 3603 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3604 { 3605 struct vcpu_svm *svm = to_svm(vcpu); 3606 u32 type; 3607 3608 if (vcpu->arch.interrupt.soft) { 3609 if (svm_update_soft_interrupt_rip(vcpu)) 3610 return; 3611 3612 type = SVM_EVTINJ_TYPE_SOFT; 3613 } else { 3614 type = SVM_EVTINJ_TYPE_INTR; 3615 } 3616 3617 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3618 vcpu->arch.interrupt.soft, reinjected); 3619 ++vcpu->stat.irq_injections; 3620 3621 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3622 SVM_EVTINJ_VALID | type; 3623 } 3624 3625 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3626 int trig_mode, int vector) 3627 { 3628 /* 3629 * apic->apicv_active must be read after vcpu->mode. 3630 * Pairs with smp_store_release in vcpu_enter_guest. 3631 */ 3632 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3633 3634 /* Note, this is called iff the local APIC is in-kernel. */ 3635 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3636 /* Process the interrupt via kvm_check_and_inject_events(). */ 3637 kvm_make_request(KVM_REQ_EVENT, vcpu); 3638 kvm_vcpu_kick(vcpu); 3639 return; 3640 } 3641 3642 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3643 if (in_guest_mode) { 3644 /* 3645 * Signal the doorbell to tell hardware to inject the IRQ. If 3646 * the vCPU exits the guest before the doorbell chimes, hardware 3647 * will automatically process AVIC interrupts at the next VMRUN. 3648 */ 3649 avic_ring_doorbell(vcpu); 3650 } else { 3651 /* 3652 * Wake the vCPU if it was blocking. KVM will then detect the 3653 * pending IRQ when checking if the vCPU has a wake event. 3654 */ 3655 kvm_vcpu_wake_up(vcpu); 3656 } 3657 } 3658 3659 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3660 int trig_mode, int vector) 3661 { 3662 kvm_lapic_set_irr(vector, apic); 3663 3664 /* 3665 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3666 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3667 * the read of guest_mode. This guarantees that either VMRUN will see 3668 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3669 * will signal the doorbell if the CPU has already entered the guest. 3670 */ 3671 smp_mb__after_atomic(); 3672 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3673 } 3674 3675 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3676 { 3677 struct vcpu_svm *svm = to_svm(vcpu); 3678 3679 /* 3680 * SEV-ES guests must always keep the CR intercepts cleared. CR 3681 * tracking is done using the CR write traps. 3682 */ 3683 if (sev_es_guest(vcpu->kvm)) 3684 return; 3685 3686 if (nested_svm_virtualize_tpr(vcpu)) 3687 return; 3688 3689 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3690 3691 if (irr == -1) 3692 return; 3693 3694 if (tpr >= irr) 3695 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3696 } 3697 3698 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3699 { 3700 struct vcpu_svm *svm = to_svm(vcpu); 3701 3702 if (is_vnmi_enabled(svm)) 3703 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3704 else 3705 return svm->nmi_masked; 3706 } 3707 3708 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3709 { 3710 struct vcpu_svm *svm = to_svm(vcpu); 3711 3712 if (is_vnmi_enabled(svm)) { 3713 if (masked) 3714 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3715 else 3716 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3717 3718 } else { 3719 svm->nmi_masked = masked; 3720 if (masked) 3721 svm_set_iret_intercept(svm); 3722 else 3723 svm_clr_iret_intercept(svm); 3724 } 3725 } 3726 3727 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3728 { 3729 struct vcpu_svm *svm = to_svm(vcpu); 3730 struct vmcb *vmcb = svm->vmcb; 3731 3732 if (!gif_set(svm)) 3733 return true; 3734 3735 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3736 return false; 3737 3738 if (svm_get_nmi_mask(vcpu)) 3739 return true; 3740 3741 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3742 } 3743 3744 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3745 { 3746 struct vcpu_svm *svm = to_svm(vcpu); 3747 if (svm->nested.nested_run_pending) 3748 return -EBUSY; 3749 3750 if (svm_nmi_blocked(vcpu)) 3751 return 0; 3752 3753 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3754 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3755 return -EBUSY; 3756 return 1; 3757 } 3758 3759 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3760 { 3761 struct vcpu_svm *svm = to_svm(vcpu); 3762 struct vmcb *vmcb = svm->vmcb; 3763 3764 if (!gif_set(svm)) 3765 return true; 3766 3767 if (is_guest_mode(vcpu)) { 3768 /* As long as interrupts are being delivered... */ 3769 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3770 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3771 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3772 return true; 3773 3774 /* ... vmexits aren't blocked by the interrupt shadow */ 3775 if (nested_exit_on_intr(svm)) 3776 return false; 3777 } else { 3778 if (!svm_get_if_flag(vcpu)) 3779 return true; 3780 } 3781 3782 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3783 } 3784 3785 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3786 { 3787 struct vcpu_svm *svm = to_svm(vcpu); 3788 3789 if (svm->nested.nested_run_pending) 3790 return -EBUSY; 3791 3792 if (svm_interrupt_blocked(vcpu)) 3793 return 0; 3794 3795 /* 3796 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3797 * e.g. if the IRQ arrived asynchronously after checking nested events. 3798 */ 3799 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3800 return -EBUSY; 3801 3802 return 1; 3803 } 3804 3805 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3806 { 3807 struct vcpu_svm *svm = to_svm(vcpu); 3808 3809 /* 3810 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3811 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3812 * get that intercept, this function will be called again though and 3813 * we'll get the vintr intercept. However, if the vGIF feature is 3814 * enabled, the STGI interception will not occur. Enable the irq 3815 * window under the assumption that the hardware will set the GIF. 3816 */ 3817 if (vgif || gif_set(svm)) { 3818 /* 3819 * IRQ window is not needed when AVIC is enabled, 3820 * unless we have pending ExtINT since it cannot be injected 3821 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3822 * and fallback to injecting IRQ via V_IRQ. 3823 * 3824 * If running nested, AVIC is already locally inhibited 3825 * on this vCPU, therefore there is no need to request 3826 * the VM wide AVIC inhibition. 3827 */ 3828 if (!is_guest_mode(vcpu)) 3829 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3830 3831 svm_set_vintr(svm); 3832 } 3833 } 3834 3835 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3836 { 3837 struct vcpu_svm *svm = to_svm(vcpu); 3838 3839 /* 3840 * KVM should never request an NMI window when vNMI is enabled, as KVM 3841 * allows at most one to-be-injected NMI and one pending NMI, i.e. if 3842 * two NMIs arrive simultaneously, KVM will inject one and set 3843 * V_NMI_PENDING for the other. WARN, but continue with the standard 3844 * single-step approach to try and salvage the pending NMI. 3845 */ 3846 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3847 3848 if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion) 3849 return; /* IRET will cause a vm exit */ 3850 3851 /* 3852 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3853 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3854 * KVM can't intercept and single-step IRET to detect when NMIs are 3855 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3856 * 3857 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3858 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3859 * supported NAEs in the GHCB protocol. 3860 */ 3861 if (sev_es_guest(vcpu->kvm)) 3862 return; 3863 3864 if (!gif_set(svm)) { 3865 if (vgif) 3866 svm_set_intercept(svm, INTERCEPT_STGI); 3867 return; /* STGI will cause a vm exit */ 3868 } 3869 3870 /* 3871 * Something prevents NMI from been injected. Single step over possible 3872 * problem (IRET or exception injection or interrupt shadow) 3873 */ 3874 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3875 svm->nmi_singlestep = true; 3876 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3877 } 3878 3879 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3880 { 3881 struct vcpu_svm *svm = to_svm(vcpu); 3882 3883 /* 3884 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3885 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3886 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3887 */ 3888 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3889 3890 /* 3891 * Flush only the current ASID even if the TLB flush was invoked via 3892 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3893 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3894 * unconditionally does a TLB flush on both nested VM-Enter and nested 3895 * VM-Exit (via kvm_mmu_reset_context()). 3896 */ 3897 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3898 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3899 else 3900 svm->current_vmcb->asid_generation--; 3901 } 3902 3903 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3904 { 3905 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3906 3907 /* 3908 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3909 * flush the NPT mappings via hypercall as flushing the ASID only 3910 * affects virtual to physical mappings, it does not invalidate guest 3911 * physical to host physical mappings. 3912 */ 3913 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3914 hyperv_flush_guest_mapping(root_tdp); 3915 3916 svm_flush_tlb_asid(vcpu); 3917 } 3918 3919 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3920 { 3921 /* 3922 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3923 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3924 * a "regular" remote flush. Reaching this point means either there's 3925 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3926 * which might be fatal to the guest. Yell, but try to recover. 3927 */ 3928 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3929 hv_flush_remote_tlbs(vcpu->kvm); 3930 3931 svm_flush_tlb_asid(vcpu); 3932 } 3933 3934 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3935 { 3936 struct vcpu_svm *svm = to_svm(vcpu); 3937 3938 invlpga(gva, svm->vmcb->control.asid); 3939 } 3940 3941 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3942 { 3943 struct vcpu_svm *svm = to_svm(vcpu); 3944 3945 if (nested_svm_virtualize_tpr(vcpu)) 3946 return; 3947 3948 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3949 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3950 kvm_set_cr8(vcpu, cr8); 3951 } 3952 } 3953 3954 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3955 { 3956 struct vcpu_svm *svm = to_svm(vcpu); 3957 u64 cr8; 3958 3959 if (nested_svm_virtualize_tpr(vcpu) || 3960 kvm_vcpu_apicv_active(vcpu)) 3961 return; 3962 3963 cr8 = kvm_get_cr8(vcpu); 3964 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3965 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3966 } 3967 3968 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3969 int type) 3970 { 3971 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3972 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3973 struct vcpu_svm *svm = to_svm(vcpu); 3974 3975 /* 3976 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3977 * associated with the original soft exception/interrupt. next_rip is 3978 * cleared on all exits that can occur while vectoring an event, so KVM 3979 * needs to manually set next_rip for re-injection. Unlike the !nrips 3980 * case below, this needs to be done if and only if KVM is re-injecting 3981 * the same event, i.e. if the event is a soft exception/interrupt, 3982 * otherwise next_rip is unused on VMRUN. 3983 */ 3984 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 3985 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 3986 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 3987 /* 3988 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 3989 * injecting the soft exception/interrupt. That advancement needs to 3990 * be unwound if vectoring didn't complete. Note, the new event may 3991 * not be the injected event, e.g. if KVM injected an INTn, the INTn 3992 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 3993 * be the reported vectored event, but RIP still needs to be unwound. 3994 */ 3995 else if (!nrips && (is_soft || is_exception) && 3996 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 3997 kvm_rip_write(vcpu, svm->soft_int_old_rip); 3998 } 3999 4000 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4001 { 4002 struct vcpu_svm *svm = to_svm(vcpu); 4003 u8 vector; 4004 int type; 4005 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4006 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4007 bool soft_int_injected = svm->soft_int_injected; 4008 4009 svm->nmi_l1_to_l2 = false; 4010 svm->soft_int_injected = false; 4011 4012 /* 4013 * If we've made progress since setting awaiting_iret_completion, we've 4014 * executed an IRET and can allow NMI injection. 4015 */ 4016 if (svm->awaiting_iret_completion && 4017 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4018 svm->awaiting_iret_completion = false; 4019 svm->nmi_masked = false; 4020 kvm_make_request(KVM_REQ_EVENT, vcpu); 4021 } 4022 4023 vcpu->arch.nmi_injected = false; 4024 kvm_clear_exception_queue(vcpu); 4025 kvm_clear_interrupt_queue(vcpu); 4026 4027 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4028 return; 4029 4030 kvm_make_request(KVM_REQ_EVENT, vcpu); 4031 4032 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4033 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4034 4035 if (soft_int_injected) 4036 svm_complete_soft_interrupt(vcpu, vector, type); 4037 4038 switch (type) { 4039 case SVM_EXITINTINFO_TYPE_NMI: 4040 vcpu->arch.nmi_injected = true; 4041 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4042 break; 4043 case SVM_EXITINTINFO_TYPE_EXEPT: 4044 /* 4045 * Never re-inject a #VC exception. 4046 */ 4047 if (vector == X86_TRAP_VC) 4048 break; 4049 4050 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4051 u32 err = svm->vmcb->control.exit_int_info_err; 4052 kvm_requeue_exception_e(vcpu, vector, err); 4053 4054 } else 4055 kvm_requeue_exception(vcpu, vector); 4056 break; 4057 case SVM_EXITINTINFO_TYPE_INTR: 4058 kvm_queue_interrupt(vcpu, vector, false); 4059 break; 4060 case SVM_EXITINTINFO_TYPE_SOFT: 4061 kvm_queue_interrupt(vcpu, vector, true); 4062 break; 4063 default: 4064 break; 4065 } 4066 4067 } 4068 4069 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4070 { 4071 struct vcpu_svm *svm = to_svm(vcpu); 4072 struct vmcb_control_area *control = &svm->vmcb->control; 4073 4074 control->exit_int_info = control->event_inj; 4075 control->exit_int_info_err = control->event_inj_err; 4076 control->event_inj = 0; 4077 svm_complete_interrupts(vcpu); 4078 } 4079 4080 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4081 { 4082 return 1; 4083 } 4084 4085 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4086 { 4087 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4088 to_svm(vcpu)->vmcb->control.exit_info_1) 4089 return handle_fastpath_set_msr_irqoff(vcpu); 4090 4091 return EXIT_FASTPATH_NONE; 4092 } 4093 4094 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4095 { 4096 struct vcpu_svm *svm = to_svm(vcpu); 4097 4098 guest_state_enter_irqoff(); 4099 4100 amd_clear_divider(); 4101 4102 if (sev_es_guest(vcpu->kvm)) 4103 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4104 else 4105 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4106 4107 guest_state_exit_irqoff(); 4108 } 4109 4110 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 4111 { 4112 struct vcpu_svm *svm = to_svm(vcpu); 4113 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4114 4115 trace_kvm_entry(vcpu); 4116 4117 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4118 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4119 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4120 4121 /* 4122 * Disable singlestep if we're injecting an interrupt/exception. 4123 * We don't want our modified rflags to be pushed on the stack where 4124 * we might not be able to easily reset them if we disabled NMI 4125 * singlestep later. 4126 */ 4127 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4128 /* 4129 * Event injection happens before external interrupts cause a 4130 * vmexit and interrupts are disabled here, so smp_send_reschedule 4131 * is enough to force an immediate vmexit. 4132 */ 4133 disable_nmi_singlestep(svm); 4134 smp_send_reschedule(vcpu->cpu); 4135 } 4136 4137 pre_svm_run(vcpu); 4138 4139 sync_lapic_to_cr8(vcpu); 4140 4141 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4142 svm->vmcb->control.asid = svm->asid; 4143 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4144 } 4145 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4146 4147 svm_hv_update_vp_id(svm->vmcb, vcpu); 4148 4149 /* 4150 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4151 * of a #DB. 4152 */ 4153 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4154 svm_set_dr6(svm, vcpu->arch.dr6); 4155 else 4156 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4157 4158 clgi(); 4159 kvm_load_guest_xsave_state(vcpu); 4160 4161 kvm_wait_lapic_expire(vcpu); 4162 4163 /* 4164 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4165 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4166 * is no need to worry about the conditional branch over the wrmsr 4167 * being speculatively taken. 4168 */ 4169 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4170 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4171 4172 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4173 4174 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4175 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4176 4177 if (!sev_es_guest(vcpu->kvm)) { 4178 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4179 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4180 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4181 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4182 } 4183 vcpu->arch.regs_dirty = 0; 4184 4185 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4186 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4187 4188 kvm_load_host_xsave_state(vcpu); 4189 stgi(); 4190 4191 /* Any pending NMI will happen here */ 4192 4193 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4194 kvm_after_interrupt(vcpu); 4195 4196 sync_cr8_to_lapic(vcpu); 4197 4198 svm->next_rip = 0; 4199 if (is_guest_mode(vcpu)) { 4200 nested_sync_control_from_vmcb02(svm); 4201 4202 /* Track VMRUNs that have made past consistency checking */ 4203 if (svm->nested.nested_run_pending && 4204 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4205 ++vcpu->stat.nested_run; 4206 4207 svm->nested.nested_run_pending = 0; 4208 } 4209 4210 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4211 vmcb_mark_all_clean(svm->vmcb); 4212 4213 /* if exit due to PF check for async PF */ 4214 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4215 vcpu->arch.apf.host_apf_flags = 4216 kvm_read_and_reset_apf_flags(); 4217 4218 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4219 4220 /* 4221 * We need to handle MC intercepts here before the vcpu has a chance to 4222 * change the physical cpu 4223 */ 4224 if (unlikely(svm->vmcb->control.exit_code == 4225 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4226 svm_handle_mce(vcpu); 4227 4228 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4229 4230 svm_complete_interrupts(vcpu); 4231 4232 if (is_guest_mode(vcpu)) 4233 return EXIT_FASTPATH_NONE; 4234 4235 return svm_exit_handlers_fastpath(vcpu); 4236 } 4237 4238 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4239 int root_level) 4240 { 4241 struct vcpu_svm *svm = to_svm(vcpu); 4242 unsigned long cr3; 4243 4244 if (npt_enabled) { 4245 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4246 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4247 4248 hv_track_root_tdp(vcpu, root_hpa); 4249 4250 cr3 = vcpu->arch.cr3; 4251 } else if (root_level >= PT64_ROOT_4LEVEL) { 4252 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4253 } else { 4254 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4255 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4256 cr3 = root_hpa; 4257 } 4258 4259 svm->vmcb->save.cr3 = cr3; 4260 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4261 } 4262 4263 static void 4264 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4265 { 4266 /* 4267 * Patch in the VMMCALL instruction: 4268 */ 4269 hypercall[0] = 0x0f; 4270 hypercall[1] = 0x01; 4271 hypercall[2] = 0xd9; 4272 } 4273 4274 /* 4275 * The kvm parameter can be NULL (module initialization, or invocation before 4276 * VM creation). Be sure to check the kvm parameter before using it. 4277 */ 4278 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4279 { 4280 switch (index) { 4281 case MSR_IA32_MCG_EXT_CTL: 4282 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4283 return false; 4284 case MSR_IA32_SMBASE: 4285 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4286 return false; 4287 /* SEV-ES guests do not support SMM, so report false */ 4288 if (kvm && sev_es_guest(kvm)) 4289 return false; 4290 break; 4291 default: 4292 break; 4293 } 4294 4295 return true; 4296 } 4297 4298 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4299 { 4300 struct vcpu_svm *svm = to_svm(vcpu); 4301 4302 /* 4303 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4304 * can only disable all variants of by disallowing CR4.OSXSAVE from 4305 * being set. As a result, if the host has XSAVE and XSAVES, and the 4306 * guest has XSAVE enabled, the guest can execute XSAVES without 4307 * faulting. Treat XSAVES as enabled in this case regardless of 4308 * whether it's advertised to the guest so that KVM context switches 4309 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4310 * the guest read/write access to the host's XSS. 4311 */ 4312 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4313 boot_cpu_has(X86_FEATURE_XSAVES) && 4314 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4315 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4316 4317 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4318 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4319 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4320 4321 /* 4322 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that 4323 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4324 * SVM on Intel is bonkers and extremely unlikely to work). 4325 */ 4326 if (!guest_cpuid_is_intel(vcpu)) 4327 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4328 4329 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4330 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4331 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4332 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4333 4334 svm_recalc_instruction_intercepts(vcpu, svm); 4335 4336 if (boot_cpu_has(X86_FEATURE_IBPB)) 4337 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4338 !!guest_has_pred_cmd_msr(vcpu)); 4339 4340 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4341 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4342 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4343 4344 if (sev_guest(vcpu->kvm)) 4345 sev_vcpu_after_set_cpuid(svm); 4346 4347 init_vmcb_after_set_cpuid(vcpu); 4348 } 4349 4350 static bool svm_has_wbinvd_exit(void) 4351 { 4352 return true; 4353 } 4354 4355 #define PRE_EX(exit) { .exit_code = (exit), \ 4356 .stage = X86_ICPT_PRE_EXCEPT, } 4357 #define POST_EX(exit) { .exit_code = (exit), \ 4358 .stage = X86_ICPT_POST_EXCEPT, } 4359 #define POST_MEM(exit) { .exit_code = (exit), \ 4360 .stage = X86_ICPT_POST_MEMACCESS, } 4361 4362 static const struct __x86_intercept { 4363 u32 exit_code; 4364 enum x86_intercept_stage stage; 4365 } x86_intercept_map[] = { 4366 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4367 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4368 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4369 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4370 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4371 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4372 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4373 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4374 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4375 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4376 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4377 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4378 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4379 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4380 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4381 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4382 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4383 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4384 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4385 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4386 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4387 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4388 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4389 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4390 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4391 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4392 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4393 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4394 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4395 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4396 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4397 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4398 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4399 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4400 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4401 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4402 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4403 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4404 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4405 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4406 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4407 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4408 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4409 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4410 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4411 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4412 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4413 }; 4414 4415 #undef PRE_EX 4416 #undef POST_EX 4417 #undef POST_MEM 4418 4419 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4420 struct x86_instruction_info *info, 4421 enum x86_intercept_stage stage, 4422 struct x86_exception *exception) 4423 { 4424 struct vcpu_svm *svm = to_svm(vcpu); 4425 int vmexit, ret = X86EMUL_CONTINUE; 4426 struct __x86_intercept icpt_info; 4427 struct vmcb *vmcb = svm->vmcb; 4428 4429 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4430 goto out; 4431 4432 icpt_info = x86_intercept_map[info->intercept]; 4433 4434 if (stage != icpt_info.stage) 4435 goto out; 4436 4437 switch (icpt_info.exit_code) { 4438 case SVM_EXIT_READ_CR0: 4439 if (info->intercept == x86_intercept_cr_read) 4440 icpt_info.exit_code += info->modrm_reg; 4441 break; 4442 case SVM_EXIT_WRITE_CR0: { 4443 unsigned long cr0, val; 4444 4445 if (info->intercept == x86_intercept_cr_write) 4446 icpt_info.exit_code += info->modrm_reg; 4447 4448 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4449 info->intercept == x86_intercept_clts) 4450 break; 4451 4452 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4453 INTERCEPT_SELECTIVE_CR0))) 4454 break; 4455 4456 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4457 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4458 4459 if (info->intercept == x86_intercept_lmsw) { 4460 cr0 &= 0xfUL; 4461 val &= 0xfUL; 4462 /* lmsw can't clear PE - catch this here */ 4463 if (cr0 & X86_CR0_PE) 4464 val |= X86_CR0_PE; 4465 } 4466 4467 if (cr0 ^ val) 4468 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4469 4470 break; 4471 } 4472 case SVM_EXIT_READ_DR0: 4473 case SVM_EXIT_WRITE_DR0: 4474 icpt_info.exit_code += info->modrm_reg; 4475 break; 4476 case SVM_EXIT_MSR: 4477 if (info->intercept == x86_intercept_wrmsr) 4478 vmcb->control.exit_info_1 = 1; 4479 else 4480 vmcb->control.exit_info_1 = 0; 4481 break; 4482 case SVM_EXIT_PAUSE: 4483 /* 4484 * We get this for NOP only, but pause 4485 * is rep not, check this here 4486 */ 4487 if (info->rep_prefix != REPE_PREFIX) 4488 goto out; 4489 break; 4490 case SVM_EXIT_IOIO: { 4491 u64 exit_info; 4492 u32 bytes; 4493 4494 if (info->intercept == x86_intercept_in || 4495 info->intercept == x86_intercept_ins) { 4496 exit_info = ((info->src_val & 0xffff) << 16) | 4497 SVM_IOIO_TYPE_MASK; 4498 bytes = info->dst_bytes; 4499 } else { 4500 exit_info = (info->dst_val & 0xffff) << 16; 4501 bytes = info->src_bytes; 4502 } 4503 4504 if (info->intercept == x86_intercept_outs || 4505 info->intercept == x86_intercept_ins) 4506 exit_info |= SVM_IOIO_STR_MASK; 4507 4508 if (info->rep_prefix) 4509 exit_info |= SVM_IOIO_REP_MASK; 4510 4511 bytes = min(bytes, 4u); 4512 4513 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4514 4515 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4516 4517 vmcb->control.exit_info_1 = exit_info; 4518 vmcb->control.exit_info_2 = info->next_rip; 4519 4520 break; 4521 } 4522 default: 4523 break; 4524 } 4525 4526 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4527 if (static_cpu_has(X86_FEATURE_NRIPS)) 4528 vmcb->control.next_rip = info->next_rip; 4529 vmcb->control.exit_code = icpt_info.exit_code; 4530 vmexit = nested_svm_exit_handled(svm); 4531 4532 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4533 : X86EMUL_CONTINUE; 4534 4535 out: 4536 return ret; 4537 } 4538 4539 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4540 { 4541 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4542 vcpu->arch.at_instruction_boundary = true; 4543 } 4544 4545 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4546 { 4547 if (!kvm_pause_in_guest(vcpu->kvm)) 4548 shrink_ple_window(vcpu); 4549 } 4550 4551 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4552 { 4553 /* [63:9] are reserved. */ 4554 vcpu->arch.mcg_cap &= 0x1ff; 4555 } 4556 4557 #ifdef CONFIG_KVM_SMM 4558 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4559 { 4560 struct vcpu_svm *svm = to_svm(vcpu); 4561 4562 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4563 if (!gif_set(svm)) 4564 return true; 4565 4566 return is_smm(vcpu); 4567 } 4568 4569 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4570 { 4571 struct vcpu_svm *svm = to_svm(vcpu); 4572 if (svm->nested.nested_run_pending) 4573 return -EBUSY; 4574 4575 if (svm_smi_blocked(vcpu)) 4576 return 0; 4577 4578 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4579 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4580 return -EBUSY; 4581 4582 return 1; 4583 } 4584 4585 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4586 { 4587 struct vcpu_svm *svm = to_svm(vcpu); 4588 struct kvm_host_map map_save; 4589 int ret; 4590 4591 if (!is_guest_mode(vcpu)) 4592 return 0; 4593 4594 /* 4595 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4596 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4597 */ 4598 4599 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4600 return 1; 4601 4602 smram->smram64.svm_guest_flag = 1; 4603 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4604 4605 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4606 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4607 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4608 4609 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4610 if (ret) 4611 return ret; 4612 4613 /* 4614 * KVM uses VMCB01 to store L1 host state while L2 runs but 4615 * VMCB01 is going to be used during SMM and thus the state will 4616 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4617 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4618 * format of the area is identical to guest save area offsetted 4619 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4620 * within 'struct vmcb'). Note: HSAVE area may also be used by 4621 * L1 hypervisor to save additional host context (e.g. KVM does 4622 * that, see svm_prepare_switch_to_guest()) which must be 4623 * preserved. 4624 */ 4625 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4626 return 1; 4627 4628 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4629 4630 svm_copy_vmrun_state(map_save.hva + 0x400, 4631 &svm->vmcb01.ptr->save); 4632 4633 kvm_vcpu_unmap(vcpu, &map_save, true); 4634 return 0; 4635 } 4636 4637 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4638 { 4639 struct vcpu_svm *svm = to_svm(vcpu); 4640 struct kvm_host_map map, map_save; 4641 struct vmcb *vmcb12; 4642 int ret; 4643 4644 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4645 4646 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4647 return 0; 4648 4649 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4650 if (!smram64->svm_guest_flag) 4651 return 0; 4652 4653 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4654 return 1; 4655 4656 if (!(smram64->efer & EFER_SVME)) 4657 return 1; 4658 4659 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4660 return 1; 4661 4662 ret = 1; 4663 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4664 goto unmap_map; 4665 4666 if (svm_allocate_nested(svm)) 4667 goto unmap_save; 4668 4669 /* 4670 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4671 * used during SMM (see svm_enter_smm()) 4672 */ 4673 4674 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4675 4676 /* 4677 * Enter the nested guest now 4678 */ 4679 4680 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4681 4682 vmcb12 = map.hva; 4683 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4684 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4685 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4686 4687 if (ret) 4688 goto unmap_save; 4689 4690 svm->nested.nested_run_pending = 1; 4691 4692 unmap_save: 4693 kvm_vcpu_unmap(vcpu, &map_save, true); 4694 unmap_map: 4695 kvm_vcpu_unmap(vcpu, &map, true); 4696 return ret; 4697 } 4698 4699 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4700 { 4701 struct vcpu_svm *svm = to_svm(vcpu); 4702 4703 if (!gif_set(svm)) { 4704 if (vgif) 4705 svm_set_intercept(svm, INTERCEPT_STGI); 4706 /* STGI will cause a vm exit */ 4707 } else { 4708 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4709 } 4710 } 4711 #endif 4712 4713 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4714 void *insn, int insn_len) 4715 { 4716 bool smep, smap, is_user; 4717 u64 error_code; 4718 4719 /* Emulation is always possible when KVM has access to all guest state. */ 4720 if (!sev_guest(vcpu->kvm)) 4721 return X86EMUL_CONTINUE; 4722 4723 /* #UD and #GP should never be intercepted for SEV guests. */ 4724 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4725 EMULTYPE_TRAP_UD_FORCED | 4726 EMULTYPE_VMWARE_GP)); 4727 4728 /* 4729 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4730 * to guest register state. 4731 */ 4732 if (sev_es_guest(vcpu->kvm)) 4733 return X86EMUL_RETRY_INSTR; 4734 4735 /* 4736 * Emulation is possible if the instruction is already decoded, e.g. 4737 * when completing I/O after returning from userspace. 4738 */ 4739 if (emul_type & EMULTYPE_NO_DECODE) 4740 return X86EMUL_CONTINUE; 4741 4742 /* 4743 * Emulation is possible for SEV guests if and only if a prefilled 4744 * buffer containing the bytes of the intercepted instruction is 4745 * available. SEV guest memory is encrypted with a guest specific key 4746 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4747 * decode garbage. 4748 * 4749 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4750 * KVM reached this point without an instruction buffer. In practice, 4751 * this path should never be hit by a well-behaved guest, e.g. KVM 4752 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4753 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4754 * access, and needs to be handled by KVM to avoid putting the guest 4755 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4756 * its the least awful option given lack of insight into the guest. 4757 * 4758 * If KVM is trying to skip an instruction, simply resume the guest. 4759 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4760 * will attempt to re-inject the INT3/INTO and skip the instruction. 4761 * In that scenario, retrying the INT3/INTO and hoping the guest will 4762 * make forward progress is the only option that has a chance of 4763 * success (and in practice it will work the vast majority of the time). 4764 */ 4765 if (unlikely(!insn)) { 4766 if (emul_type & EMULTYPE_SKIP) 4767 return X86EMUL_UNHANDLEABLE; 4768 4769 kvm_queue_exception(vcpu, UD_VECTOR); 4770 return X86EMUL_PROPAGATE_FAULT; 4771 } 4772 4773 /* 4774 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4775 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4776 * the faulting instruction because the code fetch itself faulted, e.g. 4777 * the guest attempted to fetch from emulated MMIO or a guest page 4778 * table used to translate CS:RIP resides in emulated MMIO. 4779 */ 4780 if (likely(insn_len)) 4781 return X86EMUL_CONTINUE; 4782 4783 /* 4784 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4785 * 4786 * Errata: 4787 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4788 * possible that CPU microcode implementing DecodeAssist will fail to 4789 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4790 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4791 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4792 * gives up and does not fill the instruction bytes buffer. 4793 * 4794 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4795 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4796 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4797 * GuestIntrBytes field of the VMCB. 4798 * 4799 * This does _not_ mean that the erratum has been encountered, as the 4800 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4801 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4802 * encountered a reserved/not-present #PF. 4803 * 4804 * To hit the erratum, the following conditions must be true: 4805 * 1. CR4.SMAP=1 (obviously). 4806 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4807 * have been hit as the guest would have encountered a SMEP 4808 * violation #PF, not a #NPF. 4809 * 3. The #NPF is not due to a code fetch, in which case failure to 4810 * retrieve the instruction bytes is legitimate (see abvoe). 4811 * 4812 * In addition, don't apply the erratum workaround if the #NPF occurred 4813 * while translating guest page tables (see below). 4814 */ 4815 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4816 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4817 goto resume_guest; 4818 4819 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4820 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4821 is_user = svm_get_cpl(vcpu) == 3; 4822 if (smap && (!smep || is_user)) { 4823 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4824 4825 /* 4826 * If the fault occurred in userspace, arbitrarily inject #GP 4827 * to avoid killing the guest and to hopefully avoid confusing 4828 * the guest kernel too much, e.g. injecting #PF would not be 4829 * coherent with respect to the guest's page tables. Request 4830 * triple fault if the fault occurred in the kernel as there's 4831 * no fault that KVM can inject without confusing the guest. 4832 * In practice, the triple fault is moot as no sane SEV kernel 4833 * will execute from user memory while also running with SMAP=1. 4834 */ 4835 if (is_user) 4836 kvm_inject_gp(vcpu, 0); 4837 else 4838 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4839 return X86EMUL_PROPAGATE_FAULT; 4840 } 4841 4842 resume_guest: 4843 /* 4844 * If the erratum was not hit, simply resume the guest and let it fault 4845 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4846 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4847 * userspace will kill the guest, and letting the emulator read garbage 4848 * will yield random behavior and potentially corrupt the guest. 4849 * 4850 * Simply resuming the guest is technically not a violation of the SEV 4851 * architecture. AMD's APM states that all code fetches and page table 4852 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4853 * APM also states that encrypted accesses to MMIO are "ignored", but 4854 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4855 * the guest spin is technically "ignoring" the access. 4856 */ 4857 return X86EMUL_RETRY_INSTR; 4858 } 4859 4860 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4861 { 4862 struct vcpu_svm *svm = to_svm(vcpu); 4863 4864 return !gif_set(svm); 4865 } 4866 4867 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4868 { 4869 if (!sev_es_guest(vcpu->kvm)) 4870 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4871 4872 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4873 } 4874 4875 static void svm_vm_destroy(struct kvm *kvm) 4876 { 4877 avic_vm_destroy(kvm); 4878 sev_vm_destroy(kvm); 4879 } 4880 4881 static int svm_vm_init(struct kvm *kvm) 4882 { 4883 if (!pause_filter_count || !pause_filter_thresh) 4884 kvm->arch.pause_in_guest = true; 4885 4886 if (enable_apicv) { 4887 int ret = avic_vm_init(kvm); 4888 if (ret) 4889 return ret; 4890 } 4891 4892 return 0; 4893 } 4894 4895 static struct kvm_x86_ops svm_x86_ops __initdata = { 4896 .name = KBUILD_MODNAME, 4897 4898 .check_processor_compatibility = svm_check_processor_compat, 4899 4900 .hardware_unsetup = svm_hardware_unsetup, 4901 .hardware_enable = svm_hardware_enable, 4902 .hardware_disable = svm_hardware_disable, 4903 .has_emulated_msr = svm_has_emulated_msr, 4904 4905 .vcpu_create = svm_vcpu_create, 4906 .vcpu_free = svm_vcpu_free, 4907 .vcpu_reset = svm_vcpu_reset, 4908 4909 .vm_size = sizeof(struct kvm_svm), 4910 .vm_init = svm_vm_init, 4911 .vm_destroy = svm_vm_destroy, 4912 4913 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4914 .vcpu_load = svm_vcpu_load, 4915 .vcpu_put = svm_vcpu_put, 4916 .vcpu_blocking = avic_vcpu_blocking, 4917 .vcpu_unblocking = avic_vcpu_unblocking, 4918 4919 .update_exception_bitmap = svm_update_exception_bitmap, 4920 .get_msr_feature = svm_get_msr_feature, 4921 .get_msr = svm_get_msr, 4922 .set_msr = svm_set_msr, 4923 .get_segment_base = svm_get_segment_base, 4924 .get_segment = svm_get_segment, 4925 .set_segment = svm_set_segment, 4926 .get_cpl = svm_get_cpl, 4927 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4928 .is_valid_cr0 = svm_is_valid_cr0, 4929 .set_cr0 = svm_set_cr0, 4930 .post_set_cr3 = sev_post_set_cr3, 4931 .is_valid_cr4 = svm_is_valid_cr4, 4932 .set_cr4 = svm_set_cr4, 4933 .set_efer = svm_set_efer, 4934 .get_idt = svm_get_idt, 4935 .set_idt = svm_set_idt, 4936 .get_gdt = svm_get_gdt, 4937 .set_gdt = svm_set_gdt, 4938 .set_dr7 = svm_set_dr7, 4939 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4940 .cache_reg = svm_cache_reg, 4941 .get_rflags = svm_get_rflags, 4942 .set_rflags = svm_set_rflags, 4943 .get_if_flag = svm_get_if_flag, 4944 4945 .flush_tlb_all = svm_flush_tlb_all, 4946 .flush_tlb_current = svm_flush_tlb_current, 4947 .flush_tlb_gva = svm_flush_tlb_gva, 4948 .flush_tlb_guest = svm_flush_tlb_asid, 4949 4950 .vcpu_pre_run = svm_vcpu_pre_run, 4951 .vcpu_run = svm_vcpu_run, 4952 .handle_exit = svm_handle_exit, 4953 .skip_emulated_instruction = svm_skip_emulated_instruction, 4954 .update_emulated_instruction = NULL, 4955 .set_interrupt_shadow = svm_set_interrupt_shadow, 4956 .get_interrupt_shadow = svm_get_interrupt_shadow, 4957 .patch_hypercall = svm_patch_hypercall, 4958 .inject_irq = svm_inject_irq, 4959 .inject_nmi = svm_inject_nmi, 4960 .is_vnmi_pending = svm_is_vnmi_pending, 4961 .set_vnmi_pending = svm_set_vnmi_pending, 4962 .inject_exception = svm_inject_exception, 4963 .cancel_injection = svm_cancel_injection, 4964 .interrupt_allowed = svm_interrupt_allowed, 4965 .nmi_allowed = svm_nmi_allowed, 4966 .get_nmi_mask = svm_get_nmi_mask, 4967 .set_nmi_mask = svm_set_nmi_mask, 4968 .enable_nmi_window = svm_enable_nmi_window, 4969 .enable_irq_window = svm_enable_irq_window, 4970 .update_cr8_intercept = svm_update_cr8_intercept, 4971 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 4972 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4973 .apicv_post_state_restore = avic_apicv_post_state_restore, 4974 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 4975 4976 .get_exit_info = svm_get_exit_info, 4977 4978 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4979 4980 .has_wbinvd_exit = svm_has_wbinvd_exit, 4981 4982 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4983 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4984 .write_tsc_offset = svm_write_tsc_offset, 4985 .write_tsc_multiplier = svm_write_tsc_multiplier, 4986 4987 .load_mmu_pgd = svm_load_mmu_pgd, 4988 4989 .check_intercept = svm_check_intercept, 4990 .handle_exit_irqoff = svm_handle_exit_irqoff, 4991 4992 .request_immediate_exit = __kvm_request_immediate_exit, 4993 4994 .sched_in = svm_sched_in, 4995 4996 .nested_ops = &svm_nested_ops, 4997 4998 .deliver_interrupt = svm_deliver_interrupt, 4999 .pi_update_irte = avic_pi_update_irte, 5000 .setup_mce = svm_setup_mce, 5001 5002 #ifdef CONFIG_KVM_SMM 5003 .smi_allowed = svm_smi_allowed, 5004 .enter_smm = svm_enter_smm, 5005 .leave_smm = svm_leave_smm, 5006 .enable_smi_window = svm_enable_smi_window, 5007 #endif 5008 5009 .mem_enc_ioctl = sev_mem_enc_ioctl, 5010 .mem_enc_register_region = sev_mem_enc_register_region, 5011 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5012 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5013 5014 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5015 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5016 5017 .check_emulate_instruction = svm_check_emulate_instruction, 5018 5019 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5020 5021 .msr_filter_changed = svm_msr_filter_changed, 5022 .complete_emulated_msr = svm_complete_emulated_msr, 5023 5024 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5025 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5026 }; 5027 5028 /* 5029 * The default MMIO mask is a single bit (excluding the present bit), 5030 * which could conflict with the memory encryption bit. Check for 5031 * memory encryption support and override the default MMIO mask if 5032 * memory encryption is enabled. 5033 */ 5034 static __init void svm_adjust_mmio_mask(void) 5035 { 5036 unsigned int enc_bit, mask_bit; 5037 u64 msr, mask; 5038 5039 /* If there is no memory encryption support, use existing mask */ 5040 if (cpuid_eax(0x80000000) < 0x8000001f) 5041 return; 5042 5043 /* If memory encryption is not enabled, use existing mask */ 5044 rdmsrl(MSR_AMD64_SYSCFG, msr); 5045 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5046 return; 5047 5048 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5049 mask_bit = boot_cpu_data.x86_phys_bits; 5050 5051 /* Increment the mask bit if it is the same as the encryption bit */ 5052 if (enc_bit == mask_bit) 5053 mask_bit++; 5054 5055 /* 5056 * If the mask bit location is below 52, then some bits above the 5057 * physical addressing limit will always be reserved, so use the 5058 * rsvd_bits() function to generate the mask. This mask, along with 5059 * the present bit, will be used to generate a page fault with 5060 * PFER.RSV = 1. 5061 * 5062 * If the mask bit location is 52 (or above), then clear the mask. 5063 */ 5064 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5065 5066 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5067 } 5068 5069 static __init void svm_set_cpu_caps(void) 5070 { 5071 kvm_set_cpu_caps(); 5072 5073 kvm_caps.supported_perf_cap = 0; 5074 kvm_caps.supported_xss = 0; 5075 5076 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5077 if (nested) { 5078 kvm_cpu_cap_set(X86_FEATURE_SVM); 5079 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5080 5081 if (nrips) 5082 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5083 5084 if (npt_enabled) 5085 kvm_cpu_cap_set(X86_FEATURE_NPT); 5086 5087 if (tsc_scaling) 5088 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5089 5090 if (vls) 5091 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5092 if (lbrv) 5093 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5094 5095 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5096 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5097 5098 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5099 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5100 5101 if (vgif) 5102 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5103 5104 if (vnmi) 5105 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5106 5107 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5108 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5109 } 5110 5111 /* CPUID 0x80000008 */ 5112 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5113 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5114 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5115 5116 if (enable_pmu) { 5117 /* 5118 * Enumerate support for PERFCTR_CORE if and only if KVM has 5119 * access to enough counters to virtualize "core" support, 5120 * otherwise limit vPMU support to the legacy number of counters. 5121 */ 5122 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5123 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5124 kvm_pmu_cap.num_counters_gp); 5125 else 5126 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5127 5128 if (kvm_pmu_cap.version != 2 || 5129 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5130 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5131 } 5132 5133 /* CPUID 0x8000001F (SME/SEV features) */ 5134 sev_set_cpu_caps(); 5135 } 5136 5137 static __init int svm_hardware_setup(void) 5138 { 5139 int cpu; 5140 struct page *iopm_pages; 5141 void *iopm_va; 5142 int r; 5143 unsigned int order = get_order(IOPM_SIZE); 5144 5145 /* 5146 * NX is required for shadow paging and for NPT if the NX huge pages 5147 * mitigation is enabled. 5148 */ 5149 if (!boot_cpu_has(X86_FEATURE_NX)) { 5150 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5151 return -EOPNOTSUPP; 5152 } 5153 kvm_enable_efer_bits(EFER_NX); 5154 5155 iopm_pages = alloc_pages(GFP_KERNEL, order); 5156 5157 if (!iopm_pages) 5158 return -ENOMEM; 5159 5160 iopm_va = page_address(iopm_pages); 5161 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5162 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5163 5164 init_msrpm_offsets(); 5165 5166 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5167 XFEATURE_MASK_BNDCSR); 5168 5169 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5170 kvm_enable_efer_bits(EFER_FFXSR); 5171 5172 if (tsc_scaling) { 5173 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5174 tsc_scaling = false; 5175 } else { 5176 pr_info("TSC scaling supported\n"); 5177 kvm_caps.has_tsc_control = true; 5178 } 5179 } 5180 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5181 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5182 5183 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5184 5185 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5186 kvm_enable_efer_bits(EFER_AUTOIBRS); 5187 5188 /* Check for pause filtering support */ 5189 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5190 pause_filter_count = 0; 5191 pause_filter_thresh = 0; 5192 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5193 pause_filter_thresh = 0; 5194 } 5195 5196 if (nested) { 5197 pr_info("Nested Virtualization enabled\n"); 5198 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5199 } 5200 5201 /* 5202 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5203 * NPT isn't supported if the host is using 2-level paging since host 5204 * CR4 is unchanged on VMRUN. 5205 */ 5206 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5207 npt_enabled = false; 5208 5209 if (!boot_cpu_has(X86_FEATURE_NPT)) 5210 npt_enabled = false; 5211 5212 /* Force VM NPT level equal to the host's paging level */ 5213 kvm_configure_mmu(npt_enabled, get_npt_level(), 5214 get_npt_level(), PG_LEVEL_1G); 5215 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5216 5217 /* Setup shadow_me_value and shadow_me_mask */ 5218 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5219 5220 svm_adjust_mmio_mask(); 5221 5222 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5223 5224 /* 5225 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5226 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5227 */ 5228 sev_hardware_setup(); 5229 5230 svm_hv_hardware_setup(); 5231 5232 for_each_possible_cpu(cpu) { 5233 r = svm_cpu_init(cpu); 5234 if (r) 5235 goto err; 5236 } 5237 5238 enable_apicv = avic = avic && avic_hardware_setup(); 5239 5240 if (!enable_apicv) { 5241 svm_x86_ops.vcpu_blocking = NULL; 5242 svm_x86_ops.vcpu_unblocking = NULL; 5243 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5244 } else if (!x2avic_enabled) { 5245 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5246 } 5247 5248 if (vls) { 5249 if (!npt_enabled || 5250 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5251 !IS_ENABLED(CONFIG_X86_64)) { 5252 vls = false; 5253 } else { 5254 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5255 } 5256 } 5257 5258 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5259 svm_gp_erratum_intercept = false; 5260 5261 if (vgif) { 5262 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5263 vgif = false; 5264 else 5265 pr_info("Virtual GIF supported\n"); 5266 } 5267 5268 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5269 if (vnmi) 5270 pr_info("Virtual NMI enabled\n"); 5271 5272 if (!vnmi) { 5273 svm_x86_ops.is_vnmi_pending = NULL; 5274 svm_x86_ops.set_vnmi_pending = NULL; 5275 } 5276 5277 5278 if (lbrv) { 5279 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5280 lbrv = false; 5281 else 5282 pr_info("LBR virtualization supported\n"); 5283 } 5284 5285 if (!enable_pmu) 5286 pr_info("PMU virtualization is disabled\n"); 5287 5288 svm_set_cpu_caps(); 5289 5290 /* 5291 * It seems that on AMD processors PTE's accessed bit is 5292 * being set by the CPU hardware before the NPF vmexit. 5293 * This is not expected behaviour and our tests fail because 5294 * of it. 5295 * A workaround here is to disable support for 5296 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5297 * In this case userspace can know if there is support using 5298 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5299 * it 5300 * If future AMD CPU models change the behaviour described above, 5301 * this variable can be changed accordingly 5302 */ 5303 allow_smaller_maxphyaddr = !npt_enabled; 5304 5305 return 0; 5306 5307 err: 5308 svm_hardware_unsetup(); 5309 return r; 5310 } 5311 5312 5313 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5314 .hardware_setup = svm_hardware_setup, 5315 5316 .runtime_ops = &svm_x86_ops, 5317 .pmu_ops = &amd_pmu_ops, 5318 }; 5319 5320 static void __svm_exit(void) 5321 { 5322 kvm_x86_vendor_exit(); 5323 5324 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5325 } 5326 5327 static int __init svm_init(void) 5328 { 5329 int r; 5330 5331 __unused_size_checks(); 5332 5333 if (!kvm_is_svm_supported()) 5334 return -EOPNOTSUPP; 5335 5336 r = kvm_x86_vendor_init(&svm_init_ops); 5337 if (r) 5338 return r; 5339 5340 cpu_emergency_register_virt_callback(svm_emergency_disable); 5341 5342 /* 5343 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5344 * exposed to userspace! 5345 */ 5346 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5347 THIS_MODULE); 5348 if (r) 5349 goto err_kvm_init; 5350 5351 return 0; 5352 5353 err_kvm_init: 5354 __svm_exit(); 5355 return r; 5356 } 5357 5358 static void __exit svm_exit(void) 5359 { 5360 kvm_exit(); 5361 __svm_exit(); 5362 } 5363 5364 module_init(svm_init) 5365 module_exit(svm_exit) 5366