xref: /linux/arch/x86/kvm/svm/svm.c (revision bea00fab2b0e5359ee88a2b127f15a35cd48872b)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44 
45 #include <trace/events/ipi.h>
46 
47 #include "trace.h"
48 
49 #include "svm.h"
50 #include "svm_ops.h"
51 
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54 
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57 
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61 	{}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65 
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68 
69 static bool erratum_383_found __read_mostly;
70 
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72 
73 /*
74  * Set osvw_len to higher value when updated Revision Guides
75  * are published and we know what the new status bits are
76  */
77 static uint64_t osvw_len = 4, osvw_status;
78 
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80 
81 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
82 
83 static const struct svm_direct_access_msrs {
84 	u32 index;   /* Index of the MSR */
85 	bool always; /* True if intercept is initially cleared */
86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87 	{ .index = MSR_STAR,				.always = true  },
88 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
89 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
90 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
91 #ifdef CONFIG_X86_64
92 	{ .index = MSR_GS_BASE,				.always = true  },
93 	{ .index = MSR_FS_BASE,				.always = true  },
94 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
95 	{ .index = MSR_LSTAR,				.always = true  },
96 	{ .index = MSR_CSTAR,				.always = true  },
97 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
98 #endif
99 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
100 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
101 	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
102 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
103 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
104 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
105 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
106 	{ .index = MSR_IA32_XSS,			.always = false },
107 	{ .index = MSR_EFER,				.always = false },
108 	{ .index = MSR_IA32_CR_PAT,			.always = false },
109 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
110 	{ .index = MSR_TSC_AUX,				.always = false },
111 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
112 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
122 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
123 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
124 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
125 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
126 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
127 
128 	/*
129 	 * Note:
130 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
131 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
132 	 * the AVIC hardware would generate GP fault. Therefore, always
133 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
134 	 */
135 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
137 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
138 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
139 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
140 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
141 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
142 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
143 	{ .index = MSR_INVALID,				.always = false },
144 };
145 
146 /*
147  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
148  * pause_filter_count: On processors that support Pause filtering(indicated
149  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
150  *	count value. On VMRUN this value is loaded into an internal counter.
151  *	Each time a pause instruction is executed, this counter is decremented
152  *	until it reaches zero at which time a #VMEXIT is generated if pause
153  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
154  *	Intercept Filtering for more details.
155  *	This also indicate if ple logic enabled.
156  *
157  * pause_filter_thresh: In addition, some processor families support advanced
158  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
159  *	the amount of time a guest is allowed to execute in a pause loop.
160  *	In this mode, a 16-bit pause filter threshold field is added in the
161  *	VMCB. The threshold value is a cycle count that is used to reset the
162  *	pause counter. As with simple pause filtering, VMRUN loads the pause
163  *	count value from VMCB into an internal counter. Then, on each pause
164  *	instruction the hardware checks the elapsed number of cycles since
165  *	the most recent pause instruction against the pause filter threshold.
166  *	If the elapsed cycle count is greater than the pause filter threshold,
167  *	then the internal pause count is reloaded from the VMCB and execution
168  *	continues. If the elapsed cycle count is less than the pause filter
169  *	threshold, then the internal pause count is decremented. If the count
170  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
171  *	triggered. If advanced pause filtering is supported and pause filter
172  *	threshold field is set to zero, the filter will operate in the simpler,
173  *	count only mode.
174  */
175 
176 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
177 module_param(pause_filter_thresh, ushort, 0444);
178 
179 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
180 module_param(pause_filter_count, ushort, 0444);
181 
182 /* Default doubles per-vcpu window every exit. */
183 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
184 module_param(pause_filter_count_grow, ushort, 0444);
185 
186 /* Default resets per-vcpu window every exit to pause_filter_count. */
187 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
188 module_param(pause_filter_count_shrink, ushort, 0444);
189 
190 /* Default is to compute the maximum so we can never overflow. */
191 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
192 module_param(pause_filter_count_max, ushort, 0444);
193 
194 /*
195  * Use nested page tables by default.  Note, NPT may get forced off by
196  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
197  */
198 bool npt_enabled = true;
199 module_param_named(npt, npt_enabled, bool, 0444);
200 
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, 0444);
204 
205 /* enable/disable Next RIP Save */
206 int nrips = true;
207 module_param(nrips, int, 0444);
208 
209 /* enable/disable Virtual VMLOAD VMSAVE */
210 static int vls = true;
211 module_param(vls, int, 0444);
212 
213 /* enable/disable Virtual GIF */
214 int vgif = true;
215 module_param(vgif, int, 0444);
216 
217 /* enable/disable LBR virtualization */
218 static int lbrv = true;
219 module_param(lbrv, int, 0444);
220 
221 static int tsc_scaling = true;
222 module_param(tsc_scaling, int, 0444);
223 
224 /*
225  * enable / disable AVIC.  Because the defaults differ for APICv
226  * support between VMX and SVM we cannot use module_param_named.
227  */
228 static bool avic;
229 module_param(avic, bool, 0444);
230 
231 bool __read_mostly dump_invalid_vmcb;
232 module_param(dump_invalid_vmcb, bool, 0644);
233 
234 
235 bool intercept_smi = true;
236 module_param(intercept_smi, bool, 0444);
237 
238 bool vnmi = true;
239 module_param(vnmi, bool, 0444);
240 
241 static bool svm_gp_erratum_intercept = true;
242 
243 static u8 rsm_ins_bytes[] = "\x0f\xaa";
244 
245 static unsigned long iopm_base;
246 
247 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
248 
249 /*
250  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
251  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
252  *
253  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
254  * defer the restoration of TSC_AUX until the CPU returns to userspace.
255  */
256 static int tsc_aux_uret_slot __read_mostly = -1;
257 
258 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
259 
260 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
261 #define MSRS_RANGE_SIZE 2048
262 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
263 
264 u32 svm_msrpm_offset(u32 msr)
265 {
266 	u32 offset;
267 	int i;
268 
269 	for (i = 0; i < NUM_MSR_MAPS; i++) {
270 		if (msr < msrpm_ranges[i] ||
271 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
272 			continue;
273 
274 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
275 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
276 
277 		/* Now we have the u8 offset - but need the u32 offset */
278 		return offset / 4;
279 	}
280 
281 	/* MSR not in any range */
282 	return MSR_INVALID;
283 }
284 
285 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
286 
287 static int get_npt_level(void)
288 {
289 #ifdef CONFIG_X86_64
290 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
291 #else
292 	return PT32E_ROOT_LEVEL;
293 #endif
294 }
295 
296 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
297 {
298 	struct vcpu_svm *svm = to_svm(vcpu);
299 	u64 old_efer = vcpu->arch.efer;
300 	vcpu->arch.efer = efer;
301 
302 	if (!npt_enabled) {
303 		/* Shadow paging assumes NX to be available.  */
304 		efer |= EFER_NX;
305 
306 		if (!(efer & EFER_LMA))
307 			efer &= ~EFER_LME;
308 	}
309 
310 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
311 		if (!(efer & EFER_SVME)) {
312 			svm_leave_nested(vcpu);
313 			svm_set_gif(svm, true);
314 			/* #GP intercept is still needed for vmware backdoor */
315 			if (!enable_vmware_backdoor)
316 				clr_exception_intercept(svm, GP_VECTOR);
317 
318 			/*
319 			 * Free the nested guest state, unless we are in SMM.
320 			 * In this case we will return to the nested guest
321 			 * as soon as we leave SMM.
322 			 */
323 			if (!is_smm(vcpu))
324 				svm_free_nested(svm);
325 
326 		} else {
327 			int ret = svm_allocate_nested(svm);
328 
329 			if (ret) {
330 				vcpu->arch.efer = old_efer;
331 				return ret;
332 			}
333 
334 			/*
335 			 * Never intercept #GP for SEV guests, KVM can't
336 			 * decrypt guest memory to workaround the erratum.
337 			 */
338 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
339 				set_exception_intercept(svm, GP_VECTOR);
340 		}
341 	}
342 
343 	svm->vmcb->save.efer = efer | EFER_SVME;
344 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
345 	return 0;
346 }
347 
348 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
349 {
350 	struct vcpu_svm *svm = to_svm(vcpu);
351 	u32 ret = 0;
352 
353 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
354 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
355 	return ret;
356 }
357 
358 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
359 {
360 	struct vcpu_svm *svm = to_svm(vcpu);
361 
362 	if (mask == 0)
363 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
364 	else
365 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
366 
367 }
368 
369 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
370 					   bool commit_side_effects)
371 {
372 	struct vcpu_svm *svm = to_svm(vcpu);
373 	unsigned long old_rflags;
374 
375 	/*
376 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
377 	 * the type of exit and the #VC handler in the guest.
378 	 */
379 	if (sev_es_guest(vcpu->kvm))
380 		goto done;
381 
382 	if (nrips && svm->vmcb->control.next_rip != 0) {
383 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
384 		svm->next_rip = svm->vmcb->control.next_rip;
385 	}
386 
387 	if (!svm->next_rip) {
388 		if (unlikely(!commit_side_effects))
389 			old_rflags = svm->vmcb->save.rflags;
390 
391 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
392 			return 0;
393 
394 		if (unlikely(!commit_side_effects))
395 			svm->vmcb->save.rflags = old_rflags;
396 	} else {
397 		kvm_rip_write(vcpu, svm->next_rip);
398 	}
399 
400 done:
401 	if (likely(commit_side_effects))
402 		svm_set_interrupt_shadow(vcpu, 0);
403 
404 	return 1;
405 }
406 
407 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
408 {
409 	return __svm_skip_emulated_instruction(vcpu, true);
410 }
411 
412 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
413 {
414 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
415 	struct vcpu_svm *svm = to_svm(vcpu);
416 
417 	/*
418 	 * Due to architectural shortcomings, the CPU doesn't always provide
419 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
420 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
421 	 * the instruction even if NextRIP is supported to acquire the next
422 	 * RIP so that it can be shoved into the NextRIP field, otherwise
423 	 * hardware will fail to advance guest RIP during event injection.
424 	 * Drop the exception/interrupt if emulation fails and effectively
425 	 * retry the instruction, it's the least awful option.  If NRIPS is
426 	 * in use, the skip must not commit any side effects such as clearing
427 	 * the interrupt shadow or RFLAGS.RF.
428 	 */
429 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
430 		return -EIO;
431 
432 	rip = kvm_rip_read(vcpu);
433 
434 	/*
435 	 * Save the injection information, even when using next_rip, as the
436 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
437 	 * doesn't complete due to a VM-Exit occurring while the CPU is
438 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
439 	 * work as there may be no backing instruction, e.g. if the event is
440 	 * being injected by L1 for L2, or if the guest is patching INT3 into
441 	 * a different instruction.
442 	 */
443 	svm->soft_int_injected = true;
444 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
445 	svm->soft_int_old_rip = old_rip;
446 	svm->soft_int_next_rip = rip;
447 
448 	if (nrips)
449 		kvm_rip_write(vcpu, old_rip);
450 
451 	if (static_cpu_has(X86_FEATURE_NRIPS))
452 		svm->vmcb->control.next_rip = rip;
453 
454 	return 0;
455 }
456 
457 static void svm_inject_exception(struct kvm_vcpu *vcpu)
458 {
459 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
460 	struct vcpu_svm *svm = to_svm(vcpu);
461 
462 	kvm_deliver_exception_payload(vcpu, ex);
463 
464 	if (kvm_exception_is_soft(ex->vector) &&
465 	    svm_update_soft_interrupt_rip(vcpu))
466 		return;
467 
468 	svm->vmcb->control.event_inj = ex->vector
469 		| SVM_EVTINJ_VALID
470 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
471 		| SVM_EVTINJ_TYPE_EXEPT;
472 	svm->vmcb->control.event_inj_err = ex->error_code;
473 }
474 
475 static void svm_init_erratum_383(void)
476 {
477 	u32 low, high;
478 	int err;
479 	u64 val;
480 
481 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
482 		return;
483 
484 	/* Use _safe variants to not break nested virtualization */
485 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
486 	if (err)
487 		return;
488 
489 	val |= (1ULL << 47);
490 
491 	low  = lower_32_bits(val);
492 	high = upper_32_bits(val);
493 
494 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
495 
496 	erratum_383_found = true;
497 }
498 
499 static void svm_init_osvw(struct kvm_vcpu *vcpu)
500 {
501 	/*
502 	 * Guests should see errata 400 and 415 as fixed (assuming that
503 	 * HLT and IO instructions are intercepted).
504 	 */
505 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
506 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
507 
508 	/*
509 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
510 	 * all osvw.status bits inside that length, including bit 0 (which is
511 	 * reserved for erratum 298), are valid. However, if host processor's
512 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
513 	 * be conservative here and therefore we tell the guest that erratum 298
514 	 * is present (because we really don't know).
515 	 */
516 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
517 		vcpu->arch.osvw.status |= 1;
518 }
519 
520 static bool __kvm_is_svm_supported(void)
521 {
522 	int cpu = smp_processor_id();
523 	struct cpuinfo_x86 *c = &cpu_data(cpu);
524 
525 	if (c->x86_vendor != X86_VENDOR_AMD &&
526 	    c->x86_vendor != X86_VENDOR_HYGON) {
527 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
528 		return false;
529 	}
530 
531 	if (!cpu_has(c, X86_FEATURE_SVM)) {
532 		pr_err("SVM not supported by CPU %d\n", cpu);
533 		return false;
534 	}
535 
536 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
537 		pr_info("KVM is unsupported when running as an SEV guest\n");
538 		return false;
539 	}
540 
541 	return true;
542 }
543 
544 static bool kvm_is_svm_supported(void)
545 {
546 	bool supported;
547 
548 	migrate_disable();
549 	supported = __kvm_is_svm_supported();
550 	migrate_enable();
551 
552 	return supported;
553 }
554 
555 static int svm_check_processor_compat(void)
556 {
557 	if (!__kvm_is_svm_supported())
558 		return -EIO;
559 
560 	return 0;
561 }
562 
563 static void __svm_write_tsc_multiplier(u64 multiplier)
564 {
565 	if (multiplier == __this_cpu_read(current_tsc_ratio))
566 		return;
567 
568 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
569 	__this_cpu_write(current_tsc_ratio, multiplier);
570 }
571 
572 static inline void kvm_cpu_svm_disable(void)
573 {
574 	uint64_t efer;
575 
576 	wrmsrl(MSR_VM_HSAVE_PA, 0);
577 	rdmsrl(MSR_EFER, efer);
578 	if (efer & EFER_SVME) {
579 		/*
580 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
581 		 * NMI aren't blocked.
582 		 */
583 		stgi();
584 		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
585 	}
586 }
587 
588 static void svm_emergency_disable(void)
589 {
590 	kvm_rebooting = true;
591 
592 	kvm_cpu_svm_disable();
593 }
594 
595 static void svm_hardware_disable(void)
596 {
597 	/* Make sure we clean up behind us */
598 	if (tsc_scaling)
599 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
600 
601 	kvm_cpu_svm_disable();
602 
603 	amd_pmu_disable_virt();
604 }
605 
606 static int svm_hardware_enable(void)
607 {
608 
609 	struct svm_cpu_data *sd;
610 	uint64_t efer;
611 	int me = raw_smp_processor_id();
612 
613 	rdmsrl(MSR_EFER, efer);
614 	if (efer & EFER_SVME)
615 		return -EBUSY;
616 
617 	sd = per_cpu_ptr(&svm_data, me);
618 	sd->asid_generation = 1;
619 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
620 	sd->next_asid = sd->max_asid + 1;
621 	sd->min_asid = max_sev_asid + 1;
622 
623 	wrmsrl(MSR_EFER, efer | EFER_SVME);
624 
625 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
626 
627 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
628 		/*
629 		 * Set the default value, even if we don't use TSC scaling
630 		 * to avoid having stale value in the msr
631 		 */
632 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
633 	}
634 
635 
636 	/*
637 	 * Get OSVW bits.
638 	 *
639 	 * Note that it is possible to have a system with mixed processor
640 	 * revisions and therefore different OSVW bits. If bits are not the same
641 	 * on different processors then choose the worst case (i.e. if erratum
642 	 * is present on one processor and not on another then assume that the
643 	 * erratum is present everywhere).
644 	 */
645 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
646 		uint64_t len, status = 0;
647 		int err;
648 
649 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
650 		if (!err)
651 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
652 						      &err);
653 
654 		if (err)
655 			osvw_status = osvw_len = 0;
656 		else {
657 			if (len < osvw_len)
658 				osvw_len = len;
659 			osvw_status |= status;
660 			osvw_status &= (1ULL << osvw_len) - 1;
661 		}
662 	} else
663 		osvw_status = osvw_len = 0;
664 
665 	svm_init_erratum_383();
666 
667 	amd_pmu_enable_virt();
668 
669 	/*
670 	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
671 	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
672 	 * Since Linux does not change the value of TSC_AUX once set, prime the
673 	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
674 	 */
675 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
676 		struct sev_es_save_area *hostsa;
677 		u32 __maybe_unused msr_hi;
678 
679 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
680 
681 		rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
682 	}
683 
684 	return 0;
685 }
686 
687 static void svm_cpu_uninit(int cpu)
688 {
689 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
690 
691 	if (!sd->save_area)
692 		return;
693 
694 	kfree(sd->sev_vmcbs);
695 	__free_page(sd->save_area);
696 	sd->save_area_pa = 0;
697 	sd->save_area = NULL;
698 }
699 
700 static int svm_cpu_init(int cpu)
701 {
702 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
703 	int ret = -ENOMEM;
704 
705 	memset(sd, 0, sizeof(struct svm_cpu_data));
706 	sd->save_area = snp_safe_alloc_page(NULL);
707 	if (!sd->save_area)
708 		return ret;
709 
710 	ret = sev_cpu_init(sd);
711 	if (ret)
712 		goto free_save_area;
713 
714 	sd->save_area_pa = __sme_page_pa(sd->save_area);
715 	return 0;
716 
717 free_save_area:
718 	__free_page(sd->save_area);
719 	sd->save_area = NULL;
720 	return ret;
721 
722 }
723 
724 static void set_dr_intercepts(struct vcpu_svm *svm)
725 {
726 	struct vmcb *vmcb = svm->vmcb01.ptr;
727 
728 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
729 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
730 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
731 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
732 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
733 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
734 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
735 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
736 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
737 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
738 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
739 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
740 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
741 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
742 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
743 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
744 
745 	recalc_intercepts(svm);
746 }
747 
748 static void clr_dr_intercepts(struct vcpu_svm *svm)
749 {
750 	struct vmcb *vmcb = svm->vmcb01.ptr;
751 
752 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
753 
754 	recalc_intercepts(svm);
755 }
756 
757 static int direct_access_msr_slot(u32 msr)
758 {
759 	u32 i;
760 
761 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
762 		if (direct_access_msrs[i].index == msr)
763 			return i;
764 
765 	return -ENOENT;
766 }
767 
768 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
769 				     int write)
770 {
771 	struct vcpu_svm *svm = to_svm(vcpu);
772 	int slot = direct_access_msr_slot(msr);
773 
774 	if (slot == -ENOENT)
775 		return;
776 
777 	/* Set the shadow bitmaps to the desired intercept states */
778 	if (read)
779 		set_bit(slot, svm->shadow_msr_intercept.read);
780 	else
781 		clear_bit(slot, svm->shadow_msr_intercept.read);
782 
783 	if (write)
784 		set_bit(slot, svm->shadow_msr_intercept.write);
785 	else
786 		clear_bit(slot, svm->shadow_msr_intercept.write);
787 }
788 
789 static bool valid_msr_intercept(u32 index)
790 {
791 	return direct_access_msr_slot(index) != -ENOENT;
792 }
793 
794 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
795 {
796 	u8 bit_write;
797 	unsigned long tmp;
798 	u32 offset;
799 	u32 *msrpm;
800 
801 	/*
802 	 * For non-nested case:
803 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
804 	 * save it.
805 	 *
806 	 * For nested case:
807 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
808 	 * save it.
809 	 */
810 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
811 				      to_svm(vcpu)->msrpm;
812 
813 	offset    = svm_msrpm_offset(msr);
814 	bit_write = 2 * (msr & 0x0f) + 1;
815 	tmp       = msrpm[offset];
816 
817 	BUG_ON(offset == MSR_INVALID);
818 
819 	return test_bit(bit_write, &tmp);
820 }
821 
822 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
823 					u32 msr, int read, int write)
824 {
825 	struct vcpu_svm *svm = to_svm(vcpu);
826 	u8 bit_read, bit_write;
827 	unsigned long tmp;
828 	u32 offset;
829 
830 	/*
831 	 * If this warning triggers extend the direct_access_msrs list at the
832 	 * beginning of the file
833 	 */
834 	WARN_ON(!valid_msr_intercept(msr));
835 
836 	/* Enforce non allowed MSRs to trap */
837 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
838 		read = 0;
839 
840 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
841 		write = 0;
842 
843 	offset    = svm_msrpm_offset(msr);
844 	bit_read  = 2 * (msr & 0x0f);
845 	bit_write = 2 * (msr & 0x0f) + 1;
846 	tmp       = msrpm[offset];
847 
848 	BUG_ON(offset == MSR_INVALID);
849 
850 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
851 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
852 
853 	msrpm[offset] = tmp;
854 
855 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
856 	svm->nested.force_msr_bitmap_recalc = true;
857 }
858 
859 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
860 			  int read, int write)
861 {
862 	set_shadow_msr_intercept(vcpu, msr, read, write);
863 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
864 }
865 
866 u32 *svm_vcpu_alloc_msrpm(void)
867 {
868 	unsigned int order = get_order(MSRPM_SIZE);
869 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
870 	u32 *msrpm;
871 
872 	if (!pages)
873 		return NULL;
874 
875 	msrpm = page_address(pages);
876 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
877 
878 	return msrpm;
879 }
880 
881 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
882 {
883 	int i;
884 
885 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
886 		if (!direct_access_msrs[i].always)
887 			continue;
888 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
889 	}
890 }
891 
892 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
893 {
894 	int i;
895 
896 	if (intercept == svm->x2avic_msrs_intercepted)
897 		return;
898 
899 	if (!x2avic_enabled)
900 		return;
901 
902 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
903 		int index = direct_access_msrs[i].index;
904 
905 		if ((index < APIC_BASE_MSR) ||
906 		    (index > APIC_BASE_MSR + 0xff))
907 			continue;
908 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
909 				     !intercept, !intercept);
910 	}
911 
912 	svm->x2avic_msrs_intercepted = intercept;
913 }
914 
915 void svm_vcpu_free_msrpm(u32 *msrpm)
916 {
917 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
918 }
919 
920 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
921 {
922 	struct vcpu_svm *svm = to_svm(vcpu);
923 	u32 i;
924 
925 	/*
926 	 * Set intercept permissions for all direct access MSRs again. They
927 	 * will automatically get filtered through the MSR filter, so we are
928 	 * back in sync after this.
929 	 */
930 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
931 		u32 msr = direct_access_msrs[i].index;
932 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
933 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
934 
935 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
936 	}
937 }
938 
939 static void add_msr_offset(u32 offset)
940 {
941 	int i;
942 
943 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
944 
945 		/* Offset already in list? */
946 		if (msrpm_offsets[i] == offset)
947 			return;
948 
949 		/* Slot used by another offset? */
950 		if (msrpm_offsets[i] != MSR_INVALID)
951 			continue;
952 
953 		/* Add offset to list */
954 		msrpm_offsets[i] = offset;
955 
956 		return;
957 	}
958 
959 	/*
960 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
961 	 * increase MSRPM_OFFSETS in this case.
962 	 */
963 	BUG();
964 }
965 
966 static void init_msrpm_offsets(void)
967 {
968 	int i;
969 
970 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
971 
972 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
973 		u32 offset;
974 
975 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
976 		BUG_ON(offset == MSR_INVALID);
977 
978 		add_msr_offset(offset);
979 	}
980 }
981 
982 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
983 {
984 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
985 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
986 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
987 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
988 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
989 
990 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
991 }
992 
993 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
994 {
995 	struct vcpu_svm *svm = to_svm(vcpu);
996 
997 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
998 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
999 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1000 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1001 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1002 
1003 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1004 	if (is_guest_mode(vcpu))
1005 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1006 }
1007 
1008 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1009 {
1010 	struct vcpu_svm *svm = to_svm(vcpu);
1011 
1012 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1013 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1014 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1015 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1016 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1017 
1018 	/*
1019 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
1020 	 * on nested guest entries.
1021 	 */
1022 	if (is_guest_mode(vcpu))
1023 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1024 }
1025 
1026 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1027 {
1028 	/*
1029 	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1030 	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1031 	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1032 	 */
1033 	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1034 								   svm->vmcb01.ptr;
1035 }
1036 
1037 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1038 {
1039 	struct vcpu_svm *svm = to_svm(vcpu);
1040 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1041 	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1042 			    (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1043 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1044 
1045 	if (enable_lbrv == current_enable_lbrv)
1046 		return;
1047 
1048 	if (enable_lbrv)
1049 		svm_enable_lbrv(vcpu);
1050 	else
1051 		svm_disable_lbrv(vcpu);
1052 }
1053 
1054 void disable_nmi_singlestep(struct vcpu_svm *svm)
1055 {
1056 	svm->nmi_singlestep = false;
1057 
1058 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1059 		/* Clear our flags if they were not set by the guest */
1060 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1061 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1062 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1063 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1064 	}
1065 }
1066 
1067 static void grow_ple_window(struct kvm_vcpu *vcpu)
1068 {
1069 	struct vcpu_svm *svm = to_svm(vcpu);
1070 	struct vmcb_control_area *control = &svm->vmcb->control;
1071 	int old = control->pause_filter_count;
1072 
1073 	if (kvm_pause_in_guest(vcpu->kvm))
1074 		return;
1075 
1076 	control->pause_filter_count = __grow_ple_window(old,
1077 							pause_filter_count,
1078 							pause_filter_count_grow,
1079 							pause_filter_count_max);
1080 
1081 	if (control->pause_filter_count != old) {
1082 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1083 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1084 					    control->pause_filter_count, old);
1085 	}
1086 }
1087 
1088 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1089 {
1090 	struct vcpu_svm *svm = to_svm(vcpu);
1091 	struct vmcb_control_area *control = &svm->vmcb->control;
1092 	int old = control->pause_filter_count;
1093 
1094 	if (kvm_pause_in_guest(vcpu->kvm))
1095 		return;
1096 
1097 	control->pause_filter_count =
1098 				__shrink_ple_window(old,
1099 						    pause_filter_count,
1100 						    pause_filter_count_shrink,
1101 						    pause_filter_count);
1102 	if (control->pause_filter_count != old) {
1103 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1104 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1105 					    control->pause_filter_count, old);
1106 	}
1107 }
1108 
1109 static void svm_hardware_unsetup(void)
1110 {
1111 	int cpu;
1112 
1113 	sev_hardware_unsetup();
1114 
1115 	for_each_possible_cpu(cpu)
1116 		svm_cpu_uninit(cpu);
1117 
1118 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1119 	get_order(IOPM_SIZE));
1120 	iopm_base = 0;
1121 }
1122 
1123 static void init_seg(struct vmcb_seg *seg)
1124 {
1125 	seg->selector = 0;
1126 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1127 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1128 	seg->limit = 0xffff;
1129 	seg->base = 0;
1130 }
1131 
1132 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1133 {
1134 	seg->selector = 0;
1135 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1136 	seg->limit = 0xffff;
1137 	seg->base = 0;
1138 }
1139 
1140 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1141 {
1142 	struct vcpu_svm *svm = to_svm(vcpu);
1143 
1144 	return svm->nested.ctl.tsc_offset;
1145 }
1146 
1147 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1148 {
1149 	struct vcpu_svm *svm = to_svm(vcpu);
1150 
1151 	return svm->tsc_ratio_msr;
1152 }
1153 
1154 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1155 {
1156 	struct vcpu_svm *svm = to_svm(vcpu);
1157 
1158 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1159 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1160 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1161 }
1162 
1163 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1164 {
1165 	preempt_disable();
1166 	if (to_svm(vcpu)->guest_state_loaded)
1167 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1168 	preempt_enable();
1169 }
1170 
1171 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1172 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1173 					      struct vcpu_svm *svm)
1174 {
1175 	/*
1176 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1177 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1178 	 */
1179 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1180 		if (!npt_enabled ||
1181 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1182 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1183 		else
1184 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1185 	}
1186 
1187 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1188 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1189 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1190 		else
1191 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1192 	}
1193 }
1194 
1195 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1196 {
1197 	struct vcpu_svm *svm = to_svm(vcpu);
1198 
1199 	if (guest_cpuid_is_intel(vcpu)) {
1200 		/*
1201 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1202 		 * accesses because the processor only stores 32 bits.
1203 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1204 		 */
1205 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1206 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1207 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1208 
1209 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1210 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1211 	} else {
1212 		/*
1213 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1214 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1215 		 */
1216 		if (vls) {
1217 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1218 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1219 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1220 		}
1221 		/* No need to intercept these MSRs */
1222 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1223 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1224 	}
1225 }
1226 
1227 static void init_vmcb(struct kvm_vcpu *vcpu)
1228 {
1229 	struct vcpu_svm *svm = to_svm(vcpu);
1230 	struct vmcb *vmcb = svm->vmcb01.ptr;
1231 	struct vmcb_control_area *control = &vmcb->control;
1232 	struct vmcb_save_area *save = &vmcb->save;
1233 
1234 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1235 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1236 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1237 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1238 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1239 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1240 	if (!kvm_vcpu_apicv_active(vcpu))
1241 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1242 
1243 	set_dr_intercepts(svm);
1244 
1245 	set_exception_intercept(svm, PF_VECTOR);
1246 	set_exception_intercept(svm, UD_VECTOR);
1247 	set_exception_intercept(svm, MC_VECTOR);
1248 	set_exception_intercept(svm, AC_VECTOR);
1249 	set_exception_intercept(svm, DB_VECTOR);
1250 	/*
1251 	 * Guest access to VMware backdoor ports could legitimately
1252 	 * trigger #GP because of TSS I/O permission bitmap.
1253 	 * We intercept those #GP and allow access to them anyway
1254 	 * as VMware does.
1255 	 */
1256 	if (enable_vmware_backdoor)
1257 		set_exception_intercept(svm, GP_VECTOR);
1258 
1259 	svm_set_intercept(svm, INTERCEPT_INTR);
1260 	svm_set_intercept(svm, INTERCEPT_NMI);
1261 
1262 	if (intercept_smi)
1263 		svm_set_intercept(svm, INTERCEPT_SMI);
1264 
1265 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1266 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1267 	svm_set_intercept(svm, INTERCEPT_CPUID);
1268 	svm_set_intercept(svm, INTERCEPT_INVD);
1269 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1270 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1271 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1272 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1273 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1274 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1275 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1276 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1277 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1278 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1279 	svm_set_intercept(svm, INTERCEPT_STGI);
1280 	svm_set_intercept(svm, INTERCEPT_CLGI);
1281 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1282 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1283 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1284 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1285 	svm_set_intercept(svm, INTERCEPT_RSM);
1286 
1287 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1288 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1289 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1290 	}
1291 
1292 	if (!kvm_hlt_in_guest(vcpu->kvm))
1293 		svm_set_intercept(svm, INTERCEPT_HLT);
1294 
1295 	control->iopm_base_pa = __sme_set(iopm_base);
1296 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1297 	control->int_ctl = V_INTR_MASKING_MASK;
1298 
1299 	init_seg(&save->es);
1300 	init_seg(&save->ss);
1301 	init_seg(&save->ds);
1302 	init_seg(&save->fs);
1303 	init_seg(&save->gs);
1304 
1305 	save->cs.selector = 0xf000;
1306 	save->cs.base = 0xffff0000;
1307 	/* Executable/Readable Code Segment */
1308 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1309 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1310 	save->cs.limit = 0xffff;
1311 
1312 	save->gdtr.base = 0;
1313 	save->gdtr.limit = 0xffff;
1314 	save->idtr.base = 0;
1315 	save->idtr.limit = 0xffff;
1316 
1317 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1318 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1319 
1320 	if (npt_enabled) {
1321 		/* Setup VMCB for Nested Paging */
1322 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1323 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1324 		clr_exception_intercept(svm, PF_VECTOR);
1325 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1326 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1327 		save->g_pat = vcpu->arch.pat;
1328 		save->cr3 = 0;
1329 	}
1330 	svm->current_vmcb->asid_generation = 0;
1331 	svm->asid = 0;
1332 
1333 	svm->nested.vmcb12_gpa = INVALID_GPA;
1334 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1335 
1336 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1337 		control->pause_filter_count = pause_filter_count;
1338 		if (pause_filter_thresh)
1339 			control->pause_filter_thresh = pause_filter_thresh;
1340 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1341 	} else {
1342 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1343 	}
1344 
1345 	svm_recalc_instruction_intercepts(vcpu, svm);
1346 
1347 	/*
1348 	 * If the host supports V_SPEC_CTRL then disable the interception
1349 	 * of MSR_IA32_SPEC_CTRL.
1350 	 */
1351 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1352 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1353 
1354 	if (kvm_vcpu_apicv_active(vcpu))
1355 		avic_init_vmcb(svm, vmcb);
1356 
1357 	if (vnmi)
1358 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1359 
1360 	if (vgif) {
1361 		svm_clr_intercept(svm, INTERCEPT_STGI);
1362 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1363 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1364 	}
1365 
1366 	if (sev_guest(vcpu->kvm))
1367 		sev_init_vmcb(svm);
1368 
1369 	svm_hv_init_vmcb(vmcb);
1370 	init_vmcb_after_set_cpuid(vcpu);
1371 
1372 	vmcb_mark_all_dirty(vmcb);
1373 
1374 	enable_gif(svm);
1375 }
1376 
1377 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1378 {
1379 	struct vcpu_svm *svm = to_svm(vcpu);
1380 
1381 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1382 
1383 	svm_init_osvw(vcpu);
1384 	vcpu->arch.microcode_version = 0x01000065;
1385 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1386 
1387 	svm->nmi_masked = false;
1388 	svm->awaiting_iret_completion = false;
1389 
1390 	if (sev_es_guest(vcpu->kvm))
1391 		sev_es_vcpu_reset(svm);
1392 }
1393 
1394 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1395 {
1396 	struct vcpu_svm *svm = to_svm(vcpu);
1397 
1398 	svm->spec_ctrl = 0;
1399 	svm->virt_spec_ctrl = 0;
1400 
1401 	init_vmcb(vcpu);
1402 
1403 	if (!init_event)
1404 		__svm_vcpu_reset(vcpu);
1405 }
1406 
1407 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1408 {
1409 	svm->current_vmcb = target_vmcb;
1410 	svm->vmcb = target_vmcb->ptr;
1411 }
1412 
1413 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1414 {
1415 	struct vcpu_svm *svm;
1416 	struct page *vmcb01_page;
1417 	struct page *vmsa_page = NULL;
1418 	int err;
1419 
1420 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1421 	svm = to_svm(vcpu);
1422 
1423 	err = -ENOMEM;
1424 	vmcb01_page = snp_safe_alloc_page(vcpu);
1425 	if (!vmcb01_page)
1426 		goto out;
1427 
1428 	if (sev_es_guest(vcpu->kvm)) {
1429 		/*
1430 		 * SEV-ES guests require a separate VMSA page used to contain
1431 		 * the encrypted register state of the guest.
1432 		 */
1433 		vmsa_page = snp_safe_alloc_page(vcpu);
1434 		if (!vmsa_page)
1435 			goto error_free_vmcb_page;
1436 
1437 		/*
1438 		 * SEV-ES guests maintain an encrypted version of their FPU
1439 		 * state which is restored and saved on VMRUN and VMEXIT.
1440 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1441 		 * do xsave/xrstor on it.
1442 		 */
1443 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1444 	}
1445 
1446 	err = avic_init_vcpu(svm);
1447 	if (err)
1448 		goto error_free_vmsa_page;
1449 
1450 	svm->msrpm = svm_vcpu_alloc_msrpm();
1451 	if (!svm->msrpm) {
1452 		err = -ENOMEM;
1453 		goto error_free_vmsa_page;
1454 	}
1455 
1456 	svm->x2avic_msrs_intercepted = true;
1457 
1458 	svm->vmcb01.ptr = page_address(vmcb01_page);
1459 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1460 	svm_switch_vmcb(svm, &svm->vmcb01);
1461 
1462 	if (vmsa_page)
1463 		svm->sev_es.vmsa = page_address(vmsa_page);
1464 
1465 	svm->guest_state_loaded = false;
1466 
1467 	return 0;
1468 
1469 error_free_vmsa_page:
1470 	if (vmsa_page)
1471 		__free_page(vmsa_page);
1472 error_free_vmcb_page:
1473 	__free_page(vmcb01_page);
1474 out:
1475 	return err;
1476 }
1477 
1478 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1479 {
1480 	int i;
1481 
1482 	for_each_online_cpu(i)
1483 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1484 }
1485 
1486 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1487 {
1488 	struct vcpu_svm *svm = to_svm(vcpu);
1489 
1490 	/*
1491 	 * The vmcb page can be recycled, causing a false negative in
1492 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1493 	 * vmcb page recorded as its current vmcb.
1494 	 */
1495 	svm_clear_current_vmcb(svm->vmcb);
1496 
1497 	svm_leave_nested(vcpu);
1498 	svm_free_nested(svm);
1499 
1500 	sev_free_vcpu(vcpu);
1501 
1502 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1503 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1504 }
1505 
1506 static struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd)
1507 {
1508 	return page_address(sd->save_area) + 0x400;
1509 }
1510 
1511 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1512 {
1513 	struct vcpu_svm *svm = to_svm(vcpu);
1514 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1515 
1516 	if (sev_es_guest(vcpu->kvm))
1517 		sev_es_unmap_ghcb(svm);
1518 
1519 	if (svm->guest_state_loaded)
1520 		return;
1521 
1522 	/*
1523 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1524 	 * or subsequent vmload of host save area.
1525 	 */
1526 	vmsave(sd->save_area_pa);
1527 	if (sev_es_guest(vcpu->kvm))
1528 		sev_es_prepare_switch_to_guest(sev_es_host_save_area(sd));
1529 
1530 	if (tsc_scaling)
1531 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1532 
1533 	/*
1534 	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1535 	 * available. The user return MSR support is not required in this case
1536 	 * because TSC_AUX is restored on #VMEXIT from the host save area
1537 	 * (which has been initialized in svm_hardware_enable()).
1538 	 */
1539 	if (likely(tsc_aux_uret_slot >= 0) &&
1540 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1541 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1542 
1543 	svm->guest_state_loaded = true;
1544 }
1545 
1546 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1547 {
1548 	to_svm(vcpu)->guest_state_loaded = false;
1549 }
1550 
1551 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1552 {
1553 	struct vcpu_svm *svm = to_svm(vcpu);
1554 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1555 
1556 	if (sd->current_vmcb != svm->vmcb) {
1557 		sd->current_vmcb = svm->vmcb;
1558 
1559 		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1560 			indirect_branch_prediction_barrier();
1561 	}
1562 	if (kvm_vcpu_apicv_active(vcpu))
1563 		avic_vcpu_load(vcpu, cpu);
1564 }
1565 
1566 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1567 {
1568 	if (kvm_vcpu_apicv_active(vcpu))
1569 		avic_vcpu_put(vcpu);
1570 
1571 	svm_prepare_host_switch(vcpu);
1572 
1573 	++vcpu->stat.host_state_reload;
1574 }
1575 
1576 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1577 {
1578 	struct vcpu_svm *svm = to_svm(vcpu);
1579 	unsigned long rflags = svm->vmcb->save.rflags;
1580 
1581 	if (svm->nmi_singlestep) {
1582 		/* Hide our flags if they were not set by the guest */
1583 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1584 			rflags &= ~X86_EFLAGS_TF;
1585 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1586 			rflags &= ~X86_EFLAGS_RF;
1587 	}
1588 	return rflags;
1589 }
1590 
1591 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1592 {
1593 	if (to_svm(vcpu)->nmi_singlestep)
1594 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1595 
1596        /*
1597         * Any change of EFLAGS.VM is accompanied by a reload of SS
1598         * (caused by either a task switch or an inter-privilege IRET),
1599         * so we do not need to update the CPL here.
1600         */
1601 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1602 }
1603 
1604 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1605 {
1606 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1607 
1608 	return sev_es_guest(vcpu->kvm)
1609 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1610 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1611 }
1612 
1613 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1614 {
1615 	kvm_register_mark_available(vcpu, reg);
1616 
1617 	switch (reg) {
1618 	case VCPU_EXREG_PDPTR:
1619 		/*
1620 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1621 		 * it is always updated per SDM when moving to CRs.
1622 		 */
1623 		if (npt_enabled)
1624 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1625 		break;
1626 	default:
1627 		KVM_BUG_ON(1, vcpu->kvm);
1628 	}
1629 }
1630 
1631 static void svm_set_vintr(struct vcpu_svm *svm)
1632 {
1633 	struct vmcb_control_area *control;
1634 
1635 	/*
1636 	 * The following fields are ignored when AVIC is enabled
1637 	 */
1638 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1639 
1640 	svm_set_intercept(svm, INTERCEPT_VINTR);
1641 
1642 	/*
1643 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1644 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1645 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1646 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1647 	 * interrupts will never be unblocked while L2 is running.
1648 	 */
1649 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1650 		return;
1651 
1652 	/*
1653 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1654 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1655 	 */
1656 	control = &svm->vmcb->control;
1657 	control->int_vector = 0x0;
1658 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1659 	control->int_ctl |= V_IRQ_MASK |
1660 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1661 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1662 }
1663 
1664 static void svm_clear_vintr(struct vcpu_svm *svm)
1665 {
1666 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1667 
1668 	/* Drop int_ctl fields related to VINTR injection.  */
1669 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1670 	if (is_guest_mode(&svm->vcpu)) {
1671 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1672 
1673 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1674 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1675 
1676 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1677 			V_IRQ_INJECTION_BITS_MASK;
1678 
1679 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1680 	}
1681 
1682 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1683 }
1684 
1685 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1686 {
1687 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1688 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1689 
1690 	switch (seg) {
1691 	case VCPU_SREG_CS: return &save->cs;
1692 	case VCPU_SREG_DS: return &save->ds;
1693 	case VCPU_SREG_ES: return &save->es;
1694 	case VCPU_SREG_FS: return &save01->fs;
1695 	case VCPU_SREG_GS: return &save01->gs;
1696 	case VCPU_SREG_SS: return &save->ss;
1697 	case VCPU_SREG_TR: return &save01->tr;
1698 	case VCPU_SREG_LDTR: return &save01->ldtr;
1699 	}
1700 	BUG();
1701 	return NULL;
1702 }
1703 
1704 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1705 {
1706 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1707 
1708 	return s->base;
1709 }
1710 
1711 static void svm_get_segment(struct kvm_vcpu *vcpu,
1712 			    struct kvm_segment *var, int seg)
1713 {
1714 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1715 
1716 	var->base = s->base;
1717 	var->limit = s->limit;
1718 	var->selector = s->selector;
1719 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1720 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1721 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1722 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1723 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1724 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1725 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1726 
1727 	/*
1728 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1729 	 * However, the SVM spec states that the G bit is not observed by the
1730 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1731 	 * So let's synthesize a legal G bit for all segments, this helps
1732 	 * running KVM nested. It also helps cross-vendor migration, because
1733 	 * Intel's vmentry has a check on the 'G' bit.
1734 	 */
1735 	var->g = s->limit > 0xfffff;
1736 
1737 	/*
1738 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1739 	 * for cross vendor migration purposes by "not present"
1740 	 */
1741 	var->unusable = !var->present;
1742 
1743 	switch (seg) {
1744 	case VCPU_SREG_TR:
1745 		/*
1746 		 * Work around a bug where the busy flag in the tr selector
1747 		 * isn't exposed
1748 		 */
1749 		var->type |= 0x2;
1750 		break;
1751 	case VCPU_SREG_DS:
1752 	case VCPU_SREG_ES:
1753 	case VCPU_SREG_FS:
1754 	case VCPU_SREG_GS:
1755 		/*
1756 		 * The accessed bit must always be set in the segment
1757 		 * descriptor cache, although it can be cleared in the
1758 		 * descriptor, the cached bit always remains at 1. Since
1759 		 * Intel has a check on this, set it here to support
1760 		 * cross-vendor migration.
1761 		 */
1762 		if (!var->unusable)
1763 			var->type |= 0x1;
1764 		break;
1765 	case VCPU_SREG_SS:
1766 		/*
1767 		 * On AMD CPUs sometimes the DB bit in the segment
1768 		 * descriptor is left as 1, although the whole segment has
1769 		 * been made unusable. Clear it here to pass an Intel VMX
1770 		 * entry check when cross vendor migrating.
1771 		 */
1772 		if (var->unusable)
1773 			var->db = 0;
1774 		/* This is symmetric with svm_set_segment() */
1775 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1776 		break;
1777 	}
1778 }
1779 
1780 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1781 {
1782 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1783 
1784 	return save->cpl;
1785 }
1786 
1787 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1788 {
1789 	struct kvm_segment cs;
1790 
1791 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1792 	*db = cs.db;
1793 	*l = cs.l;
1794 }
1795 
1796 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1797 {
1798 	struct vcpu_svm *svm = to_svm(vcpu);
1799 
1800 	dt->size = svm->vmcb->save.idtr.limit;
1801 	dt->address = svm->vmcb->save.idtr.base;
1802 }
1803 
1804 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1805 {
1806 	struct vcpu_svm *svm = to_svm(vcpu);
1807 
1808 	svm->vmcb->save.idtr.limit = dt->size;
1809 	svm->vmcb->save.idtr.base = dt->address ;
1810 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1811 }
1812 
1813 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1814 {
1815 	struct vcpu_svm *svm = to_svm(vcpu);
1816 
1817 	dt->size = svm->vmcb->save.gdtr.limit;
1818 	dt->address = svm->vmcb->save.gdtr.base;
1819 }
1820 
1821 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1822 {
1823 	struct vcpu_svm *svm = to_svm(vcpu);
1824 
1825 	svm->vmcb->save.gdtr.limit = dt->size;
1826 	svm->vmcb->save.gdtr.base = dt->address ;
1827 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1828 }
1829 
1830 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1831 {
1832 	struct vcpu_svm *svm = to_svm(vcpu);
1833 
1834 	/*
1835 	 * For guests that don't set guest_state_protected, the cr3 update is
1836 	 * handled via kvm_mmu_load() while entering the guest. For guests
1837 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1838 	 * VMCB save area now, since the save area will become the initial
1839 	 * contents of the VMSA, and future VMCB save area updates won't be
1840 	 * seen.
1841 	 */
1842 	if (sev_es_guest(vcpu->kvm)) {
1843 		svm->vmcb->save.cr3 = cr3;
1844 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1845 	}
1846 }
1847 
1848 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1849 {
1850 	return true;
1851 }
1852 
1853 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1854 {
1855 	struct vcpu_svm *svm = to_svm(vcpu);
1856 	u64 hcr0 = cr0;
1857 	bool old_paging = is_paging(vcpu);
1858 
1859 #ifdef CONFIG_X86_64
1860 	if (vcpu->arch.efer & EFER_LME) {
1861 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1862 			vcpu->arch.efer |= EFER_LMA;
1863 			if (!vcpu->arch.guest_state_protected)
1864 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1865 		}
1866 
1867 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1868 			vcpu->arch.efer &= ~EFER_LMA;
1869 			if (!vcpu->arch.guest_state_protected)
1870 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1871 		}
1872 	}
1873 #endif
1874 	vcpu->arch.cr0 = cr0;
1875 
1876 	if (!npt_enabled) {
1877 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1878 		if (old_paging != is_paging(vcpu))
1879 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1880 	}
1881 
1882 	/*
1883 	 * re-enable caching here because the QEMU bios
1884 	 * does not do it - this results in some delay at
1885 	 * reboot
1886 	 */
1887 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1888 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1889 
1890 	svm->vmcb->save.cr0 = hcr0;
1891 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1892 
1893 	/*
1894 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1895 	 * tracking is done using the CR write traps.
1896 	 */
1897 	if (sev_es_guest(vcpu->kvm))
1898 		return;
1899 
1900 	if (hcr0 == cr0) {
1901 		/* Selective CR0 write remains on.  */
1902 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1903 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1904 	} else {
1905 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1906 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1907 	}
1908 }
1909 
1910 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1911 {
1912 	return true;
1913 }
1914 
1915 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1916 {
1917 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1918 	unsigned long old_cr4 = vcpu->arch.cr4;
1919 
1920 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1921 		svm_flush_tlb_current(vcpu);
1922 
1923 	vcpu->arch.cr4 = cr4;
1924 	if (!npt_enabled) {
1925 		cr4 |= X86_CR4_PAE;
1926 
1927 		if (!is_paging(vcpu))
1928 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1929 	}
1930 	cr4 |= host_cr4_mce;
1931 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1932 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1933 
1934 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1935 		kvm_update_cpuid_runtime(vcpu);
1936 }
1937 
1938 static void svm_set_segment(struct kvm_vcpu *vcpu,
1939 			    struct kvm_segment *var, int seg)
1940 {
1941 	struct vcpu_svm *svm = to_svm(vcpu);
1942 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1943 
1944 	s->base = var->base;
1945 	s->limit = var->limit;
1946 	s->selector = var->selector;
1947 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1948 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1949 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1950 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1951 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1952 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1953 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1954 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1955 
1956 	/*
1957 	 * This is always accurate, except if SYSRET returned to a segment
1958 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1959 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1960 	 * would entail passing the CPL to userspace and back.
1961 	 */
1962 	if (seg == VCPU_SREG_SS)
1963 		/* This is symmetric with svm_get_segment() */
1964 		svm->vmcb->save.cpl = (var->dpl & 3);
1965 
1966 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1967 }
1968 
1969 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1970 {
1971 	struct vcpu_svm *svm = to_svm(vcpu);
1972 
1973 	clr_exception_intercept(svm, BP_VECTOR);
1974 
1975 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1976 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1977 			set_exception_intercept(svm, BP_VECTOR);
1978 	}
1979 }
1980 
1981 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1982 {
1983 	if (sd->next_asid > sd->max_asid) {
1984 		++sd->asid_generation;
1985 		sd->next_asid = sd->min_asid;
1986 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1987 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1988 	}
1989 
1990 	svm->current_vmcb->asid_generation = sd->asid_generation;
1991 	svm->asid = sd->next_asid++;
1992 }
1993 
1994 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1995 {
1996 	struct vmcb *vmcb = svm->vmcb;
1997 
1998 	if (svm->vcpu.arch.guest_state_protected)
1999 		return;
2000 
2001 	if (unlikely(value != vmcb->save.dr6)) {
2002 		vmcb->save.dr6 = value;
2003 		vmcb_mark_dirty(vmcb, VMCB_DR);
2004 	}
2005 }
2006 
2007 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2008 {
2009 	struct vcpu_svm *svm = to_svm(vcpu);
2010 
2011 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2012 		return;
2013 
2014 	get_debugreg(vcpu->arch.db[0], 0);
2015 	get_debugreg(vcpu->arch.db[1], 1);
2016 	get_debugreg(vcpu->arch.db[2], 2);
2017 	get_debugreg(vcpu->arch.db[3], 3);
2018 	/*
2019 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2020 	 * because db_interception might need it.  We can do it before vmentry.
2021 	 */
2022 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
2023 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2024 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2025 	set_dr_intercepts(svm);
2026 }
2027 
2028 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2029 {
2030 	struct vcpu_svm *svm = to_svm(vcpu);
2031 
2032 	if (vcpu->arch.guest_state_protected)
2033 		return;
2034 
2035 	svm->vmcb->save.dr7 = value;
2036 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2037 }
2038 
2039 static int pf_interception(struct kvm_vcpu *vcpu)
2040 {
2041 	struct vcpu_svm *svm = to_svm(vcpu);
2042 
2043 	u64 fault_address = svm->vmcb->control.exit_info_2;
2044 	u64 error_code = svm->vmcb->control.exit_info_1;
2045 
2046 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
2047 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2048 			svm->vmcb->control.insn_bytes : NULL,
2049 			svm->vmcb->control.insn_len);
2050 }
2051 
2052 static int npf_interception(struct kvm_vcpu *vcpu)
2053 {
2054 	struct vcpu_svm *svm = to_svm(vcpu);
2055 
2056 	u64 fault_address = svm->vmcb->control.exit_info_2;
2057 	u64 error_code = svm->vmcb->control.exit_info_1;
2058 
2059 	trace_kvm_page_fault(vcpu, fault_address, error_code);
2060 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2061 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2062 			svm->vmcb->control.insn_bytes : NULL,
2063 			svm->vmcb->control.insn_len);
2064 }
2065 
2066 static int db_interception(struct kvm_vcpu *vcpu)
2067 {
2068 	struct kvm_run *kvm_run = vcpu->run;
2069 	struct vcpu_svm *svm = to_svm(vcpu);
2070 
2071 	if (!(vcpu->guest_debug &
2072 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2073 		!svm->nmi_singlestep) {
2074 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2075 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2076 		return 1;
2077 	}
2078 
2079 	if (svm->nmi_singlestep) {
2080 		disable_nmi_singlestep(svm);
2081 		/* Make sure we check for pending NMIs upon entry */
2082 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2083 	}
2084 
2085 	if (vcpu->guest_debug &
2086 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2087 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2088 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2089 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2090 		kvm_run->debug.arch.pc =
2091 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2092 		kvm_run->debug.arch.exception = DB_VECTOR;
2093 		return 0;
2094 	}
2095 
2096 	return 1;
2097 }
2098 
2099 static int bp_interception(struct kvm_vcpu *vcpu)
2100 {
2101 	struct vcpu_svm *svm = to_svm(vcpu);
2102 	struct kvm_run *kvm_run = vcpu->run;
2103 
2104 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2105 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2106 	kvm_run->debug.arch.exception = BP_VECTOR;
2107 	return 0;
2108 }
2109 
2110 static int ud_interception(struct kvm_vcpu *vcpu)
2111 {
2112 	return handle_ud(vcpu);
2113 }
2114 
2115 static int ac_interception(struct kvm_vcpu *vcpu)
2116 {
2117 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2118 	return 1;
2119 }
2120 
2121 static bool is_erratum_383(void)
2122 {
2123 	int err, i;
2124 	u64 value;
2125 
2126 	if (!erratum_383_found)
2127 		return false;
2128 
2129 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2130 	if (err)
2131 		return false;
2132 
2133 	/* Bit 62 may or may not be set for this mce */
2134 	value &= ~(1ULL << 62);
2135 
2136 	if (value != 0xb600000000010015ULL)
2137 		return false;
2138 
2139 	/* Clear MCi_STATUS registers */
2140 	for (i = 0; i < 6; ++i)
2141 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2142 
2143 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2144 	if (!err) {
2145 		u32 low, high;
2146 
2147 		value &= ~(1ULL << 2);
2148 		low    = lower_32_bits(value);
2149 		high   = upper_32_bits(value);
2150 
2151 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2152 	}
2153 
2154 	/* Flush tlb to evict multi-match entries */
2155 	__flush_tlb_all();
2156 
2157 	return true;
2158 }
2159 
2160 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2161 {
2162 	if (is_erratum_383()) {
2163 		/*
2164 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2165 		 * guest.
2166 		 */
2167 		pr_err("Guest triggered AMD Erratum 383\n");
2168 
2169 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2170 
2171 		return;
2172 	}
2173 
2174 	/*
2175 	 * On an #MC intercept the MCE handler is not called automatically in
2176 	 * the host. So do it by hand here.
2177 	 */
2178 	kvm_machine_check();
2179 }
2180 
2181 static int mc_interception(struct kvm_vcpu *vcpu)
2182 {
2183 	return 1;
2184 }
2185 
2186 static int shutdown_interception(struct kvm_vcpu *vcpu)
2187 {
2188 	struct kvm_run *kvm_run = vcpu->run;
2189 	struct vcpu_svm *svm = to_svm(vcpu);
2190 
2191 
2192 	/*
2193 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2194 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2195 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2196 	 * userspace.  At a platform view, INIT is acceptable behavior as
2197 	 * there exist bare metal platforms that automatically INIT the CPU
2198 	 * in response to shutdown.
2199 	 *
2200 	 * The VM save area for SEV-ES guests has already been encrypted so it
2201 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2202 	 */
2203 	if (!sev_es_guest(vcpu->kvm)) {
2204 		clear_page(svm->vmcb);
2205 		kvm_vcpu_reset(vcpu, true);
2206 	}
2207 
2208 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2209 	return 0;
2210 }
2211 
2212 static int io_interception(struct kvm_vcpu *vcpu)
2213 {
2214 	struct vcpu_svm *svm = to_svm(vcpu);
2215 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2216 	int size, in, string;
2217 	unsigned port;
2218 
2219 	++vcpu->stat.io_exits;
2220 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2221 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2222 	port = io_info >> 16;
2223 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2224 
2225 	if (string) {
2226 		if (sev_es_guest(vcpu->kvm))
2227 			return sev_es_string_io(svm, size, port, in);
2228 		else
2229 			return kvm_emulate_instruction(vcpu, 0);
2230 	}
2231 
2232 	svm->next_rip = svm->vmcb->control.exit_info_2;
2233 
2234 	return kvm_fast_pio(vcpu, size, port, in);
2235 }
2236 
2237 static int nmi_interception(struct kvm_vcpu *vcpu)
2238 {
2239 	return 1;
2240 }
2241 
2242 static int smi_interception(struct kvm_vcpu *vcpu)
2243 {
2244 	return 1;
2245 }
2246 
2247 static int intr_interception(struct kvm_vcpu *vcpu)
2248 {
2249 	++vcpu->stat.irq_exits;
2250 	return 1;
2251 }
2252 
2253 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2254 {
2255 	struct vcpu_svm *svm = to_svm(vcpu);
2256 	struct vmcb *vmcb12;
2257 	struct kvm_host_map map;
2258 	int ret;
2259 
2260 	if (nested_svm_check_permissions(vcpu))
2261 		return 1;
2262 
2263 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2264 	if (ret) {
2265 		if (ret == -EINVAL)
2266 			kvm_inject_gp(vcpu, 0);
2267 		return 1;
2268 	}
2269 
2270 	vmcb12 = map.hva;
2271 
2272 	ret = kvm_skip_emulated_instruction(vcpu);
2273 
2274 	if (vmload) {
2275 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2276 		svm->sysenter_eip_hi = 0;
2277 		svm->sysenter_esp_hi = 0;
2278 	} else {
2279 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2280 	}
2281 
2282 	kvm_vcpu_unmap(vcpu, &map, true);
2283 
2284 	return ret;
2285 }
2286 
2287 static int vmload_interception(struct kvm_vcpu *vcpu)
2288 {
2289 	return vmload_vmsave_interception(vcpu, true);
2290 }
2291 
2292 static int vmsave_interception(struct kvm_vcpu *vcpu)
2293 {
2294 	return vmload_vmsave_interception(vcpu, false);
2295 }
2296 
2297 static int vmrun_interception(struct kvm_vcpu *vcpu)
2298 {
2299 	if (nested_svm_check_permissions(vcpu))
2300 		return 1;
2301 
2302 	return nested_svm_vmrun(vcpu);
2303 }
2304 
2305 enum {
2306 	NONE_SVM_INSTR,
2307 	SVM_INSTR_VMRUN,
2308 	SVM_INSTR_VMLOAD,
2309 	SVM_INSTR_VMSAVE,
2310 };
2311 
2312 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2313 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2314 {
2315 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2316 
2317 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2318 		return NONE_SVM_INSTR;
2319 
2320 	switch (ctxt->modrm) {
2321 	case 0xd8: /* VMRUN */
2322 		return SVM_INSTR_VMRUN;
2323 	case 0xda: /* VMLOAD */
2324 		return SVM_INSTR_VMLOAD;
2325 	case 0xdb: /* VMSAVE */
2326 		return SVM_INSTR_VMSAVE;
2327 	default:
2328 		break;
2329 	}
2330 
2331 	return NONE_SVM_INSTR;
2332 }
2333 
2334 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2335 {
2336 	const int guest_mode_exit_codes[] = {
2337 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2338 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2339 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2340 	};
2341 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2342 		[SVM_INSTR_VMRUN] = vmrun_interception,
2343 		[SVM_INSTR_VMLOAD] = vmload_interception,
2344 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2345 	};
2346 	struct vcpu_svm *svm = to_svm(vcpu);
2347 	int ret;
2348 
2349 	if (is_guest_mode(vcpu)) {
2350 		/* Returns '1' or -errno on failure, '0' on success. */
2351 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2352 		if (ret)
2353 			return ret;
2354 		return 1;
2355 	}
2356 	return svm_instr_handlers[opcode](vcpu);
2357 }
2358 
2359 /*
2360  * #GP handling code. Note that #GP can be triggered under the following two
2361  * cases:
2362  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2363  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2364  *      regions (e.g. SMM memory on host).
2365  *   2) VMware backdoor
2366  */
2367 static int gp_interception(struct kvm_vcpu *vcpu)
2368 {
2369 	struct vcpu_svm *svm = to_svm(vcpu);
2370 	u32 error_code = svm->vmcb->control.exit_info_1;
2371 	int opcode;
2372 
2373 	/* Both #GP cases have zero error_code */
2374 	if (error_code)
2375 		goto reinject;
2376 
2377 	/* Decode the instruction for usage later */
2378 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2379 		goto reinject;
2380 
2381 	opcode = svm_instr_opcode(vcpu);
2382 
2383 	if (opcode == NONE_SVM_INSTR) {
2384 		if (!enable_vmware_backdoor)
2385 			goto reinject;
2386 
2387 		/*
2388 		 * VMware backdoor emulation on #GP interception only handles
2389 		 * IN{S}, OUT{S}, and RDPMC.
2390 		 */
2391 		if (!is_guest_mode(vcpu))
2392 			return kvm_emulate_instruction(vcpu,
2393 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2394 	} else {
2395 		/* All SVM instructions expect page aligned RAX */
2396 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2397 			goto reinject;
2398 
2399 		return emulate_svm_instr(vcpu, opcode);
2400 	}
2401 
2402 reinject:
2403 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2404 	return 1;
2405 }
2406 
2407 void svm_set_gif(struct vcpu_svm *svm, bool value)
2408 {
2409 	if (value) {
2410 		/*
2411 		 * If VGIF is enabled, the STGI intercept is only added to
2412 		 * detect the opening of the SMI/NMI window; remove it now.
2413 		 * Likewise, clear the VINTR intercept, we will set it
2414 		 * again while processing KVM_REQ_EVENT if needed.
2415 		 */
2416 		if (vgif)
2417 			svm_clr_intercept(svm, INTERCEPT_STGI);
2418 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2419 			svm_clear_vintr(svm);
2420 
2421 		enable_gif(svm);
2422 		if (svm->vcpu.arch.smi_pending ||
2423 		    svm->vcpu.arch.nmi_pending ||
2424 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2425 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2426 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2427 	} else {
2428 		disable_gif(svm);
2429 
2430 		/*
2431 		 * After a CLGI no interrupts should come.  But if vGIF is
2432 		 * in use, we still rely on the VINTR intercept (rather than
2433 		 * STGI) to detect an open interrupt window.
2434 		*/
2435 		if (!vgif)
2436 			svm_clear_vintr(svm);
2437 	}
2438 }
2439 
2440 static int stgi_interception(struct kvm_vcpu *vcpu)
2441 {
2442 	int ret;
2443 
2444 	if (nested_svm_check_permissions(vcpu))
2445 		return 1;
2446 
2447 	ret = kvm_skip_emulated_instruction(vcpu);
2448 	svm_set_gif(to_svm(vcpu), true);
2449 	return ret;
2450 }
2451 
2452 static int clgi_interception(struct kvm_vcpu *vcpu)
2453 {
2454 	int ret;
2455 
2456 	if (nested_svm_check_permissions(vcpu))
2457 		return 1;
2458 
2459 	ret = kvm_skip_emulated_instruction(vcpu);
2460 	svm_set_gif(to_svm(vcpu), false);
2461 	return ret;
2462 }
2463 
2464 static int invlpga_interception(struct kvm_vcpu *vcpu)
2465 {
2466 	gva_t gva = kvm_rax_read(vcpu);
2467 	u32 asid = kvm_rcx_read(vcpu);
2468 
2469 	/* FIXME: Handle an address size prefix. */
2470 	if (!is_long_mode(vcpu))
2471 		gva = (u32)gva;
2472 
2473 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2474 
2475 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2476 	kvm_mmu_invlpg(vcpu, gva);
2477 
2478 	return kvm_skip_emulated_instruction(vcpu);
2479 }
2480 
2481 static int skinit_interception(struct kvm_vcpu *vcpu)
2482 {
2483 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2484 
2485 	kvm_queue_exception(vcpu, UD_VECTOR);
2486 	return 1;
2487 }
2488 
2489 static int task_switch_interception(struct kvm_vcpu *vcpu)
2490 {
2491 	struct vcpu_svm *svm = to_svm(vcpu);
2492 	u16 tss_selector;
2493 	int reason;
2494 	int int_type = svm->vmcb->control.exit_int_info &
2495 		SVM_EXITINTINFO_TYPE_MASK;
2496 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2497 	uint32_t type =
2498 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2499 	uint32_t idt_v =
2500 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2501 	bool has_error_code = false;
2502 	u32 error_code = 0;
2503 
2504 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2505 
2506 	if (svm->vmcb->control.exit_info_2 &
2507 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2508 		reason = TASK_SWITCH_IRET;
2509 	else if (svm->vmcb->control.exit_info_2 &
2510 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2511 		reason = TASK_SWITCH_JMP;
2512 	else if (idt_v)
2513 		reason = TASK_SWITCH_GATE;
2514 	else
2515 		reason = TASK_SWITCH_CALL;
2516 
2517 	if (reason == TASK_SWITCH_GATE) {
2518 		switch (type) {
2519 		case SVM_EXITINTINFO_TYPE_NMI:
2520 			vcpu->arch.nmi_injected = false;
2521 			break;
2522 		case SVM_EXITINTINFO_TYPE_EXEPT:
2523 			if (svm->vmcb->control.exit_info_2 &
2524 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2525 				has_error_code = true;
2526 				error_code =
2527 					(u32)svm->vmcb->control.exit_info_2;
2528 			}
2529 			kvm_clear_exception_queue(vcpu);
2530 			break;
2531 		case SVM_EXITINTINFO_TYPE_INTR:
2532 		case SVM_EXITINTINFO_TYPE_SOFT:
2533 			kvm_clear_interrupt_queue(vcpu);
2534 			break;
2535 		default:
2536 			break;
2537 		}
2538 	}
2539 
2540 	if (reason != TASK_SWITCH_GATE ||
2541 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2542 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2543 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2544 		if (!svm_skip_emulated_instruction(vcpu))
2545 			return 0;
2546 	}
2547 
2548 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2549 		int_vec = -1;
2550 
2551 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2552 			       has_error_code, error_code);
2553 }
2554 
2555 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2556 {
2557 	if (!sev_es_guest(svm->vcpu.kvm))
2558 		svm_clr_intercept(svm, INTERCEPT_IRET);
2559 }
2560 
2561 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2562 {
2563 	if (!sev_es_guest(svm->vcpu.kvm))
2564 		svm_set_intercept(svm, INTERCEPT_IRET);
2565 }
2566 
2567 static int iret_interception(struct kvm_vcpu *vcpu)
2568 {
2569 	struct vcpu_svm *svm = to_svm(vcpu);
2570 
2571 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2572 
2573 	++vcpu->stat.nmi_window_exits;
2574 	svm->awaiting_iret_completion = true;
2575 
2576 	svm_clr_iret_intercept(svm);
2577 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2578 
2579 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2580 	return 1;
2581 }
2582 
2583 static int invlpg_interception(struct kvm_vcpu *vcpu)
2584 {
2585 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2586 		return kvm_emulate_instruction(vcpu, 0);
2587 
2588 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2589 	return kvm_skip_emulated_instruction(vcpu);
2590 }
2591 
2592 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2593 {
2594 	return kvm_emulate_instruction(vcpu, 0);
2595 }
2596 
2597 static int rsm_interception(struct kvm_vcpu *vcpu)
2598 {
2599 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2600 }
2601 
2602 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2603 					    unsigned long val)
2604 {
2605 	struct vcpu_svm *svm = to_svm(vcpu);
2606 	unsigned long cr0 = vcpu->arch.cr0;
2607 	bool ret = false;
2608 
2609 	if (!is_guest_mode(vcpu) ||
2610 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2611 		return false;
2612 
2613 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2614 	val &= ~SVM_CR0_SELECTIVE_MASK;
2615 
2616 	if (cr0 ^ val) {
2617 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2618 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2619 	}
2620 
2621 	return ret;
2622 }
2623 
2624 #define CR_VALID (1ULL << 63)
2625 
2626 static int cr_interception(struct kvm_vcpu *vcpu)
2627 {
2628 	struct vcpu_svm *svm = to_svm(vcpu);
2629 	int reg, cr;
2630 	unsigned long val;
2631 	int err;
2632 
2633 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2634 		return emulate_on_interception(vcpu);
2635 
2636 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2637 		return emulate_on_interception(vcpu);
2638 
2639 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2640 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2641 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2642 	else
2643 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2644 
2645 	err = 0;
2646 	if (cr >= 16) { /* mov to cr */
2647 		cr -= 16;
2648 		val = kvm_register_read(vcpu, reg);
2649 		trace_kvm_cr_write(cr, val);
2650 		switch (cr) {
2651 		case 0:
2652 			if (!check_selective_cr0_intercepted(vcpu, val))
2653 				err = kvm_set_cr0(vcpu, val);
2654 			else
2655 				return 1;
2656 
2657 			break;
2658 		case 3:
2659 			err = kvm_set_cr3(vcpu, val);
2660 			break;
2661 		case 4:
2662 			err = kvm_set_cr4(vcpu, val);
2663 			break;
2664 		case 8:
2665 			err = kvm_set_cr8(vcpu, val);
2666 			break;
2667 		default:
2668 			WARN(1, "unhandled write to CR%d", cr);
2669 			kvm_queue_exception(vcpu, UD_VECTOR);
2670 			return 1;
2671 		}
2672 	} else { /* mov from cr */
2673 		switch (cr) {
2674 		case 0:
2675 			val = kvm_read_cr0(vcpu);
2676 			break;
2677 		case 2:
2678 			val = vcpu->arch.cr2;
2679 			break;
2680 		case 3:
2681 			val = kvm_read_cr3(vcpu);
2682 			break;
2683 		case 4:
2684 			val = kvm_read_cr4(vcpu);
2685 			break;
2686 		case 8:
2687 			val = kvm_get_cr8(vcpu);
2688 			break;
2689 		default:
2690 			WARN(1, "unhandled read from CR%d", cr);
2691 			kvm_queue_exception(vcpu, UD_VECTOR);
2692 			return 1;
2693 		}
2694 		kvm_register_write(vcpu, reg, val);
2695 		trace_kvm_cr_read(cr, val);
2696 	}
2697 	return kvm_complete_insn_gp(vcpu, err);
2698 }
2699 
2700 static int cr_trap(struct kvm_vcpu *vcpu)
2701 {
2702 	struct vcpu_svm *svm = to_svm(vcpu);
2703 	unsigned long old_value, new_value;
2704 	unsigned int cr;
2705 	int ret = 0;
2706 
2707 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2708 
2709 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2710 	switch (cr) {
2711 	case 0:
2712 		old_value = kvm_read_cr0(vcpu);
2713 		svm_set_cr0(vcpu, new_value);
2714 
2715 		kvm_post_set_cr0(vcpu, old_value, new_value);
2716 		break;
2717 	case 4:
2718 		old_value = kvm_read_cr4(vcpu);
2719 		svm_set_cr4(vcpu, new_value);
2720 
2721 		kvm_post_set_cr4(vcpu, old_value, new_value);
2722 		break;
2723 	case 8:
2724 		ret = kvm_set_cr8(vcpu, new_value);
2725 		break;
2726 	default:
2727 		WARN(1, "unhandled CR%d write trap", cr);
2728 		kvm_queue_exception(vcpu, UD_VECTOR);
2729 		return 1;
2730 	}
2731 
2732 	return kvm_complete_insn_gp(vcpu, ret);
2733 }
2734 
2735 static int dr_interception(struct kvm_vcpu *vcpu)
2736 {
2737 	struct vcpu_svm *svm = to_svm(vcpu);
2738 	int reg, dr;
2739 	int err = 0;
2740 
2741 	/*
2742 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2743 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2744 	 */
2745 	if (sev_es_guest(vcpu->kvm))
2746 		return 1;
2747 
2748 	if (vcpu->guest_debug == 0) {
2749 		/*
2750 		 * No more DR vmexits; force a reload of the debug registers
2751 		 * and reenter on this instruction.  The next vmexit will
2752 		 * retrieve the full state of the debug registers.
2753 		 */
2754 		clr_dr_intercepts(svm);
2755 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2756 		return 1;
2757 	}
2758 
2759 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2760 		return emulate_on_interception(vcpu);
2761 
2762 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2763 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2764 	if (dr >= 16) { /* mov to DRn  */
2765 		dr -= 16;
2766 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2767 	} else {
2768 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2769 	}
2770 
2771 	return kvm_complete_insn_gp(vcpu, err);
2772 }
2773 
2774 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2775 {
2776 	int r;
2777 
2778 	u8 cr8_prev = kvm_get_cr8(vcpu);
2779 	/* instruction emulation calls kvm_set_cr8() */
2780 	r = cr_interception(vcpu);
2781 	if (lapic_in_kernel(vcpu))
2782 		return r;
2783 	if (cr8_prev <= kvm_get_cr8(vcpu))
2784 		return r;
2785 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2786 	return 0;
2787 }
2788 
2789 static int efer_trap(struct kvm_vcpu *vcpu)
2790 {
2791 	struct msr_data msr_info;
2792 	int ret;
2793 
2794 	/*
2795 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2796 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2797 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2798 	 * the guest doesn't have X86_FEATURE_SVM.
2799 	 */
2800 	msr_info.host_initiated = false;
2801 	msr_info.index = MSR_EFER;
2802 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2803 	ret = kvm_set_msr_common(vcpu, &msr_info);
2804 
2805 	return kvm_complete_insn_gp(vcpu, ret);
2806 }
2807 
2808 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2809 {
2810 	msr->data = 0;
2811 
2812 	switch (msr->index) {
2813 	case MSR_AMD64_DE_CFG:
2814 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2815 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2816 		break;
2817 	default:
2818 		return KVM_MSR_RET_INVALID;
2819 	}
2820 
2821 	return 0;
2822 }
2823 
2824 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2825 {
2826 	struct vcpu_svm *svm = to_svm(vcpu);
2827 
2828 	switch (msr_info->index) {
2829 	case MSR_AMD64_TSC_RATIO:
2830 		if (!msr_info->host_initiated &&
2831 		    !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2832 			return 1;
2833 		msr_info->data = svm->tsc_ratio_msr;
2834 		break;
2835 	case MSR_STAR:
2836 		msr_info->data = svm->vmcb01.ptr->save.star;
2837 		break;
2838 #ifdef CONFIG_X86_64
2839 	case MSR_LSTAR:
2840 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2841 		break;
2842 	case MSR_CSTAR:
2843 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2844 		break;
2845 	case MSR_KERNEL_GS_BASE:
2846 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2847 		break;
2848 	case MSR_SYSCALL_MASK:
2849 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2850 		break;
2851 #endif
2852 	case MSR_IA32_SYSENTER_CS:
2853 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2854 		break;
2855 	case MSR_IA32_SYSENTER_EIP:
2856 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2857 		if (guest_cpuid_is_intel(vcpu))
2858 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2859 		break;
2860 	case MSR_IA32_SYSENTER_ESP:
2861 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2862 		if (guest_cpuid_is_intel(vcpu))
2863 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2864 		break;
2865 	case MSR_TSC_AUX:
2866 		msr_info->data = svm->tsc_aux;
2867 		break;
2868 	case MSR_IA32_DEBUGCTLMSR:
2869 		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2870 		break;
2871 	case MSR_IA32_LASTBRANCHFROMIP:
2872 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2873 		break;
2874 	case MSR_IA32_LASTBRANCHTOIP:
2875 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2876 		break;
2877 	case MSR_IA32_LASTINTFROMIP:
2878 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2879 		break;
2880 	case MSR_IA32_LASTINTTOIP:
2881 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2882 		break;
2883 	case MSR_VM_HSAVE_PA:
2884 		msr_info->data = svm->nested.hsave_msr;
2885 		break;
2886 	case MSR_VM_CR:
2887 		msr_info->data = svm->nested.vm_cr_msr;
2888 		break;
2889 	case MSR_IA32_SPEC_CTRL:
2890 		if (!msr_info->host_initiated &&
2891 		    !guest_has_spec_ctrl_msr(vcpu))
2892 			return 1;
2893 
2894 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2895 			msr_info->data = svm->vmcb->save.spec_ctrl;
2896 		else
2897 			msr_info->data = svm->spec_ctrl;
2898 		break;
2899 	case MSR_AMD64_VIRT_SPEC_CTRL:
2900 		if (!msr_info->host_initiated &&
2901 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2902 			return 1;
2903 
2904 		msr_info->data = svm->virt_spec_ctrl;
2905 		break;
2906 	case MSR_F15H_IC_CFG: {
2907 
2908 		int family, model;
2909 
2910 		family = guest_cpuid_family(vcpu);
2911 		model  = guest_cpuid_model(vcpu);
2912 
2913 		if (family < 0 || model < 0)
2914 			return kvm_get_msr_common(vcpu, msr_info);
2915 
2916 		msr_info->data = 0;
2917 
2918 		if (family == 0x15 &&
2919 		    (model >= 0x2 && model < 0x20))
2920 			msr_info->data = 0x1E;
2921 		}
2922 		break;
2923 	case MSR_AMD64_DE_CFG:
2924 		msr_info->data = svm->msr_decfg;
2925 		break;
2926 	default:
2927 		return kvm_get_msr_common(vcpu, msr_info);
2928 	}
2929 	return 0;
2930 }
2931 
2932 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2933 {
2934 	struct vcpu_svm *svm = to_svm(vcpu);
2935 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2936 		return kvm_complete_insn_gp(vcpu, err);
2937 
2938 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2939 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2940 				X86_TRAP_GP |
2941 				SVM_EVTINJ_TYPE_EXEPT |
2942 				SVM_EVTINJ_VALID);
2943 	return 1;
2944 }
2945 
2946 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2947 {
2948 	struct vcpu_svm *svm = to_svm(vcpu);
2949 	int svm_dis, chg_mask;
2950 
2951 	if (data & ~SVM_VM_CR_VALID_MASK)
2952 		return 1;
2953 
2954 	chg_mask = SVM_VM_CR_VALID_MASK;
2955 
2956 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2957 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2958 
2959 	svm->nested.vm_cr_msr &= ~chg_mask;
2960 	svm->nested.vm_cr_msr |= (data & chg_mask);
2961 
2962 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2963 
2964 	/* check for svm_disable while efer.svme is set */
2965 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2966 		return 1;
2967 
2968 	return 0;
2969 }
2970 
2971 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2972 {
2973 	struct vcpu_svm *svm = to_svm(vcpu);
2974 	int ret = 0;
2975 
2976 	u32 ecx = msr->index;
2977 	u64 data = msr->data;
2978 	switch (ecx) {
2979 	case MSR_AMD64_TSC_RATIO:
2980 
2981 		if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
2982 
2983 			if (!msr->host_initiated)
2984 				return 1;
2985 			/*
2986 			 * In case TSC scaling is not enabled, always
2987 			 * leave this MSR at the default value.
2988 			 *
2989 			 * Due to bug in qemu 6.2.0, it would try to set
2990 			 * this msr to 0 if tsc scaling is not enabled.
2991 			 * Ignore this value as well.
2992 			 */
2993 			if (data != 0 && data != svm->tsc_ratio_msr)
2994 				return 1;
2995 			break;
2996 		}
2997 
2998 		if (data & SVM_TSC_RATIO_RSVD)
2999 			return 1;
3000 
3001 		svm->tsc_ratio_msr = data;
3002 
3003 		if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3004 		    is_guest_mode(vcpu))
3005 			nested_svm_update_tsc_ratio_msr(vcpu);
3006 
3007 		break;
3008 	case MSR_IA32_CR_PAT:
3009 		ret = kvm_set_msr_common(vcpu, msr);
3010 		if (ret)
3011 			break;
3012 
3013 		svm->vmcb01.ptr->save.g_pat = data;
3014 		if (is_guest_mode(vcpu))
3015 			nested_vmcb02_compute_g_pat(svm);
3016 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3017 		break;
3018 	case MSR_IA32_SPEC_CTRL:
3019 		if (!msr->host_initiated &&
3020 		    !guest_has_spec_ctrl_msr(vcpu))
3021 			return 1;
3022 
3023 		if (kvm_spec_ctrl_test_value(data))
3024 			return 1;
3025 
3026 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3027 			svm->vmcb->save.spec_ctrl = data;
3028 		else
3029 			svm->spec_ctrl = data;
3030 		if (!data)
3031 			break;
3032 
3033 		/*
3034 		 * For non-nested:
3035 		 * When it's written (to non-zero) for the first time, pass
3036 		 * it through.
3037 		 *
3038 		 * For nested:
3039 		 * The handling of the MSR bitmap for L2 guests is done in
3040 		 * nested_svm_vmrun_msrpm.
3041 		 * We update the L1 MSR bit as well since it will end up
3042 		 * touching the MSR anyway now.
3043 		 */
3044 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3045 		break;
3046 	case MSR_AMD64_VIRT_SPEC_CTRL:
3047 		if (!msr->host_initiated &&
3048 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3049 			return 1;
3050 
3051 		if (data & ~SPEC_CTRL_SSBD)
3052 			return 1;
3053 
3054 		svm->virt_spec_ctrl = data;
3055 		break;
3056 	case MSR_STAR:
3057 		svm->vmcb01.ptr->save.star = data;
3058 		break;
3059 #ifdef CONFIG_X86_64
3060 	case MSR_LSTAR:
3061 		svm->vmcb01.ptr->save.lstar = data;
3062 		break;
3063 	case MSR_CSTAR:
3064 		svm->vmcb01.ptr->save.cstar = data;
3065 		break;
3066 	case MSR_KERNEL_GS_BASE:
3067 		svm->vmcb01.ptr->save.kernel_gs_base = data;
3068 		break;
3069 	case MSR_SYSCALL_MASK:
3070 		svm->vmcb01.ptr->save.sfmask = data;
3071 		break;
3072 #endif
3073 	case MSR_IA32_SYSENTER_CS:
3074 		svm->vmcb01.ptr->save.sysenter_cs = data;
3075 		break;
3076 	case MSR_IA32_SYSENTER_EIP:
3077 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3078 		/*
3079 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3080 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3081 		 * In this case we use this intercept to track the high
3082 		 * 32 bit part of these msrs to support Intel's
3083 		 * implementation of SYSENTER/SYSEXIT.
3084 		 */
3085 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3086 		break;
3087 	case MSR_IA32_SYSENTER_ESP:
3088 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3089 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3090 		break;
3091 	case MSR_TSC_AUX:
3092 		/*
3093 		 * TSC_AUX is always virtualized for SEV-ES guests when the
3094 		 * feature is available. The user return MSR support is not
3095 		 * required in this case because TSC_AUX is restored on #VMEXIT
3096 		 * from the host save area (which has been initialized in
3097 		 * svm_hardware_enable()).
3098 		 */
3099 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3100 			break;
3101 
3102 		/*
3103 		 * TSC_AUX is usually changed only during boot and never read
3104 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3105 		 * guest via direct_access_msrs, and switch it via user return.
3106 		 */
3107 		preempt_disable();
3108 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3109 		preempt_enable();
3110 		if (ret)
3111 			break;
3112 
3113 		svm->tsc_aux = data;
3114 		break;
3115 	case MSR_IA32_DEBUGCTLMSR:
3116 		if (!lbrv) {
3117 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3118 			break;
3119 		}
3120 		if (data & DEBUGCTL_RESERVED_BITS)
3121 			return 1;
3122 
3123 		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3124 		svm_update_lbrv(vcpu);
3125 		break;
3126 	case MSR_VM_HSAVE_PA:
3127 		/*
3128 		 * Old kernels did not validate the value written to
3129 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3130 		 * value to allow live migrating buggy or malicious guests
3131 		 * originating from those kernels.
3132 		 */
3133 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3134 			return 1;
3135 
3136 		svm->nested.hsave_msr = data & PAGE_MASK;
3137 		break;
3138 	case MSR_VM_CR:
3139 		return svm_set_vm_cr(vcpu, data);
3140 	case MSR_VM_IGNNE:
3141 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3142 		break;
3143 	case MSR_AMD64_DE_CFG: {
3144 		struct kvm_msr_entry msr_entry;
3145 
3146 		msr_entry.index = msr->index;
3147 		if (svm_get_msr_feature(&msr_entry))
3148 			return 1;
3149 
3150 		/* Check the supported bits */
3151 		if (data & ~msr_entry.data)
3152 			return 1;
3153 
3154 		/* Don't allow the guest to change a bit, #GP */
3155 		if (!msr->host_initiated && (data ^ msr_entry.data))
3156 			return 1;
3157 
3158 		svm->msr_decfg = data;
3159 		break;
3160 	}
3161 	default:
3162 		return kvm_set_msr_common(vcpu, msr);
3163 	}
3164 	return ret;
3165 }
3166 
3167 static int msr_interception(struct kvm_vcpu *vcpu)
3168 {
3169 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3170 		return kvm_emulate_wrmsr(vcpu);
3171 	else
3172 		return kvm_emulate_rdmsr(vcpu);
3173 }
3174 
3175 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3176 {
3177 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3178 	svm_clear_vintr(to_svm(vcpu));
3179 
3180 	/*
3181 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3182 	 * In this case AVIC was temporarily disabled for
3183 	 * requesting the IRQ window and we have to re-enable it.
3184 	 *
3185 	 * If running nested, still remove the VM wide AVIC inhibit to
3186 	 * support case in which the interrupt window was requested when the
3187 	 * vCPU was not running nested.
3188 
3189 	 * All vCPUs which run still run nested, will remain to have their
3190 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3191 	 */
3192 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3193 
3194 	++vcpu->stat.irq_window_exits;
3195 	return 1;
3196 }
3197 
3198 static int pause_interception(struct kvm_vcpu *vcpu)
3199 {
3200 	bool in_kernel;
3201 	/*
3202 	 * CPL is not made available for an SEV-ES guest, therefore
3203 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3204 	 * set in_kernel to false as well.
3205 	 */
3206 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3207 
3208 	grow_ple_window(vcpu);
3209 
3210 	kvm_vcpu_on_spin(vcpu, in_kernel);
3211 	return kvm_skip_emulated_instruction(vcpu);
3212 }
3213 
3214 static int invpcid_interception(struct kvm_vcpu *vcpu)
3215 {
3216 	struct vcpu_svm *svm = to_svm(vcpu);
3217 	unsigned long type;
3218 	gva_t gva;
3219 
3220 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3221 		kvm_queue_exception(vcpu, UD_VECTOR);
3222 		return 1;
3223 	}
3224 
3225 	/*
3226 	 * For an INVPCID intercept:
3227 	 * EXITINFO1 provides the linear address of the memory operand.
3228 	 * EXITINFO2 provides the contents of the register operand.
3229 	 */
3230 	type = svm->vmcb->control.exit_info_2;
3231 	gva = svm->vmcb->control.exit_info_1;
3232 
3233 	return kvm_handle_invpcid(vcpu, type, gva);
3234 }
3235 
3236 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3237 	[SVM_EXIT_READ_CR0]			= cr_interception,
3238 	[SVM_EXIT_READ_CR3]			= cr_interception,
3239 	[SVM_EXIT_READ_CR4]			= cr_interception,
3240 	[SVM_EXIT_READ_CR8]			= cr_interception,
3241 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3242 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3243 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3244 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3245 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3246 	[SVM_EXIT_READ_DR0]			= dr_interception,
3247 	[SVM_EXIT_READ_DR1]			= dr_interception,
3248 	[SVM_EXIT_READ_DR2]			= dr_interception,
3249 	[SVM_EXIT_READ_DR3]			= dr_interception,
3250 	[SVM_EXIT_READ_DR4]			= dr_interception,
3251 	[SVM_EXIT_READ_DR5]			= dr_interception,
3252 	[SVM_EXIT_READ_DR6]			= dr_interception,
3253 	[SVM_EXIT_READ_DR7]			= dr_interception,
3254 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3255 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3256 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3257 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3258 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3259 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3260 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3261 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3262 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3263 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3264 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3265 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3266 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3267 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3268 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3269 	[SVM_EXIT_INTR]				= intr_interception,
3270 	[SVM_EXIT_NMI]				= nmi_interception,
3271 	[SVM_EXIT_SMI]				= smi_interception,
3272 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3273 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3274 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3275 	[SVM_EXIT_IRET]                         = iret_interception,
3276 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3277 	[SVM_EXIT_PAUSE]			= pause_interception,
3278 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3279 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3280 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3281 	[SVM_EXIT_IOIO]				= io_interception,
3282 	[SVM_EXIT_MSR]				= msr_interception,
3283 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3284 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3285 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3286 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3287 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3288 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3289 	[SVM_EXIT_STGI]				= stgi_interception,
3290 	[SVM_EXIT_CLGI]				= clgi_interception,
3291 	[SVM_EXIT_SKINIT]			= skinit_interception,
3292 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3293 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3294 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3295 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3296 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3297 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3298 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3299 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3300 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3301 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3302 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3303 	[SVM_EXIT_NPF]				= npf_interception,
3304 	[SVM_EXIT_RSM]                          = rsm_interception,
3305 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3306 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3307 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3308 };
3309 
3310 static void dump_vmcb(struct kvm_vcpu *vcpu)
3311 {
3312 	struct vcpu_svm *svm = to_svm(vcpu);
3313 	struct vmcb_control_area *control = &svm->vmcb->control;
3314 	struct vmcb_save_area *save = &svm->vmcb->save;
3315 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3316 
3317 	if (!dump_invalid_vmcb) {
3318 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3319 		return;
3320 	}
3321 
3322 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3323 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3324 	pr_err("VMCB Control Area:\n");
3325 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3326 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3327 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3328 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3329 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3330 	pr_err("%-20s%08x %08x\n", "intercepts:",
3331               control->intercepts[INTERCEPT_WORD3],
3332 	       control->intercepts[INTERCEPT_WORD4]);
3333 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3334 	pr_err("%-20s%d\n", "pause filter threshold:",
3335 	       control->pause_filter_thresh);
3336 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3337 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3338 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3339 	pr_err("%-20s%d\n", "asid:", control->asid);
3340 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3341 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3342 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3343 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3344 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3345 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3346 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3347 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3348 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3349 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3350 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3351 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3352 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3353 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3354 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3355 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3356 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3357 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3358 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3359 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3360 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3361 	pr_err("VMCB State Save Area:\n");
3362 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3363 	       "es:",
3364 	       save->es.selector, save->es.attrib,
3365 	       save->es.limit, save->es.base);
3366 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3367 	       "cs:",
3368 	       save->cs.selector, save->cs.attrib,
3369 	       save->cs.limit, save->cs.base);
3370 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3371 	       "ss:",
3372 	       save->ss.selector, save->ss.attrib,
3373 	       save->ss.limit, save->ss.base);
3374 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3375 	       "ds:",
3376 	       save->ds.selector, save->ds.attrib,
3377 	       save->ds.limit, save->ds.base);
3378 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3379 	       "fs:",
3380 	       save01->fs.selector, save01->fs.attrib,
3381 	       save01->fs.limit, save01->fs.base);
3382 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3383 	       "gs:",
3384 	       save01->gs.selector, save01->gs.attrib,
3385 	       save01->gs.limit, save01->gs.base);
3386 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3387 	       "gdtr:",
3388 	       save->gdtr.selector, save->gdtr.attrib,
3389 	       save->gdtr.limit, save->gdtr.base);
3390 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3391 	       "ldtr:",
3392 	       save01->ldtr.selector, save01->ldtr.attrib,
3393 	       save01->ldtr.limit, save01->ldtr.base);
3394 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3395 	       "idtr:",
3396 	       save->idtr.selector, save->idtr.attrib,
3397 	       save->idtr.limit, save->idtr.base);
3398 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3399 	       "tr:",
3400 	       save01->tr.selector, save01->tr.attrib,
3401 	       save01->tr.limit, save01->tr.base);
3402 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3403 	       save->vmpl, save->cpl, save->efer);
3404 	pr_err("%-15s %016llx %-13s %016llx\n",
3405 	       "cr0:", save->cr0, "cr2:", save->cr2);
3406 	pr_err("%-15s %016llx %-13s %016llx\n",
3407 	       "cr3:", save->cr3, "cr4:", save->cr4);
3408 	pr_err("%-15s %016llx %-13s %016llx\n",
3409 	       "dr6:", save->dr6, "dr7:", save->dr7);
3410 	pr_err("%-15s %016llx %-13s %016llx\n",
3411 	       "rip:", save->rip, "rflags:", save->rflags);
3412 	pr_err("%-15s %016llx %-13s %016llx\n",
3413 	       "rsp:", save->rsp, "rax:", save->rax);
3414 	pr_err("%-15s %016llx %-13s %016llx\n",
3415 	       "star:", save01->star, "lstar:", save01->lstar);
3416 	pr_err("%-15s %016llx %-13s %016llx\n",
3417 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3418 	pr_err("%-15s %016llx %-13s %016llx\n",
3419 	       "kernel_gs_base:", save01->kernel_gs_base,
3420 	       "sysenter_cs:", save01->sysenter_cs);
3421 	pr_err("%-15s %016llx %-13s %016llx\n",
3422 	       "sysenter_esp:", save01->sysenter_esp,
3423 	       "sysenter_eip:", save01->sysenter_eip);
3424 	pr_err("%-15s %016llx %-13s %016llx\n",
3425 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3426 	pr_err("%-15s %016llx %-13s %016llx\n",
3427 	       "br_from:", save->br_from, "br_to:", save->br_to);
3428 	pr_err("%-15s %016llx %-13s %016llx\n",
3429 	       "excp_from:", save->last_excp_from,
3430 	       "excp_to:", save->last_excp_to);
3431 }
3432 
3433 static bool svm_check_exit_valid(u64 exit_code)
3434 {
3435 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3436 		svm_exit_handlers[exit_code]);
3437 }
3438 
3439 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3440 {
3441 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3442 	dump_vmcb(vcpu);
3443 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3444 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3445 	vcpu->run->internal.ndata = 2;
3446 	vcpu->run->internal.data[0] = exit_code;
3447 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3448 	return 0;
3449 }
3450 
3451 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3452 {
3453 	if (!svm_check_exit_valid(exit_code))
3454 		return svm_handle_invalid_exit(vcpu, exit_code);
3455 
3456 #ifdef CONFIG_MITIGATION_RETPOLINE
3457 	if (exit_code == SVM_EXIT_MSR)
3458 		return msr_interception(vcpu);
3459 	else if (exit_code == SVM_EXIT_VINTR)
3460 		return interrupt_window_interception(vcpu);
3461 	else if (exit_code == SVM_EXIT_INTR)
3462 		return intr_interception(vcpu);
3463 	else if (exit_code == SVM_EXIT_HLT)
3464 		return kvm_emulate_halt(vcpu);
3465 	else if (exit_code == SVM_EXIT_NPF)
3466 		return npf_interception(vcpu);
3467 #endif
3468 	return svm_exit_handlers[exit_code](vcpu);
3469 }
3470 
3471 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3472 			      u64 *info1, u64 *info2,
3473 			      u32 *intr_info, u32 *error_code)
3474 {
3475 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3476 
3477 	*reason = control->exit_code;
3478 	*info1 = control->exit_info_1;
3479 	*info2 = control->exit_info_2;
3480 	*intr_info = control->exit_int_info;
3481 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3482 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3483 		*error_code = control->exit_int_info_err;
3484 	else
3485 		*error_code = 0;
3486 }
3487 
3488 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3489 {
3490 	struct vcpu_svm *svm = to_svm(vcpu);
3491 	struct kvm_run *kvm_run = vcpu->run;
3492 	u32 exit_code = svm->vmcb->control.exit_code;
3493 
3494 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3495 	if (!sev_es_guest(vcpu->kvm)) {
3496 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3497 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3498 		if (npt_enabled)
3499 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3500 	}
3501 
3502 	if (is_guest_mode(vcpu)) {
3503 		int vmexit;
3504 
3505 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3506 
3507 		vmexit = nested_svm_exit_special(svm);
3508 
3509 		if (vmexit == NESTED_EXIT_CONTINUE)
3510 			vmexit = nested_svm_exit_handled(svm);
3511 
3512 		if (vmexit == NESTED_EXIT_DONE)
3513 			return 1;
3514 	}
3515 
3516 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3517 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3518 		kvm_run->fail_entry.hardware_entry_failure_reason
3519 			= svm->vmcb->control.exit_code;
3520 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3521 		dump_vmcb(vcpu);
3522 		return 0;
3523 	}
3524 
3525 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3526 		return 1;
3527 
3528 	return svm_invoke_exit_handler(vcpu, exit_code);
3529 }
3530 
3531 static void pre_svm_run(struct kvm_vcpu *vcpu)
3532 {
3533 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3534 	struct vcpu_svm *svm = to_svm(vcpu);
3535 
3536 	/*
3537 	 * If the previous vmrun of the vmcb occurred on a different physical
3538 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3539 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3540 	 */
3541 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3542 		svm->current_vmcb->asid_generation = 0;
3543 		vmcb_mark_all_dirty(svm->vmcb);
3544 		svm->current_vmcb->cpu = vcpu->cpu;
3545         }
3546 
3547 	if (sev_guest(vcpu->kvm))
3548 		return pre_sev_run(svm, vcpu->cpu);
3549 
3550 	/* FIXME: handle wraparound of asid_generation */
3551 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3552 		new_asid(svm, sd);
3553 }
3554 
3555 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3556 {
3557 	struct vcpu_svm *svm = to_svm(vcpu);
3558 
3559 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3560 
3561 	if (svm->nmi_l1_to_l2)
3562 		return;
3563 
3564 	/*
3565 	 * No need to manually track NMI masking when vNMI is enabled, hardware
3566 	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3567 	 * case where software directly injects an NMI.
3568 	 */
3569 	if (!is_vnmi_enabled(svm)) {
3570 		svm->nmi_masked = true;
3571 		svm_set_iret_intercept(svm);
3572 	}
3573 	++vcpu->stat.nmi_injections;
3574 }
3575 
3576 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3577 {
3578 	struct vcpu_svm *svm = to_svm(vcpu);
3579 
3580 	if (!is_vnmi_enabled(svm))
3581 		return false;
3582 
3583 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3584 }
3585 
3586 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3587 {
3588 	struct vcpu_svm *svm = to_svm(vcpu);
3589 
3590 	if (!is_vnmi_enabled(svm))
3591 		return false;
3592 
3593 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3594 		return false;
3595 
3596 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3597 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3598 
3599 	/*
3600 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3601 	 * the NMI is "injected", but for all intents and purposes, passing the
3602 	 * NMI off to hardware counts as injection.
3603 	 */
3604 	++vcpu->stat.nmi_injections;
3605 
3606 	return true;
3607 }
3608 
3609 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3610 {
3611 	struct vcpu_svm *svm = to_svm(vcpu);
3612 	u32 type;
3613 
3614 	if (vcpu->arch.interrupt.soft) {
3615 		if (svm_update_soft_interrupt_rip(vcpu))
3616 			return;
3617 
3618 		type = SVM_EVTINJ_TYPE_SOFT;
3619 	} else {
3620 		type = SVM_EVTINJ_TYPE_INTR;
3621 	}
3622 
3623 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3624 			   vcpu->arch.interrupt.soft, reinjected);
3625 	++vcpu->stat.irq_injections;
3626 
3627 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3628 				       SVM_EVTINJ_VALID | type;
3629 }
3630 
3631 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3632 				     int trig_mode, int vector)
3633 {
3634 	/*
3635 	 * apic->apicv_active must be read after vcpu->mode.
3636 	 * Pairs with smp_store_release in vcpu_enter_guest.
3637 	 */
3638 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3639 
3640 	/* Note, this is called iff the local APIC is in-kernel. */
3641 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3642 		/* Process the interrupt via kvm_check_and_inject_events(). */
3643 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3644 		kvm_vcpu_kick(vcpu);
3645 		return;
3646 	}
3647 
3648 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3649 	if (in_guest_mode) {
3650 		/*
3651 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3652 		 * the vCPU exits the guest before the doorbell chimes, hardware
3653 		 * will automatically process AVIC interrupts at the next VMRUN.
3654 		 */
3655 		avic_ring_doorbell(vcpu);
3656 	} else {
3657 		/*
3658 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3659 		 * pending IRQ when checking if the vCPU has a wake event.
3660 		 */
3661 		kvm_vcpu_wake_up(vcpu);
3662 	}
3663 }
3664 
3665 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3666 				  int trig_mode, int vector)
3667 {
3668 	kvm_lapic_set_irr(vector, apic);
3669 
3670 	/*
3671 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3672 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3673 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3674 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3675 	 * will signal the doorbell if the CPU has already entered the guest.
3676 	 */
3677 	smp_mb__after_atomic();
3678 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3679 }
3680 
3681 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3682 {
3683 	struct vcpu_svm *svm = to_svm(vcpu);
3684 
3685 	/*
3686 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3687 	 * tracking is done using the CR write traps.
3688 	 */
3689 	if (sev_es_guest(vcpu->kvm))
3690 		return;
3691 
3692 	if (nested_svm_virtualize_tpr(vcpu))
3693 		return;
3694 
3695 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3696 
3697 	if (irr == -1)
3698 		return;
3699 
3700 	if (tpr >= irr)
3701 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3702 }
3703 
3704 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3705 {
3706 	struct vcpu_svm *svm = to_svm(vcpu);
3707 
3708 	if (is_vnmi_enabled(svm))
3709 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3710 	else
3711 		return svm->nmi_masked;
3712 }
3713 
3714 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3715 {
3716 	struct vcpu_svm *svm = to_svm(vcpu);
3717 
3718 	if (is_vnmi_enabled(svm)) {
3719 		if (masked)
3720 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3721 		else
3722 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3723 
3724 	} else {
3725 		svm->nmi_masked = masked;
3726 		if (masked)
3727 			svm_set_iret_intercept(svm);
3728 		else
3729 			svm_clr_iret_intercept(svm);
3730 	}
3731 }
3732 
3733 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3734 {
3735 	struct vcpu_svm *svm = to_svm(vcpu);
3736 	struct vmcb *vmcb = svm->vmcb;
3737 
3738 	if (!gif_set(svm))
3739 		return true;
3740 
3741 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3742 		return false;
3743 
3744 	if (svm_get_nmi_mask(vcpu))
3745 		return true;
3746 
3747 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3748 }
3749 
3750 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3751 {
3752 	struct vcpu_svm *svm = to_svm(vcpu);
3753 	if (svm->nested.nested_run_pending)
3754 		return -EBUSY;
3755 
3756 	if (svm_nmi_blocked(vcpu))
3757 		return 0;
3758 
3759 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3760 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3761 		return -EBUSY;
3762 	return 1;
3763 }
3764 
3765 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3766 {
3767 	struct vcpu_svm *svm = to_svm(vcpu);
3768 	struct vmcb *vmcb = svm->vmcb;
3769 
3770 	if (!gif_set(svm))
3771 		return true;
3772 
3773 	if (is_guest_mode(vcpu)) {
3774 		/* As long as interrupts are being delivered...  */
3775 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3776 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3777 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3778 			return true;
3779 
3780 		/* ... vmexits aren't blocked by the interrupt shadow  */
3781 		if (nested_exit_on_intr(svm))
3782 			return false;
3783 	} else {
3784 		if (!svm_get_if_flag(vcpu))
3785 			return true;
3786 	}
3787 
3788 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3789 }
3790 
3791 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3792 {
3793 	struct vcpu_svm *svm = to_svm(vcpu);
3794 
3795 	if (svm->nested.nested_run_pending)
3796 		return -EBUSY;
3797 
3798 	if (svm_interrupt_blocked(vcpu))
3799 		return 0;
3800 
3801 	/*
3802 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3803 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3804 	 */
3805 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3806 		return -EBUSY;
3807 
3808 	return 1;
3809 }
3810 
3811 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3812 {
3813 	struct vcpu_svm *svm = to_svm(vcpu);
3814 
3815 	/*
3816 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3817 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3818 	 * get that intercept, this function will be called again though and
3819 	 * we'll get the vintr intercept. However, if the vGIF feature is
3820 	 * enabled, the STGI interception will not occur. Enable the irq
3821 	 * window under the assumption that the hardware will set the GIF.
3822 	 */
3823 	if (vgif || gif_set(svm)) {
3824 		/*
3825 		 * IRQ window is not needed when AVIC is enabled,
3826 		 * unless we have pending ExtINT since it cannot be injected
3827 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3828 		 * and fallback to injecting IRQ via V_IRQ.
3829 		 *
3830 		 * If running nested, AVIC is already locally inhibited
3831 		 * on this vCPU, therefore there is no need to request
3832 		 * the VM wide AVIC inhibition.
3833 		 */
3834 		if (!is_guest_mode(vcpu))
3835 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3836 
3837 		svm_set_vintr(svm);
3838 	}
3839 }
3840 
3841 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3842 {
3843 	struct vcpu_svm *svm = to_svm(vcpu);
3844 
3845 	/*
3846 	 * KVM should never request an NMI window when vNMI is enabled, as KVM
3847 	 * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3848 	 * two NMIs arrive simultaneously, KVM will inject one and set
3849 	 * V_NMI_PENDING for the other.  WARN, but continue with the standard
3850 	 * single-step approach to try and salvage the pending NMI.
3851 	 */
3852 	WARN_ON_ONCE(is_vnmi_enabled(svm));
3853 
3854 	if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3855 		return; /* IRET will cause a vm exit */
3856 
3857 	/*
3858 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3859 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3860 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3861 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3862 	 *
3863 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3864 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3865 	 * supported NAEs in the GHCB protocol.
3866 	 */
3867 	if (sev_es_guest(vcpu->kvm))
3868 		return;
3869 
3870 	if (!gif_set(svm)) {
3871 		if (vgif)
3872 			svm_set_intercept(svm, INTERCEPT_STGI);
3873 		return; /* STGI will cause a vm exit */
3874 	}
3875 
3876 	/*
3877 	 * Something prevents NMI from been injected. Single step over possible
3878 	 * problem (IRET or exception injection or interrupt shadow)
3879 	 */
3880 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3881 	svm->nmi_singlestep = true;
3882 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3883 }
3884 
3885 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3886 {
3887 	struct vcpu_svm *svm = to_svm(vcpu);
3888 
3889 	/*
3890 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3891 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3892 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3893 	 */
3894 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3895 
3896 	/*
3897 	 * Flush only the current ASID even if the TLB flush was invoked via
3898 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3899 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3900 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3901 	 * VM-Exit (via kvm_mmu_reset_context()).
3902 	 */
3903 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3904 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3905 	else
3906 		svm->current_vmcb->asid_generation--;
3907 }
3908 
3909 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3910 {
3911 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3912 
3913 	/*
3914 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3915 	 * flush the NPT mappings via hypercall as flushing the ASID only
3916 	 * affects virtual to physical mappings, it does not invalidate guest
3917 	 * physical to host physical mappings.
3918 	 */
3919 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3920 		hyperv_flush_guest_mapping(root_tdp);
3921 
3922 	svm_flush_tlb_asid(vcpu);
3923 }
3924 
3925 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3926 {
3927 	/*
3928 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3929 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3930 	 * a "regular" remote flush.  Reaching this point means either there's
3931 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3932 	 * which might be fatal to the guest.  Yell, but try to recover.
3933 	 */
3934 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3935 		hv_flush_remote_tlbs(vcpu->kvm);
3936 
3937 	svm_flush_tlb_asid(vcpu);
3938 }
3939 
3940 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3941 {
3942 	struct vcpu_svm *svm = to_svm(vcpu);
3943 
3944 	invlpga(gva, svm->vmcb->control.asid);
3945 }
3946 
3947 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3948 {
3949 	struct vcpu_svm *svm = to_svm(vcpu);
3950 
3951 	if (nested_svm_virtualize_tpr(vcpu))
3952 		return;
3953 
3954 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3955 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3956 		kvm_set_cr8(vcpu, cr8);
3957 	}
3958 }
3959 
3960 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3961 {
3962 	struct vcpu_svm *svm = to_svm(vcpu);
3963 	u64 cr8;
3964 
3965 	if (nested_svm_virtualize_tpr(vcpu) ||
3966 	    kvm_vcpu_apicv_active(vcpu))
3967 		return;
3968 
3969 	cr8 = kvm_get_cr8(vcpu);
3970 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3971 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3972 }
3973 
3974 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3975 					int type)
3976 {
3977 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3978 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3979 	struct vcpu_svm *svm = to_svm(vcpu);
3980 
3981 	/*
3982 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3983 	 * associated with the original soft exception/interrupt.  next_rip is
3984 	 * cleared on all exits that can occur while vectoring an event, so KVM
3985 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3986 	 * case below, this needs to be done if and only if KVM is re-injecting
3987 	 * the same event, i.e. if the event is a soft exception/interrupt,
3988 	 * otherwise next_rip is unused on VMRUN.
3989 	 */
3990 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3991 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3992 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3993 	/*
3994 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3995 	 * injecting the soft exception/interrupt.  That advancement needs to
3996 	 * be unwound if vectoring didn't complete.  Note, the new event may
3997 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3998 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3999 	 * be the reported vectored event, but RIP still needs to be unwound.
4000 	 */
4001 	else if (!nrips && (is_soft || is_exception) &&
4002 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4003 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4004 }
4005 
4006 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4007 {
4008 	struct vcpu_svm *svm = to_svm(vcpu);
4009 	u8 vector;
4010 	int type;
4011 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4012 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4013 	bool soft_int_injected = svm->soft_int_injected;
4014 
4015 	svm->nmi_l1_to_l2 = false;
4016 	svm->soft_int_injected = false;
4017 
4018 	/*
4019 	 * If we've made progress since setting awaiting_iret_completion, we've
4020 	 * executed an IRET and can allow NMI injection.
4021 	 */
4022 	if (svm->awaiting_iret_completion &&
4023 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4024 		svm->awaiting_iret_completion = false;
4025 		svm->nmi_masked = false;
4026 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4027 	}
4028 
4029 	vcpu->arch.nmi_injected = false;
4030 	kvm_clear_exception_queue(vcpu);
4031 	kvm_clear_interrupt_queue(vcpu);
4032 
4033 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4034 		return;
4035 
4036 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4037 
4038 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4039 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4040 
4041 	if (soft_int_injected)
4042 		svm_complete_soft_interrupt(vcpu, vector, type);
4043 
4044 	switch (type) {
4045 	case SVM_EXITINTINFO_TYPE_NMI:
4046 		vcpu->arch.nmi_injected = true;
4047 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4048 		break;
4049 	case SVM_EXITINTINFO_TYPE_EXEPT:
4050 		/*
4051 		 * Never re-inject a #VC exception.
4052 		 */
4053 		if (vector == X86_TRAP_VC)
4054 			break;
4055 
4056 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4057 			u32 err = svm->vmcb->control.exit_int_info_err;
4058 			kvm_requeue_exception_e(vcpu, vector, err);
4059 
4060 		} else
4061 			kvm_requeue_exception(vcpu, vector);
4062 		break;
4063 	case SVM_EXITINTINFO_TYPE_INTR:
4064 		kvm_queue_interrupt(vcpu, vector, false);
4065 		break;
4066 	case SVM_EXITINTINFO_TYPE_SOFT:
4067 		kvm_queue_interrupt(vcpu, vector, true);
4068 		break;
4069 	default:
4070 		break;
4071 	}
4072 
4073 }
4074 
4075 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4076 {
4077 	struct vcpu_svm *svm = to_svm(vcpu);
4078 	struct vmcb_control_area *control = &svm->vmcb->control;
4079 
4080 	control->exit_int_info = control->event_inj;
4081 	control->exit_int_info_err = control->event_inj_err;
4082 	control->event_inj = 0;
4083 	svm_complete_interrupts(vcpu);
4084 }
4085 
4086 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4087 {
4088 	return 1;
4089 }
4090 
4091 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4092 {
4093 	if (is_guest_mode(vcpu))
4094 		return EXIT_FASTPATH_NONE;
4095 
4096 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4097 	    to_svm(vcpu)->vmcb->control.exit_info_1)
4098 		return handle_fastpath_set_msr_irqoff(vcpu);
4099 
4100 	return EXIT_FASTPATH_NONE;
4101 }
4102 
4103 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4104 {
4105 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
4106 	struct vcpu_svm *svm = to_svm(vcpu);
4107 
4108 	guest_state_enter_irqoff();
4109 
4110 	amd_clear_divider();
4111 
4112 	if (sev_es_guest(vcpu->kvm))
4113 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted,
4114 				      sev_es_host_save_area(sd));
4115 	else
4116 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4117 
4118 	guest_state_exit_irqoff();
4119 }
4120 
4121 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
4122 					  bool force_immediate_exit)
4123 {
4124 	struct vcpu_svm *svm = to_svm(vcpu);
4125 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4126 
4127 	trace_kvm_entry(vcpu, force_immediate_exit);
4128 
4129 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4130 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4131 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4132 
4133 	/*
4134 	 * Disable singlestep if we're injecting an interrupt/exception.
4135 	 * We don't want our modified rflags to be pushed on the stack where
4136 	 * we might not be able to easily reset them if we disabled NMI
4137 	 * singlestep later.
4138 	 */
4139 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4140 		/*
4141 		 * Event injection happens before external interrupts cause a
4142 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4143 		 * is enough to force an immediate vmexit.
4144 		 */
4145 		disable_nmi_singlestep(svm);
4146 		force_immediate_exit = true;
4147 	}
4148 
4149 	if (force_immediate_exit)
4150 		smp_send_reschedule(vcpu->cpu);
4151 
4152 	pre_svm_run(vcpu);
4153 
4154 	sync_lapic_to_cr8(vcpu);
4155 
4156 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4157 		svm->vmcb->control.asid = svm->asid;
4158 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4159 	}
4160 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4161 
4162 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4163 
4164 	/*
4165 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4166 	 * of a #DB.
4167 	 */
4168 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4169 		svm_set_dr6(svm, vcpu->arch.dr6);
4170 	else
4171 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
4172 
4173 	clgi();
4174 	kvm_load_guest_xsave_state(vcpu);
4175 
4176 	kvm_wait_lapic_expire(vcpu);
4177 
4178 	/*
4179 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4180 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4181 	 * is no need to worry about the conditional branch over the wrmsr
4182 	 * being speculatively taken.
4183 	 */
4184 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4185 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4186 
4187 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4188 
4189 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4190 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4191 
4192 	if (!sev_es_guest(vcpu->kvm)) {
4193 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4194 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4195 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4196 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4197 	}
4198 	vcpu->arch.regs_dirty = 0;
4199 
4200 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4201 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4202 
4203 	kvm_load_host_xsave_state(vcpu);
4204 	stgi();
4205 
4206 	/* Any pending NMI will happen here */
4207 
4208 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4209 		kvm_after_interrupt(vcpu);
4210 
4211 	sync_cr8_to_lapic(vcpu);
4212 
4213 	svm->next_rip = 0;
4214 	if (is_guest_mode(vcpu)) {
4215 		nested_sync_control_from_vmcb02(svm);
4216 
4217 		/* Track VMRUNs that have made past consistency checking */
4218 		if (svm->nested.nested_run_pending &&
4219 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4220                         ++vcpu->stat.nested_run;
4221 
4222 		svm->nested.nested_run_pending = 0;
4223 	}
4224 
4225 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4226 	vmcb_mark_all_clean(svm->vmcb);
4227 
4228 	/* if exit due to PF check for async PF */
4229 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4230 		vcpu->arch.apf.host_apf_flags =
4231 			kvm_read_and_reset_apf_flags();
4232 
4233 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4234 
4235 	/*
4236 	 * We need to handle MC intercepts here before the vcpu has a chance to
4237 	 * change the physical cpu
4238 	 */
4239 	if (unlikely(svm->vmcb->control.exit_code ==
4240 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4241 		svm_handle_mce(vcpu);
4242 
4243 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4244 
4245 	svm_complete_interrupts(vcpu);
4246 
4247 	return svm_exit_handlers_fastpath(vcpu);
4248 }
4249 
4250 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4251 			     int root_level)
4252 {
4253 	struct vcpu_svm *svm = to_svm(vcpu);
4254 	unsigned long cr3;
4255 
4256 	if (npt_enabled) {
4257 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4258 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4259 
4260 		hv_track_root_tdp(vcpu, root_hpa);
4261 
4262 		cr3 = vcpu->arch.cr3;
4263 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4264 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4265 	} else {
4266 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4267 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4268 		cr3 = root_hpa;
4269 	}
4270 
4271 	svm->vmcb->save.cr3 = cr3;
4272 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4273 }
4274 
4275 static void
4276 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4277 {
4278 	/*
4279 	 * Patch in the VMMCALL instruction:
4280 	 */
4281 	hypercall[0] = 0x0f;
4282 	hypercall[1] = 0x01;
4283 	hypercall[2] = 0xd9;
4284 }
4285 
4286 /*
4287  * The kvm parameter can be NULL (module initialization, or invocation before
4288  * VM creation). Be sure to check the kvm parameter before using it.
4289  */
4290 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4291 {
4292 	switch (index) {
4293 	case MSR_IA32_MCG_EXT_CTL:
4294 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4295 		return false;
4296 	case MSR_IA32_SMBASE:
4297 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4298 			return false;
4299 		/* SEV-ES guests do not support SMM, so report false */
4300 		if (kvm && sev_es_guest(kvm))
4301 			return false;
4302 		break;
4303 	default:
4304 		break;
4305 	}
4306 
4307 	return true;
4308 }
4309 
4310 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4311 {
4312 	struct vcpu_svm *svm = to_svm(vcpu);
4313 
4314 	/*
4315 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4316 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4317 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4318 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4319 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4320 	 * whether it's advertised to the guest so that KVM context switches
4321 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4322 	 * the guest read/write access to the host's XSS.
4323 	 */
4324 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4325 	    boot_cpu_has(X86_FEATURE_XSAVES) &&
4326 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4327 		kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4328 
4329 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4330 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4331 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4332 
4333 	/*
4334 	 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4335 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4336 	 * SVM on Intel is bonkers and extremely unlikely to work).
4337 	 */
4338 	if (!guest_cpuid_is_intel(vcpu))
4339 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4340 
4341 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4342 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4343 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4344 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4345 
4346 	svm_recalc_instruction_intercepts(vcpu, svm);
4347 
4348 	if (boot_cpu_has(X86_FEATURE_IBPB))
4349 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4350 				     !!guest_has_pred_cmd_msr(vcpu));
4351 
4352 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4353 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4354 				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4355 
4356 	if (sev_guest(vcpu->kvm))
4357 		sev_vcpu_after_set_cpuid(svm);
4358 
4359 	init_vmcb_after_set_cpuid(vcpu);
4360 }
4361 
4362 static bool svm_has_wbinvd_exit(void)
4363 {
4364 	return true;
4365 }
4366 
4367 #define PRE_EX(exit)  { .exit_code = (exit), \
4368 			.stage = X86_ICPT_PRE_EXCEPT, }
4369 #define POST_EX(exit) { .exit_code = (exit), \
4370 			.stage = X86_ICPT_POST_EXCEPT, }
4371 #define POST_MEM(exit) { .exit_code = (exit), \
4372 			.stage = X86_ICPT_POST_MEMACCESS, }
4373 
4374 static const struct __x86_intercept {
4375 	u32 exit_code;
4376 	enum x86_intercept_stage stage;
4377 } x86_intercept_map[] = {
4378 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4379 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4380 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4381 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4382 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4383 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4384 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4385 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4386 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4387 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4388 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4389 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4390 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4391 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4392 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4393 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4394 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4395 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4396 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4397 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4398 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4399 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4400 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4401 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4402 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4403 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4404 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4405 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4406 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4407 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4408 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4409 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4410 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4411 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4412 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4413 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4414 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4415 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4416 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4417 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4418 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4419 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4420 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4421 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4422 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4423 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4424 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4425 };
4426 
4427 #undef PRE_EX
4428 #undef POST_EX
4429 #undef POST_MEM
4430 
4431 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4432 			       struct x86_instruction_info *info,
4433 			       enum x86_intercept_stage stage,
4434 			       struct x86_exception *exception)
4435 {
4436 	struct vcpu_svm *svm = to_svm(vcpu);
4437 	int vmexit, ret = X86EMUL_CONTINUE;
4438 	struct __x86_intercept icpt_info;
4439 	struct vmcb *vmcb = svm->vmcb;
4440 
4441 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4442 		goto out;
4443 
4444 	icpt_info = x86_intercept_map[info->intercept];
4445 
4446 	if (stage != icpt_info.stage)
4447 		goto out;
4448 
4449 	switch (icpt_info.exit_code) {
4450 	case SVM_EXIT_READ_CR0:
4451 		if (info->intercept == x86_intercept_cr_read)
4452 			icpt_info.exit_code += info->modrm_reg;
4453 		break;
4454 	case SVM_EXIT_WRITE_CR0: {
4455 		unsigned long cr0, val;
4456 
4457 		if (info->intercept == x86_intercept_cr_write)
4458 			icpt_info.exit_code += info->modrm_reg;
4459 
4460 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4461 		    info->intercept == x86_intercept_clts)
4462 			break;
4463 
4464 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4465 					INTERCEPT_SELECTIVE_CR0)))
4466 			break;
4467 
4468 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4469 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4470 
4471 		if (info->intercept == x86_intercept_lmsw) {
4472 			cr0 &= 0xfUL;
4473 			val &= 0xfUL;
4474 			/* lmsw can't clear PE - catch this here */
4475 			if (cr0 & X86_CR0_PE)
4476 				val |= X86_CR0_PE;
4477 		}
4478 
4479 		if (cr0 ^ val)
4480 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4481 
4482 		break;
4483 	}
4484 	case SVM_EXIT_READ_DR0:
4485 	case SVM_EXIT_WRITE_DR0:
4486 		icpt_info.exit_code += info->modrm_reg;
4487 		break;
4488 	case SVM_EXIT_MSR:
4489 		if (info->intercept == x86_intercept_wrmsr)
4490 			vmcb->control.exit_info_1 = 1;
4491 		else
4492 			vmcb->control.exit_info_1 = 0;
4493 		break;
4494 	case SVM_EXIT_PAUSE:
4495 		/*
4496 		 * We get this for NOP only, but pause
4497 		 * is rep not, check this here
4498 		 */
4499 		if (info->rep_prefix != REPE_PREFIX)
4500 			goto out;
4501 		break;
4502 	case SVM_EXIT_IOIO: {
4503 		u64 exit_info;
4504 		u32 bytes;
4505 
4506 		if (info->intercept == x86_intercept_in ||
4507 		    info->intercept == x86_intercept_ins) {
4508 			exit_info = ((info->src_val & 0xffff) << 16) |
4509 				SVM_IOIO_TYPE_MASK;
4510 			bytes = info->dst_bytes;
4511 		} else {
4512 			exit_info = (info->dst_val & 0xffff) << 16;
4513 			bytes = info->src_bytes;
4514 		}
4515 
4516 		if (info->intercept == x86_intercept_outs ||
4517 		    info->intercept == x86_intercept_ins)
4518 			exit_info |= SVM_IOIO_STR_MASK;
4519 
4520 		if (info->rep_prefix)
4521 			exit_info |= SVM_IOIO_REP_MASK;
4522 
4523 		bytes = min(bytes, 4u);
4524 
4525 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4526 
4527 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4528 
4529 		vmcb->control.exit_info_1 = exit_info;
4530 		vmcb->control.exit_info_2 = info->next_rip;
4531 
4532 		break;
4533 	}
4534 	default:
4535 		break;
4536 	}
4537 
4538 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4539 	if (static_cpu_has(X86_FEATURE_NRIPS))
4540 		vmcb->control.next_rip  = info->next_rip;
4541 	vmcb->control.exit_code = icpt_info.exit_code;
4542 	vmexit = nested_svm_exit_handled(svm);
4543 
4544 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4545 					   : X86EMUL_CONTINUE;
4546 
4547 out:
4548 	return ret;
4549 }
4550 
4551 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4552 {
4553 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4554 		vcpu->arch.at_instruction_boundary = true;
4555 }
4556 
4557 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4558 {
4559 	if (!kvm_pause_in_guest(vcpu->kvm))
4560 		shrink_ple_window(vcpu);
4561 }
4562 
4563 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4564 {
4565 	/* [63:9] are reserved. */
4566 	vcpu->arch.mcg_cap &= 0x1ff;
4567 }
4568 
4569 #ifdef CONFIG_KVM_SMM
4570 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4571 {
4572 	struct vcpu_svm *svm = to_svm(vcpu);
4573 
4574 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4575 	if (!gif_set(svm))
4576 		return true;
4577 
4578 	return is_smm(vcpu);
4579 }
4580 
4581 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4582 {
4583 	struct vcpu_svm *svm = to_svm(vcpu);
4584 	if (svm->nested.nested_run_pending)
4585 		return -EBUSY;
4586 
4587 	if (svm_smi_blocked(vcpu))
4588 		return 0;
4589 
4590 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4591 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4592 		return -EBUSY;
4593 
4594 	return 1;
4595 }
4596 
4597 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4598 {
4599 	struct vcpu_svm *svm = to_svm(vcpu);
4600 	struct kvm_host_map map_save;
4601 	int ret;
4602 
4603 	if (!is_guest_mode(vcpu))
4604 		return 0;
4605 
4606 	/*
4607 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4608 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4609 	 */
4610 
4611 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4612 		return 1;
4613 
4614 	smram->smram64.svm_guest_flag = 1;
4615 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4616 
4617 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4618 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4619 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4620 
4621 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4622 	if (ret)
4623 		return ret;
4624 
4625 	/*
4626 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4627 	 * VMCB01 is going to be used during SMM and thus the state will
4628 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4629 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4630 	 * format of the area is identical to guest save area offsetted
4631 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4632 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4633 	 * L1 hypervisor to save additional host context (e.g. KVM does
4634 	 * that, see svm_prepare_switch_to_guest()) which must be
4635 	 * preserved.
4636 	 */
4637 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4638 		return 1;
4639 
4640 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4641 
4642 	svm_copy_vmrun_state(map_save.hva + 0x400,
4643 			     &svm->vmcb01.ptr->save);
4644 
4645 	kvm_vcpu_unmap(vcpu, &map_save, true);
4646 	return 0;
4647 }
4648 
4649 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4650 {
4651 	struct vcpu_svm *svm = to_svm(vcpu);
4652 	struct kvm_host_map map, map_save;
4653 	struct vmcb *vmcb12;
4654 	int ret;
4655 
4656 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4657 
4658 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4659 		return 0;
4660 
4661 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4662 	if (!smram64->svm_guest_flag)
4663 		return 0;
4664 
4665 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4666 		return 1;
4667 
4668 	if (!(smram64->efer & EFER_SVME))
4669 		return 1;
4670 
4671 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4672 		return 1;
4673 
4674 	ret = 1;
4675 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4676 		goto unmap_map;
4677 
4678 	if (svm_allocate_nested(svm))
4679 		goto unmap_save;
4680 
4681 	/*
4682 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4683 	 * used during SMM (see svm_enter_smm())
4684 	 */
4685 
4686 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4687 
4688 	/*
4689 	 * Enter the nested guest now
4690 	 */
4691 
4692 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4693 
4694 	vmcb12 = map.hva;
4695 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4696 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4697 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4698 
4699 	if (ret)
4700 		goto unmap_save;
4701 
4702 	svm->nested.nested_run_pending = 1;
4703 
4704 unmap_save:
4705 	kvm_vcpu_unmap(vcpu, &map_save, true);
4706 unmap_map:
4707 	kvm_vcpu_unmap(vcpu, &map, true);
4708 	return ret;
4709 }
4710 
4711 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4712 {
4713 	struct vcpu_svm *svm = to_svm(vcpu);
4714 
4715 	if (!gif_set(svm)) {
4716 		if (vgif)
4717 			svm_set_intercept(svm, INTERCEPT_STGI);
4718 		/* STGI will cause a vm exit */
4719 	} else {
4720 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4721 	}
4722 }
4723 #endif
4724 
4725 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4726 					 void *insn, int insn_len)
4727 {
4728 	bool smep, smap, is_user;
4729 	u64 error_code;
4730 
4731 	/* Emulation is always possible when KVM has access to all guest state. */
4732 	if (!sev_guest(vcpu->kvm))
4733 		return X86EMUL_CONTINUE;
4734 
4735 	/* #UD and #GP should never be intercepted for SEV guests. */
4736 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4737 				  EMULTYPE_TRAP_UD_FORCED |
4738 				  EMULTYPE_VMWARE_GP));
4739 
4740 	/*
4741 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4742 	 * to guest register state.
4743 	 */
4744 	if (sev_es_guest(vcpu->kvm))
4745 		return X86EMUL_RETRY_INSTR;
4746 
4747 	/*
4748 	 * Emulation is possible if the instruction is already decoded, e.g.
4749 	 * when completing I/O after returning from userspace.
4750 	 */
4751 	if (emul_type & EMULTYPE_NO_DECODE)
4752 		return X86EMUL_CONTINUE;
4753 
4754 	/*
4755 	 * Emulation is possible for SEV guests if and only if a prefilled
4756 	 * buffer containing the bytes of the intercepted instruction is
4757 	 * available. SEV guest memory is encrypted with a guest specific key
4758 	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4759 	 * decode garbage.
4760 	 *
4761 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4762 	 * KVM reached this point without an instruction buffer.  In practice,
4763 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4764 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4765 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4766 	 * access, and needs to be handled by KVM to avoid putting the guest
4767 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4768 	 * its the least awful option given lack of insight into the guest.
4769 	 *
4770 	 * If KVM is trying to skip an instruction, simply resume the guest.
4771 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4772 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4773 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4774 	 * make forward progress is the only option that has a chance of
4775 	 * success (and in practice it will work the vast majority of the time).
4776 	 */
4777 	if (unlikely(!insn)) {
4778 		if (emul_type & EMULTYPE_SKIP)
4779 			return X86EMUL_UNHANDLEABLE;
4780 
4781 		kvm_queue_exception(vcpu, UD_VECTOR);
4782 		return X86EMUL_PROPAGATE_FAULT;
4783 	}
4784 
4785 	/*
4786 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4787 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4788 	 * the faulting instruction because the code fetch itself faulted, e.g.
4789 	 * the guest attempted to fetch from emulated MMIO or a guest page
4790 	 * table used to translate CS:RIP resides in emulated MMIO.
4791 	 */
4792 	if (likely(insn_len))
4793 		return X86EMUL_CONTINUE;
4794 
4795 	/*
4796 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4797 	 *
4798 	 * Errata:
4799 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4800 	 * possible that CPU microcode implementing DecodeAssist will fail to
4801 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4802 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4803 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4804 	 * gives up and does not fill the instruction bytes buffer.
4805 	 *
4806 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4807 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4808 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4809 	 * GuestIntrBytes field of the VMCB.
4810 	 *
4811 	 * This does _not_ mean that the erratum has been encountered, as the
4812 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4813 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4814 	 * encountered a reserved/not-present #PF.
4815 	 *
4816 	 * To hit the erratum, the following conditions must be true:
4817 	 *    1. CR4.SMAP=1 (obviously).
4818 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4819 	 *       have been hit as the guest would have encountered a SMEP
4820 	 *       violation #PF, not a #NPF.
4821 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4822 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4823 	 *
4824 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4825 	 * while translating guest page tables (see below).
4826 	 */
4827 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4828 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4829 		goto resume_guest;
4830 
4831 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4832 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4833 	is_user = svm_get_cpl(vcpu) == 3;
4834 	if (smap && (!smep || is_user)) {
4835 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4836 
4837 		/*
4838 		 * If the fault occurred in userspace, arbitrarily inject #GP
4839 		 * to avoid killing the guest and to hopefully avoid confusing
4840 		 * the guest kernel too much, e.g. injecting #PF would not be
4841 		 * coherent with respect to the guest's page tables.  Request
4842 		 * triple fault if the fault occurred in the kernel as there's
4843 		 * no fault that KVM can inject without confusing the guest.
4844 		 * In practice, the triple fault is moot as no sane SEV kernel
4845 		 * will execute from user memory while also running with SMAP=1.
4846 		 */
4847 		if (is_user)
4848 			kvm_inject_gp(vcpu, 0);
4849 		else
4850 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4851 		return X86EMUL_PROPAGATE_FAULT;
4852 	}
4853 
4854 resume_guest:
4855 	/*
4856 	 * If the erratum was not hit, simply resume the guest and let it fault
4857 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4858 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4859 	 * userspace will kill the guest, and letting the emulator read garbage
4860 	 * will yield random behavior and potentially corrupt the guest.
4861 	 *
4862 	 * Simply resuming the guest is technically not a violation of the SEV
4863 	 * architecture.  AMD's APM states that all code fetches and page table
4864 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4865 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4866 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4867 	 * the guest spin is technically "ignoring" the access.
4868 	 */
4869 	return X86EMUL_RETRY_INSTR;
4870 }
4871 
4872 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4873 {
4874 	struct vcpu_svm *svm = to_svm(vcpu);
4875 
4876 	return !gif_set(svm);
4877 }
4878 
4879 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4880 {
4881 	if (!sev_es_guest(vcpu->kvm))
4882 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4883 
4884 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4885 }
4886 
4887 static void svm_vm_destroy(struct kvm *kvm)
4888 {
4889 	avic_vm_destroy(kvm);
4890 	sev_vm_destroy(kvm);
4891 }
4892 
4893 static int svm_vm_init(struct kvm *kvm)
4894 {
4895 	if (!pause_filter_count || !pause_filter_thresh)
4896 		kvm->arch.pause_in_guest = true;
4897 
4898 	if (enable_apicv) {
4899 		int ret = avic_vm_init(kvm);
4900 		if (ret)
4901 			return ret;
4902 	}
4903 
4904 	return 0;
4905 }
4906 
4907 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
4908 {
4909 	struct page *page = snp_safe_alloc_page(vcpu);
4910 
4911 	if (!page)
4912 		return NULL;
4913 
4914 	return page_address(page);
4915 }
4916 
4917 static struct kvm_x86_ops svm_x86_ops __initdata = {
4918 	.name = KBUILD_MODNAME,
4919 
4920 	.check_processor_compatibility = svm_check_processor_compat,
4921 
4922 	.hardware_unsetup = svm_hardware_unsetup,
4923 	.hardware_enable = svm_hardware_enable,
4924 	.hardware_disable = svm_hardware_disable,
4925 	.has_emulated_msr = svm_has_emulated_msr,
4926 
4927 	.vcpu_create = svm_vcpu_create,
4928 	.vcpu_free = svm_vcpu_free,
4929 	.vcpu_reset = svm_vcpu_reset,
4930 
4931 	.vm_size = sizeof(struct kvm_svm),
4932 	.vm_init = svm_vm_init,
4933 	.vm_destroy = svm_vm_destroy,
4934 
4935 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4936 	.vcpu_load = svm_vcpu_load,
4937 	.vcpu_put = svm_vcpu_put,
4938 	.vcpu_blocking = avic_vcpu_blocking,
4939 	.vcpu_unblocking = avic_vcpu_unblocking,
4940 
4941 	.update_exception_bitmap = svm_update_exception_bitmap,
4942 	.get_msr_feature = svm_get_msr_feature,
4943 	.get_msr = svm_get_msr,
4944 	.set_msr = svm_set_msr,
4945 	.get_segment_base = svm_get_segment_base,
4946 	.get_segment = svm_get_segment,
4947 	.set_segment = svm_set_segment,
4948 	.get_cpl = svm_get_cpl,
4949 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4950 	.is_valid_cr0 = svm_is_valid_cr0,
4951 	.set_cr0 = svm_set_cr0,
4952 	.post_set_cr3 = sev_post_set_cr3,
4953 	.is_valid_cr4 = svm_is_valid_cr4,
4954 	.set_cr4 = svm_set_cr4,
4955 	.set_efer = svm_set_efer,
4956 	.get_idt = svm_get_idt,
4957 	.set_idt = svm_set_idt,
4958 	.get_gdt = svm_get_gdt,
4959 	.set_gdt = svm_set_gdt,
4960 	.set_dr7 = svm_set_dr7,
4961 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4962 	.cache_reg = svm_cache_reg,
4963 	.get_rflags = svm_get_rflags,
4964 	.set_rflags = svm_set_rflags,
4965 	.get_if_flag = svm_get_if_flag,
4966 
4967 	.flush_tlb_all = svm_flush_tlb_all,
4968 	.flush_tlb_current = svm_flush_tlb_current,
4969 	.flush_tlb_gva = svm_flush_tlb_gva,
4970 	.flush_tlb_guest = svm_flush_tlb_asid,
4971 
4972 	.vcpu_pre_run = svm_vcpu_pre_run,
4973 	.vcpu_run = svm_vcpu_run,
4974 	.handle_exit = svm_handle_exit,
4975 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4976 	.update_emulated_instruction = NULL,
4977 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4978 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4979 	.patch_hypercall = svm_patch_hypercall,
4980 	.inject_irq = svm_inject_irq,
4981 	.inject_nmi = svm_inject_nmi,
4982 	.is_vnmi_pending = svm_is_vnmi_pending,
4983 	.set_vnmi_pending = svm_set_vnmi_pending,
4984 	.inject_exception = svm_inject_exception,
4985 	.cancel_injection = svm_cancel_injection,
4986 	.interrupt_allowed = svm_interrupt_allowed,
4987 	.nmi_allowed = svm_nmi_allowed,
4988 	.get_nmi_mask = svm_get_nmi_mask,
4989 	.set_nmi_mask = svm_set_nmi_mask,
4990 	.enable_nmi_window = svm_enable_nmi_window,
4991 	.enable_irq_window = svm_enable_irq_window,
4992 	.update_cr8_intercept = svm_update_cr8_intercept,
4993 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4994 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4995 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4996 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4997 
4998 	.get_exit_info = svm_get_exit_info,
4999 
5000 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
5001 
5002 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5003 
5004 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5005 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5006 	.write_tsc_offset = svm_write_tsc_offset,
5007 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5008 
5009 	.load_mmu_pgd = svm_load_mmu_pgd,
5010 
5011 	.check_intercept = svm_check_intercept,
5012 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5013 
5014 	.sched_in = svm_sched_in,
5015 
5016 	.nested_ops = &svm_nested_ops,
5017 
5018 	.deliver_interrupt = svm_deliver_interrupt,
5019 	.pi_update_irte = avic_pi_update_irte,
5020 	.setup_mce = svm_setup_mce,
5021 
5022 #ifdef CONFIG_KVM_SMM
5023 	.smi_allowed = svm_smi_allowed,
5024 	.enter_smm = svm_enter_smm,
5025 	.leave_smm = svm_leave_smm,
5026 	.enable_smi_window = svm_enable_smi_window,
5027 #endif
5028 
5029 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5030 	.mem_enc_register_region = sev_mem_enc_register_region,
5031 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5032 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5033 
5034 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5035 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5036 
5037 	.check_emulate_instruction = svm_check_emulate_instruction,
5038 
5039 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5040 
5041 	.msr_filter_changed = svm_msr_filter_changed,
5042 	.complete_emulated_msr = svm_complete_emulated_msr,
5043 
5044 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5045 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5046 	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5047 };
5048 
5049 /*
5050  * The default MMIO mask is a single bit (excluding the present bit),
5051  * which could conflict with the memory encryption bit. Check for
5052  * memory encryption support and override the default MMIO mask if
5053  * memory encryption is enabled.
5054  */
5055 static __init void svm_adjust_mmio_mask(void)
5056 {
5057 	unsigned int enc_bit, mask_bit;
5058 	u64 msr, mask;
5059 
5060 	/* If there is no memory encryption support, use existing mask */
5061 	if (cpuid_eax(0x80000000) < 0x8000001f)
5062 		return;
5063 
5064 	/* If memory encryption is not enabled, use existing mask */
5065 	rdmsrl(MSR_AMD64_SYSCFG, msr);
5066 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5067 		return;
5068 
5069 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5070 	mask_bit = boot_cpu_data.x86_phys_bits;
5071 
5072 	/* Increment the mask bit if it is the same as the encryption bit */
5073 	if (enc_bit == mask_bit)
5074 		mask_bit++;
5075 
5076 	/*
5077 	 * If the mask bit location is below 52, then some bits above the
5078 	 * physical addressing limit will always be reserved, so use the
5079 	 * rsvd_bits() function to generate the mask. This mask, along with
5080 	 * the present bit, will be used to generate a page fault with
5081 	 * PFER.RSV = 1.
5082 	 *
5083 	 * If the mask bit location is 52 (or above), then clear the mask.
5084 	 */
5085 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5086 
5087 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5088 }
5089 
5090 static __init void svm_set_cpu_caps(void)
5091 {
5092 	kvm_set_cpu_caps();
5093 
5094 	kvm_caps.supported_perf_cap = 0;
5095 	kvm_caps.supported_xss = 0;
5096 
5097 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5098 	if (nested) {
5099 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5100 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5101 
5102 		/*
5103 		 * KVM currently flushes TLBs on *every* nested SVM transition,
5104 		 * and so for all intents and purposes KVM supports flushing by
5105 		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5106 		 */
5107 		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5108 
5109 		if (nrips)
5110 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5111 
5112 		if (npt_enabled)
5113 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5114 
5115 		if (tsc_scaling)
5116 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5117 
5118 		if (vls)
5119 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5120 		if (lbrv)
5121 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5122 
5123 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5124 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5125 
5126 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5127 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5128 
5129 		if (vgif)
5130 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5131 
5132 		if (vnmi)
5133 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5134 
5135 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5136 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5137 	}
5138 
5139 	/* CPUID 0x80000008 */
5140 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5141 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5142 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5143 
5144 	if (enable_pmu) {
5145 		/*
5146 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5147 		 * access to enough counters to virtualize "core" support,
5148 		 * otherwise limit vPMU support to the legacy number of counters.
5149 		 */
5150 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5151 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5152 							  kvm_pmu_cap.num_counters_gp);
5153 		else
5154 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5155 
5156 		if (kvm_pmu_cap.version != 2 ||
5157 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5158 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5159 	}
5160 
5161 	/* CPUID 0x8000001F (SME/SEV features) */
5162 	sev_set_cpu_caps();
5163 }
5164 
5165 static __init int svm_hardware_setup(void)
5166 {
5167 	int cpu;
5168 	struct page *iopm_pages;
5169 	void *iopm_va;
5170 	int r;
5171 	unsigned int order = get_order(IOPM_SIZE);
5172 
5173 	/*
5174 	 * NX is required for shadow paging and for NPT if the NX huge pages
5175 	 * mitigation is enabled.
5176 	 */
5177 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5178 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5179 		return -EOPNOTSUPP;
5180 	}
5181 	kvm_enable_efer_bits(EFER_NX);
5182 
5183 	iopm_pages = alloc_pages(GFP_KERNEL, order);
5184 
5185 	if (!iopm_pages)
5186 		return -ENOMEM;
5187 
5188 	iopm_va = page_address(iopm_pages);
5189 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5190 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5191 
5192 	init_msrpm_offsets();
5193 
5194 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5195 				     XFEATURE_MASK_BNDCSR);
5196 
5197 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5198 		kvm_enable_efer_bits(EFER_FFXSR);
5199 
5200 	if (tsc_scaling) {
5201 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5202 			tsc_scaling = false;
5203 		} else {
5204 			pr_info("TSC scaling supported\n");
5205 			kvm_caps.has_tsc_control = true;
5206 		}
5207 	}
5208 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5209 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5210 
5211 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5212 
5213 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5214 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5215 
5216 	/* Check for pause filtering support */
5217 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5218 		pause_filter_count = 0;
5219 		pause_filter_thresh = 0;
5220 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5221 		pause_filter_thresh = 0;
5222 	}
5223 
5224 	if (nested) {
5225 		pr_info("Nested Virtualization enabled\n");
5226 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5227 	}
5228 
5229 	/*
5230 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5231 	 * NPT isn't supported if the host is using 2-level paging since host
5232 	 * CR4 is unchanged on VMRUN.
5233 	 */
5234 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5235 		npt_enabled = false;
5236 
5237 	if (!boot_cpu_has(X86_FEATURE_NPT))
5238 		npt_enabled = false;
5239 
5240 	/* Force VM NPT level equal to the host's paging level */
5241 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5242 			  get_npt_level(), PG_LEVEL_1G);
5243 	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5244 
5245 	/* Setup shadow_me_value and shadow_me_mask */
5246 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5247 
5248 	svm_adjust_mmio_mask();
5249 
5250 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5251 
5252 	/*
5253 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5254 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5255 	 */
5256 	sev_hardware_setup();
5257 
5258 	svm_hv_hardware_setup();
5259 
5260 	for_each_possible_cpu(cpu) {
5261 		r = svm_cpu_init(cpu);
5262 		if (r)
5263 			goto err;
5264 	}
5265 
5266 	enable_apicv = avic = avic && avic_hardware_setup();
5267 
5268 	if (!enable_apicv) {
5269 		svm_x86_ops.vcpu_blocking = NULL;
5270 		svm_x86_ops.vcpu_unblocking = NULL;
5271 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5272 	} else if (!x2avic_enabled) {
5273 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5274 	}
5275 
5276 	if (vls) {
5277 		if (!npt_enabled ||
5278 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5279 		    !IS_ENABLED(CONFIG_X86_64)) {
5280 			vls = false;
5281 		} else {
5282 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5283 		}
5284 	}
5285 
5286 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5287 		svm_gp_erratum_intercept = false;
5288 
5289 	if (vgif) {
5290 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5291 			vgif = false;
5292 		else
5293 			pr_info("Virtual GIF supported\n");
5294 	}
5295 
5296 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5297 	if (vnmi)
5298 		pr_info("Virtual NMI enabled\n");
5299 
5300 	if (!vnmi) {
5301 		svm_x86_ops.is_vnmi_pending = NULL;
5302 		svm_x86_ops.set_vnmi_pending = NULL;
5303 	}
5304 
5305 
5306 	if (lbrv) {
5307 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5308 			lbrv = false;
5309 		else
5310 			pr_info("LBR virtualization supported\n");
5311 	}
5312 
5313 	if (!enable_pmu)
5314 		pr_info("PMU virtualization is disabled\n");
5315 
5316 	svm_set_cpu_caps();
5317 
5318 	/*
5319 	 * It seems that on AMD processors PTE's accessed bit is
5320 	 * being set by the CPU hardware before the NPF vmexit.
5321 	 * This is not expected behaviour and our tests fail because
5322 	 * of it.
5323 	 * A workaround here is to disable support for
5324 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5325 	 * In this case userspace can know if there is support using
5326 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5327 	 * it
5328 	 * If future AMD CPU models change the behaviour described above,
5329 	 * this variable can be changed accordingly
5330 	 */
5331 	allow_smaller_maxphyaddr = !npt_enabled;
5332 
5333 	return 0;
5334 
5335 err:
5336 	svm_hardware_unsetup();
5337 	return r;
5338 }
5339 
5340 
5341 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5342 	.hardware_setup = svm_hardware_setup,
5343 
5344 	.runtime_ops = &svm_x86_ops,
5345 	.pmu_ops = &amd_pmu_ops,
5346 };
5347 
5348 static void __svm_exit(void)
5349 {
5350 	kvm_x86_vendor_exit();
5351 
5352 	cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5353 }
5354 
5355 static int __init svm_init(void)
5356 {
5357 	int r;
5358 
5359 	__unused_size_checks();
5360 
5361 	if (!kvm_is_svm_supported())
5362 		return -EOPNOTSUPP;
5363 
5364 	r = kvm_x86_vendor_init(&svm_init_ops);
5365 	if (r)
5366 		return r;
5367 
5368 	cpu_emergency_register_virt_callback(svm_emergency_disable);
5369 
5370 	/*
5371 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5372 	 * exposed to userspace!
5373 	 */
5374 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5375 		     THIS_MODULE);
5376 	if (r)
5377 		goto err_kvm_init;
5378 
5379 	return 0;
5380 
5381 err_kvm_init:
5382 	__svm_exit();
5383 	return r;
5384 }
5385 
5386 static void __exit svm_exit(void)
5387 {
5388 	kvm_exit();
5389 	__svm_exit();
5390 }
5391 
5392 module_init(svm_init)
5393 module_exit(svm_exit)
5394