1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 #include <linux/cc_platform.h> 29 30 #include <asm/apic.h> 31 #include <asm/perf_event.h> 32 #include <asm/tlbflush.h> 33 #include <asm/desc.h> 34 #include <asm/debugreg.h> 35 #include <asm/kvm_para.h> 36 #include <asm/irq_remapping.h> 37 #include <asm/spec-ctrl.h> 38 #include <asm/cpu_device_id.h> 39 #include <asm/traps.h> 40 #include <asm/fpu/api.h> 41 42 #include <asm/virtext.h> 43 #include "trace.h" 44 45 #include "svm.h" 46 #include "svm_ops.h" 47 48 #include "kvm_onhyperv.h" 49 #include "svm_onhyperv.h" 50 51 MODULE_AUTHOR("Qumranet"); 52 MODULE_LICENSE("GPL"); 53 54 #ifdef MODULE 55 static const struct x86_cpu_id svm_cpu_id[] = { 56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 57 {} 58 }; 59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 60 #endif 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 #define SVM_FEATURE_LBRV (1 << 1) 66 #define SVM_FEATURE_SVML (1 << 2) 67 #define SVM_FEATURE_TSC_RATE (1 << 4) 68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 69 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 72 73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 74 75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 76 #define TSC_RATIO_MIN 0x0000000000000001ULL 77 #define TSC_RATIO_MAX 0x000000ffffffffffULL 78 79 static bool erratum_383_found __read_mostly; 80 81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 82 83 /* 84 * Set osvw_len to higher value when updated Revision Guides 85 * are published and we know what the new status bits are 86 */ 87 static uint64_t osvw_len = 4, osvw_status; 88 89 static DEFINE_PER_CPU(u64, current_tsc_ratio); 90 #define TSC_RATIO_DEFAULT 0x0100000000ULL 91 92 static const struct svm_direct_access_msrs { 93 u32 index; /* Index of the MSR */ 94 bool always; /* True if intercept is initially cleared */ 95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 96 { .index = MSR_STAR, .always = true }, 97 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 98 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 99 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 100 #ifdef CONFIG_X86_64 101 { .index = MSR_GS_BASE, .always = true }, 102 { .index = MSR_FS_BASE, .always = true }, 103 { .index = MSR_KERNEL_GS_BASE, .always = true }, 104 { .index = MSR_LSTAR, .always = true }, 105 { .index = MSR_CSTAR, .always = true }, 106 { .index = MSR_SYSCALL_MASK, .always = true }, 107 #endif 108 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 109 { .index = MSR_IA32_PRED_CMD, .always = false }, 110 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 111 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 112 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 113 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 114 { .index = MSR_EFER, .always = false }, 115 { .index = MSR_IA32_CR_PAT, .always = false }, 116 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 117 { .index = MSR_INVALID, .always = false }, 118 }; 119 120 /* 121 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 122 * pause_filter_count: On processors that support Pause filtering(indicated 123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 124 * count value. On VMRUN this value is loaded into an internal counter. 125 * Each time a pause instruction is executed, this counter is decremented 126 * until it reaches zero at which time a #VMEXIT is generated if pause 127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 128 * Intercept Filtering for more details. 129 * This also indicate if ple logic enabled. 130 * 131 * pause_filter_thresh: In addition, some processor families support advanced 132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 133 * the amount of time a guest is allowed to execute in a pause loop. 134 * In this mode, a 16-bit pause filter threshold field is added in the 135 * VMCB. The threshold value is a cycle count that is used to reset the 136 * pause counter. As with simple pause filtering, VMRUN loads the pause 137 * count value from VMCB into an internal counter. Then, on each pause 138 * instruction the hardware checks the elapsed number of cycles since 139 * the most recent pause instruction against the pause filter threshold. 140 * If the elapsed cycle count is greater than the pause filter threshold, 141 * then the internal pause count is reloaded from the VMCB and execution 142 * continues. If the elapsed cycle count is less than the pause filter 143 * threshold, then the internal pause count is decremented. If the count 144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 145 * triggered. If advanced pause filtering is supported and pause filter 146 * threshold field is set to zero, the filter will operate in the simpler, 147 * count only mode. 148 */ 149 150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 151 module_param(pause_filter_thresh, ushort, 0444); 152 153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 154 module_param(pause_filter_count, ushort, 0444); 155 156 /* Default doubles per-vcpu window every exit. */ 157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 158 module_param(pause_filter_count_grow, ushort, 0444); 159 160 /* Default resets per-vcpu window every exit to pause_filter_count. */ 161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 162 module_param(pause_filter_count_shrink, ushort, 0444); 163 164 /* Default is to compute the maximum so we can never overflow. */ 165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 166 module_param(pause_filter_count_max, ushort, 0444); 167 168 /* 169 * Use nested page tables by default. Note, NPT may get forced off by 170 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 171 */ 172 bool npt_enabled = true; 173 module_param_named(npt, npt_enabled, bool, 0444); 174 175 /* allow nested virtualization in KVM/SVM */ 176 static int nested = true; 177 module_param(nested, int, S_IRUGO); 178 179 /* enable/disable Next RIP Save */ 180 static int nrips = true; 181 module_param(nrips, int, 0444); 182 183 /* enable/disable Virtual VMLOAD VMSAVE */ 184 static int vls = true; 185 module_param(vls, int, 0444); 186 187 /* enable/disable Virtual GIF */ 188 static int vgif = true; 189 module_param(vgif, int, 0444); 190 191 /* enable/disable LBR virtualization */ 192 static int lbrv = true; 193 module_param(lbrv, int, 0444); 194 195 static int tsc_scaling = true; 196 module_param(tsc_scaling, int, 0444); 197 198 /* 199 * enable / disable AVIC. Because the defaults differ for APICv 200 * support between VMX and SVM we cannot use module_param_named. 201 */ 202 static bool avic; 203 module_param(avic, bool, 0444); 204 205 bool __read_mostly dump_invalid_vmcb; 206 module_param(dump_invalid_vmcb, bool, 0644); 207 208 209 bool intercept_smi = true; 210 module_param(intercept_smi, bool, 0444); 211 212 213 static bool svm_gp_erratum_intercept = true; 214 215 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 216 217 static unsigned long iopm_base; 218 219 struct kvm_ldttss_desc { 220 u16 limit0; 221 u16 base0; 222 unsigned base1:8, type:5, dpl:2, p:1; 223 unsigned limit1:4, zero0:3, g:1, base2:8; 224 u32 base3; 225 u32 zero1; 226 } __attribute__((packed)); 227 228 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 229 230 /* 231 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 232 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 233 * 234 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 235 * defer the restoration of TSC_AUX until the CPU returns to userspace. 236 */ 237 static int tsc_aux_uret_slot __read_mostly = -1; 238 239 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 240 241 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 242 #define MSRS_RANGE_SIZE 2048 243 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 244 245 u32 svm_msrpm_offset(u32 msr) 246 { 247 u32 offset; 248 int i; 249 250 for (i = 0; i < NUM_MSR_MAPS; i++) { 251 if (msr < msrpm_ranges[i] || 252 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 253 continue; 254 255 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 256 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 257 258 /* Now we have the u8 offset - but need the u32 offset */ 259 return offset / 4; 260 } 261 262 /* MSR not in any range */ 263 return MSR_INVALID; 264 } 265 266 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 267 268 static int get_npt_level(void) 269 { 270 #ifdef CONFIG_X86_64 271 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 272 #else 273 return PT32E_ROOT_LEVEL; 274 #endif 275 } 276 277 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 278 { 279 struct vcpu_svm *svm = to_svm(vcpu); 280 u64 old_efer = vcpu->arch.efer; 281 vcpu->arch.efer = efer; 282 283 if (!npt_enabled) { 284 /* Shadow paging assumes NX to be available. */ 285 efer |= EFER_NX; 286 287 if (!(efer & EFER_LMA)) 288 efer &= ~EFER_LME; 289 } 290 291 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 292 if (!(efer & EFER_SVME)) { 293 svm_leave_nested(vcpu); 294 svm_set_gif(svm, true); 295 /* #GP intercept is still needed for vmware backdoor */ 296 if (!enable_vmware_backdoor) 297 clr_exception_intercept(svm, GP_VECTOR); 298 299 /* 300 * Free the nested guest state, unless we are in SMM. 301 * In this case we will return to the nested guest 302 * as soon as we leave SMM. 303 */ 304 if (!is_smm(vcpu)) 305 svm_free_nested(svm); 306 307 } else { 308 int ret = svm_allocate_nested(svm); 309 310 if (ret) { 311 vcpu->arch.efer = old_efer; 312 return ret; 313 } 314 315 /* 316 * Never intercept #GP for SEV guests, KVM can't 317 * decrypt guest memory to workaround the erratum. 318 */ 319 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 320 set_exception_intercept(svm, GP_VECTOR); 321 } 322 } 323 324 svm->vmcb->save.efer = efer | EFER_SVME; 325 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 326 return 0; 327 } 328 329 static int is_external_interrupt(u32 info) 330 { 331 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 332 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 333 } 334 335 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 336 { 337 struct vcpu_svm *svm = to_svm(vcpu); 338 u32 ret = 0; 339 340 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 341 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 342 return ret; 343 } 344 345 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 346 { 347 struct vcpu_svm *svm = to_svm(vcpu); 348 349 if (mask == 0) 350 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 351 else 352 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 353 354 } 355 356 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 357 { 358 struct vcpu_svm *svm = to_svm(vcpu); 359 360 /* 361 * SEV-ES does not expose the next RIP. The RIP update is controlled by 362 * the type of exit and the #VC handler in the guest. 363 */ 364 if (sev_es_guest(vcpu->kvm)) 365 goto done; 366 367 if (nrips && svm->vmcb->control.next_rip != 0) { 368 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 369 svm->next_rip = svm->vmcb->control.next_rip; 370 } 371 372 if (!svm->next_rip) { 373 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 374 return 0; 375 } else { 376 kvm_rip_write(vcpu, svm->next_rip); 377 } 378 379 done: 380 svm_set_interrupt_shadow(vcpu, 0); 381 382 return 1; 383 } 384 385 static void svm_queue_exception(struct kvm_vcpu *vcpu) 386 { 387 struct vcpu_svm *svm = to_svm(vcpu); 388 unsigned nr = vcpu->arch.exception.nr; 389 bool has_error_code = vcpu->arch.exception.has_error_code; 390 u32 error_code = vcpu->arch.exception.error_code; 391 392 kvm_deliver_exception_payload(vcpu); 393 394 if (nr == BP_VECTOR && !nrips) { 395 unsigned long rip, old_rip = kvm_rip_read(vcpu); 396 397 /* 398 * For guest debugging where we have to reinject #BP if some 399 * INT3 is guest-owned: 400 * Emulate nRIP by moving RIP forward. Will fail if injection 401 * raises a fault that is not intercepted. Still better than 402 * failing in all cases. 403 */ 404 (void)svm_skip_emulated_instruction(vcpu); 405 rip = kvm_rip_read(vcpu); 406 svm->int3_rip = rip + svm->vmcb->save.cs.base; 407 svm->int3_injected = rip - old_rip; 408 } 409 410 svm->vmcb->control.event_inj = nr 411 | SVM_EVTINJ_VALID 412 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 413 | SVM_EVTINJ_TYPE_EXEPT; 414 svm->vmcb->control.event_inj_err = error_code; 415 } 416 417 static void svm_init_erratum_383(void) 418 { 419 u32 low, high; 420 int err; 421 u64 val; 422 423 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 424 return; 425 426 /* Use _safe variants to not break nested virtualization */ 427 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 428 if (err) 429 return; 430 431 val |= (1ULL << 47); 432 433 low = lower_32_bits(val); 434 high = upper_32_bits(val); 435 436 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 437 438 erratum_383_found = true; 439 } 440 441 static void svm_init_osvw(struct kvm_vcpu *vcpu) 442 { 443 /* 444 * Guests should see errata 400 and 415 as fixed (assuming that 445 * HLT and IO instructions are intercepted). 446 */ 447 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 448 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 449 450 /* 451 * By increasing VCPU's osvw.length to 3 we are telling the guest that 452 * all osvw.status bits inside that length, including bit 0 (which is 453 * reserved for erratum 298), are valid. However, if host processor's 454 * osvw_len is 0 then osvw_status[0] carries no information. We need to 455 * be conservative here and therefore we tell the guest that erratum 298 456 * is present (because we really don't know). 457 */ 458 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 459 vcpu->arch.osvw.status |= 1; 460 } 461 462 static int has_svm(void) 463 { 464 const char *msg; 465 466 if (!cpu_has_svm(&msg)) { 467 printk(KERN_INFO "has_svm: %s\n", msg); 468 return 0; 469 } 470 471 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 472 pr_info("KVM is unsupported when running as an SEV guest\n"); 473 return 0; 474 } 475 476 return 1; 477 } 478 479 static void svm_hardware_disable(void) 480 { 481 /* Make sure we clean up behind us */ 482 if (tsc_scaling) 483 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 484 485 cpu_svm_disable(); 486 487 amd_pmu_disable_virt(); 488 } 489 490 static int svm_hardware_enable(void) 491 { 492 493 struct svm_cpu_data *sd; 494 uint64_t efer; 495 struct desc_struct *gdt; 496 int me = raw_smp_processor_id(); 497 498 rdmsrl(MSR_EFER, efer); 499 if (efer & EFER_SVME) 500 return -EBUSY; 501 502 if (!has_svm()) { 503 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 504 return -EINVAL; 505 } 506 sd = per_cpu(svm_data, me); 507 if (!sd) { 508 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 509 return -EINVAL; 510 } 511 512 sd->asid_generation = 1; 513 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 514 sd->next_asid = sd->max_asid + 1; 515 sd->min_asid = max_sev_asid + 1; 516 517 gdt = get_current_gdt_rw(); 518 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 519 520 wrmsrl(MSR_EFER, efer | EFER_SVME); 521 522 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 523 524 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 525 /* 526 * Set the default value, even if we don't use TSC scaling 527 * to avoid having stale value in the msr 528 */ 529 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 530 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 531 } 532 533 534 /* 535 * Get OSVW bits. 536 * 537 * Note that it is possible to have a system with mixed processor 538 * revisions and therefore different OSVW bits. If bits are not the same 539 * on different processors then choose the worst case (i.e. if erratum 540 * is present on one processor and not on another then assume that the 541 * erratum is present everywhere). 542 */ 543 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 544 uint64_t len, status = 0; 545 int err; 546 547 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 548 if (!err) 549 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 550 &err); 551 552 if (err) 553 osvw_status = osvw_len = 0; 554 else { 555 if (len < osvw_len) 556 osvw_len = len; 557 osvw_status |= status; 558 osvw_status &= (1ULL << osvw_len) - 1; 559 } 560 } else 561 osvw_status = osvw_len = 0; 562 563 svm_init_erratum_383(); 564 565 amd_pmu_enable_virt(); 566 567 return 0; 568 } 569 570 static void svm_cpu_uninit(int cpu) 571 { 572 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 573 574 if (!sd) 575 return; 576 577 per_cpu(svm_data, cpu) = NULL; 578 kfree(sd->sev_vmcbs); 579 __free_page(sd->save_area); 580 kfree(sd); 581 } 582 583 static int svm_cpu_init(int cpu) 584 { 585 struct svm_cpu_data *sd; 586 int ret = -ENOMEM; 587 588 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 589 if (!sd) 590 return ret; 591 sd->cpu = cpu; 592 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 593 if (!sd->save_area) 594 goto free_cpu_data; 595 596 ret = sev_cpu_init(sd); 597 if (ret) 598 goto free_save_area; 599 600 per_cpu(svm_data, cpu) = sd; 601 602 return 0; 603 604 free_save_area: 605 __free_page(sd->save_area); 606 free_cpu_data: 607 kfree(sd); 608 return ret; 609 610 } 611 612 static int direct_access_msr_slot(u32 msr) 613 { 614 u32 i; 615 616 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 617 if (direct_access_msrs[i].index == msr) 618 return i; 619 620 return -ENOENT; 621 } 622 623 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 624 int write) 625 { 626 struct vcpu_svm *svm = to_svm(vcpu); 627 int slot = direct_access_msr_slot(msr); 628 629 if (slot == -ENOENT) 630 return; 631 632 /* Set the shadow bitmaps to the desired intercept states */ 633 if (read) 634 set_bit(slot, svm->shadow_msr_intercept.read); 635 else 636 clear_bit(slot, svm->shadow_msr_intercept.read); 637 638 if (write) 639 set_bit(slot, svm->shadow_msr_intercept.write); 640 else 641 clear_bit(slot, svm->shadow_msr_intercept.write); 642 } 643 644 static bool valid_msr_intercept(u32 index) 645 { 646 return direct_access_msr_slot(index) != -ENOENT; 647 } 648 649 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 650 { 651 u8 bit_write; 652 unsigned long tmp; 653 u32 offset; 654 u32 *msrpm; 655 656 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 657 to_svm(vcpu)->msrpm; 658 659 offset = svm_msrpm_offset(msr); 660 bit_write = 2 * (msr & 0x0f) + 1; 661 tmp = msrpm[offset]; 662 663 BUG_ON(offset == MSR_INVALID); 664 665 return !!test_bit(bit_write, &tmp); 666 } 667 668 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 669 u32 msr, int read, int write) 670 { 671 struct vcpu_svm *svm = to_svm(vcpu); 672 u8 bit_read, bit_write; 673 unsigned long tmp; 674 u32 offset; 675 676 /* 677 * If this warning triggers extend the direct_access_msrs list at the 678 * beginning of the file 679 */ 680 WARN_ON(!valid_msr_intercept(msr)); 681 682 /* Enforce non allowed MSRs to trap */ 683 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 684 read = 0; 685 686 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 687 write = 0; 688 689 offset = svm_msrpm_offset(msr); 690 bit_read = 2 * (msr & 0x0f); 691 bit_write = 2 * (msr & 0x0f) + 1; 692 tmp = msrpm[offset]; 693 694 BUG_ON(offset == MSR_INVALID); 695 696 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 697 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 698 699 msrpm[offset] = tmp; 700 701 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 702 svm->nested.force_msr_bitmap_recalc = true; 703 } 704 705 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 706 int read, int write) 707 { 708 set_shadow_msr_intercept(vcpu, msr, read, write); 709 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 710 } 711 712 u32 *svm_vcpu_alloc_msrpm(void) 713 { 714 unsigned int order = get_order(MSRPM_SIZE); 715 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 716 u32 *msrpm; 717 718 if (!pages) 719 return NULL; 720 721 msrpm = page_address(pages); 722 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 723 724 return msrpm; 725 } 726 727 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 728 { 729 int i; 730 731 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 732 if (!direct_access_msrs[i].always) 733 continue; 734 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 735 } 736 } 737 738 739 void svm_vcpu_free_msrpm(u32 *msrpm) 740 { 741 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 742 } 743 744 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 745 { 746 struct vcpu_svm *svm = to_svm(vcpu); 747 u32 i; 748 749 /* 750 * Set intercept permissions for all direct access MSRs again. They 751 * will automatically get filtered through the MSR filter, so we are 752 * back in sync after this. 753 */ 754 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 755 u32 msr = direct_access_msrs[i].index; 756 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 757 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 758 759 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 760 } 761 } 762 763 static void add_msr_offset(u32 offset) 764 { 765 int i; 766 767 for (i = 0; i < MSRPM_OFFSETS; ++i) { 768 769 /* Offset already in list? */ 770 if (msrpm_offsets[i] == offset) 771 return; 772 773 /* Slot used by another offset? */ 774 if (msrpm_offsets[i] != MSR_INVALID) 775 continue; 776 777 /* Add offset to list */ 778 msrpm_offsets[i] = offset; 779 780 return; 781 } 782 783 /* 784 * If this BUG triggers the msrpm_offsets table has an overflow. Just 785 * increase MSRPM_OFFSETS in this case. 786 */ 787 BUG(); 788 } 789 790 static void init_msrpm_offsets(void) 791 { 792 int i; 793 794 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 795 796 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 797 u32 offset; 798 799 offset = svm_msrpm_offset(direct_access_msrs[i].index); 800 BUG_ON(offset == MSR_INVALID); 801 802 add_msr_offset(offset); 803 } 804 } 805 806 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 807 { 808 struct vcpu_svm *svm = to_svm(vcpu); 809 810 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 811 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 812 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 813 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 814 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 815 } 816 817 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 818 { 819 struct vcpu_svm *svm = to_svm(vcpu); 820 821 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 822 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 823 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 824 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 825 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 826 } 827 828 void disable_nmi_singlestep(struct vcpu_svm *svm) 829 { 830 svm->nmi_singlestep = false; 831 832 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 833 /* Clear our flags if they were not set by the guest */ 834 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 835 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 836 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 837 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 838 } 839 } 840 841 static void grow_ple_window(struct kvm_vcpu *vcpu) 842 { 843 struct vcpu_svm *svm = to_svm(vcpu); 844 struct vmcb_control_area *control = &svm->vmcb->control; 845 int old = control->pause_filter_count; 846 847 control->pause_filter_count = __grow_ple_window(old, 848 pause_filter_count, 849 pause_filter_count_grow, 850 pause_filter_count_max); 851 852 if (control->pause_filter_count != old) { 853 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 854 trace_kvm_ple_window_update(vcpu->vcpu_id, 855 control->pause_filter_count, old); 856 } 857 } 858 859 static void shrink_ple_window(struct kvm_vcpu *vcpu) 860 { 861 struct vcpu_svm *svm = to_svm(vcpu); 862 struct vmcb_control_area *control = &svm->vmcb->control; 863 int old = control->pause_filter_count; 864 865 control->pause_filter_count = 866 __shrink_ple_window(old, 867 pause_filter_count, 868 pause_filter_count_shrink, 869 pause_filter_count); 870 if (control->pause_filter_count != old) { 871 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 872 trace_kvm_ple_window_update(vcpu->vcpu_id, 873 control->pause_filter_count, old); 874 } 875 } 876 877 static void svm_hardware_unsetup(void) 878 { 879 int cpu; 880 881 sev_hardware_unsetup(); 882 883 for_each_possible_cpu(cpu) 884 svm_cpu_uninit(cpu); 885 886 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 887 get_order(IOPM_SIZE)); 888 iopm_base = 0; 889 } 890 891 static void init_seg(struct vmcb_seg *seg) 892 { 893 seg->selector = 0; 894 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 895 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 896 seg->limit = 0xffff; 897 seg->base = 0; 898 } 899 900 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 901 { 902 seg->selector = 0; 903 seg->attrib = SVM_SELECTOR_P_MASK | type; 904 seg->limit = 0xffff; 905 seg->base = 0; 906 } 907 908 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 909 { 910 struct vcpu_svm *svm = to_svm(vcpu); 911 912 return svm->nested.ctl.tsc_offset; 913 } 914 915 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 916 { 917 struct vcpu_svm *svm = to_svm(vcpu); 918 919 return svm->tsc_ratio_msr; 920 } 921 922 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 923 { 924 struct vcpu_svm *svm = to_svm(vcpu); 925 926 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 927 svm->vmcb->control.tsc_offset = offset; 928 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 929 } 930 931 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 932 { 933 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 934 } 935 936 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 937 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 938 struct vcpu_svm *svm) 939 { 940 /* 941 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 942 * roots, or if INVPCID is disabled in the guest to inject #UD. 943 */ 944 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 945 if (!npt_enabled || 946 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 947 svm_set_intercept(svm, INTERCEPT_INVPCID); 948 else 949 svm_clr_intercept(svm, INTERCEPT_INVPCID); 950 } 951 952 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 953 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 954 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 955 else 956 svm_set_intercept(svm, INTERCEPT_RDTSCP); 957 } 958 } 959 960 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 961 { 962 struct vcpu_svm *svm = to_svm(vcpu); 963 964 if (guest_cpuid_is_intel(vcpu)) { 965 /* 966 * We must intercept SYSENTER_EIP and SYSENTER_ESP 967 * accesses because the processor only stores 32 bits. 968 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 969 */ 970 svm_set_intercept(svm, INTERCEPT_VMLOAD); 971 svm_set_intercept(svm, INTERCEPT_VMSAVE); 972 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 973 974 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 975 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 976 } else { 977 /* 978 * If hardware supports Virtual VMLOAD VMSAVE then enable it 979 * in VMCB and clear intercepts to avoid #VMEXIT. 980 */ 981 if (vls) { 982 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 983 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 984 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 985 } 986 /* No need to intercept these MSRs */ 987 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 988 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 989 } 990 } 991 992 static void init_vmcb(struct kvm_vcpu *vcpu) 993 { 994 struct vcpu_svm *svm = to_svm(vcpu); 995 struct vmcb_control_area *control = &svm->vmcb->control; 996 struct vmcb_save_area *save = &svm->vmcb->save; 997 998 svm_set_intercept(svm, INTERCEPT_CR0_READ); 999 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1000 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1001 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1002 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1003 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1004 if (!kvm_vcpu_apicv_active(vcpu)) 1005 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1006 1007 set_dr_intercepts(svm); 1008 1009 set_exception_intercept(svm, PF_VECTOR); 1010 set_exception_intercept(svm, UD_VECTOR); 1011 set_exception_intercept(svm, MC_VECTOR); 1012 set_exception_intercept(svm, AC_VECTOR); 1013 set_exception_intercept(svm, DB_VECTOR); 1014 /* 1015 * Guest access to VMware backdoor ports could legitimately 1016 * trigger #GP because of TSS I/O permission bitmap. 1017 * We intercept those #GP and allow access to them anyway 1018 * as VMware does. Don't intercept #GP for SEV guests as KVM can't 1019 * decrypt guest memory to decode the faulting instruction. 1020 */ 1021 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm)) 1022 set_exception_intercept(svm, GP_VECTOR); 1023 1024 svm_set_intercept(svm, INTERCEPT_INTR); 1025 svm_set_intercept(svm, INTERCEPT_NMI); 1026 1027 if (intercept_smi) 1028 svm_set_intercept(svm, INTERCEPT_SMI); 1029 1030 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1031 svm_set_intercept(svm, INTERCEPT_RDPMC); 1032 svm_set_intercept(svm, INTERCEPT_CPUID); 1033 svm_set_intercept(svm, INTERCEPT_INVD); 1034 svm_set_intercept(svm, INTERCEPT_INVLPG); 1035 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1036 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1037 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1038 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1039 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1040 svm_set_intercept(svm, INTERCEPT_VMRUN); 1041 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1042 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1043 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1044 svm_set_intercept(svm, INTERCEPT_STGI); 1045 svm_set_intercept(svm, INTERCEPT_CLGI); 1046 svm_set_intercept(svm, INTERCEPT_SKINIT); 1047 svm_set_intercept(svm, INTERCEPT_WBINVD); 1048 svm_set_intercept(svm, INTERCEPT_XSETBV); 1049 svm_set_intercept(svm, INTERCEPT_RDPRU); 1050 svm_set_intercept(svm, INTERCEPT_RSM); 1051 1052 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1053 svm_set_intercept(svm, INTERCEPT_MONITOR); 1054 svm_set_intercept(svm, INTERCEPT_MWAIT); 1055 } 1056 1057 if (!kvm_hlt_in_guest(vcpu->kvm)) 1058 svm_set_intercept(svm, INTERCEPT_HLT); 1059 1060 control->iopm_base_pa = __sme_set(iopm_base); 1061 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1062 control->int_ctl = V_INTR_MASKING_MASK; 1063 1064 init_seg(&save->es); 1065 init_seg(&save->ss); 1066 init_seg(&save->ds); 1067 init_seg(&save->fs); 1068 init_seg(&save->gs); 1069 1070 save->cs.selector = 0xf000; 1071 save->cs.base = 0xffff0000; 1072 /* Executable/Readable Code Segment */ 1073 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1074 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1075 save->cs.limit = 0xffff; 1076 1077 save->gdtr.base = 0; 1078 save->gdtr.limit = 0xffff; 1079 save->idtr.base = 0; 1080 save->idtr.limit = 0xffff; 1081 1082 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1083 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1084 1085 if (npt_enabled) { 1086 /* Setup VMCB for Nested Paging */ 1087 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1088 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1089 clr_exception_intercept(svm, PF_VECTOR); 1090 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1091 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1092 save->g_pat = vcpu->arch.pat; 1093 save->cr3 = 0; 1094 } 1095 svm->current_vmcb->asid_generation = 0; 1096 svm->asid = 0; 1097 1098 svm->nested.vmcb12_gpa = INVALID_GPA; 1099 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1100 1101 if (!kvm_pause_in_guest(vcpu->kvm)) { 1102 control->pause_filter_count = pause_filter_count; 1103 if (pause_filter_thresh) 1104 control->pause_filter_thresh = pause_filter_thresh; 1105 svm_set_intercept(svm, INTERCEPT_PAUSE); 1106 } else { 1107 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1108 } 1109 1110 svm_recalc_instruction_intercepts(vcpu, svm); 1111 1112 /* 1113 * If the host supports V_SPEC_CTRL then disable the interception 1114 * of MSR_IA32_SPEC_CTRL. 1115 */ 1116 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1117 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1118 1119 if (kvm_vcpu_apicv_active(vcpu)) 1120 avic_init_vmcb(svm); 1121 1122 if (vgif) { 1123 svm_clr_intercept(svm, INTERCEPT_STGI); 1124 svm_clr_intercept(svm, INTERCEPT_CLGI); 1125 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1126 } 1127 1128 if (sev_guest(vcpu->kvm)) { 1129 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1130 clr_exception_intercept(svm, UD_VECTOR); 1131 1132 if (sev_es_guest(vcpu->kvm)) { 1133 /* Perform SEV-ES specific VMCB updates */ 1134 sev_es_init_vmcb(svm); 1135 } 1136 } 1137 1138 svm_hv_init_vmcb(svm->vmcb); 1139 init_vmcb_after_set_cpuid(vcpu); 1140 1141 vmcb_mark_all_dirty(svm->vmcb); 1142 1143 enable_gif(svm); 1144 } 1145 1146 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1147 { 1148 struct vcpu_svm *svm = to_svm(vcpu); 1149 1150 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1151 1152 svm_init_osvw(vcpu); 1153 vcpu->arch.microcode_version = 0x01000065; 1154 svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio; 1155 1156 if (sev_es_guest(vcpu->kvm)) 1157 sev_es_vcpu_reset(svm); 1158 } 1159 1160 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1161 { 1162 struct vcpu_svm *svm = to_svm(vcpu); 1163 1164 svm->spec_ctrl = 0; 1165 svm->virt_spec_ctrl = 0; 1166 1167 init_vmcb(vcpu); 1168 1169 if (!init_event) 1170 __svm_vcpu_reset(vcpu); 1171 } 1172 1173 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1174 { 1175 svm->current_vmcb = target_vmcb; 1176 svm->vmcb = target_vmcb->ptr; 1177 } 1178 1179 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1180 { 1181 struct vcpu_svm *svm; 1182 struct page *vmcb01_page; 1183 struct page *vmsa_page = NULL; 1184 int err; 1185 1186 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1187 svm = to_svm(vcpu); 1188 1189 err = -ENOMEM; 1190 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1191 if (!vmcb01_page) 1192 goto out; 1193 1194 if (sev_es_guest(vcpu->kvm)) { 1195 /* 1196 * SEV-ES guests require a separate VMSA page used to contain 1197 * the encrypted register state of the guest. 1198 */ 1199 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1200 if (!vmsa_page) 1201 goto error_free_vmcb_page; 1202 1203 /* 1204 * SEV-ES guests maintain an encrypted version of their FPU 1205 * state which is restored and saved on VMRUN and VMEXIT. 1206 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1207 * do xsave/xrstor on it. 1208 */ 1209 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1210 } 1211 1212 err = avic_init_vcpu(svm); 1213 if (err) 1214 goto error_free_vmsa_page; 1215 1216 svm->msrpm = svm_vcpu_alloc_msrpm(); 1217 if (!svm->msrpm) { 1218 err = -ENOMEM; 1219 goto error_free_vmsa_page; 1220 } 1221 1222 svm->vmcb01.ptr = page_address(vmcb01_page); 1223 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1224 svm_switch_vmcb(svm, &svm->vmcb01); 1225 1226 if (vmsa_page) 1227 svm->sev_es.vmsa = page_address(vmsa_page); 1228 1229 svm->guest_state_loaded = false; 1230 1231 return 0; 1232 1233 error_free_vmsa_page: 1234 if (vmsa_page) 1235 __free_page(vmsa_page); 1236 error_free_vmcb_page: 1237 __free_page(vmcb01_page); 1238 out: 1239 return err; 1240 } 1241 1242 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1243 { 1244 int i; 1245 1246 for_each_online_cpu(i) 1247 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1248 } 1249 1250 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1251 { 1252 struct vcpu_svm *svm = to_svm(vcpu); 1253 1254 /* 1255 * The vmcb page can be recycled, causing a false negative in 1256 * svm_vcpu_load(). So, ensure that no logical CPU has this 1257 * vmcb page recorded as its current vmcb. 1258 */ 1259 svm_clear_current_vmcb(svm->vmcb); 1260 1261 svm_free_nested(svm); 1262 1263 sev_free_vcpu(vcpu); 1264 1265 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1266 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1267 } 1268 1269 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1270 { 1271 struct vcpu_svm *svm = to_svm(vcpu); 1272 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1273 1274 if (sev_es_guest(vcpu->kvm)) 1275 sev_es_unmap_ghcb(svm); 1276 1277 if (svm->guest_state_loaded) 1278 return; 1279 1280 /* 1281 * Save additional host state that will be restored on VMEXIT (sev-es) 1282 * or subsequent vmload of host save area. 1283 */ 1284 vmsave(__sme_page_pa(sd->save_area)); 1285 if (sev_es_guest(vcpu->kvm)) { 1286 struct vmcb_save_area *hostsa; 1287 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 1288 1289 sev_es_prepare_switch_to_guest(hostsa); 1290 } 1291 1292 if (tsc_scaling) { 1293 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1294 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1295 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1296 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1297 } 1298 } 1299 1300 if (likely(tsc_aux_uret_slot >= 0)) 1301 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1302 1303 svm->guest_state_loaded = true; 1304 } 1305 1306 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1307 { 1308 to_svm(vcpu)->guest_state_loaded = false; 1309 } 1310 1311 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1312 { 1313 struct vcpu_svm *svm = to_svm(vcpu); 1314 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1315 1316 if (sd->current_vmcb != svm->vmcb) { 1317 sd->current_vmcb = svm->vmcb; 1318 indirect_branch_prediction_barrier(); 1319 } 1320 if (kvm_vcpu_apicv_active(vcpu)) 1321 __avic_vcpu_load(vcpu, cpu); 1322 } 1323 1324 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1325 { 1326 if (kvm_vcpu_apicv_active(vcpu)) 1327 __avic_vcpu_put(vcpu); 1328 1329 svm_prepare_host_switch(vcpu); 1330 1331 ++vcpu->stat.host_state_reload; 1332 } 1333 1334 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1335 { 1336 struct vcpu_svm *svm = to_svm(vcpu); 1337 unsigned long rflags = svm->vmcb->save.rflags; 1338 1339 if (svm->nmi_singlestep) { 1340 /* Hide our flags if they were not set by the guest */ 1341 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1342 rflags &= ~X86_EFLAGS_TF; 1343 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1344 rflags &= ~X86_EFLAGS_RF; 1345 } 1346 return rflags; 1347 } 1348 1349 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1350 { 1351 if (to_svm(vcpu)->nmi_singlestep) 1352 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1353 1354 /* 1355 * Any change of EFLAGS.VM is accompanied by a reload of SS 1356 * (caused by either a task switch or an inter-privilege IRET), 1357 * so we do not need to update the CPL here. 1358 */ 1359 to_svm(vcpu)->vmcb->save.rflags = rflags; 1360 } 1361 1362 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1363 { 1364 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1365 1366 return sev_es_guest(vcpu->kvm) 1367 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1368 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1369 } 1370 1371 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1372 { 1373 kvm_register_mark_available(vcpu, reg); 1374 1375 switch (reg) { 1376 case VCPU_EXREG_PDPTR: 1377 /* 1378 * When !npt_enabled, mmu->pdptrs[] is already available since 1379 * it is always updated per SDM when moving to CRs. 1380 */ 1381 if (npt_enabled) 1382 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1383 break; 1384 default: 1385 KVM_BUG_ON(1, vcpu->kvm); 1386 } 1387 } 1388 1389 static void svm_set_vintr(struct vcpu_svm *svm) 1390 { 1391 struct vmcb_control_area *control; 1392 1393 /* 1394 * The following fields are ignored when AVIC is enabled 1395 */ 1396 WARN_ON(kvm_apicv_activated(svm->vcpu.kvm)); 1397 1398 svm_set_intercept(svm, INTERCEPT_VINTR); 1399 1400 /* 1401 * This is just a dummy VINTR to actually cause a vmexit to happen. 1402 * Actual injection of virtual interrupts happens through EVENTINJ. 1403 */ 1404 control = &svm->vmcb->control; 1405 control->int_vector = 0x0; 1406 control->int_ctl &= ~V_INTR_PRIO_MASK; 1407 control->int_ctl |= V_IRQ_MASK | 1408 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1409 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1410 } 1411 1412 static void svm_clear_vintr(struct vcpu_svm *svm) 1413 { 1414 svm_clr_intercept(svm, INTERCEPT_VINTR); 1415 1416 /* Drop int_ctl fields related to VINTR injection. */ 1417 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1418 if (is_guest_mode(&svm->vcpu)) { 1419 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1420 1421 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1422 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1423 1424 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1425 V_IRQ_INJECTION_BITS_MASK; 1426 1427 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1428 } 1429 1430 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1431 } 1432 1433 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1434 { 1435 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1436 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1437 1438 switch (seg) { 1439 case VCPU_SREG_CS: return &save->cs; 1440 case VCPU_SREG_DS: return &save->ds; 1441 case VCPU_SREG_ES: return &save->es; 1442 case VCPU_SREG_FS: return &save01->fs; 1443 case VCPU_SREG_GS: return &save01->gs; 1444 case VCPU_SREG_SS: return &save->ss; 1445 case VCPU_SREG_TR: return &save01->tr; 1446 case VCPU_SREG_LDTR: return &save01->ldtr; 1447 } 1448 BUG(); 1449 return NULL; 1450 } 1451 1452 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1453 { 1454 struct vmcb_seg *s = svm_seg(vcpu, seg); 1455 1456 return s->base; 1457 } 1458 1459 static void svm_get_segment(struct kvm_vcpu *vcpu, 1460 struct kvm_segment *var, int seg) 1461 { 1462 struct vmcb_seg *s = svm_seg(vcpu, seg); 1463 1464 var->base = s->base; 1465 var->limit = s->limit; 1466 var->selector = s->selector; 1467 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1468 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1469 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1470 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1471 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1472 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1473 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1474 1475 /* 1476 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1477 * However, the SVM spec states that the G bit is not observed by the 1478 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1479 * So let's synthesize a legal G bit for all segments, this helps 1480 * running KVM nested. It also helps cross-vendor migration, because 1481 * Intel's vmentry has a check on the 'G' bit. 1482 */ 1483 var->g = s->limit > 0xfffff; 1484 1485 /* 1486 * AMD's VMCB does not have an explicit unusable field, so emulate it 1487 * for cross vendor migration purposes by "not present" 1488 */ 1489 var->unusable = !var->present; 1490 1491 switch (seg) { 1492 case VCPU_SREG_TR: 1493 /* 1494 * Work around a bug where the busy flag in the tr selector 1495 * isn't exposed 1496 */ 1497 var->type |= 0x2; 1498 break; 1499 case VCPU_SREG_DS: 1500 case VCPU_SREG_ES: 1501 case VCPU_SREG_FS: 1502 case VCPU_SREG_GS: 1503 /* 1504 * The accessed bit must always be set in the segment 1505 * descriptor cache, although it can be cleared in the 1506 * descriptor, the cached bit always remains at 1. Since 1507 * Intel has a check on this, set it here to support 1508 * cross-vendor migration. 1509 */ 1510 if (!var->unusable) 1511 var->type |= 0x1; 1512 break; 1513 case VCPU_SREG_SS: 1514 /* 1515 * On AMD CPUs sometimes the DB bit in the segment 1516 * descriptor is left as 1, although the whole segment has 1517 * been made unusable. Clear it here to pass an Intel VMX 1518 * entry check when cross vendor migrating. 1519 */ 1520 if (var->unusable) 1521 var->db = 0; 1522 /* This is symmetric with svm_set_segment() */ 1523 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1524 break; 1525 } 1526 } 1527 1528 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1529 { 1530 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1531 1532 return save->cpl; 1533 } 1534 1535 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1536 { 1537 struct kvm_segment cs; 1538 1539 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1540 *db = cs.db; 1541 *l = cs.l; 1542 } 1543 1544 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1545 { 1546 struct vcpu_svm *svm = to_svm(vcpu); 1547 1548 dt->size = svm->vmcb->save.idtr.limit; 1549 dt->address = svm->vmcb->save.idtr.base; 1550 } 1551 1552 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1553 { 1554 struct vcpu_svm *svm = to_svm(vcpu); 1555 1556 svm->vmcb->save.idtr.limit = dt->size; 1557 svm->vmcb->save.idtr.base = dt->address ; 1558 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1559 } 1560 1561 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1562 { 1563 struct vcpu_svm *svm = to_svm(vcpu); 1564 1565 dt->size = svm->vmcb->save.gdtr.limit; 1566 dt->address = svm->vmcb->save.gdtr.base; 1567 } 1568 1569 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1570 { 1571 struct vcpu_svm *svm = to_svm(vcpu); 1572 1573 svm->vmcb->save.gdtr.limit = dt->size; 1574 svm->vmcb->save.gdtr.base = dt->address ; 1575 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1576 } 1577 1578 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1579 { 1580 struct vcpu_svm *svm = to_svm(vcpu); 1581 1582 /* 1583 * For guests that don't set guest_state_protected, the cr3 update is 1584 * handled via kvm_mmu_load() while entering the guest. For guests 1585 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1586 * VMCB save area now, since the save area will become the initial 1587 * contents of the VMSA, and future VMCB save area updates won't be 1588 * seen. 1589 */ 1590 if (sev_es_guest(vcpu->kvm)) { 1591 svm->vmcb->save.cr3 = cr3; 1592 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1593 } 1594 } 1595 1596 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1597 { 1598 struct vcpu_svm *svm = to_svm(vcpu); 1599 u64 hcr0 = cr0; 1600 bool old_paging = is_paging(vcpu); 1601 1602 #ifdef CONFIG_X86_64 1603 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1604 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1605 vcpu->arch.efer |= EFER_LMA; 1606 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1607 } 1608 1609 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1610 vcpu->arch.efer &= ~EFER_LMA; 1611 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1612 } 1613 } 1614 #endif 1615 vcpu->arch.cr0 = cr0; 1616 1617 if (!npt_enabled) { 1618 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1619 if (old_paging != is_paging(vcpu)) 1620 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1621 } 1622 1623 /* 1624 * re-enable caching here because the QEMU bios 1625 * does not do it - this results in some delay at 1626 * reboot 1627 */ 1628 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1629 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1630 1631 svm->vmcb->save.cr0 = hcr0; 1632 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1633 1634 /* 1635 * SEV-ES guests must always keep the CR intercepts cleared. CR 1636 * tracking is done using the CR write traps. 1637 */ 1638 if (sev_es_guest(vcpu->kvm)) 1639 return; 1640 1641 if (hcr0 == cr0) { 1642 /* Selective CR0 write remains on. */ 1643 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1644 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1645 } else { 1646 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1647 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1648 } 1649 } 1650 1651 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1652 { 1653 return true; 1654 } 1655 1656 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1657 { 1658 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1659 unsigned long old_cr4 = vcpu->arch.cr4; 1660 1661 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1662 svm_flush_tlb_current(vcpu); 1663 1664 vcpu->arch.cr4 = cr4; 1665 if (!npt_enabled) { 1666 cr4 |= X86_CR4_PAE; 1667 1668 if (!is_paging(vcpu)) 1669 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1670 } 1671 cr4 |= host_cr4_mce; 1672 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1673 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1674 1675 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1676 kvm_update_cpuid_runtime(vcpu); 1677 } 1678 1679 static void svm_set_segment(struct kvm_vcpu *vcpu, 1680 struct kvm_segment *var, int seg) 1681 { 1682 struct vcpu_svm *svm = to_svm(vcpu); 1683 struct vmcb_seg *s = svm_seg(vcpu, seg); 1684 1685 s->base = var->base; 1686 s->limit = var->limit; 1687 s->selector = var->selector; 1688 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1689 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1690 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1691 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1692 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1693 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1694 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1695 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1696 1697 /* 1698 * This is always accurate, except if SYSRET returned to a segment 1699 * with SS.DPL != 3. Intel does not have this quirk, and always 1700 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1701 * would entail passing the CPL to userspace and back. 1702 */ 1703 if (seg == VCPU_SREG_SS) 1704 /* This is symmetric with svm_get_segment() */ 1705 svm->vmcb->save.cpl = (var->dpl & 3); 1706 1707 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1708 } 1709 1710 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1711 { 1712 struct vcpu_svm *svm = to_svm(vcpu); 1713 1714 clr_exception_intercept(svm, BP_VECTOR); 1715 1716 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1717 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1718 set_exception_intercept(svm, BP_VECTOR); 1719 } 1720 } 1721 1722 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1723 { 1724 if (sd->next_asid > sd->max_asid) { 1725 ++sd->asid_generation; 1726 sd->next_asid = sd->min_asid; 1727 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1728 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1729 } 1730 1731 svm->current_vmcb->asid_generation = sd->asid_generation; 1732 svm->asid = sd->next_asid++; 1733 } 1734 1735 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1736 { 1737 struct vmcb *vmcb = svm->vmcb; 1738 1739 if (svm->vcpu.arch.guest_state_protected) 1740 return; 1741 1742 if (unlikely(value != vmcb->save.dr6)) { 1743 vmcb->save.dr6 = value; 1744 vmcb_mark_dirty(vmcb, VMCB_DR); 1745 } 1746 } 1747 1748 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1749 { 1750 struct vcpu_svm *svm = to_svm(vcpu); 1751 1752 if (vcpu->arch.guest_state_protected) 1753 return; 1754 1755 get_debugreg(vcpu->arch.db[0], 0); 1756 get_debugreg(vcpu->arch.db[1], 1); 1757 get_debugreg(vcpu->arch.db[2], 2); 1758 get_debugreg(vcpu->arch.db[3], 3); 1759 /* 1760 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1761 * because db_interception might need it. We can do it before vmentry. 1762 */ 1763 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1764 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1765 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1766 set_dr_intercepts(svm); 1767 } 1768 1769 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1770 { 1771 struct vcpu_svm *svm = to_svm(vcpu); 1772 1773 if (vcpu->arch.guest_state_protected) 1774 return; 1775 1776 svm->vmcb->save.dr7 = value; 1777 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1778 } 1779 1780 static int pf_interception(struct kvm_vcpu *vcpu) 1781 { 1782 struct vcpu_svm *svm = to_svm(vcpu); 1783 1784 u64 fault_address = svm->vmcb->control.exit_info_2; 1785 u64 error_code = svm->vmcb->control.exit_info_1; 1786 1787 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1788 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1789 svm->vmcb->control.insn_bytes : NULL, 1790 svm->vmcb->control.insn_len); 1791 } 1792 1793 static int npf_interception(struct kvm_vcpu *vcpu) 1794 { 1795 struct vcpu_svm *svm = to_svm(vcpu); 1796 1797 u64 fault_address = svm->vmcb->control.exit_info_2; 1798 u64 error_code = svm->vmcb->control.exit_info_1; 1799 1800 trace_kvm_page_fault(fault_address, error_code); 1801 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1802 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1803 svm->vmcb->control.insn_bytes : NULL, 1804 svm->vmcb->control.insn_len); 1805 } 1806 1807 static int db_interception(struct kvm_vcpu *vcpu) 1808 { 1809 struct kvm_run *kvm_run = vcpu->run; 1810 struct vcpu_svm *svm = to_svm(vcpu); 1811 1812 if (!(vcpu->guest_debug & 1813 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1814 !svm->nmi_singlestep) { 1815 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1816 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1817 return 1; 1818 } 1819 1820 if (svm->nmi_singlestep) { 1821 disable_nmi_singlestep(svm); 1822 /* Make sure we check for pending NMIs upon entry */ 1823 kvm_make_request(KVM_REQ_EVENT, vcpu); 1824 } 1825 1826 if (vcpu->guest_debug & 1827 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1828 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1829 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1830 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1831 kvm_run->debug.arch.pc = 1832 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1833 kvm_run->debug.arch.exception = DB_VECTOR; 1834 return 0; 1835 } 1836 1837 return 1; 1838 } 1839 1840 static int bp_interception(struct kvm_vcpu *vcpu) 1841 { 1842 struct vcpu_svm *svm = to_svm(vcpu); 1843 struct kvm_run *kvm_run = vcpu->run; 1844 1845 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1846 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1847 kvm_run->debug.arch.exception = BP_VECTOR; 1848 return 0; 1849 } 1850 1851 static int ud_interception(struct kvm_vcpu *vcpu) 1852 { 1853 return handle_ud(vcpu); 1854 } 1855 1856 static int ac_interception(struct kvm_vcpu *vcpu) 1857 { 1858 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1859 return 1; 1860 } 1861 1862 static bool is_erratum_383(void) 1863 { 1864 int err, i; 1865 u64 value; 1866 1867 if (!erratum_383_found) 1868 return false; 1869 1870 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1871 if (err) 1872 return false; 1873 1874 /* Bit 62 may or may not be set for this mce */ 1875 value &= ~(1ULL << 62); 1876 1877 if (value != 0xb600000000010015ULL) 1878 return false; 1879 1880 /* Clear MCi_STATUS registers */ 1881 for (i = 0; i < 6; ++i) 1882 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1883 1884 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1885 if (!err) { 1886 u32 low, high; 1887 1888 value &= ~(1ULL << 2); 1889 low = lower_32_bits(value); 1890 high = upper_32_bits(value); 1891 1892 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 1893 } 1894 1895 /* Flush tlb to evict multi-match entries */ 1896 __flush_tlb_all(); 1897 1898 return true; 1899 } 1900 1901 static void svm_handle_mce(struct kvm_vcpu *vcpu) 1902 { 1903 if (is_erratum_383()) { 1904 /* 1905 * Erratum 383 triggered. Guest state is corrupt so kill the 1906 * guest. 1907 */ 1908 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 1909 1910 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1911 1912 return; 1913 } 1914 1915 /* 1916 * On an #MC intercept the MCE handler is not called automatically in 1917 * the host. So do it by hand here. 1918 */ 1919 kvm_machine_check(); 1920 } 1921 1922 static int mc_interception(struct kvm_vcpu *vcpu) 1923 { 1924 return 1; 1925 } 1926 1927 static int shutdown_interception(struct kvm_vcpu *vcpu) 1928 { 1929 struct kvm_run *kvm_run = vcpu->run; 1930 struct vcpu_svm *svm = to_svm(vcpu); 1931 1932 /* 1933 * The VM save area has already been encrypted so it 1934 * cannot be reinitialized - just terminate. 1935 */ 1936 if (sev_es_guest(vcpu->kvm)) 1937 return -EINVAL; 1938 1939 /* 1940 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 1941 * the VMCB in a known good state. Unfortuately, KVM doesn't have 1942 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 1943 * userspace. At a platform view, INIT is acceptable behavior as 1944 * there exist bare metal platforms that automatically INIT the CPU 1945 * in response to shutdown. 1946 */ 1947 clear_page(svm->vmcb); 1948 kvm_vcpu_reset(vcpu, true); 1949 1950 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 1951 return 0; 1952 } 1953 1954 static int io_interception(struct kvm_vcpu *vcpu) 1955 { 1956 struct vcpu_svm *svm = to_svm(vcpu); 1957 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 1958 int size, in, string; 1959 unsigned port; 1960 1961 ++vcpu->stat.io_exits; 1962 string = (io_info & SVM_IOIO_STR_MASK) != 0; 1963 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 1964 port = io_info >> 16; 1965 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 1966 1967 if (string) { 1968 if (sev_es_guest(vcpu->kvm)) 1969 return sev_es_string_io(svm, size, port, in); 1970 else 1971 return kvm_emulate_instruction(vcpu, 0); 1972 } 1973 1974 svm->next_rip = svm->vmcb->control.exit_info_2; 1975 1976 return kvm_fast_pio(vcpu, size, port, in); 1977 } 1978 1979 static int nmi_interception(struct kvm_vcpu *vcpu) 1980 { 1981 return 1; 1982 } 1983 1984 static int smi_interception(struct kvm_vcpu *vcpu) 1985 { 1986 return 1; 1987 } 1988 1989 static int intr_interception(struct kvm_vcpu *vcpu) 1990 { 1991 ++vcpu->stat.irq_exits; 1992 return 1; 1993 } 1994 1995 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 1996 { 1997 struct vcpu_svm *svm = to_svm(vcpu); 1998 struct vmcb *vmcb12; 1999 struct kvm_host_map map; 2000 int ret; 2001 2002 if (nested_svm_check_permissions(vcpu)) 2003 return 1; 2004 2005 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2006 if (ret) { 2007 if (ret == -EINVAL) 2008 kvm_inject_gp(vcpu, 0); 2009 return 1; 2010 } 2011 2012 vmcb12 = map.hva; 2013 2014 ret = kvm_skip_emulated_instruction(vcpu); 2015 2016 if (vmload) { 2017 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2018 svm->sysenter_eip_hi = 0; 2019 svm->sysenter_esp_hi = 0; 2020 } else { 2021 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2022 } 2023 2024 kvm_vcpu_unmap(vcpu, &map, true); 2025 2026 return ret; 2027 } 2028 2029 static int vmload_interception(struct kvm_vcpu *vcpu) 2030 { 2031 return vmload_vmsave_interception(vcpu, true); 2032 } 2033 2034 static int vmsave_interception(struct kvm_vcpu *vcpu) 2035 { 2036 return vmload_vmsave_interception(vcpu, false); 2037 } 2038 2039 static int vmrun_interception(struct kvm_vcpu *vcpu) 2040 { 2041 if (nested_svm_check_permissions(vcpu)) 2042 return 1; 2043 2044 return nested_svm_vmrun(vcpu); 2045 } 2046 2047 enum { 2048 NONE_SVM_INSTR, 2049 SVM_INSTR_VMRUN, 2050 SVM_INSTR_VMLOAD, 2051 SVM_INSTR_VMSAVE, 2052 }; 2053 2054 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2055 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2056 { 2057 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2058 2059 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2060 return NONE_SVM_INSTR; 2061 2062 switch (ctxt->modrm) { 2063 case 0xd8: /* VMRUN */ 2064 return SVM_INSTR_VMRUN; 2065 case 0xda: /* VMLOAD */ 2066 return SVM_INSTR_VMLOAD; 2067 case 0xdb: /* VMSAVE */ 2068 return SVM_INSTR_VMSAVE; 2069 default: 2070 break; 2071 } 2072 2073 return NONE_SVM_INSTR; 2074 } 2075 2076 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2077 { 2078 const int guest_mode_exit_codes[] = { 2079 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2080 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2081 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2082 }; 2083 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2084 [SVM_INSTR_VMRUN] = vmrun_interception, 2085 [SVM_INSTR_VMLOAD] = vmload_interception, 2086 [SVM_INSTR_VMSAVE] = vmsave_interception, 2087 }; 2088 struct vcpu_svm *svm = to_svm(vcpu); 2089 int ret; 2090 2091 if (is_guest_mode(vcpu)) { 2092 /* Returns '1' or -errno on failure, '0' on success. */ 2093 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2094 if (ret) 2095 return ret; 2096 return 1; 2097 } 2098 return svm_instr_handlers[opcode](vcpu); 2099 } 2100 2101 /* 2102 * #GP handling code. Note that #GP can be triggered under the following two 2103 * cases: 2104 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2105 * some AMD CPUs when EAX of these instructions are in the reserved memory 2106 * regions (e.g. SMM memory on host). 2107 * 2) VMware backdoor 2108 */ 2109 static int gp_interception(struct kvm_vcpu *vcpu) 2110 { 2111 struct vcpu_svm *svm = to_svm(vcpu); 2112 u32 error_code = svm->vmcb->control.exit_info_1; 2113 int opcode; 2114 2115 /* Both #GP cases have zero error_code */ 2116 if (error_code) 2117 goto reinject; 2118 2119 /* Decode the instruction for usage later */ 2120 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2121 goto reinject; 2122 2123 opcode = svm_instr_opcode(vcpu); 2124 2125 if (opcode == NONE_SVM_INSTR) { 2126 if (!enable_vmware_backdoor) 2127 goto reinject; 2128 2129 /* 2130 * VMware backdoor emulation on #GP interception only handles 2131 * IN{S}, OUT{S}, and RDPMC. 2132 */ 2133 if (!is_guest_mode(vcpu)) 2134 return kvm_emulate_instruction(vcpu, 2135 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2136 } else { 2137 /* All SVM instructions expect page aligned RAX */ 2138 if (svm->vmcb->save.rax & ~PAGE_MASK) 2139 goto reinject; 2140 2141 return emulate_svm_instr(vcpu, opcode); 2142 } 2143 2144 reinject: 2145 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2146 return 1; 2147 } 2148 2149 void svm_set_gif(struct vcpu_svm *svm, bool value) 2150 { 2151 if (value) { 2152 /* 2153 * If VGIF is enabled, the STGI intercept is only added to 2154 * detect the opening of the SMI/NMI window; remove it now. 2155 * Likewise, clear the VINTR intercept, we will set it 2156 * again while processing KVM_REQ_EVENT if needed. 2157 */ 2158 if (vgif_enabled(svm)) 2159 svm_clr_intercept(svm, INTERCEPT_STGI); 2160 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2161 svm_clear_vintr(svm); 2162 2163 enable_gif(svm); 2164 if (svm->vcpu.arch.smi_pending || 2165 svm->vcpu.arch.nmi_pending || 2166 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2167 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2168 } else { 2169 disable_gif(svm); 2170 2171 /* 2172 * After a CLGI no interrupts should come. But if vGIF is 2173 * in use, we still rely on the VINTR intercept (rather than 2174 * STGI) to detect an open interrupt window. 2175 */ 2176 if (!vgif_enabled(svm)) 2177 svm_clear_vintr(svm); 2178 } 2179 } 2180 2181 static int stgi_interception(struct kvm_vcpu *vcpu) 2182 { 2183 int ret; 2184 2185 if (nested_svm_check_permissions(vcpu)) 2186 return 1; 2187 2188 ret = kvm_skip_emulated_instruction(vcpu); 2189 svm_set_gif(to_svm(vcpu), true); 2190 return ret; 2191 } 2192 2193 static int clgi_interception(struct kvm_vcpu *vcpu) 2194 { 2195 int ret; 2196 2197 if (nested_svm_check_permissions(vcpu)) 2198 return 1; 2199 2200 ret = kvm_skip_emulated_instruction(vcpu); 2201 svm_set_gif(to_svm(vcpu), false); 2202 return ret; 2203 } 2204 2205 static int invlpga_interception(struct kvm_vcpu *vcpu) 2206 { 2207 gva_t gva = kvm_rax_read(vcpu); 2208 u32 asid = kvm_rcx_read(vcpu); 2209 2210 /* FIXME: Handle an address size prefix. */ 2211 if (!is_long_mode(vcpu)) 2212 gva = (u32)gva; 2213 2214 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2215 2216 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2217 kvm_mmu_invlpg(vcpu, gva); 2218 2219 return kvm_skip_emulated_instruction(vcpu); 2220 } 2221 2222 static int skinit_interception(struct kvm_vcpu *vcpu) 2223 { 2224 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2225 2226 kvm_queue_exception(vcpu, UD_VECTOR); 2227 return 1; 2228 } 2229 2230 static int task_switch_interception(struct kvm_vcpu *vcpu) 2231 { 2232 struct vcpu_svm *svm = to_svm(vcpu); 2233 u16 tss_selector; 2234 int reason; 2235 int int_type = svm->vmcb->control.exit_int_info & 2236 SVM_EXITINTINFO_TYPE_MASK; 2237 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2238 uint32_t type = 2239 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2240 uint32_t idt_v = 2241 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2242 bool has_error_code = false; 2243 u32 error_code = 0; 2244 2245 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2246 2247 if (svm->vmcb->control.exit_info_2 & 2248 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2249 reason = TASK_SWITCH_IRET; 2250 else if (svm->vmcb->control.exit_info_2 & 2251 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2252 reason = TASK_SWITCH_JMP; 2253 else if (idt_v) 2254 reason = TASK_SWITCH_GATE; 2255 else 2256 reason = TASK_SWITCH_CALL; 2257 2258 if (reason == TASK_SWITCH_GATE) { 2259 switch (type) { 2260 case SVM_EXITINTINFO_TYPE_NMI: 2261 vcpu->arch.nmi_injected = false; 2262 break; 2263 case SVM_EXITINTINFO_TYPE_EXEPT: 2264 if (svm->vmcb->control.exit_info_2 & 2265 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2266 has_error_code = true; 2267 error_code = 2268 (u32)svm->vmcb->control.exit_info_2; 2269 } 2270 kvm_clear_exception_queue(vcpu); 2271 break; 2272 case SVM_EXITINTINFO_TYPE_INTR: 2273 kvm_clear_interrupt_queue(vcpu); 2274 break; 2275 default: 2276 break; 2277 } 2278 } 2279 2280 if (reason != TASK_SWITCH_GATE || 2281 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2282 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2283 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2284 if (!svm_skip_emulated_instruction(vcpu)) 2285 return 0; 2286 } 2287 2288 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2289 int_vec = -1; 2290 2291 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2292 has_error_code, error_code); 2293 } 2294 2295 static int iret_interception(struct kvm_vcpu *vcpu) 2296 { 2297 struct vcpu_svm *svm = to_svm(vcpu); 2298 2299 ++vcpu->stat.nmi_window_exits; 2300 vcpu->arch.hflags |= HF_IRET_MASK; 2301 if (!sev_es_guest(vcpu->kvm)) { 2302 svm_clr_intercept(svm, INTERCEPT_IRET); 2303 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2304 } 2305 kvm_make_request(KVM_REQ_EVENT, vcpu); 2306 return 1; 2307 } 2308 2309 static int invlpg_interception(struct kvm_vcpu *vcpu) 2310 { 2311 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2312 return kvm_emulate_instruction(vcpu, 0); 2313 2314 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2315 return kvm_skip_emulated_instruction(vcpu); 2316 } 2317 2318 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2319 { 2320 return kvm_emulate_instruction(vcpu, 0); 2321 } 2322 2323 static int rsm_interception(struct kvm_vcpu *vcpu) 2324 { 2325 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2326 } 2327 2328 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2329 unsigned long val) 2330 { 2331 struct vcpu_svm *svm = to_svm(vcpu); 2332 unsigned long cr0 = vcpu->arch.cr0; 2333 bool ret = false; 2334 2335 if (!is_guest_mode(vcpu) || 2336 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2337 return false; 2338 2339 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2340 val &= ~SVM_CR0_SELECTIVE_MASK; 2341 2342 if (cr0 ^ val) { 2343 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2344 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2345 } 2346 2347 return ret; 2348 } 2349 2350 #define CR_VALID (1ULL << 63) 2351 2352 static int cr_interception(struct kvm_vcpu *vcpu) 2353 { 2354 struct vcpu_svm *svm = to_svm(vcpu); 2355 int reg, cr; 2356 unsigned long val; 2357 int err; 2358 2359 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2360 return emulate_on_interception(vcpu); 2361 2362 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2363 return emulate_on_interception(vcpu); 2364 2365 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2366 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2367 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2368 else 2369 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2370 2371 err = 0; 2372 if (cr >= 16) { /* mov to cr */ 2373 cr -= 16; 2374 val = kvm_register_read(vcpu, reg); 2375 trace_kvm_cr_write(cr, val); 2376 switch (cr) { 2377 case 0: 2378 if (!check_selective_cr0_intercepted(vcpu, val)) 2379 err = kvm_set_cr0(vcpu, val); 2380 else 2381 return 1; 2382 2383 break; 2384 case 3: 2385 err = kvm_set_cr3(vcpu, val); 2386 break; 2387 case 4: 2388 err = kvm_set_cr4(vcpu, val); 2389 break; 2390 case 8: 2391 err = kvm_set_cr8(vcpu, val); 2392 break; 2393 default: 2394 WARN(1, "unhandled write to CR%d", cr); 2395 kvm_queue_exception(vcpu, UD_VECTOR); 2396 return 1; 2397 } 2398 } else { /* mov from cr */ 2399 switch (cr) { 2400 case 0: 2401 val = kvm_read_cr0(vcpu); 2402 break; 2403 case 2: 2404 val = vcpu->arch.cr2; 2405 break; 2406 case 3: 2407 val = kvm_read_cr3(vcpu); 2408 break; 2409 case 4: 2410 val = kvm_read_cr4(vcpu); 2411 break; 2412 case 8: 2413 val = kvm_get_cr8(vcpu); 2414 break; 2415 default: 2416 WARN(1, "unhandled read from CR%d", cr); 2417 kvm_queue_exception(vcpu, UD_VECTOR); 2418 return 1; 2419 } 2420 kvm_register_write(vcpu, reg, val); 2421 trace_kvm_cr_read(cr, val); 2422 } 2423 return kvm_complete_insn_gp(vcpu, err); 2424 } 2425 2426 static int cr_trap(struct kvm_vcpu *vcpu) 2427 { 2428 struct vcpu_svm *svm = to_svm(vcpu); 2429 unsigned long old_value, new_value; 2430 unsigned int cr; 2431 int ret = 0; 2432 2433 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2434 2435 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2436 switch (cr) { 2437 case 0: 2438 old_value = kvm_read_cr0(vcpu); 2439 svm_set_cr0(vcpu, new_value); 2440 2441 kvm_post_set_cr0(vcpu, old_value, new_value); 2442 break; 2443 case 4: 2444 old_value = kvm_read_cr4(vcpu); 2445 svm_set_cr4(vcpu, new_value); 2446 2447 kvm_post_set_cr4(vcpu, old_value, new_value); 2448 break; 2449 case 8: 2450 ret = kvm_set_cr8(vcpu, new_value); 2451 break; 2452 default: 2453 WARN(1, "unhandled CR%d write trap", cr); 2454 kvm_queue_exception(vcpu, UD_VECTOR); 2455 return 1; 2456 } 2457 2458 return kvm_complete_insn_gp(vcpu, ret); 2459 } 2460 2461 static int dr_interception(struct kvm_vcpu *vcpu) 2462 { 2463 struct vcpu_svm *svm = to_svm(vcpu); 2464 int reg, dr; 2465 unsigned long val; 2466 int err = 0; 2467 2468 if (vcpu->guest_debug == 0) { 2469 /* 2470 * No more DR vmexits; force a reload of the debug registers 2471 * and reenter on this instruction. The next vmexit will 2472 * retrieve the full state of the debug registers. 2473 */ 2474 clr_dr_intercepts(svm); 2475 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2476 return 1; 2477 } 2478 2479 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2480 return emulate_on_interception(vcpu); 2481 2482 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2483 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2484 if (dr >= 16) { /* mov to DRn */ 2485 dr -= 16; 2486 val = kvm_register_read(vcpu, reg); 2487 err = kvm_set_dr(vcpu, dr, val); 2488 } else { 2489 kvm_get_dr(vcpu, dr, &val); 2490 kvm_register_write(vcpu, reg, val); 2491 } 2492 2493 return kvm_complete_insn_gp(vcpu, err); 2494 } 2495 2496 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2497 { 2498 int r; 2499 2500 u8 cr8_prev = kvm_get_cr8(vcpu); 2501 /* instruction emulation calls kvm_set_cr8() */ 2502 r = cr_interception(vcpu); 2503 if (lapic_in_kernel(vcpu)) 2504 return r; 2505 if (cr8_prev <= kvm_get_cr8(vcpu)) 2506 return r; 2507 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2508 return 0; 2509 } 2510 2511 static int efer_trap(struct kvm_vcpu *vcpu) 2512 { 2513 struct msr_data msr_info; 2514 int ret; 2515 2516 /* 2517 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2518 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2519 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2520 * the guest doesn't have X86_FEATURE_SVM. 2521 */ 2522 msr_info.host_initiated = false; 2523 msr_info.index = MSR_EFER; 2524 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2525 ret = kvm_set_msr_common(vcpu, &msr_info); 2526 2527 return kvm_complete_insn_gp(vcpu, ret); 2528 } 2529 2530 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2531 { 2532 msr->data = 0; 2533 2534 switch (msr->index) { 2535 case MSR_F10H_DECFG: 2536 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2537 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2538 break; 2539 case MSR_IA32_PERF_CAPABILITIES: 2540 return 0; 2541 default: 2542 return KVM_MSR_RET_INVALID; 2543 } 2544 2545 return 0; 2546 } 2547 2548 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2549 { 2550 struct vcpu_svm *svm = to_svm(vcpu); 2551 2552 switch (msr_info->index) { 2553 case MSR_AMD64_TSC_RATIO: 2554 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled) 2555 return 1; 2556 msr_info->data = svm->tsc_ratio_msr; 2557 break; 2558 case MSR_STAR: 2559 msr_info->data = svm->vmcb01.ptr->save.star; 2560 break; 2561 #ifdef CONFIG_X86_64 2562 case MSR_LSTAR: 2563 msr_info->data = svm->vmcb01.ptr->save.lstar; 2564 break; 2565 case MSR_CSTAR: 2566 msr_info->data = svm->vmcb01.ptr->save.cstar; 2567 break; 2568 case MSR_KERNEL_GS_BASE: 2569 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2570 break; 2571 case MSR_SYSCALL_MASK: 2572 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2573 break; 2574 #endif 2575 case MSR_IA32_SYSENTER_CS: 2576 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2577 break; 2578 case MSR_IA32_SYSENTER_EIP: 2579 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2580 if (guest_cpuid_is_intel(vcpu)) 2581 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2582 break; 2583 case MSR_IA32_SYSENTER_ESP: 2584 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2585 if (guest_cpuid_is_intel(vcpu)) 2586 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2587 break; 2588 case MSR_TSC_AUX: 2589 msr_info->data = svm->tsc_aux; 2590 break; 2591 /* 2592 * Nobody will change the following 5 values in the VMCB so we can 2593 * safely return them on rdmsr. They will always be 0 until LBRV is 2594 * implemented. 2595 */ 2596 case MSR_IA32_DEBUGCTLMSR: 2597 msr_info->data = svm->vmcb->save.dbgctl; 2598 break; 2599 case MSR_IA32_LASTBRANCHFROMIP: 2600 msr_info->data = svm->vmcb->save.br_from; 2601 break; 2602 case MSR_IA32_LASTBRANCHTOIP: 2603 msr_info->data = svm->vmcb->save.br_to; 2604 break; 2605 case MSR_IA32_LASTINTFROMIP: 2606 msr_info->data = svm->vmcb->save.last_excp_from; 2607 break; 2608 case MSR_IA32_LASTINTTOIP: 2609 msr_info->data = svm->vmcb->save.last_excp_to; 2610 break; 2611 case MSR_VM_HSAVE_PA: 2612 msr_info->data = svm->nested.hsave_msr; 2613 break; 2614 case MSR_VM_CR: 2615 msr_info->data = svm->nested.vm_cr_msr; 2616 break; 2617 case MSR_IA32_SPEC_CTRL: 2618 if (!msr_info->host_initiated && 2619 !guest_has_spec_ctrl_msr(vcpu)) 2620 return 1; 2621 2622 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2623 msr_info->data = svm->vmcb->save.spec_ctrl; 2624 else 2625 msr_info->data = svm->spec_ctrl; 2626 break; 2627 case MSR_AMD64_VIRT_SPEC_CTRL: 2628 if (!msr_info->host_initiated && 2629 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2630 return 1; 2631 2632 msr_info->data = svm->virt_spec_ctrl; 2633 break; 2634 case MSR_F15H_IC_CFG: { 2635 2636 int family, model; 2637 2638 family = guest_cpuid_family(vcpu); 2639 model = guest_cpuid_model(vcpu); 2640 2641 if (family < 0 || model < 0) 2642 return kvm_get_msr_common(vcpu, msr_info); 2643 2644 msr_info->data = 0; 2645 2646 if (family == 0x15 && 2647 (model >= 0x2 && model < 0x20)) 2648 msr_info->data = 0x1E; 2649 } 2650 break; 2651 case MSR_F10H_DECFG: 2652 msr_info->data = svm->msr_decfg; 2653 break; 2654 default: 2655 return kvm_get_msr_common(vcpu, msr_info); 2656 } 2657 return 0; 2658 } 2659 2660 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2661 { 2662 struct vcpu_svm *svm = to_svm(vcpu); 2663 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2664 return kvm_complete_insn_gp(vcpu, err); 2665 2666 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2667 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2668 X86_TRAP_GP | 2669 SVM_EVTINJ_TYPE_EXEPT | 2670 SVM_EVTINJ_VALID); 2671 return 1; 2672 } 2673 2674 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2675 { 2676 struct vcpu_svm *svm = to_svm(vcpu); 2677 int svm_dis, chg_mask; 2678 2679 if (data & ~SVM_VM_CR_VALID_MASK) 2680 return 1; 2681 2682 chg_mask = SVM_VM_CR_VALID_MASK; 2683 2684 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2685 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2686 2687 svm->nested.vm_cr_msr &= ~chg_mask; 2688 svm->nested.vm_cr_msr |= (data & chg_mask); 2689 2690 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2691 2692 /* check for svm_disable while efer.svme is set */ 2693 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2694 return 1; 2695 2696 return 0; 2697 } 2698 2699 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2700 { 2701 struct vcpu_svm *svm = to_svm(vcpu); 2702 int r; 2703 2704 u32 ecx = msr->index; 2705 u64 data = msr->data; 2706 switch (ecx) { 2707 case MSR_AMD64_TSC_RATIO: 2708 2709 if (!svm->tsc_scaling_enabled) { 2710 2711 if (!msr->host_initiated) 2712 return 1; 2713 /* 2714 * In case TSC scaling is not enabled, always 2715 * leave this MSR at the default value. 2716 * 2717 * Due to bug in qemu 6.2.0, it would try to set 2718 * this msr to 0 if tsc scaling is not enabled. 2719 * Ignore this value as well. 2720 */ 2721 if (data != 0 && data != svm->tsc_ratio_msr) 2722 return 1; 2723 break; 2724 } 2725 2726 if (data & TSC_RATIO_RSVD) 2727 return 1; 2728 2729 svm->tsc_ratio_msr = data; 2730 2731 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu)) 2732 nested_svm_update_tsc_ratio_msr(vcpu); 2733 2734 break; 2735 case MSR_IA32_CR_PAT: 2736 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2737 return 1; 2738 vcpu->arch.pat = data; 2739 svm->vmcb01.ptr->save.g_pat = data; 2740 if (is_guest_mode(vcpu)) 2741 nested_vmcb02_compute_g_pat(svm); 2742 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2743 break; 2744 case MSR_IA32_SPEC_CTRL: 2745 if (!msr->host_initiated && 2746 !guest_has_spec_ctrl_msr(vcpu)) 2747 return 1; 2748 2749 if (kvm_spec_ctrl_test_value(data)) 2750 return 1; 2751 2752 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2753 svm->vmcb->save.spec_ctrl = data; 2754 else 2755 svm->spec_ctrl = data; 2756 if (!data) 2757 break; 2758 2759 /* 2760 * For non-nested: 2761 * When it's written (to non-zero) for the first time, pass 2762 * it through. 2763 * 2764 * For nested: 2765 * The handling of the MSR bitmap for L2 guests is done in 2766 * nested_svm_vmrun_msrpm. 2767 * We update the L1 MSR bit as well since it will end up 2768 * touching the MSR anyway now. 2769 */ 2770 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2771 break; 2772 case MSR_IA32_PRED_CMD: 2773 if (!msr->host_initiated && 2774 !guest_has_pred_cmd_msr(vcpu)) 2775 return 1; 2776 2777 if (data & ~PRED_CMD_IBPB) 2778 return 1; 2779 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2780 return 1; 2781 if (!data) 2782 break; 2783 2784 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2785 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2786 break; 2787 case MSR_AMD64_VIRT_SPEC_CTRL: 2788 if (!msr->host_initiated && 2789 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2790 return 1; 2791 2792 if (data & ~SPEC_CTRL_SSBD) 2793 return 1; 2794 2795 svm->virt_spec_ctrl = data; 2796 break; 2797 case MSR_STAR: 2798 svm->vmcb01.ptr->save.star = data; 2799 break; 2800 #ifdef CONFIG_X86_64 2801 case MSR_LSTAR: 2802 svm->vmcb01.ptr->save.lstar = data; 2803 break; 2804 case MSR_CSTAR: 2805 svm->vmcb01.ptr->save.cstar = data; 2806 break; 2807 case MSR_KERNEL_GS_BASE: 2808 svm->vmcb01.ptr->save.kernel_gs_base = data; 2809 break; 2810 case MSR_SYSCALL_MASK: 2811 svm->vmcb01.ptr->save.sfmask = data; 2812 break; 2813 #endif 2814 case MSR_IA32_SYSENTER_CS: 2815 svm->vmcb01.ptr->save.sysenter_cs = data; 2816 break; 2817 case MSR_IA32_SYSENTER_EIP: 2818 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2819 /* 2820 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2821 * when we spoof an Intel vendor ID (for cross vendor migration). 2822 * In this case we use this intercept to track the high 2823 * 32 bit part of these msrs to support Intel's 2824 * implementation of SYSENTER/SYSEXIT. 2825 */ 2826 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2827 break; 2828 case MSR_IA32_SYSENTER_ESP: 2829 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2830 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2831 break; 2832 case MSR_TSC_AUX: 2833 /* 2834 * TSC_AUX is usually changed only during boot and never read 2835 * directly. Intercept TSC_AUX instead of exposing it to the 2836 * guest via direct_access_msrs, and switch it via user return. 2837 */ 2838 preempt_disable(); 2839 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2840 preempt_enable(); 2841 if (r) 2842 return 1; 2843 2844 svm->tsc_aux = data; 2845 break; 2846 case MSR_IA32_DEBUGCTLMSR: 2847 if (!lbrv) { 2848 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2849 __func__, data); 2850 break; 2851 } 2852 if (data & DEBUGCTL_RESERVED_BITS) 2853 return 1; 2854 2855 svm->vmcb->save.dbgctl = data; 2856 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2857 if (data & (1ULL<<0)) 2858 svm_enable_lbrv(vcpu); 2859 else 2860 svm_disable_lbrv(vcpu); 2861 break; 2862 case MSR_VM_HSAVE_PA: 2863 /* 2864 * Old kernels did not validate the value written to 2865 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 2866 * value to allow live migrating buggy or malicious guests 2867 * originating from those kernels. 2868 */ 2869 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 2870 return 1; 2871 2872 svm->nested.hsave_msr = data & PAGE_MASK; 2873 break; 2874 case MSR_VM_CR: 2875 return svm_set_vm_cr(vcpu, data); 2876 case MSR_VM_IGNNE: 2877 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2878 break; 2879 case MSR_F10H_DECFG: { 2880 struct kvm_msr_entry msr_entry; 2881 2882 msr_entry.index = msr->index; 2883 if (svm_get_msr_feature(&msr_entry)) 2884 return 1; 2885 2886 /* Check the supported bits */ 2887 if (data & ~msr_entry.data) 2888 return 1; 2889 2890 /* Don't allow the guest to change a bit, #GP */ 2891 if (!msr->host_initiated && (data ^ msr_entry.data)) 2892 return 1; 2893 2894 svm->msr_decfg = data; 2895 break; 2896 } 2897 default: 2898 return kvm_set_msr_common(vcpu, msr); 2899 } 2900 return 0; 2901 } 2902 2903 static int msr_interception(struct kvm_vcpu *vcpu) 2904 { 2905 if (to_svm(vcpu)->vmcb->control.exit_info_1) 2906 return kvm_emulate_wrmsr(vcpu); 2907 else 2908 return kvm_emulate_rdmsr(vcpu); 2909 } 2910 2911 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 2912 { 2913 kvm_make_request(KVM_REQ_EVENT, vcpu); 2914 svm_clear_vintr(to_svm(vcpu)); 2915 2916 /* 2917 * For AVIC, the only reason to end up here is ExtINTs. 2918 * In this case AVIC was temporarily disabled for 2919 * requesting the IRQ window and we have to re-enable it. 2920 */ 2921 kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN); 2922 2923 ++vcpu->stat.irq_window_exits; 2924 return 1; 2925 } 2926 2927 static int pause_interception(struct kvm_vcpu *vcpu) 2928 { 2929 bool in_kernel; 2930 2931 /* 2932 * CPL is not made available for an SEV-ES guest, therefore 2933 * vcpu->arch.preempted_in_kernel can never be true. Just 2934 * set in_kernel to false as well. 2935 */ 2936 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 2937 2938 if (!kvm_pause_in_guest(vcpu->kvm)) 2939 grow_ple_window(vcpu); 2940 2941 kvm_vcpu_on_spin(vcpu, in_kernel); 2942 return kvm_skip_emulated_instruction(vcpu); 2943 } 2944 2945 static int invpcid_interception(struct kvm_vcpu *vcpu) 2946 { 2947 struct vcpu_svm *svm = to_svm(vcpu); 2948 unsigned long type; 2949 gva_t gva; 2950 2951 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 2952 kvm_queue_exception(vcpu, UD_VECTOR); 2953 return 1; 2954 } 2955 2956 /* 2957 * For an INVPCID intercept: 2958 * EXITINFO1 provides the linear address of the memory operand. 2959 * EXITINFO2 provides the contents of the register operand. 2960 */ 2961 type = svm->vmcb->control.exit_info_2; 2962 gva = svm->vmcb->control.exit_info_1; 2963 2964 return kvm_handle_invpcid(vcpu, type, gva); 2965 } 2966 2967 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 2968 [SVM_EXIT_READ_CR0] = cr_interception, 2969 [SVM_EXIT_READ_CR3] = cr_interception, 2970 [SVM_EXIT_READ_CR4] = cr_interception, 2971 [SVM_EXIT_READ_CR8] = cr_interception, 2972 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 2973 [SVM_EXIT_WRITE_CR0] = cr_interception, 2974 [SVM_EXIT_WRITE_CR3] = cr_interception, 2975 [SVM_EXIT_WRITE_CR4] = cr_interception, 2976 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 2977 [SVM_EXIT_READ_DR0] = dr_interception, 2978 [SVM_EXIT_READ_DR1] = dr_interception, 2979 [SVM_EXIT_READ_DR2] = dr_interception, 2980 [SVM_EXIT_READ_DR3] = dr_interception, 2981 [SVM_EXIT_READ_DR4] = dr_interception, 2982 [SVM_EXIT_READ_DR5] = dr_interception, 2983 [SVM_EXIT_READ_DR6] = dr_interception, 2984 [SVM_EXIT_READ_DR7] = dr_interception, 2985 [SVM_EXIT_WRITE_DR0] = dr_interception, 2986 [SVM_EXIT_WRITE_DR1] = dr_interception, 2987 [SVM_EXIT_WRITE_DR2] = dr_interception, 2988 [SVM_EXIT_WRITE_DR3] = dr_interception, 2989 [SVM_EXIT_WRITE_DR4] = dr_interception, 2990 [SVM_EXIT_WRITE_DR5] = dr_interception, 2991 [SVM_EXIT_WRITE_DR6] = dr_interception, 2992 [SVM_EXIT_WRITE_DR7] = dr_interception, 2993 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 2994 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 2995 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 2996 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 2997 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 2998 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 2999 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3000 [SVM_EXIT_INTR] = intr_interception, 3001 [SVM_EXIT_NMI] = nmi_interception, 3002 [SVM_EXIT_SMI] = smi_interception, 3003 [SVM_EXIT_VINTR] = interrupt_window_interception, 3004 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3005 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3006 [SVM_EXIT_IRET] = iret_interception, 3007 [SVM_EXIT_INVD] = kvm_emulate_invd, 3008 [SVM_EXIT_PAUSE] = pause_interception, 3009 [SVM_EXIT_HLT] = kvm_emulate_halt, 3010 [SVM_EXIT_INVLPG] = invlpg_interception, 3011 [SVM_EXIT_INVLPGA] = invlpga_interception, 3012 [SVM_EXIT_IOIO] = io_interception, 3013 [SVM_EXIT_MSR] = msr_interception, 3014 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3015 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3016 [SVM_EXIT_VMRUN] = vmrun_interception, 3017 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3018 [SVM_EXIT_VMLOAD] = vmload_interception, 3019 [SVM_EXIT_VMSAVE] = vmsave_interception, 3020 [SVM_EXIT_STGI] = stgi_interception, 3021 [SVM_EXIT_CLGI] = clgi_interception, 3022 [SVM_EXIT_SKINIT] = skinit_interception, 3023 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3024 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3025 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3026 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3027 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3028 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3029 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3030 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3031 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3032 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3033 [SVM_EXIT_INVPCID] = invpcid_interception, 3034 [SVM_EXIT_NPF] = npf_interception, 3035 [SVM_EXIT_RSM] = rsm_interception, 3036 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3037 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3038 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3039 }; 3040 3041 static void dump_vmcb(struct kvm_vcpu *vcpu) 3042 { 3043 struct vcpu_svm *svm = to_svm(vcpu); 3044 struct vmcb_control_area *control = &svm->vmcb->control; 3045 struct vmcb_save_area *save = &svm->vmcb->save; 3046 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3047 3048 if (!dump_invalid_vmcb) { 3049 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3050 return; 3051 } 3052 3053 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3054 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3055 pr_err("VMCB Control Area:\n"); 3056 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3057 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3058 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3059 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3060 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3061 pr_err("%-20s%08x %08x\n", "intercepts:", 3062 control->intercepts[INTERCEPT_WORD3], 3063 control->intercepts[INTERCEPT_WORD4]); 3064 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3065 pr_err("%-20s%d\n", "pause filter threshold:", 3066 control->pause_filter_thresh); 3067 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3068 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3069 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3070 pr_err("%-20s%d\n", "asid:", control->asid); 3071 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3072 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3073 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3074 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3075 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3076 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3077 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3078 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3079 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3080 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3081 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3082 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3083 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3084 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3085 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3086 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3087 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3088 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3089 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3090 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3091 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3092 pr_err("VMCB State Save Area:\n"); 3093 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3094 "es:", 3095 save->es.selector, save->es.attrib, 3096 save->es.limit, save->es.base); 3097 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3098 "cs:", 3099 save->cs.selector, save->cs.attrib, 3100 save->cs.limit, save->cs.base); 3101 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3102 "ss:", 3103 save->ss.selector, save->ss.attrib, 3104 save->ss.limit, save->ss.base); 3105 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3106 "ds:", 3107 save->ds.selector, save->ds.attrib, 3108 save->ds.limit, save->ds.base); 3109 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3110 "fs:", 3111 save01->fs.selector, save01->fs.attrib, 3112 save01->fs.limit, save01->fs.base); 3113 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3114 "gs:", 3115 save01->gs.selector, save01->gs.attrib, 3116 save01->gs.limit, save01->gs.base); 3117 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3118 "gdtr:", 3119 save->gdtr.selector, save->gdtr.attrib, 3120 save->gdtr.limit, save->gdtr.base); 3121 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3122 "ldtr:", 3123 save01->ldtr.selector, save01->ldtr.attrib, 3124 save01->ldtr.limit, save01->ldtr.base); 3125 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3126 "idtr:", 3127 save->idtr.selector, save->idtr.attrib, 3128 save->idtr.limit, save->idtr.base); 3129 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3130 "tr:", 3131 save01->tr.selector, save01->tr.attrib, 3132 save01->tr.limit, save01->tr.base); 3133 pr_err("cpl: %d efer: %016llx\n", 3134 save->cpl, save->efer); 3135 pr_err("%-15s %016llx %-13s %016llx\n", 3136 "cr0:", save->cr0, "cr2:", save->cr2); 3137 pr_err("%-15s %016llx %-13s %016llx\n", 3138 "cr3:", save->cr3, "cr4:", save->cr4); 3139 pr_err("%-15s %016llx %-13s %016llx\n", 3140 "dr6:", save->dr6, "dr7:", save->dr7); 3141 pr_err("%-15s %016llx %-13s %016llx\n", 3142 "rip:", save->rip, "rflags:", save->rflags); 3143 pr_err("%-15s %016llx %-13s %016llx\n", 3144 "rsp:", save->rsp, "rax:", save->rax); 3145 pr_err("%-15s %016llx %-13s %016llx\n", 3146 "star:", save01->star, "lstar:", save01->lstar); 3147 pr_err("%-15s %016llx %-13s %016llx\n", 3148 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3149 pr_err("%-15s %016llx %-13s %016llx\n", 3150 "kernel_gs_base:", save01->kernel_gs_base, 3151 "sysenter_cs:", save01->sysenter_cs); 3152 pr_err("%-15s %016llx %-13s %016llx\n", 3153 "sysenter_esp:", save01->sysenter_esp, 3154 "sysenter_eip:", save01->sysenter_eip); 3155 pr_err("%-15s %016llx %-13s %016llx\n", 3156 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3157 pr_err("%-15s %016llx %-13s %016llx\n", 3158 "br_from:", save->br_from, "br_to:", save->br_to); 3159 pr_err("%-15s %016llx %-13s %016llx\n", 3160 "excp_from:", save->last_excp_from, 3161 "excp_to:", save->last_excp_to); 3162 } 3163 3164 static bool svm_check_exit_valid(u64 exit_code) 3165 { 3166 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3167 svm_exit_handlers[exit_code]); 3168 } 3169 3170 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3171 { 3172 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3173 dump_vmcb(vcpu); 3174 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3175 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3176 vcpu->run->internal.ndata = 2; 3177 vcpu->run->internal.data[0] = exit_code; 3178 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3179 return 0; 3180 } 3181 3182 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3183 { 3184 if (!svm_check_exit_valid(exit_code)) 3185 return svm_handle_invalid_exit(vcpu, exit_code); 3186 3187 #ifdef CONFIG_RETPOLINE 3188 if (exit_code == SVM_EXIT_MSR) 3189 return msr_interception(vcpu); 3190 else if (exit_code == SVM_EXIT_VINTR) 3191 return interrupt_window_interception(vcpu); 3192 else if (exit_code == SVM_EXIT_INTR) 3193 return intr_interception(vcpu); 3194 else if (exit_code == SVM_EXIT_HLT) 3195 return kvm_emulate_halt(vcpu); 3196 else if (exit_code == SVM_EXIT_NPF) 3197 return npf_interception(vcpu); 3198 #endif 3199 return svm_exit_handlers[exit_code](vcpu); 3200 } 3201 3202 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3203 u64 *info1, u64 *info2, 3204 u32 *intr_info, u32 *error_code) 3205 { 3206 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3207 3208 *reason = control->exit_code; 3209 *info1 = control->exit_info_1; 3210 *info2 = control->exit_info_2; 3211 *intr_info = control->exit_int_info; 3212 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3213 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3214 *error_code = control->exit_int_info_err; 3215 else 3216 *error_code = 0; 3217 } 3218 3219 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3220 { 3221 struct vcpu_svm *svm = to_svm(vcpu); 3222 struct kvm_run *kvm_run = vcpu->run; 3223 u32 exit_code = svm->vmcb->control.exit_code; 3224 3225 trace_kvm_exit(vcpu, KVM_ISA_SVM); 3226 3227 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3228 if (!sev_es_guest(vcpu->kvm)) { 3229 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3230 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3231 if (npt_enabled) 3232 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3233 } 3234 3235 if (is_guest_mode(vcpu)) { 3236 int vmexit; 3237 3238 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3239 3240 vmexit = nested_svm_exit_special(svm); 3241 3242 if (vmexit == NESTED_EXIT_CONTINUE) 3243 vmexit = nested_svm_exit_handled(svm); 3244 3245 if (vmexit == NESTED_EXIT_DONE) 3246 return 1; 3247 } 3248 3249 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3250 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3251 kvm_run->fail_entry.hardware_entry_failure_reason 3252 = svm->vmcb->control.exit_code; 3253 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3254 dump_vmcb(vcpu); 3255 return 0; 3256 } 3257 3258 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3259 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3260 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3261 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3262 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3263 "exit_code 0x%x\n", 3264 __func__, svm->vmcb->control.exit_int_info, 3265 exit_code); 3266 3267 if (exit_fastpath != EXIT_FASTPATH_NONE) 3268 return 1; 3269 3270 return svm_invoke_exit_handler(vcpu, exit_code); 3271 } 3272 3273 static void reload_tss(struct kvm_vcpu *vcpu) 3274 { 3275 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3276 3277 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3278 load_TR_desc(); 3279 } 3280 3281 static void pre_svm_run(struct kvm_vcpu *vcpu) 3282 { 3283 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3284 struct vcpu_svm *svm = to_svm(vcpu); 3285 3286 /* 3287 * If the previous vmrun of the vmcb occurred on a different physical 3288 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3289 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3290 */ 3291 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3292 svm->current_vmcb->asid_generation = 0; 3293 vmcb_mark_all_dirty(svm->vmcb); 3294 svm->current_vmcb->cpu = vcpu->cpu; 3295 } 3296 3297 if (sev_guest(vcpu->kvm)) 3298 return pre_sev_run(svm, vcpu->cpu); 3299 3300 /* FIXME: handle wraparound of asid_generation */ 3301 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3302 new_asid(svm, sd); 3303 } 3304 3305 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3306 { 3307 struct vcpu_svm *svm = to_svm(vcpu); 3308 3309 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3310 vcpu->arch.hflags |= HF_NMI_MASK; 3311 if (!sev_es_guest(vcpu->kvm)) 3312 svm_set_intercept(svm, INTERCEPT_IRET); 3313 ++vcpu->stat.nmi_injections; 3314 } 3315 3316 static void svm_inject_irq(struct kvm_vcpu *vcpu) 3317 { 3318 struct vcpu_svm *svm = to_svm(vcpu); 3319 3320 BUG_ON(!(gif_set(svm))); 3321 3322 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3323 ++vcpu->stat.irq_injections; 3324 3325 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3326 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3327 } 3328 3329 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3330 int trig_mode, int vector) 3331 { 3332 /* 3333 * vcpu->arch.apicv_active must be read after vcpu->mode. 3334 * Pairs with smp_store_release in vcpu_enter_guest. 3335 */ 3336 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3337 3338 if (!READ_ONCE(vcpu->arch.apicv_active)) { 3339 /* Process the interrupt via inject_pending_event */ 3340 kvm_make_request(KVM_REQ_EVENT, vcpu); 3341 kvm_vcpu_kick(vcpu); 3342 return; 3343 } 3344 3345 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3346 if (in_guest_mode) { 3347 /* 3348 * Signal the doorbell to tell hardware to inject the IRQ. If 3349 * the vCPU exits the guest before the doorbell chimes, hardware 3350 * will automatically process AVIC interrupts at the next VMRUN. 3351 */ 3352 avic_ring_doorbell(vcpu); 3353 } else { 3354 /* 3355 * Wake the vCPU if it was blocking. KVM will then detect the 3356 * pending IRQ when checking if the vCPU has a wake event. 3357 */ 3358 kvm_vcpu_wake_up(vcpu); 3359 } 3360 } 3361 3362 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3363 int trig_mode, int vector) 3364 { 3365 kvm_lapic_set_irr(vector, apic); 3366 3367 /* 3368 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3369 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3370 * the read of guest_mode. This guarantees that either VMRUN will see 3371 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3372 * will signal the doorbell if the CPU has already entered the guest. 3373 */ 3374 smp_mb__after_atomic(); 3375 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3376 } 3377 3378 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3379 { 3380 struct vcpu_svm *svm = to_svm(vcpu); 3381 3382 /* 3383 * SEV-ES guests must always keep the CR intercepts cleared. CR 3384 * tracking is done using the CR write traps. 3385 */ 3386 if (sev_es_guest(vcpu->kvm)) 3387 return; 3388 3389 if (nested_svm_virtualize_tpr(vcpu)) 3390 return; 3391 3392 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3393 3394 if (irr == -1) 3395 return; 3396 3397 if (tpr >= irr) 3398 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3399 } 3400 3401 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3402 { 3403 struct vcpu_svm *svm = to_svm(vcpu); 3404 struct vmcb *vmcb = svm->vmcb; 3405 bool ret; 3406 3407 if (!gif_set(svm)) 3408 return true; 3409 3410 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3411 return false; 3412 3413 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3414 (vcpu->arch.hflags & HF_NMI_MASK); 3415 3416 return ret; 3417 } 3418 3419 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3420 { 3421 struct vcpu_svm *svm = to_svm(vcpu); 3422 if (svm->nested.nested_run_pending) 3423 return -EBUSY; 3424 3425 if (svm_nmi_blocked(vcpu)) 3426 return 0; 3427 3428 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3429 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3430 return -EBUSY; 3431 return 1; 3432 } 3433 3434 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3435 { 3436 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3437 } 3438 3439 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3440 { 3441 struct vcpu_svm *svm = to_svm(vcpu); 3442 3443 if (masked) { 3444 vcpu->arch.hflags |= HF_NMI_MASK; 3445 if (!sev_es_guest(vcpu->kvm)) 3446 svm_set_intercept(svm, INTERCEPT_IRET); 3447 } else { 3448 vcpu->arch.hflags &= ~HF_NMI_MASK; 3449 if (!sev_es_guest(vcpu->kvm)) 3450 svm_clr_intercept(svm, INTERCEPT_IRET); 3451 } 3452 } 3453 3454 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3455 { 3456 struct vcpu_svm *svm = to_svm(vcpu); 3457 struct vmcb *vmcb = svm->vmcb; 3458 3459 if (!gif_set(svm)) 3460 return true; 3461 3462 if (is_guest_mode(vcpu)) { 3463 /* As long as interrupts are being delivered... */ 3464 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3465 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3466 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3467 return true; 3468 3469 /* ... vmexits aren't blocked by the interrupt shadow */ 3470 if (nested_exit_on_intr(svm)) 3471 return false; 3472 } else { 3473 if (!svm_get_if_flag(vcpu)) 3474 return true; 3475 } 3476 3477 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3478 } 3479 3480 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3481 { 3482 struct vcpu_svm *svm = to_svm(vcpu); 3483 3484 if (svm->nested.nested_run_pending) 3485 return -EBUSY; 3486 3487 if (svm_interrupt_blocked(vcpu)) 3488 return 0; 3489 3490 /* 3491 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3492 * e.g. if the IRQ arrived asynchronously after checking nested events. 3493 */ 3494 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3495 return -EBUSY; 3496 3497 return 1; 3498 } 3499 3500 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3501 { 3502 struct vcpu_svm *svm = to_svm(vcpu); 3503 3504 /* 3505 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3506 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3507 * get that intercept, this function will be called again though and 3508 * we'll get the vintr intercept. However, if the vGIF feature is 3509 * enabled, the STGI interception will not occur. Enable the irq 3510 * window under the assumption that the hardware will set the GIF. 3511 */ 3512 if (vgif_enabled(svm) || gif_set(svm)) { 3513 /* 3514 * IRQ window is not needed when AVIC is enabled, 3515 * unless we have pending ExtINT since it cannot be injected 3516 * via AVIC. In such case, we need to temporarily disable AVIC, 3517 * and fallback to injecting IRQ via V_IRQ. 3518 */ 3519 kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN); 3520 svm_set_vintr(svm); 3521 } 3522 } 3523 3524 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3525 { 3526 struct vcpu_svm *svm = to_svm(vcpu); 3527 3528 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3529 return; /* IRET will cause a vm exit */ 3530 3531 if (!gif_set(svm)) { 3532 if (vgif_enabled(svm)) 3533 svm_set_intercept(svm, INTERCEPT_STGI); 3534 return; /* STGI will cause a vm exit */ 3535 } 3536 3537 /* 3538 * Something prevents NMI from been injected. Single step over possible 3539 * problem (IRET or exception injection or interrupt shadow) 3540 */ 3541 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3542 svm->nmi_singlestep = true; 3543 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3544 } 3545 3546 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3547 { 3548 struct vcpu_svm *svm = to_svm(vcpu); 3549 3550 /* 3551 * Flush only the current ASID even if the TLB flush was invoked via 3552 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3553 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3554 * unconditionally does a TLB flush on both nested VM-Enter and nested 3555 * VM-Exit (via kvm_mmu_reset_context()). 3556 */ 3557 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3558 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3559 else 3560 svm->current_vmcb->asid_generation--; 3561 } 3562 3563 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3564 { 3565 struct vcpu_svm *svm = to_svm(vcpu); 3566 3567 invlpga(gva, svm->vmcb->control.asid); 3568 } 3569 3570 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3571 { 3572 struct vcpu_svm *svm = to_svm(vcpu); 3573 3574 if (nested_svm_virtualize_tpr(vcpu)) 3575 return; 3576 3577 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3578 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3579 kvm_set_cr8(vcpu, cr8); 3580 } 3581 } 3582 3583 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3584 { 3585 struct vcpu_svm *svm = to_svm(vcpu); 3586 u64 cr8; 3587 3588 if (nested_svm_virtualize_tpr(vcpu) || 3589 kvm_vcpu_apicv_active(vcpu)) 3590 return; 3591 3592 cr8 = kvm_get_cr8(vcpu); 3593 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3594 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3595 } 3596 3597 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3598 { 3599 struct vcpu_svm *svm = to_svm(vcpu); 3600 u8 vector; 3601 int type; 3602 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3603 unsigned int3_injected = svm->int3_injected; 3604 3605 svm->int3_injected = 0; 3606 3607 /* 3608 * If we've made progress since setting HF_IRET_MASK, we've 3609 * executed an IRET and can allow NMI injection. 3610 */ 3611 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3612 (sev_es_guest(vcpu->kvm) || 3613 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3614 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3615 kvm_make_request(KVM_REQ_EVENT, vcpu); 3616 } 3617 3618 vcpu->arch.nmi_injected = false; 3619 kvm_clear_exception_queue(vcpu); 3620 kvm_clear_interrupt_queue(vcpu); 3621 3622 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3623 return; 3624 3625 kvm_make_request(KVM_REQ_EVENT, vcpu); 3626 3627 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3628 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3629 3630 switch (type) { 3631 case SVM_EXITINTINFO_TYPE_NMI: 3632 vcpu->arch.nmi_injected = true; 3633 break; 3634 case SVM_EXITINTINFO_TYPE_EXEPT: 3635 /* 3636 * Never re-inject a #VC exception. 3637 */ 3638 if (vector == X86_TRAP_VC) 3639 break; 3640 3641 /* 3642 * In case of software exceptions, do not reinject the vector, 3643 * but re-execute the instruction instead. Rewind RIP first 3644 * if we emulated INT3 before. 3645 */ 3646 if (kvm_exception_is_soft(vector)) { 3647 if (vector == BP_VECTOR && int3_injected && 3648 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3649 kvm_rip_write(vcpu, 3650 kvm_rip_read(vcpu) - int3_injected); 3651 break; 3652 } 3653 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3654 u32 err = svm->vmcb->control.exit_int_info_err; 3655 kvm_requeue_exception_e(vcpu, vector, err); 3656 3657 } else 3658 kvm_requeue_exception(vcpu, vector); 3659 break; 3660 case SVM_EXITINTINFO_TYPE_INTR: 3661 kvm_queue_interrupt(vcpu, vector, false); 3662 break; 3663 default: 3664 break; 3665 } 3666 } 3667 3668 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3669 { 3670 struct vcpu_svm *svm = to_svm(vcpu); 3671 struct vmcb_control_area *control = &svm->vmcb->control; 3672 3673 control->exit_int_info = control->event_inj; 3674 control->exit_int_info_err = control->event_inj_err; 3675 control->event_inj = 0; 3676 svm_complete_interrupts(vcpu); 3677 } 3678 3679 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 3680 { 3681 return 1; 3682 } 3683 3684 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3685 { 3686 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3687 to_svm(vcpu)->vmcb->control.exit_info_1) 3688 return handle_fastpath_set_msr_irqoff(vcpu); 3689 3690 return EXIT_FASTPATH_NONE; 3691 } 3692 3693 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3694 { 3695 struct vcpu_svm *svm = to_svm(vcpu); 3696 unsigned long vmcb_pa = svm->current_vmcb->pa; 3697 3698 guest_state_enter_irqoff(); 3699 3700 if (sev_es_guest(vcpu->kvm)) { 3701 __svm_sev_es_vcpu_run(vmcb_pa); 3702 } else { 3703 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3704 3705 /* 3706 * Use a single vmcb (vmcb01 because it's always valid) for 3707 * context switching guest state via VMLOAD/VMSAVE, that way 3708 * the state doesn't need to be copied between vmcb01 and 3709 * vmcb02 when switching vmcbs for nested virtualization. 3710 */ 3711 vmload(svm->vmcb01.pa); 3712 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3713 vmsave(svm->vmcb01.pa); 3714 3715 vmload(__sme_page_pa(sd->save_area)); 3716 } 3717 3718 guest_state_exit_irqoff(); 3719 } 3720 3721 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3722 { 3723 struct vcpu_svm *svm = to_svm(vcpu); 3724 3725 trace_kvm_entry(vcpu); 3726 3727 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3728 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3729 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3730 3731 /* 3732 * Disable singlestep if we're injecting an interrupt/exception. 3733 * We don't want our modified rflags to be pushed on the stack where 3734 * we might not be able to easily reset them if we disabled NMI 3735 * singlestep later. 3736 */ 3737 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3738 /* 3739 * Event injection happens before external interrupts cause a 3740 * vmexit and interrupts are disabled here, so smp_send_reschedule 3741 * is enough to force an immediate vmexit. 3742 */ 3743 disable_nmi_singlestep(svm); 3744 smp_send_reschedule(vcpu->cpu); 3745 } 3746 3747 pre_svm_run(vcpu); 3748 3749 sync_lapic_to_cr8(vcpu); 3750 3751 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3752 svm->vmcb->control.asid = svm->asid; 3753 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3754 } 3755 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3756 3757 svm_hv_update_vp_id(svm->vmcb, vcpu); 3758 3759 /* 3760 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3761 * of a #DB. 3762 */ 3763 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3764 svm_set_dr6(svm, vcpu->arch.dr6); 3765 else 3766 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3767 3768 clgi(); 3769 kvm_load_guest_xsave_state(vcpu); 3770 3771 kvm_wait_lapic_expire(vcpu); 3772 3773 /* 3774 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3775 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3776 * is no need to worry about the conditional branch over the wrmsr 3777 * being speculatively taken. 3778 */ 3779 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3780 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3781 3782 svm_vcpu_enter_exit(vcpu); 3783 3784 /* 3785 * We do not use IBRS in the kernel. If this vCPU has used the 3786 * SPEC_CTRL MSR it may have left it on; save the value and 3787 * turn it off. This is much more efficient than blindly adding 3788 * it to the atomic save/restore list. Especially as the former 3789 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3790 * 3791 * For non-nested case: 3792 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3793 * save it. 3794 * 3795 * For nested case: 3796 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3797 * save it. 3798 */ 3799 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3800 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3801 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3802 3803 if (!sev_es_guest(vcpu->kvm)) 3804 reload_tss(vcpu); 3805 3806 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3807 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3808 3809 if (!sev_es_guest(vcpu->kvm)) { 3810 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3811 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3812 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3813 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3814 } 3815 vcpu->arch.regs_dirty = 0; 3816 3817 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3818 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 3819 3820 kvm_load_host_xsave_state(vcpu); 3821 stgi(); 3822 3823 /* Any pending NMI will happen here */ 3824 3825 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3826 kvm_after_interrupt(vcpu); 3827 3828 sync_cr8_to_lapic(vcpu); 3829 3830 svm->next_rip = 0; 3831 if (is_guest_mode(vcpu)) { 3832 nested_sync_control_from_vmcb02(svm); 3833 3834 /* Track VMRUNs that have made past consistency checking */ 3835 if (svm->nested.nested_run_pending && 3836 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 3837 ++vcpu->stat.nested_run; 3838 3839 svm->nested.nested_run_pending = 0; 3840 } 3841 3842 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3843 vmcb_mark_all_clean(svm->vmcb); 3844 3845 /* if exit due to PF check for async PF */ 3846 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3847 vcpu->arch.apf.host_apf_flags = 3848 kvm_read_and_reset_apf_flags(); 3849 3850 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 3851 3852 /* 3853 * We need to handle MC intercepts here before the vcpu has a chance to 3854 * change the physical cpu 3855 */ 3856 if (unlikely(svm->vmcb->control.exit_code == 3857 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3858 svm_handle_mce(vcpu); 3859 3860 svm_complete_interrupts(vcpu); 3861 3862 if (is_guest_mode(vcpu)) 3863 return EXIT_FASTPATH_NONE; 3864 3865 return svm_exit_handlers_fastpath(vcpu); 3866 } 3867 3868 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3869 int root_level) 3870 { 3871 struct vcpu_svm *svm = to_svm(vcpu); 3872 unsigned long cr3; 3873 3874 if (npt_enabled) { 3875 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3876 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3877 3878 hv_track_root_tdp(vcpu, root_hpa); 3879 3880 cr3 = vcpu->arch.cr3; 3881 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3882 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 3883 } else { 3884 /* PCID in the guest should be impossible with a 32-bit MMU. */ 3885 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 3886 cr3 = root_hpa; 3887 } 3888 3889 svm->vmcb->save.cr3 = cr3; 3890 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3891 } 3892 3893 static int is_disabled(void) 3894 { 3895 u64 vm_cr; 3896 3897 rdmsrl(MSR_VM_CR, vm_cr); 3898 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3899 return 1; 3900 3901 return 0; 3902 } 3903 3904 static void 3905 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3906 { 3907 /* 3908 * Patch in the VMMCALL instruction: 3909 */ 3910 hypercall[0] = 0x0f; 3911 hypercall[1] = 0x01; 3912 hypercall[2] = 0xd9; 3913 } 3914 3915 static int __init svm_check_processor_compat(void) 3916 { 3917 return 0; 3918 } 3919 3920 /* 3921 * The kvm parameter can be NULL (module initialization, or invocation before 3922 * VM creation). Be sure to check the kvm parameter before using it. 3923 */ 3924 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3925 { 3926 switch (index) { 3927 case MSR_IA32_MCG_EXT_CTL: 3928 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3929 return false; 3930 case MSR_IA32_SMBASE: 3931 /* SEV-ES guests do not support SMM, so report false */ 3932 if (kvm && sev_es_guest(kvm)) 3933 return false; 3934 break; 3935 default: 3936 break; 3937 } 3938 3939 return true; 3940 } 3941 3942 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3943 { 3944 return 0; 3945 } 3946 3947 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3948 { 3949 struct vcpu_svm *svm = to_svm(vcpu); 3950 struct kvm_cpuid_entry2 *best; 3951 3952 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3953 boot_cpu_has(X86_FEATURE_XSAVE) && 3954 boot_cpu_has(X86_FEATURE_XSAVES); 3955 3956 /* Update nrips enabled cache */ 3957 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 3958 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 3959 3960 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR); 3961 3962 svm_recalc_instruction_intercepts(vcpu, svm); 3963 3964 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 3965 if (sev_guest(vcpu->kvm)) { 3966 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 3967 if (best) 3968 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 3969 } 3970 3971 if (kvm_vcpu_apicv_active(vcpu)) { 3972 /* 3973 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 3974 * is exposed to the guest, disable AVIC. 3975 */ 3976 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 3977 kvm_request_apicv_update(vcpu->kvm, false, 3978 APICV_INHIBIT_REASON_X2APIC); 3979 3980 /* 3981 * Currently, AVIC does not work with nested virtualization. 3982 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 3983 */ 3984 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 3985 kvm_request_apicv_update(vcpu->kvm, false, 3986 APICV_INHIBIT_REASON_NESTED); 3987 } 3988 init_vmcb_after_set_cpuid(vcpu); 3989 } 3990 3991 static bool svm_has_wbinvd_exit(void) 3992 { 3993 return true; 3994 } 3995 3996 #define PRE_EX(exit) { .exit_code = (exit), \ 3997 .stage = X86_ICPT_PRE_EXCEPT, } 3998 #define POST_EX(exit) { .exit_code = (exit), \ 3999 .stage = X86_ICPT_POST_EXCEPT, } 4000 #define POST_MEM(exit) { .exit_code = (exit), \ 4001 .stage = X86_ICPT_POST_MEMACCESS, } 4002 4003 static const struct __x86_intercept { 4004 u32 exit_code; 4005 enum x86_intercept_stage stage; 4006 } x86_intercept_map[] = { 4007 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4008 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4009 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4010 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4011 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4012 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4013 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4014 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4015 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4016 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4017 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4018 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4019 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4020 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4021 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4022 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4023 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4024 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4025 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4026 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4027 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4028 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4029 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4030 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4031 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4032 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4033 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4034 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4035 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4036 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4037 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4038 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4039 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4040 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4041 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4042 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4043 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4044 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4045 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4046 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4047 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4048 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4049 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4050 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4051 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4052 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4053 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4054 }; 4055 4056 #undef PRE_EX 4057 #undef POST_EX 4058 #undef POST_MEM 4059 4060 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4061 struct x86_instruction_info *info, 4062 enum x86_intercept_stage stage, 4063 struct x86_exception *exception) 4064 { 4065 struct vcpu_svm *svm = to_svm(vcpu); 4066 int vmexit, ret = X86EMUL_CONTINUE; 4067 struct __x86_intercept icpt_info; 4068 struct vmcb *vmcb = svm->vmcb; 4069 4070 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4071 goto out; 4072 4073 icpt_info = x86_intercept_map[info->intercept]; 4074 4075 if (stage != icpt_info.stage) 4076 goto out; 4077 4078 switch (icpt_info.exit_code) { 4079 case SVM_EXIT_READ_CR0: 4080 if (info->intercept == x86_intercept_cr_read) 4081 icpt_info.exit_code += info->modrm_reg; 4082 break; 4083 case SVM_EXIT_WRITE_CR0: { 4084 unsigned long cr0, val; 4085 4086 if (info->intercept == x86_intercept_cr_write) 4087 icpt_info.exit_code += info->modrm_reg; 4088 4089 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4090 info->intercept == x86_intercept_clts) 4091 break; 4092 4093 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4094 INTERCEPT_SELECTIVE_CR0))) 4095 break; 4096 4097 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4098 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4099 4100 if (info->intercept == x86_intercept_lmsw) { 4101 cr0 &= 0xfUL; 4102 val &= 0xfUL; 4103 /* lmsw can't clear PE - catch this here */ 4104 if (cr0 & X86_CR0_PE) 4105 val |= X86_CR0_PE; 4106 } 4107 4108 if (cr0 ^ val) 4109 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4110 4111 break; 4112 } 4113 case SVM_EXIT_READ_DR0: 4114 case SVM_EXIT_WRITE_DR0: 4115 icpt_info.exit_code += info->modrm_reg; 4116 break; 4117 case SVM_EXIT_MSR: 4118 if (info->intercept == x86_intercept_wrmsr) 4119 vmcb->control.exit_info_1 = 1; 4120 else 4121 vmcb->control.exit_info_1 = 0; 4122 break; 4123 case SVM_EXIT_PAUSE: 4124 /* 4125 * We get this for NOP only, but pause 4126 * is rep not, check this here 4127 */ 4128 if (info->rep_prefix != REPE_PREFIX) 4129 goto out; 4130 break; 4131 case SVM_EXIT_IOIO: { 4132 u64 exit_info; 4133 u32 bytes; 4134 4135 if (info->intercept == x86_intercept_in || 4136 info->intercept == x86_intercept_ins) { 4137 exit_info = ((info->src_val & 0xffff) << 16) | 4138 SVM_IOIO_TYPE_MASK; 4139 bytes = info->dst_bytes; 4140 } else { 4141 exit_info = (info->dst_val & 0xffff) << 16; 4142 bytes = info->src_bytes; 4143 } 4144 4145 if (info->intercept == x86_intercept_outs || 4146 info->intercept == x86_intercept_ins) 4147 exit_info |= SVM_IOIO_STR_MASK; 4148 4149 if (info->rep_prefix) 4150 exit_info |= SVM_IOIO_REP_MASK; 4151 4152 bytes = min(bytes, 4u); 4153 4154 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4155 4156 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4157 4158 vmcb->control.exit_info_1 = exit_info; 4159 vmcb->control.exit_info_2 = info->next_rip; 4160 4161 break; 4162 } 4163 default: 4164 break; 4165 } 4166 4167 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4168 if (static_cpu_has(X86_FEATURE_NRIPS)) 4169 vmcb->control.next_rip = info->next_rip; 4170 vmcb->control.exit_code = icpt_info.exit_code; 4171 vmexit = nested_svm_exit_handled(svm); 4172 4173 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4174 : X86EMUL_CONTINUE; 4175 4176 out: 4177 return ret; 4178 } 4179 4180 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4181 { 4182 } 4183 4184 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4185 { 4186 if (!kvm_pause_in_guest(vcpu->kvm)) 4187 shrink_ple_window(vcpu); 4188 } 4189 4190 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4191 { 4192 /* [63:9] are reserved. */ 4193 vcpu->arch.mcg_cap &= 0x1ff; 4194 } 4195 4196 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4197 { 4198 struct vcpu_svm *svm = to_svm(vcpu); 4199 4200 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4201 if (!gif_set(svm)) 4202 return true; 4203 4204 return is_smm(vcpu); 4205 } 4206 4207 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4208 { 4209 struct vcpu_svm *svm = to_svm(vcpu); 4210 if (svm->nested.nested_run_pending) 4211 return -EBUSY; 4212 4213 if (svm_smi_blocked(vcpu)) 4214 return 0; 4215 4216 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4217 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4218 return -EBUSY; 4219 4220 return 1; 4221 } 4222 4223 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4224 { 4225 struct vcpu_svm *svm = to_svm(vcpu); 4226 struct kvm_host_map map_save; 4227 int ret; 4228 4229 if (!is_guest_mode(vcpu)) 4230 return 0; 4231 4232 /* FED8h - SVM Guest */ 4233 put_smstate(u64, smstate, 0x7ed8, 1); 4234 /* FEE0h - SVM Guest VMCB Physical Address */ 4235 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4236 4237 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4238 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4239 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4240 4241 ret = nested_svm_vmexit(svm); 4242 if (ret) 4243 return ret; 4244 4245 /* 4246 * KVM uses VMCB01 to store L1 host state while L2 runs but 4247 * VMCB01 is going to be used during SMM and thus the state will 4248 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4249 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4250 * format of the area is identical to guest save area offsetted 4251 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4252 * within 'struct vmcb'). Note: HSAVE area may also be used by 4253 * L1 hypervisor to save additional host context (e.g. KVM does 4254 * that, see svm_prepare_switch_to_guest()) which must be 4255 * preserved. 4256 */ 4257 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), 4258 &map_save) == -EINVAL) 4259 return 1; 4260 4261 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4262 4263 svm_copy_vmrun_state(map_save.hva + 0x400, 4264 &svm->vmcb01.ptr->save); 4265 4266 kvm_vcpu_unmap(vcpu, &map_save, true); 4267 return 0; 4268 } 4269 4270 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4271 { 4272 struct vcpu_svm *svm = to_svm(vcpu); 4273 struct kvm_host_map map, map_save; 4274 u64 saved_efer, vmcb12_gpa; 4275 struct vmcb *vmcb12; 4276 int ret; 4277 4278 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4279 return 0; 4280 4281 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4282 if (!GET_SMSTATE(u64, smstate, 0x7ed8)) 4283 return 0; 4284 4285 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4286 return 1; 4287 4288 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4289 if (!(saved_efer & EFER_SVME)) 4290 return 1; 4291 4292 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4293 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4294 return 1; 4295 4296 ret = 1; 4297 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL) 4298 goto unmap_map; 4299 4300 if (svm_allocate_nested(svm)) 4301 goto unmap_save; 4302 4303 /* 4304 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4305 * used during SMM (see svm_enter_smm()) 4306 */ 4307 4308 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4309 4310 /* 4311 * Enter the nested guest now 4312 */ 4313 4314 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4315 4316 vmcb12 = map.hva; 4317 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4318 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4319 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false); 4320 4321 if (ret) 4322 goto unmap_save; 4323 4324 svm->nested.nested_run_pending = 1; 4325 4326 unmap_save: 4327 kvm_vcpu_unmap(vcpu, &map_save, true); 4328 unmap_map: 4329 kvm_vcpu_unmap(vcpu, &map, true); 4330 return ret; 4331 } 4332 4333 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4334 { 4335 struct vcpu_svm *svm = to_svm(vcpu); 4336 4337 if (!gif_set(svm)) { 4338 if (vgif_enabled(svm)) 4339 svm_set_intercept(svm, INTERCEPT_STGI); 4340 /* STGI will cause a vm exit */ 4341 } else { 4342 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4343 } 4344 } 4345 4346 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4347 void *insn, int insn_len) 4348 { 4349 bool smep, smap, is_user; 4350 unsigned long cr4; 4351 u64 error_code; 4352 4353 /* Emulation is always possible when KVM has access to all guest state. */ 4354 if (!sev_guest(vcpu->kvm)) 4355 return true; 4356 4357 /* #UD and #GP should never be intercepted for SEV guests. */ 4358 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4359 EMULTYPE_TRAP_UD_FORCED | 4360 EMULTYPE_VMWARE_GP)); 4361 4362 /* 4363 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4364 * to guest register state. 4365 */ 4366 if (sev_es_guest(vcpu->kvm)) 4367 return false; 4368 4369 /* 4370 * Emulation is possible if the instruction is already decoded, e.g. 4371 * when completing I/O after returning from userspace. 4372 */ 4373 if (emul_type & EMULTYPE_NO_DECODE) 4374 return true; 4375 4376 /* 4377 * Emulation is possible for SEV guests if and only if a prefilled 4378 * buffer containing the bytes of the intercepted instruction is 4379 * available. SEV guest memory is encrypted with a guest specific key 4380 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4381 * decode garbage. 4382 * 4383 * Inject #UD if KVM reached this point without an instruction buffer. 4384 * In practice, this path should never be hit by a well-behaved guest, 4385 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path 4386 * is still theoretically reachable, e.g. via unaccelerated fault-like 4387 * AVIC access, and needs to be handled by KVM to avoid putting the 4388 * guest into an infinite loop. Injecting #UD is somewhat arbitrary, 4389 * but its the least awful option given lack of insight into the guest. 4390 */ 4391 if (unlikely(!insn)) { 4392 kvm_queue_exception(vcpu, UD_VECTOR); 4393 return false; 4394 } 4395 4396 /* 4397 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4398 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4399 * the faulting instruction because the code fetch itself faulted, e.g. 4400 * the guest attempted to fetch from emulated MMIO or a guest page 4401 * table used to translate CS:RIP resides in emulated MMIO. 4402 */ 4403 if (likely(insn_len)) 4404 return true; 4405 4406 /* 4407 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4408 * 4409 * Errata: 4410 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4411 * possible that CPU microcode implementing DecodeAssist will fail to 4412 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4413 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4414 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4415 * gives up and does not fill the instruction bytes buffer. 4416 * 4417 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4418 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4419 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4420 * GuestIntrBytes field of the VMCB. 4421 * 4422 * This does _not_ mean that the erratum has been encountered, as the 4423 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4424 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4425 * encountered a reserved/not-present #PF. 4426 * 4427 * To hit the erratum, the following conditions must be true: 4428 * 1. CR4.SMAP=1 (obviously). 4429 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4430 * have been hit as the guest would have encountered a SMEP 4431 * violation #PF, not a #NPF. 4432 * 3. The #NPF is not due to a code fetch, in which case failure to 4433 * retrieve the instruction bytes is legitimate (see abvoe). 4434 * 4435 * In addition, don't apply the erratum workaround if the #NPF occurred 4436 * while translating guest page tables (see below). 4437 */ 4438 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4439 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4440 goto resume_guest; 4441 4442 cr4 = kvm_read_cr4(vcpu); 4443 smep = cr4 & X86_CR4_SMEP; 4444 smap = cr4 & X86_CR4_SMAP; 4445 is_user = svm_get_cpl(vcpu) == 3; 4446 if (smap && (!smep || is_user)) { 4447 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4448 4449 /* 4450 * If the fault occurred in userspace, arbitrarily inject #GP 4451 * to avoid killing the guest and to hopefully avoid confusing 4452 * the guest kernel too much, e.g. injecting #PF would not be 4453 * coherent with respect to the guest's page tables. Request 4454 * triple fault if the fault occurred in the kernel as there's 4455 * no fault that KVM can inject without confusing the guest. 4456 * In practice, the triple fault is moot as no sane SEV kernel 4457 * will execute from user memory while also running with SMAP=1. 4458 */ 4459 if (is_user) 4460 kvm_inject_gp(vcpu, 0); 4461 else 4462 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4463 } 4464 4465 resume_guest: 4466 /* 4467 * If the erratum was not hit, simply resume the guest and let it fault 4468 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4469 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4470 * userspace will kill the guest, and letting the emulator read garbage 4471 * will yield random behavior and potentially corrupt the guest. 4472 * 4473 * Simply resuming the guest is technically not a violation of the SEV 4474 * architecture. AMD's APM states that all code fetches and page table 4475 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4476 * APM also states that encrypted accesses to MMIO are "ignored", but 4477 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4478 * the guest spin is technically "ignoring" the access. 4479 */ 4480 return false; 4481 } 4482 4483 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4484 { 4485 struct vcpu_svm *svm = to_svm(vcpu); 4486 4487 /* 4488 * TODO: Last condition latch INIT signals on vCPU when 4489 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4490 * To properly emulate the INIT intercept, 4491 * svm_check_nested_events() should call nested_svm_vmexit() 4492 * if an INIT signal is pending. 4493 */ 4494 return !gif_set(svm) || 4495 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4496 } 4497 4498 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4499 { 4500 if (!sev_es_guest(vcpu->kvm)) 4501 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4502 4503 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4504 } 4505 4506 static void svm_vm_destroy(struct kvm *kvm) 4507 { 4508 avic_vm_destroy(kvm); 4509 sev_vm_destroy(kvm); 4510 } 4511 4512 static int svm_vm_init(struct kvm *kvm) 4513 { 4514 if (!pause_filter_count || !pause_filter_thresh) 4515 kvm->arch.pause_in_guest = true; 4516 4517 if (enable_apicv) { 4518 int ret = avic_vm_init(kvm); 4519 if (ret) 4520 return ret; 4521 } 4522 4523 return 0; 4524 } 4525 4526 static struct kvm_x86_ops svm_x86_ops __initdata = { 4527 .name = "kvm_amd", 4528 4529 .hardware_unsetup = svm_hardware_unsetup, 4530 .hardware_enable = svm_hardware_enable, 4531 .hardware_disable = svm_hardware_disable, 4532 .has_emulated_msr = svm_has_emulated_msr, 4533 4534 .vcpu_create = svm_vcpu_create, 4535 .vcpu_free = svm_vcpu_free, 4536 .vcpu_reset = svm_vcpu_reset, 4537 4538 .vm_size = sizeof(struct kvm_svm), 4539 .vm_init = svm_vm_init, 4540 .vm_destroy = svm_vm_destroy, 4541 4542 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4543 .vcpu_load = svm_vcpu_load, 4544 .vcpu_put = svm_vcpu_put, 4545 .vcpu_blocking = avic_vcpu_blocking, 4546 .vcpu_unblocking = avic_vcpu_unblocking, 4547 4548 .update_exception_bitmap = svm_update_exception_bitmap, 4549 .get_msr_feature = svm_get_msr_feature, 4550 .get_msr = svm_get_msr, 4551 .set_msr = svm_set_msr, 4552 .get_segment_base = svm_get_segment_base, 4553 .get_segment = svm_get_segment, 4554 .set_segment = svm_set_segment, 4555 .get_cpl = svm_get_cpl, 4556 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4557 .set_cr0 = svm_set_cr0, 4558 .post_set_cr3 = sev_post_set_cr3, 4559 .is_valid_cr4 = svm_is_valid_cr4, 4560 .set_cr4 = svm_set_cr4, 4561 .set_efer = svm_set_efer, 4562 .get_idt = svm_get_idt, 4563 .set_idt = svm_set_idt, 4564 .get_gdt = svm_get_gdt, 4565 .set_gdt = svm_set_gdt, 4566 .set_dr7 = svm_set_dr7, 4567 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4568 .cache_reg = svm_cache_reg, 4569 .get_rflags = svm_get_rflags, 4570 .set_rflags = svm_set_rflags, 4571 .get_if_flag = svm_get_if_flag, 4572 4573 .flush_tlb_all = svm_flush_tlb_current, 4574 .flush_tlb_current = svm_flush_tlb_current, 4575 .flush_tlb_gva = svm_flush_tlb_gva, 4576 .flush_tlb_guest = svm_flush_tlb_current, 4577 4578 .vcpu_pre_run = svm_vcpu_pre_run, 4579 .vcpu_run = svm_vcpu_run, 4580 .handle_exit = svm_handle_exit, 4581 .skip_emulated_instruction = svm_skip_emulated_instruction, 4582 .update_emulated_instruction = NULL, 4583 .set_interrupt_shadow = svm_set_interrupt_shadow, 4584 .get_interrupt_shadow = svm_get_interrupt_shadow, 4585 .patch_hypercall = svm_patch_hypercall, 4586 .inject_irq = svm_inject_irq, 4587 .inject_nmi = svm_inject_nmi, 4588 .queue_exception = svm_queue_exception, 4589 .cancel_injection = svm_cancel_injection, 4590 .interrupt_allowed = svm_interrupt_allowed, 4591 .nmi_allowed = svm_nmi_allowed, 4592 .get_nmi_mask = svm_get_nmi_mask, 4593 .set_nmi_mask = svm_set_nmi_mask, 4594 .enable_nmi_window = svm_enable_nmi_window, 4595 .enable_irq_window = svm_enable_irq_window, 4596 .update_cr8_intercept = svm_update_cr8_intercept, 4597 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4598 .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons, 4599 .apicv_post_state_restore = avic_apicv_post_state_restore, 4600 4601 .get_mt_mask = svm_get_mt_mask, 4602 .get_exit_info = svm_get_exit_info, 4603 4604 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4605 4606 .has_wbinvd_exit = svm_has_wbinvd_exit, 4607 4608 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4609 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4610 .write_tsc_offset = svm_write_tsc_offset, 4611 .write_tsc_multiplier = svm_write_tsc_multiplier, 4612 4613 .load_mmu_pgd = svm_load_mmu_pgd, 4614 4615 .check_intercept = svm_check_intercept, 4616 .handle_exit_irqoff = svm_handle_exit_irqoff, 4617 4618 .request_immediate_exit = __kvm_request_immediate_exit, 4619 4620 .sched_in = svm_sched_in, 4621 4622 .pmu_ops = &amd_pmu_ops, 4623 .nested_ops = &svm_nested_ops, 4624 4625 .deliver_interrupt = svm_deliver_interrupt, 4626 .pi_update_irte = avic_pi_update_irte, 4627 .setup_mce = svm_setup_mce, 4628 4629 .smi_allowed = svm_smi_allowed, 4630 .enter_smm = svm_enter_smm, 4631 .leave_smm = svm_leave_smm, 4632 .enable_smi_window = svm_enable_smi_window, 4633 4634 .mem_enc_ioctl = sev_mem_enc_ioctl, 4635 .mem_enc_register_region = sev_mem_enc_register_region, 4636 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 4637 4638 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 4639 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 4640 4641 .can_emulate_instruction = svm_can_emulate_instruction, 4642 4643 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4644 4645 .msr_filter_changed = svm_msr_filter_changed, 4646 .complete_emulated_msr = svm_complete_emulated_msr, 4647 4648 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4649 }; 4650 4651 /* 4652 * The default MMIO mask is a single bit (excluding the present bit), 4653 * which could conflict with the memory encryption bit. Check for 4654 * memory encryption support and override the default MMIO mask if 4655 * memory encryption is enabled. 4656 */ 4657 static __init void svm_adjust_mmio_mask(void) 4658 { 4659 unsigned int enc_bit, mask_bit; 4660 u64 msr, mask; 4661 4662 /* If there is no memory encryption support, use existing mask */ 4663 if (cpuid_eax(0x80000000) < 0x8000001f) 4664 return; 4665 4666 /* If memory encryption is not enabled, use existing mask */ 4667 rdmsrl(MSR_AMD64_SYSCFG, msr); 4668 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 4669 return; 4670 4671 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 4672 mask_bit = boot_cpu_data.x86_phys_bits; 4673 4674 /* Increment the mask bit if it is the same as the encryption bit */ 4675 if (enc_bit == mask_bit) 4676 mask_bit++; 4677 4678 /* 4679 * If the mask bit location is below 52, then some bits above the 4680 * physical addressing limit will always be reserved, so use the 4681 * rsvd_bits() function to generate the mask. This mask, along with 4682 * the present bit, will be used to generate a page fault with 4683 * PFER.RSV = 1. 4684 * 4685 * If the mask bit location is 52 (or above), then clear the mask. 4686 */ 4687 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 4688 4689 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 4690 } 4691 4692 static __init void svm_set_cpu_caps(void) 4693 { 4694 kvm_set_cpu_caps(); 4695 4696 supported_xss = 0; 4697 4698 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 4699 if (nested) { 4700 kvm_cpu_cap_set(X86_FEATURE_SVM); 4701 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 4702 4703 if (nrips) 4704 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 4705 4706 if (npt_enabled) 4707 kvm_cpu_cap_set(X86_FEATURE_NPT); 4708 4709 if (tsc_scaling) 4710 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 4711 4712 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 4713 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 4714 } 4715 4716 /* CPUID 0x80000008 */ 4717 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 4718 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 4719 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 4720 4721 /* AMD PMU PERFCTR_CORE CPUID */ 4722 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 4723 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE); 4724 4725 /* CPUID 0x8000001F (SME/SEV features) */ 4726 sev_set_cpu_caps(); 4727 } 4728 4729 static __init int svm_hardware_setup(void) 4730 { 4731 int cpu; 4732 struct page *iopm_pages; 4733 void *iopm_va; 4734 int r; 4735 unsigned int order = get_order(IOPM_SIZE); 4736 4737 /* 4738 * NX is required for shadow paging and for NPT if the NX huge pages 4739 * mitigation is enabled. 4740 */ 4741 if (!boot_cpu_has(X86_FEATURE_NX)) { 4742 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 4743 return -EOPNOTSUPP; 4744 } 4745 kvm_enable_efer_bits(EFER_NX); 4746 4747 iopm_pages = alloc_pages(GFP_KERNEL, order); 4748 4749 if (!iopm_pages) 4750 return -ENOMEM; 4751 4752 iopm_va = page_address(iopm_pages); 4753 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 4754 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 4755 4756 init_msrpm_offsets(); 4757 4758 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 4759 4760 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 4761 kvm_enable_efer_bits(EFER_FFXSR); 4762 4763 if (tsc_scaling) { 4764 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 4765 tsc_scaling = false; 4766 } else { 4767 pr_info("TSC scaling supported\n"); 4768 kvm_has_tsc_control = true; 4769 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 4770 kvm_tsc_scaling_ratio_frac_bits = 32; 4771 } 4772 } 4773 4774 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 4775 4776 /* Check for pause filtering support */ 4777 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 4778 pause_filter_count = 0; 4779 pause_filter_thresh = 0; 4780 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 4781 pause_filter_thresh = 0; 4782 } 4783 4784 if (nested) { 4785 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 4786 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 4787 } 4788 4789 /* 4790 * KVM's MMU doesn't support using 2-level paging for itself, and thus 4791 * NPT isn't supported if the host is using 2-level paging since host 4792 * CR4 is unchanged on VMRUN. 4793 */ 4794 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 4795 npt_enabled = false; 4796 4797 if (!boot_cpu_has(X86_FEATURE_NPT)) 4798 npt_enabled = false; 4799 4800 /* Force VM NPT level equal to the host's paging level */ 4801 kvm_configure_mmu(npt_enabled, get_npt_level(), 4802 get_npt_level(), PG_LEVEL_1G); 4803 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 4804 4805 /* Note, SEV setup consumes npt_enabled. */ 4806 sev_hardware_setup(); 4807 4808 svm_hv_hardware_setup(); 4809 4810 svm_adjust_mmio_mask(); 4811 4812 for_each_possible_cpu(cpu) { 4813 r = svm_cpu_init(cpu); 4814 if (r) 4815 goto err; 4816 } 4817 4818 if (nrips) { 4819 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 4820 nrips = false; 4821 } 4822 4823 enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC); 4824 4825 if (enable_apicv) { 4826 pr_info("AVIC enabled\n"); 4827 4828 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 4829 } else { 4830 svm_x86_ops.vcpu_blocking = NULL; 4831 svm_x86_ops.vcpu_unblocking = NULL; 4832 } 4833 4834 if (vls) { 4835 if (!npt_enabled || 4836 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 4837 !IS_ENABLED(CONFIG_X86_64)) { 4838 vls = false; 4839 } else { 4840 pr_info("Virtual VMLOAD VMSAVE supported\n"); 4841 } 4842 } 4843 4844 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 4845 svm_gp_erratum_intercept = false; 4846 4847 if (vgif) { 4848 if (!boot_cpu_has(X86_FEATURE_VGIF)) 4849 vgif = false; 4850 else 4851 pr_info("Virtual GIF supported\n"); 4852 } 4853 4854 if (lbrv) { 4855 if (!boot_cpu_has(X86_FEATURE_LBRV)) 4856 lbrv = false; 4857 else 4858 pr_info("LBR virtualization supported\n"); 4859 } 4860 4861 if (!enable_pmu) 4862 pr_info("PMU virtualization is disabled\n"); 4863 4864 svm_set_cpu_caps(); 4865 4866 /* 4867 * It seems that on AMD processors PTE's accessed bit is 4868 * being set by the CPU hardware before the NPF vmexit. 4869 * This is not expected behaviour and our tests fail because 4870 * of it. 4871 * A workaround here is to disable support for 4872 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 4873 * In this case userspace can know if there is support using 4874 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 4875 * it 4876 * If future AMD CPU models change the behaviour described above, 4877 * this variable can be changed accordingly 4878 */ 4879 allow_smaller_maxphyaddr = !npt_enabled; 4880 4881 return 0; 4882 4883 err: 4884 svm_hardware_unsetup(); 4885 return r; 4886 } 4887 4888 4889 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4890 .cpu_has_kvm_support = has_svm, 4891 .disabled_by_bios = is_disabled, 4892 .hardware_setup = svm_hardware_setup, 4893 .check_processor_compatibility = svm_check_processor_compat, 4894 4895 .runtime_ops = &svm_x86_ops, 4896 }; 4897 4898 static int __init svm_init(void) 4899 { 4900 __unused_size_checks(); 4901 4902 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4903 __alignof__(struct vcpu_svm), THIS_MODULE); 4904 } 4905 4906 static void __exit svm_exit(void) 4907 { 4908 kvm_exit(); 4909 } 4910 4911 module_init(svm_init) 4912 module_exit(svm_exit) 4913