1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 #include <linux/cc_platform.h> 29 30 #include <asm/apic.h> 31 #include <asm/perf_event.h> 32 #include <asm/tlbflush.h> 33 #include <asm/desc.h> 34 #include <asm/debugreg.h> 35 #include <asm/kvm_para.h> 36 #include <asm/irq_remapping.h> 37 #include <asm/spec-ctrl.h> 38 #include <asm/cpu_device_id.h> 39 #include <asm/traps.h> 40 #include <asm/fpu/api.h> 41 42 #include <asm/virtext.h> 43 #include "trace.h" 44 45 #include "svm.h" 46 #include "svm_ops.h" 47 48 #include "kvm_onhyperv.h" 49 #include "svm_onhyperv.h" 50 51 MODULE_AUTHOR("Qumranet"); 52 MODULE_LICENSE("GPL"); 53 54 #ifdef MODULE 55 static const struct x86_cpu_id svm_cpu_id[] = { 56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 57 {} 58 }; 59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 60 #endif 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 static bool erratum_383_found __read_mostly; 66 67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 68 69 /* 70 * Set osvw_len to higher value when updated Revision Guides 71 * are published and we know what the new status bits are 72 */ 73 static uint64_t osvw_len = 4, osvw_status; 74 75 static DEFINE_PER_CPU(u64, current_tsc_ratio); 76 77 static const struct svm_direct_access_msrs { 78 u32 index; /* Index of the MSR */ 79 bool always; /* True if intercept is initially cleared */ 80 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 81 { .index = MSR_STAR, .always = true }, 82 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 83 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 84 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 85 #ifdef CONFIG_X86_64 86 { .index = MSR_GS_BASE, .always = true }, 87 { .index = MSR_FS_BASE, .always = true }, 88 { .index = MSR_KERNEL_GS_BASE, .always = true }, 89 { .index = MSR_LSTAR, .always = true }, 90 { .index = MSR_CSTAR, .always = true }, 91 { .index = MSR_SYSCALL_MASK, .always = true }, 92 #endif 93 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 94 { .index = MSR_IA32_PRED_CMD, .always = false }, 95 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 96 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 97 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 98 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 99 { .index = MSR_EFER, .always = false }, 100 { .index = MSR_IA32_CR_PAT, .always = false }, 101 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 102 { .index = MSR_TSC_AUX, .always = false }, 103 { .index = MSR_INVALID, .always = false }, 104 }; 105 106 /* 107 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 108 * pause_filter_count: On processors that support Pause filtering(indicated 109 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 110 * count value. On VMRUN this value is loaded into an internal counter. 111 * Each time a pause instruction is executed, this counter is decremented 112 * until it reaches zero at which time a #VMEXIT is generated if pause 113 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 114 * Intercept Filtering for more details. 115 * This also indicate if ple logic enabled. 116 * 117 * pause_filter_thresh: In addition, some processor families support advanced 118 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 119 * the amount of time a guest is allowed to execute in a pause loop. 120 * In this mode, a 16-bit pause filter threshold field is added in the 121 * VMCB. The threshold value is a cycle count that is used to reset the 122 * pause counter. As with simple pause filtering, VMRUN loads the pause 123 * count value from VMCB into an internal counter. Then, on each pause 124 * instruction the hardware checks the elapsed number of cycles since 125 * the most recent pause instruction against the pause filter threshold. 126 * If the elapsed cycle count is greater than the pause filter threshold, 127 * then the internal pause count is reloaded from the VMCB and execution 128 * continues. If the elapsed cycle count is less than the pause filter 129 * threshold, then the internal pause count is decremented. If the count 130 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 131 * triggered. If advanced pause filtering is supported and pause filter 132 * threshold field is set to zero, the filter will operate in the simpler, 133 * count only mode. 134 */ 135 136 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 137 module_param(pause_filter_thresh, ushort, 0444); 138 139 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 140 module_param(pause_filter_count, ushort, 0444); 141 142 /* Default doubles per-vcpu window every exit. */ 143 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 144 module_param(pause_filter_count_grow, ushort, 0444); 145 146 /* Default resets per-vcpu window every exit to pause_filter_count. */ 147 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 148 module_param(pause_filter_count_shrink, ushort, 0444); 149 150 /* Default is to compute the maximum so we can never overflow. */ 151 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 152 module_param(pause_filter_count_max, ushort, 0444); 153 154 /* 155 * Use nested page tables by default. Note, NPT may get forced off by 156 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 157 */ 158 bool npt_enabled = true; 159 module_param_named(npt, npt_enabled, bool, 0444); 160 161 /* allow nested virtualization in KVM/SVM */ 162 static int nested = true; 163 module_param(nested, int, S_IRUGO); 164 165 /* enable/disable Next RIP Save */ 166 static int nrips = true; 167 module_param(nrips, int, 0444); 168 169 /* enable/disable Virtual VMLOAD VMSAVE */ 170 static int vls = true; 171 module_param(vls, int, 0444); 172 173 /* enable/disable Virtual GIF */ 174 int vgif = true; 175 module_param(vgif, int, 0444); 176 177 /* enable/disable LBR virtualization */ 178 static int lbrv = true; 179 module_param(lbrv, int, 0444); 180 181 static int tsc_scaling = true; 182 module_param(tsc_scaling, int, 0444); 183 184 /* 185 * enable / disable AVIC. Because the defaults differ for APICv 186 * support between VMX and SVM we cannot use module_param_named. 187 */ 188 static bool avic; 189 module_param(avic, bool, 0444); 190 191 static bool force_avic; 192 module_param_unsafe(force_avic, bool, 0444); 193 194 bool __read_mostly dump_invalid_vmcb; 195 module_param(dump_invalid_vmcb, bool, 0644); 196 197 198 bool intercept_smi = true; 199 module_param(intercept_smi, bool, 0444); 200 201 202 static bool svm_gp_erratum_intercept = true; 203 204 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 205 206 static unsigned long iopm_base; 207 208 struct kvm_ldttss_desc { 209 u16 limit0; 210 u16 base0; 211 unsigned base1:8, type:5, dpl:2, p:1; 212 unsigned limit1:4, zero0:3, g:1, base2:8; 213 u32 base3; 214 u32 zero1; 215 } __attribute__((packed)); 216 217 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 218 219 /* 220 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 221 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 222 * 223 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 224 * defer the restoration of TSC_AUX until the CPU returns to userspace. 225 */ 226 static int tsc_aux_uret_slot __read_mostly = -1; 227 228 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 229 230 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 231 #define MSRS_RANGE_SIZE 2048 232 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 233 234 u32 svm_msrpm_offset(u32 msr) 235 { 236 u32 offset; 237 int i; 238 239 for (i = 0; i < NUM_MSR_MAPS; i++) { 240 if (msr < msrpm_ranges[i] || 241 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 242 continue; 243 244 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 245 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 246 247 /* Now we have the u8 offset - but need the u32 offset */ 248 return offset / 4; 249 } 250 251 /* MSR not in any range */ 252 return MSR_INVALID; 253 } 254 255 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 256 257 static int get_npt_level(void) 258 { 259 #ifdef CONFIG_X86_64 260 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 261 #else 262 return PT32E_ROOT_LEVEL; 263 #endif 264 } 265 266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 267 { 268 struct vcpu_svm *svm = to_svm(vcpu); 269 u64 old_efer = vcpu->arch.efer; 270 vcpu->arch.efer = efer; 271 272 if (!npt_enabled) { 273 /* Shadow paging assumes NX to be available. */ 274 efer |= EFER_NX; 275 276 if (!(efer & EFER_LMA)) 277 efer &= ~EFER_LME; 278 } 279 280 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 281 if (!(efer & EFER_SVME)) { 282 svm_leave_nested(vcpu); 283 svm_set_gif(svm, true); 284 /* #GP intercept is still needed for vmware backdoor */ 285 if (!enable_vmware_backdoor) 286 clr_exception_intercept(svm, GP_VECTOR); 287 288 /* 289 * Free the nested guest state, unless we are in SMM. 290 * In this case we will return to the nested guest 291 * as soon as we leave SMM. 292 */ 293 if (!is_smm(vcpu)) 294 svm_free_nested(svm); 295 296 } else { 297 int ret = svm_allocate_nested(svm); 298 299 if (ret) { 300 vcpu->arch.efer = old_efer; 301 return ret; 302 } 303 304 /* 305 * Never intercept #GP for SEV guests, KVM can't 306 * decrypt guest memory to workaround the erratum. 307 */ 308 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 309 set_exception_intercept(svm, GP_VECTOR); 310 } 311 } 312 313 svm->vmcb->save.efer = efer | EFER_SVME; 314 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 315 return 0; 316 } 317 318 static int is_external_interrupt(u32 info) 319 { 320 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 321 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 322 } 323 324 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 325 { 326 struct vcpu_svm *svm = to_svm(vcpu); 327 u32 ret = 0; 328 329 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 330 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 331 return ret; 332 } 333 334 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 335 { 336 struct vcpu_svm *svm = to_svm(vcpu); 337 338 if (mask == 0) 339 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 340 else 341 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 342 343 } 344 345 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 346 { 347 struct vcpu_svm *svm = to_svm(vcpu); 348 349 /* 350 * SEV-ES does not expose the next RIP. The RIP update is controlled by 351 * the type of exit and the #VC handler in the guest. 352 */ 353 if (sev_es_guest(vcpu->kvm)) 354 goto done; 355 356 if (nrips && svm->vmcb->control.next_rip != 0) { 357 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 358 svm->next_rip = svm->vmcb->control.next_rip; 359 } 360 361 if (!svm->next_rip) { 362 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 363 return 0; 364 } else { 365 kvm_rip_write(vcpu, svm->next_rip); 366 } 367 368 done: 369 svm_set_interrupt_shadow(vcpu, 0); 370 371 return 1; 372 } 373 374 static void svm_queue_exception(struct kvm_vcpu *vcpu) 375 { 376 struct vcpu_svm *svm = to_svm(vcpu); 377 unsigned nr = vcpu->arch.exception.nr; 378 bool has_error_code = vcpu->arch.exception.has_error_code; 379 u32 error_code = vcpu->arch.exception.error_code; 380 381 kvm_deliver_exception_payload(vcpu); 382 383 if (nr == BP_VECTOR && !nrips) { 384 unsigned long rip, old_rip = kvm_rip_read(vcpu); 385 386 /* 387 * For guest debugging where we have to reinject #BP if some 388 * INT3 is guest-owned: 389 * Emulate nRIP by moving RIP forward. Will fail if injection 390 * raises a fault that is not intercepted. Still better than 391 * failing in all cases. 392 */ 393 (void)svm_skip_emulated_instruction(vcpu); 394 rip = kvm_rip_read(vcpu); 395 svm->int3_rip = rip + svm->vmcb->save.cs.base; 396 svm->int3_injected = rip - old_rip; 397 } 398 399 svm->vmcb->control.event_inj = nr 400 | SVM_EVTINJ_VALID 401 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 402 | SVM_EVTINJ_TYPE_EXEPT; 403 svm->vmcb->control.event_inj_err = error_code; 404 } 405 406 static void svm_init_erratum_383(void) 407 { 408 u32 low, high; 409 int err; 410 u64 val; 411 412 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 413 return; 414 415 /* Use _safe variants to not break nested virtualization */ 416 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 417 if (err) 418 return; 419 420 val |= (1ULL << 47); 421 422 low = lower_32_bits(val); 423 high = upper_32_bits(val); 424 425 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 426 427 erratum_383_found = true; 428 } 429 430 static void svm_init_osvw(struct kvm_vcpu *vcpu) 431 { 432 /* 433 * Guests should see errata 400 and 415 as fixed (assuming that 434 * HLT and IO instructions are intercepted). 435 */ 436 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 437 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 438 439 /* 440 * By increasing VCPU's osvw.length to 3 we are telling the guest that 441 * all osvw.status bits inside that length, including bit 0 (which is 442 * reserved for erratum 298), are valid. However, if host processor's 443 * osvw_len is 0 then osvw_status[0] carries no information. We need to 444 * be conservative here and therefore we tell the guest that erratum 298 445 * is present (because we really don't know). 446 */ 447 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 448 vcpu->arch.osvw.status |= 1; 449 } 450 451 static int has_svm(void) 452 { 453 const char *msg; 454 455 if (!cpu_has_svm(&msg)) { 456 printk(KERN_INFO "has_svm: %s\n", msg); 457 return 0; 458 } 459 460 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 461 pr_info("KVM is unsupported when running as an SEV guest\n"); 462 return 0; 463 } 464 465 return 1; 466 } 467 468 static void svm_hardware_disable(void) 469 { 470 /* Make sure we clean up behind us */ 471 if (tsc_scaling) 472 wrmsrl(MSR_AMD64_TSC_RATIO, SVM_TSC_RATIO_DEFAULT); 473 474 cpu_svm_disable(); 475 476 amd_pmu_disable_virt(); 477 } 478 479 static int svm_hardware_enable(void) 480 { 481 482 struct svm_cpu_data *sd; 483 uint64_t efer; 484 struct desc_struct *gdt; 485 int me = raw_smp_processor_id(); 486 487 rdmsrl(MSR_EFER, efer); 488 if (efer & EFER_SVME) 489 return -EBUSY; 490 491 if (!has_svm()) { 492 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 493 return -EINVAL; 494 } 495 sd = per_cpu(svm_data, me); 496 if (!sd) { 497 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 498 return -EINVAL; 499 } 500 501 sd->asid_generation = 1; 502 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 503 sd->next_asid = sd->max_asid + 1; 504 sd->min_asid = max_sev_asid + 1; 505 506 gdt = get_current_gdt_rw(); 507 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 508 509 wrmsrl(MSR_EFER, efer | EFER_SVME); 510 511 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 512 513 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 514 /* 515 * Set the default value, even if we don't use TSC scaling 516 * to avoid having stale value in the msr 517 */ 518 wrmsrl(MSR_AMD64_TSC_RATIO, SVM_TSC_RATIO_DEFAULT); 519 __this_cpu_write(current_tsc_ratio, SVM_TSC_RATIO_DEFAULT); 520 } 521 522 523 /* 524 * Get OSVW bits. 525 * 526 * Note that it is possible to have a system with mixed processor 527 * revisions and therefore different OSVW bits. If bits are not the same 528 * on different processors then choose the worst case (i.e. if erratum 529 * is present on one processor and not on another then assume that the 530 * erratum is present everywhere). 531 */ 532 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 533 uint64_t len, status = 0; 534 int err; 535 536 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 537 if (!err) 538 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 539 &err); 540 541 if (err) 542 osvw_status = osvw_len = 0; 543 else { 544 if (len < osvw_len) 545 osvw_len = len; 546 osvw_status |= status; 547 osvw_status &= (1ULL << osvw_len) - 1; 548 } 549 } else 550 osvw_status = osvw_len = 0; 551 552 svm_init_erratum_383(); 553 554 amd_pmu_enable_virt(); 555 556 return 0; 557 } 558 559 static void svm_cpu_uninit(int cpu) 560 { 561 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 562 563 if (!sd) 564 return; 565 566 per_cpu(svm_data, cpu) = NULL; 567 kfree(sd->sev_vmcbs); 568 __free_page(sd->save_area); 569 kfree(sd); 570 } 571 572 static int svm_cpu_init(int cpu) 573 { 574 struct svm_cpu_data *sd; 575 int ret = -ENOMEM; 576 577 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 578 if (!sd) 579 return ret; 580 sd->cpu = cpu; 581 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 582 if (!sd->save_area) 583 goto free_cpu_data; 584 585 ret = sev_cpu_init(sd); 586 if (ret) 587 goto free_save_area; 588 589 per_cpu(svm_data, cpu) = sd; 590 591 return 0; 592 593 free_save_area: 594 __free_page(sd->save_area); 595 free_cpu_data: 596 kfree(sd); 597 return ret; 598 599 } 600 601 static int direct_access_msr_slot(u32 msr) 602 { 603 u32 i; 604 605 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 606 if (direct_access_msrs[i].index == msr) 607 return i; 608 609 return -ENOENT; 610 } 611 612 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 613 int write) 614 { 615 struct vcpu_svm *svm = to_svm(vcpu); 616 int slot = direct_access_msr_slot(msr); 617 618 if (slot == -ENOENT) 619 return; 620 621 /* Set the shadow bitmaps to the desired intercept states */ 622 if (read) 623 set_bit(slot, svm->shadow_msr_intercept.read); 624 else 625 clear_bit(slot, svm->shadow_msr_intercept.read); 626 627 if (write) 628 set_bit(slot, svm->shadow_msr_intercept.write); 629 else 630 clear_bit(slot, svm->shadow_msr_intercept.write); 631 } 632 633 static bool valid_msr_intercept(u32 index) 634 { 635 return direct_access_msr_slot(index) != -ENOENT; 636 } 637 638 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 639 { 640 u8 bit_write; 641 unsigned long tmp; 642 u32 offset; 643 u32 *msrpm; 644 645 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 646 to_svm(vcpu)->msrpm; 647 648 offset = svm_msrpm_offset(msr); 649 bit_write = 2 * (msr & 0x0f) + 1; 650 tmp = msrpm[offset]; 651 652 BUG_ON(offset == MSR_INVALID); 653 654 return !!test_bit(bit_write, &tmp); 655 } 656 657 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 658 u32 msr, int read, int write) 659 { 660 struct vcpu_svm *svm = to_svm(vcpu); 661 u8 bit_read, bit_write; 662 unsigned long tmp; 663 u32 offset; 664 665 /* 666 * If this warning triggers extend the direct_access_msrs list at the 667 * beginning of the file 668 */ 669 WARN_ON(!valid_msr_intercept(msr)); 670 671 /* Enforce non allowed MSRs to trap */ 672 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 673 read = 0; 674 675 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 676 write = 0; 677 678 offset = svm_msrpm_offset(msr); 679 bit_read = 2 * (msr & 0x0f); 680 bit_write = 2 * (msr & 0x0f) + 1; 681 tmp = msrpm[offset]; 682 683 BUG_ON(offset == MSR_INVALID); 684 685 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 686 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 687 688 msrpm[offset] = tmp; 689 690 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 691 svm->nested.force_msr_bitmap_recalc = true; 692 } 693 694 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 695 int read, int write) 696 { 697 set_shadow_msr_intercept(vcpu, msr, read, write); 698 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 699 } 700 701 u32 *svm_vcpu_alloc_msrpm(void) 702 { 703 unsigned int order = get_order(MSRPM_SIZE); 704 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 705 u32 *msrpm; 706 707 if (!pages) 708 return NULL; 709 710 msrpm = page_address(pages); 711 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 712 713 return msrpm; 714 } 715 716 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 717 { 718 int i; 719 720 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 721 if (!direct_access_msrs[i].always) 722 continue; 723 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 724 } 725 } 726 727 728 void svm_vcpu_free_msrpm(u32 *msrpm) 729 { 730 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 731 } 732 733 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 734 { 735 struct vcpu_svm *svm = to_svm(vcpu); 736 u32 i; 737 738 /* 739 * Set intercept permissions for all direct access MSRs again. They 740 * will automatically get filtered through the MSR filter, so we are 741 * back in sync after this. 742 */ 743 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 744 u32 msr = direct_access_msrs[i].index; 745 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 746 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 747 748 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 749 } 750 } 751 752 static void add_msr_offset(u32 offset) 753 { 754 int i; 755 756 for (i = 0; i < MSRPM_OFFSETS; ++i) { 757 758 /* Offset already in list? */ 759 if (msrpm_offsets[i] == offset) 760 return; 761 762 /* Slot used by another offset? */ 763 if (msrpm_offsets[i] != MSR_INVALID) 764 continue; 765 766 /* Add offset to list */ 767 msrpm_offsets[i] = offset; 768 769 return; 770 } 771 772 /* 773 * If this BUG triggers the msrpm_offsets table has an overflow. Just 774 * increase MSRPM_OFFSETS in this case. 775 */ 776 BUG(); 777 } 778 779 static void init_msrpm_offsets(void) 780 { 781 int i; 782 783 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 784 785 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 786 u32 offset; 787 788 offset = svm_msrpm_offset(direct_access_msrs[i].index); 789 BUG_ON(offset == MSR_INVALID); 790 791 add_msr_offset(offset); 792 } 793 } 794 795 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 796 { 797 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 798 to_vmcb->save.br_from = from_vmcb->save.br_from; 799 to_vmcb->save.br_to = from_vmcb->save.br_to; 800 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 801 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 802 803 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 804 } 805 806 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 807 { 808 struct vcpu_svm *svm = to_svm(vcpu); 809 810 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 811 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 812 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 813 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 814 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 815 816 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 817 if (is_guest_mode(vcpu)) 818 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 819 } 820 821 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 822 { 823 struct vcpu_svm *svm = to_svm(vcpu); 824 825 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 826 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 827 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 828 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 829 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 830 831 /* 832 * Move the LBR msrs back to the vmcb01 to avoid copying them 833 * on nested guest entries. 834 */ 835 if (is_guest_mode(vcpu)) 836 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 837 } 838 839 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index) 840 { 841 /* 842 * If the LBR virtualization is disabled, the LBR msrs are always 843 * kept in the vmcb01 to avoid copying them on nested guest entries. 844 * 845 * If nested, and the LBR virtualization is enabled/disabled, the msrs 846 * are moved between the vmcb01 and vmcb02 as needed. 847 */ 848 struct vmcb *vmcb = 849 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ? 850 svm->vmcb : svm->vmcb01.ptr; 851 852 switch (index) { 853 case MSR_IA32_DEBUGCTLMSR: 854 return vmcb->save.dbgctl; 855 case MSR_IA32_LASTBRANCHFROMIP: 856 return vmcb->save.br_from; 857 case MSR_IA32_LASTBRANCHTOIP: 858 return vmcb->save.br_to; 859 case MSR_IA32_LASTINTFROMIP: 860 return vmcb->save.last_excp_from; 861 case MSR_IA32_LASTINTTOIP: 862 return vmcb->save.last_excp_to; 863 default: 864 KVM_BUG(false, svm->vcpu.kvm, 865 "%s: Unknown MSR 0x%x", __func__, index); 866 return 0; 867 } 868 } 869 870 void svm_update_lbrv(struct kvm_vcpu *vcpu) 871 { 872 struct vcpu_svm *svm = to_svm(vcpu); 873 874 bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) & 875 DEBUGCTLMSR_LBR; 876 877 bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext & 878 LBR_CTL_ENABLE_MASK); 879 880 if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled)) 881 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)) 882 enable_lbrv = true; 883 884 if (enable_lbrv == current_enable_lbrv) 885 return; 886 887 if (enable_lbrv) 888 svm_enable_lbrv(vcpu); 889 else 890 svm_disable_lbrv(vcpu); 891 } 892 893 void disable_nmi_singlestep(struct vcpu_svm *svm) 894 { 895 svm->nmi_singlestep = false; 896 897 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 898 /* Clear our flags if they were not set by the guest */ 899 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 900 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 901 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 902 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 903 } 904 } 905 906 static void grow_ple_window(struct kvm_vcpu *vcpu) 907 { 908 struct vcpu_svm *svm = to_svm(vcpu); 909 struct vmcb_control_area *control = &svm->vmcb->control; 910 int old = control->pause_filter_count; 911 912 if (kvm_pause_in_guest(vcpu->kvm) || !old) 913 return; 914 915 control->pause_filter_count = __grow_ple_window(old, 916 pause_filter_count, 917 pause_filter_count_grow, 918 pause_filter_count_max); 919 920 if (control->pause_filter_count != old) { 921 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 922 trace_kvm_ple_window_update(vcpu->vcpu_id, 923 control->pause_filter_count, old); 924 } 925 } 926 927 static void shrink_ple_window(struct kvm_vcpu *vcpu) 928 { 929 struct vcpu_svm *svm = to_svm(vcpu); 930 struct vmcb_control_area *control = &svm->vmcb->control; 931 int old = control->pause_filter_count; 932 933 if (kvm_pause_in_guest(vcpu->kvm) || !old) 934 return; 935 936 control->pause_filter_count = 937 __shrink_ple_window(old, 938 pause_filter_count, 939 pause_filter_count_shrink, 940 pause_filter_count); 941 if (control->pause_filter_count != old) { 942 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 943 trace_kvm_ple_window_update(vcpu->vcpu_id, 944 control->pause_filter_count, old); 945 } 946 } 947 948 static void svm_hardware_unsetup(void) 949 { 950 int cpu; 951 952 sev_hardware_unsetup(); 953 954 for_each_possible_cpu(cpu) 955 svm_cpu_uninit(cpu); 956 957 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 958 get_order(IOPM_SIZE)); 959 iopm_base = 0; 960 } 961 962 static void init_seg(struct vmcb_seg *seg) 963 { 964 seg->selector = 0; 965 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 966 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 967 seg->limit = 0xffff; 968 seg->base = 0; 969 } 970 971 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 972 { 973 seg->selector = 0; 974 seg->attrib = SVM_SELECTOR_P_MASK | type; 975 seg->limit = 0xffff; 976 seg->base = 0; 977 } 978 979 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 980 { 981 struct vcpu_svm *svm = to_svm(vcpu); 982 983 return svm->nested.ctl.tsc_offset; 984 } 985 986 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 987 { 988 struct vcpu_svm *svm = to_svm(vcpu); 989 990 return svm->tsc_ratio_msr; 991 } 992 993 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 994 { 995 struct vcpu_svm *svm = to_svm(vcpu); 996 997 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 998 svm->vmcb->control.tsc_offset = offset; 999 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1000 } 1001 1002 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1003 { 1004 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 1005 } 1006 1007 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1008 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1009 struct vcpu_svm *svm) 1010 { 1011 /* 1012 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1013 * roots, or if INVPCID is disabled in the guest to inject #UD. 1014 */ 1015 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1016 if (!npt_enabled || 1017 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1018 svm_set_intercept(svm, INTERCEPT_INVPCID); 1019 else 1020 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1021 } 1022 1023 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1024 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1025 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1026 else 1027 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1028 } 1029 } 1030 1031 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1032 { 1033 struct vcpu_svm *svm = to_svm(vcpu); 1034 1035 if (guest_cpuid_is_intel(vcpu)) { 1036 /* 1037 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1038 * accesses because the processor only stores 32 bits. 1039 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1040 */ 1041 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1042 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1043 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1044 1045 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1046 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1047 1048 svm->v_vmload_vmsave_enabled = false; 1049 } else { 1050 /* 1051 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1052 * in VMCB and clear intercepts to avoid #VMEXIT. 1053 */ 1054 if (vls) { 1055 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1056 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1057 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1058 } 1059 /* No need to intercept these MSRs */ 1060 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1061 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1062 } 1063 } 1064 1065 static void init_vmcb(struct kvm_vcpu *vcpu) 1066 { 1067 struct vcpu_svm *svm = to_svm(vcpu); 1068 struct vmcb *vmcb = svm->vmcb01.ptr; 1069 struct vmcb_control_area *control = &vmcb->control; 1070 struct vmcb_save_area *save = &vmcb->save; 1071 1072 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1073 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1074 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1075 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1076 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1077 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1078 if (!kvm_vcpu_apicv_active(vcpu)) 1079 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1080 1081 set_dr_intercepts(svm); 1082 1083 set_exception_intercept(svm, PF_VECTOR); 1084 set_exception_intercept(svm, UD_VECTOR); 1085 set_exception_intercept(svm, MC_VECTOR); 1086 set_exception_intercept(svm, AC_VECTOR); 1087 set_exception_intercept(svm, DB_VECTOR); 1088 /* 1089 * Guest access to VMware backdoor ports could legitimately 1090 * trigger #GP because of TSS I/O permission bitmap. 1091 * We intercept those #GP and allow access to them anyway 1092 * as VMware does. Don't intercept #GP for SEV guests as KVM can't 1093 * decrypt guest memory to decode the faulting instruction. 1094 */ 1095 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm)) 1096 set_exception_intercept(svm, GP_VECTOR); 1097 1098 svm_set_intercept(svm, INTERCEPT_INTR); 1099 svm_set_intercept(svm, INTERCEPT_NMI); 1100 1101 if (intercept_smi) 1102 svm_set_intercept(svm, INTERCEPT_SMI); 1103 1104 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1105 svm_set_intercept(svm, INTERCEPT_RDPMC); 1106 svm_set_intercept(svm, INTERCEPT_CPUID); 1107 svm_set_intercept(svm, INTERCEPT_INVD); 1108 svm_set_intercept(svm, INTERCEPT_INVLPG); 1109 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1110 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1111 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1112 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1113 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1114 svm_set_intercept(svm, INTERCEPT_VMRUN); 1115 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1116 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1117 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1118 svm_set_intercept(svm, INTERCEPT_STGI); 1119 svm_set_intercept(svm, INTERCEPT_CLGI); 1120 svm_set_intercept(svm, INTERCEPT_SKINIT); 1121 svm_set_intercept(svm, INTERCEPT_WBINVD); 1122 svm_set_intercept(svm, INTERCEPT_XSETBV); 1123 svm_set_intercept(svm, INTERCEPT_RDPRU); 1124 svm_set_intercept(svm, INTERCEPT_RSM); 1125 1126 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1127 svm_set_intercept(svm, INTERCEPT_MONITOR); 1128 svm_set_intercept(svm, INTERCEPT_MWAIT); 1129 } 1130 1131 if (!kvm_hlt_in_guest(vcpu->kvm)) 1132 svm_set_intercept(svm, INTERCEPT_HLT); 1133 1134 control->iopm_base_pa = __sme_set(iopm_base); 1135 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1136 control->int_ctl = V_INTR_MASKING_MASK; 1137 1138 init_seg(&save->es); 1139 init_seg(&save->ss); 1140 init_seg(&save->ds); 1141 init_seg(&save->fs); 1142 init_seg(&save->gs); 1143 1144 save->cs.selector = 0xf000; 1145 save->cs.base = 0xffff0000; 1146 /* Executable/Readable Code Segment */ 1147 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1148 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1149 save->cs.limit = 0xffff; 1150 1151 save->gdtr.base = 0; 1152 save->gdtr.limit = 0xffff; 1153 save->idtr.base = 0; 1154 save->idtr.limit = 0xffff; 1155 1156 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1157 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1158 1159 if (npt_enabled) { 1160 /* Setup VMCB for Nested Paging */ 1161 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1162 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1163 clr_exception_intercept(svm, PF_VECTOR); 1164 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1165 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1166 save->g_pat = vcpu->arch.pat; 1167 save->cr3 = 0; 1168 } 1169 svm->current_vmcb->asid_generation = 0; 1170 svm->asid = 0; 1171 1172 svm->nested.vmcb12_gpa = INVALID_GPA; 1173 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1174 1175 if (!kvm_pause_in_guest(vcpu->kvm)) { 1176 control->pause_filter_count = pause_filter_count; 1177 if (pause_filter_thresh) 1178 control->pause_filter_thresh = pause_filter_thresh; 1179 svm_set_intercept(svm, INTERCEPT_PAUSE); 1180 } else { 1181 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1182 } 1183 1184 svm_recalc_instruction_intercepts(vcpu, svm); 1185 1186 /* 1187 * If the host supports V_SPEC_CTRL then disable the interception 1188 * of MSR_IA32_SPEC_CTRL. 1189 */ 1190 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1191 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1192 1193 if (kvm_vcpu_apicv_active(vcpu)) 1194 avic_init_vmcb(svm, vmcb); 1195 1196 if (vgif) { 1197 svm_clr_intercept(svm, INTERCEPT_STGI); 1198 svm_clr_intercept(svm, INTERCEPT_CLGI); 1199 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1200 } 1201 1202 if (sev_guest(vcpu->kvm)) { 1203 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1204 clr_exception_intercept(svm, UD_VECTOR); 1205 1206 if (sev_es_guest(vcpu->kvm)) { 1207 /* Perform SEV-ES specific VMCB updates */ 1208 sev_es_init_vmcb(svm); 1209 } 1210 } 1211 1212 svm_hv_init_vmcb(vmcb); 1213 init_vmcb_after_set_cpuid(vcpu); 1214 1215 vmcb_mark_all_dirty(vmcb); 1216 1217 enable_gif(svm); 1218 } 1219 1220 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1221 { 1222 struct vcpu_svm *svm = to_svm(vcpu); 1223 1224 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1225 1226 svm_init_osvw(vcpu); 1227 vcpu->arch.microcode_version = 0x01000065; 1228 svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio; 1229 1230 if (sev_es_guest(vcpu->kvm)) 1231 sev_es_vcpu_reset(svm); 1232 } 1233 1234 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1235 { 1236 struct vcpu_svm *svm = to_svm(vcpu); 1237 1238 svm->spec_ctrl = 0; 1239 svm->virt_spec_ctrl = 0; 1240 1241 init_vmcb(vcpu); 1242 1243 if (!init_event) 1244 __svm_vcpu_reset(vcpu); 1245 } 1246 1247 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1248 { 1249 svm->current_vmcb = target_vmcb; 1250 svm->vmcb = target_vmcb->ptr; 1251 } 1252 1253 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1254 { 1255 struct vcpu_svm *svm; 1256 struct page *vmcb01_page; 1257 struct page *vmsa_page = NULL; 1258 int err; 1259 1260 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1261 svm = to_svm(vcpu); 1262 1263 err = -ENOMEM; 1264 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1265 if (!vmcb01_page) 1266 goto out; 1267 1268 if (sev_es_guest(vcpu->kvm)) { 1269 /* 1270 * SEV-ES guests require a separate VMSA page used to contain 1271 * the encrypted register state of the guest. 1272 */ 1273 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1274 if (!vmsa_page) 1275 goto error_free_vmcb_page; 1276 1277 /* 1278 * SEV-ES guests maintain an encrypted version of their FPU 1279 * state which is restored and saved on VMRUN and VMEXIT. 1280 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1281 * do xsave/xrstor on it. 1282 */ 1283 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1284 } 1285 1286 err = avic_init_vcpu(svm); 1287 if (err) 1288 goto error_free_vmsa_page; 1289 1290 svm->msrpm = svm_vcpu_alloc_msrpm(); 1291 if (!svm->msrpm) { 1292 err = -ENOMEM; 1293 goto error_free_vmsa_page; 1294 } 1295 1296 svm->vmcb01.ptr = page_address(vmcb01_page); 1297 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1298 svm_switch_vmcb(svm, &svm->vmcb01); 1299 1300 if (vmsa_page) 1301 svm->sev_es.vmsa = page_address(vmsa_page); 1302 1303 svm->guest_state_loaded = false; 1304 1305 return 0; 1306 1307 error_free_vmsa_page: 1308 if (vmsa_page) 1309 __free_page(vmsa_page); 1310 error_free_vmcb_page: 1311 __free_page(vmcb01_page); 1312 out: 1313 return err; 1314 } 1315 1316 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1317 { 1318 int i; 1319 1320 for_each_online_cpu(i) 1321 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1322 } 1323 1324 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1325 { 1326 struct vcpu_svm *svm = to_svm(vcpu); 1327 1328 /* 1329 * The vmcb page can be recycled, causing a false negative in 1330 * svm_vcpu_load(). So, ensure that no logical CPU has this 1331 * vmcb page recorded as its current vmcb. 1332 */ 1333 svm_clear_current_vmcb(svm->vmcb); 1334 1335 svm_free_nested(svm); 1336 1337 sev_free_vcpu(vcpu); 1338 1339 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1340 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1341 } 1342 1343 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1344 { 1345 struct vcpu_svm *svm = to_svm(vcpu); 1346 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1347 1348 if (sev_es_guest(vcpu->kvm)) 1349 sev_es_unmap_ghcb(svm); 1350 1351 if (svm->guest_state_loaded) 1352 return; 1353 1354 /* 1355 * Save additional host state that will be restored on VMEXIT (sev-es) 1356 * or subsequent vmload of host save area. 1357 */ 1358 vmsave(__sme_page_pa(sd->save_area)); 1359 if (sev_es_guest(vcpu->kvm)) { 1360 struct sev_es_save_area *hostsa; 1361 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1362 1363 sev_es_prepare_switch_to_guest(hostsa); 1364 } 1365 1366 if (tsc_scaling) { 1367 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1368 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1369 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1370 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1371 } 1372 } 1373 1374 if (likely(tsc_aux_uret_slot >= 0)) 1375 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1376 1377 svm->guest_state_loaded = true; 1378 } 1379 1380 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1381 { 1382 to_svm(vcpu)->guest_state_loaded = false; 1383 } 1384 1385 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1386 { 1387 struct vcpu_svm *svm = to_svm(vcpu); 1388 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1389 1390 if (sd->current_vmcb != svm->vmcb) { 1391 sd->current_vmcb = svm->vmcb; 1392 indirect_branch_prediction_barrier(); 1393 } 1394 if (kvm_vcpu_apicv_active(vcpu)) 1395 __avic_vcpu_load(vcpu, cpu); 1396 } 1397 1398 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1399 { 1400 if (kvm_vcpu_apicv_active(vcpu)) 1401 __avic_vcpu_put(vcpu); 1402 1403 svm_prepare_host_switch(vcpu); 1404 1405 ++vcpu->stat.host_state_reload; 1406 } 1407 1408 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1409 { 1410 struct vcpu_svm *svm = to_svm(vcpu); 1411 unsigned long rflags = svm->vmcb->save.rflags; 1412 1413 if (svm->nmi_singlestep) { 1414 /* Hide our flags if they were not set by the guest */ 1415 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1416 rflags &= ~X86_EFLAGS_TF; 1417 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1418 rflags &= ~X86_EFLAGS_RF; 1419 } 1420 return rflags; 1421 } 1422 1423 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1424 { 1425 if (to_svm(vcpu)->nmi_singlestep) 1426 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1427 1428 /* 1429 * Any change of EFLAGS.VM is accompanied by a reload of SS 1430 * (caused by either a task switch or an inter-privilege IRET), 1431 * so we do not need to update the CPL here. 1432 */ 1433 to_svm(vcpu)->vmcb->save.rflags = rflags; 1434 } 1435 1436 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1437 { 1438 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1439 1440 return sev_es_guest(vcpu->kvm) 1441 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1442 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1443 } 1444 1445 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1446 { 1447 kvm_register_mark_available(vcpu, reg); 1448 1449 switch (reg) { 1450 case VCPU_EXREG_PDPTR: 1451 /* 1452 * When !npt_enabled, mmu->pdptrs[] is already available since 1453 * it is always updated per SDM when moving to CRs. 1454 */ 1455 if (npt_enabled) 1456 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1457 break; 1458 default: 1459 KVM_BUG_ON(1, vcpu->kvm); 1460 } 1461 } 1462 1463 static void svm_set_vintr(struct vcpu_svm *svm) 1464 { 1465 struct vmcb_control_area *control; 1466 1467 /* 1468 * The following fields are ignored when AVIC is enabled 1469 */ 1470 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1471 1472 svm_set_intercept(svm, INTERCEPT_VINTR); 1473 1474 /* 1475 * This is just a dummy VINTR to actually cause a vmexit to happen. 1476 * Actual injection of virtual interrupts happens through EVENTINJ. 1477 */ 1478 control = &svm->vmcb->control; 1479 control->int_vector = 0x0; 1480 control->int_ctl &= ~V_INTR_PRIO_MASK; 1481 control->int_ctl |= V_IRQ_MASK | 1482 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1483 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1484 } 1485 1486 static void svm_clear_vintr(struct vcpu_svm *svm) 1487 { 1488 svm_clr_intercept(svm, INTERCEPT_VINTR); 1489 1490 /* Drop int_ctl fields related to VINTR injection. */ 1491 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1492 if (is_guest_mode(&svm->vcpu)) { 1493 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1494 1495 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1496 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1497 1498 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1499 V_IRQ_INJECTION_BITS_MASK; 1500 1501 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1502 } 1503 1504 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1505 } 1506 1507 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1508 { 1509 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1510 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1511 1512 switch (seg) { 1513 case VCPU_SREG_CS: return &save->cs; 1514 case VCPU_SREG_DS: return &save->ds; 1515 case VCPU_SREG_ES: return &save->es; 1516 case VCPU_SREG_FS: return &save01->fs; 1517 case VCPU_SREG_GS: return &save01->gs; 1518 case VCPU_SREG_SS: return &save->ss; 1519 case VCPU_SREG_TR: return &save01->tr; 1520 case VCPU_SREG_LDTR: return &save01->ldtr; 1521 } 1522 BUG(); 1523 return NULL; 1524 } 1525 1526 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1527 { 1528 struct vmcb_seg *s = svm_seg(vcpu, seg); 1529 1530 return s->base; 1531 } 1532 1533 static void svm_get_segment(struct kvm_vcpu *vcpu, 1534 struct kvm_segment *var, int seg) 1535 { 1536 struct vmcb_seg *s = svm_seg(vcpu, seg); 1537 1538 var->base = s->base; 1539 var->limit = s->limit; 1540 var->selector = s->selector; 1541 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1542 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1543 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1544 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1545 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1546 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1547 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1548 1549 /* 1550 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1551 * However, the SVM spec states that the G bit is not observed by the 1552 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1553 * So let's synthesize a legal G bit for all segments, this helps 1554 * running KVM nested. It also helps cross-vendor migration, because 1555 * Intel's vmentry has a check on the 'G' bit. 1556 */ 1557 var->g = s->limit > 0xfffff; 1558 1559 /* 1560 * AMD's VMCB does not have an explicit unusable field, so emulate it 1561 * for cross vendor migration purposes by "not present" 1562 */ 1563 var->unusable = !var->present; 1564 1565 switch (seg) { 1566 case VCPU_SREG_TR: 1567 /* 1568 * Work around a bug where the busy flag in the tr selector 1569 * isn't exposed 1570 */ 1571 var->type |= 0x2; 1572 break; 1573 case VCPU_SREG_DS: 1574 case VCPU_SREG_ES: 1575 case VCPU_SREG_FS: 1576 case VCPU_SREG_GS: 1577 /* 1578 * The accessed bit must always be set in the segment 1579 * descriptor cache, although it can be cleared in the 1580 * descriptor, the cached bit always remains at 1. Since 1581 * Intel has a check on this, set it here to support 1582 * cross-vendor migration. 1583 */ 1584 if (!var->unusable) 1585 var->type |= 0x1; 1586 break; 1587 case VCPU_SREG_SS: 1588 /* 1589 * On AMD CPUs sometimes the DB bit in the segment 1590 * descriptor is left as 1, although the whole segment has 1591 * been made unusable. Clear it here to pass an Intel VMX 1592 * entry check when cross vendor migrating. 1593 */ 1594 if (var->unusable) 1595 var->db = 0; 1596 /* This is symmetric with svm_set_segment() */ 1597 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1598 break; 1599 } 1600 } 1601 1602 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1603 { 1604 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1605 1606 return save->cpl; 1607 } 1608 1609 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1610 { 1611 struct kvm_segment cs; 1612 1613 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1614 *db = cs.db; 1615 *l = cs.l; 1616 } 1617 1618 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1619 { 1620 struct vcpu_svm *svm = to_svm(vcpu); 1621 1622 dt->size = svm->vmcb->save.idtr.limit; 1623 dt->address = svm->vmcb->save.idtr.base; 1624 } 1625 1626 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1627 { 1628 struct vcpu_svm *svm = to_svm(vcpu); 1629 1630 svm->vmcb->save.idtr.limit = dt->size; 1631 svm->vmcb->save.idtr.base = dt->address ; 1632 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1633 } 1634 1635 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1636 { 1637 struct vcpu_svm *svm = to_svm(vcpu); 1638 1639 dt->size = svm->vmcb->save.gdtr.limit; 1640 dt->address = svm->vmcb->save.gdtr.base; 1641 } 1642 1643 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1644 { 1645 struct vcpu_svm *svm = to_svm(vcpu); 1646 1647 svm->vmcb->save.gdtr.limit = dt->size; 1648 svm->vmcb->save.gdtr.base = dt->address ; 1649 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1650 } 1651 1652 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1653 { 1654 struct vcpu_svm *svm = to_svm(vcpu); 1655 1656 /* 1657 * For guests that don't set guest_state_protected, the cr3 update is 1658 * handled via kvm_mmu_load() while entering the guest. For guests 1659 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1660 * VMCB save area now, since the save area will become the initial 1661 * contents of the VMSA, and future VMCB save area updates won't be 1662 * seen. 1663 */ 1664 if (sev_es_guest(vcpu->kvm)) { 1665 svm->vmcb->save.cr3 = cr3; 1666 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1667 } 1668 } 1669 1670 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1671 { 1672 struct vcpu_svm *svm = to_svm(vcpu); 1673 u64 hcr0 = cr0; 1674 bool old_paging = is_paging(vcpu); 1675 1676 #ifdef CONFIG_X86_64 1677 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1678 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1679 vcpu->arch.efer |= EFER_LMA; 1680 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1681 } 1682 1683 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1684 vcpu->arch.efer &= ~EFER_LMA; 1685 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1686 } 1687 } 1688 #endif 1689 vcpu->arch.cr0 = cr0; 1690 1691 if (!npt_enabled) { 1692 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1693 if (old_paging != is_paging(vcpu)) 1694 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1695 } 1696 1697 /* 1698 * re-enable caching here because the QEMU bios 1699 * does not do it - this results in some delay at 1700 * reboot 1701 */ 1702 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1703 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1704 1705 svm->vmcb->save.cr0 = hcr0; 1706 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1707 1708 /* 1709 * SEV-ES guests must always keep the CR intercepts cleared. CR 1710 * tracking is done using the CR write traps. 1711 */ 1712 if (sev_es_guest(vcpu->kvm)) 1713 return; 1714 1715 if (hcr0 == cr0) { 1716 /* Selective CR0 write remains on. */ 1717 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1718 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1719 } else { 1720 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1721 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1722 } 1723 } 1724 1725 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1726 { 1727 return true; 1728 } 1729 1730 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1731 { 1732 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1733 unsigned long old_cr4 = vcpu->arch.cr4; 1734 1735 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1736 svm_flush_tlb_current(vcpu); 1737 1738 vcpu->arch.cr4 = cr4; 1739 if (!npt_enabled) { 1740 cr4 |= X86_CR4_PAE; 1741 1742 if (!is_paging(vcpu)) 1743 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1744 } 1745 cr4 |= host_cr4_mce; 1746 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1747 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1748 1749 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1750 kvm_update_cpuid_runtime(vcpu); 1751 } 1752 1753 static void svm_set_segment(struct kvm_vcpu *vcpu, 1754 struct kvm_segment *var, int seg) 1755 { 1756 struct vcpu_svm *svm = to_svm(vcpu); 1757 struct vmcb_seg *s = svm_seg(vcpu, seg); 1758 1759 s->base = var->base; 1760 s->limit = var->limit; 1761 s->selector = var->selector; 1762 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1763 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1764 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1765 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1766 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1767 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1768 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1769 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1770 1771 /* 1772 * This is always accurate, except if SYSRET returned to a segment 1773 * with SS.DPL != 3. Intel does not have this quirk, and always 1774 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1775 * would entail passing the CPL to userspace and back. 1776 */ 1777 if (seg == VCPU_SREG_SS) 1778 /* This is symmetric with svm_get_segment() */ 1779 svm->vmcb->save.cpl = (var->dpl & 3); 1780 1781 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1782 } 1783 1784 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1785 { 1786 struct vcpu_svm *svm = to_svm(vcpu); 1787 1788 clr_exception_intercept(svm, BP_VECTOR); 1789 1790 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1791 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1792 set_exception_intercept(svm, BP_VECTOR); 1793 } 1794 } 1795 1796 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1797 { 1798 if (sd->next_asid > sd->max_asid) { 1799 ++sd->asid_generation; 1800 sd->next_asid = sd->min_asid; 1801 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1802 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1803 } 1804 1805 svm->current_vmcb->asid_generation = sd->asid_generation; 1806 svm->asid = sd->next_asid++; 1807 } 1808 1809 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1810 { 1811 struct vmcb *vmcb = svm->vmcb; 1812 1813 if (svm->vcpu.arch.guest_state_protected) 1814 return; 1815 1816 if (unlikely(value != vmcb->save.dr6)) { 1817 vmcb->save.dr6 = value; 1818 vmcb_mark_dirty(vmcb, VMCB_DR); 1819 } 1820 } 1821 1822 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1823 { 1824 struct vcpu_svm *svm = to_svm(vcpu); 1825 1826 if (vcpu->arch.guest_state_protected) 1827 return; 1828 1829 get_debugreg(vcpu->arch.db[0], 0); 1830 get_debugreg(vcpu->arch.db[1], 1); 1831 get_debugreg(vcpu->arch.db[2], 2); 1832 get_debugreg(vcpu->arch.db[3], 3); 1833 /* 1834 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1835 * because db_interception might need it. We can do it before vmentry. 1836 */ 1837 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1838 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1839 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1840 set_dr_intercepts(svm); 1841 } 1842 1843 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1844 { 1845 struct vcpu_svm *svm = to_svm(vcpu); 1846 1847 if (vcpu->arch.guest_state_protected) 1848 return; 1849 1850 svm->vmcb->save.dr7 = value; 1851 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1852 } 1853 1854 static int pf_interception(struct kvm_vcpu *vcpu) 1855 { 1856 struct vcpu_svm *svm = to_svm(vcpu); 1857 1858 u64 fault_address = svm->vmcb->control.exit_info_2; 1859 u64 error_code = svm->vmcb->control.exit_info_1; 1860 1861 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1862 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1863 svm->vmcb->control.insn_bytes : NULL, 1864 svm->vmcb->control.insn_len); 1865 } 1866 1867 static int npf_interception(struct kvm_vcpu *vcpu) 1868 { 1869 struct vcpu_svm *svm = to_svm(vcpu); 1870 1871 u64 fault_address = svm->vmcb->control.exit_info_2; 1872 u64 error_code = svm->vmcb->control.exit_info_1; 1873 1874 trace_kvm_page_fault(fault_address, error_code); 1875 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1876 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1877 svm->vmcb->control.insn_bytes : NULL, 1878 svm->vmcb->control.insn_len); 1879 } 1880 1881 static int db_interception(struct kvm_vcpu *vcpu) 1882 { 1883 struct kvm_run *kvm_run = vcpu->run; 1884 struct vcpu_svm *svm = to_svm(vcpu); 1885 1886 if (!(vcpu->guest_debug & 1887 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1888 !svm->nmi_singlestep) { 1889 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1890 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1891 return 1; 1892 } 1893 1894 if (svm->nmi_singlestep) { 1895 disable_nmi_singlestep(svm); 1896 /* Make sure we check for pending NMIs upon entry */ 1897 kvm_make_request(KVM_REQ_EVENT, vcpu); 1898 } 1899 1900 if (vcpu->guest_debug & 1901 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1902 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1903 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1904 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1905 kvm_run->debug.arch.pc = 1906 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1907 kvm_run->debug.arch.exception = DB_VECTOR; 1908 return 0; 1909 } 1910 1911 return 1; 1912 } 1913 1914 static int bp_interception(struct kvm_vcpu *vcpu) 1915 { 1916 struct vcpu_svm *svm = to_svm(vcpu); 1917 struct kvm_run *kvm_run = vcpu->run; 1918 1919 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1920 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1921 kvm_run->debug.arch.exception = BP_VECTOR; 1922 return 0; 1923 } 1924 1925 static int ud_interception(struct kvm_vcpu *vcpu) 1926 { 1927 return handle_ud(vcpu); 1928 } 1929 1930 static int ac_interception(struct kvm_vcpu *vcpu) 1931 { 1932 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1933 return 1; 1934 } 1935 1936 static bool is_erratum_383(void) 1937 { 1938 int err, i; 1939 u64 value; 1940 1941 if (!erratum_383_found) 1942 return false; 1943 1944 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1945 if (err) 1946 return false; 1947 1948 /* Bit 62 may or may not be set for this mce */ 1949 value &= ~(1ULL << 62); 1950 1951 if (value != 0xb600000000010015ULL) 1952 return false; 1953 1954 /* Clear MCi_STATUS registers */ 1955 for (i = 0; i < 6; ++i) 1956 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1957 1958 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1959 if (!err) { 1960 u32 low, high; 1961 1962 value &= ~(1ULL << 2); 1963 low = lower_32_bits(value); 1964 high = upper_32_bits(value); 1965 1966 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 1967 } 1968 1969 /* Flush tlb to evict multi-match entries */ 1970 __flush_tlb_all(); 1971 1972 return true; 1973 } 1974 1975 static void svm_handle_mce(struct kvm_vcpu *vcpu) 1976 { 1977 if (is_erratum_383()) { 1978 /* 1979 * Erratum 383 triggered. Guest state is corrupt so kill the 1980 * guest. 1981 */ 1982 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 1983 1984 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1985 1986 return; 1987 } 1988 1989 /* 1990 * On an #MC intercept the MCE handler is not called automatically in 1991 * the host. So do it by hand here. 1992 */ 1993 kvm_machine_check(); 1994 } 1995 1996 static int mc_interception(struct kvm_vcpu *vcpu) 1997 { 1998 return 1; 1999 } 2000 2001 static int shutdown_interception(struct kvm_vcpu *vcpu) 2002 { 2003 struct kvm_run *kvm_run = vcpu->run; 2004 struct vcpu_svm *svm = to_svm(vcpu); 2005 2006 /* 2007 * The VM save area has already been encrypted so it 2008 * cannot be reinitialized - just terminate. 2009 */ 2010 if (sev_es_guest(vcpu->kvm)) 2011 return -EINVAL; 2012 2013 /* 2014 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2015 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2016 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2017 * userspace. At a platform view, INIT is acceptable behavior as 2018 * there exist bare metal platforms that automatically INIT the CPU 2019 * in response to shutdown. 2020 */ 2021 clear_page(svm->vmcb); 2022 kvm_vcpu_reset(vcpu, true); 2023 2024 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2025 return 0; 2026 } 2027 2028 static int io_interception(struct kvm_vcpu *vcpu) 2029 { 2030 struct vcpu_svm *svm = to_svm(vcpu); 2031 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2032 int size, in, string; 2033 unsigned port; 2034 2035 ++vcpu->stat.io_exits; 2036 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2037 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2038 port = io_info >> 16; 2039 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2040 2041 if (string) { 2042 if (sev_es_guest(vcpu->kvm)) 2043 return sev_es_string_io(svm, size, port, in); 2044 else 2045 return kvm_emulate_instruction(vcpu, 0); 2046 } 2047 2048 svm->next_rip = svm->vmcb->control.exit_info_2; 2049 2050 return kvm_fast_pio(vcpu, size, port, in); 2051 } 2052 2053 static int nmi_interception(struct kvm_vcpu *vcpu) 2054 { 2055 return 1; 2056 } 2057 2058 static int smi_interception(struct kvm_vcpu *vcpu) 2059 { 2060 return 1; 2061 } 2062 2063 static int intr_interception(struct kvm_vcpu *vcpu) 2064 { 2065 ++vcpu->stat.irq_exits; 2066 return 1; 2067 } 2068 2069 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2070 { 2071 struct vcpu_svm *svm = to_svm(vcpu); 2072 struct vmcb *vmcb12; 2073 struct kvm_host_map map; 2074 int ret; 2075 2076 if (nested_svm_check_permissions(vcpu)) 2077 return 1; 2078 2079 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2080 if (ret) { 2081 if (ret == -EINVAL) 2082 kvm_inject_gp(vcpu, 0); 2083 return 1; 2084 } 2085 2086 vmcb12 = map.hva; 2087 2088 ret = kvm_skip_emulated_instruction(vcpu); 2089 2090 if (vmload) { 2091 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2092 svm->sysenter_eip_hi = 0; 2093 svm->sysenter_esp_hi = 0; 2094 } else { 2095 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2096 } 2097 2098 kvm_vcpu_unmap(vcpu, &map, true); 2099 2100 return ret; 2101 } 2102 2103 static int vmload_interception(struct kvm_vcpu *vcpu) 2104 { 2105 return vmload_vmsave_interception(vcpu, true); 2106 } 2107 2108 static int vmsave_interception(struct kvm_vcpu *vcpu) 2109 { 2110 return vmload_vmsave_interception(vcpu, false); 2111 } 2112 2113 static int vmrun_interception(struct kvm_vcpu *vcpu) 2114 { 2115 if (nested_svm_check_permissions(vcpu)) 2116 return 1; 2117 2118 return nested_svm_vmrun(vcpu); 2119 } 2120 2121 enum { 2122 NONE_SVM_INSTR, 2123 SVM_INSTR_VMRUN, 2124 SVM_INSTR_VMLOAD, 2125 SVM_INSTR_VMSAVE, 2126 }; 2127 2128 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2129 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2130 { 2131 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2132 2133 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2134 return NONE_SVM_INSTR; 2135 2136 switch (ctxt->modrm) { 2137 case 0xd8: /* VMRUN */ 2138 return SVM_INSTR_VMRUN; 2139 case 0xda: /* VMLOAD */ 2140 return SVM_INSTR_VMLOAD; 2141 case 0xdb: /* VMSAVE */ 2142 return SVM_INSTR_VMSAVE; 2143 default: 2144 break; 2145 } 2146 2147 return NONE_SVM_INSTR; 2148 } 2149 2150 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2151 { 2152 const int guest_mode_exit_codes[] = { 2153 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2154 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2155 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2156 }; 2157 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2158 [SVM_INSTR_VMRUN] = vmrun_interception, 2159 [SVM_INSTR_VMLOAD] = vmload_interception, 2160 [SVM_INSTR_VMSAVE] = vmsave_interception, 2161 }; 2162 struct vcpu_svm *svm = to_svm(vcpu); 2163 int ret; 2164 2165 if (is_guest_mode(vcpu)) { 2166 /* Returns '1' or -errno on failure, '0' on success. */ 2167 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2168 if (ret) 2169 return ret; 2170 return 1; 2171 } 2172 return svm_instr_handlers[opcode](vcpu); 2173 } 2174 2175 /* 2176 * #GP handling code. Note that #GP can be triggered under the following two 2177 * cases: 2178 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2179 * some AMD CPUs when EAX of these instructions are in the reserved memory 2180 * regions (e.g. SMM memory on host). 2181 * 2) VMware backdoor 2182 */ 2183 static int gp_interception(struct kvm_vcpu *vcpu) 2184 { 2185 struct vcpu_svm *svm = to_svm(vcpu); 2186 u32 error_code = svm->vmcb->control.exit_info_1; 2187 int opcode; 2188 2189 /* Both #GP cases have zero error_code */ 2190 if (error_code) 2191 goto reinject; 2192 2193 /* Decode the instruction for usage later */ 2194 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2195 goto reinject; 2196 2197 opcode = svm_instr_opcode(vcpu); 2198 2199 if (opcode == NONE_SVM_INSTR) { 2200 if (!enable_vmware_backdoor) 2201 goto reinject; 2202 2203 /* 2204 * VMware backdoor emulation on #GP interception only handles 2205 * IN{S}, OUT{S}, and RDPMC. 2206 */ 2207 if (!is_guest_mode(vcpu)) 2208 return kvm_emulate_instruction(vcpu, 2209 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2210 } else { 2211 /* All SVM instructions expect page aligned RAX */ 2212 if (svm->vmcb->save.rax & ~PAGE_MASK) 2213 goto reinject; 2214 2215 return emulate_svm_instr(vcpu, opcode); 2216 } 2217 2218 reinject: 2219 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2220 return 1; 2221 } 2222 2223 void svm_set_gif(struct vcpu_svm *svm, bool value) 2224 { 2225 if (value) { 2226 /* 2227 * If VGIF is enabled, the STGI intercept is only added to 2228 * detect the opening of the SMI/NMI window; remove it now. 2229 * Likewise, clear the VINTR intercept, we will set it 2230 * again while processing KVM_REQ_EVENT if needed. 2231 */ 2232 if (vgif) 2233 svm_clr_intercept(svm, INTERCEPT_STGI); 2234 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2235 svm_clear_vintr(svm); 2236 2237 enable_gif(svm); 2238 if (svm->vcpu.arch.smi_pending || 2239 svm->vcpu.arch.nmi_pending || 2240 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2241 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2242 } else { 2243 disable_gif(svm); 2244 2245 /* 2246 * After a CLGI no interrupts should come. But if vGIF is 2247 * in use, we still rely on the VINTR intercept (rather than 2248 * STGI) to detect an open interrupt window. 2249 */ 2250 if (!vgif) 2251 svm_clear_vintr(svm); 2252 } 2253 } 2254 2255 static int stgi_interception(struct kvm_vcpu *vcpu) 2256 { 2257 int ret; 2258 2259 if (nested_svm_check_permissions(vcpu)) 2260 return 1; 2261 2262 ret = kvm_skip_emulated_instruction(vcpu); 2263 svm_set_gif(to_svm(vcpu), true); 2264 return ret; 2265 } 2266 2267 static int clgi_interception(struct kvm_vcpu *vcpu) 2268 { 2269 int ret; 2270 2271 if (nested_svm_check_permissions(vcpu)) 2272 return 1; 2273 2274 ret = kvm_skip_emulated_instruction(vcpu); 2275 svm_set_gif(to_svm(vcpu), false); 2276 return ret; 2277 } 2278 2279 static int invlpga_interception(struct kvm_vcpu *vcpu) 2280 { 2281 gva_t gva = kvm_rax_read(vcpu); 2282 u32 asid = kvm_rcx_read(vcpu); 2283 2284 /* FIXME: Handle an address size prefix. */ 2285 if (!is_long_mode(vcpu)) 2286 gva = (u32)gva; 2287 2288 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2289 2290 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2291 kvm_mmu_invlpg(vcpu, gva); 2292 2293 return kvm_skip_emulated_instruction(vcpu); 2294 } 2295 2296 static int skinit_interception(struct kvm_vcpu *vcpu) 2297 { 2298 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2299 2300 kvm_queue_exception(vcpu, UD_VECTOR); 2301 return 1; 2302 } 2303 2304 static int task_switch_interception(struct kvm_vcpu *vcpu) 2305 { 2306 struct vcpu_svm *svm = to_svm(vcpu); 2307 u16 tss_selector; 2308 int reason; 2309 int int_type = svm->vmcb->control.exit_int_info & 2310 SVM_EXITINTINFO_TYPE_MASK; 2311 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2312 uint32_t type = 2313 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2314 uint32_t idt_v = 2315 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2316 bool has_error_code = false; 2317 u32 error_code = 0; 2318 2319 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2320 2321 if (svm->vmcb->control.exit_info_2 & 2322 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2323 reason = TASK_SWITCH_IRET; 2324 else if (svm->vmcb->control.exit_info_2 & 2325 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2326 reason = TASK_SWITCH_JMP; 2327 else if (idt_v) 2328 reason = TASK_SWITCH_GATE; 2329 else 2330 reason = TASK_SWITCH_CALL; 2331 2332 if (reason == TASK_SWITCH_GATE) { 2333 switch (type) { 2334 case SVM_EXITINTINFO_TYPE_NMI: 2335 vcpu->arch.nmi_injected = false; 2336 break; 2337 case SVM_EXITINTINFO_TYPE_EXEPT: 2338 if (svm->vmcb->control.exit_info_2 & 2339 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2340 has_error_code = true; 2341 error_code = 2342 (u32)svm->vmcb->control.exit_info_2; 2343 } 2344 kvm_clear_exception_queue(vcpu); 2345 break; 2346 case SVM_EXITINTINFO_TYPE_INTR: 2347 kvm_clear_interrupt_queue(vcpu); 2348 break; 2349 default: 2350 break; 2351 } 2352 } 2353 2354 if (reason != TASK_SWITCH_GATE || 2355 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2356 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2357 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2358 if (!svm_skip_emulated_instruction(vcpu)) 2359 return 0; 2360 } 2361 2362 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2363 int_vec = -1; 2364 2365 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2366 has_error_code, error_code); 2367 } 2368 2369 static int iret_interception(struct kvm_vcpu *vcpu) 2370 { 2371 struct vcpu_svm *svm = to_svm(vcpu); 2372 2373 ++vcpu->stat.nmi_window_exits; 2374 vcpu->arch.hflags |= HF_IRET_MASK; 2375 if (!sev_es_guest(vcpu->kvm)) { 2376 svm_clr_intercept(svm, INTERCEPT_IRET); 2377 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2378 } 2379 kvm_make_request(KVM_REQ_EVENT, vcpu); 2380 return 1; 2381 } 2382 2383 static int invlpg_interception(struct kvm_vcpu *vcpu) 2384 { 2385 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2386 return kvm_emulate_instruction(vcpu, 0); 2387 2388 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2389 return kvm_skip_emulated_instruction(vcpu); 2390 } 2391 2392 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2393 { 2394 return kvm_emulate_instruction(vcpu, 0); 2395 } 2396 2397 static int rsm_interception(struct kvm_vcpu *vcpu) 2398 { 2399 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2400 } 2401 2402 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2403 unsigned long val) 2404 { 2405 struct vcpu_svm *svm = to_svm(vcpu); 2406 unsigned long cr0 = vcpu->arch.cr0; 2407 bool ret = false; 2408 2409 if (!is_guest_mode(vcpu) || 2410 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2411 return false; 2412 2413 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2414 val &= ~SVM_CR0_SELECTIVE_MASK; 2415 2416 if (cr0 ^ val) { 2417 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2418 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2419 } 2420 2421 return ret; 2422 } 2423 2424 #define CR_VALID (1ULL << 63) 2425 2426 static int cr_interception(struct kvm_vcpu *vcpu) 2427 { 2428 struct vcpu_svm *svm = to_svm(vcpu); 2429 int reg, cr; 2430 unsigned long val; 2431 int err; 2432 2433 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2434 return emulate_on_interception(vcpu); 2435 2436 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2437 return emulate_on_interception(vcpu); 2438 2439 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2440 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2441 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2442 else 2443 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2444 2445 err = 0; 2446 if (cr >= 16) { /* mov to cr */ 2447 cr -= 16; 2448 val = kvm_register_read(vcpu, reg); 2449 trace_kvm_cr_write(cr, val); 2450 switch (cr) { 2451 case 0: 2452 if (!check_selective_cr0_intercepted(vcpu, val)) 2453 err = kvm_set_cr0(vcpu, val); 2454 else 2455 return 1; 2456 2457 break; 2458 case 3: 2459 err = kvm_set_cr3(vcpu, val); 2460 break; 2461 case 4: 2462 err = kvm_set_cr4(vcpu, val); 2463 break; 2464 case 8: 2465 err = kvm_set_cr8(vcpu, val); 2466 break; 2467 default: 2468 WARN(1, "unhandled write to CR%d", cr); 2469 kvm_queue_exception(vcpu, UD_VECTOR); 2470 return 1; 2471 } 2472 } else { /* mov from cr */ 2473 switch (cr) { 2474 case 0: 2475 val = kvm_read_cr0(vcpu); 2476 break; 2477 case 2: 2478 val = vcpu->arch.cr2; 2479 break; 2480 case 3: 2481 val = kvm_read_cr3(vcpu); 2482 break; 2483 case 4: 2484 val = kvm_read_cr4(vcpu); 2485 break; 2486 case 8: 2487 val = kvm_get_cr8(vcpu); 2488 break; 2489 default: 2490 WARN(1, "unhandled read from CR%d", cr); 2491 kvm_queue_exception(vcpu, UD_VECTOR); 2492 return 1; 2493 } 2494 kvm_register_write(vcpu, reg, val); 2495 trace_kvm_cr_read(cr, val); 2496 } 2497 return kvm_complete_insn_gp(vcpu, err); 2498 } 2499 2500 static int cr_trap(struct kvm_vcpu *vcpu) 2501 { 2502 struct vcpu_svm *svm = to_svm(vcpu); 2503 unsigned long old_value, new_value; 2504 unsigned int cr; 2505 int ret = 0; 2506 2507 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2508 2509 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2510 switch (cr) { 2511 case 0: 2512 old_value = kvm_read_cr0(vcpu); 2513 svm_set_cr0(vcpu, new_value); 2514 2515 kvm_post_set_cr0(vcpu, old_value, new_value); 2516 break; 2517 case 4: 2518 old_value = kvm_read_cr4(vcpu); 2519 svm_set_cr4(vcpu, new_value); 2520 2521 kvm_post_set_cr4(vcpu, old_value, new_value); 2522 break; 2523 case 8: 2524 ret = kvm_set_cr8(vcpu, new_value); 2525 break; 2526 default: 2527 WARN(1, "unhandled CR%d write trap", cr); 2528 kvm_queue_exception(vcpu, UD_VECTOR); 2529 return 1; 2530 } 2531 2532 return kvm_complete_insn_gp(vcpu, ret); 2533 } 2534 2535 static int dr_interception(struct kvm_vcpu *vcpu) 2536 { 2537 struct vcpu_svm *svm = to_svm(vcpu); 2538 int reg, dr; 2539 unsigned long val; 2540 int err = 0; 2541 2542 if (vcpu->guest_debug == 0) { 2543 /* 2544 * No more DR vmexits; force a reload of the debug registers 2545 * and reenter on this instruction. The next vmexit will 2546 * retrieve the full state of the debug registers. 2547 */ 2548 clr_dr_intercepts(svm); 2549 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2550 return 1; 2551 } 2552 2553 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2554 return emulate_on_interception(vcpu); 2555 2556 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2557 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2558 if (dr >= 16) { /* mov to DRn */ 2559 dr -= 16; 2560 val = kvm_register_read(vcpu, reg); 2561 err = kvm_set_dr(vcpu, dr, val); 2562 } else { 2563 kvm_get_dr(vcpu, dr, &val); 2564 kvm_register_write(vcpu, reg, val); 2565 } 2566 2567 return kvm_complete_insn_gp(vcpu, err); 2568 } 2569 2570 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2571 { 2572 int r; 2573 2574 u8 cr8_prev = kvm_get_cr8(vcpu); 2575 /* instruction emulation calls kvm_set_cr8() */ 2576 r = cr_interception(vcpu); 2577 if (lapic_in_kernel(vcpu)) 2578 return r; 2579 if (cr8_prev <= kvm_get_cr8(vcpu)) 2580 return r; 2581 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2582 return 0; 2583 } 2584 2585 static int efer_trap(struct kvm_vcpu *vcpu) 2586 { 2587 struct msr_data msr_info; 2588 int ret; 2589 2590 /* 2591 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2592 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2593 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2594 * the guest doesn't have X86_FEATURE_SVM. 2595 */ 2596 msr_info.host_initiated = false; 2597 msr_info.index = MSR_EFER; 2598 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2599 ret = kvm_set_msr_common(vcpu, &msr_info); 2600 2601 return kvm_complete_insn_gp(vcpu, ret); 2602 } 2603 2604 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2605 { 2606 msr->data = 0; 2607 2608 switch (msr->index) { 2609 case MSR_F10H_DECFG: 2610 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2611 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2612 break; 2613 case MSR_IA32_PERF_CAPABILITIES: 2614 return 0; 2615 default: 2616 return KVM_MSR_RET_INVALID; 2617 } 2618 2619 return 0; 2620 } 2621 2622 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2623 { 2624 struct vcpu_svm *svm = to_svm(vcpu); 2625 2626 switch (msr_info->index) { 2627 case MSR_AMD64_TSC_RATIO: 2628 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled) 2629 return 1; 2630 msr_info->data = svm->tsc_ratio_msr; 2631 break; 2632 case MSR_STAR: 2633 msr_info->data = svm->vmcb01.ptr->save.star; 2634 break; 2635 #ifdef CONFIG_X86_64 2636 case MSR_LSTAR: 2637 msr_info->data = svm->vmcb01.ptr->save.lstar; 2638 break; 2639 case MSR_CSTAR: 2640 msr_info->data = svm->vmcb01.ptr->save.cstar; 2641 break; 2642 case MSR_KERNEL_GS_BASE: 2643 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2644 break; 2645 case MSR_SYSCALL_MASK: 2646 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2647 break; 2648 #endif 2649 case MSR_IA32_SYSENTER_CS: 2650 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2651 break; 2652 case MSR_IA32_SYSENTER_EIP: 2653 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2654 if (guest_cpuid_is_intel(vcpu)) 2655 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2656 break; 2657 case MSR_IA32_SYSENTER_ESP: 2658 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2659 if (guest_cpuid_is_intel(vcpu)) 2660 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2661 break; 2662 case MSR_TSC_AUX: 2663 msr_info->data = svm->tsc_aux; 2664 break; 2665 case MSR_IA32_DEBUGCTLMSR: 2666 case MSR_IA32_LASTBRANCHFROMIP: 2667 case MSR_IA32_LASTBRANCHTOIP: 2668 case MSR_IA32_LASTINTFROMIP: 2669 case MSR_IA32_LASTINTTOIP: 2670 msr_info->data = svm_get_lbr_msr(svm, msr_info->index); 2671 break; 2672 case MSR_VM_HSAVE_PA: 2673 msr_info->data = svm->nested.hsave_msr; 2674 break; 2675 case MSR_VM_CR: 2676 msr_info->data = svm->nested.vm_cr_msr; 2677 break; 2678 case MSR_IA32_SPEC_CTRL: 2679 if (!msr_info->host_initiated && 2680 !guest_has_spec_ctrl_msr(vcpu)) 2681 return 1; 2682 2683 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2684 msr_info->data = svm->vmcb->save.spec_ctrl; 2685 else 2686 msr_info->data = svm->spec_ctrl; 2687 break; 2688 case MSR_AMD64_VIRT_SPEC_CTRL: 2689 if (!msr_info->host_initiated && 2690 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2691 return 1; 2692 2693 msr_info->data = svm->virt_spec_ctrl; 2694 break; 2695 case MSR_F15H_IC_CFG: { 2696 2697 int family, model; 2698 2699 family = guest_cpuid_family(vcpu); 2700 model = guest_cpuid_model(vcpu); 2701 2702 if (family < 0 || model < 0) 2703 return kvm_get_msr_common(vcpu, msr_info); 2704 2705 msr_info->data = 0; 2706 2707 if (family == 0x15 && 2708 (model >= 0x2 && model < 0x20)) 2709 msr_info->data = 0x1E; 2710 } 2711 break; 2712 case MSR_F10H_DECFG: 2713 msr_info->data = svm->msr_decfg; 2714 break; 2715 default: 2716 return kvm_get_msr_common(vcpu, msr_info); 2717 } 2718 return 0; 2719 } 2720 2721 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2722 { 2723 struct vcpu_svm *svm = to_svm(vcpu); 2724 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2725 return kvm_complete_insn_gp(vcpu, err); 2726 2727 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2728 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2729 X86_TRAP_GP | 2730 SVM_EVTINJ_TYPE_EXEPT | 2731 SVM_EVTINJ_VALID); 2732 return 1; 2733 } 2734 2735 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2736 { 2737 struct vcpu_svm *svm = to_svm(vcpu); 2738 int svm_dis, chg_mask; 2739 2740 if (data & ~SVM_VM_CR_VALID_MASK) 2741 return 1; 2742 2743 chg_mask = SVM_VM_CR_VALID_MASK; 2744 2745 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2746 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2747 2748 svm->nested.vm_cr_msr &= ~chg_mask; 2749 svm->nested.vm_cr_msr |= (data & chg_mask); 2750 2751 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2752 2753 /* check for svm_disable while efer.svme is set */ 2754 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2755 return 1; 2756 2757 return 0; 2758 } 2759 2760 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2761 { 2762 struct vcpu_svm *svm = to_svm(vcpu); 2763 int r; 2764 2765 u32 ecx = msr->index; 2766 u64 data = msr->data; 2767 switch (ecx) { 2768 case MSR_AMD64_TSC_RATIO: 2769 2770 if (!svm->tsc_scaling_enabled) { 2771 2772 if (!msr->host_initiated) 2773 return 1; 2774 /* 2775 * In case TSC scaling is not enabled, always 2776 * leave this MSR at the default value. 2777 * 2778 * Due to bug in qemu 6.2.0, it would try to set 2779 * this msr to 0 if tsc scaling is not enabled. 2780 * Ignore this value as well. 2781 */ 2782 if (data != 0 && data != svm->tsc_ratio_msr) 2783 return 1; 2784 break; 2785 } 2786 2787 if (data & SVM_TSC_RATIO_RSVD) 2788 return 1; 2789 2790 svm->tsc_ratio_msr = data; 2791 2792 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu)) 2793 nested_svm_update_tsc_ratio_msr(vcpu); 2794 2795 break; 2796 case MSR_IA32_CR_PAT: 2797 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2798 return 1; 2799 vcpu->arch.pat = data; 2800 svm->vmcb01.ptr->save.g_pat = data; 2801 if (is_guest_mode(vcpu)) 2802 nested_vmcb02_compute_g_pat(svm); 2803 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2804 break; 2805 case MSR_IA32_SPEC_CTRL: 2806 if (!msr->host_initiated && 2807 !guest_has_spec_ctrl_msr(vcpu)) 2808 return 1; 2809 2810 if (kvm_spec_ctrl_test_value(data)) 2811 return 1; 2812 2813 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2814 svm->vmcb->save.spec_ctrl = data; 2815 else 2816 svm->spec_ctrl = data; 2817 if (!data) 2818 break; 2819 2820 /* 2821 * For non-nested: 2822 * When it's written (to non-zero) for the first time, pass 2823 * it through. 2824 * 2825 * For nested: 2826 * The handling of the MSR bitmap for L2 guests is done in 2827 * nested_svm_vmrun_msrpm. 2828 * We update the L1 MSR bit as well since it will end up 2829 * touching the MSR anyway now. 2830 */ 2831 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2832 break; 2833 case MSR_IA32_PRED_CMD: 2834 if (!msr->host_initiated && 2835 !guest_has_pred_cmd_msr(vcpu)) 2836 return 1; 2837 2838 if (data & ~PRED_CMD_IBPB) 2839 return 1; 2840 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2841 return 1; 2842 if (!data) 2843 break; 2844 2845 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2846 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2847 break; 2848 case MSR_AMD64_VIRT_SPEC_CTRL: 2849 if (!msr->host_initiated && 2850 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2851 return 1; 2852 2853 if (data & ~SPEC_CTRL_SSBD) 2854 return 1; 2855 2856 svm->virt_spec_ctrl = data; 2857 break; 2858 case MSR_STAR: 2859 svm->vmcb01.ptr->save.star = data; 2860 break; 2861 #ifdef CONFIG_X86_64 2862 case MSR_LSTAR: 2863 svm->vmcb01.ptr->save.lstar = data; 2864 break; 2865 case MSR_CSTAR: 2866 svm->vmcb01.ptr->save.cstar = data; 2867 break; 2868 case MSR_KERNEL_GS_BASE: 2869 svm->vmcb01.ptr->save.kernel_gs_base = data; 2870 break; 2871 case MSR_SYSCALL_MASK: 2872 svm->vmcb01.ptr->save.sfmask = data; 2873 break; 2874 #endif 2875 case MSR_IA32_SYSENTER_CS: 2876 svm->vmcb01.ptr->save.sysenter_cs = data; 2877 break; 2878 case MSR_IA32_SYSENTER_EIP: 2879 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2880 /* 2881 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2882 * when we spoof an Intel vendor ID (for cross vendor migration). 2883 * In this case we use this intercept to track the high 2884 * 32 bit part of these msrs to support Intel's 2885 * implementation of SYSENTER/SYSEXIT. 2886 */ 2887 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2888 break; 2889 case MSR_IA32_SYSENTER_ESP: 2890 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2891 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2892 break; 2893 case MSR_TSC_AUX: 2894 /* 2895 * TSC_AUX is usually changed only during boot and never read 2896 * directly. Intercept TSC_AUX instead of exposing it to the 2897 * guest via direct_access_msrs, and switch it via user return. 2898 */ 2899 preempt_disable(); 2900 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2901 preempt_enable(); 2902 if (r) 2903 return 1; 2904 2905 svm->tsc_aux = data; 2906 break; 2907 case MSR_IA32_DEBUGCTLMSR: 2908 if (!lbrv) { 2909 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2910 __func__, data); 2911 break; 2912 } 2913 if (data & DEBUGCTL_RESERVED_BITS) 2914 return 1; 2915 2916 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) 2917 svm->vmcb->save.dbgctl = data; 2918 else 2919 svm->vmcb01.ptr->save.dbgctl = data; 2920 2921 svm_update_lbrv(vcpu); 2922 2923 break; 2924 case MSR_VM_HSAVE_PA: 2925 /* 2926 * Old kernels did not validate the value written to 2927 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 2928 * value to allow live migrating buggy or malicious guests 2929 * originating from those kernels. 2930 */ 2931 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 2932 return 1; 2933 2934 svm->nested.hsave_msr = data & PAGE_MASK; 2935 break; 2936 case MSR_VM_CR: 2937 return svm_set_vm_cr(vcpu, data); 2938 case MSR_VM_IGNNE: 2939 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2940 break; 2941 case MSR_F10H_DECFG: { 2942 struct kvm_msr_entry msr_entry; 2943 2944 msr_entry.index = msr->index; 2945 if (svm_get_msr_feature(&msr_entry)) 2946 return 1; 2947 2948 /* Check the supported bits */ 2949 if (data & ~msr_entry.data) 2950 return 1; 2951 2952 /* Don't allow the guest to change a bit, #GP */ 2953 if (!msr->host_initiated && (data ^ msr_entry.data)) 2954 return 1; 2955 2956 svm->msr_decfg = data; 2957 break; 2958 } 2959 default: 2960 return kvm_set_msr_common(vcpu, msr); 2961 } 2962 return 0; 2963 } 2964 2965 static int msr_interception(struct kvm_vcpu *vcpu) 2966 { 2967 if (to_svm(vcpu)->vmcb->control.exit_info_1) 2968 return kvm_emulate_wrmsr(vcpu); 2969 else 2970 return kvm_emulate_rdmsr(vcpu); 2971 } 2972 2973 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 2974 { 2975 kvm_make_request(KVM_REQ_EVENT, vcpu); 2976 svm_clear_vintr(to_svm(vcpu)); 2977 2978 /* 2979 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 2980 * In this case AVIC was temporarily disabled for 2981 * requesting the IRQ window and we have to re-enable it. 2982 * 2983 * If running nested, still remove the VM wide AVIC inhibit to 2984 * support case in which the interrupt window was requested when the 2985 * vCPU was not running nested. 2986 2987 * All vCPUs which run still run nested, will remain to have their 2988 * AVIC still inhibited due to per-cpu AVIC inhibition. 2989 */ 2990 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 2991 2992 ++vcpu->stat.irq_window_exits; 2993 return 1; 2994 } 2995 2996 static int pause_interception(struct kvm_vcpu *vcpu) 2997 { 2998 bool in_kernel; 2999 /* 3000 * CPL is not made available for an SEV-ES guest, therefore 3001 * vcpu->arch.preempted_in_kernel can never be true. Just 3002 * set in_kernel to false as well. 3003 */ 3004 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3005 3006 grow_ple_window(vcpu); 3007 3008 kvm_vcpu_on_spin(vcpu, in_kernel); 3009 return kvm_skip_emulated_instruction(vcpu); 3010 } 3011 3012 static int invpcid_interception(struct kvm_vcpu *vcpu) 3013 { 3014 struct vcpu_svm *svm = to_svm(vcpu); 3015 unsigned long type; 3016 gva_t gva; 3017 3018 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3019 kvm_queue_exception(vcpu, UD_VECTOR); 3020 return 1; 3021 } 3022 3023 /* 3024 * For an INVPCID intercept: 3025 * EXITINFO1 provides the linear address of the memory operand. 3026 * EXITINFO2 provides the contents of the register operand. 3027 */ 3028 type = svm->vmcb->control.exit_info_2; 3029 gva = svm->vmcb->control.exit_info_1; 3030 3031 return kvm_handle_invpcid(vcpu, type, gva); 3032 } 3033 3034 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3035 [SVM_EXIT_READ_CR0] = cr_interception, 3036 [SVM_EXIT_READ_CR3] = cr_interception, 3037 [SVM_EXIT_READ_CR4] = cr_interception, 3038 [SVM_EXIT_READ_CR8] = cr_interception, 3039 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3040 [SVM_EXIT_WRITE_CR0] = cr_interception, 3041 [SVM_EXIT_WRITE_CR3] = cr_interception, 3042 [SVM_EXIT_WRITE_CR4] = cr_interception, 3043 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3044 [SVM_EXIT_READ_DR0] = dr_interception, 3045 [SVM_EXIT_READ_DR1] = dr_interception, 3046 [SVM_EXIT_READ_DR2] = dr_interception, 3047 [SVM_EXIT_READ_DR3] = dr_interception, 3048 [SVM_EXIT_READ_DR4] = dr_interception, 3049 [SVM_EXIT_READ_DR5] = dr_interception, 3050 [SVM_EXIT_READ_DR6] = dr_interception, 3051 [SVM_EXIT_READ_DR7] = dr_interception, 3052 [SVM_EXIT_WRITE_DR0] = dr_interception, 3053 [SVM_EXIT_WRITE_DR1] = dr_interception, 3054 [SVM_EXIT_WRITE_DR2] = dr_interception, 3055 [SVM_EXIT_WRITE_DR3] = dr_interception, 3056 [SVM_EXIT_WRITE_DR4] = dr_interception, 3057 [SVM_EXIT_WRITE_DR5] = dr_interception, 3058 [SVM_EXIT_WRITE_DR6] = dr_interception, 3059 [SVM_EXIT_WRITE_DR7] = dr_interception, 3060 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3061 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3062 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3063 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3064 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3065 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3066 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3067 [SVM_EXIT_INTR] = intr_interception, 3068 [SVM_EXIT_NMI] = nmi_interception, 3069 [SVM_EXIT_SMI] = smi_interception, 3070 [SVM_EXIT_VINTR] = interrupt_window_interception, 3071 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3072 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3073 [SVM_EXIT_IRET] = iret_interception, 3074 [SVM_EXIT_INVD] = kvm_emulate_invd, 3075 [SVM_EXIT_PAUSE] = pause_interception, 3076 [SVM_EXIT_HLT] = kvm_emulate_halt, 3077 [SVM_EXIT_INVLPG] = invlpg_interception, 3078 [SVM_EXIT_INVLPGA] = invlpga_interception, 3079 [SVM_EXIT_IOIO] = io_interception, 3080 [SVM_EXIT_MSR] = msr_interception, 3081 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3082 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3083 [SVM_EXIT_VMRUN] = vmrun_interception, 3084 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3085 [SVM_EXIT_VMLOAD] = vmload_interception, 3086 [SVM_EXIT_VMSAVE] = vmsave_interception, 3087 [SVM_EXIT_STGI] = stgi_interception, 3088 [SVM_EXIT_CLGI] = clgi_interception, 3089 [SVM_EXIT_SKINIT] = skinit_interception, 3090 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3091 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3092 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3093 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3094 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3095 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3096 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3097 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3098 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3099 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3100 [SVM_EXIT_INVPCID] = invpcid_interception, 3101 [SVM_EXIT_NPF] = npf_interception, 3102 [SVM_EXIT_RSM] = rsm_interception, 3103 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3104 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3105 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3106 }; 3107 3108 static void dump_vmcb(struct kvm_vcpu *vcpu) 3109 { 3110 struct vcpu_svm *svm = to_svm(vcpu); 3111 struct vmcb_control_area *control = &svm->vmcb->control; 3112 struct vmcb_save_area *save = &svm->vmcb->save; 3113 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3114 3115 if (!dump_invalid_vmcb) { 3116 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3117 return; 3118 } 3119 3120 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3121 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3122 pr_err("VMCB Control Area:\n"); 3123 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3124 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3125 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3126 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3127 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3128 pr_err("%-20s%08x %08x\n", "intercepts:", 3129 control->intercepts[INTERCEPT_WORD3], 3130 control->intercepts[INTERCEPT_WORD4]); 3131 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3132 pr_err("%-20s%d\n", "pause filter threshold:", 3133 control->pause_filter_thresh); 3134 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3135 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3136 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3137 pr_err("%-20s%d\n", "asid:", control->asid); 3138 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3139 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3140 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3141 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3142 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3143 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3144 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3145 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3146 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3147 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3148 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3149 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3150 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3151 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3152 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3153 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3154 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3155 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3156 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3157 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3158 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3159 pr_err("VMCB State Save Area:\n"); 3160 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3161 "es:", 3162 save->es.selector, save->es.attrib, 3163 save->es.limit, save->es.base); 3164 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3165 "cs:", 3166 save->cs.selector, save->cs.attrib, 3167 save->cs.limit, save->cs.base); 3168 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3169 "ss:", 3170 save->ss.selector, save->ss.attrib, 3171 save->ss.limit, save->ss.base); 3172 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3173 "ds:", 3174 save->ds.selector, save->ds.attrib, 3175 save->ds.limit, save->ds.base); 3176 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3177 "fs:", 3178 save01->fs.selector, save01->fs.attrib, 3179 save01->fs.limit, save01->fs.base); 3180 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3181 "gs:", 3182 save01->gs.selector, save01->gs.attrib, 3183 save01->gs.limit, save01->gs.base); 3184 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3185 "gdtr:", 3186 save->gdtr.selector, save->gdtr.attrib, 3187 save->gdtr.limit, save->gdtr.base); 3188 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3189 "ldtr:", 3190 save01->ldtr.selector, save01->ldtr.attrib, 3191 save01->ldtr.limit, save01->ldtr.base); 3192 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3193 "idtr:", 3194 save->idtr.selector, save->idtr.attrib, 3195 save->idtr.limit, save->idtr.base); 3196 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3197 "tr:", 3198 save01->tr.selector, save01->tr.attrib, 3199 save01->tr.limit, save01->tr.base); 3200 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3201 save->vmpl, save->cpl, save->efer); 3202 pr_err("%-15s %016llx %-13s %016llx\n", 3203 "cr0:", save->cr0, "cr2:", save->cr2); 3204 pr_err("%-15s %016llx %-13s %016llx\n", 3205 "cr3:", save->cr3, "cr4:", save->cr4); 3206 pr_err("%-15s %016llx %-13s %016llx\n", 3207 "dr6:", save->dr6, "dr7:", save->dr7); 3208 pr_err("%-15s %016llx %-13s %016llx\n", 3209 "rip:", save->rip, "rflags:", save->rflags); 3210 pr_err("%-15s %016llx %-13s %016llx\n", 3211 "rsp:", save->rsp, "rax:", save->rax); 3212 pr_err("%-15s %016llx %-13s %016llx\n", 3213 "star:", save01->star, "lstar:", save01->lstar); 3214 pr_err("%-15s %016llx %-13s %016llx\n", 3215 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3216 pr_err("%-15s %016llx %-13s %016llx\n", 3217 "kernel_gs_base:", save01->kernel_gs_base, 3218 "sysenter_cs:", save01->sysenter_cs); 3219 pr_err("%-15s %016llx %-13s %016llx\n", 3220 "sysenter_esp:", save01->sysenter_esp, 3221 "sysenter_eip:", save01->sysenter_eip); 3222 pr_err("%-15s %016llx %-13s %016llx\n", 3223 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3224 pr_err("%-15s %016llx %-13s %016llx\n", 3225 "br_from:", save->br_from, "br_to:", save->br_to); 3226 pr_err("%-15s %016llx %-13s %016llx\n", 3227 "excp_from:", save->last_excp_from, 3228 "excp_to:", save->last_excp_to); 3229 } 3230 3231 static bool svm_check_exit_valid(u64 exit_code) 3232 { 3233 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3234 svm_exit_handlers[exit_code]); 3235 } 3236 3237 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3238 { 3239 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3240 dump_vmcb(vcpu); 3241 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3242 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3243 vcpu->run->internal.ndata = 2; 3244 vcpu->run->internal.data[0] = exit_code; 3245 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3246 return 0; 3247 } 3248 3249 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3250 { 3251 if (!svm_check_exit_valid(exit_code)) 3252 return svm_handle_invalid_exit(vcpu, exit_code); 3253 3254 #ifdef CONFIG_RETPOLINE 3255 if (exit_code == SVM_EXIT_MSR) 3256 return msr_interception(vcpu); 3257 else if (exit_code == SVM_EXIT_VINTR) 3258 return interrupt_window_interception(vcpu); 3259 else if (exit_code == SVM_EXIT_INTR) 3260 return intr_interception(vcpu); 3261 else if (exit_code == SVM_EXIT_HLT) 3262 return kvm_emulate_halt(vcpu); 3263 else if (exit_code == SVM_EXIT_NPF) 3264 return npf_interception(vcpu); 3265 #endif 3266 return svm_exit_handlers[exit_code](vcpu); 3267 } 3268 3269 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3270 u64 *info1, u64 *info2, 3271 u32 *intr_info, u32 *error_code) 3272 { 3273 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3274 3275 *reason = control->exit_code; 3276 *info1 = control->exit_info_1; 3277 *info2 = control->exit_info_2; 3278 *intr_info = control->exit_int_info; 3279 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3280 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3281 *error_code = control->exit_int_info_err; 3282 else 3283 *error_code = 0; 3284 } 3285 3286 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3287 { 3288 struct vcpu_svm *svm = to_svm(vcpu); 3289 struct kvm_run *kvm_run = vcpu->run; 3290 u32 exit_code = svm->vmcb->control.exit_code; 3291 3292 trace_kvm_exit(vcpu, KVM_ISA_SVM); 3293 3294 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3295 if (!sev_es_guest(vcpu->kvm)) { 3296 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3297 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3298 if (npt_enabled) 3299 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3300 } 3301 3302 if (is_guest_mode(vcpu)) { 3303 int vmexit; 3304 3305 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3306 3307 vmexit = nested_svm_exit_special(svm); 3308 3309 if (vmexit == NESTED_EXIT_CONTINUE) 3310 vmexit = nested_svm_exit_handled(svm); 3311 3312 if (vmexit == NESTED_EXIT_DONE) 3313 return 1; 3314 } 3315 3316 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3317 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3318 kvm_run->fail_entry.hardware_entry_failure_reason 3319 = svm->vmcb->control.exit_code; 3320 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3321 dump_vmcb(vcpu); 3322 return 0; 3323 } 3324 3325 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3326 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3327 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3328 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3329 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3330 "exit_code 0x%x\n", 3331 __func__, svm->vmcb->control.exit_int_info, 3332 exit_code); 3333 3334 if (exit_fastpath != EXIT_FASTPATH_NONE) 3335 return 1; 3336 3337 return svm_invoke_exit_handler(vcpu, exit_code); 3338 } 3339 3340 static void reload_tss(struct kvm_vcpu *vcpu) 3341 { 3342 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3343 3344 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3345 load_TR_desc(); 3346 } 3347 3348 static void pre_svm_run(struct kvm_vcpu *vcpu) 3349 { 3350 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3351 struct vcpu_svm *svm = to_svm(vcpu); 3352 3353 /* 3354 * If the previous vmrun of the vmcb occurred on a different physical 3355 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3356 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3357 */ 3358 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3359 svm->current_vmcb->asid_generation = 0; 3360 vmcb_mark_all_dirty(svm->vmcb); 3361 svm->current_vmcb->cpu = vcpu->cpu; 3362 } 3363 3364 if (sev_guest(vcpu->kvm)) 3365 return pre_sev_run(svm, vcpu->cpu); 3366 3367 /* FIXME: handle wraparound of asid_generation */ 3368 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3369 new_asid(svm, sd); 3370 } 3371 3372 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3373 { 3374 struct vcpu_svm *svm = to_svm(vcpu); 3375 3376 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3377 vcpu->arch.hflags |= HF_NMI_MASK; 3378 if (!sev_es_guest(vcpu->kvm)) 3379 svm_set_intercept(svm, INTERCEPT_IRET); 3380 ++vcpu->stat.nmi_injections; 3381 } 3382 3383 static void svm_inject_irq(struct kvm_vcpu *vcpu) 3384 { 3385 struct vcpu_svm *svm = to_svm(vcpu); 3386 3387 BUG_ON(!(gif_set(svm))); 3388 3389 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3390 ++vcpu->stat.irq_injections; 3391 3392 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3393 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3394 } 3395 3396 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3397 int trig_mode, int vector) 3398 { 3399 /* 3400 * vcpu->arch.apicv_active must be read after vcpu->mode. 3401 * Pairs with smp_store_release in vcpu_enter_guest. 3402 */ 3403 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3404 3405 if (!READ_ONCE(vcpu->arch.apicv_active)) { 3406 /* Process the interrupt via inject_pending_event */ 3407 kvm_make_request(KVM_REQ_EVENT, vcpu); 3408 kvm_vcpu_kick(vcpu); 3409 return; 3410 } 3411 3412 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3413 if (in_guest_mode) { 3414 /* 3415 * Signal the doorbell to tell hardware to inject the IRQ. If 3416 * the vCPU exits the guest before the doorbell chimes, hardware 3417 * will automatically process AVIC interrupts at the next VMRUN. 3418 */ 3419 avic_ring_doorbell(vcpu); 3420 } else { 3421 /* 3422 * Wake the vCPU if it was blocking. KVM will then detect the 3423 * pending IRQ when checking if the vCPU has a wake event. 3424 */ 3425 kvm_vcpu_wake_up(vcpu); 3426 } 3427 } 3428 3429 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3430 int trig_mode, int vector) 3431 { 3432 kvm_lapic_set_irr(vector, apic); 3433 3434 /* 3435 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3436 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3437 * the read of guest_mode. This guarantees that either VMRUN will see 3438 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3439 * will signal the doorbell if the CPU has already entered the guest. 3440 */ 3441 smp_mb__after_atomic(); 3442 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3443 } 3444 3445 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3446 { 3447 struct vcpu_svm *svm = to_svm(vcpu); 3448 3449 /* 3450 * SEV-ES guests must always keep the CR intercepts cleared. CR 3451 * tracking is done using the CR write traps. 3452 */ 3453 if (sev_es_guest(vcpu->kvm)) 3454 return; 3455 3456 if (nested_svm_virtualize_tpr(vcpu)) 3457 return; 3458 3459 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3460 3461 if (irr == -1) 3462 return; 3463 3464 if (tpr >= irr) 3465 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3466 } 3467 3468 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3469 { 3470 struct vcpu_svm *svm = to_svm(vcpu); 3471 struct vmcb *vmcb = svm->vmcb; 3472 bool ret; 3473 3474 if (!gif_set(svm)) 3475 return true; 3476 3477 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3478 return false; 3479 3480 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3481 (vcpu->arch.hflags & HF_NMI_MASK); 3482 3483 return ret; 3484 } 3485 3486 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3487 { 3488 struct vcpu_svm *svm = to_svm(vcpu); 3489 if (svm->nested.nested_run_pending) 3490 return -EBUSY; 3491 3492 if (svm_nmi_blocked(vcpu)) 3493 return 0; 3494 3495 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3496 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3497 return -EBUSY; 3498 return 1; 3499 } 3500 3501 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3502 { 3503 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3504 } 3505 3506 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3507 { 3508 struct vcpu_svm *svm = to_svm(vcpu); 3509 3510 if (masked) { 3511 vcpu->arch.hflags |= HF_NMI_MASK; 3512 if (!sev_es_guest(vcpu->kvm)) 3513 svm_set_intercept(svm, INTERCEPT_IRET); 3514 } else { 3515 vcpu->arch.hflags &= ~HF_NMI_MASK; 3516 if (!sev_es_guest(vcpu->kvm)) 3517 svm_clr_intercept(svm, INTERCEPT_IRET); 3518 } 3519 } 3520 3521 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3522 { 3523 struct vcpu_svm *svm = to_svm(vcpu); 3524 struct vmcb *vmcb = svm->vmcb; 3525 3526 if (!gif_set(svm)) 3527 return true; 3528 3529 if (is_guest_mode(vcpu)) { 3530 /* As long as interrupts are being delivered... */ 3531 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3532 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3533 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3534 return true; 3535 3536 /* ... vmexits aren't blocked by the interrupt shadow */ 3537 if (nested_exit_on_intr(svm)) 3538 return false; 3539 } else { 3540 if (!svm_get_if_flag(vcpu)) 3541 return true; 3542 } 3543 3544 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3545 } 3546 3547 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3548 { 3549 struct vcpu_svm *svm = to_svm(vcpu); 3550 3551 if (svm->nested.nested_run_pending) 3552 return -EBUSY; 3553 3554 if (svm_interrupt_blocked(vcpu)) 3555 return 0; 3556 3557 /* 3558 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3559 * e.g. if the IRQ arrived asynchronously after checking nested events. 3560 */ 3561 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3562 return -EBUSY; 3563 3564 return 1; 3565 } 3566 3567 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3568 { 3569 struct vcpu_svm *svm = to_svm(vcpu); 3570 3571 /* 3572 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3573 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3574 * get that intercept, this function will be called again though and 3575 * we'll get the vintr intercept. However, if the vGIF feature is 3576 * enabled, the STGI interception will not occur. Enable the irq 3577 * window under the assumption that the hardware will set the GIF. 3578 */ 3579 if (vgif || gif_set(svm)) { 3580 /* 3581 * IRQ window is not needed when AVIC is enabled, 3582 * unless we have pending ExtINT since it cannot be injected 3583 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3584 * and fallback to injecting IRQ via V_IRQ. 3585 * 3586 * If running nested, AVIC is already locally inhibited 3587 * on this vCPU, therefore there is no need to request 3588 * the VM wide AVIC inhibition. 3589 */ 3590 if (!is_guest_mode(vcpu)) 3591 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3592 3593 svm_set_vintr(svm); 3594 } 3595 } 3596 3597 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3598 { 3599 struct vcpu_svm *svm = to_svm(vcpu); 3600 3601 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3602 return; /* IRET will cause a vm exit */ 3603 3604 if (!gif_set(svm)) { 3605 if (vgif) 3606 svm_set_intercept(svm, INTERCEPT_STGI); 3607 return; /* STGI will cause a vm exit */ 3608 } 3609 3610 /* 3611 * Something prevents NMI from been injected. Single step over possible 3612 * problem (IRET or exception injection or interrupt shadow) 3613 */ 3614 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3615 svm->nmi_singlestep = true; 3616 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3617 } 3618 3619 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3620 { 3621 struct vcpu_svm *svm = to_svm(vcpu); 3622 3623 /* 3624 * Flush only the current ASID even if the TLB flush was invoked via 3625 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3626 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3627 * unconditionally does a TLB flush on both nested VM-Enter and nested 3628 * VM-Exit (via kvm_mmu_reset_context()). 3629 */ 3630 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3631 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3632 else 3633 svm->current_vmcb->asid_generation--; 3634 } 3635 3636 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3637 { 3638 struct vcpu_svm *svm = to_svm(vcpu); 3639 3640 invlpga(gva, svm->vmcb->control.asid); 3641 } 3642 3643 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3644 { 3645 struct vcpu_svm *svm = to_svm(vcpu); 3646 3647 if (nested_svm_virtualize_tpr(vcpu)) 3648 return; 3649 3650 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3651 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3652 kvm_set_cr8(vcpu, cr8); 3653 } 3654 } 3655 3656 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3657 { 3658 struct vcpu_svm *svm = to_svm(vcpu); 3659 u64 cr8; 3660 3661 if (nested_svm_virtualize_tpr(vcpu) || 3662 kvm_vcpu_apicv_active(vcpu)) 3663 return; 3664 3665 cr8 = kvm_get_cr8(vcpu); 3666 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3667 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3668 } 3669 3670 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3671 { 3672 struct vcpu_svm *svm = to_svm(vcpu); 3673 u8 vector; 3674 int type; 3675 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3676 unsigned int3_injected = svm->int3_injected; 3677 3678 svm->int3_injected = 0; 3679 3680 /* 3681 * If we've made progress since setting HF_IRET_MASK, we've 3682 * executed an IRET and can allow NMI injection. 3683 */ 3684 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3685 (sev_es_guest(vcpu->kvm) || 3686 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3687 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3688 kvm_make_request(KVM_REQ_EVENT, vcpu); 3689 } 3690 3691 vcpu->arch.nmi_injected = false; 3692 kvm_clear_exception_queue(vcpu); 3693 kvm_clear_interrupt_queue(vcpu); 3694 3695 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3696 return; 3697 3698 kvm_make_request(KVM_REQ_EVENT, vcpu); 3699 3700 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3701 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3702 3703 switch (type) { 3704 case SVM_EXITINTINFO_TYPE_NMI: 3705 vcpu->arch.nmi_injected = true; 3706 break; 3707 case SVM_EXITINTINFO_TYPE_EXEPT: 3708 /* 3709 * Never re-inject a #VC exception. 3710 */ 3711 if (vector == X86_TRAP_VC) 3712 break; 3713 3714 /* 3715 * In case of software exceptions, do not reinject the vector, 3716 * but re-execute the instruction instead. Rewind RIP first 3717 * if we emulated INT3 before. 3718 */ 3719 if (kvm_exception_is_soft(vector)) { 3720 if (vector == BP_VECTOR && int3_injected && 3721 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3722 kvm_rip_write(vcpu, 3723 kvm_rip_read(vcpu) - int3_injected); 3724 break; 3725 } 3726 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3727 u32 err = svm->vmcb->control.exit_int_info_err; 3728 kvm_requeue_exception_e(vcpu, vector, err); 3729 3730 } else 3731 kvm_requeue_exception(vcpu, vector); 3732 break; 3733 case SVM_EXITINTINFO_TYPE_INTR: 3734 kvm_queue_interrupt(vcpu, vector, false); 3735 break; 3736 default: 3737 break; 3738 } 3739 } 3740 3741 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3742 { 3743 struct vcpu_svm *svm = to_svm(vcpu); 3744 struct vmcb_control_area *control = &svm->vmcb->control; 3745 3746 control->exit_int_info = control->event_inj; 3747 control->exit_int_info_err = control->event_inj_err; 3748 control->event_inj = 0; 3749 svm_complete_interrupts(vcpu); 3750 } 3751 3752 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 3753 { 3754 return 1; 3755 } 3756 3757 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3758 { 3759 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3760 to_svm(vcpu)->vmcb->control.exit_info_1) 3761 return handle_fastpath_set_msr_irqoff(vcpu); 3762 3763 return EXIT_FASTPATH_NONE; 3764 } 3765 3766 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3767 { 3768 struct vcpu_svm *svm = to_svm(vcpu); 3769 unsigned long vmcb_pa = svm->current_vmcb->pa; 3770 3771 guest_state_enter_irqoff(); 3772 3773 if (sev_es_guest(vcpu->kvm)) { 3774 __svm_sev_es_vcpu_run(vmcb_pa); 3775 } else { 3776 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3777 3778 /* 3779 * Use a single vmcb (vmcb01 because it's always valid) for 3780 * context switching guest state via VMLOAD/VMSAVE, that way 3781 * the state doesn't need to be copied between vmcb01 and 3782 * vmcb02 when switching vmcbs for nested virtualization. 3783 */ 3784 vmload(svm->vmcb01.pa); 3785 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3786 vmsave(svm->vmcb01.pa); 3787 3788 vmload(__sme_page_pa(sd->save_area)); 3789 } 3790 3791 guest_state_exit_irqoff(); 3792 } 3793 3794 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3795 { 3796 struct vcpu_svm *svm = to_svm(vcpu); 3797 3798 trace_kvm_entry(vcpu); 3799 3800 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3801 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3802 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3803 3804 /* 3805 * Disable singlestep if we're injecting an interrupt/exception. 3806 * We don't want our modified rflags to be pushed on the stack where 3807 * we might not be able to easily reset them if we disabled NMI 3808 * singlestep later. 3809 */ 3810 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3811 /* 3812 * Event injection happens before external interrupts cause a 3813 * vmexit and interrupts are disabled here, so smp_send_reschedule 3814 * is enough to force an immediate vmexit. 3815 */ 3816 disable_nmi_singlestep(svm); 3817 smp_send_reschedule(vcpu->cpu); 3818 } 3819 3820 pre_svm_run(vcpu); 3821 3822 sync_lapic_to_cr8(vcpu); 3823 3824 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3825 svm->vmcb->control.asid = svm->asid; 3826 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3827 } 3828 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3829 3830 svm_hv_update_vp_id(svm->vmcb, vcpu); 3831 3832 /* 3833 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3834 * of a #DB. 3835 */ 3836 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3837 svm_set_dr6(svm, vcpu->arch.dr6); 3838 else 3839 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3840 3841 clgi(); 3842 kvm_load_guest_xsave_state(vcpu); 3843 3844 kvm_wait_lapic_expire(vcpu); 3845 3846 /* 3847 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3848 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3849 * is no need to worry about the conditional branch over the wrmsr 3850 * being speculatively taken. 3851 */ 3852 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3853 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3854 3855 svm_vcpu_enter_exit(vcpu); 3856 3857 /* 3858 * We do not use IBRS in the kernel. If this vCPU has used the 3859 * SPEC_CTRL MSR it may have left it on; save the value and 3860 * turn it off. This is much more efficient than blindly adding 3861 * it to the atomic save/restore list. Especially as the former 3862 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3863 * 3864 * For non-nested case: 3865 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3866 * save it. 3867 * 3868 * For nested case: 3869 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3870 * save it. 3871 */ 3872 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3873 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3874 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3875 3876 if (!sev_es_guest(vcpu->kvm)) 3877 reload_tss(vcpu); 3878 3879 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3880 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3881 3882 if (!sev_es_guest(vcpu->kvm)) { 3883 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3884 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3885 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3886 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3887 } 3888 vcpu->arch.regs_dirty = 0; 3889 3890 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3891 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 3892 3893 kvm_load_host_xsave_state(vcpu); 3894 stgi(); 3895 3896 /* Any pending NMI will happen here */ 3897 3898 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3899 kvm_after_interrupt(vcpu); 3900 3901 sync_cr8_to_lapic(vcpu); 3902 3903 svm->next_rip = 0; 3904 if (is_guest_mode(vcpu)) { 3905 nested_sync_control_from_vmcb02(svm); 3906 3907 /* Track VMRUNs that have made past consistency checking */ 3908 if (svm->nested.nested_run_pending && 3909 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 3910 ++vcpu->stat.nested_run; 3911 3912 svm->nested.nested_run_pending = 0; 3913 } 3914 3915 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3916 vmcb_mark_all_clean(svm->vmcb); 3917 3918 /* if exit due to PF check for async PF */ 3919 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3920 vcpu->arch.apf.host_apf_flags = 3921 kvm_read_and_reset_apf_flags(); 3922 3923 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 3924 3925 /* 3926 * We need to handle MC intercepts here before the vcpu has a chance to 3927 * change the physical cpu 3928 */ 3929 if (unlikely(svm->vmcb->control.exit_code == 3930 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3931 svm_handle_mce(vcpu); 3932 3933 svm_complete_interrupts(vcpu); 3934 3935 if (is_guest_mode(vcpu)) 3936 return EXIT_FASTPATH_NONE; 3937 3938 return svm_exit_handlers_fastpath(vcpu); 3939 } 3940 3941 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3942 int root_level) 3943 { 3944 struct vcpu_svm *svm = to_svm(vcpu); 3945 unsigned long cr3; 3946 3947 if (npt_enabled) { 3948 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3949 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3950 3951 hv_track_root_tdp(vcpu, root_hpa); 3952 3953 cr3 = vcpu->arch.cr3; 3954 } else if (vcpu->arch.mmu->root_role.level >= PT64_ROOT_4LEVEL) { 3955 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 3956 } else { 3957 /* PCID in the guest should be impossible with a 32-bit MMU. */ 3958 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 3959 cr3 = root_hpa; 3960 } 3961 3962 svm->vmcb->save.cr3 = cr3; 3963 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3964 } 3965 3966 static int is_disabled(void) 3967 { 3968 u64 vm_cr; 3969 3970 rdmsrl(MSR_VM_CR, vm_cr); 3971 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3972 return 1; 3973 3974 return 0; 3975 } 3976 3977 static void 3978 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3979 { 3980 /* 3981 * Patch in the VMMCALL instruction: 3982 */ 3983 hypercall[0] = 0x0f; 3984 hypercall[1] = 0x01; 3985 hypercall[2] = 0xd9; 3986 } 3987 3988 static int __init svm_check_processor_compat(void) 3989 { 3990 return 0; 3991 } 3992 3993 /* 3994 * The kvm parameter can be NULL (module initialization, or invocation before 3995 * VM creation). Be sure to check the kvm parameter before using it. 3996 */ 3997 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3998 { 3999 switch (index) { 4000 case MSR_IA32_MCG_EXT_CTL: 4001 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 4002 return false; 4003 case MSR_IA32_SMBASE: 4004 /* SEV-ES guests do not support SMM, so report false */ 4005 if (kvm && sev_es_guest(kvm)) 4006 return false; 4007 break; 4008 default: 4009 break; 4010 } 4011 4012 return true; 4013 } 4014 4015 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 4016 { 4017 return 0; 4018 } 4019 4020 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4021 { 4022 struct vcpu_svm *svm = to_svm(vcpu); 4023 struct kvm_cpuid_entry2 *best; 4024 struct kvm *kvm = vcpu->kvm; 4025 4026 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4027 boot_cpu_has(X86_FEATURE_XSAVE) && 4028 boot_cpu_has(X86_FEATURE_XSAVES); 4029 4030 /* Update nrips enabled cache */ 4031 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4032 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4033 4034 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR); 4035 svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV); 4036 4037 svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4038 4039 svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) && 4040 guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER); 4041 4042 svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) && 4043 guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD); 4044 4045 svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF); 4046 4047 svm_recalc_instruction_intercepts(vcpu, svm); 4048 4049 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4050 if (sev_guest(vcpu->kvm)) { 4051 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 4052 if (best) 4053 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4054 } 4055 4056 if (kvm_vcpu_apicv_active(vcpu)) { 4057 /* 4058 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 4059 * is exposed to the guest, disable AVIC. 4060 */ 4061 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 4062 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_X2APIC); 4063 } 4064 init_vmcb_after_set_cpuid(vcpu); 4065 } 4066 4067 static bool svm_has_wbinvd_exit(void) 4068 { 4069 return true; 4070 } 4071 4072 #define PRE_EX(exit) { .exit_code = (exit), \ 4073 .stage = X86_ICPT_PRE_EXCEPT, } 4074 #define POST_EX(exit) { .exit_code = (exit), \ 4075 .stage = X86_ICPT_POST_EXCEPT, } 4076 #define POST_MEM(exit) { .exit_code = (exit), \ 4077 .stage = X86_ICPT_POST_MEMACCESS, } 4078 4079 static const struct __x86_intercept { 4080 u32 exit_code; 4081 enum x86_intercept_stage stage; 4082 } x86_intercept_map[] = { 4083 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4084 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4085 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4086 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4087 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4088 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4089 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4090 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4091 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4092 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4093 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4094 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4095 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4096 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4097 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4098 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4099 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4100 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4101 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4102 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4103 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4104 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4105 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4106 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4107 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4108 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4109 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4110 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4111 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4112 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4113 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4114 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4115 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4116 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4117 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4118 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4119 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4120 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4121 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4122 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4123 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4124 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4125 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4126 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4127 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4128 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4129 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4130 }; 4131 4132 #undef PRE_EX 4133 #undef POST_EX 4134 #undef POST_MEM 4135 4136 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4137 struct x86_instruction_info *info, 4138 enum x86_intercept_stage stage, 4139 struct x86_exception *exception) 4140 { 4141 struct vcpu_svm *svm = to_svm(vcpu); 4142 int vmexit, ret = X86EMUL_CONTINUE; 4143 struct __x86_intercept icpt_info; 4144 struct vmcb *vmcb = svm->vmcb; 4145 4146 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4147 goto out; 4148 4149 icpt_info = x86_intercept_map[info->intercept]; 4150 4151 if (stage != icpt_info.stage) 4152 goto out; 4153 4154 switch (icpt_info.exit_code) { 4155 case SVM_EXIT_READ_CR0: 4156 if (info->intercept == x86_intercept_cr_read) 4157 icpt_info.exit_code += info->modrm_reg; 4158 break; 4159 case SVM_EXIT_WRITE_CR0: { 4160 unsigned long cr0, val; 4161 4162 if (info->intercept == x86_intercept_cr_write) 4163 icpt_info.exit_code += info->modrm_reg; 4164 4165 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4166 info->intercept == x86_intercept_clts) 4167 break; 4168 4169 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4170 INTERCEPT_SELECTIVE_CR0))) 4171 break; 4172 4173 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4174 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4175 4176 if (info->intercept == x86_intercept_lmsw) { 4177 cr0 &= 0xfUL; 4178 val &= 0xfUL; 4179 /* lmsw can't clear PE - catch this here */ 4180 if (cr0 & X86_CR0_PE) 4181 val |= X86_CR0_PE; 4182 } 4183 4184 if (cr0 ^ val) 4185 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4186 4187 break; 4188 } 4189 case SVM_EXIT_READ_DR0: 4190 case SVM_EXIT_WRITE_DR0: 4191 icpt_info.exit_code += info->modrm_reg; 4192 break; 4193 case SVM_EXIT_MSR: 4194 if (info->intercept == x86_intercept_wrmsr) 4195 vmcb->control.exit_info_1 = 1; 4196 else 4197 vmcb->control.exit_info_1 = 0; 4198 break; 4199 case SVM_EXIT_PAUSE: 4200 /* 4201 * We get this for NOP only, but pause 4202 * is rep not, check this here 4203 */ 4204 if (info->rep_prefix != REPE_PREFIX) 4205 goto out; 4206 break; 4207 case SVM_EXIT_IOIO: { 4208 u64 exit_info; 4209 u32 bytes; 4210 4211 if (info->intercept == x86_intercept_in || 4212 info->intercept == x86_intercept_ins) { 4213 exit_info = ((info->src_val & 0xffff) << 16) | 4214 SVM_IOIO_TYPE_MASK; 4215 bytes = info->dst_bytes; 4216 } else { 4217 exit_info = (info->dst_val & 0xffff) << 16; 4218 bytes = info->src_bytes; 4219 } 4220 4221 if (info->intercept == x86_intercept_outs || 4222 info->intercept == x86_intercept_ins) 4223 exit_info |= SVM_IOIO_STR_MASK; 4224 4225 if (info->rep_prefix) 4226 exit_info |= SVM_IOIO_REP_MASK; 4227 4228 bytes = min(bytes, 4u); 4229 4230 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4231 4232 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4233 4234 vmcb->control.exit_info_1 = exit_info; 4235 vmcb->control.exit_info_2 = info->next_rip; 4236 4237 break; 4238 } 4239 default: 4240 break; 4241 } 4242 4243 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4244 if (static_cpu_has(X86_FEATURE_NRIPS)) 4245 vmcb->control.next_rip = info->next_rip; 4246 vmcb->control.exit_code = icpt_info.exit_code; 4247 vmexit = nested_svm_exit_handled(svm); 4248 4249 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4250 : X86EMUL_CONTINUE; 4251 4252 out: 4253 return ret; 4254 } 4255 4256 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4257 { 4258 } 4259 4260 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4261 { 4262 if (!kvm_pause_in_guest(vcpu->kvm)) 4263 shrink_ple_window(vcpu); 4264 } 4265 4266 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4267 { 4268 /* [63:9] are reserved. */ 4269 vcpu->arch.mcg_cap &= 0x1ff; 4270 } 4271 4272 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4273 { 4274 struct vcpu_svm *svm = to_svm(vcpu); 4275 4276 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4277 if (!gif_set(svm)) 4278 return true; 4279 4280 return is_smm(vcpu); 4281 } 4282 4283 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4284 { 4285 struct vcpu_svm *svm = to_svm(vcpu); 4286 if (svm->nested.nested_run_pending) 4287 return -EBUSY; 4288 4289 if (svm_smi_blocked(vcpu)) 4290 return 0; 4291 4292 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4293 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4294 return -EBUSY; 4295 4296 return 1; 4297 } 4298 4299 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4300 { 4301 struct vcpu_svm *svm = to_svm(vcpu); 4302 struct kvm_host_map map_save; 4303 int ret; 4304 4305 if (!is_guest_mode(vcpu)) 4306 return 0; 4307 4308 /* FED8h - SVM Guest */ 4309 put_smstate(u64, smstate, 0x7ed8, 1); 4310 /* FEE0h - SVM Guest VMCB Physical Address */ 4311 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4312 4313 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4314 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4315 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4316 4317 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4318 if (ret) 4319 return ret; 4320 4321 /* 4322 * KVM uses VMCB01 to store L1 host state while L2 runs but 4323 * VMCB01 is going to be used during SMM and thus the state will 4324 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4325 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4326 * format of the area is identical to guest save area offsetted 4327 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4328 * within 'struct vmcb'). Note: HSAVE area may also be used by 4329 * L1 hypervisor to save additional host context (e.g. KVM does 4330 * that, see svm_prepare_switch_to_guest()) which must be 4331 * preserved. 4332 */ 4333 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), 4334 &map_save) == -EINVAL) 4335 return 1; 4336 4337 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4338 4339 svm_copy_vmrun_state(map_save.hva + 0x400, 4340 &svm->vmcb01.ptr->save); 4341 4342 kvm_vcpu_unmap(vcpu, &map_save, true); 4343 return 0; 4344 } 4345 4346 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4347 { 4348 struct vcpu_svm *svm = to_svm(vcpu); 4349 struct kvm_host_map map, map_save; 4350 u64 saved_efer, vmcb12_gpa; 4351 struct vmcb *vmcb12; 4352 int ret; 4353 4354 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4355 return 0; 4356 4357 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4358 if (!GET_SMSTATE(u64, smstate, 0x7ed8)) 4359 return 0; 4360 4361 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4362 return 1; 4363 4364 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4365 if (!(saved_efer & EFER_SVME)) 4366 return 1; 4367 4368 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4369 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4370 return 1; 4371 4372 ret = 1; 4373 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL) 4374 goto unmap_map; 4375 4376 if (svm_allocate_nested(svm)) 4377 goto unmap_save; 4378 4379 /* 4380 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4381 * used during SMM (see svm_enter_smm()) 4382 */ 4383 4384 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4385 4386 /* 4387 * Enter the nested guest now 4388 */ 4389 4390 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4391 4392 vmcb12 = map.hva; 4393 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4394 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4395 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false); 4396 4397 if (ret) 4398 goto unmap_save; 4399 4400 svm->nested.nested_run_pending = 1; 4401 4402 unmap_save: 4403 kvm_vcpu_unmap(vcpu, &map_save, true); 4404 unmap_map: 4405 kvm_vcpu_unmap(vcpu, &map, true); 4406 return ret; 4407 } 4408 4409 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4410 { 4411 struct vcpu_svm *svm = to_svm(vcpu); 4412 4413 if (!gif_set(svm)) { 4414 if (vgif) 4415 svm_set_intercept(svm, INTERCEPT_STGI); 4416 /* STGI will cause a vm exit */ 4417 } else { 4418 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4419 } 4420 } 4421 4422 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4423 void *insn, int insn_len) 4424 { 4425 bool smep, smap, is_user; 4426 unsigned long cr4; 4427 u64 error_code; 4428 4429 /* Emulation is always possible when KVM has access to all guest state. */ 4430 if (!sev_guest(vcpu->kvm)) 4431 return true; 4432 4433 /* #UD and #GP should never be intercepted for SEV guests. */ 4434 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4435 EMULTYPE_TRAP_UD_FORCED | 4436 EMULTYPE_VMWARE_GP)); 4437 4438 /* 4439 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4440 * to guest register state. 4441 */ 4442 if (sev_es_guest(vcpu->kvm)) 4443 return false; 4444 4445 /* 4446 * Emulation is possible if the instruction is already decoded, e.g. 4447 * when completing I/O after returning from userspace. 4448 */ 4449 if (emul_type & EMULTYPE_NO_DECODE) 4450 return true; 4451 4452 /* 4453 * Emulation is possible for SEV guests if and only if a prefilled 4454 * buffer containing the bytes of the intercepted instruction is 4455 * available. SEV guest memory is encrypted with a guest specific key 4456 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4457 * decode garbage. 4458 * 4459 * Inject #UD if KVM reached this point without an instruction buffer. 4460 * In practice, this path should never be hit by a well-behaved guest, 4461 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path 4462 * is still theoretically reachable, e.g. via unaccelerated fault-like 4463 * AVIC access, and needs to be handled by KVM to avoid putting the 4464 * guest into an infinite loop. Injecting #UD is somewhat arbitrary, 4465 * but its the least awful option given lack of insight into the guest. 4466 */ 4467 if (unlikely(!insn)) { 4468 kvm_queue_exception(vcpu, UD_VECTOR); 4469 return false; 4470 } 4471 4472 /* 4473 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4474 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4475 * the faulting instruction because the code fetch itself faulted, e.g. 4476 * the guest attempted to fetch from emulated MMIO or a guest page 4477 * table used to translate CS:RIP resides in emulated MMIO. 4478 */ 4479 if (likely(insn_len)) 4480 return true; 4481 4482 /* 4483 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4484 * 4485 * Errata: 4486 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4487 * possible that CPU microcode implementing DecodeAssist will fail to 4488 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4489 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4490 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4491 * gives up and does not fill the instruction bytes buffer. 4492 * 4493 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4494 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4495 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4496 * GuestIntrBytes field of the VMCB. 4497 * 4498 * This does _not_ mean that the erratum has been encountered, as the 4499 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4500 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4501 * encountered a reserved/not-present #PF. 4502 * 4503 * To hit the erratum, the following conditions must be true: 4504 * 1. CR4.SMAP=1 (obviously). 4505 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4506 * have been hit as the guest would have encountered a SMEP 4507 * violation #PF, not a #NPF. 4508 * 3. The #NPF is not due to a code fetch, in which case failure to 4509 * retrieve the instruction bytes is legitimate (see abvoe). 4510 * 4511 * In addition, don't apply the erratum workaround if the #NPF occurred 4512 * while translating guest page tables (see below). 4513 */ 4514 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4515 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4516 goto resume_guest; 4517 4518 cr4 = kvm_read_cr4(vcpu); 4519 smep = cr4 & X86_CR4_SMEP; 4520 smap = cr4 & X86_CR4_SMAP; 4521 is_user = svm_get_cpl(vcpu) == 3; 4522 if (smap && (!smep || is_user)) { 4523 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4524 4525 /* 4526 * If the fault occurred in userspace, arbitrarily inject #GP 4527 * to avoid killing the guest and to hopefully avoid confusing 4528 * the guest kernel too much, e.g. injecting #PF would not be 4529 * coherent with respect to the guest's page tables. Request 4530 * triple fault if the fault occurred in the kernel as there's 4531 * no fault that KVM can inject without confusing the guest. 4532 * In practice, the triple fault is moot as no sane SEV kernel 4533 * will execute from user memory while also running with SMAP=1. 4534 */ 4535 if (is_user) 4536 kvm_inject_gp(vcpu, 0); 4537 else 4538 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4539 } 4540 4541 resume_guest: 4542 /* 4543 * If the erratum was not hit, simply resume the guest and let it fault 4544 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4545 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4546 * userspace will kill the guest, and letting the emulator read garbage 4547 * will yield random behavior and potentially corrupt the guest. 4548 * 4549 * Simply resuming the guest is technically not a violation of the SEV 4550 * architecture. AMD's APM states that all code fetches and page table 4551 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4552 * APM also states that encrypted accesses to MMIO are "ignored", but 4553 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4554 * the guest spin is technically "ignoring" the access. 4555 */ 4556 return false; 4557 } 4558 4559 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4560 { 4561 struct vcpu_svm *svm = to_svm(vcpu); 4562 4563 /* 4564 * TODO: Last condition latch INIT signals on vCPU when 4565 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4566 * To properly emulate the INIT intercept, 4567 * svm_check_nested_events() should call nested_svm_vmexit() 4568 * if an INIT signal is pending. 4569 */ 4570 return !gif_set(svm) || 4571 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4572 } 4573 4574 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4575 { 4576 if (!sev_es_guest(vcpu->kvm)) 4577 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4578 4579 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4580 } 4581 4582 static void svm_vm_destroy(struct kvm *kvm) 4583 { 4584 avic_vm_destroy(kvm); 4585 sev_vm_destroy(kvm); 4586 } 4587 4588 static int svm_vm_init(struct kvm *kvm) 4589 { 4590 if (!pause_filter_count || !pause_filter_thresh) 4591 kvm->arch.pause_in_guest = true; 4592 4593 if (enable_apicv) { 4594 int ret = avic_vm_init(kvm); 4595 if (ret) 4596 return ret; 4597 } 4598 4599 return 0; 4600 } 4601 4602 static struct kvm_x86_ops svm_x86_ops __initdata = { 4603 .name = "kvm_amd", 4604 4605 .hardware_unsetup = svm_hardware_unsetup, 4606 .hardware_enable = svm_hardware_enable, 4607 .hardware_disable = svm_hardware_disable, 4608 .has_emulated_msr = svm_has_emulated_msr, 4609 4610 .vcpu_create = svm_vcpu_create, 4611 .vcpu_free = svm_vcpu_free, 4612 .vcpu_reset = svm_vcpu_reset, 4613 4614 .vm_size = sizeof(struct kvm_svm), 4615 .vm_init = svm_vm_init, 4616 .vm_destroy = svm_vm_destroy, 4617 4618 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4619 .vcpu_load = svm_vcpu_load, 4620 .vcpu_put = svm_vcpu_put, 4621 .vcpu_blocking = avic_vcpu_blocking, 4622 .vcpu_unblocking = avic_vcpu_unblocking, 4623 4624 .update_exception_bitmap = svm_update_exception_bitmap, 4625 .get_msr_feature = svm_get_msr_feature, 4626 .get_msr = svm_get_msr, 4627 .set_msr = svm_set_msr, 4628 .get_segment_base = svm_get_segment_base, 4629 .get_segment = svm_get_segment, 4630 .set_segment = svm_set_segment, 4631 .get_cpl = svm_get_cpl, 4632 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4633 .set_cr0 = svm_set_cr0, 4634 .post_set_cr3 = sev_post_set_cr3, 4635 .is_valid_cr4 = svm_is_valid_cr4, 4636 .set_cr4 = svm_set_cr4, 4637 .set_efer = svm_set_efer, 4638 .get_idt = svm_get_idt, 4639 .set_idt = svm_set_idt, 4640 .get_gdt = svm_get_gdt, 4641 .set_gdt = svm_set_gdt, 4642 .set_dr7 = svm_set_dr7, 4643 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4644 .cache_reg = svm_cache_reg, 4645 .get_rflags = svm_get_rflags, 4646 .set_rflags = svm_set_rflags, 4647 .get_if_flag = svm_get_if_flag, 4648 4649 .flush_tlb_all = svm_flush_tlb_current, 4650 .flush_tlb_current = svm_flush_tlb_current, 4651 .flush_tlb_gva = svm_flush_tlb_gva, 4652 .flush_tlb_guest = svm_flush_tlb_current, 4653 4654 .vcpu_pre_run = svm_vcpu_pre_run, 4655 .vcpu_run = svm_vcpu_run, 4656 .handle_exit = svm_handle_exit, 4657 .skip_emulated_instruction = svm_skip_emulated_instruction, 4658 .update_emulated_instruction = NULL, 4659 .set_interrupt_shadow = svm_set_interrupt_shadow, 4660 .get_interrupt_shadow = svm_get_interrupt_shadow, 4661 .patch_hypercall = svm_patch_hypercall, 4662 .inject_irq = svm_inject_irq, 4663 .inject_nmi = svm_inject_nmi, 4664 .queue_exception = svm_queue_exception, 4665 .cancel_injection = svm_cancel_injection, 4666 .interrupt_allowed = svm_interrupt_allowed, 4667 .nmi_allowed = svm_nmi_allowed, 4668 .get_nmi_mask = svm_get_nmi_mask, 4669 .set_nmi_mask = svm_set_nmi_mask, 4670 .enable_nmi_window = svm_enable_nmi_window, 4671 .enable_irq_window = svm_enable_irq_window, 4672 .update_cr8_intercept = svm_update_cr8_intercept, 4673 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4674 .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons, 4675 .apicv_post_state_restore = avic_apicv_post_state_restore, 4676 4677 .get_mt_mask = svm_get_mt_mask, 4678 .get_exit_info = svm_get_exit_info, 4679 4680 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4681 4682 .has_wbinvd_exit = svm_has_wbinvd_exit, 4683 4684 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4685 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4686 .write_tsc_offset = svm_write_tsc_offset, 4687 .write_tsc_multiplier = svm_write_tsc_multiplier, 4688 4689 .load_mmu_pgd = svm_load_mmu_pgd, 4690 4691 .check_intercept = svm_check_intercept, 4692 .handle_exit_irqoff = svm_handle_exit_irqoff, 4693 4694 .request_immediate_exit = __kvm_request_immediate_exit, 4695 4696 .sched_in = svm_sched_in, 4697 4698 .nested_ops = &svm_nested_ops, 4699 4700 .deliver_interrupt = svm_deliver_interrupt, 4701 .pi_update_irte = avic_pi_update_irte, 4702 .setup_mce = svm_setup_mce, 4703 4704 .smi_allowed = svm_smi_allowed, 4705 .enter_smm = svm_enter_smm, 4706 .leave_smm = svm_leave_smm, 4707 .enable_smi_window = svm_enable_smi_window, 4708 4709 .mem_enc_ioctl = sev_mem_enc_ioctl, 4710 .mem_enc_register_region = sev_mem_enc_register_region, 4711 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 4712 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 4713 4714 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 4715 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 4716 4717 .can_emulate_instruction = svm_can_emulate_instruction, 4718 4719 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4720 4721 .msr_filter_changed = svm_msr_filter_changed, 4722 .complete_emulated_msr = svm_complete_emulated_msr, 4723 4724 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4725 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 4726 }; 4727 4728 /* 4729 * The default MMIO mask is a single bit (excluding the present bit), 4730 * which could conflict with the memory encryption bit. Check for 4731 * memory encryption support and override the default MMIO mask if 4732 * memory encryption is enabled. 4733 */ 4734 static __init void svm_adjust_mmio_mask(void) 4735 { 4736 unsigned int enc_bit, mask_bit; 4737 u64 msr, mask; 4738 4739 /* If there is no memory encryption support, use existing mask */ 4740 if (cpuid_eax(0x80000000) < 0x8000001f) 4741 return; 4742 4743 /* If memory encryption is not enabled, use existing mask */ 4744 rdmsrl(MSR_AMD64_SYSCFG, msr); 4745 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 4746 return; 4747 4748 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 4749 mask_bit = boot_cpu_data.x86_phys_bits; 4750 4751 /* Increment the mask bit if it is the same as the encryption bit */ 4752 if (enc_bit == mask_bit) 4753 mask_bit++; 4754 4755 /* 4756 * If the mask bit location is below 52, then some bits above the 4757 * physical addressing limit will always be reserved, so use the 4758 * rsvd_bits() function to generate the mask. This mask, along with 4759 * the present bit, will be used to generate a page fault with 4760 * PFER.RSV = 1. 4761 * 4762 * If the mask bit location is 52 (or above), then clear the mask. 4763 */ 4764 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 4765 4766 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 4767 } 4768 4769 static __init void svm_set_cpu_caps(void) 4770 { 4771 kvm_set_cpu_caps(); 4772 4773 supported_xss = 0; 4774 4775 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 4776 if (nested) { 4777 kvm_cpu_cap_set(X86_FEATURE_SVM); 4778 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 4779 4780 if (nrips) 4781 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 4782 4783 if (npt_enabled) 4784 kvm_cpu_cap_set(X86_FEATURE_NPT); 4785 4786 if (tsc_scaling) 4787 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 4788 4789 if (vls) 4790 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 4791 if (lbrv) 4792 kvm_cpu_cap_set(X86_FEATURE_LBRV); 4793 4794 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 4795 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 4796 4797 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 4798 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 4799 4800 if (vgif) 4801 kvm_cpu_cap_set(X86_FEATURE_VGIF); 4802 4803 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 4804 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 4805 } 4806 4807 /* CPUID 0x80000008 */ 4808 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 4809 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 4810 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 4811 4812 /* AMD PMU PERFCTR_CORE CPUID */ 4813 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 4814 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE); 4815 4816 /* CPUID 0x8000001F (SME/SEV features) */ 4817 sev_set_cpu_caps(); 4818 } 4819 4820 static __init int svm_hardware_setup(void) 4821 { 4822 int cpu; 4823 struct page *iopm_pages; 4824 void *iopm_va; 4825 int r; 4826 unsigned int order = get_order(IOPM_SIZE); 4827 4828 /* 4829 * NX is required for shadow paging and for NPT if the NX huge pages 4830 * mitigation is enabled. 4831 */ 4832 if (!boot_cpu_has(X86_FEATURE_NX)) { 4833 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 4834 return -EOPNOTSUPP; 4835 } 4836 kvm_enable_efer_bits(EFER_NX); 4837 4838 iopm_pages = alloc_pages(GFP_KERNEL, order); 4839 4840 if (!iopm_pages) 4841 return -ENOMEM; 4842 4843 iopm_va = page_address(iopm_pages); 4844 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 4845 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 4846 4847 init_msrpm_offsets(); 4848 4849 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 4850 4851 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 4852 kvm_enable_efer_bits(EFER_FFXSR); 4853 4854 if (tsc_scaling) { 4855 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 4856 tsc_scaling = false; 4857 } else { 4858 pr_info("TSC scaling supported\n"); 4859 kvm_has_tsc_control = true; 4860 } 4861 } 4862 kvm_max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 4863 kvm_tsc_scaling_ratio_frac_bits = 32; 4864 4865 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 4866 4867 /* Check for pause filtering support */ 4868 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 4869 pause_filter_count = 0; 4870 pause_filter_thresh = 0; 4871 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 4872 pause_filter_thresh = 0; 4873 } 4874 4875 if (nested) { 4876 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 4877 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 4878 } 4879 4880 /* 4881 * KVM's MMU doesn't support using 2-level paging for itself, and thus 4882 * NPT isn't supported if the host is using 2-level paging since host 4883 * CR4 is unchanged on VMRUN. 4884 */ 4885 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 4886 npt_enabled = false; 4887 4888 if (!boot_cpu_has(X86_FEATURE_NPT)) 4889 npt_enabled = false; 4890 4891 /* Force VM NPT level equal to the host's paging level */ 4892 kvm_configure_mmu(npt_enabled, get_npt_level(), 4893 get_npt_level(), PG_LEVEL_1G); 4894 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 4895 4896 /* Setup shadow_me_value and shadow_me_mask */ 4897 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 4898 4899 /* Note, SEV setup consumes npt_enabled. */ 4900 sev_hardware_setup(); 4901 4902 svm_hv_hardware_setup(); 4903 4904 svm_adjust_mmio_mask(); 4905 4906 for_each_possible_cpu(cpu) { 4907 r = svm_cpu_init(cpu); 4908 if (r) 4909 goto err; 4910 } 4911 4912 if (nrips) { 4913 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 4914 nrips = false; 4915 } 4916 4917 enable_apicv = avic = avic && npt_enabled && (boot_cpu_has(X86_FEATURE_AVIC) || force_avic); 4918 4919 if (enable_apicv) { 4920 if (!boot_cpu_has(X86_FEATURE_AVIC)) { 4921 pr_warn("AVIC is not supported in CPUID but force enabled"); 4922 pr_warn("Your system might crash and burn"); 4923 } else 4924 pr_info("AVIC enabled\n"); 4925 4926 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 4927 } else { 4928 svm_x86_ops.vcpu_blocking = NULL; 4929 svm_x86_ops.vcpu_unblocking = NULL; 4930 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 4931 } 4932 4933 if (vls) { 4934 if (!npt_enabled || 4935 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 4936 !IS_ENABLED(CONFIG_X86_64)) { 4937 vls = false; 4938 } else { 4939 pr_info("Virtual VMLOAD VMSAVE supported\n"); 4940 } 4941 } 4942 4943 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 4944 svm_gp_erratum_intercept = false; 4945 4946 if (vgif) { 4947 if (!boot_cpu_has(X86_FEATURE_VGIF)) 4948 vgif = false; 4949 else 4950 pr_info("Virtual GIF supported\n"); 4951 } 4952 4953 if (lbrv) { 4954 if (!boot_cpu_has(X86_FEATURE_LBRV)) 4955 lbrv = false; 4956 else 4957 pr_info("LBR virtualization supported\n"); 4958 } 4959 4960 if (!enable_pmu) 4961 pr_info("PMU virtualization is disabled\n"); 4962 4963 svm_set_cpu_caps(); 4964 4965 /* 4966 * It seems that on AMD processors PTE's accessed bit is 4967 * being set by the CPU hardware before the NPF vmexit. 4968 * This is not expected behaviour and our tests fail because 4969 * of it. 4970 * A workaround here is to disable support for 4971 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 4972 * In this case userspace can know if there is support using 4973 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 4974 * it 4975 * If future AMD CPU models change the behaviour described above, 4976 * this variable can be changed accordingly 4977 */ 4978 allow_smaller_maxphyaddr = !npt_enabled; 4979 4980 return 0; 4981 4982 err: 4983 svm_hardware_unsetup(); 4984 return r; 4985 } 4986 4987 4988 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4989 .cpu_has_kvm_support = has_svm, 4990 .disabled_by_bios = is_disabled, 4991 .hardware_setup = svm_hardware_setup, 4992 .check_processor_compatibility = svm_check_processor_compat, 4993 4994 .runtime_ops = &svm_x86_ops, 4995 .pmu_ops = &amd_pmu_ops, 4996 }; 4997 4998 static int __init svm_init(void) 4999 { 5000 __unused_size_checks(); 5001 5002 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 5003 __alignof__(struct vcpu_svm), THIS_MODULE); 5004 } 5005 5006 static void __exit svm_exit(void) 5007 { 5008 kvm_exit(); 5009 } 5010 5011 module_init(svm_init) 5012 module_exit(svm_exit) 5013