xref: /linux/arch/x86/kvm/svm/svm.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 
31 #include <asm/apic.h>
32 #include <asm/perf_event.h>
33 #include <asm/tlbflush.h>
34 #include <asm/desc.h>
35 #include <asm/debugreg.h>
36 #include <asm/kvm_para.h>
37 #include <asm/irq_remapping.h>
38 #include <asm/spec-ctrl.h>
39 #include <asm/cpu_device_id.h>
40 #include <asm/traps.h>
41 #include <asm/fpu/api.h>
42 
43 #include <asm/virtext.h>
44 #include "trace.h"
45 
46 #include "svm.h"
47 #include "svm_ops.h"
48 
49 #include "kvm_onhyperv.h"
50 #include "svm_onhyperv.h"
51 
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54 
55 #ifdef MODULE
56 static const struct x86_cpu_id svm_cpu_id[] = {
57 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
58 	{}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
61 #endif
62 
63 #define SEG_TYPE_LDT 2
64 #define SEG_TYPE_BUSY_TSS16 3
65 
66 static bool erratum_383_found __read_mostly;
67 
68 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
69 
70 /*
71  * Set osvw_len to higher value when updated Revision Guides
72  * are published and we know what the new status bits are
73  */
74 static uint64_t osvw_len = 4, osvw_status;
75 
76 static DEFINE_PER_CPU(u64, current_tsc_ratio);
77 
78 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
79 
80 static const struct svm_direct_access_msrs {
81 	u32 index;   /* Index of the MSR */
82 	bool always; /* True if intercept is initially cleared */
83 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
84 	{ .index = MSR_STAR,				.always = true  },
85 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
86 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
87 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
88 #ifdef CONFIG_X86_64
89 	{ .index = MSR_GS_BASE,				.always = true  },
90 	{ .index = MSR_FS_BASE,				.always = true  },
91 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
92 	{ .index = MSR_LSTAR,				.always = true  },
93 	{ .index = MSR_CSTAR,				.always = true  },
94 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
95 #endif
96 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
97 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
98 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
99 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
100 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
101 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
102 	{ .index = MSR_EFER,				.always = false },
103 	{ .index = MSR_IA32_CR_PAT,			.always = false },
104 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
105 	{ .index = MSR_TSC_AUX,				.always = false },
106 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
107 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
108 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
109 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
110 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
111 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
112 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
122 
123 	/*
124 	 * Note:
125 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
126 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
127 	 * the AVIC hardware would generate GP fault. Therefore, always
128 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
129 	 */
130 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
131 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
132 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
133 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
134 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
135 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
137 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
138 	{ .index = MSR_INVALID,				.always = false },
139 };
140 
141 /*
142  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
143  * pause_filter_count: On processors that support Pause filtering(indicated
144  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
145  *	count value. On VMRUN this value is loaded into an internal counter.
146  *	Each time a pause instruction is executed, this counter is decremented
147  *	until it reaches zero at which time a #VMEXIT is generated if pause
148  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
149  *	Intercept Filtering for more details.
150  *	This also indicate if ple logic enabled.
151  *
152  * pause_filter_thresh: In addition, some processor families support advanced
153  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
154  *	the amount of time a guest is allowed to execute in a pause loop.
155  *	In this mode, a 16-bit pause filter threshold field is added in the
156  *	VMCB. The threshold value is a cycle count that is used to reset the
157  *	pause counter. As with simple pause filtering, VMRUN loads the pause
158  *	count value from VMCB into an internal counter. Then, on each pause
159  *	instruction the hardware checks the elapsed number of cycles since
160  *	the most recent pause instruction against the pause filter threshold.
161  *	If the elapsed cycle count is greater than the pause filter threshold,
162  *	then the internal pause count is reloaded from the VMCB and execution
163  *	continues. If the elapsed cycle count is less than the pause filter
164  *	threshold, then the internal pause count is decremented. If the count
165  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
166  *	triggered. If advanced pause filtering is supported and pause filter
167  *	threshold field is set to zero, the filter will operate in the simpler,
168  *	count only mode.
169  */
170 
171 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
172 module_param(pause_filter_thresh, ushort, 0444);
173 
174 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
175 module_param(pause_filter_count, ushort, 0444);
176 
177 /* Default doubles per-vcpu window every exit. */
178 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
179 module_param(pause_filter_count_grow, ushort, 0444);
180 
181 /* Default resets per-vcpu window every exit to pause_filter_count. */
182 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
183 module_param(pause_filter_count_shrink, ushort, 0444);
184 
185 /* Default is to compute the maximum so we can never overflow. */
186 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
187 module_param(pause_filter_count_max, ushort, 0444);
188 
189 /*
190  * Use nested page tables by default.  Note, NPT may get forced off by
191  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
192  */
193 bool npt_enabled = true;
194 module_param_named(npt, npt_enabled, bool, 0444);
195 
196 /* allow nested virtualization in KVM/SVM */
197 static int nested = true;
198 module_param(nested, int, S_IRUGO);
199 
200 /* enable/disable Next RIP Save */
201 static int nrips = true;
202 module_param(nrips, int, 0444);
203 
204 /* enable/disable Virtual VMLOAD VMSAVE */
205 static int vls = true;
206 module_param(vls, int, 0444);
207 
208 /* enable/disable Virtual GIF */
209 int vgif = true;
210 module_param(vgif, int, 0444);
211 
212 /* enable/disable LBR virtualization */
213 static int lbrv = true;
214 module_param(lbrv, int, 0444);
215 
216 static int tsc_scaling = true;
217 module_param(tsc_scaling, int, 0444);
218 
219 /*
220  * enable / disable AVIC.  Because the defaults differ for APICv
221  * support between VMX and SVM we cannot use module_param_named.
222  */
223 static bool avic;
224 module_param(avic, bool, 0444);
225 
226 bool __read_mostly dump_invalid_vmcb;
227 module_param(dump_invalid_vmcb, bool, 0644);
228 
229 
230 bool intercept_smi = true;
231 module_param(intercept_smi, bool, 0444);
232 
233 
234 static bool svm_gp_erratum_intercept = true;
235 
236 static u8 rsm_ins_bytes[] = "\x0f\xaa";
237 
238 static unsigned long iopm_base;
239 
240 struct kvm_ldttss_desc {
241 	u16 limit0;
242 	u16 base0;
243 	unsigned base1:8, type:5, dpl:2, p:1;
244 	unsigned limit1:4, zero0:3, g:1, base2:8;
245 	u32 base3;
246 	u32 zero1;
247 } __attribute__((packed));
248 
249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
250 
251 /*
252  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
253  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
254  *
255  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
256  * defer the restoration of TSC_AUX until the CPU returns to userspace.
257  */
258 static int tsc_aux_uret_slot __read_mostly = -1;
259 
260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
261 
262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
263 #define MSRS_RANGE_SIZE 2048
264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
265 
266 u32 svm_msrpm_offset(u32 msr)
267 {
268 	u32 offset;
269 	int i;
270 
271 	for (i = 0; i < NUM_MSR_MAPS; i++) {
272 		if (msr < msrpm_ranges[i] ||
273 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
274 			continue;
275 
276 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
277 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
278 
279 		/* Now we have the u8 offset - but need the u32 offset */
280 		return offset / 4;
281 	}
282 
283 	/* MSR not in any range */
284 	return MSR_INVALID;
285 }
286 
287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
288 
289 static int get_npt_level(void)
290 {
291 #ifdef CONFIG_X86_64
292 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
293 #else
294 	return PT32E_ROOT_LEVEL;
295 #endif
296 }
297 
298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
299 {
300 	struct vcpu_svm *svm = to_svm(vcpu);
301 	u64 old_efer = vcpu->arch.efer;
302 	vcpu->arch.efer = efer;
303 
304 	if (!npt_enabled) {
305 		/* Shadow paging assumes NX to be available.  */
306 		efer |= EFER_NX;
307 
308 		if (!(efer & EFER_LMA))
309 			efer &= ~EFER_LME;
310 	}
311 
312 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
313 		if (!(efer & EFER_SVME)) {
314 			svm_leave_nested(vcpu);
315 			svm_set_gif(svm, true);
316 			/* #GP intercept is still needed for vmware backdoor */
317 			if (!enable_vmware_backdoor)
318 				clr_exception_intercept(svm, GP_VECTOR);
319 
320 			/*
321 			 * Free the nested guest state, unless we are in SMM.
322 			 * In this case we will return to the nested guest
323 			 * as soon as we leave SMM.
324 			 */
325 			if (!is_smm(vcpu))
326 				svm_free_nested(svm);
327 
328 		} else {
329 			int ret = svm_allocate_nested(svm);
330 
331 			if (ret) {
332 				vcpu->arch.efer = old_efer;
333 				return ret;
334 			}
335 
336 			/*
337 			 * Never intercept #GP for SEV guests, KVM can't
338 			 * decrypt guest memory to workaround the erratum.
339 			 */
340 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
341 				set_exception_intercept(svm, GP_VECTOR);
342 		}
343 	}
344 
345 	svm->vmcb->save.efer = efer | EFER_SVME;
346 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
347 	return 0;
348 }
349 
350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
351 {
352 	struct vcpu_svm *svm = to_svm(vcpu);
353 	u32 ret = 0;
354 
355 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
356 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
357 	return ret;
358 }
359 
360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
361 {
362 	struct vcpu_svm *svm = to_svm(vcpu);
363 
364 	if (mask == 0)
365 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
366 	else
367 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
368 
369 }
370 
371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
372 					   bool commit_side_effects)
373 {
374 	struct vcpu_svm *svm = to_svm(vcpu);
375 	unsigned long old_rflags;
376 
377 	/*
378 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
379 	 * the type of exit and the #VC handler in the guest.
380 	 */
381 	if (sev_es_guest(vcpu->kvm))
382 		goto done;
383 
384 	if (nrips && svm->vmcb->control.next_rip != 0) {
385 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
386 		svm->next_rip = svm->vmcb->control.next_rip;
387 	}
388 
389 	if (!svm->next_rip) {
390 		if (unlikely(!commit_side_effects))
391 			old_rflags = svm->vmcb->save.rflags;
392 
393 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
394 			return 0;
395 
396 		if (unlikely(!commit_side_effects))
397 			svm->vmcb->save.rflags = old_rflags;
398 	} else {
399 		kvm_rip_write(vcpu, svm->next_rip);
400 	}
401 
402 done:
403 	if (likely(commit_side_effects))
404 		svm_set_interrupt_shadow(vcpu, 0);
405 
406 	return 1;
407 }
408 
409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
410 {
411 	return __svm_skip_emulated_instruction(vcpu, true);
412 }
413 
414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
415 {
416 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
417 	struct vcpu_svm *svm = to_svm(vcpu);
418 
419 	/*
420 	 * Due to architectural shortcomings, the CPU doesn't always provide
421 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
422 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
423 	 * the instruction even if NextRIP is supported to acquire the next
424 	 * RIP so that it can be shoved into the NextRIP field, otherwise
425 	 * hardware will fail to advance guest RIP during event injection.
426 	 * Drop the exception/interrupt if emulation fails and effectively
427 	 * retry the instruction, it's the least awful option.  If NRIPS is
428 	 * in use, the skip must not commit any side effects such as clearing
429 	 * the interrupt shadow or RFLAGS.RF.
430 	 */
431 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
432 		return -EIO;
433 
434 	rip = kvm_rip_read(vcpu);
435 
436 	/*
437 	 * Save the injection information, even when using next_rip, as the
438 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
439 	 * doesn't complete due to a VM-Exit occurring while the CPU is
440 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
441 	 * work as there may be no backing instruction, e.g. if the event is
442 	 * being injected by L1 for L2, or if the guest is patching INT3 into
443 	 * a different instruction.
444 	 */
445 	svm->soft_int_injected = true;
446 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
447 	svm->soft_int_old_rip = old_rip;
448 	svm->soft_int_next_rip = rip;
449 
450 	if (nrips)
451 		kvm_rip_write(vcpu, old_rip);
452 
453 	if (static_cpu_has(X86_FEATURE_NRIPS))
454 		svm->vmcb->control.next_rip = rip;
455 
456 	return 0;
457 }
458 
459 static void svm_inject_exception(struct kvm_vcpu *vcpu)
460 {
461 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
462 	struct vcpu_svm *svm = to_svm(vcpu);
463 
464 	kvm_deliver_exception_payload(vcpu, ex);
465 
466 	if (kvm_exception_is_soft(ex->vector) &&
467 	    svm_update_soft_interrupt_rip(vcpu))
468 		return;
469 
470 	svm->vmcb->control.event_inj = ex->vector
471 		| SVM_EVTINJ_VALID
472 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
473 		| SVM_EVTINJ_TYPE_EXEPT;
474 	svm->vmcb->control.event_inj_err = ex->error_code;
475 }
476 
477 static void svm_init_erratum_383(void)
478 {
479 	u32 low, high;
480 	int err;
481 	u64 val;
482 
483 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
484 		return;
485 
486 	/* Use _safe variants to not break nested virtualization */
487 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
488 	if (err)
489 		return;
490 
491 	val |= (1ULL << 47);
492 
493 	low  = lower_32_bits(val);
494 	high = upper_32_bits(val);
495 
496 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
497 
498 	erratum_383_found = true;
499 }
500 
501 static void svm_init_osvw(struct kvm_vcpu *vcpu)
502 {
503 	/*
504 	 * Guests should see errata 400 and 415 as fixed (assuming that
505 	 * HLT and IO instructions are intercepted).
506 	 */
507 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
508 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
509 
510 	/*
511 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
512 	 * all osvw.status bits inside that length, including bit 0 (which is
513 	 * reserved for erratum 298), are valid. However, if host processor's
514 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
515 	 * be conservative here and therefore we tell the guest that erratum 298
516 	 * is present (because we really don't know).
517 	 */
518 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
519 		vcpu->arch.osvw.status |= 1;
520 }
521 
522 static int has_svm(void)
523 {
524 	const char *msg;
525 
526 	if (!cpu_has_svm(&msg)) {
527 		printk(KERN_INFO "has_svm: %s\n", msg);
528 		return 0;
529 	}
530 
531 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
532 		pr_info("KVM is unsupported when running as an SEV guest\n");
533 		return 0;
534 	}
535 
536 	return 1;
537 }
538 
539 void __svm_write_tsc_multiplier(u64 multiplier)
540 {
541 	preempt_disable();
542 
543 	if (multiplier == __this_cpu_read(current_tsc_ratio))
544 		goto out;
545 
546 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
547 	__this_cpu_write(current_tsc_ratio, multiplier);
548 out:
549 	preempt_enable();
550 }
551 
552 static void svm_hardware_disable(void)
553 {
554 	/* Make sure we clean up behind us */
555 	if (tsc_scaling)
556 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
557 
558 	cpu_svm_disable();
559 
560 	amd_pmu_disable_virt();
561 }
562 
563 static int svm_hardware_enable(void)
564 {
565 
566 	struct svm_cpu_data *sd;
567 	uint64_t efer;
568 	struct desc_struct *gdt;
569 	int me = raw_smp_processor_id();
570 
571 	rdmsrl(MSR_EFER, efer);
572 	if (efer & EFER_SVME)
573 		return -EBUSY;
574 
575 	if (!has_svm()) {
576 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
577 		return -EINVAL;
578 	}
579 	sd = per_cpu_ptr(&svm_data, me);
580 	sd->asid_generation = 1;
581 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
582 	sd->next_asid = sd->max_asid + 1;
583 	sd->min_asid = max_sev_asid + 1;
584 
585 	gdt = get_current_gdt_rw();
586 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
587 
588 	wrmsrl(MSR_EFER, efer | EFER_SVME);
589 
590 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
591 
592 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
593 		/*
594 		 * Set the default value, even if we don't use TSC scaling
595 		 * to avoid having stale value in the msr
596 		 */
597 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
598 	}
599 
600 
601 	/*
602 	 * Get OSVW bits.
603 	 *
604 	 * Note that it is possible to have a system with mixed processor
605 	 * revisions and therefore different OSVW bits. If bits are not the same
606 	 * on different processors then choose the worst case (i.e. if erratum
607 	 * is present on one processor and not on another then assume that the
608 	 * erratum is present everywhere).
609 	 */
610 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
611 		uint64_t len, status = 0;
612 		int err;
613 
614 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
615 		if (!err)
616 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
617 						      &err);
618 
619 		if (err)
620 			osvw_status = osvw_len = 0;
621 		else {
622 			if (len < osvw_len)
623 				osvw_len = len;
624 			osvw_status |= status;
625 			osvw_status &= (1ULL << osvw_len) - 1;
626 		}
627 	} else
628 		osvw_status = osvw_len = 0;
629 
630 	svm_init_erratum_383();
631 
632 	amd_pmu_enable_virt();
633 
634 	return 0;
635 }
636 
637 static void svm_cpu_uninit(int cpu)
638 {
639 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
640 
641 	if (!sd->save_area)
642 		return;
643 
644 	kfree(sd->sev_vmcbs);
645 	__free_page(sd->save_area);
646 	sd->save_area_pa = 0;
647 	sd->save_area = NULL;
648 }
649 
650 static int svm_cpu_init(int cpu)
651 {
652 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
653 	int ret = -ENOMEM;
654 
655 	memset(sd, 0, sizeof(struct svm_cpu_data));
656 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
657 	if (!sd->save_area)
658 		return ret;
659 
660 	ret = sev_cpu_init(sd);
661 	if (ret)
662 		goto free_save_area;
663 
664 	sd->save_area_pa = __sme_page_pa(sd->save_area);
665 	return 0;
666 
667 free_save_area:
668 	__free_page(sd->save_area);
669 	sd->save_area = NULL;
670 	return ret;
671 
672 }
673 
674 static int direct_access_msr_slot(u32 msr)
675 {
676 	u32 i;
677 
678 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
679 		if (direct_access_msrs[i].index == msr)
680 			return i;
681 
682 	return -ENOENT;
683 }
684 
685 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
686 				     int write)
687 {
688 	struct vcpu_svm *svm = to_svm(vcpu);
689 	int slot = direct_access_msr_slot(msr);
690 
691 	if (slot == -ENOENT)
692 		return;
693 
694 	/* Set the shadow bitmaps to the desired intercept states */
695 	if (read)
696 		set_bit(slot, svm->shadow_msr_intercept.read);
697 	else
698 		clear_bit(slot, svm->shadow_msr_intercept.read);
699 
700 	if (write)
701 		set_bit(slot, svm->shadow_msr_intercept.write);
702 	else
703 		clear_bit(slot, svm->shadow_msr_intercept.write);
704 }
705 
706 static bool valid_msr_intercept(u32 index)
707 {
708 	return direct_access_msr_slot(index) != -ENOENT;
709 }
710 
711 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
712 {
713 	u8 bit_write;
714 	unsigned long tmp;
715 	u32 offset;
716 	u32 *msrpm;
717 
718 	/*
719 	 * For non-nested case:
720 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
721 	 * save it.
722 	 *
723 	 * For nested case:
724 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
725 	 * save it.
726 	 */
727 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
728 				      to_svm(vcpu)->msrpm;
729 
730 	offset    = svm_msrpm_offset(msr);
731 	bit_write = 2 * (msr & 0x0f) + 1;
732 	tmp       = msrpm[offset];
733 
734 	BUG_ON(offset == MSR_INVALID);
735 
736 	return !!test_bit(bit_write,  &tmp);
737 }
738 
739 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
740 					u32 msr, int read, int write)
741 {
742 	struct vcpu_svm *svm = to_svm(vcpu);
743 	u8 bit_read, bit_write;
744 	unsigned long tmp;
745 	u32 offset;
746 
747 	/*
748 	 * If this warning triggers extend the direct_access_msrs list at the
749 	 * beginning of the file
750 	 */
751 	WARN_ON(!valid_msr_intercept(msr));
752 
753 	/* Enforce non allowed MSRs to trap */
754 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
755 		read = 0;
756 
757 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
758 		write = 0;
759 
760 	offset    = svm_msrpm_offset(msr);
761 	bit_read  = 2 * (msr & 0x0f);
762 	bit_write = 2 * (msr & 0x0f) + 1;
763 	tmp       = msrpm[offset];
764 
765 	BUG_ON(offset == MSR_INVALID);
766 
767 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
768 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
769 
770 	msrpm[offset] = tmp;
771 
772 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
773 	svm->nested.force_msr_bitmap_recalc = true;
774 }
775 
776 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
777 			  int read, int write)
778 {
779 	set_shadow_msr_intercept(vcpu, msr, read, write);
780 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
781 }
782 
783 u32 *svm_vcpu_alloc_msrpm(void)
784 {
785 	unsigned int order = get_order(MSRPM_SIZE);
786 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
787 	u32 *msrpm;
788 
789 	if (!pages)
790 		return NULL;
791 
792 	msrpm = page_address(pages);
793 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
794 
795 	return msrpm;
796 }
797 
798 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
799 {
800 	int i;
801 
802 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
803 		if (!direct_access_msrs[i].always)
804 			continue;
805 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
806 	}
807 }
808 
809 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
810 {
811 	int i;
812 
813 	if (intercept == svm->x2avic_msrs_intercepted)
814 		return;
815 
816 	if (avic_mode != AVIC_MODE_X2 ||
817 	    !apic_x2apic_mode(svm->vcpu.arch.apic))
818 		return;
819 
820 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
821 		int index = direct_access_msrs[i].index;
822 
823 		if ((index < APIC_BASE_MSR) ||
824 		    (index > APIC_BASE_MSR + 0xff))
825 			continue;
826 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
827 				     !intercept, !intercept);
828 	}
829 
830 	svm->x2avic_msrs_intercepted = intercept;
831 }
832 
833 void svm_vcpu_free_msrpm(u32 *msrpm)
834 {
835 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
836 }
837 
838 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
839 {
840 	struct vcpu_svm *svm = to_svm(vcpu);
841 	u32 i;
842 
843 	/*
844 	 * Set intercept permissions for all direct access MSRs again. They
845 	 * will automatically get filtered through the MSR filter, so we are
846 	 * back in sync after this.
847 	 */
848 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
849 		u32 msr = direct_access_msrs[i].index;
850 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
851 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
852 
853 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
854 	}
855 }
856 
857 static void add_msr_offset(u32 offset)
858 {
859 	int i;
860 
861 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
862 
863 		/* Offset already in list? */
864 		if (msrpm_offsets[i] == offset)
865 			return;
866 
867 		/* Slot used by another offset? */
868 		if (msrpm_offsets[i] != MSR_INVALID)
869 			continue;
870 
871 		/* Add offset to list */
872 		msrpm_offsets[i] = offset;
873 
874 		return;
875 	}
876 
877 	/*
878 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
879 	 * increase MSRPM_OFFSETS in this case.
880 	 */
881 	BUG();
882 }
883 
884 static void init_msrpm_offsets(void)
885 {
886 	int i;
887 
888 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
889 
890 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
891 		u32 offset;
892 
893 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
894 		BUG_ON(offset == MSR_INVALID);
895 
896 		add_msr_offset(offset);
897 	}
898 }
899 
900 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
901 {
902 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
903 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
904 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
905 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
906 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
907 
908 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
909 }
910 
911 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
912 {
913 	struct vcpu_svm *svm = to_svm(vcpu);
914 
915 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
916 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
917 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
918 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
919 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
920 
921 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
922 	if (is_guest_mode(vcpu))
923 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
924 }
925 
926 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
927 {
928 	struct vcpu_svm *svm = to_svm(vcpu);
929 
930 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
931 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
932 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
933 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
934 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
935 
936 	/*
937 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
938 	 * on nested guest entries.
939 	 */
940 	if (is_guest_mode(vcpu))
941 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
942 }
943 
944 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
945 {
946 	/*
947 	 * If the LBR virtualization is disabled, the LBR msrs are always
948 	 * kept in the vmcb01 to avoid copying them on nested guest entries.
949 	 *
950 	 * If nested, and the LBR virtualization is enabled/disabled, the msrs
951 	 * are moved between the vmcb01 and vmcb02 as needed.
952 	 */
953 	struct vmcb *vmcb =
954 		(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
955 			svm->vmcb : svm->vmcb01.ptr;
956 
957 	switch (index) {
958 	case MSR_IA32_DEBUGCTLMSR:
959 		return vmcb->save.dbgctl;
960 	case MSR_IA32_LASTBRANCHFROMIP:
961 		return vmcb->save.br_from;
962 	case MSR_IA32_LASTBRANCHTOIP:
963 		return vmcb->save.br_to;
964 	case MSR_IA32_LASTINTFROMIP:
965 		return vmcb->save.last_excp_from;
966 	case MSR_IA32_LASTINTTOIP:
967 		return vmcb->save.last_excp_to;
968 	default:
969 		KVM_BUG(false, svm->vcpu.kvm,
970 			"%s: Unknown MSR 0x%x", __func__, index);
971 		return 0;
972 	}
973 }
974 
975 void svm_update_lbrv(struct kvm_vcpu *vcpu)
976 {
977 	struct vcpu_svm *svm = to_svm(vcpu);
978 
979 	bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
980 					   DEBUGCTLMSR_LBR;
981 
982 	bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
983 				      LBR_CTL_ENABLE_MASK);
984 
985 	if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
986 		if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
987 			enable_lbrv = true;
988 
989 	if (enable_lbrv == current_enable_lbrv)
990 		return;
991 
992 	if (enable_lbrv)
993 		svm_enable_lbrv(vcpu);
994 	else
995 		svm_disable_lbrv(vcpu);
996 }
997 
998 void disable_nmi_singlestep(struct vcpu_svm *svm)
999 {
1000 	svm->nmi_singlestep = false;
1001 
1002 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1003 		/* Clear our flags if they were not set by the guest */
1004 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1005 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1006 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1007 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1008 	}
1009 }
1010 
1011 static void grow_ple_window(struct kvm_vcpu *vcpu)
1012 {
1013 	struct vcpu_svm *svm = to_svm(vcpu);
1014 	struct vmcb_control_area *control = &svm->vmcb->control;
1015 	int old = control->pause_filter_count;
1016 
1017 	if (kvm_pause_in_guest(vcpu->kvm))
1018 		return;
1019 
1020 	control->pause_filter_count = __grow_ple_window(old,
1021 							pause_filter_count,
1022 							pause_filter_count_grow,
1023 							pause_filter_count_max);
1024 
1025 	if (control->pause_filter_count != old) {
1026 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1027 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1028 					    control->pause_filter_count, old);
1029 	}
1030 }
1031 
1032 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1033 {
1034 	struct vcpu_svm *svm = to_svm(vcpu);
1035 	struct vmcb_control_area *control = &svm->vmcb->control;
1036 	int old = control->pause_filter_count;
1037 
1038 	if (kvm_pause_in_guest(vcpu->kvm))
1039 		return;
1040 
1041 	control->pause_filter_count =
1042 				__shrink_ple_window(old,
1043 						    pause_filter_count,
1044 						    pause_filter_count_shrink,
1045 						    pause_filter_count);
1046 	if (control->pause_filter_count != old) {
1047 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1048 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1049 					    control->pause_filter_count, old);
1050 	}
1051 }
1052 
1053 static void svm_hardware_unsetup(void)
1054 {
1055 	int cpu;
1056 
1057 	sev_hardware_unsetup();
1058 
1059 	for_each_possible_cpu(cpu)
1060 		svm_cpu_uninit(cpu);
1061 
1062 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1063 	get_order(IOPM_SIZE));
1064 	iopm_base = 0;
1065 }
1066 
1067 static void init_seg(struct vmcb_seg *seg)
1068 {
1069 	seg->selector = 0;
1070 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1071 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1072 	seg->limit = 0xffff;
1073 	seg->base = 0;
1074 }
1075 
1076 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1077 {
1078 	seg->selector = 0;
1079 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1080 	seg->limit = 0xffff;
1081 	seg->base = 0;
1082 }
1083 
1084 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1085 {
1086 	struct vcpu_svm *svm = to_svm(vcpu);
1087 
1088 	return svm->nested.ctl.tsc_offset;
1089 }
1090 
1091 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1092 {
1093 	struct vcpu_svm *svm = to_svm(vcpu);
1094 
1095 	return svm->tsc_ratio_msr;
1096 }
1097 
1098 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1099 {
1100 	struct vcpu_svm *svm = to_svm(vcpu);
1101 
1102 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1103 	svm->vmcb->control.tsc_offset = offset;
1104 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1105 }
1106 
1107 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1108 {
1109 	__svm_write_tsc_multiplier(multiplier);
1110 }
1111 
1112 
1113 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1114 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1115 					      struct vcpu_svm *svm)
1116 {
1117 	/*
1118 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1119 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1120 	 */
1121 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1122 		if (!npt_enabled ||
1123 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1124 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1125 		else
1126 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1127 	}
1128 
1129 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1130 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1131 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1132 		else
1133 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1134 	}
1135 }
1136 
1137 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1138 {
1139 	struct vcpu_svm *svm = to_svm(vcpu);
1140 
1141 	if (guest_cpuid_is_intel(vcpu)) {
1142 		/*
1143 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1144 		 * accesses because the processor only stores 32 bits.
1145 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1146 		 */
1147 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1148 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1149 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1150 
1151 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1152 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1153 
1154 		svm->v_vmload_vmsave_enabled = false;
1155 	} else {
1156 		/*
1157 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1158 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1159 		 */
1160 		if (vls) {
1161 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1162 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1163 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1164 		}
1165 		/* No need to intercept these MSRs */
1166 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1167 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1168 	}
1169 }
1170 
1171 static void init_vmcb(struct kvm_vcpu *vcpu)
1172 {
1173 	struct vcpu_svm *svm = to_svm(vcpu);
1174 	struct vmcb *vmcb = svm->vmcb01.ptr;
1175 	struct vmcb_control_area *control = &vmcb->control;
1176 	struct vmcb_save_area *save = &vmcb->save;
1177 
1178 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1179 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1180 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1181 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1182 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1183 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1184 	if (!kvm_vcpu_apicv_active(vcpu))
1185 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1186 
1187 	set_dr_intercepts(svm);
1188 
1189 	set_exception_intercept(svm, PF_VECTOR);
1190 	set_exception_intercept(svm, UD_VECTOR);
1191 	set_exception_intercept(svm, MC_VECTOR);
1192 	set_exception_intercept(svm, AC_VECTOR);
1193 	set_exception_intercept(svm, DB_VECTOR);
1194 	/*
1195 	 * Guest access to VMware backdoor ports could legitimately
1196 	 * trigger #GP because of TSS I/O permission bitmap.
1197 	 * We intercept those #GP and allow access to them anyway
1198 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1199 	 * decrypt guest memory to decode the faulting instruction.
1200 	 */
1201 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1202 		set_exception_intercept(svm, GP_VECTOR);
1203 
1204 	svm_set_intercept(svm, INTERCEPT_INTR);
1205 	svm_set_intercept(svm, INTERCEPT_NMI);
1206 
1207 	if (intercept_smi)
1208 		svm_set_intercept(svm, INTERCEPT_SMI);
1209 
1210 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1211 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1212 	svm_set_intercept(svm, INTERCEPT_CPUID);
1213 	svm_set_intercept(svm, INTERCEPT_INVD);
1214 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1215 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1216 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1217 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1218 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1219 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1220 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1221 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1222 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1223 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1224 	svm_set_intercept(svm, INTERCEPT_STGI);
1225 	svm_set_intercept(svm, INTERCEPT_CLGI);
1226 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1227 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1228 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1229 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1230 	svm_set_intercept(svm, INTERCEPT_RSM);
1231 
1232 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1233 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1234 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1235 	}
1236 
1237 	if (!kvm_hlt_in_guest(vcpu->kvm))
1238 		svm_set_intercept(svm, INTERCEPT_HLT);
1239 
1240 	control->iopm_base_pa = __sme_set(iopm_base);
1241 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1242 	control->int_ctl = V_INTR_MASKING_MASK;
1243 
1244 	init_seg(&save->es);
1245 	init_seg(&save->ss);
1246 	init_seg(&save->ds);
1247 	init_seg(&save->fs);
1248 	init_seg(&save->gs);
1249 
1250 	save->cs.selector = 0xf000;
1251 	save->cs.base = 0xffff0000;
1252 	/* Executable/Readable Code Segment */
1253 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1254 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1255 	save->cs.limit = 0xffff;
1256 
1257 	save->gdtr.base = 0;
1258 	save->gdtr.limit = 0xffff;
1259 	save->idtr.base = 0;
1260 	save->idtr.limit = 0xffff;
1261 
1262 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1263 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1264 
1265 	if (npt_enabled) {
1266 		/* Setup VMCB for Nested Paging */
1267 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1268 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1269 		clr_exception_intercept(svm, PF_VECTOR);
1270 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1271 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1272 		save->g_pat = vcpu->arch.pat;
1273 		save->cr3 = 0;
1274 	}
1275 	svm->current_vmcb->asid_generation = 0;
1276 	svm->asid = 0;
1277 
1278 	svm->nested.vmcb12_gpa = INVALID_GPA;
1279 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1280 
1281 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1282 		control->pause_filter_count = pause_filter_count;
1283 		if (pause_filter_thresh)
1284 			control->pause_filter_thresh = pause_filter_thresh;
1285 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1286 	} else {
1287 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1288 	}
1289 
1290 	svm_recalc_instruction_intercepts(vcpu, svm);
1291 
1292 	/*
1293 	 * If the host supports V_SPEC_CTRL then disable the interception
1294 	 * of MSR_IA32_SPEC_CTRL.
1295 	 */
1296 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1297 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1298 
1299 	if (kvm_vcpu_apicv_active(vcpu))
1300 		avic_init_vmcb(svm, vmcb);
1301 
1302 	if (vgif) {
1303 		svm_clr_intercept(svm, INTERCEPT_STGI);
1304 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1305 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1306 	}
1307 
1308 	if (sev_guest(vcpu->kvm))
1309 		sev_init_vmcb(svm);
1310 
1311 	svm_hv_init_vmcb(vmcb);
1312 	init_vmcb_after_set_cpuid(vcpu);
1313 
1314 	vmcb_mark_all_dirty(vmcb);
1315 
1316 	enable_gif(svm);
1317 }
1318 
1319 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1320 {
1321 	struct vcpu_svm *svm = to_svm(vcpu);
1322 
1323 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1324 
1325 	svm_init_osvw(vcpu);
1326 	vcpu->arch.microcode_version = 0x01000065;
1327 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1328 
1329 	if (sev_es_guest(vcpu->kvm))
1330 		sev_es_vcpu_reset(svm);
1331 }
1332 
1333 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1334 {
1335 	struct vcpu_svm *svm = to_svm(vcpu);
1336 
1337 	svm->spec_ctrl = 0;
1338 	svm->virt_spec_ctrl = 0;
1339 
1340 	init_vmcb(vcpu);
1341 
1342 	if (!init_event)
1343 		__svm_vcpu_reset(vcpu);
1344 }
1345 
1346 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1347 {
1348 	svm->current_vmcb = target_vmcb;
1349 	svm->vmcb = target_vmcb->ptr;
1350 }
1351 
1352 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1353 {
1354 	struct vcpu_svm *svm;
1355 	struct page *vmcb01_page;
1356 	struct page *vmsa_page = NULL;
1357 	int err;
1358 
1359 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1360 	svm = to_svm(vcpu);
1361 
1362 	err = -ENOMEM;
1363 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1364 	if (!vmcb01_page)
1365 		goto out;
1366 
1367 	if (sev_es_guest(vcpu->kvm)) {
1368 		/*
1369 		 * SEV-ES guests require a separate VMSA page used to contain
1370 		 * the encrypted register state of the guest.
1371 		 */
1372 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1373 		if (!vmsa_page)
1374 			goto error_free_vmcb_page;
1375 
1376 		/*
1377 		 * SEV-ES guests maintain an encrypted version of their FPU
1378 		 * state which is restored and saved on VMRUN and VMEXIT.
1379 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1380 		 * do xsave/xrstor on it.
1381 		 */
1382 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1383 	}
1384 
1385 	err = avic_init_vcpu(svm);
1386 	if (err)
1387 		goto error_free_vmsa_page;
1388 
1389 	svm->msrpm = svm_vcpu_alloc_msrpm();
1390 	if (!svm->msrpm) {
1391 		err = -ENOMEM;
1392 		goto error_free_vmsa_page;
1393 	}
1394 
1395 	svm->x2avic_msrs_intercepted = true;
1396 
1397 	svm->vmcb01.ptr = page_address(vmcb01_page);
1398 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1399 	svm_switch_vmcb(svm, &svm->vmcb01);
1400 
1401 	if (vmsa_page)
1402 		svm->sev_es.vmsa = page_address(vmsa_page);
1403 
1404 	svm->guest_state_loaded = false;
1405 
1406 	return 0;
1407 
1408 error_free_vmsa_page:
1409 	if (vmsa_page)
1410 		__free_page(vmsa_page);
1411 error_free_vmcb_page:
1412 	__free_page(vmcb01_page);
1413 out:
1414 	return err;
1415 }
1416 
1417 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1418 {
1419 	int i;
1420 
1421 	for_each_online_cpu(i)
1422 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1423 }
1424 
1425 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1426 {
1427 	struct vcpu_svm *svm = to_svm(vcpu);
1428 
1429 	/*
1430 	 * The vmcb page can be recycled, causing a false negative in
1431 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1432 	 * vmcb page recorded as its current vmcb.
1433 	 */
1434 	svm_clear_current_vmcb(svm->vmcb);
1435 
1436 	svm_leave_nested(vcpu);
1437 	svm_free_nested(svm);
1438 
1439 	sev_free_vcpu(vcpu);
1440 
1441 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1442 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1443 }
1444 
1445 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1446 {
1447 	struct vcpu_svm *svm = to_svm(vcpu);
1448 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1449 
1450 	if (sev_es_guest(vcpu->kvm))
1451 		sev_es_unmap_ghcb(svm);
1452 
1453 	if (svm->guest_state_loaded)
1454 		return;
1455 
1456 	/*
1457 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1458 	 * or subsequent vmload of host save area.
1459 	 */
1460 	vmsave(sd->save_area_pa);
1461 	if (sev_es_guest(vcpu->kvm)) {
1462 		struct sev_es_save_area *hostsa;
1463 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1464 
1465 		sev_es_prepare_switch_to_guest(hostsa);
1466 	}
1467 
1468 	if (tsc_scaling)
1469 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1470 
1471 	if (likely(tsc_aux_uret_slot >= 0))
1472 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1473 
1474 	svm->guest_state_loaded = true;
1475 }
1476 
1477 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1478 {
1479 	to_svm(vcpu)->guest_state_loaded = false;
1480 }
1481 
1482 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1483 {
1484 	struct vcpu_svm *svm = to_svm(vcpu);
1485 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1486 
1487 	if (sd->current_vmcb != svm->vmcb) {
1488 		sd->current_vmcb = svm->vmcb;
1489 		indirect_branch_prediction_barrier();
1490 	}
1491 	if (kvm_vcpu_apicv_active(vcpu))
1492 		avic_vcpu_load(vcpu, cpu);
1493 }
1494 
1495 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1496 {
1497 	if (kvm_vcpu_apicv_active(vcpu))
1498 		avic_vcpu_put(vcpu);
1499 
1500 	svm_prepare_host_switch(vcpu);
1501 
1502 	++vcpu->stat.host_state_reload;
1503 }
1504 
1505 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1506 {
1507 	struct vcpu_svm *svm = to_svm(vcpu);
1508 	unsigned long rflags = svm->vmcb->save.rflags;
1509 
1510 	if (svm->nmi_singlestep) {
1511 		/* Hide our flags if they were not set by the guest */
1512 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1513 			rflags &= ~X86_EFLAGS_TF;
1514 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1515 			rflags &= ~X86_EFLAGS_RF;
1516 	}
1517 	return rflags;
1518 }
1519 
1520 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1521 {
1522 	if (to_svm(vcpu)->nmi_singlestep)
1523 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1524 
1525        /*
1526         * Any change of EFLAGS.VM is accompanied by a reload of SS
1527         * (caused by either a task switch or an inter-privilege IRET),
1528         * so we do not need to update the CPL here.
1529         */
1530 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1531 }
1532 
1533 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1534 {
1535 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1536 
1537 	return sev_es_guest(vcpu->kvm)
1538 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1539 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1540 }
1541 
1542 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1543 {
1544 	kvm_register_mark_available(vcpu, reg);
1545 
1546 	switch (reg) {
1547 	case VCPU_EXREG_PDPTR:
1548 		/*
1549 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1550 		 * it is always updated per SDM when moving to CRs.
1551 		 */
1552 		if (npt_enabled)
1553 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1554 		break;
1555 	default:
1556 		KVM_BUG_ON(1, vcpu->kvm);
1557 	}
1558 }
1559 
1560 static void svm_set_vintr(struct vcpu_svm *svm)
1561 {
1562 	struct vmcb_control_area *control;
1563 
1564 	/*
1565 	 * The following fields are ignored when AVIC is enabled
1566 	 */
1567 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1568 
1569 	svm_set_intercept(svm, INTERCEPT_VINTR);
1570 
1571 	/*
1572 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1573 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1574 	 */
1575 	control = &svm->vmcb->control;
1576 	control->int_vector = 0x0;
1577 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1578 	control->int_ctl |= V_IRQ_MASK |
1579 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1580 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1581 }
1582 
1583 static void svm_clear_vintr(struct vcpu_svm *svm)
1584 {
1585 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1586 
1587 	/* Drop int_ctl fields related to VINTR injection.  */
1588 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1589 	if (is_guest_mode(&svm->vcpu)) {
1590 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1591 
1592 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1593 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1594 
1595 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1596 			V_IRQ_INJECTION_BITS_MASK;
1597 
1598 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1599 	}
1600 
1601 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1602 }
1603 
1604 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1605 {
1606 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1607 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1608 
1609 	switch (seg) {
1610 	case VCPU_SREG_CS: return &save->cs;
1611 	case VCPU_SREG_DS: return &save->ds;
1612 	case VCPU_SREG_ES: return &save->es;
1613 	case VCPU_SREG_FS: return &save01->fs;
1614 	case VCPU_SREG_GS: return &save01->gs;
1615 	case VCPU_SREG_SS: return &save->ss;
1616 	case VCPU_SREG_TR: return &save01->tr;
1617 	case VCPU_SREG_LDTR: return &save01->ldtr;
1618 	}
1619 	BUG();
1620 	return NULL;
1621 }
1622 
1623 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1624 {
1625 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1626 
1627 	return s->base;
1628 }
1629 
1630 static void svm_get_segment(struct kvm_vcpu *vcpu,
1631 			    struct kvm_segment *var, int seg)
1632 {
1633 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1634 
1635 	var->base = s->base;
1636 	var->limit = s->limit;
1637 	var->selector = s->selector;
1638 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1639 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1640 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1641 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1642 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1643 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1644 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1645 
1646 	/*
1647 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1648 	 * However, the SVM spec states that the G bit is not observed by the
1649 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1650 	 * So let's synthesize a legal G bit for all segments, this helps
1651 	 * running KVM nested. It also helps cross-vendor migration, because
1652 	 * Intel's vmentry has a check on the 'G' bit.
1653 	 */
1654 	var->g = s->limit > 0xfffff;
1655 
1656 	/*
1657 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1658 	 * for cross vendor migration purposes by "not present"
1659 	 */
1660 	var->unusable = !var->present;
1661 
1662 	switch (seg) {
1663 	case VCPU_SREG_TR:
1664 		/*
1665 		 * Work around a bug where the busy flag in the tr selector
1666 		 * isn't exposed
1667 		 */
1668 		var->type |= 0x2;
1669 		break;
1670 	case VCPU_SREG_DS:
1671 	case VCPU_SREG_ES:
1672 	case VCPU_SREG_FS:
1673 	case VCPU_SREG_GS:
1674 		/*
1675 		 * The accessed bit must always be set in the segment
1676 		 * descriptor cache, although it can be cleared in the
1677 		 * descriptor, the cached bit always remains at 1. Since
1678 		 * Intel has a check on this, set it here to support
1679 		 * cross-vendor migration.
1680 		 */
1681 		if (!var->unusable)
1682 			var->type |= 0x1;
1683 		break;
1684 	case VCPU_SREG_SS:
1685 		/*
1686 		 * On AMD CPUs sometimes the DB bit in the segment
1687 		 * descriptor is left as 1, although the whole segment has
1688 		 * been made unusable. Clear it here to pass an Intel VMX
1689 		 * entry check when cross vendor migrating.
1690 		 */
1691 		if (var->unusable)
1692 			var->db = 0;
1693 		/* This is symmetric with svm_set_segment() */
1694 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1695 		break;
1696 	}
1697 }
1698 
1699 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1700 {
1701 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1702 
1703 	return save->cpl;
1704 }
1705 
1706 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1707 {
1708 	struct kvm_segment cs;
1709 
1710 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1711 	*db = cs.db;
1712 	*l = cs.l;
1713 }
1714 
1715 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1716 {
1717 	struct vcpu_svm *svm = to_svm(vcpu);
1718 
1719 	dt->size = svm->vmcb->save.idtr.limit;
1720 	dt->address = svm->vmcb->save.idtr.base;
1721 }
1722 
1723 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1724 {
1725 	struct vcpu_svm *svm = to_svm(vcpu);
1726 
1727 	svm->vmcb->save.idtr.limit = dt->size;
1728 	svm->vmcb->save.idtr.base = dt->address ;
1729 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1730 }
1731 
1732 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1733 {
1734 	struct vcpu_svm *svm = to_svm(vcpu);
1735 
1736 	dt->size = svm->vmcb->save.gdtr.limit;
1737 	dt->address = svm->vmcb->save.gdtr.base;
1738 }
1739 
1740 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1741 {
1742 	struct vcpu_svm *svm = to_svm(vcpu);
1743 
1744 	svm->vmcb->save.gdtr.limit = dt->size;
1745 	svm->vmcb->save.gdtr.base = dt->address ;
1746 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1747 }
1748 
1749 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1750 {
1751 	struct vcpu_svm *svm = to_svm(vcpu);
1752 
1753 	/*
1754 	 * For guests that don't set guest_state_protected, the cr3 update is
1755 	 * handled via kvm_mmu_load() while entering the guest. For guests
1756 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1757 	 * VMCB save area now, since the save area will become the initial
1758 	 * contents of the VMSA, and future VMCB save area updates won't be
1759 	 * seen.
1760 	 */
1761 	if (sev_es_guest(vcpu->kvm)) {
1762 		svm->vmcb->save.cr3 = cr3;
1763 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1764 	}
1765 }
1766 
1767 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1768 {
1769 	struct vcpu_svm *svm = to_svm(vcpu);
1770 	u64 hcr0 = cr0;
1771 	bool old_paging = is_paging(vcpu);
1772 
1773 #ifdef CONFIG_X86_64
1774 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1775 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1776 			vcpu->arch.efer |= EFER_LMA;
1777 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1778 		}
1779 
1780 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1781 			vcpu->arch.efer &= ~EFER_LMA;
1782 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1783 		}
1784 	}
1785 #endif
1786 	vcpu->arch.cr0 = cr0;
1787 
1788 	if (!npt_enabled) {
1789 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1790 		if (old_paging != is_paging(vcpu))
1791 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1792 	}
1793 
1794 	/*
1795 	 * re-enable caching here because the QEMU bios
1796 	 * does not do it - this results in some delay at
1797 	 * reboot
1798 	 */
1799 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1800 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1801 
1802 	svm->vmcb->save.cr0 = hcr0;
1803 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1804 
1805 	/*
1806 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1807 	 * tracking is done using the CR write traps.
1808 	 */
1809 	if (sev_es_guest(vcpu->kvm))
1810 		return;
1811 
1812 	if (hcr0 == cr0) {
1813 		/* Selective CR0 write remains on.  */
1814 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1815 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1816 	} else {
1817 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1818 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1819 	}
1820 }
1821 
1822 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1823 {
1824 	return true;
1825 }
1826 
1827 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1828 {
1829 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1830 	unsigned long old_cr4 = vcpu->arch.cr4;
1831 
1832 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1833 		svm_flush_tlb_current(vcpu);
1834 
1835 	vcpu->arch.cr4 = cr4;
1836 	if (!npt_enabled) {
1837 		cr4 |= X86_CR4_PAE;
1838 
1839 		if (!is_paging(vcpu))
1840 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1841 	}
1842 	cr4 |= host_cr4_mce;
1843 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1844 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1845 
1846 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1847 		kvm_update_cpuid_runtime(vcpu);
1848 }
1849 
1850 static void svm_set_segment(struct kvm_vcpu *vcpu,
1851 			    struct kvm_segment *var, int seg)
1852 {
1853 	struct vcpu_svm *svm = to_svm(vcpu);
1854 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1855 
1856 	s->base = var->base;
1857 	s->limit = var->limit;
1858 	s->selector = var->selector;
1859 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1860 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1861 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1862 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1863 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1864 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1865 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1866 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1867 
1868 	/*
1869 	 * This is always accurate, except if SYSRET returned to a segment
1870 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1871 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1872 	 * would entail passing the CPL to userspace and back.
1873 	 */
1874 	if (seg == VCPU_SREG_SS)
1875 		/* This is symmetric with svm_get_segment() */
1876 		svm->vmcb->save.cpl = (var->dpl & 3);
1877 
1878 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1879 }
1880 
1881 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1882 {
1883 	struct vcpu_svm *svm = to_svm(vcpu);
1884 
1885 	clr_exception_intercept(svm, BP_VECTOR);
1886 
1887 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1888 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1889 			set_exception_intercept(svm, BP_VECTOR);
1890 	}
1891 }
1892 
1893 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1894 {
1895 	if (sd->next_asid > sd->max_asid) {
1896 		++sd->asid_generation;
1897 		sd->next_asid = sd->min_asid;
1898 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1899 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1900 	}
1901 
1902 	svm->current_vmcb->asid_generation = sd->asid_generation;
1903 	svm->asid = sd->next_asid++;
1904 }
1905 
1906 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1907 {
1908 	struct vmcb *vmcb = svm->vmcb;
1909 
1910 	if (svm->vcpu.arch.guest_state_protected)
1911 		return;
1912 
1913 	if (unlikely(value != vmcb->save.dr6)) {
1914 		vmcb->save.dr6 = value;
1915 		vmcb_mark_dirty(vmcb, VMCB_DR);
1916 	}
1917 }
1918 
1919 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1920 {
1921 	struct vcpu_svm *svm = to_svm(vcpu);
1922 
1923 	if (vcpu->arch.guest_state_protected)
1924 		return;
1925 
1926 	get_debugreg(vcpu->arch.db[0], 0);
1927 	get_debugreg(vcpu->arch.db[1], 1);
1928 	get_debugreg(vcpu->arch.db[2], 2);
1929 	get_debugreg(vcpu->arch.db[3], 3);
1930 	/*
1931 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1932 	 * because db_interception might need it.  We can do it before vmentry.
1933 	 */
1934 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1935 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1936 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1937 	set_dr_intercepts(svm);
1938 }
1939 
1940 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1941 {
1942 	struct vcpu_svm *svm = to_svm(vcpu);
1943 
1944 	if (vcpu->arch.guest_state_protected)
1945 		return;
1946 
1947 	svm->vmcb->save.dr7 = value;
1948 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1949 }
1950 
1951 static int pf_interception(struct kvm_vcpu *vcpu)
1952 {
1953 	struct vcpu_svm *svm = to_svm(vcpu);
1954 
1955 	u64 fault_address = svm->vmcb->control.exit_info_2;
1956 	u64 error_code = svm->vmcb->control.exit_info_1;
1957 
1958 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1959 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1960 			svm->vmcb->control.insn_bytes : NULL,
1961 			svm->vmcb->control.insn_len);
1962 }
1963 
1964 static int npf_interception(struct kvm_vcpu *vcpu)
1965 {
1966 	struct vcpu_svm *svm = to_svm(vcpu);
1967 
1968 	u64 fault_address = svm->vmcb->control.exit_info_2;
1969 	u64 error_code = svm->vmcb->control.exit_info_1;
1970 
1971 	trace_kvm_page_fault(vcpu, fault_address, error_code);
1972 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1973 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1974 			svm->vmcb->control.insn_bytes : NULL,
1975 			svm->vmcb->control.insn_len);
1976 }
1977 
1978 static int db_interception(struct kvm_vcpu *vcpu)
1979 {
1980 	struct kvm_run *kvm_run = vcpu->run;
1981 	struct vcpu_svm *svm = to_svm(vcpu);
1982 
1983 	if (!(vcpu->guest_debug &
1984 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1985 		!svm->nmi_singlestep) {
1986 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1987 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1988 		return 1;
1989 	}
1990 
1991 	if (svm->nmi_singlestep) {
1992 		disable_nmi_singlestep(svm);
1993 		/* Make sure we check for pending NMIs upon entry */
1994 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1995 	}
1996 
1997 	if (vcpu->guest_debug &
1998 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1999 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2000 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2001 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2002 		kvm_run->debug.arch.pc =
2003 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2004 		kvm_run->debug.arch.exception = DB_VECTOR;
2005 		return 0;
2006 	}
2007 
2008 	return 1;
2009 }
2010 
2011 static int bp_interception(struct kvm_vcpu *vcpu)
2012 {
2013 	struct vcpu_svm *svm = to_svm(vcpu);
2014 	struct kvm_run *kvm_run = vcpu->run;
2015 
2016 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2017 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2018 	kvm_run->debug.arch.exception = BP_VECTOR;
2019 	return 0;
2020 }
2021 
2022 static int ud_interception(struct kvm_vcpu *vcpu)
2023 {
2024 	return handle_ud(vcpu);
2025 }
2026 
2027 static int ac_interception(struct kvm_vcpu *vcpu)
2028 {
2029 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2030 	return 1;
2031 }
2032 
2033 static bool is_erratum_383(void)
2034 {
2035 	int err, i;
2036 	u64 value;
2037 
2038 	if (!erratum_383_found)
2039 		return false;
2040 
2041 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2042 	if (err)
2043 		return false;
2044 
2045 	/* Bit 62 may or may not be set for this mce */
2046 	value &= ~(1ULL << 62);
2047 
2048 	if (value != 0xb600000000010015ULL)
2049 		return false;
2050 
2051 	/* Clear MCi_STATUS registers */
2052 	for (i = 0; i < 6; ++i)
2053 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2054 
2055 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2056 	if (!err) {
2057 		u32 low, high;
2058 
2059 		value &= ~(1ULL << 2);
2060 		low    = lower_32_bits(value);
2061 		high   = upper_32_bits(value);
2062 
2063 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2064 	}
2065 
2066 	/* Flush tlb to evict multi-match entries */
2067 	__flush_tlb_all();
2068 
2069 	return true;
2070 }
2071 
2072 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2073 {
2074 	if (is_erratum_383()) {
2075 		/*
2076 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2077 		 * guest.
2078 		 */
2079 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2080 
2081 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2082 
2083 		return;
2084 	}
2085 
2086 	/*
2087 	 * On an #MC intercept the MCE handler is not called automatically in
2088 	 * the host. So do it by hand here.
2089 	 */
2090 	kvm_machine_check();
2091 }
2092 
2093 static int mc_interception(struct kvm_vcpu *vcpu)
2094 {
2095 	return 1;
2096 }
2097 
2098 static int shutdown_interception(struct kvm_vcpu *vcpu)
2099 {
2100 	struct kvm_run *kvm_run = vcpu->run;
2101 	struct vcpu_svm *svm = to_svm(vcpu);
2102 
2103 	/*
2104 	 * The VM save area has already been encrypted so it
2105 	 * cannot be reinitialized - just terminate.
2106 	 */
2107 	if (sev_es_guest(vcpu->kvm))
2108 		return -EINVAL;
2109 
2110 	/*
2111 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2112 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2113 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2114 	 * userspace.  At a platform view, INIT is acceptable behavior as
2115 	 * there exist bare metal platforms that automatically INIT the CPU
2116 	 * in response to shutdown.
2117 	 */
2118 	clear_page(svm->vmcb);
2119 	kvm_vcpu_reset(vcpu, true);
2120 
2121 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2122 	return 0;
2123 }
2124 
2125 static int io_interception(struct kvm_vcpu *vcpu)
2126 {
2127 	struct vcpu_svm *svm = to_svm(vcpu);
2128 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2129 	int size, in, string;
2130 	unsigned port;
2131 
2132 	++vcpu->stat.io_exits;
2133 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2134 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2135 	port = io_info >> 16;
2136 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2137 
2138 	if (string) {
2139 		if (sev_es_guest(vcpu->kvm))
2140 			return sev_es_string_io(svm, size, port, in);
2141 		else
2142 			return kvm_emulate_instruction(vcpu, 0);
2143 	}
2144 
2145 	svm->next_rip = svm->vmcb->control.exit_info_2;
2146 
2147 	return kvm_fast_pio(vcpu, size, port, in);
2148 }
2149 
2150 static int nmi_interception(struct kvm_vcpu *vcpu)
2151 {
2152 	return 1;
2153 }
2154 
2155 static int smi_interception(struct kvm_vcpu *vcpu)
2156 {
2157 	return 1;
2158 }
2159 
2160 static int intr_interception(struct kvm_vcpu *vcpu)
2161 {
2162 	++vcpu->stat.irq_exits;
2163 	return 1;
2164 }
2165 
2166 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2167 {
2168 	struct vcpu_svm *svm = to_svm(vcpu);
2169 	struct vmcb *vmcb12;
2170 	struct kvm_host_map map;
2171 	int ret;
2172 
2173 	if (nested_svm_check_permissions(vcpu))
2174 		return 1;
2175 
2176 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2177 	if (ret) {
2178 		if (ret == -EINVAL)
2179 			kvm_inject_gp(vcpu, 0);
2180 		return 1;
2181 	}
2182 
2183 	vmcb12 = map.hva;
2184 
2185 	ret = kvm_skip_emulated_instruction(vcpu);
2186 
2187 	if (vmload) {
2188 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2189 		svm->sysenter_eip_hi = 0;
2190 		svm->sysenter_esp_hi = 0;
2191 	} else {
2192 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2193 	}
2194 
2195 	kvm_vcpu_unmap(vcpu, &map, true);
2196 
2197 	return ret;
2198 }
2199 
2200 static int vmload_interception(struct kvm_vcpu *vcpu)
2201 {
2202 	return vmload_vmsave_interception(vcpu, true);
2203 }
2204 
2205 static int vmsave_interception(struct kvm_vcpu *vcpu)
2206 {
2207 	return vmload_vmsave_interception(vcpu, false);
2208 }
2209 
2210 static int vmrun_interception(struct kvm_vcpu *vcpu)
2211 {
2212 	if (nested_svm_check_permissions(vcpu))
2213 		return 1;
2214 
2215 	return nested_svm_vmrun(vcpu);
2216 }
2217 
2218 enum {
2219 	NONE_SVM_INSTR,
2220 	SVM_INSTR_VMRUN,
2221 	SVM_INSTR_VMLOAD,
2222 	SVM_INSTR_VMSAVE,
2223 };
2224 
2225 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2226 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2227 {
2228 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2229 
2230 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2231 		return NONE_SVM_INSTR;
2232 
2233 	switch (ctxt->modrm) {
2234 	case 0xd8: /* VMRUN */
2235 		return SVM_INSTR_VMRUN;
2236 	case 0xda: /* VMLOAD */
2237 		return SVM_INSTR_VMLOAD;
2238 	case 0xdb: /* VMSAVE */
2239 		return SVM_INSTR_VMSAVE;
2240 	default:
2241 		break;
2242 	}
2243 
2244 	return NONE_SVM_INSTR;
2245 }
2246 
2247 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2248 {
2249 	const int guest_mode_exit_codes[] = {
2250 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2251 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2252 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2253 	};
2254 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2255 		[SVM_INSTR_VMRUN] = vmrun_interception,
2256 		[SVM_INSTR_VMLOAD] = vmload_interception,
2257 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2258 	};
2259 	struct vcpu_svm *svm = to_svm(vcpu);
2260 	int ret;
2261 
2262 	if (is_guest_mode(vcpu)) {
2263 		/* Returns '1' or -errno on failure, '0' on success. */
2264 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2265 		if (ret)
2266 			return ret;
2267 		return 1;
2268 	}
2269 	return svm_instr_handlers[opcode](vcpu);
2270 }
2271 
2272 /*
2273  * #GP handling code. Note that #GP can be triggered under the following two
2274  * cases:
2275  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2276  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2277  *      regions (e.g. SMM memory on host).
2278  *   2) VMware backdoor
2279  */
2280 static int gp_interception(struct kvm_vcpu *vcpu)
2281 {
2282 	struct vcpu_svm *svm = to_svm(vcpu);
2283 	u32 error_code = svm->vmcb->control.exit_info_1;
2284 	int opcode;
2285 
2286 	/* Both #GP cases have zero error_code */
2287 	if (error_code)
2288 		goto reinject;
2289 
2290 	/* Decode the instruction for usage later */
2291 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2292 		goto reinject;
2293 
2294 	opcode = svm_instr_opcode(vcpu);
2295 
2296 	if (opcode == NONE_SVM_INSTR) {
2297 		if (!enable_vmware_backdoor)
2298 			goto reinject;
2299 
2300 		/*
2301 		 * VMware backdoor emulation on #GP interception only handles
2302 		 * IN{S}, OUT{S}, and RDPMC.
2303 		 */
2304 		if (!is_guest_mode(vcpu))
2305 			return kvm_emulate_instruction(vcpu,
2306 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2307 	} else {
2308 		/* All SVM instructions expect page aligned RAX */
2309 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2310 			goto reinject;
2311 
2312 		return emulate_svm_instr(vcpu, opcode);
2313 	}
2314 
2315 reinject:
2316 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2317 	return 1;
2318 }
2319 
2320 void svm_set_gif(struct vcpu_svm *svm, bool value)
2321 {
2322 	if (value) {
2323 		/*
2324 		 * If VGIF is enabled, the STGI intercept is only added to
2325 		 * detect the opening of the SMI/NMI window; remove it now.
2326 		 * Likewise, clear the VINTR intercept, we will set it
2327 		 * again while processing KVM_REQ_EVENT if needed.
2328 		 */
2329 		if (vgif)
2330 			svm_clr_intercept(svm, INTERCEPT_STGI);
2331 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2332 			svm_clear_vintr(svm);
2333 
2334 		enable_gif(svm);
2335 		if (svm->vcpu.arch.smi_pending ||
2336 		    svm->vcpu.arch.nmi_pending ||
2337 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2338 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2339 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2340 	} else {
2341 		disable_gif(svm);
2342 
2343 		/*
2344 		 * After a CLGI no interrupts should come.  But if vGIF is
2345 		 * in use, we still rely on the VINTR intercept (rather than
2346 		 * STGI) to detect an open interrupt window.
2347 		*/
2348 		if (!vgif)
2349 			svm_clear_vintr(svm);
2350 	}
2351 }
2352 
2353 static int stgi_interception(struct kvm_vcpu *vcpu)
2354 {
2355 	int ret;
2356 
2357 	if (nested_svm_check_permissions(vcpu))
2358 		return 1;
2359 
2360 	ret = kvm_skip_emulated_instruction(vcpu);
2361 	svm_set_gif(to_svm(vcpu), true);
2362 	return ret;
2363 }
2364 
2365 static int clgi_interception(struct kvm_vcpu *vcpu)
2366 {
2367 	int ret;
2368 
2369 	if (nested_svm_check_permissions(vcpu))
2370 		return 1;
2371 
2372 	ret = kvm_skip_emulated_instruction(vcpu);
2373 	svm_set_gif(to_svm(vcpu), false);
2374 	return ret;
2375 }
2376 
2377 static int invlpga_interception(struct kvm_vcpu *vcpu)
2378 {
2379 	gva_t gva = kvm_rax_read(vcpu);
2380 	u32 asid = kvm_rcx_read(vcpu);
2381 
2382 	/* FIXME: Handle an address size prefix. */
2383 	if (!is_long_mode(vcpu))
2384 		gva = (u32)gva;
2385 
2386 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2387 
2388 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2389 	kvm_mmu_invlpg(vcpu, gva);
2390 
2391 	return kvm_skip_emulated_instruction(vcpu);
2392 }
2393 
2394 static int skinit_interception(struct kvm_vcpu *vcpu)
2395 {
2396 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2397 
2398 	kvm_queue_exception(vcpu, UD_VECTOR);
2399 	return 1;
2400 }
2401 
2402 static int task_switch_interception(struct kvm_vcpu *vcpu)
2403 {
2404 	struct vcpu_svm *svm = to_svm(vcpu);
2405 	u16 tss_selector;
2406 	int reason;
2407 	int int_type = svm->vmcb->control.exit_int_info &
2408 		SVM_EXITINTINFO_TYPE_MASK;
2409 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2410 	uint32_t type =
2411 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2412 	uint32_t idt_v =
2413 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2414 	bool has_error_code = false;
2415 	u32 error_code = 0;
2416 
2417 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2418 
2419 	if (svm->vmcb->control.exit_info_2 &
2420 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2421 		reason = TASK_SWITCH_IRET;
2422 	else if (svm->vmcb->control.exit_info_2 &
2423 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2424 		reason = TASK_SWITCH_JMP;
2425 	else if (idt_v)
2426 		reason = TASK_SWITCH_GATE;
2427 	else
2428 		reason = TASK_SWITCH_CALL;
2429 
2430 	if (reason == TASK_SWITCH_GATE) {
2431 		switch (type) {
2432 		case SVM_EXITINTINFO_TYPE_NMI:
2433 			vcpu->arch.nmi_injected = false;
2434 			break;
2435 		case SVM_EXITINTINFO_TYPE_EXEPT:
2436 			if (svm->vmcb->control.exit_info_2 &
2437 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2438 				has_error_code = true;
2439 				error_code =
2440 					(u32)svm->vmcb->control.exit_info_2;
2441 			}
2442 			kvm_clear_exception_queue(vcpu);
2443 			break;
2444 		case SVM_EXITINTINFO_TYPE_INTR:
2445 		case SVM_EXITINTINFO_TYPE_SOFT:
2446 			kvm_clear_interrupt_queue(vcpu);
2447 			break;
2448 		default:
2449 			break;
2450 		}
2451 	}
2452 
2453 	if (reason != TASK_SWITCH_GATE ||
2454 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2455 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2456 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2457 		if (!svm_skip_emulated_instruction(vcpu))
2458 			return 0;
2459 	}
2460 
2461 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2462 		int_vec = -1;
2463 
2464 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2465 			       has_error_code, error_code);
2466 }
2467 
2468 static int iret_interception(struct kvm_vcpu *vcpu)
2469 {
2470 	struct vcpu_svm *svm = to_svm(vcpu);
2471 
2472 	++vcpu->stat.nmi_window_exits;
2473 	vcpu->arch.hflags |= HF_IRET_MASK;
2474 	if (!sev_es_guest(vcpu->kvm)) {
2475 		svm_clr_intercept(svm, INTERCEPT_IRET);
2476 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2477 	}
2478 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2479 	return 1;
2480 }
2481 
2482 static int invlpg_interception(struct kvm_vcpu *vcpu)
2483 {
2484 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2485 		return kvm_emulate_instruction(vcpu, 0);
2486 
2487 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2488 	return kvm_skip_emulated_instruction(vcpu);
2489 }
2490 
2491 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2492 {
2493 	return kvm_emulate_instruction(vcpu, 0);
2494 }
2495 
2496 static int rsm_interception(struct kvm_vcpu *vcpu)
2497 {
2498 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2499 }
2500 
2501 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2502 					    unsigned long val)
2503 {
2504 	struct vcpu_svm *svm = to_svm(vcpu);
2505 	unsigned long cr0 = vcpu->arch.cr0;
2506 	bool ret = false;
2507 
2508 	if (!is_guest_mode(vcpu) ||
2509 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2510 		return false;
2511 
2512 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2513 	val &= ~SVM_CR0_SELECTIVE_MASK;
2514 
2515 	if (cr0 ^ val) {
2516 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2517 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2518 	}
2519 
2520 	return ret;
2521 }
2522 
2523 #define CR_VALID (1ULL << 63)
2524 
2525 static int cr_interception(struct kvm_vcpu *vcpu)
2526 {
2527 	struct vcpu_svm *svm = to_svm(vcpu);
2528 	int reg, cr;
2529 	unsigned long val;
2530 	int err;
2531 
2532 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2533 		return emulate_on_interception(vcpu);
2534 
2535 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2536 		return emulate_on_interception(vcpu);
2537 
2538 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2539 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2540 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2541 	else
2542 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2543 
2544 	err = 0;
2545 	if (cr >= 16) { /* mov to cr */
2546 		cr -= 16;
2547 		val = kvm_register_read(vcpu, reg);
2548 		trace_kvm_cr_write(cr, val);
2549 		switch (cr) {
2550 		case 0:
2551 			if (!check_selective_cr0_intercepted(vcpu, val))
2552 				err = kvm_set_cr0(vcpu, val);
2553 			else
2554 				return 1;
2555 
2556 			break;
2557 		case 3:
2558 			err = kvm_set_cr3(vcpu, val);
2559 			break;
2560 		case 4:
2561 			err = kvm_set_cr4(vcpu, val);
2562 			break;
2563 		case 8:
2564 			err = kvm_set_cr8(vcpu, val);
2565 			break;
2566 		default:
2567 			WARN(1, "unhandled write to CR%d", cr);
2568 			kvm_queue_exception(vcpu, UD_VECTOR);
2569 			return 1;
2570 		}
2571 	} else { /* mov from cr */
2572 		switch (cr) {
2573 		case 0:
2574 			val = kvm_read_cr0(vcpu);
2575 			break;
2576 		case 2:
2577 			val = vcpu->arch.cr2;
2578 			break;
2579 		case 3:
2580 			val = kvm_read_cr3(vcpu);
2581 			break;
2582 		case 4:
2583 			val = kvm_read_cr4(vcpu);
2584 			break;
2585 		case 8:
2586 			val = kvm_get_cr8(vcpu);
2587 			break;
2588 		default:
2589 			WARN(1, "unhandled read from CR%d", cr);
2590 			kvm_queue_exception(vcpu, UD_VECTOR);
2591 			return 1;
2592 		}
2593 		kvm_register_write(vcpu, reg, val);
2594 		trace_kvm_cr_read(cr, val);
2595 	}
2596 	return kvm_complete_insn_gp(vcpu, err);
2597 }
2598 
2599 static int cr_trap(struct kvm_vcpu *vcpu)
2600 {
2601 	struct vcpu_svm *svm = to_svm(vcpu);
2602 	unsigned long old_value, new_value;
2603 	unsigned int cr;
2604 	int ret = 0;
2605 
2606 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2607 
2608 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2609 	switch (cr) {
2610 	case 0:
2611 		old_value = kvm_read_cr0(vcpu);
2612 		svm_set_cr0(vcpu, new_value);
2613 
2614 		kvm_post_set_cr0(vcpu, old_value, new_value);
2615 		break;
2616 	case 4:
2617 		old_value = kvm_read_cr4(vcpu);
2618 		svm_set_cr4(vcpu, new_value);
2619 
2620 		kvm_post_set_cr4(vcpu, old_value, new_value);
2621 		break;
2622 	case 8:
2623 		ret = kvm_set_cr8(vcpu, new_value);
2624 		break;
2625 	default:
2626 		WARN(1, "unhandled CR%d write trap", cr);
2627 		kvm_queue_exception(vcpu, UD_VECTOR);
2628 		return 1;
2629 	}
2630 
2631 	return kvm_complete_insn_gp(vcpu, ret);
2632 }
2633 
2634 static int dr_interception(struct kvm_vcpu *vcpu)
2635 {
2636 	struct vcpu_svm *svm = to_svm(vcpu);
2637 	int reg, dr;
2638 	unsigned long val;
2639 	int err = 0;
2640 
2641 	if (vcpu->guest_debug == 0) {
2642 		/*
2643 		 * No more DR vmexits; force a reload of the debug registers
2644 		 * and reenter on this instruction.  The next vmexit will
2645 		 * retrieve the full state of the debug registers.
2646 		 */
2647 		clr_dr_intercepts(svm);
2648 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2649 		return 1;
2650 	}
2651 
2652 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2653 		return emulate_on_interception(vcpu);
2654 
2655 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2656 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2657 	if (dr >= 16) { /* mov to DRn  */
2658 		dr -= 16;
2659 		val = kvm_register_read(vcpu, reg);
2660 		err = kvm_set_dr(vcpu, dr, val);
2661 	} else {
2662 		kvm_get_dr(vcpu, dr, &val);
2663 		kvm_register_write(vcpu, reg, val);
2664 	}
2665 
2666 	return kvm_complete_insn_gp(vcpu, err);
2667 }
2668 
2669 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2670 {
2671 	int r;
2672 
2673 	u8 cr8_prev = kvm_get_cr8(vcpu);
2674 	/* instruction emulation calls kvm_set_cr8() */
2675 	r = cr_interception(vcpu);
2676 	if (lapic_in_kernel(vcpu))
2677 		return r;
2678 	if (cr8_prev <= kvm_get_cr8(vcpu))
2679 		return r;
2680 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2681 	return 0;
2682 }
2683 
2684 static int efer_trap(struct kvm_vcpu *vcpu)
2685 {
2686 	struct msr_data msr_info;
2687 	int ret;
2688 
2689 	/*
2690 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2691 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2692 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2693 	 * the guest doesn't have X86_FEATURE_SVM.
2694 	 */
2695 	msr_info.host_initiated = false;
2696 	msr_info.index = MSR_EFER;
2697 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2698 	ret = kvm_set_msr_common(vcpu, &msr_info);
2699 
2700 	return kvm_complete_insn_gp(vcpu, ret);
2701 }
2702 
2703 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2704 {
2705 	msr->data = 0;
2706 
2707 	switch (msr->index) {
2708 	case MSR_AMD64_DE_CFG:
2709 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2710 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2711 		break;
2712 	default:
2713 		return KVM_MSR_RET_INVALID;
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2720 {
2721 	struct vcpu_svm *svm = to_svm(vcpu);
2722 
2723 	switch (msr_info->index) {
2724 	case MSR_AMD64_TSC_RATIO:
2725 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2726 			return 1;
2727 		msr_info->data = svm->tsc_ratio_msr;
2728 		break;
2729 	case MSR_STAR:
2730 		msr_info->data = svm->vmcb01.ptr->save.star;
2731 		break;
2732 #ifdef CONFIG_X86_64
2733 	case MSR_LSTAR:
2734 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2735 		break;
2736 	case MSR_CSTAR:
2737 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2738 		break;
2739 	case MSR_KERNEL_GS_BASE:
2740 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2741 		break;
2742 	case MSR_SYSCALL_MASK:
2743 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2744 		break;
2745 #endif
2746 	case MSR_IA32_SYSENTER_CS:
2747 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2748 		break;
2749 	case MSR_IA32_SYSENTER_EIP:
2750 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2751 		if (guest_cpuid_is_intel(vcpu))
2752 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2753 		break;
2754 	case MSR_IA32_SYSENTER_ESP:
2755 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2756 		if (guest_cpuid_is_intel(vcpu))
2757 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2758 		break;
2759 	case MSR_TSC_AUX:
2760 		msr_info->data = svm->tsc_aux;
2761 		break;
2762 	case MSR_IA32_DEBUGCTLMSR:
2763 	case MSR_IA32_LASTBRANCHFROMIP:
2764 	case MSR_IA32_LASTBRANCHTOIP:
2765 	case MSR_IA32_LASTINTFROMIP:
2766 	case MSR_IA32_LASTINTTOIP:
2767 		msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2768 		break;
2769 	case MSR_VM_HSAVE_PA:
2770 		msr_info->data = svm->nested.hsave_msr;
2771 		break;
2772 	case MSR_VM_CR:
2773 		msr_info->data = svm->nested.vm_cr_msr;
2774 		break;
2775 	case MSR_IA32_SPEC_CTRL:
2776 		if (!msr_info->host_initiated &&
2777 		    !guest_has_spec_ctrl_msr(vcpu))
2778 			return 1;
2779 
2780 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2781 			msr_info->data = svm->vmcb->save.spec_ctrl;
2782 		else
2783 			msr_info->data = svm->spec_ctrl;
2784 		break;
2785 	case MSR_AMD64_VIRT_SPEC_CTRL:
2786 		if (!msr_info->host_initiated &&
2787 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2788 			return 1;
2789 
2790 		msr_info->data = svm->virt_spec_ctrl;
2791 		break;
2792 	case MSR_F15H_IC_CFG: {
2793 
2794 		int family, model;
2795 
2796 		family = guest_cpuid_family(vcpu);
2797 		model  = guest_cpuid_model(vcpu);
2798 
2799 		if (family < 0 || model < 0)
2800 			return kvm_get_msr_common(vcpu, msr_info);
2801 
2802 		msr_info->data = 0;
2803 
2804 		if (family == 0x15 &&
2805 		    (model >= 0x2 && model < 0x20))
2806 			msr_info->data = 0x1E;
2807 		}
2808 		break;
2809 	case MSR_AMD64_DE_CFG:
2810 		msr_info->data = svm->msr_decfg;
2811 		break;
2812 	default:
2813 		return kvm_get_msr_common(vcpu, msr_info);
2814 	}
2815 	return 0;
2816 }
2817 
2818 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2819 {
2820 	struct vcpu_svm *svm = to_svm(vcpu);
2821 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2822 		return kvm_complete_insn_gp(vcpu, err);
2823 
2824 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2825 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2826 				X86_TRAP_GP |
2827 				SVM_EVTINJ_TYPE_EXEPT |
2828 				SVM_EVTINJ_VALID);
2829 	return 1;
2830 }
2831 
2832 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2833 {
2834 	struct vcpu_svm *svm = to_svm(vcpu);
2835 	int svm_dis, chg_mask;
2836 
2837 	if (data & ~SVM_VM_CR_VALID_MASK)
2838 		return 1;
2839 
2840 	chg_mask = SVM_VM_CR_VALID_MASK;
2841 
2842 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2843 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2844 
2845 	svm->nested.vm_cr_msr &= ~chg_mask;
2846 	svm->nested.vm_cr_msr |= (data & chg_mask);
2847 
2848 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2849 
2850 	/* check for svm_disable while efer.svme is set */
2851 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2852 		return 1;
2853 
2854 	return 0;
2855 }
2856 
2857 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2858 {
2859 	struct vcpu_svm *svm = to_svm(vcpu);
2860 	int r;
2861 
2862 	u32 ecx = msr->index;
2863 	u64 data = msr->data;
2864 	switch (ecx) {
2865 	case MSR_AMD64_TSC_RATIO:
2866 
2867 		if (!svm->tsc_scaling_enabled) {
2868 
2869 			if (!msr->host_initiated)
2870 				return 1;
2871 			/*
2872 			 * In case TSC scaling is not enabled, always
2873 			 * leave this MSR at the default value.
2874 			 *
2875 			 * Due to bug in qemu 6.2.0, it would try to set
2876 			 * this msr to 0 if tsc scaling is not enabled.
2877 			 * Ignore this value as well.
2878 			 */
2879 			if (data != 0 && data != svm->tsc_ratio_msr)
2880 				return 1;
2881 			break;
2882 		}
2883 
2884 		if (data & SVM_TSC_RATIO_RSVD)
2885 			return 1;
2886 
2887 		svm->tsc_ratio_msr = data;
2888 
2889 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2890 			nested_svm_update_tsc_ratio_msr(vcpu);
2891 
2892 		break;
2893 	case MSR_IA32_CR_PAT:
2894 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2895 			return 1;
2896 		vcpu->arch.pat = data;
2897 		svm->vmcb01.ptr->save.g_pat = data;
2898 		if (is_guest_mode(vcpu))
2899 			nested_vmcb02_compute_g_pat(svm);
2900 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2901 		break;
2902 	case MSR_IA32_SPEC_CTRL:
2903 		if (!msr->host_initiated &&
2904 		    !guest_has_spec_ctrl_msr(vcpu))
2905 			return 1;
2906 
2907 		if (kvm_spec_ctrl_test_value(data))
2908 			return 1;
2909 
2910 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2911 			svm->vmcb->save.spec_ctrl = data;
2912 		else
2913 			svm->spec_ctrl = data;
2914 		if (!data)
2915 			break;
2916 
2917 		/*
2918 		 * For non-nested:
2919 		 * When it's written (to non-zero) for the first time, pass
2920 		 * it through.
2921 		 *
2922 		 * For nested:
2923 		 * The handling of the MSR bitmap for L2 guests is done in
2924 		 * nested_svm_vmrun_msrpm.
2925 		 * We update the L1 MSR bit as well since it will end up
2926 		 * touching the MSR anyway now.
2927 		 */
2928 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2929 		break;
2930 	case MSR_IA32_PRED_CMD:
2931 		if (!msr->host_initiated &&
2932 		    !guest_has_pred_cmd_msr(vcpu))
2933 			return 1;
2934 
2935 		if (data & ~PRED_CMD_IBPB)
2936 			return 1;
2937 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2938 			return 1;
2939 		if (!data)
2940 			break;
2941 
2942 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2943 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2944 		break;
2945 	case MSR_AMD64_VIRT_SPEC_CTRL:
2946 		if (!msr->host_initiated &&
2947 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2948 			return 1;
2949 
2950 		if (data & ~SPEC_CTRL_SSBD)
2951 			return 1;
2952 
2953 		svm->virt_spec_ctrl = data;
2954 		break;
2955 	case MSR_STAR:
2956 		svm->vmcb01.ptr->save.star = data;
2957 		break;
2958 #ifdef CONFIG_X86_64
2959 	case MSR_LSTAR:
2960 		svm->vmcb01.ptr->save.lstar = data;
2961 		break;
2962 	case MSR_CSTAR:
2963 		svm->vmcb01.ptr->save.cstar = data;
2964 		break;
2965 	case MSR_KERNEL_GS_BASE:
2966 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2967 		break;
2968 	case MSR_SYSCALL_MASK:
2969 		svm->vmcb01.ptr->save.sfmask = data;
2970 		break;
2971 #endif
2972 	case MSR_IA32_SYSENTER_CS:
2973 		svm->vmcb01.ptr->save.sysenter_cs = data;
2974 		break;
2975 	case MSR_IA32_SYSENTER_EIP:
2976 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2977 		/*
2978 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2979 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2980 		 * In this case we use this intercept to track the high
2981 		 * 32 bit part of these msrs to support Intel's
2982 		 * implementation of SYSENTER/SYSEXIT.
2983 		 */
2984 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2985 		break;
2986 	case MSR_IA32_SYSENTER_ESP:
2987 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2988 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2989 		break;
2990 	case MSR_TSC_AUX:
2991 		/*
2992 		 * TSC_AUX is usually changed only during boot and never read
2993 		 * directly.  Intercept TSC_AUX instead of exposing it to the
2994 		 * guest via direct_access_msrs, and switch it via user return.
2995 		 */
2996 		preempt_disable();
2997 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2998 		preempt_enable();
2999 		if (r)
3000 			return 1;
3001 
3002 		svm->tsc_aux = data;
3003 		break;
3004 	case MSR_IA32_DEBUGCTLMSR:
3005 		if (!lbrv) {
3006 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3007 				    __func__, data);
3008 			break;
3009 		}
3010 		if (data & DEBUGCTL_RESERVED_BITS)
3011 			return 1;
3012 
3013 		if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3014 			svm->vmcb->save.dbgctl = data;
3015 		else
3016 			svm->vmcb01.ptr->save.dbgctl = data;
3017 
3018 		svm_update_lbrv(vcpu);
3019 
3020 		break;
3021 	case MSR_VM_HSAVE_PA:
3022 		/*
3023 		 * Old kernels did not validate the value written to
3024 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3025 		 * value to allow live migrating buggy or malicious guests
3026 		 * originating from those kernels.
3027 		 */
3028 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3029 			return 1;
3030 
3031 		svm->nested.hsave_msr = data & PAGE_MASK;
3032 		break;
3033 	case MSR_VM_CR:
3034 		return svm_set_vm_cr(vcpu, data);
3035 	case MSR_VM_IGNNE:
3036 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3037 		break;
3038 	case MSR_AMD64_DE_CFG: {
3039 		struct kvm_msr_entry msr_entry;
3040 
3041 		msr_entry.index = msr->index;
3042 		if (svm_get_msr_feature(&msr_entry))
3043 			return 1;
3044 
3045 		/* Check the supported bits */
3046 		if (data & ~msr_entry.data)
3047 			return 1;
3048 
3049 		/* Don't allow the guest to change a bit, #GP */
3050 		if (!msr->host_initiated && (data ^ msr_entry.data))
3051 			return 1;
3052 
3053 		svm->msr_decfg = data;
3054 		break;
3055 	}
3056 	default:
3057 		return kvm_set_msr_common(vcpu, msr);
3058 	}
3059 	return 0;
3060 }
3061 
3062 static int msr_interception(struct kvm_vcpu *vcpu)
3063 {
3064 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3065 		return kvm_emulate_wrmsr(vcpu);
3066 	else
3067 		return kvm_emulate_rdmsr(vcpu);
3068 }
3069 
3070 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3071 {
3072 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3073 	svm_clear_vintr(to_svm(vcpu));
3074 
3075 	/*
3076 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3077 	 * In this case AVIC was temporarily disabled for
3078 	 * requesting the IRQ window and we have to re-enable it.
3079 	 *
3080 	 * If running nested, still remove the VM wide AVIC inhibit to
3081 	 * support case in which the interrupt window was requested when the
3082 	 * vCPU was not running nested.
3083 
3084 	 * All vCPUs which run still run nested, will remain to have their
3085 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3086 	 */
3087 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3088 
3089 	++vcpu->stat.irq_window_exits;
3090 	return 1;
3091 }
3092 
3093 static int pause_interception(struct kvm_vcpu *vcpu)
3094 {
3095 	bool in_kernel;
3096 	/*
3097 	 * CPL is not made available for an SEV-ES guest, therefore
3098 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3099 	 * set in_kernel to false as well.
3100 	 */
3101 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3102 
3103 	grow_ple_window(vcpu);
3104 
3105 	kvm_vcpu_on_spin(vcpu, in_kernel);
3106 	return kvm_skip_emulated_instruction(vcpu);
3107 }
3108 
3109 static int invpcid_interception(struct kvm_vcpu *vcpu)
3110 {
3111 	struct vcpu_svm *svm = to_svm(vcpu);
3112 	unsigned long type;
3113 	gva_t gva;
3114 
3115 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3116 		kvm_queue_exception(vcpu, UD_VECTOR);
3117 		return 1;
3118 	}
3119 
3120 	/*
3121 	 * For an INVPCID intercept:
3122 	 * EXITINFO1 provides the linear address of the memory operand.
3123 	 * EXITINFO2 provides the contents of the register operand.
3124 	 */
3125 	type = svm->vmcb->control.exit_info_2;
3126 	gva = svm->vmcb->control.exit_info_1;
3127 
3128 	return kvm_handle_invpcid(vcpu, type, gva);
3129 }
3130 
3131 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3132 	[SVM_EXIT_READ_CR0]			= cr_interception,
3133 	[SVM_EXIT_READ_CR3]			= cr_interception,
3134 	[SVM_EXIT_READ_CR4]			= cr_interception,
3135 	[SVM_EXIT_READ_CR8]			= cr_interception,
3136 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3137 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3138 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3139 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3140 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3141 	[SVM_EXIT_READ_DR0]			= dr_interception,
3142 	[SVM_EXIT_READ_DR1]			= dr_interception,
3143 	[SVM_EXIT_READ_DR2]			= dr_interception,
3144 	[SVM_EXIT_READ_DR3]			= dr_interception,
3145 	[SVM_EXIT_READ_DR4]			= dr_interception,
3146 	[SVM_EXIT_READ_DR5]			= dr_interception,
3147 	[SVM_EXIT_READ_DR6]			= dr_interception,
3148 	[SVM_EXIT_READ_DR7]			= dr_interception,
3149 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3150 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3151 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3152 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3153 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3154 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3155 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3156 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3157 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3158 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3159 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3160 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3161 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3162 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3163 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3164 	[SVM_EXIT_INTR]				= intr_interception,
3165 	[SVM_EXIT_NMI]				= nmi_interception,
3166 	[SVM_EXIT_SMI]				= smi_interception,
3167 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3168 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3169 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3170 	[SVM_EXIT_IRET]                         = iret_interception,
3171 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3172 	[SVM_EXIT_PAUSE]			= pause_interception,
3173 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3174 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3175 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3176 	[SVM_EXIT_IOIO]				= io_interception,
3177 	[SVM_EXIT_MSR]				= msr_interception,
3178 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3179 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3180 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3181 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3182 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3183 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3184 	[SVM_EXIT_STGI]				= stgi_interception,
3185 	[SVM_EXIT_CLGI]				= clgi_interception,
3186 	[SVM_EXIT_SKINIT]			= skinit_interception,
3187 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3188 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3189 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3190 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3191 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3192 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3193 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3194 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3195 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3196 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3197 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3198 	[SVM_EXIT_NPF]				= npf_interception,
3199 	[SVM_EXIT_RSM]                          = rsm_interception,
3200 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3201 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3202 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3203 };
3204 
3205 static void dump_vmcb(struct kvm_vcpu *vcpu)
3206 {
3207 	struct vcpu_svm *svm = to_svm(vcpu);
3208 	struct vmcb_control_area *control = &svm->vmcb->control;
3209 	struct vmcb_save_area *save = &svm->vmcb->save;
3210 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3211 
3212 	if (!dump_invalid_vmcb) {
3213 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3214 		return;
3215 	}
3216 
3217 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3218 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3219 	pr_err("VMCB Control Area:\n");
3220 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3221 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3222 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3223 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3224 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3225 	pr_err("%-20s%08x %08x\n", "intercepts:",
3226               control->intercepts[INTERCEPT_WORD3],
3227 	       control->intercepts[INTERCEPT_WORD4]);
3228 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3229 	pr_err("%-20s%d\n", "pause filter threshold:",
3230 	       control->pause_filter_thresh);
3231 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3232 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3233 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3234 	pr_err("%-20s%d\n", "asid:", control->asid);
3235 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3236 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3237 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3238 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3239 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3240 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3241 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3242 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3243 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3244 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3245 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3246 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3247 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3248 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3249 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3250 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3251 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3252 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3253 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3254 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3255 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3256 	pr_err("VMCB State Save Area:\n");
3257 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3258 	       "es:",
3259 	       save->es.selector, save->es.attrib,
3260 	       save->es.limit, save->es.base);
3261 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3262 	       "cs:",
3263 	       save->cs.selector, save->cs.attrib,
3264 	       save->cs.limit, save->cs.base);
3265 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3266 	       "ss:",
3267 	       save->ss.selector, save->ss.attrib,
3268 	       save->ss.limit, save->ss.base);
3269 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3270 	       "ds:",
3271 	       save->ds.selector, save->ds.attrib,
3272 	       save->ds.limit, save->ds.base);
3273 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3274 	       "fs:",
3275 	       save01->fs.selector, save01->fs.attrib,
3276 	       save01->fs.limit, save01->fs.base);
3277 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3278 	       "gs:",
3279 	       save01->gs.selector, save01->gs.attrib,
3280 	       save01->gs.limit, save01->gs.base);
3281 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3282 	       "gdtr:",
3283 	       save->gdtr.selector, save->gdtr.attrib,
3284 	       save->gdtr.limit, save->gdtr.base);
3285 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3286 	       "ldtr:",
3287 	       save01->ldtr.selector, save01->ldtr.attrib,
3288 	       save01->ldtr.limit, save01->ldtr.base);
3289 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3290 	       "idtr:",
3291 	       save->idtr.selector, save->idtr.attrib,
3292 	       save->idtr.limit, save->idtr.base);
3293 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3294 	       "tr:",
3295 	       save01->tr.selector, save01->tr.attrib,
3296 	       save01->tr.limit, save01->tr.base);
3297 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3298 	       save->vmpl, save->cpl, save->efer);
3299 	pr_err("%-15s %016llx %-13s %016llx\n",
3300 	       "cr0:", save->cr0, "cr2:", save->cr2);
3301 	pr_err("%-15s %016llx %-13s %016llx\n",
3302 	       "cr3:", save->cr3, "cr4:", save->cr4);
3303 	pr_err("%-15s %016llx %-13s %016llx\n",
3304 	       "dr6:", save->dr6, "dr7:", save->dr7);
3305 	pr_err("%-15s %016llx %-13s %016llx\n",
3306 	       "rip:", save->rip, "rflags:", save->rflags);
3307 	pr_err("%-15s %016llx %-13s %016llx\n",
3308 	       "rsp:", save->rsp, "rax:", save->rax);
3309 	pr_err("%-15s %016llx %-13s %016llx\n",
3310 	       "star:", save01->star, "lstar:", save01->lstar);
3311 	pr_err("%-15s %016llx %-13s %016llx\n",
3312 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3313 	pr_err("%-15s %016llx %-13s %016llx\n",
3314 	       "kernel_gs_base:", save01->kernel_gs_base,
3315 	       "sysenter_cs:", save01->sysenter_cs);
3316 	pr_err("%-15s %016llx %-13s %016llx\n",
3317 	       "sysenter_esp:", save01->sysenter_esp,
3318 	       "sysenter_eip:", save01->sysenter_eip);
3319 	pr_err("%-15s %016llx %-13s %016llx\n",
3320 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3321 	pr_err("%-15s %016llx %-13s %016llx\n",
3322 	       "br_from:", save->br_from, "br_to:", save->br_to);
3323 	pr_err("%-15s %016llx %-13s %016llx\n",
3324 	       "excp_from:", save->last_excp_from,
3325 	       "excp_to:", save->last_excp_to);
3326 }
3327 
3328 static bool svm_check_exit_valid(u64 exit_code)
3329 {
3330 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3331 		svm_exit_handlers[exit_code]);
3332 }
3333 
3334 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3335 {
3336 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3337 	dump_vmcb(vcpu);
3338 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3339 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3340 	vcpu->run->internal.ndata = 2;
3341 	vcpu->run->internal.data[0] = exit_code;
3342 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3343 	return 0;
3344 }
3345 
3346 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3347 {
3348 	if (!svm_check_exit_valid(exit_code))
3349 		return svm_handle_invalid_exit(vcpu, exit_code);
3350 
3351 #ifdef CONFIG_RETPOLINE
3352 	if (exit_code == SVM_EXIT_MSR)
3353 		return msr_interception(vcpu);
3354 	else if (exit_code == SVM_EXIT_VINTR)
3355 		return interrupt_window_interception(vcpu);
3356 	else if (exit_code == SVM_EXIT_INTR)
3357 		return intr_interception(vcpu);
3358 	else if (exit_code == SVM_EXIT_HLT)
3359 		return kvm_emulate_halt(vcpu);
3360 	else if (exit_code == SVM_EXIT_NPF)
3361 		return npf_interception(vcpu);
3362 #endif
3363 	return svm_exit_handlers[exit_code](vcpu);
3364 }
3365 
3366 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3367 			      u64 *info1, u64 *info2,
3368 			      u32 *intr_info, u32 *error_code)
3369 {
3370 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3371 
3372 	*reason = control->exit_code;
3373 	*info1 = control->exit_info_1;
3374 	*info2 = control->exit_info_2;
3375 	*intr_info = control->exit_int_info;
3376 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3377 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3378 		*error_code = control->exit_int_info_err;
3379 	else
3380 		*error_code = 0;
3381 }
3382 
3383 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3384 {
3385 	struct vcpu_svm *svm = to_svm(vcpu);
3386 	struct kvm_run *kvm_run = vcpu->run;
3387 	u32 exit_code = svm->vmcb->control.exit_code;
3388 
3389 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
3390 
3391 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3392 	if (!sev_es_guest(vcpu->kvm)) {
3393 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3394 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3395 		if (npt_enabled)
3396 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3397 	}
3398 
3399 	if (is_guest_mode(vcpu)) {
3400 		int vmexit;
3401 
3402 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3403 
3404 		vmexit = nested_svm_exit_special(svm);
3405 
3406 		if (vmexit == NESTED_EXIT_CONTINUE)
3407 			vmexit = nested_svm_exit_handled(svm);
3408 
3409 		if (vmexit == NESTED_EXIT_DONE)
3410 			return 1;
3411 	}
3412 
3413 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3414 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3415 		kvm_run->fail_entry.hardware_entry_failure_reason
3416 			= svm->vmcb->control.exit_code;
3417 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3418 		dump_vmcb(vcpu);
3419 		return 0;
3420 	}
3421 
3422 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3423 		return 1;
3424 
3425 	return svm_invoke_exit_handler(vcpu, exit_code);
3426 }
3427 
3428 static void reload_tss(struct kvm_vcpu *vcpu)
3429 {
3430 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3431 
3432 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3433 	load_TR_desc();
3434 }
3435 
3436 static void pre_svm_run(struct kvm_vcpu *vcpu)
3437 {
3438 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3439 	struct vcpu_svm *svm = to_svm(vcpu);
3440 
3441 	/*
3442 	 * If the previous vmrun of the vmcb occurred on a different physical
3443 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3444 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3445 	 */
3446 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3447 		svm->current_vmcb->asid_generation = 0;
3448 		vmcb_mark_all_dirty(svm->vmcb);
3449 		svm->current_vmcb->cpu = vcpu->cpu;
3450         }
3451 
3452 	if (sev_guest(vcpu->kvm))
3453 		return pre_sev_run(svm, vcpu->cpu);
3454 
3455 	/* FIXME: handle wraparound of asid_generation */
3456 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3457 		new_asid(svm, sd);
3458 }
3459 
3460 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3461 {
3462 	struct vcpu_svm *svm = to_svm(vcpu);
3463 
3464 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3465 
3466 	if (svm->nmi_l1_to_l2)
3467 		return;
3468 
3469 	vcpu->arch.hflags |= HF_NMI_MASK;
3470 	if (!sev_es_guest(vcpu->kvm))
3471 		svm_set_intercept(svm, INTERCEPT_IRET);
3472 	++vcpu->stat.nmi_injections;
3473 }
3474 
3475 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3476 {
3477 	struct vcpu_svm *svm = to_svm(vcpu);
3478 	u32 type;
3479 
3480 	if (vcpu->arch.interrupt.soft) {
3481 		if (svm_update_soft_interrupt_rip(vcpu))
3482 			return;
3483 
3484 		type = SVM_EVTINJ_TYPE_SOFT;
3485 	} else {
3486 		type = SVM_EVTINJ_TYPE_INTR;
3487 	}
3488 
3489 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3490 			   vcpu->arch.interrupt.soft, reinjected);
3491 	++vcpu->stat.irq_injections;
3492 
3493 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3494 				       SVM_EVTINJ_VALID | type;
3495 }
3496 
3497 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3498 				     int trig_mode, int vector)
3499 {
3500 	/*
3501 	 * apic->apicv_active must be read after vcpu->mode.
3502 	 * Pairs with smp_store_release in vcpu_enter_guest.
3503 	 */
3504 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3505 
3506 	/* Note, this is called iff the local APIC is in-kernel. */
3507 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3508 		/* Process the interrupt via kvm_check_and_inject_events(). */
3509 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3510 		kvm_vcpu_kick(vcpu);
3511 		return;
3512 	}
3513 
3514 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3515 	if (in_guest_mode) {
3516 		/*
3517 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3518 		 * the vCPU exits the guest before the doorbell chimes, hardware
3519 		 * will automatically process AVIC interrupts at the next VMRUN.
3520 		 */
3521 		avic_ring_doorbell(vcpu);
3522 	} else {
3523 		/*
3524 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3525 		 * pending IRQ when checking if the vCPU has a wake event.
3526 		 */
3527 		kvm_vcpu_wake_up(vcpu);
3528 	}
3529 }
3530 
3531 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3532 				  int trig_mode, int vector)
3533 {
3534 	kvm_lapic_set_irr(vector, apic);
3535 
3536 	/*
3537 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3538 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3539 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3540 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3541 	 * will signal the doorbell if the CPU has already entered the guest.
3542 	 */
3543 	smp_mb__after_atomic();
3544 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3545 }
3546 
3547 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3548 {
3549 	struct vcpu_svm *svm = to_svm(vcpu);
3550 
3551 	/*
3552 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3553 	 * tracking is done using the CR write traps.
3554 	 */
3555 	if (sev_es_guest(vcpu->kvm))
3556 		return;
3557 
3558 	if (nested_svm_virtualize_tpr(vcpu))
3559 		return;
3560 
3561 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3562 
3563 	if (irr == -1)
3564 		return;
3565 
3566 	if (tpr >= irr)
3567 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3568 }
3569 
3570 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3571 {
3572 	struct vcpu_svm *svm = to_svm(vcpu);
3573 	struct vmcb *vmcb = svm->vmcb;
3574 	bool ret;
3575 
3576 	if (!gif_set(svm))
3577 		return true;
3578 
3579 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3580 		return false;
3581 
3582 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3583 	      (vcpu->arch.hflags & HF_NMI_MASK);
3584 
3585 	return ret;
3586 }
3587 
3588 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3589 {
3590 	struct vcpu_svm *svm = to_svm(vcpu);
3591 	if (svm->nested.nested_run_pending)
3592 		return -EBUSY;
3593 
3594 	if (svm_nmi_blocked(vcpu))
3595 		return 0;
3596 
3597 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3598 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3599 		return -EBUSY;
3600 	return 1;
3601 }
3602 
3603 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3604 {
3605 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3606 }
3607 
3608 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3609 {
3610 	struct vcpu_svm *svm = to_svm(vcpu);
3611 
3612 	if (masked) {
3613 		vcpu->arch.hflags |= HF_NMI_MASK;
3614 		if (!sev_es_guest(vcpu->kvm))
3615 			svm_set_intercept(svm, INTERCEPT_IRET);
3616 	} else {
3617 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3618 		if (!sev_es_guest(vcpu->kvm))
3619 			svm_clr_intercept(svm, INTERCEPT_IRET);
3620 	}
3621 }
3622 
3623 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3624 {
3625 	struct vcpu_svm *svm = to_svm(vcpu);
3626 	struct vmcb *vmcb = svm->vmcb;
3627 
3628 	if (!gif_set(svm))
3629 		return true;
3630 
3631 	if (is_guest_mode(vcpu)) {
3632 		/* As long as interrupts are being delivered...  */
3633 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3634 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3635 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3636 			return true;
3637 
3638 		/* ... vmexits aren't blocked by the interrupt shadow  */
3639 		if (nested_exit_on_intr(svm))
3640 			return false;
3641 	} else {
3642 		if (!svm_get_if_flag(vcpu))
3643 			return true;
3644 	}
3645 
3646 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3647 }
3648 
3649 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3650 {
3651 	struct vcpu_svm *svm = to_svm(vcpu);
3652 
3653 	if (svm->nested.nested_run_pending)
3654 		return -EBUSY;
3655 
3656 	if (svm_interrupt_blocked(vcpu))
3657 		return 0;
3658 
3659 	/*
3660 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3661 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3662 	 */
3663 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3664 		return -EBUSY;
3665 
3666 	return 1;
3667 }
3668 
3669 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3670 {
3671 	struct vcpu_svm *svm = to_svm(vcpu);
3672 
3673 	/*
3674 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3675 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3676 	 * get that intercept, this function will be called again though and
3677 	 * we'll get the vintr intercept. However, if the vGIF feature is
3678 	 * enabled, the STGI interception will not occur. Enable the irq
3679 	 * window under the assumption that the hardware will set the GIF.
3680 	 */
3681 	if (vgif || gif_set(svm)) {
3682 		/*
3683 		 * IRQ window is not needed when AVIC is enabled,
3684 		 * unless we have pending ExtINT since it cannot be injected
3685 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3686 		 * and fallback to injecting IRQ via V_IRQ.
3687 		 *
3688 		 * If running nested, AVIC is already locally inhibited
3689 		 * on this vCPU, therefore there is no need to request
3690 		 * the VM wide AVIC inhibition.
3691 		 */
3692 		if (!is_guest_mode(vcpu))
3693 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3694 
3695 		svm_set_vintr(svm);
3696 	}
3697 }
3698 
3699 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3700 {
3701 	struct vcpu_svm *svm = to_svm(vcpu);
3702 
3703 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3704 		return; /* IRET will cause a vm exit */
3705 
3706 	if (!gif_set(svm)) {
3707 		if (vgif)
3708 			svm_set_intercept(svm, INTERCEPT_STGI);
3709 		return; /* STGI will cause a vm exit */
3710 	}
3711 
3712 	/*
3713 	 * Something prevents NMI from been injected. Single step over possible
3714 	 * problem (IRET or exception injection or interrupt shadow)
3715 	 */
3716 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3717 	svm->nmi_singlestep = true;
3718 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3719 }
3720 
3721 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3722 {
3723 	struct vcpu_svm *svm = to_svm(vcpu);
3724 
3725 	/*
3726 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3727 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3728 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3729 	 */
3730 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3731 
3732 	/*
3733 	 * Flush only the current ASID even if the TLB flush was invoked via
3734 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3735 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3736 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3737 	 * VM-Exit (via kvm_mmu_reset_context()).
3738 	 */
3739 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3740 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3741 	else
3742 		svm->current_vmcb->asid_generation--;
3743 }
3744 
3745 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3746 {
3747 	struct vcpu_svm *svm = to_svm(vcpu);
3748 
3749 	invlpga(gva, svm->vmcb->control.asid);
3750 }
3751 
3752 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3753 {
3754 	struct vcpu_svm *svm = to_svm(vcpu);
3755 
3756 	if (nested_svm_virtualize_tpr(vcpu))
3757 		return;
3758 
3759 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3760 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3761 		kvm_set_cr8(vcpu, cr8);
3762 	}
3763 }
3764 
3765 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3766 {
3767 	struct vcpu_svm *svm = to_svm(vcpu);
3768 	u64 cr8;
3769 
3770 	if (nested_svm_virtualize_tpr(vcpu) ||
3771 	    kvm_vcpu_apicv_active(vcpu))
3772 		return;
3773 
3774 	cr8 = kvm_get_cr8(vcpu);
3775 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3776 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3777 }
3778 
3779 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3780 					int type)
3781 {
3782 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3783 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3784 	struct vcpu_svm *svm = to_svm(vcpu);
3785 
3786 	/*
3787 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3788 	 * associated with the original soft exception/interrupt.  next_rip is
3789 	 * cleared on all exits that can occur while vectoring an event, so KVM
3790 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3791 	 * case below, this needs to be done if and only if KVM is re-injecting
3792 	 * the same event, i.e. if the event is a soft exception/interrupt,
3793 	 * otherwise next_rip is unused on VMRUN.
3794 	 */
3795 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3796 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3797 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3798 	/*
3799 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3800 	 * injecting the soft exception/interrupt.  That advancement needs to
3801 	 * be unwound if vectoring didn't complete.  Note, the new event may
3802 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3803 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3804 	 * be the reported vectored event, but RIP still needs to be unwound.
3805 	 */
3806 	else if (!nrips && (is_soft || is_exception) &&
3807 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3808 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
3809 }
3810 
3811 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3812 {
3813 	struct vcpu_svm *svm = to_svm(vcpu);
3814 	u8 vector;
3815 	int type;
3816 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3817 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3818 	bool soft_int_injected = svm->soft_int_injected;
3819 
3820 	svm->nmi_l1_to_l2 = false;
3821 	svm->soft_int_injected = false;
3822 
3823 	/*
3824 	 * If we've made progress since setting HF_IRET_MASK, we've
3825 	 * executed an IRET and can allow NMI injection.
3826 	 */
3827 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3828 	    (sev_es_guest(vcpu->kvm) ||
3829 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3830 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3831 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3832 	}
3833 
3834 	vcpu->arch.nmi_injected = false;
3835 	kvm_clear_exception_queue(vcpu);
3836 	kvm_clear_interrupt_queue(vcpu);
3837 
3838 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3839 		return;
3840 
3841 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3842 
3843 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3844 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3845 
3846 	if (soft_int_injected)
3847 		svm_complete_soft_interrupt(vcpu, vector, type);
3848 
3849 	switch (type) {
3850 	case SVM_EXITINTINFO_TYPE_NMI:
3851 		vcpu->arch.nmi_injected = true;
3852 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3853 		break;
3854 	case SVM_EXITINTINFO_TYPE_EXEPT:
3855 		/*
3856 		 * Never re-inject a #VC exception.
3857 		 */
3858 		if (vector == X86_TRAP_VC)
3859 			break;
3860 
3861 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3862 			u32 err = svm->vmcb->control.exit_int_info_err;
3863 			kvm_requeue_exception_e(vcpu, vector, err);
3864 
3865 		} else
3866 			kvm_requeue_exception(vcpu, vector);
3867 		break;
3868 	case SVM_EXITINTINFO_TYPE_INTR:
3869 		kvm_queue_interrupt(vcpu, vector, false);
3870 		break;
3871 	case SVM_EXITINTINFO_TYPE_SOFT:
3872 		kvm_queue_interrupt(vcpu, vector, true);
3873 		break;
3874 	default:
3875 		break;
3876 	}
3877 
3878 }
3879 
3880 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3881 {
3882 	struct vcpu_svm *svm = to_svm(vcpu);
3883 	struct vmcb_control_area *control = &svm->vmcb->control;
3884 
3885 	control->exit_int_info = control->event_inj;
3886 	control->exit_int_info_err = control->event_inj_err;
3887 	control->event_inj = 0;
3888 	svm_complete_interrupts(vcpu);
3889 }
3890 
3891 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3892 {
3893 	return 1;
3894 }
3895 
3896 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3897 {
3898 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3899 
3900 	/*
3901 	 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM
3902 	 * can't read guest memory (dereference memslots) to decode the WRMSR.
3903 	 */
3904 	if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 &&
3905 	    nrips && control->next_rip)
3906 		return handle_fastpath_set_msr_irqoff(vcpu);
3907 
3908 	return EXIT_FASTPATH_NONE;
3909 }
3910 
3911 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
3912 {
3913 	struct vcpu_svm *svm = to_svm(vcpu);
3914 
3915 	guest_state_enter_irqoff();
3916 
3917 	if (sev_es_guest(vcpu->kvm))
3918 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
3919 	else
3920 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
3921 
3922 	guest_state_exit_irqoff();
3923 }
3924 
3925 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3926 {
3927 	struct vcpu_svm *svm = to_svm(vcpu);
3928 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
3929 
3930 	trace_kvm_entry(vcpu);
3931 
3932 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3933 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3934 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3935 
3936 	/*
3937 	 * Disable singlestep if we're injecting an interrupt/exception.
3938 	 * We don't want our modified rflags to be pushed on the stack where
3939 	 * we might not be able to easily reset them if we disabled NMI
3940 	 * singlestep later.
3941 	 */
3942 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3943 		/*
3944 		 * Event injection happens before external interrupts cause a
3945 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3946 		 * is enough to force an immediate vmexit.
3947 		 */
3948 		disable_nmi_singlestep(svm);
3949 		smp_send_reschedule(vcpu->cpu);
3950 	}
3951 
3952 	pre_svm_run(vcpu);
3953 
3954 	sync_lapic_to_cr8(vcpu);
3955 
3956 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3957 		svm->vmcb->control.asid = svm->asid;
3958 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3959 	}
3960 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3961 
3962 	svm_hv_update_vp_id(svm->vmcb, vcpu);
3963 
3964 	/*
3965 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3966 	 * of a #DB.
3967 	 */
3968 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3969 		svm_set_dr6(svm, vcpu->arch.dr6);
3970 	else
3971 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3972 
3973 	clgi();
3974 	kvm_load_guest_xsave_state(vcpu);
3975 
3976 	kvm_wait_lapic_expire(vcpu);
3977 
3978 	/*
3979 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3980 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3981 	 * is no need to worry about the conditional branch over the wrmsr
3982 	 * being speculatively taken.
3983 	 */
3984 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3985 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
3986 
3987 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
3988 
3989 	if (!sev_es_guest(vcpu->kvm))
3990 		reload_tss(vcpu);
3991 
3992 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3993 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
3994 
3995 	if (!sev_es_guest(vcpu->kvm)) {
3996 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3997 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3998 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3999 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4000 	}
4001 	vcpu->arch.regs_dirty = 0;
4002 
4003 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4004 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4005 
4006 	kvm_load_host_xsave_state(vcpu);
4007 	stgi();
4008 
4009 	/* Any pending NMI will happen here */
4010 
4011 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4012 		kvm_after_interrupt(vcpu);
4013 
4014 	sync_cr8_to_lapic(vcpu);
4015 
4016 	svm->next_rip = 0;
4017 	if (is_guest_mode(vcpu)) {
4018 		nested_sync_control_from_vmcb02(svm);
4019 
4020 		/* Track VMRUNs that have made past consistency checking */
4021 		if (svm->nested.nested_run_pending &&
4022 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4023                         ++vcpu->stat.nested_run;
4024 
4025 		svm->nested.nested_run_pending = 0;
4026 	}
4027 
4028 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4029 	vmcb_mark_all_clean(svm->vmcb);
4030 
4031 	/* if exit due to PF check for async PF */
4032 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4033 		vcpu->arch.apf.host_apf_flags =
4034 			kvm_read_and_reset_apf_flags();
4035 
4036 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4037 
4038 	/*
4039 	 * We need to handle MC intercepts here before the vcpu has a chance to
4040 	 * change the physical cpu
4041 	 */
4042 	if (unlikely(svm->vmcb->control.exit_code ==
4043 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4044 		svm_handle_mce(vcpu);
4045 
4046 	svm_complete_interrupts(vcpu);
4047 
4048 	if (is_guest_mode(vcpu))
4049 		return EXIT_FASTPATH_NONE;
4050 
4051 	return svm_exit_handlers_fastpath(vcpu);
4052 }
4053 
4054 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4055 			     int root_level)
4056 {
4057 	struct vcpu_svm *svm = to_svm(vcpu);
4058 	unsigned long cr3;
4059 
4060 	if (npt_enabled) {
4061 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4062 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4063 
4064 		hv_track_root_tdp(vcpu, root_hpa);
4065 
4066 		cr3 = vcpu->arch.cr3;
4067 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4068 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4069 	} else {
4070 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4071 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4072 		cr3 = root_hpa;
4073 	}
4074 
4075 	svm->vmcb->save.cr3 = cr3;
4076 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4077 }
4078 
4079 static int is_disabled(void)
4080 {
4081 	u64 vm_cr;
4082 
4083 	rdmsrl(MSR_VM_CR, vm_cr);
4084 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4085 		return 1;
4086 
4087 	return 0;
4088 }
4089 
4090 static void
4091 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4092 {
4093 	/*
4094 	 * Patch in the VMMCALL instruction:
4095 	 */
4096 	hypercall[0] = 0x0f;
4097 	hypercall[1] = 0x01;
4098 	hypercall[2] = 0xd9;
4099 }
4100 
4101 static int __init svm_check_processor_compat(void)
4102 {
4103 	return 0;
4104 }
4105 
4106 /*
4107  * The kvm parameter can be NULL (module initialization, or invocation before
4108  * VM creation). Be sure to check the kvm parameter before using it.
4109  */
4110 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4111 {
4112 	switch (index) {
4113 	case MSR_IA32_MCG_EXT_CTL:
4114 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4115 		return false;
4116 	case MSR_IA32_SMBASE:
4117 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4118 			return false;
4119 		/* SEV-ES guests do not support SMM, so report false */
4120 		if (kvm && sev_es_guest(kvm))
4121 			return false;
4122 		break;
4123 	default:
4124 		break;
4125 	}
4126 
4127 	return true;
4128 }
4129 
4130 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4131 {
4132 	struct vcpu_svm *svm = to_svm(vcpu);
4133 	struct kvm_cpuid_entry2 *best;
4134 
4135 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4136 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
4137 				    boot_cpu_has(X86_FEATURE_XSAVES);
4138 
4139 	/* Update nrips enabled cache */
4140 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4141 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4142 
4143 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4144 	svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4145 
4146 	svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4147 
4148 	svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4149 			guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4150 
4151 	svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4152 			guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4153 
4154 	svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4155 
4156 	svm_recalc_instruction_intercepts(vcpu, svm);
4157 
4158 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4159 	if (sev_guest(vcpu->kvm)) {
4160 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4161 		if (best)
4162 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4163 	}
4164 
4165 	init_vmcb_after_set_cpuid(vcpu);
4166 }
4167 
4168 static bool svm_has_wbinvd_exit(void)
4169 {
4170 	return true;
4171 }
4172 
4173 #define PRE_EX(exit)  { .exit_code = (exit), \
4174 			.stage = X86_ICPT_PRE_EXCEPT, }
4175 #define POST_EX(exit) { .exit_code = (exit), \
4176 			.stage = X86_ICPT_POST_EXCEPT, }
4177 #define POST_MEM(exit) { .exit_code = (exit), \
4178 			.stage = X86_ICPT_POST_MEMACCESS, }
4179 
4180 static const struct __x86_intercept {
4181 	u32 exit_code;
4182 	enum x86_intercept_stage stage;
4183 } x86_intercept_map[] = {
4184 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4185 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4186 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4187 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4188 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4189 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4190 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4191 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4192 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4193 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4194 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4195 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4196 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4197 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4198 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4199 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4200 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4201 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4202 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4203 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4204 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4205 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4206 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4207 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4208 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4209 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4210 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4211 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4212 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4213 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4214 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4215 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4216 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4217 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4218 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4219 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4220 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4221 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4222 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4223 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4224 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4225 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4226 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4227 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4228 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4229 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4230 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4231 };
4232 
4233 #undef PRE_EX
4234 #undef POST_EX
4235 #undef POST_MEM
4236 
4237 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4238 			       struct x86_instruction_info *info,
4239 			       enum x86_intercept_stage stage,
4240 			       struct x86_exception *exception)
4241 {
4242 	struct vcpu_svm *svm = to_svm(vcpu);
4243 	int vmexit, ret = X86EMUL_CONTINUE;
4244 	struct __x86_intercept icpt_info;
4245 	struct vmcb *vmcb = svm->vmcb;
4246 
4247 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4248 		goto out;
4249 
4250 	icpt_info = x86_intercept_map[info->intercept];
4251 
4252 	if (stage != icpt_info.stage)
4253 		goto out;
4254 
4255 	switch (icpt_info.exit_code) {
4256 	case SVM_EXIT_READ_CR0:
4257 		if (info->intercept == x86_intercept_cr_read)
4258 			icpt_info.exit_code += info->modrm_reg;
4259 		break;
4260 	case SVM_EXIT_WRITE_CR0: {
4261 		unsigned long cr0, val;
4262 
4263 		if (info->intercept == x86_intercept_cr_write)
4264 			icpt_info.exit_code += info->modrm_reg;
4265 
4266 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4267 		    info->intercept == x86_intercept_clts)
4268 			break;
4269 
4270 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4271 					INTERCEPT_SELECTIVE_CR0)))
4272 			break;
4273 
4274 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4275 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4276 
4277 		if (info->intercept == x86_intercept_lmsw) {
4278 			cr0 &= 0xfUL;
4279 			val &= 0xfUL;
4280 			/* lmsw can't clear PE - catch this here */
4281 			if (cr0 & X86_CR0_PE)
4282 				val |= X86_CR0_PE;
4283 		}
4284 
4285 		if (cr0 ^ val)
4286 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4287 
4288 		break;
4289 	}
4290 	case SVM_EXIT_READ_DR0:
4291 	case SVM_EXIT_WRITE_DR0:
4292 		icpt_info.exit_code += info->modrm_reg;
4293 		break;
4294 	case SVM_EXIT_MSR:
4295 		if (info->intercept == x86_intercept_wrmsr)
4296 			vmcb->control.exit_info_1 = 1;
4297 		else
4298 			vmcb->control.exit_info_1 = 0;
4299 		break;
4300 	case SVM_EXIT_PAUSE:
4301 		/*
4302 		 * We get this for NOP only, but pause
4303 		 * is rep not, check this here
4304 		 */
4305 		if (info->rep_prefix != REPE_PREFIX)
4306 			goto out;
4307 		break;
4308 	case SVM_EXIT_IOIO: {
4309 		u64 exit_info;
4310 		u32 bytes;
4311 
4312 		if (info->intercept == x86_intercept_in ||
4313 		    info->intercept == x86_intercept_ins) {
4314 			exit_info = ((info->src_val & 0xffff) << 16) |
4315 				SVM_IOIO_TYPE_MASK;
4316 			bytes = info->dst_bytes;
4317 		} else {
4318 			exit_info = (info->dst_val & 0xffff) << 16;
4319 			bytes = info->src_bytes;
4320 		}
4321 
4322 		if (info->intercept == x86_intercept_outs ||
4323 		    info->intercept == x86_intercept_ins)
4324 			exit_info |= SVM_IOIO_STR_MASK;
4325 
4326 		if (info->rep_prefix)
4327 			exit_info |= SVM_IOIO_REP_MASK;
4328 
4329 		bytes = min(bytes, 4u);
4330 
4331 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4332 
4333 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4334 
4335 		vmcb->control.exit_info_1 = exit_info;
4336 		vmcb->control.exit_info_2 = info->next_rip;
4337 
4338 		break;
4339 	}
4340 	default:
4341 		break;
4342 	}
4343 
4344 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4345 	if (static_cpu_has(X86_FEATURE_NRIPS))
4346 		vmcb->control.next_rip  = info->next_rip;
4347 	vmcb->control.exit_code = icpt_info.exit_code;
4348 	vmexit = nested_svm_exit_handled(svm);
4349 
4350 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4351 					   : X86EMUL_CONTINUE;
4352 
4353 out:
4354 	return ret;
4355 }
4356 
4357 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4358 {
4359 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4360 		vcpu->arch.at_instruction_boundary = true;
4361 }
4362 
4363 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4364 {
4365 	if (!kvm_pause_in_guest(vcpu->kvm))
4366 		shrink_ple_window(vcpu);
4367 }
4368 
4369 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4370 {
4371 	/* [63:9] are reserved. */
4372 	vcpu->arch.mcg_cap &= 0x1ff;
4373 }
4374 
4375 #ifdef CONFIG_KVM_SMM
4376 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4377 {
4378 	struct vcpu_svm *svm = to_svm(vcpu);
4379 
4380 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4381 	if (!gif_set(svm))
4382 		return true;
4383 
4384 	return is_smm(vcpu);
4385 }
4386 
4387 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4388 {
4389 	struct vcpu_svm *svm = to_svm(vcpu);
4390 	if (svm->nested.nested_run_pending)
4391 		return -EBUSY;
4392 
4393 	if (svm_smi_blocked(vcpu))
4394 		return 0;
4395 
4396 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4397 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4398 		return -EBUSY;
4399 
4400 	return 1;
4401 }
4402 
4403 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4404 {
4405 	struct vcpu_svm *svm = to_svm(vcpu);
4406 	struct kvm_host_map map_save;
4407 	int ret;
4408 
4409 	if (!is_guest_mode(vcpu))
4410 		return 0;
4411 
4412 	/*
4413 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4414 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4415 	 */
4416 
4417 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4418 		return 1;
4419 
4420 	smram->smram64.svm_guest_flag = 1;
4421 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4422 
4423 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4424 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4425 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4426 
4427 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4428 	if (ret)
4429 		return ret;
4430 
4431 	/*
4432 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4433 	 * VMCB01 is going to be used during SMM and thus the state will
4434 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4435 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4436 	 * format of the area is identical to guest save area offsetted
4437 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4438 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4439 	 * L1 hypervisor to save additional host context (e.g. KVM does
4440 	 * that, see svm_prepare_switch_to_guest()) which must be
4441 	 * preserved.
4442 	 */
4443 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4444 		return 1;
4445 
4446 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4447 
4448 	svm_copy_vmrun_state(map_save.hva + 0x400,
4449 			     &svm->vmcb01.ptr->save);
4450 
4451 	kvm_vcpu_unmap(vcpu, &map_save, true);
4452 	return 0;
4453 }
4454 
4455 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4456 {
4457 	struct vcpu_svm *svm = to_svm(vcpu);
4458 	struct kvm_host_map map, map_save;
4459 	struct vmcb *vmcb12;
4460 	int ret;
4461 
4462 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4463 
4464 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4465 		return 0;
4466 
4467 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4468 	if (!smram64->svm_guest_flag)
4469 		return 0;
4470 
4471 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4472 		return 1;
4473 
4474 	if (!(smram64->efer & EFER_SVME))
4475 		return 1;
4476 
4477 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4478 		return 1;
4479 
4480 	ret = 1;
4481 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4482 		goto unmap_map;
4483 
4484 	if (svm_allocate_nested(svm))
4485 		goto unmap_save;
4486 
4487 	/*
4488 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4489 	 * used during SMM (see svm_enter_smm())
4490 	 */
4491 
4492 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4493 
4494 	/*
4495 	 * Enter the nested guest now
4496 	 */
4497 
4498 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4499 
4500 	vmcb12 = map.hva;
4501 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4502 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4503 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4504 
4505 	if (ret)
4506 		goto unmap_save;
4507 
4508 	svm->nested.nested_run_pending = 1;
4509 
4510 unmap_save:
4511 	kvm_vcpu_unmap(vcpu, &map_save, true);
4512 unmap_map:
4513 	kvm_vcpu_unmap(vcpu, &map, true);
4514 	return ret;
4515 }
4516 
4517 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4518 {
4519 	struct vcpu_svm *svm = to_svm(vcpu);
4520 
4521 	if (!gif_set(svm)) {
4522 		if (vgif)
4523 			svm_set_intercept(svm, INTERCEPT_STGI);
4524 		/* STGI will cause a vm exit */
4525 	} else {
4526 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4527 	}
4528 }
4529 #endif
4530 
4531 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4532 					void *insn, int insn_len)
4533 {
4534 	bool smep, smap, is_user;
4535 	unsigned long cr4;
4536 	u64 error_code;
4537 
4538 	/* Emulation is always possible when KVM has access to all guest state. */
4539 	if (!sev_guest(vcpu->kvm))
4540 		return true;
4541 
4542 	/* #UD and #GP should never be intercepted for SEV guests. */
4543 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4544 				  EMULTYPE_TRAP_UD_FORCED |
4545 				  EMULTYPE_VMWARE_GP));
4546 
4547 	/*
4548 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4549 	 * to guest register state.
4550 	 */
4551 	if (sev_es_guest(vcpu->kvm))
4552 		return false;
4553 
4554 	/*
4555 	 * Emulation is possible if the instruction is already decoded, e.g.
4556 	 * when completing I/O after returning from userspace.
4557 	 */
4558 	if (emul_type & EMULTYPE_NO_DECODE)
4559 		return true;
4560 
4561 	/*
4562 	 * Emulation is possible for SEV guests if and only if a prefilled
4563 	 * buffer containing the bytes of the intercepted instruction is
4564 	 * available. SEV guest memory is encrypted with a guest specific key
4565 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4566 	 * decode garbage.
4567 	 *
4568 	 * Inject #UD if KVM reached this point without an instruction buffer.
4569 	 * In practice, this path should never be hit by a well-behaved guest,
4570 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4571 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
4572 	 * AVIC access, and needs to be handled by KVM to avoid putting the
4573 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4574 	 * but its the least awful option given lack of insight into the guest.
4575 	 */
4576 	if (unlikely(!insn)) {
4577 		kvm_queue_exception(vcpu, UD_VECTOR);
4578 		return false;
4579 	}
4580 
4581 	/*
4582 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4583 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4584 	 * the faulting instruction because the code fetch itself faulted, e.g.
4585 	 * the guest attempted to fetch from emulated MMIO or a guest page
4586 	 * table used to translate CS:RIP resides in emulated MMIO.
4587 	 */
4588 	if (likely(insn_len))
4589 		return true;
4590 
4591 	/*
4592 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4593 	 *
4594 	 * Errata:
4595 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4596 	 * possible that CPU microcode implementing DecodeAssist will fail to
4597 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4598 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4599 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4600 	 * gives up and does not fill the instruction bytes buffer.
4601 	 *
4602 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4603 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4604 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4605 	 * GuestIntrBytes field of the VMCB.
4606 	 *
4607 	 * This does _not_ mean that the erratum has been encountered, as the
4608 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4609 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4610 	 * encountered a reserved/not-present #PF.
4611 	 *
4612 	 * To hit the erratum, the following conditions must be true:
4613 	 *    1. CR4.SMAP=1 (obviously).
4614 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4615 	 *       have been hit as the guest would have encountered a SMEP
4616 	 *       violation #PF, not a #NPF.
4617 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4618 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4619 	 *
4620 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4621 	 * while translating guest page tables (see below).
4622 	 */
4623 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4624 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4625 		goto resume_guest;
4626 
4627 	cr4 = kvm_read_cr4(vcpu);
4628 	smep = cr4 & X86_CR4_SMEP;
4629 	smap = cr4 & X86_CR4_SMAP;
4630 	is_user = svm_get_cpl(vcpu) == 3;
4631 	if (smap && (!smep || is_user)) {
4632 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4633 
4634 		/*
4635 		 * If the fault occurred in userspace, arbitrarily inject #GP
4636 		 * to avoid killing the guest and to hopefully avoid confusing
4637 		 * the guest kernel too much, e.g. injecting #PF would not be
4638 		 * coherent with respect to the guest's page tables.  Request
4639 		 * triple fault if the fault occurred in the kernel as there's
4640 		 * no fault that KVM can inject without confusing the guest.
4641 		 * In practice, the triple fault is moot as no sane SEV kernel
4642 		 * will execute from user memory while also running with SMAP=1.
4643 		 */
4644 		if (is_user)
4645 			kvm_inject_gp(vcpu, 0);
4646 		else
4647 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4648 	}
4649 
4650 resume_guest:
4651 	/*
4652 	 * If the erratum was not hit, simply resume the guest and let it fault
4653 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4654 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4655 	 * userspace will kill the guest, and letting the emulator read garbage
4656 	 * will yield random behavior and potentially corrupt the guest.
4657 	 *
4658 	 * Simply resuming the guest is technically not a violation of the SEV
4659 	 * architecture.  AMD's APM states that all code fetches and page table
4660 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4661 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4662 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4663 	 * the guest spin is technically "ignoring" the access.
4664 	 */
4665 	return false;
4666 }
4667 
4668 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4669 {
4670 	struct vcpu_svm *svm = to_svm(vcpu);
4671 
4672 	return !gif_set(svm);
4673 }
4674 
4675 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4676 {
4677 	if (!sev_es_guest(vcpu->kvm))
4678 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4679 
4680 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4681 }
4682 
4683 static void svm_vm_destroy(struct kvm *kvm)
4684 {
4685 	avic_vm_destroy(kvm);
4686 	sev_vm_destroy(kvm);
4687 }
4688 
4689 static int svm_vm_init(struct kvm *kvm)
4690 {
4691 	if (!pause_filter_count || !pause_filter_thresh)
4692 		kvm->arch.pause_in_guest = true;
4693 
4694 	if (enable_apicv) {
4695 		int ret = avic_vm_init(kvm);
4696 		if (ret)
4697 			return ret;
4698 	}
4699 
4700 	return 0;
4701 }
4702 
4703 static struct kvm_x86_ops svm_x86_ops __initdata = {
4704 	.name = "kvm_amd",
4705 
4706 	.hardware_unsetup = svm_hardware_unsetup,
4707 	.hardware_enable = svm_hardware_enable,
4708 	.hardware_disable = svm_hardware_disable,
4709 	.has_emulated_msr = svm_has_emulated_msr,
4710 
4711 	.vcpu_create = svm_vcpu_create,
4712 	.vcpu_free = svm_vcpu_free,
4713 	.vcpu_reset = svm_vcpu_reset,
4714 
4715 	.vm_size = sizeof(struct kvm_svm),
4716 	.vm_init = svm_vm_init,
4717 	.vm_destroy = svm_vm_destroy,
4718 
4719 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4720 	.vcpu_load = svm_vcpu_load,
4721 	.vcpu_put = svm_vcpu_put,
4722 	.vcpu_blocking = avic_vcpu_blocking,
4723 	.vcpu_unblocking = avic_vcpu_unblocking,
4724 
4725 	.update_exception_bitmap = svm_update_exception_bitmap,
4726 	.get_msr_feature = svm_get_msr_feature,
4727 	.get_msr = svm_get_msr,
4728 	.set_msr = svm_set_msr,
4729 	.get_segment_base = svm_get_segment_base,
4730 	.get_segment = svm_get_segment,
4731 	.set_segment = svm_set_segment,
4732 	.get_cpl = svm_get_cpl,
4733 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4734 	.set_cr0 = svm_set_cr0,
4735 	.post_set_cr3 = sev_post_set_cr3,
4736 	.is_valid_cr4 = svm_is_valid_cr4,
4737 	.set_cr4 = svm_set_cr4,
4738 	.set_efer = svm_set_efer,
4739 	.get_idt = svm_get_idt,
4740 	.set_idt = svm_set_idt,
4741 	.get_gdt = svm_get_gdt,
4742 	.set_gdt = svm_set_gdt,
4743 	.set_dr7 = svm_set_dr7,
4744 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4745 	.cache_reg = svm_cache_reg,
4746 	.get_rflags = svm_get_rflags,
4747 	.set_rflags = svm_set_rflags,
4748 	.get_if_flag = svm_get_if_flag,
4749 
4750 	.flush_tlb_all = svm_flush_tlb_current,
4751 	.flush_tlb_current = svm_flush_tlb_current,
4752 	.flush_tlb_gva = svm_flush_tlb_gva,
4753 	.flush_tlb_guest = svm_flush_tlb_current,
4754 
4755 	.vcpu_pre_run = svm_vcpu_pre_run,
4756 	.vcpu_run = svm_vcpu_run,
4757 	.handle_exit = svm_handle_exit,
4758 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4759 	.update_emulated_instruction = NULL,
4760 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4761 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4762 	.patch_hypercall = svm_patch_hypercall,
4763 	.inject_irq = svm_inject_irq,
4764 	.inject_nmi = svm_inject_nmi,
4765 	.inject_exception = svm_inject_exception,
4766 	.cancel_injection = svm_cancel_injection,
4767 	.interrupt_allowed = svm_interrupt_allowed,
4768 	.nmi_allowed = svm_nmi_allowed,
4769 	.get_nmi_mask = svm_get_nmi_mask,
4770 	.set_nmi_mask = svm_set_nmi_mask,
4771 	.enable_nmi_window = svm_enable_nmi_window,
4772 	.enable_irq_window = svm_enable_irq_window,
4773 	.update_cr8_intercept = svm_update_cr8_intercept,
4774 	.set_virtual_apic_mode = avic_set_virtual_apic_mode,
4775 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4776 	.check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4777 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4778 
4779 	.get_exit_info = svm_get_exit_info,
4780 
4781 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4782 
4783 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4784 
4785 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4786 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4787 	.write_tsc_offset = svm_write_tsc_offset,
4788 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4789 
4790 	.load_mmu_pgd = svm_load_mmu_pgd,
4791 
4792 	.check_intercept = svm_check_intercept,
4793 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4794 
4795 	.request_immediate_exit = __kvm_request_immediate_exit,
4796 
4797 	.sched_in = svm_sched_in,
4798 
4799 	.nested_ops = &svm_nested_ops,
4800 
4801 	.deliver_interrupt = svm_deliver_interrupt,
4802 	.pi_update_irte = avic_pi_update_irte,
4803 	.setup_mce = svm_setup_mce,
4804 
4805 #ifdef CONFIG_KVM_SMM
4806 	.smi_allowed = svm_smi_allowed,
4807 	.enter_smm = svm_enter_smm,
4808 	.leave_smm = svm_leave_smm,
4809 	.enable_smi_window = svm_enable_smi_window,
4810 #endif
4811 
4812 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4813 	.mem_enc_register_region = sev_mem_enc_register_region,
4814 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
4815 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
4816 
4817 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4818 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
4819 
4820 	.can_emulate_instruction = svm_can_emulate_instruction,
4821 
4822 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4823 
4824 	.msr_filter_changed = svm_msr_filter_changed,
4825 	.complete_emulated_msr = svm_complete_emulated_msr,
4826 
4827 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4828 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4829 };
4830 
4831 /*
4832  * The default MMIO mask is a single bit (excluding the present bit),
4833  * which could conflict with the memory encryption bit. Check for
4834  * memory encryption support and override the default MMIO mask if
4835  * memory encryption is enabled.
4836  */
4837 static __init void svm_adjust_mmio_mask(void)
4838 {
4839 	unsigned int enc_bit, mask_bit;
4840 	u64 msr, mask;
4841 
4842 	/* If there is no memory encryption support, use existing mask */
4843 	if (cpuid_eax(0x80000000) < 0x8000001f)
4844 		return;
4845 
4846 	/* If memory encryption is not enabled, use existing mask */
4847 	rdmsrl(MSR_AMD64_SYSCFG, msr);
4848 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4849 		return;
4850 
4851 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4852 	mask_bit = boot_cpu_data.x86_phys_bits;
4853 
4854 	/* Increment the mask bit if it is the same as the encryption bit */
4855 	if (enc_bit == mask_bit)
4856 		mask_bit++;
4857 
4858 	/*
4859 	 * If the mask bit location is below 52, then some bits above the
4860 	 * physical addressing limit will always be reserved, so use the
4861 	 * rsvd_bits() function to generate the mask. This mask, along with
4862 	 * the present bit, will be used to generate a page fault with
4863 	 * PFER.RSV = 1.
4864 	 *
4865 	 * If the mask bit location is 52 (or above), then clear the mask.
4866 	 */
4867 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4868 
4869 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4870 }
4871 
4872 static __init void svm_set_cpu_caps(void)
4873 {
4874 	kvm_set_cpu_caps();
4875 
4876 	kvm_caps.supported_perf_cap = 0;
4877 	kvm_caps.supported_xss = 0;
4878 
4879 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
4880 	if (nested) {
4881 		kvm_cpu_cap_set(X86_FEATURE_SVM);
4882 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4883 
4884 		if (nrips)
4885 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4886 
4887 		if (npt_enabled)
4888 			kvm_cpu_cap_set(X86_FEATURE_NPT);
4889 
4890 		if (tsc_scaling)
4891 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4892 
4893 		if (vls)
4894 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4895 		if (lbrv)
4896 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
4897 
4898 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4899 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4900 
4901 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4902 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4903 
4904 		if (vgif)
4905 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
4906 
4907 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
4908 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4909 	}
4910 
4911 	/* CPUID 0x80000008 */
4912 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4913 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
4914 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4915 
4916 	/* AMD PMU PERFCTR_CORE CPUID */
4917 	if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4918 		kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4919 
4920 	/* CPUID 0x8000001F (SME/SEV features) */
4921 	sev_set_cpu_caps();
4922 }
4923 
4924 static __init int svm_hardware_setup(void)
4925 {
4926 	int cpu;
4927 	struct page *iopm_pages;
4928 	void *iopm_va;
4929 	int r;
4930 	unsigned int order = get_order(IOPM_SIZE);
4931 
4932 	/*
4933 	 * NX is required for shadow paging and for NPT if the NX huge pages
4934 	 * mitigation is enabled.
4935 	 */
4936 	if (!boot_cpu_has(X86_FEATURE_NX)) {
4937 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
4938 		return -EOPNOTSUPP;
4939 	}
4940 	kvm_enable_efer_bits(EFER_NX);
4941 
4942 	iopm_pages = alloc_pages(GFP_KERNEL, order);
4943 
4944 	if (!iopm_pages)
4945 		return -ENOMEM;
4946 
4947 	iopm_va = page_address(iopm_pages);
4948 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4949 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4950 
4951 	init_msrpm_offsets();
4952 
4953 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
4954 				     XFEATURE_MASK_BNDCSR);
4955 
4956 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4957 		kvm_enable_efer_bits(EFER_FFXSR);
4958 
4959 	if (tsc_scaling) {
4960 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4961 			tsc_scaling = false;
4962 		} else {
4963 			pr_info("TSC scaling supported\n");
4964 			kvm_caps.has_tsc_control = true;
4965 		}
4966 	}
4967 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4968 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
4969 
4970 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4971 
4972 	/* Check for pause filtering support */
4973 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4974 		pause_filter_count = 0;
4975 		pause_filter_thresh = 0;
4976 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4977 		pause_filter_thresh = 0;
4978 	}
4979 
4980 	if (nested) {
4981 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4982 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4983 	}
4984 
4985 	/*
4986 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
4987 	 * NPT isn't supported if the host is using 2-level paging since host
4988 	 * CR4 is unchanged on VMRUN.
4989 	 */
4990 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4991 		npt_enabled = false;
4992 
4993 	if (!boot_cpu_has(X86_FEATURE_NPT))
4994 		npt_enabled = false;
4995 
4996 	/* Force VM NPT level equal to the host's paging level */
4997 	kvm_configure_mmu(npt_enabled, get_npt_level(),
4998 			  get_npt_level(), PG_LEVEL_1G);
4999 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5000 
5001 	/* Setup shadow_me_value and shadow_me_mask */
5002 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5003 
5004 	svm_adjust_mmio_mask();
5005 
5006 	/*
5007 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5008 	 * may be modified by svm_adjust_mmio_mask()).
5009 	 */
5010 	sev_hardware_setup();
5011 
5012 	svm_hv_hardware_setup();
5013 
5014 	for_each_possible_cpu(cpu) {
5015 		r = svm_cpu_init(cpu);
5016 		if (r)
5017 			goto err;
5018 	}
5019 
5020 	if (nrips) {
5021 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
5022 			nrips = false;
5023 	}
5024 
5025 	enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops);
5026 
5027 	if (!enable_apicv) {
5028 		svm_x86_ops.vcpu_blocking = NULL;
5029 		svm_x86_ops.vcpu_unblocking = NULL;
5030 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5031 	}
5032 
5033 	if (vls) {
5034 		if (!npt_enabled ||
5035 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5036 		    !IS_ENABLED(CONFIG_X86_64)) {
5037 			vls = false;
5038 		} else {
5039 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5040 		}
5041 	}
5042 
5043 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5044 		svm_gp_erratum_intercept = false;
5045 
5046 	if (vgif) {
5047 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5048 			vgif = false;
5049 		else
5050 			pr_info("Virtual GIF supported\n");
5051 	}
5052 
5053 	if (lbrv) {
5054 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5055 			lbrv = false;
5056 		else
5057 			pr_info("LBR virtualization supported\n");
5058 	}
5059 
5060 	if (!enable_pmu)
5061 		pr_info("PMU virtualization is disabled\n");
5062 
5063 	svm_set_cpu_caps();
5064 
5065 	/*
5066 	 * It seems that on AMD processors PTE's accessed bit is
5067 	 * being set by the CPU hardware before the NPF vmexit.
5068 	 * This is not expected behaviour and our tests fail because
5069 	 * of it.
5070 	 * A workaround here is to disable support for
5071 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5072 	 * In this case userspace can know if there is support using
5073 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5074 	 * it
5075 	 * If future AMD CPU models change the behaviour described above,
5076 	 * this variable can be changed accordingly
5077 	 */
5078 	allow_smaller_maxphyaddr = !npt_enabled;
5079 
5080 	return 0;
5081 
5082 err:
5083 	svm_hardware_unsetup();
5084 	return r;
5085 }
5086 
5087 
5088 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5089 	.cpu_has_kvm_support = has_svm,
5090 	.disabled_by_bios = is_disabled,
5091 	.hardware_setup = svm_hardware_setup,
5092 	.check_processor_compatibility = svm_check_processor_compat,
5093 
5094 	.runtime_ops = &svm_x86_ops,
5095 	.pmu_ops = &amd_pmu_ops,
5096 };
5097 
5098 static int __init svm_init(void)
5099 {
5100 	__unused_size_checks();
5101 
5102 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5103 			__alignof__(struct vcpu_svm), THIS_MODULE);
5104 }
5105 
5106 static void __exit svm_exit(void)
5107 {
5108 	kvm_exit();
5109 }
5110 
5111 module_init(svm_init)
5112 module_exit(svm_exit)
5113