xref: /linux/arch/x86/kvm/svm/svm.c (revision 993498e537af9260e697219ce41b41b22b6199cc)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44 
45 #include <trace/events/ipi.h>
46 
47 #include "trace.h"
48 
49 #include "svm.h"
50 #include "svm_ops.h"
51 
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54 
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57 
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61 	{}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65 
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68 
69 static bool erratum_383_found __read_mostly;
70 
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72 
73 /*
74  * Set osvw_len to higher value when updated Revision Guides
75  * are published and we know what the new status bits are
76  */
77 static uint64_t osvw_len = 4, osvw_status;
78 
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80 
81 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
82 
83 static const struct svm_direct_access_msrs {
84 	u32 index;   /* Index of the MSR */
85 	bool always; /* True if intercept is initially cleared */
86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87 	{ .index = MSR_STAR,				.always = true  },
88 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
89 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
90 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
91 #ifdef CONFIG_X86_64
92 	{ .index = MSR_GS_BASE,				.always = true  },
93 	{ .index = MSR_FS_BASE,				.always = true  },
94 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
95 	{ .index = MSR_LSTAR,				.always = true  },
96 	{ .index = MSR_CSTAR,				.always = true  },
97 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
98 #endif
99 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
100 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
101 	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
102 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
103 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
104 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
105 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
106 	{ .index = MSR_EFER,				.always = false },
107 	{ .index = MSR_IA32_CR_PAT,			.always = false },
108 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
109 	{ .index = MSR_TSC_AUX,				.always = false },
110 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
111 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
112 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
122 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
123 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
124 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
125 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
126 
127 	/*
128 	 * Note:
129 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
130 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
131 	 * the AVIC hardware would generate GP fault. Therefore, always
132 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
133 	 */
134 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
135 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
137 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
138 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
139 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
140 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
141 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
142 	{ .index = MSR_INVALID,				.always = false },
143 };
144 
145 /*
146  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
147  * pause_filter_count: On processors that support Pause filtering(indicated
148  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
149  *	count value. On VMRUN this value is loaded into an internal counter.
150  *	Each time a pause instruction is executed, this counter is decremented
151  *	until it reaches zero at which time a #VMEXIT is generated if pause
152  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
153  *	Intercept Filtering for more details.
154  *	This also indicate if ple logic enabled.
155  *
156  * pause_filter_thresh: In addition, some processor families support advanced
157  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
158  *	the amount of time a guest is allowed to execute in a pause loop.
159  *	In this mode, a 16-bit pause filter threshold field is added in the
160  *	VMCB. The threshold value is a cycle count that is used to reset the
161  *	pause counter. As with simple pause filtering, VMRUN loads the pause
162  *	count value from VMCB into an internal counter. Then, on each pause
163  *	instruction the hardware checks the elapsed number of cycles since
164  *	the most recent pause instruction against the pause filter threshold.
165  *	If the elapsed cycle count is greater than the pause filter threshold,
166  *	then the internal pause count is reloaded from the VMCB and execution
167  *	continues. If the elapsed cycle count is less than the pause filter
168  *	threshold, then the internal pause count is decremented. If the count
169  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
170  *	triggered. If advanced pause filtering is supported and pause filter
171  *	threshold field is set to zero, the filter will operate in the simpler,
172  *	count only mode.
173  */
174 
175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
176 module_param(pause_filter_thresh, ushort, 0444);
177 
178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
179 module_param(pause_filter_count, ushort, 0444);
180 
181 /* Default doubles per-vcpu window every exit. */
182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
183 module_param(pause_filter_count_grow, ushort, 0444);
184 
185 /* Default resets per-vcpu window every exit to pause_filter_count. */
186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
187 module_param(pause_filter_count_shrink, ushort, 0444);
188 
189 /* Default is to compute the maximum so we can never overflow. */
190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
191 module_param(pause_filter_count_max, ushort, 0444);
192 
193 /*
194  * Use nested page tables by default.  Note, NPT may get forced off by
195  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
196  */
197 bool npt_enabled = true;
198 module_param_named(npt, npt_enabled, bool, 0444);
199 
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, 0444);
203 
204 /* enable/disable Next RIP Save */
205 int nrips = true;
206 module_param(nrips, int, 0444);
207 
208 /* enable/disable Virtual VMLOAD VMSAVE */
209 static int vls = true;
210 module_param(vls, int, 0444);
211 
212 /* enable/disable Virtual GIF */
213 int vgif = true;
214 module_param(vgif, int, 0444);
215 
216 /* enable/disable LBR virtualization */
217 static int lbrv = true;
218 module_param(lbrv, int, 0444);
219 
220 static int tsc_scaling = true;
221 module_param(tsc_scaling, int, 0444);
222 
223 /*
224  * enable / disable AVIC.  Because the defaults differ for APICv
225  * support between VMX and SVM we cannot use module_param_named.
226  */
227 static bool avic;
228 module_param(avic, bool, 0444);
229 
230 bool __read_mostly dump_invalid_vmcb;
231 module_param(dump_invalid_vmcb, bool, 0644);
232 
233 
234 bool intercept_smi = true;
235 module_param(intercept_smi, bool, 0444);
236 
237 bool vnmi = true;
238 module_param(vnmi, bool, 0444);
239 
240 static bool svm_gp_erratum_intercept = true;
241 
242 static u8 rsm_ins_bytes[] = "\x0f\xaa";
243 
244 static unsigned long iopm_base;
245 
246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
247 
248 /*
249  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
250  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
251  *
252  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
253  * defer the restoration of TSC_AUX until the CPU returns to userspace.
254  */
255 static int tsc_aux_uret_slot __read_mostly = -1;
256 
257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
258 
259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
260 #define MSRS_RANGE_SIZE 2048
261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
262 
263 u32 svm_msrpm_offset(u32 msr)
264 {
265 	u32 offset;
266 	int i;
267 
268 	for (i = 0; i < NUM_MSR_MAPS; i++) {
269 		if (msr < msrpm_ranges[i] ||
270 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
271 			continue;
272 
273 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
274 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
275 
276 		/* Now we have the u8 offset - but need the u32 offset */
277 		return offset / 4;
278 	}
279 
280 	/* MSR not in any range */
281 	return MSR_INVALID;
282 }
283 
284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
285 
286 static int get_npt_level(void)
287 {
288 #ifdef CONFIG_X86_64
289 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
290 #else
291 	return PT32E_ROOT_LEVEL;
292 #endif
293 }
294 
295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
296 {
297 	struct vcpu_svm *svm = to_svm(vcpu);
298 	u64 old_efer = vcpu->arch.efer;
299 	vcpu->arch.efer = efer;
300 
301 	if (!npt_enabled) {
302 		/* Shadow paging assumes NX to be available.  */
303 		efer |= EFER_NX;
304 
305 		if (!(efer & EFER_LMA))
306 			efer &= ~EFER_LME;
307 	}
308 
309 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
310 		if (!(efer & EFER_SVME)) {
311 			svm_leave_nested(vcpu);
312 			svm_set_gif(svm, true);
313 			/* #GP intercept is still needed for vmware backdoor */
314 			if (!enable_vmware_backdoor)
315 				clr_exception_intercept(svm, GP_VECTOR);
316 
317 			/*
318 			 * Free the nested guest state, unless we are in SMM.
319 			 * In this case we will return to the nested guest
320 			 * as soon as we leave SMM.
321 			 */
322 			if (!is_smm(vcpu))
323 				svm_free_nested(svm);
324 
325 		} else {
326 			int ret = svm_allocate_nested(svm);
327 
328 			if (ret) {
329 				vcpu->arch.efer = old_efer;
330 				return ret;
331 			}
332 
333 			/*
334 			 * Never intercept #GP for SEV guests, KVM can't
335 			 * decrypt guest memory to workaround the erratum.
336 			 */
337 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
338 				set_exception_intercept(svm, GP_VECTOR);
339 		}
340 	}
341 
342 	svm->vmcb->save.efer = efer | EFER_SVME;
343 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
344 	return 0;
345 }
346 
347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
348 {
349 	struct vcpu_svm *svm = to_svm(vcpu);
350 	u32 ret = 0;
351 
352 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
353 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
354 	return ret;
355 }
356 
357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
358 {
359 	struct vcpu_svm *svm = to_svm(vcpu);
360 
361 	if (mask == 0)
362 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
363 	else
364 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
365 
366 }
367 
368 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
369 					   bool commit_side_effects)
370 {
371 	struct vcpu_svm *svm = to_svm(vcpu);
372 	unsigned long old_rflags;
373 
374 	/*
375 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
376 	 * the type of exit and the #VC handler in the guest.
377 	 */
378 	if (sev_es_guest(vcpu->kvm))
379 		goto done;
380 
381 	if (nrips && svm->vmcb->control.next_rip != 0) {
382 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
383 		svm->next_rip = svm->vmcb->control.next_rip;
384 	}
385 
386 	if (!svm->next_rip) {
387 		if (unlikely(!commit_side_effects))
388 			old_rflags = svm->vmcb->save.rflags;
389 
390 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
391 			return 0;
392 
393 		if (unlikely(!commit_side_effects))
394 			svm->vmcb->save.rflags = old_rflags;
395 	} else {
396 		kvm_rip_write(vcpu, svm->next_rip);
397 	}
398 
399 done:
400 	if (likely(commit_side_effects))
401 		svm_set_interrupt_shadow(vcpu, 0);
402 
403 	return 1;
404 }
405 
406 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
407 {
408 	return __svm_skip_emulated_instruction(vcpu, true);
409 }
410 
411 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
412 {
413 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
414 	struct vcpu_svm *svm = to_svm(vcpu);
415 
416 	/*
417 	 * Due to architectural shortcomings, the CPU doesn't always provide
418 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
419 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
420 	 * the instruction even if NextRIP is supported to acquire the next
421 	 * RIP so that it can be shoved into the NextRIP field, otherwise
422 	 * hardware will fail to advance guest RIP during event injection.
423 	 * Drop the exception/interrupt if emulation fails and effectively
424 	 * retry the instruction, it's the least awful option.  If NRIPS is
425 	 * in use, the skip must not commit any side effects such as clearing
426 	 * the interrupt shadow or RFLAGS.RF.
427 	 */
428 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
429 		return -EIO;
430 
431 	rip = kvm_rip_read(vcpu);
432 
433 	/*
434 	 * Save the injection information, even when using next_rip, as the
435 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
436 	 * doesn't complete due to a VM-Exit occurring while the CPU is
437 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
438 	 * work as there may be no backing instruction, e.g. if the event is
439 	 * being injected by L1 for L2, or if the guest is patching INT3 into
440 	 * a different instruction.
441 	 */
442 	svm->soft_int_injected = true;
443 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
444 	svm->soft_int_old_rip = old_rip;
445 	svm->soft_int_next_rip = rip;
446 
447 	if (nrips)
448 		kvm_rip_write(vcpu, old_rip);
449 
450 	if (static_cpu_has(X86_FEATURE_NRIPS))
451 		svm->vmcb->control.next_rip = rip;
452 
453 	return 0;
454 }
455 
456 static void svm_inject_exception(struct kvm_vcpu *vcpu)
457 {
458 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
459 	struct vcpu_svm *svm = to_svm(vcpu);
460 
461 	kvm_deliver_exception_payload(vcpu, ex);
462 
463 	if (kvm_exception_is_soft(ex->vector) &&
464 	    svm_update_soft_interrupt_rip(vcpu))
465 		return;
466 
467 	svm->vmcb->control.event_inj = ex->vector
468 		| SVM_EVTINJ_VALID
469 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
470 		| SVM_EVTINJ_TYPE_EXEPT;
471 	svm->vmcb->control.event_inj_err = ex->error_code;
472 }
473 
474 static void svm_init_erratum_383(void)
475 {
476 	u32 low, high;
477 	int err;
478 	u64 val;
479 
480 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
481 		return;
482 
483 	/* Use _safe variants to not break nested virtualization */
484 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
485 	if (err)
486 		return;
487 
488 	val |= (1ULL << 47);
489 
490 	low  = lower_32_bits(val);
491 	high = upper_32_bits(val);
492 
493 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
494 
495 	erratum_383_found = true;
496 }
497 
498 static void svm_init_osvw(struct kvm_vcpu *vcpu)
499 {
500 	/*
501 	 * Guests should see errata 400 and 415 as fixed (assuming that
502 	 * HLT and IO instructions are intercepted).
503 	 */
504 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
505 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
506 
507 	/*
508 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
509 	 * all osvw.status bits inside that length, including bit 0 (which is
510 	 * reserved for erratum 298), are valid. However, if host processor's
511 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
512 	 * be conservative here and therefore we tell the guest that erratum 298
513 	 * is present (because we really don't know).
514 	 */
515 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
516 		vcpu->arch.osvw.status |= 1;
517 }
518 
519 static bool __kvm_is_svm_supported(void)
520 {
521 	int cpu = smp_processor_id();
522 	struct cpuinfo_x86 *c = &cpu_data(cpu);
523 
524 	if (c->x86_vendor != X86_VENDOR_AMD &&
525 	    c->x86_vendor != X86_VENDOR_HYGON) {
526 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
527 		return false;
528 	}
529 
530 	if (!cpu_has(c, X86_FEATURE_SVM)) {
531 		pr_err("SVM not supported by CPU %d\n", cpu);
532 		return false;
533 	}
534 
535 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
536 		pr_info("KVM is unsupported when running as an SEV guest\n");
537 		return false;
538 	}
539 
540 	return true;
541 }
542 
543 static bool kvm_is_svm_supported(void)
544 {
545 	bool supported;
546 
547 	migrate_disable();
548 	supported = __kvm_is_svm_supported();
549 	migrate_enable();
550 
551 	return supported;
552 }
553 
554 static int svm_check_processor_compat(void)
555 {
556 	if (!__kvm_is_svm_supported())
557 		return -EIO;
558 
559 	return 0;
560 }
561 
562 static void __svm_write_tsc_multiplier(u64 multiplier)
563 {
564 	if (multiplier == __this_cpu_read(current_tsc_ratio))
565 		return;
566 
567 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
568 	__this_cpu_write(current_tsc_ratio, multiplier);
569 }
570 
571 static inline void kvm_cpu_svm_disable(void)
572 {
573 	uint64_t efer;
574 
575 	wrmsrl(MSR_VM_HSAVE_PA, 0);
576 	rdmsrl(MSR_EFER, efer);
577 	if (efer & EFER_SVME) {
578 		/*
579 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
580 		 * NMI aren't blocked.
581 		 */
582 		stgi();
583 		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
584 	}
585 }
586 
587 static void svm_emergency_disable(void)
588 {
589 	kvm_rebooting = true;
590 
591 	kvm_cpu_svm_disable();
592 }
593 
594 static void svm_hardware_disable(void)
595 {
596 	/* Make sure we clean up behind us */
597 	if (tsc_scaling)
598 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
599 
600 	kvm_cpu_svm_disable();
601 
602 	amd_pmu_disable_virt();
603 }
604 
605 static int svm_hardware_enable(void)
606 {
607 
608 	struct svm_cpu_data *sd;
609 	uint64_t efer;
610 	int me = raw_smp_processor_id();
611 
612 	rdmsrl(MSR_EFER, efer);
613 	if (efer & EFER_SVME)
614 		return -EBUSY;
615 
616 	sd = per_cpu_ptr(&svm_data, me);
617 	sd->asid_generation = 1;
618 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
619 	sd->next_asid = sd->max_asid + 1;
620 	sd->min_asid = max_sev_asid + 1;
621 
622 	wrmsrl(MSR_EFER, efer | EFER_SVME);
623 
624 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
625 
626 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
627 		/*
628 		 * Set the default value, even if we don't use TSC scaling
629 		 * to avoid having stale value in the msr
630 		 */
631 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
632 	}
633 
634 
635 	/*
636 	 * Get OSVW bits.
637 	 *
638 	 * Note that it is possible to have a system with mixed processor
639 	 * revisions and therefore different OSVW bits. If bits are not the same
640 	 * on different processors then choose the worst case (i.e. if erratum
641 	 * is present on one processor and not on another then assume that the
642 	 * erratum is present everywhere).
643 	 */
644 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
645 		uint64_t len, status = 0;
646 		int err;
647 
648 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
649 		if (!err)
650 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
651 						      &err);
652 
653 		if (err)
654 			osvw_status = osvw_len = 0;
655 		else {
656 			if (len < osvw_len)
657 				osvw_len = len;
658 			osvw_status |= status;
659 			osvw_status &= (1ULL << osvw_len) - 1;
660 		}
661 	} else
662 		osvw_status = osvw_len = 0;
663 
664 	svm_init_erratum_383();
665 
666 	amd_pmu_enable_virt();
667 
668 	/*
669 	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
670 	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
671 	 * Since Linux does not change the value of TSC_AUX once set, prime the
672 	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
673 	 */
674 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
675 		struct sev_es_save_area *hostsa;
676 		u32 __maybe_unused msr_hi;
677 
678 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
679 
680 		rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
681 	}
682 
683 	return 0;
684 }
685 
686 static void svm_cpu_uninit(int cpu)
687 {
688 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
689 
690 	if (!sd->save_area)
691 		return;
692 
693 	kfree(sd->sev_vmcbs);
694 	__free_page(sd->save_area);
695 	sd->save_area_pa = 0;
696 	sd->save_area = NULL;
697 }
698 
699 static int svm_cpu_init(int cpu)
700 {
701 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
702 	int ret = -ENOMEM;
703 
704 	memset(sd, 0, sizeof(struct svm_cpu_data));
705 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
706 	if (!sd->save_area)
707 		return ret;
708 
709 	ret = sev_cpu_init(sd);
710 	if (ret)
711 		goto free_save_area;
712 
713 	sd->save_area_pa = __sme_page_pa(sd->save_area);
714 	return 0;
715 
716 free_save_area:
717 	__free_page(sd->save_area);
718 	sd->save_area = NULL;
719 	return ret;
720 
721 }
722 
723 static void set_dr_intercepts(struct vcpu_svm *svm)
724 {
725 	struct vmcb *vmcb = svm->vmcb01.ptr;
726 
727 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
728 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
729 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
730 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
731 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
732 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
733 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
734 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
735 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
736 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
737 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
738 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
739 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
740 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
741 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
742 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
743 
744 	recalc_intercepts(svm);
745 }
746 
747 static void clr_dr_intercepts(struct vcpu_svm *svm)
748 {
749 	struct vmcb *vmcb = svm->vmcb01.ptr;
750 
751 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
752 
753 	recalc_intercepts(svm);
754 }
755 
756 static int direct_access_msr_slot(u32 msr)
757 {
758 	u32 i;
759 
760 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
761 		if (direct_access_msrs[i].index == msr)
762 			return i;
763 
764 	return -ENOENT;
765 }
766 
767 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
768 				     int write)
769 {
770 	struct vcpu_svm *svm = to_svm(vcpu);
771 	int slot = direct_access_msr_slot(msr);
772 
773 	if (slot == -ENOENT)
774 		return;
775 
776 	/* Set the shadow bitmaps to the desired intercept states */
777 	if (read)
778 		set_bit(slot, svm->shadow_msr_intercept.read);
779 	else
780 		clear_bit(slot, svm->shadow_msr_intercept.read);
781 
782 	if (write)
783 		set_bit(slot, svm->shadow_msr_intercept.write);
784 	else
785 		clear_bit(slot, svm->shadow_msr_intercept.write);
786 }
787 
788 static bool valid_msr_intercept(u32 index)
789 {
790 	return direct_access_msr_slot(index) != -ENOENT;
791 }
792 
793 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
794 {
795 	u8 bit_write;
796 	unsigned long tmp;
797 	u32 offset;
798 	u32 *msrpm;
799 
800 	/*
801 	 * For non-nested case:
802 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
803 	 * save it.
804 	 *
805 	 * For nested case:
806 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
807 	 * save it.
808 	 */
809 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
810 				      to_svm(vcpu)->msrpm;
811 
812 	offset    = svm_msrpm_offset(msr);
813 	bit_write = 2 * (msr & 0x0f) + 1;
814 	tmp       = msrpm[offset];
815 
816 	BUG_ON(offset == MSR_INVALID);
817 
818 	return test_bit(bit_write, &tmp);
819 }
820 
821 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
822 					u32 msr, int read, int write)
823 {
824 	struct vcpu_svm *svm = to_svm(vcpu);
825 	u8 bit_read, bit_write;
826 	unsigned long tmp;
827 	u32 offset;
828 
829 	/*
830 	 * If this warning triggers extend the direct_access_msrs list at the
831 	 * beginning of the file
832 	 */
833 	WARN_ON(!valid_msr_intercept(msr));
834 
835 	/* Enforce non allowed MSRs to trap */
836 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
837 		read = 0;
838 
839 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
840 		write = 0;
841 
842 	offset    = svm_msrpm_offset(msr);
843 	bit_read  = 2 * (msr & 0x0f);
844 	bit_write = 2 * (msr & 0x0f) + 1;
845 	tmp       = msrpm[offset];
846 
847 	BUG_ON(offset == MSR_INVALID);
848 
849 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
850 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
851 
852 	msrpm[offset] = tmp;
853 
854 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
855 	svm->nested.force_msr_bitmap_recalc = true;
856 }
857 
858 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
859 			  int read, int write)
860 {
861 	set_shadow_msr_intercept(vcpu, msr, read, write);
862 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
863 }
864 
865 u32 *svm_vcpu_alloc_msrpm(void)
866 {
867 	unsigned int order = get_order(MSRPM_SIZE);
868 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
869 	u32 *msrpm;
870 
871 	if (!pages)
872 		return NULL;
873 
874 	msrpm = page_address(pages);
875 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
876 
877 	return msrpm;
878 }
879 
880 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
881 {
882 	int i;
883 
884 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
885 		if (!direct_access_msrs[i].always)
886 			continue;
887 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
888 	}
889 }
890 
891 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
892 {
893 	int i;
894 
895 	if (intercept == svm->x2avic_msrs_intercepted)
896 		return;
897 
898 	if (!x2avic_enabled)
899 		return;
900 
901 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
902 		int index = direct_access_msrs[i].index;
903 
904 		if ((index < APIC_BASE_MSR) ||
905 		    (index > APIC_BASE_MSR + 0xff))
906 			continue;
907 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
908 				     !intercept, !intercept);
909 	}
910 
911 	svm->x2avic_msrs_intercepted = intercept;
912 }
913 
914 void svm_vcpu_free_msrpm(u32 *msrpm)
915 {
916 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
917 }
918 
919 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
920 {
921 	struct vcpu_svm *svm = to_svm(vcpu);
922 	u32 i;
923 
924 	/*
925 	 * Set intercept permissions for all direct access MSRs again. They
926 	 * will automatically get filtered through the MSR filter, so we are
927 	 * back in sync after this.
928 	 */
929 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
930 		u32 msr = direct_access_msrs[i].index;
931 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
932 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
933 
934 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
935 	}
936 }
937 
938 static void add_msr_offset(u32 offset)
939 {
940 	int i;
941 
942 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
943 
944 		/* Offset already in list? */
945 		if (msrpm_offsets[i] == offset)
946 			return;
947 
948 		/* Slot used by another offset? */
949 		if (msrpm_offsets[i] != MSR_INVALID)
950 			continue;
951 
952 		/* Add offset to list */
953 		msrpm_offsets[i] = offset;
954 
955 		return;
956 	}
957 
958 	/*
959 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
960 	 * increase MSRPM_OFFSETS in this case.
961 	 */
962 	BUG();
963 }
964 
965 static void init_msrpm_offsets(void)
966 {
967 	int i;
968 
969 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
970 
971 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
972 		u32 offset;
973 
974 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
975 		BUG_ON(offset == MSR_INVALID);
976 
977 		add_msr_offset(offset);
978 	}
979 }
980 
981 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
982 {
983 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
984 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
985 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
986 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
987 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
988 
989 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
990 }
991 
992 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
993 {
994 	struct vcpu_svm *svm = to_svm(vcpu);
995 
996 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
997 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
998 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
999 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1000 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1001 
1002 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1003 	if (is_guest_mode(vcpu))
1004 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1005 }
1006 
1007 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1008 {
1009 	struct vcpu_svm *svm = to_svm(vcpu);
1010 
1011 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1012 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1013 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1014 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1015 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1016 
1017 	/*
1018 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
1019 	 * on nested guest entries.
1020 	 */
1021 	if (is_guest_mode(vcpu))
1022 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1023 }
1024 
1025 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1026 {
1027 	/*
1028 	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1029 	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1030 	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1031 	 */
1032 	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1033 								   svm->vmcb01.ptr;
1034 }
1035 
1036 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1037 {
1038 	struct vcpu_svm *svm = to_svm(vcpu);
1039 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1040 	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1041 			    (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1042 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1043 
1044 	if (enable_lbrv == current_enable_lbrv)
1045 		return;
1046 
1047 	if (enable_lbrv)
1048 		svm_enable_lbrv(vcpu);
1049 	else
1050 		svm_disable_lbrv(vcpu);
1051 }
1052 
1053 void disable_nmi_singlestep(struct vcpu_svm *svm)
1054 {
1055 	svm->nmi_singlestep = false;
1056 
1057 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1058 		/* Clear our flags if they were not set by the guest */
1059 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1060 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1061 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1062 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1063 	}
1064 }
1065 
1066 static void grow_ple_window(struct kvm_vcpu *vcpu)
1067 {
1068 	struct vcpu_svm *svm = to_svm(vcpu);
1069 	struct vmcb_control_area *control = &svm->vmcb->control;
1070 	int old = control->pause_filter_count;
1071 
1072 	if (kvm_pause_in_guest(vcpu->kvm))
1073 		return;
1074 
1075 	control->pause_filter_count = __grow_ple_window(old,
1076 							pause_filter_count,
1077 							pause_filter_count_grow,
1078 							pause_filter_count_max);
1079 
1080 	if (control->pause_filter_count != old) {
1081 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1082 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1083 					    control->pause_filter_count, old);
1084 	}
1085 }
1086 
1087 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1088 {
1089 	struct vcpu_svm *svm = to_svm(vcpu);
1090 	struct vmcb_control_area *control = &svm->vmcb->control;
1091 	int old = control->pause_filter_count;
1092 
1093 	if (kvm_pause_in_guest(vcpu->kvm))
1094 		return;
1095 
1096 	control->pause_filter_count =
1097 				__shrink_ple_window(old,
1098 						    pause_filter_count,
1099 						    pause_filter_count_shrink,
1100 						    pause_filter_count);
1101 	if (control->pause_filter_count != old) {
1102 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1103 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1104 					    control->pause_filter_count, old);
1105 	}
1106 }
1107 
1108 static void svm_hardware_unsetup(void)
1109 {
1110 	int cpu;
1111 
1112 	sev_hardware_unsetup();
1113 
1114 	for_each_possible_cpu(cpu)
1115 		svm_cpu_uninit(cpu);
1116 
1117 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1118 	get_order(IOPM_SIZE));
1119 	iopm_base = 0;
1120 }
1121 
1122 static void init_seg(struct vmcb_seg *seg)
1123 {
1124 	seg->selector = 0;
1125 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1126 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1127 	seg->limit = 0xffff;
1128 	seg->base = 0;
1129 }
1130 
1131 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1132 {
1133 	seg->selector = 0;
1134 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1135 	seg->limit = 0xffff;
1136 	seg->base = 0;
1137 }
1138 
1139 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1140 {
1141 	struct vcpu_svm *svm = to_svm(vcpu);
1142 
1143 	return svm->nested.ctl.tsc_offset;
1144 }
1145 
1146 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1147 {
1148 	struct vcpu_svm *svm = to_svm(vcpu);
1149 
1150 	return svm->tsc_ratio_msr;
1151 }
1152 
1153 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1154 {
1155 	struct vcpu_svm *svm = to_svm(vcpu);
1156 
1157 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1158 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1159 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1160 }
1161 
1162 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1163 {
1164 	preempt_disable();
1165 	if (to_svm(vcpu)->guest_state_loaded)
1166 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1167 	preempt_enable();
1168 }
1169 
1170 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1171 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1172 					      struct vcpu_svm *svm)
1173 {
1174 	/*
1175 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1176 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1177 	 */
1178 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1179 		if (!npt_enabled ||
1180 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1181 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1182 		else
1183 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1184 	}
1185 
1186 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1187 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1188 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1189 		else
1190 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1191 	}
1192 }
1193 
1194 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1195 {
1196 	struct vcpu_svm *svm = to_svm(vcpu);
1197 
1198 	if (guest_cpuid_is_intel(vcpu)) {
1199 		/*
1200 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1201 		 * accesses because the processor only stores 32 bits.
1202 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1203 		 */
1204 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1205 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1206 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1207 
1208 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1209 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1210 	} else {
1211 		/*
1212 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1213 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1214 		 */
1215 		if (vls) {
1216 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1217 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1218 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1219 		}
1220 		/* No need to intercept these MSRs */
1221 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1222 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1223 	}
1224 }
1225 
1226 static void init_vmcb(struct kvm_vcpu *vcpu)
1227 {
1228 	struct vcpu_svm *svm = to_svm(vcpu);
1229 	struct vmcb *vmcb = svm->vmcb01.ptr;
1230 	struct vmcb_control_area *control = &vmcb->control;
1231 	struct vmcb_save_area *save = &vmcb->save;
1232 
1233 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1234 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1235 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1236 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1237 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1238 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1239 	if (!kvm_vcpu_apicv_active(vcpu))
1240 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1241 
1242 	set_dr_intercepts(svm);
1243 
1244 	set_exception_intercept(svm, PF_VECTOR);
1245 	set_exception_intercept(svm, UD_VECTOR);
1246 	set_exception_intercept(svm, MC_VECTOR);
1247 	set_exception_intercept(svm, AC_VECTOR);
1248 	set_exception_intercept(svm, DB_VECTOR);
1249 	/*
1250 	 * Guest access to VMware backdoor ports could legitimately
1251 	 * trigger #GP because of TSS I/O permission bitmap.
1252 	 * We intercept those #GP and allow access to them anyway
1253 	 * as VMware does.
1254 	 */
1255 	if (enable_vmware_backdoor)
1256 		set_exception_intercept(svm, GP_VECTOR);
1257 
1258 	svm_set_intercept(svm, INTERCEPT_INTR);
1259 	svm_set_intercept(svm, INTERCEPT_NMI);
1260 
1261 	if (intercept_smi)
1262 		svm_set_intercept(svm, INTERCEPT_SMI);
1263 
1264 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1265 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1266 	svm_set_intercept(svm, INTERCEPT_CPUID);
1267 	svm_set_intercept(svm, INTERCEPT_INVD);
1268 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1269 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1270 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1271 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1272 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1273 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1274 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1275 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1276 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1277 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1278 	svm_set_intercept(svm, INTERCEPT_STGI);
1279 	svm_set_intercept(svm, INTERCEPT_CLGI);
1280 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1281 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1282 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1283 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1284 	svm_set_intercept(svm, INTERCEPT_RSM);
1285 
1286 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1287 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1288 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1289 	}
1290 
1291 	if (!kvm_hlt_in_guest(vcpu->kvm))
1292 		svm_set_intercept(svm, INTERCEPT_HLT);
1293 
1294 	control->iopm_base_pa = __sme_set(iopm_base);
1295 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1296 	control->int_ctl = V_INTR_MASKING_MASK;
1297 
1298 	init_seg(&save->es);
1299 	init_seg(&save->ss);
1300 	init_seg(&save->ds);
1301 	init_seg(&save->fs);
1302 	init_seg(&save->gs);
1303 
1304 	save->cs.selector = 0xf000;
1305 	save->cs.base = 0xffff0000;
1306 	/* Executable/Readable Code Segment */
1307 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1308 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1309 	save->cs.limit = 0xffff;
1310 
1311 	save->gdtr.base = 0;
1312 	save->gdtr.limit = 0xffff;
1313 	save->idtr.base = 0;
1314 	save->idtr.limit = 0xffff;
1315 
1316 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1317 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1318 
1319 	if (npt_enabled) {
1320 		/* Setup VMCB for Nested Paging */
1321 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1322 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1323 		clr_exception_intercept(svm, PF_VECTOR);
1324 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1325 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1326 		save->g_pat = vcpu->arch.pat;
1327 		save->cr3 = 0;
1328 	}
1329 	svm->current_vmcb->asid_generation = 0;
1330 	svm->asid = 0;
1331 
1332 	svm->nested.vmcb12_gpa = INVALID_GPA;
1333 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1334 
1335 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1336 		control->pause_filter_count = pause_filter_count;
1337 		if (pause_filter_thresh)
1338 			control->pause_filter_thresh = pause_filter_thresh;
1339 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1340 	} else {
1341 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1342 	}
1343 
1344 	svm_recalc_instruction_intercepts(vcpu, svm);
1345 
1346 	/*
1347 	 * If the host supports V_SPEC_CTRL then disable the interception
1348 	 * of MSR_IA32_SPEC_CTRL.
1349 	 */
1350 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1351 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1352 
1353 	if (kvm_vcpu_apicv_active(vcpu))
1354 		avic_init_vmcb(svm, vmcb);
1355 
1356 	if (vnmi)
1357 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1358 
1359 	if (vgif) {
1360 		svm_clr_intercept(svm, INTERCEPT_STGI);
1361 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1362 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1363 	}
1364 
1365 	if (sev_guest(vcpu->kvm))
1366 		sev_init_vmcb(svm);
1367 
1368 	svm_hv_init_vmcb(vmcb);
1369 	init_vmcb_after_set_cpuid(vcpu);
1370 
1371 	vmcb_mark_all_dirty(vmcb);
1372 
1373 	enable_gif(svm);
1374 }
1375 
1376 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1377 {
1378 	struct vcpu_svm *svm = to_svm(vcpu);
1379 
1380 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1381 
1382 	svm_init_osvw(vcpu);
1383 	vcpu->arch.microcode_version = 0x01000065;
1384 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1385 
1386 	svm->nmi_masked = false;
1387 	svm->awaiting_iret_completion = false;
1388 
1389 	if (sev_es_guest(vcpu->kvm))
1390 		sev_es_vcpu_reset(svm);
1391 }
1392 
1393 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1394 {
1395 	struct vcpu_svm *svm = to_svm(vcpu);
1396 
1397 	svm->spec_ctrl = 0;
1398 	svm->virt_spec_ctrl = 0;
1399 
1400 	init_vmcb(vcpu);
1401 
1402 	if (!init_event)
1403 		__svm_vcpu_reset(vcpu);
1404 }
1405 
1406 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1407 {
1408 	svm->current_vmcb = target_vmcb;
1409 	svm->vmcb = target_vmcb->ptr;
1410 }
1411 
1412 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1413 {
1414 	struct vcpu_svm *svm;
1415 	struct page *vmcb01_page;
1416 	struct page *vmsa_page = NULL;
1417 	int err;
1418 
1419 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1420 	svm = to_svm(vcpu);
1421 
1422 	err = -ENOMEM;
1423 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1424 	if (!vmcb01_page)
1425 		goto out;
1426 
1427 	if (sev_es_guest(vcpu->kvm)) {
1428 		/*
1429 		 * SEV-ES guests require a separate VMSA page used to contain
1430 		 * the encrypted register state of the guest.
1431 		 */
1432 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1433 		if (!vmsa_page)
1434 			goto error_free_vmcb_page;
1435 
1436 		/*
1437 		 * SEV-ES guests maintain an encrypted version of their FPU
1438 		 * state which is restored and saved on VMRUN and VMEXIT.
1439 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1440 		 * do xsave/xrstor on it.
1441 		 */
1442 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1443 	}
1444 
1445 	err = avic_init_vcpu(svm);
1446 	if (err)
1447 		goto error_free_vmsa_page;
1448 
1449 	svm->msrpm = svm_vcpu_alloc_msrpm();
1450 	if (!svm->msrpm) {
1451 		err = -ENOMEM;
1452 		goto error_free_vmsa_page;
1453 	}
1454 
1455 	svm->x2avic_msrs_intercepted = true;
1456 
1457 	svm->vmcb01.ptr = page_address(vmcb01_page);
1458 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1459 	svm_switch_vmcb(svm, &svm->vmcb01);
1460 
1461 	if (vmsa_page)
1462 		svm->sev_es.vmsa = page_address(vmsa_page);
1463 
1464 	svm->guest_state_loaded = false;
1465 
1466 	return 0;
1467 
1468 error_free_vmsa_page:
1469 	if (vmsa_page)
1470 		__free_page(vmsa_page);
1471 error_free_vmcb_page:
1472 	__free_page(vmcb01_page);
1473 out:
1474 	return err;
1475 }
1476 
1477 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1478 {
1479 	int i;
1480 
1481 	for_each_online_cpu(i)
1482 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1483 }
1484 
1485 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1486 {
1487 	struct vcpu_svm *svm = to_svm(vcpu);
1488 
1489 	/*
1490 	 * The vmcb page can be recycled, causing a false negative in
1491 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1492 	 * vmcb page recorded as its current vmcb.
1493 	 */
1494 	svm_clear_current_vmcb(svm->vmcb);
1495 
1496 	svm_leave_nested(vcpu);
1497 	svm_free_nested(svm);
1498 
1499 	sev_free_vcpu(vcpu);
1500 
1501 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1502 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1503 }
1504 
1505 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1506 {
1507 	struct vcpu_svm *svm = to_svm(vcpu);
1508 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1509 
1510 	if (sev_es_guest(vcpu->kvm))
1511 		sev_es_unmap_ghcb(svm);
1512 
1513 	if (svm->guest_state_loaded)
1514 		return;
1515 
1516 	/*
1517 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1518 	 * or subsequent vmload of host save area.
1519 	 */
1520 	vmsave(sd->save_area_pa);
1521 	if (sev_es_guest(vcpu->kvm)) {
1522 		struct sev_es_save_area *hostsa;
1523 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1524 
1525 		sev_es_prepare_switch_to_guest(hostsa);
1526 	}
1527 
1528 	if (tsc_scaling)
1529 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1530 
1531 	/*
1532 	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1533 	 * available. The user return MSR support is not required in this case
1534 	 * because TSC_AUX is restored on #VMEXIT from the host save area
1535 	 * (which has been initialized in svm_hardware_enable()).
1536 	 */
1537 	if (likely(tsc_aux_uret_slot >= 0) &&
1538 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1539 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1540 
1541 	svm->guest_state_loaded = true;
1542 }
1543 
1544 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1545 {
1546 	to_svm(vcpu)->guest_state_loaded = false;
1547 }
1548 
1549 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1550 {
1551 	struct vcpu_svm *svm = to_svm(vcpu);
1552 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1553 
1554 	if (sd->current_vmcb != svm->vmcb) {
1555 		sd->current_vmcb = svm->vmcb;
1556 
1557 		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1558 			indirect_branch_prediction_barrier();
1559 	}
1560 	if (kvm_vcpu_apicv_active(vcpu))
1561 		avic_vcpu_load(vcpu, cpu);
1562 }
1563 
1564 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1565 {
1566 	if (kvm_vcpu_apicv_active(vcpu))
1567 		avic_vcpu_put(vcpu);
1568 
1569 	svm_prepare_host_switch(vcpu);
1570 
1571 	++vcpu->stat.host_state_reload;
1572 }
1573 
1574 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1575 {
1576 	struct vcpu_svm *svm = to_svm(vcpu);
1577 	unsigned long rflags = svm->vmcb->save.rflags;
1578 
1579 	if (svm->nmi_singlestep) {
1580 		/* Hide our flags if they were not set by the guest */
1581 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1582 			rflags &= ~X86_EFLAGS_TF;
1583 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1584 			rflags &= ~X86_EFLAGS_RF;
1585 	}
1586 	return rflags;
1587 }
1588 
1589 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1590 {
1591 	if (to_svm(vcpu)->nmi_singlestep)
1592 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1593 
1594        /*
1595         * Any change of EFLAGS.VM is accompanied by a reload of SS
1596         * (caused by either a task switch or an inter-privilege IRET),
1597         * so we do not need to update the CPL here.
1598         */
1599 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1600 }
1601 
1602 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1603 {
1604 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1605 
1606 	return sev_es_guest(vcpu->kvm)
1607 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1608 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1609 }
1610 
1611 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1612 {
1613 	kvm_register_mark_available(vcpu, reg);
1614 
1615 	switch (reg) {
1616 	case VCPU_EXREG_PDPTR:
1617 		/*
1618 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1619 		 * it is always updated per SDM when moving to CRs.
1620 		 */
1621 		if (npt_enabled)
1622 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1623 		break;
1624 	default:
1625 		KVM_BUG_ON(1, vcpu->kvm);
1626 	}
1627 }
1628 
1629 static void svm_set_vintr(struct vcpu_svm *svm)
1630 {
1631 	struct vmcb_control_area *control;
1632 
1633 	/*
1634 	 * The following fields are ignored when AVIC is enabled
1635 	 */
1636 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1637 
1638 	svm_set_intercept(svm, INTERCEPT_VINTR);
1639 
1640 	/*
1641 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1642 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1643 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1644 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1645 	 * interrupts will never be unblocked while L2 is running.
1646 	 */
1647 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1648 		return;
1649 
1650 	/*
1651 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1652 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1653 	 */
1654 	control = &svm->vmcb->control;
1655 	control->int_vector = 0x0;
1656 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1657 	control->int_ctl |= V_IRQ_MASK |
1658 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1659 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1660 }
1661 
1662 static void svm_clear_vintr(struct vcpu_svm *svm)
1663 {
1664 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1665 
1666 	/* Drop int_ctl fields related to VINTR injection.  */
1667 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1668 	if (is_guest_mode(&svm->vcpu)) {
1669 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1670 
1671 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1672 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1673 
1674 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1675 			V_IRQ_INJECTION_BITS_MASK;
1676 
1677 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1678 	}
1679 
1680 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1681 }
1682 
1683 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1684 {
1685 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1686 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1687 
1688 	switch (seg) {
1689 	case VCPU_SREG_CS: return &save->cs;
1690 	case VCPU_SREG_DS: return &save->ds;
1691 	case VCPU_SREG_ES: return &save->es;
1692 	case VCPU_SREG_FS: return &save01->fs;
1693 	case VCPU_SREG_GS: return &save01->gs;
1694 	case VCPU_SREG_SS: return &save->ss;
1695 	case VCPU_SREG_TR: return &save01->tr;
1696 	case VCPU_SREG_LDTR: return &save01->ldtr;
1697 	}
1698 	BUG();
1699 	return NULL;
1700 }
1701 
1702 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1703 {
1704 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1705 
1706 	return s->base;
1707 }
1708 
1709 static void svm_get_segment(struct kvm_vcpu *vcpu,
1710 			    struct kvm_segment *var, int seg)
1711 {
1712 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1713 
1714 	var->base = s->base;
1715 	var->limit = s->limit;
1716 	var->selector = s->selector;
1717 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1718 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1719 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1720 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1721 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1722 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1723 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1724 
1725 	/*
1726 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1727 	 * However, the SVM spec states that the G bit is not observed by the
1728 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1729 	 * So let's synthesize a legal G bit for all segments, this helps
1730 	 * running KVM nested. It also helps cross-vendor migration, because
1731 	 * Intel's vmentry has a check on the 'G' bit.
1732 	 */
1733 	var->g = s->limit > 0xfffff;
1734 
1735 	/*
1736 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1737 	 * for cross vendor migration purposes by "not present"
1738 	 */
1739 	var->unusable = !var->present;
1740 
1741 	switch (seg) {
1742 	case VCPU_SREG_TR:
1743 		/*
1744 		 * Work around a bug where the busy flag in the tr selector
1745 		 * isn't exposed
1746 		 */
1747 		var->type |= 0x2;
1748 		break;
1749 	case VCPU_SREG_DS:
1750 	case VCPU_SREG_ES:
1751 	case VCPU_SREG_FS:
1752 	case VCPU_SREG_GS:
1753 		/*
1754 		 * The accessed bit must always be set in the segment
1755 		 * descriptor cache, although it can be cleared in the
1756 		 * descriptor, the cached bit always remains at 1. Since
1757 		 * Intel has a check on this, set it here to support
1758 		 * cross-vendor migration.
1759 		 */
1760 		if (!var->unusable)
1761 			var->type |= 0x1;
1762 		break;
1763 	case VCPU_SREG_SS:
1764 		/*
1765 		 * On AMD CPUs sometimes the DB bit in the segment
1766 		 * descriptor is left as 1, although the whole segment has
1767 		 * been made unusable. Clear it here to pass an Intel VMX
1768 		 * entry check when cross vendor migrating.
1769 		 */
1770 		if (var->unusable)
1771 			var->db = 0;
1772 		/* This is symmetric with svm_set_segment() */
1773 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1774 		break;
1775 	}
1776 }
1777 
1778 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1779 {
1780 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1781 
1782 	return save->cpl;
1783 }
1784 
1785 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1786 {
1787 	struct kvm_segment cs;
1788 
1789 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1790 	*db = cs.db;
1791 	*l = cs.l;
1792 }
1793 
1794 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1795 {
1796 	struct vcpu_svm *svm = to_svm(vcpu);
1797 
1798 	dt->size = svm->vmcb->save.idtr.limit;
1799 	dt->address = svm->vmcb->save.idtr.base;
1800 }
1801 
1802 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1803 {
1804 	struct vcpu_svm *svm = to_svm(vcpu);
1805 
1806 	svm->vmcb->save.idtr.limit = dt->size;
1807 	svm->vmcb->save.idtr.base = dt->address ;
1808 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1809 }
1810 
1811 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1812 {
1813 	struct vcpu_svm *svm = to_svm(vcpu);
1814 
1815 	dt->size = svm->vmcb->save.gdtr.limit;
1816 	dt->address = svm->vmcb->save.gdtr.base;
1817 }
1818 
1819 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1820 {
1821 	struct vcpu_svm *svm = to_svm(vcpu);
1822 
1823 	svm->vmcb->save.gdtr.limit = dt->size;
1824 	svm->vmcb->save.gdtr.base = dt->address ;
1825 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1826 }
1827 
1828 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1829 {
1830 	struct vcpu_svm *svm = to_svm(vcpu);
1831 
1832 	/*
1833 	 * For guests that don't set guest_state_protected, the cr3 update is
1834 	 * handled via kvm_mmu_load() while entering the guest. For guests
1835 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1836 	 * VMCB save area now, since the save area will become the initial
1837 	 * contents of the VMSA, and future VMCB save area updates won't be
1838 	 * seen.
1839 	 */
1840 	if (sev_es_guest(vcpu->kvm)) {
1841 		svm->vmcb->save.cr3 = cr3;
1842 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1843 	}
1844 }
1845 
1846 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1847 {
1848 	return true;
1849 }
1850 
1851 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1852 {
1853 	struct vcpu_svm *svm = to_svm(vcpu);
1854 	u64 hcr0 = cr0;
1855 	bool old_paging = is_paging(vcpu);
1856 
1857 #ifdef CONFIG_X86_64
1858 	if (vcpu->arch.efer & EFER_LME) {
1859 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1860 			vcpu->arch.efer |= EFER_LMA;
1861 			if (!vcpu->arch.guest_state_protected)
1862 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1863 		}
1864 
1865 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1866 			vcpu->arch.efer &= ~EFER_LMA;
1867 			if (!vcpu->arch.guest_state_protected)
1868 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1869 		}
1870 	}
1871 #endif
1872 	vcpu->arch.cr0 = cr0;
1873 
1874 	if (!npt_enabled) {
1875 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1876 		if (old_paging != is_paging(vcpu))
1877 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1878 	}
1879 
1880 	/*
1881 	 * re-enable caching here because the QEMU bios
1882 	 * does not do it - this results in some delay at
1883 	 * reboot
1884 	 */
1885 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1886 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1887 
1888 	svm->vmcb->save.cr0 = hcr0;
1889 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1890 
1891 	/*
1892 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1893 	 * tracking is done using the CR write traps.
1894 	 */
1895 	if (sev_es_guest(vcpu->kvm))
1896 		return;
1897 
1898 	if (hcr0 == cr0) {
1899 		/* Selective CR0 write remains on.  */
1900 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1901 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1902 	} else {
1903 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1904 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1905 	}
1906 }
1907 
1908 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1909 {
1910 	return true;
1911 }
1912 
1913 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1914 {
1915 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1916 	unsigned long old_cr4 = vcpu->arch.cr4;
1917 
1918 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1919 		svm_flush_tlb_current(vcpu);
1920 
1921 	vcpu->arch.cr4 = cr4;
1922 	if (!npt_enabled) {
1923 		cr4 |= X86_CR4_PAE;
1924 
1925 		if (!is_paging(vcpu))
1926 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1927 	}
1928 	cr4 |= host_cr4_mce;
1929 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1930 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1931 
1932 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1933 		kvm_update_cpuid_runtime(vcpu);
1934 }
1935 
1936 static void svm_set_segment(struct kvm_vcpu *vcpu,
1937 			    struct kvm_segment *var, int seg)
1938 {
1939 	struct vcpu_svm *svm = to_svm(vcpu);
1940 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1941 
1942 	s->base = var->base;
1943 	s->limit = var->limit;
1944 	s->selector = var->selector;
1945 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1946 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1947 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1948 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1949 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1950 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1951 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1952 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1953 
1954 	/*
1955 	 * This is always accurate, except if SYSRET returned to a segment
1956 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1957 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1958 	 * would entail passing the CPL to userspace and back.
1959 	 */
1960 	if (seg == VCPU_SREG_SS)
1961 		/* This is symmetric with svm_get_segment() */
1962 		svm->vmcb->save.cpl = (var->dpl & 3);
1963 
1964 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1965 }
1966 
1967 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1968 {
1969 	struct vcpu_svm *svm = to_svm(vcpu);
1970 
1971 	clr_exception_intercept(svm, BP_VECTOR);
1972 
1973 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1974 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1975 			set_exception_intercept(svm, BP_VECTOR);
1976 	}
1977 }
1978 
1979 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1980 {
1981 	if (sd->next_asid > sd->max_asid) {
1982 		++sd->asid_generation;
1983 		sd->next_asid = sd->min_asid;
1984 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1985 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1986 	}
1987 
1988 	svm->current_vmcb->asid_generation = sd->asid_generation;
1989 	svm->asid = sd->next_asid++;
1990 }
1991 
1992 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1993 {
1994 	struct vmcb *vmcb = svm->vmcb;
1995 
1996 	if (svm->vcpu.arch.guest_state_protected)
1997 		return;
1998 
1999 	if (unlikely(value != vmcb->save.dr6)) {
2000 		vmcb->save.dr6 = value;
2001 		vmcb_mark_dirty(vmcb, VMCB_DR);
2002 	}
2003 }
2004 
2005 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2006 {
2007 	struct vcpu_svm *svm = to_svm(vcpu);
2008 
2009 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2010 		return;
2011 
2012 	get_debugreg(vcpu->arch.db[0], 0);
2013 	get_debugreg(vcpu->arch.db[1], 1);
2014 	get_debugreg(vcpu->arch.db[2], 2);
2015 	get_debugreg(vcpu->arch.db[3], 3);
2016 	/*
2017 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2018 	 * because db_interception might need it.  We can do it before vmentry.
2019 	 */
2020 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
2021 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2022 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2023 	set_dr_intercepts(svm);
2024 }
2025 
2026 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2027 {
2028 	struct vcpu_svm *svm = to_svm(vcpu);
2029 
2030 	if (vcpu->arch.guest_state_protected)
2031 		return;
2032 
2033 	svm->vmcb->save.dr7 = value;
2034 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2035 }
2036 
2037 static int pf_interception(struct kvm_vcpu *vcpu)
2038 {
2039 	struct vcpu_svm *svm = to_svm(vcpu);
2040 
2041 	u64 fault_address = svm->vmcb->control.exit_info_2;
2042 	u64 error_code = svm->vmcb->control.exit_info_1;
2043 
2044 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
2045 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2046 			svm->vmcb->control.insn_bytes : NULL,
2047 			svm->vmcb->control.insn_len);
2048 }
2049 
2050 static int npf_interception(struct kvm_vcpu *vcpu)
2051 {
2052 	struct vcpu_svm *svm = to_svm(vcpu);
2053 
2054 	u64 fault_address = svm->vmcb->control.exit_info_2;
2055 	u64 error_code = svm->vmcb->control.exit_info_1;
2056 
2057 	trace_kvm_page_fault(vcpu, fault_address, error_code);
2058 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2059 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2060 			svm->vmcb->control.insn_bytes : NULL,
2061 			svm->vmcb->control.insn_len);
2062 }
2063 
2064 static int db_interception(struct kvm_vcpu *vcpu)
2065 {
2066 	struct kvm_run *kvm_run = vcpu->run;
2067 	struct vcpu_svm *svm = to_svm(vcpu);
2068 
2069 	if (!(vcpu->guest_debug &
2070 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2071 		!svm->nmi_singlestep) {
2072 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2073 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2074 		return 1;
2075 	}
2076 
2077 	if (svm->nmi_singlestep) {
2078 		disable_nmi_singlestep(svm);
2079 		/* Make sure we check for pending NMIs upon entry */
2080 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2081 	}
2082 
2083 	if (vcpu->guest_debug &
2084 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2085 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2086 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2087 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2088 		kvm_run->debug.arch.pc =
2089 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2090 		kvm_run->debug.arch.exception = DB_VECTOR;
2091 		return 0;
2092 	}
2093 
2094 	return 1;
2095 }
2096 
2097 static int bp_interception(struct kvm_vcpu *vcpu)
2098 {
2099 	struct vcpu_svm *svm = to_svm(vcpu);
2100 	struct kvm_run *kvm_run = vcpu->run;
2101 
2102 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2103 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2104 	kvm_run->debug.arch.exception = BP_VECTOR;
2105 	return 0;
2106 }
2107 
2108 static int ud_interception(struct kvm_vcpu *vcpu)
2109 {
2110 	return handle_ud(vcpu);
2111 }
2112 
2113 static int ac_interception(struct kvm_vcpu *vcpu)
2114 {
2115 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2116 	return 1;
2117 }
2118 
2119 static bool is_erratum_383(void)
2120 {
2121 	int err, i;
2122 	u64 value;
2123 
2124 	if (!erratum_383_found)
2125 		return false;
2126 
2127 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2128 	if (err)
2129 		return false;
2130 
2131 	/* Bit 62 may or may not be set for this mce */
2132 	value &= ~(1ULL << 62);
2133 
2134 	if (value != 0xb600000000010015ULL)
2135 		return false;
2136 
2137 	/* Clear MCi_STATUS registers */
2138 	for (i = 0; i < 6; ++i)
2139 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2140 
2141 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2142 	if (!err) {
2143 		u32 low, high;
2144 
2145 		value &= ~(1ULL << 2);
2146 		low    = lower_32_bits(value);
2147 		high   = upper_32_bits(value);
2148 
2149 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2150 	}
2151 
2152 	/* Flush tlb to evict multi-match entries */
2153 	__flush_tlb_all();
2154 
2155 	return true;
2156 }
2157 
2158 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2159 {
2160 	if (is_erratum_383()) {
2161 		/*
2162 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2163 		 * guest.
2164 		 */
2165 		pr_err("Guest triggered AMD Erratum 383\n");
2166 
2167 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2168 
2169 		return;
2170 	}
2171 
2172 	/*
2173 	 * On an #MC intercept the MCE handler is not called automatically in
2174 	 * the host. So do it by hand here.
2175 	 */
2176 	kvm_machine_check();
2177 }
2178 
2179 static int mc_interception(struct kvm_vcpu *vcpu)
2180 {
2181 	return 1;
2182 }
2183 
2184 static int shutdown_interception(struct kvm_vcpu *vcpu)
2185 {
2186 	struct kvm_run *kvm_run = vcpu->run;
2187 	struct vcpu_svm *svm = to_svm(vcpu);
2188 
2189 
2190 	/*
2191 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2192 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2193 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2194 	 * userspace.  At a platform view, INIT is acceptable behavior as
2195 	 * there exist bare metal platforms that automatically INIT the CPU
2196 	 * in response to shutdown.
2197 	 *
2198 	 * The VM save area for SEV-ES guests has already been encrypted so it
2199 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2200 	 */
2201 	if (!sev_es_guest(vcpu->kvm)) {
2202 		clear_page(svm->vmcb);
2203 		kvm_vcpu_reset(vcpu, true);
2204 	}
2205 
2206 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2207 	return 0;
2208 }
2209 
2210 static int io_interception(struct kvm_vcpu *vcpu)
2211 {
2212 	struct vcpu_svm *svm = to_svm(vcpu);
2213 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2214 	int size, in, string;
2215 	unsigned port;
2216 
2217 	++vcpu->stat.io_exits;
2218 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2219 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2220 	port = io_info >> 16;
2221 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2222 
2223 	if (string) {
2224 		if (sev_es_guest(vcpu->kvm))
2225 			return sev_es_string_io(svm, size, port, in);
2226 		else
2227 			return kvm_emulate_instruction(vcpu, 0);
2228 	}
2229 
2230 	svm->next_rip = svm->vmcb->control.exit_info_2;
2231 
2232 	return kvm_fast_pio(vcpu, size, port, in);
2233 }
2234 
2235 static int nmi_interception(struct kvm_vcpu *vcpu)
2236 {
2237 	return 1;
2238 }
2239 
2240 static int smi_interception(struct kvm_vcpu *vcpu)
2241 {
2242 	return 1;
2243 }
2244 
2245 static int intr_interception(struct kvm_vcpu *vcpu)
2246 {
2247 	++vcpu->stat.irq_exits;
2248 	return 1;
2249 }
2250 
2251 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2252 {
2253 	struct vcpu_svm *svm = to_svm(vcpu);
2254 	struct vmcb *vmcb12;
2255 	struct kvm_host_map map;
2256 	int ret;
2257 
2258 	if (nested_svm_check_permissions(vcpu))
2259 		return 1;
2260 
2261 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2262 	if (ret) {
2263 		if (ret == -EINVAL)
2264 			kvm_inject_gp(vcpu, 0);
2265 		return 1;
2266 	}
2267 
2268 	vmcb12 = map.hva;
2269 
2270 	ret = kvm_skip_emulated_instruction(vcpu);
2271 
2272 	if (vmload) {
2273 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2274 		svm->sysenter_eip_hi = 0;
2275 		svm->sysenter_esp_hi = 0;
2276 	} else {
2277 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2278 	}
2279 
2280 	kvm_vcpu_unmap(vcpu, &map, true);
2281 
2282 	return ret;
2283 }
2284 
2285 static int vmload_interception(struct kvm_vcpu *vcpu)
2286 {
2287 	return vmload_vmsave_interception(vcpu, true);
2288 }
2289 
2290 static int vmsave_interception(struct kvm_vcpu *vcpu)
2291 {
2292 	return vmload_vmsave_interception(vcpu, false);
2293 }
2294 
2295 static int vmrun_interception(struct kvm_vcpu *vcpu)
2296 {
2297 	if (nested_svm_check_permissions(vcpu))
2298 		return 1;
2299 
2300 	return nested_svm_vmrun(vcpu);
2301 }
2302 
2303 enum {
2304 	NONE_SVM_INSTR,
2305 	SVM_INSTR_VMRUN,
2306 	SVM_INSTR_VMLOAD,
2307 	SVM_INSTR_VMSAVE,
2308 };
2309 
2310 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2311 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2312 {
2313 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2314 
2315 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2316 		return NONE_SVM_INSTR;
2317 
2318 	switch (ctxt->modrm) {
2319 	case 0xd8: /* VMRUN */
2320 		return SVM_INSTR_VMRUN;
2321 	case 0xda: /* VMLOAD */
2322 		return SVM_INSTR_VMLOAD;
2323 	case 0xdb: /* VMSAVE */
2324 		return SVM_INSTR_VMSAVE;
2325 	default:
2326 		break;
2327 	}
2328 
2329 	return NONE_SVM_INSTR;
2330 }
2331 
2332 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2333 {
2334 	const int guest_mode_exit_codes[] = {
2335 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2336 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2337 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2338 	};
2339 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2340 		[SVM_INSTR_VMRUN] = vmrun_interception,
2341 		[SVM_INSTR_VMLOAD] = vmload_interception,
2342 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2343 	};
2344 	struct vcpu_svm *svm = to_svm(vcpu);
2345 	int ret;
2346 
2347 	if (is_guest_mode(vcpu)) {
2348 		/* Returns '1' or -errno on failure, '0' on success. */
2349 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2350 		if (ret)
2351 			return ret;
2352 		return 1;
2353 	}
2354 	return svm_instr_handlers[opcode](vcpu);
2355 }
2356 
2357 /*
2358  * #GP handling code. Note that #GP can be triggered under the following two
2359  * cases:
2360  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2361  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2362  *      regions (e.g. SMM memory on host).
2363  *   2) VMware backdoor
2364  */
2365 static int gp_interception(struct kvm_vcpu *vcpu)
2366 {
2367 	struct vcpu_svm *svm = to_svm(vcpu);
2368 	u32 error_code = svm->vmcb->control.exit_info_1;
2369 	int opcode;
2370 
2371 	/* Both #GP cases have zero error_code */
2372 	if (error_code)
2373 		goto reinject;
2374 
2375 	/* Decode the instruction for usage later */
2376 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2377 		goto reinject;
2378 
2379 	opcode = svm_instr_opcode(vcpu);
2380 
2381 	if (opcode == NONE_SVM_INSTR) {
2382 		if (!enable_vmware_backdoor)
2383 			goto reinject;
2384 
2385 		/*
2386 		 * VMware backdoor emulation on #GP interception only handles
2387 		 * IN{S}, OUT{S}, and RDPMC.
2388 		 */
2389 		if (!is_guest_mode(vcpu))
2390 			return kvm_emulate_instruction(vcpu,
2391 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2392 	} else {
2393 		/* All SVM instructions expect page aligned RAX */
2394 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2395 			goto reinject;
2396 
2397 		return emulate_svm_instr(vcpu, opcode);
2398 	}
2399 
2400 reinject:
2401 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2402 	return 1;
2403 }
2404 
2405 void svm_set_gif(struct vcpu_svm *svm, bool value)
2406 {
2407 	if (value) {
2408 		/*
2409 		 * If VGIF is enabled, the STGI intercept is only added to
2410 		 * detect the opening of the SMI/NMI window; remove it now.
2411 		 * Likewise, clear the VINTR intercept, we will set it
2412 		 * again while processing KVM_REQ_EVENT if needed.
2413 		 */
2414 		if (vgif)
2415 			svm_clr_intercept(svm, INTERCEPT_STGI);
2416 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2417 			svm_clear_vintr(svm);
2418 
2419 		enable_gif(svm);
2420 		if (svm->vcpu.arch.smi_pending ||
2421 		    svm->vcpu.arch.nmi_pending ||
2422 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2423 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2424 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2425 	} else {
2426 		disable_gif(svm);
2427 
2428 		/*
2429 		 * After a CLGI no interrupts should come.  But if vGIF is
2430 		 * in use, we still rely on the VINTR intercept (rather than
2431 		 * STGI) to detect an open interrupt window.
2432 		*/
2433 		if (!vgif)
2434 			svm_clear_vintr(svm);
2435 	}
2436 }
2437 
2438 static int stgi_interception(struct kvm_vcpu *vcpu)
2439 {
2440 	int ret;
2441 
2442 	if (nested_svm_check_permissions(vcpu))
2443 		return 1;
2444 
2445 	ret = kvm_skip_emulated_instruction(vcpu);
2446 	svm_set_gif(to_svm(vcpu), true);
2447 	return ret;
2448 }
2449 
2450 static int clgi_interception(struct kvm_vcpu *vcpu)
2451 {
2452 	int ret;
2453 
2454 	if (nested_svm_check_permissions(vcpu))
2455 		return 1;
2456 
2457 	ret = kvm_skip_emulated_instruction(vcpu);
2458 	svm_set_gif(to_svm(vcpu), false);
2459 	return ret;
2460 }
2461 
2462 static int invlpga_interception(struct kvm_vcpu *vcpu)
2463 {
2464 	gva_t gva = kvm_rax_read(vcpu);
2465 	u32 asid = kvm_rcx_read(vcpu);
2466 
2467 	/* FIXME: Handle an address size prefix. */
2468 	if (!is_long_mode(vcpu))
2469 		gva = (u32)gva;
2470 
2471 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2472 
2473 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2474 	kvm_mmu_invlpg(vcpu, gva);
2475 
2476 	return kvm_skip_emulated_instruction(vcpu);
2477 }
2478 
2479 static int skinit_interception(struct kvm_vcpu *vcpu)
2480 {
2481 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2482 
2483 	kvm_queue_exception(vcpu, UD_VECTOR);
2484 	return 1;
2485 }
2486 
2487 static int task_switch_interception(struct kvm_vcpu *vcpu)
2488 {
2489 	struct vcpu_svm *svm = to_svm(vcpu);
2490 	u16 tss_selector;
2491 	int reason;
2492 	int int_type = svm->vmcb->control.exit_int_info &
2493 		SVM_EXITINTINFO_TYPE_MASK;
2494 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2495 	uint32_t type =
2496 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2497 	uint32_t idt_v =
2498 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2499 	bool has_error_code = false;
2500 	u32 error_code = 0;
2501 
2502 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2503 
2504 	if (svm->vmcb->control.exit_info_2 &
2505 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2506 		reason = TASK_SWITCH_IRET;
2507 	else if (svm->vmcb->control.exit_info_2 &
2508 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2509 		reason = TASK_SWITCH_JMP;
2510 	else if (idt_v)
2511 		reason = TASK_SWITCH_GATE;
2512 	else
2513 		reason = TASK_SWITCH_CALL;
2514 
2515 	if (reason == TASK_SWITCH_GATE) {
2516 		switch (type) {
2517 		case SVM_EXITINTINFO_TYPE_NMI:
2518 			vcpu->arch.nmi_injected = false;
2519 			break;
2520 		case SVM_EXITINTINFO_TYPE_EXEPT:
2521 			if (svm->vmcb->control.exit_info_2 &
2522 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2523 				has_error_code = true;
2524 				error_code =
2525 					(u32)svm->vmcb->control.exit_info_2;
2526 			}
2527 			kvm_clear_exception_queue(vcpu);
2528 			break;
2529 		case SVM_EXITINTINFO_TYPE_INTR:
2530 		case SVM_EXITINTINFO_TYPE_SOFT:
2531 			kvm_clear_interrupt_queue(vcpu);
2532 			break;
2533 		default:
2534 			break;
2535 		}
2536 	}
2537 
2538 	if (reason != TASK_SWITCH_GATE ||
2539 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2540 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2541 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2542 		if (!svm_skip_emulated_instruction(vcpu))
2543 			return 0;
2544 	}
2545 
2546 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2547 		int_vec = -1;
2548 
2549 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2550 			       has_error_code, error_code);
2551 }
2552 
2553 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2554 {
2555 	if (!sev_es_guest(svm->vcpu.kvm))
2556 		svm_clr_intercept(svm, INTERCEPT_IRET);
2557 }
2558 
2559 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2560 {
2561 	if (!sev_es_guest(svm->vcpu.kvm))
2562 		svm_set_intercept(svm, INTERCEPT_IRET);
2563 }
2564 
2565 static int iret_interception(struct kvm_vcpu *vcpu)
2566 {
2567 	struct vcpu_svm *svm = to_svm(vcpu);
2568 
2569 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2570 
2571 	++vcpu->stat.nmi_window_exits;
2572 	svm->awaiting_iret_completion = true;
2573 
2574 	svm_clr_iret_intercept(svm);
2575 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2576 
2577 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2578 	return 1;
2579 }
2580 
2581 static int invlpg_interception(struct kvm_vcpu *vcpu)
2582 {
2583 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2584 		return kvm_emulate_instruction(vcpu, 0);
2585 
2586 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2587 	return kvm_skip_emulated_instruction(vcpu);
2588 }
2589 
2590 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2591 {
2592 	return kvm_emulate_instruction(vcpu, 0);
2593 }
2594 
2595 static int rsm_interception(struct kvm_vcpu *vcpu)
2596 {
2597 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2598 }
2599 
2600 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2601 					    unsigned long val)
2602 {
2603 	struct vcpu_svm *svm = to_svm(vcpu);
2604 	unsigned long cr0 = vcpu->arch.cr0;
2605 	bool ret = false;
2606 
2607 	if (!is_guest_mode(vcpu) ||
2608 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2609 		return false;
2610 
2611 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2612 	val &= ~SVM_CR0_SELECTIVE_MASK;
2613 
2614 	if (cr0 ^ val) {
2615 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2616 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2617 	}
2618 
2619 	return ret;
2620 }
2621 
2622 #define CR_VALID (1ULL << 63)
2623 
2624 static int cr_interception(struct kvm_vcpu *vcpu)
2625 {
2626 	struct vcpu_svm *svm = to_svm(vcpu);
2627 	int reg, cr;
2628 	unsigned long val;
2629 	int err;
2630 
2631 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2632 		return emulate_on_interception(vcpu);
2633 
2634 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2635 		return emulate_on_interception(vcpu);
2636 
2637 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2638 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2639 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2640 	else
2641 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2642 
2643 	err = 0;
2644 	if (cr >= 16) { /* mov to cr */
2645 		cr -= 16;
2646 		val = kvm_register_read(vcpu, reg);
2647 		trace_kvm_cr_write(cr, val);
2648 		switch (cr) {
2649 		case 0:
2650 			if (!check_selective_cr0_intercepted(vcpu, val))
2651 				err = kvm_set_cr0(vcpu, val);
2652 			else
2653 				return 1;
2654 
2655 			break;
2656 		case 3:
2657 			err = kvm_set_cr3(vcpu, val);
2658 			break;
2659 		case 4:
2660 			err = kvm_set_cr4(vcpu, val);
2661 			break;
2662 		case 8:
2663 			err = kvm_set_cr8(vcpu, val);
2664 			break;
2665 		default:
2666 			WARN(1, "unhandled write to CR%d", cr);
2667 			kvm_queue_exception(vcpu, UD_VECTOR);
2668 			return 1;
2669 		}
2670 	} else { /* mov from cr */
2671 		switch (cr) {
2672 		case 0:
2673 			val = kvm_read_cr0(vcpu);
2674 			break;
2675 		case 2:
2676 			val = vcpu->arch.cr2;
2677 			break;
2678 		case 3:
2679 			val = kvm_read_cr3(vcpu);
2680 			break;
2681 		case 4:
2682 			val = kvm_read_cr4(vcpu);
2683 			break;
2684 		case 8:
2685 			val = kvm_get_cr8(vcpu);
2686 			break;
2687 		default:
2688 			WARN(1, "unhandled read from CR%d", cr);
2689 			kvm_queue_exception(vcpu, UD_VECTOR);
2690 			return 1;
2691 		}
2692 		kvm_register_write(vcpu, reg, val);
2693 		trace_kvm_cr_read(cr, val);
2694 	}
2695 	return kvm_complete_insn_gp(vcpu, err);
2696 }
2697 
2698 static int cr_trap(struct kvm_vcpu *vcpu)
2699 {
2700 	struct vcpu_svm *svm = to_svm(vcpu);
2701 	unsigned long old_value, new_value;
2702 	unsigned int cr;
2703 	int ret = 0;
2704 
2705 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2706 
2707 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2708 	switch (cr) {
2709 	case 0:
2710 		old_value = kvm_read_cr0(vcpu);
2711 		svm_set_cr0(vcpu, new_value);
2712 
2713 		kvm_post_set_cr0(vcpu, old_value, new_value);
2714 		break;
2715 	case 4:
2716 		old_value = kvm_read_cr4(vcpu);
2717 		svm_set_cr4(vcpu, new_value);
2718 
2719 		kvm_post_set_cr4(vcpu, old_value, new_value);
2720 		break;
2721 	case 8:
2722 		ret = kvm_set_cr8(vcpu, new_value);
2723 		break;
2724 	default:
2725 		WARN(1, "unhandled CR%d write trap", cr);
2726 		kvm_queue_exception(vcpu, UD_VECTOR);
2727 		return 1;
2728 	}
2729 
2730 	return kvm_complete_insn_gp(vcpu, ret);
2731 }
2732 
2733 static int dr_interception(struct kvm_vcpu *vcpu)
2734 {
2735 	struct vcpu_svm *svm = to_svm(vcpu);
2736 	int reg, dr;
2737 	unsigned long val;
2738 	int err = 0;
2739 
2740 	/*
2741 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2742 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2743 	 */
2744 	if (sev_es_guest(vcpu->kvm))
2745 		return 1;
2746 
2747 	if (vcpu->guest_debug == 0) {
2748 		/*
2749 		 * No more DR vmexits; force a reload of the debug registers
2750 		 * and reenter on this instruction.  The next vmexit will
2751 		 * retrieve the full state of the debug registers.
2752 		 */
2753 		clr_dr_intercepts(svm);
2754 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2755 		return 1;
2756 	}
2757 
2758 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2759 		return emulate_on_interception(vcpu);
2760 
2761 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2762 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2763 	if (dr >= 16) { /* mov to DRn  */
2764 		dr -= 16;
2765 		val = kvm_register_read(vcpu, reg);
2766 		err = kvm_set_dr(vcpu, dr, val);
2767 	} else {
2768 		kvm_get_dr(vcpu, dr, &val);
2769 		kvm_register_write(vcpu, reg, val);
2770 	}
2771 
2772 	return kvm_complete_insn_gp(vcpu, err);
2773 }
2774 
2775 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2776 {
2777 	int r;
2778 
2779 	u8 cr8_prev = kvm_get_cr8(vcpu);
2780 	/* instruction emulation calls kvm_set_cr8() */
2781 	r = cr_interception(vcpu);
2782 	if (lapic_in_kernel(vcpu))
2783 		return r;
2784 	if (cr8_prev <= kvm_get_cr8(vcpu))
2785 		return r;
2786 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2787 	return 0;
2788 }
2789 
2790 static int efer_trap(struct kvm_vcpu *vcpu)
2791 {
2792 	struct msr_data msr_info;
2793 	int ret;
2794 
2795 	/*
2796 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2797 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2798 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2799 	 * the guest doesn't have X86_FEATURE_SVM.
2800 	 */
2801 	msr_info.host_initiated = false;
2802 	msr_info.index = MSR_EFER;
2803 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2804 	ret = kvm_set_msr_common(vcpu, &msr_info);
2805 
2806 	return kvm_complete_insn_gp(vcpu, ret);
2807 }
2808 
2809 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2810 {
2811 	msr->data = 0;
2812 
2813 	switch (msr->index) {
2814 	case MSR_AMD64_DE_CFG:
2815 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2816 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2817 		break;
2818 	default:
2819 		return KVM_MSR_RET_INVALID;
2820 	}
2821 
2822 	return 0;
2823 }
2824 
2825 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2826 {
2827 	struct vcpu_svm *svm = to_svm(vcpu);
2828 
2829 	switch (msr_info->index) {
2830 	case MSR_AMD64_TSC_RATIO:
2831 		if (!msr_info->host_initiated &&
2832 		    !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2833 			return 1;
2834 		msr_info->data = svm->tsc_ratio_msr;
2835 		break;
2836 	case MSR_STAR:
2837 		msr_info->data = svm->vmcb01.ptr->save.star;
2838 		break;
2839 #ifdef CONFIG_X86_64
2840 	case MSR_LSTAR:
2841 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2842 		break;
2843 	case MSR_CSTAR:
2844 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2845 		break;
2846 	case MSR_KERNEL_GS_BASE:
2847 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2848 		break;
2849 	case MSR_SYSCALL_MASK:
2850 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2851 		break;
2852 #endif
2853 	case MSR_IA32_SYSENTER_CS:
2854 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2855 		break;
2856 	case MSR_IA32_SYSENTER_EIP:
2857 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2858 		if (guest_cpuid_is_intel(vcpu))
2859 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2860 		break;
2861 	case MSR_IA32_SYSENTER_ESP:
2862 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2863 		if (guest_cpuid_is_intel(vcpu))
2864 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2865 		break;
2866 	case MSR_TSC_AUX:
2867 		msr_info->data = svm->tsc_aux;
2868 		break;
2869 	case MSR_IA32_DEBUGCTLMSR:
2870 		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2871 		break;
2872 	case MSR_IA32_LASTBRANCHFROMIP:
2873 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2874 		break;
2875 	case MSR_IA32_LASTBRANCHTOIP:
2876 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2877 		break;
2878 	case MSR_IA32_LASTINTFROMIP:
2879 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2880 		break;
2881 	case MSR_IA32_LASTINTTOIP:
2882 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2883 		break;
2884 	case MSR_VM_HSAVE_PA:
2885 		msr_info->data = svm->nested.hsave_msr;
2886 		break;
2887 	case MSR_VM_CR:
2888 		msr_info->data = svm->nested.vm_cr_msr;
2889 		break;
2890 	case MSR_IA32_SPEC_CTRL:
2891 		if (!msr_info->host_initiated &&
2892 		    !guest_has_spec_ctrl_msr(vcpu))
2893 			return 1;
2894 
2895 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2896 			msr_info->data = svm->vmcb->save.spec_ctrl;
2897 		else
2898 			msr_info->data = svm->spec_ctrl;
2899 		break;
2900 	case MSR_AMD64_VIRT_SPEC_CTRL:
2901 		if (!msr_info->host_initiated &&
2902 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2903 			return 1;
2904 
2905 		msr_info->data = svm->virt_spec_ctrl;
2906 		break;
2907 	case MSR_F15H_IC_CFG: {
2908 
2909 		int family, model;
2910 
2911 		family = guest_cpuid_family(vcpu);
2912 		model  = guest_cpuid_model(vcpu);
2913 
2914 		if (family < 0 || model < 0)
2915 			return kvm_get_msr_common(vcpu, msr_info);
2916 
2917 		msr_info->data = 0;
2918 
2919 		if (family == 0x15 &&
2920 		    (model >= 0x2 && model < 0x20))
2921 			msr_info->data = 0x1E;
2922 		}
2923 		break;
2924 	case MSR_AMD64_DE_CFG:
2925 		msr_info->data = svm->msr_decfg;
2926 		break;
2927 	default:
2928 		return kvm_get_msr_common(vcpu, msr_info);
2929 	}
2930 	return 0;
2931 }
2932 
2933 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2934 {
2935 	struct vcpu_svm *svm = to_svm(vcpu);
2936 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2937 		return kvm_complete_insn_gp(vcpu, err);
2938 
2939 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2940 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2941 				X86_TRAP_GP |
2942 				SVM_EVTINJ_TYPE_EXEPT |
2943 				SVM_EVTINJ_VALID);
2944 	return 1;
2945 }
2946 
2947 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2948 {
2949 	struct vcpu_svm *svm = to_svm(vcpu);
2950 	int svm_dis, chg_mask;
2951 
2952 	if (data & ~SVM_VM_CR_VALID_MASK)
2953 		return 1;
2954 
2955 	chg_mask = SVM_VM_CR_VALID_MASK;
2956 
2957 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2958 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2959 
2960 	svm->nested.vm_cr_msr &= ~chg_mask;
2961 	svm->nested.vm_cr_msr |= (data & chg_mask);
2962 
2963 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2964 
2965 	/* check for svm_disable while efer.svme is set */
2966 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2967 		return 1;
2968 
2969 	return 0;
2970 }
2971 
2972 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2973 {
2974 	struct vcpu_svm *svm = to_svm(vcpu);
2975 	int ret = 0;
2976 
2977 	u32 ecx = msr->index;
2978 	u64 data = msr->data;
2979 	switch (ecx) {
2980 	case MSR_AMD64_TSC_RATIO:
2981 
2982 		if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
2983 
2984 			if (!msr->host_initiated)
2985 				return 1;
2986 			/*
2987 			 * In case TSC scaling is not enabled, always
2988 			 * leave this MSR at the default value.
2989 			 *
2990 			 * Due to bug in qemu 6.2.0, it would try to set
2991 			 * this msr to 0 if tsc scaling is not enabled.
2992 			 * Ignore this value as well.
2993 			 */
2994 			if (data != 0 && data != svm->tsc_ratio_msr)
2995 				return 1;
2996 			break;
2997 		}
2998 
2999 		if (data & SVM_TSC_RATIO_RSVD)
3000 			return 1;
3001 
3002 		svm->tsc_ratio_msr = data;
3003 
3004 		if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3005 		    is_guest_mode(vcpu))
3006 			nested_svm_update_tsc_ratio_msr(vcpu);
3007 
3008 		break;
3009 	case MSR_IA32_CR_PAT:
3010 		ret = kvm_set_msr_common(vcpu, msr);
3011 		if (ret)
3012 			break;
3013 
3014 		svm->vmcb01.ptr->save.g_pat = data;
3015 		if (is_guest_mode(vcpu))
3016 			nested_vmcb02_compute_g_pat(svm);
3017 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3018 		break;
3019 	case MSR_IA32_SPEC_CTRL:
3020 		if (!msr->host_initiated &&
3021 		    !guest_has_spec_ctrl_msr(vcpu))
3022 			return 1;
3023 
3024 		if (kvm_spec_ctrl_test_value(data))
3025 			return 1;
3026 
3027 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3028 			svm->vmcb->save.spec_ctrl = data;
3029 		else
3030 			svm->spec_ctrl = data;
3031 		if (!data)
3032 			break;
3033 
3034 		/*
3035 		 * For non-nested:
3036 		 * When it's written (to non-zero) for the first time, pass
3037 		 * it through.
3038 		 *
3039 		 * For nested:
3040 		 * The handling of the MSR bitmap for L2 guests is done in
3041 		 * nested_svm_vmrun_msrpm.
3042 		 * We update the L1 MSR bit as well since it will end up
3043 		 * touching the MSR anyway now.
3044 		 */
3045 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3046 		break;
3047 	case MSR_AMD64_VIRT_SPEC_CTRL:
3048 		if (!msr->host_initiated &&
3049 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3050 			return 1;
3051 
3052 		if (data & ~SPEC_CTRL_SSBD)
3053 			return 1;
3054 
3055 		svm->virt_spec_ctrl = data;
3056 		break;
3057 	case MSR_STAR:
3058 		svm->vmcb01.ptr->save.star = data;
3059 		break;
3060 #ifdef CONFIG_X86_64
3061 	case MSR_LSTAR:
3062 		svm->vmcb01.ptr->save.lstar = data;
3063 		break;
3064 	case MSR_CSTAR:
3065 		svm->vmcb01.ptr->save.cstar = data;
3066 		break;
3067 	case MSR_KERNEL_GS_BASE:
3068 		svm->vmcb01.ptr->save.kernel_gs_base = data;
3069 		break;
3070 	case MSR_SYSCALL_MASK:
3071 		svm->vmcb01.ptr->save.sfmask = data;
3072 		break;
3073 #endif
3074 	case MSR_IA32_SYSENTER_CS:
3075 		svm->vmcb01.ptr->save.sysenter_cs = data;
3076 		break;
3077 	case MSR_IA32_SYSENTER_EIP:
3078 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3079 		/*
3080 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3081 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3082 		 * In this case we use this intercept to track the high
3083 		 * 32 bit part of these msrs to support Intel's
3084 		 * implementation of SYSENTER/SYSEXIT.
3085 		 */
3086 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3087 		break;
3088 	case MSR_IA32_SYSENTER_ESP:
3089 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3090 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3091 		break;
3092 	case MSR_TSC_AUX:
3093 		/*
3094 		 * TSC_AUX is always virtualized for SEV-ES guests when the
3095 		 * feature is available. The user return MSR support is not
3096 		 * required in this case because TSC_AUX is restored on #VMEXIT
3097 		 * from the host save area (which has been initialized in
3098 		 * svm_hardware_enable()).
3099 		 */
3100 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3101 			break;
3102 
3103 		/*
3104 		 * TSC_AUX is usually changed only during boot and never read
3105 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3106 		 * guest via direct_access_msrs, and switch it via user return.
3107 		 */
3108 		preempt_disable();
3109 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3110 		preempt_enable();
3111 		if (ret)
3112 			break;
3113 
3114 		svm->tsc_aux = data;
3115 		break;
3116 	case MSR_IA32_DEBUGCTLMSR:
3117 		if (!lbrv) {
3118 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3119 			break;
3120 		}
3121 		if (data & DEBUGCTL_RESERVED_BITS)
3122 			return 1;
3123 
3124 		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3125 		svm_update_lbrv(vcpu);
3126 		break;
3127 	case MSR_VM_HSAVE_PA:
3128 		/*
3129 		 * Old kernels did not validate the value written to
3130 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3131 		 * value to allow live migrating buggy or malicious guests
3132 		 * originating from those kernels.
3133 		 */
3134 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3135 			return 1;
3136 
3137 		svm->nested.hsave_msr = data & PAGE_MASK;
3138 		break;
3139 	case MSR_VM_CR:
3140 		return svm_set_vm_cr(vcpu, data);
3141 	case MSR_VM_IGNNE:
3142 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3143 		break;
3144 	case MSR_AMD64_DE_CFG: {
3145 		struct kvm_msr_entry msr_entry;
3146 
3147 		msr_entry.index = msr->index;
3148 		if (svm_get_msr_feature(&msr_entry))
3149 			return 1;
3150 
3151 		/* Check the supported bits */
3152 		if (data & ~msr_entry.data)
3153 			return 1;
3154 
3155 		/* Don't allow the guest to change a bit, #GP */
3156 		if (!msr->host_initiated && (data ^ msr_entry.data))
3157 			return 1;
3158 
3159 		svm->msr_decfg = data;
3160 		break;
3161 	}
3162 	default:
3163 		return kvm_set_msr_common(vcpu, msr);
3164 	}
3165 	return ret;
3166 }
3167 
3168 static int msr_interception(struct kvm_vcpu *vcpu)
3169 {
3170 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3171 		return kvm_emulate_wrmsr(vcpu);
3172 	else
3173 		return kvm_emulate_rdmsr(vcpu);
3174 }
3175 
3176 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3177 {
3178 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3179 	svm_clear_vintr(to_svm(vcpu));
3180 
3181 	/*
3182 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3183 	 * In this case AVIC was temporarily disabled for
3184 	 * requesting the IRQ window and we have to re-enable it.
3185 	 *
3186 	 * If running nested, still remove the VM wide AVIC inhibit to
3187 	 * support case in which the interrupt window was requested when the
3188 	 * vCPU was not running nested.
3189 
3190 	 * All vCPUs which run still run nested, will remain to have their
3191 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3192 	 */
3193 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3194 
3195 	++vcpu->stat.irq_window_exits;
3196 	return 1;
3197 }
3198 
3199 static int pause_interception(struct kvm_vcpu *vcpu)
3200 {
3201 	bool in_kernel;
3202 	/*
3203 	 * CPL is not made available for an SEV-ES guest, therefore
3204 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3205 	 * set in_kernel to false as well.
3206 	 */
3207 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3208 
3209 	grow_ple_window(vcpu);
3210 
3211 	kvm_vcpu_on_spin(vcpu, in_kernel);
3212 	return kvm_skip_emulated_instruction(vcpu);
3213 }
3214 
3215 static int invpcid_interception(struct kvm_vcpu *vcpu)
3216 {
3217 	struct vcpu_svm *svm = to_svm(vcpu);
3218 	unsigned long type;
3219 	gva_t gva;
3220 
3221 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3222 		kvm_queue_exception(vcpu, UD_VECTOR);
3223 		return 1;
3224 	}
3225 
3226 	/*
3227 	 * For an INVPCID intercept:
3228 	 * EXITINFO1 provides the linear address of the memory operand.
3229 	 * EXITINFO2 provides the contents of the register operand.
3230 	 */
3231 	type = svm->vmcb->control.exit_info_2;
3232 	gva = svm->vmcb->control.exit_info_1;
3233 
3234 	return kvm_handle_invpcid(vcpu, type, gva);
3235 }
3236 
3237 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3238 	[SVM_EXIT_READ_CR0]			= cr_interception,
3239 	[SVM_EXIT_READ_CR3]			= cr_interception,
3240 	[SVM_EXIT_READ_CR4]			= cr_interception,
3241 	[SVM_EXIT_READ_CR8]			= cr_interception,
3242 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3243 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3244 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3245 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3246 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3247 	[SVM_EXIT_READ_DR0]			= dr_interception,
3248 	[SVM_EXIT_READ_DR1]			= dr_interception,
3249 	[SVM_EXIT_READ_DR2]			= dr_interception,
3250 	[SVM_EXIT_READ_DR3]			= dr_interception,
3251 	[SVM_EXIT_READ_DR4]			= dr_interception,
3252 	[SVM_EXIT_READ_DR5]			= dr_interception,
3253 	[SVM_EXIT_READ_DR6]			= dr_interception,
3254 	[SVM_EXIT_READ_DR7]			= dr_interception,
3255 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3256 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3257 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3258 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3259 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3260 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3261 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3262 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3263 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3264 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3265 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3266 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3267 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3268 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3269 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3270 	[SVM_EXIT_INTR]				= intr_interception,
3271 	[SVM_EXIT_NMI]				= nmi_interception,
3272 	[SVM_EXIT_SMI]				= smi_interception,
3273 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3274 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3275 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3276 	[SVM_EXIT_IRET]                         = iret_interception,
3277 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3278 	[SVM_EXIT_PAUSE]			= pause_interception,
3279 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3280 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3281 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3282 	[SVM_EXIT_IOIO]				= io_interception,
3283 	[SVM_EXIT_MSR]				= msr_interception,
3284 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3285 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3286 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3287 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3288 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3289 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3290 	[SVM_EXIT_STGI]				= stgi_interception,
3291 	[SVM_EXIT_CLGI]				= clgi_interception,
3292 	[SVM_EXIT_SKINIT]			= skinit_interception,
3293 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3294 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3295 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3296 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3297 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3298 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3299 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3300 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3301 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3302 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3303 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3304 	[SVM_EXIT_NPF]				= npf_interception,
3305 	[SVM_EXIT_RSM]                          = rsm_interception,
3306 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3307 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3308 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3309 };
3310 
3311 static void dump_vmcb(struct kvm_vcpu *vcpu)
3312 {
3313 	struct vcpu_svm *svm = to_svm(vcpu);
3314 	struct vmcb_control_area *control = &svm->vmcb->control;
3315 	struct vmcb_save_area *save = &svm->vmcb->save;
3316 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3317 
3318 	if (!dump_invalid_vmcb) {
3319 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3320 		return;
3321 	}
3322 
3323 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3324 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3325 	pr_err("VMCB Control Area:\n");
3326 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3327 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3328 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3329 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3330 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3331 	pr_err("%-20s%08x %08x\n", "intercepts:",
3332               control->intercepts[INTERCEPT_WORD3],
3333 	       control->intercepts[INTERCEPT_WORD4]);
3334 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3335 	pr_err("%-20s%d\n", "pause filter threshold:",
3336 	       control->pause_filter_thresh);
3337 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3338 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3339 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3340 	pr_err("%-20s%d\n", "asid:", control->asid);
3341 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3342 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3343 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3344 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3345 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3346 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3347 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3348 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3349 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3350 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3351 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3352 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3353 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3354 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3355 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3356 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3357 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3358 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3359 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3360 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3361 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3362 	pr_err("VMCB State Save Area:\n");
3363 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3364 	       "es:",
3365 	       save->es.selector, save->es.attrib,
3366 	       save->es.limit, save->es.base);
3367 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3368 	       "cs:",
3369 	       save->cs.selector, save->cs.attrib,
3370 	       save->cs.limit, save->cs.base);
3371 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3372 	       "ss:",
3373 	       save->ss.selector, save->ss.attrib,
3374 	       save->ss.limit, save->ss.base);
3375 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3376 	       "ds:",
3377 	       save->ds.selector, save->ds.attrib,
3378 	       save->ds.limit, save->ds.base);
3379 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3380 	       "fs:",
3381 	       save01->fs.selector, save01->fs.attrib,
3382 	       save01->fs.limit, save01->fs.base);
3383 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3384 	       "gs:",
3385 	       save01->gs.selector, save01->gs.attrib,
3386 	       save01->gs.limit, save01->gs.base);
3387 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3388 	       "gdtr:",
3389 	       save->gdtr.selector, save->gdtr.attrib,
3390 	       save->gdtr.limit, save->gdtr.base);
3391 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3392 	       "ldtr:",
3393 	       save01->ldtr.selector, save01->ldtr.attrib,
3394 	       save01->ldtr.limit, save01->ldtr.base);
3395 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3396 	       "idtr:",
3397 	       save->idtr.selector, save->idtr.attrib,
3398 	       save->idtr.limit, save->idtr.base);
3399 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3400 	       "tr:",
3401 	       save01->tr.selector, save01->tr.attrib,
3402 	       save01->tr.limit, save01->tr.base);
3403 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3404 	       save->vmpl, save->cpl, save->efer);
3405 	pr_err("%-15s %016llx %-13s %016llx\n",
3406 	       "cr0:", save->cr0, "cr2:", save->cr2);
3407 	pr_err("%-15s %016llx %-13s %016llx\n",
3408 	       "cr3:", save->cr3, "cr4:", save->cr4);
3409 	pr_err("%-15s %016llx %-13s %016llx\n",
3410 	       "dr6:", save->dr6, "dr7:", save->dr7);
3411 	pr_err("%-15s %016llx %-13s %016llx\n",
3412 	       "rip:", save->rip, "rflags:", save->rflags);
3413 	pr_err("%-15s %016llx %-13s %016llx\n",
3414 	       "rsp:", save->rsp, "rax:", save->rax);
3415 	pr_err("%-15s %016llx %-13s %016llx\n",
3416 	       "star:", save01->star, "lstar:", save01->lstar);
3417 	pr_err("%-15s %016llx %-13s %016llx\n",
3418 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3419 	pr_err("%-15s %016llx %-13s %016llx\n",
3420 	       "kernel_gs_base:", save01->kernel_gs_base,
3421 	       "sysenter_cs:", save01->sysenter_cs);
3422 	pr_err("%-15s %016llx %-13s %016llx\n",
3423 	       "sysenter_esp:", save01->sysenter_esp,
3424 	       "sysenter_eip:", save01->sysenter_eip);
3425 	pr_err("%-15s %016llx %-13s %016llx\n",
3426 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3427 	pr_err("%-15s %016llx %-13s %016llx\n",
3428 	       "br_from:", save->br_from, "br_to:", save->br_to);
3429 	pr_err("%-15s %016llx %-13s %016llx\n",
3430 	       "excp_from:", save->last_excp_from,
3431 	       "excp_to:", save->last_excp_to);
3432 }
3433 
3434 static bool svm_check_exit_valid(u64 exit_code)
3435 {
3436 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3437 		svm_exit_handlers[exit_code]);
3438 }
3439 
3440 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3441 {
3442 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3443 	dump_vmcb(vcpu);
3444 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3445 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3446 	vcpu->run->internal.ndata = 2;
3447 	vcpu->run->internal.data[0] = exit_code;
3448 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3449 	return 0;
3450 }
3451 
3452 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3453 {
3454 	if (!svm_check_exit_valid(exit_code))
3455 		return svm_handle_invalid_exit(vcpu, exit_code);
3456 
3457 #ifdef CONFIG_RETPOLINE
3458 	if (exit_code == SVM_EXIT_MSR)
3459 		return msr_interception(vcpu);
3460 	else if (exit_code == SVM_EXIT_VINTR)
3461 		return interrupt_window_interception(vcpu);
3462 	else if (exit_code == SVM_EXIT_INTR)
3463 		return intr_interception(vcpu);
3464 	else if (exit_code == SVM_EXIT_HLT)
3465 		return kvm_emulate_halt(vcpu);
3466 	else if (exit_code == SVM_EXIT_NPF)
3467 		return npf_interception(vcpu);
3468 #endif
3469 	return svm_exit_handlers[exit_code](vcpu);
3470 }
3471 
3472 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3473 			      u64 *info1, u64 *info2,
3474 			      u32 *intr_info, u32 *error_code)
3475 {
3476 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3477 
3478 	*reason = control->exit_code;
3479 	*info1 = control->exit_info_1;
3480 	*info2 = control->exit_info_2;
3481 	*intr_info = control->exit_int_info;
3482 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3483 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3484 		*error_code = control->exit_int_info_err;
3485 	else
3486 		*error_code = 0;
3487 }
3488 
3489 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3490 {
3491 	struct vcpu_svm *svm = to_svm(vcpu);
3492 	struct kvm_run *kvm_run = vcpu->run;
3493 	u32 exit_code = svm->vmcb->control.exit_code;
3494 
3495 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3496 	if (!sev_es_guest(vcpu->kvm)) {
3497 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3498 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3499 		if (npt_enabled)
3500 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3501 	}
3502 
3503 	if (is_guest_mode(vcpu)) {
3504 		int vmexit;
3505 
3506 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3507 
3508 		vmexit = nested_svm_exit_special(svm);
3509 
3510 		if (vmexit == NESTED_EXIT_CONTINUE)
3511 			vmexit = nested_svm_exit_handled(svm);
3512 
3513 		if (vmexit == NESTED_EXIT_DONE)
3514 			return 1;
3515 	}
3516 
3517 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3518 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3519 		kvm_run->fail_entry.hardware_entry_failure_reason
3520 			= svm->vmcb->control.exit_code;
3521 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3522 		dump_vmcb(vcpu);
3523 		return 0;
3524 	}
3525 
3526 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3527 		return 1;
3528 
3529 	return svm_invoke_exit_handler(vcpu, exit_code);
3530 }
3531 
3532 static void pre_svm_run(struct kvm_vcpu *vcpu)
3533 {
3534 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3535 	struct vcpu_svm *svm = to_svm(vcpu);
3536 
3537 	/*
3538 	 * If the previous vmrun of the vmcb occurred on a different physical
3539 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3540 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3541 	 */
3542 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3543 		svm->current_vmcb->asid_generation = 0;
3544 		vmcb_mark_all_dirty(svm->vmcb);
3545 		svm->current_vmcb->cpu = vcpu->cpu;
3546         }
3547 
3548 	if (sev_guest(vcpu->kvm))
3549 		return pre_sev_run(svm, vcpu->cpu);
3550 
3551 	/* FIXME: handle wraparound of asid_generation */
3552 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3553 		new_asid(svm, sd);
3554 }
3555 
3556 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3557 {
3558 	struct vcpu_svm *svm = to_svm(vcpu);
3559 
3560 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3561 
3562 	if (svm->nmi_l1_to_l2)
3563 		return;
3564 
3565 	svm->nmi_masked = true;
3566 	svm_set_iret_intercept(svm);
3567 	++vcpu->stat.nmi_injections;
3568 }
3569 
3570 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3571 {
3572 	struct vcpu_svm *svm = to_svm(vcpu);
3573 
3574 	if (!is_vnmi_enabled(svm))
3575 		return false;
3576 
3577 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3578 }
3579 
3580 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3581 {
3582 	struct vcpu_svm *svm = to_svm(vcpu);
3583 
3584 	if (!is_vnmi_enabled(svm))
3585 		return false;
3586 
3587 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3588 		return false;
3589 
3590 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3591 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3592 
3593 	/*
3594 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3595 	 * the NMI is "injected", but for all intents and purposes, passing the
3596 	 * NMI off to hardware counts as injection.
3597 	 */
3598 	++vcpu->stat.nmi_injections;
3599 
3600 	return true;
3601 }
3602 
3603 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3604 {
3605 	struct vcpu_svm *svm = to_svm(vcpu);
3606 	u32 type;
3607 
3608 	if (vcpu->arch.interrupt.soft) {
3609 		if (svm_update_soft_interrupt_rip(vcpu))
3610 			return;
3611 
3612 		type = SVM_EVTINJ_TYPE_SOFT;
3613 	} else {
3614 		type = SVM_EVTINJ_TYPE_INTR;
3615 	}
3616 
3617 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3618 			   vcpu->arch.interrupt.soft, reinjected);
3619 	++vcpu->stat.irq_injections;
3620 
3621 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3622 				       SVM_EVTINJ_VALID | type;
3623 }
3624 
3625 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3626 				     int trig_mode, int vector)
3627 {
3628 	/*
3629 	 * apic->apicv_active must be read after vcpu->mode.
3630 	 * Pairs with smp_store_release in vcpu_enter_guest.
3631 	 */
3632 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3633 
3634 	/* Note, this is called iff the local APIC is in-kernel. */
3635 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3636 		/* Process the interrupt via kvm_check_and_inject_events(). */
3637 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3638 		kvm_vcpu_kick(vcpu);
3639 		return;
3640 	}
3641 
3642 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3643 	if (in_guest_mode) {
3644 		/*
3645 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3646 		 * the vCPU exits the guest before the doorbell chimes, hardware
3647 		 * will automatically process AVIC interrupts at the next VMRUN.
3648 		 */
3649 		avic_ring_doorbell(vcpu);
3650 	} else {
3651 		/*
3652 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3653 		 * pending IRQ when checking if the vCPU has a wake event.
3654 		 */
3655 		kvm_vcpu_wake_up(vcpu);
3656 	}
3657 }
3658 
3659 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3660 				  int trig_mode, int vector)
3661 {
3662 	kvm_lapic_set_irr(vector, apic);
3663 
3664 	/*
3665 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3666 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3667 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3668 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3669 	 * will signal the doorbell if the CPU has already entered the guest.
3670 	 */
3671 	smp_mb__after_atomic();
3672 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3673 }
3674 
3675 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3676 {
3677 	struct vcpu_svm *svm = to_svm(vcpu);
3678 
3679 	/*
3680 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3681 	 * tracking is done using the CR write traps.
3682 	 */
3683 	if (sev_es_guest(vcpu->kvm))
3684 		return;
3685 
3686 	if (nested_svm_virtualize_tpr(vcpu))
3687 		return;
3688 
3689 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3690 
3691 	if (irr == -1)
3692 		return;
3693 
3694 	if (tpr >= irr)
3695 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3696 }
3697 
3698 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3699 {
3700 	struct vcpu_svm *svm = to_svm(vcpu);
3701 
3702 	if (is_vnmi_enabled(svm))
3703 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3704 	else
3705 		return svm->nmi_masked;
3706 }
3707 
3708 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3709 {
3710 	struct vcpu_svm *svm = to_svm(vcpu);
3711 
3712 	if (is_vnmi_enabled(svm)) {
3713 		if (masked)
3714 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3715 		else
3716 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3717 
3718 	} else {
3719 		svm->nmi_masked = masked;
3720 		if (masked)
3721 			svm_set_iret_intercept(svm);
3722 		else
3723 			svm_clr_iret_intercept(svm);
3724 	}
3725 }
3726 
3727 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3728 {
3729 	struct vcpu_svm *svm = to_svm(vcpu);
3730 	struct vmcb *vmcb = svm->vmcb;
3731 
3732 	if (!gif_set(svm))
3733 		return true;
3734 
3735 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3736 		return false;
3737 
3738 	if (svm_get_nmi_mask(vcpu))
3739 		return true;
3740 
3741 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3742 }
3743 
3744 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3745 {
3746 	struct vcpu_svm *svm = to_svm(vcpu);
3747 	if (svm->nested.nested_run_pending)
3748 		return -EBUSY;
3749 
3750 	if (svm_nmi_blocked(vcpu))
3751 		return 0;
3752 
3753 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3754 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3755 		return -EBUSY;
3756 	return 1;
3757 }
3758 
3759 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3760 {
3761 	struct vcpu_svm *svm = to_svm(vcpu);
3762 	struct vmcb *vmcb = svm->vmcb;
3763 
3764 	if (!gif_set(svm))
3765 		return true;
3766 
3767 	if (is_guest_mode(vcpu)) {
3768 		/* As long as interrupts are being delivered...  */
3769 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3770 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3771 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3772 			return true;
3773 
3774 		/* ... vmexits aren't blocked by the interrupt shadow  */
3775 		if (nested_exit_on_intr(svm))
3776 			return false;
3777 	} else {
3778 		if (!svm_get_if_flag(vcpu))
3779 			return true;
3780 	}
3781 
3782 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3783 }
3784 
3785 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3786 {
3787 	struct vcpu_svm *svm = to_svm(vcpu);
3788 
3789 	if (svm->nested.nested_run_pending)
3790 		return -EBUSY;
3791 
3792 	if (svm_interrupt_blocked(vcpu))
3793 		return 0;
3794 
3795 	/*
3796 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3797 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3798 	 */
3799 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3800 		return -EBUSY;
3801 
3802 	return 1;
3803 }
3804 
3805 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3806 {
3807 	struct vcpu_svm *svm = to_svm(vcpu);
3808 
3809 	/*
3810 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3811 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3812 	 * get that intercept, this function will be called again though and
3813 	 * we'll get the vintr intercept. However, if the vGIF feature is
3814 	 * enabled, the STGI interception will not occur. Enable the irq
3815 	 * window under the assumption that the hardware will set the GIF.
3816 	 */
3817 	if (vgif || gif_set(svm)) {
3818 		/*
3819 		 * IRQ window is not needed when AVIC is enabled,
3820 		 * unless we have pending ExtINT since it cannot be injected
3821 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3822 		 * and fallback to injecting IRQ via V_IRQ.
3823 		 *
3824 		 * If running nested, AVIC is already locally inhibited
3825 		 * on this vCPU, therefore there is no need to request
3826 		 * the VM wide AVIC inhibition.
3827 		 */
3828 		if (!is_guest_mode(vcpu))
3829 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3830 
3831 		svm_set_vintr(svm);
3832 	}
3833 }
3834 
3835 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3836 {
3837 	struct vcpu_svm *svm = to_svm(vcpu);
3838 
3839 	/*
3840 	 * KVM should never request an NMI window when vNMI is enabled, as KVM
3841 	 * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3842 	 * two NMIs arrive simultaneously, KVM will inject one and set
3843 	 * V_NMI_PENDING for the other.  WARN, but continue with the standard
3844 	 * single-step approach to try and salvage the pending NMI.
3845 	 */
3846 	WARN_ON_ONCE(is_vnmi_enabled(svm));
3847 
3848 	if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3849 		return; /* IRET will cause a vm exit */
3850 
3851 	/*
3852 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3853 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3854 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3855 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3856 	 *
3857 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3858 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3859 	 * supported NAEs in the GHCB protocol.
3860 	 */
3861 	if (sev_es_guest(vcpu->kvm))
3862 		return;
3863 
3864 	if (!gif_set(svm)) {
3865 		if (vgif)
3866 			svm_set_intercept(svm, INTERCEPT_STGI);
3867 		return; /* STGI will cause a vm exit */
3868 	}
3869 
3870 	/*
3871 	 * Something prevents NMI from been injected. Single step over possible
3872 	 * problem (IRET or exception injection or interrupt shadow)
3873 	 */
3874 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3875 	svm->nmi_singlestep = true;
3876 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3877 }
3878 
3879 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3880 {
3881 	struct vcpu_svm *svm = to_svm(vcpu);
3882 
3883 	/*
3884 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3885 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3886 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3887 	 */
3888 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3889 
3890 	/*
3891 	 * Flush only the current ASID even if the TLB flush was invoked via
3892 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3893 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3894 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3895 	 * VM-Exit (via kvm_mmu_reset_context()).
3896 	 */
3897 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3898 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3899 	else
3900 		svm->current_vmcb->asid_generation--;
3901 }
3902 
3903 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3904 {
3905 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3906 
3907 	/*
3908 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3909 	 * flush the NPT mappings via hypercall as flushing the ASID only
3910 	 * affects virtual to physical mappings, it does not invalidate guest
3911 	 * physical to host physical mappings.
3912 	 */
3913 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3914 		hyperv_flush_guest_mapping(root_tdp);
3915 
3916 	svm_flush_tlb_asid(vcpu);
3917 }
3918 
3919 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3920 {
3921 	/*
3922 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3923 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3924 	 * a "regular" remote flush.  Reaching this point means either there's
3925 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3926 	 * which might be fatal to the guest.  Yell, but try to recover.
3927 	 */
3928 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3929 		hv_flush_remote_tlbs(vcpu->kvm);
3930 
3931 	svm_flush_tlb_asid(vcpu);
3932 }
3933 
3934 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3935 {
3936 	struct vcpu_svm *svm = to_svm(vcpu);
3937 
3938 	invlpga(gva, svm->vmcb->control.asid);
3939 }
3940 
3941 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3942 {
3943 	struct vcpu_svm *svm = to_svm(vcpu);
3944 
3945 	if (nested_svm_virtualize_tpr(vcpu))
3946 		return;
3947 
3948 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3949 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3950 		kvm_set_cr8(vcpu, cr8);
3951 	}
3952 }
3953 
3954 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3955 {
3956 	struct vcpu_svm *svm = to_svm(vcpu);
3957 	u64 cr8;
3958 
3959 	if (nested_svm_virtualize_tpr(vcpu) ||
3960 	    kvm_vcpu_apicv_active(vcpu))
3961 		return;
3962 
3963 	cr8 = kvm_get_cr8(vcpu);
3964 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3965 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3966 }
3967 
3968 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3969 					int type)
3970 {
3971 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3972 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3973 	struct vcpu_svm *svm = to_svm(vcpu);
3974 
3975 	/*
3976 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3977 	 * associated with the original soft exception/interrupt.  next_rip is
3978 	 * cleared on all exits that can occur while vectoring an event, so KVM
3979 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3980 	 * case below, this needs to be done if and only if KVM is re-injecting
3981 	 * the same event, i.e. if the event is a soft exception/interrupt,
3982 	 * otherwise next_rip is unused on VMRUN.
3983 	 */
3984 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3985 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3986 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3987 	/*
3988 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3989 	 * injecting the soft exception/interrupt.  That advancement needs to
3990 	 * be unwound if vectoring didn't complete.  Note, the new event may
3991 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3992 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3993 	 * be the reported vectored event, but RIP still needs to be unwound.
3994 	 */
3995 	else if (!nrips && (is_soft || is_exception) &&
3996 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3997 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
3998 }
3999 
4000 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4001 {
4002 	struct vcpu_svm *svm = to_svm(vcpu);
4003 	u8 vector;
4004 	int type;
4005 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4006 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4007 	bool soft_int_injected = svm->soft_int_injected;
4008 
4009 	svm->nmi_l1_to_l2 = false;
4010 	svm->soft_int_injected = false;
4011 
4012 	/*
4013 	 * If we've made progress since setting awaiting_iret_completion, we've
4014 	 * executed an IRET and can allow NMI injection.
4015 	 */
4016 	if (svm->awaiting_iret_completion &&
4017 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4018 		svm->awaiting_iret_completion = false;
4019 		svm->nmi_masked = false;
4020 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4021 	}
4022 
4023 	vcpu->arch.nmi_injected = false;
4024 	kvm_clear_exception_queue(vcpu);
4025 	kvm_clear_interrupt_queue(vcpu);
4026 
4027 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4028 		return;
4029 
4030 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4031 
4032 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4033 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4034 
4035 	if (soft_int_injected)
4036 		svm_complete_soft_interrupt(vcpu, vector, type);
4037 
4038 	switch (type) {
4039 	case SVM_EXITINTINFO_TYPE_NMI:
4040 		vcpu->arch.nmi_injected = true;
4041 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4042 		break;
4043 	case SVM_EXITINTINFO_TYPE_EXEPT:
4044 		/*
4045 		 * Never re-inject a #VC exception.
4046 		 */
4047 		if (vector == X86_TRAP_VC)
4048 			break;
4049 
4050 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4051 			u32 err = svm->vmcb->control.exit_int_info_err;
4052 			kvm_requeue_exception_e(vcpu, vector, err);
4053 
4054 		} else
4055 			kvm_requeue_exception(vcpu, vector);
4056 		break;
4057 	case SVM_EXITINTINFO_TYPE_INTR:
4058 		kvm_queue_interrupt(vcpu, vector, false);
4059 		break;
4060 	case SVM_EXITINTINFO_TYPE_SOFT:
4061 		kvm_queue_interrupt(vcpu, vector, true);
4062 		break;
4063 	default:
4064 		break;
4065 	}
4066 
4067 }
4068 
4069 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4070 {
4071 	struct vcpu_svm *svm = to_svm(vcpu);
4072 	struct vmcb_control_area *control = &svm->vmcb->control;
4073 
4074 	control->exit_int_info = control->event_inj;
4075 	control->exit_int_info_err = control->event_inj_err;
4076 	control->event_inj = 0;
4077 	svm_complete_interrupts(vcpu);
4078 }
4079 
4080 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4081 {
4082 	return 1;
4083 }
4084 
4085 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4086 {
4087 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4088 	    to_svm(vcpu)->vmcb->control.exit_info_1)
4089 		return handle_fastpath_set_msr_irqoff(vcpu);
4090 
4091 	return EXIT_FASTPATH_NONE;
4092 }
4093 
4094 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4095 {
4096 	struct vcpu_svm *svm = to_svm(vcpu);
4097 
4098 	guest_state_enter_irqoff();
4099 
4100 	amd_clear_divider();
4101 
4102 	if (sev_es_guest(vcpu->kvm))
4103 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4104 	else
4105 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4106 
4107 	guest_state_exit_irqoff();
4108 }
4109 
4110 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4111 {
4112 	struct vcpu_svm *svm = to_svm(vcpu);
4113 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4114 
4115 	trace_kvm_entry(vcpu);
4116 
4117 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4118 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4119 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4120 
4121 	/*
4122 	 * Disable singlestep if we're injecting an interrupt/exception.
4123 	 * We don't want our modified rflags to be pushed on the stack where
4124 	 * we might not be able to easily reset them if we disabled NMI
4125 	 * singlestep later.
4126 	 */
4127 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4128 		/*
4129 		 * Event injection happens before external interrupts cause a
4130 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4131 		 * is enough to force an immediate vmexit.
4132 		 */
4133 		disable_nmi_singlestep(svm);
4134 		smp_send_reschedule(vcpu->cpu);
4135 	}
4136 
4137 	pre_svm_run(vcpu);
4138 
4139 	sync_lapic_to_cr8(vcpu);
4140 
4141 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4142 		svm->vmcb->control.asid = svm->asid;
4143 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4144 	}
4145 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4146 
4147 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4148 
4149 	/*
4150 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4151 	 * of a #DB.
4152 	 */
4153 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4154 		svm_set_dr6(svm, vcpu->arch.dr6);
4155 	else
4156 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
4157 
4158 	clgi();
4159 	kvm_load_guest_xsave_state(vcpu);
4160 
4161 	kvm_wait_lapic_expire(vcpu);
4162 
4163 	/*
4164 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4165 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4166 	 * is no need to worry about the conditional branch over the wrmsr
4167 	 * being speculatively taken.
4168 	 */
4169 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4170 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4171 
4172 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4173 
4174 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4175 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4176 
4177 	if (!sev_es_guest(vcpu->kvm)) {
4178 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4179 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4180 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4181 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4182 	}
4183 	vcpu->arch.regs_dirty = 0;
4184 
4185 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4186 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4187 
4188 	kvm_load_host_xsave_state(vcpu);
4189 	stgi();
4190 
4191 	/* Any pending NMI will happen here */
4192 
4193 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4194 		kvm_after_interrupt(vcpu);
4195 
4196 	sync_cr8_to_lapic(vcpu);
4197 
4198 	svm->next_rip = 0;
4199 	if (is_guest_mode(vcpu)) {
4200 		nested_sync_control_from_vmcb02(svm);
4201 
4202 		/* Track VMRUNs that have made past consistency checking */
4203 		if (svm->nested.nested_run_pending &&
4204 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4205                         ++vcpu->stat.nested_run;
4206 
4207 		svm->nested.nested_run_pending = 0;
4208 	}
4209 
4210 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4211 	vmcb_mark_all_clean(svm->vmcb);
4212 
4213 	/* if exit due to PF check for async PF */
4214 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4215 		vcpu->arch.apf.host_apf_flags =
4216 			kvm_read_and_reset_apf_flags();
4217 
4218 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4219 
4220 	/*
4221 	 * We need to handle MC intercepts here before the vcpu has a chance to
4222 	 * change the physical cpu
4223 	 */
4224 	if (unlikely(svm->vmcb->control.exit_code ==
4225 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4226 		svm_handle_mce(vcpu);
4227 
4228 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4229 
4230 	svm_complete_interrupts(vcpu);
4231 
4232 	if (is_guest_mode(vcpu))
4233 		return EXIT_FASTPATH_NONE;
4234 
4235 	return svm_exit_handlers_fastpath(vcpu);
4236 }
4237 
4238 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4239 			     int root_level)
4240 {
4241 	struct vcpu_svm *svm = to_svm(vcpu);
4242 	unsigned long cr3;
4243 
4244 	if (npt_enabled) {
4245 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4246 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4247 
4248 		hv_track_root_tdp(vcpu, root_hpa);
4249 
4250 		cr3 = vcpu->arch.cr3;
4251 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4252 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4253 	} else {
4254 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4255 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4256 		cr3 = root_hpa;
4257 	}
4258 
4259 	svm->vmcb->save.cr3 = cr3;
4260 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4261 }
4262 
4263 static void
4264 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4265 {
4266 	/*
4267 	 * Patch in the VMMCALL instruction:
4268 	 */
4269 	hypercall[0] = 0x0f;
4270 	hypercall[1] = 0x01;
4271 	hypercall[2] = 0xd9;
4272 }
4273 
4274 /*
4275  * The kvm parameter can be NULL (module initialization, or invocation before
4276  * VM creation). Be sure to check the kvm parameter before using it.
4277  */
4278 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4279 {
4280 	switch (index) {
4281 	case MSR_IA32_MCG_EXT_CTL:
4282 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4283 		return false;
4284 	case MSR_IA32_SMBASE:
4285 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4286 			return false;
4287 		/* SEV-ES guests do not support SMM, so report false */
4288 		if (kvm && sev_es_guest(kvm))
4289 			return false;
4290 		break;
4291 	default:
4292 		break;
4293 	}
4294 
4295 	return true;
4296 }
4297 
4298 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4299 {
4300 	struct vcpu_svm *svm = to_svm(vcpu);
4301 
4302 	/*
4303 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4304 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4305 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4306 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4307 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4308 	 * whether it's advertised to the guest so that KVM context switches
4309 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4310 	 * the guest read/write access to the host's XSS.
4311 	 */
4312 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4313 	    boot_cpu_has(X86_FEATURE_XSAVES) &&
4314 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4315 		kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4316 
4317 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4318 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4319 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4320 
4321 	/*
4322 	 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4323 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4324 	 * SVM on Intel is bonkers and extremely unlikely to work).
4325 	 */
4326 	if (!guest_cpuid_is_intel(vcpu))
4327 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4328 
4329 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4330 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4331 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4332 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4333 
4334 	svm_recalc_instruction_intercepts(vcpu, svm);
4335 
4336 	if (boot_cpu_has(X86_FEATURE_IBPB))
4337 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4338 				     !!guest_has_pred_cmd_msr(vcpu));
4339 
4340 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4341 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4342 				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4343 
4344 	if (sev_guest(vcpu->kvm))
4345 		sev_vcpu_after_set_cpuid(svm);
4346 
4347 	init_vmcb_after_set_cpuid(vcpu);
4348 }
4349 
4350 static bool svm_has_wbinvd_exit(void)
4351 {
4352 	return true;
4353 }
4354 
4355 #define PRE_EX(exit)  { .exit_code = (exit), \
4356 			.stage = X86_ICPT_PRE_EXCEPT, }
4357 #define POST_EX(exit) { .exit_code = (exit), \
4358 			.stage = X86_ICPT_POST_EXCEPT, }
4359 #define POST_MEM(exit) { .exit_code = (exit), \
4360 			.stage = X86_ICPT_POST_MEMACCESS, }
4361 
4362 static const struct __x86_intercept {
4363 	u32 exit_code;
4364 	enum x86_intercept_stage stage;
4365 } x86_intercept_map[] = {
4366 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4367 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4368 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4369 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4370 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4371 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4372 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4373 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4374 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4375 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4376 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4377 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4378 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4379 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4380 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4381 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4382 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4383 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4384 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4385 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4386 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4387 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4388 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4389 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4390 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4391 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4392 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4393 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4394 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4395 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4396 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4397 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4398 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4399 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4400 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4401 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4402 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4403 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4404 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4405 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4406 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4407 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4408 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4409 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4410 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4411 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4412 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4413 };
4414 
4415 #undef PRE_EX
4416 #undef POST_EX
4417 #undef POST_MEM
4418 
4419 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4420 			       struct x86_instruction_info *info,
4421 			       enum x86_intercept_stage stage,
4422 			       struct x86_exception *exception)
4423 {
4424 	struct vcpu_svm *svm = to_svm(vcpu);
4425 	int vmexit, ret = X86EMUL_CONTINUE;
4426 	struct __x86_intercept icpt_info;
4427 	struct vmcb *vmcb = svm->vmcb;
4428 
4429 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4430 		goto out;
4431 
4432 	icpt_info = x86_intercept_map[info->intercept];
4433 
4434 	if (stage != icpt_info.stage)
4435 		goto out;
4436 
4437 	switch (icpt_info.exit_code) {
4438 	case SVM_EXIT_READ_CR0:
4439 		if (info->intercept == x86_intercept_cr_read)
4440 			icpt_info.exit_code += info->modrm_reg;
4441 		break;
4442 	case SVM_EXIT_WRITE_CR0: {
4443 		unsigned long cr0, val;
4444 
4445 		if (info->intercept == x86_intercept_cr_write)
4446 			icpt_info.exit_code += info->modrm_reg;
4447 
4448 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4449 		    info->intercept == x86_intercept_clts)
4450 			break;
4451 
4452 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4453 					INTERCEPT_SELECTIVE_CR0)))
4454 			break;
4455 
4456 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4457 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4458 
4459 		if (info->intercept == x86_intercept_lmsw) {
4460 			cr0 &= 0xfUL;
4461 			val &= 0xfUL;
4462 			/* lmsw can't clear PE - catch this here */
4463 			if (cr0 & X86_CR0_PE)
4464 				val |= X86_CR0_PE;
4465 		}
4466 
4467 		if (cr0 ^ val)
4468 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4469 
4470 		break;
4471 	}
4472 	case SVM_EXIT_READ_DR0:
4473 	case SVM_EXIT_WRITE_DR0:
4474 		icpt_info.exit_code += info->modrm_reg;
4475 		break;
4476 	case SVM_EXIT_MSR:
4477 		if (info->intercept == x86_intercept_wrmsr)
4478 			vmcb->control.exit_info_1 = 1;
4479 		else
4480 			vmcb->control.exit_info_1 = 0;
4481 		break;
4482 	case SVM_EXIT_PAUSE:
4483 		/*
4484 		 * We get this for NOP only, but pause
4485 		 * is rep not, check this here
4486 		 */
4487 		if (info->rep_prefix != REPE_PREFIX)
4488 			goto out;
4489 		break;
4490 	case SVM_EXIT_IOIO: {
4491 		u64 exit_info;
4492 		u32 bytes;
4493 
4494 		if (info->intercept == x86_intercept_in ||
4495 		    info->intercept == x86_intercept_ins) {
4496 			exit_info = ((info->src_val & 0xffff) << 16) |
4497 				SVM_IOIO_TYPE_MASK;
4498 			bytes = info->dst_bytes;
4499 		} else {
4500 			exit_info = (info->dst_val & 0xffff) << 16;
4501 			bytes = info->src_bytes;
4502 		}
4503 
4504 		if (info->intercept == x86_intercept_outs ||
4505 		    info->intercept == x86_intercept_ins)
4506 			exit_info |= SVM_IOIO_STR_MASK;
4507 
4508 		if (info->rep_prefix)
4509 			exit_info |= SVM_IOIO_REP_MASK;
4510 
4511 		bytes = min(bytes, 4u);
4512 
4513 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4514 
4515 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4516 
4517 		vmcb->control.exit_info_1 = exit_info;
4518 		vmcb->control.exit_info_2 = info->next_rip;
4519 
4520 		break;
4521 	}
4522 	default:
4523 		break;
4524 	}
4525 
4526 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4527 	if (static_cpu_has(X86_FEATURE_NRIPS))
4528 		vmcb->control.next_rip  = info->next_rip;
4529 	vmcb->control.exit_code = icpt_info.exit_code;
4530 	vmexit = nested_svm_exit_handled(svm);
4531 
4532 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4533 					   : X86EMUL_CONTINUE;
4534 
4535 out:
4536 	return ret;
4537 }
4538 
4539 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4540 {
4541 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4542 		vcpu->arch.at_instruction_boundary = true;
4543 }
4544 
4545 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4546 {
4547 	if (!kvm_pause_in_guest(vcpu->kvm))
4548 		shrink_ple_window(vcpu);
4549 }
4550 
4551 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4552 {
4553 	/* [63:9] are reserved. */
4554 	vcpu->arch.mcg_cap &= 0x1ff;
4555 }
4556 
4557 #ifdef CONFIG_KVM_SMM
4558 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4559 {
4560 	struct vcpu_svm *svm = to_svm(vcpu);
4561 
4562 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4563 	if (!gif_set(svm))
4564 		return true;
4565 
4566 	return is_smm(vcpu);
4567 }
4568 
4569 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4570 {
4571 	struct vcpu_svm *svm = to_svm(vcpu);
4572 	if (svm->nested.nested_run_pending)
4573 		return -EBUSY;
4574 
4575 	if (svm_smi_blocked(vcpu))
4576 		return 0;
4577 
4578 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4579 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4580 		return -EBUSY;
4581 
4582 	return 1;
4583 }
4584 
4585 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4586 {
4587 	struct vcpu_svm *svm = to_svm(vcpu);
4588 	struct kvm_host_map map_save;
4589 	int ret;
4590 
4591 	if (!is_guest_mode(vcpu))
4592 		return 0;
4593 
4594 	/*
4595 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4596 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4597 	 */
4598 
4599 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4600 		return 1;
4601 
4602 	smram->smram64.svm_guest_flag = 1;
4603 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4604 
4605 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4606 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4607 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4608 
4609 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4610 	if (ret)
4611 		return ret;
4612 
4613 	/*
4614 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4615 	 * VMCB01 is going to be used during SMM and thus the state will
4616 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4617 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4618 	 * format of the area is identical to guest save area offsetted
4619 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4620 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4621 	 * L1 hypervisor to save additional host context (e.g. KVM does
4622 	 * that, see svm_prepare_switch_to_guest()) which must be
4623 	 * preserved.
4624 	 */
4625 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4626 		return 1;
4627 
4628 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4629 
4630 	svm_copy_vmrun_state(map_save.hva + 0x400,
4631 			     &svm->vmcb01.ptr->save);
4632 
4633 	kvm_vcpu_unmap(vcpu, &map_save, true);
4634 	return 0;
4635 }
4636 
4637 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4638 {
4639 	struct vcpu_svm *svm = to_svm(vcpu);
4640 	struct kvm_host_map map, map_save;
4641 	struct vmcb *vmcb12;
4642 	int ret;
4643 
4644 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4645 
4646 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4647 		return 0;
4648 
4649 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4650 	if (!smram64->svm_guest_flag)
4651 		return 0;
4652 
4653 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4654 		return 1;
4655 
4656 	if (!(smram64->efer & EFER_SVME))
4657 		return 1;
4658 
4659 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4660 		return 1;
4661 
4662 	ret = 1;
4663 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4664 		goto unmap_map;
4665 
4666 	if (svm_allocate_nested(svm))
4667 		goto unmap_save;
4668 
4669 	/*
4670 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4671 	 * used during SMM (see svm_enter_smm())
4672 	 */
4673 
4674 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4675 
4676 	/*
4677 	 * Enter the nested guest now
4678 	 */
4679 
4680 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4681 
4682 	vmcb12 = map.hva;
4683 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4684 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4685 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4686 
4687 	if (ret)
4688 		goto unmap_save;
4689 
4690 	svm->nested.nested_run_pending = 1;
4691 
4692 unmap_save:
4693 	kvm_vcpu_unmap(vcpu, &map_save, true);
4694 unmap_map:
4695 	kvm_vcpu_unmap(vcpu, &map, true);
4696 	return ret;
4697 }
4698 
4699 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4700 {
4701 	struct vcpu_svm *svm = to_svm(vcpu);
4702 
4703 	if (!gif_set(svm)) {
4704 		if (vgif)
4705 			svm_set_intercept(svm, INTERCEPT_STGI);
4706 		/* STGI will cause a vm exit */
4707 	} else {
4708 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4709 	}
4710 }
4711 #endif
4712 
4713 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4714 					 void *insn, int insn_len)
4715 {
4716 	bool smep, smap, is_user;
4717 	u64 error_code;
4718 
4719 	/* Emulation is always possible when KVM has access to all guest state. */
4720 	if (!sev_guest(vcpu->kvm))
4721 		return X86EMUL_CONTINUE;
4722 
4723 	/* #UD and #GP should never be intercepted for SEV guests. */
4724 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4725 				  EMULTYPE_TRAP_UD_FORCED |
4726 				  EMULTYPE_VMWARE_GP));
4727 
4728 	/*
4729 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4730 	 * to guest register state.
4731 	 */
4732 	if (sev_es_guest(vcpu->kvm))
4733 		return X86EMUL_RETRY_INSTR;
4734 
4735 	/*
4736 	 * Emulation is possible if the instruction is already decoded, e.g.
4737 	 * when completing I/O after returning from userspace.
4738 	 */
4739 	if (emul_type & EMULTYPE_NO_DECODE)
4740 		return X86EMUL_CONTINUE;
4741 
4742 	/*
4743 	 * Emulation is possible for SEV guests if and only if a prefilled
4744 	 * buffer containing the bytes of the intercepted instruction is
4745 	 * available. SEV guest memory is encrypted with a guest specific key
4746 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4747 	 * decode garbage.
4748 	 *
4749 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4750 	 * KVM reached this point without an instruction buffer.  In practice,
4751 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4752 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4753 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4754 	 * access, and needs to be handled by KVM to avoid putting the guest
4755 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4756 	 * its the least awful option given lack of insight into the guest.
4757 	 *
4758 	 * If KVM is trying to skip an instruction, simply resume the guest.
4759 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4760 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4761 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4762 	 * make forward progress is the only option that has a chance of
4763 	 * success (and in practice it will work the vast majority of the time).
4764 	 */
4765 	if (unlikely(!insn)) {
4766 		if (emul_type & EMULTYPE_SKIP)
4767 			return X86EMUL_UNHANDLEABLE;
4768 
4769 		kvm_queue_exception(vcpu, UD_VECTOR);
4770 		return X86EMUL_PROPAGATE_FAULT;
4771 	}
4772 
4773 	/*
4774 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4775 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4776 	 * the faulting instruction because the code fetch itself faulted, e.g.
4777 	 * the guest attempted to fetch from emulated MMIO or a guest page
4778 	 * table used to translate CS:RIP resides in emulated MMIO.
4779 	 */
4780 	if (likely(insn_len))
4781 		return X86EMUL_CONTINUE;
4782 
4783 	/*
4784 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4785 	 *
4786 	 * Errata:
4787 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4788 	 * possible that CPU microcode implementing DecodeAssist will fail to
4789 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4790 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4791 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4792 	 * gives up and does not fill the instruction bytes buffer.
4793 	 *
4794 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4795 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4796 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4797 	 * GuestIntrBytes field of the VMCB.
4798 	 *
4799 	 * This does _not_ mean that the erratum has been encountered, as the
4800 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4801 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4802 	 * encountered a reserved/not-present #PF.
4803 	 *
4804 	 * To hit the erratum, the following conditions must be true:
4805 	 *    1. CR4.SMAP=1 (obviously).
4806 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4807 	 *       have been hit as the guest would have encountered a SMEP
4808 	 *       violation #PF, not a #NPF.
4809 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4810 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4811 	 *
4812 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4813 	 * while translating guest page tables (see below).
4814 	 */
4815 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4816 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4817 		goto resume_guest;
4818 
4819 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4820 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4821 	is_user = svm_get_cpl(vcpu) == 3;
4822 	if (smap && (!smep || is_user)) {
4823 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4824 
4825 		/*
4826 		 * If the fault occurred in userspace, arbitrarily inject #GP
4827 		 * to avoid killing the guest and to hopefully avoid confusing
4828 		 * the guest kernel too much, e.g. injecting #PF would not be
4829 		 * coherent with respect to the guest's page tables.  Request
4830 		 * triple fault if the fault occurred in the kernel as there's
4831 		 * no fault that KVM can inject without confusing the guest.
4832 		 * In practice, the triple fault is moot as no sane SEV kernel
4833 		 * will execute from user memory while also running with SMAP=1.
4834 		 */
4835 		if (is_user)
4836 			kvm_inject_gp(vcpu, 0);
4837 		else
4838 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4839 		return X86EMUL_PROPAGATE_FAULT;
4840 	}
4841 
4842 resume_guest:
4843 	/*
4844 	 * If the erratum was not hit, simply resume the guest and let it fault
4845 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4846 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4847 	 * userspace will kill the guest, and letting the emulator read garbage
4848 	 * will yield random behavior and potentially corrupt the guest.
4849 	 *
4850 	 * Simply resuming the guest is technically not a violation of the SEV
4851 	 * architecture.  AMD's APM states that all code fetches and page table
4852 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4853 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4854 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4855 	 * the guest spin is technically "ignoring" the access.
4856 	 */
4857 	return X86EMUL_RETRY_INSTR;
4858 }
4859 
4860 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4861 {
4862 	struct vcpu_svm *svm = to_svm(vcpu);
4863 
4864 	return !gif_set(svm);
4865 }
4866 
4867 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4868 {
4869 	if (!sev_es_guest(vcpu->kvm))
4870 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4871 
4872 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4873 }
4874 
4875 static void svm_vm_destroy(struct kvm *kvm)
4876 {
4877 	avic_vm_destroy(kvm);
4878 	sev_vm_destroy(kvm);
4879 }
4880 
4881 static int svm_vm_init(struct kvm *kvm)
4882 {
4883 	if (!pause_filter_count || !pause_filter_thresh)
4884 		kvm->arch.pause_in_guest = true;
4885 
4886 	if (enable_apicv) {
4887 		int ret = avic_vm_init(kvm);
4888 		if (ret)
4889 			return ret;
4890 	}
4891 
4892 	return 0;
4893 }
4894 
4895 static struct kvm_x86_ops svm_x86_ops __initdata = {
4896 	.name = KBUILD_MODNAME,
4897 
4898 	.check_processor_compatibility = svm_check_processor_compat,
4899 
4900 	.hardware_unsetup = svm_hardware_unsetup,
4901 	.hardware_enable = svm_hardware_enable,
4902 	.hardware_disable = svm_hardware_disable,
4903 	.has_emulated_msr = svm_has_emulated_msr,
4904 
4905 	.vcpu_create = svm_vcpu_create,
4906 	.vcpu_free = svm_vcpu_free,
4907 	.vcpu_reset = svm_vcpu_reset,
4908 
4909 	.vm_size = sizeof(struct kvm_svm),
4910 	.vm_init = svm_vm_init,
4911 	.vm_destroy = svm_vm_destroy,
4912 
4913 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4914 	.vcpu_load = svm_vcpu_load,
4915 	.vcpu_put = svm_vcpu_put,
4916 	.vcpu_blocking = avic_vcpu_blocking,
4917 	.vcpu_unblocking = avic_vcpu_unblocking,
4918 
4919 	.update_exception_bitmap = svm_update_exception_bitmap,
4920 	.get_msr_feature = svm_get_msr_feature,
4921 	.get_msr = svm_get_msr,
4922 	.set_msr = svm_set_msr,
4923 	.get_segment_base = svm_get_segment_base,
4924 	.get_segment = svm_get_segment,
4925 	.set_segment = svm_set_segment,
4926 	.get_cpl = svm_get_cpl,
4927 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4928 	.is_valid_cr0 = svm_is_valid_cr0,
4929 	.set_cr0 = svm_set_cr0,
4930 	.post_set_cr3 = sev_post_set_cr3,
4931 	.is_valid_cr4 = svm_is_valid_cr4,
4932 	.set_cr4 = svm_set_cr4,
4933 	.set_efer = svm_set_efer,
4934 	.get_idt = svm_get_idt,
4935 	.set_idt = svm_set_idt,
4936 	.get_gdt = svm_get_gdt,
4937 	.set_gdt = svm_set_gdt,
4938 	.set_dr7 = svm_set_dr7,
4939 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4940 	.cache_reg = svm_cache_reg,
4941 	.get_rflags = svm_get_rflags,
4942 	.set_rflags = svm_set_rflags,
4943 	.get_if_flag = svm_get_if_flag,
4944 
4945 	.flush_tlb_all = svm_flush_tlb_all,
4946 	.flush_tlb_current = svm_flush_tlb_current,
4947 	.flush_tlb_gva = svm_flush_tlb_gva,
4948 	.flush_tlb_guest = svm_flush_tlb_asid,
4949 
4950 	.vcpu_pre_run = svm_vcpu_pre_run,
4951 	.vcpu_run = svm_vcpu_run,
4952 	.handle_exit = svm_handle_exit,
4953 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4954 	.update_emulated_instruction = NULL,
4955 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4956 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4957 	.patch_hypercall = svm_patch_hypercall,
4958 	.inject_irq = svm_inject_irq,
4959 	.inject_nmi = svm_inject_nmi,
4960 	.is_vnmi_pending = svm_is_vnmi_pending,
4961 	.set_vnmi_pending = svm_set_vnmi_pending,
4962 	.inject_exception = svm_inject_exception,
4963 	.cancel_injection = svm_cancel_injection,
4964 	.interrupt_allowed = svm_interrupt_allowed,
4965 	.nmi_allowed = svm_nmi_allowed,
4966 	.get_nmi_mask = svm_get_nmi_mask,
4967 	.set_nmi_mask = svm_set_nmi_mask,
4968 	.enable_nmi_window = svm_enable_nmi_window,
4969 	.enable_irq_window = svm_enable_irq_window,
4970 	.update_cr8_intercept = svm_update_cr8_intercept,
4971 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4972 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4973 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4974 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4975 
4976 	.get_exit_info = svm_get_exit_info,
4977 
4978 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4979 
4980 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4981 
4982 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4983 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4984 	.write_tsc_offset = svm_write_tsc_offset,
4985 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4986 
4987 	.load_mmu_pgd = svm_load_mmu_pgd,
4988 
4989 	.check_intercept = svm_check_intercept,
4990 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4991 
4992 	.request_immediate_exit = __kvm_request_immediate_exit,
4993 
4994 	.sched_in = svm_sched_in,
4995 
4996 	.nested_ops = &svm_nested_ops,
4997 
4998 	.deliver_interrupt = svm_deliver_interrupt,
4999 	.pi_update_irte = avic_pi_update_irte,
5000 	.setup_mce = svm_setup_mce,
5001 
5002 #ifdef CONFIG_KVM_SMM
5003 	.smi_allowed = svm_smi_allowed,
5004 	.enter_smm = svm_enter_smm,
5005 	.leave_smm = svm_leave_smm,
5006 	.enable_smi_window = svm_enable_smi_window,
5007 #endif
5008 
5009 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5010 	.mem_enc_register_region = sev_mem_enc_register_region,
5011 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5012 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5013 
5014 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5015 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5016 
5017 	.check_emulate_instruction = svm_check_emulate_instruction,
5018 
5019 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5020 
5021 	.msr_filter_changed = svm_msr_filter_changed,
5022 	.complete_emulated_msr = svm_complete_emulated_msr,
5023 
5024 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5025 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5026 };
5027 
5028 /*
5029  * The default MMIO mask is a single bit (excluding the present bit),
5030  * which could conflict with the memory encryption bit. Check for
5031  * memory encryption support and override the default MMIO mask if
5032  * memory encryption is enabled.
5033  */
5034 static __init void svm_adjust_mmio_mask(void)
5035 {
5036 	unsigned int enc_bit, mask_bit;
5037 	u64 msr, mask;
5038 
5039 	/* If there is no memory encryption support, use existing mask */
5040 	if (cpuid_eax(0x80000000) < 0x8000001f)
5041 		return;
5042 
5043 	/* If memory encryption is not enabled, use existing mask */
5044 	rdmsrl(MSR_AMD64_SYSCFG, msr);
5045 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5046 		return;
5047 
5048 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5049 	mask_bit = boot_cpu_data.x86_phys_bits;
5050 
5051 	/* Increment the mask bit if it is the same as the encryption bit */
5052 	if (enc_bit == mask_bit)
5053 		mask_bit++;
5054 
5055 	/*
5056 	 * If the mask bit location is below 52, then some bits above the
5057 	 * physical addressing limit will always be reserved, so use the
5058 	 * rsvd_bits() function to generate the mask. This mask, along with
5059 	 * the present bit, will be used to generate a page fault with
5060 	 * PFER.RSV = 1.
5061 	 *
5062 	 * If the mask bit location is 52 (or above), then clear the mask.
5063 	 */
5064 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5065 
5066 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5067 }
5068 
5069 static __init void svm_set_cpu_caps(void)
5070 {
5071 	kvm_set_cpu_caps();
5072 
5073 	kvm_caps.supported_perf_cap = 0;
5074 	kvm_caps.supported_xss = 0;
5075 
5076 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5077 	if (nested) {
5078 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5079 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5080 
5081 		if (nrips)
5082 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5083 
5084 		if (npt_enabled)
5085 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5086 
5087 		if (tsc_scaling)
5088 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5089 
5090 		if (vls)
5091 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5092 		if (lbrv)
5093 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5094 
5095 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5096 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5097 
5098 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5099 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5100 
5101 		if (vgif)
5102 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5103 
5104 		if (vnmi)
5105 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5106 
5107 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5108 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5109 	}
5110 
5111 	/* CPUID 0x80000008 */
5112 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5113 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5114 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5115 
5116 	if (enable_pmu) {
5117 		/*
5118 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5119 		 * access to enough counters to virtualize "core" support,
5120 		 * otherwise limit vPMU support to the legacy number of counters.
5121 		 */
5122 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5123 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5124 							  kvm_pmu_cap.num_counters_gp);
5125 		else
5126 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5127 
5128 		if (kvm_pmu_cap.version != 2 ||
5129 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5130 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5131 	}
5132 
5133 	/* CPUID 0x8000001F (SME/SEV features) */
5134 	sev_set_cpu_caps();
5135 }
5136 
5137 static __init int svm_hardware_setup(void)
5138 {
5139 	int cpu;
5140 	struct page *iopm_pages;
5141 	void *iopm_va;
5142 	int r;
5143 	unsigned int order = get_order(IOPM_SIZE);
5144 
5145 	/*
5146 	 * NX is required for shadow paging and for NPT if the NX huge pages
5147 	 * mitigation is enabled.
5148 	 */
5149 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5150 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5151 		return -EOPNOTSUPP;
5152 	}
5153 	kvm_enable_efer_bits(EFER_NX);
5154 
5155 	iopm_pages = alloc_pages(GFP_KERNEL, order);
5156 
5157 	if (!iopm_pages)
5158 		return -ENOMEM;
5159 
5160 	iopm_va = page_address(iopm_pages);
5161 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5162 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5163 
5164 	init_msrpm_offsets();
5165 
5166 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5167 				     XFEATURE_MASK_BNDCSR);
5168 
5169 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5170 		kvm_enable_efer_bits(EFER_FFXSR);
5171 
5172 	if (tsc_scaling) {
5173 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5174 			tsc_scaling = false;
5175 		} else {
5176 			pr_info("TSC scaling supported\n");
5177 			kvm_caps.has_tsc_control = true;
5178 		}
5179 	}
5180 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5181 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5182 
5183 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5184 
5185 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5186 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5187 
5188 	/* Check for pause filtering support */
5189 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5190 		pause_filter_count = 0;
5191 		pause_filter_thresh = 0;
5192 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5193 		pause_filter_thresh = 0;
5194 	}
5195 
5196 	if (nested) {
5197 		pr_info("Nested Virtualization enabled\n");
5198 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5199 	}
5200 
5201 	/*
5202 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5203 	 * NPT isn't supported if the host is using 2-level paging since host
5204 	 * CR4 is unchanged on VMRUN.
5205 	 */
5206 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5207 		npt_enabled = false;
5208 
5209 	if (!boot_cpu_has(X86_FEATURE_NPT))
5210 		npt_enabled = false;
5211 
5212 	/* Force VM NPT level equal to the host's paging level */
5213 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5214 			  get_npt_level(), PG_LEVEL_1G);
5215 	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5216 
5217 	/* Setup shadow_me_value and shadow_me_mask */
5218 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5219 
5220 	svm_adjust_mmio_mask();
5221 
5222 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5223 
5224 	/*
5225 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5226 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5227 	 */
5228 	sev_hardware_setup();
5229 
5230 	svm_hv_hardware_setup();
5231 
5232 	for_each_possible_cpu(cpu) {
5233 		r = svm_cpu_init(cpu);
5234 		if (r)
5235 			goto err;
5236 	}
5237 
5238 	enable_apicv = avic = avic && avic_hardware_setup();
5239 
5240 	if (!enable_apicv) {
5241 		svm_x86_ops.vcpu_blocking = NULL;
5242 		svm_x86_ops.vcpu_unblocking = NULL;
5243 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5244 	} else if (!x2avic_enabled) {
5245 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5246 	}
5247 
5248 	if (vls) {
5249 		if (!npt_enabled ||
5250 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5251 		    !IS_ENABLED(CONFIG_X86_64)) {
5252 			vls = false;
5253 		} else {
5254 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5255 		}
5256 	}
5257 
5258 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5259 		svm_gp_erratum_intercept = false;
5260 
5261 	if (vgif) {
5262 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5263 			vgif = false;
5264 		else
5265 			pr_info("Virtual GIF supported\n");
5266 	}
5267 
5268 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5269 	if (vnmi)
5270 		pr_info("Virtual NMI enabled\n");
5271 
5272 	if (!vnmi) {
5273 		svm_x86_ops.is_vnmi_pending = NULL;
5274 		svm_x86_ops.set_vnmi_pending = NULL;
5275 	}
5276 
5277 
5278 	if (lbrv) {
5279 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5280 			lbrv = false;
5281 		else
5282 			pr_info("LBR virtualization supported\n");
5283 	}
5284 
5285 	if (!enable_pmu)
5286 		pr_info("PMU virtualization is disabled\n");
5287 
5288 	svm_set_cpu_caps();
5289 
5290 	/*
5291 	 * It seems that on AMD processors PTE's accessed bit is
5292 	 * being set by the CPU hardware before the NPF vmexit.
5293 	 * This is not expected behaviour and our tests fail because
5294 	 * of it.
5295 	 * A workaround here is to disable support for
5296 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5297 	 * In this case userspace can know if there is support using
5298 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5299 	 * it
5300 	 * If future AMD CPU models change the behaviour described above,
5301 	 * this variable can be changed accordingly
5302 	 */
5303 	allow_smaller_maxphyaddr = !npt_enabled;
5304 
5305 	return 0;
5306 
5307 err:
5308 	svm_hardware_unsetup();
5309 	return r;
5310 }
5311 
5312 
5313 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5314 	.hardware_setup = svm_hardware_setup,
5315 
5316 	.runtime_ops = &svm_x86_ops,
5317 	.pmu_ops = &amd_pmu_ops,
5318 };
5319 
5320 static void __svm_exit(void)
5321 {
5322 	kvm_x86_vendor_exit();
5323 
5324 	cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5325 }
5326 
5327 static int __init svm_init(void)
5328 {
5329 	int r;
5330 
5331 	__unused_size_checks();
5332 
5333 	if (!kvm_is_svm_supported())
5334 		return -EOPNOTSUPP;
5335 
5336 	r = kvm_x86_vendor_init(&svm_init_ops);
5337 	if (r)
5338 		return r;
5339 
5340 	cpu_emergency_register_virt_callback(svm_emergency_disable);
5341 
5342 	/*
5343 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5344 	 * exposed to userspace!
5345 	 */
5346 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5347 		     THIS_MODULE);
5348 	if (r)
5349 		goto err_kvm_init;
5350 
5351 	return 0;
5352 
5353 err_kvm_init:
5354 	__svm_exit();
5355 	return r;
5356 }
5357 
5358 static void __exit svm_exit(void)
5359 {
5360 	kvm_exit();
5361 	__svm_exit();
5362 }
5363 
5364 module_init(svm_init)
5365 module_exit(svm_exit)
5366