1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/spec-ctrl.h> 37 #include <asm/cpu_device_id.h> 38 #include <asm/traps.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 #include "svm_ops.h" 45 46 #define __ex(x) __kvm_handle_fault_on_reboot(x) 47 48 MODULE_AUTHOR("Qumranet"); 49 MODULE_LICENSE("GPL"); 50 51 #ifdef MODULE 52 static const struct x86_cpu_id svm_cpu_id[] = { 53 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 54 {} 55 }; 56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 57 #endif 58 59 #define SEG_TYPE_LDT 2 60 #define SEG_TYPE_BUSY_TSS16 3 61 62 #define SVM_FEATURE_LBRV (1 << 1) 63 #define SVM_FEATURE_SVML (1 << 2) 64 #define SVM_FEATURE_TSC_RATE (1 << 4) 65 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 66 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 67 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 68 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 69 70 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 71 72 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 73 #define TSC_RATIO_MIN 0x0000000000000001ULL 74 #define TSC_RATIO_MAX 0x000000ffffffffffULL 75 76 static bool erratum_383_found __read_mostly; 77 78 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 79 80 /* 81 * Set osvw_len to higher value when updated Revision Guides 82 * are published and we know what the new status bits are 83 */ 84 static uint64_t osvw_len = 4, osvw_status; 85 86 static DEFINE_PER_CPU(u64, current_tsc_ratio); 87 #define TSC_RATIO_DEFAULT 0x0100000000ULL 88 89 static const struct svm_direct_access_msrs { 90 u32 index; /* Index of the MSR */ 91 bool always; /* True if intercept is initially cleared */ 92 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 93 { .index = MSR_STAR, .always = true }, 94 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 95 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 96 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 97 #ifdef CONFIG_X86_64 98 { .index = MSR_GS_BASE, .always = true }, 99 { .index = MSR_FS_BASE, .always = true }, 100 { .index = MSR_KERNEL_GS_BASE, .always = true }, 101 { .index = MSR_LSTAR, .always = true }, 102 { .index = MSR_CSTAR, .always = true }, 103 { .index = MSR_SYSCALL_MASK, .always = true }, 104 #endif 105 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 106 { .index = MSR_IA32_PRED_CMD, .always = false }, 107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 109 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 110 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 111 { .index = MSR_EFER, .always = false }, 112 { .index = MSR_IA32_CR_PAT, .always = false }, 113 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 114 { .index = MSR_INVALID, .always = false }, 115 }; 116 117 /* 118 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 119 * pause_filter_count: On processors that support Pause filtering(indicated 120 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 121 * count value. On VMRUN this value is loaded into an internal counter. 122 * Each time a pause instruction is executed, this counter is decremented 123 * until it reaches zero at which time a #VMEXIT is generated if pause 124 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 125 * Intercept Filtering for more details. 126 * This also indicate if ple logic enabled. 127 * 128 * pause_filter_thresh: In addition, some processor families support advanced 129 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 130 * the amount of time a guest is allowed to execute in a pause loop. 131 * In this mode, a 16-bit pause filter threshold field is added in the 132 * VMCB. The threshold value is a cycle count that is used to reset the 133 * pause counter. As with simple pause filtering, VMRUN loads the pause 134 * count value from VMCB into an internal counter. Then, on each pause 135 * instruction the hardware checks the elapsed number of cycles since 136 * the most recent pause instruction against the pause filter threshold. 137 * If the elapsed cycle count is greater than the pause filter threshold, 138 * then the internal pause count is reloaded from the VMCB and execution 139 * continues. If the elapsed cycle count is less than the pause filter 140 * threshold, then the internal pause count is decremented. If the count 141 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 142 * triggered. If advanced pause filtering is supported and pause filter 143 * threshold field is set to zero, the filter will operate in the simpler, 144 * count only mode. 145 */ 146 147 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 148 module_param(pause_filter_thresh, ushort, 0444); 149 150 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 151 module_param(pause_filter_count, ushort, 0444); 152 153 /* Default doubles per-vcpu window every exit. */ 154 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 155 module_param(pause_filter_count_grow, ushort, 0444); 156 157 /* Default resets per-vcpu window every exit to pause_filter_count. */ 158 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 159 module_param(pause_filter_count_shrink, ushort, 0444); 160 161 /* Default is to compute the maximum so we can never overflow. */ 162 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 163 module_param(pause_filter_count_max, ushort, 0444); 164 165 /* 166 * Use nested page tables by default. Note, NPT may get forced off by 167 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 168 */ 169 bool npt_enabled = true; 170 module_param_named(npt, npt_enabled, bool, 0444); 171 172 /* allow nested virtualization in KVM/SVM */ 173 static int nested = true; 174 module_param(nested, int, S_IRUGO); 175 176 /* enable/disable Next RIP Save */ 177 static int nrips = true; 178 module_param(nrips, int, 0444); 179 180 /* enable/disable Virtual VMLOAD VMSAVE */ 181 static int vls = true; 182 module_param(vls, int, 0444); 183 184 /* enable/disable Virtual GIF */ 185 static int vgif = true; 186 module_param(vgif, int, 0444); 187 188 bool __read_mostly dump_invalid_vmcb; 189 module_param(dump_invalid_vmcb, bool, 0644); 190 191 static bool svm_gp_erratum_intercept = true; 192 193 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 194 195 static unsigned long iopm_base; 196 197 struct kvm_ldttss_desc { 198 u16 limit0; 199 u16 base0; 200 unsigned base1:8, type:5, dpl:2, p:1; 201 unsigned limit1:4, zero0:3, g:1, base2:8; 202 u32 base3; 203 u32 zero1; 204 } __attribute__((packed)); 205 206 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 207 208 /* 209 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 210 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 211 * 212 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 213 * defer the restoration of TSC_AUX until the CPU returns to userspace. 214 */ 215 static int tsc_aux_uret_slot __read_mostly = -1; 216 217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 218 219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 220 #define MSRS_RANGE_SIZE 2048 221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 222 223 u32 svm_msrpm_offset(u32 msr) 224 { 225 u32 offset; 226 int i; 227 228 for (i = 0; i < NUM_MSR_MAPS; i++) { 229 if (msr < msrpm_ranges[i] || 230 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 231 continue; 232 233 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 234 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 235 236 /* Now we have the u8 offset - but need the u32 offset */ 237 return offset / 4; 238 } 239 240 /* MSR not in any range */ 241 return MSR_INVALID; 242 } 243 244 #define MAX_INST_SIZE 15 245 246 static int get_max_npt_level(void) 247 { 248 #ifdef CONFIG_X86_64 249 return PT64_ROOT_4LEVEL; 250 #else 251 return PT32E_ROOT_LEVEL; 252 #endif 253 } 254 255 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 256 { 257 struct vcpu_svm *svm = to_svm(vcpu); 258 u64 old_efer = vcpu->arch.efer; 259 vcpu->arch.efer = efer; 260 261 if (!npt_enabled) { 262 /* Shadow paging assumes NX to be available. */ 263 efer |= EFER_NX; 264 265 if (!(efer & EFER_LMA)) 266 efer &= ~EFER_LME; 267 } 268 269 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 270 if (!(efer & EFER_SVME)) { 271 svm_leave_nested(svm); 272 svm_set_gif(svm, true); 273 /* #GP intercept is still needed for vmware backdoor */ 274 if (!enable_vmware_backdoor) 275 clr_exception_intercept(svm, GP_VECTOR); 276 277 /* 278 * Free the nested guest state, unless we are in SMM. 279 * In this case we will return to the nested guest 280 * as soon as we leave SMM. 281 */ 282 if (!is_smm(vcpu)) 283 svm_free_nested(svm); 284 285 } else { 286 int ret = svm_allocate_nested(svm); 287 288 if (ret) { 289 vcpu->arch.efer = old_efer; 290 return ret; 291 } 292 293 if (svm_gp_erratum_intercept) 294 set_exception_intercept(svm, GP_VECTOR); 295 } 296 } 297 298 svm->vmcb->save.efer = efer | EFER_SVME; 299 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 300 return 0; 301 } 302 303 static int is_external_interrupt(u32 info) 304 { 305 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 306 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 307 } 308 309 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 310 { 311 struct vcpu_svm *svm = to_svm(vcpu); 312 u32 ret = 0; 313 314 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 315 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 316 return ret; 317 } 318 319 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 320 { 321 struct vcpu_svm *svm = to_svm(vcpu); 322 323 if (mask == 0) 324 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 325 else 326 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 327 328 } 329 330 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 331 { 332 struct vcpu_svm *svm = to_svm(vcpu); 333 334 /* 335 * SEV-ES does not expose the next RIP. The RIP update is controlled by 336 * the type of exit and the #VC handler in the guest. 337 */ 338 if (sev_es_guest(vcpu->kvm)) 339 goto done; 340 341 if (nrips && svm->vmcb->control.next_rip != 0) { 342 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 343 svm->next_rip = svm->vmcb->control.next_rip; 344 } 345 346 if (!svm->next_rip) { 347 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 348 return 0; 349 } else { 350 kvm_rip_write(vcpu, svm->next_rip); 351 } 352 353 done: 354 svm_set_interrupt_shadow(vcpu, 0); 355 356 return 1; 357 } 358 359 static void svm_queue_exception(struct kvm_vcpu *vcpu) 360 { 361 struct vcpu_svm *svm = to_svm(vcpu); 362 unsigned nr = vcpu->arch.exception.nr; 363 bool has_error_code = vcpu->arch.exception.has_error_code; 364 u32 error_code = vcpu->arch.exception.error_code; 365 366 kvm_deliver_exception_payload(vcpu); 367 368 if (nr == BP_VECTOR && !nrips) { 369 unsigned long rip, old_rip = kvm_rip_read(vcpu); 370 371 /* 372 * For guest debugging where we have to reinject #BP if some 373 * INT3 is guest-owned: 374 * Emulate nRIP by moving RIP forward. Will fail if injection 375 * raises a fault that is not intercepted. Still better than 376 * failing in all cases. 377 */ 378 (void)skip_emulated_instruction(vcpu); 379 rip = kvm_rip_read(vcpu); 380 svm->int3_rip = rip + svm->vmcb->save.cs.base; 381 svm->int3_injected = rip - old_rip; 382 } 383 384 svm->vmcb->control.event_inj = nr 385 | SVM_EVTINJ_VALID 386 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 387 | SVM_EVTINJ_TYPE_EXEPT; 388 svm->vmcb->control.event_inj_err = error_code; 389 } 390 391 static void svm_init_erratum_383(void) 392 { 393 u32 low, high; 394 int err; 395 u64 val; 396 397 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 398 return; 399 400 /* Use _safe variants to not break nested virtualization */ 401 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 402 if (err) 403 return; 404 405 val |= (1ULL << 47); 406 407 low = lower_32_bits(val); 408 high = upper_32_bits(val); 409 410 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 411 412 erratum_383_found = true; 413 } 414 415 static void svm_init_osvw(struct kvm_vcpu *vcpu) 416 { 417 /* 418 * Guests should see errata 400 and 415 as fixed (assuming that 419 * HLT and IO instructions are intercepted). 420 */ 421 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 422 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 423 424 /* 425 * By increasing VCPU's osvw.length to 3 we are telling the guest that 426 * all osvw.status bits inside that length, including bit 0 (which is 427 * reserved for erratum 298), are valid. However, if host processor's 428 * osvw_len is 0 then osvw_status[0] carries no information. We need to 429 * be conservative here and therefore we tell the guest that erratum 298 430 * is present (because we really don't know). 431 */ 432 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 433 vcpu->arch.osvw.status |= 1; 434 } 435 436 static int has_svm(void) 437 { 438 const char *msg; 439 440 if (!cpu_has_svm(&msg)) { 441 printk(KERN_INFO "has_svm: %s\n", msg); 442 return 0; 443 } 444 445 if (sev_active()) { 446 pr_info("KVM is unsupported when running as an SEV guest\n"); 447 return 0; 448 } 449 450 if (pgtable_l5_enabled()) { 451 pr_info("KVM doesn't yet support 5-level paging on AMD SVM\n"); 452 return 0; 453 } 454 455 return 1; 456 } 457 458 static void svm_hardware_disable(void) 459 { 460 /* Make sure we clean up behind us */ 461 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 462 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 463 464 cpu_svm_disable(); 465 466 amd_pmu_disable_virt(); 467 } 468 469 static int svm_hardware_enable(void) 470 { 471 472 struct svm_cpu_data *sd; 473 uint64_t efer; 474 struct desc_struct *gdt; 475 int me = raw_smp_processor_id(); 476 477 rdmsrl(MSR_EFER, efer); 478 if (efer & EFER_SVME) 479 return -EBUSY; 480 481 if (!has_svm()) { 482 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 483 return -EINVAL; 484 } 485 sd = per_cpu(svm_data, me); 486 if (!sd) { 487 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 488 return -EINVAL; 489 } 490 491 sd->asid_generation = 1; 492 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 493 sd->next_asid = sd->max_asid + 1; 494 sd->min_asid = max_sev_asid + 1; 495 496 gdt = get_current_gdt_rw(); 497 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 498 499 wrmsrl(MSR_EFER, efer | EFER_SVME); 500 501 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 502 503 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 504 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 505 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 506 } 507 508 509 /* 510 * Get OSVW bits. 511 * 512 * Note that it is possible to have a system with mixed processor 513 * revisions and therefore different OSVW bits. If bits are not the same 514 * on different processors then choose the worst case (i.e. if erratum 515 * is present on one processor and not on another then assume that the 516 * erratum is present everywhere). 517 */ 518 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 519 uint64_t len, status = 0; 520 int err; 521 522 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 523 if (!err) 524 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 525 &err); 526 527 if (err) 528 osvw_status = osvw_len = 0; 529 else { 530 if (len < osvw_len) 531 osvw_len = len; 532 osvw_status |= status; 533 osvw_status &= (1ULL << osvw_len) - 1; 534 } 535 } else 536 osvw_status = osvw_len = 0; 537 538 svm_init_erratum_383(); 539 540 amd_pmu_enable_virt(); 541 542 return 0; 543 } 544 545 static void svm_cpu_uninit(int cpu) 546 { 547 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 548 549 if (!sd) 550 return; 551 552 per_cpu(svm_data, cpu) = NULL; 553 kfree(sd->sev_vmcbs); 554 __free_page(sd->save_area); 555 kfree(sd); 556 } 557 558 static int svm_cpu_init(int cpu) 559 { 560 struct svm_cpu_data *sd; 561 int ret = -ENOMEM; 562 563 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 564 if (!sd) 565 return ret; 566 sd->cpu = cpu; 567 sd->save_area = alloc_page(GFP_KERNEL); 568 if (!sd->save_area) 569 goto free_cpu_data; 570 571 clear_page(page_address(sd->save_area)); 572 573 ret = sev_cpu_init(sd); 574 if (ret) 575 goto free_save_area; 576 577 per_cpu(svm_data, cpu) = sd; 578 579 return 0; 580 581 free_save_area: 582 __free_page(sd->save_area); 583 free_cpu_data: 584 kfree(sd); 585 return ret; 586 587 } 588 589 static int direct_access_msr_slot(u32 msr) 590 { 591 u32 i; 592 593 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 594 if (direct_access_msrs[i].index == msr) 595 return i; 596 597 return -ENOENT; 598 } 599 600 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 601 int write) 602 { 603 struct vcpu_svm *svm = to_svm(vcpu); 604 int slot = direct_access_msr_slot(msr); 605 606 if (slot == -ENOENT) 607 return; 608 609 /* Set the shadow bitmaps to the desired intercept states */ 610 if (read) 611 set_bit(slot, svm->shadow_msr_intercept.read); 612 else 613 clear_bit(slot, svm->shadow_msr_intercept.read); 614 615 if (write) 616 set_bit(slot, svm->shadow_msr_intercept.write); 617 else 618 clear_bit(slot, svm->shadow_msr_intercept.write); 619 } 620 621 static bool valid_msr_intercept(u32 index) 622 { 623 return direct_access_msr_slot(index) != -ENOENT; 624 } 625 626 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 627 { 628 u8 bit_write; 629 unsigned long tmp; 630 u32 offset; 631 u32 *msrpm; 632 633 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 634 to_svm(vcpu)->msrpm; 635 636 offset = svm_msrpm_offset(msr); 637 bit_write = 2 * (msr & 0x0f) + 1; 638 tmp = msrpm[offset]; 639 640 BUG_ON(offset == MSR_INVALID); 641 642 return !!test_bit(bit_write, &tmp); 643 } 644 645 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 646 u32 msr, int read, int write) 647 { 648 u8 bit_read, bit_write; 649 unsigned long tmp; 650 u32 offset; 651 652 /* 653 * If this warning triggers extend the direct_access_msrs list at the 654 * beginning of the file 655 */ 656 WARN_ON(!valid_msr_intercept(msr)); 657 658 /* Enforce non allowed MSRs to trap */ 659 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 660 read = 0; 661 662 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 663 write = 0; 664 665 offset = svm_msrpm_offset(msr); 666 bit_read = 2 * (msr & 0x0f); 667 bit_write = 2 * (msr & 0x0f) + 1; 668 tmp = msrpm[offset]; 669 670 BUG_ON(offset == MSR_INVALID); 671 672 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 673 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 674 675 msrpm[offset] = tmp; 676 } 677 678 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 679 int read, int write) 680 { 681 set_shadow_msr_intercept(vcpu, msr, read, write); 682 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 683 } 684 685 u32 *svm_vcpu_alloc_msrpm(void) 686 { 687 unsigned int order = get_order(MSRPM_SIZE); 688 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 689 u32 *msrpm; 690 691 if (!pages) 692 return NULL; 693 694 msrpm = page_address(pages); 695 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 696 697 return msrpm; 698 } 699 700 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 701 { 702 int i; 703 704 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 705 if (!direct_access_msrs[i].always) 706 continue; 707 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 708 } 709 } 710 711 712 void svm_vcpu_free_msrpm(u32 *msrpm) 713 { 714 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 715 } 716 717 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 718 { 719 struct vcpu_svm *svm = to_svm(vcpu); 720 u32 i; 721 722 /* 723 * Set intercept permissions for all direct access MSRs again. They 724 * will automatically get filtered through the MSR filter, so we are 725 * back in sync after this. 726 */ 727 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 728 u32 msr = direct_access_msrs[i].index; 729 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 730 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 731 732 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 733 } 734 } 735 736 static void add_msr_offset(u32 offset) 737 { 738 int i; 739 740 for (i = 0; i < MSRPM_OFFSETS; ++i) { 741 742 /* Offset already in list? */ 743 if (msrpm_offsets[i] == offset) 744 return; 745 746 /* Slot used by another offset? */ 747 if (msrpm_offsets[i] != MSR_INVALID) 748 continue; 749 750 /* Add offset to list */ 751 msrpm_offsets[i] = offset; 752 753 return; 754 } 755 756 /* 757 * If this BUG triggers the msrpm_offsets table has an overflow. Just 758 * increase MSRPM_OFFSETS in this case. 759 */ 760 BUG(); 761 } 762 763 static void init_msrpm_offsets(void) 764 { 765 int i; 766 767 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 768 769 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 770 u32 offset; 771 772 offset = svm_msrpm_offset(direct_access_msrs[i].index); 773 BUG_ON(offset == MSR_INVALID); 774 775 add_msr_offset(offset); 776 } 777 } 778 779 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 780 { 781 struct vcpu_svm *svm = to_svm(vcpu); 782 783 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 784 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 785 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 786 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 787 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 788 } 789 790 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 791 { 792 struct vcpu_svm *svm = to_svm(vcpu); 793 794 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 795 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 796 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 797 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 798 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 799 } 800 801 void disable_nmi_singlestep(struct vcpu_svm *svm) 802 { 803 svm->nmi_singlestep = false; 804 805 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 806 /* Clear our flags if they were not set by the guest */ 807 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 808 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 809 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 810 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 811 } 812 } 813 814 static void grow_ple_window(struct kvm_vcpu *vcpu) 815 { 816 struct vcpu_svm *svm = to_svm(vcpu); 817 struct vmcb_control_area *control = &svm->vmcb->control; 818 int old = control->pause_filter_count; 819 820 control->pause_filter_count = __grow_ple_window(old, 821 pause_filter_count, 822 pause_filter_count_grow, 823 pause_filter_count_max); 824 825 if (control->pause_filter_count != old) { 826 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 827 trace_kvm_ple_window_update(vcpu->vcpu_id, 828 control->pause_filter_count, old); 829 } 830 } 831 832 static void shrink_ple_window(struct kvm_vcpu *vcpu) 833 { 834 struct vcpu_svm *svm = to_svm(vcpu); 835 struct vmcb_control_area *control = &svm->vmcb->control; 836 int old = control->pause_filter_count; 837 838 control->pause_filter_count = 839 __shrink_ple_window(old, 840 pause_filter_count, 841 pause_filter_count_shrink, 842 pause_filter_count); 843 if (control->pause_filter_count != old) { 844 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 845 trace_kvm_ple_window_update(vcpu->vcpu_id, 846 control->pause_filter_count, old); 847 } 848 } 849 850 /* 851 * The default MMIO mask is a single bit (excluding the present bit), 852 * which could conflict with the memory encryption bit. Check for 853 * memory encryption support and override the default MMIO mask if 854 * memory encryption is enabled. 855 */ 856 static __init void svm_adjust_mmio_mask(void) 857 { 858 unsigned int enc_bit, mask_bit; 859 u64 msr, mask; 860 861 /* If there is no memory encryption support, use existing mask */ 862 if (cpuid_eax(0x80000000) < 0x8000001f) 863 return; 864 865 /* If memory encryption is not enabled, use existing mask */ 866 rdmsrl(MSR_AMD64_SYSCFG, msr); 867 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 868 return; 869 870 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 871 mask_bit = boot_cpu_data.x86_phys_bits; 872 873 /* Increment the mask bit if it is the same as the encryption bit */ 874 if (enc_bit == mask_bit) 875 mask_bit++; 876 877 /* 878 * If the mask bit location is below 52, then some bits above the 879 * physical addressing limit will always be reserved, so use the 880 * rsvd_bits() function to generate the mask. This mask, along with 881 * the present bit, will be used to generate a page fault with 882 * PFER.RSV = 1. 883 * 884 * If the mask bit location is 52 (or above), then clear the mask. 885 */ 886 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 887 888 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 889 } 890 891 static void svm_hardware_teardown(void) 892 { 893 int cpu; 894 895 sev_hardware_teardown(); 896 897 for_each_possible_cpu(cpu) 898 svm_cpu_uninit(cpu); 899 900 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 901 get_order(IOPM_SIZE)); 902 iopm_base = 0; 903 } 904 905 static __init void svm_set_cpu_caps(void) 906 { 907 kvm_set_cpu_caps(); 908 909 supported_xss = 0; 910 911 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 912 if (nested) { 913 kvm_cpu_cap_set(X86_FEATURE_SVM); 914 915 if (nrips) 916 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 917 918 if (npt_enabled) 919 kvm_cpu_cap_set(X86_FEATURE_NPT); 920 921 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 922 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 923 } 924 925 /* CPUID 0x80000008 */ 926 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 927 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 928 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 929 930 /* CPUID 0x8000001F (SME/SEV features) */ 931 sev_set_cpu_caps(); 932 } 933 934 static __init int svm_hardware_setup(void) 935 { 936 int cpu; 937 struct page *iopm_pages; 938 void *iopm_va; 939 int r; 940 unsigned int order = get_order(IOPM_SIZE); 941 942 iopm_pages = alloc_pages(GFP_KERNEL, order); 943 944 if (!iopm_pages) 945 return -ENOMEM; 946 947 iopm_va = page_address(iopm_pages); 948 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 949 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 950 951 init_msrpm_offsets(); 952 953 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 954 955 if (boot_cpu_has(X86_FEATURE_NX)) 956 kvm_enable_efer_bits(EFER_NX); 957 958 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 959 kvm_enable_efer_bits(EFER_FFXSR); 960 961 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 962 kvm_has_tsc_control = true; 963 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 964 kvm_tsc_scaling_ratio_frac_bits = 32; 965 } 966 967 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 968 969 /* Check for pause filtering support */ 970 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 971 pause_filter_count = 0; 972 pause_filter_thresh = 0; 973 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 974 pause_filter_thresh = 0; 975 } 976 977 if (nested) { 978 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 979 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 980 } 981 982 /* 983 * KVM's MMU doesn't support using 2-level paging for itself, and thus 984 * NPT isn't supported if the host is using 2-level paging since host 985 * CR4 is unchanged on VMRUN. 986 */ 987 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 988 npt_enabled = false; 989 990 if (!boot_cpu_has(X86_FEATURE_NPT)) 991 npt_enabled = false; 992 993 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 994 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 995 996 /* Note, SEV setup consumes npt_enabled. */ 997 sev_hardware_setup(); 998 999 svm_adjust_mmio_mask(); 1000 1001 for_each_possible_cpu(cpu) { 1002 r = svm_cpu_init(cpu); 1003 if (r) 1004 goto err; 1005 } 1006 1007 if (nrips) { 1008 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1009 nrips = false; 1010 } 1011 1012 if (avic) { 1013 if (!npt_enabled || 1014 !boot_cpu_has(X86_FEATURE_AVIC) || 1015 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { 1016 avic = false; 1017 } else { 1018 pr_info("AVIC enabled\n"); 1019 1020 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1021 } 1022 } 1023 1024 if (vls) { 1025 if (!npt_enabled || 1026 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1027 !IS_ENABLED(CONFIG_X86_64)) { 1028 vls = false; 1029 } else { 1030 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1031 } 1032 } 1033 1034 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 1035 svm_gp_erratum_intercept = false; 1036 1037 if (vgif) { 1038 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1039 vgif = false; 1040 else 1041 pr_info("Virtual GIF supported\n"); 1042 } 1043 1044 svm_set_cpu_caps(); 1045 1046 /* 1047 * It seems that on AMD processors PTE's accessed bit is 1048 * being set by the CPU hardware before the NPF vmexit. 1049 * This is not expected behaviour and our tests fail because 1050 * of it. 1051 * A workaround here is to disable support for 1052 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1053 * In this case userspace can know if there is support using 1054 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1055 * it 1056 * If future AMD CPU models change the behaviour described above, 1057 * this variable can be changed accordingly 1058 */ 1059 allow_smaller_maxphyaddr = !npt_enabled; 1060 1061 return 0; 1062 1063 err: 1064 svm_hardware_teardown(); 1065 return r; 1066 } 1067 1068 static void init_seg(struct vmcb_seg *seg) 1069 { 1070 seg->selector = 0; 1071 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1072 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1073 seg->limit = 0xffff; 1074 seg->base = 0; 1075 } 1076 1077 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1078 { 1079 seg->selector = 0; 1080 seg->attrib = SVM_SELECTOR_P_MASK | type; 1081 seg->limit = 0xffff; 1082 seg->base = 0; 1083 } 1084 1085 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1086 { 1087 struct vcpu_svm *svm = to_svm(vcpu); 1088 u64 g_tsc_offset = 0; 1089 1090 if (is_guest_mode(vcpu)) { 1091 /* Write L1's TSC offset. */ 1092 g_tsc_offset = svm->vmcb->control.tsc_offset - 1093 svm->vmcb01.ptr->control.tsc_offset; 1094 svm->vmcb01.ptr->control.tsc_offset = offset; 1095 } 1096 1097 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1098 svm->vmcb->control.tsc_offset - g_tsc_offset, 1099 offset); 1100 1101 svm->vmcb->control.tsc_offset = offset + g_tsc_offset; 1102 1103 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1104 return svm->vmcb->control.tsc_offset; 1105 } 1106 1107 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1108 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1109 struct vcpu_svm *svm) 1110 { 1111 /* 1112 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1113 * roots, or if INVPCID is disabled in the guest to inject #UD. 1114 */ 1115 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1116 if (!npt_enabled || 1117 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1118 svm_set_intercept(svm, INTERCEPT_INVPCID); 1119 else 1120 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1121 } 1122 1123 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1124 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1125 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1126 else 1127 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1128 } 1129 } 1130 1131 static void init_vmcb(struct kvm_vcpu *vcpu) 1132 { 1133 struct vcpu_svm *svm = to_svm(vcpu); 1134 struct vmcb_control_area *control = &svm->vmcb->control; 1135 struct vmcb_save_area *save = &svm->vmcb->save; 1136 1137 vcpu->arch.hflags = 0; 1138 1139 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1140 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1141 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1142 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1143 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1144 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1145 if (!kvm_vcpu_apicv_active(vcpu)) 1146 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1147 1148 set_dr_intercepts(svm); 1149 1150 set_exception_intercept(svm, PF_VECTOR); 1151 set_exception_intercept(svm, UD_VECTOR); 1152 set_exception_intercept(svm, MC_VECTOR); 1153 set_exception_intercept(svm, AC_VECTOR); 1154 set_exception_intercept(svm, DB_VECTOR); 1155 /* 1156 * Guest access to VMware backdoor ports could legitimately 1157 * trigger #GP because of TSS I/O permission bitmap. 1158 * We intercept those #GP and allow access to them anyway 1159 * as VMware does. 1160 */ 1161 if (enable_vmware_backdoor) 1162 set_exception_intercept(svm, GP_VECTOR); 1163 1164 svm_set_intercept(svm, INTERCEPT_INTR); 1165 svm_set_intercept(svm, INTERCEPT_NMI); 1166 svm_set_intercept(svm, INTERCEPT_SMI); 1167 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1168 svm_set_intercept(svm, INTERCEPT_RDPMC); 1169 svm_set_intercept(svm, INTERCEPT_CPUID); 1170 svm_set_intercept(svm, INTERCEPT_INVD); 1171 svm_set_intercept(svm, INTERCEPT_INVLPG); 1172 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1173 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1174 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1175 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1176 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1177 svm_set_intercept(svm, INTERCEPT_VMRUN); 1178 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1179 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1180 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1181 svm_set_intercept(svm, INTERCEPT_STGI); 1182 svm_set_intercept(svm, INTERCEPT_CLGI); 1183 svm_set_intercept(svm, INTERCEPT_SKINIT); 1184 svm_set_intercept(svm, INTERCEPT_WBINVD); 1185 svm_set_intercept(svm, INTERCEPT_XSETBV); 1186 svm_set_intercept(svm, INTERCEPT_RDPRU); 1187 svm_set_intercept(svm, INTERCEPT_RSM); 1188 1189 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1190 svm_set_intercept(svm, INTERCEPT_MONITOR); 1191 svm_set_intercept(svm, INTERCEPT_MWAIT); 1192 } 1193 1194 if (!kvm_hlt_in_guest(vcpu->kvm)) 1195 svm_set_intercept(svm, INTERCEPT_HLT); 1196 1197 control->iopm_base_pa = __sme_set(iopm_base); 1198 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1199 control->int_ctl = V_INTR_MASKING_MASK; 1200 1201 init_seg(&save->es); 1202 init_seg(&save->ss); 1203 init_seg(&save->ds); 1204 init_seg(&save->fs); 1205 init_seg(&save->gs); 1206 1207 save->cs.selector = 0xf000; 1208 save->cs.base = 0xffff0000; 1209 /* Executable/Readable Code Segment */ 1210 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1211 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1212 save->cs.limit = 0xffff; 1213 1214 save->gdtr.limit = 0xffff; 1215 save->idtr.limit = 0xffff; 1216 1217 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1218 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1219 1220 svm_set_cr4(vcpu, 0); 1221 svm_set_efer(vcpu, 0); 1222 save->dr6 = 0xffff0ff0; 1223 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 1224 save->rip = 0x0000fff0; 1225 vcpu->arch.regs[VCPU_REGS_RIP] = save->rip; 1226 1227 /* 1228 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1229 * It also updates the guest-visible cr0 value. 1230 */ 1231 svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1232 kvm_mmu_reset_context(vcpu); 1233 1234 save->cr4 = X86_CR4_PAE; 1235 /* rdx = ?? */ 1236 1237 if (npt_enabled) { 1238 /* Setup VMCB for Nested Paging */ 1239 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1240 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1241 clr_exception_intercept(svm, PF_VECTOR); 1242 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1243 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1244 save->g_pat = vcpu->arch.pat; 1245 save->cr3 = 0; 1246 save->cr4 = 0; 1247 } 1248 svm->current_vmcb->asid_generation = 0; 1249 svm->asid = 0; 1250 1251 svm->nested.vmcb12_gpa = INVALID_GPA; 1252 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1253 vcpu->arch.hflags = 0; 1254 1255 if (!kvm_pause_in_guest(vcpu->kvm)) { 1256 control->pause_filter_count = pause_filter_count; 1257 if (pause_filter_thresh) 1258 control->pause_filter_thresh = pause_filter_thresh; 1259 svm_set_intercept(svm, INTERCEPT_PAUSE); 1260 } else { 1261 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1262 } 1263 1264 svm_recalc_instruction_intercepts(vcpu, svm); 1265 1266 /* 1267 * If the host supports V_SPEC_CTRL then disable the interception 1268 * of MSR_IA32_SPEC_CTRL. 1269 */ 1270 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1271 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1272 1273 if (kvm_vcpu_apicv_active(vcpu)) 1274 avic_init_vmcb(svm); 1275 1276 if (vgif) { 1277 svm_clr_intercept(svm, INTERCEPT_STGI); 1278 svm_clr_intercept(svm, INTERCEPT_CLGI); 1279 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1280 } 1281 1282 if (sev_guest(vcpu->kvm)) { 1283 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1284 clr_exception_intercept(svm, UD_VECTOR); 1285 1286 if (sev_es_guest(vcpu->kvm)) { 1287 /* Perform SEV-ES specific VMCB updates */ 1288 sev_es_init_vmcb(svm); 1289 } 1290 } 1291 1292 vmcb_mark_all_dirty(svm->vmcb); 1293 1294 enable_gif(svm); 1295 1296 } 1297 1298 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1299 { 1300 struct vcpu_svm *svm = to_svm(vcpu); 1301 u32 dummy; 1302 u32 eax = 1; 1303 1304 svm->spec_ctrl = 0; 1305 svm->virt_spec_ctrl = 0; 1306 1307 if (!init_event) { 1308 vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1309 MSR_IA32_APICBASE_ENABLE; 1310 if (kvm_vcpu_is_reset_bsp(vcpu)) 1311 vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP; 1312 } 1313 init_vmcb(vcpu); 1314 1315 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1316 kvm_rdx_write(vcpu, eax); 1317 1318 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1319 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1320 } 1321 1322 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1323 { 1324 svm->current_vmcb = target_vmcb; 1325 svm->vmcb = target_vmcb->ptr; 1326 } 1327 1328 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1329 { 1330 struct vcpu_svm *svm; 1331 struct page *vmcb01_page; 1332 struct page *vmsa_page = NULL; 1333 int err; 1334 1335 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1336 svm = to_svm(vcpu); 1337 1338 err = -ENOMEM; 1339 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1340 if (!vmcb01_page) 1341 goto out; 1342 1343 if (sev_es_guest(vcpu->kvm)) { 1344 /* 1345 * SEV-ES guests require a separate VMSA page used to contain 1346 * the encrypted register state of the guest. 1347 */ 1348 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1349 if (!vmsa_page) 1350 goto error_free_vmcb_page; 1351 1352 /* 1353 * SEV-ES guests maintain an encrypted version of their FPU 1354 * state which is restored and saved on VMRUN and VMEXIT. 1355 * Free the fpu structure to prevent KVM from attempting to 1356 * access the FPU state. 1357 */ 1358 kvm_free_guest_fpu(vcpu); 1359 } 1360 1361 err = avic_init_vcpu(svm); 1362 if (err) 1363 goto error_free_vmsa_page; 1364 1365 /* We initialize this flag to true to make sure that the is_running 1366 * bit would be set the first time the vcpu is loaded. 1367 */ 1368 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1369 svm->avic_is_running = true; 1370 1371 svm->msrpm = svm_vcpu_alloc_msrpm(); 1372 if (!svm->msrpm) { 1373 err = -ENOMEM; 1374 goto error_free_vmsa_page; 1375 } 1376 1377 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1378 1379 svm->vmcb01.ptr = page_address(vmcb01_page); 1380 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1381 1382 if (vmsa_page) 1383 svm->vmsa = page_address(vmsa_page); 1384 1385 svm->guest_state_loaded = false; 1386 1387 svm_switch_vmcb(svm, &svm->vmcb01); 1388 init_vmcb(vcpu); 1389 1390 svm_init_osvw(vcpu); 1391 vcpu->arch.microcode_version = 0x01000065; 1392 1393 if (sev_es_guest(vcpu->kvm)) 1394 /* Perform SEV-ES specific VMCB creation updates */ 1395 sev_es_create_vcpu(svm); 1396 1397 return 0; 1398 1399 error_free_vmsa_page: 1400 if (vmsa_page) 1401 __free_page(vmsa_page); 1402 error_free_vmcb_page: 1403 __free_page(vmcb01_page); 1404 out: 1405 return err; 1406 } 1407 1408 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1409 { 1410 int i; 1411 1412 for_each_online_cpu(i) 1413 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1414 } 1415 1416 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1417 { 1418 struct vcpu_svm *svm = to_svm(vcpu); 1419 1420 /* 1421 * The vmcb page can be recycled, causing a false negative in 1422 * svm_vcpu_load(). So, ensure that no logical CPU has this 1423 * vmcb page recorded as its current vmcb. 1424 */ 1425 svm_clear_current_vmcb(svm->vmcb); 1426 1427 svm_free_nested(svm); 1428 1429 sev_free_vcpu(vcpu); 1430 1431 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1432 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1433 } 1434 1435 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1436 { 1437 struct vcpu_svm *svm = to_svm(vcpu); 1438 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1439 1440 if (sev_es_guest(vcpu->kvm)) 1441 sev_es_unmap_ghcb(svm); 1442 1443 if (svm->guest_state_loaded) 1444 return; 1445 1446 /* 1447 * Save additional host state that will be restored on VMEXIT (sev-es) 1448 * or subsequent vmload of host save area. 1449 */ 1450 if (sev_es_guest(vcpu->kvm)) { 1451 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1452 } else { 1453 vmsave(__sme_page_pa(sd->save_area)); 1454 } 1455 1456 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1457 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1458 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1459 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1460 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1461 } 1462 } 1463 1464 if (likely(tsc_aux_uret_slot >= 0)) 1465 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1466 1467 svm->guest_state_loaded = true; 1468 } 1469 1470 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1471 { 1472 to_svm(vcpu)->guest_state_loaded = false; 1473 } 1474 1475 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1476 { 1477 struct vcpu_svm *svm = to_svm(vcpu); 1478 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1479 1480 if (sd->current_vmcb != svm->vmcb) { 1481 sd->current_vmcb = svm->vmcb; 1482 indirect_branch_prediction_barrier(); 1483 } 1484 avic_vcpu_load(vcpu, cpu); 1485 } 1486 1487 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1488 { 1489 avic_vcpu_put(vcpu); 1490 svm_prepare_host_switch(vcpu); 1491 1492 ++vcpu->stat.host_state_reload; 1493 } 1494 1495 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1496 { 1497 struct vcpu_svm *svm = to_svm(vcpu); 1498 unsigned long rflags = svm->vmcb->save.rflags; 1499 1500 if (svm->nmi_singlestep) { 1501 /* Hide our flags if they were not set by the guest */ 1502 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1503 rflags &= ~X86_EFLAGS_TF; 1504 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1505 rflags &= ~X86_EFLAGS_RF; 1506 } 1507 return rflags; 1508 } 1509 1510 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1511 { 1512 if (to_svm(vcpu)->nmi_singlestep) 1513 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1514 1515 /* 1516 * Any change of EFLAGS.VM is accompanied by a reload of SS 1517 * (caused by either a task switch or an inter-privilege IRET), 1518 * so we do not need to update the CPL here. 1519 */ 1520 to_svm(vcpu)->vmcb->save.rflags = rflags; 1521 } 1522 1523 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1524 { 1525 switch (reg) { 1526 case VCPU_EXREG_PDPTR: 1527 BUG_ON(!npt_enabled); 1528 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1529 break; 1530 default: 1531 WARN_ON_ONCE(1); 1532 } 1533 } 1534 1535 static void svm_set_vintr(struct vcpu_svm *svm) 1536 { 1537 struct vmcb_control_area *control; 1538 1539 /* The following fields are ignored when AVIC is enabled */ 1540 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu)); 1541 svm_set_intercept(svm, INTERCEPT_VINTR); 1542 1543 /* 1544 * This is just a dummy VINTR to actually cause a vmexit to happen. 1545 * Actual injection of virtual interrupts happens through EVENTINJ. 1546 */ 1547 control = &svm->vmcb->control; 1548 control->int_vector = 0x0; 1549 control->int_ctl &= ~V_INTR_PRIO_MASK; 1550 control->int_ctl |= V_IRQ_MASK | 1551 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1552 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1553 } 1554 1555 static void svm_clear_vintr(struct vcpu_svm *svm) 1556 { 1557 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1558 svm_clr_intercept(svm, INTERCEPT_VINTR); 1559 1560 /* Drop int_ctl fields related to VINTR injection. */ 1561 svm->vmcb->control.int_ctl &= mask; 1562 if (is_guest_mode(&svm->vcpu)) { 1563 svm->vmcb01.ptr->control.int_ctl &= mask; 1564 1565 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1566 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1567 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1568 } 1569 1570 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1571 } 1572 1573 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1574 { 1575 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1576 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1577 1578 switch (seg) { 1579 case VCPU_SREG_CS: return &save->cs; 1580 case VCPU_SREG_DS: return &save->ds; 1581 case VCPU_SREG_ES: return &save->es; 1582 case VCPU_SREG_FS: return &save01->fs; 1583 case VCPU_SREG_GS: return &save01->gs; 1584 case VCPU_SREG_SS: return &save->ss; 1585 case VCPU_SREG_TR: return &save01->tr; 1586 case VCPU_SREG_LDTR: return &save01->ldtr; 1587 } 1588 BUG(); 1589 return NULL; 1590 } 1591 1592 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1593 { 1594 struct vmcb_seg *s = svm_seg(vcpu, seg); 1595 1596 return s->base; 1597 } 1598 1599 static void svm_get_segment(struct kvm_vcpu *vcpu, 1600 struct kvm_segment *var, int seg) 1601 { 1602 struct vmcb_seg *s = svm_seg(vcpu, seg); 1603 1604 var->base = s->base; 1605 var->limit = s->limit; 1606 var->selector = s->selector; 1607 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1608 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1609 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1610 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1611 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1612 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1613 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1614 1615 /* 1616 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1617 * However, the SVM spec states that the G bit is not observed by the 1618 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1619 * So let's synthesize a legal G bit for all segments, this helps 1620 * running KVM nested. It also helps cross-vendor migration, because 1621 * Intel's vmentry has a check on the 'G' bit. 1622 */ 1623 var->g = s->limit > 0xfffff; 1624 1625 /* 1626 * AMD's VMCB does not have an explicit unusable field, so emulate it 1627 * for cross vendor migration purposes by "not present" 1628 */ 1629 var->unusable = !var->present; 1630 1631 switch (seg) { 1632 case VCPU_SREG_TR: 1633 /* 1634 * Work around a bug where the busy flag in the tr selector 1635 * isn't exposed 1636 */ 1637 var->type |= 0x2; 1638 break; 1639 case VCPU_SREG_DS: 1640 case VCPU_SREG_ES: 1641 case VCPU_SREG_FS: 1642 case VCPU_SREG_GS: 1643 /* 1644 * The accessed bit must always be set in the segment 1645 * descriptor cache, although it can be cleared in the 1646 * descriptor, the cached bit always remains at 1. Since 1647 * Intel has a check on this, set it here to support 1648 * cross-vendor migration. 1649 */ 1650 if (!var->unusable) 1651 var->type |= 0x1; 1652 break; 1653 case VCPU_SREG_SS: 1654 /* 1655 * On AMD CPUs sometimes the DB bit in the segment 1656 * descriptor is left as 1, although the whole segment has 1657 * been made unusable. Clear it here to pass an Intel VMX 1658 * entry check when cross vendor migrating. 1659 */ 1660 if (var->unusable) 1661 var->db = 0; 1662 /* This is symmetric with svm_set_segment() */ 1663 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1664 break; 1665 } 1666 } 1667 1668 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1669 { 1670 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1671 1672 return save->cpl; 1673 } 1674 1675 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1676 { 1677 struct vcpu_svm *svm = to_svm(vcpu); 1678 1679 dt->size = svm->vmcb->save.idtr.limit; 1680 dt->address = svm->vmcb->save.idtr.base; 1681 } 1682 1683 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1684 { 1685 struct vcpu_svm *svm = to_svm(vcpu); 1686 1687 svm->vmcb->save.idtr.limit = dt->size; 1688 svm->vmcb->save.idtr.base = dt->address ; 1689 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1690 } 1691 1692 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1693 { 1694 struct vcpu_svm *svm = to_svm(vcpu); 1695 1696 dt->size = svm->vmcb->save.gdtr.limit; 1697 dt->address = svm->vmcb->save.gdtr.base; 1698 } 1699 1700 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1701 { 1702 struct vcpu_svm *svm = to_svm(vcpu); 1703 1704 svm->vmcb->save.gdtr.limit = dt->size; 1705 svm->vmcb->save.gdtr.base = dt->address ; 1706 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1707 } 1708 1709 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1710 { 1711 struct vcpu_svm *svm = to_svm(vcpu); 1712 u64 hcr0 = cr0; 1713 1714 #ifdef CONFIG_X86_64 1715 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1716 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1717 vcpu->arch.efer |= EFER_LMA; 1718 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1719 } 1720 1721 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1722 vcpu->arch.efer &= ~EFER_LMA; 1723 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1724 } 1725 } 1726 #endif 1727 vcpu->arch.cr0 = cr0; 1728 1729 if (!npt_enabled) 1730 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1731 1732 /* 1733 * re-enable caching here because the QEMU bios 1734 * does not do it - this results in some delay at 1735 * reboot 1736 */ 1737 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1738 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1739 1740 svm->vmcb->save.cr0 = hcr0; 1741 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1742 1743 /* 1744 * SEV-ES guests must always keep the CR intercepts cleared. CR 1745 * tracking is done using the CR write traps. 1746 */ 1747 if (sev_es_guest(vcpu->kvm)) 1748 return; 1749 1750 if (hcr0 == cr0) { 1751 /* Selective CR0 write remains on. */ 1752 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1753 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1754 } else { 1755 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1756 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1757 } 1758 } 1759 1760 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1761 { 1762 return true; 1763 } 1764 1765 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1766 { 1767 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1768 unsigned long old_cr4 = vcpu->arch.cr4; 1769 1770 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1771 svm_flush_tlb(vcpu); 1772 1773 vcpu->arch.cr4 = cr4; 1774 if (!npt_enabled) 1775 cr4 |= X86_CR4_PAE; 1776 cr4 |= host_cr4_mce; 1777 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1778 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1779 1780 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1781 kvm_update_cpuid_runtime(vcpu); 1782 } 1783 1784 static void svm_set_segment(struct kvm_vcpu *vcpu, 1785 struct kvm_segment *var, int seg) 1786 { 1787 struct vcpu_svm *svm = to_svm(vcpu); 1788 struct vmcb_seg *s = svm_seg(vcpu, seg); 1789 1790 s->base = var->base; 1791 s->limit = var->limit; 1792 s->selector = var->selector; 1793 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1794 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1795 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1796 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1797 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1798 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1799 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1800 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1801 1802 /* 1803 * This is always accurate, except if SYSRET returned to a segment 1804 * with SS.DPL != 3. Intel does not have this quirk, and always 1805 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1806 * would entail passing the CPL to userspace and back. 1807 */ 1808 if (seg == VCPU_SREG_SS) 1809 /* This is symmetric with svm_get_segment() */ 1810 svm->vmcb->save.cpl = (var->dpl & 3); 1811 1812 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1813 } 1814 1815 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1816 { 1817 struct vcpu_svm *svm = to_svm(vcpu); 1818 1819 clr_exception_intercept(svm, BP_VECTOR); 1820 1821 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1822 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1823 set_exception_intercept(svm, BP_VECTOR); 1824 } 1825 } 1826 1827 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1828 { 1829 if (sd->next_asid > sd->max_asid) { 1830 ++sd->asid_generation; 1831 sd->next_asid = sd->min_asid; 1832 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1833 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1834 } 1835 1836 svm->current_vmcb->asid_generation = sd->asid_generation; 1837 svm->asid = sd->next_asid++; 1838 } 1839 1840 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1841 { 1842 struct vmcb *vmcb = svm->vmcb; 1843 1844 if (svm->vcpu.arch.guest_state_protected) 1845 return; 1846 1847 if (unlikely(value != vmcb->save.dr6)) { 1848 vmcb->save.dr6 = value; 1849 vmcb_mark_dirty(vmcb, VMCB_DR); 1850 } 1851 } 1852 1853 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1854 { 1855 struct vcpu_svm *svm = to_svm(vcpu); 1856 1857 if (vcpu->arch.guest_state_protected) 1858 return; 1859 1860 get_debugreg(vcpu->arch.db[0], 0); 1861 get_debugreg(vcpu->arch.db[1], 1); 1862 get_debugreg(vcpu->arch.db[2], 2); 1863 get_debugreg(vcpu->arch.db[3], 3); 1864 /* 1865 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1866 * because db_interception might need it. We can do it before vmentry. 1867 */ 1868 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1869 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1870 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1871 set_dr_intercepts(svm); 1872 } 1873 1874 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1875 { 1876 struct vcpu_svm *svm = to_svm(vcpu); 1877 1878 if (vcpu->arch.guest_state_protected) 1879 return; 1880 1881 svm->vmcb->save.dr7 = value; 1882 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1883 } 1884 1885 static int pf_interception(struct kvm_vcpu *vcpu) 1886 { 1887 struct vcpu_svm *svm = to_svm(vcpu); 1888 1889 u64 fault_address = svm->vmcb->control.exit_info_2; 1890 u64 error_code = svm->vmcb->control.exit_info_1; 1891 1892 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1893 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1894 svm->vmcb->control.insn_bytes : NULL, 1895 svm->vmcb->control.insn_len); 1896 } 1897 1898 static int npf_interception(struct kvm_vcpu *vcpu) 1899 { 1900 struct vcpu_svm *svm = to_svm(vcpu); 1901 1902 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); 1903 u64 error_code = svm->vmcb->control.exit_info_1; 1904 1905 trace_kvm_page_fault(fault_address, error_code); 1906 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1907 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1908 svm->vmcb->control.insn_bytes : NULL, 1909 svm->vmcb->control.insn_len); 1910 } 1911 1912 static int db_interception(struct kvm_vcpu *vcpu) 1913 { 1914 struct kvm_run *kvm_run = vcpu->run; 1915 struct vcpu_svm *svm = to_svm(vcpu); 1916 1917 if (!(vcpu->guest_debug & 1918 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1919 !svm->nmi_singlestep) { 1920 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1921 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1922 return 1; 1923 } 1924 1925 if (svm->nmi_singlestep) { 1926 disable_nmi_singlestep(svm); 1927 /* Make sure we check for pending NMIs upon entry */ 1928 kvm_make_request(KVM_REQ_EVENT, vcpu); 1929 } 1930 1931 if (vcpu->guest_debug & 1932 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1933 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1934 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1935 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1936 kvm_run->debug.arch.pc = 1937 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1938 kvm_run->debug.arch.exception = DB_VECTOR; 1939 return 0; 1940 } 1941 1942 return 1; 1943 } 1944 1945 static int bp_interception(struct kvm_vcpu *vcpu) 1946 { 1947 struct vcpu_svm *svm = to_svm(vcpu); 1948 struct kvm_run *kvm_run = vcpu->run; 1949 1950 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1951 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1952 kvm_run->debug.arch.exception = BP_VECTOR; 1953 return 0; 1954 } 1955 1956 static int ud_interception(struct kvm_vcpu *vcpu) 1957 { 1958 return handle_ud(vcpu); 1959 } 1960 1961 static int ac_interception(struct kvm_vcpu *vcpu) 1962 { 1963 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1964 return 1; 1965 } 1966 1967 static bool is_erratum_383(void) 1968 { 1969 int err, i; 1970 u64 value; 1971 1972 if (!erratum_383_found) 1973 return false; 1974 1975 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 1976 if (err) 1977 return false; 1978 1979 /* Bit 62 may or may not be set for this mce */ 1980 value &= ~(1ULL << 62); 1981 1982 if (value != 0xb600000000010015ULL) 1983 return false; 1984 1985 /* Clear MCi_STATUS registers */ 1986 for (i = 0; i < 6; ++i) 1987 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 1988 1989 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 1990 if (!err) { 1991 u32 low, high; 1992 1993 value &= ~(1ULL << 2); 1994 low = lower_32_bits(value); 1995 high = upper_32_bits(value); 1996 1997 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 1998 } 1999 2000 /* Flush tlb to evict multi-match entries */ 2001 __flush_tlb_all(); 2002 2003 return true; 2004 } 2005 2006 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2007 { 2008 if (is_erratum_383()) { 2009 /* 2010 * Erratum 383 triggered. Guest state is corrupt so kill the 2011 * guest. 2012 */ 2013 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2014 2015 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2016 2017 return; 2018 } 2019 2020 /* 2021 * On an #MC intercept the MCE handler is not called automatically in 2022 * the host. So do it by hand here. 2023 */ 2024 kvm_machine_check(); 2025 } 2026 2027 static int mc_interception(struct kvm_vcpu *vcpu) 2028 { 2029 return 1; 2030 } 2031 2032 static int shutdown_interception(struct kvm_vcpu *vcpu) 2033 { 2034 struct kvm_run *kvm_run = vcpu->run; 2035 struct vcpu_svm *svm = to_svm(vcpu); 2036 2037 /* 2038 * The VM save area has already been encrypted so it 2039 * cannot be reinitialized - just terminate. 2040 */ 2041 if (sev_es_guest(vcpu->kvm)) 2042 return -EINVAL; 2043 2044 /* 2045 * VMCB is undefined after a SHUTDOWN intercept 2046 * so reinitialize it. 2047 */ 2048 clear_page(svm->vmcb); 2049 init_vmcb(vcpu); 2050 2051 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2052 return 0; 2053 } 2054 2055 static int io_interception(struct kvm_vcpu *vcpu) 2056 { 2057 struct vcpu_svm *svm = to_svm(vcpu); 2058 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2059 int size, in, string; 2060 unsigned port; 2061 2062 ++vcpu->stat.io_exits; 2063 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2064 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2065 port = io_info >> 16; 2066 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2067 2068 if (string) { 2069 if (sev_es_guest(vcpu->kvm)) 2070 return sev_es_string_io(svm, size, port, in); 2071 else 2072 return kvm_emulate_instruction(vcpu, 0); 2073 } 2074 2075 svm->next_rip = svm->vmcb->control.exit_info_2; 2076 2077 return kvm_fast_pio(vcpu, size, port, in); 2078 } 2079 2080 static int nmi_interception(struct kvm_vcpu *vcpu) 2081 { 2082 return 1; 2083 } 2084 2085 static int intr_interception(struct kvm_vcpu *vcpu) 2086 { 2087 ++vcpu->stat.irq_exits; 2088 return 1; 2089 } 2090 2091 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2092 { 2093 struct vcpu_svm *svm = to_svm(vcpu); 2094 struct vmcb *vmcb12; 2095 struct kvm_host_map map; 2096 int ret; 2097 2098 if (nested_svm_check_permissions(vcpu)) 2099 return 1; 2100 2101 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2102 if (ret) { 2103 if (ret == -EINVAL) 2104 kvm_inject_gp(vcpu, 0); 2105 return 1; 2106 } 2107 2108 vmcb12 = map.hva; 2109 2110 ret = kvm_skip_emulated_instruction(vcpu); 2111 2112 if (vmload) { 2113 nested_svm_vmloadsave(vmcb12, svm->vmcb); 2114 svm->sysenter_eip_hi = 0; 2115 svm->sysenter_esp_hi = 0; 2116 } else 2117 nested_svm_vmloadsave(svm->vmcb, vmcb12); 2118 2119 kvm_vcpu_unmap(vcpu, &map, true); 2120 2121 return ret; 2122 } 2123 2124 static int vmload_interception(struct kvm_vcpu *vcpu) 2125 { 2126 return vmload_vmsave_interception(vcpu, true); 2127 } 2128 2129 static int vmsave_interception(struct kvm_vcpu *vcpu) 2130 { 2131 return vmload_vmsave_interception(vcpu, false); 2132 } 2133 2134 static int vmrun_interception(struct kvm_vcpu *vcpu) 2135 { 2136 if (nested_svm_check_permissions(vcpu)) 2137 return 1; 2138 2139 return nested_svm_vmrun(vcpu); 2140 } 2141 2142 enum { 2143 NONE_SVM_INSTR, 2144 SVM_INSTR_VMRUN, 2145 SVM_INSTR_VMLOAD, 2146 SVM_INSTR_VMSAVE, 2147 }; 2148 2149 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2150 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2151 { 2152 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2153 2154 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2155 return NONE_SVM_INSTR; 2156 2157 switch (ctxt->modrm) { 2158 case 0xd8: /* VMRUN */ 2159 return SVM_INSTR_VMRUN; 2160 case 0xda: /* VMLOAD */ 2161 return SVM_INSTR_VMLOAD; 2162 case 0xdb: /* VMSAVE */ 2163 return SVM_INSTR_VMSAVE; 2164 default: 2165 break; 2166 } 2167 2168 return NONE_SVM_INSTR; 2169 } 2170 2171 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2172 { 2173 const int guest_mode_exit_codes[] = { 2174 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2175 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2176 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2177 }; 2178 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2179 [SVM_INSTR_VMRUN] = vmrun_interception, 2180 [SVM_INSTR_VMLOAD] = vmload_interception, 2181 [SVM_INSTR_VMSAVE] = vmsave_interception, 2182 }; 2183 struct vcpu_svm *svm = to_svm(vcpu); 2184 int ret; 2185 2186 if (is_guest_mode(vcpu)) { 2187 /* Returns '1' or -errno on failure, '0' on success. */ 2188 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2189 if (ret) 2190 return ret; 2191 return 1; 2192 } 2193 return svm_instr_handlers[opcode](vcpu); 2194 } 2195 2196 /* 2197 * #GP handling code. Note that #GP can be triggered under the following two 2198 * cases: 2199 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2200 * some AMD CPUs when EAX of these instructions are in the reserved memory 2201 * regions (e.g. SMM memory on host). 2202 * 2) VMware backdoor 2203 */ 2204 static int gp_interception(struct kvm_vcpu *vcpu) 2205 { 2206 struct vcpu_svm *svm = to_svm(vcpu); 2207 u32 error_code = svm->vmcb->control.exit_info_1; 2208 int opcode; 2209 2210 /* Both #GP cases have zero error_code */ 2211 if (error_code) 2212 goto reinject; 2213 2214 /* Decode the instruction for usage later */ 2215 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2216 goto reinject; 2217 2218 opcode = svm_instr_opcode(vcpu); 2219 2220 if (opcode == NONE_SVM_INSTR) { 2221 if (!enable_vmware_backdoor) 2222 goto reinject; 2223 2224 /* 2225 * VMware backdoor emulation on #GP interception only handles 2226 * IN{S}, OUT{S}, and RDPMC. 2227 */ 2228 if (!is_guest_mode(vcpu)) 2229 return kvm_emulate_instruction(vcpu, 2230 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2231 } else 2232 return emulate_svm_instr(vcpu, opcode); 2233 2234 reinject: 2235 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2236 return 1; 2237 } 2238 2239 void svm_set_gif(struct vcpu_svm *svm, bool value) 2240 { 2241 if (value) { 2242 /* 2243 * If VGIF is enabled, the STGI intercept is only added to 2244 * detect the opening of the SMI/NMI window; remove it now. 2245 * Likewise, clear the VINTR intercept, we will set it 2246 * again while processing KVM_REQ_EVENT if needed. 2247 */ 2248 if (vgif_enabled(svm)) 2249 svm_clr_intercept(svm, INTERCEPT_STGI); 2250 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2251 svm_clear_vintr(svm); 2252 2253 enable_gif(svm); 2254 if (svm->vcpu.arch.smi_pending || 2255 svm->vcpu.arch.nmi_pending || 2256 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2257 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2258 } else { 2259 disable_gif(svm); 2260 2261 /* 2262 * After a CLGI no interrupts should come. But if vGIF is 2263 * in use, we still rely on the VINTR intercept (rather than 2264 * STGI) to detect an open interrupt window. 2265 */ 2266 if (!vgif_enabled(svm)) 2267 svm_clear_vintr(svm); 2268 } 2269 } 2270 2271 static int stgi_interception(struct kvm_vcpu *vcpu) 2272 { 2273 int ret; 2274 2275 if (nested_svm_check_permissions(vcpu)) 2276 return 1; 2277 2278 ret = kvm_skip_emulated_instruction(vcpu); 2279 svm_set_gif(to_svm(vcpu), true); 2280 return ret; 2281 } 2282 2283 static int clgi_interception(struct kvm_vcpu *vcpu) 2284 { 2285 int ret; 2286 2287 if (nested_svm_check_permissions(vcpu)) 2288 return 1; 2289 2290 ret = kvm_skip_emulated_instruction(vcpu); 2291 svm_set_gif(to_svm(vcpu), false); 2292 return ret; 2293 } 2294 2295 static int invlpga_interception(struct kvm_vcpu *vcpu) 2296 { 2297 gva_t gva = kvm_rax_read(vcpu); 2298 u32 asid = kvm_rcx_read(vcpu); 2299 2300 /* FIXME: Handle an address size prefix. */ 2301 if (!is_long_mode(vcpu)) 2302 gva = (u32)gva; 2303 2304 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2305 2306 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2307 kvm_mmu_invlpg(vcpu, gva); 2308 2309 return kvm_skip_emulated_instruction(vcpu); 2310 } 2311 2312 static int skinit_interception(struct kvm_vcpu *vcpu) 2313 { 2314 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2315 2316 kvm_queue_exception(vcpu, UD_VECTOR); 2317 return 1; 2318 } 2319 2320 static int task_switch_interception(struct kvm_vcpu *vcpu) 2321 { 2322 struct vcpu_svm *svm = to_svm(vcpu); 2323 u16 tss_selector; 2324 int reason; 2325 int int_type = svm->vmcb->control.exit_int_info & 2326 SVM_EXITINTINFO_TYPE_MASK; 2327 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2328 uint32_t type = 2329 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2330 uint32_t idt_v = 2331 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2332 bool has_error_code = false; 2333 u32 error_code = 0; 2334 2335 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2336 2337 if (svm->vmcb->control.exit_info_2 & 2338 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2339 reason = TASK_SWITCH_IRET; 2340 else if (svm->vmcb->control.exit_info_2 & 2341 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2342 reason = TASK_SWITCH_JMP; 2343 else if (idt_v) 2344 reason = TASK_SWITCH_GATE; 2345 else 2346 reason = TASK_SWITCH_CALL; 2347 2348 if (reason == TASK_SWITCH_GATE) { 2349 switch (type) { 2350 case SVM_EXITINTINFO_TYPE_NMI: 2351 vcpu->arch.nmi_injected = false; 2352 break; 2353 case SVM_EXITINTINFO_TYPE_EXEPT: 2354 if (svm->vmcb->control.exit_info_2 & 2355 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2356 has_error_code = true; 2357 error_code = 2358 (u32)svm->vmcb->control.exit_info_2; 2359 } 2360 kvm_clear_exception_queue(vcpu); 2361 break; 2362 case SVM_EXITINTINFO_TYPE_INTR: 2363 kvm_clear_interrupt_queue(vcpu); 2364 break; 2365 default: 2366 break; 2367 } 2368 } 2369 2370 if (reason != TASK_SWITCH_GATE || 2371 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2372 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2373 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2374 if (!skip_emulated_instruction(vcpu)) 2375 return 0; 2376 } 2377 2378 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2379 int_vec = -1; 2380 2381 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2382 has_error_code, error_code); 2383 } 2384 2385 static int iret_interception(struct kvm_vcpu *vcpu) 2386 { 2387 struct vcpu_svm *svm = to_svm(vcpu); 2388 2389 ++vcpu->stat.nmi_window_exits; 2390 vcpu->arch.hflags |= HF_IRET_MASK; 2391 if (!sev_es_guest(vcpu->kvm)) { 2392 svm_clr_intercept(svm, INTERCEPT_IRET); 2393 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2394 } 2395 kvm_make_request(KVM_REQ_EVENT, vcpu); 2396 return 1; 2397 } 2398 2399 static int invlpg_interception(struct kvm_vcpu *vcpu) 2400 { 2401 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2402 return kvm_emulate_instruction(vcpu, 0); 2403 2404 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2405 return kvm_skip_emulated_instruction(vcpu); 2406 } 2407 2408 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2409 { 2410 return kvm_emulate_instruction(vcpu, 0); 2411 } 2412 2413 static int rsm_interception(struct kvm_vcpu *vcpu) 2414 { 2415 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2416 } 2417 2418 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2419 unsigned long val) 2420 { 2421 struct vcpu_svm *svm = to_svm(vcpu); 2422 unsigned long cr0 = vcpu->arch.cr0; 2423 bool ret = false; 2424 2425 if (!is_guest_mode(vcpu) || 2426 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2427 return false; 2428 2429 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2430 val &= ~SVM_CR0_SELECTIVE_MASK; 2431 2432 if (cr0 ^ val) { 2433 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2434 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2435 } 2436 2437 return ret; 2438 } 2439 2440 #define CR_VALID (1ULL << 63) 2441 2442 static int cr_interception(struct kvm_vcpu *vcpu) 2443 { 2444 struct vcpu_svm *svm = to_svm(vcpu); 2445 int reg, cr; 2446 unsigned long val; 2447 int err; 2448 2449 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2450 return emulate_on_interception(vcpu); 2451 2452 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2453 return emulate_on_interception(vcpu); 2454 2455 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2456 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2457 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2458 else 2459 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2460 2461 err = 0; 2462 if (cr >= 16) { /* mov to cr */ 2463 cr -= 16; 2464 val = kvm_register_read(vcpu, reg); 2465 trace_kvm_cr_write(cr, val); 2466 switch (cr) { 2467 case 0: 2468 if (!check_selective_cr0_intercepted(vcpu, val)) 2469 err = kvm_set_cr0(vcpu, val); 2470 else 2471 return 1; 2472 2473 break; 2474 case 3: 2475 err = kvm_set_cr3(vcpu, val); 2476 break; 2477 case 4: 2478 err = kvm_set_cr4(vcpu, val); 2479 break; 2480 case 8: 2481 err = kvm_set_cr8(vcpu, val); 2482 break; 2483 default: 2484 WARN(1, "unhandled write to CR%d", cr); 2485 kvm_queue_exception(vcpu, UD_VECTOR); 2486 return 1; 2487 } 2488 } else { /* mov from cr */ 2489 switch (cr) { 2490 case 0: 2491 val = kvm_read_cr0(vcpu); 2492 break; 2493 case 2: 2494 val = vcpu->arch.cr2; 2495 break; 2496 case 3: 2497 val = kvm_read_cr3(vcpu); 2498 break; 2499 case 4: 2500 val = kvm_read_cr4(vcpu); 2501 break; 2502 case 8: 2503 val = kvm_get_cr8(vcpu); 2504 break; 2505 default: 2506 WARN(1, "unhandled read from CR%d", cr); 2507 kvm_queue_exception(vcpu, UD_VECTOR); 2508 return 1; 2509 } 2510 kvm_register_write(vcpu, reg, val); 2511 trace_kvm_cr_read(cr, val); 2512 } 2513 return kvm_complete_insn_gp(vcpu, err); 2514 } 2515 2516 static int cr_trap(struct kvm_vcpu *vcpu) 2517 { 2518 struct vcpu_svm *svm = to_svm(vcpu); 2519 unsigned long old_value, new_value; 2520 unsigned int cr; 2521 int ret = 0; 2522 2523 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2524 2525 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2526 switch (cr) { 2527 case 0: 2528 old_value = kvm_read_cr0(vcpu); 2529 svm_set_cr0(vcpu, new_value); 2530 2531 kvm_post_set_cr0(vcpu, old_value, new_value); 2532 break; 2533 case 4: 2534 old_value = kvm_read_cr4(vcpu); 2535 svm_set_cr4(vcpu, new_value); 2536 2537 kvm_post_set_cr4(vcpu, old_value, new_value); 2538 break; 2539 case 8: 2540 ret = kvm_set_cr8(vcpu, new_value); 2541 break; 2542 default: 2543 WARN(1, "unhandled CR%d write trap", cr); 2544 kvm_queue_exception(vcpu, UD_VECTOR); 2545 return 1; 2546 } 2547 2548 return kvm_complete_insn_gp(vcpu, ret); 2549 } 2550 2551 static int dr_interception(struct kvm_vcpu *vcpu) 2552 { 2553 struct vcpu_svm *svm = to_svm(vcpu); 2554 int reg, dr; 2555 unsigned long val; 2556 int err = 0; 2557 2558 if (vcpu->guest_debug == 0) { 2559 /* 2560 * No more DR vmexits; force a reload of the debug registers 2561 * and reenter on this instruction. The next vmexit will 2562 * retrieve the full state of the debug registers. 2563 */ 2564 clr_dr_intercepts(svm); 2565 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2566 return 1; 2567 } 2568 2569 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2570 return emulate_on_interception(vcpu); 2571 2572 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2573 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2574 if (dr >= 16) { /* mov to DRn */ 2575 dr -= 16; 2576 val = kvm_register_read(vcpu, reg); 2577 err = kvm_set_dr(vcpu, dr, val); 2578 } else { 2579 kvm_get_dr(vcpu, dr, &val); 2580 kvm_register_write(vcpu, reg, val); 2581 } 2582 2583 return kvm_complete_insn_gp(vcpu, err); 2584 } 2585 2586 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2587 { 2588 int r; 2589 2590 u8 cr8_prev = kvm_get_cr8(vcpu); 2591 /* instruction emulation calls kvm_set_cr8() */ 2592 r = cr_interception(vcpu); 2593 if (lapic_in_kernel(vcpu)) 2594 return r; 2595 if (cr8_prev <= kvm_get_cr8(vcpu)) 2596 return r; 2597 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2598 return 0; 2599 } 2600 2601 static int efer_trap(struct kvm_vcpu *vcpu) 2602 { 2603 struct msr_data msr_info; 2604 int ret; 2605 2606 /* 2607 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2608 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2609 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2610 * the guest doesn't have X86_FEATURE_SVM. 2611 */ 2612 msr_info.host_initiated = false; 2613 msr_info.index = MSR_EFER; 2614 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2615 ret = kvm_set_msr_common(vcpu, &msr_info); 2616 2617 return kvm_complete_insn_gp(vcpu, ret); 2618 } 2619 2620 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2621 { 2622 msr->data = 0; 2623 2624 switch (msr->index) { 2625 case MSR_F10H_DECFG: 2626 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2627 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2628 break; 2629 case MSR_IA32_PERF_CAPABILITIES: 2630 return 0; 2631 default: 2632 return KVM_MSR_RET_INVALID; 2633 } 2634 2635 return 0; 2636 } 2637 2638 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2639 { 2640 struct vcpu_svm *svm = to_svm(vcpu); 2641 2642 switch (msr_info->index) { 2643 case MSR_STAR: 2644 msr_info->data = svm->vmcb01.ptr->save.star; 2645 break; 2646 #ifdef CONFIG_X86_64 2647 case MSR_LSTAR: 2648 msr_info->data = svm->vmcb01.ptr->save.lstar; 2649 break; 2650 case MSR_CSTAR: 2651 msr_info->data = svm->vmcb01.ptr->save.cstar; 2652 break; 2653 case MSR_KERNEL_GS_BASE: 2654 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2655 break; 2656 case MSR_SYSCALL_MASK: 2657 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2658 break; 2659 #endif 2660 case MSR_IA32_SYSENTER_CS: 2661 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2662 break; 2663 case MSR_IA32_SYSENTER_EIP: 2664 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2665 if (guest_cpuid_is_intel(vcpu)) 2666 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2667 break; 2668 case MSR_IA32_SYSENTER_ESP: 2669 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2670 if (guest_cpuid_is_intel(vcpu)) 2671 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2672 break; 2673 case MSR_TSC_AUX: 2674 msr_info->data = svm->tsc_aux; 2675 break; 2676 /* 2677 * Nobody will change the following 5 values in the VMCB so we can 2678 * safely return them on rdmsr. They will always be 0 until LBRV is 2679 * implemented. 2680 */ 2681 case MSR_IA32_DEBUGCTLMSR: 2682 msr_info->data = svm->vmcb->save.dbgctl; 2683 break; 2684 case MSR_IA32_LASTBRANCHFROMIP: 2685 msr_info->data = svm->vmcb->save.br_from; 2686 break; 2687 case MSR_IA32_LASTBRANCHTOIP: 2688 msr_info->data = svm->vmcb->save.br_to; 2689 break; 2690 case MSR_IA32_LASTINTFROMIP: 2691 msr_info->data = svm->vmcb->save.last_excp_from; 2692 break; 2693 case MSR_IA32_LASTINTTOIP: 2694 msr_info->data = svm->vmcb->save.last_excp_to; 2695 break; 2696 case MSR_VM_HSAVE_PA: 2697 msr_info->data = svm->nested.hsave_msr; 2698 break; 2699 case MSR_VM_CR: 2700 msr_info->data = svm->nested.vm_cr_msr; 2701 break; 2702 case MSR_IA32_SPEC_CTRL: 2703 if (!msr_info->host_initiated && 2704 !guest_has_spec_ctrl_msr(vcpu)) 2705 return 1; 2706 2707 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2708 msr_info->data = svm->vmcb->save.spec_ctrl; 2709 else 2710 msr_info->data = svm->spec_ctrl; 2711 break; 2712 case MSR_AMD64_VIRT_SPEC_CTRL: 2713 if (!msr_info->host_initiated && 2714 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2715 return 1; 2716 2717 msr_info->data = svm->virt_spec_ctrl; 2718 break; 2719 case MSR_F15H_IC_CFG: { 2720 2721 int family, model; 2722 2723 family = guest_cpuid_family(vcpu); 2724 model = guest_cpuid_model(vcpu); 2725 2726 if (family < 0 || model < 0) 2727 return kvm_get_msr_common(vcpu, msr_info); 2728 2729 msr_info->data = 0; 2730 2731 if (family == 0x15 && 2732 (model >= 0x2 && model < 0x20)) 2733 msr_info->data = 0x1E; 2734 } 2735 break; 2736 case MSR_F10H_DECFG: 2737 msr_info->data = svm->msr_decfg; 2738 break; 2739 default: 2740 return kvm_get_msr_common(vcpu, msr_info); 2741 } 2742 return 0; 2743 } 2744 2745 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2746 { 2747 struct vcpu_svm *svm = to_svm(vcpu); 2748 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb)) 2749 return kvm_complete_insn_gp(vcpu, err); 2750 2751 ghcb_set_sw_exit_info_1(svm->ghcb, 1); 2752 ghcb_set_sw_exit_info_2(svm->ghcb, 2753 X86_TRAP_GP | 2754 SVM_EVTINJ_TYPE_EXEPT | 2755 SVM_EVTINJ_VALID); 2756 return 1; 2757 } 2758 2759 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2760 { 2761 struct vcpu_svm *svm = to_svm(vcpu); 2762 int svm_dis, chg_mask; 2763 2764 if (data & ~SVM_VM_CR_VALID_MASK) 2765 return 1; 2766 2767 chg_mask = SVM_VM_CR_VALID_MASK; 2768 2769 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2770 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2771 2772 svm->nested.vm_cr_msr &= ~chg_mask; 2773 svm->nested.vm_cr_msr |= (data & chg_mask); 2774 2775 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2776 2777 /* check for svm_disable while efer.svme is set */ 2778 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2779 return 1; 2780 2781 return 0; 2782 } 2783 2784 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2785 { 2786 struct vcpu_svm *svm = to_svm(vcpu); 2787 int r; 2788 2789 u32 ecx = msr->index; 2790 u64 data = msr->data; 2791 switch (ecx) { 2792 case MSR_IA32_CR_PAT: 2793 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2794 return 1; 2795 vcpu->arch.pat = data; 2796 svm->vmcb01.ptr->save.g_pat = data; 2797 if (is_guest_mode(vcpu)) 2798 nested_vmcb02_compute_g_pat(svm); 2799 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2800 break; 2801 case MSR_IA32_SPEC_CTRL: 2802 if (!msr->host_initiated && 2803 !guest_has_spec_ctrl_msr(vcpu)) 2804 return 1; 2805 2806 if (kvm_spec_ctrl_test_value(data)) 2807 return 1; 2808 2809 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2810 svm->vmcb->save.spec_ctrl = data; 2811 else 2812 svm->spec_ctrl = data; 2813 if (!data) 2814 break; 2815 2816 /* 2817 * For non-nested: 2818 * When it's written (to non-zero) for the first time, pass 2819 * it through. 2820 * 2821 * For nested: 2822 * The handling of the MSR bitmap for L2 guests is done in 2823 * nested_svm_vmrun_msrpm. 2824 * We update the L1 MSR bit as well since it will end up 2825 * touching the MSR anyway now. 2826 */ 2827 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2828 break; 2829 case MSR_IA32_PRED_CMD: 2830 if (!msr->host_initiated && 2831 !guest_has_pred_cmd_msr(vcpu)) 2832 return 1; 2833 2834 if (data & ~PRED_CMD_IBPB) 2835 return 1; 2836 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2837 return 1; 2838 if (!data) 2839 break; 2840 2841 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2842 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2843 break; 2844 case MSR_AMD64_VIRT_SPEC_CTRL: 2845 if (!msr->host_initiated && 2846 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2847 return 1; 2848 2849 if (data & ~SPEC_CTRL_SSBD) 2850 return 1; 2851 2852 svm->virt_spec_ctrl = data; 2853 break; 2854 case MSR_STAR: 2855 svm->vmcb01.ptr->save.star = data; 2856 break; 2857 #ifdef CONFIG_X86_64 2858 case MSR_LSTAR: 2859 svm->vmcb01.ptr->save.lstar = data; 2860 break; 2861 case MSR_CSTAR: 2862 svm->vmcb01.ptr->save.cstar = data; 2863 break; 2864 case MSR_KERNEL_GS_BASE: 2865 svm->vmcb01.ptr->save.kernel_gs_base = data; 2866 break; 2867 case MSR_SYSCALL_MASK: 2868 svm->vmcb01.ptr->save.sfmask = data; 2869 break; 2870 #endif 2871 case MSR_IA32_SYSENTER_CS: 2872 svm->vmcb01.ptr->save.sysenter_cs = data; 2873 break; 2874 case MSR_IA32_SYSENTER_EIP: 2875 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2876 /* 2877 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2878 * when we spoof an Intel vendor ID (for cross vendor migration). 2879 * In this case we use this intercept to track the high 2880 * 32 bit part of these msrs to support Intel's 2881 * implementation of SYSENTER/SYSEXIT. 2882 */ 2883 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2884 break; 2885 case MSR_IA32_SYSENTER_ESP: 2886 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2887 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2888 break; 2889 case MSR_TSC_AUX: 2890 /* 2891 * TSC_AUX is usually changed only during boot and never read 2892 * directly. Intercept TSC_AUX instead of exposing it to the 2893 * guest via direct_access_msrs, and switch it via user return. 2894 */ 2895 preempt_disable(); 2896 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2897 preempt_enable(); 2898 if (r) 2899 return 1; 2900 2901 svm->tsc_aux = data; 2902 break; 2903 case MSR_IA32_DEBUGCTLMSR: 2904 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2905 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2906 __func__, data); 2907 break; 2908 } 2909 if (data & DEBUGCTL_RESERVED_BITS) 2910 return 1; 2911 2912 svm->vmcb->save.dbgctl = data; 2913 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2914 if (data & (1ULL<<0)) 2915 svm_enable_lbrv(vcpu); 2916 else 2917 svm_disable_lbrv(vcpu); 2918 break; 2919 case MSR_VM_HSAVE_PA: 2920 svm->nested.hsave_msr = data; 2921 break; 2922 case MSR_VM_CR: 2923 return svm_set_vm_cr(vcpu, data); 2924 case MSR_VM_IGNNE: 2925 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2926 break; 2927 case MSR_F10H_DECFG: { 2928 struct kvm_msr_entry msr_entry; 2929 2930 msr_entry.index = msr->index; 2931 if (svm_get_msr_feature(&msr_entry)) 2932 return 1; 2933 2934 /* Check the supported bits */ 2935 if (data & ~msr_entry.data) 2936 return 1; 2937 2938 /* Don't allow the guest to change a bit, #GP */ 2939 if (!msr->host_initiated && (data ^ msr_entry.data)) 2940 return 1; 2941 2942 svm->msr_decfg = data; 2943 break; 2944 } 2945 case MSR_IA32_APICBASE: 2946 if (kvm_vcpu_apicv_active(vcpu)) 2947 avic_update_vapic_bar(to_svm(vcpu), data); 2948 fallthrough; 2949 default: 2950 return kvm_set_msr_common(vcpu, msr); 2951 } 2952 return 0; 2953 } 2954 2955 static int msr_interception(struct kvm_vcpu *vcpu) 2956 { 2957 if (to_svm(vcpu)->vmcb->control.exit_info_1) 2958 return kvm_emulate_wrmsr(vcpu); 2959 else 2960 return kvm_emulate_rdmsr(vcpu); 2961 } 2962 2963 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 2964 { 2965 kvm_make_request(KVM_REQ_EVENT, vcpu); 2966 svm_clear_vintr(to_svm(vcpu)); 2967 2968 /* 2969 * For AVIC, the only reason to end up here is ExtINTs. 2970 * In this case AVIC was temporarily disabled for 2971 * requesting the IRQ window and we have to re-enable it. 2972 */ 2973 svm_toggle_avic_for_irq_window(vcpu, true); 2974 2975 ++vcpu->stat.irq_window_exits; 2976 return 1; 2977 } 2978 2979 static int pause_interception(struct kvm_vcpu *vcpu) 2980 { 2981 bool in_kernel; 2982 2983 /* 2984 * CPL is not made available for an SEV-ES guest, therefore 2985 * vcpu->arch.preempted_in_kernel can never be true. Just 2986 * set in_kernel to false as well. 2987 */ 2988 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 2989 2990 if (!kvm_pause_in_guest(vcpu->kvm)) 2991 grow_ple_window(vcpu); 2992 2993 kvm_vcpu_on_spin(vcpu, in_kernel); 2994 return kvm_skip_emulated_instruction(vcpu); 2995 } 2996 2997 static int invpcid_interception(struct kvm_vcpu *vcpu) 2998 { 2999 struct vcpu_svm *svm = to_svm(vcpu); 3000 unsigned long type; 3001 gva_t gva; 3002 3003 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3004 kvm_queue_exception(vcpu, UD_VECTOR); 3005 return 1; 3006 } 3007 3008 /* 3009 * For an INVPCID intercept: 3010 * EXITINFO1 provides the linear address of the memory operand. 3011 * EXITINFO2 provides the contents of the register operand. 3012 */ 3013 type = svm->vmcb->control.exit_info_2; 3014 gva = svm->vmcb->control.exit_info_1; 3015 3016 if (type > 3) { 3017 kvm_inject_gp(vcpu, 0); 3018 return 1; 3019 } 3020 3021 return kvm_handle_invpcid(vcpu, type, gva); 3022 } 3023 3024 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3025 [SVM_EXIT_READ_CR0] = cr_interception, 3026 [SVM_EXIT_READ_CR3] = cr_interception, 3027 [SVM_EXIT_READ_CR4] = cr_interception, 3028 [SVM_EXIT_READ_CR8] = cr_interception, 3029 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3030 [SVM_EXIT_WRITE_CR0] = cr_interception, 3031 [SVM_EXIT_WRITE_CR3] = cr_interception, 3032 [SVM_EXIT_WRITE_CR4] = cr_interception, 3033 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3034 [SVM_EXIT_READ_DR0] = dr_interception, 3035 [SVM_EXIT_READ_DR1] = dr_interception, 3036 [SVM_EXIT_READ_DR2] = dr_interception, 3037 [SVM_EXIT_READ_DR3] = dr_interception, 3038 [SVM_EXIT_READ_DR4] = dr_interception, 3039 [SVM_EXIT_READ_DR5] = dr_interception, 3040 [SVM_EXIT_READ_DR6] = dr_interception, 3041 [SVM_EXIT_READ_DR7] = dr_interception, 3042 [SVM_EXIT_WRITE_DR0] = dr_interception, 3043 [SVM_EXIT_WRITE_DR1] = dr_interception, 3044 [SVM_EXIT_WRITE_DR2] = dr_interception, 3045 [SVM_EXIT_WRITE_DR3] = dr_interception, 3046 [SVM_EXIT_WRITE_DR4] = dr_interception, 3047 [SVM_EXIT_WRITE_DR5] = dr_interception, 3048 [SVM_EXIT_WRITE_DR6] = dr_interception, 3049 [SVM_EXIT_WRITE_DR7] = dr_interception, 3050 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3051 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3052 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3053 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3054 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3055 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3056 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3057 [SVM_EXIT_INTR] = intr_interception, 3058 [SVM_EXIT_NMI] = nmi_interception, 3059 [SVM_EXIT_SMI] = kvm_emulate_as_nop, 3060 [SVM_EXIT_INIT] = kvm_emulate_as_nop, 3061 [SVM_EXIT_VINTR] = interrupt_window_interception, 3062 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3063 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3064 [SVM_EXIT_IRET] = iret_interception, 3065 [SVM_EXIT_INVD] = kvm_emulate_invd, 3066 [SVM_EXIT_PAUSE] = pause_interception, 3067 [SVM_EXIT_HLT] = kvm_emulate_halt, 3068 [SVM_EXIT_INVLPG] = invlpg_interception, 3069 [SVM_EXIT_INVLPGA] = invlpga_interception, 3070 [SVM_EXIT_IOIO] = io_interception, 3071 [SVM_EXIT_MSR] = msr_interception, 3072 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3073 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3074 [SVM_EXIT_VMRUN] = vmrun_interception, 3075 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3076 [SVM_EXIT_VMLOAD] = vmload_interception, 3077 [SVM_EXIT_VMSAVE] = vmsave_interception, 3078 [SVM_EXIT_STGI] = stgi_interception, 3079 [SVM_EXIT_CLGI] = clgi_interception, 3080 [SVM_EXIT_SKINIT] = skinit_interception, 3081 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3082 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3083 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3084 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3085 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3086 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3087 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3088 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3089 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3090 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3091 [SVM_EXIT_INVPCID] = invpcid_interception, 3092 [SVM_EXIT_NPF] = npf_interception, 3093 [SVM_EXIT_RSM] = rsm_interception, 3094 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3095 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3096 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3097 }; 3098 3099 static void dump_vmcb(struct kvm_vcpu *vcpu) 3100 { 3101 struct vcpu_svm *svm = to_svm(vcpu); 3102 struct vmcb_control_area *control = &svm->vmcb->control; 3103 struct vmcb_save_area *save = &svm->vmcb->save; 3104 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3105 3106 if (!dump_invalid_vmcb) { 3107 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3108 return; 3109 } 3110 3111 pr_err("VMCB Control Area:\n"); 3112 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3113 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3114 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3115 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3116 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3117 pr_err("%-20s%08x %08x\n", "intercepts:", 3118 control->intercepts[INTERCEPT_WORD3], 3119 control->intercepts[INTERCEPT_WORD4]); 3120 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3121 pr_err("%-20s%d\n", "pause filter threshold:", 3122 control->pause_filter_thresh); 3123 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3124 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3125 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3126 pr_err("%-20s%d\n", "asid:", control->asid); 3127 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3128 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3129 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3130 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3131 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3132 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3133 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3134 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3135 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3136 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3137 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3138 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3139 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3140 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3141 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3142 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3143 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3144 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3145 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3146 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3147 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3148 pr_err("VMCB State Save Area:\n"); 3149 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3150 "es:", 3151 save->es.selector, save->es.attrib, 3152 save->es.limit, save->es.base); 3153 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3154 "cs:", 3155 save->cs.selector, save->cs.attrib, 3156 save->cs.limit, save->cs.base); 3157 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3158 "ss:", 3159 save->ss.selector, save->ss.attrib, 3160 save->ss.limit, save->ss.base); 3161 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3162 "ds:", 3163 save->ds.selector, save->ds.attrib, 3164 save->ds.limit, save->ds.base); 3165 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3166 "fs:", 3167 save01->fs.selector, save01->fs.attrib, 3168 save01->fs.limit, save01->fs.base); 3169 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3170 "gs:", 3171 save01->gs.selector, save01->gs.attrib, 3172 save01->gs.limit, save01->gs.base); 3173 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3174 "gdtr:", 3175 save->gdtr.selector, save->gdtr.attrib, 3176 save->gdtr.limit, save->gdtr.base); 3177 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3178 "ldtr:", 3179 save01->ldtr.selector, save01->ldtr.attrib, 3180 save01->ldtr.limit, save01->ldtr.base); 3181 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3182 "idtr:", 3183 save->idtr.selector, save->idtr.attrib, 3184 save->idtr.limit, save->idtr.base); 3185 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3186 "tr:", 3187 save01->tr.selector, save01->tr.attrib, 3188 save01->tr.limit, save01->tr.base); 3189 pr_err("cpl: %d efer: %016llx\n", 3190 save->cpl, save->efer); 3191 pr_err("%-15s %016llx %-13s %016llx\n", 3192 "cr0:", save->cr0, "cr2:", save->cr2); 3193 pr_err("%-15s %016llx %-13s %016llx\n", 3194 "cr3:", save->cr3, "cr4:", save->cr4); 3195 pr_err("%-15s %016llx %-13s %016llx\n", 3196 "dr6:", save->dr6, "dr7:", save->dr7); 3197 pr_err("%-15s %016llx %-13s %016llx\n", 3198 "rip:", save->rip, "rflags:", save->rflags); 3199 pr_err("%-15s %016llx %-13s %016llx\n", 3200 "rsp:", save->rsp, "rax:", save->rax); 3201 pr_err("%-15s %016llx %-13s %016llx\n", 3202 "star:", save01->star, "lstar:", save01->lstar); 3203 pr_err("%-15s %016llx %-13s %016llx\n", 3204 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3205 pr_err("%-15s %016llx %-13s %016llx\n", 3206 "kernel_gs_base:", save01->kernel_gs_base, 3207 "sysenter_cs:", save01->sysenter_cs); 3208 pr_err("%-15s %016llx %-13s %016llx\n", 3209 "sysenter_esp:", save01->sysenter_esp, 3210 "sysenter_eip:", save01->sysenter_eip); 3211 pr_err("%-15s %016llx %-13s %016llx\n", 3212 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3213 pr_err("%-15s %016llx %-13s %016llx\n", 3214 "br_from:", save->br_from, "br_to:", save->br_to); 3215 pr_err("%-15s %016llx %-13s %016llx\n", 3216 "excp_from:", save->last_excp_from, 3217 "excp_to:", save->last_excp_to); 3218 } 3219 3220 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3221 { 3222 if (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3223 svm_exit_handlers[exit_code]) 3224 return 0; 3225 3226 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3227 dump_vmcb(vcpu); 3228 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3229 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3230 vcpu->run->internal.ndata = 2; 3231 vcpu->run->internal.data[0] = exit_code; 3232 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3233 3234 return -EINVAL; 3235 } 3236 3237 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3238 { 3239 if (svm_handle_invalid_exit(vcpu, exit_code)) 3240 return 0; 3241 3242 #ifdef CONFIG_RETPOLINE 3243 if (exit_code == SVM_EXIT_MSR) 3244 return msr_interception(vcpu); 3245 else if (exit_code == SVM_EXIT_VINTR) 3246 return interrupt_window_interception(vcpu); 3247 else if (exit_code == SVM_EXIT_INTR) 3248 return intr_interception(vcpu); 3249 else if (exit_code == SVM_EXIT_HLT) 3250 return kvm_emulate_halt(vcpu); 3251 else if (exit_code == SVM_EXIT_NPF) 3252 return npf_interception(vcpu); 3253 #endif 3254 return svm_exit_handlers[exit_code](vcpu); 3255 } 3256 3257 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3258 u32 *intr_info, u32 *error_code) 3259 { 3260 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3261 3262 *info1 = control->exit_info_1; 3263 *info2 = control->exit_info_2; 3264 *intr_info = control->exit_int_info; 3265 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3266 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3267 *error_code = control->exit_int_info_err; 3268 else 3269 *error_code = 0; 3270 } 3271 3272 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3273 { 3274 struct vcpu_svm *svm = to_svm(vcpu); 3275 struct kvm_run *kvm_run = vcpu->run; 3276 u32 exit_code = svm->vmcb->control.exit_code; 3277 3278 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3279 3280 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3281 if (!sev_es_guest(vcpu->kvm)) { 3282 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3283 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3284 if (npt_enabled) 3285 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3286 } 3287 3288 if (is_guest_mode(vcpu)) { 3289 int vmexit; 3290 3291 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3292 3293 vmexit = nested_svm_exit_special(svm); 3294 3295 if (vmexit == NESTED_EXIT_CONTINUE) 3296 vmexit = nested_svm_exit_handled(svm); 3297 3298 if (vmexit == NESTED_EXIT_DONE) 3299 return 1; 3300 } 3301 3302 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3303 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3304 kvm_run->fail_entry.hardware_entry_failure_reason 3305 = svm->vmcb->control.exit_code; 3306 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3307 dump_vmcb(vcpu); 3308 return 0; 3309 } 3310 3311 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3312 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3313 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3314 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3315 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3316 "exit_code 0x%x\n", 3317 __func__, svm->vmcb->control.exit_int_info, 3318 exit_code); 3319 3320 if (exit_fastpath != EXIT_FASTPATH_NONE) 3321 return 1; 3322 3323 return svm_invoke_exit_handler(vcpu, exit_code); 3324 } 3325 3326 static void reload_tss(struct kvm_vcpu *vcpu) 3327 { 3328 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3329 3330 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3331 load_TR_desc(); 3332 } 3333 3334 static void pre_svm_run(struct kvm_vcpu *vcpu) 3335 { 3336 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3337 struct vcpu_svm *svm = to_svm(vcpu); 3338 3339 /* 3340 * If the previous vmrun of the vmcb occurred on a different physical 3341 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3342 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3343 */ 3344 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3345 svm->current_vmcb->asid_generation = 0; 3346 vmcb_mark_all_dirty(svm->vmcb); 3347 svm->current_vmcb->cpu = vcpu->cpu; 3348 } 3349 3350 if (sev_guest(vcpu->kvm)) 3351 return pre_sev_run(svm, vcpu->cpu); 3352 3353 /* FIXME: handle wraparound of asid_generation */ 3354 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3355 new_asid(svm, sd); 3356 } 3357 3358 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3359 { 3360 struct vcpu_svm *svm = to_svm(vcpu); 3361 3362 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3363 vcpu->arch.hflags |= HF_NMI_MASK; 3364 if (!sev_es_guest(vcpu->kvm)) 3365 svm_set_intercept(svm, INTERCEPT_IRET); 3366 ++vcpu->stat.nmi_injections; 3367 } 3368 3369 static void svm_set_irq(struct kvm_vcpu *vcpu) 3370 { 3371 struct vcpu_svm *svm = to_svm(vcpu); 3372 3373 BUG_ON(!(gif_set(svm))); 3374 3375 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3376 ++vcpu->stat.irq_injections; 3377 3378 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3379 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3380 } 3381 3382 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3383 { 3384 struct vcpu_svm *svm = to_svm(vcpu); 3385 3386 /* 3387 * SEV-ES guests must always keep the CR intercepts cleared. CR 3388 * tracking is done using the CR write traps. 3389 */ 3390 if (sev_es_guest(vcpu->kvm)) 3391 return; 3392 3393 if (nested_svm_virtualize_tpr(vcpu)) 3394 return; 3395 3396 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3397 3398 if (irr == -1) 3399 return; 3400 3401 if (tpr >= irr) 3402 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3403 } 3404 3405 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3406 { 3407 struct vcpu_svm *svm = to_svm(vcpu); 3408 struct vmcb *vmcb = svm->vmcb; 3409 bool ret; 3410 3411 if (!gif_set(svm)) 3412 return true; 3413 3414 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3415 return false; 3416 3417 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3418 (vcpu->arch.hflags & HF_NMI_MASK); 3419 3420 return ret; 3421 } 3422 3423 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3424 { 3425 struct vcpu_svm *svm = to_svm(vcpu); 3426 if (svm->nested.nested_run_pending) 3427 return -EBUSY; 3428 3429 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3430 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3431 return -EBUSY; 3432 3433 return !svm_nmi_blocked(vcpu); 3434 } 3435 3436 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3437 { 3438 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3439 } 3440 3441 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3442 { 3443 struct vcpu_svm *svm = to_svm(vcpu); 3444 3445 if (masked) { 3446 vcpu->arch.hflags |= HF_NMI_MASK; 3447 if (!sev_es_guest(vcpu->kvm)) 3448 svm_set_intercept(svm, INTERCEPT_IRET); 3449 } else { 3450 vcpu->arch.hflags &= ~HF_NMI_MASK; 3451 if (!sev_es_guest(vcpu->kvm)) 3452 svm_clr_intercept(svm, INTERCEPT_IRET); 3453 } 3454 } 3455 3456 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3457 { 3458 struct vcpu_svm *svm = to_svm(vcpu); 3459 struct vmcb *vmcb = svm->vmcb; 3460 3461 if (!gif_set(svm)) 3462 return true; 3463 3464 if (sev_es_guest(vcpu->kvm)) { 3465 /* 3466 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3467 * bit to determine the state of the IF flag. 3468 */ 3469 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3470 return true; 3471 } else if (is_guest_mode(vcpu)) { 3472 /* As long as interrupts are being delivered... */ 3473 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3474 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3475 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3476 return true; 3477 3478 /* ... vmexits aren't blocked by the interrupt shadow */ 3479 if (nested_exit_on_intr(svm)) 3480 return false; 3481 } else { 3482 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3483 return true; 3484 } 3485 3486 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3487 } 3488 3489 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3490 { 3491 struct vcpu_svm *svm = to_svm(vcpu); 3492 if (svm->nested.nested_run_pending) 3493 return -EBUSY; 3494 3495 /* 3496 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3497 * e.g. if the IRQ arrived asynchronously after checking nested events. 3498 */ 3499 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3500 return -EBUSY; 3501 3502 return !svm_interrupt_blocked(vcpu); 3503 } 3504 3505 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3506 { 3507 struct vcpu_svm *svm = to_svm(vcpu); 3508 3509 /* 3510 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3511 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3512 * get that intercept, this function will be called again though and 3513 * we'll get the vintr intercept. However, if the vGIF feature is 3514 * enabled, the STGI interception will not occur. Enable the irq 3515 * window under the assumption that the hardware will set the GIF. 3516 */ 3517 if (vgif_enabled(svm) || gif_set(svm)) { 3518 /* 3519 * IRQ window is not needed when AVIC is enabled, 3520 * unless we have pending ExtINT since it cannot be injected 3521 * via AVIC. In such case, we need to temporarily disable AVIC, 3522 * and fallback to injecting IRQ via V_IRQ. 3523 */ 3524 svm_toggle_avic_for_irq_window(vcpu, false); 3525 svm_set_vintr(svm); 3526 } 3527 } 3528 3529 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3530 { 3531 struct vcpu_svm *svm = to_svm(vcpu); 3532 3533 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3534 return; /* IRET will cause a vm exit */ 3535 3536 if (!gif_set(svm)) { 3537 if (vgif_enabled(svm)) 3538 svm_set_intercept(svm, INTERCEPT_STGI); 3539 return; /* STGI will cause a vm exit */ 3540 } 3541 3542 /* 3543 * Something prevents NMI from been injected. Single step over possible 3544 * problem (IRET or exception injection or interrupt shadow) 3545 */ 3546 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3547 svm->nmi_singlestep = true; 3548 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3549 } 3550 3551 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3552 { 3553 return 0; 3554 } 3555 3556 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3557 { 3558 return 0; 3559 } 3560 3561 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3562 { 3563 struct vcpu_svm *svm = to_svm(vcpu); 3564 3565 /* 3566 * Flush only the current ASID even if the TLB flush was invoked via 3567 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3568 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3569 * unconditionally does a TLB flush on both nested VM-Enter and nested 3570 * VM-Exit (via kvm_mmu_reset_context()). 3571 */ 3572 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3573 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3574 else 3575 svm->current_vmcb->asid_generation--; 3576 } 3577 3578 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3579 { 3580 struct vcpu_svm *svm = to_svm(vcpu); 3581 3582 invlpga(gva, svm->vmcb->control.asid); 3583 } 3584 3585 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3586 { 3587 struct vcpu_svm *svm = to_svm(vcpu); 3588 3589 if (nested_svm_virtualize_tpr(vcpu)) 3590 return; 3591 3592 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3593 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3594 kvm_set_cr8(vcpu, cr8); 3595 } 3596 } 3597 3598 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3599 { 3600 struct vcpu_svm *svm = to_svm(vcpu); 3601 u64 cr8; 3602 3603 if (nested_svm_virtualize_tpr(vcpu) || 3604 kvm_vcpu_apicv_active(vcpu)) 3605 return; 3606 3607 cr8 = kvm_get_cr8(vcpu); 3608 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3609 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3610 } 3611 3612 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3613 { 3614 struct vcpu_svm *svm = to_svm(vcpu); 3615 u8 vector; 3616 int type; 3617 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3618 unsigned int3_injected = svm->int3_injected; 3619 3620 svm->int3_injected = 0; 3621 3622 /* 3623 * If we've made progress since setting HF_IRET_MASK, we've 3624 * executed an IRET and can allow NMI injection. 3625 */ 3626 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3627 (sev_es_guest(vcpu->kvm) || 3628 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3629 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3630 kvm_make_request(KVM_REQ_EVENT, vcpu); 3631 } 3632 3633 vcpu->arch.nmi_injected = false; 3634 kvm_clear_exception_queue(vcpu); 3635 kvm_clear_interrupt_queue(vcpu); 3636 3637 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3638 return; 3639 3640 kvm_make_request(KVM_REQ_EVENT, vcpu); 3641 3642 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3643 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3644 3645 switch (type) { 3646 case SVM_EXITINTINFO_TYPE_NMI: 3647 vcpu->arch.nmi_injected = true; 3648 break; 3649 case SVM_EXITINTINFO_TYPE_EXEPT: 3650 /* 3651 * Never re-inject a #VC exception. 3652 */ 3653 if (vector == X86_TRAP_VC) 3654 break; 3655 3656 /* 3657 * In case of software exceptions, do not reinject the vector, 3658 * but re-execute the instruction instead. Rewind RIP first 3659 * if we emulated INT3 before. 3660 */ 3661 if (kvm_exception_is_soft(vector)) { 3662 if (vector == BP_VECTOR && int3_injected && 3663 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3664 kvm_rip_write(vcpu, 3665 kvm_rip_read(vcpu) - int3_injected); 3666 break; 3667 } 3668 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3669 u32 err = svm->vmcb->control.exit_int_info_err; 3670 kvm_requeue_exception_e(vcpu, vector, err); 3671 3672 } else 3673 kvm_requeue_exception(vcpu, vector); 3674 break; 3675 case SVM_EXITINTINFO_TYPE_INTR: 3676 kvm_queue_interrupt(vcpu, vector, false); 3677 break; 3678 default: 3679 break; 3680 } 3681 } 3682 3683 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3684 { 3685 struct vcpu_svm *svm = to_svm(vcpu); 3686 struct vmcb_control_area *control = &svm->vmcb->control; 3687 3688 control->exit_int_info = control->event_inj; 3689 control->exit_int_info_err = control->event_inj_err; 3690 control->event_inj = 0; 3691 svm_complete_interrupts(vcpu); 3692 } 3693 3694 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3695 { 3696 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3697 to_svm(vcpu)->vmcb->control.exit_info_1) 3698 return handle_fastpath_set_msr_irqoff(vcpu); 3699 3700 return EXIT_FASTPATH_NONE; 3701 } 3702 3703 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3704 { 3705 struct vcpu_svm *svm = to_svm(vcpu); 3706 unsigned long vmcb_pa = svm->current_vmcb->pa; 3707 3708 kvm_guest_enter_irqoff(); 3709 3710 if (sev_es_guest(vcpu->kvm)) { 3711 __svm_sev_es_vcpu_run(vmcb_pa); 3712 } else { 3713 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3714 3715 /* 3716 * Use a single vmcb (vmcb01 because it's always valid) for 3717 * context switching guest state via VMLOAD/VMSAVE, that way 3718 * the state doesn't need to be copied between vmcb01 and 3719 * vmcb02 when switching vmcbs for nested virtualization. 3720 */ 3721 vmload(svm->vmcb01.pa); 3722 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3723 vmsave(svm->vmcb01.pa); 3724 3725 vmload(__sme_page_pa(sd->save_area)); 3726 } 3727 3728 kvm_guest_exit_irqoff(); 3729 } 3730 3731 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3732 { 3733 struct vcpu_svm *svm = to_svm(vcpu); 3734 3735 trace_kvm_entry(vcpu); 3736 3737 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3738 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3739 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3740 3741 /* 3742 * Disable singlestep if we're injecting an interrupt/exception. 3743 * We don't want our modified rflags to be pushed on the stack where 3744 * we might not be able to easily reset them if we disabled NMI 3745 * singlestep later. 3746 */ 3747 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3748 /* 3749 * Event injection happens before external interrupts cause a 3750 * vmexit and interrupts are disabled here, so smp_send_reschedule 3751 * is enough to force an immediate vmexit. 3752 */ 3753 disable_nmi_singlestep(svm); 3754 smp_send_reschedule(vcpu->cpu); 3755 } 3756 3757 pre_svm_run(vcpu); 3758 3759 sync_lapic_to_cr8(vcpu); 3760 3761 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3762 svm->vmcb->control.asid = svm->asid; 3763 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3764 } 3765 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3766 3767 /* 3768 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3769 * of a #DB. 3770 */ 3771 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3772 svm_set_dr6(svm, vcpu->arch.dr6); 3773 else 3774 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3775 3776 clgi(); 3777 kvm_load_guest_xsave_state(vcpu); 3778 3779 kvm_wait_lapic_expire(vcpu); 3780 3781 /* 3782 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3783 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3784 * is no need to worry about the conditional branch over the wrmsr 3785 * being speculatively taken. 3786 */ 3787 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3788 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3789 3790 svm_vcpu_enter_exit(vcpu); 3791 3792 /* 3793 * We do not use IBRS in the kernel. If this vCPU has used the 3794 * SPEC_CTRL MSR it may have left it on; save the value and 3795 * turn it off. This is much more efficient than blindly adding 3796 * it to the atomic save/restore list. Especially as the former 3797 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3798 * 3799 * For non-nested case: 3800 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3801 * save it. 3802 * 3803 * For nested case: 3804 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3805 * save it. 3806 */ 3807 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3808 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3809 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3810 3811 if (!sev_es_guest(vcpu->kvm)) 3812 reload_tss(vcpu); 3813 3814 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3815 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3816 3817 if (!sev_es_guest(vcpu->kvm)) { 3818 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3819 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3820 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3821 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3822 } 3823 3824 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3825 kvm_before_interrupt(vcpu); 3826 3827 kvm_load_host_xsave_state(vcpu); 3828 stgi(); 3829 3830 /* Any pending NMI will happen here */ 3831 3832 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3833 kvm_after_interrupt(vcpu); 3834 3835 sync_cr8_to_lapic(vcpu); 3836 3837 svm->next_rip = 0; 3838 if (is_guest_mode(vcpu)) { 3839 nested_sync_control_from_vmcb02(svm); 3840 svm->nested.nested_run_pending = 0; 3841 } 3842 3843 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3844 vmcb_mark_all_clean(svm->vmcb); 3845 3846 /* if exit due to PF check for async PF */ 3847 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3848 vcpu->arch.apf.host_apf_flags = 3849 kvm_read_and_reset_apf_flags(); 3850 3851 if (npt_enabled) { 3852 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); 3853 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); 3854 } 3855 3856 /* 3857 * We need to handle MC intercepts here before the vcpu has a chance to 3858 * change the physical cpu 3859 */ 3860 if (unlikely(svm->vmcb->control.exit_code == 3861 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3862 svm_handle_mce(vcpu); 3863 3864 svm_complete_interrupts(vcpu); 3865 3866 if (is_guest_mode(vcpu)) 3867 return EXIT_FASTPATH_NONE; 3868 3869 return svm_exit_handlers_fastpath(vcpu); 3870 } 3871 3872 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3873 int root_level) 3874 { 3875 struct vcpu_svm *svm = to_svm(vcpu); 3876 unsigned long cr3; 3877 3878 if (npt_enabled) { 3879 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3880 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3881 3882 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3883 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3884 return; 3885 cr3 = vcpu->arch.cr3; 3886 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3887 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 3888 } else { 3889 /* PCID in the guest should be impossible with a 32-bit MMU. */ 3890 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 3891 cr3 = root_hpa; 3892 } 3893 3894 svm->vmcb->save.cr3 = cr3; 3895 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3896 } 3897 3898 static int is_disabled(void) 3899 { 3900 u64 vm_cr; 3901 3902 rdmsrl(MSR_VM_CR, vm_cr); 3903 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3904 return 1; 3905 3906 return 0; 3907 } 3908 3909 static void 3910 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3911 { 3912 /* 3913 * Patch in the VMMCALL instruction: 3914 */ 3915 hypercall[0] = 0x0f; 3916 hypercall[1] = 0x01; 3917 hypercall[2] = 0xd9; 3918 } 3919 3920 static int __init svm_check_processor_compat(void) 3921 { 3922 return 0; 3923 } 3924 3925 static bool svm_cpu_has_accelerated_tpr(void) 3926 { 3927 return false; 3928 } 3929 3930 /* 3931 * The kvm parameter can be NULL (module initialization, or invocation before 3932 * VM creation). Be sure to check the kvm parameter before using it. 3933 */ 3934 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3935 { 3936 switch (index) { 3937 case MSR_IA32_MCG_EXT_CTL: 3938 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3939 return false; 3940 case MSR_IA32_SMBASE: 3941 /* SEV-ES guests do not support SMM, so report false */ 3942 if (kvm && sev_es_guest(kvm)) 3943 return false; 3944 break; 3945 default: 3946 break; 3947 } 3948 3949 return true; 3950 } 3951 3952 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 3953 { 3954 return 0; 3955 } 3956 3957 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 3958 { 3959 struct vcpu_svm *svm = to_svm(vcpu); 3960 struct kvm_cpuid_entry2 *best; 3961 3962 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3963 boot_cpu_has(X86_FEATURE_XSAVE) && 3964 boot_cpu_has(X86_FEATURE_XSAVES); 3965 3966 /* Update nrips enabled cache */ 3967 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 3968 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 3969 3970 svm_recalc_instruction_intercepts(vcpu, svm); 3971 3972 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 3973 if (sev_guest(vcpu->kvm)) { 3974 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 3975 if (best) 3976 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 3977 } 3978 3979 if (kvm_vcpu_apicv_active(vcpu)) { 3980 /* 3981 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 3982 * is exposed to the guest, disable AVIC. 3983 */ 3984 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 3985 kvm_request_apicv_update(vcpu->kvm, false, 3986 APICV_INHIBIT_REASON_X2APIC); 3987 3988 /* 3989 * Currently, AVIC does not work with nested virtualization. 3990 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 3991 */ 3992 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 3993 kvm_request_apicv_update(vcpu->kvm, false, 3994 APICV_INHIBIT_REASON_NESTED); 3995 } 3996 3997 if (guest_cpuid_is_intel(vcpu)) { 3998 /* 3999 * We must intercept SYSENTER_EIP and SYSENTER_ESP 4000 * accesses because the processor only stores 32 bits. 4001 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 4002 */ 4003 svm_set_intercept(svm, INTERCEPT_VMLOAD); 4004 svm_set_intercept(svm, INTERCEPT_VMSAVE); 4005 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4006 4007 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 4008 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 4009 } else { 4010 /* 4011 * If hardware supports Virtual VMLOAD VMSAVE then enable it 4012 * in VMCB and clear intercepts to avoid #VMEXIT. 4013 */ 4014 if (vls) { 4015 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 4016 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 4017 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4018 } 4019 /* No need to intercept these MSRs */ 4020 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 4021 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 4022 } 4023 } 4024 4025 static bool svm_has_wbinvd_exit(void) 4026 { 4027 return true; 4028 } 4029 4030 #define PRE_EX(exit) { .exit_code = (exit), \ 4031 .stage = X86_ICPT_PRE_EXCEPT, } 4032 #define POST_EX(exit) { .exit_code = (exit), \ 4033 .stage = X86_ICPT_POST_EXCEPT, } 4034 #define POST_MEM(exit) { .exit_code = (exit), \ 4035 .stage = X86_ICPT_POST_MEMACCESS, } 4036 4037 static const struct __x86_intercept { 4038 u32 exit_code; 4039 enum x86_intercept_stage stage; 4040 } x86_intercept_map[] = { 4041 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4042 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4043 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4044 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4045 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4046 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4047 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4048 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4049 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4050 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4051 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4052 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4053 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4054 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4055 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4056 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4057 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4058 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4059 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4060 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4061 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4062 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4063 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4064 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4065 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4066 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4067 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4068 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4069 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4070 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4071 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4072 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4073 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4074 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4075 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4076 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4077 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4078 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4079 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4080 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4081 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4082 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4083 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4084 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4085 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4086 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4087 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4088 }; 4089 4090 #undef PRE_EX 4091 #undef POST_EX 4092 #undef POST_MEM 4093 4094 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4095 struct x86_instruction_info *info, 4096 enum x86_intercept_stage stage, 4097 struct x86_exception *exception) 4098 { 4099 struct vcpu_svm *svm = to_svm(vcpu); 4100 int vmexit, ret = X86EMUL_CONTINUE; 4101 struct __x86_intercept icpt_info; 4102 struct vmcb *vmcb = svm->vmcb; 4103 4104 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4105 goto out; 4106 4107 icpt_info = x86_intercept_map[info->intercept]; 4108 4109 if (stage != icpt_info.stage) 4110 goto out; 4111 4112 switch (icpt_info.exit_code) { 4113 case SVM_EXIT_READ_CR0: 4114 if (info->intercept == x86_intercept_cr_read) 4115 icpt_info.exit_code += info->modrm_reg; 4116 break; 4117 case SVM_EXIT_WRITE_CR0: { 4118 unsigned long cr0, val; 4119 4120 if (info->intercept == x86_intercept_cr_write) 4121 icpt_info.exit_code += info->modrm_reg; 4122 4123 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4124 info->intercept == x86_intercept_clts) 4125 break; 4126 4127 if (!(vmcb_is_intercept(&svm->nested.ctl, 4128 INTERCEPT_SELECTIVE_CR0))) 4129 break; 4130 4131 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4132 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4133 4134 if (info->intercept == x86_intercept_lmsw) { 4135 cr0 &= 0xfUL; 4136 val &= 0xfUL; 4137 /* lmsw can't clear PE - catch this here */ 4138 if (cr0 & X86_CR0_PE) 4139 val |= X86_CR0_PE; 4140 } 4141 4142 if (cr0 ^ val) 4143 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4144 4145 break; 4146 } 4147 case SVM_EXIT_READ_DR0: 4148 case SVM_EXIT_WRITE_DR0: 4149 icpt_info.exit_code += info->modrm_reg; 4150 break; 4151 case SVM_EXIT_MSR: 4152 if (info->intercept == x86_intercept_wrmsr) 4153 vmcb->control.exit_info_1 = 1; 4154 else 4155 vmcb->control.exit_info_1 = 0; 4156 break; 4157 case SVM_EXIT_PAUSE: 4158 /* 4159 * We get this for NOP only, but pause 4160 * is rep not, check this here 4161 */ 4162 if (info->rep_prefix != REPE_PREFIX) 4163 goto out; 4164 break; 4165 case SVM_EXIT_IOIO: { 4166 u64 exit_info; 4167 u32 bytes; 4168 4169 if (info->intercept == x86_intercept_in || 4170 info->intercept == x86_intercept_ins) { 4171 exit_info = ((info->src_val & 0xffff) << 16) | 4172 SVM_IOIO_TYPE_MASK; 4173 bytes = info->dst_bytes; 4174 } else { 4175 exit_info = (info->dst_val & 0xffff) << 16; 4176 bytes = info->src_bytes; 4177 } 4178 4179 if (info->intercept == x86_intercept_outs || 4180 info->intercept == x86_intercept_ins) 4181 exit_info |= SVM_IOIO_STR_MASK; 4182 4183 if (info->rep_prefix) 4184 exit_info |= SVM_IOIO_REP_MASK; 4185 4186 bytes = min(bytes, 4u); 4187 4188 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4189 4190 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4191 4192 vmcb->control.exit_info_1 = exit_info; 4193 vmcb->control.exit_info_2 = info->next_rip; 4194 4195 break; 4196 } 4197 default: 4198 break; 4199 } 4200 4201 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4202 if (static_cpu_has(X86_FEATURE_NRIPS)) 4203 vmcb->control.next_rip = info->next_rip; 4204 vmcb->control.exit_code = icpt_info.exit_code; 4205 vmexit = nested_svm_exit_handled(svm); 4206 4207 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4208 : X86EMUL_CONTINUE; 4209 4210 out: 4211 return ret; 4212 } 4213 4214 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4215 { 4216 } 4217 4218 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4219 { 4220 if (!kvm_pause_in_guest(vcpu->kvm)) 4221 shrink_ple_window(vcpu); 4222 } 4223 4224 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4225 { 4226 /* [63:9] are reserved. */ 4227 vcpu->arch.mcg_cap &= 0x1ff; 4228 } 4229 4230 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4231 { 4232 struct vcpu_svm *svm = to_svm(vcpu); 4233 4234 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4235 if (!gif_set(svm)) 4236 return true; 4237 4238 return is_smm(vcpu); 4239 } 4240 4241 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4242 { 4243 struct vcpu_svm *svm = to_svm(vcpu); 4244 if (svm->nested.nested_run_pending) 4245 return -EBUSY; 4246 4247 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4248 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4249 return -EBUSY; 4250 4251 return !svm_smi_blocked(vcpu); 4252 } 4253 4254 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4255 { 4256 struct vcpu_svm *svm = to_svm(vcpu); 4257 int ret; 4258 4259 if (is_guest_mode(vcpu)) { 4260 /* FED8h - SVM Guest */ 4261 put_smstate(u64, smstate, 0x7ed8, 1); 4262 /* FEE0h - SVM Guest VMCB Physical Address */ 4263 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4264 4265 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4266 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4267 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4268 4269 ret = nested_svm_vmexit(svm); 4270 if (ret) 4271 return ret; 4272 } 4273 return 0; 4274 } 4275 4276 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4277 { 4278 struct vcpu_svm *svm = to_svm(vcpu); 4279 struct kvm_host_map map; 4280 int ret = 0; 4281 4282 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { 4283 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4284 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 4285 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4286 4287 if (guest) { 4288 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4289 return 1; 4290 4291 if (!(saved_efer & EFER_SVME)) 4292 return 1; 4293 4294 if (kvm_vcpu_map(vcpu, 4295 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4296 return 1; 4297 4298 if (svm_allocate_nested(svm)) 4299 return 1; 4300 4301 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, map.hva); 4302 kvm_vcpu_unmap(vcpu, &map, true); 4303 } 4304 } 4305 4306 return ret; 4307 } 4308 4309 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4310 { 4311 struct vcpu_svm *svm = to_svm(vcpu); 4312 4313 if (!gif_set(svm)) { 4314 if (vgif_enabled(svm)) 4315 svm_set_intercept(svm, INTERCEPT_STGI); 4316 /* STGI will cause a vm exit */ 4317 } else { 4318 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4319 } 4320 } 4321 4322 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4323 { 4324 bool smep, smap, is_user; 4325 unsigned long cr4; 4326 4327 /* 4328 * When the guest is an SEV-ES guest, emulation is not possible. 4329 */ 4330 if (sev_es_guest(vcpu->kvm)) 4331 return false; 4332 4333 /* 4334 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4335 * 4336 * Errata: 4337 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4338 * possible that CPU microcode implementing DecodeAssist will fail 4339 * to read bytes of instruction which caused #NPF. In this case, 4340 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4341 * return 0 instead of the correct guest instruction bytes. 4342 * 4343 * This happens because CPU microcode reading instruction bytes 4344 * uses a special opcode which attempts to read data using CPL=0 4345 * privileges. The microcode reads CS:RIP and if it hits a SMAP 4346 * fault, it gives up and returns no instruction bytes. 4347 * 4348 * Detection: 4349 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4350 * returned 0 in GuestIntrBytes field of the VMCB. 4351 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4352 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4353 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4354 * a SMEP fault instead of #NPF). 4355 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4356 * As most guests enable SMAP if they have also enabled SMEP, use above 4357 * logic in order to attempt minimize false-positive of detecting errata 4358 * while still preserving all cases semantic correctness. 4359 * 4360 * Workaround: 4361 * To determine what instruction the guest was executing, the hypervisor 4362 * will have to decode the instruction at the instruction pointer. 4363 * 4364 * In non SEV guest, hypervisor will be able to read the guest 4365 * memory to decode the instruction pointer when insn_len is zero 4366 * so we return true to indicate that decoding is possible. 4367 * 4368 * But in the SEV guest, the guest memory is encrypted with the 4369 * guest specific key and hypervisor will not be able to decode the 4370 * instruction pointer so we will not able to workaround it. Lets 4371 * print the error and request to kill the guest. 4372 */ 4373 if (likely(!insn || insn_len)) 4374 return true; 4375 4376 /* 4377 * If RIP is invalid, go ahead with emulation which will cause an 4378 * internal error exit. 4379 */ 4380 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4381 return true; 4382 4383 cr4 = kvm_read_cr4(vcpu); 4384 smep = cr4 & X86_CR4_SMEP; 4385 smap = cr4 & X86_CR4_SMAP; 4386 is_user = svm_get_cpl(vcpu) == 3; 4387 if (smap && (!smep || is_user)) { 4388 if (!sev_guest(vcpu->kvm)) 4389 return true; 4390 4391 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4392 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4393 } 4394 4395 return false; 4396 } 4397 4398 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4399 { 4400 struct vcpu_svm *svm = to_svm(vcpu); 4401 4402 /* 4403 * TODO: Last condition latch INIT signals on vCPU when 4404 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4405 * To properly emulate the INIT intercept, 4406 * svm_check_nested_events() should call nested_svm_vmexit() 4407 * if an INIT signal is pending. 4408 */ 4409 return !gif_set(svm) || 4410 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4411 } 4412 4413 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4414 { 4415 if (!sev_es_guest(vcpu->kvm)) 4416 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4417 4418 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4419 } 4420 4421 static void svm_vm_destroy(struct kvm *kvm) 4422 { 4423 avic_vm_destroy(kvm); 4424 sev_vm_destroy(kvm); 4425 } 4426 4427 static int svm_vm_init(struct kvm *kvm) 4428 { 4429 if (!pause_filter_count || !pause_filter_thresh) 4430 kvm->arch.pause_in_guest = true; 4431 4432 if (avic) { 4433 int ret = avic_vm_init(kvm); 4434 if (ret) 4435 return ret; 4436 } 4437 4438 kvm_apicv_init(kvm, avic); 4439 return 0; 4440 } 4441 4442 static struct kvm_x86_ops svm_x86_ops __initdata = { 4443 .hardware_unsetup = svm_hardware_teardown, 4444 .hardware_enable = svm_hardware_enable, 4445 .hardware_disable = svm_hardware_disable, 4446 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4447 .has_emulated_msr = svm_has_emulated_msr, 4448 4449 .vcpu_create = svm_create_vcpu, 4450 .vcpu_free = svm_free_vcpu, 4451 .vcpu_reset = svm_vcpu_reset, 4452 4453 .vm_size = sizeof(struct kvm_svm), 4454 .vm_init = svm_vm_init, 4455 .vm_destroy = svm_vm_destroy, 4456 4457 .prepare_guest_switch = svm_prepare_guest_switch, 4458 .vcpu_load = svm_vcpu_load, 4459 .vcpu_put = svm_vcpu_put, 4460 .vcpu_blocking = svm_vcpu_blocking, 4461 .vcpu_unblocking = svm_vcpu_unblocking, 4462 4463 .update_exception_bitmap = svm_update_exception_bitmap, 4464 .get_msr_feature = svm_get_msr_feature, 4465 .get_msr = svm_get_msr, 4466 .set_msr = svm_set_msr, 4467 .get_segment_base = svm_get_segment_base, 4468 .get_segment = svm_get_segment, 4469 .set_segment = svm_set_segment, 4470 .get_cpl = svm_get_cpl, 4471 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4472 .set_cr0 = svm_set_cr0, 4473 .is_valid_cr4 = svm_is_valid_cr4, 4474 .set_cr4 = svm_set_cr4, 4475 .set_efer = svm_set_efer, 4476 .get_idt = svm_get_idt, 4477 .set_idt = svm_set_idt, 4478 .get_gdt = svm_get_gdt, 4479 .set_gdt = svm_set_gdt, 4480 .set_dr7 = svm_set_dr7, 4481 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4482 .cache_reg = svm_cache_reg, 4483 .get_rflags = svm_get_rflags, 4484 .set_rflags = svm_set_rflags, 4485 4486 .tlb_flush_all = svm_flush_tlb, 4487 .tlb_flush_current = svm_flush_tlb, 4488 .tlb_flush_gva = svm_flush_tlb_gva, 4489 .tlb_flush_guest = svm_flush_tlb, 4490 4491 .run = svm_vcpu_run, 4492 .handle_exit = handle_exit, 4493 .skip_emulated_instruction = skip_emulated_instruction, 4494 .update_emulated_instruction = NULL, 4495 .set_interrupt_shadow = svm_set_interrupt_shadow, 4496 .get_interrupt_shadow = svm_get_interrupt_shadow, 4497 .patch_hypercall = svm_patch_hypercall, 4498 .set_irq = svm_set_irq, 4499 .set_nmi = svm_inject_nmi, 4500 .queue_exception = svm_queue_exception, 4501 .cancel_injection = svm_cancel_injection, 4502 .interrupt_allowed = svm_interrupt_allowed, 4503 .nmi_allowed = svm_nmi_allowed, 4504 .get_nmi_mask = svm_get_nmi_mask, 4505 .set_nmi_mask = svm_set_nmi_mask, 4506 .enable_nmi_window = svm_enable_nmi_window, 4507 .enable_irq_window = svm_enable_irq_window, 4508 .update_cr8_intercept = svm_update_cr8_intercept, 4509 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4510 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4511 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4512 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4513 .load_eoi_exitmap = svm_load_eoi_exitmap, 4514 .hwapic_irr_update = svm_hwapic_irr_update, 4515 .hwapic_isr_update = svm_hwapic_isr_update, 4516 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4517 .apicv_post_state_restore = avic_post_state_restore, 4518 4519 .set_tss_addr = svm_set_tss_addr, 4520 .set_identity_map_addr = svm_set_identity_map_addr, 4521 .get_mt_mask = svm_get_mt_mask, 4522 4523 .get_exit_info = svm_get_exit_info, 4524 4525 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4526 4527 .has_wbinvd_exit = svm_has_wbinvd_exit, 4528 4529 .write_l1_tsc_offset = svm_write_l1_tsc_offset, 4530 4531 .load_mmu_pgd = svm_load_mmu_pgd, 4532 4533 .check_intercept = svm_check_intercept, 4534 .handle_exit_irqoff = svm_handle_exit_irqoff, 4535 4536 .request_immediate_exit = __kvm_request_immediate_exit, 4537 4538 .sched_in = svm_sched_in, 4539 4540 .pmu_ops = &amd_pmu_ops, 4541 .nested_ops = &svm_nested_ops, 4542 4543 .deliver_posted_interrupt = svm_deliver_avic_intr, 4544 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4545 .update_pi_irte = svm_update_pi_irte, 4546 .setup_mce = svm_setup_mce, 4547 4548 .smi_allowed = svm_smi_allowed, 4549 .pre_enter_smm = svm_pre_enter_smm, 4550 .pre_leave_smm = svm_pre_leave_smm, 4551 .enable_smi_window = svm_enable_smi_window, 4552 4553 .mem_enc_op = svm_mem_enc_op, 4554 .mem_enc_reg_region = svm_register_enc_region, 4555 .mem_enc_unreg_region = svm_unregister_enc_region, 4556 4557 .vm_copy_enc_context_from = svm_vm_copy_asid_from, 4558 4559 .can_emulate_instruction = svm_can_emulate_instruction, 4560 4561 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4562 4563 .msr_filter_changed = svm_msr_filter_changed, 4564 .complete_emulated_msr = svm_complete_emulated_msr, 4565 4566 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4567 }; 4568 4569 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4570 .cpu_has_kvm_support = has_svm, 4571 .disabled_by_bios = is_disabled, 4572 .hardware_setup = svm_hardware_setup, 4573 .check_processor_compatibility = svm_check_processor_compat, 4574 4575 .runtime_ops = &svm_x86_ops, 4576 }; 4577 4578 static int __init svm_init(void) 4579 { 4580 __unused_size_checks(); 4581 4582 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4583 __alignof__(struct vcpu_svm), THIS_MODULE); 4584 } 4585 4586 static void __exit svm_exit(void) 4587 { 4588 kvm_exit(); 4589 } 4590 4591 module_init(svm_init) 4592 module_exit(svm_exit) 4593