1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 31 #include <asm/apic.h> 32 #include <asm/perf_event.h> 33 #include <asm/tlbflush.h> 34 #include <asm/desc.h> 35 #include <asm/debugreg.h> 36 #include <asm/kvm_para.h> 37 #include <asm/irq_remapping.h> 38 #include <asm/spec-ctrl.h> 39 #include <asm/cpu_device_id.h> 40 #include <asm/traps.h> 41 #include <asm/fpu/api.h> 42 43 #include <asm/virtext.h> 44 #include "trace.h" 45 46 #include "svm.h" 47 #include "svm_ops.h" 48 49 #include "kvm_onhyperv.h" 50 #include "svm_onhyperv.h" 51 52 MODULE_AUTHOR("Qumranet"); 53 MODULE_LICENSE("GPL"); 54 55 #ifdef MODULE 56 static const struct x86_cpu_id svm_cpu_id[] = { 57 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 58 {} 59 }; 60 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 61 #endif 62 63 #define SEG_TYPE_LDT 2 64 #define SEG_TYPE_BUSY_TSS16 3 65 66 static bool erratum_383_found __read_mostly; 67 68 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 69 70 /* 71 * Set osvw_len to higher value when updated Revision Guides 72 * are published and we know what the new status bits are 73 */ 74 static uint64_t osvw_len = 4, osvw_status; 75 76 static DEFINE_PER_CPU(u64, current_tsc_ratio); 77 78 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 79 80 static const struct svm_direct_access_msrs { 81 u32 index; /* Index of the MSR */ 82 bool always; /* True if intercept is initially cleared */ 83 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 84 { .index = MSR_STAR, .always = true }, 85 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 86 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 87 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 88 #ifdef CONFIG_X86_64 89 { .index = MSR_GS_BASE, .always = true }, 90 { .index = MSR_FS_BASE, .always = true }, 91 { .index = MSR_KERNEL_GS_BASE, .always = true }, 92 { .index = MSR_LSTAR, .always = true }, 93 { .index = MSR_CSTAR, .always = true }, 94 { .index = MSR_SYSCALL_MASK, .always = true }, 95 #endif 96 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 97 { .index = MSR_IA32_PRED_CMD, .always = false }, 98 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 99 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 100 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 101 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 102 { .index = MSR_EFER, .always = false }, 103 { .index = MSR_IA32_CR_PAT, .always = false }, 104 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 105 { .index = MSR_TSC_AUX, .always = false }, 106 { .index = X2APIC_MSR(APIC_ID), .always = false }, 107 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 108 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 109 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 110 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 111 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 112 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 113 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 114 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 115 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 116 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 117 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 118 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 119 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 120 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 121 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 122 123 /* 124 * Note: 125 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 126 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 127 * the AVIC hardware would generate GP fault. Therefore, always 128 * intercept the MSR 0x832, and do not setup direct_access_msr. 129 */ 130 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 131 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 132 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 133 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 134 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 135 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 136 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 137 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 138 { .index = MSR_INVALID, .always = false }, 139 }; 140 141 /* 142 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 143 * pause_filter_count: On processors that support Pause filtering(indicated 144 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 145 * count value. On VMRUN this value is loaded into an internal counter. 146 * Each time a pause instruction is executed, this counter is decremented 147 * until it reaches zero at which time a #VMEXIT is generated if pause 148 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 149 * Intercept Filtering for more details. 150 * This also indicate if ple logic enabled. 151 * 152 * pause_filter_thresh: In addition, some processor families support advanced 153 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 154 * the amount of time a guest is allowed to execute in a pause loop. 155 * In this mode, a 16-bit pause filter threshold field is added in the 156 * VMCB. The threshold value is a cycle count that is used to reset the 157 * pause counter. As with simple pause filtering, VMRUN loads the pause 158 * count value from VMCB into an internal counter. Then, on each pause 159 * instruction the hardware checks the elapsed number of cycles since 160 * the most recent pause instruction against the pause filter threshold. 161 * If the elapsed cycle count is greater than the pause filter threshold, 162 * then the internal pause count is reloaded from the VMCB and execution 163 * continues. If the elapsed cycle count is less than the pause filter 164 * threshold, then the internal pause count is decremented. If the count 165 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 166 * triggered. If advanced pause filtering is supported and pause filter 167 * threshold field is set to zero, the filter will operate in the simpler, 168 * count only mode. 169 */ 170 171 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 172 module_param(pause_filter_thresh, ushort, 0444); 173 174 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 175 module_param(pause_filter_count, ushort, 0444); 176 177 /* Default doubles per-vcpu window every exit. */ 178 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 179 module_param(pause_filter_count_grow, ushort, 0444); 180 181 /* Default resets per-vcpu window every exit to pause_filter_count. */ 182 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 183 module_param(pause_filter_count_shrink, ushort, 0444); 184 185 /* Default is to compute the maximum so we can never overflow. */ 186 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 187 module_param(pause_filter_count_max, ushort, 0444); 188 189 /* 190 * Use nested page tables by default. Note, NPT may get forced off by 191 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 192 */ 193 bool npt_enabled = true; 194 module_param_named(npt, npt_enabled, bool, 0444); 195 196 /* allow nested virtualization in KVM/SVM */ 197 static int nested = true; 198 module_param(nested, int, S_IRUGO); 199 200 /* enable/disable Next RIP Save */ 201 static int nrips = true; 202 module_param(nrips, int, 0444); 203 204 /* enable/disable Virtual VMLOAD VMSAVE */ 205 static int vls = true; 206 module_param(vls, int, 0444); 207 208 /* enable/disable Virtual GIF */ 209 int vgif = true; 210 module_param(vgif, int, 0444); 211 212 /* enable/disable LBR virtualization */ 213 static int lbrv = true; 214 module_param(lbrv, int, 0444); 215 216 static int tsc_scaling = true; 217 module_param(tsc_scaling, int, 0444); 218 219 /* 220 * enable / disable AVIC. Because the defaults differ for APICv 221 * support between VMX and SVM we cannot use module_param_named. 222 */ 223 static bool avic; 224 module_param(avic, bool, 0444); 225 226 bool __read_mostly dump_invalid_vmcb; 227 module_param(dump_invalid_vmcb, bool, 0644); 228 229 230 bool intercept_smi = true; 231 module_param(intercept_smi, bool, 0444); 232 233 234 static bool svm_gp_erratum_intercept = true; 235 236 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 237 238 static unsigned long iopm_base; 239 240 struct kvm_ldttss_desc { 241 u16 limit0; 242 u16 base0; 243 unsigned base1:8, type:5, dpl:2, p:1; 244 unsigned limit1:4, zero0:3, g:1, base2:8; 245 u32 base3; 246 u32 zero1; 247 } __attribute__((packed)); 248 249 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 250 251 /* 252 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 253 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 254 * 255 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 256 * defer the restoration of TSC_AUX until the CPU returns to userspace. 257 */ 258 static int tsc_aux_uret_slot __read_mostly = -1; 259 260 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 261 262 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 263 #define MSRS_RANGE_SIZE 2048 264 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 265 266 u32 svm_msrpm_offset(u32 msr) 267 { 268 u32 offset; 269 int i; 270 271 for (i = 0; i < NUM_MSR_MAPS; i++) { 272 if (msr < msrpm_ranges[i] || 273 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 274 continue; 275 276 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 277 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 278 279 /* Now we have the u8 offset - but need the u32 offset */ 280 return offset / 4; 281 } 282 283 /* MSR not in any range */ 284 return MSR_INVALID; 285 } 286 287 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 288 289 static int get_npt_level(void) 290 { 291 #ifdef CONFIG_X86_64 292 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 293 #else 294 return PT32E_ROOT_LEVEL; 295 #endif 296 } 297 298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 299 { 300 struct vcpu_svm *svm = to_svm(vcpu); 301 u64 old_efer = vcpu->arch.efer; 302 vcpu->arch.efer = efer; 303 304 if (!npt_enabled) { 305 /* Shadow paging assumes NX to be available. */ 306 efer |= EFER_NX; 307 308 if (!(efer & EFER_LMA)) 309 efer &= ~EFER_LME; 310 } 311 312 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 313 if (!(efer & EFER_SVME)) { 314 svm_leave_nested(vcpu); 315 svm_set_gif(svm, true); 316 /* #GP intercept is still needed for vmware backdoor */ 317 if (!enable_vmware_backdoor) 318 clr_exception_intercept(svm, GP_VECTOR); 319 320 /* 321 * Free the nested guest state, unless we are in SMM. 322 * In this case we will return to the nested guest 323 * as soon as we leave SMM. 324 */ 325 if (!is_smm(vcpu)) 326 svm_free_nested(svm); 327 328 } else { 329 int ret = svm_allocate_nested(svm); 330 331 if (ret) { 332 vcpu->arch.efer = old_efer; 333 return ret; 334 } 335 336 /* 337 * Never intercept #GP for SEV guests, KVM can't 338 * decrypt guest memory to workaround the erratum. 339 */ 340 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 341 set_exception_intercept(svm, GP_VECTOR); 342 } 343 } 344 345 svm->vmcb->save.efer = efer | EFER_SVME; 346 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 347 return 0; 348 } 349 350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 351 { 352 struct vcpu_svm *svm = to_svm(vcpu); 353 u32 ret = 0; 354 355 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 356 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 357 return ret; 358 } 359 360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 361 { 362 struct vcpu_svm *svm = to_svm(vcpu); 363 364 if (mask == 0) 365 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 366 else 367 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 368 369 } 370 371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 372 bool commit_side_effects) 373 { 374 struct vcpu_svm *svm = to_svm(vcpu); 375 unsigned long old_rflags; 376 377 /* 378 * SEV-ES does not expose the next RIP. The RIP update is controlled by 379 * the type of exit and the #VC handler in the guest. 380 */ 381 if (sev_es_guest(vcpu->kvm)) 382 goto done; 383 384 if (nrips && svm->vmcb->control.next_rip != 0) { 385 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 386 svm->next_rip = svm->vmcb->control.next_rip; 387 } 388 389 if (!svm->next_rip) { 390 if (unlikely(!commit_side_effects)) 391 old_rflags = svm->vmcb->save.rflags; 392 393 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 394 return 0; 395 396 if (unlikely(!commit_side_effects)) 397 svm->vmcb->save.rflags = old_rflags; 398 } else { 399 kvm_rip_write(vcpu, svm->next_rip); 400 } 401 402 done: 403 if (likely(commit_side_effects)) 404 svm_set_interrupt_shadow(vcpu, 0); 405 406 return 1; 407 } 408 409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 410 { 411 return __svm_skip_emulated_instruction(vcpu, true); 412 } 413 414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 415 { 416 unsigned long rip, old_rip = kvm_rip_read(vcpu); 417 struct vcpu_svm *svm = to_svm(vcpu); 418 419 /* 420 * Due to architectural shortcomings, the CPU doesn't always provide 421 * NextRIP, e.g. if KVM intercepted an exception that occurred while 422 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 423 * the instruction even if NextRIP is supported to acquire the next 424 * RIP so that it can be shoved into the NextRIP field, otherwise 425 * hardware will fail to advance guest RIP during event injection. 426 * Drop the exception/interrupt if emulation fails and effectively 427 * retry the instruction, it's the least awful option. If NRIPS is 428 * in use, the skip must not commit any side effects such as clearing 429 * the interrupt shadow or RFLAGS.RF. 430 */ 431 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 432 return -EIO; 433 434 rip = kvm_rip_read(vcpu); 435 436 /* 437 * Save the injection information, even when using next_rip, as the 438 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 439 * doesn't complete due to a VM-Exit occurring while the CPU is 440 * vectoring the event. Decoding the instruction isn't guaranteed to 441 * work as there may be no backing instruction, e.g. if the event is 442 * being injected by L1 for L2, or if the guest is patching INT3 into 443 * a different instruction. 444 */ 445 svm->soft_int_injected = true; 446 svm->soft_int_csbase = svm->vmcb->save.cs.base; 447 svm->soft_int_old_rip = old_rip; 448 svm->soft_int_next_rip = rip; 449 450 if (nrips) 451 kvm_rip_write(vcpu, old_rip); 452 453 if (static_cpu_has(X86_FEATURE_NRIPS)) 454 svm->vmcb->control.next_rip = rip; 455 456 return 0; 457 } 458 459 static void svm_inject_exception(struct kvm_vcpu *vcpu) 460 { 461 struct kvm_queued_exception *ex = &vcpu->arch.exception; 462 struct vcpu_svm *svm = to_svm(vcpu); 463 464 kvm_deliver_exception_payload(vcpu, ex); 465 466 if (kvm_exception_is_soft(ex->vector) && 467 svm_update_soft_interrupt_rip(vcpu)) 468 return; 469 470 svm->vmcb->control.event_inj = ex->vector 471 | SVM_EVTINJ_VALID 472 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 473 | SVM_EVTINJ_TYPE_EXEPT; 474 svm->vmcb->control.event_inj_err = ex->error_code; 475 } 476 477 static void svm_init_erratum_383(void) 478 { 479 u32 low, high; 480 int err; 481 u64 val; 482 483 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 484 return; 485 486 /* Use _safe variants to not break nested virtualization */ 487 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 488 if (err) 489 return; 490 491 val |= (1ULL << 47); 492 493 low = lower_32_bits(val); 494 high = upper_32_bits(val); 495 496 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 497 498 erratum_383_found = true; 499 } 500 501 static void svm_init_osvw(struct kvm_vcpu *vcpu) 502 { 503 /* 504 * Guests should see errata 400 and 415 as fixed (assuming that 505 * HLT and IO instructions are intercepted). 506 */ 507 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 508 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 509 510 /* 511 * By increasing VCPU's osvw.length to 3 we are telling the guest that 512 * all osvw.status bits inside that length, including bit 0 (which is 513 * reserved for erratum 298), are valid. However, if host processor's 514 * osvw_len is 0 then osvw_status[0] carries no information. We need to 515 * be conservative here and therefore we tell the guest that erratum 298 516 * is present (because we really don't know). 517 */ 518 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 519 vcpu->arch.osvw.status |= 1; 520 } 521 522 static bool kvm_is_svm_supported(void) 523 { 524 int cpu = raw_smp_processor_id(); 525 const char *msg; 526 u64 vm_cr; 527 528 if (!cpu_has_svm(&msg)) { 529 pr_err("SVM not supported by CPU %d, %s\n", cpu, msg); 530 return false; 531 } 532 533 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 534 pr_info("KVM is unsupported when running as an SEV guest\n"); 535 return false; 536 } 537 538 rdmsrl(MSR_VM_CR, vm_cr); 539 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { 540 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); 541 return false; 542 } 543 544 return true; 545 } 546 547 static int svm_check_processor_compat(void) 548 { 549 if (!kvm_is_svm_supported()) 550 return -EIO; 551 552 return 0; 553 } 554 555 void __svm_write_tsc_multiplier(u64 multiplier) 556 { 557 preempt_disable(); 558 559 if (multiplier == __this_cpu_read(current_tsc_ratio)) 560 goto out; 561 562 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 563 __this_cpu_write(current_tsc_ratio, multiplier); 564 out: 565 preempt_enable(); 566 } 567 568 static void svm_hardware_disable(void) 569 { 570 /* Make sure we clean up behind us */ 571 if (tsc_scaling) 572 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 573 574 cpu_svm_disable(); 575 576 amd_pmu_disable_virt(); 577 } 578 579 static int svm_hardware_enable(void) 580 { 581 582 struct svm_cpu_data *sd; 583 uint64_t efer; 584 struct desc_struct *gdt; 585 int me = raw_smp_processor_id(); 586 587 rdmsrl(MSR_EFER, efer); 588 if (efer & EFER_SVME) 589 return -EBUSY; 590 591 sd = per_cpu_ptr(&svm_data, me); 592 sd->asid_generation = 1; 593 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 594 sd->next_asid = sd->max_asid + 1; 595 sd->min_asid = max_sev_asid + 1; 596 597 gdt = get_current_gdt_rw(); 598 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 599 600 wrmsrl(MSR_EFER, efer | EFER_SVME); 601 602 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 603 604 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 605 /* 606 * Set the default value, even if we don't use TSC scaling 607 * to avoid having stale value in the msr 608 */ 609 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 610 } 611 612 613 /* 614 * Get OSVW bits. 615 * 616 * Note that it is possible to have a system with mixed processor 617 * revisions and therefore different OSVW bits. If bits are not the same 618 * on different processors then choose the worst case (i.e. if erratum 619 * is present on one processor and not on another then assume that the 620 * erratum is present everywhere). 621 */ 622 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 623 uint64_t len, status = 0; 624 int err; 625 626 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 627 if (!err) 628 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 629 &err); 630 631 if (err) 632 osvw_status = osvw_len = 0; 633 else { 634 if (len < osvw_len) 635 osvw_len = len; 636 osvw_status |= status; 637 osvw_status &= (1ULL << osvw_len) - 1; 638 } 639 } else 640 osvw_status = osvw_len = 0; 641 642 svm_init_erratum_383(); 643 644 amd_pmu_enable_virt(); 645 646 return 0; 647 } 648 649 static void svm_cpu_uninit(int cpu) 650 { 651 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 652 653 if (!sd->save_area) 654 return; 655 656 kfree(sd->sev_vmcbs); 657 __free_page(sd->save_area); 658 sd->save_area_pa = 0; 659 sd->save_area = NULL; 660 } 661 662 static int svm_cpu_init(int cpu) 663 { 664 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 665 int ret = -ENOMEM; 666 667 memset(sd, 0, sizeof(struct svm_cpu_data)); 668 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 669 if (!sd->save_area) 670 return ret; 671 672 ret = sev_cpu_init(sd); 673 if (ret) 674 goto free_save_area; 675 676 sd->save_area_pa = __sme_page_pa(sd->save_area); 677 return 0; 678 679 free_save_area: 680 __free_page(sd->save_area); 681 sd->save_area = NULL; 682 return ret; 683 684 } 685 686 static int direct_access_msr_slot(u32 msr) 687 { 688 u32 i; 689 690 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 691 if (direct_access_msrs[i].index == msr) 692 return i; 693 694 return -ENOENT; 695 } 696 697 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 698 int write) 699 { 700 struct vcpu_svm *svm = to_svm(vcpu); 701 int slot = direct_access_msr_slot(msr); 702 703 if (slot == -ENOENT) 704 return; 705 706 /* Set the shadow bitmaps to the desired intercept states */ 707 if (read) 708 set_bit(slot, svm->shadow_msr_intercept.read); 709 else 710 clear_bit(slot, svm->shadow_msr_intercept.read); 711 712 if (write) 713 set_bit(slot, svm->shadow_msr_intercept.write); 714 else 715 clear_bit(slot, svm->shadow_msr_intercept.write); 716 } 717 718 static bool valid_msr_intercept(u32 index) 719 { 720 return direct_access_msr_slot(index) != -ENOENT; 721 } 722 723 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 724 { 725 u8 bit_write; 726 unsigned long tmp; 727 u32 offset; 728 u32 *msrpm; 729 730 /* 731 * For non-nested case: 732 * If the L01 MSR bitmap does not intercept the MSR, then we need to 733 * save it. 734 * 735 * For nested case: 736 * If the L02 MSR bitmap does not intercept the MSR, then we need to 737 * save it. 738 */ 739 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 740 to_svm(vcpu)->msrpm; 741 742 offset = svm_msrpm_offset(msr); 743 bit_write = 2 * (msr & 0x0f) + 1; 744 tmp = msrpm[offset]; 745 746 BUG_ON(offset == MSR_INVALID); 747 748 return !!test_bit(bit_write, &tmp); 749 } 750 751 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 752 u32 msr, int read, int write) 753 { 754 struct vcpu_svm *svm = to_svm(vcpu); 755 u8 bit_read, bit_write; 756 unsigned long tmp; 757 u32 offset; 758 759 /* 760 * If this warning triggers extend the direct_access_msrs list at the 761 * beginning of the file 762 */ 763 WARN_ON(!valid_msr_intercept(msr)); 764 765 /* Enforce non allowed MSRs to trap */ 766 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 767 read = 0; 768 769 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 770 write = 0; 771 772 offset = svm_msrpm_offset(msr); 773 bit_read = 2 * (msr & 0x0f); 774 bit_write = 2 * (msr & 0x0f) + 1; 775 tmp = msrpm[offset]; 776 777 BUG_ON(offset == MSR_INVALID); 778 779 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 780 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 781 782 msrpm[offset] = tmp; 783 784 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 785 svm->nested.force_msr_bitmap_recalc = true; 786 } 787 788 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 789 int read, int write) 790 { 791 set_shadow_msr_intercept(vcpu, msr, read, write); 792 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 793 } 794 795 u32 *svm_vcpu_alloc_msrpm(void) 796 { 797 unsigned int order = get_order(MSRPM_SIZE); 798 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 799 u32 *msrpm; 800 801 if (!pages) 802 return NULL; 803 804 msrpm = page_address(pages); 805 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 806 807 return msrpm; 808 } 809 810 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 811 { 812 int i; 813 814 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 815 if (!direct_access_msrs[i].always) 816 continue; 817 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 818 } 819 } 820 821 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 822 { 823 int i; 824 825 if (intercept == svm->x2avic_msrs_intercepted) 826 return; 827 828 if (!x2avic_enabled || 829 !apic_x2apic_mode(svm->vcpu.arch.apic)) 830 return; 831 832 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 833 int index = direct_access_msrs[i].index; 834 835 if ((index < APIC_BASE_MSR) || 836 (index > APIC_BASE_MSR + 0xff)) 837 continue; 838 set_msr_interception(&svm->vcpu, svm->msrpm, index, 839 !intercept, !intercept); 840 } 841 842 svm->x2avic_msrs_intercepted = intercept; 843 } 844 845 void svm_vcpu_free_msrpm(u32 *msrpm) 846 { 847 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 848 } 849 850 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 851 { 852 struct vcpu_svm *svm = to_svm(vcpu); 853 u32 i; 854 855 /* 856 * Set intercept permissions for all direct access MSRs again. They 857 * will automatically get filtered through the MSR filter, so we are 858 * back in sync after this. 859 */ 860 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 861 u32 msr = direct_access_msrs[i].index; 862 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 863 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 864 865 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 866 } 867 } 868 869 static void add_msr_offset(u32 offset) 870 { 871 int i; 872 873 for (i = 0; i < MSRPM_OFFSETS; ++i) { 874 875 /* Offset already in list? */ 876 if (msrpm_offsets[i] == offset) 877 return; 878 879 /* Slot used by another offset? */ 880 if (msrpm_offsets[i] != MSR_INVALID) 881 continue; 882 883 /* Add offset to list */ 884 msrpm_offsets[i] = offset; 885 886 return; 887 } 888 889 /* 890 * If this BUG triggers the msrpm_offsets table has an overflow. Just 891 * increase MSRPM_OFFSETS in this case. 892 */ 893 BUG(); 894 } 895 896 static void init_msrpm_offsets(void) 897 { 898 int i; 899 900 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 901 902 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 903 u32 offset; 904 905 offset = svm_msrpm_offset(direct_access_msrs[i].index); 906 BUG_ON(offset == MSR_INVALID); 907 908 add_msr_offset(offset); 909 } 910 } 911 912 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 913 { 914 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 915 to_vmcb->save.br_from = from_vmcb->save.br_from; 916 to_vmcb->save.br_to = from_vmcb->save.br_to; 917 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 918 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 919 920 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 921 } 922 923 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 924 { 925 struct vcpu_svm *svm = to_svm(vcpu); 926 927 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 928 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 929 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 930 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 931 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 932 933 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 934 if (is_guest_mode(vcpu)) 935 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 936 } 937 938 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 939 { 940 struct vcpu_svm *svm = to_svm(vcpu); 941 942 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 943 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 944 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 945 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 946 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 947 948 /* 949 * Move the LBR msrs back to the vmcb01 to avoid copying them 950 * on nested guest entries. 951 */ 952 if (is_guest_mode(vcpu)) 953 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 954 } 955 956 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index) 957 { 958 /* 959 * If the LBR virtualization is disabled, the LBR msrs are always 960 * kept in the vmcb01 to avoid copying them on nested guest entries. 961 * 962 * If nested, and the LBR virtualization is enabled/disabled, the msrs 963 * are moved between the vmcb01 and vmcb02 as needed. 964 */ 965 struct vmcb *vmcb = 966 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ? 967 svm->vmcb : svm->vmcb01.ptr; 968 969 switch (index) { 970 case MSR_IA32_DEBUGCTLMSR: 971 return vmcb->save.dbgctl; 972 case MSR_IA32_LASTBRANCHFROMIP: 973 return vmcb->save.br_from; 974 case MSR_IA32_LASTBRANCHTOIP: 975 return vmcb->save.br_to; 976 case MSR_IA32_LASTINTFROMIP: 977 return vmcb->save.last_excp_from; 978 case MSR_IA32_LASTINTTOIP: 979 return vmcb->save.last_excp_to; 980 default: 981 KVM_BUG(false, svm->vcpu.kvm, 982 "%s: Unknown MSR 0x%x", __func__, index); 983 return 0; 984 } 985 } 986 987 void svm_update_lbrv(struct kvm_vcpu *vcpu) 988 { 989 struct vcpu_svm *svm = to_svm(vcpu); 990 991 bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) & 992 DEBUGCTLMSR_LBR; 993 994 bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext & 995 LBR_CTL_ENABLE_MASK); 996 997 if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled)) 998 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)) 999 enable_lbrv = true; 1000 1001 if (enable_lbrv == current_enable_lbrv) 1002 return; 1003 1004 if (enable_lbrv) 1005 svm_enable_lbrv(vcpu); 1006 else 1007 svm_disable_lbrv(vcpu); 1008 } 1009 1010 void disable_nmi_singlestep(struct vcpu_svm *svm) 1011 { 1012 svm->nmi_singlestep = false; 1013 1014 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1015 /* Clear our flags if they were not set by the guest */ 1016 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1017 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1018 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1019 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1020 } 1021 } 1022 1023 static void grow_ple_window(struct kvm_vcpu *vcpu) 1024 { 1025 struct vcpu_svm *svm = to_svm(vcpu); 1026 struct vmcb_control_area *control = &svm->vmcb->control; 1027 int old = control->pause_filter_count; 1028 1029 if (kvm_pause_in_guest(vcpu->kvm)) 1030 return; 1031 1032 control->pause_filter_count = __grow_ple_window(old, 1033 pause_filter_count, 1034 pause_filter_count_grow, 1035 pause_filter_count_max); 1036 1037 if (control->pause_filter_count != old) { 1038 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1039 trace_kvm_ple_window_update(vcpu->vcpu_id, 1040 control->pause_filter_count, old); 1041 } 1042 } 1043 1044 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1045 { 1046 struct vcpu_svm *svm = to_svm(vcpu); 1047 struct vmcb_control_area *control = &svm->vmcb->control; 1048 int old = control->pause_filter_count; 1049 1050 if (kvm_pause_in_guest(vcpu->kvm)) 1051 return; 1052 1053 control->pause_filter_count = 1054 __shrink_ple_window(old, 1055 pause_filter_count, 1056 pause_filter_count_shrink, 1057 pause_filter_count); 1058 if (control->pause_filter_count != old) { 1059 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1060 trace_kvm_ple_window_update(vcpu->vcpu_id, 1061 control->pause_filter_count, old); 1062 } 1063 } 1064 1065 static void svm_hardware_unsetup(void) 1066 { 1067 int cpu; 1068 1069 sev_hardware_unsetup(); 1070 1071 for_each_possible_cpu(cpu) 1072 svm_cpu_uninit(cpu); 1073 1074 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1075 get_order(IOPM_SIZE)); 1076 iopm_base = 0; 1077 } 1078 1079 static void init_seg(struct vmcb_seg *seg) 1080 { 1081 seg->selector = 0; 1082 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1083 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1084 seg->limit = 0xffff; 1085 seg->base = 0; 1086 } 1087 1088 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1089 { 1090 seg->selector = 0; 1091 seg->attrib = SVM_SELECTOR_P_MASK | type; 1092 seg->limit = 0xffff; 1093 seg->base = 0; 1094 } 1095 1096 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1097 { 1098 struct vcpu_svm *svm = to_svm(vcpu); 1099 1100 return svm->nested.ctl.tsc_offset; 1101 } 1102 1103 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1104 { 1105 struct vcpu_svm *svm = to_svm(vcpu); 1106 1107 return svm->tsc_ratio_msr; 1108 } 1109 1110 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1111 { 1112 struct vcpu_svm *svm = to_svm(vcpu); 1113 1114 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1115 svm->vmcb->control.tsc_offset = offset; 1116 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1117 } 1118 1119 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1120 { 1121 __svm_write_tsc_multiplier(multiplier); 1122 } 1123 1124 1125 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1126 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1127 struct vcpu_svm *svm) 1128 { 1129 /* 1130 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1131 * roots, or if INVPCID is disabled in the guest to inject #UD. 1132 */ 1133 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1134 if (!npt_enabled || 1135 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1136 svm_set_intercept(svm, INTERCEPT_INVPCID); 1137 else 1138 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1139 } 1140 1141 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1142 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1143 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1144 else 1145 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1146 } 1147 } 1148 1149 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1150 { 1151 struct vcpu_svm *svm = to_svm(vcpu); 1152 1153 if (guest_cpuid_is_intel(vcpu)) { 1154 /* 1155 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1156 * accesses because the processor only stores 32 bits. 1157 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1158 */ 1159 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1160 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1161 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1162 1163 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1164 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1165 1166 svm->v_vmload_vmsave_enabled = false; 1167 } else { 1168 /* 1169 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1170 * in VMCB and clear intercepts to avoid #VMEXIT. 1171 */ 1172 if (vls) { 1173 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1174 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1175 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1176 } 1177 /* No need to intercept these MSRs */ 1178 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1179 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1180 } 1181 } 1182 1183 static void init_vmcb(struct kvm_vcpu *vcpu) 1184 { 1185 struct vcpu_svm *svm = to_svm(vcpu); 1186 struct vmcb *vmcb = svm->vmcb01.ptr; 1187 struct vmcb_control_area *control = &vmcb->control; 1188 struct vmcb_save_area *save = &vmcb->save; 1189 1190 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1191 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1192 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1193 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1194 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1195 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1196 if (!kvm_vcpu_apicv_active(vcpu)) 1197 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1198 1199 set_dr_intercepts(svm); 1200 1201 set_exception_intercept(svm, PF_VECTOR); 1202 set_exception_intercept(svm, UD_VECTOR); 1203 set_exception_intercept(svm, MC_VECTOR); 1204 set_exception_intercept(svm, AC_VECTOR); 1205 set_exception_intercept(svm, DB_VECTOR); 1206 /* 1207 * Guest access to VMware backdoor ports could legitimately 1208 * trigger #GP because of TSS I/O permission bitmap. 1209 * We intercept those #GP and allow access to them anyway 1210 * as VMware does. Don't intercept #GP for SEV guests as KVM can't 1211 * decrypt guest memory to decode the faulting instruction. 1212 */ 1213 if (enable_vmware_backdoor && !sev_guest(vcpu->kvm)) 1214 set_exception_intercept(svm, GP_VECTOR); 1215 1216 svm_set_intercept(svm, INTERCEPT_INTR); 1217 svm_set_intercept(svm, INTERCEPT_NMI); 1218 1219 if (intercept_smi) 1220 svm_set_intercept(svm, INTERCEPT_SMI); 1221 1222 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1223 svm_set_intercept(svm, INTERCEPT_RDPMC); 1224 svm_set_intercept(svm, INTERCEPT_CPUID); 1225 svm_set_intercept(svm, INTERCEPT_INVD); 1226 svm_set_intercept(svm, INTERCEPT_INVLPG); 1227 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1228 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1229 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1230 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1231 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1232 svm_set_intercept(svm, INTERCEPT_VMRUN); 1233 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1234 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1235 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1236 svm_set_intercept(svm, INTERCEPT_STGI); 1237 svm_set_intercept(svm, INTERCEPT_CLGI); 1238 svm_set_intercept(svm, INTERCEPT_SKINIT); 1239 svm_set_intercept(svm, INTERCEPT_WBINVD); 1240 svm_set_intercept(svm, INTERCEPT_XSETBV); 1241 svm_set_intercept(svm, INTERCEPT_RDPRU); 1242 svm_set_intercept(svm, INTERCEPT_RSM); 1243 1244 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1245 svm_set_intercept(svm, INTERCEPT_MONITOR); 1246 svm_set_intercept(svm, INTERCEPT_MWAIT); 1247 } 1248 1249 if (!kvm_hlt_in_guest(vcpu->kvm)) 1250 svm_set_intercept(svm, INTERCEPT_HLT); 1251 1252 control->iopm_base_pa = __sme_set(iopm_base); 1253 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1254 control->int_ctl = V_INTR_MASKING_MASK; 1255 1256 init_seg(&save->es); 1257 init_seg(&save->ss); 1258 init_seg(&save->ds); 1259 init_seg(&save->fs); 1260 init_seg(&save->gs); 1261 1262 save->cs.selector = 0xf000; 1263 save->cs.base = 0xffff0000; 1264 /* Executable/Readable Code Segment */ 1265 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1266 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1267 save->cs.limit = 0xffff; 1268 1269 save->gdtr.base = 0; 1270 save->gdtr.limit = 0xffff; 1271 save->idtr.base = 0; 1272 save->idtr.limit = 0xffff; 1273 1274 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1275 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1276 1277 if (npt_enabled) { 1278 /* Setup VMCB for Nested Paging */ 1279 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1280 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1281 clr_exception_intercept(svm, PF_VECTOR); 1282 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1283 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1284 save->g_pat = vcpu->arch.pat; 1285 save->cr3 = 0; 1286 } 1287 svm->current_vmcb->asid_generation = 0; 1288 svm->asid = 0; 1289 1290 svm->nested.vmcb12_gpa = INVALID_GPA; 1291 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1292 1293 if (!kvm_pause_in_guest(vcpu->kvm)) { 1294 control->pause_filter_count = pause_filter_count; 1295 if (pause_filter_thresh) 1296 control->pause_filter_thresh = pause_filter_thresh; 1297 svm_set_intercept(svm, INTERCEPT_PAUSE); 1298 } else { 1299 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1300 } 1301 1302 svm_recalc_instruction_intercepts(vcpu, svm); 1303 1304 /* 1305 * If the host supports V_SPEC_CTRL then disable the interception 1306 * of MSR_IA32_SPEC_CTRL. 1307 */ 1308 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1309 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1310 1311 if (kvm_vcpu_apicv_active(vcpu)) 1312 avic_init_vmcb(svm, vmcb); 1313 1314 if (vgif) { 1315 svm_clr_intercept(svm, INTERCEPT_STGI); 1316 svm_clr_intercept(svm, INTERCEPT_CLGI); 1317 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1318 } 1319 1320 if (sev_guest(vcpu->kvm)) 1321 sev_init_vmcb(svm); 1322 1323 svm_hv_init_vmcb(vmcb); 1324 init_vmcb_after_set_cpuid(vcpu); 1325 1326 vmcb_mark_all_dirty(vmcb); 1327 1328 enable_gif(svm); 1329 } 1330 1331 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1332 { 1333 struct vcpu_svm *svm = to_svm(vcpu); 1334 1335 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1336 1337 svm_init_osvw(vcpu); 1338 vcpu->arch.microcode_version = 0x01000065; 1339 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1340 1341 svm->nmi_masked = false; 1342 svm->awaiting_iret_completion = false; 1343 1344 if (sev_es_guest(vcpu->kvm)) 1345 sev_es_vcpu_reset(svm); 1346 } 1347 1348 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1349 { 1350 struct vcpu_svm *svm = to_svm(vcpu); 1351 1352 svm->spec_ctrl = 0; 1353 svm->virt_spec_ctrl = 0; 1354 1355 init_vmcb(vcpu); 1356 1357 if (!init_event) 1358 __svm_vcpu_reset(vcpu); 1359 } 1360 1361 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1362 { 1363 svm->current_vmcb = target_vmcb; 1364 svm->vmcb = target_vmcb->ptr; 1365 } 1366 1367 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1368 { 1369 struct vcpu_svm *svm; 1370 struct page *vmcb01_page; 1371 struct page *vmsa_page = NULL; 1372 int err; 1373 1374 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1375 svm = to_svm(vcpu); 1376 1377 err = -ENOMEM; 1378 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1379 if (!vmcb01_page) 1380 goto out; 1381 1382 if (sev_es_guest(vcpu->kvm)) { 1383 /* 1384 * SEV-ES guests require a separate VMSA page used to contain 1385 * the encrypted register state of the guest. 1386 */ 1387 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1388 if (!vmsa_page) 1389 goto error_free_vmcb_page; 1390 1391 /* 1392 * SEV-ES guests maintain an encrypted version of their FPU 1393 * state which is restored and saved on VMRUN and VMEXIT. 1394 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1395 * do xsave/xrstor on it. 1396 */ 1397 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1398 } 1399 1400 err = avic_init_vcpu(svm); 1401 if (err) 1402 goto error_free_vmsa_page; 1403 1404 svm->msrpm = svm_vcpu_alloc_msrpm(); 1405 if (!svm->msrpm) { 1406 err = -ENOMEM; 1407 goto error_free_vmsa_page; 1408 } 1409 1410 svm->x2avic_msrs_intercepted = true; 1411 1412 svm->vmcb01.ptr = page_address(vmcb01_page); 1413 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1414 svm_switch_vmcb(svm, &svm->vmcb01); 1415 1416 if (vmsa_page) 1417 svm->sev_es.vmsa = page_address(vmsa_page); 1418 1419 svm->guest_state_loaded = false; 1420 1421 return 0; 1422 1423 error_free_vmsa_page: 1424 if (vmsa_page) 1425 __free_page(vmsa_page); 1426 error_free_vmcb_page: 1427 __free_page(vmcb01_page); 1428 out: 1429 return err; 1430 } 1431 1432 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1433 { 1434 int i; 1435 1436 for_each_online_cpu(i) 1437 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1438 } 1439 1440 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1441 { 1442 struct vcpu_svm *svm = to_svm(vcpu); 1443 1444 /* 1445 * The vmcb page can be recycled, causing a false negative in 1446 * svm_vcpu_load(). So, ensure that no logical CPU has this 1447 * vmcb page recorded as its current vmcb. 1448 */ 1449 svm_clear_current_vmcb(svm->vmcb); 1450 1451 svm_leave_nested(vcpu); 1452 svm_free_nested(svm); 1453 1454 sev_free_vcpu(vcpu); 1455 1456 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1457 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1458 } 1459 1460 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1461 { 1462 struct vcpu_svm *svm = to_svm(vcpu); 1463 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1464 1465 if (sev_es_guest(vcpu->kvm)) 1466 sev_es_unmap_ghcb(svm); 1467 1468 if (svm->guest_state_loaded) 1469 return; 1470 1471 /* 1472 * Save additional host state that will be restored on VMEXIT (sev-es) 1473 * or subsequent vmload of host save area. 1474 */ 1475 vmsave(sd->save_area_pa); 1476 if (sev_es_guest(vcpu->kvm)) { 1477 struct sev_es_save_area *hostsa; 1478 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1479 1480 sev_es_prepare_switch_to_guest(hostsa); 1481 } 1482 1483 if (tsc_scaling) 1484 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1485 1486 if (likely(tsc_aux_uret_slot >= 0)) 1487 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1488 1489 svm->guest_state_loaded = true; 1490 } 1491 1492 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1493 { 1494 to_svm(vcpu)->guest_state_loaded = false; 1495 } 1496 1497 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1498 { 1499 struct vcpu_svm *svm = to_svm(vcpu); 1500 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1501 1502 if (sd->current_vmcb != svm->vmcb) { 1503 sd->current_vmcb = svm->vmcb; 1504 indirect_branch_prediction_barrier(); 1505 } 1506 if (kvm_vcpu_apicv_active(vcpu)) 1507 avic_vcpu_load(vcpu, cpu); 1508 } 1509 1510 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1511 { 1512 if (kvm_vcpu_apicv_active(vcpu)) 1513 avic_vcpu_put(vcpu); 1514 1515 svm_prepare_host_switch(vcpu); 1516 1517 ++vcpu->stat.host_state_reload; 1518 } 1519 1520 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1521 { 1522 struct vcpu_svm *svm = to_svm(vcpu); 1523 unsigned long rflags = svm->vmcb->save.rflags; 1524 1525 if (svm->nmi_singlestep) { 1526 /* Hide our flags if they were not set by the guest */ 1527 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1528 rflags &= ~X86_EFLAGS_TF; 1529 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1530 rflags &= ~X86_EFLAGS_RF; 1531 } 1532 return rflags; 1533 } 1534 1535 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1536 { 1537 if (to_svm(vcpu)->nmi_singlestep) 1538 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1539 1540 /* 1541 * Any change of EFLAGS.VM is accompanied by a reload of SS 1542 * (caused by either a task switch or an inter-privilege IRET), 1543 * so we do not need to update the CPL here. 1544 */ 1545 to_svm(vcpu)->vmcb->save.rflags = rflags; 1546 } 1547 1548 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1549 { 1550 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1551 1552 return sev_es_guest(vcpu->kvm) 1553 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1554 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1555 } 1556 1557 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1558 { 1559 kvm_register_mark_available(vcpu, reg); 1560 1561 switch (reg) { 1562 case VCPU_EXREG_PDPTR: 1563 /* 1564 * When !npt_enabled, mmu->pdptrs[] is already available since 1565 * it is always updated per SDM when moving to CRs. 1566 */ 1567 if (npt_enabled) 1568 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1569 break; 1570 default: 1571 KVM_BUG_ON(1, vcpu->kvm); 1572 } 1573 } 1574 1575 static void svm_set_vintr(struct vcpu_svm *svm) 1576 { 1577 struct vmcb_control_area *control; 1578 1579 /* 1580 * The following fields are ignored when AVIC is enabled 1581 */ 1582 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1583 1584 svm_set_intercept(svm, INTERCEPT_VINTR); 1585 1586 /* 1587 * This is just a dummy VINTR to actually cause a vmexit to happen. 1588 * Actual injection of virtual interrupts happens through EVENTINJ. 1589 */ 1590 control = &svm->vmcb->control; 1591 control->int_vector = 0x0; 1592 control->int_ctl &= ~V_INTR_PRIO_MASK; 1593 control->int_ctl |= V_IRQ_MASK | 1594 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1595 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1596 } 1597 1598 static void svm_clear_vintr(struct vcpu_svm *svm) 1599 { 1600 svm_clr_intercept(svm, INTERCEPT_VINTR); 1601 1602 /* Drop int_ctl fields related to VINTR injection. */ 1603 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1604 if (is_guest_mode(&svm->vcpu)) { 1605 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1606 1607 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1608 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1609 1610 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1611 V_IRQ_INJECTION_BITS_MASK; 1612 1613 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1614 } 1615 1616 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1617 } 1618 1619 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1620 { 1621 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1622 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1623 1624 switch (seg) { 1625 case VCPU_SREG_CS: return &save->cs; 1626 case VCPU_SREG_DS: return &save->ds; 1627 case VCPU_SREG_ES: return &save->es; 1628 case VCPU_SREG_FS: return &save01->fs; 1629 case VCPU_SREG_GS: return &save01->gs; 1630 case VCPU_SREG_SS: return &save->ss; 1631 case VCPU_SREG_TR: return &save01->tr; 1632 case VCPU_SREG_LDTR: return &save01->ldtr; 1633 } 1634 BUG(); 1635 return NULL; 1636 } 1637 1638 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1639 { 1640 struct vmcb_seg *s = svm_seg(vcpu, seg); 1641 1642 return s->base; 1643 } 1644 1645 static void svm_get_segment(struct kvm_vcpu *vcpu, 1646 struct kvm_segment *var, int seg) 1647 { 1648 struct vmcb_seg *s = svm_seg(vcpu, seg); 1649 1650 var->base = s->base; 1651 var->limit = s->limit; 1652 var->selector = s->selector; 1653 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1654 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1655 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1656 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1657 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1658 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1659 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1660 1661 /* 1662 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1663 * However, the SVM spec states that the G bit is not observed by the 1664 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1665 * So let's synthesize a legal G bit for all segments, this helps 1666 * running KVM nested. It also helps cross-vendor migration, because 1667 * Intel's vmentry has a check on the 'G' bit. 1668 */ 1669 var->g = s->limit > 0xfffff; 1670 1671 /* 1672 * AMD's VMCB does not have an explicit unusable field, so emulate it 1673 * for cross vendor migration purposes by "not present" 1674 */ 1675 var->unusable = !var->present; 1676 1677 switch (seg) { 1678 case VCPU_SREG_TR: 1679 /* 1680 * Work around a bug where the busy flag in the tr selector 1681 * isn't exposed 1682 */ 1683 var->type |= 0x2; 1684 break; 1685 case VCPU_SREG_DS: 1686 case VCPU_SREG_ES: 1687 case VCPU_SREG_FS: 1688 case VCPU_SREG_GS: 1689 /* 1690 * The accessed bit must always be set in the segment 1691 * descriptor cache, although it can be cleared in the 1692 * descriptor, the cached bit always remains at 1. Since 1693 * Intel has a check on this, set it here to support 1694 * cross-vendor migration. 1695 */ 1696 if (!var->unusable) 1697 var->type |= 0x1; 1698 break; 1699 case VCPU_SREG_SS: 1700 /* 1701 * On AMD CPUs sometimes the DB bit in the segment 1702 * descriptor is left as 1, although the whole segment has 1703 * been made unusable. Clear it here to pass an Intel VMX 1704 * entry check when cross vendor migrating. 1705 */ 1706 if (var->unusable) 1707 var->db = 0; 1708 /* This is symmetric with svm_set_segment() */ 1709 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1710 break; 1711 } 1712 } 1713 1714 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1715 { 1716 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1717 1718 return save->cpl; 1719 } 1720 1721 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1722 { 1723 struct kvm_segment cs; 1724 1725 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1726 *db = cs.db; 1727 *l = cs.l; 1728 } 1729 1730 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1731 { 1732 struct vcpu_svm *svm = to_svm(vcpu); 1733 1734 dt->size = svm->vmcb->save.idtr.limit; 1735 dt->address = svm->vmcb->save.idtr.base; 1736 } 1737 1738 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1739 { 1740 struct vcpu_svm *svm = to_svm(vcpu); 1741 1742 svm->vmcb->save.idtr.limit = dt->size; 1743 svm->vmcb->save.idtr.base = dt->address ; 1744 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1745 } 1746 1747 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1748 { 1749 struct vcpu_svm *svm = to_svm(vcpu); 1750 1751 dt->size = svm->vmcb->save.gdtr.limit; 1752 dt->address = svm->vmcb->save.gdtr.base; 1753 } 1754 1755 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1756 { 1757 struct vcpu_svm *svm = to_svm(vcpu); 1758 1759 svm->vmcb->save.gdtr.limit = dt->size; 1760 svm->vmcb->save.gdtr.base = dt->address ; 1761 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1762 } 1763 1764 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1765 { 1766 struct vcpu_svm *svm = to_svm(vcpu); 1767 1768 /* 1769 * For guests that don't set guest_state_protected, the cr3 update is 1770 * handled via kvm_mmu_load() while entering the guest. For guests 1771 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1772 * VMCB save area now, since the save area will become the initial 1773 * contents of the VMSA, and future VMCB save area updates won't be 1774 * seen. 1775 */ 1776 if (sev_es_guest(vcpu->kvm)) { 1777 svm->vmcb->save.cr3 = cr3; 1778 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1779 } 1780 } 1781 1782 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1783 { 1784 struct vcpu_svm *svm = to_svm(vcpu); 1785 u64 hcr0 = cr0; 1786 bool old_paging = is_paging(vcpu); 1787 1788 #ifdef CONFIG_X86_64 1789 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1790 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1791 vcpu->arch.efer |= EFER_LMA; 1792 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1793 } 1794 1795 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1796 vcpu->arch.efer &= ~EFER_LMA; 1797 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1798 } 1799 } 1800 #endif 1801 vcpu->arch.cr0 = cr0; 1802 1803 if (!npt_enabled) { 1804 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1805 if (old_paging != is_paging(vcpu)) 1806 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1807 } 1808 1809 /* 1810 * re-enable caching here because the QEMU bios 1811 * does not do it - this results in some delay at 1812 * reboot 1813 */ 1814 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1815 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1816 1817 svm->vmcb->save.cr0 = hcr0; 1818 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1819 1820 /* 1821 * SEV-ES guests must always keep the CR intercepts cleared. CR 1822 * tracking is done using the CR write traps. 1823 */ 1824 if (sev_es_guest(vcpu->kvm)) 1825 return; 1826 1827 if (hcr0 == cr0) { 1828 /* Selective CR0 write remains on. */ 1829 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1830 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1831 } else { 1832 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1833 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1834 } 1835 } 1836 1837 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1838 { 1839 return true; 1840 } 1841 1842 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1843 { 1844 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1845 unsigned long old_cr4 = vcpu->arch.cr4; 1846 1847 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1848 svm_flush_tlb_current(vcpu); 1849 1850 vcpu->arch.cr4 = cr4; 1851 if (!npt_enabled) { 1852 cr4 |= X86_CR4_PAE; 1853 1854 if (!is_paging(vcpu)) 1855 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1856 } 1857 cr4 |= host_cr4_mce; 1858 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1859 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1860 1861 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1862 kvm_update_cpuid_runtime(vcpu); 1863 } 1864 1865 static void svm_set_segment(struct kvm_vcpu *vcpu, 1866 struct kvm_segment *var, int seg) 1867 { 1868 struct vcpu_svm *svm = to_svm(vcpu); 1869 struct vmcb_seg *s = svm_seg(vcpu, seg); 1870 1871 s->base = var->base; 1872 s->limit = var->limit; 1873 s->selector = var->selector; 1874 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1875 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1876 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1877 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1878 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1879 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1880 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1881 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1882 1883 /* 1884 * This is always accurate, except if SYSRET returned to a segment 1885 * with SS.DPL != 3. Intel does not have this quirk, and always 1886 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1887 * would entail passing the CPL to userspace and back. 1888 */ 1889 if (seg == VCPU_SREG_SS) 1890 /* This is symmetric with svm_get_segment() */ 1891 svm->vmcb->save.cpl = (var->dpl & 3); 1892 1893 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1894 } 1895 1896 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1897 { 1898 struct vcpu_svm *svm = to_svm(vcpu); 1899 1900 clr_exception_intercept(svm, BP_VECTOR); 1901 1902 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1903 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1904 set_exception_intercept(svm, BP_VECTOR); 1905 } 1906 } 1907 1908 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1909 { 1910 if (sd->next_asid > sd->max_asid) { 1911 ++sd->asid_generation; 1912 sd->next_asid = sd->min_asid; 1913 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1914 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1915 } 1916 1917 svm->current_vmcb->asid_generation = sd->asid_generation; 1918 svm->asid = sd->next_asid++; 1919 } 1920 1921 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1922 { 1923 struct vmcb *vmcb = svm->vmcb; 1924 1925 if (svm->vcpu.arch.guest_state_protected) 1926 return; 1927 1928 if (unlikely(value != vmcb->save.dr6)) { 1929 vmcb->save.dr6 = value; 1930 vmcb_mark_dirty(vmcb, VMCB_DR); 1931 } 1932 } 1933 1934 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1935 { 1936 struct vcpu_svm *svm = to_svm(vcpu); 1937 1938 if (vcpu->arch.guest_state_protected) 1939 return; 1940 1941 get_debugreg(vcpu->arch.db[0], 0); 1942 get_debugreg(vcpu->arch.db[1], 1); 1943 get_debugreg(vcpu->arch.db[2], 2); 1944 get_debugreg(vcpu->arch.db[3], 3); 1945 /* 1946 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1947 * because db_interception might need it. We can do it before vmentry. 1948 */ 1949 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1950 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1951 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1952 set_dr_intercepts(svm); 1953 } 1954 1955 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1956 { 1957 struct vcpu_svm *svm = to_svm(vcpu); 1958 1959 if (vcpu->arch.guest_state_protected) 1960 return; 1961 1962 svm->vmcb->save.dr7 = value; 1963 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1964 } 1965 1966 static int pf_interception(struct kvm_vcpu *vcpu) 1967 { 1968 struct vcpu_svm *svm = to_svm(vcpu); 1969 1970 u64 fault_address = svm->vmcb->control.exit_info_2; 1971 u64 error_code = svm->vmcb->control.exit_info_1; 1972 1973 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1974 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1975 svm->vmcb->control.insn_bytes : NULL, 1976 svm->vmcb->control.insn_len); 1977 } 1978 1979 static int npf_interception(struct kvm_vcpu *vcpu) 1980 { 1981 struct vcpu_svm *svm = to_svm(vcpu); 1982 1983 u64 fault_address = svm->vmcb->control.exit_info_2; 1984 u64 error_code = svm->vmcb->control.exit_info_1; 1985 1986 trace_kvm_page_fault(vcpu, fault_address, error_code); 1987 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1988 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1989 svm->vmcb->control.insn_bytes : NULL, 1990 svm->vmcb->control.insn_len); 1991 } 1992 1993 static int db_interception(struct kvm_vcpu *vcpu) 1994 { 1995 struct kvm_run *kvm_run = vcpu->run; 1996 struct vcpu_svm *svm = to_svm(vcpu); 1997 1998 if (!(vcpu->guest_debug & 1999 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2000 !svm->nmi_singlestep) { 2001 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2002 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2003 return 1; 2004 } 2005 2006 if (svm->nmi_singlestep) { 2007 disable_nmi_singlestep(svm); 2008 /* Make sure we check for pending NMIs upon entry */ 2009 kvm_make_request(KVM_REQ_EVENT, vcpu); 2010 } 2011 2012 if (vcpu->guest_debug & 2013 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2014 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2015 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2016 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2017 kvm_run->debug.arch.pc = 2018 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2019 kvm_run->debug.arch.exception = DB_VECTOR; 2020 return 0; 2021 } 2022 2023 return 1; 2024 } 2025 2026 static int bp_interception(struct kvm_vcpu *vcpu) 2027 { 2028 struct vcpu_svm *svm = to_svm(vcpu); 2029 struct kvm_run *kvm_run = vcpu->run; 2030 2031 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2032 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2033 kvm_run->debug.arch.exception = BP_VECTOR; 2034 return 0; 2035 } 2036 2037 static int ud_interception(struct kvm_vcpu *vcpu) 2038 { 2039 return handle_ud(vcpu); 2040 } 2041 2042 static int ac_interception(struct kvm_vcpu *vcpu) 2043 { 2044 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2045 return 1; 2046 } 2047 2048 static bool is_erratum_383(void) 2049 { 2050 int err, i; 2051 u64 value; 2052 2053 if (!erratum_383_found) 2054 return false; 2055 2056 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2057 if (err) 2058 return false; 2059 2060 /* Bit 62 may or may not be set for this mce */ 2061 value &= ~(1ULL << 62); 2062 2063 if (value != 0xb600000000010015ULL) 2064 return false; 2065 2066 /* Clear MCi_STATUS registers */ 2067 for (i = 0; i < 6; ++i) 2068 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2069 2070 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2071 if (!err) { 2072 u32 low, high; 2073 2074 value &= ~(1ULL << 2); 2075 low = lower_32_bits(value); 2076 high = upper_32_bits(value); 2077 2078 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2079 } 2080 2081 /* Flush tlb to evict multi-match entries */ 2082 __flush_tlb_all(); 2083 2084 return true; 2085 } 2086 2087 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2088 { 2089 if (is_erratum_383()) { 2090 /* 2091 * Erratum 383 triggered. Guest state is corrupt so kill the 2092 * guest. 2093 */ 2094 pr_err("Guest triggered AMD Erratum 383\n"); 2095 2096 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2097 2098 return; 2099 } 2100 2101 /* 2102 * On an #MC intercept the MCE handler is not called automatically in 2103 * the host. So do it by hand here. 2104 */ 2105 kvm_machine_check(); 2106 } 2107 2108 static int mc_interception(struct kvm_vcpu *vcpu) 2109 { 2110 return 1; 2111 } 2112 2113 static int shutdown_interception(struct kvm_vcpu *vcpu) 2114 { 2115 struct kvm_run *kvm_run = vcpu->run; 2116 struct vcpu_svm *svm = to_svm(vcpu); 2117 2118 /* 2119 * The VM save area has already been encrypted so it 2120 * cannot be reinitialized - just terminate. 2121 */ 2122 if (sev_es_guest(vcpu->kvm)) 2123 return -EINVAL; 2124 2125 /* 2126 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2127 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2128 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2129 * userspace. At a platform view, INIT is acceptable behavior as 2130 * there exist bare metal platforms that automatically INIT the CPU 2131 * in response to shutdown. 2132 */ 2133 clear_page(svm->vmcb); 2134 kvm_vcpu_reset(vcpu, true); 2135 2136 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2137 return 0; 2138 } 2139 2140 static int io_interception(struct kvm_vcpu *vcpu) 2141 { 2142 struct vcpu_svm *svm = to_svm(vcpu); 2143 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2144 int size, in, string; 2145 unsigned port; 2146 2147 ++vcpu->stat.io_exits; 2148 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2149 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2150 port = io_info >> 16; 2151 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2152 2153 if (string) { 2154 if (sev_es_guest(vcpu->kvm)) 2155 return sev_es_string_io(svm, size, port, in); 2156 else 2157 return kvm_emulate_instruction(vcpu, 0); 2158 } 2159 2160 svm->next_rip = svm->vmcb->control.exit_info_2; 2161 2162 return kvm_fast_pio(vcpu, size, port, in); 2163 } 2164 2165 static int nmi_interception(struct kvm_vcpu *vcpu) 2166 { 2167 return 1; 2168 } 2169 2170 static int smi_interception(struct kvm_vcpu *vcpu) 2171 { 2172 return 1; 2173 } 2174 2175 static int intr_interception(struct kvm_vcpu *vcpu) 2176 { 2177 ++vcpu->stat.irq_exits; 2178 return 1; 2179 } 2180 2181 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2182 { 2183 struct vcpu_svm *svm = to_svm(vcpu); 2184 struct vmcb *vmcb12; 2185 struct kvm_host_map map; 2186 int ret; 2187 2188 if (nested_svm_check_permissions(vcpu)) 2189 return 1; 2190 2191 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2192 if (ret) { 2193 if (ret == -EINVAL) 2194 kvm_inject_gp(vcpu, 0); 2195 return 1; 2196 } 2197 2198 vmcb12 = map.hva; 2199 2200 ret = kvm_skip_emulated_instruction(vcpu); 2201 2202 if (vmload) { 2203 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2204 svm->sysenter_eip_hi = 0; 2205 svm->sysenter_esp_hi = 0; 2206 } else { 2207 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2208 } 2209 2210 kvm_vcpu_unmap(vcpu, &map, true); 2211 2212 return ret; 2213 } 2214 2215 static int vmload_interception(struct kvm_vcpu *vcpu) 2216 { 2217 return vmload_vmsave_interception(vcpu, true); 2218 } 2219 2220 static int vmsave_interception(struct kvm_vcpu *vcpu) 2221 { 2222 return vmload_vmsave_interception(vcpu, false); 2223 } 2224 2225 static int vmrun_interception(struct kvm_vcpu *vcpu) 2226 { 2227 if (nested_svm_check_permissions(vcpu)) 2228 return 1; 2229 2230 return nested_svm_vmrun(vcpu); 2231 } 2232 2233 enum { 2234 NONE_SVM_INSTR, 2235 SVM_INSTR_VMRUN, 2236 SVM_INSTR_VMLOAD, 2237 SVM_INSTR_VMSAVE, 2238 }; 2239 2240 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2241 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2242 { 2243 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2244 2245 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2246 return NONE_SVM_INSTR; 2247 2248 switch (ctxt->modrm) { 2249 case 0xd8: /* VMRUN */ 2250 return SVM_INSTR_VMRUN; 2251 case 0xda: /* VMLOAD */ 2252 return SVM_INSTR_VMLOAD; 2253 case 0xdb: /* VMSAVE */ 2254 return SVM_INSTR_VMSAVE; 2255 default: 2256 break; 2257 } 2258 2259 return NONE_SVM_INSTR; 2260 } 2261 2262 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2263 { 2264 const int guest_mode_exit_codes[] = { 2265 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2266 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2267 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2268 }; 2269 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2270 [SVM_INSTR_VMRUN] = vmrun_interception, 2271 [SVM_INSTR_VMLOAD] = vmload_interception, 2272 [SVM_INSTR_VMSAVE] = vmsave_interception, 2273 }; 2274 struct vcpu_svm *svm = to_svm(vcpu); 2275 int ret; 2276 2277 if (is_guest_mode(vcpu)) { 2278 /* Returns '1' or -errno on failure, '0' on success. */ 2279 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2280 if (ret) 2281 return ret; 2282 return 1; 2283 } 2284 return svm_instr_handlers[opcode](vcpu); 2285 } 2286 2287 /* 2288 * #GP handling code. Note that #GP can be triggered under the following two 2289 * cases: 2290 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2291 * some AMD CPUs when EAX of these instructions are in the reserved memory 2292 * regions (e.g. SMM memory on host). 2293 * 2) VMware backdoor 2294 */ 2295 static int gp_interception(struct kvm_vcpu *vcpu) 2296 { 2297 struct vcpu_svm *svm = to_svm(vcpu); 2298 u32 error_code = svm->vmcb->control.exit_info_1; 2299 int opcode; 2300 2301 /* Both #GP cases have zero error_code */ 2302 if (error_code) 2303 goto reinject; 2304 2305 /* Decode the instruction for usage later */ 2306 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2307 goto reinject; 2308 2309 opcode = svm_instr_opcode(vcpu); 2310 2311 if (opcode == NONE_SVM_INSTR) { 2312 if (!enable_vmware_backdoor) 2313 goto reinject; 2314 2315 /* 2316 * VMware backdoor emulation on #GP interception only handles 2317 * IN{S}, OUT{S}, and RDPMC. 2318 */ 2319 if (!is_guest_mode(vcpu)) 2320 return kvm_emulate_instruction(vcpu, 2321 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2322 } else { 2323 /* All SVM instructions expect page aligned RAX */ 2324 if (svm->vmcb->save.rax & ~PAGE_MASK) 2325 goto reinject; 2326 2327 return emulate_svm_instr(vcpu, opcode); 2328 } 2329 2330 reinject: 2331 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2332 return 1; 2333 } 2334 2335 void svm_set_gif(struct vcpu_svm *svm, bool value) 2336 { 2337 if (value) { 2338 /* 2339 * If VGIF is enabled, the STGI intercept is only added to 2340 * detect the opening of the SMI/NMI window; remove it now. 2341 * Likewise, clear the VINTR intercept, we will set it 2342 * again while processing KVM_REQ_EVENT if needed. 2343 */ 2344 if (vgif) 2345 svm_clr_intercept(svm, INTERCEPT_STGI); 2346 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2347 svm_clear_vintr(svm); 2348 2349 enable_gif(svm); 2350 if (svm->vcpu.arch.smi_pending || 2351 svm->vcpu.arch.nmi_pending || 2352 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2353 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2354 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2355 } else { 2356 disable_gif(svm); 2357 2358 /* 2359 * After a CLGI no interrupts should come. But if vGIF is 2360 * in use, we still rely on the VINTR intercept (rather than 2361 * STGI) to detect an open interrupt window. 2362 */ 2363 if (!vgif) 2364 svm_clear_vintr(svm); 2365 } 2366 } 2367 2368 static int stgi_interception(struct kvm_vcpu *vcpu) 2369 { 2370 int ret; 2371 2372 if (nested_svm_check_permissions(vcpu)) 2373 return 1; 2374 2375 ret = kvm_skip_emulated_instruction(vcpu); 2376 svm_set_gif(to_svm(vcpu), true); 2377 return ret; 2378 } 2379 2380 static int clgi_interception(struct kvm_vcpu *vcpu) 2381 { 2382 int ret; 2383 2384 if (nested_svm_check_permissions(vcpu)) 2385 return 1; 2386 2387 ret = kvm_skip_emulated_instruction(vcpu); 2388 svm_set_gif(to_svm(vcpu), false); 2389 return ret; 2390 } 2391 2392 static int invlpga_interception(struct kvm_vcpu *vcpu) 2393 { 2394 gva_t gva = kvm_rax_read(vcpu); 2395 u32 asid = kvm_rcx_read(vcpu); 2396 2397 /* FIXME: Handle an address size prefix. */ 2398 if (!is_long_mode(vcpu)) 2399 gva = (u32)gva; 2400 2401 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2402 2403 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2404 kvm_mmu_invlpg(vcpu, gva); 2405 2406 return kvm_skip_emulated_instruction(vcpu); 2407 } 2408 2409 static int skinit_interception(struct kvm_vcpu *vcpu) 2410 { 2411 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2412 2413 kvm_queue_exception(vcpu, UD_VECTOR); 2414 return 1; 2415 } 2416 2417 static int task_switch_interception(struct kvm_vcpu *vcpu) 2418 { 2419 struct vcpu_svm *svm = to_svm(vcpu); 2420 u16 tss_selector; 2421 int reason; 2422 int int_type = svm->vmcb->control.exit_int_info & 2423 SVM_EXITINTINFO_TYPE_MASK; 2424 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2425 uint32_t type = 2426 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2427 uint32_t idt_v = 2428 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2429 bool has_error_code = false; 2430 u32 error_code = 0; 2431 2432 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2433 2434 if (svm->vmcb->control.exit_info_2 & 2435 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2436 reason = TASK_SWITCH_IRET; 2437 else if (svm->vmcb->control.exit_info_2 & 2438 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2439 reason = TASK_SWITCH_JMP; 2440 else if (idt_v) 2441 reason = TASK_SWITCH_GATE; 2442 else 2443 reason = TASK_SWITCH_CALL; 2444 2445 if (reason == TASK_SWITCH_GATE) { 2446 switch (type) { 2447 case SVM_EXITINTINFO_TYPE_NMI: 2448 vcpu->arch.nmi_injected = false; 2449 break; 2450 case SVM_EXITINTINFO_TYPE_EXEPT: 2451 if (svm->vmcb->control.exit_info_2 & 2452 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2453 has_error_code = true; 2454 error_code = 2455 (u32)svm->vmcb->control.exit_info_2; 2456 } 2457 kvm_clear_exception_queue(vcpu); 2458 break; 2459 case SVM_EXITINTINFO_TYPE_INTR: 2460 case SVM_EXITINTINFO_TYPE_SOFT: 2461 kvm_clear_interrupt_queue(vcpu); 2462 break; 2463 default: 2464 break; 2465 } 2466 } 2467 2468 if (reason != TASK_SWITCH_GATE || 2469 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2470 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2471 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2472 if (!svm_skip_emulated_instruction(vcpu)) 2473 return 0; 2474 } 2475 2476 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2477 int_vec = -1; 2478 2479 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2480 has_error_code, error_code); 2481 } 2482 2483 static int iret_interception(struct kvm_vcpu *vcpu) 2484 { 2485 struct vcpu_svm *svm = to_svm(vcpu); 2486 2487 ++vcpu->stat.nmi_window_exits; 2488 svm->awaiting_iret_completion = true; 2489 if (!sev_es_guest(vcpu->kvm)) { 2490 svm_clr_intercept(svm, INTERCEPT_IRET); 2491 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2492 } 2493 kvm_make_request(KVM_REQ_EVENT, vcpu); 2494 return 1; 2495 } 2496 2497 static int invlpg_interception(struct kvm_vcpu *vcpu) 2498 { 2499 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2500 return kvm_emulate_instruction(vcpu, 0); 2501 2502 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2503 return kvm_skip_emulated_instruction(vcpu); 2504 } 2505 2506 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2507 { 2508 return kvm_emulate_instruction(vcpu, 0); 2509 } 2510 2511 static int rsm_interception(struct kvm_vcpu *vcpu) 2512 { 2513 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2514 } 2515 2516 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2517 unsigned long val) 2518 { 2519 struct vcpu_svm *svm = to_svm(vcpu); 2520 unsigned long cr0 = vcpu->arch.cr0; 2521 bool ret = false; 2522 2523 if (!is_guest_mode(vcpu) || 2524 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2525 return false; 2526 2527 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2528 val &= ~SVM_CR0_SELECTIVE_MASK; 2529 2530 if (cr0 ^ val) { 2531 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2532 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2533 } 2534 2535 return ret; 2536 } 2537 2538 #define CR_VALID (1ULL << 63) 2539 2540 static int cr_interception(struct kvm_vcpu *vcpu) 2541 { 2542 struct vcpu_svm *svm = to_svm(vcpu); 2543 int reg, cr; 2544 unsigned long val; 2545 int err; 2546 2547 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2548 return emulate_on_interception(vcpu); 2549 2550 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2551 return emulate_on_interception(vcpu); 2552 2553 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2554 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2555 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2556 else 2557 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2558 2559 err = 0; 2560 if (cr >= 16) { /* mov to cr */ 2561 cr -= 16; 2562 val = kvm_register_read(vcpu, reg); 2563 trace_kvm_cr_write(cr, val); 2564 switch (cr) { 2565 case 0: 2566 if (!check_selective_cr0_intercepted(vcpu, val)) 2567 err = kvm_set_cr0(vcpu, val); 2568 else 2569 return 1; 2570 2571 break; 2572 case 3: 2573 err = kvm_set_cr3(vcpu, val); 2574 break; 2575 case 4: 2576 err = kvm_set_cr4(vcpu, val); 2577 break; 2578 case 8: 2579 err = kvm_set_cr8(vcpu, val); 2580 break; 2581 default: 2582 WARN(1, "unhandled write to CR%d", cr); 2583 kvm_queue_exception(vcpu, UD_VECTOR); 2584 return 1; 2585 } 2586 } else { /* mov from cr */ 2587 switch (cr) { 2588 case 0: 2589 val = kvm_read_cr0(vcpu); 2590 break; 2591 case 2: 2592 val = vcpu->arch.cr2; 2593 break; 2594 case 3: 2595 val = kvm_read_cr3(vcpu); 2596 break; 2597 case 4: 2598 val = kvm_read_cr4(vcpu); 2599 break; 2600 case 8: 2601 val = kvm_get_cr8(vcpu); 2602 break; 2603 default: 2604 WARN(1, "unhandled read from CR%d", cr); 2605 kvm_queue_exception(vcpu, UD_VECTOR); 2606 return 1; 2607 } 2608 kvm_register_write(vcpu, reg, val); 2609 trace_kvm_cr_read(cr, val); 2610 } 2611 return kvm_complete_insn_gp(vcpu, err); 2612 } 2613 2614 static int cr_trap(struct kvm_vcpu *vcpu) 2615 { 2616 struct vcpu_svm *svm = to_svm(vcpu); 2617 unsigned long old_value, new_value; 2618 unsigned int cr; 2619 int ret = 0; 2620 2621 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2622 2623 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2624 switch (cr) { 2625 case 0: 2626 old_value = kvm_read_cr0(vcpu); 2627 svm_set_cr0(vcpu, new_value); 2628 2629 kvm_post_set_cr0(vcpu, old_value, new_value); 2630 break; 2631 case 4: 2632 old_value = kvm_read_cr4(vcpu); 2633 svm_set_cr4(vcpu, new_value); 2634 2635 kvm_post_set_cr4(vcpu, old_value, new_value); 2636 break; 2637 case 8: 2638 ret = kvm_set_cr8(vcpu, new_value); 2639 break; 2640 default: 2641 WARN(1, "unhandled CR%d write trap", cr); 2642 kvm_queue_exception(vcpu, UD_VECTOR); 2643 return 1; 2644 } 2645 2646 return kvm_complete_insn_gp(vcpu, ret); 2647 } 2648 2649 static int dr_interception(struct kvm_vcpu *vcpu) 2650 { 2651 struct vcpu_svm *svm = to_svm(vcpu); 2652 int reg, dr; 2653 unsigned long val; 2654 int err = 0; 2655 2656 if (vcpu->guest_debug == 0) { 2657 /* 2658 * No more DR vmexits; force a reload of the debug registers 2659 * and reenter on this instruction. The next vmexit will 2660 * retrieve the full state of the debug registers. 2661 */ 2662 clr_dr_intercepts(svm); 2663 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2664 return 1; 2665 } 2666 2667 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2668 return emulate_on_interception(vcpu); 2669 2670 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2671 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2672 if (dr >= 16) { /* mov to DRn */ 2673 dr -= 16; 2674 val = kvm_register_read(vcpu, reg); 2675 err = kvm_set_dr(vcpu, dr, val); 2676 } else { 2677 kvm_get_dr(vcpu, dr, &val); 2678 kvm_register_write(vcpu, reg, val); 2679 } 2680 2681 return kvm_complete_insn_gp(vcpu, err); 2682 } 2683 2684 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2685 { 2686 int r; 2687 2688 u8 cr8_prev = kvm_get_cr8(vcpu); 2689 /* instruction emulation calls kvm_set_cr8() */ 2690 r = cr_interception(vcpu); 2691 if (lapic_in_kernel(vcpu)) 2692 return r; 2693 if (cr8_prev <= kvm_get_cr8(vcpu)) 2694 return r; 2695 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2696 return 0; 2697 } 2698 2699 static int efer_trap(struct kvm_vcpu *vcpu) 2700 { 2701 struct msr_data msr_info; 2702 int ret; 2703 2704 /* 2705 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2706 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2707 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2708 * the guest doesn't have X86_FEATURE_SVM. 2709 */ 2710 msr_info.host_initiated = false; 2711 msr_info.index = MSR_EFER; 2712 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2713 ret = kvm_set_msr_common(vcpu, &msr_info); 2714 2715 return kvm_complete_insn_gp(vcpu, ret); 2716 } 2717 2718 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2719 { 2720 msr->data = 0; 2721 2722 switch (msr->index) { 2723 case MSR_AMD64_DE_CFG: 2724 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2725 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2726 break; 2727 default: 2728 return KVM_MSR_RET_INVALID; 2729 } 2730 2731 return 0; 2732 } 2733 2734 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2735 { 2736 struct vcpu_svm *svm = to_svm(vcpu); 2737 2738 switch (msr_info->index) { 2739 case MSR_AMD64_TSC_RATIO: 2740 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled) 2741 return 1; 2742 msr_info->data = svm->tsc_ratio_msr; 2743 break; 2744 case MSR_STAR: 2745 msr_info->data = svm->vmcb01.ptr->save.star; 2746 break; 2747 #ifdef CONFIG_X86_64 2748 case MSR_LSTAR: 2749 msr_info->data = svm->vmcb01.ptr->save.lstar; 2750 break; 2751 case MSR_CSTAR: 2752 msr_info->data = svm->vmcb01.ptr->save.cstar; 2753 break; 2754 case MSR_KERNEL_GS_BASE: 2755 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2756 break; 2757 case MSR_SYSCALL_MASK: 2758 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2759 break; 2760 #endif 2761 case MSR_IA32_SYSENTER_CS: 2762 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2763 break; 2764 case MSR_IA32_SYSENTER_EIP: 2765 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2766 if (guest_cpuid_is_intel(vcpu)) 2767 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2768 break; 2769 case MSR_IA32_SYSENTER_ESP: 2770 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2771 if (guest_cpuid_is_intel(vcpu)) 2772 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2773 break; 2774 case MSR_TSC_AUX: 2775 msr_info->data = svm->tsc_aux; 2776 break; 2777 case MSR_IA32_DEBUGCTLMSR: 2778 case MSR_IA32_LASTBRANCHFROMIP: 2779 case MSR_IA32_LASTBRANCHTOIP: 2780 case MSR_IA32_LASTINTFROMIP: 2781 case MSR_IA32_LASTINTTOIP: 2782 msr_info->data = svm_get_lbr_msr(svm, msr_info->index); 2783 break; 2784 case MSR_VM_HSAVE_PA: 2785 msr_info->data = svm->nested.hsave_msr; 2786 break; 2787 case MSR_VM_CR: 2788 msr_info->data = svm->nested.vm_cr_msr; 2789 break; 2790 case MSR_IA32_SPEC_CTRL: 2791 if (!msr_info->host_initiated && 2792 !guest_has_spec_ctrl_msr(vcpu)) 2793 return 1; 2794 2795 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2796 msr_info->data = svm->vmcb->save.spec_ctrl; 2797 else 2798 msr_info->data = svm->spec_ctrl; 2799 break; 2800 case MSR_AMD64_VIRT_SPEC_CTRL: 2801 if (!msr_info->host_initiated && 2802 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2803 return 1; 2804 2805 msr_info->data = svm->virt_spec_ctrl; 2806 break; 2807 case MSR_F15H_IC_CFG: { 2808 2809 int family, model; 2810 2811 family = guest_cpuid_family(vcpu); 2812 model = guest_cpuid_model(vcpu); 2813 2814 if (family < 0 || model < 0) 2815 return kvm_get_msr_common(vcpu, msr_info); 2816 2817 msr_info->data = 0; 2818 2819 if (family == 0x15 && 2820 (model >= 0x2 && model < 0x20)) 2821 msr_info->data = 0x1E; 2822 } 2823 break; 2824 case MSR_AMD64_DE_CFG: 2825 msr_info->data = svm->msr_decfg; 2826 break; 2827 default: 2828 return kvm_get_msr_common(vcpu, msr_info); 2829 } 2830 return 0; 2831 } 2832 2833 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2834 { 2835 struct vcpu_svm *svm = to_svm(vcpu); 2836 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2837 return kvm_complete_insn_gp(vcpu, err); 2838 2839 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2840 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2841 X86_TRAP_GP | 2842 SVM_EVTINJ_TYPE_EXEPT | 2843 SVM_EVTINJ_VALID); 2844 return 1; 2845 } 2846 2847 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2848 { 2849 struct vcpu_svm *svm = to_svm(vcpu); 2850 int svm_dis, chg_mask; 2851 2852 if (data & ~SVM_VM_CR_VALID_MASK) 2853 return 1; 2854 2855 chg_mask = SVM_VM_CR_VALID_MASK; 2856 2857 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2858 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2859 2860 svm->nested.vm_cr_msr &= ~chg_mask; 2861 svm->nested.vm_cr_msr |= (data & chg_mask); 2862 2863 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2864 2865 /* check for svm_disable while efer.svme is set */ 2866 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2867 return 1; 2868 2869 return 0; 2870 } 2871 2872 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2873 { 2874 struct vcpu_svm *svm = to_svm(vcpu); 2875 int r; 2876 2877 u32 ecx = msr->index; 2878 u64 data = msr->data; 2879 switch (ecx) { 2880 case MSR_AMD64_TSC_RATIO: 2881 2882 if (!svm->tsc_scaling_enabled) { 2883 2884 if (!msr->host_initiated) 2885 return 1; 2886 /* 2887 * In case TSC scaling is not enabled, always 2888 * leave this MSR at the default value. 2889 * 2890 * Due to bug in qemu 6.2.0, it would try to set 2891 * this msr to 0 if tsc scaling is not enabled. 2892 * Ignore this value as well. 2893 */ 2894 if (data != 0 && data != svm->tsc_ratio_msr) 2895 return 1; 2896 break; 2897 } 2898 2899 if (data & SVM_TSC_RATIO_RSVD) 2900 return 1; 2901 2902 svm->tsc_ratio_msr = data; 2903 2904 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu)) 2905 nested_svm_update_tsc_ratio_msr(vcpu); 2906 2907 break; 2908 case MSR_IA32_CR_PAT: 2909 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2910 return 1; 2911 vcpu->arch.pat = data; 2912 svm->vmcb01.ptr->save.g_pat = data; 2913 if (is_guest_mode(vcpu)) 2914 nested_vmcb02_compute_g_pat(svm); 2915 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2916 break; 2917 case MSR_IA32_SPEC_CTRL: 2918 if (!msr->host_initiated && 2919 !guest_has_spec_ctrl_msr(vcpu)) 2920 return 1; 2921 2922 if (kvm_spec_ctrl_test_value(data)) 2923 return 1; 2924 2925 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2926 svm->vmcb->save.spec_ctrl = data; 2927 else 2928 svm->spec_ctrl = data; 2929 if (!data) 2930 break; 2931 2932 /* 2933 * For non-nested: 2934 * When it's written (to non-zero) for the first time, pass 2935 * it through. 2936 * 2937 * For nested: 2938 * The handling of the MSR bitmap for L2 guests is done in 2939 * nested_svm_vmrun_msrpm. 2940 * We update the L1 MSR bit as well since it will end up 2941 * touching the MSR anyway now. 2942 */ 2943 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2944 break; 2945 case MSR_IA32_PRED_CMD: 2946 if (!msr->host_initiated && 2947 !guest_has_pred_cmd_msr(vcpu)) 2948 return 1; 2949 2950 if (data & ~PRED_CMD_IBPB) 2951 return 1; 2952 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2953 return 1; 2954 if (!data) 2955 break; 2956 2957 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2958 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2959 break; 2960 case MSR_AMD64_VIRT_SPEC_CTRL: 2961 if (!msr->host_initiated && 2962 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2963 return 1; 2964 2965 if (data & ~SPEC_CTRL_SSBD) 2966 return 1; 2967 2968 svm->virt_spec_ctrl = data; 2969 break; 2970 case MSR_STAR: 2971 svm->vmcb01.ptr->save.star = data; 2972 break; 2973 #ifdef CONFIG_X86_64 2974 case MSR_LSTAR: 2975 svm->vmcb01.ptr->save.lstar = data; 2976 break; 2977 case MSR_CSTAR: 2978 svm->vmcb01.ptr->save.cstar = data; 2979 break; 2980 case MSR_KERNEL_GS_BASE: 2981 svm->vmcb01.ptr->save.kernel_gs_base = data; 2982 break; 2983 case MSR_SYSCALL_MASK: 2984 svm->vmcb01.ptr->save.sfmask = data; 2985 break; 2986 #endif 2987 case MSR_IA32_SYSENTER_CS: 2988 svm->vmcb01.ptr->save.sysenter_cs = data; 2989 break; 2990 case MSR_IA32_SYSENTER_EIP: 2991 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2992 /* 2993 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2994 * when we spoof an Intel vendor ID (for cross vendor migration). 2995 * In this case we use this intercept to track the high 2996 * 32 bit part of these msrs to support Intel's 2997 * implementation of SYSENTER/SYSEXIT. 2998 */ 2999 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3000 break; 3001 case MSR_IA32_SYSENTER_ESP: 3002 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3003 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3004 break; 3005 case MSR_TSC_AUX: 3006 /* 3007 * TSC_AUX is usually changed only during boot and never read 3008 * directly. Intercept TSC_AUX instead of exposing it to the 3009 * guest via direct_access_msrs, and switch it via user return. 3010 */ 3011 preempt_disable(); 3012 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3013 preempt_enable(); 3014 if (r) 3015 return 1; 3016 3017 svm->tsc_aux = data; 3018 break; 3019 case MSR_IA32_DEBUGCTLMSR: 3020 if (!lbrv) { 3021 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3022 break; 3023 } 3024 if (data & DEBUGCTL_RESERVED_BITS) 3025 return 1; 3026 3027 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) 3028 svm->vmcb->save.dbgctl = data; 3029 else 3030 svm->vmcb01.ptr->save.dbgctl = data; 3031 3032 svm_update_lbrv(vcpu); 3033 3034 break; 3035 case MSR_VM_HSAVE_PA: 3036 /* 3037 * Old kernels did not validate the value written to 3038 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3039 * value to allow live migrating buggy or malicious guests 3040 * originating from those kernels. 3041 */ 3042 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3043 return 1; 3044 3045 svm->nested.hsave_msr = data & PAGE_MASK; 3046 break; 3047 case MSR_VM_CR: 3048 return svm_set_vm_cr(vcpu, data); 3049 case MSR_VM_IGNNE: 3050 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3051 break; 3052 case MSR_AMD64_DE_CFG: { 3053 struct kvm_msr_entry msr_entry; 3054 3055 msr_entry.index = msr->index; 3056 if (svm_get_msr_feature(&msr_entry)) 3057 return 1; 3058 3059 /* Check the supported bits */ 3060 if (data & ~msr_entry.data) 3061 return 1; 3062 3063 /* Don't allow the guest to change a bit, #GP */ 3064 if (!msr->host_initiated && (data ^ msr_entry.data)) 3065 return 1; 3066 3067 svm->msr_decfg = data; 3068 break; 3069 } 3070 default: 3071 return kvm_set_msr_common(vcpu, msr); 3072 } 3073 return 0; 3074 } 3075 3076 static int msr_interception(struct kvm_vcpu *vcpu) 3077 { 3078 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3079 return kvm_emulate_wrmsr(vcpu); 3080 else 3081 return kvm_emulate_rdmsr(vcpu); 3082 } 3083 3084 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3085 { 3086 kvm_make_request(KVM_REQ_EVENT, vcpu); 3087 svm_clear_vintr(to_svm(vcpu)); 3088 3089 /* 3090 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3091 * In this case AVIC was temporarily disabled for 3092 * requesting the IRQ window and we have to re-enable it. 3093 * 3094 * If running nested, still remove the VM wide AVIC inhibit to 3095 * support case in which the interrupt window was requested when the 3096 * vCPU was not running nested. 3097 3098 * All vCPUs which run still run nested, will remain to have their 3099 * AVIC still inhibited due to per-cpu AVIC inhibition. 3100 */ 3101 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3102 3103 ++vcpu->stat.irq_window_exits; 3104 return 1; 3105 } 3106 3107 static int pause_interception(struct kvm_vcpu *vcpu) 3108 { 3109 bool in_kernel; 3110 /* 3111 * CPL is not made available for an SEV-ES guest, therefore 3112 * vcpu->arch.preempted_in_kernel can never be true. Just 3113 * set in_kernel to false as well. 3114 */ 3115 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3116 3117 grow_ple_window(vcpu); 3118 3119 kvm_vcpu_on_spin(vcpu, in_kernel); 3120 return kvm_skip_emulated_instruction(vcpu); 3121 } 3122 3123 static int invpcid_interception(struct kvm_vcpu *vcpu) 3124 { 3125 struct vcpu_svm *svm = to_svm(vcpu); 3126 unsigned long type; 3127 gva_t gva; 3128 3129 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3130 kvm_queue_exception(vcpu, UD_VECTOR); 3131 return 1; 3132 } 3133 3134 /* 3135 * For an INVPCID intercept: 3136 * EXITINFO1 provides the linear address of the memory operand. 3137 * EXITINFO2 provides the contents of the register operand. 3138 */ 3139 type = svm->vmcb->control.exit_info_2; 3140 gva = svm->vmcb->control.exit_info_1; 3141 3142 return kvm_handle_invpcid(vcpu, type, gva); 3143 } 3144 3145 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3146 [SVM_EXIT_READ_CR0] = cr_interception, 3147 [SVM_EXIT_READ_CR3] = cr_interception, 3148 [SVM_EXIT_READ_CR4] = cr_interception, 3149 [SVM_EXIT_READ_CR8] = cr_interception, 3150 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3151 [SVM_EXIT_WRITE_CR0] = cr_interception, 3152 [SVM_EXIT_WRITE_CR3] = cr_interception, 3153 [SVM_EXIT_WRITE_CR4] = cr_interception, 3154 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3155 [SVM_EXIT_READ_DR0] = dr_interception, 3156 [SVM_EXIT_READ_DR1] = dr_interception, 3157 [SVM_EXIT_READ_DR2] = dr_interception, 3158 [SVM_EXIT_READ_DR3] = dr_interception, 3159 [SVM_EXIT_READ_DR4] = dr_interception, 3160 [SVM_EXIT_READ_DR5] = dr_interception, 3161 [SVM_EXIT_READ_DR6] = dr_interception, 3162 [SVM_EXIT_READ_DR7] = dr_interception, 3163 [SVM_EXIT_WRITE_DR0] = dr_interception, 3164 [SVM_EXIT_WRITE_DR1] = dr_interception, 3165 [SVM_EXIT_WRITE_DR2] = dr_interception, 3166 [SVM_EXIT_WRITE_DR3] = dr_interception, 3167 [SVM_EXIT_WRITE_DR4] = dr_interception, 3168 [SVM_EXIT_WRITE_DR5] = dr_interception, 3169 [SVM_EXIT_WRITE_DR6] = dr_interception, 3170 [SVM_EXIT_WRITE_DR7] = dr_interception, 3171 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3172 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3173 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3174 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3175 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3176 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3177 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3178 [SVM_EXIT_INTR] = intr_interception, 3179 [SVM_EXIT_NMI] = nmi_interception, 3180 [SVM_EXIT_SMI] = smi_interception, 3181 [SVM_EXIT_VINTR] = interrupt_window_interception, 3182 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3183 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3184 [SVM_EXIT_IRET] = iret_interception, 3185 [SVM_EXIT_INVD] = kvm_emulate_invd, 3186 [SVM_EXIT_PAUSE] = pause_interception, 3187 [SVM_EXIT_HLT] = kvm_emulate_halt, 3188 [SVM_EXIT_INVLPG] = invlpg_interception, 3189 [SVM_EXIT_INVLPGA] = invlpga_interception, 3190 [SVM_EXIT_IOIO] = io_interception, 3191 [SVM_EXIT_MSR] = msr_interception, 3192 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3193 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3194 [SVM_EXIT_VMRUN] = vmrun_interception, 3195 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3196 [SVM_EXIT_VMLOAD] = vmload_interception, 3197 [SVM_EXIT_VMSAVE] = vmsave_interception, 3198 [SVM_EXIT_STGI] = stgi_interception, 3199 [SVM_EXIT_CLGI] = clgi_interception, 3200 [SVM_EXIT_SKINIT] = skinit_interception, 3201 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3202 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3203 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3204 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3205 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3206 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3207 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3208 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3209 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3210 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3211 [SVM_EXIT_INVPCID] = invpcid_interception, 3212 [SVM_EXIT_NPF] = npf_interception, 3213 [SVM_EXIT_RSM] = rsm_interception, 3214 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3215 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3216 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3217 }; 3218 3219 static void dump_vmcb(struct kvm_vcpu *vcpu) 3220 { 3221 struct vcpu_svm *svm = to_svm(vcpu); 3222 struct vmcb_control_area *control = &svm->vmcb->control; 3223 struct vmcb_save_area *save = &svm->vmcb->save; 3224 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3225 3226 if (!dump_invalid_vmcb) { 3227 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3228 return; 3229 } 3230 3231 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3232 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3233 pr_err("VMCB Control Area:\n"); 3234 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3235 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3236 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3237 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3238 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3239 pr_err("%-20s%08x %08x\n", "intercepts:", 3240 control->intercepts[INTERCEPT_WORD3], 3241 control->intercepts[INTERCEPT_WORD4]); 3242 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3243 pr_err("%-20s%d\n", "pause filter threshold:", 3244 control->pause_filter_thresh); 3245 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3246 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3247 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3248 pr_err("%-20s%d\n", "asid:", control->asid); 3249 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3250 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3251 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3252 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3253 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3254 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3255 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3256 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3257 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3258 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3259 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3260 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3261 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3262 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3263 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3264 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3265 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3266 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3267 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3268 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3269 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3270 pr_err("VMCB State Save Area:\n"); 3271 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3272 "es:", 3273 save->es.selector, save->es.attrib, 3274 save->es.limit, save->es.base); 3275 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3276 "cs:", 3277 save->cs.selector, save->cs.attrib, 3278 save->cs.limit, save->cs.base); 3279 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3280 "ss:", 3281 save->ss.selector, save->ss.attrib, 3282 save->ss.limit, save->ss.base); 3283 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3284 "ds:", 3285 save->ds.selector, save->ds.attrib, 3286 save->ds.limit, save->ds.base); 3287 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3288 "fs:", 3289 save01->fs.selector, save01->fs.attrib, 3290 save01->fs.limit, save01->fs.base); 3291 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3292 "gs:", 3293 save01->gs.selector, save01->gs.attrib, 3294 save01->gs.limit, save01->gs.base); 3295 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3296 "gdtr:", 3297 save->gdtr.selector, save->gdtr.attrib, 3298 save->gdtr.limit, save->gdtr.base); 3299 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3300 "ldtr:", 3301 save01->ldtr.selector, save01->ldtr.attrib, 3302 save01->ldtr.limit, save01->ldtr.base); 3303 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3304 "idtr:", 3305 save->idtr.selector, save->idtr.attrib, 3306 save->idtr.limit, save->idtr.base); 3307 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3308 "tr:", 3309 save01->tr.selector, save01->tr.attrib, 3310 save01->tr.limit, save01->tr.base); 3311 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3312 save->vmpl, save->cpl, save->efer); 3313 pr_err("%-15s %016llx %-13s %016llx\n", 3314 "cr0:", save->cr0, "cr2:", save->cr2); 3315 pr_err("%-15s %016llx %-13s %016llx\n", 3316 "cr3:", save->cr3, "cr4:", save->cr4); 3317 pr_err("%-15s %016llx %-13s %016llx\n", 3318 "dr6:", save->dr6, "dr7:", save->dr7); 3319 pr_err("%-15s %016llx %-13s %016llx\n", 3320 "rip:", save->rip, "rflags:", save->rflags); 3321 pr_err("%-15s %016llx %-13s %016llx\n", 3322 "rsp:", save->rsp, "rax:", save->rax); 3323 pr_err("%-15s %016llx %-13s %016llx\n", 3324 "star:", save01->star, "lstar:", save01->lstar); 3325 pr_err("%-15s %016llx %-13s %016llx\n", 3326 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3327 pr_err("%-15s %016llx %-13s %016llx\n", 3328 "kernel_gs_base:", save01->kernel_gs_base, 3329 "sysenter_cs:", save01->sysenter_cs); 3330 pr_err("%-15s %016llx %-13s %016llx\n", 3331 "sysenter_esp:", save01->sysenter_esp, 3332 "sysenter_eip:", save01->sysenter_eip); 3333 pr_err("%-15s %016llx %-13s %016llx\n", 3334 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3335 pr_err("%-15s %016llx %-13s %016llx\n", 3336 "br_from:", save->br_from, "br_to:", save->br_to); 3337 pr_err("%-15s %016llx %-13s %016llx\n", 3338 "excp_from:", save->last_excp_from, 3339 "excp_to:", save->last_excp_to); 3340 } 3341 3342 static bool svm_check_exit_valid(u64 exit_code) 3343 { 3344 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3345 svm_exit_handlers[exit_code]); 3346 } 3347 3348 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3349 { 3350 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3351 dump_vmcb(vcpu); 3352 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3353 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3354 vcpu->run->internal.ndata = 2; 3355 vcpu->run->internal.data[0] = exit_code; 3356 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3357 return 0; 3358 } 3359 3360 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3361 { 3362 if (!svm_check_exit_valid(exit_code)) 3363 return svm_handle_invalid_exit(vcpu, exit_code); 3364 3365 #ifdef CONFIG_RETPOLINE 3366 if (exit_code == SVM_EXIT_MSR) 3367 return msr_interception(vcpu); 3368 else if (exit_code == SVM_EXIT_VINTR) 3369 return interrupt_window_interception(vcpu); 3370 else if (exit_code == SVM_EXIT_INTR) 3371 return intr_interception(vcpu); 3372 else if (exit_code == SVM_EXIT_HLT) 3373 return kvm_emulate_halt(vcpu); 3374 else if (exit_code == SVM_EXIT_NPF) 3375 return npf_interception(vcpu); 3376 #endif 3377 return svm_exit_handlers[exit_code](vcpu); 3378 } 3379 3380 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3381 u64 *info1, u64 *info2, 3382 u32 *intr_info, u32 *error_code) 3383 { 3384 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3385 3386 *reason = control->exit_code; 3387 *info1 = control->exit_info_1; 3388 *info2 = control->exit_info_2; 3389 *intr_info = control->exit_int_info; 3390 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3391 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3392 *error_code = control->exit_int_info_err; 3393 else 3394 *error_code = 0; 3395 } 3396 3397 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3398 { 3399 struct vcpu_svm *svm = to_svm(vcpu); 3400 struct kvm_run *kvm_run = vcpu->run; 3401 u32 exit_code = svm->vmcb->control.exit_code; 3402 3403 trace_kvm_exit(vcpu, KVM_ISA_SVM); 3404 3405 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3406 if (!sev_es_guest(vcpu->kvm)) { 3407 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3408 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3409 if (npt_enabled) 3410 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3411 } 3412 3413 if (is_guest_mode(vcpu)) { 3414 int vmexit; 3415 3416 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3417 3418 vmexit = nested_svm_exit_special(svm); 3419 3420 if (vmexit == NESTED_EXIT_CONTINUE) 3421 vmexit = nested_svm_exit_handled(svm); 3422 3423 if (vmexit == NESTED_EXIT_DONE) 3424 return 1; 3425 } 3426 3427 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3428 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3429 kvm_run->fail_entry.hardware_entry_failure_reason 3430 = svm->vmcb->control.exit_code; 3431 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3432 dump_vmcb(vcpu); 3433 return 0; 3434 } 3435 3436 if (exit_fastpath != EXIT_FASTPATH_NONE) 3437 return 1; 3438 3439 return svm_invoke_exit_handler(vcpu, exit_code); 3440 } 3441 3442 static void reload_tss(struct kvm_vcpu *vcpu) 3443 { 3444 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3445 3446 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3447 load_TR_desc(); 3448 } 3449 3450 static void pre_svm_run(struct kvm_vcpu *vcpu) 3451 { 3452 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3453 struct vcpu_svm *svm = to_svm(vcpu); 3454 3455 /* 3456 * If the previous vmrun of the vmcb occurred on a different physical 3457 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3458 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3459 */ 3460 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3461 svm->current_vmcb->asid_generation = 0; 3462 vmcb_mark_all_dirty(svm->vmcb); 3463 svm->current_vmcb->cpu = vcpu->cpu; 3464 } 3465 3466 if (sev_guest(vcpu->kvm)) 3467 return pre_sev_run(svm, vcpu->cpu); 3468 3469 /* FIXME: handle wraparound of asid_generation */ 3470 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3471 new_asid(svm, sd); 3472 } 3473 3474 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3475 { 3476 struct vcpu_svm *svm = to_svm(vcpu); 3477 3478 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3479 3480 if (svm->nmi_l1_to_l2) 3481 return; 3482 3483 svm->nmi_masked = true; 3484 if (!sev_es_guest(vcpu->kvm)) 3485 svm_set_intercept(svm, INTERCEPT_IRET); 3486 ++vcpu->stat.nmi_injections; 3487 } 3488 3489 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3490 { 3491 struct vcpu_svm *svm = to_svm(vcpu); 3492 u32 type; 3493 3494 if (vcpu->arch.interrupt.soft) { 3495 if (svm_update_soft_interrupt_rip(vcpu)) 3496 return; 3497 3498 type = SVM_EVTINJ_TYPE_SOFT; 3499 } else { 3500 type = SVM_EVTINJ_TYPE_INTR; 3501 } 3502 3503 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3504 vcpu->arch.interrupt.soft, reinjected); 3505 ++vcpu->stat.irq_injections; 3506 3507 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3508 SVM_EVTINJ_VALID | type; 3509 } 3510 3511 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3512 int trig_mode, int vector) 3513 { 3514 /* 3515 * apic->apicv_active must be read after vcpu->mode. 3516 * Pairs with smp_store_release in vcpu_enter_guest. 3517 */ 3518 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3519 3520 /* Note, this is called iff the local APIC is in-kernel. */ 3521 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3522 /* Process the interrupt via kvm_check_and_inject_events(). */ 3523 kvm_make_request(KVM_REQ_EVENT, vcpu); 3524 kvm_vcpu_kick(vcpu); 3525 return; 3526 } 3527 3528 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3529 if (in_guest_mode) { 3530 /* 3531 * Signal the doorbell to tell hardware to inject the IRQ. If 3532 * the vCPU exits the guest before the doorbell chimes, hardware 3533 * will automatically process AVIC interrupts at the next VMRUN. 3534 */ 3535 avic_ring_doorbell(vcpu); 3536 } else { 3537 /* 3538 * Wake the vCPU if it was blocking. KVM will then detect the 3539 * pending IRQ when checking if the vCPU has a wake event. 3540 */ 3541 kvm_vcpu_wake_up(vcpu); 3542 } 3543 } 3544 3545 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3546 int trig_mode, int vector) 3547 { 3548 kvm_lapic_set_irr(vector, apic); 3549 3550 /* 3551 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3552 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3553 * the read of guest_mode. This guarantees that either VMRUN will see 3554 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3555 * will signal the doorbell if the CPU has already entered the guest. 3556 */ 3557 smp_mb__after_atomic(); 3558 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3559 } 3560 3561 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3562 { 3563 struct vcpu_svm *svm = to_svm(vcpu); 3564 3565 /* 3566 * SEV-ES guests must always keep the CR intercepts cleared. CR 3567 * tracking is done using the CR write traps. 3568 */ 3569 if (sev_es_guest(vcpu->kvm)) 3570 return; 3571 3572 if (nested_svm_virtualize_tpr(vcpu)) 3573 return; 3574 3575 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3576 3577 if (irr == -1) 3578 return; 3579 3580 if (tpr >= irr) 3581 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3582 } 3583 3584 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3585 { 3586 struct vcpu_svm *svm = to_svm(vcpu); 3587 struct vmcb *vmcb = svm->vmcb; 3588 3589 if (!gif_set(svm)) 3590 return true; 3591 3592 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3593 return false; 3594 3595 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3596 svm->nmi_masked; 3597 } 3598 3599 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3600 { 3601 struct vcpu_svm *svm = to_svm(vcpu); 3602 if (svm->nested.nested_run_pending) 3603 return -EBUSY; 3604 3605 if (svm_nmi_blocked(vcpu)) 3606 return 0; 3607 3608 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3609 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3610 return -EBUSY; 3611 return 1; 3612 } 3613 3614 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3615 { 3616 return to_svm(vcpu)->nmi_masked; 3617 } 3618 3619 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3620 { 3621 struct vcpu_svm *svm = to_svm(vcpu); 3622 3623 if (masked) { 3624 svm->nmi_masked = true; 3625 if (!sev_es_guest(vcpu->kvm)) 3626 svm_set_intercept(svm, INTERCEPT_IRET); 3627 } else { 3628 svm->nmi_masked = false; 3629 if (!sev_es_guest(vcpu->kvm)) 3630 svm_clr_intercept(svm, INTERCEPT_IRET); 3631 } 3632 } 3633 3634 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3635 { 3636 struct vcpu_svm *svm = to_svm(vcpu); 3637 struct vmcb *vmcb = svm->vmcb; 3638 3639 if (!gif_set(svm)) 3640 return true; 3641 3642 if (is_guest_mode(vcpu)) { 3643 /* As long as interrupts are being delivered... */ 3644 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3645 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3646 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3647 return true; 3648 3649 /* ... vmexits aren't blocked by the interrupt shadow */ 3650 if (nested_exit_on_intr(svm)) 3651 return false; 3652 } else { 3653 if (!svm_get_if_flag(vcpu)) 3654 return true; 3655 } 3656 3657 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3658 } 3659 3660 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3661 { 3662 struct vcpu_svm *svm = to_svm(vcpu); 3663 3664 if (svm->nested.nested_run_pending) 3665 return -EBUSY; 3666 3667 if (svm_interrupt_blocked(vcpu)) 3668 return 0; 3669 3670 /* 3671 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3672 * e.g. if the IRQ arrived asynchronously after checking nested events. 3673 */ 3674 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3675 return -EBUSY; 3676 3677 return 1; 3678 } 3679 3680 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3681 { 3682 struct vcpu_svm *svm = to_svm(vcpu); 3683 3684 /* 3685 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3686 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3687 * get that intercept, this function will be called again though and 3688 * we'll get the vintr intercept. However, if the vGIF feature is 3689 * enabled, the STGI interception will not occur. Enable the irq 3690 * window under the assumption that the hardware will set the GIF. 3691 */ 3692 if (vgif || gif_set(svm)) { 3693 /* 3694 * IRQ window is not needed when AVIC is enabled, 3695 * unless we have pending ExtINT since it cannot be injected 3696 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3697 * and fallback to injecting IRQ via V_IRQ. 3698 * 3699 * If running nested, AVIC is already locally inhibited 3700 * on this vCPU, therefore there is no need to request 3701 * the VM wide AVIC inhibition. 3702 */ 3703 if (!is_guest_mode(vcpu)) 3704 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3705 3706 svm_set_vintr(svm); 3707 } 3708 } 3709 3710 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3711 { 3712 struct vcpu_svm *svm = to_svm(vcpu); 3713 3714 if (svm->nmi_masked && !svm->awaiting_iret_completion) 3715 return; /* IRET will cause a vm exit */ 3716 3717 if (!gif_set(svm)) { 3718 if (vgif) 3719 svm_set_intercept(svm, INTERCEPT_STGI); 3720 return; /* STGI will cause a vm exit */ 3721 } 3722 3723 /* 3724 * Something prevents NMI from been injected. Single step over possible 3725 * problem (IRET or exception injection or interrupt shadow) 3726 */ 3727 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3728 svm->nmi_singlestep = true; 3729 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3730 } 3731 3732 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3733 { 3734 struct vcpu_svm *svm = to_svm(vcpu); 3735 3736 /* 3737 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3738 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3739 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3740 */ 3741 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3742 3743 /* 3744 * Flush only the current ASID even if the TLB flush was invoked via 3745 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3746 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3747 * unconditionally does a TLB flush on both nested VM-Enter and nested 3748 * VM-Exit (via kvm_mmu_reset_context()). 3749 */ 3750 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3751 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3752 else 3753 svm->current_vmcb->asid_generation--; 3754 } 3755 3756 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3757 { 3758 struct vcpu_svm *svm = to_svm(vcpu); 3759 3760 invlpga(gva, svm->vmcb->control.asid); 3761 } 3762 3763 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3764 { 3765 struct vcpu_svm *svm = to_svm(vcpu); 3766 3767 if (nested_svm_virtualize_tpr(vcpu)) 3768 return; 3769 3770 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3771 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3772 kvm_set_cr8(vcpu, cr8); 3773 } 3774 } 3775 3776 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3777 { 3778 struct vcpu_svm *svm = to_svm(vcpu); 3779 u64 cr8; 3780 3781 if (nested_svm_virtualize_tpr(vcpu) || 3782 kvm_vcpu_apicv_active(vcpu)) 3783 return; 3784 3785 cr8 = kvm_get_cr8(vcpu); 3786 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3787 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3788 } 3789 3790 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3791 int type) 3792 { 3793 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3794 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3795 struct vcpu_svm *svm = to_svm(vcpu); 3796 3797 /* 3798 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3799 * associated with the original soft exception/interrupt. next_rip is 3800 * cleared on all exits that can occur while vectoring an event, so KVM 3801 * needs to manually set next_rip for re-injection. Unlike the !nrips 3802 * case below, this needs to be done if and only if KVM is re-injecting 3803 * the same event, i.e. if the event is a soft exception/interrupt, 3804 * otherwise next_rip is unused on VMRUN. 3805 */ 3806 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 3807 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 3808 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 3809 /* 3810 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 3811 * injecting the soft exception/interrupt. That advancement needs to 3812 * be unwound if vectoring didn't complete. Note, the new event may 3813 * not be the injected event, e.g. if KVM injected an INTn, the INTn 3814 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 3815 * be the reported vectored event, but RIP still needs to be unwound. 3816 */ 3817 else if (!nrips && (is_soft || is_exception) && 3818 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 3819 kvm_rip_write(vcpu, svm->soft_int_old_rip); 3820 } 3821 3822 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3823 { 3824 struct vcpu_svm *svm = to_svm(vcpu); 3825 u8 vector; 3826 int type; 3827 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3828 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 3829 bool soft_int_injected = svm->soft_int_injected; 3830 3831 svm->nmi_l1_to_l2 = false; 3832 svm->soft_int_injected = false; 3833 3834 /* 3835 * If we've made progress since setting HF_IRET_MASK, we've 3836 * executed an IRET and can allow NMI injection. 3837 */ 3838 if (svm->awaiting_iret_completion && 3839 (sev_es_guest(vcpu->kvm) || 3840 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3841 svm->awaiting_iret_completion = false; 3842 svm->nmi_masked = false; 3843 kvm_make_request(KVM_REQ_EVENT, vcpu); 3844 } 3845 3846 vcpu->arch.nmi_injected = false; 3847 kvm_clear_exception_queue(vcpu); 3848 kvm_clear_interrupt_queue(vcpu); 3849 3850 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3851 return; 3852 3853 kvm_make_request(KVM_REQ_EVENT, vcpu); 3854 3855 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3856 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3857 3858 if (soft_int_injected) 3859 svm_complete_soft_interrupt(vcpu, vector, type); 3860 3861 switch (type) { 3862 case SVM_EXITINTINFO_TYPE_NMI: 3863 vcpu->arch.nmi_injected = true; 3864 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 3865 break; 3866 case SVM_EXITINTINFO_TYPE_EXEPT: 3867 /* 3868 * Never re-inject a #VC exception. 3869 */ 3870 if (vector == X86_TRAP_VC) 3871 break; 3872 3873 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3874 u32 err = svm->vmcb->control.exit_int_info_err; 3875 kvm_requeue_exception_e(vcpu, vector, err); 3876 3877 } else 3878 kvm_requeue_exception(vcpu, vector); 3879 break; 3880 case SVM_EXITINTINFO_TYPE_INTR: 3881 kvm_queue_interrupt(vcpu, vector, false); 3882 break; 3883 case SVM_EXITINTINFO_TYPE_SOFT: 3884 kvm_queue_interrupt(vcpu, vector, true); 3885 break; 3886 default: 3887 break; 3888 } 3889 3890 } 3891 3892 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3893 { 3894 struct vcpu_svm *svm = to_svm(vcpu); 3895 struct vmcb_control_area *control = &svm->vmcb->control; 3896 3897 control->exit_int_info = control->event_inj; 3898 control->exit_int_info_err = control->event_inj_err; 3899 control->event_inj = 0; 3900 svm_complete_interrupts(vcpu); 3901 } 3902 3903 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 3904 { 3905 return 1; 3906 } 3907 3908 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3909 { 3910 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3911 3912 /* 3913 * Note, the next RIP must be provided as SRCU isn't held, i.e. KVM 3914 * can't read guest memory (dereference memslots) to decode the WRMSR. 3915 */ 3916 if (control->exit_code == SVM_EXIT_MSR && control->exit_info_1 && 3917 nrips && control->next_rip) 3918 return handle_fastpath_set_msr_irqoff(vcpu); 3919 3920 return EXIT_FASTPATH_NONE; 3921 } 3922 3923 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 3924 { 3925 struct vcpu_svm *svm = to_svm(vcpu); 3926 3927 guest_state_enter_irqoff(); 3928 3929 if (sev_es_guest(vcpu->kvm)) 3930 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 3931 else 3932 __svm_vcpu_run(svm, spec_ctrl_intercepted); 3933 3934 guest_state_exit_irqoff(); 3935 } 3936 3937 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3938 { 3939 struct vcpu_svm *svm = to_svm(vcpu); 3940 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 3941 3942 trace_kvm_entry(vcpu); 3943 3944 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3945 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3946 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3947 3948 /* 3949 * Disable singlestep if we're injecting an interrupt/exception. 3950 * We don't want our modified rflags to be pushed on the stack where 3951 * we might not be able to easily reset them if we disabled NMI 3952 * singlestep later. 3953 */ 3954 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3955 /* 3956 * Event injection happens before external interrupts cause a 3957 * vmexit and interrupts are disabled here, so smp_send_reschedule 3958 * is enough to force an immediate vmexit. 3959 */ 3960 disable_nmi_singlestep(svm); 3961 smp_send_reschedule(vcpu->cpu); 3962 } 3963 3964 pre_svm_run(vcpu); 3965 3966 sync_lapic_to_cr8(vcpu); 3967 3968 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3969 svm->vmcb->control.asid = svm->asid; 3970 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3971 } 3972 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3973 3974 svm_hv_update_vp_id(svm->vmcb, vcpu); 3975 3976 /* 3977 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3978 * of a #DB. 3979 */ 3980 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3981 svm_set_dr6(svm, vcpu->arch.dr6); 3982 else 3983 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3984 3985 clgi(); 3986 kvm_load_guest_xsave_state(vcpu); 3987 3988 kvm_wait_lapic_expire(vcpu); 3989 3990 /* 3991 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3992 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3993 * is no need to worry about the conditional branch over the wrmsr 3994 * being speculatively taken. 3995 */ 3996 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3997 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 3998 3999 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4000 4001 if (!sev_es_guest(vcpu->kvm)) 4002 reload_tss(vcpu); 4003 4004 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4005 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4006 4007 if (!sev_es_guest(vcpu->kvm)) { 4008 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4009 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4010 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4011 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4012 } 4013 vcpu->arch.regs_dirty = 0; 4014 4015 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4016 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4017 4018 kvm_load_host_xsave_state(vcpu); 4019 stgi(); 4020 4021 /* Any pending NMI will happen here */ 4022 4023 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4024 kvm_after_interrupt(vcpu); 4025 4026 sync_cr8_to_lapic(vcpu); 4027 4028 svm->next_rip = 0; 4029 if (is_guest_mode(vcpu)) { 4030 nested_sync_control_from_vmcb02(svm); 4031 4032 /* Track VMRUNs that have made past consistency checking */ 4033 if (svm->nested.nested_run_pending && 4034 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4035 ++vcpu->stat.nested_run; 4036 4037 svm->nested.nested_run_pending = 0; 4038 } 4039 4040 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4041 vmcb_mark_all_clean(svm->vmcb); 4042 4043 /* if exit due to PF check for async PF */ 4044 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4045 vcpu->arch.apf.host_apf_flags = 4046 kvm_read_and_reset_apf_flags(); 4047 4048 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4049 4050 /* 4051 * We need to handle MC intercepts here before the vcpu has a chance to 4052 * change the physical cpu 4053 */ 4054 if (unlikely(svm->vmcb->control.exit_code == 4055 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4056 svm_handle_mce(vcpu); 4057 4058 svm_complete_interrupts(vcpu); 4059 4060 if (is_guest_mode(vcpu)) 4061 return EXIT_FASTPATH_NONE; 4062 4063 return svm_exit_handlers_fastpath(vcpu); 4064 } 4065 4066 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4067 int root_level) 4068 { 4069 struct vcpu_svm *svm = to_svm(vcpu); 4070 unsigned long cr3; 4071 4072 if (npt_enabled) { 4073 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4074 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4075 4076 hv_track_root_tdp(vcpu, root_hpa); 4077 4078 cr3 = vcpu->arch.cr3; 4079 } else if (root_level >= PT64_ROOT_4LEVEL) { 4080 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4081 } else { 4082 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4083 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4084 cr3 = root_hpa; 4085 } 4086 4087 svm->vmcb->save.cr3 = cr3; 4088 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4089 } 4090 4091 static void 4092 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4093 { 4094 /* 4095 * Patch in the VMMCALL instruction: 4096 */ 4097 hypercall[0] = 0x0f; 4098 hypercall[1] = 0x01; 4099 hypercall[2] = 0xd9; 4100 } 4101 4102 /* 4103 * The kvm parameter can be NULL (module initialization, or invocation before 4104 * VM creation). Be sure to check the kvm parameter before using it. 4105 */ 4106 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4107 { 4108 switch (index) { 4109 case MSR_IA32_MCG_EXT_CTL: 4110 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 4111 return false; 4112 case MSR_IA32_SMBASE: 4113 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4114 return false; 4115 /* SEV-ES guests do not support SMM, so report false */ 4116 if (kvm && sev_es_guest(kvm)) 4117 return false; 4118 break; 4119 default: 4120 break; 4121 } 4122 4123 return true; 4124 } 4125 4126 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4127 { 4128 struct vcpu_svm *svm = to_svm(vcpu); 4129 struct kvm_cpuid_entry2 *best; 4130 4131 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4132 boot_cpu_has(X86_FEATURE_XSAVE) && 4133 boot_cpu_has(X86_FEATURE_XSAVES); 4134 4135 /* Update nrips enabled cache */ 4136 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4137 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4138 4139 svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR); 4140 svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV); 4141 4142 svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4143 4144 svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) && 4145 guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER); 4146 4147 svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) && 4148 guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD); 4149 4150 svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF); 4151 4152 svm_recalc_instruction_intercepts(vcpu, svm); 4153 4154 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4155 if (sev_guest(vcpu->kvm)) { 4156 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4157 if (best) 4158 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4159 } 4160 4161 init_vmcb_after_set_cpuid(vcpu); 4162 } 4163 4164 static bool svm_has_wbinvd_exit(void) 4165 { 4166 return true; 4167 } 4168 4169 #define PRE_EX(exit) { .exit_code = (exit), \ 4170 .stage = X86_ICPT_PRE_EXCEPT, } 4171 #define POST_EX(exit) { .exit_code = (exit), \ 4172 .stage = X86_ICPT_POST_EXCEPT, } 4173 #define POST_MEM(exit) { .exit_code = (exit), \ 4174 .stage = X86_ICPT_POST_MEMACCESS, } 4175 4176 static const struct __x86_intercept { 4177 u32 exit_code; 4178 enum x86_intercept_stage stage; 4179 } x86_intercept_map[] = { 4180 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4181 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4182 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4183 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4184 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4185 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4186 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4187 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4188 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4189 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4190 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4191 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4192 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4193 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4194 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4195 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4196 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4197 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4198 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4199 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4200 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4201 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4202 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4203 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4204 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4205 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4206 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4207 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4208 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4209 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4210 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4211 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4212 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4213 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4214 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4215 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4216 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4217 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4218 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4219 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4220 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4221 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4222 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4223 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4224 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4225 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4226 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4227 }; 4228 4229 #undef PRE_EX 4230 #undef POST_EX 4231 #undef POST_MEM 4232 4233 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4234 struct x86_instruction_info *info, 4235 enum x86_intercept_stage stage, 4236 struct x86_exception *exception) 4237 { 4238 struct vcpu_svm *svm = to_svm(vcpu); 4239 int vmexit, ret = X86EMUL_CONTINUE; 4240 struct __x86_intercept icpt_info; 4241 struct vmcb *vmcb = svm->vmcb; 4242 4243 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4244 goto out; 4245 4246 icpt_info = x86_intercept_map[info->intercept]; 4247 4248 if (stage != icpt_info.stage) 4249 goto out; 4250 4251 switch (icpt_info.exit_code) { 4252 case SVM_EXIT_READ_CR0: 4253 if (info->intercept == x86_intercept_cr_read) 4254 icpt_info.exit_code += info->modrm_reg; 4255 break; 4256 case SVM_EXIT_WRITE_CR0: { 4257 unsigned long cr0, val; 4258 4259 if (info->intercept == x86_intercept_cr_write) 4260 icpt_info.exit_code += info->modrm_reg; 4261 4262 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4263 info->intercept == x86_intercept_clts) 4264 break; 4265 4266 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4267 INTERCEPT_SELECTIVE_CR0))) 4268 break; 4269 4270 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4271 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4272 4273 if (info->intercept == x86_intercept_lmsw) { 4274 cr0 &= 0xfUL; 4275 val &= 0xfUL; 4276 /* lmsw can't clear PE - catch this here */ 4277 if (cr0 & X86_CR0_PE) 4278 val |= X86_CR0_PE; 4279 } 4280 4281 if (cr0 ^ val) 4282 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4283 4284 break; 4285 } 4286 case SVM_EXIT_READ_DR0: 4287 case SVM_EXIT_WRITE_DR0: 4288 icpt_info.exit_code += info->modrm_reg; 4289 break; 4290 case SVM_EXIT_MSR: 4291 if (info->intercept == x86_intercept_wrmsr) 4292 vmcb->control.exit_info_1 = 1; 4293 else 4294 vmcb->control.exit_info_1 = 0; 4295 break; 4296 case SVM_EXIT_PAUSE: 4297 /* 4298 * We get this for NOP only, but pause 4299 * is rep not, check this here 4300 */ 4301 if (info->rep_prefix != REPE_PREFIX) 4302 goto out; 4303 break; 4304 case SVM_EXIT_IOIO: { 4305 u64 exit_info; 4306 u32 bytes; 4307 4308 if (info->intercept == x86_intercept_in || 4309 info->intercept == x86_intercept_ins) { 4310 exit_info = ((info->src_val & 0xffff) << 16) | 4311 SVM_IOIO_TYPE_MASK; 4312 bytes = info->dst_bytes; 4313 } else { 4314 exit_info = (info->dst_val & 0xffff) << 16; 4315 bytes = info->src_bytes; 4316 } 4317 4318 if (info->intercept == x86_intercept_outs || 4319 info->intercept == x86_intercept_ins) 4320 exit_info |= SVM_IOIO_STR_MASK; 4321 4322 if (info->rep_prefix) 4323 exit_info |= SVM_IOIO_REP_MASK; 4324 4325 bytes = min(bytes, 4u); 4326 4327 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4328 4329 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4330 4331 vmcb->control.exit_info_1 = exit_info; 4332 vmcb->control.exit_info_2 = info->next_rip; 4333 4334 break; 4335 } 4336 default: 4337 break; 4338 } 4339 4340 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4341 if (static_cpu_has(X86_FEATURE_NRIPS)) 4342 vmcb->control.next_rip = info->next_rip; 4343 vmcb->control.exit_code = icpt_info.exit_code; 4344 vmexit = nested_svm_exit_handled(svm); 4345 4346 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4347 : X86EMUL_CONTINUE; 4348 4349 out: 4350 return ret; 4351 } 4352 4353 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4354 { 4355 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4356 vcpu->arch.at_instruction_boundary = true; 4357 } 4358 4359 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4360 { 4361 if (!kvm_pause_in_guest(vcpu->kvm)) 4362 shrink_ple_window(vcpu); 4363 } 4364 4365 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4366 { 4367 /* [63:9] are reserved. */ 4368 vcpu->arch.mcg_cap &= 0x1ff; 4369 } 4370 4371 #ifdef CONFIG_KVM_SMM 4372 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4373 { 4374 struct vcpu_svm *svm = to_svm(vcpu); 4375 4376 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4377 if (!gif_set(svm)) 4378 return true; 4379 4380 return is_smm(vcpu); 4381 } 4382 4383 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4384 { 4385 struct vcpu_svm *svm = to_svm(vcpu); 4386 if (svm->nested.nested_run_pending) 4387 return -EBUSY; 4388 4389 if (svm_smi_blocked(vcpu)) 4390 return 0; 4391 4392 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4393 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4394 return -EBUSY; 4395 4396 return 1; 4397 } 4398 4399 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4400 { 4401 struct vcpu_svm *svm = to_svm(vcpu); 4402 struct kvm_host_map map_save; 4403 int ret; 4404 4405 if (!is_guest_mode(vcpu)) 4406 return 0; 4407 4408 /* 4409 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4410 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4411 */ 4412 4413 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4414 return 1; 4415 4416 smram->smram64.svm_guest_flag = 1; 4417 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4418 4419 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4420 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4421 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4422 4423 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4424 if (ret) 4425 return ret; 4426 4427 /* 4428 * KVM uses VMCB01 to store L1 host state while L2 runs but 4429 * VMCB01 is going to be used during SMM and thus the state will 4430 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4431 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4432 * format of the area is identical to guest save area offsetted 4433 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4434 * within 'struct vmcb'). Note: HSAVE area may also be used by 4435 * L1 hypervisor to save additional host context (e.g. KVM does 4436 * that, see svm_prepare_switch_to_guest()) which must be 4437 * preserved. 4438 */ 4439 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4440 return 1; 4441 4442 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4443 4444 svm_copy_vmrun_state(map_save.hva + 0x400, 4445 &svm->vmcb01.ptr->save); 4446 4447 kvm_vcpu_unmap(vcpu, &map_save, true); 4448 return 0; 4449 } 4450 4451 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4452 { 4453 struct vcpu_svm *svm = to_svm(vcpu); 4454 struct kvm_host_map map, map_save; 4455 struct vmcb *vmcb12; 4456 int ret; 4457 4458 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4459 4460 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4461 return 0; 4462 4463 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4464 if (!smram64->svm_guest_flag) 4465 return 0; 4466 4467 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4468 return 1; 4469 4470 if (!(smram64->efer & EFER_SVME)) 4471 return 1; 4472 4473 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4474 return 1; 4475 4476 ret = 1; 4477 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4478 goto unmap_map; 4479 4480 if (svm_allocate_nested(svm)) 4481 goto unmap_save; 4482 4483 /* 4484 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4485 * used during SMM (see svm_enter_smm()) 4486 */ 4487 4488 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4489 4490 /* 4491 * Enter the nested guest now 4492 */ 4493 4494 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4495 4496 vmcb12 = map.hva; 4497 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4498 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4499 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4500 4501 if (ret) 4502 goto unmap_save; 4503 4504 svm->nested.nested_run_pending = 1; 4505 4506 unmap_save: 4507 kvm_vcpu_unmap(vcpu, &map_save, true); 4508 unmap_map: 4509 kvm_vcpu_unmap(vcpu, &map, true); 4510 return ret; 4511 } 4512 4513 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4514 { 4515 struct vcpu_svm *svm = to_svm(vcpu); 4516 4517 if (!gif_set(svm)) { 4518 if (vgif) 4519 svm_set_intercept(svm, INTERCEPT_STGI); 4520 /* STGI will cause a vm exit */ 4521 } else { 4522 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4523 } 4524 } 4525 #endif 4526 4527 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4528 void *insn, int insn_len) 4529 { 4530 bool smep, smap, is_user; 4531 unsigned long cr4; 4532 u64 error_code; 4533 4534 /* Emulation is always possible when KVM has access to all guest state. */ 4535 if (!sev_guest(vcpu->kvm)) 4536 return true; 4537 4538 /* #UD and #GP should never be intercepted for SEV guests. */ 4539 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4540 EMULTYPE_TRAP_UD_FORCED | 4541 EMULTYPE_VMWARE_GP)); 4542 4543 /* 4544 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4545 * to guest register state. 4546 */ 4547 if (sev_es_guest(vcpu->kvm)) 4548 return false; 4549 4550 /* 4551 * Emulation is possible if the instruction is already decoded, e.g. 4552 * when completing I/O after returning from userspace. 4553 */ 4554 if (emul_type & EMULTYPE_NO_DECODE) 4555 return true; 4556 4557 /* 4558 * Emulation is possible for SEV guests if and only if a prefilled 4559 * buffer containing the bytes of the intercepted instruction is 4560 * available. SEV guest memory is encrypted with a guest specific key 4561 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4562 * decode garbage. 4563 * 4564 * Inject #UD if KVM reached this point without an instruction buffer. 4565 * In practice, this path should never be hit by a well-behaved guest, 4566 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path 4567 * is still theoretically reachable, e.g. via unaccelerated fault-like 4568 * AVIC access, and needs to be handled by KVM to avoid putting the 4569 * guest into an infinite loop. Injecting #UD is somewhat arbitrary, 4570 * but its the least awful option given lack of insight into the guest. 4571 */ 4572 if (unlikely(!insn)) { 4573 kvm_queue_exception(vcpu, UD_VECTOR); 4574 return false; 4575 } 4576 4577 /* 4578 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4579 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4580 * the faulting instruction because the code fetch itself faulted, e.g. 4581 * the guest attempted to fetch from emulated MMIO or a guest page 4582 * table used to translate CS:RIP resides in emulated MMIO. 4583 */ 4584 if (likely(insn_len)) 4585 return true; 4586 4587 /* 4588 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4589 * 4590 * Errata: 4591 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4592 * possible that CPU microcode implementing DecodeAssist will fail to 4593 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4594 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4595 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4596 * gives up and does not fill the instruction bytes buffer. 4597 * 4598 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4599 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4600 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4601 * GuestIntrBytes field of the VMCB. 4602 * 4603 * This does _not_ mean that the erratum has been encountered, as the 4604 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4605 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4606 * encountered a reserved/not-present #PF. 4607 * 4608 * To hit the erratum, the following conditions must be true: 4609 * 1. CR4.SMAP=1 (obviously). 4610 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4611 * have been hit as the guest would have encountered a SMEP 4612 * violation #PF, not a #NPF. 4613 * 3. The #NPF is not due to a code fetch, in which case failure to 4614 * retrieve the instruction bytes is legitimate (see abvoe). 4615 * 4616 * In addition, don't apply the erratum workaround if the #NPF occurred 4617 * while translating guest page tables (see below). 4618 */ 4619 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4620 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4621 goto resume_guest; 4622 4623 cr4 = kvm_read_cr4(vcpu); 4624 smep = cr4 & X86_CR4_SMEP; 4625 smap = cr4 & X86_CR4_SMAP; 4626 is_user = svm_get_cpl(vcpu) == 3; 4627 if (smap && (!smep || is_user)) { 4628 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4629 4630 /* 4631 * If the fault occurred in userspace, arbitrarily inject #GP 4632 * to avoid killing the guest and to hopefully avoid confusing 4633 * the guest kernel too much, e.g. injecting #PF would not be 4634 * coherent with respect to the guest's page tables. Request 4635 * triple fault if the fault occurred in the kernel as there's 4636 * no fault that KVM can inject without confusing the guest. 4637 * In practice, the triple fault is moot as no sane SEV kernel 4638 * will execute from user memory while also running with SMAP=1. 4639 */ 4640 if (is_user) 4641 kvm_inject_gp(vcpu, 0); 4642 else 4643 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4644 } 4645 4646 resume_guest: 4647 /* 4648 * If the erratum was not hit, simply resume the guest and let it fault 4649 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4650 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4651 * userspace will kill the guest, and letting the emulator read garbage 4652 * will yield random behavior and potentially corrupt the guest. 4653 * 4654 * Simply resuming the guest is technically not a violation of the SEV 4655 * architecture. AMD's APM states that all code fetches and page table 4656 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4657 * APM also states that encrypted accesses to MMIO are "ignored", but 4658 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4659 * the guest spin is technically "ignoring" the access. 4660 */ 4661 return false; 4662 } 4663 4664 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4665 { 4666 struct vcpu_svm *svm = to_svm(vcpu); 4667 4668 return !gif_set(svm); 4669 } 4670 4671 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4672 { 4673 if (!sev_es_guest(vcpu->kvm)) 4674 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4675 4676 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4677 } 4678 4679 static void svm_vm_destroy(struct kvm *kvm) 4680 { 4681 avic_vm_destroy(kvm); 4682 sev_vm_destroy(kvm); 4683 } 4684 4685 static int svm_vm_init(struct kvm *kvm) 4686 { 4687 if (!pause_filter_count || !pause_filter_thresh) 4688 kvm->arch.pause_in_guest = true; 4689 4690 if (enable_apicv) { 4691 int ret = avic_vm_init(kvm); 4692 if (ret) 4693 return ret; 4694 } 4695 4696 return 0; 4697 } 4698 4699 static struct kvm_x86_ops svm_x86_ops __initdata = { 4700 .name = KBUILD_MODNAME, 4701 4702 .check_processor_compatibility = svm_check_processor_compat, 4703 4704 .hardware_unsetup = svm_hardware_unsetup, 4705 .hardware_enable = svm_hardware_enable, 4706 .hardware_disable = svm_hardware_disable, 4707 .has_emulated_msr = svm_has_emulated_msr, 4708 4709 .vcpu_create = svm_vcpu_create, 4710 .vcpu_free = svm_vcpu_free, 4711 .vcpu_reset = svm_vcpu_reset, 4712 4713 .vm_size = sizeof(struct kvm_svm), 4714 .vm_init = svm_vm_init, 4715 .vm_destroy = svm_vm_destroy, 4716 4717 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4718 .vcpu_load = svm_vcpu_load, 4719 .vcpu_put = svm_vcpu_put, 4720 .vcpu_blocking = avic_vcpu_blocking, 4721 .vcpu_unblocking = avic_vcpu_unblocking, 4722 4723 .update_exception_bitmap = svm_update_exception_bitmap, 4724 .get_msr_feature = svm_get_msr_feature, 4725 .get_msr = svm_get_msr, 4726 .set_msr = svm_set_msr, 4727 .get_segment_base = svm_get_segment_base, 4728 .get_segment = svm_get_segment, 4729 .set_segment = svm_set_segment, 4730 .get_cpl = svm_get_cpl, 4731 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4732 .set_cr0 = svm_set_cr0, 4733 .post_set_cr3 = sev_post_set_cr3, 4734 .is_valid_cr4 = svm_is_valid_cr4, 4735 .set_cr4 = svm_set_cr4, 4736 .set_efer = svm_set_efer, 4737 .get_idt = svm_get_idt, 4738 .set_idt = svm_set_idt, 4739 .get_gdt = svm_get_gdt, 4740 .set_gdt = svm_set_gdt, 4741 .set_dr7 = svm_set_dr7, 4742 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4743 .cache_reg = svm_cache_reg, 4744 .get_rflags = svm_get_rflags, 4745 .set_rflags = svm_set_rflags, 4746 .get_if_flag = svm_get_if_flag, 4747 4748 .flush_tlb_all = svm_flush_tlb_current, 4749 .flush_tlb_current = svm_flush_tlb_current, 4750 .flush_tlb_gva = svm_flush_tlb_gva, 4751 .flush_tlb_guest = svm_flush_tlb_current, 4752 4753 .vcpu_pre_run = svm_vcpu_pre_run, 4754 .vcpu_run = svm_vcpu_run, 4755 .handle_exit = svm_handle_exit, 4756 .skip_emulated_instruction = svm_skip_emulated_instruction, 4757 .update_emulated_instruction = NULL, 4758 .set_interrupt_shadow = svm_set_interrupt_shadow, 4759 .get_interrupt_shadow = svm_get_interrupt_shadow, 4760 .patch_hypercall = svm_patch_hypercall, 4761 .inject_irq = svm_inject_irq, 4762 .inject_nmi = svm_inject_nmi, 4763 .inject_exception = svm_inject_exception, 4764 .cancel_injection = svm_cancel_injection, 4765 .interrupt_allowed = svm_interrupt_allowed, 4766 .nmi_allowed = svm_nmi_allowed, 4767 .get_nmi_mask = svm_get_nmi_mask, 4768 .set_nmi_mask = svm_set_nmi_mask, 4769 .enable_nmi_window = svm_enable_nmi_window, 4770 .enable_irq_window = svm_enable_irq_window, 4771 .update_cr8_intercept = svm_update_cr8_intercept, 4772 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 4773 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4774 .apicv_post_state_restore = avic_apicv_post_state_restore, 4775 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 4776 4777 .get_exit_info = svm_get_exit_info, 4778 4779 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4780 4781 .has_wbinvd_exit = svm_has_wbinvd_exit, 4782 4783 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4784 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4785 .write_tsc_offset = svm_write_tsc_offset, 4786 .write_tsc_multiplier = svm_write_tsc_multiplier, 4787 4788 .load_mmu_pgd = svm_load_mmu_pgd, 4789 4790 .check_intercept = svm_check_intercept, 4791 .handle_exit_irqoff = svm_handle_exit_irqoff, 4792 4793 .request_immediate_exit = __kvm_request_immediate_exit, 4794 4795 .sched_in = svm_sched_in, 4796 4797 .nested_ops = &svm_nested_ops, 4798 4799 .deliver_interrupt = svm_deliver_interrupt, 4800 .pi_update_irte = avic_pi_update_irte, 4801 .setup_mce = svm_setup_mce, 4802 4803 #ifdef CONFIG_KVM_SMM 4804 .smi_allowed = svm_smi_allowed, 4805 .enter_smm = svm_enter_smm, 4806 .leave_smm = svm_leave_smm, 4807 .enable_smi_window = svm_enable_smi_window, 4808 #endif 4809 4810 .mem_enc_ioctl = sev_mem_enc_ioctl, 4811 .mem_enc_register_region = sev_mem_enc_register_region, 4812 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 4813 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 4814 4815 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 4816 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 4817 4818 .can_emulate_instruction = svm_can_emulate_instruction, 4819 4820 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4821 4822 .msr_filter_changed = svm_msr_filter_changed, 4823 .complete_emulated_msr = svm_complete_emulated_msr, 4824 4825 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4826 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 4827 }; 4828 4829 /* 4830 * The default MMIO mask is a single bit (excluding the present bit), 4831 * which could conflict with the memory encryption bit. Check for 4832 * memory encryption support and override the default MMIO mask if 4833 * memory encryption is enabled. 4834 */ 4835 static __init void svm_adjust_mmio_mask(void) 4836 { 4837 unsigned int enc_bit, mask_bit; 4838 u64 msr, mask; 4839 4840 /* If there is no memory encryption support, use existing mask */ 4841 if (cpuid_eax(0x80000000) < 0x8000001f) 4842 return; 4843 4844 /* If memory encryption is not enabled, use existing mask */ 4845 rdmsrl(MSR_AMD64_SYSCFG, msr); 4846 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 4847 return; 4848 4849 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 4850 mask_bit = boot_cpu_data.x86_phys_bits; 4851 4852 /* Increment the mask bit if it is the same as the encryption bit */ 4853 if (enc_bit == mask_bit) 4854 mask_bit++; 4855 4856 /* 4857 * If the mask bit location is below 52, then some bits above the 4858 * physical addressing limit will always be reserved, so use the 4859 * rsvd_bits() function to generate the mask. This mask, along with 4860 * the present bit, will be used to generate a page fault with 4861 * PFER.RSV = 1. 4862 * 4863 * If the mask bit location is 52 (or above), then clear the mask. 4864 */ 4865 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 4866 4867 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 4868 } 4869 4870 static __init void svm_set_cpu_caps(void) 4871 { 4872 kvm_set_cpu_caps(); 4873 4874 kvm_caps.supported_perf_cap = 0; 4875 kvm_caps.supported_xss = 0; 4876 4877 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 4878 if (nested) { 4879 kvm_cpu_cap_set(X86_FEATURE_SVM); 4880 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 4881 4882 if (nrips) 4883 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 4884 4885 if (npt_enabled) 4886 kvm_cpu_cap_set(X86_FEATURE_NPT); 4887 4888 if (tsc_scaling) 4889 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 4890 4891 if (vls) 4892 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 4893 if (lbrv) 4894 kvm_cpu_cap_set(X86_FEATURE_LBRV); 4895 4896 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 4897 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 4898 4899 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 4900 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 4901 4902 if (vgif) 4903 kvm_cpu_cap_set(X86_FEATURE_VGIF); 4904 4905 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 4906 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 4907 } 4908 4909 /* CPUID 0x80000008 */ 4910 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 4911 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 4912 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 4913 4914 /* AMD PMU PERFCTR_CORE CPUID */ 4915 if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) 4916 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE); 4917 4918 /* CPUID 0x8000001F (SME/SEV features) */ 4919 sev_set_cpu_caps(); 4920 } 4921 4922 static __init int svm_hardware_setup(void) 4923 { 4924 int cpu; 4925 struct page *iopm_pages; 4926 void *iopm_va; 4927 int r; 4928 unsigned int order = get_order(IOPM_SIZE); 4929 4930 /* 4931 * NX is required for shadow paging and for NPT if the NX huge pages 4932 * mitigation is enabled. 4933 */ 4934 if (!boot_cpu_has(X86_FEATURE_NX)) { 4935 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 4936 return -EOPNOTSUPP; 4937 } 4938 kvm_enable_efer_bits(EFER_NX); 4939 4940 iopm_pages = alloc_pages(GFP_KERNEL, order); 4941 4942 if (!iopm_pages) 4943 return -ENOMEM; 4944 4945 iopm_va = page_address(iopm_pages); 4946 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 4947 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 4948 4949 init_msrpm_offsets(); 4950 4951 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 4952 XFEATURE_MASK_BNDCSR); 4953 4954 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 4955 kvm_enable_efer_bits(EFER_FFXSR); 4956 4957 if (tsc_scaling) { 4958 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 4959 tsc_scaling = false; 4960 } else { 4961 pr_info("TSC scaling supported\n"); 4962 kvm_caps.has_tsc_control = true; 4963 } 4964 } 4965 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 4966 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 4967 4968 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 4969 4970 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 4971 kvm_enable_efer_bits(EFER_AUTOIBRS); 4972 4973 /* Check for pause filtering support */ 4974 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 4975 pause_filter_count = 0; 4976 pause_filter_thresh = 0; 4977 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 4978 pause_filter_thresh = 0; 4979 } 4980 4981 if (nested) { 4982 pr_info("Nested Virtualization enabled\n"); 4983 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 4984 } 4985 4986 /* 4987 * KVM's MMU doesn't support using 2-level paging for itself, and thus 4988 * NPT isn't supported if the host is using 2-level paging since host 4989 * CR4 is unchanged on VMRUN. 4990 */ 4991 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 4992 npt_enabled = false; 4993 4994 if (!boot_cpu_has(X86_FEATURE_NPT)) 4995 npt_enabled = false; 4996 4997 /* Force VM NPT level equal to the host's paging level */ 4998 kvm_configure_mmu(npt_enabled, get_npt_level(), 4999 get_npt_level(), PG_LEVEL_1G); 5000 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5001 5002 /* Setup shadow_me_value and shadow_me_mask */ 5003 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5004 5005 svm_adjust_mmio_mask(); 5006 5007 /* 5008 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5009 * may be modified by svm_adjust_mmio_mask()). 5010 */ 5011 sev_hardware_setup(); 5012 5013 svm_hv_hardware_setup(); 5014 5015 for_each_possible_cpu(cpu) { 5016 r = svm_cpu_init(cpu); 5017 if (r) 5018 goto err; 5019 } 5020 5021 if (nrips) { 5022 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 5023 nrips = false; 5024 } 5025 5026 enable_apicv = avic = avic && avic_hardware_setup(); 5027 5028 if (!enable_apicv) { 5029 svm_x86_ops.vcpu_blocking = NULL; 5030 svm_x86_ops.vcpu_unblocking = NULL; 5031 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5032 } else if (!x2avic_enabled) { 5033 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5034 } 5035 5036 if (vls) { 5037 if (!npt_enabled || 5038 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5039 !IS_ENABLED(CONFIG_X86_64)) { 5040 vls = false; 5041 } else { 5042 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5043 } 5044 } 5045 5046 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5047 svm_gp_erratum_intercept = false; 5048 5049 if (vgif) { 5050 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5051 vgif = false; 5052 else 5053 pr_info("Virtual GIF supported\n"); 5054 } 5055 5056 if (lbrv) { 5057 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5058 lbrv = false; 5059 else 5060 pr_info("LBR virtualization supported\n"); 5061 } 5062 5063 if (!enable_pmu) 5064 pr_info("PMU virtualization is disabled\n"); 5065 5066 svm_set_cpu_caps(); 5067 5068 /* 5069 * It seems that on AMD processors PTE's accessed bit is 5070 * being set by the CPU hardware before the NPF vmexit. 5071 * This is not expected behaviour and our tests fail because 5072 * of it. 5073 * A workaround here is to disable support for 5074 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5075 * In this case userspace can know if there is support using 5076 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5077 * it 5078 * If future AMD CPU models change the behaviour described above, 5079 * this variable can be changed accordingly 5080 */ 5081 allow_smaller_maxphyaddr = !npt_enabled; 5082 5083 return 0; 5084 5085 err: 5086 svm_hardware_unsetup(); 5087 return r; 5088 } 5089 5090 5091 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5092 .hardware_setup = svm_hardware_setup, 5093 5094 .runtime_ops = &svm_x86_ops, 5095 .pmu_ops = &amd_pmu_ops, 5096 }; 5097 5098 static int __init svm_init(void) 5099 { 5100 int r; 5101 5102 __unused_size_checks(); 5103 5104 if (!kvm_is_svm_supported()) 5105 return -EOPNOTSUPP; 5106 5107 r = kvm_x86_vendor_init(&svm_init_ops); 5108 if (r) 5109 return r; 5110 5111 /* 5112 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5113 * exposed to userspace! 5114 */ 5115 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5116 THIS_MODULE); 5117 if (r) 5118 goto err_kvm_init; 5119 5120 return 0; 5121 5122 err_kvm_init: 5123 kvm_x86_vendor_exit(); 5124 return r; 5125 } 5126 5127 static void __exit svm_exit(void) 5128 { 5129 kvm_exit(); 5130 kvm_x86_vendor_exit(); 5131 } 5132 5133 module_init(svm_init) 5134 module_exit(svm_exit) 5135