1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_LICENSE("GPL"); 57 58 #ifdef MODULE 59 static const struct x86_cpu_id svm_cpu_id[] = { 60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 61 {} 62 }; 63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 64 #endif 65 66 #define SEG_TYPE_LDT 2 67 #define SEG_TYPE_BUSY_TSS16 3 68 69 static bool erratum_383_found __read_mostly; 70 71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 72 73 /* 74 * Set osvw_len to higher value when updated Revision Guides 75 * are published and we know what the new status bits are 76 */ 77 static uint64_t osvw_len = 4, osvw_status; 78 79 static DEFINE_PER_CPU(u64, current_tsc_ratio); 80 81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 82 83 static const struct svm_direct_access_msrs { 84 u32 index; /* Index of the MSR */ 85 bool always; /* True if intercept is initially cleared */ 86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 87 { .index = MSR_STAR, .always = true }, 88 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 89 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 90 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 91 #ifdef CONFIG_X86_64 92 { .index = MSR_GS_BASE, .always = true }, 93 { .index = MSR_FS_BASE, .always = true }, 94 { .index = MSR_KERNEL_GS_BASE, .always = true }, 95 { .index = MSR_LSTAR, .always = true }, 96 { .index = MSR_CSTAR, .always = true }, 97 { .index = MSR_SYSCALL_MASK, .always = true }, 98 #endif 99 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 100 { .index = MSR_IA32_PRED_CMD, .always = false }, 101 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 102 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 104 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 105 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 106 { .index = MSR_IA32_XSS, .always = false }, 107 { .index = MSR_EFER, .always = false }, 108 { .index = MSR_IA32_CR_PAT, .always = false }, 109 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 110 { .index = MSR_TSC_AUX, .always = false }, 111 { .index = X2APIC_MSR(APIC_ID), .always = false }, 112 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 113 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 114 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 116 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 117 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 118 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 119 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 120 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 121 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 122 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 123 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 124 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 126 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 127 128 /* 129 * Note: 130 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 131 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 132 * the AVIC hardware would generate GP fault. Therefore, always 133 * intercept the MSR 0x832, and do not setup direct_access_msr. 134 */ 135 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 136 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 139 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 140 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 141 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 142 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 143 { .index = MSR_INVALID, .always = false }, 144 }; 145 146 /* 147 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 148 * pause_filter_count: On processors that support Pause filtering(indicated 149 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 150 * count value. On VMRUN this value is loaded into an internal counter. 151 * Each time a pause instruction is executed, this counter is decremented 152 * until it reaches zero at which time a #VMEXIT is generated if pause 153 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 154 * Intercept Filtering for more details. 155 * This also indicate if ple logic enabled. 156 * 157 * pause_filter_thresh: In addition, some processor families support advanced 158 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 159 * the amount of time a guest is allowed to execute in a pause loop. 160 * In this mode, a 16-bit pause filter threshold field is added in the 161 * VMCB. The threshold value is a cycle count that is used to reset the 162 * pause counter. As with simple pause filtering, VMRUN loads the pause 163 * count value from VMCB into an internal counter. Then, on each pause 164 * instruction the hardware checks the elapsed number of cycles since 165 * the most recent pause instruction against the pause filter threshold. 166 * If the elapsed cycle count is greater than the pause filter threshold, 167 * then the internal pause count is reloaded from the VMCB and execution 168 * continues. If the elapsed cycle count is less than the pause filter 169 * threshold, then the internal pause count is decremented. If the count 170 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 171 * triggered. If advanced pause filtering is supported and pause filter 172 * threshold field is set to zero, the filter will operate in the simpler, 173 * count only mode. 174 */ 175 176 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 177 module_param(pause_filter_thresh, ushort, 0444); 178 179 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 180 module_param(pause_filter_count, ushort, 0444); 181 182 /* Default doubles per-vcpu window every exit. */ 183 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 184 module_param(pause_filter_count_grow, ushort, 0444); 185 186 /* Default resets per-vcpu window every exit to pause_filter_count. */ 187 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 188 module_param(pause_filter_count_shrink, ushort, 0444); 189 190 /* Default is to compute the maximum so we can never overflow. */ 191 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 192 module_param(pause_filter_count_max, ushort, 0444); 193 194 /* 195 * Use nested page tables by default. Note, NPT may get forced off by 196 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 197 */ 198 bool npt_enabled = true; 199 module_param_named(npt, npt_enabled, bool, 0444); 200 201 /* allow nested virtualization in KVM/SVM */ 202 static int nested = true; 203 module_param(nested, int, 0444); 204 205 /* enable/disable Next RIP Save */ 206 int nrips = true; 207 module_param(nrips, int, 0444); 208 209 /* enable/disable Virtual VMLOAD VMSAVE */ 210 static int vls = true; 211 module_param(vls, int, 0444); 212 213 /* enable/disable Virtual GIF */ 214 int vgif = true; 215 module_param(vgif, int, 0444); 216 217 /* enable/disable LBR virtualization */ 218 static int lbrv = true; 219 module_param(lbrv, int, 0444); 220 221 static int tsc_scaling = true; 222 module_param(tsc_scaling, int, 0444); 223 224 /* 225 * enable / disable AVIC. Because the defaults differ for APICv 226 * support between VMX and SVM we cannot use module_param_named. 227 */ 228 static bool avic; 229 module_param(avic, bool, 0444); 230 231 bool __read_mostly dump_invalid_vmcb; 232 module_param(dump_invalid_vmcb, bool, 0644); 233 234 235 bool intercept_smi = true; 236 module_param(intercept_smi, bool, 0444); 237 238 bool vnmi = true; 239 module_param(vnmi, bool, 0444); 240 241 static bool svm_gp_erratum_intercept = true; 242 243 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 244 245 static unsigned long iopm_base; 246 247 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 248 249 /* 250 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 251 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 252 * 253 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 254 * defer the restoration of TSC_AUX until the CPU returns to userspace. 255 */ 256 static int tsc_aux_uret_slot __read_mostly = -1; 257 258 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 259 260 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 261 #define MSRS_RANGE_SIZE 2048 262 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 263 264 u32 svm_msrpm_offset(u32 msr) 265 { 266 u32 offset; 267 int i; 268 269 for (i = 0; i < NUM_MSR_MAPS; i++) { 270 if (msr < msrpm_ranges[i] || 271 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 272 continue; 273 274 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 275 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 276 277 /* Now we have the u8 offset - but need the u32 offset */ 278 return offset / 4; 279 } 280 281 /* MSR not in any range */ 282 return MSR_INVALID; 283 } 284 285 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 286 287 static int get_npt_level(void) 288 { 289 #ifdef CONFIG_X86_64 290 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 291 #else 292 return PT32E_ROOT_LEVEL; 293 #endif 294 } 295 296 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 297 { 298 struct vcpu_svm *svm = to_svm(vcpu); 299 u64 old_efer = vcpu->arch.efer; 300 vcpu->arch.efer = efer; 301 302 if (!npt_enabled) { 303 /* Shadow paging assumes NX to be available. */ 304 efer |= EFER_NX; 305 306 if (!(efer & EFER_LMA)) 307 efer &= ~EFER_LME; 308 } 309 310 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 311 if (!(efer & EFER_SVME)) { 312 svm_leave_nested(vcpu); 313 svm_set_gif(svm, true); 314 /* #GP intercept is still needed for vmware backdoor */ 315 if (!enable_vmware_backdoor) 316 clr_exception_intercept(svm, GP_VECTOR); 317 318 /* 319 * Free the nested guest state, unless we are in SMM. 320 * In this case we will return to the nested guest 321 * as soon as we leave SMM. 322 */ 323 if (!is_smm(vcpu)) 324 svm_free_nested(svm); 325 326 } else { 327 int ret = svm_allocate_nested(svm); 328 329 if (ret) { 330 vcpu->arch.efer = old_efer; 331 return ret; 332 } 333 334 /* 335 * Never intercept #GP for SEV guests, KVM can't 336 * decrypt guest memory to workaround the erratum. 337 */ 338 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 339 set_exception_intercept(svm, GP_VECTOR); 340 } 341 } 342 343 svm->vmcb->save.efer = efer | EFER_SVME; 344 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 345 return 0; 346 } 347 348 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 349 { 350 struct vcpu_svm *svm = to_svm(vcpu); 351 u32 ret = 0; 352 353 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 354 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 355 return ret; 356 } 357 358 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 359 { 360 struct vcpu_svm *svm = to_svm(vcpu); 361 362 if (mask == 0) 363 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 364 else 365 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 366 367 } 368 369 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 370 bool commit_side_effects) 371 { 372 struct vcpu_svm *svm = to_svm(vcpu); 373 unsigned long old_rflags; 374 375 /* 376 * SEV-ES does not expose the next RIP. The RIP update is controlled by 377 * the type of exit and the #VC handler in the guest. 378 */ 379 if (sev_es_guest(vcpu->kvm)) 380 goto done; 381 382 if (nrips && svm->vmcb->control.next_rip != 0) { 383 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 384 svm->next_rip = svm->vmcb->control.next_rip; 385 } 386 387 if (!svm->next_rip) { 388 if (unlikely(!commit_side_effects)) 389 old_rflags = svm->vmcb->save.rflags; 390 391 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 392 return 0; 393 394 if (unlikely(!commit_side_effects)) 395 svm->vmcb->save.rflags = old_rflags; 396 } else { 397 kvm_rip_write(vcpu, svm->next_rip); 398 } 399 400 done: 401 if (likely(commit_side_effects)) 402 svm_set_interrupt_shadow(vcpu, 0); 403 404 return 1; 405 } 406 407 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 408 { 409 return __svm_skip_emulated_instruction(vcpu, true); 410 } 411 412 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 413 { 414 unsigned long rip, old_rip = kvm_rip_read(vcpu); 415 struct vcpu_svm *svm = to_svm(vcpu); 416 417 /* 418 * Due to architectural shortcomings, the CPU doesn't always provide 419 * NextRIP, e.g. if KVM intercepted an exception that occurred while 420 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 421 * the instruction even if NextRIP is supported to acquire the next 422 * RIP so that it can be shoved into the NextRIP field, otherwise 423 * hardware will fail to advance guest RIP during event injection. 424 * Drop the exception/interrupt if emulation fails and effectively 425 * retry the instruction, it's the least awful option. If NRIPS is 426 * in use, the skip must not commit any side effects such as clearing 427 * the interrupt shadow or RFLAGS.RF. 428 */ 429 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 430 return -EIO; 431 432 rip = kvm_rip_read(vcpu); 433 434 /* 435 * Save the injection information, even when using next_rip, as the 436 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 437 * doesn't complete due to a VM-Exit occurring while the CPU is 438 * vectoring the event. Decoding the instruction isn't guaranteed to 439 * work as there may be no backing instruction, e.g. if the event is 440 * being injected by L1 for L2, or if the guest is patching INT3 into 441 * a different instruction. 442 */ 443 svm->soft_int_injected = true; 444 svm->soft_int_csbase = svm->vmcb->save.cs.base; 445 svm->soft_int_old_rip = old_rip; 446 svm->soft_int_next_rip = rip; 447 448 if (nrips) 449 kvm_rip_write(vcpu, old_rip); 450 451 if (static_cpu_has(X86_FEATURE_NRIPS)) 452 svm->vmcb->control.next_rip = rip; 453 454 return 0; 455 } 456 457 static void svm_inject_exception(struct kvm_vcpu *vcpu) 458 { 459 struct kvm_queued_exception *ex = &vcpu->arch.exception; 460 struct vcpu_svm *svm = to_svm(vcpu); 461 462 kvm_deliver_exception_payload(vcpu, ex); 463 464 if (kvm_exception_is_soft(ex->vector) && 465 svm_update_soft_interrupt_rip(vcpu)) 466 return; 467 468 svm->vmcb->control.event_inj = ex->vector 469 | SVM_EVTINJ_VALID 470 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 471 | SVM_EVTINJ_TYPE_EXEPT; 472 svm->vmcb->control.event_inj_err = ex->error_code; 473 } 474 475 static void svm_init_erratum_383(void) 476 { 477 u32 low, high; 478 int err; 479 u64 val; 480 481 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 482 return; 483 484 /* Use _safe variants to not break nested virtualization */ 485 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 486 if (err) 487 return; 488 489 val |= (1ULL << 47); 490 491 low = lower_32_bits(val); 492 high = upper_32_bits(val); 493 494 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 495 496 erratum_383_found = true; 497 } 498 499 static void svm_init_osvw(struct kvm_vcpu *vcpu) 500 { 501 /* 502 * Guests should see errata 400 and 415 as fixed (assuming that 503 * HLT and IO instructions are intercepted). 504 */ 505 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 506 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 507 508 /* 509 * By increasing VCPU's osvw.length to 3 we are telling the guest that 510 * all osvw.status bits inside that length, including bit 0 (which is 511 * reserved for erratum 298), are valid. However, if host processor's 512 * osvw_len is 0 then osvw_status[0] carries no information. We need to 513 * be conservative here and therefore we tell the guest that erratum 298 514 * is present (because we really don't know). 515 */ 516 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 517 vcpu->arch.osvw.status |= 1; 518 } 519 520 static bool __kvm_is_svm_supported(void) 521 { 522 int cpu = smp_processor_id(); 523 struct cpuinfo_x86 *c = &cpu_data(cpu); 524 525 if (c->x86_vendor != X86_VENDOR_AMD && 526 c->x86_vendor != X86_VENDOR_HYGON) { 527 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 528 return false; 529 } 530 531 if (!cpu_has(c, X86_FEATURE_SVM)) { 532 pr_err("SVM not supported by CPU %d\n", cpu); 533 return false; 534 } 535 536 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 537 pr_info("KVM is unsupported when running as an SEV guest\n"); 538 return false; 539 } 540 541 return true; 542 } 543 544 static bool kvm_is_svm_supported(void) 545 { 546 bool supported; 547 548 migrate_disable(); 549 supported = __kvm_is_svm_supported(); 550 migrate_enable(); 551 552 return supported; 553 } 554 555 static int svm_check_processor_compat(void) 556 { 557 if (!__kvm_is_svm_supported()) 558 return -EIO; 559 560 return 0; 561 } 562 563 static void __svm_write_tsc_multiplier(u64 multiplier) 564 { 565 if (multiplier == __this_cpu_read(current_tsc_ratio)) 566 return; 567 568 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 569 __this_cpu_write(current_tsc_ratio, multiplier); 570 } 571 572 static inline void kvm_cpu_svm_disable(void) 573 { 574 uint64_t efer; 575 576 wrmsrl(MSR_VM_HSAVE_PA, 0); 577 rdmsrl(MSR_EFER, efer); 578 if (efer & EFER_SVME) { 579 /* 580 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 581 * NMI aren't blocked. 582 */ 583 stgi(); 584 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 585 } 586 } 587 588 static void svm_emergency_disable(void) 589 { 590 kvm_rebooting = true; 591 592 kvm_cpu_svm_disable(); 593 } 594 595 static void svm_hardware_disable(void) 596 { 597 /* Make sure we clean up behind us */ 598 if (tsc_scaling) 599 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 600 601 kvm_cpu_svm_disable(); 602 603 amd_pmu_disable_virt(); 604 } 605 606 static int svm_hardware_enable(void) 607 { 608 609 struct svm_cpu_data *sd; 610 uint64_t efer; 611 int me = raw_smp_processor_id(); 612 613 rdmsrl(MSR_EFER, efer); 614 if (efer & EFER_SVME) 615 return -EBUSY; 616 617 sd = per_cpu_ptr(&svm_data, me); 618 sd->asid_generation = 1; 619 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 620 sd->next_asid = sd->max_asid + 1; 621 sd->min_asid = max_sev_asid + 1; 622 623 wrmsrl(MSR_EFER, efer | EFER_SVME); 624 625 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 626 627 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 628 /* 629 * Set the default value, even if we don't use TSC scaling 630 * to avoid having stale value in the msr 631 */ 632 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 633 } 634 635 636 /* 637 * Get OSVW bits. 638 * 639 * Note that it is possible to have a system with mixed processor 640 * revisions and therefore different OSVW bits. If bits are not the same 641 * on different processors then choose the worst case (i.e. if erratum 642 * is present on one processor and not on another then assume that the 643 * erratum is present everywhere). 644 */ 645 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 646 uint64_t len, status = 0; 647 int err; 648 649 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 650 if (!err) 651 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 652 &err); 653 654 if (err) 655 osvw_status = osvw_len = 0; 656 else { 657 if (len < osvw_len) 658 osvw_len = len; 659 osvw_status |= status; 660 osvw_status &= (1ULL << osvw_len) - 1; 661 } 662 } else 663 osvw_status = osvw_len = 0; 664 665 svm_init_erratum_383(); 666 667 amd_pmu_enable_virt(); 668 669 /* 670 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 671 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 672 * Since Linux does not change the value of TSC_AUX once set, prime the 673 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 674 */ 675 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 676 struct sev_es_save_area *hostsa; 677 u32 __maybe_unused msr_hi; 678 679 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 680 681 rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi); 682 } 683 684 return 0; 685 } 686 687 static void svm_cpu_uninit(int cpu) 688 { 689 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 690 691 if (!sd->save_area) 692 return; 693 694 kfree(sd->sev_vmcbs); 695 __free_page(sd->save_area); 696 sd->save_area_pa = 0; 697 sd->save_area = NULL; 698 } 699 700 static int svm_cpu_init(int cpu) 701 { 702 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 703 int ret = -ENOMEM; 704 705 memset(sd, 0, sizeof(struct svm_cpu_data)); 706 sd->save_area = snp_safe_alloc_page(NULL); 707 if (!sd->save_area) 708 return ret; 709 710 ret = sev_cpu_init(sd); 711 if (ret) 712 goto free_save_area; 713 714 sd->save_area_pa = __sme_page_pa(sd->save_area); 715 return 0; 716 717 free_save_area: 718 __free_page(sd->save_area); 719 sd->save_area = NULL; 720 return ret; 721 722 } 723 724 static void set_dr_intercepts(struct vcpu_svm *svm) 725 { 726 struct vmcb *vmcb = svm->vmcb01.ptr; 727 728 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 729 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 730 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 731 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 744 745 recalc_intercepts(svm); 746 } 747 748 static void clr_dr_intercepts(struct vcpu_svm *svm) 749 { 750 struct vmcb *vmcb = svm->vmcb01.ptr; 751 752 vmcb->control.intercepts[INTERCEPT_DR] = 0; 753 754 recalc_intercepts(svm); 755 } 756 757 static int direct_access_msr_slot(u32 msr) 758 { 759 u32 i; 760 761 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 762 if (direct_access_msrs[i].index == msr) 763 return i; 764 765 return -ENOENT; 766 } 767 768 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 769 int write) 770 { 771 struct vcpu_svm *svm = to_svm(vcpu); 772 int slot = direct_access_msr_slot(msr); 773 774 if (slot == -ENOENT) 775 return; 776 777 /* Set the shadow bitmaps to the desired intercept states */ 778 if (read) 779 set_bit(slot, svm->shadow_msr_intercept.read); 780 else 781 clear_bit(slot, svm->shadow_msr_intercept.read); 782 783 if (write) 784 set_bit(slot, svm->shadow_msr_intercept.write); 785 else 786 clear_bit(slot, svm->shadow_msr_intercept.write); 787 } 788 789 static bool valid_msr_intercept(u32 index) 790 { 791 return direct_access_msr_slot(index) != -ENOENT; 792 } 793 794 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 795 { 796 u8 bit_write; 797 unsigned long tmp; 798 u32 offset; 799 u32 *msrpm; 800 801 /* 802 * For non-nested case: 803 * If the L01 MSR bitmap does not intercept the MSR, then we need to 804 * save it. 805 * 806 * For nested case: 807 * If the L02 MSR bitmap does not intercept the MSR, then we need to 808 * save it. 809 */ 810 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 811 to_svm(vcpu)->msrpm; 812 813 offset = svm_msrpm_offset(msr); 814 bit_write = 2 * (msr & 0x0f) + 1; 815 tmp = msrpm[offset]; 816 817 BUG_ON(offset == MSR_INVALID); 818 819 return test_bit(bit_write, &tmp); 820 } 821 822 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 823 u32 msr, int read, int write) 824 { 825 struct vcpu_svm *svm = to_svm(vcpu); 826 u8 bit_read, bit_write; 827 unsigned long tmp; 828 u32 offset; 829 830 /* 831 * If this warning triggers extend the direct_access_msrs list at the 832 * beginning of the file 833 */ 834 WARN_ON(!valid_msr_intercept(msr)); 835 836 /* Enforce non allowed MSRs to trap */ 837 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 838 read = 0; 839 840 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 841 write = 0; 842 843 offset = svm_msrpm_offset(msr); 844 bit_read = 2 * (msr & 0x0f); 845 bit_write = 2 * (msr & 0x0f) + 1; 846 tmp = msrpm[offset]; 847 848 BUG_ON(offset == MSR_INVALID); 849 850 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 851 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 852 853 msrpm[offset] = tmp; 854 855 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 856 svm->nested.force_msr_bitmap_recalc = true; 857 } 858 859 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 860 int read, int write) 861 { 862 set_shadow_msr_intercept(vcpu, msr, read, write); 863 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 864 } 865 866 u32 *svm_vcpu_alloc_msrpm(void) 867 { 868 unsigned int order = get_order(MSRPM_SIZE); 869 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 870 u32 *msrpm; 871 872 if (!pages) 873 return NULL; 874 875 msrpm = page_address(pages); 876 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 877 878 return msrpm; 879 } 880 881 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 882 { 883 int i; 884 885 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 886 if (!direct_access_msrs[i].always) 887 continue; 888 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 889 } 890 } 891 892 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 893 { 894 int i; 895 896 if (intercept == svm->x2avic_msrs_intercepted) 897 return; 898 899 if (!x2avic_enabled) 900 return; 901 902 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 903 int index = direct_access_msrs[i].index; 904 905 if ((index < APIC_BASE_MSR) || 906 (index > APIC_BASE_MSR + 0xff)) 907 continue; 908 set_msr_interception(&svm->vcpu, svm->msrpm, index, 909 !intercept, !intercept); 910 } 911 912 svm->x2avic_msrs_intercepted = intercept; 913 } 914 915 void svm_vcpu_free_msrpm(u32 *msrpm) 916 { 917 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 918 } 919 920 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 921 { 922 struct vcpu_svm *svm = to_svm(vcpu); 923 u32 i; 924 925 /* 926 * Set intercept permissions for all direct access MSRs again. They 927 * will automatically get filtered through the MSR filter, so we are 928 * back in sync after this. 929 */ 930 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 931 u32 msr = direct_access_msrs[i].index; 932 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 933 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 934 935 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 936 } 937 } 938 939 static void add_msr_offset(u32 offset) 940 { 941 int i; 942 943 for (i = 0; i < MSRPM_OFFSETS; ++i) { 944 945 /* Offset already in list? */ 946 if (msrpm_offsets[i] == offset) 947 return; 948 949 /* Slot used by another offset? */ 950 if (msrpm_offsets[i] != MSR_INVALID) 951 continue; 952 953 /* Add offset to list */ 954 msrpm_offsets[i] = offset; 955 956 return; 957 } 958 959 /* 960 * If this BUG triggers the msrpm_offsets table has an overflow. Just 961 * increase MSRPM_OFFSETS in this case. 962 */ 963 BUG(); 964 } 965 966 static void init_msrpm_offsets(void) 967 { 968 int i; 969 970 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 971 972 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 973 u32 offset; 974 975 offset = svm_msrpm_offset(direct_access_msrs[i].index); 976 BUG_ON(offset == MSR_INVALID); 977 978 add_msr_offset(offset); 979 } 980 } 981 982 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 983 { 984 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 985 to_vmcb->save.br_from = from_vmcb->save.br_from; 986 to_vmcb->save.br_to = from_vmcb->save.br_to; 987 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 988 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 989 990 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 991 } 992 993 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 994 { 995 struct vcpu_svm *svm = to_svm(vcpu); 996 997 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 998 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 999 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1000 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1001 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1002 1003 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1004 if (is_guest_mode(vcpu)) 1005 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1006 } 1007 1008 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1009 { 1010 struct vcpu_svm *svm = to_svm(vcpu); 1011 1012 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1013 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1014 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1015 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1016 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1017 1018 /* 1019 * Move the LBR msrs back to the vmcb01 to avoid copying them 1020 * on nested guest entries. 1021 */ 1022 if (is_guest_mode(vcpu)) 1023 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1024 } 1025 1026 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1027 { 1028 /* 1029 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1030 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1031 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1032 */ 1033 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1034 svm->vmcb01.ptr; 1035 } 1036 1037 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1038 { 1039 struct vcpu_svm *svm = to_svm(vcpu); 1040 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1041 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1042 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1043 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1044 1045 if (enable_lbrv == current_enable_lbrv) 1046 return; 1047 1048 if (enable_lbrv) 1049 svm_enable_lbrv(vcpu); 1050 else 1051 svm_disable_lbrv(vcpu); 1052 } 1053 1054 void disable_nmi_singlestep(struct vcpu_svm *svm) 1055 { 1056 svm->nmi_singlestep = false; 1057 1058 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1059 /* Clear our flags if they were not set by the guest */ 1060 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1061 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1062 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1063 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1064 } 1065 } 1066 1067 static void grow_ple_window(struct kvm_vcpu *vcpu) 1068 { 1069 struct vcpu_svm *svm = to_svm(vcpu); 1070 struct vmcb_control_area *control = &svm->vmcb->control; 1071 int old = control->pause_filter_count; 1072 1073 if (kvm_pause_in_guest(vcpu->kvm)) 1074 return; 1075 1076 control->pause_filter_count = __grow_ple_window(old, 1077 pause_filter_count, 1078 pause_filter_count_grow, 1079 pause_filter_count_max); 1080 1081 if (control->pause_filter_count != old) { 1082 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1083 trace_kvm_ple_window_update(vcpu->vcpu_id, 1084 control->pause_filter_count, old); 1085 } 1086 } 1087 1088 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1089 { 1090 struct vcpu_svm *svm = to_svm(vcpu); 1091 struct vmcb_control_area *control = &svm->vmcb->control; 1092 int old = control->pause_filter_count; 1093 1094 if (kvm_pause_in_guest(vcpu->kvm)) 1095 return; 1096 1097 control->pause_filter_count = 1098 __shrink_ple_window(old, 1099 pause_filter_count, 1100 pause_filter_count_shrink, 1101 pause_filter_count); 1102 if (control->pause_filter_count != old) { 1103 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1104 trace_kvm_ple_window_update(vcpu->vcpu_id, 1105 control->pause_filter_count, old); 1106 } 1107 } 1108 1109 static void svm_hardware_unsetup(void) 1110 { 1111 int cpu; 1112 1113 sev_hardware_unsetup(); 1114 1115 for_each_possible_cpu(cpu) 1116 svm_cpu_uninit(cpu); 1117 1118 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1119 get_order(IOPM_SIZE)); 1120 iopm_base = 0; 1121 } 1122 1123 static void init_seg(struct vmcb_seg *seg) 1124 { 1125 seg->selector = 0; 1126 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1127 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1128 seg->limit = 0xffff; 1129 seg->base = 0; 1130 } 1131 1132 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1133 { 1134 seg->selector = 0; 1135 seg->attrib = SVM_SELECTOR_P_MASK | type; 1136 seg->limit = 0xffff; 1137 seg->base = 0; 1138 } 1139 1140 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1141 { 1142 struct vcpu_svm *svm = to_svm(vcpu); 1143 1144 return svm->nested.ctl.tsc_offset; 1145 } 1146 1147 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1148 { 1149 struct vcpu_svm *svm = to_svm(vcpu); 1150 1151 return svm->tsc_ratio_msr; 1152 } 1153 1154 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1155 { 1156 struct vcpu_svm *svm = to_svm(vcpu); 1157 1158 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1159 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1160 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1161 } 1162 1163 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1164 { 1165 preempt_disable(); 1166 if (to_svm(vcpu)->guest_state_loaded) 1167 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1168 preempt_enable(); 1169 } 1170 1171 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1172 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1173 struct vcpu_svm *svm) 1174 { 1175 /* 1176 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1177 * roots, or if INVPCID is disabled in the guest to inject #UD. 1178 */ 1179 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1180 if (!npt_enabled || 1181 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1182 svm_set_intercept(svm, INTERCEPT_INVPCID); 1183 else 1184 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1185 } 1186 1187 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1188 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1189 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1190 else 1191 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1192 } 1193 } 1194 1195 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1196 { 1197 struct vcpu_svm *svm = to_svm(vcpu); 1198 1199 if (guest_cpuid_is_intel(vcpu)) { 1200 /* 1201 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1202 * accesses because the processor only stores 32 bits. 1203 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1204 */ 1205 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1206 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1207 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1208 1209 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1210 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1211 } else { 1212 /* 1213 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1214 * in VMCB and clear intercepts to avoid #VMEXIT. 1215 */ 1216 if (vls) { 1217 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1218 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1219 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1220 } 1221 /* No need to intercept these MSRs */ 1222 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1223 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1224 } 1225 } 1226 1227 static void init_vmcb(struct kvm_vcpu *vcpu) 1228 { 1229 struct vcpu_svm *svm = to_svm(vcpu); 1230 struct vmcb *vmcb = svm->vmcb01.ptr; 1231 struct vmcb_control_area *control = &vmcb->control; 1232 struct vmcb_save_area *save = &vmcb->save; 1233 1234 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1235 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1236 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1237 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1238 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1239 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1240 if (!kvm_vcpu_apicv_active(vcpu)) 1241 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1242 1243 set_dr_intercepts(svm); 1244 1245 set_exception_intercept(svm, PF_VECTOR); 1246 set_exception_intercept(svm, UD_VECTOR); 1247 set_exception_intercept(svm, MC_VECTOR); 1248 set_exception_intercept(svm, AC_VECTOR); 1249 set_exception_intercept(svm, DB_VECTOR); 1250 /* 1251 * Guest access to VMware backdoor ports could legitimately 1252 * trigger #GP because of TSS I/O permission bitmap. 1253 * We intercept those #GP and allow access to them anyway 1254 * as VMware does. 1255 */ 1256 if (enable_vmware_backdoor) 1257 set_exception_intercept(svm, GP_VECTOR); 1258 1259 svm_set_intercept(svm, INTERCEPT_INTR); 1260 svm_set_intercept(svm, INTERCEPT_NMI); 1261 1262 if (intercept_smi) 1263 svm_set_intercept(svm, INTERCEPT_SMI); 1264 1265 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1266 svm_set_intercept(svm, INTERCEPT_RDPMC); 1267 svm_set_intercept(svm, INTERCEPT_CPUID); 1268 svm_set_intercept(svm, INTERCEPT_INVD); 1269 svm_set_intercept(svm, INTERCEPT_INVLPG); 1270 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1271 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1272 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1273 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1274 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1275 svm_set_intercept(svm, INTERCEPT_VMRUN); 1276 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1277 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1278 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1279 svm_set_intercept(svm, INTERCEPT_STGI); 1280 svm_set_intercept(svm, INTERCEPT_CLGI); 1281 svm_set_intercept(svm, INTERCEPT_SKINIT); 1282 svm_set_intercept(svm, INTERCEPT_WBINVD); 1283 svm_set_intercept(svm, INTERCEPT_XSETBV); 1284 svm_set_intercept(svm, INTERCEPT_RDPRU); 1285 svm_set_intercept(svm, INTERCEPT_RSM); 1286 1287 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1288 svm_set_intercept(svm, INTERCEPT_MONITOR); 1289 svm_set_intercept(svm, INTERCEPT_MWAIT); 1290 } 1291 1292 if (!kvm_hlt_in_guest(vcpu->kvm)) 1293 svm_set_intercept(svm, INTERCEPT_HLT); 1294 1295 control->iopm_base_pa = __sme_set(iopm_base); 1296 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1297 control->int_ctl = V_INTR_MASKING_MASK; 1298 1299 init_seg(&save->es); 1300 init_seg(&save->ss); 1301 init_seg(&save->ds); 1302 init_seg(&save->fs); 1303 init_seg(&save->gs); 1304 1305 save->cs.selector = 0xf000; 1306 save->cs.base = 0xffff0000; 1307 /* Executable/Readable Code Segment */ 1308 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1309 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1310 save->cs.limit = 0xffff; 1311 1312 save->gdtr.base = 0; 1313 save->gdtr.limit = 0xffff; 1314 save->idtr.base = 0; 1315 save->idtr.limit = 0xffff; 1316 1317 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1318 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1319 1320 if (npt_enabled) { 1321 /* Setup VMCB for Nested Paging */ 1322 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1323 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1324 clr_exception_intercept(svm, PF_VECTOR); 1325 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1326 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1327 save->g_pat = vcpu->arch.pat; 1328 save->cr3 = 0; 1329 } 1330 svm->current_vmcb->asid_generation = 0; 1331 svm->asid = 0; 1332 1333 svm->nested.vmcb12_gpa = INVALID_GPA; 1334 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1335 1336 if (!kvm_pause_in_guest(vcpu->kvm)) { 1337 control->pause_filter_count = pause_filter_count; 1338 if (pause_filter_thresh) 1339 control->pause_filter_thresh = pause_filter_thresh; 1340 svm_set_intercept(svm, INTERCEPT_PAUSE); 1341 } else { 1342 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1343 } 1344 1345 svm_recalc_instruction_intercepts(vcpu, svm); 1346 1347 /* 1348 * If the host supports V_SPEC_CTRL then disable the interception 1349 * of MSR_IA32_SPEC_CTRL. 1350 */ 1351 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1352 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1353 1354 if (kvm_vcpu_apicv_active(vcpu)) 1355 avic_init_vmcb(svm, vmcb); 1356 1357 if (vnmi) 1358 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1359 1360 if (vgif) { 1361 svm_clr_intercept(svm, INTERCEPT_STGI); 1362 svm_clr_intercept(svm, INTERCEPT_CLGI); 1363 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1364 } 1365 1366 if (sev_guest(vcpu->kvm)) 1367 sev_init_vmcb(svm); 1368 1369 svm_hv_init_vmcb(vmcb); 1370 init_vmcb_after_set_cpuid(vcpu); 1371 1372 vmcb_mark_all_dirty(vmcb); 1373 1374 enable_gif(svm); 1375 } 1376 1377 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1378 { 1379 struct vcpu_svm *svm = to_svm(vcpu); 1380 1381 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1382 1383 svm_init_osvw(vcpu); 1384 vcpu->arch.microcode_version = 0x01000065; 1385 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1386 1387 svm->nmi_masked = false; 1388 svm->awaiting_iret_completion = false; 1389 1390 if (sev_es_guest(vcpu->kvm)) 1391 sev_es_vcpu_reset(svm); 1392 } 1393 1394 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1395 { 1396 struct vcpu_svm *svm = to_svm(vcpu); 1397 1398 svm->spec_ctrl = 0; 1399 svm->virt_spec_ctrl = 0; 1400 1401 init_vmcb(vcpu); 1402 1403 if (!init_event) 1404 __svm_vcpu_reset(vcpu); 1405 } 1406 1407 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1408 { 1409 svm->current_vmcb = target_vmcb; 1410 svm->vmcb = target_vmcb->ptr; 1411 } 1412 1413 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1414 { 1415 struct vcpu_svm *svm; 1416 struct page *vmcb01_page; 1417 struct page *vmsa_page = NULL; 1418 int err; 1419 1420 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1421 svm = to_svm(vcpu); 1422 1423 err = -ENOMEM; 1424 vmcb01_page = snp_safe_alloc_page(vcpu); 1425 if (!vmcb01_page) 1426 goto out; 1427 1428 if (sev_es_guest(vcpu->kvm)) { 1429 /* 1430 * SEV-ES guests require a separate VMSA page used to contain 1431 * the encrypted register state of the guest. 1432 */ 1433 vmsa_page = snp_safe_alloc_page(vcpu); 1434 if (!vmsa_page) 1435 goto error_free_vmcb_page; 1436 1437 /* 1438 * SEV-ES guests maintain an encrypted version of their FPU 1439 * state which is restored and saved on VMRUN and VMEXIT. 1440 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1441 * do xsave/xrstor on it. 1442 */ 1443 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1444 } 1445 1446 err = avic_init_vcpu(svm); 1447 if (err) 1448 goto error_free_vmsa_page; 1449 1450 svm->msrpm = svm_vcpu_alloc_msrpm(); 1451 if (!svm->msrpm) { 1452 err = -ENOMEM; 1453 goto error_free_vmsa_page; 1454 } 1455 1456 svm->x2avic_msrs_intercepted = true; 1457 1458 svm->vmcb01.ptr = page_address(vmcb01_page); 1459 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1460 svm_switch_vmcb(svm, &svm->vmcb01); 1461 1462 if (vmsa_page) 1463 svm->sev_es.vmsa = page_address(vmsa_page); 1464 1465 svm->guest_state_loaded = false; 1466 1467 return 0; 1468 1469 error_free_vmsa_page: 1470 if (vmsa_page) 1471 __free_page(vmsa_page); 1472 error_free_vmcb_page: 1473 __free_page(vmcb01_page); 1474 out: 1475 return err; 1476 } 1477 1478 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1479 { 1480 int i; 1481 1482 for_each_online_cpu(i) 1483 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1484 } 1485 1486 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1487 { 1488 struct vcpu_svm *svm = to_svm(vcpu); 1489 1490 /* 1491 * The vmcb page can be recycled, causing a false negative in 1492 * svm_vcpu_load(). So, ensure that no logical CPU has this 1493 * vmcb page recorded as its current vmcb. 1494 */ 1495 svm_clear_current_vmcb(svm->vmcb); 1496 1497 svm_leave_nested(vcpu); 1498 svm_free_nested(svm); 1499 1500 sev_free_vcpu(vcpu); 1501 1502 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1503 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1504 } 1505 1506 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1507 { 1508 struct vcpu_svm *svm = to_svm(vcpu); 1509 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1510 1511 if (sev_es_guest(vcpu->kvm)) 1512 sev_es_unmap_ghcb(svm); 1513 1514 if (svm->guest_state_loaded) 1515 return; 1516 1517 /* 1518 * Save additional host state that will be restored on VMEXIT (sev-es) 1519 * or subsequent vmload of host save area. 1520 */ 1521 vmsave(sd->save_area_pa); 1522 if (sev_es_guest(vcpu->kvm)) { 1523 struct sev_es_save_area *hostsa; 1524 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1525 1526 sev_es_prepare_switch_to_guest(hostsa); 1527 } 1528 1529 if (tsc_scaling) 1530 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1531 1532 /* 1533 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1534 * available. The user return MSR support is not required in this case 1535 * because TSC_AUX is restored on #VMEXIT from the host save area 1536 * (which has been initialized in svm_hardware_enable()). 1537 */ 1538 if (likely(tsc_aux_uret_slot >= 0) && 1539 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1540 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1541 1542 svm->guest_state_loaded = true; 1543 } 1544 1545 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1546 { 1547 to_svm(vcpu)->guest_state_loaded = false; 1548 } 1549 1550 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1551 { 1552 struct vcpu_svm *svm = to_svm(vcpu); 1553 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1554 1555 if (sd->current_vmcb != svm->vmcb) { 1556 sd->current_vmcb = svm->vmcb; 1557 1558 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1559 indirect_branch_prediction_barrier(); 1560 } 1561 if (kvm_vcpu_apicv_active(vcpu)) 1562 avic_vcpu_load(vcpu, cpu); 1563 } 1564 1565 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1566 { 1567 if (kvm_vcpu_apicv_active(vcpu)) 1568 avic_vcpu_put(vcpu); 1569 1570 svm_prepare_host_switch(vcpu); 1571 1572 ++vcpu->stat.host_state_reload; 1573 } 1574 1575 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1576 { 1577 struct vcpu_svm *svm = to_svm(vcpu); 1578 unsigned long rflags = svm->vmcb->save.rflags; 1579 1580 if (svm->nmi_singlestep) { 1581 /* Hide our flags if they were not set by the guest */ 1582 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1583 rflags &= ~X86_EFLAGS_TF; 1584 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1585 rflags &= ~X86_EFLAGS_RF; 1586 } 1587 return rflags; 1588 } 1589 1590 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1591 { 1592 if (to_svm(vcpu)->nmi_singlestep) 1593 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1594 1595 /* 1596 * Any change of EFLAGS.VM is accompanied by a reload of SS 1597 * (caused by either a task switch or an inter-privilege IRET), 1598 * so we do not need to update the CPL here. 1599 */ 1600 to_svm(vcpu)->vmcb->save.rflags = rflags; 1601 } 1602 1603 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1604 { 1605 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1606 1607 return sev_es_guest(vcpu->kvm) 1608 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1609 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1610 } 1611 1612 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1613 { 1614 kvm_register_mark_available(vcpu, reg); 1615 1616 switch (reg) { 1617 case VCPU_EXREG_PDPTR: 1618 /* 1619 * When !npt_enabled, mmu->pdptrs[] is already available since 1620 * it is always updated per SDM when moving to CRs. 1621 */ 1622 if (npt_enabled) 1623 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1624 break; 1625 default: 1626 KVM_BUG_ON(1, vcpu->kvm); 1627 } 1628 } 1629 1630 static void svm_set_vintr(struct vcpu_svm *svm) 1631 { 1632 struct vmcb_control_area *control; 1633 1634 /* 1635 * The following fields are ignored when AVIC is enabled 1636 */ 1637 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1638 1639 svm_set_intercept(svm, INTERCEPT_VINTR); 1640 1641 /* 1642 * Recalculating intercepts may have cleared the VINTR intercept. If 1643 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1644 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1645 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1646 * interrupts will never be unblocked while L2 is running. 1647 */ 1648 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1649 return; 1650 1651 /* 1652 * This is just a dummy VINTR to actually cause a vmexit to happen. 1653 * Actual injection of virtual interrupts happens through EVENTINJ. 1654 */ 1655 control = &svm->vmcb->control; 1656 control->int_vector = 0x0; 1657 control->int_ctl &= ~V_INTR_PRIO_MASK; 1658 control->int_ctl |= V_IRQ_MASK | 1659 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1660 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1661 } 1662 1663 static void svm_clear_vintr(struct vcpu_svm *svm) 1664 { 1665 svm_clr_intercept(svm, INTERCEPT_VINTR); 1666 1667 /* Drop int_ctl fields related to VINTR injection. */ 1668 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1669 if (is_guest_mode(&svm->vcpu)) { 1670 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1671 1672 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1673 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1674 1675 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1676 V_IRQ_INJECTION_BITS_MASK; 1677 1678 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1679 } 1680 1681 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1682 } 1683 1684 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1685 { 1686 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1687 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1688 1689 switch (seg) { 1690 case VCPU_SREG_CS: return &save->cs; 1691 case VCPU_SREG_DS: return &save->ds; 1692 case VCPU_SREG_ES: return &save->es; 1693 case VCPU_SREG_FS: return &save01->fs; 1694 case VCPU_SREG_GS: return &save01->gs; 1695 case VCPU_SREG_SS: return &save->ss; 1696 case VCPU_SREG_TR: return &save01->tr; 1697 case VCPU_SREG_LDTR: return &save01->ldtr; 1698 } 1699 BUG(); 1700 return NULL; 1701 } 1702 1703 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1704 { 1705 struct vmcb_seg *s = svm_seg(vcpu, seg); 1706 1707 return s->base; 1708 } 1709 1710 static void svm_get_segment(struct kvm_vcpu *vcpu, 1711 struct kvm_segment *var, int seg) 1712 { 1713 struct vmcb_seg *s = svm_seg(vcpu, seg); 1714 1715 var->base = s->base; 1716 var->limit = s->limit; 1717 var->selector = s->selector; 1718 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1719 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1720 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1721 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1722 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1723 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1724 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1725 1726 /* 1727 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1728 * However, the SVM spec states that the G bit is not observed by the 1729 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1730 * So let's synthesize a legal G bit for all segments, this helps 1731 * running KVM nested. It also helps cross-vendor migration, because 1732 * Intel's vmentry has a check on the 'G' bit. 1733 */ 1734 var->g = s->limit > 0xfffff; 1735 1736 /* 1737 * AMD's VMCB does not have an explicit unusable field, so emulate it 1738 * for cross vendor migration purposes by "not present" 1739 */ 1740 var->unusable = !var->present; 1741 1742 switch (seg) { 1743 case VCPU_SREG_TR: 1744 /* 1745 * Work around a bug where the busy flag in the tr selector 1746 * isn't exposed 1747 */ 1748 var->type |= 0x2; 1749 break; 1750 case VCPU_SREG_DS: 1751 case VCPU_SREG_ES: 1752 case VCPU_SREG_FS: 1753 case VCPU_SREG_GS: 1754 /* 1755 * The accessed bit must always be set in the segment 1756 * descriptor cache, although it can be cleared in the 1757 * descriptor, the cached bit always remains at 1. Since 1758 * Intel has a check on this, set it here to support 1759 * cross-vendor migration. 1760 */ 1761 if (!var->unusable) 1762 var->type |= 0x1; 1763 break; 1764 case VCPU_SREG_SS: 1765 /* 1766 * On AMD CPUs sometimes the DB bit in the segment 1767 * descriptor is left as 1, although the whole segment has 1768 * been made unusable. Clear it here to pass an Intel VMX 1769 * entry check when cross vendor migrating. 1770 */ 1771 if (var->unusable) 1772 var->db = 0; 1773 /* This is symmetric with svm_set_segment() */ 1774 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1775 break; 1776 } 1777 } 1778 1779 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1780 { 1781 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1782 1783 return save->cpl; 1784 } 1785 1786 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1787 { 1788 struct kvm_segment cs; 1789 1790 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1791 *db = cs.db; 1792 *l = cs.l; 1793 } 1794 1795 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1796 { 1797 struct vcpu_svm *svm = to_svm(vcpu); 1798 1799 dt->size = svm->vmcb->save.idtr.limit; 1800 dt->address = svm->vmcb->save.idtr.base; 1801 } 1802 1803 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1804 { 1805 struct vcpu_svm *svm = to_svm(vcpu); 1806 1807 svm->vmcb->save.idtr.limit = dt->size; 1808 svm->vmcb->save.idtr.base = dt->address ; 1809 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1810 } 1811 1812 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1813 { 1814 struct vcpu_svm *svm = to_svm(vcpu); 1815 1816 dt->size = svm->vmcb->save.gdtr.limit; 1817 dt->address = svm->vmcb->save.gdtr.base; 1818 } 1819 1820 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1821 { 1822 struct vcpu_svm *svm = to_svm(vcpu); 1823 1824 svm->vmcb->save.gdtr.limit = dt->size; 1825 svm->vmcb->save.gdtr.base = dt->address ; 1826 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1827 } 1828 1829 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1830 { 1831 struct vcpu_svm *svm = to_svm(vcpu); 1832 1833 /* 1834 * For guests that don't set guest_state_protected, the cr3 update is 1835 * handled via kvm_mmu_load() while entering the guest. For guests 1836 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1837 * VMCB save area now, since the save area will become the initial 1838 * contents of the VMSA, and future VMCB save area updates won't be 1839 * seen. 1840 */ 1841 if (sev_es_guest(vcpu->kvm)) { 1842 svm->vmcb->save.cr3 = cr3; 1843 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1844 } 1845 } 1846 1847 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1848 { 1849 return true; 1850 } 1851 1852 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1853 { 1854 struct vcpu_svm *svm = to_svm(vcpu); 1855 u64 hcr0 = cr0; 1856 bool old_paging = is_paging(vcpu); 1857 1858 #ifdef CONFIG_X86_64 1859 if (vcpu->arch.efer & EFER_LME) { 1860 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1861 vcpu->arch.efer |= EFER_LMA; 1862 if (!vcpu->arch.guest_state_protected) 1863 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1864 } 1865 1866 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1867 vcpu->arch.efer &= ~EFER_LMA; 1868 if (!vcpu->arch.guest_state_protected) 1869 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1870 } 1871 } 1872 #endif 1873 vcpu->arch.cr0 = cr0; 1874 1875 if (!npt_enabled) { 1876 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1877 if (old_paging != is_paging(vcpu)) 1878 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1879 } 1880 1881 /* 1882 * re-enable caching here because the QEMU bios 1883 * does not do it - this results in some delay at 1884 * reboot 1885 */ 1886 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1887 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1888 1889 svm->vmcb->save.cr0 = hcr0; 1890 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1891 1892 /* 1893 * SEV-ES guests must always keep the CR intercepts cleared. CR 1894 * tracking is done using the CR write traps. 1895 */ 1896 if (sev_es_guest(vcpu->kvm)) 1897 return; 1898 1899 if (hcr0 == cr0) { 1900 /* Selective CR0 write remains on. */ 1901 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1902 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1903 } else { 1904 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1905 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1906 } 1907 } 1908 1909 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1910 { 1911 return true; 1912 } 1913 1914 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1915 { 1916 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1917 unsigned long old_cr4 = vcpu->arch.cr4; 1918 1919 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1920 svm_flush_tlb_current(vcpu); 1921 1922 vcpu->arch.cr4 = cr4; 1923 if (!npt_enabled) { 1924 cr4 |= X86_CR4_PAE; 1925 1926 if (!is_paging(vcpu)) 1927 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1928 } 1929 cr4 |= host_cr4_mce; 1930 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1931 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1932 1933 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1934 kvm_update_cpuid_runtime(vcpu); 1935 } 1936 1937 static void svm_set_segment(struct kvm_vcpu *vcpu, 1938 struct kvm_segment *var, int seg) 1939 { 1940 struct vcpu_svm *svm = to_svm(vcpu); 1941 struct vmcb_seg *s = svm_seg(vcpu, seg); 1942 1943 s->base = var->base; 1944 s->limit = var->limit; 1945 s->selector = var->selector; 1946 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1947 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1948 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1949 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1950 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1951 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1952 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1953 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1954 1955 /* 1956 * This is always accurate, except if SYSRET returned to a segment 1957 * with SS.DPL != 3. Intel does not have this quirk, and always 1958 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1959 * would entail passing the CPL to userspace and back. 1960 */ 1961 if (seg == VCPU_SREG_SS) 1962 /* This is symmetric with svm_get_segment() */ 1963 svm->vmcb->save.cpl = (var->dpl & 3); 1964 1965 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1966 } 1967 1968 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1969 { 1970 struct vcpu_svm *svm = to_svm(vcpu); 1971 1972 clr_exception_intercept(svm, BP_VECTOR); 1973 1974 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1975 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1976 set_exception_intercept(svm, BP_VECTOR); 1977 } 1978 } 1979 1980 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1981 { 1982 if (sd->next_asid > sd->max_asid) { 1983 ++sd->asid_generation; 1984 sd->next_asid = sd->min_asid; 1985 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1986 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1987 } 1988 1989 svm->current_vmcb->asid_generation = sd->asid_generation; 1990 svm->asid = sd->next_asid++; 1991 } 1992 1993 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1994 { 1995 struct vmcb *vmcb = svm->vmcb; 1996 1997 if (svm->vcpu.arch.guest_state_protected) 1998 return; 1999 2000 if (unlikely(value != vmcb->save.dr6)) { 2001 vmcb->save.dr6 = value; 2002 vmcb_mark_dirty(vmcb, VMCB_DR); 2003 } 2004 } 2005 2006 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2007 { 2008 struct vcpu_svm *svm = to_svm(vcpu); 2009 2010 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2011 return; 2012 2013 get_debugreg(vcpu->arch.db[0], 0); 2014 get_debugreg(vcpu->arch.db[1], 1); 2015 get_debugreg(vcpu->arch.db[2], 2); 2016 get_debugreg(vcpu->arch.db[3], 3); 2017 /* 2018 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2019 * because db_interception might need it. We can do it before vmentry. 2020 */ 2021 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2022 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2023 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2024 set_dr_intercepts(svm); 2025 } 2026 2027 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2028 { 2029 struct vcpu_svm *svm = to_svm(vcpu); 2030 2031 if (vcpu->arch.guest_state_protected) 2032 return; 2033 2034 svm->vmcb->save.dr7 = value; 2035 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2036 } 2037 2038 static int pf_interception(struct kvm_vcpu *vcpu) 2039 { 2040 struct vcpu_svm *svm = to_svm(vcpu); 2041 2042 u64 fault_address = svm->vmcb->control.exit_info_2; 2043 u64 error_code = svm->vmcb->control.exit_info_1; 2044 2045 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2046 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2047 svm->vmcb->control.insn_bytes : NULL, 2048 svm->vmcb->control.insn_len); 2049 } 2050 2051 static int npf_interception(struct kvm_vcpu *vcpu) 2052 { 2053 struct vcpu_svm *svm = to_svm(vcpu); 2054 2055 u64 fault_address = svm->vmcb->control.exit_info_2; 2056 u64 error_code = svm->vmcb->control.exit_info_1; 2057 2058 trace_kvm_page_fault(vcpu, fault_address, error_code); 2059 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2060 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2061 svm->vmcb->control.insn_bytes : NULL, 2062 svm->vmcb->control.insn_len); 2063 } 2064 2065 static int db_interception(struct kvm_vcpu *vcpu) 2066 { 2067 struct kvm_run *kvm_run = vcpu->run; 2068 struct vcpu_svm *svm = to_svm(vcpu); 2069 2070 if (!(vcpu->guest_debug & 2071 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2072 !svm->nmi_singlestep) { 2073 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2074 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2075 return 1; 2076 } 2077 2078 if (svm->nmi_singlestep) { 2079 disable_nmi_singlestep(svm); 2080 /* Make sure we check for pending NMIs upon entry */ 2081 kvm_make_request(KVM_REQ_EVENT, vcpu); 2082 } 2083 2084 if (vcpu->guest_debug & 2085 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2086 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2087 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2088 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2089 kvm_run->debug.arch.pc = 2090 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2091 kvm_run->debug.arch.exception = DB_VECTOR; 2092 return 0; 2093 } 2094 2095 return 1; 2096 } 2097 2098 static int bp_interception(struct kvm_vcpu *vcpu) 2099 { 2100 struct vcpu_svm *svm = to_svm(vcpu); 2101 struct kvm_run *kvm_run = vcpu->run; 2102 2103 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2104 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2105 kvm_run->debug.arch.exception = BP_VECTOR; 2106 return 0; 2107 } 2108 2109 static int ud_interception(struct kvm_vcpu *vcpu) 2110 { 2111 return handle_ud(vcpu); 2112 } 2113 2114 static int ac_interception(struct kvm_vcpu *vcpu) 2115 { 2116 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2117 return 1; 2118 } 2119 2120 static bool is_erratum_383(void) 2121 { 2122 int err, i; 2123 u64 value; 2124 2125 if (!erratum_383_found) 2126 return false; 2127 2128 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2129 if (err) 2130 return false; 2131 2132 /* Bit 62 may or may not be set for this mce */ 2133 value &= ~(1ULL << 62); 2134 2135 if (value != 0xb600000000010015ULL) 2136 return false; 2137 2138 /* Clear MCi_STATUS registers */ 2139 for (i = 0; i < 6; ++i) 2140 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2141 2142 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2143 if (!err) { 2144 u32 low, high; 2145 2146 value &= ~(1ULL << 2); 2147 low = lower_32_bits(value); 2148 high = upper_32_bits(value); 2149 2150 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2151 } 2152 2153 /* Flush tlb to evict multi-match entries */ 2154 __flush_tlb_all(); 2155 2156 return true; 2157 } 2158 2159 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2160 { 2161 if (is_erratum_383()) { 2162 /* 2163 * Erratum 383 triggered. Guest state is corrupt so kill the 2164 * guest. 2165 */ 2166 pr_err("Guest triggered AMD Erratum 383\n"); 2167 2168 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2169 2170 return; 2171 } 2172 2173 /* 2174 * On an #MC intercept the MCE handler is not called automatically in 2175 * the host. So do it by hand here. 2176 */ 2177 kvm_machine_check(); 2178 } 2179 2180 static int mc_interception(struct kvm_vcpu *vcpu) 2181 { 2182 return 1; 2183 } 2184 2185 static int shutdown_interception(struct kvm_vcpu *vcpu) 2186 { 2187 struct kvm_run *kvm_run = vcpu->run; 2188 struct vcpu_svm *svm = to_svm(vcpu); 2189 2190 2191 /* 2192 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2193 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2194 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2195 * userspace. At a platform view, INIT is acceptable behavior as 2196 * there exist bare metal platforms that automatically INIT the CPU 2197 * in response to shutdown. 2198 * 2199 * The VM save area for SEV-ES guests has already been encrypted so it 2200 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2201 */ 2202 if (!sev_es_guest(vcpu->kvm)) { 2203 clear_page(svm->vmcb); 2204 kvm_vcpu_reset(vcpu, true); 2205 } 2206 2207 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2208 return 0; 2209 } 2210 2211 static int io_interception(struct kvm_vcpu *vcpu) 2212 { 2213 struct vcpu_svm *svm = to_svm(vcpu); 2214 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2215 int size, in, string; 2216 unsigned port; 2217 2218 ++vcpu->stat.io_exits; 2219 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2220 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2221 port = io_info >> 16; 2222 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2223 2224 if (string) { 2225 if (sev_es_guest(vcpu->kvm)) 2226 return sev_es_string_io(svm, size, port, in); 2227 else 2228 return kvm_emulate_instruction(vcpu, 0); 2229 } 2230 2231 svm->next_rip = svm->vmcb->control.exit_info_2; 2232 2233 return kvm_fast_pio(vcpu, size, port, in); 2234 } 2235 2236 static int nmi_interception(struct kvm_vcpu *vcpu) 2237 { 2238 return 1; 2239 } 2240 2241 static int smi_interception(struct kvm_vcpu *vcpu) 2242 { 2243 return 1; 2244 } 2245 2246 static int intr_interception(struct kvm_vcpu *vcpu) 2247 { 2248 ++vcpu->stat.irq_exits; 2249 return 1; 2250 } 2251 2252 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2253 { 2254 struct vcpu_svm *svm = to_svm(vcpu); 2255 struct vmcb *vmcb12; 2256 struct kvm_host_map map; 2257 int ret; 2258 2259 if (nested_svm_check_permissions(vcpu)) 2260 return 1; 2261 2262 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2263 if (ret) { 2264 if (ret == -EINVAL) 2265 kvm_inject_gp(vcpu, 0); 2266 return 1; 2267 } 2268 2269 vmcb12 = map.hva; 2270 2271 ret = kvm_skip_emulated_instruction(vcpu); 2272 2273 if (vmload) { 2274 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2275 svm->sysenter_eip_hi = 0; 2276 svm->sysenter_esp_hi = 0; 2277 } else { 2278 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2279 } 2280 2281 kvm_vcpu_unmap(vcpu, &map, true); 2282 2283 return ret; 2284 } 2285 2286 static int vmload_interception(struct kvm_vcpu *vcpu) 2287 { 2288 return vmload_vmsave_interception(vcpu, true); 2289 } 2290 2291 static int vmsave_interception(struct kvm_vcpu *vcpu) 2292 { 2293 return vmload_vmsave_interception(vcpu, false); 2294 } 2295 2296 static int vmrun_interception(struct kvm_vcpu *vcpu) 2297 { 2298 if (nested_svm_check_permissions(vcpu)) 2299 return 1; 2300 2301 return nested_svm_vmrun(vcpu); 2302 } 2303 2304 enum { 2305 NONE_SVM_INSTR, 2306 SVM_INSTR_VMRUN, 2307 SVM_INSTR_VMLOAD, 2308 SVM_INSTR_VMSAVE, 2309 }; 2310 2311 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2312 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2313 { 2314 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2315 2316 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2317 return NONE_SVM_INSTR; 2318 2319 switch (ctxt->modrm) { 2320 case 0xd8: /* VMRUN */ 2321 return SVM_INSTR_VMRUN; 2322 case 0xda: /* VMLOAD */ 2323 return SVM_INSTR_VMLOAD; 2324 case 0xdb: /* VMSAVE */ 2325 return SVM_INSTR_VMSAVE; 2326 default: 2327 break; 2328 } 2329 2330 return NONE_SVM_INSTR; 2331 } 2332 2333 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2334 { 2335 const int guest_mode_exit_codes[] = { 2336 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2337 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2338 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2339 }; 2340 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2341 [SVM_INSTR_VMRUN] = vmrun_interception, 2342 [SVM_INSTR_VMLOAD] = vmload_interception, 2343 [SVM_INSTR_VMSAVE] = vmsave_interception, 2344 }; 2345 struct vcpu_svm *svm = to_svm(vcpu); 2346 int ret; 2347 2348 if (is_guest_mode(vcpu)) { 2349 /* Returns '1' or -errno on failure, '0' on success. */ 2350 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2351 if (ret) 2352 return ret; 2353 return 1; 2354 } 2355 return svm_instr_handlers[opcode](vcpu); 2356 } 2357 2358 /* 2359 * #GP handling code. Note that #GP can be triggered under the following two 2360 * cases: 2361 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2362 * some AMD CPUs when EAX of these instructions are in the reserved memory 2363 * regions (e.g. SMM memory on host). 2364 * 2) VMware backdoor 2365 */ 2366 static int gp_interception(struct kvm_vcpu *vcpu) 2367 { 2368 struct vcpu_svm *svm = to_svm(vcpu); 2369 u32 error_code = svm->vmcb->control.exit_info_1; 2370 int opcode; 2371 2372 /* Both #GP cases have zero error_code */ 2373 if (error_code) 2374 goto reinject; 2375 2376 /* Decode the instruction for usage later */ 2377 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2378 goto reinject; 2379 2380 opcode = svm_instr_opcode(vcpu); 2381 2382 if (opcode == NONE_SVM_INSTR) { 2383 if (!enable_vmware_backdoor) 2384 goto reinject; 2385 2386 /* 2387 * VMware backdoor emulation on #GP interception only handles 2388 * IN{S}, OUT{S}, and RDPMC. 2389 */ 2390 if (!is_guest_mode(vcpu)) 2391 return kvm_emulate_instruction(vcpu, 2392 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2393 } else { 2394 /* All SVM instructions expect page aligned RAX */ 2395 if (svm->vmcb->save.rax & ~PAGE_MASK) 2396 goto reinject; 2397 2398 return emulate_svm_instr(vcpu, opcode); 2399 } 2400 2401 reinject: 2402 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2403 return 1; 2404 } 2405 2406 void svm_set_gif(struct vcpu_svm *svm, bool value) 2407 { 2408 if (value) { 2409 /* 2410 * If VGIF is enabled, the STGI intercept is only added to 2411 * detect the opening of the SMI/NMI window; remove it now. 2412 * Likewise, clear the VINTR intercept, we will set it 2413 * again while processing KVM_REQ_EVENT if needed. 2414 */ 2415 if (vgif) 2416 svm_clr_intercept(svm, INTERCEPT_STGI); 2417 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2418 svm_clear_vintr(svm); 2419 2420 enable_gif(svm); 2421 if (svm->vcpu.arch.smi_pending || 2422 svm->vcpu.arch.nmi_pending || 2423 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2424 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2425 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2426 } else { 2427 disable_gif(svm); 2428 2429 /* 2430 * After a CLGI no interrupts should come. But if vGIF is 2431 * in use, we still rely on the VINTR intercept (rather than 2432 * STGI) to detect an open interrupt window. 2433 */ 2434 if (!vgif) 2435 svm_clear_vintr(svm); 2436 } 2437 } 2438 2439 static int stgi_interception(struct kvm_vcpu *vcpu) 2440 { 2441 int ret; 2442 2443 if (nested_svm_check_permissions(vcpu)) 2444 return 1; 2445 2446 ret = kvm_skip_emulated_instruction(vcpu); 2447 svm_set_gif(to_svm(vcpu), true); 2448 return ret; 2449 } 2450 2451 static int clgi_interception(struct kvm_vcpu *vcpu) 2452 { 2453 int ret; 2454 2455 if (nested_svm_check_permissions(vcpu)) 2456 return 1; 2457 2458 ret = kvm_skip_emulated_instruction(vcpu); 2459 svm_set_gif(to_svm(vcpu), false); 2460 return ret; 2461 } 2462 2463 static int invlpga_interception(struct kvm_vcpu *vcpu) 2464 { 2465 gva_t gva = kvm_rax_read(vcpu); 2466 u32 asid = kvm_rcx_read(vcpu); 2467 2468 /* FIXME: Handle an address size prefix. */ 2469 if (!is_long_mode(vcpu)) 2470 gva = (u32)gva; 2471 2472 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2473 2474 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2475 kvm_mmu_invlpg(vcpu, gva); 2476 2477 return kvm_skip_emulated_instruction(vcpu); 2478 } 2479 2480 static int skinit_interception(struct kvm_vcpu *vcpu) 2481 { 2482 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2483 2484 kvm_queue_exception(vcpu, UD_VECTOR); 2485 return 1; 2486 } 2487 2488 static int task_switch_interception(struct kvm_vcpu *vcpu) 2489 { 2490 struct vcpu_svm *svm = to_svm(vcpu); 2491 u16 tss_selector; 2492 int reason; 2493 int int_type = svm->vmcb->control.exit_int_info & 2494 SVM_EXITINTINFO_TYPE_MASK; 2495 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2496 uint32_t type = 2497 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2498 uint32_t idt_v = 2499 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2500 bool has_error_code = false; 2501 u32 error_code = 0; 2502 2503 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2504 2505 if (svm->vmcb->control.exit_info_2 & 2506 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2507 reason = TASK_SWITCH_IRET; 2508 else if (svm->vmcb->control.exit_info_2 & 2509 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2510 reason = TASK_SWITCH_JMP; 2511 else if (idt_v) 2512 reason = TASK_SWITCH_GATE; 2513 else 2514 reason = TASK_SWITCH_CALL; 2515 2516 if (reason == TASK_SWITCH_GATE) { 2517 switch (type) { 2518 case SVM_EXITINTINFO_TYPE_NMI: 2519 vcpu->arch.nmi_injected = false; 2520 break; 2521 case SVM_EXITINTINFO_TYPE_EXEPT: 2522 if (svm->vmcb->control.exit_info_2 & 2523 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2524 has_error_code = true; 2525 error_code = 2526 (u32)svm->vmcb->control.exit_info_2; 2527 } 2528 kvm_clear_exception_queue(vcpu); 2529 break; 2530 case SVM_EXITINTINFO_TYPE_INTR: 2531 case SVM_EXITINTINFO_TYPE_SOFT: 2532 kvm_clear_interrupt_queue(vcpu); 2533 break; 2534 default: 2535 break; 2536 } 2537 } 2538 2539 if (reason != TASK_SWITCH_GATE || 2540 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2541 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2542 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2543 if (!svm_skip_emulated_instruction(vcpu)) 2544 return 0; 2545 } 2546 2547 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2548 int_vec = -1; 2549 2550 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2551 has_error_code, error_code); 2552 } 2553 2554 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2555 { 2556 if (!sev_es_guest(svm->vcpu.kvm)) 2557 svm_clr_intercept(svm, INTERCEPT_IRET); 2558 } 2559 2560 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2561 { 2562 if (!sev_es_guest(svm->vcpu.kvm)) 2563 svm_set_intercept(svm, INTERCEPT_IRET); 2564 } 2565 2566 static int iret_interception(struct kvm_vcpu *vcpu) 2567 { 2568 struct vcpu_svm *svm = to_svm(vcpu); 2569 2570 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2571 2572 ++vcpu->stat.nmi_window_exits; 2573 svm->awaiting_iret_completion = true; 2574 2575 svm_clr_iret_intercept(svm); 2576 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2577 2578 kvm_make_request(KVM_REQ_EVENT, vcpu); 2579 return 1; 2580 } 2581 2582 static int invlpg_interception(struct kvm_vcpu *vcpu) 2583 { 2584 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2585 return kvm_emulate_instruction(vcpu, 0); 2586 2587 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2588 return kvm_skip_emulated_instruction(vcpu); 2589 } 2590 2591 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2592 { 2593 return kvm_emulate_instruction(vcpu, 0); 2594 } 2595 2596 static int rsm_interception(struct kvm_vcpu *vcpu) 2597 { 2598 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2599 } 2600 2601 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2602 unsigned long val) 2603 { 2604 struct vcpu_svm *svm = to_svm(vcpu); 2605 unsigned long cr0 = vcpu->arch.cr0; 2606 bool ret = false; 2607 2608 if (!is_guest_mode(vcpu) || 2609 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2610 return false; 2611 2612 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2613 val &= ~SVM_CR0_SELECTIVE_MASK; 2614 2615 if (cr0 ^ val) { 2616 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2617 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2618 } 2619 2620 return ret; 2621 } 2622 2623 #define CR_VALID (1ULL << 63) 2624 2625 static int cr_interception(struct kvm_vcpu *vcpu) 2626 { 2627 struct vcpu_svm *svm = to_svm(vcpu); 2628 int reg, cr; 2629 unsigned long val; 2630 int err; 2631 2632 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2633 return emulate_on_interception(vcpu); 2634 2635 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2636 return emulate_on_interception(vcpu); 2637 2638 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2639 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2640 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2641 else 2642 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2643 2644 err = 0; 2645 if (cr >= 16) { /* mov to cr */ 2646 cr -= 16; 2647 val = kvm_register_read(vcpu, reg); 2648 trace_kvm_cr_write(cr, val); 2649 switch (cr) { 2650 case 0: 2651 if (!check_selective_cr0_intercepted(vcpu, val)) 2652 err = kvm_set_cr0(vcpu, val); 2653 else 2654 return 1; 2655 2656 break; 2657 case 3: 2658 err = kvm_set_cr3(vcpu, val); 2659 break; 2660 case 4: 2661 err = kvm_set_cr4(vcpu, val); 2662 break; 2663 case 8: 2664 err = kvm_set_cr8(vcpu, val); 2665 break; 2666 default: 2667 WARN(1, "unhandled write to CR%d", cr); 2668 kvm_queue_exception(vcpu, UD_VECTOR); 2669 return 1; 2670 } 2671 } else { /* mov from cr */ 2672 switch (cr) { 2673 case 0: 2674 val = kvm_read_cr0(vcpu); 2675 break; 2676 case 2: 2677 val = vcpu->arch.cr2; 2678 break; 2679 case 3: 2680 val = kvm_read_cr3(vcpu); 2681 break; 2682 case 4: 2683 val = kvm_read_cr4(vcpu); 2684 break; 2685 case 8: 2686 val = kvm_get_cr8(vcpu); 2687 break; 2688 default: 2689 WARN(1, "unhandled read from CR%d", cr); 2690 kvm_queue_exception(vcpu, UD_VECTOR); 2691 return 1; 2692 } 2693 kvm_register_write(vcpu, reg, val); 2694 trace_kvm_cr_read(cr, val); 2695 } 2696 return kvm_complete_insn_gp(vcpu, err); 2697 } 2698 2699 static int cr_trap(struct kvm_vcpu *vcpu) 2700 { 2701 struct vcpu_svm *svm = to_svm(vcpu); 2702 unsigned long old_value, new_value; 2703 unsigned int cr; 2704 int ret = 0; 2705 2706 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2707 2708 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2709 switch (cr) { 2710 case 0: 2711 old_value = kvm_read_cr0(vcpu); 2712 svm_set_cr0(vcpu, new_value); 2713 2714 kvm_post_set_cr0(vcpu, old_value, new_value); 2715 break; 2716 case 4: 2717 old_value = kvm_read_cr4(vcpu); 2718 svm_set_cr4(vcpu, new_value); 2719 2720 kvm_post_set_cr4(vcpu, old_value, new_value); 2721 break; 2722 case 8: 2723 ret = kvm_set_cr8(vcpu, new_value); 2724 break; 2725 default: 2726 WARN(1, "unhandled CR%d write trap", cr); 2727 kvm_queue_exception(vcpu, UD_VECTOR); 2728 return 1; 2729 } 2730 2731 return kvm_complete_insn_gp(vcpu, ret); 2732 } 2733 2734 static int dr_interception(struct kvm_vcpu *vcpu) 2735 { 2736 struct vcpu_svm *svm = to_svm(vcpu); 2737 int reg, dr; 2738 int err = 0; 2739 2740 /* 2741 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2742 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2743 */ 2744 if (sev_es_guest(vcpu->kvm)) 2745 return 1; 2746 2747 if (vcpu->guest_debug == 0) { 2748 /* 2749 * No more DR vmexits; force a reload of the debug registers 2750 * and reenter on this instruction. The next vmexit will 2751 * retrieve the full state of the debug registers. 2752 */ 2753 clr_dr_intercepts(svm); 2754 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2755 return 1; 2756 } 2757 2758 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2759 return emulate_on_interception(vcpu); 2760 2761 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2762 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2763 if (dr >= 16) { /* mov to DRn */ 2764 dr -= 16; 2765 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2766 } else { 2767 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2768 } 2769 2770 return kvm_complete_insn_gp(vcpu, err); 2771 } 2772 2773 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2774 { 2775 int r; 2776 2777 u8 cr8_prev = kvm_get_cr8(vcpu); 2778 /* instruction emulation calls kvm_set_cr8() */ 2779 r = cr_interception(vcpu); 2780 if (lapic_in_kernel(vcpu)) 2781 return r; 2782 if (cr8_prev <= kvm_get_cr8(vcpu)) 2783 return r; 2784 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2785 return 0; 2786 } 2787 2788 static int efer_trap(struct kvm_vcpu *vcpu) 2789 { 2790 struct msr_data msr_info; 2791 int ret; 2792 2793 /* 2794 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2795 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2796 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2797 * the guest doesn't have X86_FEATURE_SVM. 2798 */ 2799 msr_info.host_initiated = false; 2800 msr_info.index = MSR_EFER; 2801 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2802 ret = kvm_set_msr_common(vcpu, &msr_info); 2803 2804 return kvm_complete_insn_gp(vcpu, ret); 2805 } 2806 2807 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2808 { 2809 msr->data = 0; 2810 2811 switch (msr->index) { 2812 case MSR_AMD64_DE_CFG: 2813 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2814 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2815 break; 2816 default: 2817 return KVM_MSR_RET_INVALID; 2818 } 2819 2820 return 0; 2821 } 2822 2823 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2824 { 2825 struct vcpu_svm *svm = to_svm(vcpu); 2826 2827 switch (msr_info->index) { 2828 case MSR_AMD64_TSC_RATIO: 2829 if (!msr_info->host_initiated && 2830 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2831 return 1; 2832 msr_info->data = svm->tsc_ratio_msr; 2833 break; 2834 case MSR_STAR: 2835 msr_info->data = svm->vmcb01.ptr->save.star; 2836 break; 2837 #ifdef CONFIG_X86_64 2838 case MSR_LSTAR: 2839 msr_info->data = svm->vmcb01.ptr->save.lstar; 2840 break; 2841 case MSR_CSTAR: 2842 msr_info->data = svm->vmcb01.ptr->save.cstar; 2843 break; 2844 case MSR_KERNEL_GS_BASE: 2845 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2846 break; 2847 case MSR_SYSCALL_MASK: 2848 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2849 break; 2850 #endif 2851 case MSR_IA32_SYSENTER_CS: 2852 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2853 break; 2854 case MSR_IA32_SYSENTER_EIP: 2855 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2856 if (guest_cpuid_is_intel(vcpu)) 2857 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2858 break; 2859 case MSR_IA32_SYSENTER_ESP: 2860 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2861 if (guest_cpuid_is_intel(vcpu)) 2862 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2863 break; 2864 case MSR_TSC_AUX: 2865 msr_info->data = svm->tsc_aux; 2866 break; 2867 case MSR_IA32_DEBUGCTLMSR: 2868 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2869 break; 2870 case MSR_IA32_LASTBRANCHFROMIP: 2871 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2872 break; 2873 case MSR_IA32_LASTBRANCHTOIP: 2874 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2875 break; 2876 case MSR_IA32_LASTINTFROMIP: 2877 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2878 break; 2879 case MSR_IA32_LASTINTTOIP: 2880 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2881 break; 2882 case MSR_VM_HSAVE_PA: 2883 msr_info->data = svm->nested.hsave_msr; 2884 break; 2885 case MSR_VM_CR: 2886 msr_info->data = svm->nested.vm_cr_msr; 2887 break; 2888 case MSR_IA32_SPEC_CTRL: 2889 if (!msr_info->host_initiated && 2890 !guest_has_spec_ctrl_msr(vcpu)) 2891 return 1; 2892 2893 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2894 msr_info->data = svm->vmcb->save.spec_ctrl; 2895 else 2896 msr_info->data = svm->spec_ctrl; 2897 break; 2898 case MSR_AMD64_VIRT_SPEC_CTRL: 2899 if (!msr_info->host_initiated && 2900 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2901 return 1; 2902 2903 msr_info->data = svm->virt_spec_ctrl; 2904 break; 2905 case MSR_F15H_IC_CFG: { 2906 2907 int family, model; 2908 2909 family = guest_cpuid_family(vcpu); 2910 model = guest_cpuid_model(vcpu); 2911 2912 if (family < 0 || model < 0) 2913 return kvm_get_msr_common(vcpu, msr_info); 2914 2915 msr_info->data = 0; 2916 2917 if (family == 0x15 && 2918 (model >= 0x2 && model < 0x20)) 2919 msr_info->data = 0x1E; 2920 } 2921 break; 2922 case MSR_AMD64_DE_CFG: 2923 msr_info->data = svm->msr_decfg; 2924 break; 2925 default: 2926 return kvm_get_msr_common(vcpu, msr_info); 2927 } 2928 return 0; 2929 } 2930 2931 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2932 { 2933 struct vcpu_svm *svm = to_svm(vcpu); 2934 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2935 return kvm_complete_insn_gp(vcpu, err); 2936 2937 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2938 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2939 X86_TRAP_GP | 2940 SVM_EVTINJ_TYPE_EXEPT | 2941 SVM_EVTINJ_VALID); 2942 return 1; 2943 } 2944 2945 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2946 { 2947 struct vcpu_svm *svm = to_svm(vcpu); 2948 int svm_dis, chg_mask; 2949 2950 if (data & ~SVM_VM_CR_VALID_MASK) 2951 return 1; 2952 2953 chg_mask = SVM_VM_CR_VALID_MASK; 2954 2955 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2956 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2957 2958 svm->nested.vm_cr_msr &= ~chg_mask; 2959 svm->nested.vm_cr_msr |= (data & chg_mask); 2960 2961 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2962 2963 /* check for svm_disable while efer.svme is set */ 2964 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2965 return 1; 2966 2967 return 0; 2968 } 2969 2970 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2971 { 2972 struct vcpu_svm *svm = to_svm(vcpu); 2973 int ret = 0; 2974 2975 u32 ecx = msr->index; 2976 u64 data = msr->data; 2977 switch (ecx) { 2978 case MSR_AMD64_TSC_RATIO: 2979 2980 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 2981 2982 if (!msr->host_initiated) 2983 return 1; 2984 /* 2985 * In case TSC scaling is not enabled, always 2986 * leave this MSR at the default value. 2987 * 2988 * Due to bug in qemu 6.2.0, it would try to set 2989 * this msr to 0 if tsc scaling is not enabled. 2990 * Ignore this value as well. 2991 */ 2992 if (data != 0 && data != svm->tsc_ratio_msr) 2993 return 1; 2994 break; 2995 } 2996 2997 if (data & SVM_TSC_RATIO_RSVD) 2998 return 1; 2999 3000 svm->tsc_ratio_msr = data; 3001 3002 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3003 is_guest_mode(vcpu)) 3004 nested_svm_update_tsc_ratio_msr(vcpu); 3005 3006 break; 3007 case MSR_IA32_CR_PAT: 3008 ret = kvm_set_msr_common(vcpu, msr); 3009 if (ret) 3010 break; 3011 3012 svm->vmcb01.ptr->save.g_pat = data; 3013 if (is_guest_mode(vcpu)) 3014 nested_vmcb02_compute_g_pat(svm); 3015 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3016 break; 3017 case MSR_IA32_SPEC_CTRL: 3018 if (!msr->host_initiated && 3019 !guest_has_spec_ctrl_msr(vcpu)) 3020 return 1; 3021 3022 if (kvm_spec_ctrl_test_value(data)) 3023 return 1; 3024 3025 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3026 svm->vmcb->save.spec_ctrl = data; 3027 else 3028 svm->spec_ctrl = data; 3029 if (!data) 3030 break; 3031 3032 /* 3033 * For non-nested: 3034 * When it's written (to non-zero) for the first time, pass 3035 * it through. 3036 * 3037 * For nested: 3038 * The handling of the MSR bitmap for L2 guests is done in 3039 * nested_svm_vmrun_msrpm. 3040 * We update the L1 MSR bit as well since it will end up 3041 * touching the MSR anyway now. 3042 */ 3043 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3044 break; 3045 case MSR_AMD64_VIRT_SPEC_CTRL: 3046 if (!msr->host_initiated && 3047 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3048 return 1; 3049 3050 if (data & ~SPEC_CTRL_SSBD) 3051 return 1; 3052 3053 svm->virt_spec_ctrl = data; 3054 break; 3055 case MSR_STAR: 3056 svm->vmcb01.ptr->save.star = data; 3057 break; 3058 #ifdef CONFIG_X86_64 3059 case MSR_LSTAR: 3060 svm->vmcb01.ptr->save.lstar = data; 3061 break; 3062 case MSR_CSTAR: 3063 svm->vmcb01.ptr->save.cstar = data; 3064 break; 3065 case MSR_KERNEL_GS_BASE: 3066 svm->vmcb01.ptr->save.kernel_gs_base = data; 3067 break; 3068 case MSR_SYSCALL_MASK: 3069 svm->vmcb01.ptr->save.sfmask = data; 3070 break; 3071 #endif 3072 case MSR_IA32_SYSENTER_CS: 3073 svm->vmcb01.ptr->save.sysenter_cs = data; 3074 break; 3075 case MSR_IA32_SYSENTER_EIP: 3076 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3077 /* 3078 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3079 * when we spoof an Intel vendor ID (for cross vendor migration). 3080 * In this case we use this intercept to track the high 3081 * 32 bit part of these msrs to support Intel's 3082 * implementation of SYSENTER/SYSEXIT. 3083 */ 3084 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3085 break; 3086 case MSR_IA32_SYSENTER_ESP: 3087 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3088 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3089 break; 3090 case MSR_TSC_AUX: 3091 /* 3092 * TSC_AUX is always virtualized for SEV-ES guests when the 3093 * feature is available. The user return MSR support is not 3094 * required in this case because TSC_AUX is restored on #VMEXIT 3095 * from the host save area (which has been initialized in 3096 * svm_hardware_enable()). 3097 */ 3098 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3099 break; 3100 3101 /* 3102 * TSC_AUX is usually changed only during boot and never read 3103 * directly. Intercept TSC_AUX instead of exposing it to the 3104 * guest via direct_access_msrs, and switch it via user return. 3105 */ 3106 preempt_disable(); 3107 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3108 preempt_enable(); 3109 if (ret) 3110 break; 3111 3112 svm->tsc_aux = data; 3113 break; 3114 case MSR_IA32_DEBUGCTLMSR: 3115 if (!lbrv) { 3116 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3117 break; 3118 } 3119 if (data & DEBUGCTL_RESERVED_BITS) 3120 return 1; 3121 3122 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3123 svm_update_lbrv(vcpu); 3124 break; 3125 case MSR_VM_HSAVE_PA: 3126 /* 3127 * Old kernels did not validate the value written to 3128 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3129 * value to allow live migrating buggy or malicious guests 3130 * originating from those kernels. 3131 */ 3132 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3133 return 1; 3134 3135 svm->nested.hsave_msr = data & PAGE_MASK; 3136 break; 3137 case MSR_VM_CR: 3138 return svm_set_vm_cr(vcpu, data); 3139 case MSR_VM_IGNNE: 3140 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3141 break; 3142 case MSR_AMD64_DE_CFG: { 3143 struct kvm_msr_entry msr_entry; 3144 3145 msr_entry.index = msr->index; 3146 if (svm_get_msr_feature(&msr_entry)) 3147 return 1; 3148 3149 /* Check the supported bits */ 3150 if (data & ~msr_entry.data) 3151 return 1; 3152 3153 /* Don't allow the guest to change a bit, #GP */ 3154 if (!msr->host_initiated && (data ^ msr_entry.data)) 3155 return 1; 3156 3157 svm->msr_decfg = data; 3158 break; 3159 } 3160 default: 3161 return kvm_set_msr_common(vcpu, msr); 3162 } 3163 return ret; 3164 } 3165 3166 static int msr_interception(struct kvm_vcpu *vcpu) 3167 { 3168 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3169 return kvm_emulate_wrmsr(vcpu); 3170 else 3171 return kvm_emulate_rdmsr(vcpu); 3172 } 3173 3174 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3175 { 3176 kvm_make_request(KVM_REQ_EVENT, vcpu); 3177 svm_clear_vintr(to_svm(vcpu)); 3178 3179 /* 3180 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3181 * In this case AVIC was temporarily disabled for 3182 * requesting the IRQ window and we have to re-enable it. 3183 * 3184 * If running nested, still remove the VM wide AVIC inhibit to 3185 * support case in which the interrupt window was requested when the 3186 * vCPU was not running nested. 3187 3188 * All vCPUs which run still run nested, will remain to have their 3189 * AVIC still inhibited due to per-cpu AVIC inhibition. 3190 */ 3191 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3192 3193 ++vcpu->stat.irq_window_exits; 3194 return 1; 3195 } 3196 3197 static int pause_interception(struct kvm_vcpu *vcpu) 3198 { 3199 bool in_kernel; 3200 /* 3201 * CPL is not made available for an SEV-ES guest, therefore 3202 * vcpu->arch.preempted_in_kernel can never be true. Just 3203 * set in_kernel to false as well. 3204 */ 3205 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3206 3207 grow_ple_window(vcpu); 3208 3209 kvm_vcpu_on_spin(vcpu, in_kernel); 3210 return kvm_skip_emulated_instruction(vcpu); 3211 } 3212 3213 static int invpcid_interception(struct kvm_vcpu *vcpu) 3214 { 3215 struct vcpu_svm *svm = to_svm(vcpu); 3216 unsigned long type; 3217 gva_t gva; 3218 3219 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3220 kvm_queue_exception(vcpu, UD_VECTOR); 3221 return 1; 3222 } 3223 3224 /* 3225 * For an INVPCID intercept: 3226 * EXITINFO1 provides the linear address of the memory operand. 3227 * EXITINFO2 provides the contents of the register operand. 3228 */ 3229 type = svm->vmcb->control.exit_info_2; 3230 gva = svm->vmcb->control.exit_info_1; 3231 3232 return kvm_handle_invpcid(vcpu, type, gva); 3233 } 3234 3235 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3236 [SVM_EXIT_READ_CR0] = cr_interception, 3237 [SVM_EXIT_READ_CR3] = cr_interception, 3238 [SVM_EXIT_READ_CR4] = cr_interception, 3239 [SVM_EXIT_READ_CR8] = cr_interception, 3240 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3241 [SVM_EXIT_WRITE_CR0] = cr_interception, 3242 [SVM_EXIT_WRITE_CR3] = cr_interception, 3243 [SVM_EXIT_WRITE_CR4] = cr_interception, 3244 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3245 [SVM_EXIT_READ_DR0] = dr_interception, 3246 [SVM_EXIT_READ_DR1] = dr_interception, 3247 [SVM_EXIT_READ_DR2] = dr_interception, 3248 [SVM_EXIT_READ_DR3] = dr_interception, 3249 [SVM_EXIT_READ_DR4] = dr_interception, 3250 [SVM_EXIT_READ_DR5] = dr_interception, 3251 [SVM_EXIT_READ_DR6] = dr_interception, 3252 [SVM_EXIT_READ_DR7] = dr_interception, 3253 [SVM_EXIT_WRITE_DR0] = dr_interception, 3254 [SVM_EXIT_WRITE_DR1] = dr_interception, 3255 [SVM_EXIT_WRITE_DR2] = dr_interception, 3256 [SVM_EXIT_WRITE_DR3] = dr_interception, 3257 [SVM_EXIT_WRITE_DR4] = dr_interception, 3258 [SVM_EXIT_WRITE_DR5] = dr_interception, 3259 [SVM_EXIT_WRITE_DR6] = dr_interception, 3260 [SVM_EXIT_WRITE_DR7] = dr_interception, 3261 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3262 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3263 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3264 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3265 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3266 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3267 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3268 [SVM_EXIT_INTR] = intr_interception, 3269 [SVM_EXIT_NMI] = nmi_interception, 3270 [SVM_EXIT_SMI] = smi_interception, 3271 [SVM_EXIT_VINTR] = interrupt_window_interception, 3272 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3273 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3274 [SVM_EXIT_IRET] = iret_interception, 3275 [SVM_EXIT_INVD] = kvm_emulate_invd, 3276 [SVM_EXIT_PAUSE] = pause_interception, 3277 [SVM_EXIT_HLT] = kvm_emulate_halt, 3278 [SVM_EXIT_INVLPG] = invlpg_interception, 3279 [SVM_EXIT_INVLPGA] = invlpga_interception, 3280 [SVM_EXIT_IOIO] = io_interception, 3281 [SVM_EXIT_MSR] = msr_interception, 3282 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3283 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3284 [SVM_EXIT_VMRUN] = vmrun_interception, 3285 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3286 [SVM_EXIT_VMLOAD] = vmload_interception, 3287 [SVM_EXIT_VMSAVE] = vmsave_interception, 3288 [SVM_EXIT_STGI] = stgi_interception, 3289 [SVM_EXIT_CLGI] = clgi_interception, 3290 [SVM_EXIT_SKINIT] = skinit_interception, 3291 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3292 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3293 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3294 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3295 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3296 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3297 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3298 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3299 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3300 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3301 [SVM_EXIT_INVPCID] = invpcid_interception, 3302 [SVM_EXIT_NPF] = npf_interception, 3303 [SVM_EXIT_RSM] = rsm_interception, 3304 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3305 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3306 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3307 }; 3308 3309 static void dump_vmcb(struct kvm_vcpu *vcpu) 3310 { 3311 struct vcpu_svm *svm = to_svm(vcpu); 3312 struct vmcb_control_area *control = &svm->vmcb->control; 3313 struct vmcb_save_area *save = &svm->vmcb->save; 3314 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3315 3316 if (!dump_invalid_vmcb) { 3317 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3318 return; 3319 } 3320 3321 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3322 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3323 pr_err("VMCB Control Area:\n"); 3324 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3325 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3326 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3327 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3328 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3329 pr_err("%-20s%08x %08x\n", "intercepts:", 3330 control->intercepts[INTERCEPT_WORD3], 3331 control->intercepts[INTERCEPT_WORD4]); 3332 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3333 pr_err("%-20s%d\n", "pause filter threshold:", 3334 control->pause_filter_thresh); 3335 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3336 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3337 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3338 pr_err("%-20s%d\n", "asid:", control->asid); 3339 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3340 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3341 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3342 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3343 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3344 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3345 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3346 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3347 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3348 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3349 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3350 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3351 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3352 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3353 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3354 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3355 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3356 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3357 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3358 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3359 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3360 pr_err("VMCB State Save Area:\n"); 3361 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3362 "es:", 3363 save->es.selector, save->es.attrib, 3364 save->es.limit, save->es.base); 3365 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3366 "cs:", 3367 save->cs.selector, save->cs.attrib, 3368 save->cs.limit, save->cs.base); 3369 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3370 "ss:", 3371 save->ss.selector, save->ss.attrib, 3372 save->ss.limit, save->ss.base); 3373 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3374 "ds:", 3375 save->ds.selector, save->ds.attrib, 3376 save->ds.limit, save->ds.base); 3377 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3378 "fs:", 3379 save01->fs.selector, save01->fs.attrib, 3380 save01->fs.limit, save01->fs.base); 3381 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3382 "gs:", 3383 save01->gs.selector, save01->gs.attrib, 3384 save01->gs.limit, save01->gs.base); 3385 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3386 "gdtr:", 3387 save->gdtr.selector, save->gdtr.attrib, 3388 save->gdtr.limit, save->gdtr.base); 3389 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3390 "ldtr:", 3391 save01->ldtr.selector, save01->ldtr.attrib, 3392 save01->ldtr.limit, save01->ldtr.base); 3393 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3394 "idtr:", 3395 save->idtr.selector, save->idtr.attrib, 3396 save->idtr.limit, save->idtr.base); 3397 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3398 "tr:", 3399 save01->tr.selector, save01->tr.attrib, 3400 save01->tr.limit, save01->tr.base); 3401 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3402 save->vmpl, save->cpl, save->efer); 3403 pr_err("%-15s %016llx %-13s %016llx\n", 3404 "cr0:", save->cr0, "cr2:", save->cr2); 3405 pr_err("%-15s %016llx %-13s %016llx\n", 3406 "cr3:", save->cr3, "cr4:", save->cr4); 3407 pr_err("%-15s %016llx %-13s %016llx\n", 3408 "dr6:", save->dr6, "dr7:", save->dr7); 3409 pr_err("%-15s %016llx %-13s %016llx\n", 3410 "rip:", save->rip, "rflags:", save->rflags); 3411 pr_err("%-15s %016llx %-13s %016llx\n", 3412 "rsp:", save->rsp, "rax:", save->rax); 3413 pr_err("%-15s %016llx %-13s %016llx\n", 3414 "star:", save01->star, "lstar:", save01->lstar); 3415 pr_err("%-15s %016llx %-13s %016llx\n", 3416 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3417 pr_err("%-15s %016llx %-13s %016llx\n", 3418 "kernel_gs_base:", save01->kernel_gs_base, 3419 "sysenter_cs:", save01->sysenter_cs); 3420 pr_err("%-15s %016llx %-13s %016llx\n", 3421 "sysenter_esp:", save01->sysenter_esp, 3422 "sysenter_eip:", save01->sysenter_eip); 3423 pr_err("%-15s %016llx %-13s %016llx\n", 3424 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3425 pr_err("%-15s %016llx %-13s %016llx\n", 3426 "br_from:", save->br_from, "br_to:", save->br_to); 3427 pr_err("%-15s %016llx %-13s %016llx\n", 3428 "excp_from:", save->last_excp_from, 3429 "excp_to:", save->last_excp_to); 3430 } 3431 3432 static bool svm_check_exit_valid(u64 exit_code) 3433 { 3434 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3435 svm_exit_handlers[exit_code]); 3436 } 3437 3438 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3439 { 3440 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3441 dump_vmcb(vcpu); 3442 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3443 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3444 vcpu->run->internal.ndata = 2; 3445 vcpu->run->internal.data[0] = exit_code; 3446 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3447 return 0; 3448 } 3449 3450 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3451 { 3452 if (!svm_check_exit_valid(exit_code)) 3453 return svm_handle_invalid_exit(vcpu, exit_code); 3454 3455 #ifdef CONFIG_MITIGATION_RETPOLINE 3456 if (exit_code == SVM_EXIT_MSR) 3457 return msr_interception(vcpu); 3458 else if (exit_code == SVM_EXIT_VINTR) 3459 return interrupt_window_interception(vcpu); 3460 else if (exit_code == SVM_EXIT_INTR) 3461 return intr_interception(vcpu); 3462 else if (exit_code == SVM_EXIT_HLT) 3463 return kvm_emulate_halt(vcpu); 3464 else if (exit_code == SVM_EXIT_NPF) 3465 return npf_interception(vcpu); 3466 #endif 3467 return svm_exit_handlers[exit_code](vcpu); 3468 } 3469 3470 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3471 u64 *info1, u64 *info2, 3472 u32 *intr_info, u32 *error_code) 3473 { 3474 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3475 3476 *reason = control->exit_code; 3477 *info1 = control->exit_info_1; 3478 *info2 = control->exit_info_2; 3479 *intr_info = control->exit_int_info; 3480 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3481 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3482 *error_code = control->exit_int_info_err; 3483 else 3484 *error_code = 0; 3485 } 3486 3487 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3488 { 3489 struct vcpu_svm *svm = to_svm(vcpu); 3490 struct kvm_run *kvm_run = vcpu->run; 3491 u32 exit_code = svm->vmcb->control.exit_code; 3492 3493 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3494 if (!sev_es_guest(vcpu->kvm)) { 3495 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3496 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3497 if (npt_enabled) 3498 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3499 } 3500 3501 if (is_guest_mode(vcpu)) { 3502 int vmexit; 3503 3504 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3505 3506 vmexit = nested_svm_exit_special(svm); 3507 3508 if (vmexit == NESTED_EXIT_CONTINUE) 3509 vmexit = nested_svm_exit_handled(svm); 3510 3511 if (vmexit == NESTED_EXIT_DONE) 3512 return 1; 3513 } 3514 3515 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3516 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3517 kvm_run->fail_entry.hardware_entry_failure_reason 3518 = svm->vmcb->control.exit_code; 3519 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3520 dump_vmcb(vcpu); 3521 return 0; 3522 } 3523 3524 if (exit_fastpath != EXIT_FASTPATH_NONE) 3525 return 1; 3526 3527 return svm_invoke_exit_handler(vcpu, exit_code); 3528 } 3529 3530 static void pre_svm_run(struct kvm_vcpu *vcpu) 3531 { 3532 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3533 struct vcpu_svm *svm = to_svm(vcpu); 3534 3535 /* 3536 * If the previous vmrun of the vmcb occurred on a different physical 3537 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3538 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3539 */ 3540 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3541 svm->current_vmcb->asid_generation = 0; 3542 vmcb_mark_all_dirty(svm->vmcb); 3543 svm->current_vmcb->cpu = vcpu->cpu; 3544 } 3545 3546 if (sev_guest(vcpu->kvm)) 3547 return pre_sev_run(svm, vcpu->cpu); 3548 3549 /* FIXME: handle wraparound of asid_generation */ 3550 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3551 new_asid(svm, sd); 3552 } 3553 3554 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3555 { 3556 struct vcpu_svm *svm = to_svm(vcpu); 3557 3558 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3559 3560 if (svm->nmi_l1_to_l2) 3561 return; 3562 3563 /* 3564 * No need to manually track NMI masking when vNMI is enabled, hardware 3565 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3566 * case where software directly injects an NMI. 3567 */ 3568 if (!is_vnmi_enabled(svm)) { 3569 svm->nmi_masked = true; 3570 svm_set_iret_intercept(svm); 3571 } 3572 ++vcpu->stat.nmi_injections; 3573 } 3574 3575 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3576 { 3577 struct vcpu_svm *svm = to_svm(vcpu); 3578 3579 if (!is_vnmi_enabled(svm)) 3580 return false; 3581 3582 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3583 } 3584 3585 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3586 { 3587 struct vcpu_svm *svm = to_svm(vcpu); 3588 3589 if (!is_vnmi_enabled(svm)) 3590 return false; 3591 3592 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3593 return false; 3594 3595 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3596 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3597 3598 /* 3599 * Because the pending NMI is serviced by hardware, KVM can't know when 3600 * the NMI is "injected", but for all intents and purposes, passing the 3601 * NMI off to hardware counts as injection. 3602 */ 3603 ++vcpu->stat.nmi_injections; 3604 3605 return true; 3606 } 3607 3608 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3609 { 3610 struct vcpu_svm *svm = to_svm(vcpu); 3611 u32 type; 3612 3613 if (vcpu->arch.interrupt.soft) { 3614 if (svm_update_soft_interrupt_rip(vcpu)) 3615 return; 3616 3617 type = SVM_EVTINJ_TYPE_SOFT; 3618 } else { 3619 type = SVM_EVTINJ_TYPE_INTR; 3620 } 3621 3622 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3623 vcpu->arch.interrupt.soft, reinjected); 3624 ++vcpu->stat.irq_injections; 3625 3626 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3627 SVM_EVTINJ_VALID | type; 3628 } 3629 3630 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3631 int trig_mode, int vector) 3632 { 3633 /* 3634 * apic->apicv_active must be read after vcpu->mode. 3635 * Pairs with smp_store_release in vcpu_enter_guest. 3636 */ 3637 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3638 3639 /* Note, this is called iff the local APIC is in-kernel. */ 3640 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3641 /* Process the interrupt via kvm_check_and_inject_events(). */ 3642 kvm_make_request(KVM_REQ_EVENT, vcpu); 3643 kvm_vcpu_kick(vcpu); 3644 return; 3645 } 3646 3647 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3648 if (in_guest_mode) { 3649 /* 3650 * Signal the doorbell to tell hardware to inject the IRQ. If 3651 * the vCPU exits the guest before the doorbell chimes, hardware 3652 * will automatically process AVIC interrupts at the next VMRUN. 3653 */ 3654 avic_ring_doorbell(vcpu); 3655 } else { 3656 /* 3657 * Wake the vCPU if it was blocking. KVM will then detect the 3658 * pending IRQ when checking if the vCPU has a wake event. 3659 */ 3660 kvm_vcpu_wake_up(vcpu); 3661 } 3662 } 3663 3664 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3665 int trig_mode, int vector) 3666 { 3667 kvm_lapic_set_irr(vector, apic); 3668 3669 /* 3670 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3671 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3672 * the read of guest_mode. This guarantees that either VMRUN will see 3673 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3674 * will signal the doorbell if the CPU has already entered the guest. 3675 */ 3676 smp_mb__after_atomic(); 3677 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3678 } 3679 3680 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3681 { 3682 struct vcpu_svm *svm = to_svm(vcpu); 3683 3684 /* 3685 * SEV-ES guests must always keep the CR intercepts cleared. CR 3686 * tracking is done using the CR write traps. 3687 */ 3688 if (sev_es_guest(vcpu->kvm)) 3689 return; 3690 3691 if (nested_svm_virtualize_tpr(vcpu)) 3692 return; 3693 3694 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3695 3696 if (irr == -1) 3697 return; 3698 3699 if (tpr >= irr) 3700 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3701 } 3702 3703 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3704 { 3705 struct vcpu_svm *svm = to_svm(vcpu); 3706 3707 if (is_vnmi_enabled(svm)) 3708 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3709 else 3710 return svm->nmi_masked; 3711 } 3712 3713 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3714 { 3715 struct vcpu_svm *svm = to_svm(vcpu); 3716 3717 if (is_vnmi_enabled(svm)) { 3718 if (masked) 3719 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3720 else 3721 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3722 3723 } else { 3724 svm->nmi_masked = masked; 3725 if (masked) 3726 svm_set_iret_intercept(svm); 3727 else 3728 svm_clr_iret_intercept(svm); 3729 } 3730 } 3731 3732 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3733 { 3734 struct vcpu_svm *svm = to_svm(vcpu); 3735 struct vmcb *vmcb = svm->vmcb; 3736 3737 if (!gif_set(svm)) 3738 return true; 3739 3740 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3741 return false; 3742 3743 if (svm_get_nmi_mask(vcpu)) 3744 return true; 3745 3746 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3747 } 3748 3749 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3750 { 3751 struct vcpu_svm *svm = to_svm(vcpu); 3752 if (svm->nested.nested_run_pending) 3753 return -EBUSY; 3754 3755 if (svm_nmi_blocked(vcpu)) 3756 return 0; 3757 3758 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3759 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3760 return -EBUSY; 3761 return 1; 3762 } 3763 3764 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3765 { 3766 struct vcpu_svm *svm = to_svm(vcpu); 3767 struct vmcb *vmcb = svm->vmcb; 3768 3769 if (!gif_set(svm)) 3770 return true; 3771 3772 if (is_guest_mode(vcpu)) { 3773 /* As long as interrupts are being delivered... */ 3774 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3775 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3776 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3777 return true; 3778 3779 /* ... vmexits aren't blocked by the interrupt shadow */ 3780 if (nested_exit_on_intr(svm)) 3781 return false; 3782 } else { 3783 if (!svm_get_if_flag(vcpu)) 3784 return true; 3785 } 3786 3787 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3788 } 3789 3790 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3791 { 3792 struct vcpu_svm *svm = to_svm(vcpu); 3793 3794 if (svm->nested.nested_run_pending) 3795 return -EBUSY; 3796 3797 if (svm_interrupt_blocked(vcpu)) 3798 return 0; 3799 3800 /* 3801 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3802 * e.g. if the IRQ arrived asynchronously after checking nested events. 3803 */ 3804 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3805 return -EBUSY; 3806 3807 return 1; 3808 } 3809 3810 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3811 { 3812 struct vcpu_svm *svm = to_svm(vcpu); 3813 3814 /* 3815 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3816 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3817 * get that intercept, this function will be called again though and 3818 * we'll get the vintr intercept. However, if the vGIF feature is 3819 * enabled, the STGI interception will not occur. Enable the irq 3820 * window under the assumption that the hardware will set the GIF. 3821 */ 3822 if (vgif || gif_set(svm)) { 3823 /* 3824 * IRQ window is not needed when AVIC is enabled, 3825 * unless we have pending ExtINT since it cannot be injected 3826 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3827 * and fallback to injecting IRQ via V_IRQ. 3828 * 3829 * If running nested, AVIC is already locally inhibited 3830 * on this vCPU, therefore there is no need to request 3831 * the VM wide AVIC inhibition. 3832 */ 3833 if (!is_guest_mode(vcpu)) 3834 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3835 3836 svm_set_vintr(svm); 3837 } 3838 } 3839 3840 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3841 { 3842 struct vcpu_svm *svm = to_svm(vcpu); 3843 3844 /* 3845 * KVM should never request an NMI window when vNMI is enabled, as KVM 3846 * allows at most one to-be-injected NMI and one pending NMI, i.e. if 3847 * two NMIs arrive simultaneously, KVM will inject one and set 3848 * V_NMI_PENDING for the other. WARN, but continue with the standard 3849 * single-step approach to try and salvage the pending NMI. 3850 */ 3851 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3852 3853 if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion) 3854 return; /* IRET will cause a vm exit */ 3855 3856 /* 3857 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3858 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3859 * KVM can't intercept and single-step IRET to detect when NMIs are 3860 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3861 * 3862 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3863 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3864 * supported NAEs in the GHCB protocol. 3865 */ 3866 if (sev_es_guest(vcpu->kvm)) 3867 return; 3868 3869 if (!gif_set(svm)) { 3870 if (vgif) 3871 svm_set_intercept(svm, INTERCEPT_STGI); 3872 return; /* STGI will cause a vm exit */ 3873 } 3874 3875 /* 3876 * Something prevents NMI from been injected. Single step over possible 3877 * problem (IRET or exception injection or interrupt shadow) 3878 */ 3879 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3880 svm->nmi_singlestep = true; 3881 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3882 } 3883 3884 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3885 { 3886 struct vcpu_svm *svm = to_svm(vcpu); 3887 3888 /* 3889 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3890 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3891 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3892 */ 3893 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3894 3895 /* 3896 * Flush only the current ASID even if the TLB flush was invoked via 3897 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3898 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3899 * unconditionally does a TLB flush on both nested VM-Enter and nested 3900 * VM-Exit (via kvm_mmu_reset_context()). 3901 */ 3902 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3903 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3904 else 3905 svm->current_vmcb->asid_generation--; 3906 } 3907 3908 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3909 { 3910 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3911 3912 /* 3913 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3914 * flush the NPT mappings via hypercall as flushing the ASID only 3915 * affects virtual to physical mappings, it does not invalidate guest 3916 * physical to host physical mappings. 3917 */ 3918 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3919 hyperv_flush_guest_mapping(root_tdp); 3920 3921 svm_flush_tlb_asid(vcpu); 3922 } 3923 3924 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3925 { 3926 /* 3927 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3928 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3929 * a "regular" remote flush. Reaching this point means either there's 3930 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3931 * which might be fatal to the guest. Yell, but try to recover. 3932 */ 3933 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3934 hv_flush_remote_tlbs(vcpu->kvm); 3935 3936 svm_flush_tlb_asid(vcpu); 3937 } 3938 3939 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3940 { 3941 struct vcpu_svm *svm = to_svm(vcpu); 3942 3943 invlpga(gva, svm->vmcb->control.asid); 3944 } 3945 3946 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3947 { 3948 struct vcpu_svm *svm = to_svm(vcpu); 3949 3950 if (nested_svm_virtualize_tpr(vcpu)) 3951 return; 3952 3953 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3954 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3955 kvm_set_cr8(vcpu, cr8); 3956 } 3957 } 3958 3959 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3960 { 3961 struct vcpu_svm *svm = to_svm(vcpu); 3962 u64 cr8; 3963 3964 if (nested_svm_virtualize_tpr(vcpu) || 3965 kvm_vcpu_apicv_active(vcpu)) 3966 return; 3967 3968 cr8 = kvm_get_cr8(vcpu); 3969 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3970 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3971 } 3972 3973 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3974 int type) 3975 { 3976 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3977 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3978 struct vcpu_svm *svm = to_svm(vcpu); 3979 3980 /* 3981 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3982 * associated with the original soft exception/interrupt. next_rip is 3983 * cleared on all exits that can occur while vectoring an event, so KVM 3984 * needs to manually set next_rip for re-injection. Unlike the !nrips 3985 * case below, this needs to be done if and only if KVM is re-injecting 3986 * the same event, i.e. if the event is a soft exception/interrupt, 3987 * otherwise next_rip is unused on VMRUN. 3988 */ 3989 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 3990 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 3991 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 3992 /* 3993 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 3994 * injecting the soft exception/interrupt. That advancement needs to 3995 * be unwound if vectoring didn't complete. Note, the new event may 3996 * not be the injected event, e.g. if KVM injected an INTn, the INTn 3997 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 3998 * be the reported vectored event, but RIP still needs to be unwound. 3999 */ 4000 else if (!nrips && (is_soft || is_exception) && 4001 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4002 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4003 } 4004 4005 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4006 { 4007 struct vcpu_svm *svm = to_svm(vcpu); 4008 u8 vector; 4009 int type; 4010 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4011 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4012 bool soft_int_injected = svm->soft_int_injected; 4013 4014 svm->nmi_l1_to_l2 = false; 4015 svm->soft_int_injected = false; 4016 4017 /* 4018 * If we've made progress since setting awaiting_iret_completion, we've 4019 * executed an IRET and can allow NMI injection. 4020 */ 4021 if (svm->awaiting_iret_completion && 4022 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4023 svm->awaiting_iret_completion = false; 4024 svm->nmi_masked = false; 4025 kvm_make_request(KVM_REQ_EVENT, vcpu); 4026 } 4027 4028 vcpu->arch.nmi_injected = false; 4029 kvm_clear_exception_queue(vcpu); 4030 kvm_clear_interrupt_queue(vcpu); 4031 4032 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4033 return; 4034 4035 kvm_make_request(KVM_REQ_EVENT, vcpu); 4036 4037 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4038 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4039 4040 if (soft_int_injected) 4041 svm_complete_soft_interrupt(vcpu, vector, type); 4042 4043 switch (type) { 4044 case SVM_EXITINTINFO_TYPE_NMI: 4045 vcpu->arch.nmi_injected = true; 4046 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4047 break; 4048 case SVM_EXITINTINFO_TYPE_EXEPT: 4049 /* 4050 * Never re-inject a #VC exception. 4051 */ 4052 if (vector == X86_TRAP_VC) 4053 break; 4054 4055 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4056 u32 err = svm->vmcb->control.exit_int_info_err; 4057 kvm_requeue_exception_e(vcpu, vector, err); 4058 4059 } else 4060 kvm_requeue_exception(vcpu, vector); 4061 break; 4062 case SVM_EXITINTINFO_TYPE_INTR: 4063 kvm_queue_interrupt(vcpu, vector, false); 4064 break; 4065 case SVM_EXITINTINFO_TYPE_SOFT: 4066 kvm_queue_interrupt(vcpu, vector, true); 4067 break; 4068 default: 4069 break; 4070 } 4071 4072 } 4073 4074 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4075 { 4076 struct vcpu_svm *svm = to_svm(vcpu); 4077 struct vmcb_control_area *control = &svm->vmcb->control; 4078 4079 control->exit_int_info = control->event_inj; 4080 control->exit_int_info_err = control->event_inj_err; 4081 control->event_inj = 0; 4082 svm_complete_interrupts(vcpu); 4083 } 4084 4085 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4086 { 4087 return 1; 4088 } 4089 4090 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4091 { 4092 if (is_guest_mode(vcpu)) 4093 return EXIT_FASTPATH_NONE; 4094 4095 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4096 to_svm(vcpu)->vmcb->control.exit_info_1) 4097 return handle_fastpath_set_msr_irqoff(vcpu); 4098 4099 return EXIT_FASTPATH_NONE; 4100 } 4101 4102 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4103 { 4104 struct vcpu_svm *svm = to_svm(vcpu); 4105 4106 guest_state_enter_irqoff(); 4107 4108 amd_clear_divider(); 4109 4110 if (sev_es_guest(vcpu->kvm)) 4111 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4112 else 4113 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4114 4115 guest_state_exit_irqoff(); 4116 } 4117 4118 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, 4119 bool force_immediate_exit) 4120 { 4121 struct vcpu_svm *svm = to_svm(vcpu); 4122 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4123 4124 trace_kvm_entry(vcpu, force_immediate_exit); 4125 4126 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4127 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4128 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4129 4130 /* 4131 * Disable singlestep if we're injecting an interrupt/exception. 4132 * We don't want our modified rflags to be pushed on the stack where 4133 * we might not be able to easily reset them if we disabled NMI 4134 * singlestep later. 4135 */ 4136 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4137 /* 4138 * Event injection happens before external interrupts cause a 4139 * vmexit and interrupts are disabled here, so smp_send_reschedule 4140 * is enough to force an immediate vmexit. 4141 */ 4142 disable_nmi_singlestep(svm); 4143 force_immediate_exit = true; 4144 } 4145 4146 if (force_immediate_exit) 4147 smp_send_reschedule(vcpu->cpu); 4148 4149 pre_svm_run(vcpu); 4150 4151 sync_lapic_to_cr8(vcpu); 4152 4153 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4154 svm->vmcb->control.asid = svm->asid; 4155 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4156 } 4157 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4158 4159 svm_hv_update_vp_id(svm->vmcb, vcpu); 4160 4161 /* 4162 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4163 * of a #DB. 4164 */ 4165 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4166 svm_set_dr6(svm, vcpu->arch.dr6); 4167 else 4168 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4169 4170 clgi(); 4171 kvm_load_guest_xsave_state(vcpu); 4172 4173 kvm_wait_lapic_expire(vcpu); 4174 4175 /* 4176 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4177 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4178 * is no need to worry about the conditional branch over the wrmsr 4179 * being speculatively taken. 4180 */ 4181 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4182 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4183 4184 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4185 4186 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4187 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4188 4189 if (!sev_es_guest(vcpu->kvm)) { 4190 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4191 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4192 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4193 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4194 } 4195 vcpu->arch.regs_dirty = 0; 4196 4197 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4198 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4199 4200 kvm_load_host_xsave_state(vcpu); 4201 stgi(); 4202 4203 /* Any pending NMI will happen here */ 4204 4205 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4206 kvm_after_interrupt(vcpu); 4207 4208 sync_cr8_to_lapic(vcpu); 4209 4210 svm->next_rip = 0; 4211 if (is_guest_mode(vcpu)) { 4212 nested_sync_control_from_vmcb02(svm); 4213 4214 /* Track VMRUNs that have made past consistency checking */ 4215 if (svm->nested.nested_run_pending && 4216 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4217 ++vcpu->stat.nested_run; 4218 4219 svm->nested.nested_run_pending = 0; 4220 } 4221 4222 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4223 vmcb_mark_all_clean(svm->vmcb); 4224 4225 /* if exit due to PF check for async PF */ 4226 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4227 vcpu->arch.apf.host_apf_flags = 4228 kvm_read_and_reset_apf_flags(); 4229 4230 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4231 4232 /* 4233 * We need to handle MC intercepts here before the vcpu has a chance to 4234 * change the physical cpu 4235 */ 4236 if (unlikely(svm->vmcb->control.exit_code == 4237 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4238 svm_handle_mce(vcpu); 4239 4240 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4241 4242 svm_complete_interrupts(vcpu); 4243 4244 return svm_exit_handlers_fastpath(vcpu); 4245 } 4246 4247 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4248 int root_level) 4249 { 4250 struct vcpu_svm *svm = to_svm(vcpu); 4251 unsigned long cr3; 4252 4253 if (npt_enabled) { 4254 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4255 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4256 4257 hv_track_root_tdp(vcpu, root_hpa); 4258 4259 cr3 = vcpu->arch.cr3; 4260 } else if (root_level >= PT64_ROOT_4LEVEL) { 4261 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4262 } else { 4263 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4264 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4265 cr3 = root_hpa; 4266 } 4267 4268 svm->vmcb->save.cr3 = cr3; 4269 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4270 } 4271 4272 static void 4273 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4274 { 4275 /* 4276 * Patch in the VMMCALL instruction: 4277 */ 4278 hypercall[0] = 0x0f; 4279 hypercall[1] = 0x01; 4280 hypercall[2] = 0xd9; 4281 } 4282 4283 /* 4284 * The kvm parameter can be NULL (module initialization, or invocation before 4285 * VM creation). Be sure to check the kvm parameter before using it. 4286 */ 4287 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4288 { 4289 switch (index) { 4290 case MSR_IA32_MCG_EXT_CTL: 4291 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4292 return false; 4293 case MSR_IA32_SMBASE: 4294 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4295 return false; 4296 /* SEV-ES guests do not support SMM, so report false */ 4297 if (kvm && sev_es_guest(kvm)) 4298 return false; 4299 break; 4300 default: 4301 break; 4302 } 4303 4304 return true; 4305 } 4306 4307 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4308 { 4309 struct vcpu_svm *svm = to_svm(vcpu); 4310 4311 /* 4312 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4313 * can only disable all variants of by disallowing CR4.OSXSAVE from 4314 * being set. As a result, if the host has XSAVE and XSAVES, and the 4315 * guest has XSAVE enabled, the guest can execute XSAVES without 4316 * faulting. Treat XSAVES as enabled in this case regardless of 4317 * whether it's advertised to the guest so that KVM context switches 4318 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4319 * the guest read/write access to the host's XSS. 4320 */ 4321 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4322 boot_cpu_has(X86_FEATURE_XSAVES) && 4323 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4324 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4325 4326 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4327 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4328 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4329 4330 /* 4331 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that 4332 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4333 * SVM on Intel is bonkers and extremely unlikely to work). 4334 */ 4335 if (!guest_cpuid_is_intel(vcpu)) 4336 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4337 4338 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4339 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4340 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4341 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4342 4343 svm_recalc_instruction_intercepts(vcpu, svm); 4344 4345 if (boot_cpu_has(X86_FEATURE_IBPB)) 4346 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4347 !!guest_has_pred_cmd_msr(vcpu)); 4348 4349 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4350 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4351 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4352 4353 if (sev_guest(vcpu->kvm)) 4354 sev_vcpu_after_set_cpuid(svm); 4355 4356 init_vmcb_after_set_cpuid(vcpu); 4357 } 4358 4359 static bool svm_has_wbinvd_exit(void) 4360 { 4361 return true; 4362 } 4363 4364 #define PRE_EX(exit) { .exit_code = (exit), \ 4365 .stage = X86_ICPT_PRE_EXCEPT, } 4366 #define POST_EX(exit) { .exit_code = (exit), \ 4367 .stage = X86_ICPT_POST_EXCEPT, } 4368 #define POST_MEM(exit) { .exit_code = (exit), \ 4369 .stage = X86_ICPT_POST_MEMACCESS, } 4370 4371 static const struct __x86_intercept { 4372 u32 exit_code; 4373 enum x86_intercept_stage stage; 4374 } x86_intercept_map[] = { 4375 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4376 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4377 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4378 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4379 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4380 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4381 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4382 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4383 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4384 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4385 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4386 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4387 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4388 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4389 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4390 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4391 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4392 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4393 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4394 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4395 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4396 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4397 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4398 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4399 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4400 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4401 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4402 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4403 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4404 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4405 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4406 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4407 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4408 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4409 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4410 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4411 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4412 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4413 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4414 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4415 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4416 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4417 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4418 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4419 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4420 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4421 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4422 }; 4423 4424 #undef PRE_EX 4425 #undef POST_EX 4426 #undef POST_MEM 4427 4428 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4429 struct x86_instruction_info *info, 4430 enum x86_intercept_stage stage, 4431 struct x86_exception *exception) 4432 { 4433 struct vcpu_svm *svm = to_svm(vcpu); 4434 int vmexit, ret = X86EMUL_CONTINUE; 4435 struct __x86_intercept icpt_info; 4436 struct vmcb *vmcb = svm->vmcb; 4437 4438 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4439 goto out; 4440 4441 icpt_info = x86_intercept_map[info->intercept]; 4442 4443 if (stage != icpt_info.stage) 4444 goto out; 4445 4446 switch (icpt_info.exit_code) { 4447 case SVM_EXIT_READ_CR0: 4448 if (info->intercept == x86_intercept_cr_read) 4449 icpt_info.exit_code += info->modrm_reg; 4450 break; 4451 case SVM_EXIT_WRITE_CR0: { 4452 unsigned long cr0, val; 4453 4454 if (info->intercept == x86_intercept_cr_write) 4455 icpt_info.exit_code += info->modrm_reg; 4456 4457 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4458 info->intercept == x86_intercept_clts) 4459 break; 4460 4461 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4462 INTERCEPT_SELECTIVE_CR0))) 4463 break; 4464 4465 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4466 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4467 4468 if (info->intercept == x86_intercept_lmsw) { 4469 cr0 &= 0xfUL; 4470 val &= 0xfUL; 4471 /* lmsw can't clear PE - catch this here */ 4472 if (cr0 & X86_CR0_PE) 4473 val |= X86_CR0_PE; 4474 } 4475 4476 if (cr0 ^ val) 4477 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4478 4479 break; 4480 } 4481 case SVM_EXIT_READ_DR0: 4482 case SVM_EXIT_WRITE_DR0: 4483 icpt_info.exit_code += info->modrm_reg; 4484 break; 4485 case SVM_EXIT_MSR: 4486 if (info->intercept == x86_intercept_wrmsr) 4487 vmcb->control.exit_info_1 = 1; 4488 else 4489 vmcb->control.exit_info_1 = 0; 4490 break; 4491 case SVM_EXIT_PAUSE: 4492 /* 4493 * We get this for NOP only, but pause 4494 * is rep not, check this here 4495 */ 4496 if (info->rep_prefix != REPE_PREFIX) 4497 goto out; 4498 break; 4499 case SVM_EXIT_IOIO: { 4500 u64 exit_info; 4501 u32 bytes; 4502 4503 if (info->intercept == x86_intercept_in || 4504 info->intercept == x86_intercept_ins) { 4505 exit_info = ((info->src_val & 0xffff) << 16) | 4506 SVM_IOIO_TYPE_MASK; 4507 bytes = info->dst_bytes; 4508 } else { 4509 exit_info = (info->dst_val & 0xffff) << 16; 4510 bytes = info->src_bytes; 4511 } 4512 4513 if (info->intercept == x86_intercept_outs || 4514 info->intercept == x86_intercept_ins) 4515 exit_info |= SVM_IOIO_STR_MASK; 4516 4517 if (info->rep_prefix) 4518 exit_info |= SVM_IOIO_REP_MASK; 4519 4520 bytes = min(bytes, 4u); 4521 4522 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4523 4524 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4525 4526 vmcb->control.exit_info_1 = exit_info; 4527 vmcb->control.exit_info_2 = info->next_rip; 4528 4529 break; 4530 } 4531 default: 4532 break; 4533 } 4534 4535 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4536 if (static_cpu_has(X86_FEATURE_NRIPS)) 4537 vmcb->control.next_rip = info->next_rip; 4538 vmcb->control.exit_code = icpt_info.exit_code; 4539 vmexit = nested_svm_exit_handled(svm); 4540 4541 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4542 : X86EMUL_CONTINUE; 4543 4544 out: 4545 return ret; 4546 } 4547 4548 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4549 { 4550 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4551 vcpu->arch.at_instruction_boundary = true; 4552 } 4553 4554 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4555 { 4556 if (!kvm_pause_in_guest(vcpu->kvm)) 4557 shrink_ple_window(vcpu); 4558 } 4559 4560 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4561 { 4562 /* [63:9] are reserved. */ 4563 vcpu->arch.mcg_cap &= 0x1ff; 4564 } 4565 4566 #ifdef CONFIG_KVM_SMM 4567 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4568 { 4569 struct vcpu_svm *svm = to_svm(vcpu); 4570 4571 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4572 if (!gif_set(svm)) 4573 return true; 4574 4575 return is_smm(vcpu); 4576 } 4577 4578 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4579 { 4580 struct vcpu_svm *svm = to_svm(vcpu); 4581 if (svm->nested.nested_run_pending) 4582 return -EBUSY; 4583 4584 if (svm_smi_blocked(vcpu)) 4585 return 0; 4586 4587 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4588 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4589 return -EBUSY; 4590 4591 return 1; 4592 } 4593 4594 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4595 { 4596 struct vcpu_svm *svm = to_svm(vcpu); 4597 struct kvm_host_map map_save; 4598 int ret; 4599 4600 if (!is_guest_mode(vcpu)) 4601 return 0; 4602 4603 /* 4604 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4605 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4606 */ 4607 4608 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4609 return 1; 4610 4611 smram->smram64.svm_guest_flag = 1; 4612 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4613 4614 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4615 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4616 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4617 4618 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4619 if (ret) 4620 return ret; 4621 4622 /* 4623 * KVM uses VMCB01 to store L1 host state while L2 runs but 4624 * VMCB01 is going to be used during SMM and thus the state will 4625 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4626 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4627 * format of the area is identical to guest save area offsetted 4628 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4629 * within 'struct vmcb'). Note: HSAVE area may also be used by 4630 * L1 hypervisor to save additional host context (e.g. KVM does 4631 * that, see svm_prepare_switch_to_guest()) which must be 4632 * preserved. 4633 */ 4634 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4635 return 1; 4636 4637 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4638 4639 svm_copy_vmrun_state(map_save.hva + 0x400, 4640 &svm->vmcb01.ptr->save); 4641 4642 kvm_vcpu_unmap(vcpu, &map_save, true); 4643 return 0; 4644 } 4645 4646 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4647 { 4648 struct vcpu_svm *svm = to_svm(vcpu); 4649 struct kvm_host_map map, map_save; 4650 struct vmcb *vmcb12; 4651 int ret; 4652 4653 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4654 4655 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4656 return 0; 4657 4658 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4659 if (!smram64->svm_guest_flag) 4660 return 0; 4661 4662 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4663 return 1; 4664 4665 if (!(smram64->efer & EFER_SVME)) 4666 return 1; 4667 4668 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4669 return 1; 4670 4671 ret = 1; 4672 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4673 goto unmap_map; 4674 4675 if (svm_allocate_nested(svm)) 4676 goto unmap_save; 4677 4678 /* 4679 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4680 * used during SMM (see svm_enter_smm()) 4681 */ 4682 4683 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4684 4685 /* 4686 * Enter the nested guest now 4687 */ 4688 4689 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4690 4691 vmcb12 = map.hva; 4692 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4693 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4694 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4695 4696 if (ret) 4697 goto unmap_save; 4698 4699 svm->nested.nested_run_pending = 1; 4700 4701 unmap_save: 4702 kvm_vcpu_unmap(vcpu, &map_save, true); 4703 unmap_map: 4704 kvm_vcpu_unmap(vcpu, &map, true); 4705 return ret; 4706 } 4707 4708 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4709 { 4710 struct vcpu_svm *svm = to_svm(vcpu); 4711 4712 if (!gif_set(svm)) { 4713 if (vgif) 4714 svm_set_intercept(svm, INTERCEPT_STGI); 4715 /* STGI will cause a vm exit */ 4716 } else { 4717 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4718 } 4719 } 4720 #endif 4721 4722 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4723 void *insn, int insn_len) 4724 { 4725 bool smep, smap, is_user; 4726 u64 error_code; 4727 4728 /* Emulation is always possible when KVM has access to all guest state. */ 4729 if (!sev_guest(vcpu->kvm)) 4730 return X86EMUL_CONTINUE; 4731 4732 /* #UD and #GP should never be intercepted for SEV guests. */ 4733 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4734 EMULTYPE_TRAP_UD_FORCED | 4735 EMULTYPE_VMWARE_GP)); 4736 4737 /* 4738 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4739 * to guest register state. 4740 */ 4741 if (sev_es_guest(vcpu->kvm)) 4742 return X86EMUL_RETRY_INSTR; 4743 4744 /* 4745 * Emulation is possible if the instruction is already decoded, e.g. 4746 * when completing I/O after returning from userspace. 4747 */ 4748 if (emul_type & EMULTYPE_NO_DECODE) 4749 return X86EMUL_CONTINUE; 4750 4751 /* 4752 * Emulation is possible for SEV guests if and only if a prefilled 4753 * buffer containing the bytes of the intercepted instruction is 4754 * available. SEV guest memory is encrypted with a guest specific key 4755 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4756 * decode garbage. 4757 * 4758 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4759 * KVM reached this point without an instruction buffer. In practice, 4760 * this path should never be hit by a well-behaved guest, e.g. KVM 4761 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4762 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4763 * access, and needs to be handled by KVM to avoid putting the guest 4764 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4765 * its the least awful option given lack of insight into the guest. 4766 * 4767 * If KVM is trying to skip an instruction, simply resume the guest. 4768 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4769 * will attempt to re-inject the INT3/INTO and skip the instruction. 4770 * In that scenario, retrying the INT3/INTO and hoping the guest will 4771 * make forward progress is the only option that has a chance of 4772 * success (and in practice it will work the vast majority of the time). 4773 */ 4774 if (unlikely(!insn)) { 4775 if (emul_type & EMULTYPE_SKIP) 4776 return X86EMUL_UNHANDLEABLE; 4777 4778 kvm_queue_exception(vcpu, UD_VECTOR); 4779 return X86EMUL_PROPAGATE_FAULT; 4780 } 4781 4782 /* 4783 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4784 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4785 * the faulting instruction because the code fetch itself faulted, e.g. 4786 * the guest attempted to fetch from emulated MMIO or a guest page 4787 * table used to translate CS:RIP resides in emulated MMIO. 4788 */ 4789 if (likely(insn_len)) 4790 return X86EMUL_CONTINUE; 4791 4792 /* 4793 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4794 * 4795 * Errata: 4796 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4797 * possible that CPU microcode implementing DecodeAssist will fail to 4798 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4799 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4800 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4801 * gives up and does not fill the instruction bytes buffer. 4802 * 4803 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4804 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4805 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4806 * GuestIntrBytes field of the VMCB. 4807 * 4808 * This does _not_ mean that the erratum has been encountered, as the 4809 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4810 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4811 * encountered a reserved/not-present #PF. 4812 * 4813 * To hit the erratum, the following conditions must be true: 4814 * 1. CR4.SMAP=1 (obviously). 4815 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4816 * have been hit as the guest would have encountered a SMEP 4817 * violation #PF, not a #NPF. 4818 * 3. The #NPF is not due to a code fetch, in which case failure to 4819 * retrieve the instruction bytes is legitimate (see abvoe). 4820 * 4821 * In addition, don't apply the erratum workaround if the #NPF occurred 4822 * while translating guest page tables (see below). 4823 */ 4824 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4825 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4826 goto resume_guest; 4827 4828 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4829 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4830 is_user = svm_get_cpl(vcpu) == 3; 4831 if (smap && (!smep || is_user)) { 4832 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4833 4834 /* 4835 * If the fault occurred in userspace, arbitrarily inject #GP 4836 * to avoid killing the guest and to hopefully avoid confusing 4837 * the guest kernel too much, e.g. injecting #PF would not be 4838 * coherent with respect to the guest's page tables. Request 4839 * triple fault if the fault occurred in the kernel as there's 4840 * no fault that KVM can inject without confusing the guest. 4841 * In practice, the triple fault is moot as no sane SEV kernel 4842 * will execute from user memory while also running with SMAP=1. 4843 */ 4844 if (is_user) 4845 kvm_inject_gp(vcpu, 0); 4846 else 4847 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4848 return X86EMUL_PROPAGATE_FAULT; 4849 } 4850 4851 resume_guest: 4852 /* 4853 * If the erratum was not hit, simply resume the guest and let it fault 4854 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4855 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4856 * userspace will kill the guest, and letting the emulator read garbage 4857 * will yield random behavior and potentially corrupt the guest. 4858 * 4859 * Simply resuming the guest is technically not a violation of the SEV 4860 * architecture. AMD's APM states that all code fetches and page table 4861 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4862 * APM also states that encrypted accesses to MMIO are "ignored", but 4863 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4864 * the guest spin is technically "ignoring" the access. 4865 */ 4866 return X86EMUL_RETRY_INSTR; 4867 } 4868 4869 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4870 { 4871 struct vcpu_svm *svm = to_svm(vcpu); 4872 4873 return !gif_set(svm); 4874 } 4875 4876 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4877 { 4878 if (!sev_es_guest(vcpu->kvm)) 4879 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4880 4881 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4882 } 4883 4884 static void svm_vm_destroy(struct kvm *kvm) 4885 { 4886 avic_vm_destroy(kvm); 4887 sev_vm_destroy(kvm); 4888 } 4889 4890 static int svm_vm_init(struct kvm *kvm) 4891 { 4892 if (!pause_filter_count || !pause_filter_thresh) 4893 kvm->arch.pause_in_guest = true; 4894 4895 if (enable_apicv) { 4896 int ret = avic_vm_init(kvm); 4897 if (ret) 4898 return ret; 4899 } 4900 4901 return 0; 4902 } 4903 4904 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 4905 { 4906 struct page *page = snp_safe_alloc_page(vcpu); 4907 4908 if (!page) 4909 return NULL; 4910 4911 return page_address(page); 4912 } 4913 4914 static struct kvm_x86_ops svm_x86_ops __initdata = { 4915 .name = KBUILD_MODNAME, 4916 4917 .check_processor_compatibility = svm_check_processor_compat, 4918 4919 .hardware_unsetup = svm_hardware_unsetup, 4920 .hardware_enable = svm_hardware_enable, 4921 .hardware_disable = svm_hardware_disable, 4922 .has_emulated_msr = svm_has_emulated_msr, 4923 4924 .vcpu_create = svm_vcpu_create, 4925 .vcpu_free = svm_vcpu_free, 4926 .vcpu_reset = svm_vcpu_reset, 4927 4928 .vm_size = sizeof(struct kvm_svm), 4929 .vm_init = svm_vm_init, 4930 .vm_destroy = svm_vm_destroy, 4931 4932 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4933 .vcpu_load = svm_vcpu_load, 4934 .vcpu_put = svm_vcpu_put, 4935 .vcpu_blocking = avic_vcpu_blocking, 4936 .vcpu_unblocking = avic_vcpu_unblocking, 4937 4938 .update_exception_bitmap = svm_update_exception_bitmap, 4939 .get_msr_feature = svm_get_msr_feature, 4940 .get_msr = svm_get_msr, 4941 .set_msr = svm_set_msr, 4942 .get_segment_base = svm_get_segment_base, 4943 .get_segment = svm_get_segment, 4944 .set_segment = svm_set_segment, 4945 .get_cpl = svm_get_cpl, 4946 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4947 .is_valid_cr0 = svm_is_valid_cr0, 4948 .set_cr0 = svm_set_cr0, 4949 .post_set_cr3 = sev_post_set_cr3, 4950 .is_valid_cr4 = svm_is_valid_cr4, 4951 .set_cr4 = svm_set_cr4, 4952 .set_efer = svm_set_efer, 4953 .get_idt = svm_get_idt, 4954 .set_idt = svm_set_idt, 4955 .get_gdt = svm_get_gdt, 4956 .set_gdt = svm_set_gdt, 4957 .set_dr7 = svm_set_dr7, 4958 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4959 .cache_reg = svm_cache_reg, 4960 .get_rflags = svm_get_rflags, 4961 .set_rflags = svm_set_rflags, 4962 .get_if_flag = svm_get_if_flag, 4963 4964 .flush_tlb_all = svm_flush_tlb_all, 4965 .flush_tlb_current = svm_flush_tlb_current, 4966 .flush_tlb_gva = svm_flush_tlb_gva, 4967 .flush_tlb_guest = svm_flush_tlb_asid, 4968 4969 .vcpu_pre_run = svm_vcpu_pre_run, 4970 .vcpu_run = svm_vcpu_run, 4971 .handle_exit = svm_handle_exit, 4972 .skip_emulated_instruction = svm_skip_emulated_instruction, 4973 .update_emulated_instruction = NULL, 4974 .set_interrupt_shadow = svm_set_interrupt_shadow, 4975 .get_interrupt_shadow = svm_get_interrupt_shadow, 4976 .patch_hypercall = svm_patch_hypercall, 4977 .inject_irq = svm_inject_irq, 4978 .inject_nmi = svm_inject_nmi, 4979 .is_vnmi_pending = svm_is_vnmi_pending, 4980 .set_vnmi_pending = svm_set_vnmi_pending, 4981 .inject_exception = svm_inject_exception, 4982 .cancel_injection = svm_cancel_injection, 4983 .interrupt_allowed = svm_interrupt_allowed, 4984 .nmi_allowed = svm_nmi_allowed, 4985 .get_nmi_mask = svm_get_nmi_mask, 4986 .set_nmi_mask = svm_set_nmi_mask, 4987 .enable_nmi_window = svm_enable_nmi_window, 4988 .enable_irq_window = svm_enable_irq_window, 4989 .update_cr8_intercept = svm_update_cr8_intercept, 4990 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 4991 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4992 .apicv_post_state_restore = avic_apicv_post_state_restore, 4993 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 4994 4995 .get_exit_info = svm_get_exit_info, 4996 4997 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4998 4999 .has_wbinvd_exit = svm_has_wbinvd_exit, 5000 5001 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5002 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5003 .write_tsc_offset = svm_write_tsc_offset, 5004 .write_tsc_multiplier = svm_write_tsc_multiplier, 5005 5006 .load_mmu_pgd = svm_load_mmu_pgd, 5007 5008 .check_intercept = svm_check_intercept, 5009 .handle_exit_irqoff = svm_handle_exit_irqoff, 5010 5011 .sched_in = svm_sched_in, 5012 5013 .nested_ops = &svm_nested_ops, 5014 5015 .deliver_interrupt = svm_deliver_interrupt, 5016 .pi_update_irte = avic_pi_update_irte, 5017 .setup_mce = svm_setup_mce, 5018 5019 #ifdef CONFIG_KVM_SMM 5020 .smi_allowed = svm_smi_allowed, 5021 .enter_smm = svm_enter_smm, 5022 .leave_smm = svm_leave_smm, 5023 .enable_smi_window = svm_enable_smi_window, 5024 #endif 5025 5026 .mem_enc_ioctl = sev_mem_enc_ioctl, 5027 .mem_enc_register_region = sev_mem_enc_register_region, 5028 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5029 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5030 5031 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5032 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5033 5034 .check_emulate_instruction = svm_check_emulate_instruction, 5035 5036 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5037 5038 .msr_filter_changed = svm_msr_filter_changed, 5039 .complete_emulated_msr = svm_complete_emulated_msr, 5040 5041 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5042 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5043 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5044 }; 5045 5046 /* 5047 * The default MMIO mask is a single bit (excluding the present bit), 5048 * which could conflict with the memory encryption bit. Check for 5049 * memory encryption support and override the default MMIO mask if 5050 * memory encryption is enabled. 5051 */ 5052 static __init void svm_adjust_mmio_mask(void) 5053 { 5054 unsigned int enc_bit, mask_bit; 5055 u64 msr, mask; 5056 5057 /* If there is no memory encryption support, use existing mask */ 5058 if (cpuid_eax(0x80000000) < 0x8000001f) 5059 return; 5060 5061 /* If memory encryption is not enabled, use existing mask */ 5062 rdmsrl(MSR_AMD64_SYSCFG, msr); 5063 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5064 return; 5065 5066 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5067 mask_bit = boot_cpu_data.x86_phys_bits; 5068 5069 /* Increment the mask bit if it is the same as the encryption bit */ 5070 if (enc_bit == mask_bit) 5071 mask_bit++; 5072 5073 /* 5074 * If the mask bit location is below 52, then some bits above the 5075 * physical addressing limit will always be reserved, so use the 5076 * rsvd_bits() function to generate the mask. This mask, along with 5077 * the present bit, will be used to generate a page fault with 5078 * PFER.RSV = 1. 5079 * 5080 * If the mask bit location is 52 (or above), then clear the mask. 5081 */ 5082 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5083 5084 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5085 } 5086 5087 static __init void svm_set_cpu_caps(void) 5088 { 5089 kvm_set_cpu_caps(); 5090 5091 kvm_caps.supported_perf_cap = 0; 5092 kvm_caps.supported_xss = 0; 5093 5094 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5095 if (nested) { 5096 kvm_cpu_cap_set(X86_FEATURE_SVM); 5097 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5098 5099 /* 5100 * KVM currently flushes TLBs on *every* nested SVM transition, 5101 * and so for all intents and purposes KVM supports flushing by 5102 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5103 */ 5104 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5105 5106 if (nrips) 5107 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5108 5109 if (npt_enabled) 5110 kvm_cpu_cap_set(X86_FEATURE_NPT); 5111 5112 if (tsc_scaling) 5113 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5114 5115 if (vls) 5116 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5117 if (lbrv) 5118 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5119 5120 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5121 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5122 5123 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5124 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5125 5126 if (vgif) 5127 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5128 5129 if (vnmi) 5130 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5131 5132 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5133 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5134 } 5135 5136 /* CPUID 0x80000008 */ 5137 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5138 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5139 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5140 5141 if (enable_pmu) { 5142 /* 5143 * Enumerate support for PERFCTR_CORE if and only if KVM has 5144 * access to enough counters to virtualize "core" support, 5145 * otherwise limit vPMU support to the legacy number of counters. 5146 */ 5147 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5148 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5149 kvm_pmu_cap.num_counters_gp); 5150 else 5151 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5152 5153 if (kvm_pmu_cap.version != 2 || 5154 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5155 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5156 } 5157 5158 /* CPUID 0x8000001F (SME/SEV features) */ 5159 sev_set_cpu_caps(); 5160 } 5161 5162 static __init int svm_hardware_setup(void) 5163 { 5164 int cpu; 5165 struct page *iopm_pages; 5166 void *iopm_va; 5167 int r; 5168 unsigned int order = get_order(IOPM_SIZE); 5169 5170 /* 5171 * NX is required for shadow paging and for NPT if the NX huge pages 5172 * mitigation is enabled. 5173 */ 5174 if (!boot_cpu_has(X86_FEATURE_NX)) { 5175 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5176 return -EOPNOTSUPP; 5177 } 5178 kvm_enable_efer_bits(EFER_NX); 5179 5180 iopm_pages = alloc_pages(GFP_KERNEL, order); 5181 5182 if (!iopm_pages) 5183 return -ENOMEM; 5184 5185 iopm_va = page_address(iopm_pages); 5186 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5187 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5188 5189 init_msrpm_offsets(); 5190 5191 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5192 XFEATURE_MASK_BNDCSR); 5193 5194 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5195 kvm_enable_efer_bits(EFER_FFXSR); 5196 5197 if (tsc_scaling) { 5198 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5199 tsc_scaling = false; 5200 } else { 5201 pr_info("TSC scaling supported\n"); 5202 kvm_caps.has_tsc_control = true; 5203 } 5204 } 5205 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5206 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5207 5208 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5209 5210 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5211 kvm_enable_efer_bits(EFER_AUTOIBRS); 5212 5213 /* Check for pause filtering support */ 5214 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5215 pause_filter_count = 0; 5216 pause_filter_thresh = 0; 5217 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5218 pause_filter_thresh = 0; 5219 } 5220 5221 if (nested) { 5222 pr_info("Nested Virtualization enabled\n"); 5223 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5224 } 5225 5226 /* 5227 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5228 * NPT isn't supported if the host is using 2-level paging since host 5229 * CR4 is unchanged on VMRUN. 5230 */ 5231 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5232 npt_enabled = false; 5233 5234 if (!boot_cpu_has(X86_FEATURE_NPT)) 5235 npt_enabled = false; 5236 5237 /* Force VM NPT level equal to the host's paging level */ 5238 kvm_configure_mmu(npt_enabled, get_npt_level(), 5239 get_npt_level(), PG_LEVEL_1G); 5240 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5241 5242 /* Setup shadow_me_value and shadow_me_mask */ 5243 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5244 5245 svm_adjust_mmio_mask(); 5246 5247 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5248 5249 /* 5250 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5251 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5252 */ 5253 sev_hardware_setup(); 5254 5255 svm_hv_hardware_setup(); 5256 5257 for_each_possible_cpu(cpu) { 5258 r = svm_cpu_init(cpu); 5259 if (r) 5260 goto err; 5261 } 5262 5263 enable_apicv = avic = avic && avic_hardware_setup(); 5264 5265 if (!enable_apicv) { 5266 svm_x86_ops.vcpu_blocking = NULL; 5267 svm_x86_ops.vcpu_unblocking = NULL; 5268 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5269 } else if (!x2avic_enabled) { 5270 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5271 } 5272 5273 if (vls) { 5274 if (!npt_enabled || 5275 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5276 !IS_ENABLED(CONFIG_X86_64)) { 5277 vls = false; 5278 } else { 5279 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5280 } 5281 } 5282 5283 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5284 svm_gp_erratum_intercept = false; 5285 5286 if (vgif) { 5287 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5288 vgif = false; 5289 else 5290 pr_info("Virtual GIF supported\n"); 5291 } 5292 5293 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5294 if (vnmi) 5295 pr_info("Virtual NMI enabled\n"); 5296 5297 if (!vnmi) { 5298 svm_x86_ops.is_vnmi_pending = NULL; 5299 svm_x86_ops.set_vnmi_pending = NULL; 5300 } 5301 5302 5303 if (lbrv) { 5304 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5305 lbrv = false; 5306 else 5307 pr_info("LBR virtualization supported\n"); 5308 } 5309 5310 if (!enable_pmu) 5311 pr_info("PMU virtualization is disabled\n"); 5312 5313 svm_set_cpu_caps(); 5314 5315 /* 5316 * It seems that on AMD processors PTE's accessed bit is 5317 * being set by the CPU hardware before the NPF vmexit. 5318 * This is not expected behaviour and our tests fail because 5319 * of it. 5320 * A workaround here is to disable support for 5321 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5322 * In this case userspace can know if there is support using 5323 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5324 * it 5325 * If future AMD CPU models change the behaviour described above, 5326 * this variable can be changed accordingly 5327 */ 5328 allow_smaller_maxphyaddr = !npt_enabled; 5329 5330 return 0; 5331 5332 err: 5333 svm_hardware_unsetup(); 5334 return r; 5335 } 5336 5337 5338 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5339 .hardware_setup = svm_hardware_setup, 5340 5341 .runtime_ops = &svm_x86_ops, 5342 .pmu_ops = &amd_pmu_ops, 5343 }; 5344 5345 static void __svm_exit(void) 5346 { 5347 kvm_x86_vendor_exit(); 5348 5349 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5350 } 5351 5352 static int __init svm_init(void) 5353 { 5354 int r; 5355 5356 __unused_size_checks(); 5357 5358 if (!kvm_is_svm_supported()) 5359 return -EOPNOTSUPP; 5360 5361 r = kvm_x86_vendor_init(&svm_init_ops); 5362 if (r) 5363 return r; 5364 5365 cpu_emergency_register_virt_callback(svm_emergency_disable); 5366 5367 /* 5368 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5369 * exposed to userspace! 5370 */ 5371 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5372 THIS_MODULE); 5373 if (r) 5374 goto err_kvm_init; 5375 5376 return 0; 5377 5378 err_kvm_init: 5379 __svm_exit(); 5380 return r; 5381 } 5382 5383 static void __exit svm_exit(void) 5384 { 5385 kvm_exit(); 5386 __svm_exit(); 5387 } 5388 5389 module_init(svm_init) 5390 module_exit(svm_exit) 5391