1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 #include <linux/string_choices.h> 32 #include <linux/mutex.h> 33 34 #include <asm/apic.h> 35 #include <asm/msr.h> 36 #include <asm/perf_event.h> 37 #include <asm/tlbflush.h> 38 #include <asm/desc.h> 39 #include <asm/debugreg.h> 40 #include <asm/kvm_para.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/cpu_device_id.h> 44 #include <asm/traps.h> 45 #include <asm/reboot.h> 46 #include <asm/fpu/api.h> 47 48 #include <trace/events/ipi.h> 49 50 #include "trace.h" 51 52 #include "svm.h" 53 #include "svm_ops.h" 54 55 #include "kvm_onhyperv.h" 56 #include "svm_onhyperv.h" 57 58 MODULE_AUTHOR("Qumranet"); 59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 60 MODULE_LICENSE("GPL"); 61 62 #ifdef MODULE 63 static const struct x86_cpu_id svm_cpu_id[] = { 64 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 65 {} 66 }; 67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 68 #endif 69 70 #define SEG_TYPE_LDT 2 71 #define SEG_TYPE_BUSY_TSS16 3 72 73 static bool erratum_383_found __read_mostly; 74 75 /* 76 * Set osvw_len to higher value when updated Revision Guides 77 * are published and we know what the new status bits are 78 */ 79 static uint64_t osvw_len = 4, osvw_status; 80 81 static DEFINE_PER_CPU(u64, current_tsc_ratio); 82 83 /* 84 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 85 * pause_filter_count: On processors that support Pause filtering(indicated 86 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 87 * count value. On VMRUN this value is loaded into an internal counter. 88 * Each time a pause instruction is executed, this counter is decremented 89 * until it reaches zero at which time a #VMEXIT is generated if pause 90 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 91 * Intercept Filtering for more details. 92 * This also indicate if ple logic enabled. 93 * 94 * pause_filter_thresh: In addition, some processor families support advanced 95 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 96 * the amount of time a guest is allowed to execute in a pause loop. 97 * In this mode, a 16-bit pause filter threshold field is added in the 98 * VMCB. The threshold value is a cycle count that is used to reset the 99 * pause counter. As with simple pause filtering, VMRUN loads the pause 100 * count value from VMCB into an internal counter. Then, on each pause 101 * instruction the hardware checks the elapsed number of cycles since 102 * the most recent pause instruction against the pause filter threshold. 103 * If the elapsed cycle count is greater than the pause filter threshold, 104 * then the internal pause count is reloaded from the VMCB and execution 105 * continues. If the elapsed cycle count is less than the pause filter 106 * threshold, then the internal pause count is decremented. If the count 107 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 108 * triggered. If advanced pause filtering is supported and pause filter 109 * threshold field is set to zero, the filter will operate in the simpler, 110 * count only mode. 111 */ 112 113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 114 module_param(pause_filter_thresh, ushort, 0444); 115 116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 117 module_param(pause_filter_count, ushort, 0444); 118 119 /* Default doubles per-vcpu window every exit. */ 120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 121 module_param(pause_filter_count_grow, ushort, 0444); 122 123 /* Default resets per-vcpu window every exit to pause_filter_count. */ 124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 125 module_param(pause_filter_count_shrink, ushort, 0444); 126 127 /* Default is to compute the maximum so we can never overflow. */ 128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 129 module_param(pause_filter_count_max, ushort, 0444); 130 131 /* 132 * Use nested page tables by default. Note, NPT may get forced off by 133 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 134 */ 135 bool npt_enabled = true; 136 module_param_named(npt, npt_enabled, bool, 0444); 137 138 /* allow nested virtualization in KVM/SVM */ 139 static int nested = true; 140 module_param(nested, int, 0444); 141 142 /* enable/disable Next RIP Save */ 143 int nrips = true; 144 module_param(nrips, int, 0444); 145 146 /* enable/disable Virtual VMLOAD VMSAVE */ 147 static int vls = true; 148 module_param(vls, int, 0444); 149 150 /* enable/disable Virtual GIF */ 151 int vgif = true; 152 module_param(vgif, int, 0444); 153 154 /* enable/disable LBR virtualization */ 155 int lbrv = true; 156 module_param(lbrv, int, 0444); 157 158 static int tsc_scaling = true; 159 module_param(tsc_scaling, int, 0444); 160 161 module_param(enable_device_posted_irqs, bool, 0444); 162 163 bool __read_mostly dump_invalid_vmcb; 164 module_param(dump_invalid_vmcb, bool, 0644); 165 166 167 bool intercept_smi = true; 168 module_param(intercept_smi, bool, 0444); 169 170 bool vnmi = true; 171 module_param(vnmi, bool, 0444); 172 173 static bool svm_gp_erratum_intercept = true; 174 175 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 176 177 static unsigned long iopm_base; 178 179 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 180 181 static DEFINE_MUTEX(vmcb_dump_mutex); 182 183 /* 184 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 185 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 186 * 187 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 188 * defer the restoration of TSC_AUX until the CPU returns to userspace. 189 */ 190 int tsc_aux_uret_slot __ro_after_init = -1; 191 192 static int get_npt_level(void) 193 { 194 #ifdef CONFIG_X86_64 195 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 196 #else 197 return PT32E_ROOT_LEVEL; 198 #endif 199 } 200 201 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 202 { 203 struct vcpu_svm *svm = to_svm(vcpu); 204 u64 old_efer = vcpu->arch.efer; 205 vcpu->arch.efer = efer; 206 207 if (!npt_enabled) { 208 /* Shadow paging assumes NX to be available. */ 209 efer |= EFER_NX; 210 211 if (!(efer & EFER_LMA)) 212 efer &= ~EFER_LME; 213 } 214 215 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 216 if (!(efer & EFER_SVME)) { 217 svm_leave_nested(vcpu); 218 svm_set_gif(svm, true); 219 /* #GP intercept is still needed for vmware backdoor */ 220 if (!enable_vmware_backdoor) 221 clr_exception_intercept(svm, GP_VECTOR); 222 223 /* 224 * Free the nested guest state, unless we are in SMM. 225 * In this case we will return to the nested guest 226 * as soon as we leave SMM. 227 */ 228 if (!is_smm(vcpu)) 229 svm_free_nested(svm); 230 231 } else { 232 int ret = svm_allocate_nested(svm); 233 234 if (ret) { 235 vcpu->arch.efer = old_efer; 236 return ret; 237 } 238 239 /* 240 * Never intercept #GP for SEV guests, KVM can't 241 * decrypt guest memory to workaround the erratum. 242 */ 243 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 244 set_exception_intercept(svm, GP_VECTOR); 245 } 246 } 247 248 svm->vmcb->save.efer = efer | EFER_SVME; 249 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 250 return 0; 251 } 252 253 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 254 { 255 struct vcpu_svm *svm = to_svm(vcpu); 256 u32 ret = 0; 257 258 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 259 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 260 return ret; 261 } 262 263 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 264 { 265 struct vcpu_svm *svm = to_svm(vcpu); 266 267 if (mask == 0) 268 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 269 else 270 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 271 272 } 273 274 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 275 bool commit_side_effects) 276 { 277 struct vcpu_svm *svm = to_svm(vcpu); 278 unsigned long old_rflags; 279 280 /* 281 * SEV-ES does not expose the next RIP. The RIP update is controlled by 282 * the type of exit and the #VC handler in the guest. 283 */ 284 if (sev_es_guest(vcpu->kvm)) 285 goto done; 286 287 if (nrips && svm->vmcb->control.next_rip != 0) { 288 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 289 svm->next_rip = svm->vmcb->control.next_rip; 290 } 291 292 if (!svm->next_rip) { 293 if (unlikely(!commit_side_effects)) 294 old_rflags = svm->vmcb->save.rflags; 295 296 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 297 return 0; 298 299 if (unlikely(!commit_side_effects)) 300 svm->vmcb->save.rflags = old_rflags; 301 } else { 302 kvm_rip_write(vcpu, svm->next_rip); 303 } 304 305 done: 306 if (likely(commit_side_effects)) 307 svm_set_interrupt_shadow(vcpu, 0); 308 309 return 1; 310 } 311 312 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 313 { 314 return __svm_skip_emulated_instruction(vcpu, true); 315 } 316 317 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 318 { 319 unsigned long rip, old_rip = kvm_rip_read(vcpu); 320 struct vcpu_svm *svm = to_svm(vcpu); 321 322 /* 323 * Due to architectural shortcomings, the CPU doesn't always provide 324 * NextRIP, e.g. if KVM intercepted an exception that occurred while 325 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 326 * the instruction even if NextRIP is supported to acquire the next 327 * RIP so that it can be shoved into the NextRIP field, otherwise 328 * hardware will fail to advance guest RIP during event injection. 329 * Drop the exception/interrupt if emulation fails and effectively 330 * retry the instruction, it's the least awful option. If NRIPS is 331 * in use, the skip must not commit any side effects such as clearing 332 * the interrupt shadow or RFLAGS.RF. 333 */ 334 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 335 return -EIO; 336 337 rip = kvm_rip_read(vcpu); 338 339 /* 340 * Save the injection information, even when using next_rip, as the 341 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 342 * doesn't complete due to a VM-Exit occurring while the CPU is 343 * vectoring the event. Decoding the instruction isn't guaranteed to 344 * work as there may be no backing instruction, e.g. if the event is 345 * being injected by L1 for L2, or if the guest is patching INT3 into 346 * a different instruction. 347 */ 348 svm->soft_int_injected = true; 349 svm->soft_int_csbase = svm->vmcb->save.cs.base; 350 svm->soft_int_old_rip = old_rip; 351 svm->soft_int_next_rip = rip; 352 353 if (nrips) 354 kvm_rip_write(vcpu, old_rip); 355 356 if (static_cpu_has(X86_FEATURE_NRIPS)) 357 svm->vmcb->control.next_rip = rip; 358 359 return 0; 360 } 361 362 static void svm_inject_exception(struct kvm_vcpu *vcpu) 363 { 364 struct kvm_queued_exception *ex = &vcpu->arch.exception; 365 struct vcpu_svm *svm = to_svm(vcpu); 366 367 kvm_deliver_exception_payload(vcpu, ex); 368 369 if (kvm_exception_is_soft(ex->vector) && 370 svm_update_soft_interrupt_rip(vcpu)) 371 return; 372 373 svm->vmcb->control.event_inj = ex->vector 374 | SVM_EVTINJ_VALID 375 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 376 | SVM_EVTINJ_TYPE_EXEPT; 377 svm->vmcb->control.event_inj_err = ex->error_code; 378 } 379 380 static void svm_init_erratum_383(void) 381 { 382 u64 val; 383 384 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 385 return; 386 387 /* Use _safe variants to not break nested virtualization */ 388 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val)) 389 return; 390 391 val |= (1ULL << 47); 392 393 native_write_msr_safe(MSR_AMD64_DC_CFG, val); 394 395 erratum_383_found = true; 396 } 397 398 static void svm_init_osvw(struct kvm_vcpu *vcpu) 399 { 400 /* 401 * Guests should see errata 400 and 415 as fixed (assuming that 402 * HLT and IO instructions are intercepted). 403 */ 404 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 405 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 406 407 /* 408 * By increasing VCPU's osvw.length to 3 we are telling the guest that 409 * all osvw.status bits inside that length, including bit 0 (which is 410 * reserved for erratum 298), are valid. However, if host processor's 411 * osvw_len is 0 then osvw_status[0] carries no information. We need to 412 * be conservative here and therefore we tell the guest that erratum 298 413 * is present (because we really don't know). 414 */ 415 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 416 vcpu->arch.osvw.status |= 1; 417 } 418 419 static bool __kvm_is_svm_supported(void) 420 { 421 int cpu = smp_processor_id(); 422 struct cpuinfo_x86 *c = &cpu_data(cpu); 423 424 if (c->x86_vendor != X86_VENDOR_AMD && 425 c->x86_vendor != X86_VENDOR_HYGON) { 426 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 427 return false; 428 } 429 430 if (!cpu_has(c, X86_FEATURE_SVM)) { 431 pr_err("SVM not supported by CPU %d\n", cpu); 432 return false; 433 } 434 435 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 436 pr_info("KVM is unsupported when running as an SEV guest\n"); 437 return false; 438 } 439 440 return true; 441 } 442 443 static bool kvm_is_svm_supported(void) 444 { 445 bool supported; 446 447 migrate_disable(); 448 supported = __kvm_is_svm_supported(); 449 migrate_enable(); 450 451 return supported; 452 } 453 454 static int svm_check_processor_compat(void) 455 { 456 if (!__kvm_is_svm_supported()) 457 return -EIO; 458 459 return 0; 460 } 461 462 static void __svm_write_tsc_multiplier(u64 multiplier) 463 { 464 if (multiplier == __this_cpu_read(current_tsc_ratio)) 465 return; 466 467 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier); 468 __this_cpu_write(current_tsc_ratio, multiplier); 469 } 470 471 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 472 { 473 return &sd->save_area->host_sev_es_save; 474 } 475 476 static inline void kvm_cpu_svm_disable(void) 477 { 478 uint64_t efer; 479 480 wrmsrq(MSR_VM_HSAVE_PA, 0); 481 rdmsrq(MSR_EFER, efer); 482 if (efer & EFER_SVME) { 483 /* 484 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 485 * NMI aren't blocked. 486 */ 487 stgi(); 488 wrmsrq(MSR_EFER, efer & ~EFER_SVME); 489 } 490 } 491 492 static void svm_emergency_disable_virtualization_cpu(void) 493 { 494 kvm_rebooting = true; 495 496 kvm_cpu_svm_disable(); 497 } 498 499 static void svm_disable_virtualization_cpu(void) 500 { 501 /* Make sure we clean up behind us */ 502 if (tsc_scaling) 503 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 504 505 kvm_cpu_svm_disable(); 506 507 amd_pmu_disable_virt(); 508 } 509 510 static int svm_enable_virtualization_cpu(void) 511 { 512 513 struct svm_cpu_data *sd; 514 uint64_t efer; 515 int me = raw_smp_processor_id(); 516 517 rdmsrq(MSR_EFER, efer); 518 if (efer & EFER_SVME) 519 return -EBUSY; 520 521 sd = per_cpu_ptr(&svm_data, me); 522 sd->asid_generation = 1; 523 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 524 sd->next_asid = sd->max_asid + 1; 525 sd->min_asid = max_sev_asid + 1; 526 527 wrmsrq(MSR_EFER, efer | EFER_SVME); 528 529 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa); 530 531 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 532 /* 533 * Set the default value, even if we don't use TSC scaling 534 * to avoid having stale value in the msr 535 */ 536 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 537 } 538 539 540 /* 541 * Get OSVW bits. 542 * 543 * Note that it is possible to have a system with mixed processor 544 * revisions and therefore different OSVW bits. If bits are not the same 545 * on different processors then choose the worst case (i.e. if erratum 546 * is present on one processor and not on another then assume that the 547 * erratum is present everywhere). 548 */ 549 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 550 u64 len, status = 0; 551 int err; 552 553 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len); 554 if (!err) 555 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status); 556 557 if (err) 558 osvw_status = osvw_len = 0; 559 else { 560 if (len < osvw_len) 561 osvw_len = len; 562 osvw_status |= status; 563 osvw_status &= (1ULL << osvw_len) - 1; 564 } 565 } else 566 osvw_status = osvw_len = 0; 567 568 svm_init_erratum_383(); 569 570 amd_pmu_enable_virt(); 571 572 return 0; 573 } 574 575 static void svm_cpu_uninit(int cpu) 576 { 577 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 578 579 if (!sd->save_area) 580 return; 581 582 kfree(sd->sev_vmcbs); 583 __free_page(__sme_pa_to_page(sd->save_area_pa)); 584 sd->save_area_pa = 0; 585 sd->save_area = NULL; 586 } 587 588 static int svm_cpu_init(int cpu) 589 { 590 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 591 struct page *save_area_page; 592 int ret = -ENOMEM; 593 594 memset(sd, 0, sizeof(struct svm_cpu_data)); 595 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 596 if (!save_area_page) 597 return ret; 598 599 ret = sev_cpu_init(sd); 600 if (ret) 601 goto free_save_area; 602 603 sd->save_area = page_address(save_area_page); 604 sd->save_area_pa = __sme_page_pa(save_area_page); 605 return 0; 606 607 free_save_area: 608 __free_page(save_area_page); 609 return ret; 610 611 } 612 613 static void set_dr_intercepts(struct vcpu_svm *svm) 614 { 615 struct vmcb *vmcb = svm->vmcb01.ptr; 616 617 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 618 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 619 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 620 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 621 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 622 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 623 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 624 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 625 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 626 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 627 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 628 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 629 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 630 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 631 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 632 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 633 634 recalc_intercepts(svm); 635 } 636 637 static void clr_dr_intercepts(struct vcpu_svm *svm) 638 { 639 struct vmcb *vmcb = svm->vmcb01.ptr; 640 641 vmcb->control.intercepts[INTERCEPT_DR] = 0; 642 643 recalc_intercepts(svm); 644 } 645 646 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 647 { 648 /* 649 * For non-nested case: 650 * If the L01 MSR bitmap does not intercept the MSR, then we need to 651 * save it. 652 * 653 * For nested case: 654 * If the L02 MSR bitmap does not intercept the MSR, then we need to 655 * save it. 656 */ 657 void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm : 658 to_svm(vcpu)->msrpm; 659 660 return svm_test_msr_bitmap_write(msrpm, msr); 661 } 662 663 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set) 664 { 665 struct vcpu_svm *svm = to_svm(vcpu); 666 void *msrpm = svm->msrpm; 667 668 /* Don't disable interception for MSRs userspace wants to handle. */ 669 if (type & MSR_TYPE_R) { 670 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 671 svm_clear_msr_bitmap_read(msrpm, msr); 672 else 673 svm_set_msr_bitmap_read(msrpm, msr); 674 } 675 676 if (type & MSR_TYPE_W) { 677 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 678 svm_clear_msr_bitmap_write(msrpm, msr); 679 else 680 svm_set_msr_bitmap_write(msrpm, msr); 681 } 682 683 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 684 svm->nested.force_msr_bitmap_recalc = true; 685 } 686 687 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask) 688 { 689 unsigned int order = get_order(size); 690 struct page *pages = alloc_pages(gfp_mask, order); 691 void *pm; 692 693 if (!pages) 694 return NULL; 695 696 /* 697 * Set all bits in the permissions map so that all MSR and I/O accesses 698 * are intercepted by default. 699 */ 700 pm = page_address(pages); 701 memset(pm, 0xff, PAGE_SIZE * (1 << order)); 702 703 return pm; 704 } 705 706 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu) 707 { 708 bool intercept = !(to_svm(vcpu)->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK); 709 710 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept); 711 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept); 712 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept); 713 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept); 714 715 if (sev_es_guest(vcpu->kvm)) 716 svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept); 717 } 718 719 void svm_vcpu_free_msrpm(void *msrpm) 720 { 721 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 722 } 723 724 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu) 725 { 726 struct vcpu_svm *svm = to_svm(vcpu); 727 728 svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW); 729 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 730 731 #ifdef CONFIG_X86_64 732 svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 733 svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 734 svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 735 svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW); 736 svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW); 737 svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW); 738 #endif 739 740 if (lbrv) 741 svm_recalc_lbr_msr_intercepts(vcpu); 742 743 if (cpu_feature_enabled(X86_FEATURE_IBPB)) 744 svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 745 !guest_has_pred_cmd_msr(vcpu)); 746 747 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D)) 748 svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 749 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 750 751 /* 752 * Disable interception of SPEC_CTRL if KVM doesn't need to manually 753 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if 754 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively 755 * using SPEC_CTRL. 756 */ 757 if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL)) 758 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, 759 !guest_has_spec_ctrl_msr(vcpu)); 760 else 761 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, 762 !svm->spec_ctrl); 763 764 /* 765 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU, 766 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits. 767 */ 768 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW, 769 guest_cpuid_is_intel_compatible(vcpu)); 770 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW, 771 guest_cpuid_is_intel_compatible(vcpu)); 772 773 if (kvm_aperfmperf_in_guest(vcpu->kvm)) { 774 svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R); 775 svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R); 776 } 777 778 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) { 779 bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK); 780 781 svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled); 782 svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled); 783 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled); 784 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled); 785 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled); 786 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled); 787 } 788 789 if (sev_es_guest(vcpu->kvm)) 790 sev_es_recalc_msr_intercepts(vcpu); 791 792 /* 793 * x2APIC intercepts are modified on-demand and cannot be filtered by 794 * userspace. 795 */ 796 } 797 798 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 799 { 800 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 801 to_vmcb->save.br_from = from_vmcb->save.br_from; 802 to_vmcb->save.br_to = from_vmcb->save.br_to; 803 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 804 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 805 806 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 807 } 808 809 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 810 { 811 struct vcpu_svm *svm = to_svm(vcpu); 812 813 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 814 svm_recalc_lbr_msr_intercepts(vcpu); 815 816 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 817 if (is_guest_mode(vcpu)) 818 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 819 } 820 821 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 822 { 823 struct vcpu_svm *svm = to_svm(vcpu); 824 825 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 826 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 827 svm_recalc_lbr_msr_intercepts(vcpu); 828 829 /* 830 * Move the LBR msrs back to the vmcb01 to avoid copying them 831 * on nested guest entries. 832 */ 833 if (is_guest_mode(vcpu)) 834 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 835 } 836 837 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 838 { 839 /* 840 * If LBR virtualization is disabled, the LBR MSRs are always kept in 841 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 842 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 843 */ 844 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 845 svm->vmcb01.ptr; 846 } 847 848 void svm_update_lbrv(struct kvm_vcpu *vcpu) 849 { 850 struct vcpu_svm *svm = to_svm(vcpu); 851 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 852 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 853 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 854 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 855 856 if (enable_lbrv == current_enable_lbrv) 857 return; 858 859 if (enable_lbrv) 860 svm_enable_lbrv(vcpu); 861 else 862 svm_disable_lbrv(vcpu); 863 } 864 865 void disable_nmi_singlestep(struct vcpu_svm *svm) 866 { 867 svm->nmi_singlestep = false; 868 869 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 870 /* Clear our flags if they were not set by the guest */ 871 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 872 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 873 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 874 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 875 } 876 } 877 878 static void grow_ple_window(struct kvm_vcpu *vcpu) 879 { 880 struct vcpu_svm *svm = to_svm(vcpu); 881 struct vmcb_control_area *control = &svm->vmcb->control; 882 int old = control->pause_filter_count; 883 884 if (kvm_pause_in_guest(vcpu->kvm)) 885 return; 886 887 control->pause_filter_count = __grow_ple_window(old, 888 pause_filter_count, 889 pause_filter_count_grow, 890 pause_filter_count_max); 891 892 if (control->pause_filter_count != old) { 893 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 894 trace_kvm_ple_window_update(vcpu->vcpu_id, 895 control->pause_filter_count, old); 896 } 897 } 898 899 static void shrink_ple_window(struct kvm_vcpu *vcpu) 900 { 901 struct vcpu_svm *svm = to_svm(vcpu); 902 struct vmcb_control_area *control = &svm->vmcb->control; 903 int old = control->pause_filter_count; 904 905 if (kvm_pause_in_guest(vcpu->kvm)) 906 return; 907 908 control->pause_filter_count = 909 __shrink_ple_window(old, 910 pause_filter_count, 911 pause_filter_count_shrink, 912 pause_filter_count); 913 if (control->pause_filter_count != old) { 914 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 915 trace_kvm_ple_window_update(vcpu->vcpu_id, 916 control->pause_filter_count, old); 917 } 918 } 919 920 static void svm_hardware_unsetup(void) 921 { 922 int cpu; 923 924 sev_hardware_unsetup(); 925 926 for_each_possible_cpu(cpu) 927 svm_cpu_uninit(cpu); 928 929 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); 930 iopm_base = 0; 931 } 932 933 static void init_seg(struct vmcb_seg *seg) 934 { 935 seg->selector = 0; 936 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 937 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 938 seg->limit = 0xffff; 939 seg->base = 0; 940 } 941 942 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 943 { 944 seg->selector = 0; 945 seg->attrib = SVM_SELECTOR_P_MASK | type; 946 seg->limit = 0xffff; 947 seg->base = 0; 948 } 949 950 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 951 { 952 struct vcpu_svm *svm = to_svm(vcpu); 953 954 return svm->nested.ctl.tsc_offset; 955 } 956 957 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 958 { 959 struct vcpu_svm *svm = to_svm(vcpu); 960 961 return svm->tsc_ratio_msr; 962 } 963 964 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 965 { 966 struct vcpu_svm *svm = to_svm(vcpu); 967 968 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 969 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 970 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 971 } 972 973 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 974 { 975 preempt_disable(); 976 if (to_svm(vcpu)->guest_state_loaded) 977 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 978 preempt_enable(); 979 } 980 981 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 982 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu) 983 { 984 struct vcpu_svm *svm = to_svm(vcpu); 985 986 /* 987 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 988 * roots, or if INVPCID is disabled in the guest to inject #UD. 989 */ 990 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 991 if (!npt_enabled || 992 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID)) 993 svm_set_intercept(svm, INTERCEPT_INVPCID); 994 else 995 svm_clr_intercept(svm, INTERCEPT_INVPCID); 996 } 997 998 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 999 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP)) 1000 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1001 else 1002 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1003 } 1004 1005 if (guest_cpuid_is_intel_compatible(vcpu)) { 1006 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1007 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1008 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1009 } else { 1010 /* 1011 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1012 * in VMCB and clear intercepts to avoid #VMEXIT. 1013 */ 1014 if (vls) { 1015 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1016 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1017 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1018 } 1019 } 1020 } 1021 1022 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu) 1023 { 1024 svm_recalc_instruction_intercepts(vcpu); 1025 svm_recalc_msr_intercepts(vcpu); 1026 } 1027 1028 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event) 1029 { 1030 struct vcpu_svm *svm = to_svm(vcpu); 1031 struct vmcb *vmcb = svm->vmcb01.ptr; 1032 struct vmcb_control_area *control = &vmcb->control; 1033 struct vmcb_save_area *save = &vmcb->save; 1034 1035 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1036 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1037 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1038 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1039 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1040 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1041 if (!kvm_vcpu_apicv_active(vcpu)) 1042 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1043 1044 set_dr_intercepts(svm); 1045 1046 set_exception_intercept(svm, PF_VECTOR); 1047 set_exception_intercept(svm, UD_VECTOR); 1048 set_exception_intercept(svm, MC_VECTOR); 1049 set_exception_intercept(svm, AC_VECTOR); 1050 set_exception_intercept(svm, DB_VECTOR); 1051 /* 1052 * Guest access to VMware backdoor ports could legitimately 1053 * trigger #GP because of TSS I/O permission bitmap. 1054 * We intercept those #GP and allow access to them anyway 1055 * as VMware does. 1056 */ 1057 if (enable_vmware_backdoor) 1058 set_exception_intercept(svm, GP_VECTOR); 1059 1060 svm_set_intercept(svm, INTERCEPT_INTR); 1061 svm_set_intercept(svm, INTERCEPT_NMI); 1062 1063 if (intercept_smi) 1064 svm_set_intercept(svm, INTERCEPT_SMI); 1065 1066 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1067 svm_set_intercept(svm, INTERCEPT_RDPMC); 1068 svm_set_intercept(svm, INTERCEPT_CPUID); 1069 svm_set_intercept(svm, INTERCEPT_INVD); 1070 svm_set_intercept(svm, INTERCEPT_INVLPG); 1071 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1072 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1073 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1074 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1075 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1076 svm_set_intercept(svm, INTERCEPT_VMRUN); 1077 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1078 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1079 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1080 svm_set_intercept(svm, INTERCEPT_STGI); 1081 svm_set_intercept(svm, INTERCEPT_CLGI); 1082 svm_set_intercept(svm, INTERCEPT_SKINIT); 1083 svm_set_intercept(svm, INTERCEPT_WBINVD); 1084 svm_set_intercept(svm, INTERCEPT_XSETBV); 1085 svm_set_intercept(svm, INTERCEPT_RDPRU); 1086 svm_set_intercept(svm, INTERCEPT_RSM); 1087 1088 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1089 svm_set_intercept(svm, INTERCEPT_MONITOR); 1090 svm_set_intercept(svm, INTERCEPT_MWAIT); 1091 } 1092 1093 if (!kvm_hlt_in_guest(vcpu->kvm)) { 1094 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT)) 1095 svm_set_intercept(svm, INTERCEPT_IDLE_HLT); 1096 else 1097 svm_set_intercept(svm, INTERCEPT_HLT); 1098 } 1099 1100 control->iopm_base_pa = iopm_base; 1101 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1102 control->int_ctl = V_INTR_MASKING_MASK; 1103 1104 init_seg(&save->es); 1105 init_seg(&save->ss); 1106 init_seg(&save->ds); 1107 init_seg(&save->fs); 1108 init_seg(&save->gs); 1109 1110 save->cs.selector = 0xf000; 1111 save->cs.base = 0xffff0000; 1112 /* Executable/Readable Code Segment */ 1113 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1114 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1115 save->cs.limit = 0xffff; 1116 1117 save->gdtr.base = 0; 1118 save->gdtr.limit = 0xffff; 1119 save->idtr.base = 0; 1120 save->idtr.limit = 0xffff; 1121 1122 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1123 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1124 1125 if (npt_enabled) { 1126 /* Setup VMCB for Nested Paging */ 1127 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1128 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1129 clr_exception_intercept(svm, PF_VECTOR); 1130 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1131 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1132 save->g_pat = vcpu->arch.pat; 1133 save->cr3 = 0; 1134 } 1135 svm->current_vmcb->asid_generation = 0; 1136 svm->asid = 0; 1137 1138 svm->nested.vmcb12_gpa = INVALID_GPA; 1139 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1140 1141 if (!kvm_pause_in_guest(vcpu->kvm)) { 1142 control->pause_filter_count = pause_filter_count; 1143 if (pause_filter_thresh) 1144 control->pause_filter_thresh = pause_filter_thresh; 1145 svm_set_intercept(svm, INTERCEPT_PAUSE); 1146 } else { 1147 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1148 } 1149 1150 if (kvm_vcpu_apicv_active(vcpu)) 1151 avic_init_vmcb(svm, vmcb); 1152 1153 if (vnmi) 1154 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1155 1156 if (vgif) { 1157 svm_clr_intercept(svm, INTERCEPT_STGI); 1158 svm_clr_intercept(svm, INTERCEPT_CLGI); 1159 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1160 } 1161 1162 if (vcpu->kvm->arch.bus_lock_detection_enabled) 1163 svm_set_intercept(svm, INTERCEPT_BUSLOCK); 1164 1165 if (sev_guest(vcpu->kvm)) 1166 sev_init_vmcb(svm, init_event); 1167 1168 svm_hv_init_vmcb(vmcb); 1169 1170 kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu); 1171 1172 vmcb_mark_all_dirty(vmcb); 1173 1174 enable_gif(svm); 1175 } 1176 1177 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1178 { 1179 struct vcpu_svm *svm = to_svm(vcpu); 1180 1181 svm_init_osvw(vcpu); 1182 1183 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 1184 vcpu->arch.microcode_version = 0x01000065; 1185 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1186 1187 svm->nmi_masked = false; 1188 svm->awaiting_iret_completion = false; 1189 } 1190 1191 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1192 { 1193 struct vcpu_svm *svm = to_svm(vcpu); 1194 1195 svm->spec_ctrl = 0; 1196 svm->virt_spec_ctrl = 0; 1197 1198 init_vmcb(vcpu, init_event); 1199 1200 if (!init_event) 1201 __svm_vcpu_reset(vcpu); 1202 } 1203 1204 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1205 { 1206 svm->current_vmcb = target_vmcb; 1207 svm->vmcb = target_vmcb->ptr; 1208 } 1209 1210 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1211 { 1212 struct vcpu_svm *svm; 1213 struct page *vmcb01_page; 1214 int err; 1215 1216 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1217 svm = to_svm(vcpu); 1218 1219 err = -ENOMEM; 1220 vmcb01_page = snp_safe_alloc_page(); 1221 if (!vmcb01_page) 1222 goto out; 1223 1224 err = sev_vcpu_create(vcpu); 1225 if (err) 1226 goto error_free_vmcb_page; 1227 1228 err = avic_init_vcpu(svm); 1229 if (err) 1230 goto error_free_sev; 1231 1232 svm->msrpm = svm_vcpu_alloc_msrpm(); 1233 if (!svm->msrpm) { 1234 err = -ENOMEM; 1235 goto error_free_sev; 1236 } 1237 1238 svm->x2avic_msrs_intercepted = true; 1239 1240 svm->vmcb01.ptr = page_address(vmcb01_page); 1241 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1242 svm_switch_vmcb(svm, &svm->vmcb01); 1243 1244 svm->guest_state_loaded = false; 1245 1246 return 0; 1247 1248 error_free_sev: 1249 sev_free_vcpu(vcpu); 1250 error_free_vmcb_page: 1251 __free_page(vmcb01_page); 1252 out: 1253 return err; 1254 } 1255 1256 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1257 { 1258 struct vcpu_svm *svm = to_svm(vcpu); 1259 1260 WARN_ON_ONCE(!list_empty(&svm->ir_list)); 1261 1262 svm_leave_nested(vcpu); 1263 svm_free_nested(svm); 1264 1265 sev_free_vcpu(vcpu); 1266 1267 __free_page(__sme_pa_to_page(svm->vmcb01.pa)); 1268 svm_vcpu_free_msrpm(svm->msrpm); 1269 } 1270 1271 #ifdef CONFIG_CPU_MITIGATIONS 1272 static DEFINE_SPINLOCK(srso_lock); 1273 static atomic_t srso_nr_vms; 1274 1275 static void svm_srso_clear_bp_spec_reduce(void *ign) 1276 { 1277 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data); 1278 1279 if (!sd->bp_spec_reduce_set) 1280 return; 1281 1282 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1283 sd->bp_spec_reduce_set = false; 1284 } 1285 1286 static void svm_srso_vm_destroy(void) 1287 { 1288 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1289 return; 1290 1291 if (atomic_dec_return(&srso_nr_vms)) 1292 return; 1293 1294 guard(spinlock)(&srso_lock); 1295 1296 /* 1297 * Verify a new VM didn't come along, acquire the lock, and increment 1298 * the count before this task acquired the lock. 1299 */ 1300 if (atomic_read(&srso_nr_vms)) 1301 return; 1302 1303 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1); 1304 } 1305 1306 static void svm_srso_vm_init(void) 1307 { 1308 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1309 return; 1310 1311 /* 1312 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0 1313 * transition, i.e. destroying the last VM, is fully complete, e.g. so 1314 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs. 1315 */ 1316 if (atomic_inc_not_zero(&srso_nr_vms)) 1317 return; 1318 1319 guard(spinlock)(&srso_lock); 1320 1321 atomic_inc(&srso_nr_vms); 1322 } 1323 #else 1324 static void svm_srso_vm_init(void) { } 1325 static void svm_srso_vm_destroy(void) { } 1326 #endif 1327 1328 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1329 { 1330 struct vcpu_svm *svm = to_svm(vcpu); 1331 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1332 1333 if (sev_es_guest(vcpu->kvm)) 1334 sev_es_unmap_ghcb(svm); 1335 1336 if (svm->guest_state_loaded) 1337 return; 1338 1339 /* 1340 * Save additional host state that will be restored on VMEXIT (sev-es) 1341 * or subsequent vmload of host save area. 1342 */ 1343 vmsave(sd->save_area_pa); 1344 if (sev_es_guest(vcpu->kvm)) 1345 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1346 1347 if (tsc_scaling) 1348 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1349 1350 /* 1351 * TSC_AUX is always virtualized (context switched by hardware) for 1352 * SEV-ES guests when the feature is available. For non-SEV-ES guests, 1353 * context switch TSC_AUX via the user_return MSR infrastructure (not 1354 * all CPUs support TSC_AUX virtualization). 1355 */ 1356 if (likely(tsc_aux_uret_slot >= 0) && 1357 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1358 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1359 1360 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) && 1361 !sd->bp_spec_reduce_set) { 1362 sd->bp_spec_reduce_set = true; 1363 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1364 } 1365 svm->guest_state_loaded = true; 1366 } 1367 1368 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1369 { 1370 to_svm(vcpu)->guest_state_loaded = false; 1371 } 1372 1373 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1374 { 1375 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1376 shrink_ple_window(vcpu); 1377 1378 if (kvm_vcpu_apicv_active(vcpu)) 1379 avic_vcpu_load(vcpu, cpu); 1380 } 1381 1382 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1383 { 1384 if (kvm_vcpu_apicv_active(vcpu)) 1385 avic_vcpu_put(vcpu); 1386 1387 svm_prepare_host_switch(vcpu); 1388 1389 ++vcpu->stat.host_state_reload; 1390 } 1391 1392 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1393 { 1394 struct vcpu_svm *svm = to_svm(vcpu); 1395 unsigned long rflags = svm->vmcb->save.rflags; 1396 1397 if (svm->nmi_singlestep) { 1398 /* Hide our flags if they were not set by the guest */ 1399 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1400 rflags &= ~X86_EFLAGS_TF; 1401 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1402 rflags &= ~X86_EFLAGS_RF; 1403 } 1404 return rflags; 1405 } 1406 1407 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1408 { 1409 if (to_svm(vcpu)->nmi_singlestep) 1410 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1411 1412 /* 1413 * Any change of EFLAGS.VM is accompanied by a reload of SS 1414 * (caused by either a task switch or an inter-privilege IRET), 1415 * so we do not need to update the CPL here. 1416 */ 1417 to_svm(vcpu)->vmcb->save.rflags = rflags; 1418 } 1419 1420 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1421 { 1422 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1423 1424 return sev_es_guest(vcpu->kvm) 1425 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1426 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1427 } 1428 1429 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1430 { 1431 kvm_register_mark_available(vcpu, reg); 1432 1433 switch (reg) { 1434 case VCPU_EXREG_PDPTR: 1435 /* 1436 * When !npt_enabled, mmu->pdptrs[] is already available since 1437 * it is always updated per SDM when moving to CRs. 1438 */ 1439 if (npt_enabled) 1440 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1441 break; 1442 default: 1443 KVM_BUG_ON(1, vcpu->kvm); 1444 } 1445 } 1446 1447 static void svm_set_vintr(struct vcpu_svm *svm) 1448 { 1449 struct vmcb_control_area *control; 1450 1451 /* 1452 * The following fields are ignored when AVIC is enabled 1453 */ 1454 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1455 1456 svm_set_intercept(svm, INTERCEPT_VINTR); 1457 1458 /* 1459 * Recalculating intercepts may have cleared the VINTR intercept. If 1460 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1461 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1462 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1463 * interrupts will never be unblocked while L2 is running. 1464 */ 1465 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1466 return; 1467 1468 /* 1469 * This is just a dummy VINTR to actually cause a vmexit to happen. 1470 * Actual injection of virtual interrupts happens through EVENTINJ. 1471 */ 1472 control = &svm->vmcb->control; 1473 control->int_vector = 0x0; 1474 control->int_ctl &= ~V_INTR_PRIO_MASK; 1475 control->int_ctl |= V_IRQ_MASK | 1476 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1477 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1478 } 1479 1480 static void svm_clear_vintr(struct vcpu_svm *svm) 1481 { 1482 svm_clr_intercept(svm, INTERCEPT_VINTR); 1483 1484 /* Drop int_ctl fields related to VINTR injection. */ 1485 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1486 if (is_guest_mode(&svm->vcpu)) { 1487 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1488 1489 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1490 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1491 1492 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1493 V_IRQ_INJECTION_BITS_MASK; 1494 1495 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1496 } 1497 1498 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1499 } 1500 1501 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1502 { 1503 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1504 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1505 1506 switch (seg) { 1507 case VCPU_SREG_CS: return &save->cs; 1508 case VCPU_SREG_DS: return &save->ds; 1509 case VCPU_SREG_ES: return &save->es; 1510 case VCPU_SREG_FS: return &save01->fs; 1511 case VCPU_SREG_GS: return &save01->gs; 1512 case VCPU_SREG_SS: return &save->ss; 1513 case VCPU_SREG_TR: return &save01->tr; 1514 case VCPU_SREG_LDTR: return &save01->ldtr; 1515 } 1516 BUG(); 1517 return NULL; 1518 } 1519 1520 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1521 { 1522 struct vmcb_seg *s = svm_seg(vcpu, seg); 1523 1524 return s->base; 1525 } 1526 1527 static void svm_get_segment(struct kvm_vcpu *vcpu, 1528 struct kvm_segment *var, int seg) 1529 { 1530 struct vmcb_seg *s = svm_seg(vcpu, seg); 1531 1532 var->base = s->base; 1533 var->limit = s->limit; 1534 var->selector = s->selector; 1535 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1536 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1537 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1538 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1539 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1540 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1541 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1542 1543 /* 1544 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1545 * However, the SVM spec states that the G bit is not observed by the 1546 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1547 * So let's synthesize a legal G bit for all segments, this helps 1548 * running KVM nested. It also helps cross-vendor migration, because 1549 * Intel's vmentry has a check on the 'G' bit. 1550 */ 1551 var->g = s->limit > 0xfffff; 1552 1553 /* 1554 * AMD's VMCB does not have an explicit unusable field, so emulate it 1555 * for cross vendor migration purposes by "not present" 1556 */ 1557 var->unusable = !var->present; 1558 1559 switch (seg) { 1560 case VCPU_SREG_TR: 1561 /* 1562 * Work around a bug where the busy flag in the tr selector 1563 * isn't exposed 1564 */ 1565 var->type |= 0x2; 1566 break; 1567 case VCPU_SREG_DS: 1568 case VCPU_SREG_ES: 1569 case VCPU_SREG_FS: 1570 case VCPU_SREG_GS: 1571 /* 1572 * The accessed bit must always be set in the segment 1573 * descriptor cache, although it can be cleared in the 1574 * descriptor, the cached bit always remains at 1. Since 1575 * Intel has a check on this, set it here to support 1576 * cross-vendor migration. 1577 */ 1578 if (!var->unusable) 1579 var->type |= 0x1; 1580 break; 1581 case VCPU_SREG_SS: 1582 /* 1583 * On AMD CPUs sometimes the DB bit in the segment 1584 * descriptor is left as 1, although the whole segment has 1585 * been made unusable. Clear it here to pass an Intel VMX 1586 * entry check when cross vendor migrating. 1587 */ 1588 if (var->unusable) 1589 var->db = 0; 1590 /* This is symmetric with svm_set_segment() */ 1591 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1592 break; 1593 } 1594 } 1595 1596 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1597 { 1598 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1599 1600 return save->cpl; 1601 } 1602 1603 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1604 { 1605 struct kvm_segment cs; 1606 1607 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1608 *db = cs.db; 1609 *l = cs.l; 1610 } 1611 1612 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1613 { 1614 struct vcpu_svm *svm = to_svm(vcpu); 1615 1616 dt->size = svm->vmcb->save.idtr.limit; 1617 dt->address = svm->vmcb->save.idtr.base; 1618 } 1619 1620 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1621 { 1622 struct vcpu_svm *svm = to_svm(vcpu); 1623 1624 svm->vmcb->save.idtr.limit = dt->size; 1625 svm->vmcb->save.idtr.base = dt->address ; 1626 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1627 } 1628 1629 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1630 { 1631 struct vcpu_svm *svm = to_svm(vcpu); 1632 1633 dt->size = svm->vmcb->save.gdtr.limit; 1634 dt->address = svm->vmcb->save.gdtr.base; 1635 } 1636 1637 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1638 { 1639 struct vcpu_svm *svm = to_svm(vcpu); 1640 1641 svm->vmcb->save.gdtr.limit = dt->size; 1642 svm->vmcb->save.gdtr.base = dt->address ; 1643 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1644 } 1645 1646 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1647 { 1648 struct vcpu_svm *svm = to_svm(vcpu); 1649 1650 /* 1651 * For guests that don't set guest_state_protected, the cr3 update is 1652 * handled via kvm_mmu_load() while entering the guest. For guests 1653 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1654 * VMCB save area now, since the save area will become the initial 1655 * contents of the VMSA, and future VMCB save area updates won't be 1656 * seen. 1657 */ 1658 if (sev_es_guest(vcpu->kvm)) { 1659 svm->vmcb->save.cr3 = cr3; 1660 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1661 } 1662 } 1663 1664 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1665 { 1666 return true; 1667 } 1668 1669 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1670 { 1671 struct vcpu_svm *svm = to_svm(vcpu); 1672 u64 hcr0 = cr0; 1673 bool old_paging = is_paging(vcpu); 1674 1675 #ifdef CONFIG_X86_64 1676 if (vcpu->arch.efer & EFER_LME) { 1677 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1678 vcpu->arch.efer |= EFER_LMA; 1679 if (!vcpu->arch.guest_state_protected) 1680 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1681 } 1682 1683 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1684 vcpu->arch.efer &= ~EFER_LMA; 1685 if (!vcpu->arch.guest_state_protected) 1686 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1687 } 1688 } 1689 #endif 1690 vcpu->arch.cr0 = cr0; 1691 1692 if (!npt_enabled) { 1693 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1694 if (old_paging != is_paging(vcpu)) 1695 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1696 } 1697 1698 /* 1699 * re-enable caching here because the QEMU bios 1700 * does not do it - this results in some delay at 1701 * reboot 1702 */ 1703 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1704 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1705 1706 svm->vmcb->save.cr0 = hcr0; 1707 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1708 1709 /* 1710 * SEV-ES guests must always keep the CR intercepts cleared. CR 1711 * tracking is done using the CR write traps. 1712 */ 1713 if (sev_es_guest(vcpu->kvm)) 1714 return; 1715 1716 if (hcr0 == cr0) { 1717 /* Selective CR0 write remains on. */ 1718 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1719 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1720 } else { 1721 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1722 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1723 } 1724 } 1725 1726 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1727 { 1728 return true; 1729 } 1730 1731 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1732 { 1733 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1734 unsigned long old_cr4 = vcpu->arch.cr4; 1735 1736 vcpu->arch.cr4 = cr4; 1737 if (!npt_enabled) { 1738 cr4 |= X86_CR4_PAE; 1739 1740 if (!is_paging(vcpu)) 1741 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1742 } 1743 cr4 |= host_cr4_mce; 1744 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1745 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1746 1747 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1748 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1749 } 1750 1751 static void svm_set_segment(struct kvm_vcpu *vcpu, 1752 struct kvm_segment *var, int seg) 1753 { 1754 struct vcpu_svm *svm = to_svm(vcpu); 1755 struct vmcb_seg *s = svm_seg(vcpu, seg); 1756 1757 s->base = var->base; 1758 s->limit = var->limit; 1759 s->selector = var->selector; 1760 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1761 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1762 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1763 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1764 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1765 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1766 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1767 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1768 1769 /* 1770 * This is always accurate, except if SYSRET returned to a segment 1771 * with SS.DPL != 3. Intel does not have this quirk, and always 1772 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1773 * would entail passing the CPL to userspace and back. 1774 */ 1775 if (seg == VCPU_SREG_SS) 1776 /* This is symmetric with svm_get_segment() */ 1777 svm->vmcb->save.cpl = (var->dpl & 3); 1778 1779 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1780 } 1781 1782 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1783 { 1784 struct vcpu_svm *svm = to_svm(vcpu); 1785 1786 clr_exception_intercept(svm, BP_VECTOR); 1787 1788 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1789 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1790 set_exception_intercept(svm, BP_VECTOR); 1791 } 1792 } 1793 1794 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1795 { 1796 if (sd->next_asid > sd->max_asid) { 1797 ++sd->asid_generation; 1798 sd->next_asid = sd->min_asid; 1799 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1800 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1801 } 1802 1803 svm->current_vmcb->asid_generation = sd->asid_generation; 1804 svm->asid = sd->next_asid++; 1805 } 1806 1807 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) 1808 { 1809 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1810 1811 if (vcpu->arch.guest_state_protected) 1812 return; 1813 1814 if (unlikely(value != vmcb->save.dr6)) { 1815 vmcb->save.dr6 = value; 1816 vmcb_mark_dirty(vmcb, VMCB_DR); 1817 } 1818 } 1819 1820 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1821 { 1822 struct vcpu_svm *svm = to_svm(vcpu); 1823 1824 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 1825 return; 1826 1827 get_debugreg(vcpu->arch.db[0], 0); 1828 get_debugreg(vcpu->arch.db[1], 1); 1829 get_debugreg(vcpu->arch.db[2], 2); 1830 get_debugreg(vcpu->arch.db[3], 3); 1831 /* 1832 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1833 * because db_interception might need it. We can do it before vmentry. 1834 */ 1835 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1836 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1837 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1838 set_dr_intercepts(svm); 1839 } 1840 1841 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1842 { 1843 struct vcpu_svm *svm = to_svm(vcpu); 1844 1845 if (vcpu->arch.guest_state_protected) 1846 return; 1847 1848 svm->vmcb->save.dr7 = value; 1849 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1850 } 1851 1852 static int pf_interception(struct kvm_vcpu *vcpu) 1853 { 1854 struct vcpu_svm *svm = to_svm(vcpu); 1855 1856 u64 fault_address = svm->vmcb->control.exit_info_2; 1857 u64 error_code = svm->vmcb->control.exit_info_1; 1858 1859 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1860 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1861 svm->vmcb->control.insn_bytes : NULL, 1862 svm->vmcb->control.insn_len); 1863 } 1864 1865 static int npf_interception(struct kvm_vcpu *vcpu) 1866 { 1867 struct vcpu_svm *svm = to_svm(vcpu); 1868 int rc; 1869 1870 u64 fault_address = svm->vmcb->control.exit_info_2; 1871 u64 error_code = svm->vmcb->control.exit_info_1; 1872 1873 /* 1874 * WARN if hardware generates a fault with an error code that collides 1875 * with KVM-defined sythentic flags. Clear the flags and continue on, 1876 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 1877 * flag that KVM doesn't know about. 1878 */ 1879 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 1880 error_code &= ~PFERR_SYNTHETIC_MASK; 1881 1882 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 1883 error_code |= PFERR_PRIVATE_ACCESS; 1884 1885 trace_kvm_page_fault(vcpu, fault_address, error_code); 1886 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, 1887 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1888 svm->vmcb->control.insn_bytes : NULL, 1889 svm->vmcb->control.insn_len); 1890 1891 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 1892 sev_handle_rmp_fault(vcpu, fault_address, error_code); 1893 1894 return rc; 1895 } 1896 1897 static int db_interception(struct kvm_vcpu *vcpu) 1898 { 1899 struct kvm_run *kvm_run = vcpu->run; 1900 struct vcpu_svm *svm = to_svm(vcpu); 1901 1902 if (!(vcpu->guest_debug & 1903 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1904 !svm->nmi_singlestep) { 1905 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1906 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1907 return 1; 1908 } 1909 1910 if (svm->nmi_singlestep) { 1911 disable_nmi_singlestep(svm); 1912 /* Make sure we check for pending NMIs upon entry */ 1913 kvm_make_request(KVM_REQ_EVENT, vcpu); 1914 } 1915 1916 if (vcpu->guest_debug & 1917 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1918 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1919 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1920 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1921 kvm_run->debug.arch.pc = 1922 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1923 kvm_run->debug.arch.exception = DB_VECTOR; 1924 return 0; 1925 } 1926 1927 return 1; 1928 } 1929 1930 static int bp_interception(struct kvm_vcpu *vcpu) 1931 { 1932 struct vcpu_svm *svm = to_svm(vcpu); 1933 struct kvm_run *kvm_run = vcpu->run; 1934 1935 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1936 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1937 kvm_run->debug.arch.exception = BP_VECTOR; 1938 return 0; 1939 } 1940 1941 static int ud_interception(struct kvm_vcpu *vcpu) 1942 { 1943 return handle_ud(vcpu); 1944 } 1945 1946 static int ac_interception(struct kvm_vcpu *vcpu) 1947 { 1948 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1949 return 1; 1950 } 1951 1952 static bool is_erratum_383(void) 1953 { 1954 int i; 1955 u64 value; 1956 1957 if (!erratum_383_found) 1958 return false; 1959 1960 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value)) 1961 return false; 1962 1963 /* Bit 62 may or may not be set for this mce */ 1964 value &= ~(1ULL << 62); 1965 1966 if (value != 0xb600000000010015ULL) 1967 return false; 1968 1969 /* Clear MCi_STATUS registers */ 1970 for (i = 0; i < 6; ++i) 1971 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0); 1972 1973 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) { 1974 value &= ~(1ULL << 2); 1975 native_write_msr_safe(MSR_IA32_MCG_STATUS, value); 1976 } 1977 1978 /* Flush tlb to evict multi-match entries */ 1979 __flush_tlb_all(); 1980 1981 return true; 1982 } 1983 1984 static void svm_handle_mce(struct kvm_vcpu *vcpu) 1985 { 1986 if (is_erratum_383()) { 1987 /* 1988 * Erratum 383 triggered. Guest state is corrupt so kill the 1989 * guest. 1990 */ 1991 pr_err("Guest triggered AMD Erratum 383\n"); 1992 1993 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1994 1995 return; 1996 } 1997 1998 /* 1999 * On an #MC intercept the MCE handler is not called automatically in 2000 * the host. So do it by hand here. 2001 */ 2002 kvm_machine_check(); 2003 } 2004 2005 static int mc_interception(struct kvm_vcpu *vcpu) 2006 { 2007 return 1; 2008 } 2009 2010 static int shutdown_interception(struct kvm_vcpu *vcpu) 2011 { 2012 struct kvm_run *kvm_run = vcpu->run; 2013 struct vcpu_svm *svm = to_svm(vcpu); 2014 2015 2016 /* 2017 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2018 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2019 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2020 * userspace. At a platform view, INIT is acceptable behavior as 2021 * there exist bare metal platforms that automatically INIT the CPU 2022 * in response to shutdown. 2023 * 2024 * The VM save area for SEV-ES guests has already been encrypted so it 2025 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2026 */ 2027 if (!sev_es_guest(vcpu->kvm)) { 2028 clear_page(svm->vmcb); 2029 #ifdef CONFIG_KVM_SMM 2030 if (is_smm(vcpu)) 2031 kvm_smm_changed(vcpu, false); 2032 #endif 2033 kvm_vcpu_reset(vcpu, true); 2034 } 2035 2036 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2037 return 0; 2038 } 2039 2040 static int io_interception(struct kvm_vcpu *vcpu) 2041 { 2042 struct vcpu_svm *svm = to_svm(vcpu); 2043 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2044 int size, in, string; 2045 unsigned port; 2046 2047 ++vcpu->stat.io_exits; 2048 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2049 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2050 port = io_info >> 16; 2051 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2052 2053 if (string) { 2054 if (sev_es_guest(vcpu->kvm)) 2055 return sev_es_string_io(svm, size, port, in); 2056 else 2057 return kvm_emulate_instruction(vcpu, 0); 2058 } 2059 2060 svm->next_rip = svm->vmcb->control.exit_info_2; 2061 2062 return kvm_fast_pio(vcpu, size, port, in); 2063 } 2064 2065 static int nmi_interception(struct kvm_vcpu *vcpu) 2066 { 2067 return 1; 2068 } 2069 2070 static int smi_interception(struct kvm_vcpu *vcpu) 2071 { 2072 return 1; 2073 } 2074 2075 static int intr_interception(struct kvm_vcpu *vcpu) 2076 { 2077 ++vcpu->stat.irq_exits; 2078 return 1; 2079 } 2080 2081 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2082 { 2083 struct vcpu_svm *svm = to_svm(vcpu); 2084 struct vmcb *vmcb12; 2085 struct kvm_host_map map; 2086 int ret; 2087 2088 if (nested_svm_check_permissions(vcpu)) 2089 return 1; 2090 2091 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2092 if (ret) { 2093 if (ret == -EINVAL) 2094 kvm_inject_gp(vcpu, 0); 2095 return 1; 2096 } 2097 2098 vmcb12 = map.hva; 2099 2100 ret = kvm_skip_emulated_instruction(vcpu); 2101 2102 if (vmload) { 2103 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2104 svm->sysenter_eip_hi = 0; 2105 svm->sysenter_esp_hi = 0; 2106 } else { 2107 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2108 } 2109 2110 kvm_vcpu_unmap(vcpu, &map); 2111 2112 return ret; 2113 } 2114 2115 static int vmload_interception(struct kvm_vcpu *vcpu) 2116 { 2117 return vmload_vmsave_interception(vcpu, true); 2118 } 2119 2120 static int vmsave_interception(struct kvm_vcpu *vcpu) 2121 { 2122 return vmload_vmsave_interception(vcpu, false); 2123 } 2124 2125 static int vmrun_interception(struct kvm_vcpu *vcpu) 2126 { 2127 if (nested_svm_check_permissions(vcpu)) 2128 return 1; 2129 2130 return nested_svm_vmrun(vcpu); 2131 } 2132 2133 enum { 2134 NONE_SVM_INSTR, 2135 SVM_INSTR_VMRUN, 2136 SVM_INSTR_VMLOAD, 2137 SVM_INSTR_VMSAVE, 2138 }; 2139 2140 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2141 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2142 { 2143 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2144 2145 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2146 return NONE_SVM_INSTR; 2147 2148 switch (ctxt->modrm) { 2149 case 0xd8: /* VMRUN */ 2150 return SVM_INSTR_VMRUN; 2151 case 0xda: /* VMLOAD */ 2152 return SVM_INSTR_VMLOAD; 2153 case 0xdb: /* VMSAVE */ 2154 return SVM_INSTR_VMSAVE; 2155 default: 2156 break; 2157 } 2158 2159 return NONE_SVM_INSTR; 2160 } 2161 2162 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2163 { 2164 const int guest_mode_exit_codes[] = { 2165 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2166 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2167 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2168 }; 2169 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2170 [SVM_INSTR_VMRUN] = vmrun_interception, 2171 [SVM_INSTR_VMLOAD] = vmload_interception, 2172 [SVM_INSTR_VMSAVE] = vmsave_interception, 2173 }; 2174 struct vcpu_svm *svm = to_svm(vcpu); 2175 int ret; 2176 2177 if (is_guest_mode(vcpu)) { 2178 /* Returns '1' or -errno on failure, '0' on success. */ 2179 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2180 if (ret) 2181 return ret; 2182 return 1; 2183 } 2184 return svm_instr_handlers[opcode](vcpu); 2185 } 2186 2187 /* 2188 * #GP handling code. Note that #GP can be triggered under the following two 2189 * cases: 2190 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2191 * some AMD CPUs when EAX of these instructions are in the reserved memory 2192 * regions (e.g. SMM memory on host). 2193 * 2) VMware backdoor 2194 */ 2195 static int gp_interception(struct kvm_vcpu *vcpu) 2196 { 2197 struct vcpu_svm *svm = to_svm(vcpu); 2198 u32 error_code = svm->vmcb->control.exit_info_1; 2199 int opcode; 2200 2201 /* Both #GP cases have zero error_code */ 2202 if (error_code) 2203 goto reinject; 2204 2205 /* Decode the instruction for usage later */ 2206 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2207 goto reinject; 2208 2209 opcode = svm_instr_opcode(vcpu); 2210 2211 if (opcode == NONE_SVM_INSTR) { 2212 if (!enable_vmware_backdoor) 2213 goto reinject; 2214 2215 /* 2216 * VMware backdoor emulation on #GP interception only handles 2217 * IN{S}, OUT{S}, and RDPMC. 2218 */ 2219 if (!is_guest_mode(vcpu)) 2220 return kvm_emulate_instruction(vcpu, 2221 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2222 } else { 2223 /* All SVM instructions expect page aligned RAX */ 2224 if (svm->vmcb->save.rax & ~PAGE_MASK) 2225 goto reinject; 2226 2227 return emulate_svm_instr(vcpu, opcode); 2228 } 2229 2230 reinject: 2231 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2232 return 1; 2233 } 2234 2235 void svm_set_gif(struct vcpu_svm *svm, bool value) 2236 { 2237 if (value) { 2238 /* 2239 * If VGIF is enabled, the STGI intercept is only added to 2240 * detect the opening of the SMI/NMI window; remove it now. 2241 * Likewise, clear the VINTR intercept, we will set it 2242 * again while processing KVM_REQ_EVENT if needed. 2243 */ 2244 if (vgif) 2245 svm_clr_intercept(svm, INTERCEPT_STGI); 2246 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2247 svm_clear_vintr(svm); 2248 2249 enable_gif(svm); 2250 if (svm->vcpu.arch.smi_pending || 2251 svm->vcpu.arch.nmi_pending || 2252 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2253 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2254 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2255 } else { 2256 disable_gif(svm); 2257 2258 /* 2259 * After a CLGI no interrupts should come. But if vGIF is 2260 * in use, we still rely on the VINTR intercept (rather than 2261 * STGI) to detect an open interrupt window. 2262 */ 2263 if (!vgif) 2264 svm_clear_vintr(svm); 2265 } 2266 } 2267 2268 static int stgi_interception(struct kvm_vcpu *vcpu) 2269 { 2270 int ret; 2271 2272 if (nested_svm_check_permissions(vcpu)) 2273 return 1; 2274 2275 ret = kvm_skip_emulated_instruction(vcpu); 2276 svm_set_gif(to_svm(vcpu), true); 2277 return ret; 2278 } 2279 2280 static int clgi_interception(struct kvm_vcpu *vcpu) 2281 { 2282 int ret; 2283 2284 if (nested_svm_check_permissions(vcpu)) 2285 return 1; 2286 2287 ret = kvm_skip_emulated_instruction(vcpu); 2288 svm_set_gif(to_svm(vcpu), false); 2289 return ret; 2290 } 2291 2292 static int invlpga_interception(struct kvm_vcpu *vcpu) 2293 { 2294 gva_t gva = kvm_rax_read(vcpu); 2295 u32 asid = kvm_rcx_read(vcpu); 2296 2297 /* FIXME: Handle an address size prefix. */ 2298 if (!is_long_mode(vcpu)) 2299 gva = (u32)gva; 2300 2301 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2302 2303 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2304 kvm_mmu_invlpg(vcpu, gva); 2305 2306 return kvm_skip_emulated_instruction(vcpu); 2307 } 2308 2309 static int skinit_interception(struct kvm_vcpu *vcpu) 2310 { 2311 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2312 2313 kvm_queue_exception(vcpu, UD_VECTOR); 2314 return 1; 2315 } 2316 2317 static int task_switch_interception(struct kvm_vcpu *vcpu) 2318 { 2319 struct vcpu_svm *svm = to_svm(vcpu); 2320 u16 tss_selector; 2321 int reason; 2322 int int_type = svm->vmcb->control.exit_int_info & 2323 SVM_EXITINTINFO_TYPE_MASK; 2324 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2325 uint32_t type = 2326 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2327 uint32_t idt_v = 2328 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2329 bool has_error_code = false; 2330 u32 error_code = 0; 2331 2332 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2333 2334 if (svm->vmcb->control.exit_info_2 & 2335 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2336 reason = TASK_SWITCH_IRET; 2337 else if (svm->vmcb->control.exit_info_2 & 2338 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2339 reason = TASK_SWITCH_JMP; 2340 else if (idt_v) 2341 reason = TASK_SWITCH_GATE; 2342 else 2343 reason = TASK_SWITCH_CALL; 2344 2345 if (reason == TASK_SWITCH_GATE) { 2346 switch (type) { 2347 case SVM_EXITINTINFO_TYPE_NMI: 2348 vcpu->arch.nmi_injected = false; 2349 break; 2350 case SVM_EXITINTINFO_TYPE_EXEPT: 2351 if (svm->vmcb->control.exit_info_2 & 2352 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2353 has_error_code = true; 2354 error_code = 2355 (u32)svm->vmcb->control.exit_info_2; 2356 } 2357 kvm_clear_exception_queue(vcpu); 2358 break; 2359 case SVM_EXITINTINFO_TYPE_INTR: 2360 case SVM_EXITINTINFO_TYPE_SOFT: 2361 kvm_clear_interrupt_queue(vcpu); 2362 break; 2363 default: 2364 break; 2365 } 2366 } 2367 2368 if (reason != TASK_SWITCH_GATE || 2369 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2370 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2371 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2372 if (!svm_skip_emulated_instruction(vcpu)) 2373 return 0; 2374 } 2375 2376 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2377 int_vec = -1; 2378 2379 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2380 has_error_code, error_code); 2381 } 2382 2383 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2384 { 2385 if (!sev_es_guest(svm->vcpu.kvm)) 2386 svm_clr_intercept(svm, INTERCEPT_IRET); 2387 } 2388 2389 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2390 { 2391 if (!sev_es_guest(svm->vcpu.kvm)) 2392 svm_set_intercept(svm, INTERCEPT_IRET); 2393 } 2394 2395 static int iret_interception(struct kvm_vcpu *vcpu) 2396 { 2397 struct vcpu_svm *svm = to_svm(vcpu); 2398 2399 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2400 2401 ++vcpu->stat.nmi_window_exits; 2402 svm->awaiting_iret_completion = true; 2403 2404 svm_clr_iret_intercept(svm); 2405 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2406 2407 kvm_make_request(KVM_REQ_EVENT, vcpu); 2408 return 1; 2409 } 2410 2411 static int invlpg_interception(struct kvm_vcpu *vcpu) 2412 { 2413 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2414 return kvm_emulate_instruction(vcpu, 0); 2415 2416 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2417 return kvm_skip_emulated_instruction(vcpu); 2418 } 2419 2420 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2421 { 2422 return kvm_emulate_instruction(vcpu, 0); 2423 } 2424 2425 static int rsm_interception(struct kvm_vcpu *vcpu) 2426 { 2427 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2428 } 2429 2430 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2431 unsigned long val) 2432 { 2433 struct vcpu_svm *svm = to_svm(vcpu); 2434 unsigned long cr0 = vcpu->arch.cr0; 2435 bool ret = false; 2436 2437 if (!is_guest_mode(vcpu) || 2438 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2439 return false; 2440 2441 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2442 val &= ~SVM_CR0_SELECTIVE_MASK; 2443 2444 if (cr0 ^ val) { 2445 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2446 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2447 } 2448 2449 return ret; 2450 } 2451 2452 #define CR_VALID (1ULL << 63) 2453 2454 static int cr_interception(struct kvm_vcpu *vcpu) 2455 { 2456 struct vcpu_svm *svm = to_svm(vcpu); 2457 int reg, cr; 2458 unsigned long val; 2459 int err; 2460 2461 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2462 return emulate_on_interception(vcpu); 2463 2464 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2465 return emulate_on_interception(vcpu); 2466 2467 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2468 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2469 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2470 else 2471 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2472 2473 err = 0; 2474 if (cr >= 16) { /* mov to cr */ 2475 cr -= 16; 2476 val = kvm_register_read(vcpu, reg); 2477 trace_kvm_cr_write(cr, val); 2478 switch (cr) { 2479 case 0: 2480 if (!check_selective_cr0_intercepted(vcpu, val)) 2481 err = kvm_set_cr0(vcpu, val); 2482 else 2483 return 1; 2484 2485 break; 2486 case 3: 2487 err = kvm_set_cr3(vcpu, val); 2488 break; 2489 case 4: 2490 err = kvm_set_cr4(vcpu, val); 2491 break; 2492 case 8: 2493 err = kvm_set_cr8(vcpu, val); 2494 break; 2495 default: 2496 WARN(1, "unhandled write to CR%d", cr); 2497 kvm_queue_exception(vcpu, UD_VECTOR); 2498 return 1; 2499 } 2500 } else { /* mov from cr */ 2501 switch (cr) { 2502 case 0: 2503 val = kvm_read_cr0(vcpu); 2504 break; 2505 case 2: 2506 val = vcpu->arch.cr2; 2507 break; 2508 case 3: 2509 val = kvm_read_cr3(vcpu); 2510 break; 2511 case 4: 2512 val = kvm_read_cr4(vcpu); 2513 break; 2514 case 8: 2515 val = kvm_get_cr8(vcpu); 2516 break; 2517 default: 2518 WARN(1, "unhandled read from CR%d", cr); 2519 kvm_queue_exception(vcpu, UD_VECTOR); 2520 return 1; 2521 } 2522 kvm_register_write(vcpu, reg, val); 2523 trace_kvm_cr_read(cr, val); 2524 } 2525 return kvm_complete_insn_gp(vcpu, err); 2526 } 2527 2528 static int cr_trap(struct kvm_vcpu *vcpu) 2529 { 2530 struct vcpu_svm *svm = to_svm(vcpu); 2531 unsigned long old_value, new_value; 2532 unsigned int cr; 2533 int ret = 0; 2534 2535 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2536 2537 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2538 switch (cr) { 2539 case 0: 2540 old_value = kvm_read_cr0(vcpu); 2541 svm_set_cr0(vcpu, new_value); 2542 2543 kvm_post_set_cr0(vcpu, old_value, new_value); 2544 break; 2545 case 4: 2546 old_value = kvm_read_cr4(vcpu); 2547 svm_set_cr4(vcpu, new_value); 2548 2549 kvm_post_set_cr4(vcpu, old_value, new_value); 2550 break; 2551 case 8: 2552 ret = kvm_set_cr8(vcpu, new_value); 2553 break; 2554 default: 2555 WARN(1, "unhandled CR%d write trap", cr); 2556 kvm_queue_exception(vcpu, UD_VECTOR); 2557 return 1; 2558 } 2559 2560 return kvm_complete_insn_gp(vcpu, ret); 2561 } 2562 2563 static int dr_interception(struct kvm_vcpu *vcpu) 2564 { 2565 struct vcpu_svm *svm = to_svm(vcpu); 2566 int reg, dr; 2567 int err = 0; 2568 2569 /* 2570 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2571 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2572 */ 2573 if (sev_es_guest(vcpu->kvm)) 2574 return 1; 2575 2576 if (vcpu->guest_debug == 0) { 2577 /* 2578 * No more DR vmexits; force a reload of the debug registers 2579 * and reenter on this instruction. The next vmexit will 2580 * retrieve the full state of the debug registers. 2581 */ 2582 clr_dr_intercepts(svm); 2583 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2584 return 1; 2585 } 2586 2587 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2588 return emulate_on_interception(vcpu); 2589 2590 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2591 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2592 if (dr >= 16) { /* mov to DRn */ 2593 dr -= 16; 2594 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2595 } else { 2596 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2597 } 2598 2599 return kvm_complete_insn_gp(vcpu, err); 2600 } 2601 2602 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2603 { 2604 int r; 2605 2606 u8 cr8_prev = kvm_get_cr8(vcpu); 2607 /* instruction emulation calls kvm_set_cr8() */ 2608 r = cr_interception(vcpu); 2609 if (lapic_in_kernel(vcpu)) 2610 return r; 2611 if (cr8_prev <= kvm_get_cr8(vcpu)) 2612 return r; 2613 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2614 return 0; 2615 } 2616 2617 static int efer_trap(struct kvm_vcpu *vcpu) 2618 { 2619 struct msr_data msr_info; 2620 int ret; 2621 2622 /* 2623 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2624 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2625 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2626 * the guest doesn't have X86_FEATURE_SVM. 2627 */ 2628 msr_info.host_initiated = false; 2629 msr_info.index = MSR_EFER; 2630 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2631 ret = kvm_set_msr_common(vcpu, &msr_info); 2632 2633 return kvm_complete_insn_gp(vcpu, ret); 2634 } 2635 2636 static int svm_get_feature_msr(u32 msr, u64 *data) 2637 { 2638 *data = 0; 2639 2640 switch (msr) { 2641 case MSR_AMD64_DE_CFG: 2642 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2643 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2644 break; 2645 default: 2646 return KVM_MSR_RET_UNSUPPORTED; 2647 } 2648 2649 return 0; 2650 } 2651 2652 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, 2653 struct msr_data *msr_info) 2654 { 2655 return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected && 2656 msr_info->index != MSR_IA32_XSS && 2657 !msr_write_intercepted(vcpu, msr_info->index); 2658 } 2659 2660 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2661 { 2662 struct vcpu_svm *svm = to_svm(vcpu); 2663 2664 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2665 msr_info->data = 0; 2666 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2667 } 2668 2669 switch (msr_info->index) { 2670 case MSR_AMD64_TSC_RATIO: 2671 if (!msr_info->host_initiated && 2672 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) 2673 return 1; 2674 msr_info->data = svm->tsc_ratio_msr; 2675 break; 2676 case MSR_STAR: 2677 msr_info->data = svm->vmcb01.ptr->save.star; 2678 break; 2679 #ifdef CONFIG_X86_64 2680 case MSR_LSTAR: 2681 msr_info->data = svm->vmcb01.ptr->save.lstar; 2682 break; 2683 case MSR_CSTAR: 2684 msr_info->data = svm->vmcb01.ptr->save.cstar; 2685 break; 2686 case MSR_GS_BASE: 2687 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2688 break; 2689 case MSR_FS_BASE: 2690 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2691 break; 2692 case MSR_KERNEL_GS_BASE: 2693 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2694 break; 2695 case MSR_SYSCALL_MASK: 2696 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2697 break; 2698 #endif 2699 case MSR_IA32_SYSENTER_CS: 2700 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2701 break; 2702 case MSR_IA32_SYSENTER_EIP: 2703 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2704 if (guest_cpuid_is_intel_compatible(vcpu)) 2705 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2706 break; 2707 case MSR_IA32_SYSENTER_ESP: 2708 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2709 if (guest_cpuid_is_intel_compatible(vcpu)) 2710 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2711 break; 2712 case MSR_IA32_S_CET: 2713 msr_info->data = svm->vmcb->save.s_cet; 2714 break; 2715 case MSR_IA32_INT_SSP_TAB: 2716 msr_info->data = svm->vmcb->save.isst_addr; 2717 break; 2718 case MSR_KVM_INTERNAL_GUEST_SSP: 2719 msr_info->data = svm->vmcb->save.ssp; 2720 break; 2721 case MSR_TSC_AUX: 2722 msr_info->data = svm->tsc_aux; 2723 break; 2724 case MSR_IA32_DEBUGCTLMSR: 2725 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2726 break; 2727 case MSR_IA32_LASTBRANCHFROMIP: 2728 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2729 break; 2730 case MSR_IA32_LASTBRANCHTOIP: 2731 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2732 break; 2733 case MSR_IA32_LASTINTFROMIP: 2734 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2735 break; 2736 case MSR_IA32_LASTINTTOIP: 2737 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2738 break; 2739 case MSR_VM_HSAVE_PA: 2740 msr_info->data = svm->nested.hsave_msr; 2741 break; 2742 case MSR_VM_CR: 2743 msr_info->data = svm->nested.vm_cr_msr; 2744 break; 2745 case MSR_IA32_SPEC_CTRL: 2746 if (!msr_info->host_initiated && 2747 !guest_has_spec_ctrl_msr(vcpu)) 2748 return 1; 2749 2750 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2751 msr_info->data = svm->vmcb->save.spec_ctrl; 2752 else 2753 msr_info->data = svm->spec_ctrl; 2754 break; 2755 case MSR_AMD64_VIRT_SPEC_CTRL: 2756 if (!msr_info->host_initiated && 2757 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2758 return 1; 2759 2760 msr_info->data = svm->virt_spec_ctrl; 2761 break; 2762 case MSR_F15H_IC_CFG: { 2763 2764 int family, model; 2765 2766 family = guest_cpuid_family(vcpu); 2767 model = guest_cpuid_model(vcpu); 2768 2769 if (family < 0 || model < 0) 2770 return kvm_get_msr_common(vcpu, msr_info); 2771 2772 msr_info->data = 0; 2773 2774 if (family == 0x15 && 2775 (model >= 0x2 && model < 0x20)) 2776 msr_info->data = 0x1E; 2777 } 2778 break; 2779 case MSR_AMD64_DE_CFG: 2780 msr_info->data = svm->msr_decfg; 2781 break; 2782 default: 2783 return kvm_get_msr_common(vcpu, msr_info); 2784 } 2785 return 0; 2786 } 2787 2788 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2789 { 2790 struct vcpu_svm *svm = to_svm(vcpu); 2791 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2792 return kvm_complete_insn_gp(vcpu, err); 2793 2794 svm_vmgexit_inject_exception(svm, X86_TRAP_GP); 2795 return 1; 2796 } 2797 2798 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2799 { 2800 struct vcpu_svm *svm = to_svm(vcpu); 2801 int svm_dis, chg_mask; 2802 2803 if (data & ~SVM_VM_CR_VALID_MASK) 2804 return 1; 2805 2806 chg_mask = SVM_VM_CR_VALID_MASK; 2807 2808 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2809 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2810 2811 svm->nested.vm_cr_msr &= ~chg_mask; 2812 svm->nested.vm_cr_msr |= (data & chg_mask); 2813 2814 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2815 2816 /* check for svm_disable while efer.svme is set */ 2817 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2818 return 1; 2819 2820 return 0; 2821 } 2822 2823 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2824 { 2825 struct vcpu_svm *svm = to_svm(vcpu); 2826 int ret = 0; 2827 2828 u32 ecx = msr->index; 2829 u64 data = msr->data; 2830 2831 if (sev_es_prevent_msr_access(vcpu, msr)) 2832 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2833 2834 switch (ecx) { 2835 case MSR_AMD64_TSC_RATIO: 2836 2837 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) { 2838 2839 if (!msr->host_initiated) 2840 return 1; 2841 /* 2842 * In case TSC scaling is not enabled, always 2843 * leave this MSR at the default value. 2844 * 2845 * Due to bug in qemu 6.2.0, it would try to set 2846 * this msr to 0 if tsc scaling is not enabled. 2847 * Ignore this value as well. 2848 */ 2849 if (data != 0 && data != svm->tsc_ratio_msr) 2850 return 1; 2851 break; 2852 } 2853 2854 if (data & SVM_TSC_RATIO_RSVD) 2855 return 1; 2856 2857 svm->tsc_ratio_msr = data; 2858 2859 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 2860 is_guest_mode(vcpu)) 2861 nested_svm_update_tsc_ratio_msr(vcpu); 2862 2863 break; 2864 case MSR_IA32_CR_PAT: 2865 ret = kvm_set_msr_common(vcpu, msr); 2866 if (ret) 2867 break; 2868 2869 svm->vmcb01.ptr->save.g_pat = data; 2870 if (is_guest_mode(vcpu)) 2871 nested_vmcb02_compute_g_pat(svm); 2872 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2873 break; 2874 case MSR_IA32_SPEC_CTRL: 2875 if (!msr->host_initiated && 2876 !guest_has_spec_ctrl_msr(vcpu)) 2877 return 1; 2878 2879 if (kvm_spec_ctrl_test_value(data)) 2880 return 1; 2881 2882 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2883 svm->vmcb->save.spec_ctrl = data; 2884 else 2885 svm->spec_ctrl = data; 2886 if (!data) 2887 break; 2888 2889 /* 2890 * For non-nested: 2891 * When it's written (to non-zero) for the first time, pass 2892 * it through. 2893 * 2894 * For nested: 2895 * The handling of the MSR bitmap for L2 guests is done in 2896 * nested_svm_merge_msrpm(). 2897 * We update the L1 MSR bit as well since it will end up 2898 * touching the MSR anyway now. 2899 */ 2900 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); 2901 break; 2902 case MSR_AMD64_VIRT_SPEC_CTRL: 2903 if (!msr->host_initiated && 2904 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2905 return 1; 2906 2907 if (data & ~SPEC_CTRL_SSBD) 2908 return 1; 2909 2910 svm->virt_spec_ctrl = data; 2911 break; 2912 case MSR_STAR: 2913 svm->vmcb01.ptr->save.star = data; 2914 break; 2915 #ifdef CONFIG_X86_64 2916 case MSR_LSTAR: 2917 svm->vmcb01.ptr->save.lstar = data; 2918 break; 2919 case MSR_CSTAR: 2920 svm->vmcb01.ptr->save.cstar = data; 2921 break; 2922 case MSR_GS_BASE: 2923 svm->vmcb01.ptr->save.gs.base = data; 2924 break; 2925 case MSR_FS_BASE: 2926 svm->vmcb01.ptr->save.fs.base = data; 2927 break; 2928 case MSR_KERNEL_GS_BASE: 2929 svm->vmcb01.ptr->save.kernel_gs_base = data; 2930 break; 2931 case MSR_SYSCALL_MASK: 2932 svm->vmcb01.ptr->save.sfmask = data; 2933 break; 2934 #endif 2935 case MSR_IA32_SYSENTER_CS: 2936 svm->vmcb01.ptr->save.sysenter_cs = data; 2937 break; 2938 case MSR_IA32_SYSENTER_EIP: 2939 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2940 /* 2941 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2942 * when we spoof an Intel vendor ID (for cross vendor migration). 2943 * In this case we use this intercept to track the high 2944 * 32 bit part of these msrs to support Intel's 2945 * implementation of SYSENTER/SYSEXIT. 2946 */ 2947 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 2948 break; 2949 case MSR_IA32_SYSENTER_ESP: 2950 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2951 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 2952 break; 2953 case MSR_IA32_S_CET: 2954 svm->vmcb->save.s_cet = data; 2955 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 2956 break; 2957 case MSR_IA32_INT_SSP_TAB: 2958 svm->vmcb->save.isst_addr = data; 2959 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 2960 break; 2961 case MSR_KVM_INTERNAL_GUEST_SSP: 2962 svm->vmcb->save.ssp = data; 2963 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 2964 break; 2965 case MSR_TSC_AUX: 2966 /* 2967 * TSC_AUX is always virtualized for SEV-ES guests when the 2968 * feature is available. The user return MSR support is not 2969 * required in this case because TSC_AUX is restored on #VMEXIT 2970 * from the host save area. 2971 */ 2972 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 2973 break; 2974 2975 /* 2976 * TSC_AUX is usually changed only during boot and never read 2977 * directly. Intercept TSC_AUX and switch it via user return. 2978 */ 2979 preempt_disable(); 2980 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2981 preempt_enable(); 2982 if (ret) 2983 break; 2984 2985 svm->tsc_aux = data; 2986 break; 2987 case MSR_IA32_DEBUGCTLMSR: 2988 if (!lbrv) { 2989 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 2990 break; 2991 } 2992 2993 /* 2994 * Suppress BTF as KVM doesn't virtualize BTF, but there's no 2995 * way to communicate lack of support to the guest. 2996 */ 2997 if (data & DEBUGCTLMSR_BTF) { 2998 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 2999 data &= ~DEBUGCTLMSR_BTF; 3000 } 3001 3002 if (data & DEBUGCTL_RESERVED_BITS) 3003 return 1; 3004 3005 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3006 svm_update_lbrv(vcpu); 3007 break; 3008 case MSR_VM_HSAVE_PA: 3009 /* 3010 * Old kernels did not validate the value written to 3011 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3012 * value to allow live migrating buggy or malicious guests 3013 * originating from those kernels. 3014 */ 3015 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3016 return 1; 3017 3018 svm->nested.hsave_msr = data & PAGE_MASK; 3019 break; 3020 case MSR_VM_CR: 3021 return svm_set_vm_cr(vcpu, data); 3022 case MSR_VM_IGNNE: 3023 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3024 break; 3025 case MSR_AMD64_DE_CFG: { 3026 u64 supported_de_cfg; 3027 3028 if (svm_get_feature_msr(ecx, &supported_de_cfg)) 3029 return 1; 3030 3031 if (data & ~supported_de_cfg) 3032 return 1; 3033 3034 svm->msr_decfg = data; 3035 break; 3036 } 3037 default: 3038 return kvm_set_msr_common(vcpu, msr); 3039 } 3040 return ret; 3041 } 3042 3043 static int msr_interception(struct kvm_vcpu *vcpu) 3044 { 3045 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3046 return kvm_emulate_wrmsr(vcpu); 3047 else 3048 return kvm_emulate_rdmsr(vcpu); 3049 } 3050 3051 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3052 { 3053 kvm_make_request(KVM_REQ_EVENT, vcpu); 3054 svm_clear_vintr(to_svm(vcpu)); 3055 3056 /* 3057 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3058 * In this case AVIC was temporarily disabled for 3059 * requesting the IRQ window and we have to re-enable it. 3060 * 3061 * If running nested, still remove the VM wide AVIC inhibit to 3062 * support case in which the interrupt window was requested when the 3063 * vCPU was not running nested. 3064 3065 * All vCPUs which run still run nested, will remain to have their 3066 * AVIC still inhibited due to per-cpu AVIC inhibition. 3067 */ 3068 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3069 3070 ++vcpu->stat.irq_window_exits; 3071 return 1; 3072 } 3073 3074 static int pause_interception(struct kvm_vcpu *vcpu) 3075 { 3076 bool in_kernel; 3077 /* 3078 * CPL is not made available for an SEV-ES guest, therefore 3079 * vcpu->arch.preempted_in_kernel can never be true. Just 3080 * set in_kernel to false as well. 3081 */ 3082 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3083 3084 grow_ple_window(vcpu); 3085 3086 kvm_vcpu_on_spin(vcpu, in_kernel); 3087 return kvm_skip_emulated_instruction(vcpu); 3088 } 3089 3090 static int invpcid_interception(struct kvm_vcpu *vcpu) 3091 { 3092 struct vcpu_svm *svm = to_svm(vcpu); 3093 unsigned long type; 3094 gva_t gva; 3095 3096 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 3097 kvm_queue_exception(vcpu, UD_VECTOR); 3098 return 1; 3099 } 3100 3101 /* 3102 * For an INVPCID intercept: 3103 * EXITINFO1 provides the linear address of the memory operand. 3104 * EXITINFO2 provides the contents of the register operand. 3105 */ 3106 type = svm->vmcb->control.exit_info_2; 3107 gva = svm->vmcb->control.exit_info_1; 3108 3109 /* 3110 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the 3111 * stack segment is used. The intercept takes priority over all 3112 * #GP checks except CPL>0, but somehow still generates a linear 3113 * address? The APM is sorely lacking. 3114 */ 3115 if (is_noncanonical_address(gva, vcpu, 0)) { 3116 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 3117 return 1; 3118 } 3119 3120 return kvm_handle_invpcid(vcpu, type, gva); 3121 } 3122 3123 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu) 3124 { 3125 struct vcpu_svm *svm = to_svm(vcpu); 3126 3127 /* 3128 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest 3129 * execute the bus-locking instruction. Set the bus lock counter to '1' 3130 * to effectively step past the bus lock. 3131 */ 3132 if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)) 3133 svm->vmcb->control.bus_lock_counter = 1; 3134 3135 return 1; 3136 } 3137 3138 static int bus_lock_exit(struct kvm_vcpu *vcpu) 3139 { 3140 struct vcpu_svm *svm = to_svm(vcpu); 3141 3142 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 3143 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 3144 3145 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 3146 vcpu->arch.complete_userspace_io = complete_userspace_buslock; 3147 3148 if (is_guest_mode(vcpu)) 3149 svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip; 3150 3151 return 0; 3152 } 3153 3154 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3155 [SVM_EXIT_READ_CR0] = cr_interception, 3156 [SVM_EXIT_READ_CR3] = cr_interception, 3157 [SVM_EXIT_READ_CR4] = cr_interception, 3158 [SVM_EXIT_READ_CR8] = cr_interception, 3159 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3160 [SVM_EXIT_WRITE_CR0] = cr_interception, 3161 [SVM_EXIT_WRITE_CR3] = cr_interception, 3162 [SVM_EXIT_WRITE_CR4] = cr_interception, 3163 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3164 [SVM_EXIT_READ_DR0] = dr_interception, 3165 [SVM_EXIT_READ_DR1] = dr_interception, 3166 [SVM_EXIT_READ_DR2] = dr_interception, 3167 [SVM_EXIT_READ_DR3] = dr_interception, 3168 [SVM_EXIT_READ_DR4] = dr_interception, 3169 [SVM_EXIT_READ_DR5] = dr_interception, 3170 [SVM_EXIT_READ_DR6] = dr_interception, 3171 [SVM_EXIT_READ_DR7] = dr_interception, 3172 [SVM_EXIT_WRITE_DR0] = dr_interception, 3173 [SVM_EXIT_WRITE_DR1] = dr_interception, 3174 [SVM_EXIT_WRITE_DR2] = dr_interception, 3175 [SVM_EXIT_WRITE_DR3] = dr_interception, 3176 [SVM_EXIT_WRITE_DR4] = dr_interception, 3177 [SVM_EXIT_WRITE_DR5] = dr_interception, 3178 [SVM_EXIT_WRITE_DR6] = dr_interception, 3179 [SVM_EXIT_WRITE_DR7] = dr_interception, 3180 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3181 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3182 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3183 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3184 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3185 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3186 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3187 [SVM_EXIT_INTR] = intr_interception, 3188 [SVM_EXIT_NMI] = nmi_interception, 3189 [SVM_EXIT_SMI] = smi_interception, 3190 [SVM_EXIT_VINTR] = interrupt_window_interception, 3191 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3192 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3193 [SVM_EXIT_IRET] = iret_interception, 3194 [SVM_EXIT_INVD] = kvm_emulate_invd, 3195 [SVM_EXIT_PAUSE] = pause_interception, 3196 [SVM_EXIT_HLT] = kvm_emulate_halt, 3197 [SVM_EXIT_INVLPG] = invlpg_interception, 3198 [SVM_EXIT_INVLPGA] = invlpga_interception, 3199 [SVM_EXIT_IOIO] = io_interception, 3200 [SVM_EXIT_MSR] = msr_interception, 3201 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3202 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3203 [SVM_EXIT_VMRUN] = vmrun_interception, 3204 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3205 [SVM_EXIT_VMLOAD] = vmload_interception, 3206 [SVM_EXIT_VMSAVE] = vmsave_interception, 3207 [SVM_EXIT_STGI] = stgi_interception, 3208 [SVM_EXIT_CLGI] = clgi_interception, 3209 [SVM_EXIT_SKINIT] = skinit_interception, 3210 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3211 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3212 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3213 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3214 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3215 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3216 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3217 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3218 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3219 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3220 [SVM_EXIT_INVPCID] = invpcid_interception, 3221 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt, 3222 [SVM_EXIT_NPF] = npf_interception, 3223 [SVM_EXIT_BUS_LOCK] = bus_lock_exit, 3224 [SVM_EXIT_RSM] = rsm_interception, 3225 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3226 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3227 #ifdef CONFIG_KVM_AMD_SEV 3228 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3229 #endif 3230 }; 3231 3232 static void dump_vmcb(struct kvm_vcpu *vcpu) 3233 { 3234 struct vcpu_svm *svm = to_svm(vcpu); 3235 struct vmcb_control_area *control = &svm->vmcb->control; 3236 struct vmcb_save_area *save = &svm->vmcb->save; 3237 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3238 char *vm_type; 3239 3240 if (!dump_invalid_vmcb) { 3241 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3242 return; 3243 } 3244 3245 guard(mutex)(&vmcb_dump_mutex); 3246 3247 vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" : 3248 sev_es_guest(vcpu->kvm) ? "SEV-ES" : 3249 sev_guest(vcpu->kvm) ? "SEV" : "SVM"; 3250 3251 pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n", 3252 vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3253 pr_err("VMCB Control Area:\n"); 3254 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3255 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3256 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3257 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3258 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3259 pr_err("%-20s%08x %08x\n", "intercepts:", 3260 control->intercepts[INTERCEPT_WORD3], 3261 control->intercepts[INTERCEPT_WORD4]); 3262 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3263 pr_err("%-20s%d\n", "pause filter threshold:", 3264 control->pause_filter_thresh); 3265 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3266 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3267 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3268 pr_err("%-20s%d\n", "asid:", control->asid); 3269 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3270 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3271 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3272 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3273 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3274 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3275 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3276 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3277 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3278 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3279 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3280 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3281 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3282 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3283 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3284 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3285 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3286 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3287 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3288 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3289 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3290 pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features); 3291 pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features); 3292 3293 if (sev_es_guest(vcpu->kvm)) { 3294 save = sev_decrypt_vmsa(vcpu); 3295 if (!save) 3296 goto no_vmsa; 3297 3298 save01 = save; 3299 } 3300 3301 pr_err("VMCB State Save Area:\n"); 3302 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3303 "es:", 3304 save->es.selector, save->es.attrib, 3305 save->es.limit, save->es.base); 3306 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3307 "cs:", 3308 save->cs.selector, save->cs.attrib, 3309 save->cs.limit, save->cs.base); 3310 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3311 "ss:", 3312 save->ss.selector, save->ss.attrib, 3313 save->ss.limit, save->ss.base); 3314 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3315 "ds:", 3316 save->ds.selector, save->ds.attrib, 3317 save->ds.limit, save->ds.base); 3318 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3319 "fs:", 3320 save01->fs.selector, save01->fs.attrib, 3321 save01->fs.limit, save01->fs.base); 3322 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3323 "gs:", 3324 save01->gs.selector, save01->gs.attrib, 3325 save01->gs.limit, save01->gs.base); 3326 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3327 "gdtr:", 3328 save->gdtr.selector, save->gdtr.attrib, 3329 save->gdtr.limit, save->gdtr.base); 3330 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3331 "ldtr:", 3332 save01->ldtr.selector, save01->ldtr.attrib, 3333 save01->ldtr.limit, save01->ldtr.base); 3334 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3335 "idtr:", 3336 save->idtr.selector, save->idtr.attrib, 3337 save->idtr.limit, save->idtr.base); 3338 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3339 "tr:", 3340 save01->tr.selector, save01->tr.attrib, 3341 save01->tr.limit, save01->tr.base); 3342 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3343 save->vmpl, save->cpl, save->efer); 3344 pr_err("%-15s %016llx %-13s %016llx\n", 3345 "cr0:", save->cr0, "cr2:", save->cr2); 3346 pr_err("%-15s %016llx %-13s %016llx\n", 3347 "cr3:", save->cr3, "cr4:", save->cr4); 3348 pr_err("%-15s %016llx %-13s %016llx\n", 3349 "dr6:", save->dr6, "dr7:", save->dr7); 3350 pr_err("%-15s %016llx %-13s %016llx\n", 3351 "rip:", save->rip, "rflags:", save->rflags); 3352 pr_err("%-15s %016llx %-13s %016llx\n", 3353 "rsp:", save->rsp, "rax:", save->rax); 3354 pr_err("%-15s %016llx %-13s %016llx\n", 3355 "s_cet:", save->s_cet, "ssp:", save->ssp); 3356 pr_err("%-15s %016llx\n", 3357 "isst_addr:", save->isst_addr); 3358 pr_err("%-15s %016llx %-13s %016llx\n", 3359 "star:", save01->star, "lstar:", save01->lstar); 3360 pr_err("%-15s %016llx %-13s %016llx\n", 3361 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3362 pr_err("%-15s %016llx %-13s %016llx\n", 3363 "kernel_gs_base:", save01->kernel_gs_base, 3364 "sysenter_cs:", save01->sysenter_cs); 3365 pr_err("%-15s %016llx %-13s %016llx\n", 3366 "sysenter_esp:", save01->sysenter_esp, 3367 "sysenter_eip:", save01->sysenter_eip); 3368 pr_err("%-15s %016llx %-13s %016llx\n", 3369 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3370 pr_err("%-15s %016llx %-13s %016llx\n", 3371 "br_from:", save->br_from, "br_to:", save->br_to); 3372 pr_err("%-15s %016llx %-13s %016llx\n", 3373 "excp_from:", save->last_excp_from, 3374 "excp_to:", save->last_excp_to); 3375 3376 if (sev_es_guest(vcpu->kvm)) { 3377 struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save; 3378 3379 pr_err("%-15s %016llx\n", 3380 "sev_features", vmsa->sev_features); 3381 3382 pr_err("%-15s %016llx %-13s %016llx\n", 3383 "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp); 3384 pr_err("%-15s %016llx %-13s %016llx\n", 3385 "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp); 3386 pr_err("%-15s %016llx\n", 3387 "u_cet:", vmsa->u_cet); 3388 3389 pr_err("%-15s %016llx %-13s %016llx\n", 3390 "rax:", vmsa->rax, "rbx:", vmsa->rbx); 3391 pr_err("%-15s %016llx %-13s %016llx\n", 3392 "rcx:", vmsa->rcx, "rdx:", vmsa->rdx); 3393 pr_err("%-15s %016llx %-13s %016llx\n", 3394 "rsi:", vmsa->rsi, "rdi:", vmsa->rdi); 3395 pr_err("%-15s %016llx %-13s %016llx\n", 3396 "rbp:", vmsa->rbp, "rsp:", vmsa->rsp); 3397 pr_err("%-15s %016llx %-13s %016llx\n", 3398 "r8:", vmsa->r8, "r9:", vmsa->r9); 3399 pr_err("%-15s %016llx %-13s %016llx\n", 3400 "r10:", vmsa->r10, "r11:", vmsa->r11); 3401 pr_err("%-15s %016llx %-13s %016llx\n", 3402 "r12:", vmsa->r12, "r13:", vmsa->r13); 3403 pr_err("%-15s %016llx %-13s %016llx\n", 3404 "r14:", vmsa->r14, "r15:", vmsa->r15); 3405 pr_err("%-15s %016llx %-13s %016llx\n", 3406 "xcr0:", vmsa->xcr0, "xss:", vmsa->xss); 3407 } else { 3408 pr_err("%-15s %016llx %-13s %016lx\n", 3409 "rax:", save->rax, "rbx:", 3410 vcpu->arch.regs[VCPU_REGS_RBX]); 3411 pr_err("%-15s %016lx %-13s %016lx\n", 3412 "rcx:", vcpu->arch.regs[VCPU_REGS_RCX], 3413 "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]); 3414 pr_err("%-15s %016lx %-13s %016lx\n", 3415 "rsi:", vcpu->arch.regs[VCPU_REGS_RSI], 3416 "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]); 3417 pr_err("%-15s %016lx %-13s %016llx\n", 3418 "rbp:", vcpu->arch.regs[VCPU_REGS_RBP], 3419 "rsp:", save->rsp); 3420 #ifdef CONFIG_X86_64 3421 pr_err("%-15s %016lx %-13s %016lx\n", 3422 "r8:", vcpu->arch.regs[VCPU_REGS_R8], 3423 "r9:", vcpu->arch.regs[VCPU_REGS_R9]); 3424 pr_err("%-15s %016lx %-13s %016lx\n", 3425 "r10:", vcpu->arch.regs[VCPU_REGS_R10], 3426 "r11:", vcpu->arch.regs[VCPU_REGS_R11]); 3427 pr_err("%-15s %016lx %-13s %016lx\n", 3428 "r12:", vcpu->arch.regs[VCPU_REGS_R12], 3429 "r13:", vcpu->arch.regs[VCPU_REGS_R13]); 3430 pr_err("%-15s %016lx %-13s %016lx\n", 3431 "r14:", vcpu->arch.regs[VCPU_REGS_R14], 3432 "r15:", vcpu->arch.regs[VCPU_REGS_R15]); 3433 #endif 3434 } 3435 3436 no_vmsa: 3437 if (sev_es_guest(vcpu->kvm)) 3438 sev_free_decrypted_vmsa(vcpu, save); 3439 } 3440 3441 static bool svm_check_exit_valid(u64 exit_code) 3442 { 3443 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3444 svm_exit_handlers[exit_code]); 3445 } 3446 3447 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3448 { 3449 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3450 dump_vmcb(vcpu); 3451 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3452 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3453 vcpu->run->internal.ndata = 2; 3454 vcpu->run->internal.data[0] = exit_code; 3455 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3456 return 0; 3457 } 3458 3459 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3460 { 3461 if (!svm_check_exit_valid(exit_code)) 3462 return svm_handle_invalid_exit(vcpu, exit_code); 3463 3464 #ifdef CONFIG_MITIGATION_RETPOLINE 3465 if (exit_code == SVM_EXIT_MSR) 3466 return msr_interception(vcpu); 3467 else if (exit_code == SVM_EXIT_VINTR) 3468 return interrupt_window_interception(vcpu); 3469 else if (exit_code == SVM_EXIT_INTR) 3470 return intr_interception(vcpu); 3471 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT) 3472 return kvm_emulate_halt(vcpu); 3473 else if (exit_code == SVM_EXIT_NPF) 3474 return npf_interception(vcpu); 3475 #ifdef CONFIG_KVM_AMD_SEV 3476 else if (exit_code == SVM_EXIT_VMGEXIT) 3477 return sev_handle_vmgexit(vcpu); 3478 #endif 3479 #endif 3480 return svm_exit_handlers[exit_code](vcpu); 3481 } 3482 3483 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3484 u64 *info1, u64 *info2, 3485 u32 *intr_info, u32 *error_code) 3486 { 3487 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3488 3489 *reason = control->exit_code; 3490 *info1 = control->exit_info_1; 3491 *info2 = control->exit_info_2; 3492 *intr_info = control->exit_int_info; 3493 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3494 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3495 *error_code = control->exit_int_info_err; 3496 else 3497 *error_code = 0; 3498 } 3499 3500 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, 3501 u32 *error_code) 3502 { 3503 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3504 3505 *intr_info = control->event_inj; 3506 3507 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3508 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3509 *error_code = control->event_inj_err; 3510 else 3511 *error_code = 0; 3512 3513 } 3514 3515 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3516 { 3517 struct vcpu_svm *svm = to_svm(vcpu); 3518 struct kvm_run *kvm_run = vcpu->run; 3519 u32 exit_code = svm->vmcb->control.exit_code; 3520 3521 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3522 if (!sev_es_guest(vcpu->kvm)) { 3523 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3524 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3525 if (npt_enabled) 3526 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3527 } 3528 3529 if (is_guest_mode(vcpu)) { 3530 int vmexit; 3531 3532 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3533 3534 vmexit = nested_svm_exit_special(svm); 3535 3536 if (vmexit == NESTED_EXIT_CONTINUE) 3537 vmexit = nested_svm_exit_handled(svm); 3538 3539 if (vmexit == NESTED_EXIT_DONE) 3540 return 1; 3541 } 3542 3543 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3544 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3545 kvm_run->fail_entry.hardware_entry_failure_reason 3546 = svm->vmcb->control.exit_code; 3547 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3548 dump_vmcb(vcpu); 3549 return 0; 3550 } 3551 3552 if (exit_fastpath != EXIT_FASTPATH_NONE) 3553 return 1; 3554 3555 return svm_invoke_exit_handler(vcpu, exit_code); 3556 } 3557 3558 static int pre_svm_run(struct kvm_vcpu *vcpu) 3559 { 3560 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3561 struct vcpu_svm *svm = to_svm(vcpu); 3562 3563 /* 3564 * If the previous vmrun of the vmcb occurred on a different physical 3565 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3566 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3567 */ 3568 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3569 svm->current_vmcb->asid_generation = 0; 3570 vmcb_mark_all_dirty(svm->vmcb); 3571 svm->current_vmcb->cpu = vcpu->cpu; 3572 } 3573 3574 if (sev_guest(vcpu->kvm)) 3575 return pre_sev_run(svm, vcpu->cpu); 3576 3577 /* FIXME: handle wraparound of asid_generation */ 3578 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3579 new_asid(svm, sd); 3580 3581 return 0; 3582 } 3583 3584 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3585 { 3586 struct vcpu_svm *svm = to_svm(vcpu); 3587 3588 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3589 3590 if (svm->nmi_l1_to_l2) 3591 return; 3592 3593 /* 3594 * No need to manually track NMI masking when vNMI is enabled, hardware 3595 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3596 * case where software directly injects an NMI. 3597 */ 3598 if (!is_vnmi_enabled(svm)) { 3599 svm->nmi_masked = true; 3600 svm_set_iret_intercept(svm); 3601 } 3602 ++vcpu->stat.nmi_injections; 3603 } 3604 3605 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3606 { 3607 struct vcpu_svm *svm = to_svm(vcpu); 3608 3609 if (!is_vnmi_enabled(svm)) 3610 return false; 3611 3612 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3613 } 3614 3615 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3616 { 3617 struct vcpu_svm *svm = to_svm(vcpu); 3618 3619 if (!is_vnmi_enabled(svm)) 3620 return false; 3621 3622 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3623 return false; 3624 3625 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3626 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3627 3628 /* 3629 * Because the pending NMI is serviced by hardware, KVM can't know when 3630 * the NMI is "injected", but for all intents and purposes, passing the 3631 * NMI off to hardware counts as injection. 3632 */ 3633 ++vcpu->stat.nmi_injections; 3634 3635 return true; 3636 } 3637 3638 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3639 { 3640 struct vcpu_svm *svm = to_svm(vcpu); 3641 u32 type; 3642 3643 if (vcpu->arch.interrupt.soft) { 3644 if (svm_update_soft_interrupt_rip(vcpu)) 3645 return; 3646 3647 type = SVM_EVTINJ_TYPE_SOFT; 3648 } else { 3649 type = SVM_EVTINJ_TYPE_INTR; 3650 } 3651 3652 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3653 vcpu->arch.interrupt.soft, reinjected); 3654 ++vcpu->stat.irq_injections; 3655 3656 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3657 SVM_EVTINJ_VALID | type; 3658 } 3659 3660 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3661 int trig_mode, int vector) 3662 { 3663 /* 3664 * apic->apicv_active must be read after vcpu->mode. 3665 * Pairs with smp_store_release in vcpu_enter_guest. 3666 */ 3667 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3668 3669 /* Note, this is called iff the local APIC is in-kernel. */ 3670 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3671 /* Process the interrupt via kvm_check_and_inject_events(). */ 3672 kvm_make_request(KVM_REQ_EVENT, vcpu); 3673 kvm_vcpu_kick(vcpu); 3674 return; 3675 } 3676 3677 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3678 if (in_guest_mode) { 3679 /* 3680 * Signal the doorbell to tell hardware to inject the IRQ. If 3681 * the vCPU exits the guest before the doorbell chimes, hardware 3682 * will automatically process AVIC interrupts at the next VMRUN. 3683 */ 3684 avic_ring_doorbell(vcpu); 3685 } else { 3686 /* 3687 * Wake the vCPU if it was blocking. KVM will then detect the 3688 * pending IRQ when checking if the vCPU has a wake event. 3689 */ 3690 kvm_vcpu_wake_up(vcpu); 3691 } 3692 } 3693 3694 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3695 int trig_mode, int vector) 3696 { 3697 kvm_lapic_set_irr(vector, apic); 3698 3699 /* 3700 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3701 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3702 * the read of guest_mode. This guarantees that either VMRUN will see 3703 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3704 * will signal the doorbell if the CPU has already entered the guest. 3705 */ 3706 smp_mb__after_atomic(); 3707 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3708 } 3709 3710 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3711 { 3712 struct vcpu_svm *svm = to_svm(vcpu); 3713 3714 /* 3715 * SEV-ES guests must always keep the CR intercepts cleared. CR 3716 * tracking is done using the CR write traps. 3717 */ 3718 if (sev_es_guest(vcpu->kvm)) 3719 return; 3720 3721 if (nested_svm_virtualize_tpr(vcpu)) 3722 return; 3723 3724 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3725 3726 if (irr == -1) 3727 return; 3728 3729 if (tpr >= irr) 3730 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3731 } 3732 3733 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3734 { 3735 struct vcpu_svm *svm = to_svm(vcpu); 3736 3737 if (is_vnmi_enabled(svm)) 3738 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3739 else 3740 return svm->nmi_masked; 3741 } 3742 3743 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3744 { 3745 struct vcpu_svm *svm = to_svm(vcpu); 3746 3747 if (is_vnmi_enabled(svm)) { 3748 if (masked) 3749 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3750 else 3751 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3752 3753 } else { 3754 svm->nmi_masked = masked; 3755 if (masked) 3756 svm_set_iret_intercept(svm); 3757 else 3758 svm_clr_iret_intercept(svm); 3759 } 3760 } 3761 3762 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3763 { 3764 struct vcpu_svm *svm = to_svm(vcpu); 3765 struct vmcb *vmcb = svm->vmcb; 3766 3767 if (!gif_set(svm)) 3768 return true; 3769 3770 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3771 return false; 3772 3773 if (svm_get_nmi_mask(vcpu)) 3774 return true; 3775 3776 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3777 } 3778 3779 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3780 { 3781 struct vcpu_svm *svm = to_svm(vcpu); 3782 if (svm->nested.nested_run_pending) 3783 return -EBUSY; 3784 3785 if (svm_nmi_blocked(vcpu)) 3786 return 0; 3787 3788 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3789 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3790 return -EBUSY; 3791 return 1; 3792 } 3793 3794 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3795 { 3796 struct vcpu_svm *svm = to_svm(vcpu); 3797 struct vmcb *vmcb = svm->vmcb; 3798 3799 if (!gif_set(svm)) 3800 return true; 3801 3802 if (is_guest_mode(vcpu)) { 3803 /* As long as interrupts are being delivered... */ 3804 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3805 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3806 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3807 return true; 3808 3809 /* ... vmexits aren't blocked by the interrupt shadow */ 3810 if (nested_exit_on_intr(svm)) 3811 return false; 3812 } else { 3813 if (!svm_get_if_flag(vcpu)) 3814 return true; 3815 } 3816 3817 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3818 } 3819 3820 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3821 { 3822 struct vcpu_svm *svm = to_svm(vcpu); 3823 3824 if (svm->nested.nested_run_pending) 3825 return -EBUSY; 3826 3827 if (svm_interrupt_blocked(vcpu)) 3828 return 0; 3829 3830 /* 3831 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3832 * e.g. if the IRQ arrived asynchronously after checking nested events. 3833 */ 3834 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3835 return -EBUSY; 3836 3837 return 1; 3838 } 3839 3840 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3841 { 3842 struct vcpu_svm *svm = to_svm(vcpu); 3843 3844 /* 3845 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3846 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3847 * get that intercept, this function will be called again though and 3848 * we'll get the vintr intercept. However, if the vGIF feature is 3849 * enabled, the STGI interception will not occur. Enable the irq 3850 * window under the assumption that the hardware will set the GIF. 3851 */ 3852 if (vgif || gif_set(svm)) { 3853 /* 3854 * IRQ window is not needed when AVIC is enabled, 3855 * unless we have pending ExtINT since it cannot be injected 3856 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3857 * and fallback to injecting IRQ via V_IRQ. 3858 * 3859 * If running nested, AVIC is already locally inhibited 3860 * on this vCPU, therefore there is no need to request 3861 * the VM wide AVIC inhibition. 3862 */ 3863 if (!is_guest_mode(vcpu)) 3864 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3865 3866 svm_set_vintr(svm); 3867 } 3868 } 3869 3870 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3871 { 3872 struct vcpu_svm *svm = to_svm(vcpu); 3873 3874 /* 3875 * If NMIs are outright masked, i.e. the vCPU is already handling an 3876 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3877 * more to do at this time as KVM has already enabled IRET intercepts. 3878 * If KVM has already intercepted IRET, then single-step over the IRET, 3879 * as NMIs aren't architecturally unmasked until the IRET completes. 3880 * 3881 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3882 * are masked, as KVM allows at most one to-be-injected NMI and one 3883 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3884 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3885 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3886 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3887 * inject the NMI. In those situations, KVM needs to single-step over 3888 * the STI shadow or intercept STGI. 3889 */ 3890 if (svm_get_nmi_mask(vcpu)) { 3891 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3892 3893 if (!svm->awaiting_iret_completion) 3894 return; /* IRET will cause a vm exit */ 3895 } 3896 3897 /* 3898 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3899 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3900 * KVM can't intercept and single-step IRET to detect when NMIs are 3901 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3902 * 3903 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3904 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3905 * supported NAEs in the GHCB protocol. 3906 */ 3907 if (sev_es_guest(vcpu->kvm)) 3908 return; 3909 3910 if (!gif_set(svm)) { 3911 if (vgif) 3912 svm_set_intercept(svm, INTERCEPT_STGI); 3913 return; /* STGI will cause a vm exit */ 3914 } 3915 3916 /* 3917 * Something prevents NMI from been injected. Single step over possible 3918 * problem (IRET or exception injection or interrupt shadow) 3919 */ 3920 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3921 svm->nmi_singlestep = true; 3922 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3923 } 3924 3925 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3926 { 3927 struct vcpu_svm *svm = to_svm(vcpu); 3928 3929 /* 3930 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3931 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3932 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3933 */ 3934 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3935 3936 /* 3937 * Flush only the current ASID even if the TLB flush was invoked via 3938 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3939 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3940 * unconditionally does a TLB flush on both nested VM-Enter and nested 3941 * VM-Exit (via kvm_mmu_reset_context()). 3942 */ 3943 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3944 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3945 else 3946 svm->current_vmcb->asid_generation--; 3947 } 3948 3949 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3950 { 3951 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3952 3953 /* 3954 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3955 * flush the NPT mappings via hypercall as flushing the ASID only 3956 * affects virtual to physical mappings, it does not invalidate guest 3957 * physical to host physical mappings. 3958 */ 3959 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3960 hyperv_flush_guest_mapping(root_tdp); 3961 3962 svm_flush_tlb_asid(vcpu); 3963 } 3964 3965 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3966 { 3967 /* 3968 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3969 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3970 * a "regular" remote flush. Reaching this point means either there's 3971 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3972 * which might be fatal to the guest. Yell, but try to recover. 3973 */ 3974 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3975 hv_flush_remote_tlbs(vcpu->kvm); 3976 3977 svm_flush_tlb_asid(vcpu); 3978 } 3979 3980 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3981 { 3982 struct vcpu_svm *svm = to_svm(vcpu); 3983 3984 invlpga(gva, svm->vmcb->control.asid); 3985 } 3986 3987 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3988 { 3989 struct vcpu_svm *svm = to_svm(vcpu); 3990 3991 if (nested_svm_virtualize_tpr(vcpu)) 3992 return; 3993 3994 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3995 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3996 kvm_set_cr8(vcpu, cr8); 3997 } 3998 } 3999 4000 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4001 { 4002 struct vcpu_svm *svm = to_svm(vcpu); 4003 u64 cr8; 4004 4005 if (nested_svm_virtualize_tpr(vcpu)) 4006 return; 4007 4008 cr8 = kvm_get_cr8(vcpu); 4009 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4010 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4011 } 4012 4013 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4014 int type) 4015 { 4016 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4017 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4018 struct vcpu_svm *svm = to_svm(vcpu); 4019 4020 /* 4021 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4022 * associated with the original soft exception/interrupt. next_rip is 4023 * cleared on all exits that can occur while vectoring an event, so KVM 4024 * needs to manually set next_rip for re-injection. Unlike the !nrips 4025 * case below, this needs to be done if and only if KVM is re-injecting 4026 * the same event, i.e. if the event is a soft exception/interrupt, 4027 * otherwise next_rip is unused on VMRUN. 4028 */ 4029 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4030 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4031 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4032 /* 4033 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4034 * injecting the soft exception/interrupt. That advancement needs to 4035 * be unwound if vectoring didn't complete. Note, the new event may 4036 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4037 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4038 * be the reported vectored event, but RIP still needs to be unwound. 4039 */ 4040 else if (!nrips && (is_soft || is_exception) && 4041 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4042 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4043 } 4044 4045 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4046 { 4047 struct vcpu_svm *svm = to_svm(vcpu); 4048 u8 vector; 4049 int type; 4050 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4051 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4052 bool soft_int_injected = svm->soft_int_injected; 4053 4054 svm->nmi_l1_to_l2 = false; 4055 svm->soft_int_injected = false; 4056 4057 /* 4058 * If we've made progress since setting awaiting_iret_completion, we've 4059 * executed an IRET and can allow NMI injection. 4060 */ 4061 if (svm->awaiting_iret_completion && 4062 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4063 svm->awaiting_iret_completion = false; 4064 svm->nmi_masked = false; 4065 kvm_make_request(KVM_REQ_EVENT, vcpu); 4066 } 4067 4068 vcpu->arch.nmi_injected = false; 4069 kvm_clear_exception_queue(vcpu); 4070 kvm_clear_interrupt_queue(vcpu); 4071 4072 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4073 return; 4074 4075 kvm_make_request(KVM_REQ_EVENT, vcpu); 4076 4077 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4078 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4079 4080 if (soft_int_injected) 4081 svm_complete_soft_interrupt(vcpu, vector, type); 4082 4083 switch (type) { 4084 case SVM_EXITINTINFO_TYPE_NMI: 4085 vcpu->arch.nmi_injected = true; 4086 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4087 break; 4088 case SVM_EXITINTINFO_TYPE_EXEPT: { 4089 u32 error_code = 0; 4090 4091 /* 4092 * Never re-inject a #VC exception. 4093 */ 4094 if (vector == X86_TRAP_VC) 4095 break; 4096 4097 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) 4098 error_code = svm->vmcb->control.exit_int_info_err; 4099 4100 kvm_requeue_exception(vcpu, vector, 4101 exitintinfo & SVM_EXITINTINFO_VALID_ERR, 4102 error_code); 4103 break; 4104 } 4105 case SVM_EXITINTINFO_TYPE_INTR: 4106 kvm_queue_interrupt(vcpu, vector, false); 4107 break; 4108 case SVM_EXITINTINFO_TYPE_SOFT: 4109 kvm_queue_interrupt(vcpu, vector, true); 4110 break; 4111 default: 4112 break; 4113 } 4114 4115 } 4116 4117 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4118 { 4119 struct vcpu_svm *svm = to_svm(vcpu); 4120 struct vmcb_control_area *control = &svm->vmcb->control; 4121 4122 control->exit_int_info = control->event_inj; 4123 control->exit_int_info_err = control->event_inj_err; 4124 control->event_inj = 0; 4125 svm_complete_interrupts(vcpu); 4126 } 4127 4128 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4129 { 4130 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4131 return -EINVAL; 4132 4133 return 1; 4134 } 4135 4136 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4137 { 4138 struct vcpu_svm *svm = to_svm(vcpu); 4139 struct vmcb_control_area *control = &svm->vmcb->control; 4140 4141 /* 4142 * Next RIP must be provided as IRQs are disabled, and accessing guest 4143 * memory to decode the instruction might fault, i.e. might sleep. 4144 */ 4145 if (!nrips || !control->next_rip) 4146 return EXIT_FASTPATH_NONE; 4147 4148 if (is_guest_mode(vcpu)) 4149 return EXIT_FASTPATH_NONE; 4150 4151 switch (control->exit_code) { 4152 case SVM_EXIT_MSR: 4153 if (!control->exit_info_1) 4154 break; 4155 return handle_fastpath_wrmsr(vcpu); 4156 case SVM_EXIT_HLT: 4157 return handle_fastpath_hlt(vcpu); 4158 case SVM_EXIT_INVD: 4159 return handle_fastpath_invd(vcpu); 4160 default: 4161 break; 4162 } 4163 4164 return EXIT_FASTPATH_NONE; 4165 } 4166 4167 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4168 { 4169 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4170 struct vcpu_svm *svm = to_svm(vcpu); 4171 4172 guest_state_enter_irqoff(); 4173 4174 /* 4175 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of 4176 * VMRUN controls whether or not physical IRQs are masked (KVM always 4177 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the 4178 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow 4179 * into guest state if delivery of an event during VMRUN triggers a 4180 * #VMEXIT, and the guest_state transitions already tell lockdep that 4181 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of 4182 * this path, so IRQs aren't actually unmasked while running host code. 4183 */ 4184 raw_local_irq_enable(); 4185 4186 amd_clear_divider(); 4187 4188 if (sev_es_guest(vcpu->kvm)) 4189 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4190 sev_es_host_save_area(sd)); 4191 else 4192 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4193 4194 raw_local_irq_disable(); 4195 4196 guest_state_exit_irqoff(); 4197 } 4198 4199 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags) 4200 { 4201 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT; 4202 struct vcpu_svm *svm = to_svm(vcpu); 4203 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4204 4205 trace_kvm_entry(vcpu, force_immediate_exit); 4206 4207 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4208 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4209 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4210 4211 /* 4212 * Disable singlestep if we're injecting an interrupt/exception. 4213 * We don't want our modified rflags to be pushed on the stack where 4214 * we might not be able to easily reset them if we disabled NMI 4215 * singlestep later. 4216 */ 4217 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4218 /* 4219 * Event injection happens before external interrupts cause a 4220 * vmexit and interrupts are disabled here, so smp_send_reschedule 4221 * is enough to force an immediate vmexit. 4222 */ 4223 disable_nmi_singlestep(svm); 4224 force_immediate_exit = true; 4225 } 4226 4227 if (force_immediate_exit) 4228 smp_send_reschedule(vcpu->cpu); 4229 4230 if (pre_svm_run(vcpu)) { 4231 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4232 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR; 4233 vcpu->run->fail_entry.cpu = vcpu->cpu; 4234 return EXIT_FASTPATH_EXIT_USERSPACE; 4235 } 4236 4237 sync_lapic_to_cr8(vcpu); 4238 4239 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4240 svm->vmcb->control.asid = svm->asid; 4241 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4242 } 4243 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4244 4245 svm_hv_update_vp_id(svm->vmcb, vcpu); 4246 4247 /* 4248 * Run with all-zero DR6 unless the guest can write DR6 freely, so that 4249 * KVM can get the exact cause of a #DB. Note, loading guest DR6 from 4250 * KVM's snapshot is only necessary when DR accesses won't exit. 4251 */ 4252 if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6)) 4253 svm_set_dr6(vcpu, vcpu->arch.dr6); 4254 else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))) 4255 svm_set_dr6(vcpu, DR6_ACTIVE_LOW); 4256 4257 clgi(); 4258 kvm_load_guest_xsave_state(vcpu); 4259 4260 /* 4261 * Hardware only context switches DEBUGCTL if LBR virtualization is 4262 * enabled. Manually load DEBUGCTL if necessary (and restore it after 4263 * VM-Exit), as running with the host's DEBUGCTL can negatively affect 4264 * guest state and can even be fatal, e.g. due to Bus Lock Detect. 4265 */ 4266 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4267 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4268 update_debugctlmsr(svm->vmcb->save.dbgctl); 4269 4270 kvm_wait_lapic_expire(vcpu); 4271 4272 /* 4273 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4274 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4275 * is no need to worry about the conditional branch over the wrmsr 4276 * being speculatively taken. 4277 */ 4278 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4279 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4280 4281 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4282 4283 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4284 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4285 4286 if (!sev_es_guest(vcpu->kvm)) { 4287 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4288 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4289 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4290 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4291 } 4292 vcpu->arch.regs_dirty = 0; 4293 4294 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4295 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4296 4297 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4298 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4299 update_debugctlmsr(vcpu->arch.host_debugctl); 4300 4301 kvm_load_host_xsave_state(vcpu); 4302 stgi(); 4303 4304 /* Any pending NMI will happen here */ 4305 4306 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4307 kvm_after_interrupt(vcpu); 4308 4309 sync_cr8_to_lapic(vcpu); 4310 4311 svm->next_rip = 0; 4312 if (is_guest_mode(vcpu)) { 4313 nested_sync_control_from_vmcb02(svm); 4314 4315 /* Track VMRUNs that have made past consistency checking */ 4316 if (svm->nested.nested_run_pending && 4317 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4318 ++vcpu->stat.nested_run; 4319 4320 svm->nested.nested_run_pending = 0; 4321 } 4322 4323 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4324 vmcb_mark_all_clean(svm->vmcb); 4325 4326 /* if exit due to PF check for async PF */ 4327 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4328 vcpu->arch.apf.host_apf_flags = 4329 kvm_read_and_reset_apf_flags(); 4330 4331 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4332 4333 /* 4334 * We need to handle MC intercepts here before the vcpu has a chance to 4335 * change the physical cpu 4336 */ 4337 if (unlikely(svm->vmcb->control.exit_code == 4338 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4339 svm_handle_mce(vcpu); 4340 4341 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4342 4343 svm_complete_interrupts(vcpu); 4344 4345 return svm_exit_handlers_fastpath(vcpu); 4346 } 4347 4348 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4349 int root_level) 4350 { 4351 struct vcpu_svm *svm = to_svm(vcpu); 4352 unsigned long cr3; 4353 4354 if (npt_enabled) { 4355 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4356 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4357 4358 hv_track_root_tdp(vcpu, root_hpa); 4359 4360 cr3 = vcpu->arch.cr3; 4361 } else if (root_level >= PT64_ROOT_4LEVEL) { 4362 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4363 } else { 4364 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4365 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4366 cr3 = root_hpa; 4367 } 4368 4369 svm->vmcb->save.cr3 = cr3; 4370 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4371 } 4372 4373 static void 4374 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4375 { 4376 /* 4377 * Patch in the VMMCALL instruction: 4378 */ 4379 hypercall[0] = 0x0f; 4380 hypercall[1] = 0x01; 4381 hypercall[2] = 0xd9; 4382 } 4383 4384 /* 4385 * The kvm parameter can be NULL (module initialization, or invocation before 4386 * VM creation). Be sure to check the kvm parameter before using it. 4387 */ 4388 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4389 { 4390 switch (index) { 4391 case MSR_IA32_MCG_EXT_CTL: 4392 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4393 return false; 4394 case MSR_IA32_SMBASE: 4395 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4396 return false; 4397 /* SEV-ES guests do not support SMM, so report false */ 4398 if (kvm && sev_es_guest(kvm)) 4399 return false; 4400 break; 4401 default: 4402 break; 4403 } 4404 4405 return true; 4406 } 4407 4408 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4409 { 4410 struct vcpu_svm *svm = to_svm(vcpu); 4411 4412 /* 4413 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4414 * can only disable all variants of by disallowing CR4.OSXSAVE from 4415 * being set. As a result, if the host has XSAVE and XSAVES, and the 4416 * guest has XSAVE enabled, the guest can execute XSAVES without 4417 * faulting. Treat XSAVES as enabled in this case regardless of 4418 * whether it's advertised to the guest so that KVM context switches 4419 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4420 * the guest read/write access to the host's XSS. 4421 */ 4422 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES, 4423 boot_cpu_has(X86_FEATURE_XSAVES) && 4424 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)); 4425 4426 /* 4427 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4428 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4429 * SVM on Intel is bonkers and extremely unlikely to work). 4430 */ 4431 if (guest_cpuid_is_intel_compatible(vcpu)) 4432 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4433 4434 if (sev_guest(vcpu->kvm)) 4435 sev_vcpu_after_set_cpuid(svm); 4436 } 4437 4438 static bool svm_has_wbinvd_exit(void) 4439 { 4440 return true; 4441 } 4442 4443 #define PRE_EX(exit) { .exit_code = (exit), \ 4444 .stage = X86_ICPT_PRE_EXCEPT, } 4445 #define POST_EX(exit) { .exit_code = (exit), \ 4446 .stage = X86_ICPT_POST_EXCEPT, } 4447 #define POST_MEM(exit) { .exit_code = (exit), \ 4448 .stage = X86_ICPT_POST_MEMACCESS, } 4449 4450 static const struct __x86_intercept { 4451 u32 exit_code; 4452 enum x86_intercept_stage stage; 4453 } x86_intercept_map[] = { 4454 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4455 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4456 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4457 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4458 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4459 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4460 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4461 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4462 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4463 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4464 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4465 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4466 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4467 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4468 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4469 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4470 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4471 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4472 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4473 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4474 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4475 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4476 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4477 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4478 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4479 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4480 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4481 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4482 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4483 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4484 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4485 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4486 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4487 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4488 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4489 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4490 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4491 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4492 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4493 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4494 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4495 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4496 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4497 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4498 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4499 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4500 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4501 }; 4502 4503 #undef PRE_EX 4504 #undef POST_EX 4505 #undef POST_MEM 4506 4507 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4508 struct x86_instruction_info *info, 4509 enum x86_intercept_stage stage, 4510 struct x86_exception *exception) 4511 { 4512 struct vcpu_svm *svm = to_svm(vcpu); 4513 int vmexit, ret = X86EMUL_CONTINUE; 4514 struct __x86_intercept icpt_info; 4515 struct vmcb *vmcb = svm->vmcb; 4516 4517 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4518 goto out; 4519 4520 icpt_info = x86_intercept_map[info->intercept]; 4521 4522 if (stage != icpt_info.stage) 4523 goto out; 4524 4525 switch (icpt_info.exit_code) { 4526 case SVM_EXIT_READ_CR0: 4527 if (info->intercept == x86_intercept_cr_read) 4528 icpt_info.exit_code += info->modrm_reg; 4529 break; 4530 case SVM_EXIT_WRITE_CR0: { 4531 unsigned long cr0, val; 4532 4533 if (info->intercept == x86_intercept_cr_write) 4534 icpt_info.exit_code += info->modrm_reg; 4535 4536 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4537 info->intercept == x86_intercept_clts) 4538 break; 4539 4540 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4541 INTERCEPT_SELECTIVE_CR0))) 4542 break; 4543 4544 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4545 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4546 4547 if (info->intercept == x86_intercept_lmsw) { 4548 cr0 &= 0xfUL; 4549 val &= 0xfUL; 4550 /* lmsw can't clear PE - catch this here */ 4551 if (cr0 & X86_CR0_PE) 4552 val |= X86_CR0_PE; 4553 } 4554 4555 if (cr0 ^ val) 4556 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4557 4558 break; 4559 } 4560 case SVM_EXIT_READ_DR0: 4561 case SVM_EXIT_WRITE_DR0: 4562 icpt_info.exit_code += info->modrm_reg; 4563 break; 4564 case SVM_EXIT_MSR: 4565 if (info->intercept == x86_intercept_wrmsr) 4566 vmcb->control.exit_info_1 = 1; 4567 else 4568 vmcb->control.exit_info_1 = 0; 4569 break; 4570 case SVM_EXIT_PAUSE: 4571 /* 4572 * We get this for NOP only, but pause 4573 * is rep not, check this here 4574 */ 4575 if (info->rep_prefix != REPE_PREFIX) 4576 goto out; 4577 break; 4578 case SVM_EXIT_IOIO: { 4579 u64 exit_info; 4580 u32 bytes; 4581 4582 if (info->intercept == x86_intercept_in || 4583 info->intercept == x86_intercept_ins) { 4584 exit_info = ((info->src_val & 0xffff) << 16) | 4585 SVM_IOIO_TYPE_MASK; 4586 bytes = info->dst_bytes; 4587 } else { 4588 exit_info = (info->dst_val & 0xffff) << 16; 4589 bytes = info->src_bytes; 4590 } 4591 4592 if (info->intercept == x86_intercept_outs || 4593 info->intercept == x86_intercept_ins) 4594 exit_info |= SVM_IOIO_STR_MASK; 4595 4596 if (info->rep_prefix) 4597 exit_info |= SVM_IOIO_REP_MASK; 4598 4599 bytes = min(bytes, 4u); 4600 4601 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4602 4603 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4604 4605 vmcb->control.exit_info_1 = exit_info; 4606 vmcb->control.exit_info_2 = info->next_rip; 4607 4608 break; 4609 } 4610 default: 4611 break; 4612 } 4613 4614 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4615 if (static_cpu_has(X86_FEATURE_NRIPS)) 4616 vmcb->control.next_rip = info->next_rip; 4617 vmcb->control.exit_code = icpt_info.exit_code; 4618 vmexit = nested_svm_exit_handled(svm); 4619 4620 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4621 : X86EMUL_CONTINUE; 4622 4623 out: 4624 return ret; 4625 } 4626 4627 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4628 { 4629 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4630 vcpu->arch.at_instruction_boundary = true; 4631 } 4632 4633 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4634 { 4635 /* [63:9] are reserved. */ 4636 vcpu->arch.mcg_cap &= 0x1ff; 4637 } 4638 4639 #ifdef CONFIG_KVM_SMM 4640 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4641 { 4642 struct vcpu_svm *svm = to_svm(vcpu); 4643 4644 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4645 if (!gif_set(svm)) 4646 return true; 4647 4648 return is_smm(vcpu); 4649 } 4650 4651 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4652 { 4653 struct vcpu_svm *svm = to_svm(vcpu); 4654 if (svm->nested.nested_run_pending) 4655 return -EBUSY; 4656 4657 if (svm_smi_blocked(vcpu)) 4658 return 0; 4659 4660 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4661 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4662 return -EBUSY; 4663 4664 return 1; 4665 } 4666 4667 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4668 { 4669 struct vcpu_svm *svm = to_svm(vcpu); 4670 struct kvm_host_map map_save; 4671 int ret; 4672 4673 if (!is_guest_mode(vcpu)) 4674 return 0; 4675 4676 /* 4677 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4678 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4679 */ 4680 4681 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4682 return 1; 4683 4684 smram->smram64.svm_guest_flag = 1; 4685 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4686 4687 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4688 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4689 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4690 4691 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4692 if (ret) 4693 return ret; 4694 4695 /* 4696 * KVM uses VMCB01 to store L1 host state while L2 runs but 4697 * VMCB01 is going to be used during SMM and thus the state will 4698 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4699 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4700 * format of the area is identical to guest save area offsetted 4701 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4702 * within 'struct vmcb'). Note: HSAVE area may also be used by 4703 * L1 hypervisor to save additional host context (e.g. KVM does 4704 * that, see svm_prepare_switch_to_guest()) which must be 4705 * preserved. 4706 */ 4707 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4708 return 1; 4709 4710 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4711 4712 svm_copy_vmrun_state(map_save.hva + 0x400, 4713 &svm->vmcb01.ptr->save); 4714 4715 kvm_vcpu_unmap(vcpu, &map_save); 4716 return 0; 4717 } 4718 4719 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4720 { 4721 struct vcpu_svm *svm = to_svm(vcpu); 4722 struct kvm_host_map map, map_save; 4723 struct vmcb *vmcb12; 4724 int ret; 4725 4726 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4727 4728 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4729 return 0; 4730 4731 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4732 if (!smram64->svm_guest_flag) 4733 return 0; 4734 4735 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 4736 return 1; 4737 4738 if (!(smram64->efer & EFER_SVME)) 4739 return 1; 4740 4741 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4742 return 1; 4743 4744 ret = 1; 4745 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4746 goto unmap_map; 4747 4748 if (svm_allocate_nested(svm)) 4749 goto unmap_save; 4750 4751 /* 4752 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4753 * used during SMM (see svm_enter_smm()) 4754 */ 4755 4756 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4757 4758 /* 4759 * Enter the nested guest now 4760 */ 4761 4762 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4763 4764 vmcb12 = map.hva; 4765 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4766 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4767 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4768 4769 if (ret) 4770 goto unmap_save; 4771 4772 svm->nested.nested_run_pending = 1; 4773 4774 unmap_save: 4775 kvm_vcpu_unmap(vcpu, &map_save); 4776 unmap_map: 4777 kvm_vcpu_unmap(vcpu, &map); 4778 return ret; 4779 } 4780 4781 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4782 { 4783 struct vcpu_svm *svm = to_svm(vcpu); 4784 4785 if (!gif_set(svm)) { 4786 if (vgif) 4787 svm_set_intercept(svm, INTERCEPT_STGI); 4788 /* STGI will cause a vm exit */ 4789 } else { 4790 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4791 } 4792 } 4793 #endif 4794 4795 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4796 void *insn, int insn_len) 4797 { 4798 struct vcpu_svm *svm = to_svm(vcpu); 4799 bool smep, smap, is_user; 4800 u64 error_code; 4801 4802 /* Check that emulation is possible during event vectoring */ 4803 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) && 4804 !kvm_can_emulate_event_vectoring(emul_type)) 4805 return X86EMUL_UNHANDLEABLE_VECTORING; 4806 4807 /* Emulation is always possible when KVM has access to all guest state. */ 4808 if (!sev_guest(vcpu->kvm)) 4809 return X86EMUL_CONTINUE; 4810 4811 /* #UD and #GP should never be intercepted for SEV guests. */ 4812 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4813 EMULTYPE_TRAP_UD_FORCED | 4814 EMULTYPE_VMWARE_GP)); 4815 4816 /* 4817 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4818 * to guest register state. 4819 */ 4820 if (sev_es_guest(vcpu->kvm)) 4821 return X86EMUL_RETRY_INSTR; 4822 4823 /* 4824 * Emulation is possible if the instruction is already decoded, e.g. 4825 * when completing I/O after returning from userspace. 4826 */ 4827 if (emul_type & EMULTYPE_NO_DECODE) 4828 return X86EMUL_CONTINUE; 4829 4830 /* 4831 * Emulation is possible for SEV guests if and only if a prefilled 4832 * buffer containing the bytes of the intercepted instruction is 4833 * available. SEV guest memory is encrypted with a guest specific key 4834 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4835 * decode garbage. 4836 * 4837 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4838 * KVM reached this point without an instruction buffer. In practice, 4839 * this path should never be hit by a well-behaved guest, e.g. KVM 4840 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4841 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4842 * access, and needs to be handled by KVM to avoid putting the guest 4843 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4844 * its the least awful option given lack of insight into the guest. 4845 * 4846 * If KVM is trying to skip an instruction, simply resume the guest. 4847 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4848 * will attempt to re-inject the INT3/INTO and skip the instruction. 4849 * In that scenario, retrying the INT3/INTO and hoping the guest will 4850 * make forward progress is the only option that has a chance of 4851 * success (and in practice it will work the vast majority of the time). 4852 */ 4853 if (unlikely(!insn)) { 4854 if (emul_type & EMULTYPE_SKIP) 4855 return X86EMUL_UNHANDLEABLE; 4856 4857 kvm_queue_exception(vcpu, UD_VECTOR); 4858 return X86EMUL_PROPAGATE_FAULT; 4859 } 4860 4861 /* 4862 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4863 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4864 * the faulting instruction because the code fetch itself faulted, e.g. 4865 * the guest attempted to fetch from emulated MMIO or a guest page 4866 * table used to translate CS:RIP resides in emulated MMIO. 4867 */ 4868 if (likely(insn_len)) 4869 return X86EMUL_CONTINUE; 4870 4871 /* 4872 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4873 * 4874 * Errata: 4875 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4876 * possible that CPU microcode implementing DecodeAssist will fail to 4877 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4878 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4879 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4880 * gives up and does not fill the instruction bytes buffer. 4881 * 4882 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4883 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4884 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4885 * GuestIntrBytes field of the VMCB. 4886 * 4887 * This does _not_ mean that the erratum has been encountered, as the 4888 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4889 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4890 * encountered a reserved/not-present #PF. 4891 * 4892 * To hit the erratum, the following conditions must be true: 4893 * 1. CR4.SMAP=1 (obviously). 4894 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4895 * have been hit as the guest would have encountered a SMEP 4896 * violation #PF, not a #NPF. 4897 * 3. The #NPF is not due to a code fetch, in which case failure to 4898 * retrieve the instruction bytes is legitimate (see abvoe). 4899 * 4900 * In addition, don't apply the erratum workaround if the #NPF occurred 4901 * while translating guest page tables (see below). 4902 */ 4903 error_code = svm->vmcb->control.exit_info_1; 4904 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4905 goto resume_guest; 4906 4907 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4908 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4909 is_user = svm_get_cpl(vcpu) == 3; 4910 if (smap && (!smep || is_user)) { 4911 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4912 4913 /* 4914 * If the fault occurred in userspace, arbitrarily inject #GP 4915 * to avoid killing the guest and to hopefully avoid confusing 4916 * the guest kernel too much, e.g. injecting #PF would not be 4917 * coherent with respect to the guest's page tables. Request 4918 * triple fault if the fault occurred in the kernel as there's 4919 * no fault that KVM can inject without confusing the guest. 4920 * In practice, the triple fault is moot as no sane SEV kernel 4921 * will execute from user memory while also running with SMAP=1. 4922 */ 4923 if (is_user) 4924 kvm_inject_gp(vcpu, 0); 4925 else 4926 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4927 return X86EMUL_PROPAGATE_FAULT; 4928 } 4929 4930 resume_guest: 4931 /* 4932 * If the erratum was not hit, simply resume the guest and let it fault 4933 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4934 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4935 * userspace will kill the guest, and letting the emulator read garbage 4936 * will yield random behavior and potentially corrupt the guest. 4937 * 4938 * Simply resuming the guest is technically not a violation of the SEV 4939 * architecture. AMD's APM states that all code fetches and page table 4940 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4941 * APM also states that encrypted accesses to MMIO are "ignored", but 4942 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4943 * the guest spin is technically "ignoring" the access. 4944 */ 4945 return X86EMUL_RETRY_INSTR; 4946 } 4947 4948 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4949 { 4950 struct vcpu_svm *svm = to_svm(vcpu); 4951 4952 return !gif_set(svm); 4953 } 4954 4955 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4956 { 4957 if (!sev_es_guest(vcpu->kvm)) 4958 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4959 4960 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4961 } 4962 4963 static void svm_vm_destroy(struct kvm *kvm) 4964 { 4965 avic_vm_destroy(kvm); 4966 sev_vm_destroy(kvm); 4967 4968 svm_srso_vm_destroy(); 4969 } 4970 4971 static int svm_vm_init(struct kvm *kvm) 4972 { 4973 int type = kvm->arch.vm_type; 4974 4975 if (type != KVM_X86_DEFAULT_VM && 4976 type != KVM_X86_SW_PROTECTED_VM) { 4977 kvm->arch.has_protected_state = 4978 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 4979 to_kvm_sev_info(kvm)->need_init = true; 4980 4981 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 4982 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 4983 } 4984 4985 if (!pause_filter_count || !pause_filter_thresh) 4986 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE); 4987 4988 if (enable_apicv) { 4989 int ret = avic_vm_init(kvm); 4990 if (ret) 4991 return ret; 4992 } 4993 4994 svm_srso_vm_init(); 4995 return 0; 4996 } 4997 4998 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 4999 { 5000 struct page *page = snp_safe_alloc_page(); 5001 5002 if (!page) 5003 return NULL; 5004 5005 return page_address(page); 5006 } 5007 5008 struct kvm_x86_ops svm_x86_ops __initdata = { 5009 .name = KBUILD_MODNAME, 5010 5011 .check_processor_compatibility = svm_check_processor_compat, 5012 5013 .hardware_unsetup = svm_hardware_unsetup, 5014 .enable_virtualization_cpu = svm_enable_virtualization_cpu, 5015 .disable_virtualization_cpu = svm_disable_virtualization_cpu, 5016 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, 5017 .has_emulated_msr = svm_has_emulated_msr, 5018 5019 .vcpu_create = svm_vcpu_create, 5020 .vcpu_free = svm_vcpu_free, 5021 .vcpu_reset = svm_vcpu_reset, 5022 5023 .vm_size = sizeof(struct kvm_svm), 5024 .vm_init = svm_vm_init, 5025 .vm_destroy = svm_vm_destroy, 5026 5027 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5028 .vcpu_load = svm_vcpu_load, 5029 .vcpu_put = svm_vcpu_put, 5030 .vcpu_blocking = avic_vcpu_blocking, 5031 .vcpu_unblocking = avic_vcpu_unblocking, 5032 5033 .update_exception_bitmap = svm_update_exception_bitmap, 5034 .get_feature_msr = svm_get_feature_msr, 5035 .get_msr = svm_get_msr, 5036 .set_msr = svm_set_msr, 5037 .get_segment_base = svm_get_segment_base, 5038 .get_segment = svm_get_segment, 5039 .set_segment = svm_set_segment, 5040 .get_cpl = svm_get_cpl, 5041 .get_cpl_no_cache = svm_get_cpl, 5042 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5043 .is_valid_cr0 = svm_is_valid_cr0, 5044 .set_cr0 = svm_set_cr0, 5045 .post_set_cr3 = sev_post_set_cr3, 5046 .is_valid_cr4 = svm_is_valid_cr4, 5047 .set_cr4 = svm_set_cr4, 5048 .set_efer = svm_set_efer, 5049 .get_idt = svm_get_idt, 5050 .set_idt = svm_set_idt, 5051 .get_gdt = svm_get_gdt, 5052 .set_gdt = svm_set_gdt, 5053 .set_dr7 = svm_set_dr7, 5054 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5055 .cache_reg = svm_cache_reg, 5056 .get_rflags = svm_get_rflags, 5057 .set_rflags = svm_set_rflags, 5058 .get_if_flag = svm_get_if_flag, 5059 5060 .flush_tlb_all = svm_flush_tlb_all, 5061 .flush_tlb_current = svm_flush_tlb_current, 5062 .flush_tlb_gva = svm_flush_tlb_gva, 5063 .flush_tlb_guest = svm_flush_tlb_asid, 5064 5065 .vcpu_pre_run = svm_vcpu_pre_run, 5066 .vcpu_run = svm_vcpu_run, 5067 .handle_exit = svm_handle_exit, 5068 .skip_emulated_instruction = svm_skip_emulated_instruction, 5069 .update_emulated_instruction = NULL, 5070 .set_interrupt_shadow = svm_set_interrupt_shadow, 5071 .get_interrupt_shadow = svm_get_interrupt_shadow, 5072 .patch_hypercall = svm_patch_hypercall, 5073 .inject_irq = svm_inject_irq, 5074 .inject_nmi = svm_inject_nmi, 5075 .is_vnmi_pending = svm_is_vnmi_pending, 5076 .set_vnmi_pending = svm_set_vnmi_pending, 5077 .inject_exception = svm_inject_exception, 5078 .cancel_injection = svm_cancel_injection, 5079 .interrupt_allowed = svm_interrupt_allowed, 5080 .nmi_allowed = svm_nmi_allowed, 5081 .get_nmi_mask = svm_get_nmi_mask, 5082 .set_nmi_mask = svm_set_nmi_mask, 5083 .enable_nmi_window = svm_enable_nmi_window, 5084 .enable_irq_window = svm_enable_irq_window, 5085 .update_cr8_intercept = svm_update_cr8_intercept, 5086 5087 .x2apic_icr_is_split = true, 5088 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5089 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5090 .apicv_post_state_restore = avic_apicv_post_state_restore, 5091 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5092 5093 .get_exit_info = svm_get_exit_info, 5094 .get_entry_info = svm_get_entry_info, 5095 5096 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5097 5098 .has_wbinvd_exit = svm_has_wbinvd_exit, 5099 5100 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5101 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5102 .write_tsc_offset = svm_write_tsc_offset, 5103 .write_tsc_multiplier = svm_write_tsc_multiplier, 5104 5105 .load_mmu_pgd = svm_load_mmu_pgd, 5106 5107 .check_intercept = svm_check_intercept, 5108 .handle_exit_irqoff = svm_handle_exit_irqoff, 5109 5110 .nested_ops = &svm_nested_ops, 5111 5112 .deliver_interrupt = svm_deliver_interrupt, 5113 .pi_update_irte = avic_pi_update_irte, 5114 .setup_mce = svm_setup_mce, 5115 5116 #ifdef CONFIG_KVM_SMM 5117 .smi_allowed = svm_smi_allowed, 5118 .enter_smm = svm_enter_smm, 5119 .leave_smm = svm_leave_smm, 5120 .enable_smi_window = svm_enable_smi_window, 5121 #endif 5122 5123 #ifdef CONFIG_KVM_AMD_SEV 5124 .dev_get_attr = sev_dev_get_attr, 5125 .mem_enc_ioctl = sev_mem_enc_ioctl, 5126 .mem_enc_register_region = sev_mem_enc_register_region, 5127 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5128 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5129 5130 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5131 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5132 #endif 5133 .check_emulate_instruction = svm_check_emulate_instruction, 5134 5135 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5136 5137 .recalc_intercepts = svm_recalc_intercepts, 5138 .complete_emulated_msr = svm_complete_emulated_msr, 5139 5140 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5141 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5142 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5143 5144 .gmem_prepare = sev_gmem_prepare, 5145 .gmem_invalidate = sev_gmem_invalidate, 5146 .gmem_max_mapping_level = sev_gmem_max_mapping_level, 5147 }; 5148 5149 /* 5150 * The default MMIO mask is a single bit (excluding the present bit), 5151 * which could conflict with the memory encryption bit. Check for 5152 * memory encryption support and override the default MMIO mask if 5153 * memory encryption is enabled. 5154 */ 5155 static __init void svm_adjust_mmio_mask(void) 5156 { 5157 unsigned int enc_bit, mask_bit; 5158 u64 msr, mask; 5159 5160 /* If there is no memory encryption support, use existing mask */ 5161 if (cpuid_eax(0x80000000) < 0x8000001f) 5162 return; 5163 5164 /* If memory encryption is not enabled, use existing mask */ 5165 rdmsrq(MSR_AMD64_SYSCFG, msr); 5166 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5167 return; 5168 5169 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5170 mask_bit = boot_cpu_data.x86_phys_bits; 5171 5172 /* Increment the mask bit if it is the same as the encryption bit */ 5173 if (enc_bit == mask_bit) 5174 mask_bit++; 5175 5176 /* 5177 * If the mask bit location is below 52, then some bits above the 5178 * physical addressing limit will always be reserved, so use the 5179 * rsvd_bits() function to generate the mask. This mask, along with 5180 * the present bit, will be used to generate a page fault with 5181 * PFER.RSV = 1. 5182 * 5183 * If the mask bit location is 52 (or above), then clear the mask. 5184 */ 5185 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5186 5187 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5188 } 5189 5190 static __init void svm_set_cpu_caps(void) 5191 { 5192 kvm_set_cpu_caps(); 5193 5194 kvm_caps.supported_perf_cap = 0; 5195 5196 kvm_cpu_cap_clear(X86_FEATURE_IBT); 5197 5198 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5199 if (nested) { 5200 kvm_cpu_cap_set(X86_FEATURE_SVM); 5201 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5202 5203 /* 5204 * KVM currently flushes TLBs on *every* nested SVM transition, 5205 * and so for all intents and purposes KVM supports flushing by 5206 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5207 */ 5208 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5209 5210 if (nrips) 5211 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5212 5213 if (npt_enabled) 5214 kvm_cpu_cap_set(X86_FEATURE_NPT); 5215 5216 if (tsc_scaling) 5217 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5218 5219 if (vls) 5220 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5221 if (lbrv) 5222 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5223 5224 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5225 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5226 5227 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5228 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5229 5230 if (vgif) 5231 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5232 5233 if (vnmi) 5234 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5235 5236 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5237 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5238 } 5239 5240 if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD)) 5241 kvm_caps.has_bus_lock_exit = true; 5242 5243 /* CPUID 0x80000008 */ 5244 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5245 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5246 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5247 5248 if (enable_pmu) { 5249 /* 5250 * Enumerate support for PERFCTR_CORE if and only if KVM has 5251 * access to enough counters to virtualize "core" support, 5252 * otherwise limit vPMU support to the legacy number of counters. 5253 */ 5254 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5255 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5256 kvm_pmu_cap.num_counters_gp); 5257 else 5258 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5259 5260 if (kvm_pmu_cap.version != 2 || 5261 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5262 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5263 } 5264 5265 /* CPUID 0x8000001F (SME/SEV features) */ 5266 sev_set_cpu_caps(); 5267 5268 /* 5269 * Clear capabilities that are automatically configured by common code, 5270 * but that require explicit SVM support (that isn't yet implemented). 5271 */ 5272 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5273 kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM); 5274 } 5275 5276 static __init int svm_hardware_setup(void) 5277 { 5278 void *iopm_va; 5279 int cpu, r; 5280 5281 /* 5282 * NX is required for shadow paging and for NPT if the NX huge pages 5283 * mitigation is enabled. 5284 */ 5285 if (!boot_cpu_has(X86_FEATURE_NX)) { 5286 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5287 return -EOPNOTSUPP; 5288 } 5289 kvm_enable_efer_bits(EFER_NX); 5290 5291 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5292 XFEATURE_MASK_BNDCSR); 5293 5294 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5295 kvm_enable_efer_bits(EFER_FFXSR); 5296 5297 if (tsc_scaling) { 5298 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5299 tsc_scaling = false; 5300 } else { 5301 pr_info("TSC scaling supported\n"); 5302 kvm_caps.has_tsc_control = true; 5303 } 5304 } 5305 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5306 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5307 5308 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5309 5310 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5311 kvm_enable_efer_bits(EFER_AUTOIBRS); 5312 5313 /* Check for pause filtering support */ 5314 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5315 pause_filter_count = 0; 5316 pause_filter_thresh = 0; 5317 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5318 pause_filter_thresh = 0; 5319 } 5320 5321 if (nested) { 5322 pr_info("Nested Virtualization enabled\n"); 5323 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5324 5325 r = nested_svm_init_msrpm_merge_offsets(); 5326 if (r) 5327 return r; 5328 } 5329 5330 /* 5331 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5332 * NPT isn't supported if the host is using 2-level paging since host 5333 * CR4 is unchanged on VMRUN. 5334 */ 5335 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5336 npt_enabled = false; 5337 5338 if (!boot_cpu_has(X86_FEATURE_NPT)) 5339 npt_enabled = false; 5340 5341 /* Force VM NPT level equal to the host's paging level */ 5342 kvm_configure_mmu(npt_enabled, get_npt_level(), 5343 get_npt_level(), PG_LEVEL_1G); 5344 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled)); 5345 5346 /* 5347 * It seems that on AMD processors PTE's accessed bit is 5348 * being set by the CPU hardware before the NPF vmexit. 5349 * This is not expected behaviour and our tests fail because 5350 * of it. 5351 * A workaround here is to disable support for 5352 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5353 * In this case userspace can know if there is support using 5354 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5355 * it 5356 * If future AMD CPU models change the behaviour described above, 5357 * this variable can be changed accordingly 5358 */ 5359 allow_smaller_maxphyaddr = !npt_enabled; 5360 5361 /* Setup shadow_me_value and shadow_me_mask */ 5362 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5363 5364 svm_adjust_mmio_mask(); 5365 5366 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5367 5368 if (lbrv) { 5369 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5370 lbrv = false; 5371 else 5372 pr_info("LBR virtualization supported\n"); 5373 } 5374 5375 iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL); 5376 if (!iopm_va) 5377 return -ENOMEM; 5378 5379 iopm_base = __sme_set(__pa(iopm_va)); 5380 5381 /* 5382 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5383 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5384 */ 5385 sev_hardware_setup(); 5386 5387 svm_hv_hardware_setup(); 5388 5389 for_each_possible_cpu(cpu) { 5390 r = svm_cpu_init(cpu); 5391 if (r) 5392 goto err; 5393 } 5394 5395 enable_apicv = avic_hardware_setup(); 5396 if (!enable_apicv) { 5397 enable_ipiv = false; 5398 svm_x86_ops.vcpu_blocking = NULL; 5399 svm_x86_ops.vcpu_unblocking = NULL; 5400 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5401 } 5402 5403 if (vls) { 5404 if (!npt_enabled || 5405 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5406 !IS_ENABLED(CONFIG_X86_64)) { 5407 vls = false; 5408 } else { 5409 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5410 } 5411 } 5412 5413 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5414 svm_gp_erratum_intercept = false; 5415 5416 if (vgif) { 5417 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5418 vgif = false; 5419 else 5420 pr_info("Virtual GIF supported\n"); 5421 } 5422 5423 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5424 if (vnmi) 5425 pr_info("Virtual NMI enabled\n"); 5426 5427 if (!vnmi) { 5428 svm_x86_ops.is_vnmi_pending = NULL; 5429 svm_x86_ops.set_vnmi_pending = NULL; 5430 } 5431 5432 if (!enable_pmu) 5433 pr_info("PMU virtualization is disabled\n"); 5434 5435 svm_set_cpu_caps(); 5436 5437 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED; 5438 return 0; 5439 5440 err: 5441 svm_hardware_unsetup(); 5442 return r; 5443 } 5444 5445 5446 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5447 .hardware_setup = svm_hardware_setup, 5448 5449 .runtime_ops = &svm_x86_ops, 5450 .pmu_ops = &amd_pmu_ops, 5451 }; 5452 5453 static void __svm_exit(void) 5454 { 5455 kvm_x86_vendor_exit(); 5456 } 5457 5458 static int __init svm_init(void) 5459 { 5460 int r; 5461 5462 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm); 5463 5464 __unused_size_checks(); 5465 5466 if (!kvm_is_svm_supported()) 5467 return -EOPNOTSUPP; 5468 5469 r = kvm_x86_vendor_init(&svm_init_ops); 5470 if (r) 5471 return r; 5472 5473 /* 5474 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5475 * exposed to userspace! 5476 */ 5477 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5478 THIS_MODULE); 5479 if (r) 5480 goto err_kvm_init; 5481 5482 return 0; 5483 5484 err_kvm_init: 5485 __svm_exit(); 5486 return r; 5487 } 5488 5489 static void __exit svm_exit(void) 5490 { 5491 kvm_exit(); 5492 __svm_exit(); 5493 } 5494 5495 module_init(svm_init) 5496 module_exit(svm_exit) 5497