xref: /linux/arch/x86/kvm/svm/svm.c (revision 5a48b7433a5aee719ab242d2feadaf4c9e065989)
1 #define pr_fmt(fmt) "SVM: " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11 
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29 
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41 
42 #include <asm/virtext.h>
43 #include "trace.h"
44 
45 #include "svm.h"
46 #include "svm_ops.h"
47 
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50 
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53 
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57 	{}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61 
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64 
65 #define SVM_FEATURE_LBRV           (1 <<  1)
66 #define SVM_FEATURE_SVML           (1 <<  2)
67 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
68 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
69 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
70 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
71 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
72 
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
74 
75 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
76 #define TSC_RATIO_MIN		0x0000000000000001ULL
77 #define TSC_RATIO_MAX		0x000000ffffffffffULL
78 
79 static bool erratum_383_found __read_mostly;
80 
81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
82 
83 /*
84  * Set osvw_len to higher value when updated Revision Guides
85  * are published and we know what the new status bits are
86  */
87 static uint64_t osvw_len = 4, osvw_status;
88 
89 static DEFINE_PER_CPU(u64, current_tsc_ratio);
90 #define TSC_RATIO_DEFAULT	0x0100000000ULL
91 
92 static const struct svm_direct_access_msrs {
93 	u32 index;   /* Index of the MSR */
94 	bool always; /* True if intercept is initially cleared */
95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
96 	{ .index = MSR_STAR,				.always = true  },
97 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
98 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
99 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
100 #ifdef CONFIG_X86_64
101 	{ .index = MSR_GS_BASE,				.always = true  },
102 	{ .index = MSR_FS_BASE,				.always = true  },
103 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
104 	{ .index = MSR_LSTAR,				.always = true  },
105 	{ .index = MSR_CSTAR,				.always = true  },
106 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
107 #endif
108 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
109 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
110 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
111 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
112 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
113 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
114 	{ .index = MSR_EFER,				.always = false },
115 	{ .index = MSR_IA32_CR_PAT,			.always = false },
116 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
117 	{ .index = MSR_INVALID,				.always = false },
118 };
119 
120 /*
121  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
122  * pause_filter_count: On processors that support Pause filtering(indicated
123  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
124  *	count value. On VMRUN this value is loaded into an internal counter.
125  *	Each time a pause instruction is executed, this counter is decremented
126  *	until it reaches zero at which time a #VMEXIT is generated if pause
127  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
128  *	Intercept Filtering for more details.
129  *	This also indicate if ple logic enabled.
130  *
131  * pause_filter_thresh: In addition, some processor families support advanced
132  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
133  *	the amount of time a guest is allowed to execute in a pause loop.
134  *	In this mode, a 16-bit pause filter threshold field is added in the
135  *	VMCB. The threshold value is a cycle count that is used to reset the
136  *	pause counter. As with simple pause filtering, VMRUN loads the pause
137  *	count value from VMCB into an internal counter. Then, on each pause
138  *	instruction the hardware checks the elapsed number of cycles since
139  *	the most recent pause instruction against the pause filter threshold.
140  *	If the elapsed cycle count is greater than the pause filter threshold,
141  *	then the internal pause count is reloaded from the VMCB and execution
142  *	continues. If the elapsed cycle count is less than the pause filter
143  *	threshold, then the internal pause count is decremented. If the count
144  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
145  *	triggered. If advanced pause filtering is supported and pause filter
146  *	threshold field is set to zero, the filter will operate in the simpler,
147  *	count only mode.
148  */
149 
150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
151 module_param(pause_filter_thresh, ushort, 0444);
152 
153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
154 module_param(pause_filter_count, ushort, 0444);
155 
156 /* Default doubles per-vcpu window every exit. */
157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
158 module_param(pause_filter_count_grow, ushort, 0444);
159 
160 /* Default resets per-vcpu window every exit to pause_filter_count. */
161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
162 module_param(pause_filter_count_shrink, ushort, 0444);
163 
164 /* Default is to compute the maximum so we can never overflow. */
165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
166 module_param(pause_filter_count_max, ushort, 0444);
167 
168 /*
169  * Use nested page tables by default.  Note, NPT may get forced off by
170  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
171  */
172 bool npt_enabled = true;
173 module_param_named(npt, npt_enabled, bool, 0444);
174 
175 /* allow nested virtualization in KVM/SVM */
176 static int nested = true;
177 module_param(nested, int, S_IRUGO);
178 
179 /* enable/disable Next RIP Save */
180 static int nrips = true;
181 module_param(nrips, int, 0444);
182 
183 /* enable/disable Virtual VMLOAD VMSAVE */
184 static int vls = true;
185 module_param(vls, int, 0444);
186 
187 /* enable/disable Virtual GIF */
188 static int vgif = true;
189 module_param(vgif, int, 0444);
190 
191 /* enable/disable LBR virtualization */
192 static int lbrv = true;
193 module_param(lbrv, int, 0444);
194 
195 static int tsc_scaling = true;
196 module_param(tsc_scaling, int, 0444);
197 
198 /*
199  * enable / disable AVIC.  Because the defaults differ for APICv
200  * support between VMX and SVM we cannot use module_param_named.
201  */
202 static bool avic;
203 module_param(avic, bool, 0444);
204 
205 bool __read_mostly dump_invalid_vmcb;
206 module_param(dump_invalid_vmcb, bool, 0644);
207 
208 
209 bool intercept_smi = true;
210 module_param(intercept_smi, bool, 0444);
211 
212 
213 static bool svm_gp_erratum_intercept = true;
214 
215 static u8 rsm_ins_bytes[] = "\x0f\xaa";
216 
217 static unsigned long iopm_base;
218 
219 struct kvm_ldttss_desc {
220 	u16 limit0;
221 	u16 base0;
222 	unsigned base1:8, type:5, dpl:2, p:1;
223 	unsigned limit1:4, zero0:3, g:1, base2:8;
224 	u32 base3;
225 	u32 zero1;
226 } __attribute__((packed));
227 
228 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
229 
230 /*
231  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
232  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
233  *
234  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
235  * defer the restoration of TSC_AUX until the CPU returns to userspace.
236  */
237 static int tsc_aux_uret_slot __read_mostly = -1;
238 
239 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
240 
241 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
242 #define MSRS_RANGE_SIZE 2048
243 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
244 
245 u32 svm_msrpm_offset(u32 msr)
246 {
247 	u32 offset;
248 	int i;
249 
250 	for (i = 0; i < NUM_MSR_MAPS; i++) {
251 		if (msr < msrpm_ranges[i] ||
252 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
253 			continue;
254 
255 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
256 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
257 
258 		/* Now we have the u8 offset - but need the u32 offset */
259 		return offset / 4;
260 	}
261 
262 	/* MSR not in any range */
263 	return MSR_INVALID;
264 }
265 
266 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
267 
268 static int get_npt_level(void)
269 {
270 #ifdef CONFIG_X86_64
271 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
272 #else
273 	return PT32E_ROOT_LEVEL;
274 #endif
275 }
276 
277 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
278 {
279 	struct vcpu_svm *svm = to_svm(vcpu);
280 	u64 old_efer = vcpu->arch.efer;
281 	vcpu->arch.efer = efer;
282 
283 	if (!npt_enabled) {
284 		/* Shadow paging assumes NX to be available.  */
285 		efer |= EFER_NX;
286 
287 		if (!(efer & EFER_LMA))
288 			efer &= ~EFER_LME;
289 	}
290 
291 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
292 		if (!(efer & EFER_SVME)) {
293 			svm_leave_nested(vcpu);
294 			svm_set_gif(svm, true);
295 			/* #GP intercept is still needed for vmware backdoor */
296 			if (!enable_vmware_backdoor)
297 				clr_exception_intercept(svm, GP_VECTOR);
298 
299 			/*
300 			 * Free the nested guest state, unless we are in SMM.
301 			 * In this case we will return to the nested guest
302 			 * as soon as we leave SMM.
303 			 */
304 			if (!is_smm(vcpu))
305 				svm_free_nested(svm);
306 
307 		} else {
308 			int ret = svm_allocate_nested(svm);
309 
310 			if (ret) {
311 				vcpu->arch.efer = old_efer;
312 				return ret;
313 			}
314 
315 			/*
316 			 * Never intercept #GP for SEV guests, KVM can't
317 			 * decrypt guest memory to workaround the erratum.
318 			 */
319 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
320 				set_exception_intercept(svm, GP_VECTOR);
321 		}
322 	}
323 
324 	svm->vmcb->save.efer = efer | EFER_SVME;
325 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
326 	return 0;
327 }
328 
329 static int is_external_interrupt(u32 info)
330 {
331 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
332 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
333 }
334 
335 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
336 {
337 	struct vcpu_svm *svm = to_svm(vcpu);
338 	u32 ret = 0;
339 
340 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
341 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
342 	return ret;
343 }
344 
345 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
346 {
347 	struct vcpu_svm *svm = to_svm(vcpu);
348 
349 	if (mask == 0)
350 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
351 	else
352 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
353 
354 }
355 
356 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
357 {
358 	struct vcpu_svm *svm = to_svm(vcpu);
359 
360 	/*
361 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
362 	 * the type of exit and the #VC handler in the guest.
363 	 */
364 	if (sev_es_guest(vcpu->kvm))
365 		goto done;
366 
367 	if (nrips && svm->vmcb->control.next_rip != 0) {
368 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
369 		svm->next_rip = svm->vmcb->control.next_rip;
370 	}
371 
372 	if (!svm->next_rip) {
373 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
374 			return 0;
375 	} else {
376 		kvm_rip_write(vcpu, svm->next_rip);
377 	}
378 
379 done:
380 	svm_set_interrupt_shadow(vcpu, 0);
381 
382 	return 1;
383 }
384 
385 static void svm_queue_exception(struct kvm_vcpu *vcpu)
386 {
387 	struct vcpu_svm *svm = to_svm(vcpu);
388 	unsigned nr = vcpu->arch.exception.nr;
389 	bool has_error_code = vcpu->arch.exception.has_error_code;
390 	u32 error_code = vcpu->arch.exception.error_code;
391 
392 	kvm_deliver_exception_payload(vcpu);
393 
394 	if (nr == BP_VECTOR && !nrips) {
395 		unsigned long rip, old_rip = kvm_rip_read(vcpu);
396 
397 		/*
398 		 * For guest debugging where we have to reinject #BP if some
399 		 * INT3 is guest-owned:
400 		 * Emulate nRIP by moving RIP forward. Will fail if injection
401 		 * raises a fault that is not intercepted. Still better than
402 		 * failing in all cases.
403 		 */
404 		(void)svm_skip_emulated_instruction(vcpu);
405 		rip = kvm_rip_read(vcpu);
406 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
407 		svm->int3_injected = rip - old_rip;
408 	}
409 
410 	svm->vmcb->control.event_inj = nr
411 		| SVM_EVTINJ_VALID
412 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
413 		| SVM_EVTINJ_TYPE_EXEPT;
414 	svm->vmcb->control.event_inj_err = error_code;
415 }
416 
417 static void svm_init_erratum_383(void)
418 {
419 	u32 low, high;
420 	int err;
421 	u64 val;
422 
423 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
424 		return;
425 
426 	/* Use _safe variants to not break nested virtualization */
427 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
428 	if (err)
429 		return;
430 
431 	val |= (1ULL << 47);
432 
433 	low  = lower_32_bits(val);
434 	high = upper_32_bits(val);
435 
436 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
437 
438 	erratum_383_found = true;
439 }
440 
441 static void svm_init_osvw(struct kvm_vcpu *vcpu)
442 {
443 	/*
444 	 * Guests should see errata 400 and 415 as fixed (assuming that
445 	 * HLT and IO instructions are intercepted).
446 	 */
447 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
448 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
449 
450 	/*
451 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
452 	 * all osvw.status bits inside that length, including bit 0 (which is
453 	 * reserved for erratum 298), are valid. However, if host processor's
454 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
455 	 * be conservative here and therefore we tell the guest that erratum 298
456 	 * is present (because we really don't know).
457 	 */
458 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
459 		vcpu->arch.osvw.status |= 1;
460 }
461 
462 static int has_svm(void)
463 {
464 	const char *msg;
465 
466 	if (!cpu_has_svm(&msg)) {
467 		printk(KERN_INFO "has_svm: %s\n", msg);
468 		return 0;
469 	}
470 
471 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
472 		pr_info("KVM is unsupported when running as an SEV guest\n");
473 		return 0;
474 	}
475 
476 	return 1;
477 }
478 
479 static void svm_hardware_disable(void)
480 {
481 	/* Make sure we clean up behind us */
482 	if (tsc_scaling)
483 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
484 
485 	cpu_svm_disable();
486 
487 	amd_pmu_disable_virt();
488 }
489 
490 static int svm_hardware_enable(void)
491 {
492 
493 	struct svm_cpu_data *sd;
494 	uint64_t efer;
495 	struct desc_struct *gdt;
496 	int me = raw_smp_processor_id();
497 
498 	rdmsrl(MSR_EFER, efer);
499 	if (efer & EFER_SVME)
500 		return -EBUSY;
501 
502 	if (!has_svm()) {
503 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
504 		return -EINVAL;
505 	}
506 	sd = per_cpu(svm_data, me);
507 	if (!sd) {
508 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
509 		return -EINVAL;
510 	}
511 
512 	sd->asid_generation = 1;
513 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
514 	sd->next_asid = sd->max_asid + 1;
515 	sd->min_asid = max_sev_asid + 1;
516 
517 	gdt = get_current_gdt_rw();
518 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
519 
520 	wrmsrl(MSR_EFER, efer | EFER_SVME);
521 
522 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
523 
524 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
525 		/*
526 		 * Set the default value, even if we don't use TSC scaling
527 		 * to avoid having stale value in the msr
528 		 */
529 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
530 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
531 	}
532 
533 
534 	/*
535 	 * Get OSVW bits.
536 	 *
537 	 * Note that it is possible to have a system with mixed processor
538 	 * revisions and therefore different OSVW bits. If bits are not the same
539 	 * on different processors then choose the worst case (i.e. if erratum
540 	 * is present on one processor and not on another then assume that the
541 	 * erratum is present everywhere).
542 	 */
543 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
544 		uint64_t len, status = 0;
545 		int err;
546 
547 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
548 		if (!err)
549 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
550 						      &err);
551 
552 		if (err)
553 			osvw_status = osvw_len = 0;
554 		else {
555 			if (len < osvw_len)
556 				osvw_len = len;
557 			osvw_status |= status;
558 			osvw_status &= (1ULL << osvw_len) - 1;
559 		}
560 	} else
561 		osvw_status = osvw_len = 0;
562 
563 	svm_init_erratum_383();
564 
565 	amd_pmu_enable_virt();
566 
567 	return 0;
568 }
569 
570 static void svm_cpu_uninit(int cpu)
571 {
572 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
573 
574 	if (!sd)
575 		return;
576 
577 	per_cpu(svm_data, cpu) = NULL;
578 	kfree(sd->sev_vmcbs);
579 	__free_page(sd->save_area);
580 	kfree(sd);
581 }
582 
583 static int svm_cpu_init(int cpu)
584 {
585 	struct svm_cpu_data *sd;
586 	int ret = -ENOMEM;
587 
588 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
589 	if (!sd)
590 		return ret;
591 	sd->cpu = cpu;
592 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
593 	if (!sd->save_area)
594 		goto free_cpu_data;
595 
596 	ret = sev_cpu_init(sd);
597 	if (ret)
598 		goto free_save_area;
599 
600 	per_cpu(svm_data, cpu) = sd;
601 
602 	return 0;
603 
604 free_save_area:
605 	__free_page(sd->save_area);
606 free_cpu_data:
607 	kfree(sd);
608 	return ret;
609 
610 }
611 
612 static int direct_access_msr_slot(u32 msr)
613 {
614 	u32 i;
615 
616 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
617 		if (direct_access_msrs[i].index == msr)
618 			return i;
619 
620 	return -ENOENT;
621 }
622 
623 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
624 				     int write)
625 {
626 	struct vcpu_svm *svm = to_svm(vcpu);
627 	int slot = direct_access_msr_slot(msr);
628 
629 	if (slot == -ENOENT)
630 		return;
631 
632 	/* Set the shadow bitmaps to the desired intercept states */
633 	if (read)
634 		set_bit(slot, svm->shadow_msr_intercept.read);
635 	else
636 		clear_bit(slot, svm->shadow_msr_intercept.read);
637 
638 	if (write)
639 		set_bit(slot, svm->shadow_msr_intercept.write);
640 	else
641 		clear_bit(slot, svm->shadow_msr_intercept.write);
642 }
643 
644 static bool valid_msr_intercept(u32 index)
645 {
646 	return direct_access_msr_slot(index) != -ENOENT;
647 }
648 
649 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
650 {
651 	u8 bit_write;
652 	unsigned long tmp;
653 	u32 offset;
654 	u32 *msrpm;
655 
656 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
657 				      to_svm(vcpu)->msrpm;
658 
659 	offset    = svm_msrpm_offset(msr);
660 	bit_write = 2 * (msr & 0x0f) + 1;
661 	tmp       = msrpm[offset];
662 
663 	BUG_ON(offset == MSR_INVALID);
664 
665 	return !!test_bit(bit_write,  &tmp);
666 }
667 
668 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
669 					u32 msr, int read, int write)
670 {
671 	struct vcpu_svm *svm = to_svm(vcpu);
672 	u8 bit_read, bit_write;
673 	unsigned long tmp;
674 	u32 offset;
675 
676 	/*
677 	 * If this warning triggers extend the direct_access_msrs list at the
678 	 * beginning of the file
679 	 */
680 	WARN_ON(!valid_msr_intercept(msr));
681 
682 	/* Enforce non allowed MSRs to trap */
683 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
684 		read = 0;
685 
686 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
687 		write = 0;
688 
689 	offset    = svm_msrpm_offset(msr);
690 	bit_read  = 2 * (msr & 0x0f);
691 	bit_write = 2 * (msr & 0x0f) + 1;
692 	tmp       = msrpm[offset];
693 
694 	BUG_ON(offset == MSR_INVALID);
695 
696 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
697 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
698 
699 	msrpm[offset] = tmp;
700 
701 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
702 	svm->nested.force_msr_bitmap_recalc = true;
703 }
704 
705 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
706 			  int read, int write)
707 {
708 	set_shadow_msr_intercept(vcpu, msr, read, write);
709 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
710 }
711 
712 u32 *svm_vcpu_alloc_msrpm(void)
713 {
714 	unsigned int order = get_order(MSRPM_SIZE);
715 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
716 	u32 *msrpm;
717 
718 	if (!pages)
719 		return NULL;
720 
721 	msrpm = page_address(pages);
722 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
723 
724 	return msrpm;
725 }
726 
727 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
728 {
729 	int i;
730 
731 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
732 		if (!direct_access_msrs[i].always)
733 			continue;
734 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
735 	}
736 }
737 
738 
739 void svm_vcpu_free_msrpm(u32 *msrpm)
740 {
741 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
742 }
743 
744 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
745 {
746 	struct vcpu_svm *svm = to_svm(vcpu);
747 	u32 i;
748 
749 	/*
750 	 * Set intercept permissions for all direct access MSRs again. They
751 	 * will automatically get filtered through the MSR filter, so we are
752 	 * back in sync after this.
753 	 */
754 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
755 		u32 msr = direct_access_msrs[i].index;
756 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
757 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
758 
759 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
760 	}
761 }
762 
763 static void add_msr_offset(u32 offset)
764 {
765 	int i;
766 
767 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
768 
769 		/* Offset already in list? */
770 		if (msrpm_offsets[i] == offset)
771 			return;
772 
773 		/* Slot used by another offset? */
774 		if (msrpm_offsets[i] != MSR_INVALID)
775 			continue;
776 
777 		/* Add offset to list */
778 		msrpm_offsets[i] = offset;
779 
780 		return;
781 	}
782 
783 	/*
784 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
785 	 * increase MSRPM_OFFSETS in this case.
786 	 */
787 	BUG();
788 }
789 
790 static void init_msrpm_offsets(void)
791 {
792 	int i;
793 
794 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
795 
796 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797 		u32 offset;
798 
799 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
800 		BUG_ON(offset == MSR_INVALID);
801 
802 		add_msr_offset(offset);
803 	}
804 }
805 
806 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
807 {
808 	struct vcpu_svm *svm = to_svm(vcpu);
809 
810 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
811 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
812 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
813 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
814 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
815 }
816 
817 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
818 {
819 	struct vcpu_svm *svm = to_svm(vcpu);
820 
821 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
822 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
823 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
824 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
825 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
826 }
827 
828 void disable_nmi_singlestep(struct vcpu_svm *svm)
829 {
830 	svm->nmi_singlestep = false;
831 
832 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
833 		/* Clear our flags if they were not set by the guest */
834 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
835 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
836 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
837 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
838 	}
839 }
840 
841 static void grow_ple_window(struct kvm_vcpu *vcpu)
842 {
843 	struct vcpu_svm *svm = to_svm(vcpu);
844 	struct vmcb_control_area *control = &svm->vmcb->control;
845 	int old = control->pause_filter_count;
846 
847 	control->pause_filter_count = __grow_ple_window(old,
848 							pause_filter_count,
849 							pause_filter_count_grow,
850 							pause_filter_count_max);
851 
852 	if (control->pause_filter_count != old) {
853 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
854 		trace_kvm_ple_window_update(vcpu->vcpu_id,
855 					    control->pause_filter_count, old);
856 	}
857 }
858 
859 static void shrink_ple_window(struct kvm_vcpu *vcpu)
860 {
861 	struct vcpu_svm *svm = to_svm(vcpu);
862 	struct vmcb_control_area *control = &svm->vmcb->control;
863 	int old = control->pause_filter_count;
864 
865 	control->pause_filter_count =
866 				__shrink_ple_window(old,
867 						    pause_filter_count,
868 						    pause_filter_count_shrink,
869 						    pause_filter_count);
870 	if (control->pause_filter_count != old) {
871 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
872 		trace_kvm_ple_window_update(vcpu->vcpu_id,
873 					    control->pause_filter_count, old);
874 	}
875 }
876 
877 static void svm_hardware_unsetup(void)
878 {
879 	int cpu;
880 
881 	sev_hardware_unsetup();
882 
883 	for_each_possible_cpu(cpu)
884 		svm_cpu_uninit(cpu);
885 
886 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
887 	get_order(IOPM_SIZE));
888 	iopm_base = 0;
889 }
890 
891 static void init_seg(struct vmcb_seg *seg)
892 {
893 	seg->selector = 0;
894 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
895 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
896 	seg->limit = 0xffff;
897 	seg->base = 0;
898 }
899 
900 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
901 {
902 	seg->selector = 0;
903 	seg->attrib = SVM_SELECTOR_P_MASK | type;
904 	seg->limit = 0xffff;
905 	seg->base = 0;
906 }
907 
908 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
909 {
910 	struct vcpu_svm *svm = to_svm(vcpu);
911 
912 	return svm->nested.ctl.tsc_offset;
913 }
914 
915 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
916 {
917 	struct vcpu_svm *svm = to_svm(vcpu);
918 
919 	return svm->tsc_ratio_msr;
920 }
921 
922 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
923 {
924 	struct vcpu_svm *svm = to_svm(vcpu);
925 
926 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
927 	svm->vmcb->control.tsc_offset = offset;
928 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
929 }
930 
931 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
932 {
933 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
934 }
935 
936 /* Evaluate instruction intercepts that depend on guest CPUID features. */
937 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
938 					      struct vcpu_svm *svm)
939 {
940 	/*
941 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
942 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
943 	 */
944 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
945 		if (!npt_enabled ||
946 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
947 			svm_set_intercept(svm, INTERCEPT_INVPCID);
948 		else
949 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
950 	}
951 
952 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
953 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
954 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
955 		else
956 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
957 	}
958 }
959 
960 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
961 {
962 	struct vcpu_svm *svm = to_svm(vcpu);
963 
964 	if (guest_cpuid_is_intel(vcpu)) {
965 		/*
966 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
967 		 * accesses because the processor only stores 32 bits.
968 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
969 		 */
970 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
971 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
972 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
973 
974 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
975 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
976 	} else {
977 		/*
978 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
979 		 * in VMCB and clear intercepts to avoid #VMEXIT.
980 		 */
981 		if (vls) {
982 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
983 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
984 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
985 		}
986 		/* No need to intercept these MSRs */
987 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
988 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
989 	}
990 }
991 
992 static void init_vmcb(struct kvm_vcpu *vcpu)
993 {
994 	struct vcpu_svm *svm = to_svm(vcpu);
995 	struct vmcb_control_area *control = &svm->vmcb->control;
996 	struct vmcb_save_area *save = &svm->vmcb->save;
997 
998 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
999 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1000 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1001 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1002 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1003 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1004 	if (!kvm_vcpu_apicv_active(vcpu))
1005 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1006 
1007 	set_dr_intercepts(svm);
1008 
1009 	set_exception_intercept(svm, PF_VECTOR);
1010 	set_exception_intercept(svm, UD_VECTOR);
1011 	set_exception_intercept(svm, MC_VECTOR);
1012 	set_exception_intercept(svm, AC_VECTOR);
1013 	set_exception_intercept(svm, DB_VECTOR);
1014 	/*
1015 	 * Guest access to VMware backdoor ports could legitimately
1016 	 * trigger #GP because of TSS I/O permission bitmap.
1017 	 * We intercept those #GP and allow access to them anyway
1018 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1019 	 * decrypt guest memory to decode the faulting instruction.
1020 	 */
1021 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1022 		set_exception_intercept(svm, GP_VECTOR);
1023 
1024 	svm_set_intercept(svm, INTERCEPT_INTR);
1025 	svm_set_intercept(svm, INTERCEPT_NMI);
1026 
1027 	if (intercept_smi)
1028 		svm_set_intercept(svm, INTERCEPT_SMI);
1029 
1030 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1031 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1032 	svm_set_intercept(svm, INTERCEPT_CPUID);
1033 	svm_set_intercept(svm, INTERCEPT_INVD);
1034 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1035 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1036 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1037 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1038 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1039 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1040 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1041 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1042 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1043 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1044 	svm_set_intercept(svm, INTERCEPT_STGI);
1045 	svm_set_intercept(svm, INTERCEPT_CLGI);
1046 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1047 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1048 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1049 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1050 	svm_set_intercept(svm, INTERCEPT_RSM);
1051 
1052 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1053 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1054 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1055 	}
1056 
1057 	if (!kvm_hlt_in_guest(vcpu->kvm))
1058 		svm_set_intercept(svm, INTERCEPT_HLT);
1059 
1060 	control->iopm_base_pa = __sme_set(iopm_base);
1061 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1062 	control->int_ctl = V_INTR_MASKING_MASK;
1063 
1064 	init_seg(&save->es);
1065 	init_seg(&save->ss);
1066 	init_seg(&save->ds);
1067 	init_seg(&save->fs);
1068 	init_seg(&save->gs);
1069 
1070 	save->cs.selector = 0xf000;
1071 	save->cs.base = 0xffff0000;
1072 	/* Executable/Readable Code Segment */
1073 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1074 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1075 	save->cs.limit = 0xffff;
1076 
1077 	save->gdtr.base = 0;
1078 	save->gdtr.limit = 0xffff;
1079 	save->idtr.base = 0;
1080 	save->idtr.limit = 0xffff;
1081 
1082 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1083 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1084 
1085 	if (npt_enabled) {
1086 		/* Setup VMCB for Nested Paging */
1087 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1088 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1089 		clr_exception_intercept(svm, PF_VECTOR);
1090 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1091 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1092 		save->g_pat = vcpu->arch.pat;
1093 		save->cr3 = 0;
1094 	}
1095 	svm->current_vmcb->asid_generation = 0;
1096 	svm->asid = 0;
1097 
1098 	svm->nested.vmcb12_gpa = INVALID_GPA;
1099 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1100 
1101 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1102 		control->pause_filter_count = pause_filter_count;
1103 		if (pause_filter_thresh)
1104 			control->pause_filter_thresh = pause_filter_thresh;
1105 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1106 	} else {
1107 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1108 	}
1109 
1110 	svm_recalc_instruction_intercepts(vcpu, svm);
1111 
1112 	/*
1113 	 * If the host supports V_SPEC_CTRL then disable the interception
1114 	 * of MSR_IA32_SPEC_CTRL.
1115 	 */
1116 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1117 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1118 
1119 	if (kvm_vcpu_apicv_active(vcpu))
1120 		avic_init_vmcb(svm);
1121 
1122 	if (vgif) {
1123 		svm_clr_intercept(svm, INTERCEPT_STGI);
1124 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1125 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1126 	}
1127 
1128 	if (sev_guest(vcpu->kvm)) {
1129 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1130 		clr_exception_intercept(svm, UD_VECTOR);
1131 
1132 		if (sev_es_guest(vcpu->kvm)) {
1133 			/* Perform SEV-ES specific VMCB updates */
1134 			sev_es_init_vmcb(svm);
1135 		}
1136 	}
1137 
1138 	svm_hv_init_vmcb(svm->vmcb);
1139 	init_vmcb_after_set_cpuid(vcpu);
1140 
1141 	vmcb_mark_all_dirty(svm->vmcb);
1142 
1143 	enable_gif(svm);
1144 }
1145 
1146 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1147 {
1148 	struct vcpu_svm *svm = to_svm(vcpu);
1149 
1150 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1151 
1152 	svm_init_osvw(vcpu);
1153 	vcpu->arch.microcode_version = 0x01000065;
1154 	svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio;
1155 
1156 	if (sev_es_guest(vcpu->kvm))
1157 		sev_es_vcpu_reset(svm);
1158 }
1159 
1160 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1161 {
1162 	struct vcpu_svm *svm = to_svm(vcpu);
1163 
1164 	svm->spec_ctrl = 0;
1165 	svm->virt_spec_ctrl = 0;
1166 
1167 	init_vmcb(vcpu);
1168 
1169 	if (!init_event)
1170 		__svm_vcpu_reset(vcpu);
1171 }
1172 
1173 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1174 {
1175 	svm->current_vmcb = target_vmcb;
1176 	svm->vmcb = target_vmcb->ptr;
1177 }
1178 
1179 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1180 {
1181 	struct vcpu_svm *svm;
1182 	struct page *vmcb01_page;
1183 	struct page *vmsa_page = NULL;
1184 	int err;
1185 
1186 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1187 	svm = to_svm(vcpu);
1188 
1189 	err = -ENOMEM;
1190 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1191 	if (!vmcb01_page)
1192 		goto out;
1193 
1194 	if (sev_es_guest(vcpu->kvm)) {
1195 		/*
1196 		 * SEV-ES guests require a separate VMSA page used to contain
1197 		 * the encrypted register state of the guest.
1198 		 */
1199 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1200 		if (!vmsa_page)
1201 			goto error_free_vmcb_page;
1202 
1203 		/*
1204 		 * SEV-ES guests maintain an encrypted version of their FPU
1205 		 * state which is restored and saved on VMRUN and VMEXIT.
1206 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1207 		 * do xsave/xrstor on it.
1208 		 */
1209 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1210 	}
1211 
1212 	err = avic_init_vcpu(svm);
1213 	if (err)
1214 		goto error_free_vmsa_page;
1215 
1216 	svm->msrpm = svm_vcpu_alloc_msrpm();
1217 	if (!svm->msrpm) {
1218 		err = -ENOMEM;
1219 		goto error_free_vmsa_page;
1220 	}
1221 
1222 	svm->vmcb01.ptr = page_address(vmcb01_page);
1223 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1224 	svm_switch_vmcb(svm, &svm->vmcb01);
1225 
1226 	if (vmsa_page)
1227 		svm->sev_es.vmsa = page_address(vmsa_page);
1228 
1229 	svm->guest_state_loaded = false;
1230 
1231 	return 0;
1232 
1233 error_free_vmsa_page:
1234 	if (vmsa_page)
1235 		__free_page(vmsa_page);
1236 error_free_vmcb_page:
1237 	__free_page(vmcb01_page);
1238 out:
1239 	return err;
1240 }
1241 
1242 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1243 {
1244 	int i;
1245 
1246 	for_each_online_cpu(i)
1247 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1248 }
1249 
1250 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1251 {
1252 	struct vcpu_svm *svm = to_svm(vcpu);
1253 
1254 	/*
1255 	 * The vmcb page can be recycled, causing a false negative in
1256 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1257 	 * vmcb page recorded as its current vmcb.
1258 	 */
1259 	svm_clear_current_vmcb(svm->vmcb);
1260 
1261 	svm_free_nested(svm);
1262 
1263 	sev_free_vcpu(vcpu);
1264 
1265 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1266 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1267 }
1268 
1269 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1270 {
1271 	struct vcpu_svm *svm = to_svm(vcpu);
1272 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1273 
1274 	if (sev_es_guest(vcpu->kvm))
1275 		sev_es_unmap_ghcb(svm);
1276 
1277 	if (svm->guest_state_loaded)
1278 		return;
1279 
1280 	/*
1281 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1282 	 * or subsequent vmload of host save area.
1283 	 */
1284 	vmsave(__sme_page_pa(sd->save_area));
1285 	if (sev_es_guest(vcpu->kvm)) {
1286 		struct vmcb_save_area *hostsa;
1287 		hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
1288 
1289 		sev_es_prepare_switch_to_guest(hostsa);
1290 	}
1291 
1292 	if (tsc_scaling) {
1293 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1294 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1295 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1296 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1297 		}
1298 	}
1299 
1300 	if (likely(tsc_aux_uret_slot >= 0))
1301 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1302 
1303 	svm->guest_state_loaded = true;
1304 }
1305 
1306 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1307 {
1308 	to_svm(vcpu)->guest_state_loaded = false;
1309 }
1310 
1311 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1312 {
1313 	struct vcpu_svm *svm = to_svm(vcpu);
1314 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1315 
1316 	if (sd->current_vmcb != svm->vmcb) {
1317 		sd->current_vmcb = svm->vmcb;
1318 		indirect_branch_prediction_barrier();
1319 	}
1320 	if (kvm_vcpu_apicv_active(vcpu))
1321 		__avic_vcpu_load(vcpu, cpu);
1322 }
1323 
1324 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1325 {
1326 	if (kvm_vcpu_apicv_active(vcpu))
1327 		__avic_vcpu_put(vcpu);
1328 
1329 	svm_prepare_host_switch(vcpu);
1330 
1331 	++vcpu->stat.host_state_reload;
1332 }
1333 
1334 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1335 {
1336 	struct vcpu_svm *svm = to_svm(vcpu);
1337 	unsigned long rflags = svm->vmcb->save.rflags;
1338 
1339 	if (svm->nmi_singlestep) {
1340 		/* Hide our flags if they were not set by the guest */
1341 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1342 			rflags &= ~X86_EFLAGS_TF;
1343 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1344 			rflags &= ~X86_EFLAGS_RF;
1345 	}
1346 	return rflags;
1347 }
1348 
1349 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1350 {
1351 	if (to_svm(vcpu)->nmi_singlestep)
1352 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1353 
1354        /*
1355         * Any change of EFLAGS.VM is accompanied by a reload of SS
1356         * (caused by either a task switch or an inter-privilege IRET),
1357         * so we do not need to update the CPL here.
1358         */
1359 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1360 }
1361 
1362 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1363 {
1364 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1365 
1366 	return sev_es_guest(vcpu->kvm)
1367 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1368 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1369 }
1370 
1371 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1372 {
1373 	kvm_register_mark_available(vcpu, reg);
1374 
1375 	switch (reg) {
1376 	case VCPU_EXREG_PDPTR:
1377 		/*
1378 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1379 		 * it is always updated per SDM when moving to CRs.
1380 		 */
1381 		if (npt_enabled)
1382 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1383 		break;
1384 	default:
1385 		KVM_BUG_ON(1, vcpu->kvm);
1386 	}
1387 }
1388 
1389 static void svm_set_vintr(struct vcpu_svm *svm)
1390 {
1391 	struct vmcb_control_area *control;
1392 
1393 	/*
1394 	 * The following fields are ignored when AVIC is enabled
1395 	 */
1396 	WARN_ON(kvm_apicv_activated(svm->vcpu.kvm));
1397 
1398 	svm_set_intercept(svm, INTERCEPT_VINTR);
1399 
1400 	/*
1401 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1402 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1403 	 */
1404 	control = &svm->vmcb->control;
1405 	control->int_vector = 0x0;
1406 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1407 	control->int_ctl |= V_IRQ_MASK |
1408 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1409 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1410 }
1411 
1412 static void svm_clear_vintr(struct vcpu_svm *svm)
1413 {
1414 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1415 
1416 	/* Drop int_ctl fields related to VINTR injection.  */
1417 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1418 	if (is_guest_mode(&svm->vcpu)) {
1419 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1420 
1421 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1422 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1423 
1424 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1425 			V_IRQ_INJECTION_BITS_MASK;
1426 
1427 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1428 	}
1429 
1430 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1431 }
1432 
1433 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1434 {
1435 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1436 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1437 
1438 	switch (seg) {
1439 	case VCPU_SREG_CS: return &save->cs;
1440 	case VCPU_SREG_DS: return &save->ds;
1441 	case VCPU_SREG_ES: return &save->es;
1442 	case VCPU_SREG_FS: return &save01->fs;
1443 	case VCPU_SREG_GS: return &save01->gs;
1444 	case VCPU_SREG_SS: return &save->ss;
1445 	case VCPU_SREG_TR: return &save01->tr;
1446 	case VCPU_SREG_LDTR: return &save01->ldtr;
1447 	}
1448 	BUG();
1449 	return NULL;
1450 }
1451 
1452 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1453 {
1454 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1455 
1456 	return s->base;
1457 }
1458 
1459 static void svm_get_segment(struct kvm_vcpu *vcpu,
1460 			    struct kvm_segment *var, int seg)
1461 {
1462 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1463 
1464 	var->base = s->base;
1465 	var->limit = s->limit;
1466 	var->selector = s->selector;
1467 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1468 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1469 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1470 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1471 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1472 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1473 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1474 
1475 	/*
1476 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1477 	 * However, the SVM spec states that the G bit is not observed by the
1478 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1479 	 * So let's synthesize a legal G bit for all segments, this helps
1480 	 * running KVM nested. It also helps cross-vendor migration, because
1481 	 * Intel's vmentry has a check on the 'G' bit.
1482 	 */
1483 	var->g = s->limit > 0xfffff;
1484 
1485 	/*
1486 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1487 	 * for cross vendor migration purposes by "not present"
1488 	 */
1489 	var->unusable = !var->present;
1490 
1491 	switch (seg) {
1492 	case VCPU_SREG_TR:
1493 		/*
1494 		 * Work around a bug where the busy flag in the tr selector
1495 		 * isn't exposed
1496 		 */
1497 		var->type |= 0x2;
1498 		break;
1499 	case VCPU_SREG_DS:
1500 	case VCPU_SREG_ES:
1501 	case VCPU_SREG_FS:
1502 	case VCPU_SREG_GS:
1503 		/*
1504 		 * The accessed bit must always be set in the segment
1505 		 * descriptor cache, although it can be cleared in the
1506 		 * descriptor, the cached bit always remains at 1. Since
1507 		 * Intel has a check on this, set it here to support
1508 		 * cross-vendor migration.
1509 		 */
1510 		if (!var->unusable)
1511 			var->type |= 0x1;
1512 		break;
1513 	case VCPU_SREG_SS:
1514 		/*
1515 		 * On AMD CPUs sometimes the DB bit in the segment
1516 		 * descriptor is left as 1, although the whole segment has
1517 		 * been made unusable. Clear it here to pass an Intel VMX
1518 		 * entry check when cross vendor migrating.
1519 		 */
1520 		if (var->unusable)
1521 			var->db = 0;
1522 		/* This is symmetric with svm_set_segment() */
1523 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1524 		break;
1525 	}
1526 }
1527 
1528 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1529 {
1530 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1531 
1532 	return save->cpl;
1533 }
1534 
1535 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1536 {
1537 	struct kvm_segment cs;
1538 
1539 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1540 	*db = cs.db;
1541 	*l = cs.l;
1542 }
1543 
1544 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1545 {
1546 	struct vcpu_svm *svm = to_svm(vcpu);
1547 
1548 	dt->size = svm->vmcb->save.idtr.limit;
1549 	dt->address = svm->vmcb->save.idtr.base;
1550 }
1551 
1552 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1553 {
1554 	struct vcpu_svm *svm = to_svm(vcpu);
1555 
1556 	svm->vmcb->save.idtr.limit = dt->size;
1557 	svm->vmcb->save.idtr.base = dt->address ;
1558 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1559 }
1560 
1561 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1562 {
1563 	struct vcpu_svm *svm = to_svm(vcpu);
1564 
1565 	dt->size = svm->vmcb->save.gdtr.limit;
1566 	dt->address = svm->vmcb->save.gdtr.base;
1567 }
1568 
1569 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1570 {
1571 	struct vcpu_svm *svm = to_svm(vcpu);
1572 
1573 	svm->vmcb->save.gdtr.limit = dt->size;
1574 	svm->vmcb->save.gdtr.base = dt->address ;
1575 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1576 }
1577 
1578 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1579 {
1580 	struct vcpu_svm *svm = to_svm(vcpu);
1581 
1582 	/*
1583 	 * For guests that don't set guest_state_protected, the cr3 update is
1584 	 * handled via kvm_mmu_load() while entering the guest. For guests
1585 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1586 	 * VMCB save area now, since the save area will become the initial
1587 	 * contents of the VMSA, and future VMCB save area updates won't be
1588 	 * seen.
1589 	 */
1590 	if (sev_es_guest(vcpu->kvm)) {
1591 		svm->vmcb->save.cr3 = cr3;
1592 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1593 	}
1594 }
1595 
1596 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1597 {
1598 	struct vcpu_svm *svm = to_svm(vcpu);
1599 	u64 hcr0 = cr0;
1600 	bool old_paging = is_paging(vcpu);
1601 
1602 #ifdef CONFIG_X86_64
1603 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1604 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1605 			vcpu->arch.efer |= EFER_LMA;
1606 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1607 		}
1608 
1609 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1610 			vcpu->arch.efer &= ~EFER_LMA;
1611 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1612 		}
1613 	}
1614 #endif
1615 	vcpu->arch.cr0 = cr0;
1616 
1617 	if (!npt_enabled) {
1618 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1619 		if (old_paging != is_paging(vcpu))
1620 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1621 	}
1622 
1623 	/*
1624 	 * re-enable caching here because the QEMU bios
1625 	 * does not do it - this results in some delay at
1626 	 * reboot
1627 	 */
1628 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1629 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1630 
1631 	svm->vmcb->save.cr0 = hcr0;
1632 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1633 
1634 	/*
1635 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1636 	 * tracking is done using the CR write traps.
1637 	 */
1638 	if (sev_es_guest(vcpu->kvm))
1639 		return;
1640 
1641 	if (hcr0 == cr0) {
1642 		/* Selective CR0 write remains on.  */
1643 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1644 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1645 	} else {
1646 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1647 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1648 	}
1649 }
1650 
1651 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1652 {
1653 	return true;
1654 }
1655 
1656 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1657 {
1658 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1659 	unsigned long old_cr4 = vcpu->arch.cr4;
1660 
1661 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1662 		svm_flush_tlb_current(vcpu);
1663 
1664 	vcpu->arch.cr4 = cr4;
1665 	if (!npt_enabled) {
1666 		cr4 |= X86_CR4_PAE;
1667 
1668 		if (!is_paging(vcpu))
1669 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1670 	}
1671 	cr4 |= host_cr4_mce;
1672 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1673 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1674 
1675 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1676 		kvm_update_cpuid_runtime(vcpu);
1677 }
1678 
1679 static void svm_set_segment(struct kvm_vcpu *vcpu,
1680 			    struct kvm_segment *var, int seg)
1681 {
1682 	struct vcpu_svm *svm = to_svm(vcpu);
1683 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1684 
1685 	s->base = var->base;
1686 	s->limit = var->limit;
1687 	s->selector = var->selector;
1688 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1689 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1690 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1691 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1692 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1693 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1694 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1695 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1696 
1697 	/*
1698 	 * This is always accurate, except if SYSRET returned to a segment
1699 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1700 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1701 	 * would entail passing the CPL to userspace and back.
1702 	 */
1703 	if (seg == VCPU_SREG_SS)
1704 		/* This is symmetric with svm_get_segment() */
1705 		svm->vmcb->save.cpl = (var->dpl & 3);
1706 
1707 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1708 }
1709 
1710 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1711 {
1712 	struct vcpu_svm *svm = to_svm(vcpu);
1713 
1714 	clr_exception_intercept(svm, BP_VECTOR);
1715 
1716 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1717 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1718 			set_exception_intercept(svm, BP_VECTOR);
1719 	}
1720 }
1721 
1722 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1723 {
1724 	if (sd->next_asid > sd->max_asid) {
1725 		++sd->asid_generation;
1726 		sd->next_asid = sd->min_asid;
1727 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1728 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1729 	}
1730 
1731 	svm->current_vmcb->asid_generation = sd->asid_generation;
1732 	svm->asid = sd->next_asid++;
1733 }
1734 
1735 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1736 {
1737 	struct vmcb *vmcb = svm->vmcb;
1738 
1739 	if (svm->vcpu.arch.guest_state_protected)
1740 		return;
1741 
1742 	if (unlikely(value != vmcb->save.dr6)) {
1743 		vmcb->save.dr6 = value;
1744 		vmcb_mark_dirty(vmcb, VMCB_DR);
1745 	}
1746 }
1747 
1748 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1749 {
1750 	struct vcpu_svm *svm = to_svm(vcpu);
1751 
1752 	if (vcpu->arch.guest_state_protected)
1753 		return;
1754 
1755 	get_debugreg(vcpu->arch.db[0], 0);
1756 	get_debugreg(vcpu->arch.db[1], 1);
1757 	get_debugreg(vcpu->arch.db[2], 2);
1758 	get_debugreg(vcpu->arch.db[3], 3);
1759 	/*
1760 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1761 	 * because db_interception might need it.  We can do it before vmentry.
1762 	 */
1763 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
1764 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1765 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1766 	set_dr_intercepts(svm);
1767 }
1768 
1769 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1770 {
1771 	struct vcpu_svm *svm = to_svm(vcpu);
1772 
1773 	if (vcpu->arch.guest_state_protected)
1774 		return;
1775 
1776 	svm->vmcb->save.dr7 = value;
1777 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1778 }
1779 
1780 static int pf_interception(struct kvm_vcpu *vcpu)
1781 {
1782 	struct vcpu_svm *svm = to_svm(vcpu);
1783 
1784 	u64 fault_address = svm->vmcb->control.exit_info_2;
1785 	u64 error_code = svm->vmcb->control.exit_info_1;
1786 
1787 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
1788 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1789 			svm->vmcb->control.insn_bytes : NULL,
1790 			svm->vmcb->control.insn_len);
1791 }
1792 
1793 static int npf_interception(struct kvm_vcpu *vcpu)
1794 {
1795 	struct vcpu_svm *svm = to_svm(vcpu);
1796 
1797 	u64 fault_address = svm->vmcb->control.exit_info_2;
1798 	u64 error_code = svm->vmcb->control.exit_info_1;
1799 
1800 	trace_kvm_page_fault(fault_address, error_code);
1801 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1802 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1803 			svm->vmcb->control.insn_bytes : NULL,
1804 			svm->vmcb->control.insn_len);
1805 }
1806 
1807 static int db_interception(struct kvm_vcpu *vcpu)
1808 {
1809 	struct kvm_run *kvm_run = vcpu->run;
1810 	struct vcpu_svm *svm = to_svm(vcpu);
1811 
1812 	if (!(vcpu->guest_debug &
1813 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1814 		!svm->nmi_singlestep) {
1815 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1816 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1817 		return 1;
1818 	}
1819 
1820 	if (svm->nmi_singlestep) {
1821 		disable_nmi_singlestep(svm);
1822 		/* Make sure we check for pending NMIs upon entry */
1823 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1824 	}
1825 
1826 	if (vcpu->guest_debug &
1827 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1828 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1829 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1830 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1831 		kvm_run->debug.arch.pc =
1832 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1833 		kvm_run->debug.arch.exception = DB_VECTOR;
1834 		return 0;
1835 	}
1836 
1837 	return 1;
1838 }
1839 
1840 static int bp_interception(struct kvm_vcpu *vcpu)
1841 {
1842 	struct vcpu_svm *svm = to_svm(vcpu);
1843 	struct kvm_run *kvm_run = vcpu->run;
1844 
1845 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1846 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1847 	kvm_run->debug.arch.exception = BP_VECTOR;
1848 	return 0;
1849 }
1850 
1851 static int ud_interception(struct kvm_vcpu *vcpu)
1852 {
1853 	return handle_ud(vcpu);
1854 }
1855 
1856 static int ac_interception(struct kvm_vcpu *vcpu)
1857 {
1858 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1859 	return 1;
1860 }
1861 
1862 static bool is_erratum_383(void)
1863 {
1864 	int err, i;
1865 	u64 value;
1866 
1867 	if (!erratum_383_found)
1868 		return false;
1869 
1870 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1871 	if (err)
1872 		return false;
1873 
1874 	/* Bit 62 may or may not be set for this mce */
1875 	value &= ~(1ULL << 62);
1876 
1877 	if (value != 0xb600000000010015ULL)
1878 		return false;
1879 
1880 	/* Clear MCi_STATUS registers */
1881 	for (i = 0; i < 6; ++i)
1882 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1883 
1884 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1885 	if (!err) {
1886 		u32 low, high;
1887 
1888 		value &= ~(1ULL << 2);
1889 		low    = lower_32_bits(value);
1890 		high   = upper_32_bits(value);
1891 
1892 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1893 	}
1894 
1895 	/* Flush tlb to evict multi-match entries */
1896 	__flush_tlb_all();
1897 
1898 	return true;
1899 }
1900 
1901 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1902 {
1903 	if (is_erratum_383()) {
1904 		/*
1905 		 * Erratum 383 triggered. Guest state is corrupt so kill the
1906 		 * guest.
1907 		 */
1908 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1909 
1910 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1911 
1912 		return;
1913 	}
1914 
1915 	/*
1916 	 * On an #MC intercept the MCE handler is not called automatically in
1917 	 * the host. So do it by hand here.
1918 	 */
1919 	kvm_machine_check();
1920 }
1921 
1922 static int mc_interception(struct kvm_vcpu *vcpu)
1923 {
1924 	return 1;
1925 }
1926 
1927 static int shutdown_interception(struct kvm_vcpu *vcpu)
1928 {
1929 	struct kvm_run *kvm_run = vcpu->run;
1930 	struct vcpu_svm *svm = to_svm(vcpu);
1931 
1932 	/*
1933 	 * The VM save area has already been encrypted so it
1934 	 * cannot be reinitialized - just terminate.
1935 	 */
1936 	if (sev_es_guest(vcpu->kvm))
1937 		return -EINVAL;
1938 
1939 	/*
1940 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
1941 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
1942 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
1943 	 * userspace.  At a platform view, INIT is acceptable behavior as
1944 	 * there exist bare metal platforms that automatically INIT the CPU
1945 	 * in response to shutdown.
1946 	 */
1947 	clear_page(svm->vmcb);
1948 	kvm_vcpu_reset(vcpu, true);
1949 
1950 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1951 	return 0;
1952 }
1953 
1954 static int io_interception(struct kvm_vcpu *vcpu)
1955 {
1956 	struct vcpu_svm *svm = to_svm(vcpu);
1957 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1958 	int size, in, string;
1959 	unsigned port;
1960 
1961 	++vcpu->stat.io_exits;
1962 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1963 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1964 	port = io_info >> 16;
1965 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1966 
1967 	if (string) {
1968 		if (sev_es_guest(vcpu->kvm))
1969 			return sev_es_string_io(svm, size, port, in);
1970 		else
1971 			return kvm_emulate_instruction(vcpu, 0);
1972 	}
1973 
1974 	svm->next_rip = svm->vmcb->control.exit_info_2;
1975 
1976 	return kvm_fast_pio(vcpu, size, port, in);
1977 }
1978 
1979 static int nmi_interception(struct kvm_vcpu *vcpu)
1980 {
1981 	return 1;
1982 }
1983 
1984 static int smi_interception(struct kvm_vcpu *vcpu)
1985 {
1986 	return 1;
1987 }
1988 
1989 static int intr_interception(struct kvm_vcpu *vcpu)
1990 {
1991 	++vcpu->stat.irq_exits;
1992 	return 1;
1993 }
1994 
1995 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
1996 {
1997 	struct vcpu_svm *svm = to_svm(vcpu);
1998 	struct vmcb *vmcb12;
1999 	struct kvm_host_map map;
2000 	int ret;
2001 
2002 	if (nested_svm_check_permissions(vcpu))
2003 		return 1;
2004 
2005 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2006 	if (ret) {
2007 		if (ret == -EINVAL)
2008 			kvm_inject_gp(vcpu, 0);
2009 		return 1;
2010 	}
2011 
2012 	vmcb12 = map.hva;
2013 
2014 	ret = kvm_skip_emulated_instruction(vcpu);
2015 
2016 	if (vmload) {
2017 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2018 		svm->sysenter_eip_hi = 0;
2019 		svm->sysenter_esp_hi = 0;
2020 	} else {
2021 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2022 	}
2023 
2024 	kvm_vcpu_unmap(vcpu, &map, true);
2025 
2026 	return ret;
2027 }
2028 
2029 static int vmload_interception(struct kvm_vcpu *vcpu)
2030 {
2031 	return vmload_vmsave_interception(vcpu, true);
2032 }
2033 
2034 static int vmsave_interception(struct kvm_vcpu *vcpu)
2035 {
2036 	return vmload_vmsave_interception(vcpu, false);
2037 }
2038 
2039 static int vmrun_interception(struct kvm_vcpu *vcpu)
2040 {
2041 	if (nested_svm_check_permissions(vcpu))
2042 		return 1;
2043 
2044 	return nested_svm_vmrun(vcpu);
2045 }
2046 
2047 enum {
2048 	NONE_SVM_INSTR,
2049 	SVM_INSTR_VMRUN,
2050 	SVM_INSTR_VMLOAD,
2051 	SVM_INSTR_VMSAVE,
2052 };
2053 
2054 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2055 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2056 {
2057 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2058 
2059 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2060 		return NONE_SVM_INSTR;
2061 
2062 	switch (ctxt->modrm) {
2063 	case 0xd8: /* VMRUN */
2064 		return SVM_INSTR_VMRUN;
2065 	case 0xda: /* VMLOAD */
2066 		return SVM_INSTR_VMLOAD;
2067 	case 0xdb: /* VMSAVE */
2068 		return SVM_INSTR_VMSAVE;
2069 	default:
2070 		break;
2071 	}
2072 
2073 	return NONE_SVM_INSTR;
2074 }
2075 
2076 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2077 {
2078 	const int guest_mode_exit_codes[] = {
2079 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2080 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2081 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2082 	};
2083 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2084 		[SVM_INSTR_VMRUN] = vmrun_interception,
2085 		[SVM_INSTR_VMLOAD] = vmload_interception,
2086 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2087 	};
2088 	struct vcpu_svm *svm = to_svm(vcpu);
2089 	int ret;
2090 
2091 	if (is_guest_mode(vcpu)) {
2092 		/* Returns '1' or -errno on failure, '0' on success. */
2093 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2094 		if (ret)
2095 			return ret;
2096 		return 1;
2097 	}
2098 	return svm_instr_handlers[opcode](vcpu);
2099 }
2100 
2101 /*
2102  * #GP handling code. Note that #GP can be triggered under the following two
2103  * cases:
2104  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2105  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2106  *      regions (e.g. SMM memory on host).
2107  *   2) VMware backdoor
2108  */
2109 static int gp_interception(struct kvm_vcpu *vcpu)
2110 {
2111 	struct vcpu_svm *svm = to_svm(vcpu);
2112 	u32 error_code = svm->vmcb->control.exit_info_1;
2113 	int opcode;
2114 
2115 	/* Both #GP cases have zero error_code */
2116 	if (error_code)
2117 		goto reinject;
2118 
2119 	/* Decode the instruction for usage later */
2120 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2121 		goto reinject;
2122 
2123 	opcode = svm_instr_opcode(vcpu);
2124 
2125 	if (opcode == NONE_SVM_INSTR) {
2126 		if (!enable_vmware_backdoor)
2127 			goto reinject;
2128 
2129 		/*
2130 		 * VMware backdoor emulation on #GP interception only handles
2131 		 * IN{S}, OUT{S}, and RDPMC.
2132 		 */
2133 		if (!is_guest_mode(vcpu))
2134 			return kvm_emulate_instruction(vcpu,
2135 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2136 	} else {
2137 		/* All SVM instructions expect page aligned RAX */
2138 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2139 			goto reinject;
2140 
2141 		return emulate_svm_instr(vcpu, opcode);
2142 	}
2143 
2144 reinject:
2145 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2146 	return 1;
2147 }
2148 
2149 void svm_set_gif(struct vcpu_svm *svm, bool value)
2150 {
2151 	if (value) {
2152 		/*
2153 		 * If VGIF is enabled, the STGI intercept is only added to
2154 		 * detect the opening of the SMI/NMI window; remove it now.
2155 		 * Likewise, clear the VINTR intercept, we will set it
2156 		 * again while processing KVM_REQ_EVENT if needed.
2157 		 */
2158 		if (vgif_enabled(svm))
2159 			svm_clr_intercept(svm, INTERCEPT_STGI);
2160 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2161 			svm_clear_vintr(svm);
2162 
2163 		enable_gif(svm);
2164 		if (svm->vcpu.arch.smi_pending ||
2165 		    svm->vcpu.arch.nmi_pending ||
2166 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
2167 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2168 	} else {
2169 		disable_gif(svm);
2170 
2171 		/*
2172 		 * After a CLGI no interrupts should come.  But if vGIF is
2173 		 * in use, we still rely on the VINTR intercept (rather than
2174 		 * STGI) to detect an open interrupt window.
2175 		*/
2176 		if (!vgif_enabled(svm))
2177 			svm_clear_vintr(svm);
2178 	}
2179 }
2180 
2181 static int stgi_interception(struct kvm_vcpu *vcpu)
2182 {
2183 	int ret;
2184 
2185 	if (nested_svm_check_permissions(vcpu))
2186 		return 1;
2187 
2188 	ret = kvm_skip_emulated_instruction(vcpu);
2189 	svm_set_gif(to_svm(vcpu), true);
2190 	return ret;
2191 }
2192 
2193 static int clgi_interception(struct kvm_vcpu *vcpu)
2194 {
2195 	int ret;
2196 
2197 	if (nested_svm_check_permissions(vcpu))
2198 		return 1;
2199 
2200 	ret = kvm_skip_emulated_instruction(vcpu);
2201 	svm_set_gif(to_svm(vcpu), false);
2202 	return ret;
2203 }
2204 
2205 static int invlpga_interception(struct kvm_vcpu *vcpu)
2206 {
2207 	gva_t gva = kvm_rax_read(vcpu);
2208 	u32 asid = kvm_rcx_read(vcpu);
2209 
2210 	/* FIXME: Handle an address size prefix. */
2211 	if (!is_long_mode(vcpu))
2212 		gva = (u32)gva;
2213 
2214 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2215 
2216 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2217 	kvm_mmu_invlpg(vcpu, gva);
2218 
2219 	return kvm_skip_emulated_instruction(vcpu);
2220 }
2221 
2222 static int skinit_interception(struct kvm_vcpu *vcpu)
2223 {
2224 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2225 
2226 	kvm_queue_exception(vcpu, UD_VECTOR);
2227 	return 1;
2228 }
2229 
2230 static int task_switch_interception(struct kvm_vcpu *vcpu)
2231 {
2232 	struct vcpu_svm *svm = to_svm(vcpu);
2233 	u16 tss_selector;
2234 	int reason;
2235 	int int_type = svm->vmcb->control.exit_int_info &
2236 		SVM_EXITINTINFO_TYPE_MASK;
2237 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2238 	uint32_t type =
2239 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2240 	uint32_t idt_v =
2241 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2242 	bool has_error_code = false;
2243 	u32 error_code = 0;
2244 
2245 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2246 
2247 	if (svm->vmcb->control.exit_info_2 &
2248 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2249 		reason = TASK_SWITCH_IRET;
2250 	else if (svm->vmcb->control.exit_info_2 &
2251 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2252 		reason = TASK_SWITCH_JMP;
2253 	else if (idt_v)
2254 		reason = TASK_SWITCH_GATE;
2255 	else
2256 		reason = TASK_SWITCH_CALL;
2257 
2258 	if (reason == TASK_SWITCH_GATE) {
2259 		switch (type) {
2260 		case SVM_EXITINTINFO_TYPE_NMI:
2261 			vcpu->arch.nmi_injected = false;
2262 			break;
2263 		case SVM_EXITINTINFO_TYPE_EXEPT:
2264 			if (svm->vmcb->control.exit_info_2 &
2265 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2266 				has_error_code = true;
2267 				error_code =
2268 					(u32)svm->vmcb->control.exit_info_2;
2269 			}
2270 			kvm_clear_exception_queue(vcpu);
2271 			break;
2272 		case SVM_EXITINTINFO_TYPE_INTR:
2273 			kvm_clear_interrupt_queue(vcpu);
2274 			break;
2275 		default:
2276 			break;
2277 		}
2278 	}
2279 
2280 	if (reason != TASK_SWITCH_GATE ||
2281 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2282 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2283 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2284 		if (!svm_skip_emulated_instruction(vcpu))
2285 			return 0;
2286 	}
2287 
2288 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2289 		int_vec = -1;
2290 
2291 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2292 			       has_error_code, error_code);
2293 }
2294 
2295 static int iret_interception(struct kvm_vcpu *vcpu)
2296 {
2297 	struct vcpu_svm *svm = to_svm(vcpu);
2298 
2299 	++vcpu->stat.nmi_window_exits;
2300 	vcpu->arch.hflags |= HF_IRET_MASK;
2301 	if (!sev_es_guest(vcpu->kvm)) {
2302 		svm_clr_intercept(svm, INTERCEPT_IRET);
2303 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
2304 	}
2305 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2306 	return 1;
2307 }
2308 
2309 static int invlpg_interception(struct kvm_vcpu *vcpu)
2310 {
2311 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2312 		return kvm_emulate_instruction(vcpu, 0);
2313 
2314 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2315 	return kvm_skip_emulated_instruction(vcpu);
2316 }
2317 
2318 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2319 {
2320 	return kvm_emulate_instruction(vcpu, 0);
2321 }
2322 
2323 static int rsm_interception(struct kvm_vcpu *vcpu)
2324 {
2325 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2326 }
2327 
2328 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2329 					    unsigned long val)
2330 {
2331 	struct vcpu_svm *svm = to_svm(vcpu);
2332 	unsigned long cr0 = vcpu->arch.cr0;
2333 	bool ret = false;
2334 
2335 	if (!is_guest_mode(vcpu) ||
2336 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2337 		return false;
2338 
2339 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2340 	val &= ~SVM_CR0_SELECTIVE_MASK;
2341 
2342 	if (cr0 ^ val) {
2343 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2344 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2345 	}
2346 
2347 	return ret;
2348 }
2349 
2350 #define CR_VALID (1ULL << 63)
2351 
2352 static int cr_interception(struct kvm_vcpu *vcpu)
2353 {
2354 	struct vcpu_svm *svm = to_svm(vcpu);
2355 	int reg, cr;
2356 	unsigned long val;
2357 	int err;
2358 
2359 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2360 		return emulate_on_interception(vcpu);
2361 
2362 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2363 		return emulate_on_interception(vcpu);
2364 
2365 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2366 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2367 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2368 	else
2369 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2370 
2371 	err = 0;
2372 	if (cr >= 16) { /* mov to cr */
2373 		cr -= 16;
2374 		val = kvm_register_read(vcpu, reg);
2375 		trace_kvm_cr_write(cr, val);
2376 		switch (cr) {
2377 		case 0:
2378 			if (!check_selective_cr0_intercepted(vcpu, val))
2379 				err = kvm_set_cr0(vcpu, val);
2380 			else
2381 				return 1;
2382 
2383 			break;
2384 		case 3:
2385 			err = kvm_set_cr3(vcpu, val);
2386 			break;
2387 		case 4:
2388 			err = kvm_set_cr4(vcpu, val);
2389 			break;
2390 		case 8:
2391 			err = kvm_set_cr8(vcpu, val);
2392 			break;
2393 		default:
2394 			WARN(1, "unhandled write to CR%d", cr);
2395 			kvm_queue_exception(vcpu, UD_VECTOR);
2396 			return 1;
2397 		}
2398 	} else { /* mov from cr */
2399 		switch (cr) {
2400 		case 0:
2401 			val = kvm_read_cr0(vcpu);
2402 			break;
2403 		case 2:
2404 			val = vcpu->arch.cr2;
2405 			break;
2406 		case 3:
2407 			val = kvm_read_cr3(vcpu);
2408 			break;
2409 		case 4:
2410 			val = kvm_read_cr4(vcpu);
2411 			break;
2412 		case 8:
2413 			val = kvm_get_cr8(vcpu);
2414 			break;
2415 		default:
2416 			WARN(1, "unhandled read from CR%d", cr);
2417 			kvm_queue_exception(vcpu, UD_VECTOR);
2418 			return 1;
2419 		}
2420 		kvm_register_write(vcpu, reg, val);
2421 		trace_kvm_cr_read(cr, val);
2422 	}
2423 	return kvm_complete_insn_gp(vcpu, err);
2424 }
2425 
2426 static int cr_trap(struct kvm_vcpu *vcpu)
2427 {
2428 	struct vcpu_svm *svm = to_svm(vcpu);
2429 	unsigned long old_value, new_value;
2430 	unsigned int cr;
2431 	int ret = 0;
2432 
2433 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2434 
2435 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2436 	switch (cr) {
2437 	case 0:
2438 		old_value = kvm_read_cr0(vcpu);
2439 		svm_set_cr0(vcpu, new_value);
2440 
2441 		kvm_post_set_cr0(vcpu, old_value, new_value);
2442 		break;
2443 	case 4:
2444 		old_value = kvm_read_cr4(vcpu);
2445 		svm_set_cr4(vcpu, new_value);
2446 
2447 		kvm_post_set_cr4(vcpu, old_value, new_value);
2448 		break;
2449 	case 8:
2450 		ret = kvm_set_cr8(vcpu, new_value);
2451 		break;
2452 	default:
2453 		WARN(1, "unhandled CR%d write trap", cr);
2454 		kvm_queue_exception(vcpu, UD_VECTOR);
2455 		return 1;
2456 	}
2457 
2458 	return kvm_complete_insn_gp(vcpu, ret);
2459 }
2460 
2461 static int dr_interception(struct kvm_vcpu *vcpu)
2462 {
2463 	struct vcpu_svm *svm = to_svm(vcpu);
2464 	int reg, dr;
2465 	unsigned long val;
2466 	int err = 0;
2467 
2468 	if (vcpu->guest_debug == 0) {
2469 		/*
2470 		 * No more DR vmexits; force a reload of the debug registers
2471 		 * and reenter on this instruction.  The next vmexit will
2472 		 * retrieve the full state of the debug registers.
2473 		 */
2474 		clr_dr_intercepts(svm);
2475 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2476 		return 1;
2477 	}
2478 
2479 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2480 		return emulate_on_interception(vcpu);
2481 
2482 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2483 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2484 	if (dr >= 16) { /* mov to DRn  */
2485 		dr -= 16;
2486 		val = kvm_register_read(vcpu, reg);
2487 		err = kvm_set_dr(vcpu, dr, val);
2488 	} else {
2489 		kvm_get_dr(vcpu, dr, &val);
2490 		kvm_register_write(vcpu, reg, val);
2491 	}
2492 
2493 	return kvm_complete_insn_gp(vcpu, err);
2494 }
2495 
2496 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2497 {
2498 	int r;
2499 
2500 	u8 cr8_prev = kvm_get_cr8(vcpu);
2501 	/* instruction emulation calls kvm_set_cr8() */
2502 	r = cr_interception(vcpu);
2503 	if (lapic_in_kernel(vcpu))
2504 		return r;
2505 	if (cr8_prev <= kvm_get_cr8(vcpu))
2506 		return r;
2507 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2508 	return 0;
2509 }
2510 
2511 static int efer_trap(struct kvm_vcpu *vcpu)
2512 {
2513 	struct msr_data msr_info;
2514 	int ret;
2515 
2516 	/*
2517 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2518 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2519 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2520 	 * the guest doesn't have X86_FEATURE_SVM.
2521 	 */
2522 	msr_info.host_initiated = false;
2523 	msr_info.index = MSR_EFER;
2524 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2525 	ret = kvm_set_msr_common(vcpu, &msr_info);
2526 
2527 	return kvm_complete_insn_gp(vcpu, ret);
2528 }
2529 
2530 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2531 {
2532 	msr->data = 0;
2533 
2534 	switch (msr->index) {
2535 	case MSR_F10H_DECFG:
2536 		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2537 			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2538 		break;
2539 	case MSR_IA32_PERF_CAPABILITIES:
2540 		return 0;
2541 	default:
2542 		return KVM_MSR_RET_INVALID;
2543 	}
2544 
2545 	return 0;
2546 }
2547 
2548 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2549 {
2550 	struct vcpu_svm *svm = to_svm(vcpu);
2551 
2552 	switch (msr_info->index) {
2553 	case MSR_AMD64_TSC_RATIO:
2554 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2555 			return 1;
2556 		msr_info->data = svm->tsc_ratio_msr;
2557 		break;
2558 	case MSR_STAR:
2559 		msr_info->data = svm->vmcb01.ptr->save.star;
2560 		break;
2561 #ifdef CONFIG_X86_64
2562 	case MSR_LSTAR:
2563 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2564 		break;
2565 	case MSR_CSTAR:
2566 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2567 		break;
2568 	case MSR_KERNEL_GS_BASE:
2569 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2570 		break;
2571 	case MSR_SYSCALL_MASK:
2572 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2573 		break;
2574 #endif
2575 	case MSR_IA32_SYSENTER_CS:
2576 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2577 		break;
2578 	case MSR_IA32_SYSENTER_EIP:
2579 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2580 		if (guest_cpuid_is_intel(vcpu))
2581 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2582 		break;
2583 	case MSR_IA32_SYSENTER_ESP:
2584 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2585 		if (guest_cpuid_is_intel(vcpu))
2586 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2587 		break;
2588 	case MSR_TSC_AUX:
2589 		msr_info->data = svm->tsc_aux;
2590 		break;
2591 	/*
2592 	 * Nobody will change the following 5 values in the VMCB so we can
2593 	 * safely return them on rdmsr. They will always be 0 until LBRV is
2594 	 * implemented.
2595 	 */
2596 	case MSR_IA32_DEBUGCTLMSR:
2597 		msr_info->data = svm->vmcb->save.dbgctl;
2598 		break;
2599 	case MSR_IA32_LASTBRANCHFROMIP:
2600 		msr_info->data = svm->vmcb->save.br_from;
2601 		break;
2602 	case MSR_IA32_LASTBRANCHTOIP:
2603 		msr_info->data = svm->vmcb->save.br_to;
2604 		break;
2605 	case MSR_IA32_LASTINTFROMIP:
2606 		msr_info->data = svm->vmcb->save.last_excp_from;
2607 		break;
2608 	case MSR_IA32_LASTINTTOIP:
2609 		msr_info->data = svm->vmcb->save.last_excp_to;
2610 		break;
2611 	case MSR_VM_HSAVE_PA:
2612 		msr_info->data = svm->nested.hsave_msr;
2613 		break;
2614 	case MSR_VM_CR:
2615 		msr_info->data = svm->nested.vm_cr_msr;
2616 		break;
2617 	case MSR_IA32_SPEC_CTRL:
2618 		if (!msr_info->host_initiated &&
2619 		    !guest_has_spec_ctrl_msr(vcpu))
2620 			return 1;
2621 
2622 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2623 			msr_info->data = svm->vmcb->save.spec_ctrl;
2624 		else
2625 			msr_info->data = svm->spec_ctrl;
2626 		break;
2627 	case MSR_AMD64_VIRT_SPEC_CTRL:
2628 		if (!msr_info->host_initiated &&
2629 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2630 			return 1;
2631 
2632 		msr_info->data = svm->virt_spec_ctrl;
2633 		break;
2634 	case MSR_F15H_IC_CFG: {
2635 
2636 		int family, model;
2637 
2638 		family = guest_cpuid_family(vcpu);
2639 		model  = guest_cpuid_model(vcpu);
2640 
2641 		if (family < 0 || model < 0)
2642 			return kvm_get_msr_common(vcpu, msr_info);
2643 
2644 		msr_info->data = 0;
2645 
2646 		if (family == 0x15 &&
2647 		    (model >= 0x2 && model < 0x20))
2648 			msr_info->data = 0x1E;
2649 		}
2650 		break;
2651 	case MSR_F10H_DECFG:
2652 		msr_info->data = svm->msr_decfg;
2653 		break;
2654 	default:
2655 		return kvm_get_msr_common(vcpu, msr_info);
2656 	}
2657 	return 0;
2658 }
2659 
2660 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2661 {
2662 	struct vcpu_svm *svm = to_svm(vcpu);
2663 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2664 		return kvm_complete_insn_gp(vcpu, err);
2665 
2666 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2667 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2668 				X86_TRAP_GP |
2669 				SVM_EVTINJ_TYPE_EXEPT |
2670 				SVM_EVTINJ_VALID);
2671 	return 1;
2672 }
2673 
2674 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2675 {
2676 	struct vcpu_svm *svm = to_svm(vcpu);
2677 	int svm_dis, chg_mask;
2678 
2679 	if (data & ~SVM_VM_CR_VALID_MASK)
2680 		return 1;
2681 
2682 	chg_mask = SVM_VM_CR_VALID_MASK;
2683 
2684 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2685 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2686 
2687 	svm->nested.vm_cr_msr &= ~chg_mask;
2688 	svm->nested.vm_cr_msr |= (data & chg_mask);
2689 
2690 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2691 
2692 	/* check for svm_disable while efer.svme is set */
2693 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2694 		return 1;
2695 
2696 	return 0;
2697 }
2698 
2699 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2700 {
2701 	struct vcpu_svm *svm = to_svm(vcpu);
2702 	int r;
2703 
2704 	u32 ecx = msr->index;
2705 	u64 data = msr->data;
2706 	switch (ecx) {
2707 	case MSR_AMD64_TSC_RATIO:
2708 
2709 		if (!svm->tsc_scaling_enabled) {
2710 
2711 			if (!msr->host_initiated)
2712 				return 1;
2713 			/*
2714 			 * In case TSC scaling is not enabled, always
2715 			 * leave this MSR at the default value.
2716 			 *
2717 			 * Due to bug in qemu 6.2.0, it would try to set
2718 			 * this msr to 0 if tsc scaling is not enabled.
2719 			 * Ignore this value as well.
2720 			 */
2721 			if (data != 0 && data != svm->tsc_ratio_msr)
2722 				return 1;
2723 			break;
2724 		}
2725 
2726 		if (data & TSC_RATIO_RSVD)
2727 			return 1;
2728 
2729 		svm->tsc_ratio_msr = data;
2730 
2731 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2732 			nested_svm_update_tsc_ratio_msr(vcpu);
2733 
2734 		break;
2735 	case MSR_IA32_CR_PAT:
2736 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2737 			return 1;
2738 		vcpu->arch.pat = data;
2739 		svm->vmcb01.ptr->save.g_pat = data;
2740 		if (is_guest_mode(vcpu))
2741 			nested_vmcb02_compute_g_pat(svm);
2742 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2743 		break;
2744 	case MSR_IA32_SPEC_CTRL:
2745 		if (!msr->host_initiated &&
2746 		    !guest_has_spec_ctrl_msr(vcpu))
2747 			return 1;
2748 
2749 		if (kvm_spec_ctrl_test_value(data))
2750 			return 1;
2751 
2752 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2753 			svm->vmcb->save.spec_ctrl = data;
2754 		else
2755 			svm->spec_ctrl = data;
2756 		if (!data)
2757 			break;
2758 
2759 		/*
2760 		 * For non-nested:
2761 		 * When it's written (to non-zero) for the first time, pass
2762 		 * it through.
2763 		 *
2764 		 * For nested:
2765 		 * The handling of the MSR bitmap for L2 guests is done in
2766 		 * nested_svm_vmrun_msrpm.
2767 		 * We update the L1 MSR bit as well since it will end up
2768 		 * touching the MSR anyway now.
2769 		 */
2770 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2771 		break;
2772 	case MSR_IA32_PRED_CMD:
2773 		if (!msr->host_initiated &&
2774 		    !guest_has_pred_cmd_msr(vcpu))
2775 			return 1;
2776 
2777 		if (data & ~PRED_CMD_IBPB)
2778 			return 1;
2779 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2780 			return 1;
2781 		if (!data)
2782 			break;
2783 
2784 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2785 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2786 		break;
2787 	case MSR_AMD64_VIRT_SPEC_CTRL:
2788 		if (!msr->host_initiated &&
2789 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2790 			return 1;
2791 
2792 		if (data & ~SPEC_CTRL_SSBD)
2793 			return 1;
2794 
2795 		svm->virt_spec_ctrl = data;
2796 		break;
2797 	case MSR_STAR:
2798 		svm->vmcb01.ptr->save.star = data;
2799 		break;
2800 #ifdef CONFIG_X86_64
2801 	case MSR_LSTAR:
2802 		svm->vmcb01.ptr->save.lstar = data;
2803 		break;
2804 	case MSR_CSTAR:
2805 		svm->vmcb01.ptr->save.cstar = data;
2806 		break;
2807 	case MSR_KERNEL_GS_BASE:
2808 		svm->vmcb01.ptr->save.kernel_gs_base = data;
2809 		break;
2810 	case MSR_SYSCALL_MASK:
2811 		svm->vmcb01.ptr->save.sfmask = data;
2812 		break;
2813 #endif
2814 	case MSR_IA32_SYSENTER_CS:
2815 		svm->vmcb01.ptr->save.sysenter_cs = data;
2816 		break;
2817 	case MSR_IA32_SYSENTER_EIP:
2818 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2819 		/*
2820 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2821 		 * when we spoof an Intel vendor ID (for cross vendor migration).
2822 		 * In this case we use this intercept to track the high
2823 		 * 32 bit part of these msrs to support Intel's
2824 		 * implementation of SYSENTER/SYSEXIT.
2825 		 */
2826 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2827 		break;
2828 	case MSR_IA32_SYSENTER_ESP:
2829 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2830 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2831 		break;
2832 	case MSR_TSC_AUX:
2833 		/*
2834 		 * TSC_AUX is usually changed only during boot and never read
2835 		 * directly.  Intercept TSC_AUX instead of exposing it to the
2836 		 * guest via direct_access_msrs, and switch it via user return.
2837 		 */
2838 		preempt_disable();
2839 		r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2840 		preempt_enable();
2841 		if (r)
2842 			return 1;
2843 
2844 		svm->tsc_aux = data;
2845 		break;
2846 	case MSR_IA32_DEBUGCTLMSR:
2847 		if (!lbrv) {
2848 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2849 				    __func__, data);
2850 			break;
2851 		}
2852 		if (data & DEBUGCTL_RESERVED_BITS)
2853 			return 1;
2854 
2855 		svm->vmcb->save.dbgctl = data;
2856 		vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2857 		if (data & (1ULL<<0))
2858 			svm_enable_lbrv(vcpu);
2859 		else
2860 			svm_disable_lbrv(vcpu);
2861 		break;
2862 	case MSR_VM_HSAVE_PA:
2863 		/*
2864 		 * Old kernels did not validate the value written to
2865 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2866 		 * value to allow live migrating buggy or malicious guests
2867 		 * originating from those kernels.
2868 		 */
2869 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
2870 			return 1;
2871 
2872 		svm->nested.hsave_msr = data & PAGE_MASK;
2873 		break;
2874 	case MSR_VM_CR:
2875 		return svm_set_vm_cr(vcpu, data);
2876 	case MSR_VM_IGNNE:
2877 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2878 		break;
2879 	case MSR_F10H_DECFG: {
2880 		struct kvm_msr_entry msr_entry;
2881 
2882 		msr_entry.index = msr->index;
2883 		if (svm_get_msr_feature(&msr_entry))
2884 			return 1;
2885 
2886 		/* Check the supported bits */
2887 		if (data & ~msr_entry.data)
2888 			return 1;
2889 
2890 		/* Don't allow the guest to change a bit, #GP */
2891 		if (!msr->host_initiated && (data ^ msr_entry.data))
2892 			return 1;
2893 
2894 		svm->msr_decfg = data;
2895 		break;
2896 	}
2897 	default:
2898 		return kvm_set_msr_common(vcpu, msr);
2899 	}
2900 	return 0;
2901 }
2902 
2903 static int msr_interception(struct kvm_vcpu *vcpu)
2904 {
2905 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
2906 		return kvm_emulate_wrmsr(vcpu);
2907 	else
2908 		return kvm_emulate_rdmsr(vcpu);
2909 }
2910 
2911 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2912 {
2913 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2914 	svm_clear_vintr(to_svm(vcpu));
2915 
2916 	/*
2917 	 * For AVIC, the only reason to end up here is ExtINTs.
2918 	 * In this case AVIC was temporarily disabled for
2919 	 * requesting the IRQ window and we have to re-enable it.
2920 	 */
2921 	kvm_request_apicv_update(vcpu->kvm, true, APICV_INHIBIT_REASON_IRQWIN);
2922 
2923 	++vcpu->stat.irq_window_exits;
2924 	return 1;
2925 }
2926 
2927 static int pause_interception(struct kvm_vcpu *vcpu)
2928 {
2929 	bool in_kernel;
2930 
2931 	/*
2932 	 * CPL is not made available for an SEV-ES guest, therefore
2933 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
2934 	 * set in_kernel to false as well.
2935 	 */
2936 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
2937 
2938 	if (!kvm_pause_in_guest(vcpu->kvm))
2939 		grow_ple_window(vcpu);
2940 
2941 	kvm_vcpu_on_spin(vcpu, in_kernel);
2942 	return kvm_skip_emulated_instruction(vcpu);
2943 }
2944 
2945 static int invpcid_interception(struct kvm_vcpu *vcpu)
2946 {
2947 	struct vcpu_svm *svm = to_svm(vcpu);
2948 	unsigned long type;
2949 	gva_t gva;
2950 
2951 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2952 		kvm_queue_exception(vcpu, UD_VECTOR);
2953 		return 1;
2954 	}
2955 
2956 	/*
2957 	 * For an INVPCID intercept:
2958 	 * EXITINFO1 provides the linear address of the memory operand.
2959 	 * EXITINFO2 provides the contents of the register operand.
2960 	 */
2961 	type = svm->vmcb->control.exit_info_2;
2962 	gva = svm->vmcb->control.exit_info_1;
2963 
2964 	return kvm_handle_invpcid(vcpu, type, gva);
2965 }
2966 
2967 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
2968 	[SVM_EXIT_READ_CR0]			= cr_interception,
2969 	[SVM_EXIT_READ_CR3]			= cr_interception,
2970 	[SVM_EXIT_READ_CR4]			= cr_interception,
2971 	[SVM_EXIT_READ_CR8]			= cr_interception,
2972 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
2973 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
2974 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
2975 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
2976 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
2977 	[SVM_EXIT_READ_DR0]			= dr_interception,
2978 	[SVM_EXIT_READ_DR1]			= dr_interception,
2979 	[SVM_EXIT_READ_DR2]			= dr_interception,
2980 	[SVM_EXIT_READ_DR3]			= dr_interception,
2981 	[SVM_EXIT_READ_DR4]			= dr_interception,
2982 	[SVM_EXIT_READ_DR5]			= dr_interception,
2983 	[SVM_EXIT_READ_DR6]			= dr_interception,
2984 	[SVM_EXIT_READ_DR7]			= dr_interception,
2985 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
2986 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
2987 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
2988 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
2989 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
2990 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
2991 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
2992 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
2993 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
2994 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
2995 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
2996 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
2997 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
2998 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
2999 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3000 	[SVM_EXIT_INTR]				= intr_interception,
3001 	[SVM_EXIT_NMI]				= nmi_interception,
3002 	[SVM_EXIT_SMI]				= smi_interception,
3003 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3004 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3005 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3006 	[SVM_EXIT_IRET]                         = iret_interception,
3007 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3008 	[SVM_EXIT_PAUSE]			= pause_interception,
3009 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3010 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3011 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3012 	[SVM_EXIT_IOIO]				= io_interception,
3013 	[SVM_EXIT_MSR]				= msr_interception,
3014 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3015 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3016 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3017 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3018 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3019 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3020 	[SVM_EXIT_STGI]				= stgi_interception,
3021 	[SVM_EXIT_CLGI]				= clgi_interception,
3022 	[SVM_EXIT_SKINIT]			= skinit_interception,
3023 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3024 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3025 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3026 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3027 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3028 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3029 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3030 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3031 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3032 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3033 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3034 	[SVM_EXIT_NPF]				= npf_interception,
3035 	[SVM_EXIT_RSM]                          = rsm_interception,
3036 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3037 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3038 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3039 };
3040 
3041 static void dump_vmcb(struct kvm_vcpu *vcpu)
3042 {
3043 	struct vcpu_svm *svm = to_svm(vcpu);
3044 	struct vmcb_control_area *control = &svm->vmcb->control;
3045 	struct vmcb_save_area *save = &svm->vmcb->save;
3046 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3047 
3048 	if (!dump_invalid_vmcb) {
3049 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3050 		return;
3051 	}
3052 
3053 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3054 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3055 	pr_err("VMCB Control Area:\n");
3056 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3057 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3058 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3059 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3060 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3061 	pr_err("%-20s%08x %08x\n", "intercepts:",
3062               control->intercepts[INTERCEPT_WORD3],
3063 	       control->intercepts[INTERCEPT_WORD4]);
3064 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3065 	pr_err("%-20s%d\n", "pause filter threshold:",
3066 	       control->pause_filter_thresh);
3067 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3068 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3069 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3070 	pr_err("%-20s%d\n", "asid:", control->asid);
3071 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3072 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3073 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3074 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3075 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3076 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3077 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3078 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3079 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3080 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3081 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3082 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3083 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3084 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3085 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3086 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3087 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3088 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3089 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3090 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3091 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3092 	pr_err("VMCB State Save Area:\n");
3093 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3094 	       "es:",
3095 	       save->es.selector, save->es.attrib,
3096 	       save->es.limit, save->es.base);
3097 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3098 	       "cs:",
3099 	       save->cs.selector, save->cs.attrib,
3100 	       save->cs.limit, save->cs.base);
3101 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3102 	       "ss:",
3103 	       save->ss.selector, save->ss.attrib,
3104 	       save->ss.limit, save->ss.base);
3105 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3106 	       "ds:",
3107 	       save->ds.selector, save->ds.attrib,
3108 	       save->ds.limit, save->ds.base);
3109 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3110 	       "fs:",
3111 	       save01->fs.selector, save01->fs.attrib,
3112 	       save01->fs.limit, save01->fs.base);
3113 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3114 	       "gs:",
3115 	       save01->gs.selector, save01->gs.attrib,
3116 	       save01->gs.limit, save01->gs.base);
3117 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3118 	       "gdtr:",
3119 	       save->gdtr.selector, save->gdtr.attrib,
3120 	       save->gdtr.limit, save->gdtr.base);
3121 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3122 	       "ldtr:",
3123 	       save01->ldtr.selector, save01->ldtr.attrib,
3124 	       save01->ldtr.limit, save01->ldtr.base);
3125 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3126 	       "idtr:",
3127 	       save->idtr.selector, save->idtr.attrib,
3128 	       save->idtr.limit, save->idtr.base);
3129 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3130 	       "tr:",
3131 	       save01->tr.selector, save01->tr.attrib,
3132 	       save01->tr.limit, save01->tr.base);
3133 	pr_err("cpl:            %d                efer:         %016llx\n",
3134 		save->cpl, save->efer);
3135 	pr_err("%-15s %016llx %-13s %016llx\n",
3136 	       "cr0:", save->cr0, "cr2:", save->cr2);
3137 	pr_err("%-15s %016llx %-13s %016llx\n",
3138 	       "cr3:", save->cr3, "cr4:", save->cr4);
3139 	pr_err("%-15s %016llx %-13s %016llx\n",
3140 	       "dr6:", save->dr6, "dr7:", save->dr7);
3141 	pr_err("%-15s %016llx %-13s %016llx\n",
3142 	       "rip:", save->rip, "rflags:", save->rflags);
3143 	pr_err("%-15s %016llx %-13s %016llx\n",
3144 	       "rsp:", save->rsp, "rax:", save->rax);
3145 	pr_err("%-15s %016llx %-13s %016llx\n",
3146 	       "star:", save01->star, "lstar:", save01->lstar);
3147 	pr_err("%-15s %016llx %-13s %016llx\n",
3148 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3149 	pr_err("%-15s %016llx %-13s %016llx\n",
3150 	       "kernel_gs_base:", save01->kernel_gs_base,
3151 	       "sysenter_cs:", save01->sysenter_cs);
3152 	pr_err("%-15s %016llx %-13s %016llx\n",
3153 	       "sysenter_esp:", save01->sysenter_esp,
3154 	       "sysenter_eip:", save01->sysenter_eip);
3155 	pr_err("%-15s %016llx %-13s %016llx\n",
3156 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3157 	pr_err("%-15s %016llx %-13s %016llx\n",
3158 	       "br_from:", save->br_from, "br_to:", save->br_to);
3159 	pr_err("%-15s %016llx %-13s %016llx\n",
3160 	       "excp_from:", save->last_excp_from,
3161 	       "excp_to:", save->last_excp_to);
3162 }
3163 
3164 static bool svm_check_exit_valid(u64 exit_code)
3165 {
3166 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3167 		svm_exit_handlers[exit_code]);
3168 }
3169 
3170 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3171 {
3172 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3173 	dump_vmcb(vcpu);
3174 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3175 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3176 	vcpu->run->internal.ndata = 2;
3177 	vcpu->run->internal.data[0] = exit_code;
3178 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3179 	return 0;
3180 }
3181 
3182 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3183 {
3184 	if (!svm_check_exit_valid(exit_code))
3185 		return svm_handle_invalid_exit(vcpu, exit_code);
3186 
3187 #ifdef CONFIG_RETPOLINE
3188 	if (exit_code == SVM_EXIT_MSR)
3189 		return msr_interception(vcpu);
3190 	else if (exit_code == SVM_EXIT_VINTR)
3191 		return interrupt_window_interception(vcpu);
3192 	else if (exit_code == SVM_EXIT_INTR)
3193 		return intr_interception(vcpu);
3194 	else if (exit_code == SVM_EXIT_HLT)
3195 		return kvm_emulate_halt(vcpu);
3196 	else if (exit_code == SVM_EXIT_NPF)
3197 		return npf_interception(vcpu);
3198 #endif
3199 	return svm_exit_handlers[exit_code](vcpu);
3200 }
3201 
3202 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3203 			      u64 *info1, u64 *info2,
3204 			      u32 *intr_info, u32 *error_code)
3205 {
3206 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3207 
3208 	*reason = control->exit_code;
3209 	*info1 = control->exit_info_1;
3210 	*info2 = control->exit_info_2;
3211 	*intr_info = control->exit_int_info;
3212 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3213 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3214 		*error_code = control->exit_int_info_err;
3215 	else
3216 		*error_code = 0;
3217 }
3218 
3219 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3220 {
3221 	struct vcpu_svm *svm = to_svm(vcpu);
3222 	struct kvm_run *kvm_run = vcpu->run;
3223 	u32 exit_code = svm->vmcb->control.exit_code;
3224 
3225 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
3226 
3227 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3228 	if (!sev_es_guest(vcpu->kvm)) {
3229 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3230 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3231 		if (npt_enabled)
3232 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3233 	}
3234 
3235 	if (is_guest_mode(vcpu)) {
3236 		int vmexit;
3237 
3238 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3239 
3240 		vmexit = nested_svm_exit_special(svm);
3241 
3242 		if (vmexit == NESTED_EXIT_CONTINUE)
3243 			vmexit = nested_svm_exit_handled(svm);
3244 
3245 		if (vmexit == NESTED_EXIT_DONE)
3246 			return 1;
3247 	}
3248 
3249 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3250 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3251 		kvm_run->fail_entry.hardware_entry_failure_reason
3252 			= svm->vmcb->control.exit_code;
3253 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3254 		dump_vmcb(vcpu);
3255 		return 0;
3256 	}
3257 
3258 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3259 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3260 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3261 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3262 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3263 		       "exit_code 0x%x\n",
3264 		       __func__, svm->vmcb->control.exit_int_info,
3265 		       exit_code);
3266 
3267 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3268 		return 1;
3269 
3270 	return svm_invoke_exit_handler(vcpu, exit_code);
3271 }
3272 
3273 static void reload_tss(struct kvm_vcpu *vcpu)
3274 {
3275 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3276 
3277 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3278 	load_TR_desc();
3279 }
3280 
3281 static void pre_svm_run(struct kvm_vcpu *vcpu)
3282 {
3283 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3284 	struct vcpu_svm *svm = to_svm(vcpu);
3285 
3286 	/*
3287 	 * If the previous vmrun of the vmcb occurred on a different physical
3288 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3289 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3290 	 */
3291 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3292 		svm->current_vmcb->asid_generation = 0;
3293 		vmcb_mark_all_dirty(svm->vmcb);
3294 		svm->current_vmcb->cpu = vcpu->cpu;
3295         }
3296 
3297 	if (sev_guest(vcpu->kvm))
3298 		return pre_sev_run(svm, vcpu->cpu);
3299 
3300 	/* FIXME: handle wraparound of asid_generation */
3301 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3302 		new_asid(svm, sd);
3303 }
3304 
3305 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3306 {
3307 	struct vcpu_svm *svm = to_svm(vcpu);
3308 
3309 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3310 	vcpu->arch.hflags |= HF_NMI_MASK;
3311 	if (!sev_es_guest(vcpu->kvm))
3312 		svm_set_intercept(svm, INTERCEPT_IRET);
3313 	++vcpu->stat.nmi_injections;
3314 }
3315 
3316 static void svm_inject_irq(struct kvm_vcpu *vcpu)
3317 {
3318 	struct vcpu_svm *svm = to_svm(vcpu);
3319 
3320 	BUG_ON(!(gif_set(svm)));
3321 
3322 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3323 	++vcpu->stat.irq_injections;
3324 
3325 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3326 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3327 }
3328 
3329 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3330 				     int trig_mode, int vector)
3331 {
3332 	/*
3333 	 * vcpu->arch.apicv_active must be read after vcpu->mode.
3334 	 * Pairs with smp_store_release in vcpu_enter_guest.
3335 	 */
3336 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3337 
3338 	if (!READ_ONCE(vcpu->arch.apicv_active)) {
3339 		/* Process the interrupt via inject_pending_event */
3340 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3341 		kvm_vcpu_kick(vcpu);
3342 		return;
3343 	}
3344 
3345 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3346 	if (in_guest_mode) {
3347 		/*
3348 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3349 		 * the vCPU exits the guest before the doorbell chimes, hardware
3350 		 * will automatically process AVIC interrupts at the next VMRUN.
3351 		 */
3352 		avic_ring_doorbell(vcpu);
3353 	} else {
3354 		/*
3355 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3356 		 * pending IRQ when checking if the vCPU has a wake event.
3357 		 */
3358 		kvm_vcpu_wake_up(vcpu);
3359 	}
3360 }
3361 
3362 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3363 				  int trig_mode, int vector)
3364 {
3365 	kvm_lapic_set_irr(vector, apic);
3366 
3367 	/*
3368 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3369 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3370 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3371 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3372 	 * will signal the doorbell if the CPU has already entered the guest.
3373 	 */
3374 	smp_mb__after_atomic();
3375 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3376 }
3377 
3378 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3379 {
3380 	struct vcpu_svm *svm = to_svm(vcpu);
3381 
3382 	/*
3383 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3384 	 * tracking is done using the CR write traps.
3385 	 */
3386 	if (sev_es_guest(vcpu->kvm))
3387 		return;
3388 
3389 	if (nested_svm_virtualize_tpr(vcpu))
3390 		return;
3391 
3392 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3393 
3394 	if (irr == -1)
3395 		return;
3396 
3397 	if (tpr >= irr)
3398 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3399 }
3400 
3401 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3402 {
3403 	struct vcpu_svm *svm = to_svm(vcpu);
3404 	struct vmcb *vmcb = svm->vmcb;
3405 	bool ret;
3406 
3407 	if (!gif_set(svm))
3408 		return true;
3409 
3410 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3411 		return false;
3412 
3413 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3414 	      (vcpu->arch.hflags & HF_NMI_MASK);
3415 
3416 	return ret;
3417 }
3418 
3419 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3420 {
3421 	struct vcpu_svm *svm = to_svm(vcpu);
3422 	if (svm->nested.nested_run_pending)
3423 		return -EBUSY;
3424 
3425 	if (svm_nmi_blocked(vcpu))
3426 		return 0;
3427 
3428 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3429 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3430 		return -EBUSY;
3431 	return 1;
3432 }
3433 
3434 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3435 {
3436 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
3437 }
3438 
3439 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3440 {
3441 	struct vcpu_svm *svm = to_svm(vcpu);
3442 
3443 	if (masked) {
3444 		vcpu->arch.hflags |= HF_NMI_MASK;
3445 		if (!sev_es_guest(vcpu->kvm))
3446 			svm_set_intercept(svm, INTERCEPT_IRET);
3447 	} else {
3448 		vcpu->arch.hflags &= ~HF_NMI_MASK;
3449 		if (!sev_es_guest(vcpu->kvm))
3450 			svm_clr_intercept(svm, INTERCEPT_IRET);
3451 	}
3452 }
3453 
3454 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3455 {
3456 	struct vcpu_svm *svm = to_svm(vcpu);
3457 	struct vmcb *vmcb = svm->vmcb;
3458 
3459 	if (!gif_set(svm))
3460 		return true;
3461 
3462 	if (is_guest_mode(vcpu)) {
3463 		/* As long as interrupts are being delivered...  */
3464 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3465 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3466 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3467 			return true;
3468 
3469 		/* ... vmexits aren't blocked by the interrupt shadow  */
3470 		if (nested_exit_on_intr(svm))
3471 			return false;
3472 	} else {
3473 		if (!svm_get_if_flag(vcpu))
3474 			return true;
3475 	}
3476 
3477 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3478 }
3479 
3480 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3481 {
3482 	struct vcpu_svm *svm = to_svm(vcpu);
3483 
3484 	if (svm->nested.nested_run_pending)
3485 		return -EBUSY;
3486 
3487 	if (svm_interrupt_blocked(vcpu))
3488 		return 0;
3489 
3490 	/*
3491 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3492 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3493 	 */
3494 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3495 		return -EBUSY;
3496 
3497 	return 1;
3498 }
3499 
3500 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3501 {
3502 	struct vcpu_svm *svm = to_svm(vcpu);
3503 
3504 	/*
3505 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3506 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3507 	 * get that intercept, this function will be called again though and
3508 	 * we'll get the vintr intercept. However, if the vGIF feature is
3509 	 * enabled, the STGI interception will not occur. Enable the irq
3510 	 * window under the assumption that the hardware will set the GIF.
3511 	 */
3512 	if (vgif_enabled(svm) || gif_set(svm)) {
3513 		/*
3514 		 * IRQ window is not needed when AVIC is enabled,
3515 		 * unless we have pending ExtINT since it cannot be injected
3516 		 * via AVIC. In such case, we need to temporarily disable AVIC,
3517 		 * and fallback to injecting IRQ via V_IRQ.
3518 		 */
3519 		kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_IRQWIN);
3520 		svm_set_vintr(svm);
3521 	}
3522 }
3523 
3524 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3525 {
3526 	struct vcpu_svm *svm = to_svm(vcpu);
3527 
3528 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3529 		return; /* IRET will cause a vm exit */
3530 
3531 	if (!gif_set(svm)) {
3532 		if (vgif_enabled(svm))
3533 			svm_set_intercept(svm, INTERCEPT_STGI);
3534 		return; /* STGI will cause a vm exit */
3535 	}
3536 
3537 	/*
3538 	 * Something prevents NMI from been injected. Single step over possible
3539 	 * problem (IRET or exception injection or interrupt shadow)
3540 	 */
3541 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3542 	svm->nmi_singlestep = true;
3543 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3544 }
3545 
3546 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3547 {
3548 	struct vcpu_svm *svm = to_svm(vcpu);
3549 
3550 	/*
3551 	 * Flush only the current ASID even if the TLB flush was invoked via
3552 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3553 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3554 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3555 	 * VM-Exit (via kvm_mmu_reset_context()).
3556 	 */
3557 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3558 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3559 	else
3560 		svm->current_vmcb->asid_generation--;
3561 }
3562 
3563 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3564 {
3565 	struct vcpu_svm *svm = to_svm(vcpu);
3566 
3567 	invlpga(gva, svm->vmcb->control.asid);
3568 }
3569 
3570 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3571 {
3572 	struct vcpu_svm *svm = to_svm(vcpu);
3573 
3574 	if (nested_svm_virtualize_tpr(vcpu))
3575 		return;
3576 
3577 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3578 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3579 		kvm_set_cr8(vcpu, cr8);
3580 	}
3581 }
3582 
3583 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3584 {
3585 	struct vcpu_svm *svm = to_svm(vcpu);
3586 	u64 cr8;
3587 
3588 	if (nested_svm_virtualize_tpr(vcpu) ||
3589 	    kvm_vcpu_apicv_active(vcpu))
3590 		return;
3591 
3592 	cr8 = kvm_get_cr8(vcpu);
3593 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3594 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3595 }
3596 
3597 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3598 {
3599 	struct vcpu_svm *svm = to_svm(vcpu);
3600 	u8 vector;
3601 	int type;
3602 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3603 	unsigned int3_injected = svm->int3_injected;
3604 
3605 	svm->int3_injected = 0;
3606 
3607 	/*
3608 	 * If we've made progress since setting HF_IRET_MASK, we've
3609 	 * executed an IRET and can allow NMI injection.
3610 	 */
3611 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3612 	    (sev_es_guest(vcpu->kvm) ||
3613 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3614 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3615 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3616 	}
3617 
3618 	vcpu->arch.nmi_injected = false;
3619 	kvm_clear_exception_queue(vcpu);
3620 	kvm_clear_interrupt_queue(vcpu);
3621 
3622 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3623 		return;
3624 
3625 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3626 
3627 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3628 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3629 
3630 	switch (type) {
3631 	case SVM_EXITINTINFO_TYPE_NMI:
3632 		vcpu->arch.nmi_injected = true;
3633 		break;
3634 	case SVM_EXITINTINFO_TYPE_EXEPT:
3635 		/*
3636 		 * Never re-inject a #VC exception.
3637 		 */
3638 		if (vector == X86_TRAP_VC)
3639 			break;
3640 
3641 		/*
3642 		 * In case of software exceptions, do not reinject the vector,
3643 		 * but re-execute the instruction instead. Rewind RIP first
3644 		 * if we emulated INT3 before.
3645 		 */
3646 		if (kvm_exception_is_soft(vector)) {
3647 			if (vector == BP_VECTOR && int3_injected &&
3648 			    kvm_is_linear_rip(vcpu, svm->int3_rip))
3649 				kvm_rip_write(vcpu,
3650 					      kvm_rip_read(vcpu) - int3_injected);
3651 			break;
3652 		}
3653 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3654 			u32 err = svm->vmcb->control.exit_int_info_err;
3655 			kvm_requeue_exception_e(vcpu, vector, err);
3656 
3657 		} else
3658 			kvm_requeue_exception(vcpu, vector);
3659 		break;
3660 	case SVM_EXITINTINFO_TYPE_INTR:
3661 		kvm_queue_interrupt(vcpu, vector, false);
3662 		break;
3663 	default:
3664 		break;
3665 	}
3666 }
3667 
3668 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3669 {
3670 	struct vcpu_svm *svm = to_svm(vcpu);
3671 	struct vmcb_control_area *control = &svm->vmcb->control;
3672 
3673 	control->exit_int_info = control->event_inj;
3674 	control->exit_int_info_err = control->event_inj_err;
3675 	control->event_inj = 0;
3676 	svm_complete_interrupts(vcpu);
3677 }
3678 
3679 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3680 {
3681 	return 1;
3682 }
3683 
3684 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3685 {
3686 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3687 	    to_svm(vcpu)->vmcb->control.exit_info_1)
3688 		return handle_fastpath_set_msr_irqoff(vcpu);
3689 
3690 	return EXIT_FASTPATH_NONE;
3691 }
3692 
3693 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3694 {
3695 	struct vcpu_svm *svm = to_svm(vcpu);
3696 	unsigned long vmcb_pa = svm->current_vmcb->pa;
3697 
3698 	guest_state_enter_irqoff();
3699 
3700 	if (sev_es_guest(vcpu->kvm)) {
3701 		__svm_sev_es_vcpu_run(vmcb_pa);
3702 	} else {
3703 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3704 
3705 		/*
3706 		 * Use a single vmcb (vmcb01 because it's always valid) for
3707 		 * context switching guest state via VMLOAD/VMSAVE, that way
3708 		 * the state doesn't need to be copied between vmcb01 and
3709 		 * vmcb02 when switching vmcbs for nested virtualization.
3710 		 */
3711 		vmload(svm->vmcb01.pa);
3712 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3713 		vmsave(svm->vmcb01.pa);
3714 
3715 		vmload(__sme_page_pa(sd->save_area));
3716 	}
3717 
3718 	guest_state_exit_irqoff();
3719 }
3720 
3721 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3722 {
3723 	struct vcpu_svm *svm = to_svm(vcpu);
3724 
3725 	trace_kvm_entry(vcpu);
3726 
3727 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3728 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3729 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3730 
3731 	/*
3732 	 * Disable singlestep if we're injecting an interrupt/exception.
3733 	 * We don't want our modified rflags to be pushed on the stack where
3734 	 * we might not be able to easily reset them if we disabled NMI
3735 	 * singlestep later.
3736 	 */
3737 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3738 		/*
3739 		 * Event injection happens before external interrupts cause a
3740 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
3741 		 * is enough to force an immediate vmexit.
3742 		 */
3743 		disable_nmi_singlestep(svm);
3744 		smp_send_reschedule(vcpu->cpu);
3745 	}
3746 
3747 	pre_svm_run(vcpu);
3748 
3749 	sync_lapic_to_cr8(vcpu);
3750 
3751 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3752 		svm->vmcb->control.asid = svm->asid;
3753 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3754 	}
3755 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3756 
3757 	svm_hv_update_vp_id(svm->vmcb, vcpu);
3758 
3759 	/*
3760 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3761 	 * of a #DB.
3762 	 */
3763 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3764 		svm_set_dr6(svm, vcpu->arch.dr6);
3765 	else
3766 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
3767 
3768 	clgi();
3769 	kvm_load_guest_xsave_state(vcpu);
3770 
3771 	kvm_wait_lapic_expire(vcpu);
3772 
3773 	/*
3774 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3775 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3776 	 * is no need to worry about the conditional branch over the wrmsr
3777 	 * being speculatively taken.
3778 	 */
3779 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3780 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3781 
3782 	svm_vcpu_enter_exit(vcpu);
3783 
3784 	/*
3785 	 * We do not use IBRS in the kernel. If this vCPU has used the
3786 	 * SPEC_CTRL MSR it may have left it on; save the value and
3787 	 * turn it off. This is much more efficient than blindly adding
3788 	 * it to the atomic save/restore list. Especially as the former
3789 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3790 	 *
3791 	 * For non-nested case:
3792 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3793 	 * save it.
3794 	 *
3795 	 * For nested case:
3796 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3797 	 * save it.
3798 	 */
3799 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3800 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3801 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3802 
3803 	if (!sev_es_guest(vcpu->kvm))
3804 		reload_tss(vcpu);
3805 
3806 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3807 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3808 
3809 	if (!sev_es_guest(vcpu->kvm)) {
3810 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
3811 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3812 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3813 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3814 	}
3815 	vcpu->arch.regs_dirty = 0;
3816 
3817 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3818 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
3819 
3820 	kvm_load_host_xsave_state(vcpu);
3821 	stgi();
3822 
3823 	/* Any pending NMI will happen here */
3824 
3825 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3826 		kvm_after_interrupt(vcpu);
3827 
3828 	sync_cr8_to_lapic(vcpu);
3829 
3830 	svm->next_rip = 0;
3831 	if (is_guest_mode(vcpu)) {
3832 		nested_sync_control_from_vmcb02(svm);
3833 
3834 		/* Track VMRUNs that have made past consistency checking */
3835 		if (svm->nested.nested_run_pending &&
3836 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3837                         ++vcpu->stat.nested_run;
3838 
3839 		svm->nested.nested_run_pending = 0;
3840 	}
3841 
3842 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3843 	vmcb_mark_all_clean(svm->vmcb);
3844 
3845 	/* if exit due to PF check for async PF */
3846 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3847 		vcpu->arch.apf.host_apf_flags =
3848 			kvm_read_and_reset_apf_flags();
3849 
3850 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
3851 
3852 	/*
3853 	 * We need to handle MC intercepts here before the vcpu has a chance to
3854 	 * change the physical cpu
3855 	 */
3856 	if (unlikely(svm->vmcb->control.exit_code ==
3857 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3858 		svm_handle_mce(vcpu);
3859 
3860 	svm_complete_interrupts(vcpu);
3861 
3862 	if (is_guest_mode(vcpu))
3863 		return EXIT_FASTPATH_NONE;
3864 
3865 	return svm_exit_handlers_fastpath(vcpu);
3866 }
3867 
3868 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3869 			     int root_level)
3870 {
3871 	struct vcpu_svm *svm = to_svm(vcpu);
3872 	unsigned long cr3;
3873 
3874 	if (npt_enabled) {
3875 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3876 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3877 
3878 		hv_track_root_tdp(vcpu, root_hpa);
3879 
3880 		cr3 = vcpu->arch.cr3;
3881 	} else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3882 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3883 	} else {
3884 		/* PCID in the guest should be impossible with a 32-bit MMU. */
3885 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3886 		cr3 = root_hpa;
3887 	}
3888 
3889 	svm->vmcb->save.cr3 = cr3;
3890 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3891 }
3892 
3893 static int is_disabled(void)
3894 {
3895 	u64 vm_cr;
3896 
3897 	rdmsrl(MSR_VM_CR, vm_cr);
3898 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3899 		return 1;
3900 
3901 	return 0;
3902 }
3903 
3904 static void
3905 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3906 {
3907 	/*
3908 	 * Patch in the VMMCALL instruction:
3909 	 */
3910 	hypercall[0] = 0x0f;
3911 	hypercall[1] = 0x01;
3912 	hypercall[2] = 0xd9;
3913 }
3914 
3915 static int __init svm_check_processor_compat(void)
3916 {
3917 	return 0;
3918 }
3919 
3920 /*
3921  * The kvm parameter can be NULL (module initialization, or invocation before
3922  * VM creation). Be sure to check the kvm parameter before using it.
3923  */
3924 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3925 {
3926 	switch (index) {
3927 	case MSR_IA32_MCG_EXT_CTL:
3928 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3929 		return false;
3930 	case MSR_IA32_SMBASE:
3931 		/* SEV-ES guests do not support SMM, so report false */
3932 		if (kvm && sev_es_guest(kvm))
3933 			return false;
3934 		break;
3935 	default:
3936 		break;
3937 	}
3938 
3939 	return true;
3940 }
3941 
3942 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3943 {
3944 	return 0;
3945 }
3946 
3947 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3948 {
3949 	struct vcpu_svm *svm = to_svm(vcpu);
3950 	struct kvm_cpuid_entry2 *best;
3951 
3952 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3953 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
3954 				    boot_cpu_has(X86_FEATURE_XSAVES);
3955 
3956 	/* Update nrips enabled cache */
3957 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3958 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
3959 
3960 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
3961 
3962 	svm_recalc_instruction_intercepts(vcpu, svm);
3963 
3964 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3965 	if (sev_guest(vcpu->kvm)) {
3966 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3967 		if (best)
3968 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3969 	}
3970 
3971 	if (kvm_vcpu_apicv_active(vcpu)) {
3972 		/*
3973 		 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3974 		 * is exposed to the guest, disable AVIC.
3975 		 */
3976 		if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3977 			kvm_request_apicv_update(vcpu->kvm, false,
3978 						 APICV_INHIBIT_REASON_X2APIC);
3979 
3980 		/*
3981 		 * Currently, AVIC does not work with nested virtualization.
3982 		 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3983 		 */
3984 		if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3985 			kvm_request_apicv_update(vcpu->kvm, false,
3986 						 APICV_INHIBIT_REASON_NESTED);
3987 	}
3988 	init_vmcb_after_set_cpuid(vcpu);
3989 }
3990 
3991 static bool svm_has_wbinvd_exit(void)
3992 {
3993 	return true;
3994 }
3995 
3996 #define PRE_EX(exit)  { .exit_code = (exit), \
3997 			.stage = X86_ICPT_PRE_EXCEPT, }
3998 #define POST_EX(exit) { .exit_code = (exit), \
3999 			.stage = X86_ICPT_POST_EXCEPT, }
4000 #define POST_MEM(exit) { .exit_code = (exit), \
4001 			.stage = X86_ICPT_POST_MEMACCESS, }
4002 
4003 static const struct __x86_intercept {
4004 	u32 exit_code;
4005 	enum x86_intercept_stage stage;
4006 } x86_intercept_map[] = {
4007 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4008 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4009 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4010 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4011 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4012 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4013 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4014 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4015 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4016 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4017 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4018 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4019 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4020 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4021 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4022 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4023 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4024 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4025 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4026 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4027 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4028 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4029 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4030 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4031 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4032 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4033 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4034 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4035 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4036 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4037 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4038 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4039 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4040 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4041 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4042 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4043 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4044 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4045 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4046 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4047 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4048 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4049 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4050 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4051 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4052 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4053 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4054 };
4055 
4056 #undef PRE_EX
4057 #undef POST_EX
4058 #undef POST_MEM
4059 
4060 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4061 			       struct x86_instruction_info *info,
4062 			       enum x86_intercept_stage stage,
4063 			       struct x86_exception *exception)
4064 {
4065 	struct vcpu_svm *svm = to_svm(vcpu);
4066 	int vmexit, ret = X86EMUL_CONTINUE;
4067 	struct __x86_intercept icpt_info;
4068 	struct vmcb *vmcb = svm->vmcb;
4069 
4070 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4071 		goto out;
4072 
4073 	icpt_info = x86_intercept_map[info->intercept];
4074 
4075 	if (stage != icpt_info.stage)
4076 		goto out;
4077 
4078 	switch (icpt_info.exit_code) {
4079 	case SVM_EXIT_READ_CR0:
4080 		if (info->intercept == x86_intercept_cr_read)
4081 			icpt_info.exit_code += info->modrm_reg;
4082 		break;
4083 	case SVM_EXIT_WRITE_CR0: {
4084 		unsigned long cr0, val;
4085 
4086 		if (info->intercept == x86_intercept_cr_write)
4087 			icpt_info.exit_code += info->modrm_reg;
4088 
4089 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4090 		    info->intercept == x86_intercept_clts)
4091 			break;
4092 
4093 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4094 					INTERCEPT_SELECTIVE_CR0)))
4095 			break;
4096 
4097 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4098 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4099 
4100 		if (info->intercept == x86_intercept_lmsw) {
4101 			cr0 &= 0xfUL;
4102 			val &= 0xfUL;
4103 			/* lmsw can't clear PE - catch this here */
4104 			if (cr0 & X86_CR0_PE)
4105 				val |= X86_CR0_PE;
4106 		}
4107 
4108 		if (cr0 ^ val)
4109 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4110 
4111 		break;
4112 	}
4113 	case SVM_EXIT_READ_DR0:
4114 	case SVM_EXIT_WRITE_DR0:
4115 		icpt_info.exit_code += info->modrm_reg;
4116 		break;
4117 	case SVM_EXIT_MSR:
4118 		if (info->intercept == x86_intercept_wrmsr)
4119 			vmcb->control.exit_info_1 = 1;
4120 		else
4121 			vmcb->control.exit_info_1 = 0;
4122 		break;
4123 	case SVM_EXIT_PAUSE:
4124 		/*
4125 		 * We get this for NOP only, but pause
4126 		 * is rep not, check this here
4127 		 */
4128 		if (info->rep_prefix != REPE_PREFIX)
4129 			goto out;
4130 		break;
4131 	case SVM_EXIT_IOIO: {
4132 		u64 exit_info;
4133 		u32 bytes;
4134 
4135 		if (info->intercept == x86_intercept_in ||
4136 		    info->intercept == x86_intercept_ins) {
4137 			exit_info = ((info->src_val & 0xffff) << 16) |
4138 				SVM_IOIO_TYPE_MASK;
4139 			bytes = info->dst_bytes;
4140 		} else {
4141 			exit_info = (info->dst_val & 0xffff) << 16;
4142 			bytes = info->src_bytes;
4143 		}
4144 
4145 		if (info->intercept == x86_intercept_outs ||
4146 		    info->intercept == x86_intercept_ins)
4147 			exit_info |= SVM_IOIO_STR_MASK;
4148 
4149 		if (info->rep_prefix)
4150 			exit_info |= SVM_IOIO_REP_MASK;
4151 
4152 		bytes = min(bytes, 4u);
4153 
4154 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4155 
4156 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4157 
4158 		vmcb->control.exit_info_1 = exit_info;
4159 		vmcb->control.exit_info_2 = info->next_rip;
4160 
4161 		break;
4162 	}
4163 	default:
4164 		break;
4165 	}
4166 
4167 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4168 	if (static_cpu_has(X86_FEATURE_NRIPS))
4169 		vmcb->control.next_rip  = info->next_rip;
4170 	vmcb->control.exit_code = icpt_info.exit_code;
4171 	vmexit = nested_svm_exit_handled(svm);
4172 
4173 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4174 					   : X86EMUL_CONTINUE;
4175 
4176 out:
4177 	return ret;
4178 }
4179 
4180 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4181 {
4182 }
4183 
4184 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4185 {
4186 	if (!kvm_pause_in_guest(vcpu->kvm))
4187 		shrink_ple_window(vcpu);
4188 }
4189 
4190 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4191 {
4192 	/* [63:9] are reserved. */
4193 	vcpu->arch.mcg_cap &= 0x1ff;
4194 }
4195 
4196 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4197 {
4198 	struct vcpu_svm *svm = to_svm(vcpu);
4199 
4200 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4201 	if (!gif_set(svm))
4202 		return true;
4203 
4204 	return is_smm(vcpu);
4205 }
4206 
4207 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4208 {
4209 	struct vcpu_svm *svm = to_svm(vcpu);
4210 	if (svm->nested.nested_run_pending)
4211 		return -EBUSY;
4212 
4213 	if (svm_smi_blocked(vcpu))
4214 		return 0;
4215 
4216 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4217 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4218 		return -EBUSY;
4219 
4220 	return 1;
4221 }
4222 
4223 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4224 {
4225 	struct vcpu_svm *svm = to_svm(vcpu);
4226 	struct kvm_host_map map_save;
4227 	int ret;
4228 
4229 	if (!is_guest_mode(vcpu))
4230 		return 0;
4231 
4232 	/* FED8h - SVM Guest */
4233 	put_smstate(u64, smstate, 0x7ed8, 1);
4234 	/* FEE0h - SVM Guest VMCB Physical Address */
4235 	put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4236 
4237 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4238 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4239 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4240 
4241 	ret = nested_svm_vmexit(svm);
4242 	if (ret)
4243 		return ret;
4244 
4245 	/*
4246 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4247 	 * VMCB01 is going to be used during SMM and thus the state will
4248 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4249 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4250 	 * format of the area is identical to guest save area offsetted
4251 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4252 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4253 	 * L1 hypervisor to save additional host context (e.g. KVM does
4254 	 * that, see svm_prepare_switch_to_guest()) which must be
4255 	 * preserved.
4256 	 */
4257 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4258 			 &map_save) == -EINVAL)
4259 		return 1;
4260 
4261 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4262 
4263 	svm_copy_vmrun_state(map_save.hva + 0x400,
4264 			     &svm->vmcb01.ptr->save);
4265 
4266 	kvm_vcpu_unmap(vcpu, &map_save, true);
4267 	return 0;
4268 }
4269 
4270 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4271 {
4272 	struct vcpu_svm *svm = to_svm(vcpu);
4273 	struct kvm_host_map map, map_save;
4274 	u64 saved_efer, vmcb12_gpa;
4275 	struct vmcb *vmcb12;
4276 	int ret;
4277 
4278 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4279 		return 0;
4280 
4281 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4282 	if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4283 		return 0;
4284 
4285 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4286 		return 1;
4287 
4288 	saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4289 	if (!(saved_efer & EFER_SVME))
4290 		return 1;
4291 
4292 	vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4293 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4294 		return 1;
4295 
4296 	ret = 1;
4297 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4298 		goto unmap_map;
4299 
4300 	if (svm_allocate_nested(svm))
4301 		goto unmap_save;
4302 
4303 	/*
4304 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4305 	 * used during SMM (see svm_enter_smm())
4306 	 */
4307 
4308 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4309 
4310 	/*
4311 	 * Enter the nested guest now
4312 	 */
4313 
4314 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4315 
4316 	vmcb12 = map.hva;
4317 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4318 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4319 	ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4320 
4321 	if (ret)
4322 		goto unmap_save;
4323 
4324 	svm->nested.nested_run_pending = 1;
4325 
4326 unmap_save:
4327 	kvm_vcpu_unmap(vcpu, &map_save, true);
4328 unmap_map:
4329 	kvm_vcpu_unmap(vcpu, &map, true);
4330 	return ret;
4331 }
4332 
4333 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4334 {
4335 	struct vcpu_svm *svm = to_svm(vcpu);
4336 
4337 	if (!gif_set(svm)) {
4338 		if (vgif_enabled(svm))
4339 			svm_set_intercept(svm, INTERCEPT_STGI);
4340 		/* STGI will cause a vm exit */
4341 	} else {
4342 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4343 	}
4344 }
4345 
4346 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4347 					void *insn, int insn_len)
4348 {
4349 	bool smep, smap, is_user;
4350 	unsigned long cr4;
4351 	u64 error_code;
4352 
4353 	/* Emulation is always possible when KVM has access to all guest state. */
4354 	if (!sev_guest(vcpu->kvm))
4355 		return true;
4356 
4357 	/* #UD and #GP should never be intercepted for SEV guests. */
4358 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4359 				  EMULTYPE_TRAP_UD_FORCED |
4360 				  EMULTYPE_VMWARE_GP));
4361 
4362 	/*
4363 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4364 	 * to guest register state.
4365 	 */
4366 	if (sev_es_guest(vcpu->kvm))
4367 		return false;
4368 
4369 	/*
4370 	 * Emulation is possible if the instruction is already decoded, e.g.
4371 	 * when completing I/O after returning from userspace.
4372 	 */
4373 	if (emul_type & EMULTYPE_NO_DECODE)
4374 		return true;
4375 
4376 	/*
4377 	 * Emulation is possible for SEV guests if and only if a prefilled
4378 	 * buffer containing the bytes of the intercepted instruction is
4379 	 * available. SEV guest memory is encrypted with a guest specific key
4380 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4381 	 * decode garbage.
4382 	 *
4383 	 * Inject #UD if KVM reached this point without an instruction buffer.
4384 	 * In practice, this path should never be hit by a well-behaved guest,
4385 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4386 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
4387 	 * AVIC access, and needs to be handled by KVM to avoid putting the
4388 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4389 	 * but its the least awful option given lack of insight into the guest.
4390 	 */
4391 	if (unlikely(!insn)) {
4392 		kvm_queue_exception(vcpu, UD_VECTOR);
4393 		return false;
4394 	}
4395 
4396 	/*
4397 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4398 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4399 	 * the faulting instruction because the code fetch itself faulted, e.g.
4400 	 * the guest attempted to fetch from emulated MMIO or a guest page
4401 	 * table used to translate CS:RIP resides in emulated MMIO.
4402 	 */
4403 	if (likely(insn_len))
4404 		return true;
4405 
4406 	/*
4407 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4408 	 *
4409 	 * Errata:
4410 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4411 	 * possible that CPU microcode implementing DecodeAssist will fail to
4412 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4413 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4414 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4415 	 * gives up and does not fill the instruction bytes buffer.
4416 	 *
4417 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4418 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4419 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4420 	 * GuestIntrBytes field of the VMCB.
4421 	 *
4422 	 * This does _not_ mean that the erratum has been encountered, as the
4423 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4424 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4425 	 * encountered a reserved/not-present #PF.
4426 	 *
4427 	 * To hit the erratum, the following conditions must be true:
4428 	 *    1. CR4.SMAP=1 (obviously).
4429 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4430 	 *       have been hit as the guest would have encountered a SMEP
4431 	 *       violation #PF, not a #NPF.
4432 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4433 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4434 	 *
4435 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4436 	 * while translating guest page tables (see below).
4437 	 */
4438 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4439 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4440 		goto resume_guest;
4441 
4442 	cr4 = kvm_read_cr4(vcpu);
4443 	smep = cr4 & X86_CR4_SMEP;
4444 	smap = cr4 & X86_CR4_SMAP;
4445 	is_user = svm_get_cpl(vcpu) == 3;
4446 	if (smap && (!smep || is_user)) {
4447 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4448 
4449 		/*
4450 		 * If the fault occurred in userspace, arbitrarily inject #GP
4451 		 * to avoid killing the guest and to hopefully avoid confusing
4452 		 * the guest kernel too much, e.g. injecting #PF would not be
4453 		 * coherent with respect to the guest's page tables.  Request
4454 		 * triple fault if the fault occurred in the kernel as there's
4455 		 * no fault that KVM can inject without confusing the guest.
4456 		 * In practice, the triple fault is moot as no sane SEV kernel
4457 		 * will execute from user memory while also running with SMAP=1.
4458 		 */
4459 		if (is_user)
4460 			kvm_inject_gp(vcpu, 0);
4461 		else
4462 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4463 	}
4464 
4465 resume_guest:
4466 	/*
4467 	 * If the erratum was not hit, simply resume the guest and let it fault
4468 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4469 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4470 	 * userspace will kill the guest, and letting the emulator read garbage
4471 	 * will yield random behavior and potentially corrupt the guest.
4472 	 *
4473 	 * Simply resuming the guest is technically not a violation of the SEV
4474 	 * architecture.  AMD's APM states that all code fetches and page table
4475 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4476 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4477 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4478 	 * the guest spin is technically "ignoring" the access.
4479 	 */
4480 	return false;
4481 }
4482 
4483 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4484 {
4485 	struct vcpu_svm *svm = to_svm(vcpu);
4486 
4487 	/*
4488 	 * TODO: Last condition latch INIT signals on vCPU when
4489 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4490 	 * To properly emulate the INIT intercept,
4491 	 * svm_check_nested_events() should call nested_svm_vmexit()
4492 	 * if an INIT signal is pending.
4493 	 */
4494 	return !gif_set(svm) ||
4495 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4496 }
4497 
4498 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4499 {
4500 	if (!sev_es_guest(vcpu->kvm))
4501 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4502 
4503 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4504 }
4505 
4506 static void svm_vm_destroy(struct kvm *kvm)
4507 {
4508 	avic_vm_destroy(kvm);
4509 	sev_vm_destroy(kvm);
4510 }
4511 
4512 static int svm_vm_init(struct kvm *kvm)
4513 {
4514 	if (!pause_filter_count || !pause_filter_thresh)
4515 		kvm->arch.pause_in_guest = true;
4516 
4517 	if (enable_apicv) {
4518 		int ret = avic_vm_init(kvm);
4519 		if (ret)
4520 			return ret;
4521 	}
4522 
4523 	return 0;
4524 }
4525 
4526 static struct kvm_x86_ops svm_x86_ops __initdata = {
4527 	.name = "kvm_amd",
4528 
4529 	.hardware_unsetup = svm_hardware_unsetup,
4530 	.hardware_enable = svm_hardware_enable,
4531 	.hardware_disable = svm_hardware_disable,
4532 	.has_emulated_msr = svm_has_emulated_msr,
4533 
4534 	.vcpu_create = svm_vcpu_create,
4535 	.vcpu_free = svm_vcpu_free,
4536 	.vcpu_reset = svm_vcpu_reset,
4537 
4538 	.vm_size = sizeof(struct kvm_svm),
4539 	.vm_init = svm_vm_init,
4540 	.vm_destroy = svm_vm_destroy,
4541 
4542 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4543 	.vcpu_load = svm_vcpu_load,
4544 	.vcpu_put = svm_vcpu_put,
4545 	.vcpu_blocking = avic_vcpu_blocking,
4546 	.vcpu_unblocking = avic_vcpu_unblocking,
4547 
4548 	.update_exception_bitmap = svm_update_exception_bitmap,
4549 	.get_msr_feature = svm_get_msr_feature,
4550 	.get_msr = svm_get_msr,
4551 	.set_msr = svm_set_msr,
4552 	.get_segment_base = svm_get_segment_base,
4553 	.get_segment = svm_get_segment,
4554 	.set_segment = svm_set_segment,
4555 	.get_cpl = svm_get_cpl,
4556 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4557 	.set_cr0 = svm_set_cr0,
4558 	.post_set_cr3 = sev_post_set_cr3,
4559 	.is_valid_cr4 = svm_is_valid_cr4,
4560 	.set_cr4 = svm_set_cr4,
4561 	.set_efer = svm_set_efer,
4562 	.get_idt = svm_get_idt,
4563 	.set_idt = svm_set_idt,
4564 	.get_gdt = svm_get_gdt,
4565 	.set_gdt = svm_set_gdt,
4566 	.set_dr7 = svm_set_dr7,
4567 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4568 	.cache_reg = svm_cache_reg,
4569 	.get_rflags = svm_get_rflags,
4570 	.set_rflags = svm_set_rflags,
4571 	.get_if_flag = svm_get_if_flag,
4572 
4573 	.flush_tlb_all = svm_flush_tlb_current,
4574 	.flush_tlb_current = svm_flush_tlb_current,
4575 	.flush_tlb_gva = svm_flush_tlb_gva,
4576 	.flush_tlb_guest = svm_flush_tlb_current,
4577 
4578 	.vcpu_pre_run = svm_vcpu_pre_run,
4579 	.vcpu_run = svm_vcpu_run,
4580 	.handle_exit = svm_handle_exit,
4581 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4582 	.update_emulated_instruction = NULL,
4583 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4584 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4585 	.patch_hypercall = svm_patch_hypercall,
4586 	.inject_irq = svm_inject_irq,
4587 	.inject_nmi = svm_inject_nmi,
4588 	.queue_exception = svm_queue_exception,
4589 	.cancel_injection = svm_cancel_injection,
4590 	.interrupt_allowed = svm_interrupt_allowed,
4591 	.nmi_allowed = svm_nmi_allowed,
4592 	.get_nmi_mask = svm_get_nmi_mask,
4593 	.set_nmi_mask = svm_set_nmi_mask,
4594 	.enable_nmi_window = svm_enable_nmi_window,
4595 	.enable_irq_window = svm_enable_irq_window,
4596 	.update_cr8_intercept = svm_update_cr8_intercept,
4597 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4598 	.check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4599 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4600 
4601 	.get_mt_mask = svm_get_mt_mask,
4602 	.get_exit_info = svm_get_exit_info,
4603 
4604 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4605 
4606 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4607 
4608 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4609 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4610 	.write_tsc_offset = svm_write_tsc_offset,
4611 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4612 
4613 	.load_mmu_pgd = svm_load_mmu_pgd,
4614 
4615 	.check_intercept = svm_check_intercept,
4616 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4617 
4618 	.request_immediate_exit = __kvm_request_immediate_exit,
4619 
4620 	.sched_in = svm_sched_in,
4621 
4622 	.pmu_ops = &amd_pmu_ops,
4623 	.nested_ops = &svm_nested_ops,
4624 
4625 	.deliver_interrupt = svm_deliver_interrupt,
4626 	.pi_update_irte = avic_pi_update_irte,
4627 	.setup_mce = svm_setup_mce,
4628 
4629 	.smi_allowed = svm_smi_allowed,
4630 	.enter_smm = svm_enter_smm,
4631 	.leave_smm = svm_leave_smm,
4632 	.enable_smi_window = svm_enable_smi_window,
4633 
4634 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4635 	.mem_enc_register_region = sev_mem_enc_register_region,
4636 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
4637 
4638 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4639 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
4640 
4641 	.can_emulate_instruction = svm_can_emulate_instruction,
4642 
4643 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
4644 
4645 	.msr_filter_changed = svm_msr_filter_changed,
4646 	.complete_emulated_msr = svm_complete_emulated_msr,
4647 
4648 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4649 };
4650 
4651 /*
4652  * The default MMIO mask is a single bit (excluding the present bit),
4653  * which could conflict with the memory encryption bit. Check for
4654  * memory encryption support and override the default MMIO mask if
4655  * memory encryption is enabled.
4656  */
4657 static __init void svm_adjust_mmio_mask(void)
4658 {
4659 	unsigned int enc_bit, mask_bit;
4660 	u64 msr, mask;
4661 
4662 	/* If there is no memory encryption support, use existing mask */
4663 	if (cpuid_eax(0x80000000) < 0x8000001f)
4664 		return;
4665 
4666 	/* If memory encryption is not enabled, use existing mask */
4667 	rdmsrl(MSR_AMD64_SYSCFG, msr);
4668 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4669 		return;
4670 
4671 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4672 	mask_bit = boot_cpu_data.x86_phys_bits;
4673 
4674 	/* Increment the mask bit if it is the same as the encryption bit */
4675 	if (enc_bit == mask_bit)
4676 		mask_bit++;
4677 
4678 	/*
4679 	 * If the mask bit location is below 52, then some bits above the
4680 	 * physical addressing limit will always be reserved, so use the
4681 	 * rsvd_bits() function to generate the mask. This mask, along with
4682 	 * the present bit, will be used to generate a page fault with
4683 	 * PFER.RSV = 1.
4684 	 *
4685 	 * If the mask bit location is 52 (or above), then clear the mask.
4686 	 */
4687 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4688 
4689 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4690 }
4691 
4692 static __init void svm_set_cpu_caps(void)
4693 {
4694 	kvm_set_cpu_caps();
4695 
4696 	supported_xss = 0;
4697 
4698 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
4699 	if (nested) {
4700 		kvm_cpu_cap_set(X86_FEATURE_SVM);
4701 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4702 
4703 		if (nrips)
4704 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4705 
4706 		if (npt_enabled)
4707 			kvm_cpu_cap_set(X86_FEATURE_NPT);
4708 
4709 		if (tsc_scaling)
4710 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4711 
4712 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
4713 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4714 	}
4715 
4716 	/* CPUID 0x80000008 */
4717 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4718 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
4719 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4720 
4721 	/* AMD PMU PERFCTR_CORE CPUID */
4722 	if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4723 		kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4724 
4725 	/* CPUID 0x8000001F (SME/SEV features) */
4726 	sev_set_cpu_caps();
4727 }
4728 
4729 static __init int svm_hardware_setup(void)
4730 {
4731 	int cpu;
4732 	struct page *iopm_pages;
4733 	void *iopm_va;
4734 	int r;
4735 	unsigned int order = get_order(IOPM_SIZE);
4736 
4737 	/*
4738 	 * NX is required for shadow paging and for NPT if the NX huge pages
4739 	 * mitigation is enabled.
4740 	 */
4741 	if (!boot_cpu_has(X86_FEATURE_NX)) {
4742 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
4743 		return -EOPNOTSUPP;
4744 	}
4745 	kvm_enable_efer_bits(EFER_NX);
4746 
4747 	iopm_pages = alloc_pages(GFP_KERNEL, order);
4748 
4749 	if (!iopm_pages)
4750 		return -ENOMEM;
4751 
4752 	iopm_va = page_address(iopm_pages);
4753 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4754 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4755 
4756 	init_msrpm_offsets();
4757 
4758 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
4759 
4760 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4761 		kvm_enable_efer_bits(EFER_FFXSR);
4762 
4763 	if (tsc_scaling) {
4764 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4765 			tsc_scaling = false;
4766 		} else {
4767 			pr_info("TSC scaling supported\n");
4768 			kvm_has_tsc_control = true;
4769 			kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
4770 			kvm_tsc_scaling_ratio_frac_bits = 32;
4771 		}
4772 	}
4773 
4774 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4775 
4776 	/* Check for pause filtering support */
4777 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4778 		pause_filter_count = 0;
4779 		pause_filter_thresh = 0;
4780 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4781 		pause_filter_thresh = 0;
4782 	}
4783 
4784 	if (nested) {
4785 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4786 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4787 	}
4788 
4789 	/*
4790 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
4791 	 * NPT isn't supported if the host is using 2-level paging since host
4792 	 * CR4 is unchanged on VMRUN.
4793 	 */
4794 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4795 		npt_enabled = false;
4796 
4797 	if (!boot_cpu_has(X86_FEATURE_NPT))
4798 		npt_enabled = false;
4799 
4800 	/* Force VM NPT level equal to the host's paging level */
4801 	kvm_configure_mmu(npt_enabled, get_npt_level(),
4802 			  get_npt_level(), PG_LEVEL_1G);
4803 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
4804 
4805 	/* Note, SEV setup consumes npt_enabled. */
4806 	sev_hardware_setup();
4807 
4808 	svm_hv_hardware_setup();
4809 
4810 	svm_adjust_mmio_mask();
4811 
4812 	for_each_possible_cpu(cpu) {
4813 		r = svm_cpu_init(cpu);
4814 		if (r)
4815 			goto err;
4816 	}
4817 
4818 	if (nrips) {
4819 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
4820 			nrips = false;
4821 	}
4822 
4823 	enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC);
4824 
4825 	if (enable_apicv) {
4826 		pr_info("AVIC enabled\n");
4827 
4828 		amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
4829 	} else {
4830 		svm_x86_ops.vcpu_blocking = NULL;
4831 		svm_x86_ops.vcpu_unblocking = NULL;
4832 	}
4833 
4834 	if (vls) {
4835 		if (!npt_enabled ||
4836 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
4837 		    !IS_ENABLED(CONFIG_X86_64)) {
4838 			vls = false;
4839 		} else {
4840 			pr_info("Virtual VMLOAD VMSAVE supported\n");
4841 		}
4842 	}
4843 
4844 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
4845 		svm_gp_erratum_intercept = false;
4846 
4847 	if (vgif) {
4848 		if (!boot_cpu_has(X86_FEATURE_VGIF))
4849 			vgif = false;
4850 		else
4851 			pr_info("Virtual GIF supported\n");
4852 	}
4853 
4854 	if (lbrv) {
4855 		if (!boot_cpu_has(X86_FEATURE_LBRV))
4856 			lbrv = false;
4857 		else
4858 			pr_info("LBR virtualization supported\n");
4859 	}
4860 
4861 	if (!enable_pmu)
4862 		pr_info("PMU virtualization is disabled\n");
4863 
4864 	svm_set_cpu_caps();
4865 
4866 	/*
4867 	 * It seems that on AMD processors PTE's accessed bit is
4868 	 * being set by the CPU hardware before the NPF vmexit.
4869 	 * This is not expected behaviour and our tests fail because
4870 	 * of it.
4871 	 * A workaround here is to disable support for
4872 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
4873 	 * In this case userspace can know if there is support using
4874 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
4875 	 * it
4876 	 * If future AMD CPU models change the behaviour described above,
4877 	 * this variable can be changed accordingly
4878 	 */
4879 	allow_smaller_maxphyaddr = !npt_enabled;
4880 
4881 	return 0;
4882 
4883 err:
4884 	svm_hardware_unsetup();
4885 	return r;
4886 }
4887 
4888 
4889 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4890 	.cpu_has_kvm_support = has_svm,
4891 	.disabled_by_bios = is_disabled,
4892 	.hardware_setup = svm_hardware_setup,
4893 	.check_processor_compatibility = svm_check_processor_compat,
4894 
4895 	.runtime_ops = &svm_x86_ops,
4896 };
4897 
4898 static int __init svm_init(void)
4899 {
4900 	__unused_size_checks();
4901 
4902 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4903 			__alignof__(struct vcpu_svm), THIS_MODULE);
4904 }
4905 
4906 static void __exit svm_exit(void)
4907 {
4908 	kvm_exit();
4909 }
4910 
4911 module_init(svm_init)
4912 module_exit(svm_exit)
4913