1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 32 #include <asm/apic.h> 33 #include <asm/perf_event.h> 34 #include <asm/tlbflush.h> 35 #include <asm/desc.h> 36 #include <asm/debugreg.h> 37 #include <asm/kvm_para.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/spec-ctrl.h> 40 #include <asm/cpu_device_id.h> 41 #include <asm/traps.h> 42 #include <asm/reboot.h> 43 #include <asm/fpu/api.h> 44 45 #include <trace/events/ipi.h> 46 47 #include "trace.h" 48 49 #include "svm.h" 50 #include "svm_ops.h" 51 52 #include "kvm_onhyperv.h" 53 #include "svm_onhyperv.h" 54 55 MODULE_AUTHOR("Qumranet"); 56 MODULE_LICENSE("GPL"); 57 58 #ifdef MODULE 59 static const struct x86_cpu_id svm_cpu_id[] = { 60 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 61 {} 62 }; 63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 64 #endif 65 66 #define SEG_TYPE_LDT 2 67 #define SEG_TYPE_BUSY_TSS16 3 68 69 static bool erratum_383_found __read_mostly; 70 71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 72 73 /* 74 * Set osvw_len to higher value when updated Revision Guides 75 * are published and we know what the new status bits are 76 */ 77 static uint64_t osvw_len = 4, osvw_status; 78 79 static DEFINE_PER_CPU(u64, current_tsc_ratio); 80 81 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 82 83 static const struct svm_direct_access_msrs { 84 u32 index; /* Index of the MSR */ 85 bool always; /* True if intercept is initially cleared */ 86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 87 { .index = MSR_STAR, .always = true }, 88 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 89 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 90 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 91 #ifdef CONFIG_X86_64 92 { .index = MSR_GS_BASE, .always = true }, 93 { .index = MSR_FS_BASE, .always = true }, 94 { .index = MSR_KERNEL_GS_BASE, .always = true }, 95 { .index = MSR_LSTAR, .always = true }, 96 { .index = MSR_CSTAR, .always = true }, 97 { .index = MSR_SYSCALL_MASK, .always = true }, 98 #endif 99 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 100 { .index = MSR_IA32_PRED_CMD, .always = false }, 101 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 102 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 103 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 104 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 105 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 106 { .index = MSR_EFER, .always = false }, 107 { .index = MSR_IA32_CR_PAT, .always = false }, 108 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 109 { .index = MSR_TSC_AUX, .always = false }, 110 { .index = X2APIC_MSR(APIC_ID), .always = false }, 111 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 112 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 113 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 114 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 115 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 116 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 117 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 118 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 119 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 120 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 121 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 122 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 123 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 124 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 125 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 126 127 /* 128 * Note: 129 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 130 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 131 * the AVIC hardware would generate GP fault. Therefore, always 132 * intercept the MSR 0x832, and do not setup direct_access_msr. 133 */ 134 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 135 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 136 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 137 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 138 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 139 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 140 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 141 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 142 { .index = MSR_INVALID, .always = false }, 143 }; 144 145 /* 146 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 147 * pause_filter_count: On processors that support Pause filtering(indicated 148 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 149 * count value. On VMRUN this value is loaded into an internal counter. 150 * Each time a pause instruction is executed, this counter is decremented 151 * until it reaches zero at which time a #VMEXIT is generated if pause 152 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 153 * Intercept Filtering for more details. 154 * This also indicate if ple logic enabled. 155 * 156 * pause_filter_thresh: In addition, some processor families support advanced 157 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 158 * the amount of time a guest is allowed to execute in a pause loop. 159 * In this mode, a 16-bit pause filter threshold field is added in the 160 * VMCB. The threshold value is a cycle count that is used to reset the 161 * pause counter. As with simple pause filtering, VMRUN loads the pause 162 * count value from VMCB into an internal counter. Then, on each pause 163 * instruction the hardware checks the elapsed number of cycles since 164 * the most recent pause instruction against the pause filter threshold. 165 * If the elapsed cycle count is greater than the pause filter threshold, 166 * then the internal pause count is reloaded from the VMCB and execution 167 * continues. If the elapsed cycle count is less than the pause filter 168 * threshold, then the internal pause count is decremented. If the count 169 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 170 * triggered. If advanced pause filtering is supported and pause filter 171 * threshold field is set to zero, the filter will operate in the simpler, 172 * count only mode. 173 */ 174 175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 176 module_param(pause_filter_thresh, ushort, 0444); 177 178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 179 module_param(pause_filter_count, ushort, 0444); 180 181 /* Default doubles per-vcpu window every exit. */ 182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 183 module_param(pause_filter_count_grow, ushort, 0444); 184 185 /* Default resets per-vcpu window every exit to pause_filter_count. */ 186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 187 module_param(pause_filter_count_shrink, ushort, 0444); 188 189 /* Default is to compute the maximum so we can never overflow. */ 190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 191 module_param(pause_filter_count_max, ushort, 0444); 192 193 /* 194 * Use nested page tables by default. Note, NPT may get forced off by 195 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 196 */ 197 bool npt_enabled = true; 198 module_param_named(npt, npt_enabled, bool, 0444); 199 200 /* allow nested virtualization in KVM/SVM */ 201 static int nested = true; 202 module_param(nested, int, S_IRUGO); 203 204 /* enable/disable Next RIP Save */ 205 int nrips = true; 206 module_param(nrips, int, 0444); 207 208 /* enable/disable Virtual VMLOAD VMSAVE */ 209 static int vls = true; 210 module_param(vls, int, 0444); 211 212 /* enable/disable Virtual GIF */ 213 int vgif = true; 214 module_param(vgif, int, 0444); 215 216 /* enable/disable LBR virtualization */ 217 static int lbrv = true; 218 module_param(lbrv, int, 0444); 219 220 static int tsc_scaling = true; 221 module_param(tsc_scaling, int, 0444); 222 223 /* 224 * enable / disable AVIC. Because the defaults differ for APICv 225 * support between VMX and SVM we cannot use module_param_named. 226 */ 227 static bool avic; 228 module_param(avic, bool, 0444); 229 230 bool __read_mostly dump_invalid_vmcb; 231 module_param(dump_invalid_vmcb, bool, 0644); 232 233 234 bool intercept_smi = true; 235 module_param(intercept_smi, bool, 0444); 236 237 bool vnmi = true; 238 module_param(vnmi, bool, 0444); 239 240 static bool svm_gp_erratum_intercept = true; 241 242 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 243 244 static unsigned long iopm_base; 245 246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 247 248 /* 249 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 250 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 251 * 252 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 253 * defer the restoration of TSC_AUX until the CPU returns to userspace. 254 */ 255 static int tsc_aux_uret_slot __read_mostly = -1; 256 257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 258 259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 260 #define MSRS_RANGE_SIZE 2048 261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 262 263 u32 svm_msrpm_offset(u32 msr) 264 { 265 u32 offset; 266 int i; 267 268 for (i = 0; i < NUM_MSR_MAPS; i++) { 269 if (msr < msrpm_ranges[i] || 270 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 271 continue; 272 273 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 274 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 275 276 /* Now we have the u8 offset - but need the u32 offset */ 277 return offset / 4; 278 } 279 280 /* MSR not in any range */ 281 return MSR_INVALID; 282 } 283 284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu); 285 286 static int get_npt_level(void) 287 { 288 #ifdef CONFIG_X86_64 289 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 290 #else 291 return PT32E_ROOT_LEVEL; 292 #endif 293 } 294 295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 296 { 297 struct vcpu_svm *svm = to_svm(vcpu); 298 u64 old_efer = vcpu->arch.efer; 299 vcpu->arch.efer = efer; 300 301 if (!npt_enabled) { 302 /* Shadow paging assumes NX to be available. */ 303 efer |= EFER_NX; 304 305 if (!(efer & EFER_LMA)) 306 efer &= ~EFER_LME; 307 } 308 309 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 310 if (!(efer & EFER_SVME)) { 311 svm_leave_nested(vcpu); 312 svm_set_gif(svm, true); 313 /* #GP intercept is still needed for vmware backdoor */ 314 if (!enable_vmware_backdoor) 315 clr_exception_intercept(svm, GP_VECTOR); 316 317 /* 318 * Free the nested guest state, unless we are in SMM. 319 * In this case we will return to the nested guest 320 * as soon as we leave SMM. 321 */ 322 if (!is_smm(vcpu)) 323 svm_free_nested(svm); 324 325 } else { 326 int ret = svm_allocate_nested(svm); 327 328 if (ret) { 329 vcpu->arch.efer = old_efer; 330 return ret; 331 } 332 333 /* 334 * Never intercept #GP for SEV guests, KVM can't 335 * decrypt guest memory to workaround the erratum. 336 */ 337 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 338 set_exception_intercept(svm, GP_VECTOR); 339 } 340 } 341 342 svm->vmcb->save.efer = efer | EFER_SVME; 343 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 344 return 0; 345 } 346 347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 348 { 349 struct vcpu_svm *svm = to_svm(vcpu); 350 u32 ret = 0; 351 352 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 353 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 354 return ret; 355 } 356 357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 358 { 359 struct vcpu_svm *svm = to_svm(vcpu); 360 361 if (mask == 0) 362 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 363 else 364 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 365 366 } 367 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 368 void *insn, int insn_len); 369 370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 371 bool commit_side_effects) 372 { 373 struct vcpu_svm *svm = to_svm(vcpu); 374 unsigned long old_rflags; 375 376 /* 377 * SEV-ES does not expose the next RIP. The RIP update is controlled by 378 * the type of exit and the #VC handler in the guest. 379 */ 380 if (sev_es_guest(vcpu->kvm)) 381 goto done; 382 383 if (nrips && svm->vmcb->control.next_rip != 0) { 384 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 385 svm->next_rip = svm->vmcb->control.next_rip; 386 } 387 388 if (!svm->next_rip) { 389 /* 390 * FIXME: Drop this when kvm_emulate_instruction() does the 391 * right thing and treats "can't emulate" as outright failure 392 * for EMULTYPE_SKIP. 393 */ 394 if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) 395 return 0; 396 397 if (unlikely(!commit_side_effects)) 398 old_rflags = svm->vmcb->save.rflags; 399 400 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 401 return 0; 402 403 if (unlikely(!commit_side_effects)) 404 svm->vmcb->save.rflags = old_rflags; 405 } else { 406 kvm_rip_write(vcpu, svm->next_rip); 407 } 408 409 done: 410 if (likely(commit_side_effects)) 411 svm_set_interrupt_shadow(vcpu, 0); 412 413 return 1; 414 } 415 416 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 417 { 418 return __svm_skip_emulated_instruction(vcpu, true); 419 } 420 421 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 422 { 423 unsigned long rip, old_rip = kvm_rip_read(vcpu); 424 struct vcpu_svm *svm = to_svm(vcpu); 425 426 /* 427 * Due to architectural shortcomings, the CPU doesn't always provide 428 * NextRIP, e.g. if KVM intercepted an exception that occurred while 429 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 430 * the instruction even if NextRIP is supported to acquire the next 431 * RIP so that it can be shoved into the NextRIP field, otherwise 432 * hardware will fail to advance guest RIP during event injection. 433 * Drop the exception/interrupt if emulation fails and effectively 434 * retry the instruction, it's the least awful option. If NRIPS is 435 * in use, the skip must not commit any side effects such as clearing 436 * the interrupt shadow or RFLAGS.RF. 437 */ 438 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 439 return -EIO; 440 441 rip = kvm_rip_read(vcpu); 442 443 /* 444 * Save the injection information, even when using next_rip, as the 445 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 446 * doesn't complete due to a VM-Exit occurring while the CPU is 447 * vectoring the event. Decoding the instruction isn't guaranteed to 448 * work as there may be no backing instruction, e.g. if the event is 449 * being injected by L1 for L2, or if the guest is patching INT3 into 450 * a different instruction. 451 */ 452 svm->soft_int_injected = true; 453 svm->soft_int_csbase = svm->vmcb->save.cs.base; 454 svm->soft_int_old_rip = old_rip; 455 svm->soft_int_next_rip = rip; 456 457 if (nrips) 458 kvm_rip_write(vcpu, old_rip); 459 460 if (static_cpu_has(X86_FEATURE_NRIPS)) 461 svm->vmcb->control.next_rip = rip; 462 463 return 0; 464 } 465 466 static void svm_inject_exception(struct kvm_vcpu *vcpu) 467 { 468 struct kvm_queued_exception *ex = &vcpu->arch.exception; 469 struct vcpu_svm *svm = to_svm(vcpu); 470 471 kvm_deliver_exception_payload(vcpu, ex); 472 473 if (kvm_exception_is_soft(ex->vector) && 474 svm_update_soft_interrupt_rip(vcpu)) 475 return; 476 477 svm->vmcb->control.event_inj = ex->vector 478 | SVM_EVTINJ_VALID 479 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 480 | SVM_EVTINJ_TYPE_EXEPT; 481 svm->vmcb->control.event_inj_err = ex->error_code; 482 } 483 484 static void svm_init_erratum_383(void) 485 { 486 u32 low, high; 487 int err; 488 u64 val; 489 490 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 491 return; 492 493 /* Use _safe variants to not break nested virtualization */ 494 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 495 if (err) 496 return; 497 498 val |= (1ULL << 47); 499 500 low = lower_32_bits(val); 501 high = upper_32_bits(val); 502 503 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 504 505 erratum_383_found = true; 506 } 507 508 static void svm_init_osvw(struct kvm_vcpu *vcpu) 509 { 510 /* 511 * Guests should see errata 400 and 415 as fixed (assuming that 512 * HLT and IO instructions are intercepted). 513 */ 514 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 515 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 516 517 /* 518 * By increasing VCPU's osvw.length to 3 we are telling the guest that 519 * all osvw.status bits inside that length, including bit 0 (which is 520 * reserved for erratum 298), are valid. However, if host processor's 521 * osvw_len is 0 then osvw_status[0] carries no information. We need to 522 * be conservative here and therefore we tell the guest that erratum 298 523 * is present (because we really don't know). 524 */ 525 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 526 vcpu->arch.osvw.status |= 1; 527 } 528 529 static bool __kvm_is_svm_supported(void) 530 { 531 int cpu = smp_processor_id(); 532 struct cpuinfo_x86 *c = &cpu_data(cpu); 533 534 u64 vm_cr; 535 536 if (c->x86_vendor != X86_VENDOR_AMD && 537 c->x86_vendor != X86_VENDOR_HYGON) { 538 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 539 return false; 540 } 541 542 if (!cpu_has(c, X86_FEATURE_SVM)) { 543 pr_err("SVM not supported by CPU %d\n", cpu); 544 return false; 545 } 546 547 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 548 pr_info("KVM is unsupported when running as an SEV guest\n"); 549 return false; 550 } 551 552 rdmsrl(MSR_VM_CR, vm_cr); 553 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) { 554 pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu); 555 return false; 556 } 557 558 return true; 559 } 560 561 static bool kvm_is_svm_supported(void) 562 { 563 bool supported; 564 565 migrate_disable(); 566 supported = __kvm_is_svm_supported(); 567 migrate_enable(); 568 569 return supported; 570 } 571 572 static int svm_check_processor_compat(void) 573 { 574 if (!__kvm_is_svm_supported()) 575 return -EIO; 576 577 return 0; 578 } 579 580 static void __svm_write_tsc_multiplier(u64 multiplier) 581 { 582 if (multiplier == __this_cpu_read(current_tsc_ratio)) 583 return; 584 585 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 586 __this_cpu_write(current_tsc_ratio, multiplier); 587 } 588 589 static inline void kvm_cpu_svm_disable(void) 590 { 591 uint64_t efer; 592 593 wrmsrl(MSR_VM_HSAVE_PA, 0); 594 rdmsrl(MSR_EFER, efer); 595 if (efer & EFER_SVME) { 596 /* 597 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 598 * NMI aren't blocked. 599 */ 600 stgi(); 601 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 602 } 603 } 604 605 static void svm_emergency_disable(void) 606 { 607 kvm_rebooting = true; 608 609 kvm_cpu_svm_disable(); 610 } 611 612 static void svm_hardware_disable(void) 613 { 614 /* Make sure we clean up behind us */ 615 if (tsc_scaling) 616 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 617 618 kvm_cpu_svm_disable(); 619 620 amd_pmu_disable_virt(); 621 } 622 623 static int svm_hardware_enable(void) 624 { 625 626 struct svm_cpu_data *sd; 627 uint64_t efer; 628 int me = raw_smp_processor_id(); 629 630 rdmsrl(MSR_EFER, efer); 631 if (efer & EFER_SVME) 632 return -EBUSY; 633 634 sd = per_cpu_ptr(&svm_data, me); 635 sd->asid_generation = 1; 636 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 637 sd->next_asid = sd->max_asid + 1; 638 sd->min_asid = max_sev_asid + 1; 639 640 wrmsrl(MSR_EFER, efer | EFER_SVME); 641 642 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 643 644 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 645 /* 646 * Set the default value, even if we don't use TSC scaling 647 * to avoid having stale value in the msr 648 */ 649 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 650 } 651 652 653 /* 654 * Get OSVW bits. 655 * 656 * Note that it is possible to have a system with mixed processor 657 * revisions and therefore different OSVW bits. If bits are not the same 658 * on different processors then choose the worst case (i.e. if erratum 659 * is present on one processor and not on another then assume that the 660 * erratum is present everywhere). 661 */ 662 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 663 uint64_t len, status = 0; 664 int err; 665 666 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 667 if (!err) 668 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 669 &err); 670 671 if (err) 672 osvw_status = osvw_len = 0; 673 else { 674 if (len < osvw_len) 675 osvw_len = len; 676 osvw_status |= status; 677 osvw_status &= (1ULL << osvw_len) - 1; 678 } 679 } else 680 osvw_status = osvw_len = 0; 681 682 svm_init_erratum_383(); 683 684 amd_pmu_enable_virt(); 685 686 return 0; 687 } 688 689 static void svm_cpu_uninit(int cpu) 690 { 691 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 692 693 if (!sd->save_area) 694 return; 695 696 kfree(sd->sev_vmcbs); 697 __free_page(sd->save_area); 698 sd->save_area_pa = 0; 699 sd->save_area = NULL; 700 } 701 702 static int svm_cpu_init(int cpu) 703 { 704 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 705 int ret = -ENOMEM; 706 707 memset(sd, 0, sizeof(struct svm_cpu_data)); 708 sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO); 709 if (!sd->save_area) 710 return ret; 711 712 ret = sev_cpu_init(sd); 713 if (ret) 714 goto free_save_area; 715 716 sd->save_area_pa = __sme_page_pa(sd->save_area); 717 return 0; 718 719 free_save_area: 720 __free_page(sd->save_area); 721 sd->save_area = NULL; 722 return ret; 723 724 } 725 726 static void set_dr_intercepts(struct vcpu_svm *svm) 727 { 728 struct vmcb *vmcb = svm->vmcb01.ptr; 729 730 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 731 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 746 747 recalc_intercepts(svm); 748 } 749 750 static void clr_dr_intercepts(struct vcpu_svm *svm) 751 { 752 struct vmcb *vmcb = svm->vmcb01.ptr; 753 754 vmcb->control.intercepts[INTERCEPT_DR] = 0; 755 756 recalc_intercepts(svm); 757 } 758 759 static int direct_access_msr_slot(u32 msr) 760 { 761 u32 i; 762 763 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 764 if (direct_access_msrs[i].index == msr) 765 return i; 766 767 return -ENOENT; 768 } 769 770 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 771 int write) 772 { 773 struct vcpu_svm *svm = to_svm(vcpu); 774 int slot = direct_access_msr_slot(msr); 775 776 if (slot == -ENOENT) 777 return; 778 779 /* Set the shadow bitmaps to the desired intercept states */ 780 if (read) 781 set_bit(slot, svm->shadow_msr_intercept.read); 782 else 783 clear_bit(slot, svm->shadow_msr_intercept.read); 784 785 if (write) 786 set_bit(slot, svm->shadow_msr_intercept.write); 787 else 788 clear_bit(slot, svm->shadow_msr_intercept.write); 789 } 790 791 static bool valid_msr_intercept(u32 index) 792 { 793 return direct_access_msr_slot(index) != -ENOENT; 794 } 795 796 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 797 { 798 u8 bit_write; 799 unsigned long tmp; 800 u32 offset; 801 u32 *msrpm; 802 803 /* 804 * For non-nested case: 805 * If the L01 MSR bitmap does not intercept the MSR, then we need to 806 * save it. 807 * 808 * For nested case: 809 * If the L02 MSR bitmap does not intercept the MSR, then we need to 810 * save it. 811 */ 812 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 813 to_svm(vcpu)->msrpm; 814 815 offset = svm_msrpm_offset(msr); 816 bit_write = 2 * (msr & 0x0f) + 1; 817 tmp = msrpm[offset]; 818 819 BUG_ON(offset == MSR_INVALID); 820 821 return test_bit(bit_write, &tmp); 822 } 823 824 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 825 u32 msr, int read, int write) 826 { 827 struct vcpu_svm *svm = to_svm(vcpu); 828 u8 bit_read, bit_write; 829 unsigned long tmp; 830 u32 offset; 831 832 /* 833 * If this warning triggers extend the direct_access_msrs list at the 834 * beginning of the file 835 */ 836 WARN_ON(!valid_msr_intercept(msr)); 837 838 /* Enforce non allowed MSRs to trap */ 839 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 840 read = 0; 841 842 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 843 write = 0; 844 845 offset = svm_msrpm_offset(msr); 846 bit_read = 2 * (msr & 0x0f); 847 bit_write = 2 * (msr & 0x0f) + 1; 848 tmp = msrpm[offset]; 849 850 BUG_ON(offset == MSR_INVALID); 851 852 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 853 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 854 855 msrpm[offset] = tmp; 856 857 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 858 svm->nested.force_msr_bitmap_recalc = true; 859 } 860 861 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 862 int read, int write) 863 { 864 set_shadow_msr_intercept(vcpu, msr, read, write); 865 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 866 } 867 868 u32 *svm_vcpu_alloc_msrpm(void) 869 { 870 unsigned int order = get_order(MSRPM_SIZE); 871 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 872 u32 *msrpm; 873 874 if (!pages) 875 return NULL; 876 877 msrpm = page_address(pages); 878 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 879 880 return msrpm; 881 } 882 883 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 884 { 885 int i; 886 887 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 888 if (!direct_access_msrs[i].always) 889 continue; 890 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 891 } 892 } 893 894 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 895 { 896 int i; 897 898 if (intercept == svm->x2avic_msrs_intercepted) 899 return; 900 901 if (!x2avic_enabled || 902 !apic_x2apic_mode(svm->vcpu.arch.apic)) 903 return; 904 905 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 906 int index = direct_access_msrs[i].index; 907 908 if ((index < APIC_BASE_MSR) || 909 (index > APIC_BASE_MSR + 0xff)) 910 continue; 911 set_msr_interception(&svm->vcpu, svm->msrpm, index, 912 !intercept, !intercept); 913 } 914 915 svm->x2avic_msrs_intercepted = intercept; 916 } 917 918 void svm_vcpu_free_msrpm(u32 *msrpm) 919 { 920 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 921 } 922 923 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 924 { 925 struct vcpu_svm *svm = to_svm(vcpu); 926 u32 i; 927 928 /* 929 * Set intercept permissions for all direct access MSRs again. They 930 * will automatically get filtered through the MSR filter, so we are 931 * back in sync after this. 932 */ 933 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 934 u32 msr = direct_access_msrs[i].index; 935 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 936 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 937 938 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 939 } 940 } 941 942 static void add_msr_offset(u32 offset) 943 { 944 int i; 945 946 for (i = 0; i < MSRPM_OFFSETS; ++i) { 947 948 /* Offset already in list? */ 949 if (msrpm_offsets[i] == offset) 950 return; 951 952 /* Slot used by another offset? */ 953 if (msrpm_offsets[i] != MSR_INVALID) 954 continue; 955 956 /* Add offset to list */ 957 msrpm_offsets[i] = offset; 958 959 return; 960 } 961 962 /* 963 * If this BUG triggers the msrpm_offsets table has an overflow. Just 964 * increase MSRPM_OFFSETS in this case. 965 */ 966 BUG(); 967 } 968 969 static void init_msrpm_offsets(void) 970 { 971 int i; 972 973 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 974 975 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 976 u32 offset; 977 978 offset = svm_msrpm_offset(direct_access_msrs[i].index); 979 BUG_ON(offset == MSR_INVALID); 980 981 add_msr_offset(offset); 982 } 983 } 984 985 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 986 { 987 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 988 to_vmcb->save.br_from = from_vmcb->save.br_from; 989 to_vmcb->save.br_to = from_vmcb->save.br_to; 990 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 991 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 992 993 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 994 } 995 996 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 997 { 998 struct vcpu_svm *svm = to_svm(vcpu); 999 1000 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1001 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1005 1006 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1007 if (is_guest_mode(vcpu)) 1008 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1009 } 1010 1011 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1012 { 1013 struct vcpu_svm *svm = to_svm(vcpu); 1014 1015 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1016 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1017 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1019 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1020 1021 /* 1022 * Move the LBR msrs back to the vmcb01 to avoid copying them 1023 * on nested guest entries. 1024 */ 1025 if (is_guest_mode(vcpu)) 1026 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1027 } 1028 1029 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1030 { 1031 /* 1032 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1033 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1034 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1035 */ 1036 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1037 svm->vmcb01.ptr; 1038 } 1039 1040 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1041 { 1042 struct vcpu_svm *svm = to_svm(vcpu); 1043 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1044 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1045 (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) && 1046 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1047 1048 if (enable_lbrv == current_enable_lbrv) 1049 return; 1050 1051 if (enable_lbrv) 1052 svm_enable_lbrv(vcpu); 1053 else 1054 svm_disable_lbrv(vcpu); 1055 } 1056 1057 void disable_nmi_singlestep(struct vcpu_svm *svm) 1058 { 1059 svm->nmi_singlestep = false; 1060 1061 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1062 /* Clear our flags if they were not set by the guest */ 1063 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1064 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1065 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1066 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1067 } 1068 } 1069 1070 static void grow_ple_window(struct kvm_vcpu *vcpu) 1071 { 1072 struct vcpu_svm *svm = to_svm(vcpu); 1073 struct vmcb_control_area *control = &svm->vmcb->control; 1074 int old = control->pause_filter_count; 1075 1076 if (kvm_pause_in_guest(vcpu->kvm)) 1077 return; 1078 1079 control->pause_filter_count = __grow_ple_window(old, 1080 pause_filter_count, 1081 pause_filter_count_grow, 1082 pause_filter_count_max); 1083 1084 if (control->pause_filter_count != old) { 1085 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1086 trace_kvm_ple_window_update(vcpu->vcpu_id, 1087 control->pause_filter_count, old); 1088 } 1089 } 1090 1091 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1092 { 1093 struct vcpu_svm *svm = to_svm(vcpu); 1094 struct vmcb_control_area *control = &svm->vmcb->control; 1095 int old = control->pause_filter_count; 1096 1097 if (kvm_pause_in_guest(vcpu->kvm)) 1098 return; 1099 1100 control->pause_filter_count = 1101 __shrink_ple_window(old, 1102 pause_filter_count, 1103 pause_filter_count_shrink, 1104 pause_filter_count); 1105 if (control->pause_filter_count != old) { 1106 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1107 trace_kvm_ple_window_update(vcpu->vcpu_id, 1108 control->pause_filter_count, old); 1109 } 1110 } 1111 1112 static void svm_hardware_unsetup(void) 1113 { 1114 int cpu; 1115 1116 sev_hardware_unsetup(); 1117 1118 for_each_possible_cpu(cpu) 1119 svm_cpu_uninit(cpu); 1120 1121 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 1122 get_order(IOPM_SIZE)); 1123 iopm_base = 0; 1124 } 1125 1126 static void init_seg(struct vmcb_seg *seg) 1127 { 1128 seg->selector = 0; 1129 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1130 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1131 seg->limit = 0xffff; 1132 seg->base = 0; 1133 } 1134 1135 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1136 { 1137 seg->selector = 0; 1138 seg->attrib = SVM_SELECTOR_P_MASK | type; 1139 seg->limit = 0xffff; 1140 seg->base = 0; 1141 } 1142 1143 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1144 { 1145 struct vcpu_svm *svm = to_svm(vcpu); 1146 1147 return svm->nested.ctl.tsc_offset; 1148 } 1149 1150 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1151 { 1152 struct vcpu_svm *svm = to_svm(vcpu); 1153 1154 return svm->tsc_ratio_msr; 1155 } 1156 1157 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1158 { 1159 struct vcpu_svm *svm = to_svm(vcpu); 1160 1161 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1162 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1163 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1164 } 1165 1166 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1167 { 1168 preempt_disable(); 1169 if (to_svm(vcpu)->guest_state_loaded) 1170 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1171 preempt_enable(); 1172 } 1173 1174 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1175 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1176 struct vcpu_svm *svm) 1177 { 1178 /* 1179 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1180 * roots, or if INVPCID is disabled in the guest to inject #UD. 1181 */ 1182 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1183 if (!npt_enabled || 1184 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1185 svm_set_intercept(svm, INTERCEPT_INVPCID); 1186 else 1187 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1188 } 1189 1190 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1191 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1192 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1193 else 1194 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1195 } 1196 } 1197 1198 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1199 { 1200 struct vcpu_svm *svm = to_svm(vcpu); 1201 1202 if (guest_cpuid_is_intel(vcpu)) { 1203 /* 1204 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1205 * accesses because the processor only stores 32 bits. 1206 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1207 */ 1208 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1209 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1210 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1211 1212 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1213 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1214 } else { 1215 /* 1216 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1217 * in VMCB and clear intercepts to avoid #VMEXIT. 1218 */ 1219 if (vls) { 1220 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1221 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1222 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1223 } 1224 /* No need to intercept these MSRs */ 1225 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1226 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1227 } 1228 } 1229 1230 static void init_vmcb(struct kvm_vcpu *vcpu) 1231 { 1232 struct vcpu_svm *svm = to_svm(vcpu); 1233 struct vmcb *vmcb = svm->vmcb01.ptr; 1234 struct vmcb_control_area *control = &vmcb->control; 1235 struct vmcb_save_area *save = &vmcb->save; 1236 1237 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1238 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1239 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1240 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1241 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1242 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1243 if (!kvm_vcpu_apicv_active(vcpu)) 1244 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1245 1246 set_dr_intercepts(svm); 1247 1248 set_exception_intercept(svm, PF_VECTOR); 1249 set_exception_intercept(svm, UD_VECTOR); 1250 set_exception_intercept(svm, MC_VECTOR); 1251 set_exception_intercept(svm, AC_VECTOR); 1252 set_exception_intercept(svm, DB_VECTOR); 1253 /* 1254 * Guest access to VMware backdoor ports could legitimately 1255 * trigger #GP because of TSS I/O permission bitmap. 1256 * We intercept those #GP and allow access to them anyway 1257 * as VMware does. 1258 */ 1259 if (enable_vmware_backdoor) 1260 set_exception_intercept(svm, GP_VECTOR); 1261 1262 svm_set_intercept(svm, INTERCEPT_INTR); 1263 svm_set_intercept(svm, INTERCEPT_NMI); 1264 1265 if (intercept_smi) 1266 svm_set_intercept(svm, INTERCEPT_SMI); 1267 1268 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1269 svm_set_intercept(svm, INTERCEPT_RDPMC); 1270 svm_set_intercept(svm, INTERCEPT_CPUID); 1271 svm_set_intercept(svm, INTERCEPT_INVD); 1272 svm_set_intercept(svm, INTERCEPT_INVLPG); 1273 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1274 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1275 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1276 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1277 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1278 svm_set_intercept(svm, INTERCEPT_VMRUN); 1279 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1280 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1281 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1282 svm_set_intercept(svm, INTERCEPT_STGI); 1283 svm_set_intercept(svm, INTERCEPT_CLGI); 1284 svm_set_intercept(svm, INTERCEPT_SKINIT); 1285 svm_set_intercept(svm, INTERCEPT_WBINVD); 1286 svm_set_intercept(svm, INTERCEPT_XSETBV); 1287 svm_set_intercept(svm, INTERCEPT_RDPRU); 1288 svm_set_intercept(svm, INTERCEPT_RSM); 1289 1290 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1291 svm_set_intercept(svm, INTERCEPT_MONITOR); 1292 svm_set_intercept(svm, INTERCEPT_MWAIT); 1293 } 1294 1295 if (!kvm_hlt_in_guest(vcpu->kvm)) 1296 svm_set_intercept(svm, INTERCEPT_HLT); 1297 1298 control->iopm_base_pa = __sme_set(iopm_base); 1299 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1300 control->int_ctl = V_INTR_MASKING_MASK; 1301 1302 init_seg(&save->es); 1303 init_seg(&save->ss); 1304 init_seg(&save->ds); 1305 init_seg(&save->fs); 1306 init_seg(&save->gs); 1307 1308 save->cs.selector = 0xf000; 1309 save->cs.base = 0xffff0000; 1310 /* Executable/Readable Code Segment */ 1311 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1312 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1313 save->cs.limit = 0xffff; 1314 1315 save->gdtr.base = 0; 1316 save->gdtr.limit = 0xffff; 1317 save->idtr.base = 0; 1318 save->idtr.limit = 0xffff; 1319 1320 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1321 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1322 1323 if (npt_enabled) { 1324 /* Setup VMCB for Nested Paging */ 1325 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1326 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1327 clr_exception_intercept(svm, PF_VECTOR); 1328 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1329 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1330 save->g_pat = vcpu->arch.pat; 1331 save->cr3 = 0; 1332 } 1333 svm->current_vmcb->asid_generation = 0; 1334 svm->asid = 0; 1335 1336 svm->nested.vmcb12_gpa = INVALID_GPA; 1337 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1338 1339 if (!kvm_pause_in_guest(vcpu->kvm)) { 1340 control->pause_filter_count = pause_filter_count; 1341 if (pause_filter_thresh) 1342 control->pause_filter_thresh = pause_filter_thresh; 1343 svm_set_intercept(svm, INTERCEPT_PAUSE); 1344 } else { 1345 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1346 } 1347 1348 svm_recalc_instruction_intercepts(vcpu, svm); 1349 1350 /* 1351 * If the host supports V_SPEC_CTRL then disable the interception 1352 * of MSR_IA32_SPEC_CTRL. 1353 */ 1354 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1355 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1356 1357 if (kvm_vcpu_apicv_active(vcpu)) 1358 avic_init_vmcb(svm, vmcb); 1359 1360 if (vnmi) 1361 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1362 1363 if (vgif) { 1364 svm_clr_intercept(svm, INTERCEPT_STGI); 1365 svm_clr_intercept(svm, INTERCEPT_CLGI); 1366 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1367 } 1368 1369 if (sev_guest(vcpu->kvm)) 1370 sev_init_vmcb(svm); 1371 1372 svm_hv_init_vmcb(vmcb); 1373 init_vmcb_after_set_cpuid(vcpu); 1374 1375 vmcb_mark_all_dirty(vmcb); 1376 1377 enable_gif(svm); 1378 } 1379 1380 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1381 { 1382 struct vcpu_svm *svm = to_svm(vcpu); 1383 1384 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1385 1386 svm_init_osvw(vcpu); 1387 vcpu->arch.microcode_version = 0x01000065; 1388 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1389 1390 svm->nmi_masked = false; 1391 svm->awaiting_iret_completion = false; 1392 1393 if (sev_es_guest(vcpu->kvm)) 1394 sev_es_vcpu_reset(svm); 1395 } 1396 1397 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1398 { 1399 struct vcpu_svm *svm = to_svm(vcpu); 1400 1401 svm->spec_ctrl = 0; 1402 svm->virt_spec_ctrl = 0; 1403 1404 init_vmcb(vcpu); 1405 1406 if (!init_event) 1407 __svm_vcpu_reset(vcpu); 1408 } 1409 1410 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1411 { 1412 svm->current_vmcb = target_vmcb; 1413 svm->vmcb = target_vmcb->ptr; 1414 } 1415 1416 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1417 { 1418 struct vcpu_svm *svm; 1419 struct page *vmcb01_page; 1420 struct page *vmsa_page = NULL; 1421 int err; 1422 1423 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1424 svm = to_svm(vcpu); 1425 1426 err = -ENOMEM; 1427 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1428 if (!vmcb01_page) 1429 goto out; 1430 1431 if (sev_es_guest(vcpu->kvm)) { 1432 /* 1433 * SEV-ES guests require a separate VMSA page used to contain 1434 * the encrypted register state of the guest. 1435 */ 1436 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1437 if (!vmsa_page) 1438 goto error_free_vmcb_page; 1439 1440 /* 1441 * SEV-ES guests maintain an encrypted version of their FPU 1442 * state which is restored and saved on VMRUN and VMEXIT. 1443 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 1444 * do xsave/xrstor on it. 1445 */ 1446 fpstate_set_confidential(&vcpu->arch.guest_fpu); 1447 } 1448 1449 err = avic_init_vcpu(svm); 1450 if (err) 1451 goto error_free_vmsa_page; 1452 1453 svm->msrpm = svm_vcpu_alloc_msrpm(); 1454 if (!svm->msrpm) { 1455 err = -ENOMEM; 1456 goto error_free_vmsa_page; 1457 } 1458 1459 svm->x2avic_msrs_intercepted = true; 1460 1461 svm->vmcb01.ptr = page_address(vmcb01_page); 1462 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1463 svm_switch_vmcb(svm, &svm->vmcb01); 1464 1465 if (vmsa_page) 1466 svm->sev_es.vmsa = page_address(vmsa_page); 1467 1468 svm->guest_state_loaded = false; 1469 1470 return 0; 1471 1472 error_free_vmsa_page: 1473 if (vmsa_page) 1474 __free_page(vmsa_page); 1475 error_free_vmcb_page: 1476 __free_page(vmcb01_page); 1477 out: 1478 return err; 1479 } 1480 1481 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1482 { 1483 int i; 1484 1485 for_each_online_cpu(i) 1486 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1487 } 1488 1489 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1490 { 1491 struct vcpu_svm *svm = to_svm(vcpu); 1492 1493 /* 1494 * The vmcb page can be recycled, causing a false negative in 1495 * svm_vcpu_load(). So, ensure that no logical CPU has this 1496 * vmcb page recorded as its current vmcb. 1497 */ 1498 svm_clear_current_vmcb(svm->vmcb); 1499 1500 svm_leave_nested(vcpu); 1501 svm_free_nested(svm); 1502 1503 sev_free_vcpu(vcpu); 1504 1505 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1506 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1507 } 1508 1509 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1510 { 1511 struct vcpu_svm *svm = to_svm(vcpu); 1512 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1513 1514 if (sev_es_guest(vcpu->kvm)) 1515 sev_es_unmap_ghcb(svm); 1516 1517 if (svm->guest_state_loaded) 1518 return; 1519 1520 /* 1521 * Save additional host state that will be restored on VMEXIT (sev-es) 1522 * or subsequent vmload of host save area. 1523 */ 1524 vmsave(sd->save_area_pa); 1525 if (sev_es_guest(vcpu->kvm)) { 1526 struct sev_es_save_area *hostsa; 1527 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400); 1528 1529 sev_es_prepare_switch_to_guest(hostsa); 1530 } 1531 1532 if (tsc_scaling) 1533 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1534 1535 if (likely(tsc_aux_uret_slot >= 0)) 1536 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1537 1538 svm->guest_state_loaded = true; 1539 } 1540 1541 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1542 { 1543 to_svm(vcpu)->guest_state_loaded = false; 1544 } 1545 1546 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1547 { 1548 struct vcpu_svm *svm = to_svm(vcpu); 1549 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1550 1551 if (sd->current_vmcb != svm->vmcb) { 1552 sd->current_vmcb = svm->vmcb; 1553 1554 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1555 indirect_branch_prediction_barrier(); 1556 } 1557 if (kvm_vcpu_apicv_active(vcpu)) 1558 avic_vcpu_load(vcpu, cpu); 1559 } 1560 1561 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1562 { 1563 if (kvm_vcpu_apicv_active(vcpu)) 1564 avic_vcpu_put(vcpu); 1565 1566 svm_prepare_host_switch(vcpu); 1567 1568 ++vcpu->stat.host_state_reload; 1569 } 1570 1571 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1572 { 1573 struct vcpu_svm *svm = to_svm(vcpu); 1574 unsigned long rflags = svm->vmcb->save.rflags; 1575 1576 if (svm->nmi_singlestep) { 1577 /* Hide our flags if they were not set by the guest */ 1578 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1579 rflags &= ~X86_EFLAGS_TF; 1580 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1581 rflags &= ~X86_EFLAGS_RF; 1582 } 1583 return rflags; 1584 } 1585 1586 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1587 { 1588 if (to_svm(vcpu)->nmi_singlestep) 1589 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1590 1591 /* 1592 * Any change of EFLAGS.VM is accompanied by a reload of SS 1593 * (caused by either a task switch or an inter-privilege IRET), 1594 * so we do not need to update the CPL here. 1595 */ 1596 to_svm(vcpu)->vmcb->save.rflags = rflags; 1597 } 1598 1599 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1600 { 1601 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1602 1603 return sev_es_guest(vcpu->kvm) 1604 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1605 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1606 } 1607 1608 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1609 { 1610 kvm_register_mark_available(vcpu, reg); 1611 1612 switch (reg) { 1613 case VCPU_EXREG_PDPTR: 1614 /* 1615 * When !npt_enabled, mmu->pdptrs[] is already available since 1616 * it is always updated per SDM when moving to CRs. 1617 */ 1618 if (npt_enabled) 1619 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1620 break; 1621 default: 1622 KVM_BUG_ON(1, vcpu->kvm); 1623 } 1624 } 1625 1626 static void svm_set_vintr(struct vcpu_svm *svm) 1627 { 1628 struct vmcb_control_area *control; 1629 1630 /* 1631 * The following fields are ignored when AVIC is enabled 1632 */ 1633 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1634 1635 svm_set_intercept(svm, INTERCEPT_VINTR); 1636 1637 /* 1638 * Recalculating intercepts may have cleared the VINTR intercept. If 1639 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1640 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1641 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1642 * interrupts will never be unblocked while L2 is running. 1643 */ 1644 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1645 return; 1646 1647 /* 1648 * This is just a dummy VINTR to actually cause a vmexit to happen. 1649 * Actual injection of virtual interrupts happens through EVENTINJ. 1650 */ 1651 control = &svm->vmcb->control; 1652 control->int_vector = 0x0; 1653 control->int_ctl &= ~V_INTR_PRIO_MASK; 1654 control->int_ctl |= V_IRQ_MASK | 1655 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1656 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1657 } 1658 1659 static void svm_clear_vintr(struct vcpu_svm *svm) 1660 { 1661 svm_clr_intercept(svm, INTERCEPT_VINTR); 1662 1663 /* Drop int_ctl fields related to VINTR injection. */ 1664 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1665 if (is_guest_mode(&svm->vcpu)) { 1666 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1667 1668 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1669 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1670 1671 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1672 V_IRQ_INJECTION_BITS_MASK; 1673 1674 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1675 } 1676 1677 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1678 } 1679 1680 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1681 { 1682 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1683 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1684 1685 switch (seg) { 1686 case VCPU_SREG_CS: return &save->cs; 1687 case VCPU_SREG_DS: return &save->ds; 1688 case VCPU_SREG_ES: return &save->es; 1689 case VCPU_SREG_FS: return &save01->fs; 1690 case VCPU_SREG_GS: return &save01->gs; 1691 case VCPU_SREG_SS: return &save->ss; 1692 case VCPU_SREG_TR: return &save01->tr; 1693 case VCPU_SREG_LDTR: return &save01->ldtr; 1694 } 1695 BUG(); 1696 return NULL; 1697 } 1698 1699 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1700 { 1701 struct vmcb_seg *s = svm_seg(vcpu, seg); 1702 1703 return s->base; 1704 } 1705 1706 static void svm_get_segment(struct kvm_vcpu *vcpu, 1707 struct kvm_segment *var, int seg) 1708 { 1709 struct vmcb_seg *s = svm_seg(vcpu, seg); 1710 1711 var->base = s->base; 1712 var->limit = s->limit; 1713 var->selector = s->selector; 1714 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1715 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1716 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1717 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1718 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1719 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1720 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1721 1722 /* 1723 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1724 * However, the SVM spec states that the G bit is not observed by the 1725 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1726 * So let's synthesize a legal G bit for all segments, this helps 1727 * running KVM nested. It also helps cross-vendor migration, because 1728 * Intel's vmentry has a check on the 'G' bit. 1729 */ 1730 var->g = s->limit > 0xfffff; 1731 1732 /* 1733 * AMD's VMCB does not have an explicit unusable field, so emulate it 1734 * for cross vendor migration purposes by "not present" 1735 */ 1736 var->unusable = !var->present; 1737 1738 switch (seg) { 1739 case VCPU_SREG_TR: 1740 /* 1741 * Work around a bug where the busy flag in the tr selector 1742 * isn't exposed 1743 */ 1744 var->type |= 0x2; 1745 break; 1746 case VCPU_SREG_DS: 1747 case VCPU_SREG_ES: 1748 case VCPU_SREG_FS: 1749 case VCPU_SREG_GS: 1750 /* 1751 * The accessed bit must always be set in the segment 1752 * descriptor cache, although it can be cleared in the 1753 * descriptor, the cached bit always remains at 1. Since 1754 * Intel has a check on this, set it here to support 1755 * cross-vendor migration. 1756 */ 1757 if (!var->unusable) 1758 var->type |= 0x1; 1759 break; 1760 case VCPU_SREG_SS: 1761 /* 1762 * On AMD CPUs sometimes the DB bit in the segment 1763 * descriptor is left as 1, although the whole segment has 1764 * been made unusable. Clear it here to pass an Intel VMX 1765 * entry check when cross vendor migrating. 1766 */ 1767 if (var->unusable) 1768 var->db = 0; 1769 /* This is symmetric with svm_set_segment() */ 1770 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1771 break; 1772 } 1773 } 1774 1775 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1776 { 1777 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1778 1779 return save->cpl; 1780 } 1781 1782 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1783 { 1784 struct kvm_segment cs; 1785 1786 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1787 *db = cs.db; 1788 *l = cs.l; 1789 } 1790 1791 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1792 { 1793 struct vcpu_svm *svm = to_svm(vcpu); 1794 1795 dt->size = svm->vmcb->save.idtr.limit; 1796 dt->address = svm->vmcb->save.idtr.base; 1797 } 1798 1799 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1800 { 1801 struct vcpu_svm *svm = to_svm(vcpu); 1802 1803 svm->vmcb->save.idtr.limit = dt->size; 1804 svm->vmcb->save.idtr.base = dt->address ; 1805 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1806 } 1807 1808 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1809 { 1810 struct vcpu_svm *svm = to_svm(vcpu); 1811 1812 dt->size = svm->vmcb->save.gdtr.limit; 1813 dt->address = svm->vmcb->save.gdtr.base; 1814 } 1815 1816 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1817 { 1818 struct vcpu_svm *svm = to_svm(vcpu); 1819 1820 svm->vmcb->save.gdtr.limit = dt->size; 1821 svm->vmcb->save.gdtr.base = dt->address ; 1822 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1823 } 1824 1825 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1826 { 1827 struct vcpu_svm *svm = to_svm(vcpu); 1828 1829 /* 1830 * For guests that don't set guest_state_protected, the cr3 update is 1831 * handled via kvm_mmu_load() while entering the guest. For guests 1832 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1833 * VMCB save area now, since the save area will become the initial 1834 * contents of the VMSA, and future VMCB save area updates won't be 1835 * seen. 1836 */ 1837 if (sev_es_guest(vcpu->kvm)) { 1838 svm->vmcb->save.cr3 = cr3; 1839 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1840 } 1841 } 1842 1843 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1844 { 1845 return true; 1846 } 1847 1848 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1849 { 1850 struct vcpu_svm *svm = to_svm(vcpu); 1851 u64 hcr0 = cr0; 1852 bool old_paging = is_paging(vcpu); 1853 1854 #ifdef CONFIG_X86_64 1855 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1856 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1857 vcpu->arch.efer |= EFER_LMA; 1858 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1859 } 1860 1861 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1862 vcpu->arch.efer &= ~EFER_LMA; 1863 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1864 } 1865 } 1866 #endif 1867 vcpu->arch.cr0 = cr0; 1868 1869 if (!npt_enabled) { 1870 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1871 if (old_paging != is_paging(vcpu)) 1872 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1873 } 1874 1875 /* 1876 * re-enable caching here because the QEMU bios 1877 * does not do it - this results in some delay at 1878 * reboot 1879 */ 1880 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1881 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1882 1883 svm->vmcb->save.cr0 = hcr0; 1884 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1885 1886 /* 1887 * SEV-ES guests must always keep the CR intercepts cleared. CR 1888 * tracking is done using the CR write traps. 1889 */ 1890 if (sev_es_guest(vcpu->kvm)) 1891 return; 1892 1893 if (hcr0 == cr0) { 1894 /* Selective CR0 write remains on. */ 1895 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1896 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1897 } else { 1898 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1899 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1900 } 1901 } 1902 1903 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1904 { 1905 return true; 1906 } 1907 1908 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1909 { 1910 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1911 unsigned long old_cr4 = vcpu->arch.cr4; 1912 1913 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1914 svm_flush_tlb_current(vcpu); 1915 1916 vcpu->arch.cr4 = cr4; 1917 if (!npt_enabled) { 1918 cr4 |= X86_CR4_PAE; 1919 1920 if (!is_paging(vcpu)) 1921 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1922 } 1923 cr4 |= host_cr4_mce; 1924 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1925 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1926 1927 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1928 kvm_update_cpuid_runtime(vcpu); 1929 } 1930 1931 static void svm_set_segment(struct kvm_vcpu *vcpu, 1932 struct kvm_segment *var, int seg) 1933 { 1934 struct vcpu_svm *svm = to_svm(vcpu); 1935 struct vmcb_seg *s = svm_seg(vcpu, seg); 1936 1937 s->base = var->base; 1938 s->limit = var->limit; 1939 s->selector = var->selector; 1940 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1941 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1942 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1943 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1944 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1945 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1946 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1947 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1948 1949 /* 1950 * This is always accurate, except if SYSRET returned to a segment 1951 * with SS.DPL != 3. Intel does not have this quirk, and always 1952 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1953 * would entail passing the CPL to userspace and back. 1954 */ 1955 if (seg == VCPU_SREG_SS) 1956 /* This is symmetric with svm_get_segment() */ 1957 svm->vmcb->save.cpl = (var->dpl & 3); 1958 1959 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1960 } 1961 1962 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1963 { 1964 struct vcpu_svm *svm = to_svm(vcpu); 1965 1966 clr_exception_intercept(svm, BP_VECTOR); 1967 1968 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1969 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1970 set_exception_intercept(svm, BP_VECTOR); 1971 } 1972 } 1973 1974 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1975 { 1976 if (sd->next_asid > sd->max_asid) { 1977 ++sd->asid_generation; 1978 sd->next_asid = sd->min_asid; 1979 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1980 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1981 } 1982 1983 svm->current_vmcb->asid_generation = sd->asid_generation; 1984 svm->asid = sd->next_asid++; 1985 } 1986 1987 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1988 { 1989 struct vmcb *vmcb = svm->vmcb; 1990 1991 if (svm->vcpu.arch.guest_state_protected) 1992 return; 1993 1994 if (unlikely(value != vmcb->save.dr6)) { 1995 vmcb->save.dr6 = value; 1996 vmcb_mark_dirty(vmcb, VMCB_DR); 1997 } 1998 } 1999 2000 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2001 { 2002 struct vcpu_svm *svm = to_svm(vcpu); 2003 2004 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2005 return; 2006 2007 get_debugreg(vcpu->arch.db[0], 0); 2008 get_debugreg(vcpu->arch.db[1], 1); 2009 get_debugreg(vcpu->arch.db[2], 2); 2010 get_debugreg(vcpu->arch.db[3], 3); 2011 /* 2012 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2013 * because db_interception might need it. We can do it before vmentry. 2014 */ 2015 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2016 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2017 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2018 set_dr_intercepts(svm); 2019 } 2020 2021 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2022 { 2023 struct vcpu_svm *svm = to_svm(vcpu); 2024 2025 if (vcpu->arch.guest_state_protected) 2026 return; 2027 2028 svm->vmcb->save.dr7 = value; 2029 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2030 } 2031 2032 static int pf_interception(struct kvm_vcpu *vcpu) 2033 { 2034 struct vcpu_svm *svm = to_svm(vcpu); 2035 2036 u64 fault_address = svm->vmcb->control.exit_info_2; 2037 u64 error_code = svm->vmcb->control.exit_info_1; 2038 2039 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2040 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2041 svm->vmcb->control.insn_bytes : NULL, 2042 svm->vmcb->control.insn_len); 2043 } 2044 2045 static int npf_interception(struct kvm_vcpu *vcpu) 2046 { 2047 struct vcpu_svm *svm = to_svm(vcpu); 2048 2049 u64 fault_address = svm->vmcb->control.exit_info_2; 2050 u64 error_code = svm->vmcb->control.exit_info_1; 2051 2052 trace_kvm_page_fault(vcpu, fault_address, error_code); 2053 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 2054 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2055 svm->vmcb->control.insn_bytes : NULL, 2056 svm->vmcb->control.insn_len); 2057 } 2058 2059 static int db_interception(struct kvm_vcpu *vcpu) 2060 { 2061 struct kvm_run *kvm_run = vcpu->run; 2062 struct vcpu_svm *svm = to_svm(vcpu); 2063 2064 if (!(vcpu->guest_debug & 2065 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2066 !svm->nmi_singlestep) { 2067 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2068 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2069 return 1; 2070 } 2071 2072 if (svm->nmi_singlestep) { 2073 disable_nmi_singlestep(svm); 2074 /* Make sure we check for pending NMIs upon entry */ 2075 kvm_make_request(KVM_REQ_EVENT, vcpu); 2076 } 2077 2078 if (vcpu->guest_debug & 2079 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2080 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2081 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2082 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2083 kvm_run->debug.arch.pc = 2084 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2085 kvm_run->debug.arch.exception = DB_VECTOR; 2086 return 0; 2087 } 2088 2089 return 1; 2090 } 2091 2092 static int bp_interception(struct kvm_vcpu *vcpu) 2093 { 2094 struct vcpu_svm *svm = to_svm(vcpu); 2095 struct kvm_run *kvm_run = vcpu->run; 2096 2097 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2098 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2099 kvm_run->debug.arch.exception = BP_VECTOR; 2100 return 0; 2101 } 2102 2103 static int ud_interception(struct kvm_vcpu *vcpu) 2104 { 2105 return handle_ud(vcpu); 2106 } 2107 2108 static int ac_interception(struct kvm_vcpu *vcpu) 2109 { 2110 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2111 return 1; 2112 } 2113 2114 static bool is_erratum_383(void) 2115 { 2116 int err, i; 2117 u64 value; 2118 2119 if (!erratum_383_found) 2120 return false; 2121 2122 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2123 if (err) 2124 return false; 2125 2126 /* Bit 62 may or may not be set for this mce */ 2127 value &= ~(1ULL << 62); 2128 2129 if (value != 0xb600000000010015ULL) 2130 return false; 2131 2132 /* Clear MCi_STATUS registers */ 2133 for (i = 0; i < 6; ++i) 2134 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2135 2136 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2137 if (!err) { 2138 u32 low, high; 2139 2140 value &= ~(1ULL << 2); 2141 low = lower_32_bits(value); 2142 high = upper_32_bits(value); 2143 2144 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2145 } 2146 2147 /* Flush tlb to evict multi-match entries */ 2148 __flush_tlb_all(); 2149 2150 return true; 2151 } 2152 2153 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2154 { 2155 if (is_erratum_383()) { 2156 /* 2157 * Erratum 383 triggered. Guest state is corrupt so kill the 2158 * guest. 2159 */ 2160 pr_err("Guest triggered AMD Erratum 383\n"); 2161 2162 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2163 2164 return; 2165 } 2166 2167 /* 2168 * On an #MC intercept the MCE handler is not called automatically in 2169 * the host. So do it by hand here. 2170 */ 2171 kvm_machine_check(); 2172 } 2173 2174 static int mc_interception(struct kvm_vcpu *vcpu) 2175 { 2176 return 1; 2177 } 2178 2179 static int shutdown_interception(struct kvm_vcpu *vcpu) 2180 { 2181 struct kvm_run *kvm_run = vcpu->run; 2182 struct vcpu_svm *svm = to_svm(vcpu); 2183 2184 /* 2185 * The VM save area has already been encrypted so it 2186 * cannot be reinitialized - just terminate. 2187 */ 2188 if (sev_es_guest(vcpu->kvm)) 2189 return -EINVAL; 2190 2191 /* 2192 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2193 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2194 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2195 * userspace. At a platform view, INIT is acceptable behavior as 2196 * there exist bare metal platforms that automatically INIT the CPU 2197 * in response to shutdown. 2198 */ 2199 clear_page(svm->vmcb); 2200 kvm_vcpu_reset(vcpu, true); 2201 2202 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2203 return 0; 2204 } 2205 2206 static int io_interception(struct kvm_vcpu *vcpu) 2207 { 2208 struct vcpu_svm *svm = to_svm(vcpu); 2209 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2210 int size, in, string; 2211 unsigned port; 2212 2213 ++vcpu->stat.io_exits; 2214 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2215 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2216 port = io_info >> 16; 2217 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2218 2219 if (string) { 2220 if (sev_es_guest(vcpu->kvm)) 2221 return sev_es_string_io(svm, size, port, in); 2222 else 2223 return kvm_emulate_instruction(vcpu, 0); 2224 } 2225 2226 svm->next_rip = svm->vmcb->control.exit_info_2; 2227 2228 return kvm_fast_pio(vcpu, size, port, in); 2229 } 2230 2231 static int nmi_interception(struct kvm_vcpu *vcpu) 2232 { 2233 return 1; 2234 } 2235 2236 static int smi_interception(struct kvm_vcpu *vcpu) 2237 { 2238 return 1; 2239 } 2240 2241 static int intr_interception(struct kvm_vcpu *vcpu) 2242 { 2243 ++vcpu->stat.irq_exits; 2244 return 1; 2245 } 2246 2247 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2248 { 2249 struct vcpu_svm *svm = to_svm(vcpu); 2250 struct vmcb *vmcb12; 2251 struct kvm_host_map map; 2252 int ret; 2253 2254 if (nested_svm_check_permissions(vcpu)) 2255 return 1; 2256 2257 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2258 if (ret) { 2259 if (ret == -EINVAL) 2260 kvm_inject_gp(vcpu, 0); 2261 return 1; 2262 } 2263 2264 vmcb12 = map.hva; 2265 2266 ret = kvm_skip_emulated_instruction(vcpu); 2267 2268 if (vmload) { 2269 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2270 svm->sysenter_eip_hi = 0; 2271 svm->sysenter_esp_hi = 0; 2272 } else { 2273 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2274 } 2275 2276 kvm_vcpu_unmap(vcpu, &map, true); 2277 2278 return ret; 2279 } 2280 2281 static int vmload_interception(struct kvm_vcpu *vcpu) 2282 { 2283 return vmload_vmsave_interception(vcpu, true); 2284 } 2285 2286 static int vmsave_interception(struct kvm_vcpu *vcpu) 2287 { 2288 return vmload_vmsave_interception(vcpu, false); 2289 } 2290 2291 static int vmrun_interception(struct kvm_vcpu *vcpu) 2292 { 2293 if (nested_svm_check_permissions(vcpu)) 2294 return 1; 2295 2296 return nested_svm_vmrun(vcpu); 2297 } 2298 2299 enum { 2300 NONE_SVM_INSTR, 2301 SVM_INSTR_VMRUN, 2302 SVM_INSTR_VMLOAD, 2303 SVM_INSTR_VMSAVE, 2304 }; 2305 2306 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2307 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2308 { 2309 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2310 2311 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2312 return NONE_SVM_INSTR; 2313 2314 switch (ctxt->modrm) { 2315 case 0xd8: /* VMRUN */ 2316 return SVM_INSTR_VMRUN; 2317 case 0xda: /* VMLOAD */ 2318 return SVM_INSTR_VMLOAD; 2319 case 0xdb: /* VMSAVE */ 2320 return SVM_INSTR_VMSAVE; 2321 default: 2322 break; 2323 } 2324 2325 return NONE_SVM_INSTR; 2326 } 2327 2328 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2329 { 2330 const int guest_mode_exit_codes[] = { 2331 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2332 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2333 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2334 }; 2335 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2336 [SVM_INSTR_VMRUN] = vmrun_interception, 2337 [SVM_INSTR_VMLOAD] = vmload_interception, 2338 [SVM_INSTR_VMSAVE] = vmsave_interception, 2339 }; 2340 struct vcpu_svm *svm = to_svm(vcpu); 2341 int ret; 2342 2343 if (is_guest_mode(vcpu)) { 2344 /* Returns '1' or -errno on failure, '0' on success. */ 2345 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2346 if (ret) 2347 return ret; 2348 return 1; 2349 } 2350 return svm_instr_handlers[opcode](vcpu); 2351 } 2352 2353 /* 2354 * #GP handling code. Note that #GP can be triggered under the following two 2355 * cases: 2356 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2357 * some AMD CPUs when EAX of these instructions are in the reserved memory 2358 * regions (e.g. SMM memory on host). 2359 * 2) VMware backdoor 2360 */ 2361 static int gp_interception(struct kvm_vcpu *vcpu) 2362 { 2363 struct vcpu_svm *svm = to_svm(vcpu); 2364 u32 error_code = svm->vmcb->control.exit_info_1; 2365 int opcode; 2366 2367 /* Both #GP cases have zero error_code */ 2368 if (error_code) 2369 goto reinject; 2370 2371 /* Decode the instruction for usage later */ 2372 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2373 goto reinject; 2374 2375 opcode = svm_instr_opcode(vcpu); 2376 2377 if (opcode == NONE_SVM_INSTR) { 2378 if (!enable_vmware_backdoor) 2379 goto reinject; 2380 2381 /* 2382 * VMware backdoor emulation on #GP interception only handles 2383 * IN{S}, OUT{S}, and RDPMC. 2384 */ 2385 if (!is_guest_mode(vcpu)) 2386 return kvm_emulate_instruction(vcpu, 2387 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2388 } else { 2389 /* All SVM instructions expect page aligned RAX */ 2390 if (svm->vmcb->save.rax & ~PAGE_MASK) 2391 goto reinject; 2392 2393 return emulate_svm_instr(vcpu, opcode); 2394 } 2395 2396 reinject: 2397 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2398 return 1; 2399 } 2400 2401 void svm_set_gif(struct vcpu_svm *svm, bool value) 2402 { 2403 if (value) { 2404 /* 2405 * If VGIF is enabled, the STGI intercept is only added to 2406 * detect the opening of the SMI/NMI window; remove it now. 2407 * Likewise, clear the VINTR intercept, we will set it 2408 * again while processing KVM_REQ_EVENT if needed. 2409 */ 2410 if (vgif) 2411 svm_clr_intercept(svm, INTERCEPT_STGI); 2412 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2413 svm_clear_vintr(svm); 2414 2415 enable_gif(svm); 2416 if (svm->vcpu.arch.smi_pending || 2417 svm->vcpu.arch.nmi_pending || 2418 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2419 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2420 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2421 } else { 2422 disable_gif(svm); 2423 2424 /* 2425 * After a CLGI no interrupts should come. But if vGIF is 2426 * in use, we still rely on the VINTR intercept (rather than 2427 * STGI) to detect an open interrupt window. 2428 */ 2429 if (!vgif) 2430 svm_clear_vintr(svm); 2431 } 2432 } 2433 2434 static int stgi_interception(struct kvm_vcpu *vcpu) 2435 { 2436 int ret; 2437 2438 if (nested_svm_check_permissions(vcpu)) 2439 return 1; 2440 2441 ret = kvm_skip_emulated_instruction(vcpu); 2442 svm_set_gif(to_svm(vcpu), true); 2443 return ret; 2444 } 2445 2446 static int clgi_interception(struct kvm_vcpu *vcpu) 2447 { 2448 int ret; 2449 2450 if (nested_svm_check_permissions(vcpu)) 2451 return 1; 2452 2453 ret = kvm_skip_emulated_instruction(vcpu); 2454 svm_set_gif(to_svm(vcpu), false); 2455 return ret; 2456 } 2457 2458 static int invlpga_interception(struct kvm_vcpu *vcpu) 2459 { 2460 gva_t gva = kvm_rax_read(vcpu); 2461 u32 asid = kvm_rcx_read(vcpu); 2462 2463 /* FIXME: Handle an address size prefix. */ 2464 if (!is_long_mode(vcpu)) 2465 gva = (u32)gva; 2466 2467 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2468 2469 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2470 kvm_mmu_invlpg(vcpu, gva); 2471 2472 return kvm_skip_emulated_instruction(vcpu); 2473 } 2474 2475 static int skinit_interception(struct kvm_vcpu *vcpu) 2476 { 2477 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2478 2479 kvm_queue_exception(vcpu, UD_VECTOR); 2480 return 1; 2481 } 2482 2483 static int task_switch_interception(struct kvm_vcpu *vcpu) 2484 { 2485 struct vcpu_svm *svm = to_svm(vcpu); 2486 u16 tss_selector; 2487 int reason; 2488 int int_type = svm->vmcb->control.exit_int_info & 2489 SVM_EXITINTINFO_TYPE_MASK; 2490 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2491 uint32_t type = 2492 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2493 uint32_t idt_v = 2494 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2495 bool has_error_code = false; 2496 u32 error_code = 0; 2497 2498 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2499 2500 if (svm->vmcb->control.exit_info_2 & 2501 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2502 reason = TASK_SWITCH_IRET; 2503 else if (svm->vmcb->control.exit_info_2 & 2504 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2505 reason = TASK_SWITCH_JMP; 2506 else if (idt_v) 2507 reason = TASK_SWITCH_GATE; 2508 else 2509 reason = TASK_SWITCH_CALL; 2510 2511 if (reason == TASK_SWITCH_GATE) { 2512 switch (type) { 2513 case SVM_EXITINTINFO_TYPE_NMI: 2514 vcpu->arch.nmi_injected = false; 2515 break; 2516 case SVM_EXITINTINFO_TYPE_EXEPT: 2517 if (svm->vmcb->control.exit_info_2 & 2518 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2519 has_error_code = true; 2520 error_code = 2521 (u32)svm->vmcb->control.exit_info_2; 2522 } 2523 kvm_clear_exception_queue(vcpu); 2524 break; 2525 case SVM_EXITINTINFO_TYPE_INTR: 2526 case SVM_EXITINTINFO_TYPE_SOFT: 2527 kvm_clear_interrupt_queue(vcpu); 2528 break; 2529 default: 2530 break; 2531 } 2532 } 2533 2534 if (reason != TASK_SWITCH_GATE || 2535 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2536 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2537 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2538 if (!svm_skip_emulated_instruction(vcpu)) 2539 return 0; 2540 } 2541 2542 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2543 int_vec = -1; 2544 2545 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2546 has_error_code, error_code); 2547 } 2548 2549 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2550 { 2551 if (!sev_es_guest(svm->vcpu.kvm)) 2552 svm_clr_intercept(svm, INTERCEPT_IRET); 2553 } 2554 2555 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2556 { 2557 if (!sev_es_guest(svm->vcpu.kvm)) 2558 svm_set_intercept(svm, INTERCEPT_IRET); 2559 } 2560 2561 static int iret_interception(struct kvm_vcpu *vcpu) 2562 { 2563 struct vcpu_svm *svm = to_svm(vcpu); 2564 2565 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2566 2567 ++vcpu->stat.nmi_window_exits; 2568 svm->awaiting_iret_completion = true; 2569 2570 svm_clr_iret_intercept(svm); 2571 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2572 2573 kvm_make_request(KVM_REQ_EVENT, vcpu); 2574 return 1; 2575 } 2576 2577 static int invlpg_interception(struct kvm_vcpu *vcpu) 2578 { 2579 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2580 return kvm_emulate_instruction(vcpu, 0); 2581 2582 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2583 return kvm_skip_emulated_instruction(vcpu); 2584 } 2585 2586 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2587 { 2588 return kvm_emulate_instruction(vcpu, 0); 2589 } 2590 2591 static int rsm_interception(struct kvm_vcpu *vcpu) 2592 { 2593 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2594 } 2595 2596 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2597 unsigned long val) 2598 { 2599 struct vcpu_svm *svm = to_svm(vcpu); 2600 unsigned long cr0 = vcpu->arch.cr0; 2601 bool ret = false; 2602 2603 if (!is_guest_mode(vcpu) || 2604 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2605 return false; 2606 2607 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2608 val &= ~SVM_CR0_SELECTIVE_MASK; 2609 2610 if (cr0 ^ val) { 2611 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2612 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2613 } 2614 2615 return ret; 2616 } 2617 2618 #define CR_VALID (1ULL << 63) 2619 2620 static int cr_interception(struct kvm_vcpu *vcpu) 2621 { 2622 struct vcpu_svm *svm = to_svm(vcpu); 2623 int reg, cr; 2624 unsigned long val; 2625 int err; 2626 2627 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2628 return emulate_on_interception(vcpu); 2629 2630 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2631 return emulate_on_interception(vcpu); 2632 2633 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2634 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2635 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2636 else 2637 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2638 2639 err = 0; 2640 if (cr >= 16) { /* mov to cr */ 2641 cr -= 16; 2642 val = kvm_register_read(vcpu, reg); 2643 trace_kvm_cr_write(cr, val); 2644 switch (cr) { 2645 case 0: 2646 if (!check_selective_cr0_intercepted(vcpu, val)) 2647 err = kvm_set_cr0(vcpu, val); 2648 else 2649 return 1; 2650 2651 break; 2652 case 3: 2653 err = kvm_set_cr3(vcpu, val); 2654 break; 2655 case 4: 2656 err = kvm_set_cr4(vcpu, val); 2657 break; 2658 case 8: 2659 err = kvm_set_cr8(vcpu, val); 2660 break; 2661 default: 2662 WARN(1, "unhandled write to CR%d", cr); 2663 kvm_queue_exception(vcpu, UD_VECTOR); 2664 return 1; 2665 } 2666 } else { /* mov from cr */ 2667 switch (cr) { 2668 case 0: 2669 val = kvm_read_cr0(vcpu); 2670 break; 2671 case 2: 2672 val = vcpu->arch.cr2; 2673 break; 2674 case 3: 2675 val = kvm_read_cr3(vcpu); 2676 break; 2677 case 4: 2678 val = kvm_read_cr4(vcpu); 2679 break; 2680 case 8: 2681 val = kvm_get_cr8(vcpu); 2682 break; 2683 default: 2684 WARN(1, "unhandled read from CR%d", cr); 2685 kvm_queue_exception(vcpu, UD_VECTOR); 2686 return 1; 2687 } 2688 kvm_register_write(vcpu, reg, val); 2689 trace_kvm_cr_read(cr, val); 2690 } 2691 return kvm_complete_insn_gp(vcpu, err); 2692 } 2693 2694 static int cr_trap(struct kvm_vcpu *vcpu) 2695 { 2696 struct vcpu_svm *svm = to_svm(vcpu); 2697 unsigned long old_value, new_value; 2698 unsigned int cr; 2699 int ret = 0; 2700 2701 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2702 2703 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2704 switch (cr) { 2705 case 0: 2706 old_value = kvm_read_cr0(vcpu); 2707 svm_set_cr0(vcpu, new_value); 2708 2709 kvm_post_set_cr0(vcpu, old_value, new_value); 2710 break; 2711 case 4: 2712 old_value = kvm_read_cr4(vcpu); 2713 svm_set_cr4(vcpu, new_value); 2714 2715 kvm_post_set_cr4(vcpu, old_value, new_value); 2716 break; 2717 case 8: 2718 ret = kvm_set_cr8(vcpu, new_value); 2719 break; 2720 default: 2721 WARN(1, "unhandled CR%d write trap", cr); 2722 kvm_queue_exception(vcpu, UD_VECTOR); 2723 return 1; 2724 } 2725 2726 return kvm_complete_insn_gp(vcpu, ret); 2727 } 2728 2729 static int dr_interception(struct kvm_vcpu *vcpu) 2730 { 2731 struct vcpu_svm *svm = to_svm(vcpu); 2732 int reg, dr; 2733 unsigned long val; 2734 int err = 0; 2735 2736 /* 2737 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2738 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2739 */ 2740 if (sev_es_guest(vcpu->kvm)) 2741 return 1; 2742 2743 if (vcpu->guest_debug == 0) { 2744 /* 2745 * No more DR vmexits; force a reload of the debug registers 2746 * and reenter on this instruction. The next vmexit will 2747 * retrieve the full state of the debug registers. 2748 */ 2749 clr_dr_intercepts(svm); 2750 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2751 return 1; 2752 } 2753 2754 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2755 return emulate_on_interception(vcpu); 2756 2757 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2758 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2759 if (dr >= 16) { /* mov to DRn */ 2760 dr -= 16; 2761 val = kvm_register_read(vcpu, reg); 2762 err = kvm_set_dr(vcpu, dr, val); 2763 } else { 2764 kvm_get_dr(vcpu, dr, &val); 2765 kvm_register_write(vcpu, reg, val); 2766 } 2767 2768 return kvm_complete_insn_gp(vcpu, err); 2769 } 2770 2771 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2772 { 2773 int r; 2774 2775 u8 cr8_prev = kvm_get_cr8(vcpu); 2776 /* instruction emulation calls kvm_set_cr8() */ 2777 r = cr_interception(vcpu); 2778 if (lapic_in_kernel(vcpu)) 2779 return r; 2780 if (cr8_prev <= kvm_get_cr8(vcpu)) 2781 return r; 2782 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2783 return 0; 2784 } 2785 2786 static int efer_trap(struct kvm_vcpu *vcpu) 2787 { 2788 struct msr_data msr_info; 2789 int ret; 2790 2791 /* 2792 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2793 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2794 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2795 * the guest doesn't have X86_FEATURE_SVM. 2796 */ 2797 msr_info.host_initiated = false; 2798 msr_info.index = MSR_EFER; 2799 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2800 ret = kvm_set_msr_common(vcpu, &msr_info); 2801 2802 return kvm_complete_insn_gp(vcpu, ret); 2803 } 2804 2805 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2806 { 2807 msr->data = 0; 2808 2809 switch (msr->index) { 2810 case MSR_AMD64_DE_CFG: 2811 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2812 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2813 break; 2814 default: 2815 return KVM_MSR_RET_INVALID; 2816 } 2817 2818 return 0; 2819 } 2820 2821 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2822 { 2823 struct vcpu_svm *svm = to_svm(vcpu); 2824 2825 switch (msr_info->index) { 2826 case MSR_AMD64_TSC_RATIO: 2827 if (!msr_info->host_initiated && 2828 !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) 2829 return 1; 2830 msr_info->data = svm->tsc_ratio_msr; 2831 break; 2832 case MSR_STAR: 2833 msr_info->data = svm->vmcb01.ptr->save.star; 2834 break; 2835 #ifdef CONFIG_X86_64 2836 case MSR_LSTAR: 2837 msr_info->data = svm->vmcb01.ptr->save.lstar; 2838 break; 2839 case MSR_CSTAR: 2840 msr_info->data = svm->vmcb01.ptr->save.cstar; 2841 break; 2842 case MSR_KERNEL_GS_BASE: 2843 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2844 break; 2845 case MSR_SYSCALL_MASK: 2846 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2847 break; 2848 #endif 2849 case MSR_IA32_SYSENTER_CS: 2850 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2851 break; 2852 case MSR_IA32_SYSENTER_EIP: 2853 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2854 if (guest_cpuid_is_intel(vcpu)) 2855 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2856 break; 2857 case MSR_IA32_SYSENTER_ESP: 2858 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2859 if (guest_cpuid_is_intel(vcpu)) 2860 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2861 break; 2862 case MSR_TSC_AUX: 2863 msr_info->data = svm->tsc_aux; 2864 break; 2865 case MSR_IA32_DEBUGCTLMSR: 2866 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2867 break; 2868 case MSR_IA32_LASTBRANCHFROMIP: 2869 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2870 break; 2871 case MSR_IA32_LASTBRANCHTOIP: 2872 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2873 break; 2874 case MSR_IA32_LASTINTFROMIP: 2875 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2876 break; 2877 case MSR_IA32_LASTINTTOIP: 2878 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2879 break; 2880 case MSR_VM_HSAVE_PA: 2881 msr_info->data = svm->nested.hsave_msr; 2882 break; 2883 case MSR_VM_CR: 2884 msr_info->data = svm->nested.vm_cr_msr; 2885 break; 2886 case MSR_IA32_SPEC_CTRL: 2887 if (!msr_info->host_initiated && 2888 !guest_has_spec_ctrl_msr(vcpu)) 2889 return 1; 2890 2891 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2892 msr_info->data = svm->vmcb->save.spec_ctrl; 2893 else 2894 msr_info->data = svm->spec_ctrl; 2895 break; 2896 case MSR_AMD64_VIRT_SPEC_CTRL: 2897 if (!msr_info->host_initiated && 2898 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2899 return 1; 2900 2901 msr_info->data = svm->virt_spec_ctrl; 2902 break; 2903 case MSR_F15H_IC_CFG: { 2904 2905 int family, model; 2906 2907 family = guest_cpuid_family(vcpu); 2908 model = guest_cpuid_model(vcpu); 2909 2910 if (family < 0 || model < 0) 2911 return kvm_get_msr_common(vcpu, msr_info); 2912 2913 msr_info->data = 0; 2914 2915 if (family == 0x15 && 2916 (model >= 0x2 && model < 0x20)) 2917 msr_info->data = 0x1E; 2918 } 2919 break; 2920 case MSR_AMD64_DE_CFG: 2921 msr_info->data = svm->msr_decfg; 2922 break; 2923 default: 2924 return kvm_get_msr_common(vcpu, msr_info); 2925 } 2926 return 0; 2927 } 2928 2929 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2930 { 2931 struct vcpu_svm *svm = to_svm(vcpu); 2932 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2933 return kvm_complete_insn_gp(vcpu, err); 2934 2935 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2936 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2937 X86_TRAP_GP | 2938 SVM_EVTINJ_TYPE_EXEPT | 2939 SVM_EVTINJ_VALID); 2940 return 1; 2941 } 2942 2943 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2944 { 2945 struct vcpu_svm *svm = to_svm(vcpu); 2946 int svm_dis, chg_mask; 2947 2948 if (data & ~SVM_VM_CR_VALID_MASK) 2949 return 1; 2950 2951 chg_mask = SVM_VM_CR_VALID_MASK; 2952 2953 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2954 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2955 2956 svm->nested.vm_cr_msr &= ~chg_mask; 2957 svm->nested.vm_cr_msr |= (data & chg_mask); 2958 2959 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2960 2961 /* check for svm_disable while efer.svme is set */ 2962 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2963 return 1; 2964 2965 return 0; 2966 } 2967 2968 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2969 { 2970 struct vcpu_svm *svm = to_svm(vcpu); 2971 int ret = 0; 2972 2973 u32 ecx = msr->index; 2974 u64 data = msr->data; 2975 switch (ecx) { 2976 case MSR_AMD64_TSC_RATIO: 2977 2978 if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) { 2979 2980 if (!msr->host_initiated) 2981 return 1; 2982 /* 2983 * In case TSC scaling is not enabled, always 2984 * leave this MSR at the default value. 2985 * 2986 * Due to bug in qemu 6.2.0, it would try to set 2987 * this msr to 0 if tsc scaling is not enabled. 2988 * Ignore this value as well. 2989 */ 2990 if (data != 0 && data != svm->tsc_ratio_msr) 2991 return 1; 2992 break; 2993 } 2994 2995 if (data & SVM_TSC_RATIO_RSVD) 2996 return 1; 2997 2998 svm->tsc_ratio_msr = data; 2999 3000 if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) && 3001 is_guest_mode(vcpu)) 3002 nested_svm_update_tsc_ratio_msr(vcpu); 3003 3004 break; 3005 case MSR_IA32_CR_PAT: 3006 ret = kvm_set_msr_common(vcpu, msr); 3007 if (ret) 3008 break; 3009 3010 svm->vmcb01.ptr->save.g_pat = data; 3011 if (is_guest_mode(vcpu)) 3012 nested_vmcb02_compute_g_pat(svm); 3013 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3014 break; 3015 case MSR_IA32_SPEC_CTRL: 3016 if (!msr->host_initiated && 3017 !guest_has_spec_ctrl_msr(vcpu)) 3018 return 1; 3019 3020 if (kvm_spec_ctrl_test_value(data)) 3021 return 1; 3022 3023 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3024 svm->vmcb->save.spec_ctrl = data; 3025 else 3026 svm->spec_ctrl = data; 3027 if (!data) 3028 break; 3029 3030 /* 3031 * For non-nested: 3032 * When it's written (to non-zero) for the first time, pass 3033 * it through. 3034 * 3035 * For nested: 3036 * The handling of the MSR bitmap for L2 guests is done in 3037 * nested_svm_vmrun_msrpm. 3038 * We update the L1 MSR bit as well since it will end up 3039 * touching the MSR anyway now. 3040 */ 3041 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3042 break; 3043 case MSR_AMD64_VIRT_SPEC_CTRL: 3044 if (!msr->host_initiated && 3045 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3046 return 1; 3047 3048 if (data & ~SPEC_CTRL_SSBD) 3049 return 1; 3050 3051 svm->virt_spec_ctrl = data; 3052 break; 3053 case MSR_STAR: 3054 svm->vmcb01.ptr->save.star = data; 3055 break; 3056 #ifdef CONFIG_X86_64 3057 case MSR_LSTAR: 3058 svm->vmcb01.ptr->save.lstar = data; 3059 break; 3060 case MSR_CSTAR: 3061 svm->vmcb01.ptr->save.cstar = data; 3062 break; 3063 case MSR_KERNEL_GS_BASE: 3064 svm->vmcb01.ptr->save.kernel_gs_base = data; 3065 break; 3066 case MSR_SYSCALL_MASK: 3067 svm->vmcb01.ptr->save.sfmask = data; 3068 break; 3069 #endif 3070 case MSR_IA32_SYSENTER_CS: 3071 svm->vmcb01.ptr->save.sysenter_cs = data; 3072 break; 3073 case MSR_IA32_SYSENTER_EIP: 3074 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3075 /* 3076 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3077 * when we spoof an Intel vendor ID (for cross vendor migration). 3078 * In this case we use this intercept to track the high 3079 * 32 bit part of these msrs to support Intel's 3080 * implementation of SYSENTER/SYSEXIT. 3081 */ 3082 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3083 break; 3084 case MSR_IA32_SYSENTER_ESP: 3085 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3086 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 3087 break; 3088 case MSR_TSC_AUX: 3089 /* 3090 * TSC_AUX is usually changed only during boot and never read 3091 * directly. Intercept TSC_AUX instead of exposing it to the 3092 * guest via direct_access_msrs, and switch it via user return. 3093 */ 3094 preempt_disable(); 3095 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3096 preempt_enable(); 3097 if (ret) 3098 break; 3099 3100 svm->tsc_aux = data; 3101 break; 3102 case MSR_IA32_DEBUGCTLMSR: 3103 if (!lbrv) { 3104 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3105 break; 3106 } 3107 if (data & DEBUGCTL_RESERVED_BITS) 3108 return 1; 3109 3110 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3111 svm_update_lbrv(vcpu); 3112 break; 3113 case MSR_VM_HSAVE_PA: 3114 /* 3115 * Old kernels did not validate the value written to 3116 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3117 * value to allow live migrating buggy or malicious guests 3118 * originating from those kernels. 3119 */ 3120 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3121 return 1; 3122 3123 svm->nested.hsave_msr = data & PAGE_MASK; 3124 break; 3125 case MSR_VM_CR: 3126 return svm_set_vm_cr(vcpu, data); 3127 case MSR_VM_IGNNE: 3128 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3129 break; 3130 case MSR_AMD64_DE_CFG: { 3131 struct kvm_msr_entry msr_entry; 3132 3133 msr_entry.index = msr->index; 3134 if (svm_get_msr_feature(&msr_entry)) 3135 return 1; 3136 3137 /* Check the supported bits */ 3138 if (data & ~msr_entry.data) 3139 return 1; 3140 3141 /* Don't allow the guest to change a bit, #GP */ 3142 if (!msr->host_initiated && (data ^ msr_entry.data)) 3143 return 1; 3144 3145 svm->msr_decfg = data; 3146 break; 3147 } 3148 default: 3149 return kvm_set_msr_common(vcpu, msr); 3150 } 3151 return ret; 3152 } 3153 3154 static int msr_interception(struct kvm_vcpu *vcpu) 3155 { 3156 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3157 return kvm_emulate_wrmsr(vcpu); 3158 else 3159 return kvm_emulate_rdmsr(vcpu); 3160 } 3161 3162 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3163 { 3164 kvm_make_request(KVM_REQ_EVENT, vcpu); 3165 svm_clear_vintr(to_svm(vcpu)); 3166 3167 /* 3168 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3169 * In this case AVIC was temporarily disabled for 3170 * requesting the IRQ window and we have to re-enable it. 3171 * 3172 * If running nested, still remove the VM wide AVIC inhibit to 3173 * support case in which the interrupt window was requested when the 3174 * vCPU was not running nested. 3175 3176 * All vCPUs which run still run nested, will remain to have their 3177 * AVIC still inhibited due to per-cpu AVIC inhibition. 3178 */ 3179 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3180 3181 ++vcpu->stat.irq_window_exits; 3182 return 1; 3183 } 3184 3185 static int pause_interception(struct kvm_vcpu *vcpu) 3186 { 3187 bool in_kernel; 3188 /* 3189 * CPL is not made available for an SEV-ES guest, therefore 3190 * vcpu->arch.preempted_in_kernel can never be true. Just 3191 * set in_kernel to false as well. 3192 */ 3193 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3194 3195 grow_ple_window(vcpu); 3196 3197 kvm_vcpu_on_spin(vcpu, in_kernel); 3198 return kvm_skip_emulated_instruction(vcpu); 3199 } 3200 3201 static int invpcid_interception(struct kvm_vcpu *vcpu) 3202 { 3203 struct vcpu_svm *svm = to_svm(vcpu); 3204 unsigned long type; 3205 gva_t gva; 3206 3207 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3208 kvm_queue_exception(vcpu, UD_VECTOR); 3209 return 1; 3210 } 3211 3212 /* 3213 * For an INVPCID intercept: 3214 * EXITINFO1 provides the linear address of the memory operand. 3215 * EXITINFO2 provides the contents of the register operand. 3216 */ 3217 type = svm->vmcb->control.exit_info_2; 3218 gva = svm->vmcb->control.exit_info_1; 3219 3220 return kvm_handle_invpcid(vcpu, type, gva); 3221 } 3222 3223 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3224 [SVM_EXIT_READ_CR0] = cr_interception, 3225 [SVM_EXIT_READ_CR3] = cr_interception, 3226 [SVM_EXIT_READ_CR4] = cr_interception, 3227 [SVM_EXIT_READ_CR8] = cr_interception, 3228 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3229 [SVM_EXIT_WRITE_CR0] = cr_interception, 3230 [SVM_EXIT_WRITE_CR3] = cr_interception, 3231 [SVM_EXIT_WRITE_CR4] = cr_interception, 3232 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3233 [SVM_EXIT_READ_DR0] = dr_interception, 3234 [SVM_EXIT_READ_DR1] = dr_interception, 3235 [SVM_EXIT_READ_DR2] = dr_interception, 3236 [SVM_EXIT_READ_DR3] = dr_interception, 3237 [SVM_EXIT_READ_DR4] = dr_interception, 3238 [SVM_EXIT_READ_DR5] = dr_interception, 3239 [SVM_EXIT_READ_DR6] = dr_interception, 3240 [SVM_EXIT_READ_DR7] = dr_interception, 3241 [SVM_EXIT_WRITE_DR0] = dr_interception, 3242 [SVM_EXIT_WRITE_DR1] = dr_interception, 3243 [SVM_EXIT_WRITE_DR2] = dr_interception, 3244 [SVM_EXIT_WRITE_DR3] = dr_interception, 3245 [SVM_EXIT_WRITE_DR4] = dr_interception, 3246 [SVM_EXIT_WRITE_DR5] = dr_interception, 3247 [SVM_EXIT_WRITE_DR6] = dr_interception, 3248 [SVM_EXIT_WRITE_DR7] = dr_interception, 3249 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3250 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3251 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3252 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3253 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3254 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3255 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3256 [SVM_EXIT_INTR] = intr_interception, 3257 [SVM_EXIT_NMI] = nmi_interception, 3258 [SVM_EXIT_SMI] = smi_interception, 3259 [SVM_EXIT_VINTR] = interrupt_window_interception, 3260 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3261 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3262 [SVM_EXIT_IRET] = iret_interception, 3263 [SVM_EXIT_INVD] = kvm_emulate_invd, 3264 [SVM_EXIT_PAUSE] = pause_interception, 3265 [SVM_EXIT_HLT] = kvm_emulate_halt, 3266 [SVM_EXIT_INVLPG] = invlpg_interception, 3267 [SVM_EXIT_INVLPGA] = invlpga_interception, 3268 [SVM_EXIT_IOIO] = io_interception, 3269 [SVM_EXIT_MSR] = msr_interception, 3270 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3271 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3272 [SVM_EXIT_VMRUN] = vmrun_interception, 3273 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3274 [SVM_EXIT_VMLOAD] = vmload_interception, 3275 [SVM_EXIT_VMSAVE] = vmsave_interception, 3276 [SVM_EXIT_STGI] = stgi_interception, 3277 [SVM_EXIT_CLGI] = clgi_interception, 3278 [SVM_EXIT_SKINIT] = skinit_interception, 3279 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3280 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3281 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3282 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3283 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3284 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3285 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3286 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3287 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3288 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3289 [SVM_EXIT_INVPCID] = invpcid_interception, 3290 [SVM_EXIT_NPF] = npf_interception, 3291 [SVM_EXIT_RSM] = rsm_interception, 3292 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3293 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3294 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3295 }; 3296 3297 static void dump_vmcb(struct kvm_vcpu *vcpu) 3298 { 3299 struct vcpu_svm *svm = to_svm(vcpu); 3300 struct vmcb_control_area *control = &svm->vmcb->control; 3301 struct vmcb_save_area *save = &svm->vmcb->save; 3302 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3303 3304 if (!dump_invalid_vmcb) { 3305 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3306 return; 3307 } 3308 3309 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3310 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3311 pr_err("VMCB Control Area:\n"); 3312 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3313 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3314 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3315 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3316 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3317 pr_err("%-20s%08x %08x\n", "intercepts:", 3318 control->intercepts[INTERCEPT_WORD3], 3319 control->intercepts[INTERCEPT_WORD4]); 3320 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3321 pr_err("%-20s%d\n", "pause filter threshold:", 3322 control->pause_filter_thresh); 3323 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3324 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3325 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3326 pr_err("%-20s%d\n", "asid:", control->asid); 3327 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3328 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3329 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3330 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3331 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3332 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3333 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3334 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3335 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3336 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3337 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3338 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3339 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3340 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3341 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3342 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3343 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3344 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3345 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3346 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3347 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3348 pr_err("VMCB State Save Area:\n"); 3349 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3350 "es:", 3351 save->es.selector, save->es.attrib, 3352 save->es.limit, save->es.base); 3353 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3354 "cs:", 3355 save->cs.selector, save->cs.attrib, 3356 save->cs.limit, save->cs.base); 3357 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3358 "ss:", 3359 save->ss.selector, save->ss.attrib, 3360 save->ss.limit, save->ss.base); 3361 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3362 "ds:", 3363 save->ds.selector, save->ds.attrib, 3364 save->ds.limit, save->ds.base); 3365 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3366 "fs:", 3367 save01->fs.selector, save01->fs.attrib, 3368 save01->fs.limit, save01->fs.base); 3369 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3370 "gs:", 3371 save01->gs.selector, save01->gs.attrib, 3372 save01->gs.limit, save01->gs.base); 3373 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3374 "gdtr:", 3375 save->gdtr.selector, save->gdtr.attrib, 3376 save->gdtr.limit, save->gdtr.base); 3377 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3378 "ldtr:", 3379 save01->ldtr.selector, save01->ldtr.attrib, 3380 save01->ldtr.limit, save01->ldtr.base); 3381 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3382 "idtr:", 3383 save->idtr.selector, save->idtr.attrib, 3384 save->idtr.limit, save->idtr.base); 3385 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3386 "tr:", 3387 save01->tr.selector, save01->tr.attrib, 3388 save01->tr.limit, save01->tr.base); 3389 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3390 save->vmpl, save->cpl, save->efer); 3391 pr_err("%-15s %016llx %-13s %016llx\n", 3392 "cr0:", save->cr0, "cr2:", save->cr2); 3393 pr_err("%-15s %016llx %-13s %016llx\n", 3394 "cr3:", save->cr3, "cr4:", save->cr4); 3395 pr_err("%-15s %016llx %-13s %016llx\n", 3396 "dr6:", save->dr6, "dr7:", save->dr7); 3397 pr_err("%-15s %016llx %-13s %016llx\n", 3398 "rip:", save->rip, "rflags:", save->rflags); 3399 pr_err("%-15s %016llx %-13s %016llx\n", 3400 "rsp:", save->rsp, "rax:", save->rax); 3401 pr_err("%-15s %016llx %-13s %016llx\n", 3402 "star:", save01->star, "lstar:", save01->lstar); 3403 pr_err("%-15s %016llx %-13s %016llx\n", 3404 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3405 pr_err("%-15s %016llx %-13s %016llx\n", 3406 "kernel_gs_base:", save01->kernel_gs_base, 3407 "sysenter_cs:", save01->sysenter_cs); 3408 pr_err("%-15s %016llx %-13s %016llx\n", 3409 "sysenter_esp:", save01->sysenter_esp, 3410 "sysenter_eip:", save01->sysenter_eip); 3411 pr_err("%-15s %016llx %-13s %016llx\n", 3412 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3413 pr_err("%-15s %016llx %-13s %016llx\n", 3414 "br_from:", save->br_from, "br_to:", save->br_to); 3415 pr_err("%-15s %016llx %-13s %016llx\n", 3416 "excp_from:", save->last_excp_from, 3417 "excp_to:", save->last_excp_to); 3418 } 3419 3420 static bool svm_check_exit_valid(u64 exit_code) 3421 { 3422 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3423 svm_exit_handlers[exit_code]); 3424 } 3425 3426 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3427 { 3428 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3429 dump_vmcb(vcpu); 3430 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3431 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3432 vcpu->run->internal.ndata = 2; 3433 vcpu->run->internal.data[0] = exit_code; 3434 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3435 return 0; 3436 } 3437 3438 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3439 { 3440 if (!svm_check_exit_valid(exit_code)) 3441 return svm_handle_invalid_exit(vcpu, exit_code); 3442 3443 #ifdef CONFIG_RETPOLINE 3444 if (exit_code == SVM_EXIT_MSR) 3445 return msr_interception(vcpu); 3446 else if (exit_code == SVM_EXIT_VINTR) 3447 return interrupt_window_interception(vcpu); 3448 else if (exit_code == SVM_EXIT_INTR) 3449 return intr_interception(vcpu); 3450 else if (exit_code == SVM_EXIT_HLT) 3451 return kvm_emulate_halt(vcpu); 3452 else if (exit_code == SVM_EXIT_NPF) 3453 return npf_interception(vcpu); 3454 #endif 3455 return svm_exit_handlers[exit_code](vcpu); 3456 } 3457 3458 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3459 u64 *info1, u64 *info2, 3460 u32 *intr_info, u32 *error_code) 3461 { 3462 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3463 3464 *reason = control->exit_code; 3465 *info1 = control->exit_info_1; 3466 *info2 = control->exit_info_2; 3467 *intr_info = control->exit_int_info; 3468 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3469 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3470 *error_code = control->exit_int_info_err; 3471 else 3472 *error_code = 0; 3473 } 3474 3475 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3476 { 3477 struct vcpu_svm *svm = to_svm(vcpu); 3478 struct kvm_run *kvm_run = vcpu->run; 3479 u32 exit_code = svm->vmcb->control.exit_code; 3480 3481 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3482 if (!sev_es_guest(vcpu->kvm)) { 3483 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3484 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3485 if (npt_enabled) 3486 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3487 } 3488 3489 if (is_guest_mode(vcpu)) { 3490 int vmexit; 3491 3492 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3493 3494 vmexit = nested_svm_exit_special(svm); 3495 3496 if (vmexit == NESTED_EXIT_CONTINUE) 3497 vmexit = nested_svm_exit_handled(svm); 3498 3499 if (vmexit == NESTED_EXIT_DONE) 3500 return 1; 3501 } 3502 3503 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3504 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3505 kvm_run->fail_entry.hardware_entry_failure_reason 3506 = svm->vmcb->control.exit_code; 3507 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3508 dump_vmcb(vcpu); 3509 return 0; 3510 } 3511 3512 if (exit_fastpath != EXIT_FASTPATH_NONE) 3513 return 1; 3514 3515 return svm_invoke_exit_handler(vcpu, exit_code); 3516 } 3517 3518 static void pre_svm_run(struct kvm_vcpu *vcpu) 3519 { 3520 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3521 struct vcpu_svm *svm = to_svm(vcpu); 3522 3523 /* 3524 * If the previous vmrun of the vmcb occurred on a different physical 3525 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3526 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3527 */ 3528 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3529 svm->current_vmcb->asid_generation = 0; 3530 vmcb_mark_all_dirty(svm->vmcb); 3531 svm->current_vmcb->cpu = vcpu->cpu; 3532 } 3533 3534 if (sev_guest(vcpu->kvm)) 3535 return pre_sev_run(svm, vcpu->cpu); 3536 3537 /* FIXME: handle wraparound of asid_generation */ 3538 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3539 new_asid(svm, sd); 3540 } 3541 3542 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3543 { 3544 struct vcpu_svm *svm = to_svm(vcpu); 3545 3546 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3547 3548 if (svm->nmi_l1_to_l2) 3549 return; 3550 3551 svm->nmi_masked = true; 3552 svm_set_iret_intercept(svm); 3553 ++vcpu->stat.nmi_injections; 3554 } 3555 3556 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3557 { 3558 struct vcpu_svm *svm = to_svm(vcpu); 3559 3560 if (!is_vnmi_enabled(svm)) 3561 return false; 3562 3563 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3564 } 3565 3566 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3567 { 3568 struct vcpu_svm *svm = to_svm(vcpu); 3569 3570 if (!is_vnmi_enabled(svm)) 3571 return false; 3572 3573 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3574 return false; 3575 3576 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3577 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3578 3579 /* 3580 * Because the pending NMI is serviced by hardware, KVM can't know when 3581 * the NMI is "injected", but for all intents and purposes, passing the 3582 * NMI off to hardware counts as injection. 3583 */ 3584 ++vcpu->stat.nmi_injections; 3585 3586 return true; 3587 } 3588 3589 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3590 { 3591 struct vcpu_svm *svm = to_svm(vcpu); 3592 u32 type; 3593 3594 if (vcpu->arch.interrupt.soft) { 3595 if (svm_update_soft_interrupt_rip(vcpu)) 3596 return; 3597 3598 type = SVM_EVTINJ_TYPE_SOFT; 3599 } else { 3600 type = SVM_EVTINJ_TYPE_INTR; 3601 } 3602 3603 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3604 vcpu->arch.interrupt.soft, reinjected); 3605 ++vcpu->stat.irq_injections; 3606 3607 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3608 SVM_EVTINJ_VALID | type; 3609 } 3610 3611 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3612 int trig_mode, int vector) 3613 { 3614 /* 3615 * apic->apicv_active must be read after vcpu->mode. 3616 * Pairs with smp_store_release in vcpu_enter_guest. 3617 */ 3618 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3619 3620 /* Note, this is called iff the local APIC is in-kernel. */ 3621 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3622 /* Process the interrupt via kvm_check_and_inject_events(). */ 3623 kvm_make_request(KVM_REQ_EVENT, vcpu); 3624 kvm_vcpu_kick(vcpu); 3625 return; 3626 } 3627 3628 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3629 if (in_guest_mode) { 3630 /* 3631 * Signal the doorbell to tell hardware to inject the IRQ. If 3632 * the vCPU exits the guest before the doorbell chimes, hardware 3633 * will automatically process AVIC interrupts at the next VMRUN. 3634 */ 3635 avic_ring_doorbell(vcpu); 3636 } else { 3637 /* 3638 * Wake the vCPU if it was blocking. KVM will then detect the 3639 * pending IRQ when checking if the vCPU has a wake event. 3640 */ 3641 kvm_vcpu_wake_up(vcpu); 3642 } 3643 } 3644 3645 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3646 int trig_mode, int vector) 3647 { 3648 kvm_lapic_set_irr(vector, apic); 3649 3650 /* 3651 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3652 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3653 * the read of guest_mode. This guarantees that either VMRUN will see 3654 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3655 * will signal the doorbell if the CPU has already entered the guest. 3656 */ 3657 smp_mb__after_atomic(); 3658 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3659 } 3660 3661 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3662 { 3663 struct vcpu_svm *svm = to_svm(vcpu); 3664 3665 /* 3666 * SEV-ES guests must always keep the CR intercepts cleared. CR 3667 * tracking is done using the CR write traps. 3668 */ 3669 if (sev_es_guest(vcpu->kvm)) 3670 return; 3671 3672 if (nested_svm_virtualize_tpr(vcpu)) 3673 return; 3674 3675 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3676 3677 if (irr == -1) 3678 return; 3679 3680 if (tpr >= irr) 3681 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3682 } 3683 3684 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3685 { 3686 struct vcpu_svm *svm = to_svm(vcpu); 3687 3688 if (is_vnmi_enabled(svm)) 3689 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3690 else 3691 return svm->nmi_masked; 3692 } 3693 3694 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3695 { 3696 struct vcpu_svm *svm = to_svm(vcpu); 3697 3698 if (is_vnmi_enabled(svm)) { 3699 if (masked) 3700 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3701 else 3702 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3703 3704 } else { 3705 svm->nmi_masked = masked; 3706 if (masked) 3707 svm_set_iret_intercept(svm); 3708 else 3709 svm_clr_iret_intercept(svm); 3710 } 3711 } 3712 3713 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3714 { 3715 struct vcpu_svm *svm = to_svm(vcpu); 3716 struct vmcb *vmcb = svm->vmcb; 3717 3718 if (!gif_set(svm)) 3719 return true; 3720 3721 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3722 return false; 3723 3724 if (svm_get_nmi_mask(vcpu)) 3725 return true; 3726 3727 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3728 } 3729 3730 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3731 { 3732 struct vcpu_svm *svm = to_svm(vcpu); 3733 if (svm->nested.nested_run_pending) 3734 return -EBUSY; 3735 3736 if (svm_nmi_blocked(vcpu)) 3737 return 0; 3738 3739 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3740 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3741 return -EBUSY; 3742 return 1; 3743 } 3744 3745 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3746 { 3747 struct vcpu_svm *svm = to_svm(vcpu); 3748 struct vmcb *vmcb = svm->vmcb; 3749 3750 if (!gif_set(svm)) 3751 return true; 3752 3753 if (is_guest_mode(vcpu)) { 3754 /* As long as interrupts are being delivered... */ 3755 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3756 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3757 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3758 return true; 3759 3760 /* ... vmexits aren't blocked by the interrupt shadow */ 3761 if (nested_exit_on_intr(svm)) 3762 return false; 3763 } else { 3764 if (!svm_get_if_flag(vcpu)) 3765 return true; 3766 } 3767 3768 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3769 } 3770 3771 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3772 { 3773 struct vcpu_svm *svm = to_svm(vcpu); 3774 3775 if (svm->nested.nested_run_pending) 3776 return -EBUSY; 3777 3778 if (svm_interrupt_blocked(vcpu)) 3779 return 0; 3780 3781 /* 3782 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3783 * e.g. if the IRQ arrived asynchronously after checking nested events. 3784 */ 3785 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3786 return -EBUSY; 3787 3788 return 1; 3789 } 3790 3791 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3792 { 3793 struct vcpu_svm *svm = to_svm(vcpu); 3794 3795 /* 3796 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3797 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3798 * get that intercept, this function will be called again though and 3799 * we'll get the vintr intercept. However, if the vGIF feature is 3800 * enabled, the STGI interception will not occur. Enable the irq 3801 * window under the assumption that the hardware will set the GIF. 3802 */ 3803 if (vgif || gif_set(svm)) { 3804 /* 3805 * IRQ window is not needed when AVIC is enabled, 3806 * unless we have pending ExtINT since it cannot be injected 3807 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3808 * and fallback to injecting IRQ via V_IRQ. 3809 * 3810 * If running nested, AVIC is already locally inhibited 3811 * on this vCPU, therefore there is no need to request 3812 * the VM wide AVIC inhibition. 3813 */ 3814 if (!is_guest_mode(vcpu)) 3815 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3816 3817 svm_set_vintr(svm); 3818 } 3819 } 3820 3821 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3822 { 3823 struct vcpu_svm *svm = to_svm(vcpu); 3824 3825 /* 3826 * KVM should never request an NMI window when vNMI is enabled, as KVM 3827 * allows at most one to-be-injected NMI and one pending NMI, i.e. if 3828 * two NMIs arrive simultaneously, KVM will inject one and set 3829 * V_NMI_PENDING for the other. WARN, but continue with the standard 3830 * single-step approach to try and salvage the pending NMI. 3831 */ 3832 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3833 3834 if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion) 3835 return; /* IRET will cause a vm exit */ 3836 3837 /* 3838 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3839 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3840 * KVM can't intercept and single-step IRET to detect when NMIs are 3841 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3842 * 3843 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3844 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3845 * supported NAEs in the GHCB protocol. 3846 */ 3847 if (sev_es_guest(vcpu->kvm)) 3848 return; 3849 3850 if (!gif_set(svm)) { 3851 if (vgif) 3852 svm_set_intercept(svm, INTERCEPT_STGI); 3853 return; /* STGI will cause a vm exit */ 3854 } 3855 3856 /* 3857 * Something prevents NMI from been injected. Single step over possible 3858 * problem (IRET or exception injection or interrupt shadow) 3859 */ 3860 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3861 svm->nmi_singlestep = true; 3862 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3863 } 3864 3865 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3866 { 3867 struct vcpu_svm *svm = to_svm(vcpu); 3868 3869 /* 3870 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3871 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3872 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3873 */ 3874 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3875 3876 /* 3877 * Flush only the current ASID even if the TLB flush was invoked via 3878 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3879 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3880 * unconditionally does a TLB flush on both nested VM-Enter and nested 3881 * VM-Exit (via kvm_mmu_reset_context()). 3882 */ 3883 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3884 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3885 else 3886 svm->current_vmcb->asid_generation--; 3887 } 3888 3889 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3890 { 3891 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3892 3893 /* 3894 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3895 * flush the NPT mappings via hypercall as flushing the ASID only 3896 * affects virtual to physical mappings, it does not invalidate guest 3897 * physical to host physical mappings. 3898 */ 3899 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3900 hyperv_flush_guest_mapping(root_tdp); 3901 3902 svm_flush_tlb_asid(vcpu); 3903 } 3904 3905 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3906 { 3907 /* 3908 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3909 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3910 * a "regular" remote flush. Reaching this point means either there's 3911 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3912 * which might be fatal to the guest. Yell, but try to recover. 3913 */ 3914 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3915 hv_flush_remote_tlbs(vcpu->kvm); 3916 3917 svm_flush_tlb_asid(vcpu); 3918 } 3919 3920 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3921 { 3922 struct vcpu_svm *svm = to_svm(vcpu); 3923 3924 invlpga(gva, svm->vmcb->control.asid); 3925 } 3926 3927 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3928 { 3929 struct vcpu_svm *svm = to_svm(vcpu); 3930 3931 if (nested_svm_virtualize_tpr(vcpu)) 3932 return; 3933 3934 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3935 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3936 kvm_set_cr8(vcpu, cr8); 3937 } 3938 } 3939 3940 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3941 { 3942 struct vcpu_svm *svm = to_svm(vcpu); 3943 u64 cr8; 3944 3945 if (nested_svm_virtualize_tpr(vcpu) || 3946 kvm_vcpu_apicv_active(vcpu)) 3947 return; 3948 3949 cr8 = kvm_get_cr8(vcpu); 3950 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3951 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3952 } 3953 3954 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 3955 int type) 3956 { 3957 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 3958 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 3959 struct vcpu_svm *svm = to_svm(vcpu); 3960 3961 /* 3962 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 3963 * associated with the original soft exception/interrupt. next_rip is 3964 * cleared on all exits that can occur while vectoring an event, so KVM 3965 * needs to manually set next_rip for re-injection. Unlike the !nrips 3966 * case below, this needs to be done if and only if KVM is re-injecting 3967 * the same event, i.e. if the event is a soft exception/interrupt, 3968 * otherwise next_rip is unused on VMRUN. 3969 */ 3970 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 3971 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 3972 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 3973 /* 3974 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 3975 * injecting the soft exception/interrupt. That advancement needs to 3976 * be unwound if vectoring didn't complete. Note, the new event may 3977 * not be the injected event, e.g. if KVM injected an INTn, the INTn 3978 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 3979 * be the reported vectored event, but RIP still needs to be unwound. 3980 */ 3981 else if (!nrips && (is_soft || is_exception) && 3982 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 3983 kvm_rip_write(vcpu, svm->soft_int_old_rip); 3984 } 3985 3986 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3987 { 3988 struct vcpu_svm *svm = to_svm(vcpu); 3989 u8 vector; 3990 int type; 3991 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3992 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 3993 bool soft_int_injected = svm->soft_int_injected; 3994 3995 svm->nmi_l1_to_l2 = false; 3996 svm->soft_int_injected = false; 3997 3998 /* 3999 * If we've made progress since setting awaiting_iret_completion, we've 4000 * executed an IRET and can allow NMI injection. 4001 */ 4002 if (svm->awaiting_iret_completion && 4003 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4004 svm->awaiting_iret_completion = false; 4005 svm->nmi_masked = false; 4006 kvm_make_request(KVM_REQ_EVENT, vcpu); 4007 } 4008 4009 vcpu->arch.nmi_injected = false; 4010 kvm_clear_exception_queue(vcpu); 4011 kvm_clear_interrupt_queue(vcpu); 4012 4013 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4014 return; 4015 4016 kvm_make_request(KVM_REQ_EVENT, vcpu); 4017 4018 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4019 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4020 4021 if (soft_int_injected) 4022 svm_complete_soft_interrupt(vcpu, vector, type); 4023 4024 switch (type) { 4025 case SVM_EXITINTINFO_TYPE_NMI: 4026 vcpu->arch.nmi_injected = true; 4027 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4028 break; 4029 case SVM_EXITINTINFO_TYPE_EXEPT: 4030 /* 4031 * Never re-inject a #VC exception. 4032 */ 4033 if (vector == X86_TRAP_VC) 4034 break; 4035 4036 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4037 u32 err = svm->vmcb->control.exit_int_info_err; 4038 kvm_requeue_exception_e(vcpu, vector, err); 4039 4040 } else 4041 kvm_requeue_exception(vcpu, vector); 4042 break; 4043 case SVM_EXITINTINFO_TYPE_INTR: 4044 kvm_queue_interrupt(vcpu, vector, false); 4045 break; 4046 case SVM_EXITINTINFO_TYPE_SOFT: 4047 kvm_queue_interrupt(vcpu, vector, true); 4048 break; 4049 default: 4050 break; 4051 } 4052 4053 } 4054 4055 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4056 { 4057 struct vcpu_svm *svm = to_svm(vcpu); 4058 struct vmcb_control_area *control = &svm->vmcb->control; 4059 4060 control->exit_int_info = control->event_inj; 4061 control->exit_int_info_err = control->event_inj_err; 4062 control->event_inj = 0; 4063 svm_complete_interrupts(vcpu); 4064 } 4065 4066 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4067 { 4068 return 1; 4069 } 4070 4071 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4072 { 4073 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 4074 to_svm(vcpu)->vmcb->control.exit_info_1) 4075 return handle_fastpath_set_msr_irqoff(vcpu); 4076 4077 return EXIT_FASTPATH_NONE; 4078 } 4079 4080 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4081 { 4082 struct vcpu_svm *svm = to_svm(vcpu); 4083 4084 guest_state_enter_irqoff(); 4085 4086 amd_clear_divider(); 4087 4088 if (sev_es_guest(vcpu->kvm)) 4089 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted); 4090 else 4091 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4092 4093 guest_state_exit_irqoff(); 4094 } 4095 4096 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 4097 { 4098 struct vcpu_svm *svm = to_svm(vcpu); 4099 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4100 4101 trace_kvm_entry(vcpu); 4102 4103 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4104 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4105 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4106 4107 /* 4108 * Disable singlestep if we're injecting an interrupt/exception. 4109 * We don't want our modified rflags to be pushed on the stack where 4110 * we might not be able to easily reset them if we disabled NMI 4111 * singlestep later. 4112 */ 4113 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4114 /* 4115 * Event injection happens before external interrupts cause a 4116 * vmexit and interrupts are disabled here, so smp_send_reschedule 4117 * is enough to force an immediate vmexit. 4118 */ 4119 disable_nmi_singlestep(svm); 4120 smp_send_reschedule(vcpu->cpu); 4121 } 4122 4123 pre_svm_run(vcpu); 4124 4125 sync_lapic_to_cr8(vcpu); 4126 4127 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4128 svm->vmcb->control.asid = svm->asid; 4129 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4130 } 4131 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4132 4133 svm_hv_update_vp_id(svm->vmcb, vcpu); 4134 4135 /* 4136 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4137 * of a #DB. 4138 */ 4139 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 4140 svm_set_dr6(svm, vcpu->arch.dr6); 4141 else 4142 svm_set_dr6(svm, DR6_ACTIVE_LOW); 4143 4144 clgi(); 4145 kvm_load_guest_xsave_state(vcpu); 4146 4147 kvm_wait_lapic_expire(vcpu); 4148 4149 /* 4150 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4151 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4152 * is no need to worry about the conditional branch over the wrmsr 4153 * being speculatively taken. 4154 */ 4155 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4156 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4157 4158 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4159 4160 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4161 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4162 4163 if (!sev_es_guest(vcpu->kvm)) { 4164 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4165 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4166 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4167 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4168 } 4169 vcpu->arch.regs_dirty = 0; 4170 4171 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4172 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4173 4174 kvm_load_host_xsave_state(vcpu); 4175 stgi(); 4176 4177 /* Any pending NMI will happen here */ 4178 4179 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4180 kvm_after_interrupt(vcpu); 4181 4182 sync_cr8_to_lapic(vcpu); 4183 4184 svm->next_rip = 0; 4185 if (is_guest_mode(vcpu)) { 4186 nested_sync_control_from_vmcb02(svm); 4187 4188 /* Track VMRUNs that have made past consistency checking */ 4189 if (svm->nested.nested_run_pending && 4190 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4191 ++vcpu->stat.nested_run; 4192 4193 svm->nested.nested_run_pending = 0; 4194 } 4195 4196 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4197 vmcb_mark_all_clean(svm->vmcb); 4198 4199 /* if exit due to PF check for async PF */ 4200 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4201 vcpu->arch.apf.host_apf_flags = 4202 kvm_read_and_reset_apf_flags(); 4203 4204 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4205 4206 /* 4207 * We need to handle MC intercepts here before the vcpu has a chance to 4208 * change the physical cpu 4209 */ 4210 if (unlikely(svm->vmcb->control.exit_code == 4211 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4212 svm_handle_mce(vcpu); 4213 4214 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4215 4216 svm_complete_interrupts(vcpu); 4217 4218 if (is_guest_mode(vcpu)) 4219 return EXIT_FASTPATH_NONE; 4220 4221 return svm_exit_handlers_fastpath(vcpu); 4222 } 4223 4224 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4225 int root_level) 4226 { 4227 struct vcpu_svm *svm = to_svm(vcpu); 4228 unsigned long cr3; 4229 4230 if (npt_enabled) { 4231 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4232 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4233 4234 hv_track_root_tdp(vcpu, root_hpa); 4235 4236 cr3 = vcpu->arch.cr3; 4237 } else if (root_level >= PT64_ROOT_4LEVEL) { 4238 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4239 } else { 4240 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4241 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4242 cr3 = root_hpa; 4243 } 4244 4245 svm->vmcb->save.cr3 = cr3; 4246 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4247 } 4248 4249 static void 4250 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4251 { 4252 /* 4253 * Patch in the VMMCALL instruction: 4254 */ 4255 hypercall[0] = 0x0f; 4256 hypercall[1] = 0x01; 4257 hypercall[2] = 0xd9; 4258 } 4259 4260 /* 4261 * The kvm parameter can be NULL (module initialization, or invocation before 4262 * VM creation). Be sure to check the kvm parameter before using it. 4263 */ 4264 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4265 { 4266 switch (index) { 4267 case MSR_IA32_MCG_EXT_CTL: 4268 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4269 return false; 4270 case MSR_IA32_SMBASE: 4271 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4272 return false; 4273 /* SEV-ES guests do not support SMM, so report false */ 4274 if (kvm && sev_es_guest(kvm)) 4275 return false; 4276 break; 4277 default: 4278 break; 4279 } 4280 4281 return true; 4282 } 4283 4284 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4285 { 4286 struct vcpu_svm *svm = to_svm(vcpu); 4287 struct kvm_cpuid_entry2 *best; 4288 4289 /* 4290 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4291 * can only disable all variants of by disallowing CR4.OSXSAVE from 4292 * being set. As a result, if the host has XSAVE and XSAVES, and the 4293 * guest has XSAVE enabled, the guest can execute XSAVES without 4294 * faulting. Treat XSAVES as enabled in this case regardless of 4295 * whether it's advertised to the guest so that KVM context switches 4296 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4297 * the guest read/write access to the host's XSS. 4298 */ 4299 if (boot_cpu_has(X86_FEATURE_XSAVE) && 4300 boot_cpu_has(X86_FEATURE_XSAVES) && 4301 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 4302 kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES); 4303 4304 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS); 4305 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR); 4306 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV); 4307 4308 /* 4309 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that 4310 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4311 * SVM on Intel is bonkers and extremely unlikely to work). 4312 */ 4313 if (!guest_cpuid_is_intel(vcpu)) 4314 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4315 4316 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER); 4317 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD); 4318 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF); 4319 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI); 4320 4321 svm_recalc_instruction_intercepts(vcpu, svm); 4322 4323 if (boot_cpu_has(X86_FEATURE_IBPB)) 4324 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4325 !!guest_has_pred_cmd_msr(vcpu)); 4326 4327 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4328 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4329 !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4330 4331 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4332 if (sev_guest(vcpu->kvm)) { 4333 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4334 if (best) 4335 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4336 } 4337 4338 init_vmcb_after_set_cpuid(vcpu); 4339 } 4340 4341 static bool svm_has_wbinvd_exit(void) 4342 { 4343 return true; 4344 } 4345 4346 #define PRE_EX(exit) { .exit_code = (exit), \ 4347 .stage = X86_ICPT_PRE_EXCEPT, } 4348 #define POST_EX(exit) { .exit_code = (exit), \ 4349 .stage = X86_ICPT_POST_EXCEPT, } 4350 #define POST_MEM(exit) { .exit_code = (exit), \ 4351 .stage = X86_ICPT_POST_MEMACCESS, } 4352 4353 static const struct __x86_intercept { 4354 u32 exit_code; 4355 enum x86_intercept_stage stage; 4356 } x86_intercept_map[] = { 4357 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4358 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4359 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4360 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4361 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4362 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4363 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4364 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4365 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4366 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4367 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4368 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4369 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4370 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4371 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4372 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4373 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4374 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4375 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4376 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4377 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4378 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4379 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4380 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4381 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4382 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4383 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4384 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4385 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4386 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4387 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4388 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4389 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4390 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4391 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4392 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4393 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4394 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4395 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4396 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4397 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4398 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4399 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4400 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4401 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4402 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4403 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4404 }; 4405 4406 #undef PRE_EX 4407 #undef POST_EX 4408 #undef POST_MEM 4409 4410 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4411 struct x86_instruction_info *info, 4412 enum x86_intercept_stage stage, 4413 struct x86_exception *exception) 4414 { 4415 struct vcpu_svm *svm = to_svm(vcpu); 4416 int vmexit, ret = X86EMUL_CONTINUE; 4417 struct __x86_intercept icpt_info; 4418 struct vmcb *vmcb = svm->vmcb; 4419 4420 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4421 goto out; 4422 4423 icpt_info = x86_intercept_map[info->intercept]; 4424 4425 if (stage != icpt_info.stage) 4426 goto out; 4427 4428 switch (icpt_info.exit_code) { 4429 case SVM_EXIT_READ_CR0: 4430 if (info->intercept == x86_intercept_cr_read) 4431 icpt_info.exit_code += info->modrm_reg; 4432 break; 4433 case SVM_EXIT_WRITE_CR0: { 4434 unsigned long cr0, val; 4435 4436 if (info->intercept == x86_intercept_cr_write) 4437 icpt_info.exit_code += info->modrm_reg; 4438 4439 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4440 info->intercept == x86_intercept_clts) 4441 break; 4442 4443 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4444 INTERCEPT_SELECTIVE_CR0))) 4445 break; 4446 4447 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4448 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4449 4450 if (info->intercept == x86_intercept_lmsw) { 4451 cr0 &= 0xfUL; 4452 val &= 0xfUL; 4453 /* lmsw can't clear PE - catch this here */ 4454 if (cr0 & X86_CR0_PE) 4455 val |= X86_CR0_PE; 4456 } 4457 4458 if (cr0 ^ val) 4459 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4460 4461 break; 4462 } 4463 case SVM_EXIT_READ_DR0: 4464 case SVM_EXIT_WRITE_DR0: 4465 icpt_info.exit_code += info->modrm_reg; 4466 break; 4467 case SVM_EXIT_MSR: 4468 if (info->intercept == x86_intercept_wrmsr) 4469 vmcb->control.exit_info_1 = 1; 4470 else 4471 vmcb->control.exit_info_1 = 0; 4472 break; 4473 case SVM_EXIT_PAUSE: 4474 /* 4475 * We get this for NOP only, but pause 4476 * is rep not, check this here 4477 */ 4478 if (info->rep_prefix != REPE_PREFIX) 4479 goto out; 4480 break; 4481 case SVM_EXIT_IOIO: { 4482 u64 exit_info; 4483 u32 bytes; 4484 4485 if (info->intercept == x86_intercept_in || 4486 info->intercept == x86_intercept_ins) { 4487 exit_info = ((info->src_val & 0xffff) << 16) | 4488 SVM_IOIO_TYPE_MASK; 4489 bytes = info->dst_bytes; 4490 } else { 4491 exit_info = (info->dst_val & 0xffff) << 16; 4492 bytes = info->src_bytes; 4493 } 4494 4495 if (info->intercept == x86_intercept_outs || 4496 info->intercept == x86_intercept_ins) 4497 exit_info |= SVM_IOIO_STR_MASK; 4498 4499 if (info->rep_prefix) 4500 exit_info |= SVM_IOIO_REP_MASK; 4501 4502 bytes = min(bytes, 4u); 4503 4504 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4505 4506 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4507 4508 vmcb->control.exit_info_1 = exit_info; 4509 vmcb->control.exit_info_2 = info->next_rip; 4510 4511 break; 4512 } 4513 default: 4514 break; 4515 } 4516 4517 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4518 if (static_cpu_has(X86_FEATURE_NRIPS)) 4519 vmcb->control.next_rip = info->next_rip; 4520 vmcb->control.exit_code = icpt_info.exit_code; 4521 vmexit = nested_svm_exit_handled(svm); 4522 4523 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4524 : X86EMUL_CONTINUE; 4525 4526 out: 4527 return ret; 4528 } 4529 4530 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4531 { 4532 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4533 vcpu->arch.at_instruction_boundary = true; 4534 } 4535 4536 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4537 { 4538 if (!kvm_pause_in_guest(vcpu->kvm)) 4539 shrink_ple_window(vcpu); 4540 } 4541 4542 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4543 { 4544 /* [63:9] are reserved. */ 4545 vcpu->arch.mcg_cap &= 0x1ff; 4546 } 4547 4548 #ifdef CONFIG_KVM_SMM 4549 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4550 { 4551 struct vcpu_svm *svm = to_svm(vcpu); 4552 4553 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4554 if (!gif_set(svm)) 4555 return true; 4556 4557 return is_smm(vcpu); 4558 } 4559 4560 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4561 { 4562 struct vcpu_svm *svm = to_svm(vcpu); 4563 if (svm->nested.nested_run_pending) 4564 return -EBUSY; 4565 4566 if (svm_smi_blocked(vcpu)) 4567 return 0; 4568 4569 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4570 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4571 return -EBUSY; 4572 4573 return 1; 4574 } 4575 4576 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4577 { 4578 struct vcpu_svm *svm = to_svm(vcpu); 4579 struct kvm_host_map map_save; 4580 int ret; 4581 4582 if (!is_guest_mode(vcpu)) 4583 return 0; 4584 4585 /* 4586 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4587 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4588 */ 4589 4590 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4591 return 1; 4592 4593 smram->smram64.svm_guest_flag = 1; 4594 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4595 4596 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4597 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4598 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4599 4600 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4601 if (ret) 4602 return ret; 4603 4604 /* 4605 * KVM uses VMCB01 to store L1 host state while L2 runs but 4606 * VMCB01 is going to be used during SMM and thus the state will 4607 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4608 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4609 * format of the area is identical to guest save area offsetted 4610 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4611 * within 'struct vmcb'). Note: HSAVE area may also be used by 4612 * L1 hypervisor to save additional host context (e.g. KVM does 4613 * that, see svm_prepare_switch_to_guest()) which must be 4614 * preserved. 4615 */ 4616 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4617 return 1; 4618 4619 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4620 4621 svm_copy_vmrun_state(map_save.hva + 0x400, 4622 &svm->vmcb01.ptr->save); 4623 4624 kvm_vcpu_unmap(vcpu, &map_save, true); 4625 return 0; 4626 } 4627 4628 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4629 { 4630 struct vcpu_svm *svm = to_svm(vcpu); 4631 struct kvm_host_map map, map_save; 4632 struct vmcb *vmcb12; 4633 int ret; 4634 4635 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4636 4637 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 4638 return 0; 4639 4640 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4641 if (!smram64->svm_guest_flag) 4642 return 0; 4643 4644 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4645 return 1; 4646 4647 if (!(smram64->efer & EFER_SVME)) 4648 return 1; 4649 4650 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4651 return 1; 4652 4653 ret = 1; 4654 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4655 goto unmap_map; 4656 4657 if (svm_allocate_nested(svm)) 4658 goto unmap_save; 4659 4660 /* 4661 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4662 * used during SMM (see svm_enter_smm()) 4663 */ 4664 4665 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4666 4667 /* 4668 * Enter the nested guest now 4669 */ 4670 4671 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4672 4673 vmcb12 = map.hva; 4674 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4675 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4676 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4677 4678 if (ret) 4679 goto unmap_save; 4680 4681 svm->nested.nested_run_pending = 1; 4682 4683 unmap_save: 4684 kvm_vcpu_unmap(vcpu, &map_save, true); 4685 unmap_map: 4686 kvm_vcpu_unmap(vcpu, &map, true); 4687 return ret; 4688 } 4689 4690 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4691 { 4692 struct vcpu_svm *svm = to_svm(vcpu); 4693 4694 if (!gif_set(svm)) { 4695 if (vgif) 4696 svm_set_intercept(svm, INTERCEPT_STGI); 4697 /* STGI will cause a vm exit */ 4698 } else { 4699 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4700 } 4701 } 4702 #endif 4703 4704 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4705 void *insn, int insn_len) 4706 { 4707 bool smep, smap, is_user; 4708 u64 error_code; 4709 4710 /* Emulation is always possible when KVM has access to all guest state. */ 4711 if (!sev_guest(vcpu->kvm)) 4712 return true; 4713 4714 /* #UD and #GP should never be intercepted for SEV guests. */ 4715 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4716 EMULTYPE_TRAP_UD_FORCED | 4717 EMULTYPE_VMWARE_GP)); 4718 4719 /* 4720 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4721 * to guest register state. 4722 */ 4723 if (sev_es_guest(vcpu->kvm)) 4724 return false; 4725 4726 /* 4727 * Emulation is possible if the instruction is already decoded, e.g. 4728 * when completing I/O after returning from userspace. 4729 */ 4730 if (emul_type & EMULTYPE_NO_DECODE) 4731 return true; 4732 4733 /* 4734 * Emulation is possible for SEV guests if and only if a prefilled 4735 * buffer containing the bytes of the intercepted instruction is 4736 * available. SEV guest memory is encrypted with a guest specific key 4737 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and 4738 * decode garbage. 4739 * 4740 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4741 * KVM reached this point without an instruction buffer. In practice, 4742 * this path should never be hit by a well-behaved guest, e.g. KVM 4743 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4744 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4745 * access, and needs to be handled by KVM to avoid putting the guest 4746 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4747 * its the least awful option given lack of insight into the guest. 4748 * 4749 * If KVM is trying to skip an instruction, simply resume the guest. 4750 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4751 * will attempt to re-inject the INT3/INTO and skip the instruction. 4752 * In that scenario, retrying the INT3/INTO and hoping the guest will 4753 * make forward progress is the only option that has a chance of 4754 * success (and in practice it will work the vast majority of the time). 4755 */ 4756 if (unlikely(!insn)) { 4757 if (!(emul_type & EMULTYPE_SKIP)) 4758 kvm_queue_exception(vcpu, UD_VECTOR); 4759 return false; 4760 } 4761 4762 /* 4763 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4764 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4765 * the faulting instruction because the code fetch itself faulted, e.g. 4766 * the guest attempted to fetch from emulated MMIO or a guest page 4767 * table used to translate CS:RIP resides in emulated MMIO. 4768 */ 4769 if (likely(insn_len)) 4770 return true; 4771 4772 /* 4773 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4774 * 4775 * Errata: 4776 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4777 * possible that CPU microcode implementing DecodeAssist will fail to 4778 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4779 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4780 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4781 * gives up and does not fill the instruction bytes buffer. 4782 * 4783 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4784 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4785 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4786 * GuestIntrBytes field of the VMCB. 4787 * 4788 * This does _not_ mean that the erratum has been encountered, as the 4789 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4790 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4791 * encountered a reserved/not-present #PF. 4792 * 4793 * To hit the erratum, the following conditions must be true: 4794 * 1. CR4.SMAP=1 (obviously). 4795 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4796 * have been hit as the guest would have encountered a SMEP 4797 * violation #PF, not a #NPF. 4798 * 3. The #NPF is not due to a code fetch, in which case failure to 4799 * retrieve the instruction bytes is legitimate (see abvoe). 4800 * 4801 * In addition, don't apply the erratum workaround if the #NPF occurred 4802 * while translating guest page tables (see below). 4803 */ 4804 error_code = to_svm(vcpu)->vmcb->control.exit_info_1; 4805 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4806 goto resume_guest; 4807 4808 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4809 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4810 is_user = svm_get_cpl(vcpu) == 3; 4811 if (smap && (!smep || is_user)) { 4812 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4813 4814 /* 4815 * If the fault occurred in userspace, arbitrarily inject #GP 4816 * to avoid killing the guest and to hopefully avoid confusing 4817 * the guest kernel too much, e.g. injecting #PF would not be 4818 * coherent with respect to the guest's page tables. Request 4819 * triple fault if the fault occurred in the kernel as there's 4820 * no fault that KVM can inject without confusing the guest. 4821 * In practice, the triple fault is moot as no sane SEV kernel 4822 * will execute from user memory while also running with SMAP=1. 4823 */ 4824 if (is_user) 4825 kvm_inject_gp(vcpu, 0); 4826 else 4827 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4828 } 4829 4830 resume_guest: 4831 /* 4832 * If the erratum was not hit, simply resume the guest and let it fault 4833 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4834 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4835 * userspace will kill the guest, and letting the emulator read garbage 4836 * will yield random behavior and potentially corrupt the guest. 4837 * 4838 * Simply resuming the guest is technically not a violation of the SEV 4839 * architecture. AMD's APM states that all code fetches and page table 4840 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4841 * APM also states that encrypted accesses to MMIO are "ignored", but 4842 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4843 * the guest spin is technically "ignoring" the access. 4844 */ 4845 return false; 4846 } 4847 4848 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4849 { 4850 struct vcpu_svm *svm = to_svm(vcpu); 4851 4852 return !gif_set(svm); 4853 } 4854 4855 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4856 { 4857 if (!sev_es_guest(vcpu->kvm)) 4858 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4859 4860 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4861 } 4862 4863 static void svm_vm_destroy(struct kvm *kvm) 4864 { 4865 avic_vm_destroy(kvm); 4866 sev_vm_destroy(kvm); 4867 } 4868 4869 static int svm_vm_init(struct kvm *kvm) 4870 { 4871 if (!pause_filter_count || !pause_filter_thresh) 4872 kvm->arch.pause_in_guest = true; 4873 4874 if (enable_apicv) { 4875 int ret = avic_vm_init(kvm); 4876 if (ret) 4877 return ret; 4878 } 4879 4880 return 0; 4881 } 4882 4883 static struct kvm_x86_ops svm_x86_ops __initdata = { 4884 .name = KBUILD_MODNAME, 4885 4886 .check_processor_compatibility = svm_check_processor_compat, 4887 4888 .hardware_unsetup = svm_hardware_unsetup, 4889 .hardware_enable = svm_hardware_enable, 4890 .hardware_disable = svm_hardware_disable, 4891 .has_emulated_msr = svm_has_emulated_msr, 4892 4893 .vcpu_create = svm_vcpu_create, 4894 .vcpu_free = svm_vcpu_free, 4895 .vcpu_reset = svm_vcpu_reset, 4896 4897 .vm_size = sizeof(struct kvm_svm), 4898 .vm_init = svm_vm_init, 4899 .vm_destroy = svm_vm_destroy, 4900 4901 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 4902 .vcpu_load = svm_vcpu_load, 4903 .vcpu_put = svm_vcpu_put, 4904 .vcpu_blocking = avic_vcpu_blocking, 4905 .vcpu_unblocking = avic_vcpu_unblocking, 4906 4907 .update_exception_bitmap = svm_update_exception_bitmap, 4908 .get_msr_feature = svm_get_msr_feature, 4909 .get_msr = svm_get_msr, 4910 .set_msr = svm_set_msr, 4911 .get_segment_base = svm_get_segment_base, 4912 .get_segment = svm_get_segment, 4913 .set_segment = svm_set_segment, 4914 .get_cpl = svm_get_cpl, 4915 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 4916 .is_valid_cr0 = svm_is_valid_cr0, 4917 .set_cr0 = svm_set_cr0, 4918 .post_set_cr3 = sev_post_set_cr3, 4919 .is_valid_cr4 = svm_is_valid_cr4, 4920 .set_cr4 = svm_set_cr4, 4921 .set_efer = svm_set_efer, 4922 .get_idt = svm_get_idt, 4923 .set_idt = svm_set_idt, 4924 .get_gdt = svm_get_gdt, 4925 .set_gdt = svm_set_gdt, 4926 .set_dr7 = svm_set_dr7, 4927 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4928 .cache_reg = svm_cache_reg, 4929 .get_rflags = svm_get_rflags, 4930 .set_rflags = svm_set_rflags, 4931 .get_if_flag = svm_get_if_flag, 4932 4933 .flush_tlb_all = svm_flush_tlb_all, 4934 .flush_tlb_current = svm_flush_tlb_current, 4935 .flush_tlb_gva = svm_flush_tlb_gva, 4936 .flush_tlb_guest = svm_flush_tlb_asid, 4937 4938 .vcpu_pre_run = svm_vcpu_pre_run, 4939 .vcpu_run = svm_vcpu_run, 4940 .handle_exit = svm_handle_exit, 4941 .skip_emulated_instruction = svm_skip_emulated_instruction, 4942 .update_emulated_instruction = NULL, 4943 .set_interrupt_shadow = svm_set_interrupt_shadow, 4944 .get_interrupt_shadow = svm_get_interrupt_shadow, 4945 .patch_hypercall = svm_patch_hypercall, 4946 .inject_irq = svm_inject_irq, 4947 .inject_nmi = svm_inject_nmi, 4948 .is_vnmi_pending = svm_is_vnmi_pending, 4949 .set_vnmi_pending = svm_set_vnmi_pending, 4950 .inject_exception = svm_inject_exception, 4951 .cancel_injection = svm_cancel_injection, 4952 .interrupt_allowed = svm_interrupt_allowed, 4953 .nmi_allowed = svm_nmi_allowed, 4954 .get_nmi_mask = svm_get_nmi_mask, 4955 .set_nmi_mask = svm_set_nmi_mask, 4956 .enable_nmi_window = svm_enable_nmi_window, 4957 .enable_irq_window = svm_enable_irq_window, 4958 .update_cr8_intercept = svm_update_cr8_intercept, 4959 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 4960 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 4961 .apicv_post_state_restore = avic_apicv_post_state_restore, 4962 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 4963 4964 .get_exit_info = svm_get_exit_info, 4965 4966 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4967 4968 .has_wbinvd_exit = svm_has_wbinvd_exit, 4969 4970 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4971 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4972 .write_tsc_offset = svm_write_tsc_offset, 4973 .write_tsc_multiplier = svm_write_tsc_multiplier, 4974 4975 .load_mmu_pgd = svm_load_mmu_pgd, 4976 4977 .check_intercept = svm_check_intercept, 4978 .handle_exit_irqoff = svm_handle_exit_irqoff, 4979 4980 .request_immediate_exit = __kvm_request_immediate_exit, 4981 4982 .sched_in = svm_sched_in, 4983 4984 .nested_ops = &svm_nested_ops, 4985 4986 .deliver_interrupt = svm_deliver_interrupt, 4987 .pi_update_irte = avic_pi_update_irte, 4988 .setup_mce = svm_setup_mce, 4989 4990 #ifdef CONFIG_KVM_SMM 4991 .smi_allowed = svm_smi_allowed, 4992 .enter_smm = svm_enter_smm, 4993 .leave_smm = svm_leave_smm, 4994 .enable_smi_window = svm_enable_smi_window, 4995 #endif 4996 4997 .mem_enc_ioctl = sev_mem_enc_ioctl, 4998 .mem_enc_register_region = sev_mem_enc_register_region, 4999 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5000 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5001 5002 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5003 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5004 5005 .can_emulate_instruction = svm_can_emulate_instruction, 5006 5007 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5008 5009 .msr_filter_changed = svm_msr_filter_changed, 5010 .complete_emulated_msr = svm_complete_emulated_msr, 5011 5012 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5013 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5014 }; 5015 5016 /* 5017 * The default MMIO mask is a single bit (excluding the present bit), 5018 * which could conflict with the memory encryption bit. Check for 5019 * memory encryption support and override the default MMIO mask if 5020 * memory encryption is enabled. 5021 */ 5022 static __init void svm_adjust_mmio_mask(void) 5023 { 5024 unsigned int enc_bit, mask_bit; 5025 u64 msr, mask; 5026 5027 /* If there is no memory encryption support, use existing mask */ 5028 if (cpuid_eax(0x80000000) < 0x8000001f) 5029 return; 5030 5031 /* If memory encryption is not enabled, use existing mask */ 5032 rdmsrl(MSR_AMD64_SYSCFG, msr); 5033 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5034 return; 5035 5036 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5037 mask_bit = boot_cpu_data.x86_phys_bits; 5038 5039 /* Increment the mask bit if it is the same as the encryption bit */ 5040 if (enc_bit == mask_bit) 5041 mask_bit++; 5042 5043 /* 5044 * If the mask bit location is below 52, then some bits above the 5045 * physical addressing limit will always be reserved, so use the 5046 * rsvd_bits() function to generate the mask. This mask, along with 5047 * the present bit, will be used to generate a page fault with 5048 * PFER.RSV = 1. 5049 * 5050 * If the mask bit location is 52 (or above), then clear the mask. 5051 */ 5052 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5053 5054 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5055 } 5056 5057 static __init void svm_set_cpu_caps(void) 5058 { 5059 kvm_set_cpu_caps(); 5060 5061 kvm_caps.supported_perf_cap = 0; 5062 kvm_caps.supported_xss = 0; 5063 5064 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5065 if (nested) { 5066 kvm_cpu_cap_set(X86_FEATURE_SVM); 5067 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5068 5069 if (nrips) 5070 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5071 5072 if (npt_enabled) 5073 kvm_cpu_cap_set(X86_FEATURE_NPT); 5074 5075 if (tsc_scaling) 5076 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5077 5078 if (vls) 5079 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5080 if (lbrv) 5081 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5082 5083 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5084 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5085 5086 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5087 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5088 5089 if (vgif) 5090 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5091 5092 if (vnmi) 5093 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5094 5095 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5096 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5097 } 5098 5099 /* CPUID 0x80000008 */ 5100 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5101 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5102 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5103 5104 if (enable_pmu) { 5105 /* 5106 * Enumerate support for PERFCTR_CORE if and only if KVM has 5107 * access to enough counters to virtualize "core" support, 5108 * otherwise limit vPMU support to the legacy number of counters. 5109 */ 5110 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5111 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5112 kvm_pmu_cap.num_counters_gp); 5113 else 5114 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5115 5116 if (kvm_pmu_cap.version != 2 || 5117 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5118 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5119 } 5120 5121 /* CPUID 0x8000001F (SME/SEV features) */ 5122 sev_set_cpu_caps(); 5123 } 5124 5125 static __init int svm_hardware_setup(void) 5126 { 5127 int cpu; 5128 struct page *iopm_pages; 5129 void *iopm_va; 5130 int r; 5131 unsigned int order = get_order(IOPM_SIZE); 5132 5133 /* 5134 * NX is required for shadow paging and for NPT if the NX huge pages 5135 * mitigation is enabled. 5136 */ 5137 if (!boot_cpu_has(X86_FEATURE_NX)) { 5138 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5139 return -EOPNOTSUPP; 5140 } 5141 kvm_enable_efer_bits(EFER_NX); 5142 5143 iopm_pages = alloc_pages(GFP_KERNEL, order); 5144 5145 if (!iopm_pages) 5146 return -ENOMEM; 5147 5148 iopm_va = page_address(iopm_pages); 5149 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5150 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 5151 5152 init_msrpm_offsets(); 5153 5154 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5155 XFEATURE_MASK_BNDCSR); 5156 5157 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5158 kvm_enable_efer_bits(EFER_FFXSR); 5159 5160 if (tsc_scaling) { 5161 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5162 tsc_scaling = false; 5163 } else { 5164 pr_info("TSC scaling supported\n"); 5165 kvm_caps.has_tsc_control = true; 5166 } 5167 } 5168 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5169 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5170 5171 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5172 5173 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5174 kvm_enable_efer_bits(EFER_AUTOIBRS); 5175 5176 /* Check for pause filtering support */ 5177 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5178 pause_filter_count = 0; 5179 pause_filter_thresh = 0; 5180 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5181 pause_filter_thresh = 0; 5182 } 5183 5184 if (nested) { 5185 pr_info("Nested Virtualization enabled\n"); 5186 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5187 } 5188 5189 /* 5190 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5191 * NPT isn't supported if the host is using 2-level paging since host 5192 * CR4 is unchanged on VMRUN. 5193 */ 5194 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5195 npt_enabled = false; 5196 5197 if (!boot_cpu_has(X86_FEATURE_NPT)) 5198 npt_enabled = false; 5199 5200 /* Force VM NPT level equal to the host's paging level */ 5201 kvm_configure_mmu(npt_enabled, get_npt_level(), 5202 get_npt_level(), PG_LEVEL_1G); 5203 pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 5204 5205 /* Setup shadow_me_value and shadow_me_mask */ 5206 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5207 5208 svm_adjust_mmio_mask(); 5209 5210 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5211 5212 /* 5213 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5214 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5215 */ 5216 sev_hardware_setup(); 5217 5218 svm_hv_hardware_setup(); 5219 5220 for_each_possible_cpu(cpu) { 5221 r = svm_cpu_init(cpu); 5222 if (r) 5223 goto err; 5224 } 5225 5226 enable_apicv = avic = avic && avic_hardware_setup(); 5227 5228 if (!enable_apicv) { 5229 svm_x86_ops.vcpu_blocking = NULL; 5230 svm_x86_ops.vcpu_unblocking = NULL; 5231 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5232 } else if (!x2avic_enabled) { 5233 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5234 } 5235 5236 if (vls) { 5237 if (!npt_enabled || 5238 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5239 !IS_ENABLED(CONFIG_X86_64)) { 5240 vls = false; 5241 } else { 5242 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5243 } 5244 } 5245 5246 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5247 svm_gp_erratum_intercept = false; 5248 5249 if (vgif) { 5250 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5251 vgif = false; 5252 else 5253 pr_info("Virtual GIF supported\n"); 5254 } 5255 5256 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5257 if (vnmi) 5258 pr_info("Virtual NMI enabled\n"); 5259 5260 if (!vnmi) { 5261 svm_x86_ops.is_vnmi_pending = NULL; 5262 svm_x86_ops.set_vnmi_pending = NULL; 5263 } 5264 5265 5266 if (lbrv) { 5267 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5268 lbrv = false; 5269 else 5270 pr_info("LBR virtualization supported\n"); 5271 } 5272 5273 if (!enable_pmu) 5274 pr_info("PMU virtualization is disabled\n"); 5275 5276 svm_set_cpu_caps(); 5277 5278 /* 5279 * It seems that on AMD processors PTE's accessed bit is 5280 * being set by the CPU hardware before the NPF vmexit. 5281 * This is not expected behaviour and our tests fail because 5282 * of it. 5283 * A workaround here is to disable support for 5284 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5285 * In this case userspace can know if there is support using 5286 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5287 * it 5288 * If future AMD CPU models change the behaviour described above, 5289 * this variable can be changed accordingly 5290 */ 5291 allow_smaller_maxphyaddr = !npt_enabled; 5292 5293 return 0; 5294 5295 err: 5296 svm_hardware_unsetup(); 5297 return r; 5298 } 5299 5300 5301 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5302 .hardware_setup = svm_hardware_setup, 5303 5304 .runtime_ops = &svm_x86_ops, 5305 .pmu_ops = &amd_pmu_ops, 5306 }; 5307 5308 static void __svm_exit(void) 5309 { 5310 kvm_x86_vendor_exit(); 5311 5312 cpu_emergency_unregister_virt_callback(svm_emergency_disable); 5313 } 5314 5315 static int __init svm_init(void) 5316 { 5317 int r; 5318 5319 __unused_size_checks(); 5320 5321 if (!kvm_is_svm_supported()) 5322 return -EOPNOTSUPP; 5323 5324 r = kvm_x86_vendor_init(&svm_init_ops); 5325 if (r) 5326 return r; 5327 5328 cpu_emergency_register_virt_callback(svm_emergency_disable); 5329 5330 /* 5331 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5332 * exposed to userspace! 5333 */ 5334 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5335 THIS_MODULE); 5336 if (r) 5337 goto err_kvm_init; 5338 5339 return 0; 5340 5341 err_kvm_init: 5342 __svm_exit(); 5343 return r; 5344 } 5345 5346 static void __exit svm_exit(void) 5347 { 5348 kvm_exit(); 5349 __svm_exit(); 5350 } 5351 5352 module_init(svm_init) 5353 module_exit(svm_exit) 5354