1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 #include <linux/string_choices.h> 32 33 #include <asm/apic.h> 34 #include <asm/msr.h> 35 #include <asm/perf_event.h> 36 #include <asm/tlbflush.h> 37 #include <asm/desc.h> 38 #include <asm/debugreg.h> 39 #include <asm/kvm_para.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/spec-ctrl.h> 42 #include <asm/cpu_device_id.h> 43 #include <asm/traps.h> 44 #include <asm/reboot.h> 45 #include <asm/fpu/api.h> 46 47 #include <trace/events/ipi.h> 48 49 #include "trace.h" 50 51 #include "svm.h" 52 #include "svm_ops.h" 53 54 #include "kvm_onhyperv.h" 55 #include "svm_onhyperv.h" 56 57 MODULE_AUTHOR("Qumranet"); 58 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 59 MODULE_LICENSE("GPL"); 60 61 #ifdef MODULE 62 static const struct x86_cpu_id svm_cpu_id[] = { 63 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 64 {} 65 }; 66 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 67 #endif 68 69 #define SEG_TYPE_LDT 2 70 #define SEG_TYPE_BUSY_TSS16 3 71 72 static bool erratum_383_found __read_mostly; 73 74 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 75 76 /* 77 * Set osvw_len to higher value when updated Revision Guides 78 * are published and we know what the new status bits are 79 */ 80 static uint64_t osvw_len = 4, osvw_status; 81 82 static DEFINE_PER_CPU(u64, current_tsc_ratio); 83 84 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 85 86 static const struct svm_direct_access_msrs { 87 u32 index; /* Index of the MSR */ 88 bool always; /* True if intercept is initially cleared */ 89 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 90 { .index = MSR_STAR, .always = true }, 91 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 92 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 93 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 94 #ifdef CONFIG_X86_64 95 { .index = MSR_GS_BASE, .always = true }, 96 { .index = MSR_FS_BASE, .always = true }, 97 { .index = MSR_KERNEL_GS_BASE, .always = true }, 98 { .index = MSR_LSTAR, .always = true }, 99 { .index = MSR_CSTAR, .always = true }, 100 { .index = MSR_SYSCALL_MASK, .always = true }, 101 #endif 102 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 103 { .index = MSR_IA32_PRED_CMD, .always = false }, 104 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 105 { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, 106 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 107 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 108 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 109 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 110 { .index = MSR_IA32_XSS, .always = false }, 111 { .index = MSR_EFER, .always = false }, 112 { .index = MSR_IA32_CR_PAT, .always = false }, 113 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 114 { .index = MSR_TSC_AUX, .always = false }, 115 { .index = X2APIC_MSR(APIC_ID), .always = false }, 116 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 117 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 118 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 119 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 120 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 121 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 122 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 123 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 124 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 125 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 126 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 127 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 128 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 129 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 130 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 131 132 /* 133 * Note: 134 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 135 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 136 * the AVIC hardware would generate GP fault. Therefore, always 137 * intercept the MSR 0x832, and do not setup direct_access_msr. 138 */ 139 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 140 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 141 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 142 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 143 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 144 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 145 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 146 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 147 { .index = MSR_INVALID, .always = false }, 148 }; 149 150 /* 151 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 152 * pause_filter_count: On processors that support Pause filtering(indicated 153 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 154 * count value. On VMRUN this value is loaded into an internal counter. 155 * Each time a pause instruction is executed, this counter is decremented 156 * until it reaches zero at which time a #VMEXIT is generated if pause 157 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 158 * Intercept Filtering for more details. 159 * This also indicate if ple logic enabled. 160 * 161 * pause_filter_thresh: In addition, some processor families support advanced 162 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 163 * the amount of time a guest is allowed to execute in a pause loop. 164 * In this mode, a 16-bit pause filter threshold field is added in the 165 * VMCB. The threshold value is a cycle count that is used to reset the 166 * pause counter. As with simple pause filtering, VMRUN loads the pause 167 * count value from VMCB into an internal counter. Then, on each pause 168 * instruction the hardware checks the elapsed number of cycles since 169 * the most recent pause instruction against the pause filter threshold. 170 * If the elapsed cycle count is greater than the pause filter threshold, 171 * then the internal pause count is reloaded from the VMCB and execution 172 * continues. If the elapsed cycle count is less than the pause filter 173 * threshold, then the internal pause count is decremented. If the count 174 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 175 * triggered. If advanced pause filtering is supported and pause filter 176 * threshold field is set to zero, the filter will operate in the simpler, 177 * count only mode. 178 */ 179 180 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 181 module_param(pause_filter_thresh, ushort, 0444); 182 183 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 184 module_param(pause_filter_count, ushort, 0444); 185 186 /* Default doubles per-vcpu window every exit. */ 187 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 188 module_param(pause_filter_count_grow, ushort, 0444); 189 190 /* Default resets per-vcpu window every exit to pause_filter_count. */ 191 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 192 module_param(pause_filter_count_shrink, ushort, 0444); 193 194 /* Default is to compute the maximum so we can never overflow. */ 195 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 196 module_param(pause_filter_count_max, ushort, 0444); 197 198 /* 199 * Use nested page tables by default. Note, NPT may get forced off by 200 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 201 */ 202 bool npt_enabled = true; 203 module_param_named(npt, npt_enabled, bool, 0444); 204 205 /* allow nested virtualization in KVM/SVM */ 206 static int nested = true; 207 module_param(nested, int, 0444); 208 209 /* enable/disable Next RIP Save */ 210 int nrips = true; 211 module_param(nrips, int, 0444); 212 213 /* enable/disable Virtual VMLOAD VMSAVE */ 214 static int vls = true; 215 module_param(vls, int, 0444); 216 217 /* enable/disable Virtual GIF */ 218 int vgif = true; 219 module_param(vgif, int, 0444); 220 221 /* enable/disable LBR virtualization */ 222 int lbrv = true; 223 module_param(lbrv, int, 0444); 224 225 static int tsc_scaling = true; 226 module_param(tsc_scaling, int, 0444); 227 228 /* 229 * enable / disable AVIC. Because the defaults differ for APICv 230 * support between VMX and SVM we cannot use module_param_named. 231 */ 232 static bool avic; 233 module_param(avic, bool, 0444); 234 235 bool __read_mostly dump_invalid_vmcb; 236 module_param(dump_invalid_vmcb, bool, 0644); 237 238 239 bool intercept_smi = true; 240 module_param(intercept_smi, bool, 0444); 241 242 bool vnmi = true; 243 module_param(vnmi, bool, 0444); 244 245 static bool svm_gp_erratum_intercept = true; 246 247 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 248 249 static unsigned long iopm_base; 250 251 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 252 253 /* 254 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 255 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 256 * 257 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 258 * defer the restoration of TSC_AUX until the CPU returns to userspace. 259 */ 260 static int tsc_aux_uret_slot __read_mostly = -1; 261 262 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 263 264 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 265 #define MSRS_RANGE_SIZE 2048 266 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 267 268 u32 svm_msrpm_offset(u32 msr) 269 { 270 u32 offset; 271 int i; 272 273 for (i = 0; i < NUM_MSR_MAPS; i++) { 274 if (msr < msrpm_ranges[i] || 275 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 276 continue; 277 278 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 279 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 280 281 /* Now we have the u8 offset - but need the u32 offset */ 282 return offset / 4; 283 } 284 285 /* MSR not in any range */ 286 return MSR_INVALID; 287 } 288 289 static int get_npt_level(void) 290 { 291 #ifdef CONFIG_X86_64 292 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 293 #else 294 return PT32E_ROOT_LEVEL; 295 #endif 296 } 297 298 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 299 { 300 struct vcpu_svm *svm = to_svm(vcpu); 301 u64 old_efer = vcpu->arch.efer; 302 vcpu->arch.efer = efer; 303 304 if (!npt_enabled) { 305 /* Shadow paging assumes NX to be available. */ 306 efer |= EFER_NX; 307 308 if (!(efer & EFER_LMA)) 309 efer &= ~EFER_LME; 310 } 311 312 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 313 if (!(efer & EFER_SVME)) { 314 svm_leave_nested(vcpu); 315 svm_set_gif(svm, true); 316 /* #GP intercept is still needed for vmware backdoor */ 317 if (!enable_vmware_backdoor) 318 clr_exception_intercept(svm, GP_VECTOR); 319 320 /* 321 * Free the nested guest state, unless we are in SMM. 322 * In this case we will return to the nested guest 323 * as soon as we leave SMM. 324 */ 325 if (!is_smm(vcpu)) 326 svm_free_nested(svm); 327 328 } else { 329 int ret = svm_allocate_nested(svm); 330 331 if (ret) { 332 vcpu->arch.efer = old_efer; 333 return ret; 334 } 335 336 /* 337 * Never intercept #GP for SEV guests, KVM can't 338 * decrypt guest memory to workaround the erratum. 339 */ 340 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 341 set_exception_intercept(svm, GP_VECTOR); 342 } 343 } 344 345 svm->vmcb->save.efer = efer | EFER_SVME; 346 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 347 return 0; 348 } 349 350 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 351 { 352 struct vcpu_svm *svm = to_svm(vcpu); 353 u32 ret = 0; 354 355 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 356 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 357 return ret; 358 } 359 360 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 361 { 362 struct vcpu_svm *svm = to_svm(vcpu); 363 364 if (mask == 0) 365 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 366 else 367 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 368 369 } 370 371 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 372 bool commit_side_effects) 373 { 374 struct vcpu_svm *svm = to_svm(vcpu); 375 unsigned long old_rflags; 376 377 /* 378 * SEV-ES does not expose the next RIP. The RIP update is controlled by 379 * the type of exit and the #VC handler in the guest. 380 */ 381 if (sev_es_guest(vcpu->kvm)) 382 goto done; 383 384 if (nrips && svm->vmcb->control.next_rip != 0) { 385 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 386 svm->next_rip = svm->vmcb->control.next_rip; 387 } 388 389 if (!svm->next_rip) { 390 if (unlikely(!commit_side_effects)) 391 old_rflags = svm->vmcb->save.rflags; 392 393 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 394 return 0; 395 396 if (unlikely(!commit_side_effects)) 397 svm->vmcb->save.rflags = old_rflags; 398 } else { 399 kvm_rip_write(vcpu, svm->next_rip); 400 } 401 402 done: 403 if (likely(commit_side_effects)) 404 svm_set_interrupt_shadow(vcpu, 0); 405 406 return 1; 407 } 408 409 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 410 { 411 return __svm_skip_emulated_instruction(vcpu, true); 412 } 413 414 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 415 { 416 unsigned long rip, old_rip = kvm_rip_read(vcpu); 417 struct vcpu_svm *svm = to_svm(vcpu); 418 419 /* 420 * Due to architectural shortcomings, the CPU doesn't always provide 421 * NextRIP, e.g. if KVM intercepted an exception that occurred while 422 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 423 * the instruction even if NextRIP is supported to acquire the next 424 * RIP so that it can be shoved into the NextRIP field, otherwise 425 * hardware will fail to advance guest RIP during event injection. 426 * Drop the exception/interrupt if emulation fails and effectively 427 * retry the instruction, it's the least awful option. If NRIPS is 428 * in use, the skip must not commit any side effects such as clearing 429 * the interrupt shadow or RFLAGS.RF. 430 */ 431 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 432 return -EIO; 433 434 rip = kvm_rip_read(vcpu); 435 436 /* 437 * Save the injection information, even when using next_rip, as the 438 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 439 * doesn't complete due to a VM-Exit occurring while the CPU is 440 * vectoring the event. Decoding the instruction isn't guaranteed to 441 * work as there may be no backing instruction, e.g. if the event is 442 * being injected by L1 for L2, or if the guest is patching INT3 into 443 * a different instruction. 444 */ 445 svm->soft_int_injected = true; 446 svm->soft_int_csbase = svm->vmcb->save.cs.base; 447 svm->soft_int_old_rip = old_rip; 448 svm->soft_int_next_rip = rip; 449 450 if (nrips) 451 kvm_rip_write(vcpu, old_rip); 452 453 if (static_cpu_has(X86_FEATURE_NRIPS)) 454 svm->vmcb->control.next_rip = rip; 455 456 return 0; 457 } 458 459 static void svm_inject_exception(struct kvm_vcpu *vcpu) 460 { 461 struct kvm_queued_exception *ex = &vcpu->arch.exception; 462 struct vcpu_svm *svm = to_svm(vcpu); 463 464 kvm_deliver_exception_payload(vcpu, ex); 465 466 if (kvm_exception_is_soft(ex->vector) && 467 svm_update_soft_interrupt_rip(vcpu)) 468 return; 469 470 svm->vmcb->control.event_inj = ex->vector 471 | SVM_EVTINJ_VALID 472 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 473 | SVM_EVTINJ_TYPE_EXEPT; 474 svm->vmcb->control.event_inj_err = ex->error_code; 475 } 476 477 static void svm_init_erratum_383(void) 478 { 479 u64 val; 480 481 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 482 return; 483 484 /* Use _safe variants to not break nested virtualization */ 485 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val)) 486 return; 487 488 val |= (1ULL << 47); 489 490 native_write_msr_safe(MSR_AMD64_DC_CFG, val); 491 492 erratum_383_found = true; 493 } 494 495 static void svm_init_osvw(struct kvm_vcpu *vcpu) 496 { 497 /* 498 * Guests should see errata 400 and 415 as fixed (assuming that 499 * HLT and IO instructions are intercepted). 500 */ 501 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 502 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 503 504 /* 505 * By increasing VCPU's osvw.length to 3 we are telling the guest that 506 * all osvw.status bits inside that length, including bit 0 (which is 507 * reserved for erratum 298), are valid. However, if host processor's 508 * osvw_len is 0 then osvw_status[0] carries no information. We need to 509 * be conservative here and therefore we tell the guest that erratum 298 510 * is present (because we really don't know). 511 */ 512 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 513 vcpu->arch.osvw.status |= 1; 514 } 515 516 static bool __kvm_is_svm_supported(void) 517 { 518 int cpu = smp_processor_id(); 519 struct cpuinfo_x86 *c = &cpu_data(cpu); 520 521 if (c->x86_vendor != X86_VENDOR_AMD && 522 c->x86_vendor != X86_VENDOR_HYGON) { 523 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 524 return false; 525 } 526 527 if (!cpu_has(c, X86_FEATURE_SVM)) { 528 pr_err("SVM not supported by CPU %d\n", cpu); 529 return false; 530 } 531 532 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 533 pr_info("KVM is unsupported when running as an SEV guest\n"); 534 return false; 535 } 536 537 return true; 538 } 539 540 static bool kvm_is_svm_supported(void) 541 { 542 bool supported; 543 544 migrate_disable(); 545 supported = __kvm_is_svm_supported(); 546 migrate_enable(); 547 548 return supported; 549 } 550 551 static int svm_check_processor_compat(void) 552 { 553 if (!__kvm_is_svm_supported()) 554 return -EIO; 555 556 return 0; 557 } 558 559 static void __svm_write_tsc_multiplier(u64 multiplier) 560 { 561 if (multiplier == __this_cpu_read(current_tsc_ratio)) 562 return; 563 564 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier); 565 __this_cpu_write(current_tsc_ratio, multiplier); 566 } 567 568 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 569 { 570 return &sd->save_area->host_sev_es_save; 571 } 572 573 static inline void kvm_cpu_svm_disable(void) 574 { 575 uint64_t efer; 576 577 wrmsrq(MSR_VM_HSAVE_PA, 0); 578 rdmsrq(MSR_EFER, efer); 579 if (efer & EFER_SVME) { 580 /* 581 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 582 * NMI aren't blocked. 583 */ 584 stgi(); 585 wrmsrq(MSR_EFER, efer & ~EFER_SVME); 586 } 587 } 588 589 static void svm_emergency_disable_virtualization_cpu(void) 590 { 591 kvm_rebooting = true; 592 593 kvm_cpu_svm_disable(); 594 } 595 596 static void svm_disable_virtualization_cpu(void) 597 { 598 /* Make sure we clean up behind us */ 599 if (tsc_scaling) 600 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 601 602 kvm_cpu_svm_disable(); 603 604 amd_pmu_disable_virt(); 605 } 606 607 static int svm_enable_virtualization_cpu(void) 608 { 609 610 struct svm_cpu_data *sd; 611 uint64_t efer; 612 int me = raw_smp_processor_id(); 613 614 rdmsrq(MSR_EFER, efer); 615 if (efer & EFER_SVME) 616 return -EBUSY; 617 618 sd = per_cpu_ptr(&svm_data, me); 619 sd->asid_generation = 1; 620 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 621 sd->next_asid = sd->max_asid + 1; 622 sd->min_asid = max_sev_asid + 1; 623 624 wrmsrq(MSR_EFER, efer | EFER_SVME); 625 626 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa); 627 628 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 629 /* 630 * Set the default value, even if we don't use TSC scaling 631 * to avoid having stale value in the msr 632 */ 633 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 634 } 635 636 637 /* 638 * Get OSVW bits. 639 * 640 * Note that it is possible to have a system with mixed processor 641 * revisions and therefore different OSVW bits. If bits are not the same 642 * on different processors then choose the worst case (i.e. if erratum 643 * is present on one processor and not on another then assume that the 644 * erratum is present everywhere). 645 */ 646 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 647 u64 len, status = 0; 648 int err; 649 650 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len); 651 if (!err) 652 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status); 653 654 if (err) 655 osvw_status = osvw_len = 0; 656 else { 657 if (len < osvw_len) 658 osvw_len = len; 659 osvw_status |= status; 660 osvw_status &= (1ULL << osvw_len) - 1; 661 } 662 } else 663 osvw_status = osvw_len = 0; 664 665 svm_init_erratum_383(); 666 667 amd_pmu_enable_virt(); 668 669 /* 670 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 671 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 672 * Since Linux does not change the value of TSC_AUX once set, prime the 673 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 674 */ 675 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 676 u32 __maybe_unused msr_hi; 677 678 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi); 679 } 680 681 return 0; 682 } 683 684 static void svm_cpu_uninit(int cpu) 685 { 686 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 687 688 if (!sd->save_area) 689 return; 690 691 kfree(sd->sev_vmcbs); 692 __free_page(__sme_pa_to_page(sd->save_area_pa)); 693 sd->save_area_pa = 0; 694 sd->save_area = NULL; 695 } 696 697 static int svm_cpu_init(int cpu) 698 { 699 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 700 struct page *save_area_page; 701 int ret = -ENOMEM; 702 703 memset(sd, 0, sizeof(struct svm_cpu_data)); 704 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 705 if (!save_area_page) 706 return ret; 707 708 ret = sev_cpu_init(sd); 709 if (ret) 710 goto free_save_area; 711 712 sd->save_area = page_address(save_area_page); 713 sd->save_area_pa = __sme_page_pa(save_area_page); 714 return 0; 715 716 free_save_area: 717 __free_page(save_area_page); 718 return ret; 719 720 } 721 722 static void set_dr_intercepts(struct vcpu_svm *svm) 723 { 724 struct vmcb *vmcb = svm->vmcb01.ptr; 725 726 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 727 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 728 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 729 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 730 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 731 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 742 743 recalc_intercepts(svm); 744 } 745 746 static void clr_dr_intercepts(struct vcpu_svm *svm) 747 { 748 struct vmcb *vmcb = svm->vmcb01.ptr; 749 750 vmcb->control.intercepts[INTERCEPT_DR] = 0; 751 752 recalc_intercepts(svm); 753 } 754 755 static int direct_access_msr_slot(u32 msr) 756 { 757 u32 i; 758 759 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 760 if (direct_access_msrs[i].index == msr) 761 return i; 762 763 return -ENOENT; 764 } 765 766 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 767 int write) 768 { 769 struct vcpu_svm *svm = to_svm(vcpu); 770 int slot = direct_access_msr_slot(msr); 771 772 if (slot == -ENOENT) 773 return; 774 775 /* Set the shadow bitmaps to the desired intercept states */ 776 if (read) 777 set_bit(slot, svm->shadow_msr_intercept.read); 778 else 779 clear_bit(slot, svm->shadow_msr_intercept.read); 780 781 if (write) 782 set_bit(slot, svm->shadow_msr_intercept.write); 783 else 784 clear_bit(slot, svm->shadow_msr_intercept.write); 785 } 786 787 static bool valid_msr_intercept(u32 index) 788 { 789 return direct_access_msr_slot(index) != -ENOENT; 790 } 791 792 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 793 { 794 u8 bit_write; 795 unsigned long tmp; 796 u32 offset; 797 u32 *msrpm; 798 799 /* 800 * For non-nested case: 801 * If the L01 MSR bitmap does not intercept the MSR, then we need to 802 * save it. 803 * 804 * For nested case: 805 * If the L02 MSR bitmap does not intercept the MSR, then we need to 806 * save it. 807 */ 808 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 809 to_svm(vcpu)->msrpm; 810 811 offset = svm_msrpm_offset(msr); 812 bit_write = 2 * (msr & 0x0f) + 1; 813 tmp = msrpm[offset]; 814 815 BUG_ON(offset == MSR_INVALID); 816 817 return test_bit(bit_write, &tmp); 818 } 819 820 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 821 u32 msr, int read, int write) 822 { 823 struct vcpu_svm *svm = to_svm(vcpu); 824 u8 bit_read, bit_write; 825 unsigned long tmp; 826 u32 offset; 827 828 /* 829 * If this warning triggers extend the direct_access_msrs list at the 830 * beginning of the file 831 */ 832 WARN_ON(!valid_msr_intercept(msr)); 833 834 /* Enforce non allowed MSRs to trap */ 835 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 836 read = 0; 837 838 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 839 write = 0; 840 841 offset = svm_msrpm_offset(msr); 842 bit_read = 2 * (msr & 0x0f); 843 bit_write = 2 * (msr & 0x0f) + 1; 844 tmp = msrpm[offset]; 845 846 BUG_ON(offset == MSR_INVALID); 847 848 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 849 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 850 851 msrpm[offset] = tmp; 852 853 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 854 svm->nested.force_msr_bitmap_recalc = true; 855 } 856 857 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 858 int read, int write) 859 { 860 set_shadow_msr_intercept(vcpu, msr, read, write); 861 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 862 } 863 864 u32 *svm_vcpu_alloc_msrpm(void) 865 { 866 unsigned int order = get_order(MSRPM_SIZE); 867 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 868 u32 *msrpm; 869 870 if (!pages) 871 return NULL; 872 873 msrpm = page_address(pages); 874 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 875 876 return msrpm; 877 } 878 879 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 880 { 881 int i; 882 883 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 884 if (!direct_access_msrs[i].always) 885 continue; 886 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 887 } 888 } 889 890 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 891 { 892 int i; 893 894 if (intercept == svm->x2avic_msrs_intercepted) 895 return; 896 897 if (!x2avic_enabled) 898 return; 899 900 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 901 int index = direct_access_msrs[i].index; 902 903 if ((index < APIC_BASE_MSR) || 904 (index > APIC_BASE_MSR + 0xff)) 905 continue; 906 set_msr_interception(&svm->vcpu, svm->msrpm, index, 907 !intercept, !intercept); 908 } 909 910 svm->x2avic_msrs_intercepted = intercept; 911 } 912 913 void svm_vcpu_free_msrpm(u32 *msrpm) 914 { 915 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 916 } 917 918 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 919 { 920 struct vcpu_svm *svm = to_svm(vcpu); 921 u32 i; 922 923 /* 924 * Set intercept permissions for all direct access MSRs again. They 925 * will automatically get filtered through the MSR filter, so we are 926 * back in sync after this. 927 */ 928 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 929 u32 msr = direct_access_msrs[i].index; 930 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 931 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 932 933 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 934 } 935 } 936 937 static void add_msr_offset(u32 offset) 938 { 939 int i; 940 941 for (i = 0; i < MSRPM_OFFSETS; ++i) { 942 943 /* Offset already in list? */ 944 if (msrpm_offsets[i] == offset) 945 return; 946 947 /* Slot used by another offset? */ 948 if (msrpm_offsets[i] != MSR_INVALID) 949 continue; 950 951 /* Add offset to list */ 952 msrpm_offsets[i] = offset; 953 954 return; 955 } 956 957 /* 958 * If this BUG triggers the msrpm_offsets table has an overflow. Just 959 * increase MSRPM_OFFSETS in this case. 960 */ 961 BUG(); 962 } 963 964 static void init_msrpm_offsets(void) 965 { 966 int i; 967 968 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 969 970 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 971 u32 offset; 972 973 offset = svm_msrpm_offset(direct_access_msrs[i].index); 974 BUG_ON(offset == MSR_INVALID); 975 976 add_msr_offset(offset); 977 } 978 } 979 980 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 981 { 982 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 983 to_vmcb->save.br_from = from_vmcb->save.br_from; 984 to_vmcb->save.br_to = from_vmcb->save.br_to; 985 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 986 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 987 988 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 989 } 990 991 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 992 { 993 struct vcpu_svm *svm = to_svm(vcpu); 994 995 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 996 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 997 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 998 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 999 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1000 1001 if (sev_es_guest(vcpu->kvm)) 1002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); 1003 1004 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1005 if (is_guest_mode(vcpu)) 1006 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1007 } 1008 1009 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1010 { 1011 struct vcpu_svm *svm = to_svm(vcpu); 1012 1013 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 1014 1015 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1016 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1017 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1018 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1019 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1020 1021 /* 1022 * Move the LBR msrs back to the vmcb01 to avoid copying them 1023 * on nested guest entries. 1024 */ 1025 if (is_guest_mode(vcpu)) 1026 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1027 } 1028 1029 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1030 { 1031 /* 1032 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1033 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1034 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1035 */ 1036 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1037 svm->vmcb01.ptr; 1038 } 1039 1040 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1041 { 1042 struct vcpu_svm *svm = to_svm(vcpu); 1043 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1044 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1045 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 1046 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1047 1048 if (enable_lbrv == current_enable_lbrv) 1049 return; 1050 1051 if (enable_lbrv) 1052 svm_enable_lbrv(vcpu); 1053 else 1054 svm_disable_lbrv(vcpu); 1055 } 1056 1057 void disable_nmi_singlestep(struct vcpu_svm *svm) 1058 { 1059 svm->nmi_singlestep = false; 1060 1061 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1062 /* Clear our flags if they were not set by the guest */ 1063 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1064 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1065 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1066 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1067 } 1068 } 1069 1070 static void grow_ple_window(struct kvm_vcpu *vcpu) 1071 { 1072 struct vcpu_svm *svm = to_svm(vcpu); 1073 struct vmcb_control_area *control = &svm->vmcb->control; 1074 int old = control->pause_filter_count; 1075 1076 if (kvm_pause_in_guest(vcpu->kvm)) 1077 return; 1078 1079 control->pause_filter_count = __grow_ple_window(old, 1080 pause_filter_count, 1081 pause_filter_count_grow, 1082 pause_filter_count_max); 1083 1084 if (control->pause_filter_count != old) { 1085 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1086 trace_kvm_ple_window_update(vcpu->vcpu_id, 1087 control->pause_filter_count, old); 1088 } 1089 } 1090 1091 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1092 { 1093 struct vcpu_svm *svm = to_svm(vcpu); 1094 struct vmcb_control_area *control = &svm->vmcb->control; 1095 int old = control->pause_filter_count; 1096 1097 if (kvm_pause_in_guest(vcpu->kvm)) 1098 return; 1099 1100 control->pause_filter_count = 1101 __shrink_ple_window(old, 1102 pause_filter_count, 1103 pause_filter_count_shrink, 1104 pause_filter_count); 1105 if (control->pause_filter_count != old) { 1106 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1107 trace_kvm_ple_window_update(vcpu->vcpu_id, 1108 control->pause_filter_count, old); 1109 } 1110 } 1111 1112 static void svm_hardware_unsetup(void) 1113 { 1114 int cpu; 1115 1116 sev_hardware_unsetup(); 1117 1118 for_each_possible_cpu(cpu) 1119 svm_cpu_uninit(cpu); 1120 1121 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); 1122 iopm_base = 0; 1123 } 1124 1125 static void init_seg(struct vmcb_seg *seg) 1126 { 1127 seg->selector = 0; 1128 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1129 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1130 seg->limit = 0xffff; 1131 seg->base = 0; 1132 } 1133 1134 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1135 { 1136 seg->selector = 0; 1137 seg->attrib = SVM_SELECTOR_P_MASK | type; 1138 seg->limit = 0xffff; 1139 seg->base = 0; 1140 } 1141 1142 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1143 { 1144 struct vcpu_svm *svm = to_svm(vcpu); 1145 1146 return svm->nested.ctl.tsc_offset; 1147 } 1148 1149 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1150 { 1151 struct vcpu_svm *svm = to_svm(vcpu); 1152 1153 return svm->tsc_ratio_msr; 1154 } 1155 1156 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1157 { 1158 struct vcpu_svm *svm = to_svm(vcpu); 1159 1160 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1161 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1162 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1163 } 1164 1165 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1166 { 1167 preempt_disable(); 1168 if (to_svm(vcpu)->guest_state_loaded) 1169 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1170 preempt_enable(); 1171 } 1172 1173 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1174 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1175 struct vcpu_svm *svm) 1176 { 1177 /* 1178 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1179 * roots, or if INVPCID is disabled in the guest to inject #UD. 1180 */ 1181 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1182 if (!npt_enabled || 1183 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1184 svm_set_intercept(svm, INTERCEPT_INVPCID); 1185 else 1186 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1187 } 1188 1189 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1190 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP)) 1191 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1192 else 1193 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1194 } 1195 } 1196 1197 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1198 { 1199 struct vcpu_svm *svm = to_svm(vcpu); 1200 1201 if (guest_cpuid_is_intel_compatible(vcpu)) { 1202 /* 1203 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1204 * accesses because the processor only stores 32 bits. 1205 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1206 */ 1207 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1208 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1209 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1210 1211 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1212 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1213 } else { 1214 /* 1215 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1216 * in VMCB and clear intercepts to avoid #VMEXIT. 1217 */ 1218 if (vls) { 1219 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1220 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1221 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1222 } 1223 /* No need to intercept these MSRs */ 1224 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1225 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1226 } 1227 } 1228 1229 static void init_vmcb(struct kvm_vcpu *vcpu) 1230 { 1231 struct vcpu_svm *svm = to_svm(vcpu); 1232 struct vmcb *vmcb = svm->vmcb01.ptr; 1233 struct vmcb_control_area *control = &vmcb->control; 1234 struct vmcb_save_area *save = &vmcb->save; 1235 1236 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1237 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1238 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1239 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1240 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1241 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1242 if (!kvm_vcpu_apicv_active(vcpu)) 1243 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1244 1245 set_dr_intercepts(svm); 1246 1247 set_exception_intercept(svm, PF_VECTOR); 1248 set_exception_intercept(svm, UD_VECTOR); 1249 set_exception_intercept(svm, MC_VECTOR); 1250 set_exception_intercept(svm, AC_VECTOR); 1251 set_exception_intercept(svm, DB_VECTOR); 1252 /* 1253 * Guest access to VMware backdoor ports could legitimately 1254 * trigger #GP because of TSS I/O permission bitmap. 1255 * We intercept those #GP and allow access to them anyway 1256 * as VMware does. 1257 */ 1258 if (enable_vmware_backdoor) 1259 set_exception_intercept(svm, GP_VECTOR); 1260 1261 svm_set_intercept(svm, INTERCEPT_INTR); 1262 svm_set_intercept(svm, INTERCEPT_NMI); 1263 1264 if (intercept_smi) 1265 svm_set_intercept(svm, INTERCEPT_SMI); 1266 1267 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1268 svm_set_intercept(svm, INTERCEPT_RDPMC); 1269 svm_set_intercept(svm, INTERCEPT_CPUID); 1270 svm_set_intercept(svm, INTERCEPT_INVD); 1271 svm_set_intercept(svm, INTERCEPT_INVLPG); 1272 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1273 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1274 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1275 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1276 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1277 svm_set_intercept(svm, INTERCEPT_VMRUN); 1278 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1279 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1280 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1281 svm_set_intercept(svm, INTERCEPT_STGI); 1282 svm_set_intercept(svm, INTERCEPT_CLGI); 1283 svm_set_intercept(svm, INTERCEPT_SKINIT); 1284 svm_set_intercept(svm, INTERCEPT_WBINVD); 1285 svm_set_intercept(svm, INTERCEPT_XSETBV); 1286 svm_set_intercept(svm, INTERCEPT_RDPRU); 1287 svm_set_intercept(svm, INTERCEPT_RSM); 1288 1289 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1290 svm_set_intercept(svm, INTERCEPT_MONITOR); 1291 svm_set_intercept(svm, INTERCEPT_MWAIT); 1292 } 1293 1294 if (!kvm_hlt_in_guest(vcpu->kvm)) { 1295 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT)) 1296 svm_set_intercept(svm, INTERCEPT_IDLE_HLT); 1297 else 1298 svm_set_intercept(svm, INTERCEPT_HLT); 1299 } 1300 1301 control->iopm_base_pa = iopm_base; 1302 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1303 control->int_ctl = V_INTR_MASKING_MASK; 1304 1305 init_seg(&save->es); 1306 init_seg(&save->ss); 1307 init_seg(&save->ds); 1308 init_seg(&save->fs); 1309 init_seg(&save->gs); 1310 1311 save->cs.selector = 0xf000; 1312 save->cs.base = 0xffff0000; 1313 /* Executable/Readable Code Segment */ 1314 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1315 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1316 save->cs.limit = 0xffff; 1317 1318 save->gdtr.base = 0; 1319 save->gdtr.limit = 0xffff; 1320 save->idtr.base = 0; 1321 save->idtr.limit = 0xffff; 1322 1323 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1324 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1325 1326 if (npt_enabled) { 1327 /* Setup VMCB for Nested Paging */ 1328 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1329 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1330 clr_exception_intercept(svm, PF_VECTOR); 1331 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1332 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1333 save->g_pat = vcpu->arch.pat; 1334 save->cr3 = 0; 1335 } 1336 svm->current_vmcb->asid_generation = 0; 1337 svm->asid = 0; 1338 1339 svm->nested.vmcb12_gpa = INVALID_GPA; 1340 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1341 1342 if (!kvm_pause_in_guest(vcpu->kvm)) { 1343 control->pause_filter_count = pause_filter_count; 1344 if (pause_filter_thresh) 1345 control->pause_filter_thresh = pause_filter_thresh; 1346 svm_set_intercept(svm, INTERCEPT_PAUSE); 1347 } else { 1348 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1349 } 1350 1351 svm_recalc_instruction_intercepts(vcpu, svm); 1352 1353 /* 1354 * If the host supports V_SPEC_CTRL then disable the interception 1355 * of MSR_IA32_SPEC_CTRL. 1356 */ 1357 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1358 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1359 1360 if (kvm_vcpu_apicv_active(vcpu)) 1361 avic_init_vmcb(svm, vmcb); 1362 1363 if (vnmi) 1364 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1365 1366 if (vgif) { 1367 svm_clr_intercept(svm, INTERCEPT_STGI); 1368 svm_clr_intercept(svm, INTERCEPT_CLGI); 1369 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1370 } 1371 1372 if (sev_guest(vcpu->kvm)) 1373 sev_init_vmcb(svm); 1374 1375 svm_hv_init_vmcb(vmcb); 1376 init_vmcb_after_set_cpuid(vcpu); 1377 1378 vmcb_mark_all_dirty(vmcb); 1379 1380 enable_gif(svm); 1381 } 1382 1383 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1384 { 1385 struct vcpu_svm *svm = to_svm(vcpu); 1386 1387 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1388 1389 svm_init_osvw(vcpu); 1390 1391 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 1392 vcpu->arch.microcode_version = 0x01000065; 1393 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1394 1395 svm->nmi_masked = false; 1396 svm->awaiting_iret_completion = false; 1397 1398 if (sev_es_guest(vcpu->kvm)) 1399 sev_es_vcpu_reset(svm); 1400 } 1401 1402 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1403 { 1404 struct vcpu_svm *svm = to_svm(vcpu); 1405 1406 svm->spec_ctrl = 0; 1407 svm->virt_spec_ctrl = 0; 1408 1409 if (init_event) 1410 sev_snp_init_protected_guest_state(vcpu); 1411 1412 init_vmcb(vcpu); 1413 1414 if (!init_event) 1415 __svm_vcpu_reset(vcpu); 1416 } 1417 1418 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1419 { 1420 svm->current_vmcb = target_vmcb; 1421 svm->vmcb = target_vmcb->ptr; 1422 } 1423 1424 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1425 { 1426 struct vcpu_svm *svm; 1427 struct page *vmcb01_page; 1428 struct page *vmsa_page = NULL; 1429 int err; 1430 1431 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1432 svm = to_svm(vcpu); 1433 1434 err = -ENOMEM; 1435 vmcb01_page = snp_safe_alloc_page(); 1436 if (!vmcb01_page) 1437 goto out; 1438 1439 if (sev_es_guest(vcpu->kvm)) { 1440 /* 1441 * SEV-ES guests require a separate VMSA page used to contain 1442 * the encrypted register state of the guest. 1443 */ 1444 vmsa_page = snp_safe_alloc_page(); 1445 if (!vmsa_page) 1446 goto error_free_vmcb_page; 1447 } 1448 1449 err = avic_init_vcpu(svm); 1450 if (err) 1451 goto error_free_vmsa_page; 1452 1453 svm->msrpm = svm_vcpu_alloc_msrpm(); 1454 if (!svm->msrpm) { 1455 err = -ENOMEM; 1456 goto error_free_vmsa_page; 1457 } 1458 1459 svm->x2avic_msrs_intercepted = true; 1460 1461 svm->vmcb01.ptr = page_address(vmcb01_page); 1462 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1463 svm_switch_vmcb(svm, &svm->vmcb01); 1464 1465 if (vmsa_page) 1466 svm->sev_es.vmsa = page_address(vmsa_page); 1467 1468 svm->guest_state_loaded = false; 1469 1470 return 0; 1471 1472 error_free_vmsa_page: 1473 if (vmsa_page) 1474 __free_page(vmsa_page); 1475 error_free_vmcb_page: 1476 __free_page(vmcb01_page); 1477 out: 1478 return err; 1479 } 1480 1481 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1482 { 1483 int i; 1484 1485 for_each_online_cpu(i) 1486 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1487 } 1488 1489 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1490 { 1491 struct vcpu_svm *svm = to_svm(vcpu); 1492 1493 /* 1494 * The vmcb page can be recycled, causing a false negative in 1495 * svm_vcpu_load(). So, ensure that no logical CPU has this 1496 * vmcb page recorded as its current vmcb. 1497 */ 1498 svm_clear_current_vmcb(svm->vmcb); 1499 1500 svm_leave_nested(vcpu); 1501 svm_free_nested(svm); 1502 1503 sev_free_vcpu(vcpu); 1504 1505 __free_page(__sme_pa_to_page(svm->vmcb01.pa)); 1506 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1507 } 1508 1509 #ifdef CONFIG_CPU_MITIGATIONS 1510 static DEFINE_SPINLOCK(srso_lock); 1511 static atomic_t srso_nr_vms; 1512 1513 static void svm_srso_clear_bp_spec_reduce(void *ign) 1514 { 1515 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data); 1516 1517 if (!sd->bp_spec_reduce_set) 1518 return; 1519 1520 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1521 sd->bp_spec_reduce_set = false; 1522 } 1523 1524 static void svm_srso_vm_destroy(void) 1525 { 1526 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1527 return; 1528 1529 if (atomic_dec_return(&srso_nr_vms)) 1530 return; 1531 1532 guard(spinlock)(&srso_lock); 1533 1534 /* 1535 * Verify a new VM didn't come along, acquire the lock, and increment 1536 * the count before this task acquired the lock. 1537 */ 1538 if (atomic_read(&srso_nr_vms)) 1539 return; 1540 1541 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1); 1542 } 1543 1544 static void svm_srso_vm_init(void) 1545 { 1546 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1547 return; 1548 1549 /* 1550 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0 1551 * transition, i.e. destroying the last VM, is fully complete, e.g. so 1552 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs. 1553 */ 1554 if (atomic_inc_not_zero(&srso_nr_vms)) 1555 return; 1556 1557 guard(spinlock)(&srso_lock); 1558 1559 atomic_inc(&srso_nr_vms); 1560 } 1561 #else 1562 static void svm_srso_vm_init(void) { } 1563 static void svm_srso_vm_destroy(void) { } 1564 #endif 1565 1566 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1567 { 1568 struct vcpu_svm *svm = to_svm(vcpu); 1569 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1570 1571 if (sev_es_guest(vcpu->kvm)) 1572 sev_es_unmap_ghcb(svm); 1573 1574 if (svm->guest_state_loaded) 1575 return; 1576 1577 /* 1578 * Save additional host state that will be restored on VMEXIT (sev-es) 1579 * or subsequent vmload of host save area. 1580 */ 1581 vmsave(sd->save_area_pa); 1582 if (sev_es_guest(vcpu->kvm)) 1583 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1584 1585 if (tsc_scaling) 1586 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1587 1588 /* 1589 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1590 * available. The user return MSR support is not required in this case 1591 * because TSC_AUX is restored on #VMEXIT from the host save area 1592 * (which has been initialized in svm_enable_virtualization_cpu()). 1593 */ 1594 if (likely(tsc_aux_uret_slot >= 0) && 1595 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1596 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1597 1598 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) && 1599 !sd->bp_spec_reduce_set) { 1600 sd->bp_spec_reduce_set = true; 1601 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1602 } 1603 svm->guest_state_loaded = true; 1604 } 1605 1606 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1607 { 1608 to_svm(vcpu)->guest_state_loaded = false; 1609 } 1610 1611 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1612 { 1613 struct vcpu_svm *svm = to_svm(vcpu); 1614 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1615 1616 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1617 shrink_ple_window(vcpu); 1618 1619 if (sd->current_vmcb != svm->vmcb) { 1620 sd->current_vmcb = svm->vmcb; 1621 1622 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT) && 1623 static_branch_likely(&switch_vcpu_ibpb)) 1624 indirect_branch_prediction_barrier(); 1625 } 1626 if (kvm_vcpu_apicv_active(vcpu)) 1627 avic_vcpu_load(vcpu, cpu); 1628 } 1629 1630 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1631 { 1632 if (kvm_vcpu_apicv_active(vcpu)) 1633 avic_vcpu_put(vcpu); 1634 1635 svm_prepare_host_switch(vcpu); 1636 1637 ++vcpu->stat.host_state_reload; 1638 } 1639 1640 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1641 { 1642 struct vcpu_svm *svm = to_svm(vcpu); 1643 unsigned long rflags = svm->vmcb->save.rflags; 1644 1645 if (svm->nmi_singlestep) { 1646 /* Hide our flags if they were not set by the guest */ 1647 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1648 rflags &= ~X86_EFLAGS_TF; 1649 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1650 rflags &= ~X86_EFLAGS_RF; 1651 } 1652 return rflags; 1653 } 1654 1655 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1656 { 1657 if (to_svm(vcpu)->nmi_singlestep) 1658 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1659 1660 /* 1661 * Any change of EFLAGS.VM is accompanied by a reload of SS 1662 * (caused by either a task switch or an inter-privilege IRET), 1663 * so we do not need to update the CPL here. 1664 */ 1665 to_svm(vcpu)->vmcb->save.rflags = rflags; 1666 } 1667 1668 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1669 { 1670 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1671 1672 return sev_es_guest(vcpu->kvm) 1673 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1674 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1675 } 1676 1677 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1678 { 1679 kvm_register_mark_available(vcpu, reg); 1680 1681 switch (reg) { 1682 case VCPU_EXREG_PDPTR: 1683 /* 1684 * When !npt_enabled, mmu->pdptrs[] is already available since 1685 * it is always updated per SDM when moving to CRs. 1686 */ 1687 if (npt_enabled) 1688 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1689 break; 1690 default: 1691 KVM_BUG_ON(1, vcpu->kvm); 1692 } 1693 } 1694 1695 static void svm_set_vintr(struct vcpu_svm *svm) 1696 { 1697 struct vmcb_control_area *control; 1698 1699 /* 1700 * The following fields are ignored when AVIC is enabled 1701 */ 1702 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1703 1704 svm_set_intercept(svm, INTERCEPT_VINTR); 1705 1706 /* 1707 * Recalculating intercepts may have cleared the VINTR intercept. If 1708 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1709 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1710 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1711 * interrupts will never be unblocked while L2 is running. 1712 */ 1713 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1714 return; 1715 1716 /* 1717 * This is just a dummy VINTR to actually cause a vmexit to happen. 1718 * Actual injection of virtual interrupts happens through EVENTINJ. 1719 */ 1720 control = &svm->vmcb->control; 1721 control->int_vector = 0x0; 1722 control->int_ctl &= ~V_INTR_PRIO_MASK; 1723 control->int_ctl |= V_IRQ_MASK | 1724 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1725 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1726 } 1727 1728 static void svm_clear_vintr(struct vcpu_svm *svm) 1729 { 1730 svm_clr_intercept(svm, INTERCEPT_VINTR); 1731 1732 /* Drop int_ctl fields related to VINTR injection. */ 1733 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1734 if (is_guest_mode(&svm->vcpu)) { 1735 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1736 1737 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1738 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1739 1740 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1741 V_IRQ_INJECTION_BITS_MASK; 1742 1743 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1744 } 1745 1746 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1747 } 1748 1749 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1750 { 1751 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1752 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1753 1754 switch (seg) { 1755 case VCPU_SREG_CS: return &save->cs; 1756 case VCPU_SREG_DS: return &save->ds; 1757 case VCPU_SREG_ES: return &save->es; 1758 case VCPU_SREG_FS: return &save01->fs; 1759 case VCPU_SREG_GS: return &save01->gs; 1760 case VCPU_SREG_SS: return &save->ss; 1761 case VCPU_SREG_TR: return &save01->tr; 1762 case VCPU_SREG_LDTR: return &save01->ldtr; 1763 } 1764 BUG(); 1765 return NULL; 1766 } 1767 1768 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1769 { 1770 struct vmcb_seg *s = svm_seg(vcpu, seg); 1771 1772 return s->base; 1773 } 1774 1775 static void svm_get_segment(struct kvm_vcpu *vcpu, 1776 struct kvm_segment *var, int seg) 1777 { 1778 struct vmcb_seg *s = svm_seg(vcpu, seg); 1779 1780 var->base = s->base; 1781 var->limit = s->limit; 1782 var->selector = s->selector; 1783 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1784 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1785 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1786 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1787 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1788 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1789 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1790 1791 /* 1792 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1793 * However, the SVM spec states that the G bit is not observed by the 1794 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1795 * So let's synthesize a legal G bit for all segments, this helps 1796 * running KVM nested. It also helps cross-vendor migration, because 1797 * Intel's vmentry has a check on the 'G' bit. 1798 */ 1799 var->g = s->limit > 0xfffff; 1800 1801 /* 1802 * AMD's VMCB does not have an explicit unusable field, so emulate it 1803 * for cross vendor migration purposes by "not present" 1804 */ 1805 var->unusable = !var->present; 1806 1807 switch (seg) { 1808 case VCPU_SREG_TR: 1809 /* 1810 * Work around a bug where the busy flag in the tr selector 1811 * isn't exposed 1812 */ 1813 var->type |= 0x2; 1814 break; 1815 case VCPU_SREG_DS: 1816 case VCPU_SREG_ES: 1817 case VCPU_SREG_FS: 1818 case VCPU_SREG_GS: 1819 /* 1820 * The accessed bit must always be set in the segment 1821 * descriptor cache, although it can be cleared in the 1822 * descriptor, the cached bit always remains at 1. Since 1823 * Intel has a check on this, set it here to support 1824 * cross-vendor migration. 1825 */ 1826 if (!var->unusable) 1827 var->type |= 0x1; 1828 break; 1829 case VCPU_SREG_SS: 1830 /* 1831 * On AMD CPUs sometimes the DB bit in the segment 1832 * descriptor is left as 1, although the whole segment has 1833 * been made unusable. Clear it here to pass an Intel VMX 1834 * entry check when cross vendor migrating. 1835 */ 1836 if (var->unusable) 1837 var->db = 0; 1838 /* This is symmetric with svm_set_segment() */ 1839 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1840 break; 1841 } 1842 } 1843 1844 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1845 { 1846 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1847 1848 return save->cpl; 1849 } 1850 1851 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1852 { 1853 struct kvm_segment cs; 1854 1855 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1856 *db = cs.db; 1857 *l = cs.l; 1858 } 1859 1860 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1861 { 1862 struct vcpu_svm *svm = to_svm(vcpu); 1863 1864 dt->size = svm->vmcb->save.idtr.limit; 1865 dt->address = svm->vmcb->save.idtr.base; 1866 } 1867 1868 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1869 { 1870 struct vcpu_svm *svm = to_svm(vcpu); 1871 1872 svm->vmcb->save.idtr.limit = dt->size; 1873 svm->vmcb->save.idtr.base = dt->address ; 1874 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1875 } 1876 1877 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1878 { 1879 struct vcpu_svm *svm = to_svm(vcpu); 1880 1881 dt->size = svm->vmcb->save.gdtr.limit; 1882 dt->address = svm->vmcb->save.gdtr.base; 1883 } 1884 1885 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1886 { 1887 struct vcpu_svm *svm = to_svm(vcpu); 1888 1889 svm->vmcb->save.gdtr.limit = dt->size; 1890 svm->vmcb->save.gdtr.base = dt->address ; 1891 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1892 } 1893 1894 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1895 { 1896 struct vcpu_svm *svm = to_svm(vcpu); 1897 1898 /* 1899 * For guests that don't set guest_state_protected, the cr3 update is 1900 * handled via kvm_mmu_load() while entering the guest. For guests 1901 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1902 * VMCB save area now, since the save area will become the initial 1903 * contents of the VMSA, and future VMCB save area updates won't be 1904 * seen. 1905 */ 1906 if (sev_es_guest(vcpu->kvm)) { 1907 svm->vmcb->save.cr3 = cr3; 1908 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1909 } 1910 } 1911 1912 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1913 { 1914 return true; 1915 } 1916 1917 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1918 { 1919 struct vcpu_svm *svm = to_svm(vcpu); 1920 u64 hcr0 = cr0; 1921 bool old_paging = is_paging(vcpu); 1922 1923 #ifdef CONFIG_X86_64 1924 if (vcpu->arch.efer & EFER_LME) { 1925 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1926 vcpu->arch.efer |= EFER_LMA; 1927 if (!vcpu->arch.guest_state_protected) 1928 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1929 } 1930 1931 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1932 vcpu->arch.efer &= ~EFER_LMA; 1933 if (!vcpu->arch.guest_state_protected) 1934 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1935 } 1936 } 1937 #endif 1938 vcpu->arch.cr0 = cr0; 1939 1940 if (!npt_enabled) { 1941 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1942 if (old_paging != is_paging(vcpu)) 1943 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1944 } 1945 1946 /* 1947 * re-enable caching here because the QEMU bios 1948 * does not do it - this results in some delay at 1949 * reboot 1950 */ 1951 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1952 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1953 1954 svm->vmcb->save.cr0 = hcr0; 1955 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1956 1957 /* 1958 * SEV-ES guests must always keep the CR intercepts cleared. CR 1959 * tracking is done using the CR write traps. 1960 */ 1961 if (sev_es_guest(vcpu->kvm)) 1962 return; 1963 1964 if (hcr0 == cr0) { 1965 /* Selective CR0 write remains on. */ 1966 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1967 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1968 } else { 1969 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1970 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1971 } 1972 } 1973 1974 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1975 { 1976 return true; 1977 } 1978 1979 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1980 { 1981 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1982 unsigned long old_cr4 = vcpu->arch.cr4; 1983 1984 vcpu->arch.cr4 = cr4; 1985 if (!npt_enabled) { 1986 cr4 |= X86_CR4_PAE; 1987 1988 if (!is_paging(vcpu)) 1989 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1990 } 1991 cr4 |= host_cr4_mce; 1992 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1993 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1994 1995 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1996 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1997 } 1998 1999 static void svm_set_segment(struct kvm_vcpu *vcpu, 2000 struct kvm_segment *var, int seg) 2001 { 2002 struct vcpu_svm *svm = to_svm(vcpu); 2003 struct vmcb_seg *s = svm_seg(vcpu, seg); 2004 2005 s->base = var->base; 2006 s->limit = var->limit; 2007 s->selector = var->selector; 2008 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 2009 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 2010 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 2011 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 2012 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 2013 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 2014 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 2015 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 2016 2017 /* 2018 * This is always accurate, except if SYSRET returned to a segment 2019 * with SS.DPL != 3. Intel does not have this quirk, and always 2020 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 2021 * would entail passing the CPL to userspace and back. 2022 */ 2023 if (seg == VCPU_SREG_SS) 2024 /* This is symmetric with svm_get_segment() */ 2025 svm->vmcb->save.cpl = (var->dpl & 3); 2026 2027 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 2028 } 2029 2030 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 2031 { 2032 struct vcpu_svm *svm = to_svm(vcpu); 2033 2034 clr_exception_intercept(svm, BP_VECTOR); 2035 2036 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 2037 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 2038 set_exception_intercept(svm, BP_VECTOR); 2039 } 2040 } 2041 2042 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 2043 { 2044 if (sd->next_asid > sd->max_asid) { 2045 ++sd->asid_generation; 2046 sd->next_asid = sd->min_asid; 2047 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 2048 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2049 } 2050 2051 svm->current_vmcb->asid_generation = sd->asid_generation; 2052 svm->asid = sd->next_asid++; 2053 } 2054 2055 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) 2056 { 2057 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 2058 2059 if (vcpu->arch.guest_state_protected) 2060 return; 2061 2062 if (unlikely(value != vmcb->save.dr6)) { 2063 vmcb->save.dr6 = value; 2064 vmcb_mark_dirty(vmcb, VMCB_DR); 2065 } 2066 } 2067 2068 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2069 { 2070 struct vcpu_svm *svm = to_svm(vcpu); 2071 2072 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2073 return; 2074 2075 get_debugreg(vcpu->arch.db[0], 0); 2076 get_debugreg(vcpu->arch.db[1], 1); 2077 get_debugreg(vcpu->arch.db[2], 2); 2078 get_debugreg(vcpu->arch.db[3], 3); 2079 /* 2080 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2081 * because db_interception might need it. We can do it before vmentry. 2082 */ 2083 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2084 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2085 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2086 set_dr_intercepts(svm); 2087 } 2088 2089 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2090 { 2091 struct vcpu_svm *svm = to_svm(vcpu); 2092 2093 if (vcpu->arch.guest_state_protected) 2094 return; 2095 2096 svm->vmcb->save.dr7 = value; 2097 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2098 } 2099 2100 static int pf_interception(struct kvm_vcpu *vcpu) 2101 { 2102 struct vcpu_svm *svm = to_svm(vcpu); 2103 2104 u64 fault_address = svm->vmcb->control.exit_info_2; 2105 u64 error_code = svm->vmcb->control.exit_info_1; 2106 2107 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2108 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2109 svm->vmcb->control.insn_bytes : NULL, 2110 svm->vmcb->control.insn_len); 2111 } 2112 2113 static int npf_interception(struct kvm_vcpu *vcpu) 2114 { 2115 struct vcpu_svm *svm = to_svm(vcpu); 2116 int rc; 2117 2118 u64 fault_address = svm->vmcb->control.exit_info_2; 2119 u64 error_code = svm->vmcb->control.exit_info_1; 2120 2121 /* 2122 * WARN if hardware generates a fault with an error code that collides 2123 * with KVM-defined sythentic flags. Clear the flags and continue on, 2124 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 2125 * flag that KVM doesn't know about. 2126 */ 2127 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 2128 error_code &= ~PFERR_SYNTHETIC_MASK; 2129 2130 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 2131 error_code |= PFERR_PRIVATE_ACCESS; 2132 2133 trace_kvm_page_fault(vcpu, fault_address, error_code); 2134 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, 2135 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2136 svm->vmcb->control.insn_bytes : NULL, 2137 svm->vmcb->control.insn_len); 2138 2139 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 2140 sev_handle_rmp_fault(vcpu, fault_address, error_code); 2141 2142 return rc; 2143 } 2144 2145 static int db_interception(struct kvm_vcpu *vcpu) 2146 { 2147 struct kvm_run *kvm_run = vcpu->run; 2148 struct vcpu_svm *svm = to_svm(vcpu); 2149 2150 if (!(vcpu->guest_debug & 2151 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2152 !svm->nmi_singlestep) { 2153 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2154 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2155 return 1; 2156 } 2157 2158 if (svm->nmi_singlestep) { 2159 disable_nmi_singlestep(svm); 2160 /* Make sure we check for pending NMIs upon entry */ 2161 kvm_make_request(KVM_REQ_EVENT, vcpu); 2162 } 2163 2164 if (vcpu->guest_debug & 2165 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2166 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2167 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2168 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2169 kvm_run->debug.arch.pc = 2170 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2171 kvm_run->debug.arch.exception = DB_VECTOR; 2172 return 0; 2173 } 2174 2175 return 1; 2176 } 2177 2178 static int bp_interception(struct kvm_vcpu *vcpu) 2179 { 2180 struct vcpu_svm *svm = to_svm(vcpu); 2181 struct kvm_run *kvm_run = vcpu->run; 2182 2183 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2184 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2185 kvm_run->debug.arch.exception = BP_VECTOR; 2186 return 0; 2187 } 2188 2189 static int ud_interception(struct kvm_vcpu *vcpu) 2190 { 2191 return handle_ud(vcpu); 2192 } 2193 2194 static int ac_interception(struct kvm_vcpu *vcpu) 2195 { 2196 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2197 return 1; 2198 } 2199 2200 static bool is_erratum_383(void) 2201 { 2202 int i; 2203 u64 value; 2204 2205 if (!erratum_383_found) 2206 return false; 2207 2208 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value)) 2209 return false; 2210 2211 /* Bit 62 may or may not be set for this mce */ 2212 value &= ~(1ULL << 62); 2213 2214 if (value != 0xb600000000010015ULL) 2215 return false; 2216 2217 /* Clear MCi_STATUS registers */ 2218 for (i = 0; i < 6; ++i) 2219 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0); 2220 2221 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) { 2222 value &= ~(1ULL << 2); 2223 native_write_msr_safe(MSR_IA32_MCG_STATUS, value); 2224 } 2225 2226 /* Flush tlb to evict multi-match entries */ 2227 __flush_tlb_all(); 2228 2229 return true; 2230 } 2231 2232 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2233 { 2234 if (is_erratum_383()) { 2235 /* 2236 * Erratum 383 triggered. Guest state is corrupt so kill the 2237 * guest. 2238 */ 2239 pr_err("Guest triggered AMD Erratum 383\n"); 2240 2241 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2242 2243 return; 2244 } 2245 2246 /* 2247 * On an #MC intercept the MCE handler is not called automatically in 2248 * the host. So do it by hand here. 2249 */ 2250 kvm_machine_check(); 2251 } 2252 2253 static int mc_interception(struct kvm_vcpu *vcpu) 2254 { 2255 return 1; 2256 } 2257 2258 static int shutdown_interception(struct kvm_vcpu *vcpu) 2259 { 2260 struct kvm_run *kvm_run = vcpu->run; 2261 struct vcpu_svm *svm = to_svm(vcpu); 2262 2263 2264 /* 2265 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2266 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2267 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2268 * userspace. At a platform view, INIT is acceptable behavior as 2269 * there exist bare metal platforms that automatically INIT the CPU 2270 * in response to shutdown. 2271 * 2272 * The VM save area for SEV-ES guests has already been encrypted so it 2273 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2274 */ 2275 if (!sev_es_guest(vcpu->kvm)) { 2276 clear_page(svm->vmcb); 2277 #ifdef CONFIG_KVM_SMM 2278 if (is_smm(vcpu)) 2279 kvm_smm_changed(vcpu, false); 2280 #endif 2281 kvm_vcpu_reset(vcpu, true); 2282 } 2283 2284 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2285 return 0; 2286 } 2287 2288 static int io_interception(struct kvm_vcpu *vcpu) 2289 { 2290 struct vcpu_svm *svm = to_svm(vcpu); 2291 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2292 int size, in, string; 2293 unsigned port; 2294 2295 ++vcpu->stat.io_exits; 2296 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2297 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2298 port = io_info >> 16; 2299 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2300 2301 if (string) { 2302 if (sev_es_guest(vcpu->kvm)) 2303 return sev_es_string_io(svm, size, port, in); 2304 else 2305 return kvm_emulate_instruction(vcpu, 0); 2306 } 2307 2308 svm->next_rip = svm->vmcb->control.exit_info_2; 2309 2310 return kvm_fast_pio(vcpu, size, port, in); 2311 } 2312 2313 static int nmi_interception(struct kvm_vcpu *vcpu) 2314 { 2315 return 1; 2316 } 2317 2318 static int smi_interception(struct kvm_vcpu *vcpu) 2319 { 2320 return 1; 2321 } 2322 2323 static int intr_interception(struct kvm_vcpu *vcpu) 2324 { 2325 ++vcpu->stat.irq_exits; 2326 return 1; 2327 } 2328 2329 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2330 { 2331 struct vcpu_svm *svm = to_svm(vcpu); 2332 struct vmcb *vmcb12; 2333 struct kvm_host_map map; 2334 int ret; 2335 2336 if (nested_svm_check_permissions(vcpu)) 2337 return 1; 2338 2339 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2340 if (ret) { 2341 if (ret == -EINVAL) 2342 kvm_inject_gp(vcpu, 0); 2343 return 1; 2344 } 2345 2346 vmcb12 = map.hva; 2347 2348 ret = kvm_skip_emulated_instruction(vcpu); 2349 2350 if (vmload) { 2351 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2352 svm->sysenter_eip_hi = 0; 2353 svm->sysenter_esp_hi = 0; 2354 } else { 2355 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2356 } 2357 2358 kvm_vcpu_unmap(vcpu, &map); 2359 2360 return ret; 2361 } 2362 2363 static int vmload_interception(struct kvm_vcpu *vcpu) 2364 { 2365 return vmload_vmsave_interception(vcpu, true); 2366 } 2367 2368 static int vmsave_interception(struct kvm_vcpu *vcpu) 2369 { 2370 return vmload_vmsave_interception(vcpu, false); 2371 } 2372 2373 static int vmrun_interception(struct kvm_vcpu *vcpu) 2374 { 2375 if (nested_svm_check_permissions(vcpu)) 2376 return 1; 2377 2378 return nested_svm_vmrun(vcpu); 2379 } 2380 2381 enum { 2382 NONE_SVM_INSTR, 2383 SVM_INSTR_VMRUN, 2384 SVM_INSTR_VMLOAD, 2385 SVM_INSTR_VMSAVE, 2386 }; 2387 2388 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2389 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2390 { 2391 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2392 2393 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2394 return NONE_SVM_INSTR; 2395 2396 switch (ctxt->modrm) { 2397 case 0xd8: /* VMRUN */ 2398 return SVM_INSTR_VMRUN; 2399 case 0xda: /* VMLOAD */ 2400 return SVM_INSTR_VMLOAD; 2401 case 0xdb: /* VMSAVE */ 2402 return SVM_INSTR_VMSAVE; 2403 default: 2404 break; 2405 } 2406 2407 return NONE_SVM_INSTR; 2408 } 2409 2410 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2411 { 2412 const int guest_mode_exit_codes[] = { 2413 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2414 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2415 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2416 }; 2417 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2418 [SVM_INSTR_VMRUN] = vmrun_interception, 2419 [SVM_INSTR_VMLOAD] = vmload_interception, 2420 [SVM_INSTR_VMSAVE] = vmsave_interception, 2421 }; 2422 struct vcpu_svm *svm = to_svm(vcpu); 2423 int ret; 2424 2425 if (is_guest_mode(vcpu)) { 2426 /* Returns '1' or -errno on failure, '0' on success. */ 2427 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2428 if (ret) 2429 return ret; 2430 return 1; 2431 } 2432 return svm_instr_handlers[opcode](vcpu); 2433 } 2434 2435 /* 2436 * #GP handling code. Note that #GP can be triggered under the following two 2437 * cases: 2438 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2439 * some AMD CPUs when EAX of these instructions are in the reserved memory 2440 * regions (e.g. SMM memory on host). 2441 * 2) VMware backdoor 2442 */ 2443 static int gp_interception(struct kvm_vcpu *vcpu) 2444 { 2445 struct vcpu_svm *svm = to_svm(vcpu); 2446 u32 error_code = svm->vmcb->control.exit_info_1; 2447 int opcode; 2448 2449 /* Both #GP cases have zero error_code */ 2450 if (error_code) 2451 goto reinject; 2452 2453 /* Decode the instruction for usage later */ 2454 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2455 goto reinject; 2456 2457 opcode = svm_instr_opcode(vcpu); 2458 2459 if (opcode == NONE_SVM_INSTR) { 2460 if (!enable_vmware_backdoor) 2461 goto reinject; 2462 2463 /* 2464 * VMware backdoor emulation on #GP interception only handles 2465 * IN{S}, OUT{S}, and RDPMC. 2466 */ 2467 if (!is_guest_mode(vcpu)) 2468 return kvm_emulate_instruction(vcpu, 2469 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2470 } else { 2471 /* All SVM instructions expect page aligned RAX */ 2472 if (svm->vmcb->save.rax & ~PAGE_MASK) 2473 goto reinject; 2474 2475 return emulate_svm_instr(vcpu, opcode); 2476 } 2477 2478 reinject: 2479 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2480 return 1; 2481 } 2482 2483 void svm_set_gif(struct vcpu_svm *svm, bool value) 2484 { 2485 if (value) { 2486 /* 2487 * If VGIF is enabled, the STGI intercept is only added to 2488 * detect the opening of the SMI/NMI window; remove it now. 2489 * Likewise, clear the VINTR intercept, we will set it 2490 * again while processing KVM_REQ_EVENT if needed. 2491 */ 2492 if (vgif) 2493 svm_clr_intercept(svm, INTERCEPT_STGI); 2494 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2495 svm_clear_vintr(svm); 2496 2497 enable_gif(svm); 2498 if (svm->vcpu.arch.smi_pending || 2499 svm->vcpu.arch.nmi_pending || 2500 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2501 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2502 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2503 } else { 2504 disable_gif(svm); 2505 2506 /* 2507 * After a CLGI no interrupts should come. But if vGIF is 2508 * in use, we still rely on the VINTR intercept (rather than 2509 * STGI) to detect an open interrupt window. 2510 */ 2511 if (!vgif) 2512 svm_clear_vintr(svm); 2513 } 2514 } 2515 2516 static int stgi_interception(struct kvm_vcpu *vcpu) 2517 { 2518 int ret; 2519 2520 if (nested_svm_check_permissions(vcpu)) 2521 return 1; 2522 2523 ret = kvm_skip_emulated_instruction(vcpu); 2524 svm_set_gif(to_svm(vcpu), true); 2525 return ret; 2526 } 2527 2528 static int clgi_interception(struct kvm_vcpu *vcpu) 2529 { 2530 int ret; 2531 2532 if (nested_svm_check_permissions(vcpu)) 2533 return 1; 2534 2535 ret = kvm_skip_emulated_instruction(vcpu); 2536 svm_set_gif(to_svm(vcpu), false); 2537 return ret; 2538 } 2539 2540 static int invlpga_interception(struct kvm_vcpu *vcpu) 2541 { 2542 gva_t gva = kvm_rax_read(vcpu); 2543 u32 asid = kvm_rcx_read(vcpu); 2544 2545 /* FIXME: Handle an address size prefix. */ 2546 if (!is_long_mode(vcpu)) 2547 gva = (u32)gva; 2548 2549 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2550 2551 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2552 kvm_mmu_invlpg(vcpu, gva); 2553 2554 return kvm_skip_emulated_instruction(vcpu); 2555 } 2556 2557 static int skinit_interception(struct kvm_vcpu *vcpu) 2558 { 2559 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2560 2561 kvm_queue_exception(vcpu, UD_VECTOR); 2562 return 1; 2563 } 2564 2565 static int task_switch_interception(struct kvm_vcpu *vcpu) 2566 { 2567 struct vcpu_svm *svm = to_svm(vcpu); 2568 u16 tss_selector; 2569 int reason; 2570 int int_type = svm->vmcb->control.exit_int_info & 2571 SVM_EXITINTINFO_TYPE_MASK; 2572 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2573 uint32_t type = 2574 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2575 uint32_t idt_v = 2576 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2577 bool has_error_code = false; 2578 u32 error_code = 0; 2579 2580 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2581 2582 if (svm->vmcb->control.exit_info_2 & 2583 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2584 reason = TASK_SWITCH_IRET; 2585 else if (svm->vmcb->control.exit_info_2 & 2586 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2587 reason = TASK_SWITCH_JMP; 2588 else if (idt_v) 2589 reason = TASK_SWITCH_GATE; 2590 else 2591 reason = TASK_SWITCH_CALL; 2592 2593 if (reason == TASK_SWITCH_GATE) { 2594 switch (type) { 2595 case SVM_EXITINTINFO_TYPE_NMI: 2596 vcpu->arch.nmi_injected = false; 2597 break; 2598 case SVM_EXITINTINFO_TYPE_EXEPT: 2599 if (svm->vmcb->control.exit_info_2 & 2600 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2601 has_error_code = true; 2602 error_code = 2603 (u32)svm->vmcb->control.exit_info_2; 2604 } 2605 kvm_clear_exception_queue(vcpu); 2606 break; 2607 case SVM_EXITINTINFO_TYPE_INTR: 2608 case SVM_EXITINTINFO_TYPE_SOFT: 2609 kvm_clear_interrupt_queue(vcpu); 2610 break; 2611 default: 2612 break; 2613 } 2614 } 2615 2616 if (reason != TASK_SWITCH_GATE || 2617 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2618 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2619 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2620 if (!svm_skip_emulated_instruction(vcpu)) 2621 return 0; 2622 } 2623 2624 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2625 int_vec = -1; 2626 2627 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2628 has_error_code, error_code); 2629 } 2630 2631 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2632 { 2633 if (!sev_es_guest(svm->vcpu.kvm)) 2634 svm_clr_intercept(svm, INTERCEPT_IRET); 2635 } 2636 2637 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2638 { 2639 if (!sev_es_guest(svm->vcpu.kvm)) 2640 svm_set_intercept(svm, INTERCEPT_IRET); 2641 } 2642 2643 static int iret_interception(struct kvm_vcpu *vcpu) 2644 { 2645 struct vcpu_svm *svm = to_svm(vcpu); 2646 2647 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2648 2649 ++vcpu->stat.nmi_window_exits; 2650 svm->awaiting_iret_completion = true; 2651 2652 svm_clr_iret_intercept(svm); 2653 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2654 2655 kvm_make_request(KVM_REQ_EVENT, vcpu); 2656 return 1; 2657 } 2658 2659 static int invlpg_interception(struct kvm_vcpu *vcpu) 2660 { 2661 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2662 return kvm_emulate_instruction(vcpu, 0); 2663 2664 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2665 return kvm_skip_emulated_instruction(vcpu); 2666 } 2667 2668 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2669 { 2670 return kvm_emulate_instruction(vcpu, 0); 2671 } 2672 2673 static int rsm_interception(struct kvm_vcpu *vcpu) 2674 { 2675 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2676 } 2677 2678 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2679 unsigned long val) 2680 { 2681 struct vcpu_svm *svm = to_svm(vcpu); 2682 unsigned long cr0 = vcpu->arch.cr0; 2683 bool ret = false; 2684 2685 if (!is_guest_mode(vcpu) || 2686 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2687 return false; 2688 2689 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2690 val &= ~SVM_CR0_SELECTIVE_MASK; 2691 2692 if (cr0 ^ val) { 2693 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2694 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2695 } 2696 2697 return ret; 2698 } 2699 2700 #define CR_VALID (1ULL << 63) 2701 2702 static int cr_interception(struct kvm_vcpu *vcpu) 2703 { 2704 struct vcpu_svm *svm = to_svm(vcpu); 2705 int reg, cr; 2706 unsigned long val; 2707 int err; 2708 2709 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2710 return emulate_on_interception(vcpu); 2711 2712 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2713 return emulate_on_interception(vcpu); 2714 2715 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2716 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2717 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2718 else 2719 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2720 2721 err = 0; 2722 if (cr >= 16) { /* mov to cr */ 2723 cr -= 16; 2724 val = kvm_register_read(vcpu, reg); 2725 trace_kvm_cr_write(cr, val); 2726 switch (cr) { 2727 case 0: 2728 if (!check_selective_cr0_intercepted(vcpu, val)) 2729 err = kvm_set_cr0(vcpu, val); 2730 else 2731 return 1; 2732 2733 break; 2734 case 3: 2735 err = kvm_set_cr3(vcpu, val); 2736 break; 2737 case 4: 2738 err = kvm_set_cr4(vcpu, val); 2739 break; 2740 case 8: 2741 err = kvm_set_cr8(vcpu, val); 2742 break; 2743 default: 2744 WARN(1, "unhandled write to CR%d", cr); 2745 kvm_queue_exception(vcpu, UD_VECTOR); 2746 return 1; 2747 } 2748 } else { /* mov from cr */ 2749 switch (cr) { 2750 case 0: 2751 val = kvm_read_cr0(vcpu); 2752 break; 2753 case 2: 2754 val = vcpu->arch.cr2; 2755 break; 2756 case 3: 2757 val = kvm_read_cr3(vcpu); 2758 break; 2759 case 4: 2760 val = kvm_read_cr4(vcpu); 2761 break; 2762 case 8: 2763 val = kvm_get_cr8(vcpu); 2764 break; 2765 default: 2766 WARN(1, "unhandled read from CR%d", cr); 2767 kvm_queue_exception(vcpu, UD_VECTOR); 2768 return 1; 2769 } 2770 kvm_register_write(vcpu, reg, val); 2771 trace_kvm_cr_read(cr, val); 2772 } 2773 return kvm_complete_insn_gp(vcpu, err); 2774 } 2775 2776 static int cr_trap(struct kvm_vcpu *vcpu) 2777 { 2778 struct vcpu_svm *svm = to_svm(vcpu); 2779 unsigned long old_value, new_value; 2780 unsigned int cr; 2781 int ret = 0; 2782 2783 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2784 2785 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2786 switch (cr) { 2787 case 0: 2788 old_value = kvm_read_cr0(vcpu); 2789 svm_set_cr0(vcpu, new_value); 2790 2791 kvm_post_set_cr0(vcpu, old_value, new_value); 2792 break; 2793 case 4: 2794 old_value = kvm_read_cr4(vcpu); 2795 svm_set_cr4(vcpu, new_value); 2796 2797 kvm_post_set_cr4(vcpu, old_value, new_value); 2798 break; 2799 case 8: 2800 ret = kvm_set_cr8(vcpu, new_value); 2801 break; 2802 default: 2803 WARN(1, "unhandled CR%d write trap", cr); 2804 kvm_queue_exception(vcpu, UD_VECTOR); 2805 return 1; 2806 } 2807 2808 return kvm_complete_insn_gp(vcpu, ret); 2809 } 2810 2811 static int dr_interception(struct kvm_vcpu *vcpu) 2812 { 2813 struct vcpu_svm *svm = to_svm(vcpu); 2814 int reg, dr; 2815 int err = 0; 2816 2817 /* 2818 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2819 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2820 */ 2821 if (sev_es_guest(vcpu->kvm)) 2822 return 1; 2823 2824 if (vcpu->guest_debug == 0) { 2825 /* 2826 * No more DR vmexits; force a reload of the debug registers 2827 * and reenter on this instruction. The next vmexit will 2828 * retrieve the full state of the debug registers. 2829 */ 2830 clr_dr_intercepts(svm); 2831 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2832 return 1; 2833 } 2834 2835 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2836 return emulate_on_interception(vcpu); 2837 2838 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2839 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2840 if (dr >= 16) { /* mov to DRn */ 2841 dr -= 16; 2842 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2843 } else { 2844 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2845 } 2846 2847 return kvm_complete_insn_gp(vcpu, err); 2848 } 2849 2850 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2851 { 2852 int r; 2853 2854 u8 cr8_prev = kvm_get_cr8(vcpu); 2855 /* instruction emulation calls kvm_set_cr8() */ 2856 r = cr_interception(vcpu); 2857 if (lapic_in_kernel(vcpu)) 2858 return r; 2859 if (cr8_prev <= kvm_get_cr8(vcpu)) 2860 return r; 2861 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2862 return 0; 2863 } 2864 2865 static int efer_trap(struct kvm_vcpu *vcpu) 2866 { 2867 struct msr_data msr_info; 2868 int ret; 2869 2870 /* 2871 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2872 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2873 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2874 * the guest doesn't have X86_FEATURE_SVM. 2875 */ 2876 msr_info.host_initiated = false; 2877 msr_info.index = MSR_EFER; 2878 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2879 ret = kvm_set_msr_common(vcpu, &msr_info); 2880 2881 return kvm_complete_insn_gp(vcpu, ret); 2882 } 2883 2884 static int svm_get_feature_msr(u32 msr, u64 *data) 2885 { 2886 *data = 0; 2887 2888 switch (msr) { 2889 case MSR_AMD64_DE_CFG: 2890 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2891 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2892 break; 2893 default: 2894 return KVM_MSR_RET_UNSUPPORTED; 2895 } 2896 2897 return 0; 2898 } 2899 2900 static bool 2901 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2902 { 2903 return sev_es_guest(vcpu->kvm) && 2904 vcpu->arch.guest_state_protected && 2905 svm_msrpm_offset(msr_info->index) != MSR_INVALID && 2906 !msr_write_intercepted(vcpu, msr_info->index); 2907 } 2908 2909 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2910 { 2911 struct vcpu_svm *svm = to_svm(vcpu); 2912 2913 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2914 msr_info->data = 0; 2915 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2916 } 2917 2918 switch (msr_info->index) { 2919 case MSR_AMD64_TSC_RATIO: 2920 if (!msr_info->host_initiated && 2921 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) 2922 return 1; 2923 msr_info->data = svm->tsc_ratio_msr; 2924 break; 2925 case MSR_STAR: 2926 msr_info->data = svm->vmcb01.ptr->save.star; 2927 break; 2928 #ifdef CONFIG_X86_64 2929 case MSR_LSTAR: 2930 msr_info->data = svm->vmcb01.ptr->save.lstar; 2931 break; 2932 case MSR_CSTAR: 2933 msr_info->data = svm->vmcb01.ptr->save.cstar; 2934 break; 2935 case MSR_GS_BASE: 2936 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2937 break; 2938 case MSR_FS_BASE: 2939 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2940 break; 2941 case MSR_KERNEL_GS_BASE: 2942 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2943 break; 2944 case MSR_SYSCALL_MASK: 2945 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2946 break; 2947 #endif 2948 case MSR_IA32_SYSENTER_CS: 2949 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2950 break; 2951 case MSR_IA32_SYSENTER_EIP: 2952 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2953 if (guest_cpuid_is_intel_compatible(vcpu)) 2954 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2955 break; 2956 case MSR_IA32_SYSENTER_ESP: 2957 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2958 if (guest_cpuid_is_intel_compatible(vcpu)) 2959 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2960 break; 2961 case MSR_TSC_AUX: 2962 msr_info->data = svm->tsc_aux; 2963 break; 2964 case MSR_IA32_DEBUGCTLMSR: 2965 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2966 break; 2967 case MSR_IA32_LASTBRANCHFROMIP: 2968 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2969 break; 2970 case MSR_IA32_LASTBRANCHTOIP: 2971 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2972 break; 2973 case MSR_IA32_LASTINTFROMIP: 2974 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2975 break; 2976 case MSR_IA32_LASTINTTOIP: 2977 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2978 break; 2979 case MSR_VM_HSAVE_PA: 2980 msr_info->data = svm->nested.hsave_msr; 2981 break; 2982 case MSR_VM_CR: 2983 msr_info->data = svm->nested.vm_cr_msr; 2984 break; 2985 case MSR_IA32_SPEC_CTRL: 2986 if (!msr_info->host_initiated && 2987 !guest_has_spec_ctrl_msr(vcpu)) 2988 return 1; 2989 2990 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2991 msr_info->data = svm->vmcb->save.spec_ctrl; 2992 else 2993 msr_info->data = svm->spec_ctrl; 2994 break; 2995 case MSR_AMD64_VIRT_SPEC_CTRL: 2996 if (!msr_info->host_initiated && 2997 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2998 return 1; 2999 3000 msr_info->data = svm->virt_spec_ctrl; 3001 break; 3002 case MSR_F15H_IC_CFG: { 3003 3004 int family, model; 3005 3006 family = guest_cpuid_family(vcpu); 3007 model = guest_cpuid_model(vcpu); 3008 3009 if (family < 0 || model < 0) 3010 return kvm_get_msr_common(vcpu, msr_info); 3011 3012 msr_info->data = 0; 3013 3014 if (family == 0x15 && 3015 (model >= 0x2 && model < 0x20)) 3016 msr_info->data = 0x1E; 3017 } 3018 break; 3019 case MSR_AMD64_DE_CFG: 3020 msr_info->data = svm->msr_decfg; 3021 break; 3022 default: 3023 return kvm_get_msr_common(vcpu, msr_info); 3024 } 3025 return 0; 3026 } 3027 3028 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 3029 { 3030 struct vcpu_svm *svm = to_svm(vcpu); 3031 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 3032 return kvm_complete_insn_gp(vcpu, err); 3033 3034 svm_vmgexit_inject_exception(svm, X86_TRAP_GP); 3035 return 1; 3036 } 3037 3038 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 3039 { 3040 struct vcpu_svm *svm = to_svm(vcpu); 3041 int svm_dis, chg_mask; 3042 3043 if (data & ~SVM_VM_CR_VALID_MASK) 3044 return 1; 3045 3046 chg_mask = SVM_VM_CR_VALID_MASK; 3047 3048 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 3049 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 3050 3051 svm->nested.vm_cr_msr &= ~chg_mask; 3052 svm->nested.vm_cr_msr |= (data & chg_mask); 3053 3054 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 3055 3056 /* check for svm_disable while efer.svme is set */ 3057 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 3058 return 1; 3059 3060 return 0; 3061 } 3062 3063 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 3064 { 3065 struct vcpu_svm *svm = to_svm(vcpu); 3066 int ret = 0; 3067 3068 u32 ecx = msr->index; 3069 u64 data = msr->data; 3070 3071 if (sev_es_prevent_msr_access(vcpu, msr)) 3072 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 3073 3074 switch (ecx) { 3075 case MSR_AMD64_TSC_RATIO: 3076 3077 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) { 3078 3079 if (!msr->host_initiated) 3080 return 1; 3081 /* 3082 * In case TSC scaling is not enabled, always 3083 * leave this MSR at the default value. 3084 * 3085 * Due to bug in qemu 6.2.0, it would try to set 3086 * this msr to 0 if tsc scaling is not enabled. 3087 * Ignore this value as well. 3088 */ 3089 if (data != 0 && data != svm->tsc_ratio_msr) 3090 return 1; 3091 break; 3092 } 3093 3094 if (data & SVM_TSC_RATIO_RSVD) 3095 return 1; 3096 3097 svm->tsc_ratio_msr = data; 3098 3099 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 3100 is_guest_mode(vcpu)) 3101 nested_svm_update_tsc_ratio_msr(vcpu); 3102 3103 break; 3104 case MSR_IA32_CR_PAT: 3105 ret = kvm_set_msr_common(vcpu, msr); 3106 if (ret) 3107 break; 3108 3109 svm->vmcb01.ptr->save.g_pat = data; 3110 if (is_guest_mode(vcpu)) 3111 nested_vmcb02_compute_g_pat(svm); 3112 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3113 break; 3114 case MSR_IA32_SPEC_CTRL: 3115 if (!msr->host_initiated && 3116 !guest_has_spec_ctrl_msr(vcpu)) 3117 return 1; 3118 3119 if (kvm_spec_ctrl_test_value(data)) 3120 return 1; 3121 3122 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3123 svm->vmcb->save.spec_ctrl = data; 3124 else 3125 svm->spec_ctrl = data; 3126 if (!data) 3127 break; 3128 3129 /* 3130 * For non-nested: 3131 * When it's written (to non-zero) for the first time, pass 3132 * it through. 3133 * 3134 * For nested: 3135 * The handling of the MSR bitmap for L2 guests is done in 3136 * nested_svm_vmrun_msrpm. 3137 * We update the L1 MSR bit as well since it will end up 3138 * touching the MSR anyway now. 3139 */ 3140 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3141 break; 3142 case MSR_AMD64_VIRT_SPEC_CTRL: 3143 if (!msr->host_initiated && 3144 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3145 return 1; 3146 3147 if (data & ~SPEC_CTRL_SSBD) 3148 return 1; 3149 3150 svm->virt_spec_ctrl = data; 3151 break; 3152 case MSR_STAR: 3153 svm->vmcb01.ptr->save.star = data; 3154 break; 3155 #ifdef CONFIG_X86_64 3156 case MSR_LSTAR: 3157 svm->vmcb01.ptr->save.lstar = data; 3158 break; 3159 case MSR_CSTAR: 3160 svm->vmcb01.ptr->save.cstar = data; 3161 break; 3162 case MSR_GS_BASE: 3163 svm->vmcb01.ptr->save.gs.base = data; 3164 break; 3165 case MSR_FS_BASE: 3166 svm->vmcb01.ptr->save.fs.base = data; 3167 break; 3168 case MSR_KERNEL_GS_BASE: 3169 svm->vmcb01.ptr->save.kernel_gs_base = data; 3170 break; 3171 case MSR_SYSCALL_MASK: 3172 svm->vmcb01.ptr->save.sfmask = data; 3173 break; 3174 #endif 3175 case MSR_IA32_SYSENTER_CS: 3176 svm->vmcb01.ptr->save.sysenter_cs = data; 3177 break; 3178 case MSR_IA32_SYSENTER_EIP: 3179 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3180 /* 3181 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3182 * when we spoof an Intel vendor ID (for cross vendor migration). 3183 * In this case we use this intercept to track the high 3184 * 32 bit part of these msrs to support Intel's 3185 * implementation of SYSENTER/SYSEXIT. 3186 */ 3187 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3188 break; 3189 case MSR_IA32_SYSENTER_ESP: 3190 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3191 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3192 break; 3193 case MSR_TSC_AUX: 3194 /* 3195 * TSC_AUX is always virtualized for SEV-ES guests when the 3196 * feature is available. The user return MSR support is not 3197 * required in this case because TSC_AUX is restored on #VMEXIT 3198 * from the host save area (which has been initialized in 3199 * svm_enable_virtualization_cpu()). 3200 */ 3201 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3202 break; 3203 3204 /* 3205 * TSC_AUX is usually changed only during boot and never read 3206 * directly. Intercept TSC_AUX instead of exposing it to the 3207 * guest via direct_access_msrs, and switch it via user return. 3208 */ 3209 preempt_disable(); 3210 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3211 preempt_enable(); 3212 if (ret) 3213 break; 3214 3215 svm->tsc_aux = data; 3216 break; 3217 case MSR_IA32_DEBUGCTLMSR: 3218 if (!lbrv) { 3219 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3220 break; 3221 } 3222 3223 /* 3224 * AMD changed the architectural behavior of bits 5:2. On CPUs 3225 * without BusLockTrap, bits 5:2 control "external pins", but 3226 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap 3227 * and bits 5:3 are reserved-to-zero. Sadly, old KVM allowed 3228 * the guest to set bits 5:2 despite not actually virtualizing 3229 * Performance-Monitoring/Breakpoint external pins. Drop bits 3230 * 5:2 for backwards compatibility. 3231 */ 3232 data &= ~GENMASK(5, 2); 3233 3234 /* 3235 * Suppress BTF as KVM doesn't virtualize BTF, but there's no 3236 * way to communicate lack of support to the guest. 3237 */ 3238 if (data & DEBUGCTLMSR_BTF) { 3239 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 3240 data &= ~DEBUGCTLMSR_BTF; 3241 } 3242 3243 if (data & DEBUGCTL_RESERVED_BITS) 3244 return 1; 3245 3246 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3247 svm_update_lbrv(vcpu); 3248 break; 3249 case MSR_VM_HSAVE_PA: 3250 /* 3251 * Old kernels did not validate the value written to 3252 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3253 * value to allow live migrating buggy or malicious guests 3254 * originating from those kernels. 3255 */ 3256 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3257 return 1; 3258 3259 svm->nested.hsave_msr = data & PAGE_MASK; 3260 break; 3261 case MSR_VM_CR: 3262 return svm_set_vm_cr(vcpu, data); 3263 case MSR_VM_IGNNE: 3264 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3265 break; 3266 case MSR_AMD64_DE_CFG: { 3267 u64 supported_de_cfg; 3268 3269 if (svm_get_feature_msr(ecx, &supported_de_cfg)) 3270 return 1; 3271 3272 if (data & ~supported_de_cfg) 3273 return 1; 3274 3275 svm->msr_decfg = data; 3276 break; 3277 } 3278 default: 3279 return kvm_set_msr_common(vcpu, msr); 3280 } 3281 return ret; 3282 } 3283 3284 static int msr_interception(struct kvm_vcpu *vcpu) 3285 { 3286 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3287 return kvm_emulate_wrmsr(vcpu); 3288 else 3289 return kvm_emulate_rdmsr(vcpu); 3290 } 3291 3292 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3293 { 3294 kvm_make_request(KVM_REQ_EVENT, vcpu); 3295 svm_clear_vintr(to_svm(vcpu)); 3296 3297 /* 3298 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3299 * In this case AVIC was temporarily disabled for 3300 * requesting the IRQ window and we have to re-enable it. 3301 * 3302 * If running nested, still remove the VM wide AVIC inhibit to 3303 * support case in which the interrupt window was requested when the 3304 * vCPU was not running nested. 3305 3306 * All vCPUs which run still run nested, will remain to have their 3307 * AVIC still inhibited due to per-cpu AVIC inhibition. 3308 */ 3309 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3310 3311 ++vcpu->stat.irq_window_exits; 3312 return 1; 3313 } 3314 3315 static int pause_interception(struct kvm_vcpu *vcpu) 3316 { 3317 bool in_kernel; 3318 /* 3319 * CPL is not made available for an SEV-ES guest, therefore 3320 * vcpu->arch.preempted_in_kernel can never be true. Just 3321 * set in_kernel to false as well. 3322 */ 3323 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3324 3325 grow_ple_window(vcpu); 3326 3327 kvm_vcpu_on_spin(vcpu, in_kernel); 3328 return kvm_skip_emulated_instruction(vcpu); 3329 } 3330 3331 static int invpcid_interception(struct kvm_vcpu *vcpu) 3332 { 3333 struct vcpu_svm *svm = to_svm(vcpu); 3334 unsigned long type; 3335 gva_t gva; 3336 3337 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 3338 kvm_queue_exception(vcpu, UD_VECTOR); 3339 return 1; 3340 } 3341 3342 /* 3343 * For an INVPCID intercept: 3344 * EXITINFO1 provides the linear address of the memory operand. 3345 * EXITINFO2 provides the contents of the register operand. 3346 */ 3347 type = svm->vmcb->control.exit_info_2; 3348 gva = svm->vmcb->control.exit_info_1; 3349 3350 /* 3351 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the 3352 * stack segment is used. The intercept takes priority over all 3353 * #GP checks except CPL>0, but somehow still generates a linear 3354 * address? The APM is sorely lacking. 3355 */ 3356 if (is_noncanonical_address(gva, vcpu, 0)) { 3357 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 3358 return 1; 3359 } 3360 3361 return kvm_handle_invpcid(vcpu, type, gva); 3362 } 3363 3364 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3365 [SVM_EXIT_READ_CR0] = cr_interception, 3366 [SVM_EXIT_READ_CR3] = cr_interception, 3367 [SVM_EXIT_READ_CR4] = cr_interception, 3368 [SVM_EXIT_READ_CR8] = cr_interception, 3369 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3370 [SVM_EXIT_WRITE_CR0] = cr_interception, 3371 [SVM_EXIT_WRITE_CR3] = cr_interception, 3372 [SVM_EXIT_WRITE_CR4] = cr_interception, 3373 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3374 [SVM_EXIT_READ_DR0] = dr_interception, 3375 [SVM_EXIT_READ_DR1] = dr_interception, 3376 [SVM_EXIT_READ_DR2] = dr_interception, 3377 [SVM_EXIT_READ_DR3] = dr_interception, 3378 [SVM_EXIT_READ_DR4] = dr_interception, 3379 [SVM_EXIT_READ_DR5] = dr_interception, 3380 [SVM_EXIT_READ_DR6] = dr_interception, 3381 [SVM_EXIT_READ_DR7] = dr_interception, 3382 [SVM_EXIT_WRITE_DR0] = dr_interception, 3383 [SVM_EXIT_WRITE_DR1] = dr_interception, 3384 [SVM_EXIT_WRITE_DR2] = dr_interception, 3385 [SVM_EXIT_WRITE_DR3] = dr_interception, 3386 [SVM_EXIT_WRITE_DR4] = dr_interception, 3387 [SVM_EXIT_WRITE_DR5] = dr_interception, 3388 [SVM_EXIT_WRITE_DR6] = dr_interception, 3389 [SVM_EXIT_WRITE_DR7] = dr_interception, 3390 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3391 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3392 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3393 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3394 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3395 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3396 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3397 [SVM_EXIT_INTR] = intr_interception, 3398 [SVM_EXIT_NMI] = nmi_interception, 3399 [SVM_EXIT_SMI] = smi_interception, 3400 [SVM_EXIT_VINTR] = interrupt_window_interception, 3401 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3402 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3403 [SVM_EXIT_IRET] = iret_interception, 3404 [SVM_EXIT_INVD] = kvm_emulate_invd, 3405 [SVM_EXIT_PAUSE] = pause_interception, 3406 [SVM_EXIT_HLT] = kvm_emulate_halt, 3407 [SVM_EXIT_INVLPG] = invlpg_interception, 3408 [SVM_EXIT_INVLPGA] = invlpga_interception, 3409 [SVM_EXIT_IOIO] = io_interception, 3410 [SVM_EXIT_MSR] = msr_interception, 3411 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3412 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3413 [SVM_EXIT_VMRUN] = vmrun_interception, 3414 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3415 [SVM_EXIT_VMLOAD] = vmload_interception, 3416 [SVM_EXIT_VMSAVE] = vmsave_interception, 3417 [SVM_EXIT_STGI] = stgi_interception, 3418 [SVM_EXIT_CLGI] = clgi_interception, 3419 [SVM_EXIT_SKINIT] = skinit_interception, 3420 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3421 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3422 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3423 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3424 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3425 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3426 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3427 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3428 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3429 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3430 [SVM_EXIT_INVPCID] = invpcid_interception, 3431 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt, 3432 [SVM_EXIT_NPF] = npf_interception, 3433 [SVM_EXIT_RSM] = rsm_interception, 3434 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3435 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3436 #ifdef CONFIG_KVM_AMD_SEV 3437 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3438 #endif 3439 }; 3440 3441 static void dump_vmcb(struct kvm_vcpu *vcpu) 3442 { 3443 struct vcpu_svm *svm = to_svm(vcpu); 3444 struct vmcb_control_area *control = &svm->vmcb->control; 3445 struct vmcb_save_area *save = &svm->vmcb->save; 3446 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3447 3448 if (!dump_invalid_vmcb) { 3449 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3450 return; 3451 } 3452 3453 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3454 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3455 pr_err("VMCB Control Area:\n"); 3456 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3457 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3458 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3459 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3460 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3461 pr_err("%-20s%08x %08x\n", "intercepts:", 3462 control->intercepts[INTERCEPT_WORD3], 3463 control->intercepts[INTERCEPT_WORD4]); 3464 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3465 pr_err("%-20s%d\n", "pause filter threshold:", 3466 control->pause_filter_thresh); 3467 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3468 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3469 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3470 pr_err("%-20s%d\n", "asid:", control->asid); 3471 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3472 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3473 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3474 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3475 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3476 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3477 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3478 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3479 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3480 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3481 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3482 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3483 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3484 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3485 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3486 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3487 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3488 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3489 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3490 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3491 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3492 pr_err("VMCB State Save Area:\n"); 3493 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3494 "es:", 3495 save->es.selector, save->es.attrib, 3496 save->es.limit, save->es.base); 3497 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3498 "cs:", 3499 save->cs.selector, save->cs.attrib, 3500 save->cs.limit, save->cs.base); 3501 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3502 "ss:", 3503 save->ss.selector, save->ss.attrib, 3504 save->ss.limit, save->ss.base); 3505 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3506 "ds:", 3507 save->ds.selector, save->ds.attrib, 3508 save->ds.limit, save->ds.base); 3509 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3510 "fs:", 3511 save01->fs.selector, save01->fs.attrib, 3512 save01->fs.limit, save01->fs.base); 3513 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3514 "gs:", 3515 save01->gs.selector, save01->gs.attrib, 3516 save01->gs.limit, save01->gs.base); 3517 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3518 "gdtr:", 3519 save->gdtr.selector, save->gdtr.attrib, 3520 save->gdtr.limit, save->gdtr.base); 3521 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3522 "ldtr:", 3523 save01->ldtr.selector, save01->ldtr.attrib, 3524 save01->ldtr.limit, save01->ldtr.base); 3525 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3526 "idtr:", 3527 save->idtr.selector, save->idtr.attrib, 3528 save->idtr.limit, save->idtr.base); 3529 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3530 "tr:", 3531 save01->tr.selector, save01->tr.attrib, 3532 save01->tr.limit, save01->tr.base); 3533 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3534 save->vmpl, save->cpl, save->efer); 3535 pr_err("%-15s %016llx %-13s %016llx\n", 3536 "cr0:", save->cr0, "cr2:", save->cr2); 3537 pr_err("%-15s %016llx %-13s %016llx\n", 3538 "cr3:", save->cr3, "cr4:", save->cr4); 3539 pr_err("%-15s %016llx %-13s %016llx\n", 3540 "dr6:", save->dr6, "dr7:", save->dr7); 3541 pr_err("%-15s %016llx %-13s %016llx\n", 3542 "rip:", save->rip, "rflags:", save->rflags); 3543 pr_err("%-15s %016llx %-13s %016llx\n", 3544 "rsp:", save->rsp, "rax:", save->rax); 3545 pr_err("%-15s %016llx %-13s %016llx\n", 3546 "star:", save01->star, "lstar:", save01->lstar); 3547 pr_err("%-15s %016llx %-13s %016llx\n", 3548 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3549 pr_err("%-15s %016llx %-13s %016llx\n", 3550 "kernel_gs_base:", save01->kernel_gs_base, 3551 "sysenter_cs:", save01->sysenter_cs); 3552 pr_err("%-15s %016llx %-13s %016llx\n", 3553 "sysenter_esp:", save01->sysenter_esp, 3554 "sysenter_eip:", save01->sysenter_eip); 3555 pr_err("%-15s %016llx %-13s %016llx\n", 3556 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3557 pr_err("%-15s %016llx %-13s %016llx\n", 3558 "br_from:", save->br_from, "br_to:", save->br_to); 3559 pr_err("%-15s %016llx %-13s %016llx\n", 3560 "excp_from:", save->last_excp_from, 3561 "excp_to:", save->last_excp_to); 3562 } 3563 3564 static bool svm_check_exit_valid(u64 exit_code) 3565 { 3566 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3567 svm_exit_handlers[exit_code]); 3568 } 3569 3570 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3571 { 3572 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3573 dump_vmcb(vcpu); 3574 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3575 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3576 vcpu->run->internal.ndata = 2; 3577 vcpu->run->internal.data[0] = exit_code; 3578 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3579 return 0; 3580 } 3581 3582 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3583 { 3584 if (!svm_check_exit_valid(exit_code)) 3585 return svm_handle_invalid_exit(vcpu, exit_code); 3586 3587 #ifdef CONFIG_MITIGATION_RETPOLINE 3588 if (exit_code == SVM_EXIT_MSR) 3589 return msr_interception(vcpu); 3590 else if (exit_code == SVM_EXIT_VINTR) 3591 return interrupt_window_interception(vcpu); 3592 else if (exit_code == SVM_EXIT_INTR) 3593 return intr_interception(vcpu); 3594 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT) 3595 return kvm_emulate_halt(vcpu); 3596 else if (exit_code == SVM_EXIT_NPF) 3597 return npf_interception(vcpu); 3598 #endif 3599 return svm_exit_handlers[exit_code](vcpu); 3600 } 3601 3602 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3603 u64 *info1, u64 *info2, 3604 u32 *intr_info, u32 *error_code) 3605 { 3606 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3607 3608 *reason = control->exit_code; 3609 *info1 = control->exit_info_1; 3610 *info2 = control->exit_info_2; 3611 *intr_info = control->exit_int_info; 3612 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3613 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3614 *error_code = control->exit_int_info_err; 3615 else 3616 *error_code = 0; 3617 } 3618 3619 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, 3620 u32 *error_code) 3621 { 3622 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3623 3624 *intr_info = control->event_inj; 3625 3626 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3627 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3628 *error_code = control->event_inj_err; 3629 else 3630 *error_code = 0; 3631 3632 } 3633 3634 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3635 { 3636 struct vcpu_svm *svm = to_svm(vcpu); 3637 struct kvm_run *kvm_run = vcpu->run; 3638 u32 exit_code = svm->vmcb->control.exit_code; 3639 3640 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3641 if (!sev_es_guest(vcpu->kvm)) { 3642 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3643 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3644 if (npt_enabled) 3645 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3646 } 3647 3648 if (is_guest_mode(vcpu)) { 3649 int vmexit; 3650 3651 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3652 3653 vmexit = nested_svm_exit_special(svm); 3654 3655 if (vmexit == NESTED_EXIT_CONTINUE) 3656 vmexit = nested_svm_exit_handled(svm); 3657 3658 if (vmexit == NESTED_EXIT_DONE) 3659 return 1; 3660 } 3661 3662 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3663 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3664 kvm_run->fail_entry.hardware_entry_failure_reason 3665 = svm->vmcb->control.exit_code; 3666 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3667 dump_vmcb(vcpu); 3668 return 0; 3669 } 3670 3671 if (exit_fastpath != EXIT_FASTPATH_NONE) 3672 return 1; 3673 3674 return svm_invoke_exit_handler(vcpu, exit_code); 3675 } 3676 3677 static int pre_svm_run(struct kvm_vcpu *vcpu) 3678 { 3679 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3680 struct vcpu_svm *svm = to_svm(vcpu); 3681 3682 /* 3683 * If the previous vmrun of the vmcb occurred on a different physical 3684 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3685 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3686 */ 3687 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3688 svm->current_vmcb->asid_generation = 0; 3689 vmcb_mark_all_dirty(svm->vmcb); 3690 svm->current_vmcb->cpu = vcpu->cpu; 3691 } 3692 3693 if (sev_guest(vcpu->kvm)) 3694 return pre_sev_run(svm, vcpu->cpu); 3695 3696 /* FIXME: handle wraparound of asid_generation */ 3697 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3698 new_asid(svm, sd); 3699 3700 return 0; 3701 } 3702 3703 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3704 { 3705 struct vcpu_svm *svm = to_svm(vcpu); 3706 3707 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3708 3709 if (svm->nmi_l1_to_l2) 3710 return; 3711 3712 /* 3713 * No need to manually track NMI masking when vNMI is enabled, hardware 3714 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3715 * case where software directly injects an NMI. 3716 */ 3717 if (!is_vnmi_enabled(svm)) { 3718 svm->nmi_masked = true; 3719 svm_set_iret_intercept(svm); 3720 } 3721 ++vcpu->stat.nmi_injections; 3722 } 3723 3724 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3725 { 3726 struct vcpu_svm *svm = to_svm(vcpu); 3727 3728 if (!is_vnmi_enabled(svm)) 3729 return false; 3730 3731 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3732 } 3733 3734 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3735 { 3736 struct vcpu_svm *svm = to_svm(vcpu); 3737 3738 if (!is_vnmi_enabled(svm)) 3739 return false; 3740 3741 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3742 return false; 3743 3744 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3745 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3746 3747 /* 3748 * Because the pending NMI is serviced by hardware, KVM can't know when 3749 * the NMI is "injected", but for all intents and purposes, passing the 3750 * NMI off to hardware counts as injection. 3751 */ 3752 ++vcpu->stat.nmi_injections; 3753 3754 return true; 3755 } 3756 3757 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3758 { 3759 struct vcpu_svm *svm = to_svm(vcpu); 3760 u32 type; 3761 3762 if (vcpu->arch.interrupt.soft) { 3763 if (svm_update_soft_interrupt_rip(vcpu)) 3764 return; 3765 3766 type = SVM_EVTINJ_TYPE_SOFT; 3767 } else { 3768 type = SVM_EVTINJ_TYPE_INTR; 3769 } 3770 3771 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3772 vcpu->arch.interrupt.soft, reinjected); 3773 ++vcpu->stat.irq_injections; 3774 3775 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3776 SVM_EVTINJ_VALID | type; 3777 } 3778 3779 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3780 int trig_mode, int vector) 3781 { 3782 /* 3783 * apic->apicv_active must be read after vcpu->mode. 3784 * Pairs with smp_store_release in vcpu_enter_guest. 3785 */ 3786 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3787 3788 /* Note, this is called iff the local APIC is in-kernel. */ 3789 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3790 /* Process the interrupt via kvm_check_and_inject_events(). */ 3791 kvm_make_request(KVM_REQ_EVENT, vcpu); 3792 kvm_vcpu_kick(vcpu); 3793 return; 3794 } 3795 3796 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3797 if (in_guest_mode) { 3798 /* 3799 * Signal the doorbell to tell hardware to inject the IRQ. If 3800 * the vCPU exits the guest before the doorbell chimes, hardware 3801 * will automatically process AVIC interrupts at the next VMRUN. 3802 */ 3803 avic_ring_doorbell(vcpu); 3804 } else { 3805 /* 3806 * Wake the vCPU if it was blocking. KVM will then detect the 3807 * pending IRQ when checking if the vCPU has a wake event. 3808 */ 3809 kvm_vcpu_wake_up(vcpu); 3810 } 3811 } 3812 3813 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3814 int trig_mode, int vector) 3815 { 3816 kvm_lapic_set_irr(vector, apic); 3817 3818 /* 3819 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3820 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3821 * the read of guest_mode. This guarantees that either VMRUN will see 3822 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3823 * will signal the doorbell if the CPU has already entered the guest. 3824 */ 3825 smp_mb__after_atomic(); 3826 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3827 } 3828 3829 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3830 { 3831 struct vcpu_svm *svm = to_svm(vcpu); 3832 3833 /* 3834 * SEV-ES guests must always keep the CR intercepts cleared. CR 3835 * tracking is done using the CR write traps. 3836 */ 3837 if (sev_es_guest(vcpu->kvm)) 3838 return; 3839 3840 if (nested_svm_virtualize_tpr(vcpu)) 3841 return; 3842 3843 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3844 3845 if (irr == -1) 3846 return; 3847 3848 if (tpr >= irr) 3849 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3850 } 3851 3852 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3853 { 3854 struct vcpu_svm *svm = to_svm(vcpu); 3855 3856 if (is_vnmi_enabled(svm)) 3857 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3858 else 3859 return svm->nmi_masked; 3860 } 3861 3862 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3863 { 3864 struct vcpu_svm *svm = to_svm(vcpu); 3865 3866 if (is_vnmi_enabled(svm)) { 3867 if (masked) 3868 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3869 else 3870 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3871 3872 } else { 3873 svm->nmi_masked = masked; 3874 if (masked) 3875 svm_set_iret_intercept(svm); 3876 else 3877 svm_clr_iret_intercept(svm); 3878 } 3879 } 3880 3881 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3882 { 3883 struct vcpu_svm *svm = to_svm(vcpu); 3884 struct vmcb *vmcb = svm->vmcb; 3885 3886 if (!gif_set(svm)) 3887 return true; 3888 3889 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3890 return false; 3891 3892 if (svm_get_nmi_mask(vcpu)) 3893 return true; 3894 3895 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3896 } 3897 3898 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3899 { 3900 struct vcpu_svm *svm = to_svm(vcpu); 3901 if (svm->nested.nested_run_pending) 3902 return -EBUSY; 3903 3904 if (svm_nmi_blocked(vcpu)) 3905 return 0; 3906 3907 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3908 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3909 return -EBUSY; 3910 return 1; 3911 } 3912 3913 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3914 { 3915 struct vcpu_svm *svm = to_svm(vcpu); 3916 struct vmcb *vmcb = svm->vmcb; 3917 3918 if (!gif_set(svm)) 3919 return true; 3920 3921 if (is_guest_mode(vcpu)) { 3922 /* As long as interrupts are being delivered... */ 3923 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3924 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3925 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3926 return true; 3927 3928 /* ... vmexits aren't blocked by the interrupt shadow */ 3929 if (nested_exit_on_intr(svm)) 3930 return false; 3931 } else { 3932 if (!svm_get_if_flag(vcpu)) 3933 return true; 3934 } 3935 3936 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3937 } 3938 3939 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3940 { 3941 struct vcpu_svm *svm = to_svm(vcpu); 3942 3943 if (svm->nested.nested_run_pending) 3944 return -EBUSY; 3945 3946 if (svm_interrupt_blocked(vcpu)) 3947 return 0; 3948 3949 /* 3950 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3951 * e.g. if the IRQ arrived asynchronously after checking nested events. 3952 */ 3953 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3954 return -EBUSY; 3955 3956 return 1; 3957 } 3958 3959 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3960 { 3961 struct vcpu_svm *svm = to_svm(vcpu); 3962 3963 /* 3964 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3965 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3966 * get that intercept, this function will be called again though and 3967 * we'll get the vintr intercept. However, if the vGIF feature is 3968 * enabled, the STGI interception will not occur. Enable the irq 3969 * window under the assumption that the hardware will set the GIF. 3970 */ 3971 if (vgif || gif_set(svm)) { 3972 /* 3973 * IRQ window is not needed when AVIC is enabled, 3974 * unless we have pending ExtINT since it cannot be injected 3975 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3976 * and fallback to injecting IRQ via V_IRQ. 3977 * 3978 * If running nested, AVIC is already locally inhibited 3979 * on this vCPU, therefore there is no need to request 3980 * the VM wide AVIC inhibition. 3981 */ 3982 if (!is_guest_mode(vcpu)) 3983 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3984 3985 svm_set_vintr(svm); 3986 } 3987 } 3988 3989 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3990 { 3991 struct vcpu_svm *svm = to_svm(vcpu); 3992 3993 /* 3994 * If NMIs are outright masked, i.e. the vCPU is already handling an 3995 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3996 * more to do at this time as KVM has already enabled IRET intercepts. 3997 * If KVM has already intercepted IRET, then single-step over the IRET, 3998 * as NMIs aren't architecturally unmasked until the IRET completes. 3999 * 4000 * If vNMI is enabled, KVM should never request an NMI window if NMIs 4001 * are masked, as KVM allows at most one to-be-injected NMI and one 4002 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 4003 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 4004 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 4005 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 4006 * inject the NMI. In those situations, KVM needs to single-step over 4007 * the STI shadow or intercept STGI. 4008 */ 4009 if (svm_get_nmi_mask(vcpu)) { 4010 WARN_ON_ONCE(is_vnmi_enabled(svm)); 4011 4012 if (!svm->awaiting_iret_completion) 4013 return; /* IRET will cause a vm exit */ 4014 } 4015 4016 /* 4017 * SEV-ES guests are responsible for signaling when a vCPU is ready to 4018 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 4019 * KVM can't intercept and single-step IRET to detect when NMIs are 4020 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 4021 * 4022 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 4023 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 4024 * supported NAEs in the GHCB protocol. 4025 */ 4026 if (sev_es_guest(vcpu->kvm)) 4027 return; 4028 4029 if (!gif_set(svm)) { 4030 if (vgif) 4031 svm_set_intercept(svm, INTERCEPT_STGI); 4032 return; /* STGI will cause a vm exit */ 4033 } 4034 4035 /* 4036 * Something prevents NMI from been injected. Single step over possible 4037 * problem (IRET or exception injection or interrupt shadow) 4038 */ 4039 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 4040 svm->nmi_singlestep = true; 4041 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 4042 } 4043 4044 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 4045 { 4046 struct vcpu_svm *svm = to_svm(vcpu); 4047 4048 /* 4049 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 4050 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 4051 * entries, and thus is a superset of Hyper-V's fine grained flushing. 4052 */ 4053 kvm_hv_vcpu_purge_flush_tlb(vcpu); 4054 4055 /* 4056 * Flush only the current ASID even if the TLB flush was invoked via 4057 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 4058 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 4059 * unconditionally does a TLB flush on both nested VM-Enter and nested 4060 * VM-Exit (via kvm_mmu_reset_context()). 4061 */ 4062 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 4063 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 4064 else 4065 svm->current_vmcb->asid_generation--; 4066 } 4067 4068 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 4069 { 4070 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 4071 4072 /* 4073 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 4074 * flush the NPT mappings via hypercall as flushing the ASID only 4075 * affects virtual to physical mappings, it does not invalidate guest 4076 * physical to host physical mappings. 4077 */ 4078 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 4079 hyperv_flush_guest_mapping(root_tdp); 4080 4081 svm_flush_tlb_asid(vcpu); 4082 } 4083 4084 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 4085 { 4086 /* 4087 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 4088 * flushes should be routed to hv_flush_remote_tlbs() without requesting 4089 * a "regular" remote flush. Reaching this point means either there's 4090 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 4091 * which might be fatal to the guest. Yell, but try to recover. 4092 */ 4093 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 4094 hv_flush_remote_tlbs(vcpu->kvm); 4095 4096 svm_flush_tlb_asid(vcpu); 4097 } 4098 4099 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 4100 { 4101 struct vcpu_svm *svm = to_svm(vcpu); 4102 4103 invlpga(gva, svm->vmcb->control.asid); 4104 } 4105 4106 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 4107 { 4108 struct vcpu_svm *svm = to_svm(vcpu); 4109 4110 if (nested_svm_virtualize_tpr(vcpu)) 4111 return; 4112 4113 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 4114 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 4115 kvm_set_cr8(vcpu, cr8); 4116 } 4117 } 4118 4119 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4120 { 4121 struct vcpu_svm *svm = to_svm(vcpu); 4122 u64 cr8; 4123 4124 if (nested_svm_virtualize_tpr(vcpu) || 4125 kvm_vcpu_apicv_active(vcpu)) 4126 return; 4127 4128 cr8 = kvm_get_cr8(vcpu); 4129 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4130 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4131 } 4132 4133 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4134 int type) 4135 { 4136 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4137 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4138 struct vcpu_svm *svm = to_svm(vcpu); 4139 4140 /* 4141 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4142 * associated with the original soft exception/interrupt. next_rip is 4143 * cleared on all exits that can occur while vectoring an event, so KVM 4144 * needs to manually set next_rip for re-injection. Unlike the !nrips 4145 * case below, this needs to be done if and only if KVM is re-injecting 4146 * the same event, i.e. if the event is a soft exception/interrupt, 4147 * otherwise next_rip is unused on VMRUN. 4148 */ 4149 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4150 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4151 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4152 /* 4153 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4154 * injecting the soft exception/interrupt. That advancement needs to 4155 * be unwound if vectoring didn't complete. Note, the new event may 4156 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4157 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4158 * be the reported vectored event, but RIP still needs to be unwound. 4159 */ 4160 else if (!nrips && (is_soft || is_exception) && 4161 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4162 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4163 } 4164 4165 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4166 { 4167 struct vcpu_svm *svm = to_svm(vcpu); 4168 u8 vector; 4169 int type; 4170 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4171 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4172 bool soft_int_injected = svm->soft_int_injected; 4173 4174 svm->nmi_l1_to_l2 = false; 4175 svm->soft_int_injected = false; 4176 4177 /* 4178 * If we've made progress since setting awaiting_iret_completion, we've 4179 * executed an IRET and can allow NMI injection. 4180 */ 4181 if (svm->awaiting_iret_completion && 4182 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4183 svm->awaiting_iret_completion = false; 4184 svm->nmi_masked = false; 4185 kvm_make_request(KVM_REQ_EVENT, vcpu); 4186 } 4187 4188 vcpu->arch.nmi_injected = false; 4189 kvm_clear_exception_queue(vcpu); 4190 kvm_clear_interrupt_queue(vcpu); 4191 4192 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4193 return; 4194 4195 kvm_make_request(KVM_REQ_EVENT, vcpu); 4196 4197 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4198 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4199 4200 if (soft_int_injected) 4201 svm_complete_soft_interrupt(vcpu, vector, type); 4202 4203 switch (type) { 4204 case SVM_EXITINTINFO_TYPE_NMI: 4205 vcpu->arch.nmi_injected = true; 4206 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4207 break; 4208 case SVM_EXITINTINFO_TYPE_EXEPT: { 4209 u32 error_code = 0; 4210 4211 /* 4212 * Never re-inject a #VC exception. 4213 */ 4214 if (vector == X86_TRAP_VC) 4215 break; 4216 4217 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) 4218 error_code = svm->vmcb->control.exit_int_info_err; 4219 4220 kvm_requeue_exception(vcpu, vector, 4221 exitintinfo & SVM_EXITINTINFO_VALID_ERR, 4222 error_code); 4223 break; 4224 } 4225 case SVM_EXITINTINFO_TYPE_INTR: 4226 kvm_queue_interrupt(vcpu, vector, false); 4227 break; 4228 case SVM_EXITINTINFO_TYPE_SOFT: 4229 kvm_queue_interrupt(vcpu, vector, true); 4230 break; 4231 default: 4232 break; 4233 } 4234 4235 } 4236 4237 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4238 { 4239 struct vcpu_svm *svm = to_svm(vcpu); 4240 struct vmcb_control_area *control = &svm->vmcb->control; 4241 4242 control->exit_int_info = control->event_inj; 4243 control->exit_int_info_err = control->event_inj_err; 4244 control->event_inj = 0; 4245 svm_complete_interrupts(vcpu); 4246 } 4247 4248 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4249 { 4250 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4251 return -EINVAL; 4252 4253 return 1; 4254 } 4255 4256 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4257 { 4258 struct vcpu_svm *svm = to_svm(vcpu); 4259 4260 if (is_guest_mode(vcpu)) 4261 return EXIT_FASTPATH_NONE; 4262 4263 switch (svm->vmcb->control.exit_code) { 4264 case SVM_EXIT_MSR: 4265 if (!svm->vmcb->control.exit_info_1) 4266 break; 4267 return handle_fastpath_set_msr_irqoff(vcpu); 4268 case SVM_EXIT_HLT: 4269 return handle_fastpath_hlt(vcpu); 4270 default: 4271 break; 4272 } 4273 4274 return EXIT_FASTPATH_NONE; 4275 } 4276 4277 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4278 { 4279 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4280 struct vcpu_svm *svm = to_svm(vcpu); 4281 4282 guest_state_enter_irqoff(); 4283 4284 /* 4285 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of 4286 * VMRUN controls whether or not physical IRQs are masked (KVM always 4287 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the 4288 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow 4289 * into guest state if delivery of an event during VMRUN triggers a 4290 * #VMEXIT, and the guest_state transitions already tell lockdep that 4291 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of 4292 * this path, so IRQs aren't actually unmasked while running host code. 4293 */ 4294 raw_local_irq_enable(); 4295 4296 amd_clear_divider(); 4297 4298 if (sev_es_guest(vcpu->kvm)) 4299 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4300 sev_es_host_save_area(sd)); 4301 else 4302 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4303 4304 raw_local_irq_disable(); 4305 4306 guest_state_exit_irqoff(); 4307 } 4308 4309 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, 4310 bool force_immediate_exit) 4311 { 4312 struct vcpu_svm *svm = to_svm(vcpu); 4313 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4314 4315 trace_kvm_entry(vcpu, force_immediate_exit); 4316 4317 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4318 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4319 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4320 4321 /* 4322 * Disable singlestep if we're injecting an interrupt/exception. 4323 * We don't want our modified rflags to be pushed on the stack where 4324 * we might not be able to easily reset them if we disabled NMI 4325 * singlestep later. 4326 */ 4327 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4328 /* 4329 * Event injection happens before external interrupts cause a 4330 * vmexit and interrupts are disabled here, so smp_send_reschedule 4331 * is enough to force an immediate vmexit. 4332 */ 4333 disable_nmi_singlestep(svm); 4334 force_immediate_exit = true; 4335 } 4336 4337 if (force_immediate_exit) 4338 smp_send_reschedule(vcpu->cpu); 4339 4340 if (pre_svm_run(vcpu)) { 4341 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4342 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR; 4343 vcpu->run->fail_entry.cpu = vcpu->cpu; 4344 return EXIT_FASTPATH_EXIT_USERSPACE; 4345 } 4346 4347 sync_lapic_to_cr8(vcpu); 4348 4349 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4350 svm->vmcb->control.asid = svm->asid; 4351 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4352 } 4353 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4354 4355 svm_hv_update_vp_id(svm->vmcb, vcpu); 4356 4357 /* 4358 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4359 * of a #DB. 4360 */ 4361 if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))) 4362 svm_set_dr6(vcpu, DR6_ACTIVE_LOW); 4363 4364 clgi(); 4365 kvm_load_guest_xsave_state(vcpu); 4366 4367 /* 4368 * Hardware only context switches DEBUGCTL if LBR virtualization is 4369 * enabled. Manually load DEBUGCTL if necessary (and restore it after 4370 * VM-Exit), as running with the host's DEBUGCTL can negatively affect 4371 * guest state and can even be fatal, e.g. due to Bus Lock Detect. 4372 */ 4373 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4374 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4375 update_debugctlmsr(svm->vmcb->save.dbgctl); 4376 4377 kvm_wait_lapic_expire(vcpu); 4378 4379 /* 4380 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4381 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4382 * is no need to worry about the conditional branch over the wrmsr 4383 * being speculatively taken. 4384 */ 4385 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4386 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4387 4388 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4389 4390 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4391 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4392 4393 if (!sev_es_guest(vcpu->kvm)) { 4394 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4395 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4396 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4397 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4398 } 4399 vcpu->arch.regs_dirty = 0; 4400 4401 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4402 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4403 4404 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4405 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4406 update_debugctlmsr(vcpu->arch.host_debugctl); 4407 4408 kvm_load_host_xsave_state(vcpu); 4409 stgi(); 4410 4411 /* Any pending NMI will happen here */ 4412 4413 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4414 kvm_after_interrupt(vcpu); 4415 4416 sync_cr8_to_lapic(vcpu); 4417 4418 svm->next_rip = 0; 4419 if (is_guest_mode(vcpu)) { 4420 nested_sync_control_from_vmcb02(svm); 4421 4422 /* Track VMRUNs that have made past consistency checking */ 4423 if (svm->nested.nested_run_pending && 4424 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4425 ++vcpu->stat.nested_run; 4426 4427 svm->nested.nested_run_pending = 0; 4428 } 4429 4430 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4431 vmcb_mark_all_clean(svm->vmcb); 4432 4433 /* if exit due to PF check for async PF */ 4434 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4435 vcpu->arch.apf.host_apf_flags = 4436 kvm_read_and_reset_apf_flags(); 4437 4438 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4439 4440 /* 4441 * We need to handle MC intercepts here before the vcpu has a chance to 4442 * change the physical cpu 4443 */ 4444 if (unlikely(svm->vmcb->control.exit_code == 4445 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4446 svm_handle_mce(vcpu); 4447 4448 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4449 4450 svm_complete_interrupts(vcpu); 4451 4452 return svm_exit_handlers_fastpath(vcpu); 4453 } 4454 4455 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4456 int root_level) 4457 { 4458 struct vcpu_svm *svm = to_svm(vcpu); 4459 unsigned long cr3; 4460 4461 if (npt_enabled) { 4462 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4463 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4464 4465 hv_track_root_tdp(vcpu, root_hpa); 4466 4467 cr3 = vcpu->arch.cr3; 4468 } else if (root_level >= PT64_ROOT_4LEVEL) { 4469 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4470 } else { 4471 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4472 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4473 cr3 = root_hpa; 4474 } 4475 4476 svm->vmcb->save.cr3 = cr3; 4477 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4478 } 4479 4480 static void 4481 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4482 { 4483 /* 4484 * Patch in the VMMCALL instruction: 4485 */ 4486 hypercall[0] = 0x0f; 4487 hypercall[1] = 0x01; 4488 hypercall[2] = 0xd9; 4489 } 4490 4491 /* 4492 * The kvm parameter can be NULL (module initialization, or invocation before 4493 * VM creation). Be sure to check the kvm parameter before using it. 4494 */ 4495 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4496 { 4497 switch (index) { 4498 case MSR_IA32_MCG_EXT_CTL: 4499 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4500 return false; 4501 case MSR_IA32_SMBASE: 4502 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4503 return false; 4504 /* SEV-ES guests do not support SMM, so report false */ 4505 if (kvm && sev_es_guest(kvm)) 4506 return false; 4507 break; 4508 default: 4509 break; 4510 } 4511 4512 return true; 4513 } 4514 4515 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4516 { 4517 struct vcpu_svm *svm = to_svm(vcpu); 4518 4519 /* 4520 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4521 * can only disable all variants of by disallowing CR4.OSXSAVE from 4522 * being set. As a result, if the host has XSAVE and XSAVES, and the 4523 * guest has XSAVE enabled, the guest can execute XSAVES without 4524 * faulting. Treat XSAVES as enabled in this case regardless of 4525 * whether it's advertised to the guest so that KVM context switches 4526 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4527 * the guest read/write access to the host's XSS. 4528 */ 4529 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES, 4530 boot_cpu_has(X86_FEATURE_XSAVES) && 4531 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)); 4532 4533 /* 4534 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4535 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4536 * SVM on Intel is bonkers and extremely unlikely to work). 4537 */ 4538 if (guest_cpuid_is_intel_compatible(vcpu)) 4539 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4540 4541 svm_recalc_instruction_intercepts(vcpu, svm); 4542 4543 if (boot_cpu_has(X86_FEATURE_IBPB)) 4544 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4545 !!guest_has_pred_cmd_msr(vcpu)); 4546 4547 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4548 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4549 !!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4550 4551 if (sev_guest(vcpu->kvm)) 4552 sev_vcpu_after_set_cpuid(svm); 4553 4554 init_vmcb_after_set_cpuid(vcpu); 4555 } 4556 4557 static bool svm_has_wbinvd_exit(void) 4558 { 4559 return true; 4560 } 4561 4562 #define PRE_EX(exit) { .exit_code = (exit), \ 4563 .stage = X86_ICPT_PRE_EXCEPT, } 4564 #define POST_EX(exit) { .exit_code = (exit), \ 4565 .stage = X86_ICPT_POST_EXCEPT, } 4566 #define POST_MEM(exit) { .exit_code = (exit), \ 4567 .stage = X86_ICPT_POST_MEMACCESS, } 4568 4569 static const struct __x86_intercept { 4570 u32 exit_code; 4571 enum x86_intercept_stage stage; 4572 } x86_intercept_map[] = { 4573 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4574 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4575 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4576 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4577 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4578 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4579 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4580 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4581 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4582 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4583 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4584 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4585 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4586 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4587 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4588 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4589 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4590 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4591 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4592 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4593 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4594 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4595 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4596 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4597 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4598 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4599 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4600 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4601 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4602 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4603 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4604 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4605 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4606 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4607 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4608 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4609 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4610 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4611 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4612 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4613 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4614 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4615 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4616 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4617 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4618 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4619 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4620 }; 4621 4622 #undef PRE_EX 4623 #undef POST_EX 4624 #undef POST_MEM 4625 4626 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4627 struct x86_instruction_info *info, 4628 enum x86_intercept_stage stage, 4629 struct x86_exception *exception) 4630 { 4631 struct vcpu_svm *svm = to_svm(vcpu); 4632 int vmexit, ret = X86EMUL_CONTINUE; 4633 struct __x86_intercept icpt_info; 4634 struct vmcb *vmcb = svm->vmcb; 4635 4636 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4637 goto out; 4638 4639 icpt_info = x86_intercept_map[info->intercept]; 4640 4641 if (stage != icpt_info.stage) 4642 goto out; 4643 4644 switch (icpt_info.exit_code) { 4645 case SVM_EXIT_READ_CR0: 4646 if (info->intercept == x86_intercept_cr_read) 4647 icpt_info.exit_code += info->modrm_reg; 4648 break; 4649 case SVM_EXIT_WRITE_CR0: { 4650 unsigned long cr0, val; 4651 4652 if (info->intercept == x86_intercept_cr_write) 4653 icpt_info.exit_code += info->modrm_reg; 4654 4655 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4656 info->intercept == x86_intercept_clts) 4657 break; 4658 4659 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4660 INTERCEPT_SELECTIVE_CR0))) 4661 break; 4662 4663 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4664 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4665 4666 if (info->intercept == x86_intercept_lmsw) { 4667 cr0 &= 0xfUL; 4668 val &= 0xfUL; 4669 /* lmsw can't clear PE - catch this here */ 4670 if (cr0 & X86_CR0_PE) 4671 val |= X86_CR0_PE; 4672 } 4673 4674 if (cr0 ^ val) 4675 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4676 4677 break; 4678 } 4679 case SVM_EXIT_READ_DR0: 4680 case SVM_EXIT_WRITE_DR0: 4681 icpt_info.exit_code += info->modrm_reg; 4682 break; 4683 case SVM_EXIT_MSR: 4684 if (info->intercept == x86_intercept_wrmsr) 4685 vmcb->control.exit_info_1 = 1; 4686 else 4687 vmcb->control.exit_info_1 = 0; 4688 break; 4689 case SVM_EXIT_PAUSE: 4690 /* 4691 * We get this for NOP only, but pause 4692 * is rep not, check this here 4693 */ 4694 if (info->rep_prefix != REPE_PREFIX) 4695 goto out; 4696 break; 4697 case SVM_EXIT_IOIO: { 4698 u64 exit_info; 4699 u32 bytes; 4700 4701 if (info->intercept == x86_intercept_in || 4702 info->intercept == x86_intercept_ins) { 4703 exit_info = ((info->src_val & 0xffff) << 16) | 4704 SVM_IOIO_TYPE_MASK; 4705 bytes = info->dst_bytes; 4706 } else { 4707 exit_info = (info->dst_val & 0xffff) << 16; 4708 bytes = info->src_bytes; 4709 } 4710 4711 if (info->intercept == x86_intercept_outs || 4712 info->intercept == x86_intercept_ins) 4713 exit_info |= SVM_IOIO_STR_MASK; 4714 4715 if (info->rep_prefix) 4716 exit_info |= SVM_IOIO_REP_MASK; 4717 4718 bytes = min(bytes, 4u); 4719 4720 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4721 4722 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4723 4724 vmcb->control.exit_info_1 = exit_info; 4725 vmcb->control.exit_info_2 = info->next_rip; 4726 4727 break; 4728 } 4729 default: 4730 break; 4731 } 4732 4733 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4734 if (static_cpu_has(X86_FEATURE_NRIPS)) 4735 vmcb->control.next_rip = info->next_rip; 4736 vmcb->control.exit_code = icpt_info.exit_code; 4737 vmexit = nested_svm_exit_handled(svm); 4738 4739 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4740 : X86EMUL_CONTINUE; 4741 4742 out: 4743 return ret; 4744 } 4745 4746 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4747 { 4748 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4749 vcpu->arch.at_instruction_boundary = true; 4750 } 4751 4752 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4753 { 4754 /* [63:9] are reserved. */ 4755 vcpu->arch.mcg_cap &= 0x1ff; 4756 } 4757 4758 #ifdef CONFIG_KVM_SMM 4759 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4760 { 4761 struct vcpu_svm *svm = to_svm(vcpu); 4762 4763 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4764 if (!gif_set(svm)) 4765 return true; 4766 4767 return is_smm(vcpu); 4768 } 4769 4770 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4771 { 4772 struct vcpu_svm *svm = to_svm(vcpu); 4773 if (svm->nested.nested_run_pending) 4774 return -EBUSY; 4775 4776 if (svm_smi_blocked(vcpu)) 4777 return 0; 4778 4779 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4780 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4781 return -EBUSY; 4782 4783 return 1; 4784 } 4785 4786 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4787 { 4788 struct vcpu_svm *svm = to_svm(vcpu); 4789 struct kvm_host_map map_save; 4790 int ret; 4791 4792 if (!is_guest_mode(vcpu)) 4793 return 0; 4794 4795 /* 4796 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4797 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4798 */ 4799 4800 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4801 return 1; 4802 4803 smram->smram64.svm_guest_flag = 1; 4804 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4805 4806 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4807 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4808 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4809 4810 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4811 if (ret) 4812 return ret; 4813 4814 /* 4815 * KVM uses VMCB01 to store L1 host state while L2 runs but 4816 * VMCB01 is going to be used during SMM and thus the state will 4817 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4818 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4819 * format of the area is identical to guest save area offsetted 4820 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4821 * within 'struct vmcb'). Note: HSAVE area may also be used by 4822 * L1 hypervisor to save additional host context (e.g. KVM does 4823 * that, see svm_prepare_switch_to_guest()) which must be 4824 * preserved. 4825 */ 4826 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4827 return 1; 4828 4829 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4830 4831 svm_copy_vmrun_state(map_save.hva + 0x400, 4832 &svm->vmcb01.ptr->save); 4833 4834 kvm_vcpu_unmap(vcpu, &map_save); 4835 return 0; 4836 } 4837 4838 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4839 { 4840 struct vcpu_svm *svm = to_svm(vcpu); 4841 struct kvm_host_map map, map_save; 4842 struct vmcb *vmcb12; 4843 int ret; 4844 4845 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4846 4847 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4848 return 0; 4849 4850 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4851 if (!smram64->svm_guest_flag) 4852 return 0; 4853 4854 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 4855 return 1; 4856 4857 if (!(smram64->efer & EFER_SVME)) 4858 return 1; 4859 4860 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4861 return 1; 4862 4863 ret = 1; 4864 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4865 goto unmap_map; 4866 4867 if (svm_allocate_nested(svm)) 4868 goto unmap_save; 4869 4870 /* 4871 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4872 * used during SMM (see svm_enter_smm()) 4873 */ 4874 4875 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4876 4877 /* 4878 * Enter the nested guest now 4879 */ 4880 4881 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4882 4883 vmcb12 = map.hva; 4884 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4885 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4886 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4887 4888 if (ret) 4889 goto unmap_save; 4890 4891 svm->nested.nested_run_pending = 1; 4892 4893 unmap_save: 4894 kvm_vcpu_unmap(vcpu, &map_save); 4895 unmap_map: 4896 kvm_vcpu_unmap(vcpu, &map); 4897 return ret; 4898 } 4899 4900 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4901 { 4902 struct vcpu_svm *svm = to_svm(vcpu); 4903 4904 if (!gif_set(svm)) { 4905 if (vgif) 4906 svm_set_intercept(svm, INTERCEPT_STGI); 4907 /* STGI will cause a vm exit */ 4908 } else { 4909 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4910 } 4911 } 4912 #endif 4913 4914 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4915 void *insn, int insn_len) 4916 { 4917 struct vcpu_svm *svm = to_svm(vcpu); 4918 bool smep, smap, is_user; 4919 u64 error_code; 4920 4921 /* Check that emulation is possible during event vectoring */ 4922 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) && 4923 !kvm_can_emulate_event_vectoring(emul_type)) 4924 return X86EMUL_UNHANDLEABLE_VECTORING; 4925 4926 /* Emulation is always possible when KVM has access to all guest state. */ 4927 if (!sev_guest(vcpu->kvm)) 4928 return X86EMUL_CONTINUE; 4929 4930 /* #UD and #GP should never be intercepted for SEV guests. */ 4931 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4932 EMULTYPE_TRAP_UD_FORCED | 4933 EMULTYPE_VMWARE_GP)); 4934 4935 /* 4936 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4937 * to guest register state. 4938 */ 4939 if (sev_es_guest(vcpu->kvm)) 4940 return X86EMUL_RETRY_INSTR; 4941 4942 /* 4943 * Emulation is possible if the instruction is already decoded, e.g. 4944 * when completing I/O after returning from userspace. 4945 */ 4946 if (emul_type & EMULTYPE_NO_DECODE) 4947 return X86EMUL_CONTINUE; 4948 4949 /* 4950 * Emulation is possible for SEV guests if and only if a prefilled 4951 * buffer containing the bytes of the intercepted instruction is 4952 * available. SEV guest memory is encrypted with a guest specific key 4953 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4954 * decode garbage. 4955 * 4956 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4957 * KVM reached this point without an instruction buffer. In practice, 4958 * this path should never be hit by a well-behaved guest, e.g. KVM 4959 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4960 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4961 * access, and needs to be handled by KVM to avoid putting the guest 4962 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4963 * its the least awful option given lack of insight into the guest. 4964 * 4965 * If KVM is trying to skip an instruction, simply resume the guest. 4966 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4967 * will attempt to re-inject the INT3/INTO and skip the instruction. 4968 * In that scenario, retrying the INT3/INTO and hoping the guest will 4969 * make forward progress is the only option that has a chance of 4970 * success (and in practice it will work the vast majority of the time). 4971 */ 4972 if (unlikely(!insn)) { 4973 if (emul_type & EMULTYPE_SKIP) 4974 return X86EMUL_UNHANDLEABLE; 4975 4976 kvm_queue_exception(vcpu, UD_VECTOR); 4977 return X86EMUL_PROPAGATE_FAULT; 4978 } 4979 4980 /* 4981 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4982 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4983 * the faulting instruction because the code fetch itself faulted, e.g. 4984 * the guest attempted to fetch from emulated MMIO or a guest page 4985 * table used to translate CS:RIP resides in emulated MMIO. 4986 */ 4987 if (likely(insn_len)) 4988 return X86EMUL_CONTINUE; 4989 4990 /* 4991 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4992 * 4993 * Errata: 4994 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4995 * possible that CPU microcode implementing DecodeAssist will fail to 4996 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4997 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4998 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4999 * gives up and does not fill the instruction bytes buffer. 5000 * 5001 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 5002 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 5003 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 5004 * GuestIntrBytes field of the VMCB. 5005 * 5006 * This does _not_ mean that the erratum has been encountered, as the 5007 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 5008 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 5009 * encountered a reserved/not-present #PF. 5010 * 5011 * To hit the erratum, the following conditions must be true: 5012 * 1. CR4.SMAP=1 (obviously). 5013 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 5014 * have been hit as the guest would have encountered a SMEP 5015 * violation #PF, not a #NPF. 5016 * 3. The #NPF is not due to a code fetch, in which case failure to 5017 * retrieve the instruction bytes is legitimate (see abvoe). 5018 * 5019 * In addition, don't apply the erratum workaround if the #NPF occurred 5020 * while translating guest page tables (see below). 5021 */ 5022 error_code = svm->vmcb->control.exit_info_1; 5023 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 5024 goto resume_guest; 5025 5026 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 5027 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 5028 is_user = svm_get_cpl(vcpu) == 3; 5029 if (smap && (!smep || is_user)) { 5030 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 5031 5032 /* 5033 * If the fault occurred in userspace, arbitrarily inject #GP 5034 * to avoid killing the guest and to hopefully avoid confusing 5035 * the guest kernel too much, e.g. injecting #PF would not be 5036 * coherent with respect to the guest's page tables. Request 5037 * triple fault if the fault occurred in the kernel as there's 5038 * no fault that KVM can inject without confusing the guest. 5039 * In practice, the triple fault is moot as no sane SEV kernel 5040 * will execute from user memory while also running with SMAP=1. 5041 */ 5042 if (is_user) 5043 kvm_inject_gp(vcpu, 0); 5044 else 5045 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5046 return X86EMUL_PROPAGATE_FAULT; 5047 } 5048 5049 resume_guest: 5050 /* 5051 * If the erratum was not hit, simply resume the guest and let it fault 5052 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 5053 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 5054 * userspace will kill the guest, and letting the emulator read garbage 5055 * will yield random behavior and potentially corrupt the guest. 5056 * 5057 * Simply resuming the guest is technically not a violation of the SEV 5058 * architecture. AMD's APM states that all code fetches and page table 5059 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 5060 * APM also states that encrypted accesses to MMIO are "ignored", but 5061 * doesn't explicitly define "ignored", i.e. doing nothing and letting 5062 * the guest spin is technically "ignoring" the access. 5063 */ 5064 return X86EMUL_RETRY_INSTR; 5065 } 5066 5067 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 5068 { 5069 struct vcpu_svm *svm = to_svm(vcpu); 5070 5071 return !gif_set(svm); 5072 } 5073 5074 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 5075 { 5076 if (!sev_es_guest(vcpu->kvm)) 5077 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 5078 5079 sev_vcpu_deliver_sipi_vector(vcpu, vector); 5080 } 5081 5082 static void svm_vm_destroy(struct kvm *kvm) 5083 { 5084 avic_vm_destroy(kvm); 5085 sev_vm_destroy(kvm); 5086 5087 svm_srso_vm_destroy(); 5088 } 5089 5090 static int svm_vm_init(struct kvm *kvm) 5091 { 5092 int type = kvm->arch.vm_type; 5093 5094 if (type != KVM_X86_DEFAULT_VM && 5095 type != KVM_X86_SW_PROTECTED_VM) { 5096 kvm->arch.has_protected_state = 5097 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 5098 to_kvm_sev_info(kvm)->need_init = true; 5099 5100 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 5101 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 5102 } 5103 5104 if (!pause_filter_count || !pause_filter_thresh) 5105 kvm->arch.pause_in_guest = true; 5106 5107 if (enable_apicv) { 5108 int ret = avic_vm_init(kvm); 5109 if (ret) 5110 return ret; 5111 } 5112 5113 svm_srso_vm_init(); 5114 return 0; 5115 } 5116 5117 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 5118 { 5119 struct page *page = snp_safe_alloc_page(); 5120 5121 if (!page) 5122 return NULL; 5123 5124 return page_address(page); 5125 } 5126 5127 static struct kvm_x86_ops svm_x86_ops __initdata = { 5128 .name = KBUILD_MODNAME, 5129 5130 .check_processor_compatibility = svm_check_processor_compat, 5131 5132 .hardware_unsetup = svm_hardware_unsetup, 5133 .enable_virtualization_cpu = svm_enable_virtualization_cpu, 5134 .disable_virtualization_cpu = svm_disable_virtualization_cpu, 5135 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, 5136 .has_emulated_msr = svm_has_emulated_msr, 5137 5138 .vcpu_create = svm_vcpu_create, 5139 .vcpu_free = svm_vcpu_free, 5140 .vcpu_reset = svm_vcpu_reset, 5141 5142 .vm_size = sizeof(struct kvm_svm), 5143 .vm_init = svm_vm_init, 5144 .vm_destroy = svm_vm_destroy, 5145 5146 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5147 .vcpu_load = svm_vcpu_load, 5148 .vcpu_put = svm_vcpu_put, 5149 .vcpu_blocking = avic_vcpu_blocking, 5150 .vcpu_unblocking = avic_vcpu_unblocking, 5151 5152 .update_exception_bitmap = svm_update_exception_bitmap, 5153 .get_feature_msr = svm_get_feature_msr, 5154 .get_msr = svm_get_msr, 5155 .set_msr = svm_set_msr, 5156 .get_segment_base = svm_get_segment_base, 5157 .get_segment = svm_get_segment, 5158 .set_segment = svm_set_segment, 5159 .get_cpl = svm_get_cpl, 5160 .get_cpl_no_cache = svm_get_cpl, 5161 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5162 .is_valid_cr0 = svm_is_valid_cr0, 5163 .set_cr0 = svm_set_cr0, 5164 .post_set_cr3 = sev_post_set_cr3, 5165 .is_valid_cr4 = svm_is_valid_cr4, 5166 .set_cr4 = svm_set_cr4, 5167 .set_efer = svm_set_efer, 5168 .get_idt = svm_get_idt, 5169 .set_idt = svm_set_idt, 5170 .get_gdt = svm_get_gdt, 5171 .set_gdt = svm_set_gdt, 5172 .set_dr6 = svm_set_dr6, 5173 .set_dr7 = svm_set_dr7, 5174 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5175 .cache_reg = svm_cache_reg, 5176 .get_rflags = svm_get_rflags, 5177 .set_rflags = svm_set_rflags, 5178 .get_if_flag = svm_get_if_flag, 5179 5180 .flush_tlb_all = svm_flush_tlb_all, 5181 .flush_tlb_current = svm_flush_tlb_current, 5182 .flush_tlb_gva = svm_flush_tlb_gva, 5183 .flush_tlb_guest = svm_flush_tlb_asid, 5184 5185 .vcpu_pre_run = svm_vcpu_pre_run, 5186 .vcpu_run = svm_vcpu_run, 5187 .handle_exit = svm_handle_exit, 5188 .skip_emulated_instruction = svm_skip_emulated_instruction, 5189 .update_emulated_instruction = NULL, 5190 .set_interrupt_shadow = svm_set_interrupt_shadow, 5191 .get_interrupt_shadow = svm_get_interrupt_shadow, 5192 .patch_hypercall = svm_patch_hypercall, 5193 .inject_irq = svm_inject_irq, 5194 .inject_nmi = svm_inject_nmi, 5195 .is_vnmi_pending = svm_is_vnmi_pending, 5196 .set_vnmi_pending = svm_set_vnmi_pending, 5197 .inject_exception = svm_inject_exception, 5198 .cancel_injection = svm_cancel_injection, 5199 .interrupt_allowed = svm_interrupt_allowed, 5200 .nmi_allowed = svm_nmi_allowed, 5201 .get_nmi_mask = svm_get_nmi_mask, 5202 .set_nmi_mask = svm_set_nmi_mask, 5203 .enable_nmi_window = svm_enable_nmi_window, 5204 .enable_irq_window = svm_enable_irq_window, 5205 .update_cr8_intercept = svm_update_cr8_intercept, 5206 5207 .x2apic_icr_is_split = true, 5208 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5209 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5210 .apicv_post_state_restore = avic_apicv_post_state_restore, 5211 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5212 5213 .get_exit_info = svm_get_exit_info, 5214 .get_entry_info = svm_get_entry_info, 5215 5216 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5217 5218 .has_wbinvd_exit = svm_has_wbinvd_exit, 5219 5220 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5221 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5222 .write_tsc_offset = svm_write_tsc_offset, 5223 .write_tsc_multiplier = svm_write_tsc_multiplier, 5224 5225 .load_mmu_pgd = svm_load_mmu_pgd, 5226 5227 .check_intercept = svm_check_intercept, 5228 .handle_exit_irqoff = svm_handle_exit_irqoff, 5229 5230 .nested_ops = &svm_nested_ops, 5231 5232 .deliver_interrupt = svm_deliver_interrupt, 5233 .pi_update_irte = avic_pi_update_irte, 5234 .setup_mce = svm_setup_mce, 5235 5236 #ifdef CONFIG_KVM_SMM 5237 .smi_allowed = svm_smi_allowed, 5238 .enter_smm = svm_enter_smm, 5239 .leave_smm = svm_leave_smm, 5240 .enable_smi_window = svm_enable_smi_window, 5241 #endif 5242 5243 #ifdef CONFIG_KVM_AMD_SEV 5244 .dev_get_attr = sev_dev_get_attr, 5245 .mem_enc_ioctl = sev_mem_enc_ioctl, 5246 .mem_enc_register_region = sev_mem_enc_register_region, 5247 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5248 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5249 5250 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5251 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5252 #endif 5253 .check_emulate_instruction = svm_check_emulate_instruction, 5254 5255 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5256 5257 .msr_filter_changed = svm_msr_filter_changed, 5258 .complete_emulated_msr = svm_complete_emulated_msr, 5259 5260 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5261 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5262 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5263 5264 .gmem_prepare = sev_gmem_prepare, 5265 .gmem_invalidate = sev_gmem_invalidate, 5266 .private_max_mapping_level = sev_private_max_mapping_level, 5267 }; 5268 5269 /* 5270 * The default MMIO mask is a single bit (excluding the present bit), 5271 * which could conflict with the memory encryption bit. Check for 5272 * memory encryption support and override the default MMIO mask if 5273 * memory encryption is enabled. 5274 */ 5275 static __init void svm_adjust_mmio_mask(void) 5276 { 5277 unsigned int enc_bit, mask_bit; 5278 u64 msr, mask; 5279 5280 /* If there is no memory encryption support, use existing mask */ 5281 if (cpuid_eax(0x80000000) < 0x8000001f) 5282 return; 5283 5284 /* If memory encryption is not enabled, use existing mask */ 5285 rdmsrq(MSR_AMD64_SYSCFG, msr); 5286 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5287 return; 5288 5289 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5290 mask_bit = boot_cpu_data.x86_phys_bits; 5291 5292 /* Increment the mask bit if it is the same as the encryption bit */ 5293 if (enc_bit == mask_bit) 5294 mask_bit++; 5295 5296 /* 5297 * If the mask bit location is below 52, then some bits above the 5298 * physical addressing limit will always be reserved, so use the 5299 * rsvd_bits() function to generate the mask. This mask, along with 5300 * the present bit, will be used to generate a page fault with 5301 * PFER.RSV = 1. 5302 * 5303 * If the mask bit location is 52 (or above), then clear the mask. 5304 */ 5305 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5306 5307 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5308 } 5309 5310 static __init void svm_set_cpu_caps(void) 5311 { 5312 kvm_set_cpu_caps(); 5313 5314 kvm_caps.supported_perf_cap = 0; 5315 kvm_caps.supported_xss = 0; 5316 5317 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5318 if (nested) { 5319 kvm_cpu_cap_set(X86_FEATURE_SVM); 5320 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5321 5322 /* 5323 * KVM currently flushes TLBs on *every* nested SVM transition, 5324 * and so for all intents and purposes KVM supports flushing by 5325 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5326 */ 5327 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5328 5329 if (nrips) 5330 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5331 5332 if (npt_enabled) 5333 kvm_cpu_cap_set(X86_FEATURE_NPT); 5334 5335 if (tsc_scaling) 5336 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5337 5338 if (vls) 5339 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5340 if (lbrv) 5341 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5342 5343 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5344 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5345 5346 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5347 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5348 5349 if (vgif) 5350 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5351 5352 if (vnmi) 5353 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5354 5355 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5356 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5357 } 5358 5359 /* CPUID 0x80000008 */ 5360 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5361 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5362 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5363 5364 if (enable_pmu) { 5365 /* 5366 * Enumerate support for PERFCTR_CORE if and only if KVM has 5367 * access to enough counters to virtualize "core" support, 5368 * otherwise limit vPMU support to the legacy number of counters. 5369 */ 5370 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5371 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5372 kvm_pmu_cap.num_counters_gp); 5373 else 5374 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5375 5376 if (kvm_pmu_cap.version != 2 || 5377 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5378 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5379 } 5380 5381 /* CPUID 0x8000001F (SME/SEV features) */ 5382 sev_set_cpu_caps(); 5383 5384 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */ 5385 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5386 } 5387 5388 static __init int svm_hardware_setup(void) 5389 { 5390 int cpu; 5391 struct page *iopm_pages; 5392 void *iopm_va; 5393 int r; 5394 unsigned int order = get_order(IOPM_SIZE); 5395 5396 /* 5397 * NX is required for shadow paging and for NPT if the NX huge pages 5398 * mitigation is enabled. 5399 */ 5400 if (!boot_cpu_has(X86_FEATURE_NX)) { 5401 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5402 return -EOPNOTSUPP; 5403 } 5404 kvm_enable_efer_bits(EFER_NX); 5405 5406 iopm_pages = alloc_pages(GFP_KERNEL, order); 5407 5408 if (!iopm_pages) 5409 return -ENOMEM; 5410 5411 iopm_va = page_address(iopm_pages); 5412 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5413 iopm_base = __sme_page_pa(iopm_pages); 5414 5415 init_msrpm_offsets(); 5416 5417 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5418 XFEATURE_MASK_BNDCSR); 5419 5420 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5421 kvm_enable_efer_bits(EFER_FFXSR); 5422 5423 if (tsc_scaling) { 5424 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5425 tsc_scaling = false; 5426 } else { 5427 pr_info("TSC scaling supported\n"); 5428 kvm_caps.has_tsc_control = true; 5429 } 5430 } 5431 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5432 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5433 5434 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5435 5436 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5437 kvm_enable_efer_bits(EFER_AUTOIBRS); 5438 5439 /* Check for pause filtering support */ 5440 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5441 pause_filter_count = 0; 5442 pause_filter_thresh = 0; 5443 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5444 pause_filter_thresh = 0; 5445 } 5446 5447 if (nested) { 5448 pr_info("Nested Virtualization enabled\n"); 5449 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5450 } 5451 5452 /* 5453 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5454 * NPT isn't supported if the host is using 2-level paging since host 5455 * CR4 is unchanged on VMRUN. 5456 */ 5457 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5458 npt_enabled = false; 5459 5460 if (!boot_cpu_has(X86_FEATURE_NPT)) 5461 npt_enabled = false; 5462 5463 /* Force VM NPT level equal to the host's paging level */ 5464 kvm_configure_mmu(npt_enabled, get_npt_level(), 5465 get_npt_level(), PG_LEVEL_1G); 5466 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled)); 5467 5468 /* Setup shadow_me_value and shadow_me_mask */ 5469 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5470 5471 svm_adjust_mmio_mask(); 5472 5473 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5474 5475 if (lbrv) { 5476 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5477 lbrv = false; 5478 else 5479 pr_info("LBR virtualization supported\n"); 5480 } 5481 /* 5482 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5483 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5484 */ 5485 sev_hardware_setup(); 5486 5487 svm_hv_hardware_setup(); 5488 5489 for_each_possible_cpu(cpu) { 5490 r = svm_cpu_init(cpu); 5491 if (r) 5492 goto err; 5493 } 5494 5495 enable_apicv = avic = avic && avic_hardware_setup(); 5496 5497 if (!enable_apicv) { 5498 svm_x86_ops.vcpu_blocking = NULL; 5499 svm_x86_ops.vcpu_unblocking = NULL; 5500 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5501 } else if (!x2avic_enabled) { 5502 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5503 } 5504 5505 if (vls) { 5506 if (!npt_enabled || 5507 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5508 !IS_ENABLED(CONFIG_X86_64)) { 5509 vls = false; 5510 } else { 5511 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5512 } 5513 } 5514 5515 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5516 svm_gp_erratum_intercept = false; 5517 5518 if (vgif) { 5519 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5520 vgif = false; 5521 else 5522 pr_info("Virtual GIF supported\n"); 5523 } 5524 5525 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5526 if (vnmi) 5527 pr_info("Virtual NMI enabled\n"); 5528 5529 if (!vnmi) { 5530 svm_x86_ops.is_vnmi_pending = NULL; 5531 svm_x86_ops.set_vnmi_pending = NULL; 5532 } 5533 5534 if (!enable_pmu) 5535 pr_info("PMU virtualization is disabled\n"); 5536 5537 svm_set_cpu_caps(); 5538 5539 /* 5540 * It seems that on AMD processors PTE's accessed bit is 5541 * being set by the CPU hardware before the NPF vmexit. 5542 * This is not expected behaviour and our tests fail because 5543 * of it. 5544 * A workaround here is to disable support for 5545 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5546 * In this case userspace can know if there is support using 5547 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5548 * it 5549 * If future AMD CPU models change the behaviour described above, 5550 * this variable can be changed accordingly 5551 */ 5552 allow_smaller_maxphyaddr = !npt_enabled; 5553 5554 return 0; 5555 5556 err: 5557 svm_hardware_unsetup(); 5558 return r; 5559 } 5560 5561 5562 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5563 .hardware_setup = svm_hardware_setup, 5564 5565 .runtime_ops = &svm_x86_ops, 5566 .pmu_ops = &amd_pmu_ops, 5567 }; 5568 5569 static void __svm_exit(void) 5570 { 5571 kvm_x86_vendor_exit(); 5572 } 5573 5574 static int __init svm_init(void) 5575 { 5576 int r; 5577 5578 __unused_size_checks(); 5579 5580 if (!kvm_is_svm_supported()) 5581 return -EOPNOTSUPP; 5582 5583 r = kvm_x86_vendor_init(&svm_init_ops); 5584 if (r) 5585 return r; 5586 5587 /* 5588 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5589 * exposed to userspace! 5590 */ 5591 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5592 THIS_MODULE); 5593 if (r) 5594 goto err_kvm_init; 5595 5596 return 0; 5597 5598 err_kvm_init: 5599 __svm_exit(); 5600 return r; 5601 } 5602 5603 static void __exit svm_exit(void) 5604 { 5605 kvm_exit(); 5606 __svm_exit(); 5607 } 5608 5609 module_init(svm_init) 5610 module_exit(svm_exit) 5611