xref: /linux/arch/x86/kvm/svm/svm.c (revision 3eee9ac24cef892e6883b3669544c6101b70c91e)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44 
45 #include <trace/events/ipi.h>
46 
47 #include "trace.h"
48 
49 #include "svm.h"
50 #include "svm_ops.h"
51 
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54 
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57 
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61 	{}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65 
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68 
69 static bool erratum_383_found __read_mostly;
70 
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72 
73 /*
74  * Set osvw_len to higher value when updated Revision Guides
75  * are published and we know what the new status bits are
76  */
77 static uint64_t osvw_len = 4, osvw_status;
78 
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80 
81 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
82 
83 static const struct svm_direct_access_msrs {
84 	u32 index;   /* Index of the MSR */
85 	bool always; /* True if intercept is initially cleared */
86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87 	{ .index = MSR_STAR,				.always = true  },
88 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
89 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
90 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
91 #ifdef CONFIG_X86_64
92 	{ .index = MSR_GS_BASE,				.always = true  },
93 	{ .index = MSR_FS_BASE,				.always = true  },
94 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
95 	{ .index = MSR_LSTAR,				.always = true  },
96 	{ .index = MSR_CSTAR,				.always = true  },
97 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
98 #endif
99 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
100 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
101 	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
102 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
103 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
104 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
105 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
106 	{ .index = MSR_IA32_XSS,			.always = false },
107 	{ .index = MSR_EFER,				.always = false },
108 	{ .index = MSR_IA32_CR_PAT,			.always = false },
109 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
110 	{ .index = MSR_TSC_AUX,				.always = false },
111 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
112 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
122 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
123 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
124 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
125 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
126 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
127 
128 	/*
129 	 * Note:
130 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
131 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
132 	 * the AVIC hardware would generate GP fault. Therefore, always
133 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
134 	 */
135 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
137 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
138 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
139 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
140 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
141 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
142 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
143 	{ .index = MSR_INVALID,				.always = false },
144 };
145 
146 /*
147  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
148  * pause_filter_count: On processors that support Pause filtering(indicated
149  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
150  *	count value. On VMRUN this value is loaded into an internal counter.
151  *	Each time a pause instruction is executed, this counter is decremented
152  *	until it reaches zero at which time a #VMEXIT is generated if pause
153  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
154  *	Intercept Filtering for more details.
155  *	This also indicate if ple logic enabled.
156  *
157  * pause_filter_thresh: In addition, some processor families support advanced
158  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
159  *	the amount of time a guest is allowed to execute in a pause loop.
160  *	In this mode, a 16-bit pause filter threshold field is added in the
161  *	VMCB. The threshold value is a cycle count that is used to reset the
162  *	pause counter. As with simple pause filtering, VMRUN loads the pause
163  *	count value from VMCB into an internal counter. Then, on each pause
164  *	instruction the hardware checks the elapsed number of cycles since
165  *	the most recent pause instruction against the pause filter threshold.
166  *	If the elapsed cycle count is greater than the pause filter threshold,
167  *	then the internal pause count is reloaded from the VMCB and execution
168  *	continues. If the elapsed cycle count is less than the pause filter
169  *	threshold, then the internal pause count is decremented. If the count
170  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
171  *	triggered. If advanced pause filtering is supported and pause filter
172  *	threshold field is set to zero, the filter will operate in the simpler,
173  *	count only mode.
174  */
175 
176 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
177 module_param(pause_filter_thresh, ushort, 0444);
178 
179 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
180 module_param(pause_filter_count, ushort, 0444);
181 
182 /* Default doubles per-vcpu window every exit. */
183 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
184 module_param(pause_filter_count_grow, ushort, 0444);
185 
186 /* Default resets per-vcpu window every exit to pause_filter_count. */
187 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
188 module_param(pause_filter_count_shrink, ushort, 0444);
189 
190 /* Default is to compute the maximum so we can never overflow. */
191 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
192 module_param(pause_filter_count_max, ushort, 0444);
193 
194 /*
195  * Use nested page tables by default.  Note, NPT may get forced off by
196  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
197  */
198 bool npt_enabled = true;
199 module_param_named(npt, npt_enabled, bool, 0444);
200 
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, 0444);
204 
205 /* enable/disable Next RIP Save */
206 int nrips = true;
207 module_param(nrips, int, 0444);
208 
209 /* enable/disable Virtual VMLOAD VMSAVE */
210 static int vls = true;
211 module_param(vls, int, 0444);
212 
213 /* enable/disable Virtual GIF */
214 int vgif = true;
215 module_param(vgif, int, 0444);
216 
217 /* enable/disable LBR virtualization */
218 static int lbrv = true;
219 module_param(lbrv, int, 0444);
220 
221 static int tsc_scaling = true;
222 module_param(tsc_scaling, int, 0444);
223 
224 /*
225  * enable / disable AVIC.  Because the defaults differ for APICv
226  * support between VMX and SVM we cannot use module_param_named.
227  */
228 static bool avic;
229 module_param(avic, bool, 0444);
230 
231 bool __read_mostly dump_invalid_vmcb;
232 module_param(dump_invalid_vmcb, bool, 0644);
233 
234 
235 bool intercept_smi = true;
236 module_param(intercept_smi, bool, 0444);
237 
238 bool vnmi = true;
239 module_param(vnmi, bool, 0444);
240 
241 static bool svm_gp_erratum_intercept = true;
242 
243 static u8 rsm_ins_bytes[] = "\x0f\xaa";
244 
245 static unsigned long iopm_base;
246 
247 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
248 
249 /*
250  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
251  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
252  *
253  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
254  * defer the restoration of TSC_AUX until the CPU returns to userspace.
255  */
256 static int tsc_aux_uret_slot __read_mostly = -1;
257 
258 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
259 
260 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
261 #define MSRS_RANGE_SIZE 2048
262 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
263 
264 u32 svm_msrpm_offset(u32 msr)
265 {
266 	u32 offset;
267 	int i;
268 
269 	for (i = 0; i < NUM_MSR_MAPS; i++) {
270 		if (msr < msrpm_ranges[i] ||
271 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
272 			continue;
273 
274 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
275 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
276 
277 		/* Now we have the u8 offset - but need the u32 offset */
278 		return offset / 4;
279 	}
280 
281 	/* MSR not in any range */
282 	return MSR_INVALID;
283 }
284 
285 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
286 
287 static int get_npt_level(void)
288 {
289 #ifdef CONFIG_X86_64
290 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
291 #else
292 	return PT32E_ROOT_LEVEL;
293 #endif
294 }
295 
296 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
297 {
298 	struct vcpu_svm *svm = to_svm(vcpu);
299 	u64 old_efer = vcpu->arch.efer;
300 	vcpu->arch.efer = efer;
301 
302 	if (!npt_enabled) {
303 		/* Shadow paging assumes NX to be available.  */
304 		efer |= EFER_NX;
305 
306 		if (!(efer & EFER_LMA))
307 			efer &= ~EFER_LME;
308 	}
309 
310 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
311 		if (!(efer & EFER_SVME)) {
312 			svm_leave_nested(vcpu);
313 			svm_set_gif(svm, true);
314 			/* #GP intercept is still needed for vmware backdoor */
315 			if (!enable_vmware_backdoor)
316 				clr_exception_intercept(svm, GP_VECTOR);
317 
318 			/*
319 			 * Free the nested guest state, unless we are in SMM.
320 			 * In this case we will return to the nested guest
321 			 * as soon as we leave SMM.
322 			 */
323 			if (!is_smm(vcpu))
324 				svm_free_nested(svm);
325 
326 		} else {
327 			int ret = svm_allocate_nested(svm);
328 
329 			if (ret) {
330 				vcpu->arch.efer = old_efer;
331 				return ret;
332 			}
333 
334 			/*
335 			 * Never intercept #GP for SEV guests, KVM can't
336 			 * decrypt guest memory to workaround the erratum.
337 			 */
338 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
339 				set_exception_intercept(svm, GP_VECTOR);
340 		}
341 	}
342 
343 	svm->vmcb->save.efer = efer | EFER_SVME;
344 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
345 	return 0;
346 }
347 
348 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
349 {
350 	struct vcpu_svm *svm = to_svm(vcpu);
351 	u32 ret = 0;
352 
353 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
354 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
355 	return ret;
356 }
357 
358 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
359 {
360 	struct vcpu_svm *svm = to_svm(vcpu);
361 
362 	if (mask == 0)
363 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
364 	else
365 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
366 
367 }
368 
369 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
370 					   bool commit_side_effects)
371 {
372 	struct vcpu_svm *svm = to_svm(vcpu);
373 	unsigned long old_rflags;
374 
375 	/*
376 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
377 	 * the type of exit and the #VC handler in the guest.
378 	 */
379 	if (sev_es_guest(vcpu->kvm))
380 		goto done;
381 
382 	if (nrips && svm->vmcb->control.next_rip != 0) {
383 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
384 		svm->next_rip = svm->vmcb->control.next_rip;
385 	}
386 
387 	if (!svm->next_rip) {
388 		if (unlikely(!commit_side_effects))
389 			old_rflags = svm->vmcb->save.rflags;
390 
391 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
392 			return 0;
393 
394 		if (unlikely(!commit_side_effects))
395 			svm->vmcb->save.rflags = old_rflags;
396 	} else {
397 		kvm_rip_write(vcpu, svm->next_rip);
398 	}
399 
400 done:
401 	if (likely(commit_side_effects))
402 		svm_set_interrupt_shadow(vcpu, 0);
403 
404 	return 1;
405 }
406 
407 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
408 {
409 	return __svm_skip_emulated_instruction(vcpu, true);
410 }
411 
412 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
413 {
414 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
415 	struct vcpu_svm *svm = to_svm(vcpu);
416 
417 	/*
418 	 * Due to architectural shortcomings, the CPU doesn't always provide
419 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
420 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
421 	 * the instruction even if NextRIP is supported to acquire the next
422 	 * RIP so that it can be shoved into the NextRIP field, otherwise
423 	 * hardware will fail to advance guest RIP during event injection.
424 	 * Drop the exception/interrupt if emulation fails and effectively
425 	 * retry the instruction, it's the least awful option.  If NRIPS is
426 	 * in use, the skip must not commit any side effects such as clearing
427 	 * the interrupt shadow or RFLAGS.RF.
428 	 */
429 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
430 		return -EIO;
431 
432 	rip = kvm_rip_read(vcpu);
433 
434 	/*
435 	 * Save the injection information, even when using next_rip, as the
436 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
437 	 * doesn't complete due to a VM-Exit occurring while the CPU is
438 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
439 	 * work as there may be no backing instruction, e.g. if the event is
440 	 * being injected by L1 for L2, or if the guest is patching INT3 into
441 	 * a different instruction.
442 	 */
443 	svm->soft_int_injected = true;
444 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
445 	svm->soft_int_old_rip = old_rip;
446 	svm->soft_int_next_rip = rip;
447 
448 	if (nrips)
449 		kvm_rip_write(vcpu, old_rip);
450 
451 	if (static_cpu_has(X86_FEATURE_NRIPS))
452 		svm->vmcb->control.next_rip = rip;
453 
454 	return 0;
455 }
456 
457 static void svm_inject_exception(struct kvm_vcpu *vcpu)
458 {
459 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
460 	struct vcpu_svm *svm = to_svm(vcpu);
461 
462 	kvm_deliver_exception_payload(vcpu, ex);
463 
464 	if (kvm_exception_is_soft(ex->vector) &&
465 	    svm_update_soft_interrupt_rip(vcpu))
466 		return;
467 
468 	svm->vmcb->control.event_inj = ex->vector
469 		| SVM_EVTINJ_VALID
470 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
471 		| SVM_EVTINJ_TYPE_EXEPT;
472 	svm->vmcb->control.event_inj_err = ex->error_code;
473 }
474 
475 static void svm_init_erratum_383(void)
476 {
477 	u32 low, high;
478 	int err;
479 	u64 val;
480 
481 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
482 		return;
483 
484 	/* Use _safe variants to not break nested virtualization */
485 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
486 	if (err)
487 		return;
488 
489 	val |= (1ULL << 47);
490 
491 	low  = lower_32_bits(val);
492 	high = upper_32_bits(val);
493 
494 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
495 
496 	erratum_383_found = true;
497 }
498 
499 static void svm_init_osvw(struct kvm_vcpu *vcpu)
500 {
501 	/*
502 	 * Guests should see errata 400 and 415 as fixed (assuming that
503 	 * HLT and IO instructions are intercepted).
504 	 */
505 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
506 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
507 
508 	/*
509 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
510 	 * all osvw.status bits inside that length, including bit 0 (which is
511 	 * reserved for erratum 298), are valid. However, if host processor's
512 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
513 	 * be conservative here and therefore we tell the guest that erratum 298
514 	 * is present (because we really don't know).
515 	 */
516 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
517 		vcpu->arch.osvw.status |= 1;
518 }
519 
520 static bool __kvm_is_svm_supported(void)
521 {
522 	int cpu = smp_processor_id();
523 	struct cpuinfo_x86 *c = &cpu_data(cpu);
524 
525 	if (c->x86_vendor != X86_VENDOR_AMD &&
526 	    c->x86_vendor != X86_VENDOR_HYGON) {
527 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
528 		return false;
529 	}
530 
531 	if (!cpu_has(c, X86_FEATURE_SVM)) {
532 		pr_err("SVM not supported by CPU %d\n", cpu);
533 		return false;
534 	}
535 
536 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
537 		pr_info("KVM is unsupported when running as an SEV guest\n");
538 		return false;
539 	}
540 
541 	return true;
542 }
543 
544 static bool kvm_is_svm_supported(void)
545 {
546 	bool supported;
547 
548 	migrate_disable();
549 	supported = __kvm_is_svm_supported();
550 	migrate_enable();
551 
552 	return supported;
553 }
554 
555 static int svm_check_processor_compat(void)
556 {
557 	if (!__kvm_is_svm_supported())
558 		return -EIO;
559 
560 	return 0;
561 }
562 
563 static void __svm_write_tsc_multiplier(u64 multiplier)
564 {
565 	if (multiplier == __this_cpu_read(current_tsc_ratio))
566 		return;
567 
568 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
569 	__this_cpu_write(current_tsc_ratio, multiplier);
570 }
571 
572 static inline void kvm_cpu_svm_disable(void)
573 {
574 	uint64_t efer;
575 
576 	wrmsrl(MSR_VM_HSAVE_PA, 0);
577 	rdmsrl(MSR_EFER, efer);
578 	if (efer & EFER_SVME) {
579 		/*
580 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
581 		 * NMI aren't blocked.
582 		 */
583 		stgi();
584 		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
585 	}
586 }
587 
588 static void svm_emergency_disable(void)
589 {
590 	kvm_rebooting = true;
591 
592 	kvm_cpu_svm_disable();
593 }
594 
595 static void svm_hardware_disable(void)
596 {
597 	/* Make sure we clean up behind us */
598 	if (tsc_scaling)
599 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
600 
601 	kvm_cpu_svm_disable();
602 
603 	amd_pmu_disable_virt();
604 }
605 
606 static int svm_hardware_enable(void)
607 {
608 
609 	struct svm_cpu_data *sd;
610 	uint64_t efer;
611 	int me = raw_smp_processor_id();
612 
613 	rdmsrl(MSR_EFER, efer);
614 	if (efer & EFER_SVME)
615 		return -EBUSY;
616 
617 	sd = per_cpu_ptr(&svm_data, me);
618 	sd->asid_generation = 1;
619 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
620 	sd->next_asid = sd->max_asid + 1;
621 	sd->min_asid = max_sev_asid + 1;
622 
623 	wrmsrl(MSR_EFER, efer | EFER_SVME);
624 
625 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
626 
627 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
628 		/*
629 		 * Set the default value, even if we don't use TSC scaling
630 		 * to avoid having stale value in the msr
631 		 */
632 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
633 	}
634 
635 
636 	/*
637 	 * Get OSVW bits.
638 	 *
639 	 * Note that it is possible to have a system with mixed processor
640 	 * revisions and therefore different OSVW bits. If bits are not the same
641 	 * on different processors then choose the worst case (i.e. if erratum
642 	 * is present on one processor and not on another then assume that the
643 	 * erratum is present everywhere).
644 	 */
645 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
646 		uint64_t len, status = 0;
647 		int err;
648 
649 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
650 		if (!err)
651 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
652 						      &err);
653 
654 		if (err)
655 			osvw_status = osvw_len = 0;
656 		else {
657 			if (len < osvw_len)
658 				osvw_len = len;
659 			osvw_status |= status;
660 			osvw_status &= (1ULL << osvw_len) - 1;
661 		}
662 	} else
663 		osvw_status = osvw_len = 0;
664 
665 	svm_init_erratum_383();
666 
667 	amd_pmu_enable_virt();
668 
669 	/*
670 	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
671 	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
672 	 * Since Linux does not change the value of TSC_AUX once set, prime the
673 	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
674 	 */
675 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
676 		struct sev_es_save_area *hostsa;
677 		u32 __maybe_unused msr_hi;
678 
679 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
680 
681 		rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
682 	}
683 
684 	return 0;
685 }
686 
687 static void svm_cpu_uninit(int cpu)
688 {
689 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
690 
691 	if (!sd->save_area)
692 		return;
693 
694 	kfree(sd->sev_vmcbs);
695 	__free_page(sd->save_area);
696 	sd->save_area_pa = 0;
697 	sd->save_area = NULL;
698 }
699 
700 static int svm_cpu_init(int cpu)
701 {
702 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
703 	int ret = -ENOMEM;
704 
705 	memset(sd, 0, sizeof(struct svm_cpu_data));
706 	sd->save_area = snp_safe_alloc_page(NULL);
707 	if (!sd->save_area)
708 		return ret;
709 
710 	ret = sev_cpu_init(sd);
711 	if (ret)
712 		goto free_save_area;
713 
714 	sd->save_area_pa = __sme_page_pa(sd->save_area);
715 	return 0;
716 
717 free_save_area:
718 	__free_page(sd->save_area);
719 	sd->save_area = NULL;
720 	return ret;
721 
722 }
723 
724 static void set_dr_intercepts(struct vcpu_svm *svm)
725 {
726 	struct vmcb *vmcb = svm->vmcb01.ptr;
727 
728 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
729 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
730 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
731 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
732 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
733 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
734 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
735 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
736 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
737 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
738 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
739 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
740 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
741 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
742 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
743 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
744 
745 	recalc_intercepts(svm);
746 }
747 
748 static void clr_dr_intercepts(struct vcpu_svm *svm)
749 {
750 	struct vmcb *vmcb = svm->vmcb01.ptr;
751 
752 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
753 
754 	recalc_intercepts(svm);
755 }
756 
757 static int direct_access_msr_slot(u32 msr)
758 {
759 	u32 i;
760 
761 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
762 		if (direct_access_msrs[i].index == msr)
763 			return i;
764 
765 	return -ENOENT;
766 }
767 
768 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
769 				     int write)
770 {
771 	struct vcpu_svm *svm = to_svm(vcpu);
772 	int slot = direct_access_msr_slot(msr);
773 
774 	if (slot == -ENOENT)
775 		return;
776 
777 	/* Set the shadow bitmaps to the desired intercept states */
778 	if (read)
779 		set_bit(slot, svm->shadow_msr_intercept.read);
780 	else
781 		clear_bit(slot, svm->shadow_msr_intercept.read);
782 
783 	if (write)
784 		set_bit(slot, svm->shadow_msr_intercept.write);
785 	else
786 		clear_bit(slot, svm->shadow_msr_intercept.write);
787 }
788 
789 static bool valid_msr_intercept(u32 index)
790 {
791 	return direct_access_msr_slot(index) != -ENOENT;
792 }
793 
794 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
795 {
796 	u8 bit_write;
797 	unsigned long tmp;
798 	u32 offset;
799 	u32 *msrpm;
800 
801 	/*
802 	 * For non-nested case:
803 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
804 	 * save it.
805 	 *
806 	 * For nested case:
807 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
808 	 * save it.
809 	 */
810 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
811 				      to_svm(vcpu)->msrpm;
812 
813 	offset    = svm_msrpm_offset(msr);
814 	bit_write = 2 * (msr & 0x0f) + 1;
815 	tmp       = msrpm[offset];
816 
817 	BUG_ON(offset == MSR_INVALID);
818 
819 	return test_bit(bit_write, &tmp);
820 }
821 
822 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
823 					u32 msr, int read, int write)
824 {
825 	struct vcpu_svm *svm = to_svm(vcpu);
826 	u8 bit_read, bit_write;
827 	unsigned long tmp;
828 	u32 offset;
829 
830 	/*
831 	 * If this warning triggers extend the direct_access_msrs list at the
832 	 * beginning of the file
833 	 */
834 	WARN_ON(!valid_msr_intercept(msr));
835 
836 	/* Enforce non allowed MSRs to trap */
837 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
838 		read = 0;
839 
840 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
841 		write = 0;
842 
843 	offset    = svm_msrpm_offset(msr);
844 	bit_read  = 2 * (msr & 0x0f);
845 	bit_write = 2 * (msr & 0x0f) + 1;
846 	tmp       = msrpm[offset];
847 
848 	BUG_ON(offset == MSR_INVALID);
849 
850 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
851 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
852 
853 	msrpm[offset] = tmp;
854 
855 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
856 	svm->nested.force_msr_bitmap_recalc = true;
857 }
858 
859 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
860 			  int read, int write)
861 {
862 	set_shadow_msr_intercept(vcpu, msr, read, write);
863 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
864 }
865 
866 u32 *svm_vcpu_alloc_msrpm(void)
867 {
868 	unsigned int order = get_order(MSRPM_SIZE);
869 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
870 	u32 *msrpm;
871 
872 	if (!pages)
873 		return NULL;
874 
875 	msrpm = page_address(pages);
876 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
877 
878 	return msrpm;
879 }
880 
881 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
882 {
883 	int i;
884 
885 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
886 		if (!direct_access_msrs[i].always)
887 			continue;
888 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
889 	}
890 }
891 
892 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
893 {
894 	int i;
895 
896 	if (intercept == svm->x2avic_msrs_intercepted)
897 		return;
898 
899 	if (!x2avic_enabled)
900 		return;
901 
902 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
903 		int index = direct_access_msrs[i].index;
904 
905 		if ((index < APIC_BASE_MSR) ||
906 		    (index > APIC_BASE_MSR + 0xff))
907 			continue;
908 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
909 				     !intercept, !intercept);
910 	}
911 
912 	svm->x2avic_msrs_intercepted = intercept;
913 }
914 
915 void svm_vcpu_free_msrpm(u32 *msrpm)
916 {
917 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
918 }
919 
920 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
921 {
922 	struct vcpu_svm *svm = to_svm(vcpu);
923 	u32 i;
924 
925 	/*
926 	 * Set intercept permissions for all direct access MSRs again. They
927 	 * will automatically get filtered through the MSR filter, so we are
928 	 * back in sync after this.
929 	 */
930 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
931 		u32 msr = direct_access_msrs[i].index;
932 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
933 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
934 
935 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
936 	}
937 }
938 
939 static void add_msr_offset(u32 offset)
940 {
941 	int i;
942 
943 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
944 
945 		/* Offset already in list? */
946 		if (msrpm_offsets[i] == offset)
947 			return;
948 
949 		/* Slot used by another offset? */
950 		if (msrpm_offsets[i] != MSR_INVALID)
951 			continue;
952 
953 		/* Add offset to list */
954 		msrpm_offsets[i] = offset;
955 
956 		return;
957 	}
958 
959 	/*
960 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
961 	 * increase MSRPM_OFFSETS in this case.
962 	 */
963 	BUG();
964 }
965 
966 static void init_msrpm_offsets(void)
967 {
968 	int i;
969 
970 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
971 
972 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
973 		u32 offset;
974 
975 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
976 		BUG_ON(offset == MSR_INVALID);
977 
978 		add_msr_offset(offset);
979 	}
980 }
981 
982 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
983 {
984 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
985 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
986 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
987 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
988 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
989 
990 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
991 }
992 
993 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
994 {
995 	struct vcpu_svm *svm = to_svm(vcpu);
996 
997 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
998 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
999 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1000 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1001 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1002 
1003 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1004 	if (is_guest_mode(vcpu))
1005 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1006 }
1007 
1008 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1009 {
1010 	struct vcpu_svm *svm = to_svm(vcpu);
1011 
1012 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1013 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1014 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1015 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1016 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1017 
1018 	/*
1019 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
1020 	 * on nested guest entries.
1021 	 */
1022 	if (is_guest_mode(vcpu))
1023 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1024 }
1025 
1026 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1027 {
1028 	/*
1029 	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1030 	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1031 	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1032 	 */
1033 	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1034 								   svm->vmcb01.ptr;
1035 }
1036 
1037 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1038 {
1039 	struct vcpu_svm *svm = to_svm(vcpu);
1040 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1041 	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1042 			    (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1043 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1044 
1045 	if (enable_lbrv == current_enable_lbrv)
1046 		return;
1047 
1048 	if (enable_lbrv)
1049 		svm_enable_lbrv(vcpu);
1050 	else
1051 		svm_disable_lbrv(vcpu);
1052 }
1053 
1054 void disable_nmi_singlestep(struct vcpu_svm *svm)
1055 {
1056 	svm->nmi_singlestep = false;
1057 
1058 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1059 		/* Clear our flags if they were not set by the guest */
1060 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1061 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1062 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1063 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1064 	}
1065 }
1066 
1067 static void grow_ple_window(struct kvm_vcpu *vcpu)
1068 {
1069 	struct vcpu_svm *svm = to_svm(vcpu);
1070 	struct vmcb_control_area *control = &svm->vmcb->control;
1071 	int old = control->pause_filter_count;
1072 
1073 	if (kvm_pause_in_guest(vcpu->kvm))
1074 		return;
1075 
1076 	control->pause_filter_count = __grow_ple_window(old,
1077 							pause_filter_count,
1078 							pause_filter_count_grow,
1079 							pause_filter_count_max);
1080 
1081 	if (control->pause_filter_count != old) {
1082 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1083 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1084 					    control->pause_filter_count, old);
1085 	}
1086 }
1087 
1088 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1089 {
1090 	struct vcpu_svm *svm = to_svm(vcpu);
1091 	struct vmcb_control_area *control = &svm->vmcb->control;
1092 	int old = control->pause_filter_count;
1093 
1094 	if (kvm_pause_in_guest(vcpu->kvm))
1095 		return;
1096 
1097 	control->pause_filter_count =
1098 				__shrink_ple_window(old,
1099 						    pause_filter_count,
1100 						    pause_filter_count_shrink,
1101 						    pause_filter_count);
1102 	if (control->pause_filter_count != old) {
1103 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1104 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1105 					    control->pause_filter_count, old);
1106 	}
1107 }
1108 
1109 static void svm_hardware_unsetup(void)
1110 {
1111 	int cpu;
1112 
1113 	sev_hardware_unsetup();
1114 
1115 	for_each_possible_cpu(cpu)
1116 		svm_cpu_uninit(cpu);
1117 
1118 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1119 	get_order(IOPM_SIZE));
1120 	iopm_base = 0;
1121 }
1122 
1123 static void init_seg(struct vmcb_seg *seg)
1124 {
1125 	seg->selector = 0;
1126 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1127 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1128 	seg->limit = 0xffff;
1129 	seg->base = 0;
1130 }
1131 
1132 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1133 {
1134 	seg->selector = 0;
1135 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1136 	seg->limit = 0xffff;
1137 	seg->base = 0;
1138 }
1139 
1140 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1141 {
1142 	struct vcpu_svm *svm = to_svm(vcpu);
1143 
1144 	return svm->nested.ctl.tsc_offset;
1145 }
1146 
1147 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1148 {
1149 	struct vcpu_svm *svm = to_svm(vcpu);
1150 
1151 	return svm->tsc_ratio_msr;
1152 }
1153 
1154 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1155 {
1156 	struct vcpu_svm *svm = to_svm(vcpu);
1157 
1158 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1159 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1160 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1161 }
1162 
1163 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1164 {
1165 	preempt_disable();
1166 	if (to_svm(vcpu)->guest_state_loaded)
1167 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1168 	preempt_enable();
1169 }
1170 
1171 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1172 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1173 					      struct vcpu_svm *svm)
1174 {
1175 	/*
1176 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1177 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1178 	 */
1179 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1180 		if (!npt_enabled ||
1181 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1182 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1183 		else
1184 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1185 	}
1186 
1187 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1188 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1189 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1190 		else
1191 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1192 	}
1193 }
1194 
1195 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1196 {
1197 	struct vcpu_svm *svm = to_svm(vcpu);
1198 
1199 	if (guest_cpuid_is_intel(vcpu)) {
1200 		/*
1201 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1202 		 * accesses because the processor only stores 32 bits.
1203 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1204 		 */
1205 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1206 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1207 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1208 
1209 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1210 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1211 	} else {
1212 		/*
1213 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1214 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1215 		 */
1216 		if (vls) {
1217 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1218 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1219 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1220 		}
1221 		/* No need to intercept these MSRs */
1222 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1223 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1224 	}
1225 }
1226 
1227 static void init_vmcb(struct kvm_vcpu *vcpu)
1228 {
1229 	struct vcpu_svm *svm = to_svm(vcpu);
1230 	struct vmcb *vmcb = svm->vmcb01.ptr;
1231 	struct vmcb_control_area *control = &vmcb->control;
1232 	struct vmcb_save_area *save = &vmcb->save;
1233 
1234 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1235 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1236 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1237 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1238 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1239 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1240 	if (!kvm_vcpu_apicv_active(vcpu))
1241 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1242 
1243 	set_dr_intercepts(svm);
1244 
1245 	set_exception_intercept(svm, PF_VECTOR);
1246 	set_exception_intercept(svm, UD_VECTOR);
1247 	set_exception_intercept(svm, MC_VECTOR);
1248 	set_exception_intercept(svm, AC_VECTOR);
1249 	set_exception_intercept(svm, DB_VECTOR);
1250 	/*
1251 	 * Guest access to VMware backdoor ports could legitimately
1252 	 * trigger #GP because of TSS I/O permission bitmap.
1253 	 * We intercept those #GP and allow access to them anyway
1254 	 * as VMware does.
1255 	 */
1256 	if (enable_vmware_backdoor)
1257 		set_exception_intercept(svm, GP_VECTOR);
1258 
1259 	svm_set_intercept(svm, INTERCEPT_INTR);
1260 	svm_set_intercept(svm, INTERCEPT_NMI);
1261 
1262 	if (intercept_smi)
1263 		svm_set_intercept(svm, INTERCEPT_SMI);
1264 
1265 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1266 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1267 	svm_set_intercept(svm, INTERCEPT_CPUID);
1268 	svm_set_intercept(svm, INTERCEPT_INVD);
1269 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1270 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1271 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1272 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1273 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1274 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1275 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1276 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1277 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1278 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1279 	svm_set_intercept(svm, INTERCEPT_STGI);
1280 	svm_set_intercept(svm, INTERCEPT_CLGI);
1281 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1282 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1283 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1284 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1285 	svm_set_intercept(svm, INTERCEPT_RSM);
1286 
1287 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1288 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1289 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1290 	}
1291 
1292 	if (!kvm_hlt_in_guest(vcpu->kvm))
1293 		svm_set_intercept(svm, INTERCEPT_HLT);
1294 
1295 	control->iopm_base_pa = __sme_set(iopm_base);
1296 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1297 	control->int_ctl = V_INTR_MASKING_MASK;
1298 
1299 	init_seg(&save->es);
1300 	init_seg(&save->ss);
1301 	init_seg(&save->ds);
1302 	init_seg(&save->fs);
1303 	init_seg(&save->gs);
1304 
1305 	save->cs.selector = 0xf000;
1306 	save->cs.base = 0xffff0000;
1307 	/* Executable/Readable Code Segment */
1308 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1309 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1310 	save->cs.limit = 0xffff;
1311 
1312 	save->gdtr.base = 0;
1313 	save->gdtr.limit = 0xffff;
1314 	save->idtr.base = 0;
1315 	save->idtr.limit = 0xffff;
1316 
1317 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1318 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1319 
1320 	if (npt_enabled) {
1321 		/* Setup VMCB for Nested Paging */
1322 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1323 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1324 		clr_exception_intercept(svm, PF_VECTOR);
1325 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1326 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1327 		save->g_pat = vcpu->arch.pat;
1328 		save->cr3 = 0;
1329 	}
1330 	svm->current_vmcb->asid_generation = 0;
1331 	svm->asid = 0;
1332 
1333 	svm->nested.vmcb12_gpa = INVALID_GPA;
1334 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1335 
1336 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1337 		control->pause_filter_count = pause_filter_count;
1338 		if (pause_filter_thresh)
1339 			control->pause_filter_thresh = pause_filter_thresh;
1340 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1341 	} else {
1342 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1343 	}
1344 
1345 	svm_recalc_instruction_intercepts(vcpu, svm);
1346 
1347 	/*
1348 	 * If the host supports V_SPEC_CTRL then disable the interception
1349 	 * of MSR_IA32_SPEC_CTRL.
1350 	 */
1351 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1352 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1353 
1354 	if (kvm_vcpu_apicv_active(vcpu))
1355 		avic_init_vmcb(svm, vmcb);
1356 
1357 	if (vnmi)
1358 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1359 
1360 	if (vgif) {
1361 		svm_clr_intercept(svm, INTERCEPT_STGI);
1362 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1363 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1364 	}
1365 
1366 	if (sev_guest(vcpu->kvm))
1367 		sev_init_vmcb(svm);
1368 
1369 	svm_hv_init_vmcb(vmcb);
1370 	init_vmcb_after_set_cpuid(vcpu);
1371 
1372 	vmcb_mark_all_dirty(vmcb);
1373 
1374 	enable_gif(svm);
1375 }
1376 
1377 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1378 {
1379 	struct vcpu_svm *svm = to_svm(vcpu);
1380 
1381 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1382 
1383 	svm_init_osvw(vcpu);
1384 	vcpu->arch.microcode_version = 0x01000065;
1385 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1386 
1387 	svm->nmi_masked = false;
1388 	svm->awaiting_iret_completion = false;
1389 
1390 	if (sev_es_guest(vcpu->kvm))
1391 		sev_es_vcpu_reset(svm);
1392 }
1393 
1394 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1395 {
1396 	struct vcpu_svm *svm = to_svm(vcpu);
1397 
1398 	svm->spec_ctrl = 0;
1399 	svm->virt_spec_ctrl = 0;
1400 
1401 	init_vmcb(vcpu);
1402 
1403 	if (!init_event)
1404 		__svm_vcpu_reset(vcpu);
1405 }
1406 
1407 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1408 {
1409 	svm->current_vmcb = target_vmcb;
1410 	svm->vmcb = target_vmcb->ptr;
1411 }
1412 
1413 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1414 {
1415 	struct vcpu_svm *svm;
1416 	struct page *vmcb01_page;
1417 	struct page *vmsa_page = NULL;
1418 	int err;
1419 
1420 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1421 	svm = to_svm(vcpu);
1422 
1423 	err = -ENOMEM;
1424 	vmcb01_page = snp_safe_alloc_page(vcpu);
1425 	if (!vmcb01_page)
1426 		goto out;
1427 
1428 	if (sev_es_guest(vcpu->kvm)) {
1429 		/*
1430 		 * SEV-ES guests require a separate VMSA page used to contain
1431 		 * the encrypted register state of the guest.
1432 		 */
1433 		vmsa_page = snp_safe_alloc_page(vcpu);
1434 		if (!vmsa_page)
1435 			goto error_free_vmcb_page;
1436 
1437 		/*
1438 		 * SEV-ES guests maintain an encrypted version of their FPU
1439 		 * state which is restored and saved on VMRUN and VMEXIT.
1440 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1441 		 * do xsave/xrstor on it.
1442 		 */
1443 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1444 	}
1445 
1446 	err = avic_init_vcpu(svm);
1447 	if (err)
1448 		goto error_free_vmsa_page;
1449 
1450 	svm->msrpm = svm_vcpu_alloc_msrpm();
1451 	if (!svm->msrpm) {
1452 		err = -ENOMEM;
1453 		goto error_free_vmsa_page;
1454 	}
1455 
1456 	svm->x2avic_msrs_intercepted = true;
1457 
1458 	svm->vmcb01.ptr = page_address(vmcb01_page);
1459 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1460 	svm_switch_vmcb(svm, &svm->vmcb01);
1461 
1462 	if (vmsa_page)
1463 		svm->sev_es.vmsa = page_address(vmsa_page);
1464 
1465 	svm->guest_state_loaded = false;
1466 
1467 	return 0;
1468 
1469 error_free_vmsa_page:
1470 	if (vmsa_page)
1471 		__free_page(vmsa_page);
1472 error_free_vmcb_page:
1473 	__free_page(vmcb01_page);
1474 out:
1475 	return err;
1476 }
1477 
1478 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1479 {
1480 	int i;
1481 
1482 	for_each_online_cpu(i)
1483 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1484 }
1485 
1486 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1487 {
1488 	struct vcpu_svm *svm = to_svm(vcpu);
1489 
1490 	/*
1491 	 * The vmcb page can be recycled, causing a false negative in
1492 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1493 	 * vmcb page recorded as its current vmcb.
1494 	 */
1495 	svm_clear_current_vmcb(svm->vmcb);
1496 
1497 	svm_leave_nested(vcpu);
1498 	svm_free_nested(svm);
1499 
1500 	sev_free_vcpu(vcpu);
1501 
1502 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1503 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1504 }
1505 
1506 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1507 {
1508 	struct vcpu_svm *svm = to_svm(vcpu);
1509 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1510 
1511 	if (sev_es_guest(vcpu->kvm))
1512 		sev_es_unmap_ghcb(svm);
1513 
1514 	if (svm->guest_state_loaded)
1515 		return;
1516 
1517 	/*
1518 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1519 	 * or subsequent vmload of host save area.
1520 	 */
1521 	vmsave(sd->save_area_pa);
1522 	if (sev_es_guest(vcpu->kvm)) {
1523 		struct sev_es_save_area *hostsa;
1524 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1525 
1526 		sev_es_prepare_switch_to_guest(hostsa);
1527 	}
1528 
1529 	if (tsc_scaling)
1530 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1531 
1532 	/*
1533 	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1534 	 * available. The user return MSR support is not required in this case
1535 	 * because TSC_AUX is restored on #VMEXIT from the host save area
1536 	 * (which has been initialized in svm_hardware_enable()).
1537 	 */
1538 	if (likely(tsc_aux_uret_slot >= 0) &&
1539 	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1540 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1541 
1542 	svm->guest_state_loaded = true;
1543 }
1544 
1545 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1546 {
1547 	to_svm(vcpu)->guest_state_loaded = false;
1548 }
1549 
1550 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1551 {
1552 	struct vcpu_svm *svm = to_svm(vcpu);
1553 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1554 
1555 	if (sd->current_vmcb != svm->vmcb) {
1556 		sd->current_vmcb = svm->vmcb;
1557 
1558 		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1559 			indirect_branch_prediction_barrier();
1560 	}
1561 	if (kvm_vcpu_apicv_active(vcpu))
1562 		avic_vcpu_load(vcpu, cpu);
1563 }
1564 
1565 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1566 {
1567 	if (kvm_vcpu_apicv_active(vcpu))
1568 		avic_vcpu_put(vcpu);
1569 
1570 	svm_prepare_host_switch(vcpu);
1571 
1572 	++vcpu->stat.host_state_reload;
1573 }
1574 
1575 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1576 {
1577 	struct vcpu_svm *svm = to_svm(vcpu);
1578 	unsigned long rflags = svm->vmcb->save.rflags;
1579 
1580 	if (svm->nmi_singlestep) {
1581 		/* Hide our flags if they were not set by the guest */
1582 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1583 			rflags &= ~X86_EFLAGS_TF;
1584 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1585 			rflags &= ~X86_EFLAGS_RF;
1586 	}
1587 	return rflags;
1588 }
1589 
1590 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1591 {
1592 	if (to_svm(vcpu)->nmi_singlestep)
1593 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1594 
1595        /*
1596         * Any change of EFLAGS.VM is accompanied by a reload of SS
1597         * (caused by either a task switch or an inter-privilege IRET),
1598         * so we do not need to update the CPL here.
1599         */
1600 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1601 }
1602 
1603 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1604 {
1605 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1606 
1607 	return sev_es_guest(vcpu->kvm)
1608 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1609 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1610 }
1611 
1612 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1613 {
1614 	kvm_register_mark_available(vcpu, reg);
1615 
1616 	switch (reg) {
1617 	case VCPU_EXREG_PDPTR:
1618 		/*
1619 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1620 		 * it is always updated per SDM when moving to CRs.
1621 		 */
1622 		if (npt_enabled)
1623 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1624 		break;
1625 	default:
1626 		KVM_BUG_ON(1, vcpu->kvm);
1627 	}
1628 }
1629 
1630 static void svm_set_vintr(struct vcpu_svm *svm)
1631 {
1632 	struct vmcb_control_area *control;
1633 
1634 	/*
1635 	 * The following fields are ignored when AVIC is enabled
1636 	 */
1637 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1638 
1639 	svm_set_intercept(svm, INTERCEPT_VINTR);
1640 
1641 	/*
1642 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1643 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1644 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1645 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1646 	 * interrupts will never be unblocked while L2 is running.
1647 	 */
1648 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1649 		return;
1650 
1651 	/*
1652 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1653 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1654 	 */
1655 	control = &svm->vmcb->control;
1656 	control->int_vector = 0x0;
1657 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1658 	control->int_ctl |= V_IRQ_MASK |
1659 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1660 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1661 }
1662 
1663 static void svm_clear_vintr(struct vcpu_svm *svm)
1664 {
1665 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1666 
1667 	/* Drop int_ctl fields related to VINTR injection.  */
1668 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1669 	if (is_guest_mode(&svm->vcpu)) {
1670 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1671 
1672 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1673 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1674 
1675 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1676 			V_IRQ_INJECTION_BITS_MASK;
1677 
1678 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1679 	}
1680 
1681 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1682 }
1683 
1684 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1685 {
1686 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1687 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1688 
1689 	switch (seg) {
1690 	case VCPU_SREG_CS: return &save->cs;
1691 	case VCPU_SREG_DS: return &save->ds;
1692 	case VCPU_SREG_ES: return &save->es;
1693 	case VCPU_SREG_FS: return &save01->fs;
1694 	case VCPU_SREG_GS: return &save01->gs;
1695 	case VCPU_SREG_SS: return &save->ss;
1696 	case VCPU_SREG_TR: return &save01->tr;
1697 	case VCPU_SREG_LDTR: return &save01->ldtr;
1698 	}
1699 	BUG();
1700 	return NULL;
1701 }
1702 
1703 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1704 {
1705 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1706 
1707 	return s->base;
1708 }
1709 
1710 static void svm_get_segment(struct kvm_vcpu *vcpu,
1711 			    struct kvm_segment *var, int seg)
1712 {
1713 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1714 
1715 	var->base = s->base;
1716 	var->limit = s->limit;
1717 	var->selector = s->selector;
1718 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1719 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1720 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1721 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1722 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1723 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1724 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1725 
1726 	/*
1727 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1728 	 * However, the SVM spec states that the G bit is not observed by the
1729 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1730 	 * So let's synthesize a legal G bit for all segments, this helps
1731 	 * running KVM nested. It also helps cross-vendor migration, because
1732 	 * Intel's vmentry has a check on the 'G' bit.
1733 	 */
1734 	var->g = s->limit > 0xfffff;
1735 
1736 	/*
1737 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1738 	 * for cross vendor migration purposes by "not present"
1739 	 */
1740 	var->unusable = !var->present;
1741 
1742 	switch (seg) {
1743 	case VCPU_SREG_TR:
1744 		/*
1745 		 * Work around a bug where the busy flag in the tr selector
1746 		 * isn't exposed
1747 		 */
1748 		var->type |= 0x2;
1749 		break;
1750 	case VCPU_SREG_DS:
1751 	case VCPU_SREG_ES:
1752 	case VCPU_SREG_FS:
1753 	case VCPU_SREG_GS:
1754 		/*
1755 		 * The accessed bit must always be set in the segment
1756 		 * descriptor cache, although it can be cleared in the
1757 		 * descriptor, the cached bit always remains at 1. Since
1758 		 * Intel has a check on this, set it here to support
1759 		 * cross-vendor migration.
1760 		 */
1761 		if (!var->unusable)
1762 			var->type |= 0x1;
1763 		break;
1764 	case VCPU_SREG_SS:
1765 		/*
1766 		 * On AMD CPUs sometimes the DB bit in the segment
1767 		 * descriptor is left as 1, although the whole segment has
1768 		 * been made unusable. Clear it here to pass an Intel VMX
1769 		 * entry check when cross vendor migrating.
1770 		 */
1771 		if (var->unusable)
1772 			var->db = 0;
1773 		/* This is symmetric with svm_set_segment() */
1774 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1775 		break;
1776 	}
1777 }
1778 
1779 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1780 {
1781 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1782 
1783 	return save->cpl;
1784 }
1785 
1786 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1787 {
1788 	struct kvm_segment cs;
1789 
1790 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1791 	*db = cs.db;
1792 	*l = cs.l;
1793 }
1794 
1795 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1796 {
1797 	struct vcpu_svm *svm = to_svm(vcpu);
1798 
1799 	dt->size = svm->vmcb->save.idtr.limit;
1800 	dt->address = svm->vmcb->save.idtr.base;
1801 }
1802 
1803 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1804 {
1805 	struct vcpu_svm *svm = to_svm(vcpu);
1806 
1807 	svm->vmcb->save.idtr.limit = dt->size;
1808 	svm->vmcb->save.idtr.base = dt->address ;
1809 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1810 }
1811 
1812 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1813 {
1814 	struct vcpu_svm *svm = to_svm(vcpu);
1815 
1816 	dt->size = svm->vmcb->save.gdtr.limit;
1817 	dt->address = svm->vmcb->save.gdtr.base;
1818 }
1819 
1820 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1821 {
1822 	struct vcpu_svm *svm = to_svm(vcpu);
1823 
1824 	svm->vmcb->save.gdtr.limit = dt->size;
1825 	svm->vmcb->save.gdtr.base = dt->address ;
1826 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1827 }
1828 
1829 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1830 {
1831 	struct vcpu_svm *svm = to_svm(vcpu);
1832 
1833 	/*
1834 	 * For guests that don't set guest_state_protected, the cr3 update is
1835 	 * handled via kvm_mmu_load() while entering the guest. For guests
1836 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1837 	 * VMCB save area now, since the save area will become the initial
1838 	 * contents of the VMSA, and future VMCB save area updates won't be
1839 	 * seen.
1840 	 */
1841 	if (sev_es_guest(vcpu->kvm)) {
1842 		svm->vmcb->save.cr3 = cr3;
1843 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1844 	}
1845 }
1846 
1847 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1848 {
1849 	return true;
1850 }
1851 
1852 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1853 {
1854 	struct vcpu_svm *svm = to_svm(vcpu);
1855 	u64 hcr0 = cr0;
1856 	bool old_paging = is_paging(vcpu);
1857 
1858 #ifdef CONFIG_X86_64
1859 	if (vcpu->arch.efer & EFER_LME) {
1860 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1861 			vcpu->arch.efer |= EFER_LMA;
1862 			if (!vcpu->arch.guest_state_protected)
1863 				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1864 		}
1865 
1866 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1867 			vcpu->arch.efer &= ~EFER_LMA;
1868 			if (!vcpu->arch.guest_state_protected)
1869 				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1870 		}
1871 	}
1872 #endif
1873 	vcpu->arch.cr0 = cr0;
1874 
1875 	if (!npt_enabled) {
1876 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1877 		if (old_paging != is_paging(vcpu))
1878 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1879 	}
1880 
1881 	/*
1882 	 * re-enable caching here because the QEMU bios
1883 	 * does not do it - this results in some delay at
1884 	 * reboot
1885 	 */
1886 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1887 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1888 
1889 	svm->vmcb->save.cr0 = hcr0;
1890 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1891 
1892 	/*
1893 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1894 	 * tracking is done using the CR write traps.
1895 	 */
1896 	if (sev_es_guest(vcpu->kvm))
1897 		return;
1898 
1899 	if (hcr0 == cr0) {
1900 		/* Selective CR0 write remains on.  */
1901 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1902 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1903 	} else {
1904 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1905 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1906 	}
1907 }
1908 
1909 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1910 {
1911 	return true;
1912 }
1913 
1914 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1915 {
1916 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1917 	unsigned long old_cr4 = vcpu->arch.cr4;
1918 
1919 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1920 		svm_flush_tlb_current(vcpu);
1921 
1922 	vcpu->arch.cr4 = cr4;
1923 	if (!npt_enabled) {
1924 		cr4 |= X86_CR4_PAE;
1925 
1926 		if (!is_paging(vcpu))
1927 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1928 	}
1929 	cr4 |= host_cr4_mce;
1930 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1931 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1932 
1933 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1934 		kvm_update_cpuid_runtime(vcpu);
1935 }
1936 
1937 static void svm_set_segment(struct kvm_vcpu *vcpu,
1938 			    struct kvm_segment *var, int seg)
1939 {
1940 	struct vcpu_svm *svm = to_svm(vcpu);
1941 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1942 
1943 	s->base = var->base;
1944 	s->limit = var->limit;
1945 	s->selector = var->selector;
1946 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1947 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1948 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1949 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1950 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1951 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1952 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1953 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1954 
1955 	/*
1956 	 * This is always accurate, except if SYSRET returned to a segment
1957 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1958 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1959 	 * would entail passing the CPL to userspace and back.
1960 	 */
1961 	if (seg == VCPU_SREG_SS)
1962 		/* This is symmetric with svm_get_segment() */
1963 		svm->vmcb->save.cpl = (var->dpl & 3);
1964 
1965 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1966 }
1967 
1968 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1969 {
1970 	struct vcpu_svm *svm = to_svm(vcpu);
1971 
1972 	clr_exception_intercept(svm, BP_VECTOR);
1973 
1974 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1975 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1976 			set_exception_intercept(svm, BP_VECTOR);
1977 	}
1978 }
1979 
1980 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1981 {
1982 	if (sd->next_asid > sd->max_asid) {
1983 		++sd->asid_generation;
1984 		sd->next_asid = sd->min_asid;
1985 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1986 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1987 	}
1988 
1989 	svm->current_vmcb->asid_generation = sd->asid_generation;
1990 	svm->asid = sd->next_asid++;
1991 }
1992 
1993 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1994 {
1995 	struct vmcb *vmcb = svm->vmcb;
1996 
1997 	if (svm->vcpu.arch.guest_state_protected)
1998 		return;
1999 
2000 	if (unlikely(value != vmcb->save.dr6)) {
2001 		vmcb->save.dr6 = value;
2002 		vmcb_mark_dirty(vmcb, VMCB_DR);
2003 	}
2004 }
2005 
2006 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2007 {
2008 	struct vcpu_svm *svm = to_svm(vcpu);
2009 
2010 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2011 		return;
2012 
2013 	get_debugreg(vcpu->arch.db[0], 0);
2014 	get_debugreg(vcpu->arch.db[1], 1);
2015 	get_debugreg(vcpu->arch.db[2], 2);
2016 	get_debugreg(vcpu->arch.db[3], 3);
2017 	/*
2018 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2019 	 * because db_interception might need it.  We can do it before vmentry.
2020 	 */
2021 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
2022 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2023 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2024 	set_dr_intercepts(svm);
2025 }
2026 
2027 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2028 {
2029 	struct vcpu_svm *svm = to_svm(vcpu);
2030 
2031 	if (vcpu->arch.guest_state_protected)
2032 		return;
2033 
2034 	svm->vmcb->save.dr7 = value;
2035 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2036 }
2037 
2038 static int pf_interception(struct kvm_vcpu *vcpu)
2039 {
2040 	struct vcpu_svm *svm = to_svm(vcpu);
2041 
2042 	u64 fault_address = svm->vmcb->control.exit_info_2;
2043 	u64 error_code = svm->vmcb->control.exit_info_1;
2044 
2045 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
2046 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2047 			svm->vmcb->control.insn_bytes : NULL,
2048 			svm->vmcb->control.insn_len);
2049 }
2050 
2051 static int npf_interception(struct kvm_vcpu *vcpu)
2052 {
2053 	struct vcpu_svm *svm = to_svm(vcpu);
2054 
2055 	u64 fault_address = svm->vmcb->control.exit_info_2;
2056 	u64 error_code = svm->vmcb->control.exit_info_1;
2057 
2058 	trace_kvm_page_fault(vcpu, fault_address, error_code);
2059 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2060 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2061 			svm->vmcb->control.insn_bytes : NULL,
2062 			svm->vmcb->control.insn_len);
2063 }
2064 
2065 static int db_interception(struct kvm_vcpu *vcpu)
2066 {
2067 	struct kvm_run *kvm_run = vcpu->run;
2068 	struct vcpu_svm *svm = to_svm(vcpu);
2069 
2070 	if (!(vcpu->guest_debug &
2071 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2072 		!svm->nmi_singlestep) {
2073 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2074 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2075 		return 1;
2076 	}
2077 
2078 	if (svm->nmi_singlestep) {
2079 		disable_nmi_singlestep(svm);
2080 		/* Make sure we check for pending NMIs upon entry */
2081 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2082 	}
2083 
2084 	if (vcpu->guest_debug &
2085 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2086 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2087 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2088 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2089 		kvm_run->debug.arch.pc =
2090 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2091 		kvm_run->debug.arch.exception = DB_VECTOR;
2092 		return 0;
2093 	}
2094 
2095 	return 1;
2096 }
2097 
2098 static int bp_interception(struct kvm_vcpu *vcpu)
2099 {
2100 	struct vcpu_svm *svm = to_svm(vcpu);
2101 	struct kvm_run *kvm_run = vcpu->run;
2102 
2103 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2104 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2105 	kvm_run->debug.arch.exception = BP_VECTOR;
2106 	return 0;
2107 }
2108 
2109 static int ud_interception(struct kvm_vcpu *vcpu)
2110 {
2111 	return handle_ud(vcpu);
2112 }
2113 
2114 static int ac_interception(struct kvm_vcpu *vcpu)
2115 {
2116 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2117 	return 1;
2118 }
2119 
2120 static bool is_erratum_383(void)
2121 {
2122 	int err, i;
2123 	u64 value;
2124 
2125 	if (!erratum_383_found)
2126 		return false;
2127 
2128 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2129 	if (err)
2130 		return false;
2131 
2132 	/* Bit 62 may or may not be set for this mce */
2133 	value &= ~(1ULL << 62);
2134 
2135 	if (value != 0xb600000000010015ULL)
2136 		return false;
2137 
2138 	/* Clear MCi_STATUS registers */
2139 	for (i = 0; i < 6; ++i)
2140 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2141 
2142 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2143 	if (!err) {
2144 		u32 low, high;
2145 
2146 		value &= ~(1ULL << 2);
2147 		low    = lower_32_bits(value);
2148 		high   = upper_32_bits(value);
2149 
2150 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2151 	}
2152 
2153 	/* Flush tlb to evict multi-match entries */
2154 	__flush_tlb_all();
2155 
2156 	return true;
2157 }
2158 
2159 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2160 {
2161 	if (is_erratum_383()) {
2162 		/*
2163 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2164 		 * guest.
2165 		 */
2166 		pr_err("Guest triggered AMD Erratum 383\n");
2167 
2168 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2169 
2170 		return;
2171 	}
2172 
2173 	/*
2174 	 * On an #MC intercept the MCE handler is not called automatically in
2175 	 * the host. So do it by hand here.
2176 	 */
2177 	kvm_machine_check();
2178 }
2179 
2180 static int mc_interception(struct kvm_vcpu *vcpu)
2181 {
2182 	return 1;
2183 }
2184 
2185 static int shutdown_interception(struct kvm_vcpu *vcpu)
2186 {
2187 	struct kvm_run *kvm_run = vcpu->run;
2188 	struct vcpu_svm *svm = to_svm(vcpu);
2189 
2190 
2191 	/*
2192 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2193 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2194 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2195 	 * userspace.  At a platform view, INIT is acceptable behavior as
2196 	 * there exist bare metal platforms that automatically INIT the CPU
2197 	 * in response to shutdown.
2198 	 *
2199 	 * The VM save area for SEV-ES guests has already been encrypted so it
2200 	 * cannot be reinitialized, i.e. synthesizing INIT is futile.
2201 	 */
2202 	if (!sev_es_guest(vcpu->kvm)) {
2203 		clear_page(svm->vmcb);
2204 		kvm_vcpu_reset(vcpu, true);
2205 	}
2206 
2207 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2208 	return 0;
2209 }
2210 
2211 static int io_interception(struct kvm_vcpu *vcpu)
2212 {
2213 	struct vcpu_svm *svm = to_svm(vcpu);
2214 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2215 	int size, in, string;
2216 	unsigned port;
2217 
2218 	++vcpu->stat.io_exits;
2219 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2220 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2221 	port = io_info >> 16;
2222 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2223 
2224 	if (string) {
2225 		if (sev_es_guest(vcpu->kvm))
2226 			return sev_es_string_io(svm, size, port, in);
2227 		else
2228 			return kvm_emulate_instruction(vcpu, 0);
2229 	}
2230 
2231 	svm->next_rip = svm->vmcb->control.exit_info_2;
2232 
2233 	return kvm_fast_pio(vcpu, size, port, in);
2234 }
2235 
2236 static int nmi_interception(struct kvm_vcpu *vcpu)
2237 {
2238 	return 1;
2239 }
2240 
2241 static int smi_interception(struct kvm_vcpu *vcpu)
2242 {
2243 	return 1;
2244 }
2245 
2246 static int intr_interception(struct kvm_vcpu *vcpu)
2247 {
2248 	++vcpu->stat.irq_exits;
2249 	return 1;
2250 }
2251 
2252 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2253 {
2254 	struct vcpu_svm *svm = to_svm(vcpu);
2255 	struct vmcb *vmcb12;
2256 	struct kvm_host_map map;
2257 	int ret;
2258 
2259 	if (nested_svm_check_permissions(vcpu))
2260 		return 1;
2261 
2262 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2263 	if (ret) {
2264 		if (ret == -EINVAL)
2265 			kvm_inject_gp(vcpu, 0);
2266 		return 1;
2267 	}
2268 
2269 	vmcb12 = map.hva;
2270 
2271 	ret = kvm_skip_emulated_instruction(vcpu);
2272 
2273 	if (vmload) {
2274 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2275 		svm->sysenter_eip_hi = 0;
2276 		svm->sysenter_esp_hi = 0;
2277 	} else {
2278 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2279 	}
2280 
2281 	kvm_vcpu_unmap(vcpu, &map, true);
2282 
2283 	return ret;
2284 }
2285 
2286 static int vmload_interception(struct kvm_vcpu *vcpu)
2287 {
2288 	return vmload_vmsave_interception(vcpu, true);
2289 }
2290 
2291 static int vmsave_interception(struct kvm_vcpu *vcpu)
2292 {
2293 	return vmload_vmsave_interception(vcpu, false);
2294 }
2295 
2296 static int vmrun_interception(struct kvm_vcpu *vcpu)
2297 {
2298 	if (nested_svm_check_permissions(vcpu))
2299 		return 1;
2300 
2301 	return nested_svm_vmrun(vcpu);
2302 }
2303 
2304 enum {
2305 	NONE_SVM_INSTR,
2306 	SVM_INSTR_VMRUN,
2307 	SVM_INSTR_VMLOAD,
2308 	SVM_INSTR_VMSAVE,
2309 };
2310 
2311 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2312 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2313 {
2314 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2315 
2316 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2317 		return NONE_SVM_INSTR;
2318 
2319 	switch (ctxt->modrm) {
2320 	case 0xd8: /* VMRUN */
2321 		return SVM_INSTR_VMRUN;
2322 	case 0xda: /* VMLOAD */
2323 		return SVM_INSTR_VMLOAD;
2324 	case 0xdb: /* VMSAVE */
2325 		return SVM_INSTR_VMSAVE;
2326 	default:
2327 		break;
2328 	}
2329 
2330 	return NONE_SVM_INSTR;
2331 }
2332 
2333 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2334 {
2335 	const int guest_mode_exit_codes[] = {
2336 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2337 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2338 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2339 	};
2340 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2341 		[SVM_INSTR_VMRUN] = vmrun_interception,
2342 		[SVM_INSTR_VMLOAD] = vmload_interception,
2343 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2344 	};
2345 	struct vcpu_svm *svm = to_svm(vcpu);
2346 	int ret;
2347 
2348 	if (is_guest_mode(vcpu)) {
2349 		/* Returns '1' or -errno on failure, '0' on success. */
2350 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2351 		if (ret)
2352 			return ret;
2353 		return 1;
2354 	}
2355 	return svm_instr_handlers[opcode](vcpu);
2356 }
2357 
2358 /*
2359  * #GP handling code. Note that #GP can be triggered under the following two
2360  * cases:
2361  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2362  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2363  *      regions (e.g. SMM memory on host).
2364  *   2) VMware backdoor
2365  */
2366 static int gp_interception(struct kvm_vcpu *vcpu)
2367 {
2368 	struct vcpu_svm *svm = to_svm(vcpu);
2369 	u32 error_code = svm->vmcb->control.exit_info_1;
2370 	int opcode;
2371 
2372 	/* Both #GP cases have zero error_code */
2373 	if (error_code)
2374 		goto reinject;
2375 
2376 	/* Decode the instruction for usage later */
2377 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2378 		goto reinject;
2379 
2380 	opcode = svm_instr_opcode(vcpu);
2381 
2382 	if (opcode == NONE_SVM_INSTR) {
2383 		if (!enable_vmware_backdoor)
2384 			goto reinject;
2385 
2386 		/*
2387 		 * VMware backdoor emulation on #GP interception only handles
2388 		 * IN{S}, OUT{S}, and RDPMC.
2389 		 */
2390 		if (!is_guest_mode(vcpu))
2391 			return kvm_emulate_instruction(vcpu,
2392 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2393 	} else {
2394 		/* All SVM instructions expect page aligned RAX */
2395 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2396 			goto reinject;
2397 
2398 		return emulate_svm_instr(vcpu, opcode);
2399 	}
2400 
2401 reinject:
2402 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2403 	return 1;
2404 }
2405 
2406 void svm_set_gif(struct vcpu_svm *svm, bool value)
2407 {
2408 	if (value) {
2409 		/*
2410 		 * If VGIF is enabled, the STGI intercept is only added to
2411 		 * detect the opening of the SMI/NMI window; remove it now.
2412 		 * Likewise, clear the VINTR intercept, we will set it
2413 		 * again while processing KVM_REQ_EVENT if needed.
2414 		 */
2415 		if (vgif)
2416 			svm_clr_intercept(svm, INTERCEPT_STGI);
2417 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2418 			svm_clear_vintr(svm);
2419 
2420 		enable_gif(svm);
2421 		if (svm->vcpu.arch.smi_pending ||
2422 		    svm->vcpu.arch.nmi_pending ||
2423 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2424 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2425 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2426 	} else {
2427 		disable_gif(svm);
2428 
2429 		/*
2430 		 * After a CLGI no interrupts should come.  But if vGIF is
2431 		 * in use, we still rely on the VINTR intercept (rather than
2432 		 * STGI) to detect an open interrupt window.
2433 		*/
2434 		if (!vgif)
2435 			svm_clear_vintr(svm);
2436 	}
2437 }
2438 
2439 static int stgi_interception(struct kvm_vcpu *vcpu)
2440 {
2441 	int ret;
2442 
2443 	if (nested_svm_check_permissions(vcpu))
2444 		return 1;
2445 
2446 	ret = kvm_skip_emulated_instruction(vcpu);
2447 	svm_set_gif(to_svm(vcpu), true);
2448 	return ret;
2449 }
2450 
2451 static int clgi_interception(struct kvm_vcpu *vcpu)
2452 {
2453 	int ret;
2454 
2455 	if (nested_svm_check_permissions(vcpu))
2456 		return 1;
2457 
2458 	ret = kvm_skip_emulated_instruction(vcpu);
2459 	svm_set_gif(to_svm(vcpu), false);
2460 	return ret;
2461 }
2462 
2463 static int invlpga_interception(struct kvm_vcpu *vcpu)
2464 {
2465 	gva_t gva = kvm_rax_read(vcpu);
2466 	u32 asid = kvm_rcx_read(vcpu);
2467 
2468 	/* FIXME: Handle an address size prefix. */
2469 	if (!is_long_mode(vcpu))
2470 		gva = (u32)gva;
2471 
2472 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2473 
2474 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2475 	kvm_mmu_invlpg(vcpu, gva);
2476 
2477 	return kvm_skip_emulated_instruction(vcpu);
2478 }
2479 
2480 static int skinit_interception(struct kvm_vcpu *vcpu)
2481 {
2482 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2483 
2484 	kvm_queue_exception(vcpu, UD_VECTOR);
2485 	return 1;
2486 }
2487 
2488 static int task_switch_interception(struct kvm_vcpu *vcpu)
2489 {
2490 	struct vcpu_svm *svm = to_svm(vcpu);
2491 	u16 tss_selector;
2492 	int reason;
2493 	int int_type = svm->vmcb->control.exit_int_info &
2494 		SVM_EXITINTINFO_TYPE_MASK;
2495 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2496 	uint32_t type =
2497 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2498 	uint32_t idt_v =
2499 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2500 	bool has_error_code = false;
2501 	u32 error_code = 0;
2502 
2503 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2504 
2505 	if (svm->vmcb->control.exit_info_2 &
2506 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2507 		reason = TASK_SWITCH_IRET;
2508 	else if (svm->vmcb->control.exit_info_2 &
2509 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2510 		reason = TASK_SWITCH_JMP;
2511 	else if (idt_v)
2512 		reason = TASK_SWITCH_GATE;
2513 	else
2514 		reason = TASK_SWITCH_CALL;
2515 
2516 	if (reason == TASK_SWITCH_GATE) {
2517 		switch (type) {
2518 		case SVM_EXITINTINFO_TYPE_NMI:
2519 			vcpu->arch.nmi_injected = false;
2520 			break;
2521 		case SVM_EXITINTINFO_TYPE_EXEPT:
2522 			if (svm->vmcb->control.exit_info_2 &
2523 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2524 				has_error_code = true;
2525 				error_code =
2526 					(u32)svm->vmcb->control.exit_info_2;
2527 			}
2528 			kvm_clear_exception_queue(vcpu);
2529 			break;
2530 		case SVM_EXITINTINFO_TYPE_INTR:
2531 		case SVM_EXITINTINFO_TYPE_SOFT:
2532 			kvm_clear_interrupt_queue(vcpu);
2533 			break;
2534 		default:
2535 			break;
2536 		}
2537 	}
2538 
2539 	if (reason != TASK_SWITCH_GATE ||
2540 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2541 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2542 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2543 		if (!svm_skip_emulated_instruction(vcpu))
2544 			return 0;
2545 	}
2546 
2547 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2548 		int_vec = -1;
2549 
2550 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2551 			       has_error_code, error_code);
2552 }
2553 
2554 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2555 {
2556 	if (!sev_es_guest(svm->vcpu.kvm))
2557 		svm_clr_intercept(svm, INTERCEPT_IRET);
2558 }
2559 
2560 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2561 {
2562 	if (!sev_es_guest(svm->vcpu.kvm))
2563 		svm_set_intercept(svm, INTERCEPT_IRET);
2564 }
2565 
2566 static int iret_interception(struct kvm_vcpu *vcpu)
2567 {
2568 	struct vcpu_svm *svm = to_svm(vcpu);
2569 
2570 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2571 
2572 	++vcpu->stat.nmi_window_exits;
2573 	svm->awaiting_iret_completion = true;
2574 
2575 	svm_clr_iret_intercept(svm);
2576 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2577 
2578 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2579 	return 1;
2580 }
2581 
2582 static int invlpg_interception(struct kvm_vcpu *vcpu)
2583 {
2584 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2585 		return kvm_emulate_instruction(vcpu, 0);
2586 
2587 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2588 	return kvm_skip_emulated_instruction(vcpu);
2589 }
2590 
2591 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2592 {
2593 	return kvm_emulate_instruction(vcpu, 0);
2594 }
2595 
2596 static int rsm_interception(struct kvm_vcpu *vcpu)
2597 {
2598 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2599 }
2600 
2601 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2602 					    unsigned long val)
2603 {
2604 	struct vcpu_svm *svm = to_svm(vcpu);
2605 	unsigned long cr0 = vcpu->arch.cr0;
2606 	bool ret = false;
2607 
2608 	if (!is_guest_mode(vcpu) ||
2609 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2610 		return false;
2611 
2612 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2613 	val &= ~SVM_CR0_SELECTIVE_MASK;
2614 
2615 	if (cr0 ^ val) {
2616 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2617 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2618 	}
2619 
2620 	return ret;
2621 }
2622 
2623 #define CR_VALID (1ULL << 63)
2624 
2625 static int cr_interception(struct kvm_vcpu *vcpu)
2626 {
2627 	struct vcpu_svm *svm = to_svm(vcpu);
2628 	int reg, cr;
2629 	unsigned long val;
2630 	int err;
2631 
2632 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2633 		return emulate_on_interception(vcpu);
2634 
2635 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2636 		return emulate_on_interception(vcpu);
2637 
2638 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2639 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2640 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2641 	else
2642 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2643 
2644 	err = 0;
2645 	if (cr >= 16) { /* mov to cr */
2646 		cr -= 16;
2647 		val = kvm_register_read(vcpu, reg);
2648 		trace_kvm_cr_write(cr, val);
2649 		switch (cr) {
2650 		case 0:
2651 			if (!check_selective_cr0_intercepted(vcpu, val))
2652 				err = kvm_set_cr0(vcpu, val);
2653 			else
2654 				return 1;
2655 
2656 			break;
2657 		case 3:
2658 			err = kvm_set_cr3(vcpu, val);
2659 			break;
2660 		case 4:
2661 			err = kvm_set_cr4(vcpu, val);
2662 			break;
2663 		case 8:
2664 			err = kvm_set_cr8(vcpu, val);
2665 			break;
2666 		default:
2667 			WARN(1, "unhandled write to CR%d", cr);
2668 			kvm_queue_exception(vcpu, UD_VECTOR);
2669 			return 1;
2670 		}
2671 	} else { /* mov from cr */
2672 		switch (cr) {
2673 		case 0:
2674 			val = kvm_read_cr0(vcpu);
2675 			break;
2676 		case 2:
2677 			val = vcpu->arch.cr2;
2678 			break;
2679 		case 3:
2680 			val = kvm_read_cr3(vcpu);
2681 			break;
2682 		case 4:
2683 			val = kvm_read_cr4(vcpu);
2684 			break;
2685 		case 8:
2686 			val = kvm_get_cr8(vcpu);
2687 			break;
2688 		default:
2689 			WARN(1, "unhandled read from CR%d", cr);
2690 			kvm_queue_exception(vcpu, UD_VECTOR);
2691 			return 1;
2692 		}
2693 		kvm_register_write(vcpu, reg, val);
2694 		trace_kvm_cr_read(cr, val);
2695 	}
2696 	return kvm_complete_insn_gp(vcpu, err);
2697 }
2698 
2699 static int cr_trap(struct kvm_vcpu *vcpu)
2700 {
2701 	struct vcpu_svm *svm = to_svm(vcpu);
2702 	unsigned long old_value, new_value;
2703 	unsigned int cr;
2704 	int ret = 0;
2705 
2706 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2707 
2708 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2709 	switch (cr) {
2710 	case 0:
2711 		old_value = kvm_read_cr0(vcpu);
2712 		svm_set_cr0(vcpu, new_value);
2713 
2714 		kvm_post_set_cr0(vcpu, old_value, new_value);
2715 		break;
2716 	case 4:
2717 		old_value = kvm_read_cr4(vcpu);
2718 		svm_set_cr4(vcpu, new_value);
2719 
2720 		kvm_post_set_cr4(vcpu, old_value, new_value);
2721 		break;
2722 	case 8:
2723 		ret = kvm_set_cr8(vcpu, new_value);
2724 		break;
2725 	default:
2726 		WARN(1, "unhandled CR%d write trap", cr);
2727 		kvm_queue_exception(vcpu, UD_VECTOR);
2728 		return 1;
2729 	}
2730 
2731 	return kvm_complete_insn_gp(vcpu, ret);
2732 }
2733 
2734 static int dr_interception(struct kvm_vcpu *vcpu)
2735 {
2736 	struct vcpu_svm *svm = to_svm(vcpu);
2737 	int reg, dr;
2738 	int err = 0;
2739 
2740 	/*
2741 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2742 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2743 	 */
2744 	if (sev_es_guest(vcpu->kvm))
2745 		return 1;
2746 
2747 	if (vcpu->guest_debug == 0) {
2748 		/*
2749 		 * No more DR vmexits; force a reload of the debug registers
2750 		 * and reenter on this instruction.  The next vmexit will
2751 		 * retrieve the full state of the debug registers.
2752 		 */
2753 		clr_dr_intercepts(svm);
2754 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2755 		return 1;
2756 	}
2757 
2758 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2759 		return emulate_on_interception(vcpu);
2760 
2761 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2762 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2763 	if (dr >= 16) { /* mov to DRn  */
2764 		dr -= 16;
2765 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
2766 	} else {
2767 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
2768 	}
2769 
2770 	return kvm_complete_insn_gp(vcpu, err);
2771 }
2772 
2773 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2774 {
2775 	int r;
2776 
2777 	u8 cr8_prev = kvm_get_cr8(vcpu);
2778 	/* instruction emulation calls kvm_set_cr8() */
2779 	r = cr_interception(vcpu);
2780 	if (lapic_in_kernel(vcpu))
2781 		return r;
2782 	if (cr8_prev <= kvm_get_cr8(vcpu))
2783 		return r;
2784 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2785 	return 0;
2786 }
2787 
2788 static int efer_trap(struct kvm_vcpu *vcpu)
2789 {
2790 	struct msr_data msr_info;
2791 	int ret;
2792 
2793 	/*
2794 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2795 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2796 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2797 	 * the guest doesn't have X86_FEATURE_SVM.
2798 	 */
2799 	msr_info.host_initiated = false;
2800 	msr_info.index = MSR_EFER;
2801 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2802 	ret = kvm_set_msr_common(vcpu, &msr_info);
2803 
2804 	return kvm_complete_insn_gp(vcpu, ret);
2805 }
2806 
2807 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2808 {
2809 	msr->data = 0;
2810 
2811 	switch (msr->index) {
2812 	case MSR_AMD64_DE_CFG:
2813 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2814 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2815 		break;
2816 	default:
2817 		return KVM_MSR_RET_INVALID;
2818 	}
2819 
2820 	return 0;
2821 }
2822 
2823 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2824 {
2825 	struct vcpu_svm *svm = to_svm(vcpu);
2826 
2827 	switch (msr_info->index) {
2828 	case MSR_AMD64_TSC_RATIO:
2829 		if (!msr_info->host_initiated &&
2830 		    !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2831 			return 1;
2832 		msr_info->data = svm->tsc_ratio_msr;
2833 		break;
2834 	case MSR_STAR:
2835 		msr_info->data = svm->vmcb01.ptr->save.star;
2836 		break;
2837 #ifdef CONFIG_X86_64
2838 	case MSR_LSTAR:
2839 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2840 		break;
2841 	case MSR_CSTAR:
2842 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2843 		break;
2844 	case MSR_KERNEL_GS_BASE:
2845 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2846 		break;
2847 	case MSR_SYSCALL_MASK:
2848 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2849 		break;
2850 #endif
2851 	case MSR_IA32_SYSENTER_CS:
2852 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2853 		break;
2854 	case MSR_IA32_SYSENTER_EIP:
2855 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2856 		if (guest_cpuid_is_intel(vcpu))
2857 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2858 		break;
2859 	case MSR_IA32_SYSENTER_ESP:
2860 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2861 		if (guest_cpuid_is_intel(vcpu))
2862 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2863 		break;
2864 	case MSR_TSC_AUX:
2865 		msr_info->data = svm->tsc_aux;
2866 		break;
2867 	case MSR_IA32_DEBUGCTLMSR:
2868 		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2869 		break;
2870 	case MSR_IA32_LASTBRANCHFROMIP:
2871 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2872 		break;
2873 	case MSR_IA32_LASTBRANCHTOIP:
2874 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2875 		break;
2876 	case MSR_IA32_LASTINTFROMIP:
2877 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2878 		break;
2879 	case MSR_IA32_LASTINTTOIP:
2880 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2881 		break;
2882 	case MSR_VM_HSAVE_PA:
2883 		msr_info->data = svm->nested.hsave_msr;
2884 		break;
2885 	case MSR_VM_CR:
2886 		msr_info->data = svm->nested.vm_cr_msr;
2887 		break;
2888 	case MSR_IA32_SPEC_CTRL:
2889 		if (!msr_info->host_initiated &&
2890 		    !guest_has_spec_ctrl_msr(vcpu))
2891 			return 1;
2892 
2893 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2894 			msr_info->data = svm->vmcb->save.spec_ctrl;
2895 		else
2896 			msr_info->data = svm->spec_ctrl;
2897 		break;
2898 	case MSR_AMD64_VIRT_SPEC_CTRL:
2899 		if (!msr_info->host_initiated &&
2900 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2901 			return 1;
2902 
2903 		msr_info->data = svm->virt_spec_ctrl;
2904 		break;
2905 	case MSR_F15H_IC_CFG: {
2906 
2907 		int family, model;
2908 
2909 		family = guest_cpuid_family(vcpu);
2910 		model  = guest_cpuid_model(vcpu);
2911 
2912 		if (family < 0 || model < 0)
2913 			return kvm_get_msr_common(vcpu, msr_info);
2914 
2915 		msr_info->data = 0;
2916 
2917 		if (family == 0x15 &&
2918 		    (model >= 0x2 && model < 0x20))
2919 			msr_info->data = 0x1E;
2920 		}
2921 		break;
2922 	case MSR_AMD64_DE_CFG:
2923 		msr_info->data = svm->msr_decfg;
2924 		break;
2925 	default:
2926 		return kvm_get_msr_common(vcpu, msr_info);
2927 	}
2928 	return 0;
2929 }
2930 
2931 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2932 {
2933 	struct vcpu_svm *svm = to_svm(vcpu);
2934 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2935 		return kvm_complete_insn_gp(vcpu, err);
2936 
2937 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2938 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2939 				X86_TRAP_GP |
2940 				SVM_EVTINJ_TYPE_EXEPT |
2941 				SVM_EVTINJ_VALID);
2942 	return 1;
2943 }
2944 
2945 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2946 {
2947 	struct vcpu_svm *svm = to_svm(vcpu);
2948 	int svm_dis, chg_mask;
2949 
2950 	if (data & ~SVM_VM_CR_VALID_MASK)
2951 		return 1;
2952 
2953 	chg_mask = SVM_VM_CR_VALID_MASK;
2954 
2955 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2956 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2957 
2958 	svm->nested.vm_cr_msr &= ~chg_mask;
2959 	svm->nested.vm_cr_msr |= (data & chg_mask);
2960 
2961 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2962 
2963 	/* check for svm_disable while efer.svme is set */
2964 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2965 		return 1;
2966 
2967 	return 0;
2968 }
2969 
2970 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2971 {
2972 	struct vcpu_svm *svm = to_svm(vcpu);
2973 	int ret = 0;
2974 
2975 	u32 ecx = msr->index;
2976 	u64 data = msr->data;
2977 	switch (ecx) {
2978 	case MSR_AMD64_TSC_RATIO:
2979 
2980 		if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
2981 
2982 			if (!msr->host_initiated)
2983 				return 1;
2984 			/*
2985 			 * In case TSC scaling is not enabled, always
2986 			 * leave this MSR at the default value.
2987 			 *
2988 			 * Due to bug in qemu 6.2.0, it would try to set
2989 			 * this msr to 0 if tsc scaling is not enabled.
2990 			 * Ignore this value as well.
2991 			 */
2992 			if (data != 0 && data != svm->tsc_ratio_msr)
2993 				return 1;
2994 			break;
2995 		}
2996 
2997 		if (data & SVM_TSC_RATIO_RSVD)
2998 			return 1;
2999 
3000 		svm->tsc_ratio_msr = data;
3001 
3002 		if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3003 		    is_guest_mode(vcpu))
3004 			nested_svm_update_tsc_ratio_msr(vcpu);
3005 
3006 		break;
3007 	case MSR_IA32_CR_PAT:
3008 		ret = kvm_set_msr_common(vcpu, msr);
3009 		if (ret)
3010 			break;
3011 
3012 		svm->vmcb01.ptr->save.g_pat = data;
3013 		if (is_guest_mode(vcpu))
3014 			nested_vmcb02_compute_g_pat(svm);
3015 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3016 		break;
3017 	case MSR_IA32_SPEC_CTRL:
3018 		if (!msr->host_initiated &&
3019 		    !guest_has_spec_ctrl_msr(vcpu))
3020 			return 1;
3021 
3022 		if (kvm_spec_ctrl_test_value(data))
3023 			return 1;
3024 
3025 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3026 			svm->vmcb->save.spec_ctrl = data;
3027 		else
3028 			svm->spec_ctrl = data;
3029 		if (!data)
3030 			break;
3031 
3032 		/*
3033 		 * For non-nested:
3034 		 * When it's written (to non-zero) for the first time, pass
3035 		 * it through.
3036 		 *
3037 		 * For nested:
3038 		 * The handling of the MSR bitmap for L2 guests is done in
3039 		 * nested_svm_vmrun_msrpm.
3040 		 * We update the L1 MSR bit as well since it will end up
3041 		 * touching the MSR anyway now.
3042 		 */
3043 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3044 		break;
3045 	case MSR_AMD64_VIRT_SPEC_CTRL:
3046 		if (!msr->host_initiated &&
3047 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3048 			return 1;
3049 
3050 		if (data & ~SPEC_CTRL_SSBD)
3051 			return 1;
3052 
3053 		svm->virt_spec_ctrl = data;
3054 		break;
3055 	case MSR_STAR:
3056 		svm->vmcb01.ptr->save.star = data;
3057 		break;
3058 #ifdef CONFIG_X86_64
3059 	case MSR_LSTAR:
3060 		svm->vmcb01.ptr->save.lstar = data;
3061 		break;
3062 	case MSR_CSTAR:
3063 		svm->vmcb01.ptr->save.cstar = data;
3064 		break;
3065 	case MSR_KERNEL_GS_BASE:
3066 		svm->vmcb01.ptr->save.kernel_gs_base = data;
3067 		break;
3068 	case MSR_SYSCALL_MASK:
3069 		svm->vmcb01.ptr->save.sfmask = data;
3070 		break;
3071 #endif
3072 	case MSR_IA32_SYSENTER_CS:
3073 		svm->vmcb01.ptr->save.sysenter_cs = data;
3074 		break;
3075 	case MSR_IA32_SYSENTER_EIP:
3076 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3077 		/*
3078 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3079 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3080 		 * In this case we use this intercept to track the high
3081 		 * 32 bit part of these msrs to support Intel's
3082 		 * implementation of SYSENTER/SYSEXIT.
3083 		 */
3084 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3085 		break;
3086 	case MSR_IA32_SYSENTER_ESP:
3087 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3088 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3089 		break;
3090 	case MSR_TSC_AUX:
3091 		/*
3092 		 * TSC_AUX is always virtualized for SEV-ES guests when the
3093 		 * feature is available. The user return MSR support is not
3094 		 * required in this case because TSC_AUX is restored on #VMEXIT
3095 		 * from the host save area (which has been initialized in
3096 		 * svm_hardware_enable()).
3097 		 */
3098 		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3099 			break;
3100 
3101 		/*
3102 		 * TSC_AUX is usually changed only during boot and never read
3103 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3104 		 * guest via direct_access_msrs, and switch it via user return.
3105 		 */
3106 		preempt_disable();
3107 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3108 		preempt_enable();
3109 		if (ret)
3110 			break;
3111 
3112 		svm->tsc_aux = data;
3113 		break;
3114 	case MSR_IA32_DEBUGCTLMSR:
3115 		if (!lbrv) {
3116 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3117 			break;
3118 		}
3119 		if (data & DEBUGCTL_RESERVED_BITS)
3120 			return 1;
3121 
3122 		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3123 		svm_update_lbrv(vcpu);
3124 		break;
3125 	case MSR_VM_HSAVE_PA:
3126 		/*
3127 		 * Old kernels did not validate the value written to
3128 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3129 		 * value to allow live migrating buggy or malicious guests
3130 		 * originating from those kernels.
3131 		 */
3132 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3133 			return 1;
3134 
3135 		svm->nested.hsave_msr = data & PAGE_MASK;
3136 		break;
3137 	case MSR_VM_CR:
3138 		return svm_set_vm_cr(vcpu, data);
3139 	case MSR_VM_IGNNE:
3140 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3141 		break;
3142 	case MSR_AMD64_DE_CFG: {
3143 		struct kvm_msr_entry msr_entry;
3144 
3145 		msr_entry.index = msr->index;
3146 		if (svm_get_msr_feature(&msr_entry))
3147 			return 1;
3148 
3149 		/* Check the supported bits */
3150 		if (data & ~msr_entry.data)
3151 			return 1;
3152 
3153 		/* Don't allow the guest to change a bit, #GP */
3154 		if (!msr->host_initiated && (data ^ msr_entry.data))
3155 			return 1;
3156 
3157 		svm->msr_decfg = data;
3158 		break;
3159 	}
3160 	default:
3161 		return kvm_set_msr_common(vcpu, msr);
3162 	}
3163 	return ret;
3164 }
3165 
3166 static int msr_interception(struct kvm_vcpu *vcpu)
3167 {
3168 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3169 		return kvm_emulate_wrmsr(vcpu);
3170 	else
3171 		return kvm_emulate_rdmsr(vcpu);
3172 }
3173 
3174 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3175 {
3176 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3177 	svm_clear_vintr(to_svm(vcpu));
3178 
3179 	/*
3180 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3181 	 * In this case AVIC was temporarily disabled for
3182 	 * requesting the IRQ window and we have to re-enable it.
3183 	 *
3184 	 * If running nested, still remove the VM wide AVIC inhibit to
3185 	 * support case in which the interrupt window was requested when the
3186 	 * vCPU was not running nested.
3187 
3188 	 * All vCPUs which run still run nested, will remain to have their
3189 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3190 	 */
3191 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3192 
3193 	++vcpu->stat.irq_window_exits;
3194 	return 1;
3195 }
3196 
3197 static int pause_interception(struct kvm_vcpu *vcpu)
3198 {
3199 	bool in_kernel;
3200 	/*
3201 	 * CPL is not made available for an SEV-ES guest, therefore
3202 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3203 	 * set in_kernel to false as well.
3204 	 */
3205 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3206 
3207 	grow_ple_window(vcpu);
3208 
3209 	kvm_vcpu_on_spin(vcpu, in_kernel);
3210 	return kvm_skip_emulated_instruction(vcpu);
3211 }
3212 
3213 static int invpcid_interception(struct kvm_vcpu *vcpu)
3214 {
3215 	struct vcpu_svm *svm = to_svm(vcpu);
3216 	unsigned long type;
3217 	gva_t gva;
3218 
3219 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3220 		kvm_queue_exception(vcpu, UD_VECTOR);
3221 		return 1;
3222 	}
3223 
3224 	/*
3225 	 * For an INVPCID intercept:
3226 	 * EXITINFO1 provides the linear address of the memory operand.
3227 	 * EXITINFO2 provides the contents of the register operand.
3228 	 */
3229 	type = svm->vmcb->control.exit_info_2;
3230 	gva = svm->vmcb->control.exit_info_1;
3231 
3232 	return kvm_handle_invpcid(vcpu, type, gva);
3233 }
3234 
3235 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3236 	[SVM_EXIT_READ_CR0]			= cr_interception,
3237 	[SVM_EXIT_READ_CR3]			= cr_interception,
3238 	[SVM_EXIT_READ_CR4]			= cr_interception,
3239 	[SVM_EXIT_READ_CR8]			= cr_interception,
3240 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3241 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3242 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3243 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3244 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3245 	[SVM_EXIT_READ_DR0]			= dr_interception,
3246 	[SVM_EXIT_READ_DR1]			= dr_interception,
3247 	[SVM_EXIT_READ_DR2]			= dr_interception,
3248 	[SVM_EXIT_READ_DR3]			= dr_interception,
3249 	[SVM_EXIT_READ_DR4]			= dr_interception,
3250 	[SVM_EXIT_READ_DR5]			= dr_interception,
3251 	[SVM_EXIT_READ_DR6]			= dr_interception,
3252 	[SVM_EXIT_READ_DR7]			= dr_interception,
3253 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3254 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3255 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3256 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3257 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3258 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3259 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3260 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3261 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3262 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3263 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3264 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3265 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3266 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3267 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3268 	[SVM_EXIT_INTR]				= intr_interception,
3269 	[SVM_EXIT_NMI]				= nmi_interception,
3270 	[SVM_EXIT_SMI]				= smi_interception,
3271 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3272 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3273 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3274 	[SVM_EXIT_IRET]                         = iret_interception,
3275 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3276 	[SVM_EXIT_PAUSE]			= pause_interception,
3277 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3278 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3279 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3280 	[SVM_EXIT_IOIO]				= io_interception,
3281 	[SVM_EXIT_MSR]				= msr_interception,
3282 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3283 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3284 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3285 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3286 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3287 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3288 	[SVM_EXIT_STGI]				= stgi_interception,
3289 	[SVM_EXIT_CLGI]				= clgi_interception,
3290 	[SVM_EXIT_SKINIT]			= skinit_interception,
3291 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3292 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3293 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3294 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3295 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3296 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3297 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3298 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3299 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3300 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3301 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3302 	[SVM_EXIT_NPF]				= npf_interception,
3303 	[SVM_EXIT_RSM]                          = rsm_interception,
3304 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3305 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3306 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3307 };
3308 
3309 static void dump_vmcb(struct kvm_vcpu *vcpu)
3310 {
3311 	struct vcpu_svm *svm = to_svm(vcpu);
3312 	struct vmcb_control_area *control = &svm->vmcb->control;
3313 	struct vmcb_save_area *save = &svm->vmcb->save;
3314 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3315 
3316 	if (!dump_invalid_vmcb) {
3317 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3318 		return;
3319 	}
3320 
3321 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3322 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3323 	pr_err("VMCB Control Area:\n");
3324 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3325 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3326 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3327 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3328 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3329 	pr_err("%-20s%08x %08x\n", "intercepts:",
3330               control->intercepts[INTERCEPT_WORD3],
3331 	       control->intercepts[INTERCEPT_WORD4]);
3332 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3333 	pr_err("%-20s%d\n", "pause filter threshold:",
3334 	       control->pause_filter_thresh);
3335 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3336 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3337 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3338 	pr_err("%-20s%d\n", "asid:", control->asid);
3339 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3340 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3341 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3342 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3343 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3344 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3345 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3346 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3347 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3348 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3349 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3350 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3351 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3352 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3353 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3354 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3355 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3356 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3357 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3358 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3359 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3360 	pr_err("VMCB State Save Area:\n");
3361 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3362 	       "es:",
3363 	       save->es.selector, save->es.attrib,
3364 	       save->es.limit, save->es.base);
3365 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3366 	       "cs:",
3367 	       save->cs.selector, save->cs.attrib,
3368 	       save->cs.limit, save->cs.base);
3369 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3370 	       "ss:",
3371 	       save->ss.selector, save->ss.attrib,
3372 	       save->ss.limit, save->ss.base);
3373 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3374 	       "ds:",
3375 	       save->ds.selector, save->ds.attrib,
3376 	       save->ds.limit, save->ds.base);
3377 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3378 	       "fs:",
3379 	       save01->fs.selector, save01->fs.attrib,
3380 	       save01->fs.limit, save01->fs.base);
3381 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3382 	       "gs:",
3383 	       save01->gs.selector, save01->gs.attrib,
3384 	       save01->gs.limit, save01->gs.base);
3385 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3386 	       "gdtr:",
3387 	       save->gdtr.selector, save->gdtr.attrib,
3388 	       save->gdtr.limit, save->gdtr.base);
3389 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3390 	       "ldtr:",
3391 	       save01->ldtr.selector, save01->ldtr.attrib,
3392 	       save01->ldtr.limit, save01->ldtr.base);
3393 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3394 	       "idtr:",
3395 	       save->idtr.selector, save->idtr.attrib,
3396 	       save->idtr.limit, save->idtr.base);
3397 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3398 	       "tr:",
3399 	       save01->tr.selector, save01->tr.attrib,
3400 	       save01->tr.limit, save01->tr.base);
3401 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3402 	       save->vmpl, save->cpl, save->efer);
3403 	pr_err("%-15s %016llx %-13s %016llx\n",
3404 	       "cr0:", save->cr0, "cr2:", save->cr2);
3405 	pr_err("%-15s %016llx %-13s %016llx\n",
3406 	       "cr3:", save->cr3, "cr4:", save->cr4);
3407 	pr_err("%-15s %016llx %-13s %016llx\n",
3408 	       "dr6:", save->dr6, "dr7:", save->dr7);
3409 	pr_err("%-15s %016llx %-13s %016llx\n",
3410 	       "rip:", save->rip, "rflags:", save->rflags);
3411 	pr_err("%-15s %016llx %-13s %016llx\n",
3412 	       "rsp:", save->rsp, "rax:", save->rax);
3413 	pr_err("%-15s %016llx %-13s %016llx\n",
3414 	       "star:", save01->star, "lstar:", save01->lstar);
3415 	pr_err("%-15s %016llx %-13s %016llx\n",
3416 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3417 	pr_err("%-15s %016llx %-13s %016llx\n",
3418 	       "kernel_gs_base:", save01->kernel_gs_base,
3419 	       "sysenter_cs:", save01->sysenter_cs);
3420 	pr_err("%-15s %016llx %-13s %016llx\n",
3421 	       "sysenter_esp:", save01->sysenter_esp,
3422 	       "sysenter_eip:", save01->sysenter_eip);
3423 	pr_err("%-15s %016llx %-13s %016llx\n",
3424 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3425 	pr_err("%-15s %016llx %-13s %016llx\n",
3426 	       "br_from:", save->br_from, "br_to:", save->br_to);
3427 	pr_err("%-15s %016llx %-13s %016llx\n",
3428 	       "excp_from:", save->last_excp_from,
3429 	       "excp_to:", save->last_excp_to);
3430 }
3431 
3432 static bool svm_check_exit_valid(u64 exit_code)
3433 {
3434 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3435 		svm_exit_handlers[exit_code]);
3436 }
3437 
3438 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3439 {
3440 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3441 	dump_vmcb(vcpu);
3442 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3443 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3444 	vcpu->run->internal.ndata = 2;
3445 	vcpu->run->internal.data[0] = exit_code;
3446 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3447 	return 0;
3448 }
3449 
3450 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3451 {
3452 	if (!svm_check_exit_valid(exit_code))
3453 		return svm_handle_invalid_exit(vcpu, exit_code);
3454 
3455 #ifdef CONFIG_MITIGATION_RETPOLINE
3456 	if (exit_code == SVM_EXIT_MSR)
3457 		return msr_interception(vcpu);
3458 	else if (exit_code == SVM_EXIT_VINTR)
3459 		return interrupt_window_interception(vcpu);
3460 	else if (exit_code == SVM_EXIT_INTR)
3461 		return intr_interception(vcpu);
3462 	else if (exit_code == SVM_EXIT_HLT)
3463 		return kvm_emulate_halt(vcpu);
3464 	else if (exit_code == SVM_EXIT_NPF)
3465 		return npf_interception(vcpu);
3466 #endif
3467 	return svm_exit_handlers[exit_code](vcpu);
3468 }
3469 
3470 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3471 			      u64 *info1, u64 *info2,
3472 			      u32 *intr_info, u32 *error_code)
3473 {
3474 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3475 
3476 	*reason = control->exit_code;
3477 	*info1 = control->exit_info_1;
3478 	*info2 = control->exit_info_2;
3479 	*intr_info = control->exit_int_info;
3480 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3481 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3482 		*error_code = control->exit_int_info_err;
3483 	else
3484 		*error_code = 0;
3485 }
3486 
3487 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3488 {
3489 	struct vcpu_svm *svm = to_svm(vcpu);
3490 	struct kvm_run *kvm_run = vcpu->run;
3491 	u32 exit_code = svm->vmcb->control.exit_code;
3492 
3493 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3494 	if (!sev_es_guest(vcpu->kvm)) {
3495 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3496 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3497 		if (npt_enabled)
3498 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3499 	}
3500 
3501 	if (is_guest_mode(vcpu)) {
3502 		int vmexit;
3503 
3504 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3505 
3506 		vmexit = nested_svm_exit_special(svm);
3507 
3508 		if (vmexit == NESTED_EXIT_CONTINUE)
3509 			vmexit = nested_svm_exit_handled(svm);
3510 
3511 		if (vmexit == NESTED_EXIT_DONE)
3512 			return 1;
3513 	}
3514 
3515 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3516 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3517 		kvm_run->fail_entry.hardware_entry_failure_reason
3518 			= svm->vmcb->control.exit_code;
3519 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3520 		dump_vmcb(vcpu);
3521 		return 0;
3522 	}
3523 
3524 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3525 		return 1;
3526 
3527 	return svm_invoke_exit_handler(vcpu, exit_code);
3528 }
3529 
3530 static void pre_svm_run(struct kvm_vcpu *vcpu)
3531 {
3532 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3533 	struct vcpu_svm *svm = to_svm(vcpu);
3534 
3535 	/*
3536 	 * If the previous vmrun of the vmcb occurred on a different physical
3537 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3538 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3539 	 */
3540 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3541 		svm->current_vmcb->asid_generation = 0;
3542 		vmcb_mark_all_dirty(svm->vmcb);
3543 		svm->current_vmcb->cpu = vcpu->cpu;
3544         }
3545 
3546 	if (sev_guest(vcpu->kvm))
3547 		return pre_sev_run(svm, vcpu->cpu);
3548 
3549 	/* FIXME: handle wraparound of asid_generation */
3550 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3551 		new_asid(svm, sd);
3552 }
3553 
3554 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3555 {
3556 	struct vcpu_svm *svm = to_svm(vcpu);
3557 
3558 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3559 
3560 	if (svm->nmi_l1_to_l2)
3561 		return;
3562 
3563 	/*
3564 	 * No need to manually track NMI masking when vNMI is enabled, hardware
3565 	 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the
3566 	 * case where software directly injects an NMI.
3567 	 */
3568 	if (!is_vnmi_enabled(svm)) {
3569 		svm->nmi_masked = true;
3570 		svm_set_iret_intercept(svm);
3571 	}
3572 	++vcpu->stat.nmi_injections;
3573 }
3574 
3575 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3576 {
3577 	struct vcpu_svm *svm = to_svm(vcpu);
3578 
3579 	if (!is_vnmi_enabled(svm))
3580 		return false;
3581 
3582 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3583 }
3584 
3585 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3586 {
3587 	struct vcpu_svm *svm = to_svm(vcpu);
3588 
3589 	if (!is_vnmi_enabled(svm))
3590 		return false;
3591 
3592 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3593 		return false;
3594 
3595 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3596 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3597 
3598 	/*
3599 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3600 	 * the NMI is "injected", but for all intents and purposes, passing the
3601 	 * NMI off to hardware counts as injection.
3602 	 */
3603 	++vcpu->stat.nmi_injections;
3604 
3605 	return true;
3606 }
3607 
3608 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3609 {
3610 	struct vcpu_svm *svm = to_svm(vcpu);
3611 	u32 type;
3612 
3613 	if (vcpu->arch.interrupt.soft) {
3614 		if (svm_update_soft_interrupt_rip(vcpu))
3615 			return;
3616 
3617 		type = SVM_EVTINJ_TYPE_SOFT;
3618 	} else {
3619 		type = SVM_EVTINJ_TYPE_INTR;
3620 	}
3621 
3622 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3623 			   vcpu->arch.interrupt.soft, reinjected);
3624 	++vcpu->stat.irq_injections;
3625 
3626 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3627 				       SVM_EVTINJ_VALID | type;
3628 }
3629 
3630 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3631 				     int trig_mode, int vector)
3632 {
3633 	/*
3634 	 * apic->apicv_active must be read after vcpu->mode.
3635 	 * Pairs with smp_store_release in vcpu_enter_guest.
3636 	 */
3637 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3638 
3639 	/* Note, this is called iff the local APIC is in-kernel. */
3640 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3641 		/* Process the interrupt via kvm_check_and_inject_events(). */
3642 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3643 		kvm_vcpu_kick(vcpu);
3644 		return;
3645 	}
3646 
3647 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3648 	if (in_guest_mode) {
3649 		/*
3650 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3651 		 * the vCPU exits the guest before the doorbell chimes, hardware
3652 		 * will automatically process AVIC interrupts at the next VMRUN.
3653 		 */
3654 		avic_ring_doorbell(vcpu);
3655 	} else {
3656 		/*
3657 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3658 		 * pending IRQ when checking if the vCPU has a wake event.
3659 		 */
3660 		kvm_vcpu_wake_up(vcpu);
3661 	}
3662 }
3663 
3664 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3665 				  int trig_mode, int vector)
3666 {
3667 	kvm_lapic_set_irr(vector, apic);
3668 
3669 	/*
3670 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3671 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3672 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3673 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3674 	 * will signal the doorbell if the CPU has already entered the guest.
3675 	 */
3676 	smp_mb__after_atomic();
3677 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3678 }
3679 
3680 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3681 {
3682 	struct vcpu_svm *svm = to_svm(vcpu);
3683 
3684 	/*
3685 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3686 	 * tracking is done using the CR write traps.
3687 	 */
3688 	if (sev_es_guest(vcpu->kvm))
3689 		return;
3690 
3691 	if (nested_svm_virtualize_tpr(vcpu))
3692 		return;
3693 
3694 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3695 
3696 	if (irr == -1)
3697 		return;
3698 
3699 	if (tpr >= irr)
3700 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3701 }
3702 
3703 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3704 {
3705 	struct vcpu_svm *svm = to_svm(vcpu);
3706 
3707 	if (is_vnmi_enabled(svm))
3708 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3709 	else
3710 		return svm->nmi_masked;
3711 }
3712 
3713 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3714 {
3715 	struct vcpu_svm *svm = to_svm(vcpu);
3716 
3717 	if (is_vnmi_enabled(svm)) {
3718 		if (masked)
3719 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3720 		else
3721 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3722 
3723 	} else {
3724 		svm->nmi_masked = masked;
3725 		if (masked)
3726 			svm_set_iret_intercept(svm);
3727 		else
3728 			svm_clr_iret_intercept(svm);
3729 	}
3730 }
3731 
3732 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3733 {
3734 	struct vcpu_svm *svm = to_svm(vcpu);
3735 	struct vmcb *vmcb = svm->vmcb;
3736 
3737 	if (!gif_set(svm))
3738 		return true;
3739 
3740 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3741 		return false;
3742 
3743 	if (svm_get_nmi_mask(vcpu))
3744 		return true;
3745 
3746 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3747 }
3748 
3749 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3750 {
3751 	struct vcpu_svm *svm = to_svm(vcpu);
3752 	if (svm->nested.nested_run_pending)
3753 		return -EBUSY;
3754 
3755 	if (svm_nmi_blocked(vcpu))
3756 		return 0;
3757 
3758 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3759 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3760 		return -EBUSY;
3761 	return 1;
3762 }
3763 
3764 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3765 {
3766 	struct vcpu_svm *svm = to_svm(vcpu);
3767 	struct vmcb *vmcb = svm->vmcb;
3768 
3769 	if (!gif_set(svm))
3770 		return true;
3771 
3772 	if (is_guest_mode(vcpu)) {
3773 		/* As long as interrupts are being delivered...  */
3774 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3775 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3776 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3777 			return true;
3778 
3779 		/* ... vmexits aren't blocked by the interrupt shadow  */
3780 		if (nested_exit_on_intr(svm))
3781 			return false;
3782 	} else {
3783 		if (!svm_get_if_flag(vcpu))
3784 			return true;
3785 	}
3786 
3787 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3788 }
3789 
3790 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3791 {
3792 	struct vcpu_svm *svm = to_svm(vcpu);
3793 
3794 	if (svm->nested.nested_run_pending)
3795 		return -EBUSY;
3796 
3797 	if (svm_interrupt_blocked(vcpu))
3798 		return 0;
3799 
3800 	/*
3801 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3802 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3803 	 */
3804 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3805 		return -EBUSY;
3806 
3807 	return 1;
3808 }
3809 
3810 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3811 {
3812 	struct vcpu_svm *svm = to_svm(vcpu);
3813 
3814 	/*
3815 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3816 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3817 	 * get that intercept, this function will be called again though and
3818 	 * we'll get the vintr intercept. However, if the vGIF feature is
3819 	 * enabled, the STGI interception will not occur. Enable the irq
3820 	 * window under the assumption that the hardware will set the GIF.
3821 	 */
3822 	if (vgif || gif_set(svm)) {
3823 		/*
3824 		 * IRQ window is not needed when AVIC is enabled,
3825 		 * unless we have pending ExtINT since it cannot be injected
3826 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3827 		 * and fallback to injecting IRQ via V_IRQ.
3828 		 *
3829 		 * If running nested, AVIC is already locally inhibited
3830 		 * on this vCPU, therefore there is no need to request
3831 		 * the VM wide AVIC inhibition.
3832 		 */
3833 		if (!is_guest_mode(vcpu))
3834 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3835 
3836 		svm_set_vintr(svm);
3837 	}
3838 }
3839 
3840 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3841 {
3842 	struct vcpu_svm *svm = to_svm(vcpu);
3843 
3844 	/*
3845 	 * KVM should never request an NMI window when vNMI is enabled, as KVM
3846 	 * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3847 	 * two NMIs arrive simultaneously, KVM will inject one and set
3848 	 * V_NMI_PENDING for the other.  WARN, but continue with the standard
3849 	 * single-step approach to try and salvage the pending NMI.
3850 	 */
3851 	WARN_ON_ONCE(is_vnmi_enabled(svm));
3852 
3853 	if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3854 		return; /* IRET will cause a vm exit */
3855 
3856 	/*
3857 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3858 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3859 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3860 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3861 	 *
3862 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3863 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3864 	 * supported NAEs in the GHCB protocol.
3865 	 */
3866 	if (sev_es_guest(vcpu->kvm))
3867 		return;
3868 
3869 	if (!gif_set(svm)) {
3870 		if (vgif)
3871 			svm_set_intercept(svm, INTERCEPT_STGI);
3872 		return; /* STGI will cause a vm exit */
3873 	}
3874 
3875 	/*
3876 	 * Something prevents NMI from been injected. Single step over possible
3877 	 * problem (IRET or exception injection or interrupt shadow)
3878 	 */
3879 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3880 	svm->nmi_singlestep = true;
3881 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3882 }
3883 
3884 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3885 {
3886 	struct vcpu_svm *svm = to_svm(vcpu);
3887 
3888 	/*
3889 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3890 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3891 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3892 	 */
3893 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3894 
3895 	/*
3896 	 * Flush only the current ASID even if the TLB flush was invoked via
3897 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3898 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3899 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3900 	 * VM-Exit (via kvm_mmu_reset_context()).
3901 	 */
3902 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3903 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3904 	else
3905 		svm->current_vmcb->asid_generation--;
3906 }
3907 
3908 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3909 {
3910 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3911 
3912 	/*
3913 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3914 	 * flush the NPT mappings via hypercall as flushing the ASID only
3915 	 * affects virtual to physical mappings, it does not invalidate guest
3916 	 * physical to host physical mappings.
3917 	 */
3918 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3919 		hyperv_flush_guest_mapping(root_tdp);
3920 
3921 	svm_flush_tlb_asid(vcpu);
3922 }
3923 
3924 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3925 {
3926 	/*
3927 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3928 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3929 	 * a "regular" remote flush.  Reaching this point means either there's
3930 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3931 	 * which might be fatal to the guest.  Yell, but try to recover.
3932 	 */
3933 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3934 		hv_flush_remote_tlbs(vcpu->kvm);
3935 
3936 	svm_flush_tlb_asid(vcpu);
3937 }
3938 
3939 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3940 {
3941 	struct vcpu_svm *svm = to_svm(vcpu);
3942 
3943 	invlpga(gva, svm->vmcb->control.asid);
3944 }
3945 
3946 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3947 {
3948 	struct vcpu_svm *svm = to_svm(vcpu);
3949 
3950 	if (nested_svm_virtualize_tpr(vcpu))
3951 		return;
3952 
3953 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3954 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3955 		kvm_set_cr8(vcpu, cr8);
3956 	}
3957 }
3958 
3959 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3960 {
3961 	struct vcpu_svm *svm = to_svm(vcpu);
3962 	u64 cr8;
3963 
3964 	if (nested_svm_virtualize_tpr(vcpu) ||
3965 	    kvm_vcpu_apicv_active(vcpu))
3966 		return;
3967 
3968 	cr8 = kvm_get_cr8(vcpu);
3969 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3970 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3971 }
3972 
3973 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3974 					int type)
3975 {
3976 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3977 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3978 	struct vcpu_svm *svm = to_svm(vcpu);
3979 
3980 	/*
3981 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3982 	 * associated with the original soft exception/interrupt.  next_rip is
3983 	 * cleared on all exits that can occur while vectoring an event, so KVM
3984 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3985 	 * case below, this needs to be done if and only if KVM is re-injecting
3986 	 * the same event, i.e. if the event is a soft exception/interrupt,
3987 	 * otherwise next_rip is unused on VMRUN.
3988 	 */
3989 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3990 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3991 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3992 	/*
3993 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3994 	 * injecting the soft exception/interrupt.  That advancement needs to
3995 	 * be unwound if vectoring didn't complete.  Note, the new event may
3996 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3997 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3998 	 * be the reported vectored event, but RIP still needs to be unwound.
3999 	 */
4000 	else if (!nrips && (is_soft || is_exception) &&
4001 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4002 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4003 }
4004 
4005 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4006 {
4007 	struct vcpu_svm *svm = to_svm(vcpu);
4008 	u8 vector;
4009 	int type;
4010 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4011 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4012 	bool soft_int_injected = svm->soft_int_injected;
4013 
4014 	svm->nmi_l1_to_l2 = false;
4015 	svm->soft_int_injected = false;
4016 
4017 	/*
4018 	 * If we've made progress since setting awaiting_iret_completion, we've
4019 	 * executed an IRET and can allow NMI injection.
4020 	 */
4021 	if (svm->awaiting_iret_completion &&
4022 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4023 		svm->awaiting_iret_completion = false;
4024 		svm->nmi_masked = false;
4025 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4026 	}
4027 
4028 	vcpu->arch.nmi_injected = false;
4029 	kvm_clear_exception_queue(vcpu);
4030 	kvm_clear_interrupt_queue(vcpu);
4031 
4032 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4033 		return;
4034 
4035 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4036 
4037 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4038 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4039 
4040 	if (soft_int_injected)
4041 		svm_complete_soft_interrupt(vcpu, vector, type);
4042 
4043 	switch (type) {
4044 	case SVM_EXITINTINFO_TYPE_NMI:
4045 		vcpu->arch.nmi_injected = true;
4046 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4047 		break;
4048 	case SVM_EXITINTINFO_TYPE_EXEPT:
4049 		/*
4050 		 * Never re-inject a #VC exception.
4051 		 */
4052 		if (vector == X86_TRAP_VC)
4053 			break;
4054 
4055 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4056 			u32 err = svm->vmcb->control.exit_int_info_err;
4057 			kvm_requeue_exception_e(vcpu, vector, err);
4058 
4059 		} else
4060 			kvm_requeue_exception(vcpu, vector);
4061 		break;
4062 	case SVM_EXITINTINFO_TYPE_INTR:
4063 		kvm_queue_interrupt(vcpu, vector, false);
4064 		break;
4065 	case SVM_EXITINTINFO_TYPE_SOFT:
4066 		kvm_queue_interrupt(vcpu, vector, true);
4067 		break;
4068 	default:
4069 		break;
4070 	}
4071 
4072 }
4073 
4074 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4075 {
4076 	struct vcpu_svm *svm = to_svm(vcpu);
4077 	struct vmcb_control_area *control = &svm->vmcb->control;
4078 
4079 	control->exit_int_info = control->event_inj;
4080 	control->exit_int_info_err = control->event_inj_err;
4081 	control->event_inj = 0;
4082 	svm_complete_interrupts(vcpu);
4083 }
4084 
4085 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4086 {
4087 	return 1;
4088 }
4089 
4090 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4091 {
4092 	if (is_guest_mode(vcpu))
4093 		return EXIT_FASTPATH_NONE;
4094 
4095 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4096 	    to_svm(vcpu)->vmcb->control.exit_info_1)
4097 		return handle_fastpath_set_msr_irqoff(vcpu);
4098 
4099 	return EXIT_FASTPATH_NONE;
4100 }
4101 
4102 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4103 {
4104 	struct vcpu_svm *svm = to_svm(vcpu);
4105 
4106 	guest_state_enter_irqoff();
4107 
4108 	amd_clear_divider();
4109 
4110 	if (sev_es_guest(vcpu->kvm))
4111 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4112 	else
4113 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4114 
4115 	guest_state_exit_irqoff();
4116 }
4117 
4118 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu,
4119 					  bool force_immediate_exit)
4120 {
4121 	struct vcpu_svm *svm = to_svm(vcpu);
4122 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4123 
4124 	trace_kvm_entry(vcpu, force_immediate_exit);
4125 
4126 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4127 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4128 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4129 
4130 	/*
4131 	 * Disable singlestep if we're injecting an interrupt/exception.
4132 	 * We don't want our modified rflags to be pushed on the stack where
4133 	 * we might not be able to easily reset them if we disabled NMI
4134 	 * singlestep later.
4135 	 */
4136 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4137 		/*
4138 		 * Event injection happens before external interrupts cause a
4139 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4140 		 * is enough to force an immediate vmexit.
4141 		 */
4142 		disable_nmi_singlestep(svm);
4143 		force_immediate_exit = true;
4144 	}
4145 
4146 	if (force_immediate_exit)
4147 		smp_send_reschedule(vcpu->cpu);
4148 
4149 	pre_svm_run(vcpu);
4150 
4151 	sync_lapic_to_cr8(vcpu);
4152 
4153 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4154 		svm->vmcb->control.asid = svm->asid;
4155 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4156 	}
4157 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4158 
4159 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4160 
4161 	/*
4162 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4163 	 * of a #DB.
4164 	 */
4165 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4166 		svm_set_dr6(svm, vcpu->arch.dr6);
4167 	else
4168 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
4169 
4170 	clgi();
4171 	kvm_load_guest_xsave_state(vcpu);
4172 
4173 	kvm_wait_lapic_expire(vcpu);
4174 
4175 	/*
4176 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4177 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4178 	 * is no need to worry about the conditional branch over the wrmsr
4179 	 * being speculatively taken.
4180 	 */
4181 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4182 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4183 
4184 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4185 
4186 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4187 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4188 
4189 	if (!sev_es_guest(vcpu->kvm)) {
4190 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4191 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4192 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4193 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4194 	}
4195 	vcpu->arch.regs_dirty = 0;
4196 
4197 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4198 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4199 
4200 	kvm_load_host_xsave_state(vcpu);
4201 	stgi();
4202 
4203 	/* Any pending NMI will happen here */
4204 
4205 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4206 		kvm_after_interrupt(vcpu);
4207 
4208 	sync_cr8_to_lapic(vcpu);
4209 
4210 	svm->next_rip = 0;
4211 	if (is_guest_mode(vcpu)) {
4212 		nested_sync_control_from_vmcb02(svm);
4213 
4214 		/* Track VMRUNs that have made past consistency checking */
4215 		if (svm->nested.nested_run_pending &&
4216 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4217                         ++vcpu->stat.nested_run;
4218 
4219 		svm->nested.nested_run_pending = 0;
4220 	}
4221 
4222 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4223 	vmcb_mark_all_clean(svm->vmcb);
4224 
4225 	/* if exit due to PF check for async PF */
4226 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4227 		vcpu->arch.apf.host_apf_flags =
4228 			kvm_read_and_reset_apf_flags();
4229 
4230 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4231 
4232 	/*
4233 	 * We need to handle MC intercepts here before the vcpu has a chance to
4234 	 * change the physical cpu
4235 	 */
4236 	if (unlikely(svm->vmcb->control.exit_code ==
4237 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4238 		svm_handle_mce(vcpu);
4239 
4240 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4241 
4242 	svm_complete_interrupts(vcpu);
4243 
4244 	return svm_exit_handlers_fastpath(vcpu);
4245 }
4246 
4247 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4248 			     int root_level)
4249 {
4250 	struct vcpu_svm *svm = to_svm(vcpu);
4251 	unsigned long cr3;
4252 
4253 	if (npt_enabled) {
4254 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4255 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4256 
4257 		hv_track_root_tdp(vcpu, root_hpa);
4258 
4259 		cr3 = vcpu->arch.cr3;
4260 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4261 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4262 	} else {
4263 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4264 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4265 		cr3 = root_hpa;
4266 	}
4267 
4268 	svm->vmcb->save.cr3 = cr3;
4269 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4270 }
4271 
4272 static void
4273 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4274 {
4275 	/*
4276 	 * Patch in the VMMCALL instruction:
4277 	 */
4278 	hypercall[0] = 0x0f;
4279 	hypercall[1] = 0x01;
4280 	hypercall[2] = 0xd9;
4281 }
4282 
4283 /*
4284  * The kvm parameter can be NULL (module initialization, or invocation before
4285  * VM creation). Be sure to check the kvm parameter before using it.
4286  */
4287 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4288 {
4289 	switch (index) {
4290 	case MSR_IA32_MCG_EXT_CTL:
4291 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4292 		return false;
4293 	case MSR_IA32_SMBASE:
4294 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4295 			return false;
4296 		/* SEV-ES guests do not support SMM, so report false */
4297 		if (kvm && sev_es_guest(kvm))
4298 			return false;
4299 		break;
4300 	default:
4301 		break;
4302 	}
4303 
4304 	return true;
4305 }
4306 
4307 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4308 {
4309 	struct vcpu_svm *svm = to_svm(vcpu);
4310 
4311 	/*
4312 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4313 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4314 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4315 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4316 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4317 	 * whether it's advertised to the guest so that KVM context switches
4318 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4319 	 * the guest read/write access to the host's XSS.
4320 	 */
4321 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4322 	    boot_cpu_has(X86_FEATURE_XSAVES) &&
4323 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4324 		kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4325 
4326 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4327 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4328 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4329 
4330 	/*
4331 	 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4332 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4333 	 * SVM on Intel is bonkers and extremely unlikely to work).
4334 	 */
4335 	if (!guest_cpuid_is_intel(vcpu))
4336 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4337 
4338 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4339 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4340 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4341 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4342 
4343 	svm_recalc_instruction_intercepts(vcpu, svm);
4344 
4345 	if (boot_cpu_has(X86_FEATURE_IBPB))
4346 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4347 				     !!guest_has_pred_cmd_msr(vcpu));
4348 
4349 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4350 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4351 				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4352 
4353 	if (sev_guest(vcpu->kvm))
4354 		sev_vcpu_after_set_cpuid(svm);
4355 
4356 	init_vmcb_after_set_cpuid(vcpu);
4357 }
4358 
4359 static bool svm_has_wbinvd_exit(void)
4360 {
4361 	return true;
4362 }
4363 
4364 #define PRE_EX(exit)  { .exit_code = (exit), \
4365 			.stage = X86_ICPT_PRE_EXCEPT, }
4366 #define POST_EX(exit) { .exit_code = (exit), \
4367 			.stage = X86_ICPT_POST_EXCEPT, }
4368 #define POST_MEM(exit) { .exit_code = (exit), \
4369 			.stage = X86_ICPT_POST_MEMACCESS, }
4370 
4371 static const struct __x86_intercept {
4372 	u32 exit_code;
4373 	enum x86_intercept_stage stage;
4374 } x86_intercept_map[] = {
4375 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4376 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4377 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4378 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4379 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4380 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4381 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4382 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4383 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4384 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4385 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4386 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4387 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4388 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4389 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4390 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4391 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4392 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4393 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4394 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4395 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4396 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4397 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4398 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4399 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4400 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4401 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4402 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4403 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4404 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4405 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4406 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4407 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4408 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4409 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4410 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4411 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4412 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4413 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4414 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4415 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4416 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4417 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4418 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4419 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4420 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4421 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4422 };
4423 
4424 #undef PRE_EX
4425 #undef POST_EX
4426 #undef POST_MEM
4427 
4428 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4429 			       struct x86_instruction_info *info,
4430 			       enum x86_intercept_stage stage,
4431 			       struct x86_exception *exception)
4432 {
4433 	struct vcpu_svm *svm = to_svm(vcpu);
4434 	int vmexit, ret = X86EMUL_CONTINUE;
4435 	struct __x86_intercept icpt_info;
4436 	struct vmcb *vmcb = svm->vmcb;
4437 
4438 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4439 		goto out;
4440 
4441 	icpt_info = x86_intercept_map[info->intercept];
4442 
4443 	if (stage != icpt_info.stage)
4444 		goto out;
4445 
4446 	switch (icpt_info.exit_code) {
4447 	case SVM_EXIT_READ_CR0:
4448 		if (info->intercept == x86_intercept_cr_read)
4449 			icpt_info.exit_code += info->modrm_reg;
4450 		break;
4451 	case SVM_EXIT_WRITE_CR0: {
4452 		unsigned long cr0, val;
4453 
4454 		if (info->intercept == x86_intercept_cr_write)
4455 			icpt_info.exit_code += info->modrm_reg;
4456 
4457 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4458 		    info->intercept == x86_intercept_clts)
4459 			break;
4460 
4461 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4462 					INTERCEPT_SELECTIVE_CR0)))
4463 			break;
4464 
4465 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4466 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4467 
4468 		if (info->intercept == x86_intercept_lmsw) {
4469 			cr0 &= 0xfUL;
4470 			val &= 0xfUL;
4471 			/* lmsw can't clear PE - catch this here */
4472 			if (cr0 & X86_CR0_PE)
4473 				val |= X86_CR0_PE;
4474 		}
4475 
4476 		if (cr0 ^ val)
4477 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4478 
4479 		break;
4480 	}
4481 	case SVM_EXIT_READ_DR0:
4482 	case SVM_EXIT_WRITE_DR0:
4483 		icpt_info.exit_code += info->modrm_reg;
4484 		break;
4485 	case SVM_EXIT_MSR:
4486 		if (info->intercept == x86_intercept_wrmsr)
4487 			vmcb->control.exit_info_1 = 1;
4488 		else
4489 			vmcb->control.exit_info_1 = 0;
4490 		break;
4491 	case SVM_EXIT_PAUSE:
4492 		/*
4493 		 * We get this for NOP only, but pause
4494 		 * is rep not, check this here
4495 		 */
4496 		if (info->rep_prefix != REPE_PREFIX)
4497 			goto out;
4498 		break;
4499 	case SVM_EXIT_IOIO: {
4500 		u64 exit_info;
4501 		u32 bytes;
4502 
4503 		if (info->intercept == x86_intercept_in ||
4504 		    info->intercept == x86_intercept_ins) {
4505 			exit_info = ((info->src_val & 0xffff) << 16) |
4506 				SVM_IOIO_TYPE_MASK;
4507 			bytes = info->dst_bytes;
4508 		} else {
4509 			exit_info = (info->dst_val & 0xffff) << 16;
4510 			bytes = info->src_bytes;
4511 		}
4512 
4513 		if (info->intercept == x86_intercept_outs ||
4514 		    info->intercept == x86_intercept_ins)
4515 			exit_info |= SVM_IOIO_STR_MASK;
4516 
4517 		if (info->rep_prefix)
4518 			exit_info |= SVM_IOIO_REP_MASK;
4519 
4520 		bytes = min(bytes, 4u);
4521 
4522 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4523 
4524 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4525 
4526 		vmcb->control.exit_info_1 = exit_info;
4527 		vmcb->control.exit_info_2 = info->next_rip;
4528 
4529 		break;
4530 	}
4531 	default:
4532 		break;
4533 	}
4534 
4535 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4536 	if (static_cpu_has(X86_FEATURE_NRIPS))
4537 		vmcb->control.next_rip  = info->next_rip;
4538 	vmcb->control.exit_code = icpt_info.exit_code;
4539 	vmexit = nested_svm_exit_handled(svm);
4540 
4541 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4542 					   : X86EMUL_CONTINUE;
4543 
4544 out:
4545 	return ret;
4546 }
4547 
4548 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4549 {
4550 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4551 		vcpu->arch.at_instruction_boundary = true;
4552 }
4553 
4554 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4555 {
4556 	if (!kvm_pause_in_guest(vcpu->kvm))
4557 		shrink_ple_window(vcpu);
4558 }
4559 
4560 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4561 {
4562 	/* [63:9] are reserved. */
4563 	vcpu->arch.mcg_cap &= 0x1ff;
4564 }
4565 
4566 #ifdef CONFIG_KVM_SMM
4567 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4568 {
4569 	struct vcpu_svm *svm = to_svm(vcpu);
4570 
4571 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4572 	if (!gif_set(svm))
4573 		return true;
4574 
4575 	return is_smm(vcpu);
4576 }
4577 
4578 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4579 {
4580 	struct vcpu_svm *svm = to_svm(vcpu);
4581 	if (svm->nested.nested_run_pending)
4582 		return -EBUSY;
4583 
4584 	if (svm_smi_blocked(vcpu))
4585 		return 0;
4586 
4587 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4588 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4589 		return -EBUSY;
4590 
4591 	return 1;
4592 }
4593 
4594 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4595 {
4596 	struct vcpu_svm *svm = to_svm(vcpu);
4597 	struct kvm_host_map map_save;
4598 	int ret;
4599 
4600 	if (!is_guest_mode(vcpu))
4601 		return 0;
4602 
4603 	/*
4604 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4605 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4606 	 */
4607 
4608 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4609 		return 1;
4610 
4611 	smram->smram64.svm_guest_flag = 1;
4612 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4613 
4614 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4615 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4616 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4617 
4618 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4619 	if (ret)
4620 		return ret;
4621 
4622 	/*
4623 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4624 	 * VMCB01 is going to be used during SMM and thus the state will
4625 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4626 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4627 	 * format of the area is identical to guest save area offsetted
4628 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4629 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4630 	 * L1 hypervisor to save additional host context (e.g. KVM does
4631 	 * that, see svm_prepare_switch_to_guest()) which must be
4632 	 * preserved.
4633 	 */
4634 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4635 		return 1;
4636 
4637 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4638 
4639 	svm_copy_vmrun_state(map_save.hva + 0x400,
4640 			     &svm->vmcb01.ptr->save);
4641 
4642 	kvm_vcpu_unmap(vcpu, &map_save, true);
4643 	return 0;
4644 }
4645 
4646 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4647 {
4648 	struct vcpu_svm *svm = to_svm(vcpu);
4649 	struct kvm_host_map map, map_save;
4650 	struct vmcb *vmcb12;
4651 	int ret;
4652 
4653 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4654 
4655 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4656 		return 0;
4657 
4658 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4659 	if (!smram64->svm_guest_flag)
4660 		return 0;
4661 
4662 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4663 		return 1;
4664 
4665 	if (!(smram64->efer & EFER_SVME))
4666 		return 1;
4667 
4668 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4669 		return 1;
4670 
4671 	ret = 1;
4672 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4673 		goto unmap_map;
4674 
4675 	if (svm_allocate_nested(svm))
4676 		goto unmap_save;
4677 
4678 	/*
4679 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4680 	 * used during SMM (see svm_enter_smm())
4681 	 */
4682 
4683 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4684 
4685 	/*
4686 	 * Enter the nested guest now
4687 	 */
4688 
4689 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4690 
4691 	vmcb12 = map.hva;
4692 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4693 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4694 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4695 
4696 	if (ret)
4697 		goto unmap_save;
4698 
4699 	svm->nested.nested_run_pending = 1;
4700 
4701 unmap_save:
4702 	kvm_vcpu_unmap(vcpu, &map_save, true);
4703 unmap_map:
4704 	kvm_vcpu_unmap(vcpu, &map, true);
4705 	return ret;
4706 }
4707 
4708 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4709 {
4710 	struct vcpu_svm *svm = to_svm(vcpu);
4711 
4712 	if (!gif_set(svm)) {
4713 		if (vgif)
4714 			svm_set_intercept(svm, INTERCEPT_STGI);
4715 		/* STGI will cause a vm exit */
4716 	} else {
4717 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4718 	}
4719 }
4720 #endif
4721 
4722 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4723 					 void *insn, int insn_len)
4724 {
4725 	bool smep, smap, is_user;
4726 	u64 error_code;
4727 
4728 	/* Emulation is always possible when KVM has access to all guest state. */
4729 	if (!sev_guest(vcpu->kvm))
4730 		return X86EMUL_CONTINUE;
4731 
4732 	/* #UD and #GP should never be intercepted for SEV guests. */
4733 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4734 				  EMULTYPE_TRAP_UD_FORCED |
4735 				  EMULTYPE_VMWARE_GP));
4736 
4737 	/*
4738 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4739 	 * to guest register state.
4740 	 */
4741 	if (sev_es_guest(vcpu->kvm))
4742 		return X86EMUL_RETRY_INSTR;
4743 
4744 	/*
4745 	 * Emulation is possible if the instruction is already decoded, e.g.
4746 	 * when completing I/O after returning from userspace.
4747 	 */
4748 	if (emul_type & EMULTYPE_NO_DECODE)
4749 		return X86EMUL_CONTINUE;
4750 
4751 	/*
4752 	 * Emulation is possible for SEV guests if and only if a prefilled
4753 	 * buffer containing the bytes of the intercepted instruction is
4754 	 * available. SEV guest memory is encrypted with a guest specific key
4755 	 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and
4756 	 * decode garbage.
4757 	 *
4758 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4759 	 * KVM reached this point without an instruction buffer.  In practice,
4760 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4761 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4762 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4763 	 * access, and needs to be handled by KVM to avoid putting the guest
4764 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4765 	 * its the least awful option given lack of insight into the guest.
4766 	 *
4767 	 * If KVM is trying to skip an instruction, simply resume the guest.
4768 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4769 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4770 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4771 	 * make forward progress is the only option that has a chance of
4772 	 * success (and in practice it will work the vast majority of the time).
4773 	 */
4774 	if (unlikely(!insn)) {
4775 		if (emul_type & EMULTYPE_SKIP)
4776 			return X86EMUL_UNHANDLEABLE;
4777 
4778 		kvm_queue_exception(vcpu, UD_VECTOR);
4779 		return X86EMUL_PROPAGATE_FAULT;
4780 	}
4781 
4782 	/*
4783 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4784 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4785 	 * the faulting instruction because the code fetch itself faulted, e.g.
4786 	 * the guest attempted to fetch from emulated MMIO or a guest page
4787 	 * table used to translate CS:RIP resides in emulated MMIO.
4788 	 */
4789 	if (likely(insn_len))
4790 		return X86EMUL_CONTINUE;
4791 
4792 	/*
4793 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4794 	 *
4795 	 * Errata:
4796 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4797 	 * possible that CPU microcode implementing DecodeAssist will fail to
4798 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4799 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4800 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4801 	 * gives up and does not fill the instruction bytes buffer.
4802 	 *
4803 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4804 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4805 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4806 	 * GuestIntrBytes field of the VMCB.
4807 	 *
4808 	 * This does _not_ mean that the erratum has been encountered, as the
4809 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4810 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4811 	 * encountered a reserved/not-present #PF.
4812 	 *
4813 	 * To hit the erratum, the following conditions must be true:
4814 	 *    1. CR4.SMAP=1 (obviously).
4815 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4816 	 *       have been hit as the guest would have encountered a SMEP
4817 	 *       violation #PF, not a #NPF.
4818 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4819 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4820 	 *
4821 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4822 	 * while translating guest page tables (see below).
4823 	 */
4824 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4825 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4826 		goto resume_guest;
4827 
4828 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4829 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4830 	is_user = svm_get_cpl(vcpu) == 3;
4831 	if (smap && (!smep || is_user)) {
4832 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4833 
4834 		/*
4835 		 * If the fault occurred in userspace, arbitrarily inject #GP
4836 		 * to avoid killing the guest and to hopefully avoid confusing
4837 		 * the guest kernel too much, e.g. injecting #PF would not be
4838 		 * coherent with respect to the guest's page tables.  Request
4839 		 * triple fault if the fault occurred in the kernel as there's
4840 		 * no fault that KVM can inject without confusing the guest.
4841 		 * In practice, the triple fault is moot as no sane SEV kernel
4842 		 * will execute from user memory while also running with SMAP=1.
4843 		 */
4844 		if (is_user)
4845 			kvm_inject_gp(vcpu, 0);
4846 		else
4847 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4848 		return X86EMUL_PROPAGATE_FAULT;
4849 	}
4850 
4851 resume_guest:
4852 	/*
4853 	 * If the erratum was not hit, simply resume the guest and let it fault
4854 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4855 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4856 	 * userspace will kill the guest, and letting the emulator read garbage
4857 	 * will yield random behavior and potentially corrupt the guest.
4858 	 *
4859 	 * Simply resuming the guest is technically not a violation of the SEV
4860 	 * architecture.  AMD's APM states that all code fetches and page table
4861 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4862 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4863 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4864 	 * the guest spin is technically "ignoring" the access.
4865 	 */
4866 	return X86EMUL_RETRY_INSTR;
4867 }
4868 
4869 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4870 {
4871 	struct vcpu_svm *svm = to_svm(vcpu);
4872 
4873 	return !gif_set(svm);
4874 }
4875 
4876 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4877 {
4878 	if (!sev_es_guest(vcpu->kvm))
4879 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4880 
4881 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4882 }
4883 
4884 static void svm_vm_destroy(struct kvm *kvm)
4885 {
4886 	avic_vm_destroy(kvm);
4887 	sev_vm_destroy(kvm);
4888 }
4889 
4890 static int svm_vm_init(struct kvm *kvm)
4891 {
4892 	if (!pause_filter_count || !pause_filter_thresh)
4893 		kvm->arch.pause_in_guest = true;
4894 
4895 	if (enable_apicv) {
4896 		int ret = avic_vm_init(kvm);
4897 		if (ret)
4898 			return ret;
4899 	}
4900 
4901 	return 0;
4902 }
4903 
4904 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu)
4905 {
4906 	struct page *page = snp_safe_alloc_page(vcpu);
4907 
4908 	if (!page)
4909 		return NULL;
4910 
4911 	return page_address(page);
4912 }
4913 
4914 static struct kvm_x86_ops svm_x86_ops __initdata = {
4915 	.name = KBUILD_MODNAME,
4916 
4917 	.check_processor_compatibility = svm_check_processor_compat,
4918 
4919 	.hardware_unsetup = svm_hardware_unsetup,
4920 	.hardware_enable = svm_hardware_enable,
4921 	.hardware_disable = svm_hardware_disable,
4922 	.has_emulated_msr = svm_has_emulated_msr,
4923 
4924 	.vcpu_create = svm_vcpu_create,
4925 	.vcpu_free = svm_vcpu_free,
4926 	.vcpu_reset = svm_vcpu_reset,
4927 
4928 	.vm_size = sizeof(struct kvm_svm),
4929 	.vm_init = svm_vm_init,
4930 	.vm_destroy = svm_vm_destroy,
4931 
4932 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4933 	.vcpu_load = svm_vcpu_load,
4934 	.vcpu_put = svm_vcpu_put,
4935 	.vcpu_blocking = avic_vcpu_blocking,
4936 	.vcpu_unblocking = avic_vcpu_unblocking,
4937 
4938 	.update_exception_bitmap = svm_update_exception_bitmap,
4939 	.get_msr_feature = svm_get_msr_feature,
4940 	.get_msr = svm_get_msr,
4941 	.set_msr = svm_set_msr,
4942 	.get_segment_base = svm_get_segment_base,
4943 	.get_segment = svm_get_segment,
4944 	.set_segment = svm_set_segment,
4945 	.get_cpl = svm_get_cpl,
4946 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4947 	.is_valid_cr0 = svm_is_valid_cr0,
4948 	.set_cr0 = svm_set_cr0,
4949 	.post_set_cr3 = sev_post_set_cr3,
4950 	.is_valid_cr4 = svm_is_valid_cr4,
4951 	.set_cr4 = svm_set_cr4,
4952 	.set_efer = svm_set_efer,
4953 	.get_idt = svm_get_idt,
4954 	.set_idt = svm_set_idt,
4955 	.get_gdt = svm_get_gdt,
4956 	.set_gdt = svm_set_gdt,
4957 	.set_dr7 = svm_set_dr7,
4958 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4959 	.cache_reg = svm_cache_reg,
4960 	.get_rflags = svm_get_rflags,
4961 	.set_rflags = svm_set_rflags,
4962 	.get_if_flag = svm_get_if_flag,
4963 
4964 	.flush_tlb_all = svm_flush_tlb_all,
4965 	.flush_tlb_current = svm_flush_tlb_current,
4966 	.flush_tlb_gva = svm_flush_tlb_gva,
4967 	.flush_tlb_guest = svm_flush_tlb_asid,
4968 
4969 	.vcpu_pre_run = svm_vcpu_pre_run,
4970 	.vcpu_run = svm_vcpu_run,
4971 	.handle_exit = svm_handle_exit,
4972 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4973 	.update_emulated_instruction = NULL,
4974 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4975 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4976 	.patch_hypercall = svm_patch_hypercall,
4977 	.inject_irq = svm_inject_irq,
4978 	.inject_nmi = svm_inject_nmi,
4979 	.is_vnmi_pending = svm_is_vnmi_pending,
4980 	.set_vnmi_pending = svm_set_vnmi_pending,
4981 	.inject_exception = svm_inject_exception,
4982 	.cancel_injection = svm_cancel_injection,
4983 	.interrupt_allowed = svm_interrupt_allowed,
4984 	.nmi_allowed = svm_nmi_allowed,
4985 	.get_nmi_mask = svm_get_nmi_mask,
4986 	.set_nmi_mask = svm_set_nmi_mask,
4987 	.enable_nmi_window = svm_enable_nmi_window,
4988 	.enable_irq_window = svm_enable_irq_window,
4989 	.update_cr8_intercept = svm_update_cr8_intercept,
4990 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4991 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4992 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4993 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4994 
4995 	.get_exit_info = svm_get_exit_info,
4996 
4997 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4998 
4999 	.has_wbinvd_exit = svm_has_wbinvd_exit,
5000 
5001 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
5002 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5003 	.write_tsc_offset = svm_write_tsc_offset,
5004 	.write_tsc_multiplier = svm_write_tsc_multiplier,
5005 
5006 	.load_mmu_pgd = svm_load_mmu_pgd,
5007 
5008 	.check_intercept = svm_check_intercept,
5009 	.handle_exit_irqoff = svm_handle_exit_irqoff,
5010 
5011 	.sched_in = svm_sched_in,
5012 
5013 	.nested_ops = &svm_nested_ops,
5014 
5015 	.deliver_interrupt = svm_deliver_interrupt,
5016 	.pi_update_irte = avic_pi_update_irte,
5017 	.setup_mce = svm_setup_mce,
5018 
5019 #ifdef CONFIG_KVM_SMM
5020 	.smi_allowed = svm_smi_allowed,
5021 	.enter_smm = svm_enter_smm,
5022 	.leave_smm = svm_leave_smm,
5023 	.enable_smi_window = svm_enable_smi_window,
5024 #endif
5025 
5026 	.mem_enc_ioctl = sev_mem_enc_ioctl,
5027 	.mem_enc_register_region = sev_mem_enc_register_region,
5028 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5029 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5030 
5031 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5032 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5033 
5034 	.check_emulate_instruction = svm_check_emulate_instruction,
5035 
5036 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5037 
5038 	.msr_filter_changed = svm_msr_filter_changed,
5039 	.complete_emulated_msr = svm_complete_emulated_msr,
5040 
5041 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5042 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5043 	.alloc_apic_backing_page = svm_alloc_apic_backing_page,
5044 };
5045 
5046 /*
5047  * The default MMIO mask is a single bit (excluding the present bit),
5048  * which could conflict with the memory encryption bit. Check for
5049  * memory encryption support and override the default MMIO mask if
5050  * memory encryption is enabled.
5051  */
5052 static __init void svm_adjust_mmio_mask(void)
5053 {
5054 	unsigned int enc_bit, mask_bit;
5055 	u64 msr, mask;
5056 
5057 	/* If there is no memory encryption support, use existing mask */
5058 	if (cpuid_eax(0x80000000) < 0x8000001f)
5059 		return;
5060 
5061 	/* If memory encryption is not enabled, use existing mask */
5062 	rdmsrl(MSR_AMD64_SYSCFG, msr);
5063 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5064 		return;
5065 
5066 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5067 	mask_bit = boot_cpu_data.x86_phys_bits;
5068 
5069 	/* Increment the mask bit if it is the same as the encryption bit */
5070 	if (enc_bit == mask_bit)
5071 		mask_bit++;
5072 
5073 	/*
5074 	 * If the mask bit location is below 52, then some bits above the
5075 	 * physical addressing limit will always be reserved, so use the
5076 	 * rsvd_bits() function to generate the mask. This mask, along with
5077 	 * the present bit, will be used to generate a page fault with
5078 	 * PFER.RSV = 1.
5079 	 *
5080 	 * If the mask bit location is 52 (or above), then clear the mask.
5081 	 */
5082 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5083 
5084 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5085 }
5086 
5087 static __init void svm_set_cpu_caps(void)
5088 {
5089 	kvm_set_cpu_caps();
5090 
5091 	kvm_caps.supported_perf_cap = 0;
5092 	kvm_caps.supported_xss = 0;
5093 
5094 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5095 	if (nested) {
5096 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5097 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5098 
5099 		/*
5100 		 * KVM currently flushes TLBs on *every* nested SVM transition,
5101 		 * and so for all intents and purposes KVM supports flushing by
5102 		 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush.
5103 		 */
5104 		kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID);
5105 
5106 		if (nrips)
5107 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5108 
5109 		if (npt_enabled)
5110 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5111 
5112 		if (tsc_scaling)
5113 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5114 
5115 		if (vls)
5116 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5117 		if (lbrv)
5118 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5119 
5120 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5121 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5122 
5123 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5124 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5125 
5126 		if (vgif)
5127 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5128 
5129 		if (vnmi)
5130 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5131 
5132 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5133 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5134 	}
5135 
5136 	/* CPUID 0x80000008 */
5137 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5138 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5139 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5140 
5141 	if (enable_pmu) {
5142 		/*
5143 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5144 		 * access to enough counters to virtualize "core" support,
5145 		 * otherwise limit vPMU support to the legacy number of counters.
5146 		 */
5147 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5148 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5149 							  kvm_pmu_cap.num_counters_gp);
5150 		else
5151 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5152 
5153 		if (kvm_pmu_cap.version != 2 ||
5154 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5155 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5156 	}
5157 
5158 	/* CPUID 0x8000001F (SME/SEV features) */
5159 	sev_set_cpu_caps();
5160 }
5161 
5162 static __init int svm_hardware_setup(void)
5163 {
5164 	int cpu;
5165 	struct page *iopm_pages;
5166 	void *iopm_va;
5167 	int r;
5168 	unsigned int order = get_order(IOPM_SIZE);
5169 
5170 	/*
5171 	 * NX is required for shadow paging and for NPT if the NX huge pages
5172 	 * mitigation is enabled.
5173 	 */
5174 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5175 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5176 		return -EOPNOTSUPP;
5177 	}
5178 	kvm_enable_efer_bits(EFER_NX);
5179 
5180 	iopm_pages = alloc_pages(GFP_KERNEL, order);
5181 
5182 	if (!iopm_pages)
5183 		return -ENOMEM;
5184 
5185 	iopm_va = page_address(iopm_pages);
5186 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5187 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5188 
5189 	init_msrpm_offsets();
5190 
5191 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5192 				     XFEATURE_MASK_BNDCSR);
5193 
5194 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5195 		kvm_enable_efer_bits(EFER_FFXSR);
5196 
5197 	if (tsc_scaling) {
5198 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5199 			tsc_scaling = false;
5200 		} else {
5201 			pr_info("TSC scaling supported\n");
5202 			kvm_caps.has_tsc_control = true;
5203 		}
5204 	}
5205 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5206 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5207 
5208 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5209 
5210 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5211 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5212 
5213 	/* Check for pause filtering support */
5214 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5215 		pause_filter_count = 0;
5216 		pause_filter_thresh = 0;
5217 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5218 		pause_filter_thresh = 0;
5219 	}
5220 
5221 	if (nested) {
5222 		pr_info("Nested Virtualization enabled\n");
5223 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5224 	}
5225 
5226 	/*
5227 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5228 	 * NPT isn't supported if the host is using 2-level paging since host
5229 	 * CR4 is unchanged on VMRUN.
5230 	 */
5231 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5232 		npt_enabled = false;
5233 
5234 	if (!boot_cpu_has(X86_FEATURE_NPT))
5235 		npt_enabled = false;
5236 
5237 	/* Force VM NPT level equal to the host's paging level */
5238 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5239 			  get_npt_level(), PG_LEVEL_1G);
5240 	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5241 
5242 	/* Setup shadow_me_value and shadow_me_mask */
5243 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5244 
5245 	svm_adjust_mmio_mask();
5246 
5247 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5248 
5249 	/*
5250 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5251 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5252 	 */
5253 	sev_hardware_setup();
5254 
5255 	svm_hv_hardware_setup();
5256 
5257 	for_each_possible_cpu(cpu) {
5258 		r = svm_cpu_init(cpu);
5259 		if (r)
5260 			goto err;
5261 	}
5262 
5263 	enable_apicv = avic = avic && avic_hardware_setup();
5264 
5265 	if (!enable_apicv) {
5266 		svm_x86_ops.vcpu_blocking = NULL;
5267 		svm_x86_ops.vcpu_unblocking = NULL;
5268 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5269 	} else if (!x2avic_enabled) {
5270 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5271 	}
5272 
5273 	if (vls) {
5274 		if (!npt_enabled ||
5275 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5276 		    !IS_ENABLED(CONFIG_X86_64)) {
5277 			vls = false;
5278 		} else {
5279 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5280 		}
5281 	}
5282 
5283 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5284 		svm_gp_erratum_intercept = false;
5285 
5286 	if (vgif) {
5287 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5288 			vgif = false;
5289 		else
5290 			pr_info("Virtual GIF supported\n");
5291 	}
5292 
5293 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5294 	if (vnmi)
5295 		pr_info("Virtual NMI enabled\n");
5296 
5297 	if (!vnmi) {
5298 		svm_x86_ops.is_vnmi_pending = NULL;
5299 		svm_x86_ops.set_vnmi_pending = NULL;
5300 	}
5301 
5302 
5303 	if (lbrv) {
5304 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5305 			lbrv = false;
5306 		else
5307 			pr_info("LBR virtualization supported\n");
5308 	}
5309 
5310 	if (!enable_pmu)
5311 		pr_info("PMU virtualization is disabled\n");
5312 
5313 	svm_set_cpu_caps();
5314 
5315 	/*
5316 	 * It seems that on AMD processors PTE's accessed bit is
5317 	 * being set by the CPU hardware before the NPF vmexit.
5318 	 * This is not expected behaviour and our tests fail because
5319 	 * of it.
5320 	 * A workaround here is to disable support for
5321 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5322 	 * In this case userspace can know if there is support using
5323 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5324 	 * it
5325 	 * If future AMD CPU models change the behaviour described above,
5326 	 * this variable can be changed accordingly
5327 	 */
5328 	allow_smaller_maxphyaddr = !npt_enabled;
5329 
5330 	return 0;
5331 
5332 err:
5333 	svm_hardware_unsetup();
5334 	return r;
5335 }
5336 
5337 
5338 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5339 	.hardware_setup = svm_hardware_setup,
5340 
5341 	.runtime_ops = &svm_x86_ops,
5342 	.pmu_ops = &amd_pmu_ops,
5343 };
5344 
5345 static void __svm_exit(void)
5346 {
5347 	kvm_x86_vendor_exit();
5348 
5349 	cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5350 }
5351 
5352 static int __init svm_init(void)
5353 {
5354 	int r;
5355 
5356 	__unused_size_checks();
5357 
5358 	if (!kvm_is_svm_supported())
5359 		return -EOPNOTSUPP;
5360 
5361 	r = kvm_x86_vendor_init(&svm_init_ops);
5362 	if (r)
5363 		return r;
5364 
5365 	cpu_emergency_register_virt_callback(svm_emergency_disable);
5366 
5367 	/*
5368 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5369 	 * exposed to userspace!
5370 	 */
5371 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5372 		     THIS_MODULE);
5373 	if (r)
5374 		goto err_kvm_init;
5375 
5376 	return 0;
5377 
5378 err_kvm_init:
5379 	__svm_exit();
5380 	return r;
5381 }
5382 
5383 static void __exit svm_exit(void)
5384 {
5385 	kvm_exit();
5386 	__svm_exit();
5387 }
5388 
5389 module_init(svm_init)
5390 module_exit(svm_exit)
5391