1 #define pr_fmt(fmt) "SVM: " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "cpuid.h" 10 #include "pmu.h" 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/kernel.h> 15 #include <linux/vmalloc.h> 16 #include <linux/highmem.h> 17 #include <linux/amd-iommu.h> 18 #include <linux/sched.h> 19 #include <linux/trace_events.h> 20 #include <linux/slab.h> 21 #include <linux/hashtable.h> 22 #include <linux/objtool.h> 23 #include <linux/psp-sev.h> 24 #include <linux/file.h> 25 #include <linux/pagemap.h> 26 #include <linux/swap.h> 27 #include <linux/rwsem.h> 28 29 #include <asm/apic.h> 30 #include <asm/perf_event.h> 31 #include <asm/tlbflush.h> 32 #include <asm/desc.h> 33 #include <asm/debugreg.h> 34 #include <asm/kvm_para.h> 35 #include <asm/irq_remapping.h> 36 #include <asm/spec-ctrl.h> 37 #include <asm/cpu_device_id.h> 38 #include <asm/traps.h> 39 40 #include <asm/virtext.h> 41 #include "trace.h" 42 43 #include "svm.h" 44 #include "svm_ops.h" 45 46 #include "kvm_onhyperv.h" 47 #include "svm_onhyperv.h" 48 49 #define __ex(x) __kvm_handle_fault_on_reboot(x) 50 51 MODULE_AUTHOR("Qumranet"); 52 MODULE_LICENSE("GPL"); 53 54 #ifdef MODULE 55 static const struct x86_cpu_id svm_cpu_id[] = { 56 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 57 {} 58 }; 59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 60 #endif 61 62 #define SEG_TYPE_LDT 2 63 #define SEG_TYPE_BUSY_TSS16 3 64 65 #define SVM_FEATURE_LBRV (1 << 1) 66 #define SVM_FEATURE_SVML (1 << 2) 67 #define SVM_FEATURE_TSC_RATE (1 << 4) 68 #define SVM_FEATURE_VMCB_CLEAN (1 << 5) 69 #define SVM_FEATURE_FLUSH_ASID (1 << 6) 70 #define SVM_FEATURE_DECODE_ASSIST (1 << 7) 71 #define SVM_FEATURE_PAUSE_FILTER (1 << 10) 72 73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) 74 75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL 76 #define TSC_RATIO_MIN 0x0000000000000001ULL 77 #define TSC_RATIO_MAX 0x000000ffffffffffULL 78 79 static bool erratum_383_found __read_mostly; 80 81 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 82 83 /* 84 * Set osvw_len to higher value when updated Revision Guides 85 * are published and we know what the new status bits are 86 */ 87 static uint64_t osvw_len = 4, osvw_status; 88 89 static DEFINE_PER_CPU(u64, current_tsc_ratio); 90 #define TSC_RATIO_DEFAULT 0x0100000000ULL 91 92 static const struct svm_direct_access_msrs { 93 u32 index; /* Index of the MSR */ 94 bool always; /* True if intercept is initially cleared */ 95 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 96 { .index = MSR_STAR, .always = true }, 97 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 98 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 99 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 100 #ifdef CONFIG_X86_64 101 { .index = MSR_GS_BASE, .always = true }, 102 { .index = MSR_FS_BASE, .always = true }, 103 { .index = MSR_KERNEL_GS_BASE, .always = true }, 104 { .index = MSR_LSTAR, .always = true }, 105 { .index = MSR_CSTAR, .always = true }, 106 { .index = MSR_SYSCALL_MASK, .always = true }, 107 #endif 108 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 109 { .index = MSR_IA32_PRED_CMD, .always = false }, 110 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 111 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 112 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 113 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 114 { .index = MSR_EFER, .always = false }, 115 { .index = MSR_IA32_CR_PAT, .always = false }, 116 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 117 { .index = MSR_INVALID, .always = false }, 118 }; 119 120 /* 121 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 122 * pause_filter_count: On processors that support Pause filtering(indicated 123 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 124 * count value. On VMRUN this value is loaded into an internal counter. 125 * Each time a pause instruction is executed, this counter is decremented 126 * until it reaches zero at which time a #VMEXIT is generated if pause 127 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 128 * Intercept Filtering for more details. 129 * This also indicate if ple logic enabled. 130 * 131 * pause_filter_thresh: In addition, some processor families support advanced 132 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 133 * the amount of time a guest is allowed to execute in a pause loop. 134 * In this mode, a 16-bit pause filter threshold field is added in the 135 * VMCB. The threshold value is a cycle count that is used to reset the 136 * pause counter. As with simple pause filtering, VMRUN loads the pause 137 * count value from VMCB into an internal counter. Then, on each pause 138 * instruction the hardware checks the elapsed number of cycles since 139 * the most recent pause instruction against the pause filter threshold. 140 * If the elapsed cycle count is greater than the pause filter threshold, 141 * then the internal pause count is reloaded from the VMCB and execution 142 * continues. If the elapsed cycle count is less than the pause filter 143 * threshold, then the internal pause count is decremented. If the count 144 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 145 * triggered. If advanced pause filtering is supported and pause filter 146 * threshold field is set to zero, the filter will operate in the simpler, 147 * count only mode. 148 */ 149 150 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 151 module_param(pause_filter_thresh, ushort, 0444); 152 153 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 154 module_param(pause_filter_count, ushort, 0444); 155 156 /* Default doubles per-vcpu window every exit. */ 157 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 158 module_param(pause_filter_count_grow, ushort, 0444); 159 160 /* Default resets per-vcpu window every exit to pause_filter_count. */ 161 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 162 module_param(pause_filter_count_shrink, ushort, 0444); 163 164 /* Default is to compute the maximum so we can never overflow. */ 165 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 166 module_param(pause_filter_count_max, ushort, 0444); 167 168 /* 169 * Use nested page tables by default. Note, NPT may get forced off by 170 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 171 */ 172 bool npt_enabled = true; 173 module_param_named(npt, npt_enabled, bool, 0444); 174 175 /* allow nested virtualization in KVM/SVM */ 176 static int nested = true; 177 module_param(nested, int, S_IRUGO); 178 179 /* enable/disable Next RIP Save */ 180 static int nrips = true; 181 module_param(nrips, int, 0444); 182 183 /* enable/disable Virtual VMLOAD VMSAVE */ 184 static int vls = true; 185 module_param(vls, int, 0444); 186 187 /* enable/disable Virtual GIF */ 188 static int vgif = true; 189 module_param(vgif, int, 0444); 190 191 /* 192 * enable / disable AVIC. Because the defaults differ for APICv 193 * support between VMX and SVM we cannot use module_param_named. 194 */ 195 static bool avic; 196 module_param(avic, bool, 0444); 197 198 bool __read_mostly dump_invalid_vmcb; 199 module_param(dump_invalid_vmcb, bool, 0644); 200 201 202 bool intercept_smi = true; 203 module_param(intercept_smi, bool, 0444); 204 205 206 static bool svm_gp_erratum_intercept = true; 207 208 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 209 210 static unsigned long iopm_base; 211 212 struct kvm_ldttss_desc { 213 u16 limit0; 214 u16 base0; 215 unsigned base1:8, type:5, dpl:2, p:1; 216 unsigned limit1:4, zero0:3, g:1, base2:8; 217 u32 base3; 218 u32 zero1; 219 } __attribute__((packed)); 220 221 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); 222 223 /* 224 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 225 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 226 * 227 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 228 * defer the restoration of TSC_AUX until the CPU returns to userspace. 229 */ 230 static int tsc_aux_uret_slot __read_mostly = -1; 231 232 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 233 234 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 235 #define MSRS_RANGE_SIZE 2048 236 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 237 238 u32 svm_msrpm_offset(u32 msr) 239 { 240 u32 offset; 241 int i; 242 243 for (i = 0; i < NUM_MSR_MAPS; i++) { 244 if (msr < msrpm_ranges[i] || 245 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 246 continue; 247 248 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 249 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 250 251 /* Now we have the u8 offset - but need the u32 offset */ 252 return offset / 4; 253 } 254 255 /* MSR not in any range */ 256 return MSR_INVALID; 257 } 258 259 #define MAX_INST_SIZE 15 260 261 static int get_max_npt_level(void) 262 { 263 #ifdef CONFIG_X86_64 264 return PT64_ROOT_4LEVEL; 265 #else 266 return PT32E_ROOT_LEVEL; 267 #endif 268 } 269 270 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 271 { 272 struct vcpu_svm *svm = to_svm(vcpu); 273 u64 old_efer = vcpu->arch.efer; 274 vcpu->arch.efer = efer; 275 276 if (!npt_enabled) { 277 /* Shadow paging assumes NX to be available. */ 278 efer |= EFER_NX; 279 280 if (!(efer & EFER_LMA)) 281 efer &= ~EFER_LME; 282 } 283 284 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 285 if (!(efer & EFER_SVME)) { 286 svm_leave_nested(svm); 287 svm_set_gif(svm, true); 288 /* #GP intercept is still needed for vmware backdoor */ 289 if (!enable_vmware_backdoor) 290 clr_exception_intercept(svm, GP_VECTOR); 291 292 /* 293 * Free the nested guest state, unless we are in SMM. 294 * In this case we will return to the nested guest 295 * as soon as we leave SMM. 296 */ 297 if (!is_smm(vcpu)) 298 svm_free_nested(svm); 299 300 } else { 301 int ret = svm_allocate_nested(svm); 302 303 if (ret) { 304 vcpu->arch.efer = old_efer; 305 return ret; 306 } 307 308 if (svm_gp_erratum_intercept) 309 set_exception_intercept(svm, GP_VECTOR); 310 } 311 } 312 313 svm->vmcb->save.efer = efer | EFER_SVME; 314 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 315 return 0; 316 } 317 318 static int is_external_interrupt(u32 info) 319 { 320 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; 321 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); 322 } 323 324 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 325 { 326 struct vcpu_svm *svm = to_svm(vcpu); 327 u32 ret = 0; 328 329 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 330 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 331 return ret; 332 } 333 334 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 335 { 336 struct vcpu_svm *svm = to_svm(vcpu); 337 338 if (mask == 0) 339 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 340 else 341 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 342 343 } 344 345 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 346 { 347 struct vcpu_svm *svm = to_svm(vcpu); 348 349 /* 350 * SEV-ES does not expose the next RIP. The RIP update is controlled by 351 * the type of exit and the #VC handler in the guest. 352 */ 353 if (sev_es_guest(vcpu->kvm)) 354 goto done; 355 356 if (nrips && svm->vmcb->control.next_rip != 0) { 357 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 358 svm->next_rip = svm->vmcb->control.next_rip; 359 } 360 361 if (!svm->next_rip) { 362 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 363 return 0; 364 } else { 365 kvm_rip_write(vcpu, svm->next_rip); 366 } 367 368 done: 369 svm_set_interrupt_shadow(vcpu, 0); 370 371 return 1; 372 } 373 374 static void svm_queue_exception(struct kvm_vcpu *vcpu) 375 { 376 struct vcpu_svm *svm = to_svm(vcpu); 377 unsigned nr = vcpu->arch.exception.nr; 378 bool has_error_code = vcpu->arch.exception.has_error_code; 379 u32 error_code = vcpu->arch.exception.error_code; 380 381 kvm_deliver_exception_payload(vcpu); 382 383 if (nr == BP_VECTOR && !nrips) { 384 unsigned long rip, old_rip = kvm_rip_read(vcpu); 385 386 /* 387 * For guest debugging where we have to reinject #BP if some 388 * INT3 is guest-owned: 389 * Emulate nRIP by moving RIP forward. Will fail if injection 390 * raises a fault that is not intercepted. Still better than 391 * failing in all cases. 392 */ 393 (void)skip_emulated_instruction(vcpu); 394 rip = kvm_rip_read(vcpu); 395 svm->int3_rip = rip + svm->vmcb->save.cs.base; 396 svm->int3_injected = rip - old_rip; 397 } 398 399 svm->vmcb->control.event_inj = nr 400 | SVM_EVTINJ_VALID 401 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 402 | SVM_EVTINJ_TYPE_EXEPT; 403 svm->vmcb->control.event_inj_err = error_code; 404 } 405 406 static void svm_init_erratum_383(void) 407 { 408 u32 low, high; 409 int err; 410 u64 val; 411 412 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 413 return; 414 415 /* Use _safe variants to not break nested virtualization */ 416 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 417 if (err) 418 return; 419 420 val |= (1ULL << 47); 421 422 low = lower_32_bits(val); 423 high = upper_32_bits(val); 424 425 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 426 427 erratum_383_found = true; 428 } 429 430 static void svm_init_osvw(struct kvm_vcpu *vcpu) 431 { 432 /* 433 * Guests should see errata 400 and 415 as fixed (assuming that 434 * HLT and IO instructions are intercepted). 435 */ 436 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 437 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 438 439 /* 440 * By increasing VCPU's osvw.length to 3 we are telling the guest that 441 * all osvw.status bits inside that length, including bit 0 (which is 442 * reserved for erratum 298), are valid. However, if host processor's 443 * osvw_len is 0 then osvw_status[0] carries no information. We need to 444 * be conservative here and therefore we tell the guest that erratum 298 445 * is present (because we really don't know). 446 */ 447 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 448 vcpu->arch.osvw.status |= 1; 449 } 450 451 static int has_svm(void) 452 { 453 const char *msg; 454 455 if (!cpu_has_svm(&msg)) { 456 printk(KERN_INFO "has_svm: %s\n", msg); 457 return 0; 458 } 459 460 if (sev_active()) { 461 pr_info("KVM is unsupported when running as an SEV guest\n"); 462 return 0; 463 } 464 465 if (pgtable_l5_enabled()) { 466 pr_info("KVM doesn't yet support 5-level paging on AMD SVM\n"); 467 return 0; 468 } 469 470 return 1; 471 } 472 473 static void svm_hardware_disable(void) 474 { 475 /* Make sure we clean up behind us */ 476 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) 477 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 478 479 cpu_svm_disable(); 480 481 amd_pmu_disable_virt(); 482 } 483 484 static int svm_hardware_enable(void) 485 { 486 487 struct svm_cpu_data *sd; 488 uint64_t efer; 489 struct desc_struct *gdt; 490 int me = raw_smp_processor_id(); 491 492 rdmsrl(MSR_EFER, efer); 493 if (efer & EFER_SVME) 494 return -EBUSY; 495 496 if (!has_svm()) { 497 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); 498 return -EINVAL; 499 } 500 sd = per_cpu(svm_data, me); 501 if (!sd) { 502 pr_err("%s: svm_data is NULL on %d\n", __func__, me); 503 return -EINVAL; 504 } 505 506 sd->asid_generation = 1; 507 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 508 sd->next_asid = sd->max_asid + 1; 509 sd->min_asid = max_sev_asid + 1; 510 511 gdt = get_current_gdt_rw(); 512 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); 513 514 wrmsrl(MSR_EFER, efer | EFER_SVME); 515 516 wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area)); 517 518 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 519 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); 520 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); 521 } 522 523 524 /* 525 * Get OSVW bits. 526 * 527 * Note that it is possible to have a system with mixed processor 528 * revisions and therefore different OSVW bits. If bits are not the same 529 * on different processors then choose the worst case (i.e. if erratum 530 * is present on one processor and not on another then assume that the 531 * erratum is present everywhere). 532 */ 533 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 534 uint64_t len, status = 0; 535 int err; 536 537 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 538 if (!err) 539 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 540 &err); 541 542 if (err) 543 osvw_status = osvw_len = 0; 544 else { 545 if (len < osvw_len) 546 osvw_len = len; 547 osvw_status |= status; 548 osvw_status &= (1ULL << osvw_len) - 1; 549 } 550 } else 551 osvw_status = osvw_len = 0; 552 553 svm_init_erratum_383(); 554 555 amd_pmu_enable_virt(); 556 557 return 0; 558 } 559 560 static void svm_cpu_uninit(int cpu) 561 { 562 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 563 564 if (!sd) 565 return; 566 567 per_cpu(svm_data, cpu) = NULL; 568 kfree(sd->sev_vmcbs); 569 __free_page(sd->save_area); 570 kfree(sd); 571 } 572 573 static int svm_cpu_init(int cpu) 574 { 575 struct svm_cpu_data *sd; 576 int ret = -ENOMEM; 577 578 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); 579 if (!sd) 580 return ret; 581 sd->cpu = cpu; 582 sd->save_area = alloc_page(GFP_KERNEL); 583 if (!sd->save_area) 584 goto free_cpu_data; 585 586 clear_page(page_address(sd->save_area)); 587 588 ret = sev_cpu_init(sd); 589 if (ret) 590 goto free_save_area; 591 592 per_cpu(svm_data, cpu) = sd; 593 594 return 0; 595 596 free_save_area: 597 __free_page(sd->save_area); 598 free_cpu_data: 599 kfree(sd); 600 return ret; 601 602 } 603 604 static int direct_access_msr_slot(u32 msr) 605 { 606 u32 i; 607 608 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 609 if (direct_access_msrs[i].index == msr) 610 return i; 611 612 return -ENOENT; 613 } 614 615 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 616 int write) 617 { 618 struct vcpu_svm *svm = to_svm(vcpu); 619 int slot = direct_access_msr_slot(msr); 620 621 if (slot == -ENOENT) 622 return; 623 624 /* Set the shadow bitmaps to the desired intercept states */ 625 if (read) 626 set_bit(slot, svm->shadow_msr_intercept.read); 627 else 628 clear_bit(slot, svm->shadow_msr_intercept.read); 629 630 if (write) 631 set_bit(slot, svm->shadow_msr_intercept.write); 632 else 633 clear_bit(slot, svm->shadow_msr_intercept.write); 634 } 635 636 static bool valid_msr_intercept(u32 index) 637 { 638 return direct_access_msr_slot(index) != -ENOENT; 639 } 640 641 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 642 { 643 u8 bit_write; 644 unsigned long tmp; 645 u32 offset; 646 u32 *msrpm; 647 648 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 649 to_svm(vcpu)->msrpm; 650 651 offset = svm_msrpm_offset(msr); 652 bit_write = 2 * (msr & 0x0f) + 1; 653 tmp = msrpm[offset]; 654 655 BUG_ON(offset == MSR_INVALID); 656 657 return !!test_bit(bit_write, &tmp); 658 } 659 660 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 661 u32 msr, int read, int write) 662 { 663 u8 bit_read, bit_write; 664 unsigned long tmp; 665 u32 offset; 666 667 /* 668 * If this warning triggers extend the direct_access_msrs list at the 669 * beginning of the file 670 */ 671 WARN_ON(!valid_msr_intercept(msr)); 672 673 /* Enforce non allowed MSRs to trap */ 674 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 675 read = 0; 676 677 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 678 write = 0; 679 680 offset = svm_msrpm_offset(msr); 681 bit_read = 2 * (msr & 0x0f); 682 bit_write = 2 * (msr & 0x0f) + 1; 683 tmp = msrpm[offset]; 684 685 BUG_ON(offset == MSR_INVALID); 686 687 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 688 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 689 690 msrpm[offset] = tmp; 691 692 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 693 694 } 695 696 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 697 int read, int write) 698 { 699 set_shadow_msr_intercept(vcpu, msr, read, write); 700 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 701 } 702 703 u32 *svm_vcpu_alloc_msrpm(void) 704 { 705 unsigned int order = get_order(MSRPM_SIZE); 706 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 707 u32 *msrpm; 708 709 if (!pages) 710 return NULL; 711 712 msrpm = page_address(pages); 713 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 714 715 return msrpm; 716 } 717 718 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 719 { 720 int i; 721 722 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 723 if (!direct_access_msrs[i].always) 724 continue; 725 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 726 } 727 } 728 729 730 void svm_vcpu_free_msrpm(u32 *msrpm) 731 { 732 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 733 } 734 735 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 736 { 737 struct vcpu_svm *svm = to_svm(vcpu); 738 u32 i; 739 740 /* 741 * Set intercept permissions for all direct access MSRs again. They 742 * will automatically get filtered through the MSR filter, so we are 743 * back in sync after this. 744 */ 745 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 746 u32 msr = direct_access_msrs[i].index; 747 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 748 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 749 750 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 751 } 752 } 753 754 static void add_msr_offset(u32 offset) 755 { 756 int i; 757 758 for (i = 0; i < MSRPM_OFFSETS; ++i) { 759 760 /* Offset already in list? */ 761 if (msrpm_offsets[i] == offset) 762 return; 763 764 /* Slot used by another offset? */ 765 if (msrpm_offsets[i] != MSR_INVALID) 766 continue; 767 768 /* Add offset to list */ 769 msrpm_offsets[i] = offset; 770 771 return; 772 } 773 774 /* 775 * If this BUG triggers the msrpm_offsets table has an overflow. Just 776 * increase MSRPM_OFFSETS in this case. 777 */ 778 BUG(); 779 } 780 781 static void init_msrpm_offsets(void) 782 { 783 int i; 784 785 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 786 787 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 788 u32 offset; 789 790 offset = svm_msrpm_offset(direct_access_msrs[i].index); 791 BUG_ON(offset == MSR_INVALID); 792 793 add_msr_offset(offset); 794 } 795 } 796 797 static void svm_enable_lbrv(struct kvm_vcpu *vcpu) 798 { 799 struct vcpu_svm *svm = to_svm(vcpu); 800 801 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 802 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 803 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 804 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 805 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 806 } 807 808 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 809 { 810 struct vcpu_svm *svm = to_svm(vcpu); 811 812 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 813 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 814 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 815 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 816 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 817 } 818 819 void disable_nmi_singlestep(struct vcpu_svm *svm) 820 { 821 svm->nmi_singlestep = false; 822 823 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 824 /* Clear our flags if they were not set by the guest */ 825 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 826 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 827 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 828 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 829 } 830 } 831 832 static void grow_ple_window(struct kvm_vcpu *vcpu) 833 { 834 struct vcpu_svm *svm = to_svm(vcpu); 835 struct vmcb_control_area *control = &svm->vmcb->control; 836 int old = control->pause_filter_count; 837 838 control->pause_filter_count = __grow_ple_window(old, 839 pause_filter_count, 840 pause_filter_count_grow, 841 pause_filter_count_max); 842 843 if (control->pause_filter_count != old) { 844 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 845 trace_kvm_ple_window_update(vcpu->vcpu_id, 846 control->pause_filter_count, old); 847 } 848 } 849 850 static void shrink_ple_window(struct kvm_vcpu *vcpu) 851 { 852 struct vcpu_svm *svm = to_svm(vcpu); 853 struct vmcb_control_area *control = &svm->vmcb->control; 854 int old = control->pause_filter_count; 855 856 control->pause_filter_count = 857 __shrink_ple_window(old, 858 pause_filter_count, 859 pause_filter_count_shrink, 860 pause_filter_count); 861 if (control->pause_filter_count != old) { 862 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 863 trace_kvm_ple_window_update(vcpu->vcpu_id, 864 control->pause_filter_count, old); 865 } 866 } 867 868 /* 869 * The default MMIO mask is a single bit (excluding the present bit), 870 * which could conflict with the memory encryption bit. Check for 871 * memory encryption support and override the default MMIO mask if 872 * memory encryption is enabled. 873 */ 874 static __init void svm_adjust_mmio_mask(void) 875 { 876 unsigned int enc_bit, mask_bit; 877 u64 msr, mask; 878 879 /* If there is no memory encryption support, use existing mask */ 880 if (cpuid_eax(0x80000000) < 0x8000001f) 881 return; 882 883 /* If memory encryption is not enabled, use existing mask */ 884 rdmsrl(MSR_AMD64_SYSCFG, msr); 885 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 886 return; 887 888 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 889 mask_bit = boot_cpu_data.x86_phys_bits; 890 891 /* Increment the mask bit if it is the same as the encryption bit */ 892 if (enc_bit == mask_bit) 893 mask_bit++; 894 895 /* 896 * If the mask bit location is below 52, then some bits above the 897 * physical addressing limit will always be reserved, so use the 898 * rsvd_bits() function to generate the mask. This mask, along with 899 * the present bit, will be used to generate a page fault with 900 * PFER.RSV = 1. 901 * 902 * If the mask bit location is 52 (or above), then clear the mask. 903 */ 904 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 905 906 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 907 } 908 909 static void svm_hardware_teardown(void) 910 { 911 int cpu; 912 913 sev_hardware_teardown(); 914 915 for_each_possible_cpu(cpu) 916 svm_cpu_uninit(cpu); 917 918 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), 919 get_order(IOPM_SIZE)); 920 iopm_base = 0; 921 } 922 923 static __init void svm_set_cpu_caps(void) 924 { 925 kvm_set_cpu_caps(); 926 927 supported_xss = 0; 928 929 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 930 if (nested) { 931 kvm_cpu_cap_set(X86_FEATURE_SVM); 932 933 if (nrips) 934 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 935 936 if (npt_enabled) 937 kvm_cpu_cap_set(X86_FEATURE_NPT); 938 939 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 940 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 941 } 942 943 /* CPUID 0x80000008 */ 944 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 945 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 946 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 947 948 /* CPUID 0x8000001F (SME/SEV features) */ 949 sev_set_cpu_caps(); 950 } 951 952 static __init int svm_hardware_setup(void) 953 { 954 int cpu; 955 struct page *iopm_pages; 956 void *iopm_va; 957 int r; 958 unsigned int order = get_order(IOPM_SIZE); 959 960 /* 961 * NX is required for shadow paging and for NPT if the NX huge pages 962 * mitigation is enabled. 963 */ 964 if (!boot_cpu_has(X86_FEATURE_NX)) { 965 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 966 return -EOPNOTSUPP; 967 } 968 kvm_enable_efer_bits(EFER_NX); 969 970 iopm_pages = alloc_pages(GFP_KERNEL, order); 971 972 if (!iopm_pages) 973 return -ENOMEM; 974 975 iopm_va = page_address(iopm_pages); 976 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 977 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; 978 979 init_msrpm_offsets(); 980 981 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 982 983 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 984 kvm_enable_efer_bits(EFER_FFXSR); 985 986 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 987 kvm_has_tsc_control = true; 988 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; 989 kvm_tsc_scaling_ratio_frac_bits = 32; 990 } 991 992 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 993 994 /* Check for pause filtering support */ 995 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 996 pause_filter_count = 0; 997 pause_filter_thresh = 0; 998 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 999 pause_filter_thresh = 0; 1000 } 1001 1002 if (nested) { 1003 printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); 1004 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 1005 } 1006 1007 /* 1008 * KVM's MMU doesn't support using 2-level paging for itself, and thus 1009 * NPT isn't supported if the host is using 2-level paging since host 1010 * CR4 is unchanged on VMRUN. 1011 */ 1012 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 1013 npt_enabled = false; 1014 1015 if (!boot_cpu_has(X86_FEATURE_NPT)) 1016 npt_enabled = false; 1017 1018 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G); 1019 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis"); 1020 1021 /* Note, SEV setup consumes npt_enabled. */ 1022 sev_hardware_setup(); 1023 1024 svm_hv_hardware_setup(); 1025 1026 svm_adjust_mmio_mask(); 1027 1028 for_each_possible_cpu(cpu) { 1029 r = svm_cpu_init(cpu); 1030 if (r) 1031 goto err; 1032 } 1033 1034 if (nrips) { 1035 if (!boot_cpu_has(X86_FEATURE_NRIPS)) 1036 nrips = false; 1037 } 1038 1039 enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC); 1040 1041 if (enable_apicv) { 1042 pr_info("AVIC enabled\n"); 1043 1044 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); 1045 } 1046 1047 if (vls) { 1048 if (!npt_enabled || 1049 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 1050 !IS_ENABLED(CONFIG_X86_64)) { 1051 vls = false; 1052 } else { 1053 pr_info("Virtual VMLOAD VMSAVE supported\n"); 1054 } 1055 } 1056 1057 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 1058 svm_gp_erratum_intercept = false; 1059 1060 if (vgif) { 1061 if (!boot_cpu_has(X86_FEATURE_VGIF)) 1062 vgif = false; 1063 else 1064 pr_info("Virtual GIF supported\n"); 1065 } 1066 1067 svm_set_cpu_caps(); 1068 1069 /* 1070 * It seems that on AMD processors PTE's accessed bit is 1071 * being set by the CPU hardware before the NPF vmexit. 1072 * This is not expected behaviour and our tests fail because 1073 * of it. 1074 * A workaround here is to disable support for 1075 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 1076 * In this case userspace can know if there is support using 1077 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 1078 * it 1079 * If future AMD CPU models change the behaviour described above, 1080 * this variable can be changed accordingly 1081 */ 1082 allow_smaller_maxphyaddr = !npt_enabled; 1083 1084 return 0; 1085 1086 err: 1087 svm_hardware_teardown(); 1088 return r; 1089 } 1090 1091 static void init_seg(struct vmcb_seg *seg) 1092 { 1093 seg->selector = 0; 1094 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1095 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1096 seg->limit = 0xffff; 1097 seg->base = 0; 1098 } 1099 1100 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1101 { 1102 seg->selector = 0; 1103 seg->attrib = SVM_SELECTOR_P_MASK | type; 1104 seg->limit = 0xffff; 1105 seg->base = 0; 1106 } 1107 1108 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1109 { 1110 struct vcpu_svm *svm = to_svm(vcpu); 1111 1112 return svm->nested.ctl.tsc_offset; 1113 } 1114 1115 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1116 { 1117 return kvm_default_tsc_scaling_ratio; 1118 } 1119 1120 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1121 { 1122 struct vcpu_svm *svm = to_svm(vcpu); 1123 1124 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1125 svm->vmcb->control.tsc_offset = offset; 1126 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1127 } 1128 1129 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1130 { 1131 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 1132 } 1133 1134 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1135 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1136 struct vcpu_svm *svm) 1137 { 1138 /* 1139 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1140 * roots, or if INVPCID is disabled in the guest to inject #UD. 1141 */ 1142 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1143 if (!npt_enabled || 1144 !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1145 svm_set_intercept(svm, INTERCEPT_INVPCID); 1146 else 1147 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1148 } 1149 1150 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1151 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1152 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1153 else 1154 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1155 } 1156 } 1157 1158 static void init_vmcb(struct kvm_vcpu *vcpu) 1159 { 1160 struct vcpu_svm *svm = to_svm(vcpu); 1161 struct vmcb_control_area *control = &svm->vmcb->control; 1162 struct vmcb_save_area *save = &svm->vmcb->save; 1163 1164 vcpu->arch.hflags = 0; 1165 1166 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1167 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1168 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1169 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1170 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1171 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1172 if (!kvm_vcpu_apicv_active(vcpu)) 1173 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1174 1175 set_dr_intercepts(svm); 1176 1177 set_exception_intercept(svm, PF_VECTOR); 1178 set_exception_intercept(svm, UD_VECTOR); 1179 set_exception_intercept(svm, MC_VECTOR); 1180 set_exception_intercept(svm, AC_VECTOR); 1181 set_exception_intercept(svm, DB_VECTOR); 1182 /* 1183 * Guest access to VMware backdoor ports could legitimately 1184 * trigger #GP because of TSS I/O permission bitmap. 1185 * We intercept those #GP and allow access to them anyway 1186 * as VMware does. 1187 */ 1188 if (enable_vmware_backdoor) 1189 set_exception_intercept(svm, GP_VECTOR); 1190 1191 svm_set_intercept(svm, INTERCEPT_INTR); 1192 svm_set_intercept(svm, INTERCEPT_NMI); 1193 1194 if (intercept_smi) 1195 svm_set_intercept(svm, INTERCEPT_SMI); 1196 1197 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1198 svm_set_intercept(svm, INTERCEPT_RDPMC); 1199 svm_set_intercept(svm, INTERCEPT_CPUID); 1200 svm_set_intercept(svm, INTERCEPT_INVD); 1201 svm_set_intercept(svm, INTERCEPT_INVLPG); 1202 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1203 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1204 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1205 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1206 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1207 svm_set_intercept(svm, INTERCEPT_VMRUN); 1208 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1209 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1210 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1211 svm_set_intercept(svm, INTERCEPT_STGI); 1212 svm_set_intercept(svm, INTERCEPT_CLGI); 1213 svm_set_intercept(svm, INTERCEPT_SKINIT); 1214 svm_set_intercept(svm, INTERCEPT_WBINVD); 1215 svm_set_intercept(svm, INTERCEPT_XSETBV); 1216 svm_set_intercept(svm, INTERCEPT_RDPRU); 1217 svm_set_intercept(svm, INTERCEPT_RSM); 1218 1219 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1220 svm_set_intercept(svm, INTERCEPT_MONITOR); 1221 svm_set_intercept(svm, INTERCEPT_MWAIT); 1222 } 1223 1224 if (!kvm_hlt_in_guest(vcpu->kvm)) 1225 svm_set_intercept(svm, INTERCEPT_HLT); 1226 1227 control->iopm_base_pa = __sme_set(iopm_base); 1228 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1229 control->int_ctl = V_INTR_MASKING_MASK; 1230 1231 init_seg(&save->es); 1232 init_seg(&save->ss); 1233 init_seg(&save->ds); 1234 init_seg(&save->fs); 1235 init_seg(&save->gs); 1236 1237 save->cs.selector = 0xf000; 1238 save->cs.base = 0xffff0000; 1239 /* Executable/Readable Code Segment */ 1240 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1241 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1242 save->cs.limit = 0xffff; 1243 1244 save->gdtr.limit = 0xffff; 1245 save->idtr.limit = 0xffff; 1246 1247 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1248 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1249 1250 svm_set_cr4(vcpu, 0); 1251 svm_set_efer(vcpu, 0); 1252 save->dr6 = 0xffff0ff0; 1253 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 1254 save->rip = 0x0000fff0; 1255 vcpu->arch.regs[VCPU_REGS_RIP] = save->rip; 1256 1257 /* 1258 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. 1259 * It also updates the guest-visible cr0 value. 1260 */ 1261 svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); 1262 kvm_mmu_reset_context(vcpu); 1263 1264 save->cr4 = X86_CR4_PAE; 1265 /* rdx = ?? */ 1266 1267 if (npt_enabled) { 1268 /* Setup VMCB for Nested Paging */ 1269 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1270 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1271 clr_exception_intercept(svm, PF_VECTOR); 1272 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1273 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1274 save->g_pat = vcpu->arch.pat; 1275 save->cr3 = 0; 1276 save->cr4 = 0; 1277 } 1278 svm->current_vmcb->asid_generation = 0; 1279 svm->asid = 0; 1280 1281 svm->nested.vmcb12_gpa = INVALID_GPA; 1282 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1283 vcpu->arch.hflags = 0; 1284 1285 if (!kvm_pause_in_guest(vcpu->kvm)) { 1286 control->pause_filter_count = pause_filter_count; 1287 if (pause_filter_thresh) 1288 control->pause_filter_thresh = pause_filter_thresh; 1289 svm_set_intercept(svm, INTERCEPT_PAUSE); 1290 } else { 1291 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1292 } 1293 1294 svm_recalc_instruction_intercepts(vcpu, svm); 1295 1296 /* 1297 * If the host supports V_SPEC_CTRL then disable the interception 1298 * of MSR_IA32_SPEC_CTRL. 1299 */ 1300 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1301 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1302 1303 if (kvm_vcpu_apicv_active(vcpu)) 1304 avic_init_vmcb(svm); 1305 1306 if (vgif) { 1307 svm_clr_intercept(svm, INTERCEPT_STGI); 1308 svm_clr_intercept(svm, INTERCEPT_CLGI); 1309 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1310 } 1311 1312 if (sev_guest(vcpu->kvm)) { 1313 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 1314 clr_exception_intercept(svm, UD_VECTOR); 1315 1316 if (sev_es_guest(vcpu->kvm)) { 1317 /* Perform SEV-ES specific VMCB updates */ 1318 sev_es_init_vmcb(svm); 1319 } 1320 } 1321 1322 svm_hv_init_vmcb(svm->vmcb); 1323 1324 vmcb_mark_all_dirty(svm->vmcb); 1325 1326 enable_gif(svm); 1327 1328 } 1329 1330 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1331 { 1332 struct vcpu_svm *svm = to_svm(vcpu); 1333 u32 dummy; 1334 u32 eax = 1; 1335 1336 svm->spec_ctrl = 0; 1337 svm->virt_spec_ctrl = 0; 1338 1339 if (!init_event) { 1340 vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE | 1341 MSR_IA32_APICBASE_ENABLE; 1342 if (kvm_vcpu_is_reset_bsp(vcpu)) 1343 vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP; 1344 } 1345 init_vmcb(vcpu); 1346 1347 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false); 1348 kvm_rdx_write(vcpu, eax); 1349 1350 if (kvm_vcpu_apicv_active(vcpu) && !init_event) 1351 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); 1352 } 1353 1354 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1355 { 1356 svm->current_vmcb = target_vmcb; 1357 svm->vmcb = target_vmcb->ptr; 1358 } 1359 1360 static int svm_create_vcpu(struct kvm_vcpu *vcpu) 1361 { 1362 struct vcpu_svm *svm; 1363 struct page *vmcb01_page; 1364 struct page *vmsa_page = NULL; 1365 int err; 1366 1367 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1368 svm = to_svm(vcpu); 1369 1370 err = -ENOMEM; 1371 vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1372 if (!vmcb01_page) 1373 goto out; 1374 1375 if (sev_es_guest(vcpu->kvm)) { 1376 /* 1377 * SEV-ES guests require a separate VMSA page used to contain 1378 * the encrypted register state of the guest. 1379 */ 1380 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1381 if (!vmsa_page) 1382 goto error_free_vmcb_page; 1383 1384 /* 1385 * SEV-ES guests maintain an encrypted version of their FPU 1386 * state which is restored and saved on VMRUN and VMEXIT. 1387 * Free the fpu structure to prevent KVM from attempting to 1388 * access the FPU state. 1389 */ 1390 kvm_free_guest_fpu(vcpu); 1391 } 1392 1393 err = avic_init_vcpu(svm); 1394 if (err) 1395 goto error_free_vmsa_page; 1396 1397 /* We initialize this flag to true to make sure that the is_running 1398 * bit would be set the first time the vcpu is loaded. 1399 */ 1400 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm)) 1401 svm->avic_is_running = true; 1402 1403 svm->msrpm = svm_vcpu_alloc_msrpm(); 1404 if (!svm->msrpm) { 1405 err = -ENOMEM; 1406 goto error_free_vmsa_page; 1407 } 1408 1409 svm->vmcb01.ptr = page_address(vmcb01_page); 1410 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1411 1412 if (vmsa_page) 1413 svm->vmsa = page_address(vmsa_page); 1414 1415 svm->guest_state_loaded = false; 1416 1417 svm_switch_vmcb(svm, &svm->vmcb01); 1418 init_vmcb(vcpu); 1419 1420 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1421 1422 svm_init_osvw(vcpu); 1423 vcpu->arch.microcode_version = 0x01000065; 1424 1425 if (sev_es_guest(vcpu->kvm)) 1426 /* Perform SEV-ES specific VMCB creation updates */ 1427 sev_es_create_vcpu(svm); 1428 1429 return 0; 1430 1431 error_free_vmsa_page: 1432 if (vmsa_page) 1433 __free_page(vmsa_page); 1434 error_free_vmcb_page: 1435 __free_page(vmcb01_page); 1436 out: 1437 return err; 1438 } 1439 1440 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1441 { 1442 int i; 1443 1444 for_each_online_cpu(i) 1445 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); 1446 } 1447 1448 static void svm_free_vcpu(struct kvm_vcpu *vcpu) 1449 { 1450 struct vcpu_svm *svm = to_svm(vcpu); 1451 1452 /* 1453 * The vmcb page can be recycled, causing a false negative in 1454 * svm_vcpu_load(). So, ensure that no logical CPU has this 1455 * vmcb page recorded as its current vmcb. 1456 */ 1457 svm_clear_current_vmcb(svm->vmcb); 1458 1459 svm_free_nested(svm); 1460 1461 sev_free_vcpu(vcpu); 1462 1463 __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT)); 1464 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1465 } 1466 1467 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) 1468 { 1469 struct vcpu_svm *svm = to_svm(vcpu); 1470 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 1471 1472 if (sev_es_guest(vcpu->kvm)) 1473 sev_es_unmap_ghcb(svm); 1474 1475 if (svm->guest_state_loaded) 1476 return; 1477 1478 /* 1479 * Save additional host state that will be restored on VMEXIT (sev-es) 1480 * or subsequent vmload of host save area. 1481 */ 1482 if (sev_es_guest(vcpu->kvm)) { 1483 sev_es_prepare_guest_switch(svm, vcpu->cpu); 1484 } else { 1485 vmsave(__sme_page_pa(sd->save_area)); 1486 } 1487 1488 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 1489 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; 1490 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { 1491 __this_cpu_write(current_tsc_ratio, tsc_ratio); 1492 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); 1493 } 1494 } 1495 1496 if (likely(tsc_aux_uret_slot >= 0)) 1497 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1498 1499 svm->guest_state_loaded = true; 1500 } 1501 1502 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1503 { 1504 to_svm(vcpu)->guest_state_loaded = false; 1505 } 1506 1507 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1508 { 1509 struct vcpu_svm *svm = to_svm(vcpu); 1510 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1511 1512 if (sd->current_vmcb != svm->vmcb) { 1513 sd->current_vmcb = svm->vmcb; 1514 indirect_branch_prediction_barrier(); 1515 } 1516 avic_vcpu_load(vcpu, cpu); 1517 } 1518 1519 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1520 { 1521 avic_vcpu_put(vcpu); 1522 svm_prepare_host_switch(vcpu); 1523 1524 ++vcpu->stat.host_state_reload; 1525 } 1526 1527 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1528 { 1529 struct vcpu_svm *svm = to_svm(vcpu); 1530 unsigned long rflags = svm->vmcb->save.rflags; 1531 1532 if (svm->nmi_singlestep) { 1533 /* Hide our flags if they were not set by the guest */ 1534 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1535 rflags &= ~X86_EFLAGS_TF; 1536 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1537 rflags &= ~X86_EFLAGS_RF; 1538 } 1539 return rflags; 1540 } 1541 1542 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1543 { 1544 if (to_svm(vcpu)->nmi_singlestep) 1545 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1546 1547 /* 1548 * Any change of EFLAGS.VM is accompanied by a reload of SS 1549 * (caused by either a task switch or an inter-privilege IRET), 1550 * so we do not need to update the CPL here. 1551 */ 1552 to_svm(vcpu)->vmcb->save.rflags = rflags; 1553 } 1554 1555 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1556 { 1557 switch (reg) { 1558 case VCPU_EXREG_PDPTR: 1559 BUG_ON(!npt_enabled); 1560 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); 1561 break; 1562 default: 1563 WARN_ON_ONCE(1); 1564 } 1565 } 1566 1567 static void svm_set_vintr(struct vcpu_svm *svm) 1568 { 1569 struct vmcb_control_area *control; 1570 1571 /* 1572 * The following fields are ignored when AVIC is enabled 1573 */ 1574 WARN_ON(kvm_apicv_activated(svm->vcpu.kvm)); 1575 1576 svm_set_intercept(svm, INTERCEPT_VINTR); 1577 1578 /* 1579 * This is just a dummy VINTR to actually cause a vmexit to happen. 1580 * Actual injection of virtual interrupts happens through EVENTINJ. 1581 */ 1582 control = &svm->vmcb->control; 1583 control->int_vector = 0x0; 1584 control->int_ctl &= ~V_INTR_PRIO_MASK; 1585 control->int_ctl |= V_IRQ_MASK | 1586 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1587 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1588 } 1589 1590 static void svm_clear_vintr(struct vcpu_svm *svm) 1591 { 1592 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK; 1593 svm_clr_intercept(svm, INTERCEPT_VINTR); 1594 1595 /* Drop int_ctl fields related to VINTR injection. */ 1596 svm->vmcb->control.int_ctl &= mask; 1597 if (is_guest_mode(&svm->vcpu)) { 1598 svm->vmcb01.ptr->control.int_ctl &= mask; 1599 1600 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1601 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1602 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask; 1603 } 1604 1605 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1606 } 1607 1608 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1609 { 1610 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1611 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1612 1613 switch (seg) { 1614 case VCPU_SREG_CS: return &save->cs; 1615 case VCPU_SREG_DS: return &save->ds; 1616 case VCPU_SREG_ES: return &save->es; 1617 case VCPU_SREG_FS: return &save01->fs; 1618 case VCPU_SREG_GS: return &save01->gs; 1619 case VCPU_SREG_SS: return &save->ss; 1620 case VCPU_SREG_TR: return &save01->tr; 1621 case VCPU_SREG_LDTR: return &save01->ldtr; 1622 } 1623 BUG(); 1624 return NULL; 1625 } 1626 1627 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1628 { 1629 struct vmcb_seg *s = svm_seg(vcpu, seg); 1630 1631 return s->base; 1632 } 1633 1634 static void svm_get_segment(struct kvm_vcpu *vcpu, 1635 struct kvm_segment *var, int seg) 1636 { 1637 struct vmcb_seg *s = svm_seg(vcpu, seg); 1638 1639 var->base = s->base; 1640 var->limit = s->limit; 1641 var->selector = s->selector; 1642 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1643 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1644 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1645 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1646 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1647 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1648 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1649 1650 /* 1651 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1652 * However, the SVM spec states that the G bit is not observed by the 1653 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1654 * So let's synthesize a legal G bit for all segments, this helps 1655 * running KVM nested. It also helps cross-vendor migration, because 1656 * Intel's vmentry has a check on the 'G' bit. 1657 */ 1658 var->g = s->limit > 0xfffff; 1659 1660 /* 1661 * AMD's VMCB does not have an explicit unusable field, so emulate it 1662 * for cross vendor migration purposes by "not present" 1663 */ 1664 var->unusable = !var->present; 1665 1666 switch (seg) { 1667 case VCPU_SREG_TR: 1668 /* 1669 * Work around a bug where the busy flag in the tr selector 1670 * isn't exposed 1671 */ 1672 var->type |= 0x2; 1673 break; 1674 case VCPU_SREG_DS: 1675 case VCPU_SREG_ES: 1676 case VCPU_SREG_FS: 1677 case VCPU_SREG_GS: 1678 /* 1679 * The accessed bit must always be set in the segment 1680 * descriptor cache, although it can be cleared in the 1681 * descriptor, the cached bit always remains at 1. Since 1682 * Intel has a check on this, set it here to support 1683 * cross-vendor migration. 1684 */ 1685 if (!var->unusable) 1686 var->type |= 0x1; 1687 break; 1688 case VCPU_SREG_SS: 1689 /* 1690 * On AMD CPUs sometimes the DB bit in the segment 1691 * descriptor is left as 1, although the whole segment has 1692 * been made unusable. Clear it here to pass an Intel VMX 1693 * entry check when cross vendor migrating. 1694 */ 1695 if (var->unusable) 1696 var->db = 0; 1697 /* This is symmetric with svm_set_segment() */ 1698 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1699 break; 1700 } 1701 } 1702 1703 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1704 { 1705 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1706 1707 return save->cpl; 1708 } 1709 1710 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1711 { 1712 struct vcpu_svm *svm = to_svm(vcpu); 1713 1714 dt->size = svm->vmcb->save.idtr.limit; 1715 dt->address = svm->vmcb->save.idtr.base; 1716 } 1717 1718 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1719 { 1720 struct vcpu_svm *svm = to_svm(vcpu); 1721 1722 svm->vmcb->save.idtr.limit = dt->size; 1723 svm->vmcb->save.idtr.base = dt->address ; 1724 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1725 } 1726 1727 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1728 { 1729 struct vcpu_svm *svm = to_svm(vcpu); 1730 1731 dt->size = svm->vmcb->save.gdtr.limit; 1732 dt->address = svm->vmcb->save.gdtr.base; 1733 } 1734 1735 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1736 { 1737 struct vcpu_svm *svm = to_svm(vcpu); 1738 1739 svm->vmcb->save.gdtr.limit = dt->size; 1740 svm->vmcb->save.gdtr.base = dt->address ; 1741 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1742 } 1743 1744 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1745 { 1746 struct vcpu_svm *svm = to_svm(vcpu); 1747 u64 hcr0 = cr0; 1748 1749 #ifdef CONFIG_X86_64 1750 if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) { 1751 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1752 vcpu->arch.efer |= EFER_LMA; 1753 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1754 } 1755 1756 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1757 vcpu->arch.efer &= ~EFER_LMA; 1758 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1759 } 1760 } 1761 #endif 1762 vcpu->arch.cr0 = cr0; 1763 1764 if (!npt_enabled) 1765 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1766 1767 /* 1768 * re-enable caching here because the QEMU bios 1769 * does not do it - this results in some delay at 1770 * reboot 1771 */ 1772 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1773 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1774 1775 svm->vmcb->save.cr0 = hcr0; 1776 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1777 1778 /* 1779 * SEV-ES guests must always keep the CR intercepts cleared. CR 1780 * tracking is done using the CR write traps. 1781 */ 1782 if (sev_es_guest(vcpu->kvm)) 1783 return; 1784 1785 if (hcr0 == cr0) { 1786 /* Selective CR0 write remains on. */ 1787 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1788 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1789 } else { 1790 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1791 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1792 } 1793 } 1794 1795 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1796 { 1797 return true; 1798 } 1799 1800 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1801 { 1802 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1803 unsigned long old_cr4 = vcpu->arch.cr4; 1804 1805 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) 1806 svm_flush_tlb(vcpu); 1807 1808 vcpu->arch.cr4 = cr4; 1809 if (!npt_enabled) 1810 cr4 |= X86_CR4_PAE; 1811 cr4 |= host_cr4_mce; 1812 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1813 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1814 1815 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1816 kvm_update_cpuid_runtime(vcpu); 1817 } 1818 1819 static void svm_set_segment(struct kvm_vcpu *vcpu, 1820 struct kvm_segment *var, int seg) 1821 { 1822 struct vcpu_svm *svm = to_svm(vcpu); 1823 struct vmcb_seg *s = svm_seg(vcpu, seg); 1824 1825 s->base = var->base; 1826 s->limit = var->limit; 1827 s->selector = var->selector; 1828 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1829 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1830 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1831 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1832 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1833 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1834 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1835 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1836 1837 /* 1838 * This is always accurate, except if SYSRET returned to a segment 1839 * with SS.DPL != 3. Intel does not have this quirk, and always 1840 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1841 * would entail passing the CPL to userspace and back. 1842 */ 1843 if (seg == VCPU_SREG_SS) 1844 /* This is symmetric with svm_get_segment() */ 1845 svm->vmcb->save.cpl = (var->dpl & 3); 1846 1847 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1848 } 1849 1850 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1851 { 1852 struct vcpu_svm *svm = to_svm(vcpu); 1853 1854 clr_exception_intercept(svm, BP_VECTOR); 1855 1856 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1857 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1858 set_exception_intercept(svm, BP_VECTOR); 1859 } 1860 } 1861 1862 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1863 { 1864 if (sd->next_asid > sd->max_asid) { 1865 ++sd->asid_generation; 1866 sd->next_asid = sd->min_asid; 1867 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1868 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1869 } 1870 1871 svm->current_vmcb->asid_generation = sd->asid_generation; 1872 svm->asid = sd->next_asid++; 1873 } 1874 1875 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value) 1876 { 1877 struct vmcb *vmcb = svm->vmcb; 1878 1879 if (svm->vcpu.arch.guest_state_protected) 1880 return; 1881 1882 if (unlikely(value != vmcb->save.dr6)) { 1883 vmcb->save.dr6 = value; 1884 vmcb_mark_dirty(vmcb, VMCB_DR); 1885 } 1886 } 1887 1888 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1889 { 1890 struct vcpu_svm *svm = to_svm(vcpu); 1891 1892 if (vcpu->arch.guest_state_protected) 1893 return; 1894 1895 get_debugreg(vcpu->arch.db[0], 0); 1896 get_debugreg(vcpu->arch.db[1], 1); 1897 get_debugreg(vcpu->arch.db[2], 2); 1898 get_debugreg(vcpu->arch.db[3], 3); 1899 /* 1900 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1901 * because db_interception might need it. We can do it before vmentry. 1902 */ 1903 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1904 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1905 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1906 set_dr_intercepts(svm); 1907 } 1908 1909 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1910 { 1911 struct vcpu_svm *svm = to_svm(vcpu); 1912 1913 if (vcpu->arch.guest_state_protected) 1914 return; 1915 1916 svm->vmcb->save.dr7 = value; 1917 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1918 } 1919 1920 static int pf_interception(struct kvm_vcpu *vcpu) 1921 { 1922 struct vcpu_svm *svm = to_svm(vcpu); 1923 1924 u64 fault_address = svm->vmcb->control.exit_info_2; 1925 u64 error_code = svm->vmcb->control.exit_info_1; 1926 1927 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1928 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1929 svm->vmcb->control.insn_bytes : NULL, 1930 svm->vmcb->control.insn_len); 1931 } 1932 1933 static int npf_interception(struct kvm_vcpu *vcpu) 1934 { 1935 struct vcpu_svm *svm = to_svm(vcpu); 1936 1937 u64 fault_address = svm->vmcb->control.exit_info_2; 1938 u64 error_code = svm->vmcb->control.exit_info_1; 1939 1940 trace_kvm_page_fault(fault_address, error_code); 1941 return kvm_mmu_page_fault(vcpu, fault_address, error_code, 1942 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1943 svm->vmcb->control.insn_bytes : NULL, 1944 svm->vmcb->control.insn_len); 1945 } 1946 1947 static int db_interception(struct kvm_vcpu *vcpu) 1948 { 1949 struct kvm_run *kvm_run = vcpu->run; 1950 struct vcpu_svm *svm = to_svm(vcpu); 1951 1952 if (!(vcpu->guest_debug & 1953 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1954 !svm->nmi_singlestep) { 1955 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1956 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1957 return 1; 1958 } 1959 1960 if (svm->nmi_singlestep) { 1961 disable_nmi_singlestep(svm); 1962 /* Make sure we check for pending NMIs upon entry */ 1963 kvm_make_request(KVM_REQ_EVENT, vcpu); 1964 } 1965 1966 if (vcpu->guest_debug & 1967 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1968 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1969 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1970 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1971 kvm_run->debug.arch.pc = 1972 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1973 kvm_run->debug.arch.exception = DB_VECTOR; 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static int bp_interception(struct kvm_vcpu *vcpu) 1981 { 1982 struct vcpu_svm *svm = to_svm(vcpu); 1983 struct kvm_run *kvm_run = vcpu->run; 1984 1985 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1986 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1987 kvm_run->debug.arch.exception = BP_VECTOR; 1988 return 0; 1989 } 1990 1991 static int ud_interception(struct kvm_vcpu *vcpu) 1992 { 1993 return handle_ud(vcpu); 1994 } 1995 1996 static int ac_interception(struct kvm_vcpu *vcpu) 1997 { 1998 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1999 return 1; 2000 } 2001 2002 static bool is_erratum_383(void) 2003 { 2004 int err, i; 2005 u64 value; 2006 2007 if (!erratum_383_found) 2008 return false; 2009 2010 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2011 if (err) 2012 return false; 2013 2014 /* Bit 62 may or may not be set for this mce */ 2015 value &= ~(1ULL << 62); 2016 2017 if (value != 0xb600000000010015ULL) 2018 return false; 2019 2020 /* Clear MCi_STATUS registers */ 2021 for (i = 0; i < 6; ++i) 2022 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2023 2024 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2025 if (!err) { 2026 u32 low, high; 2027 2028 value &= ~(1ULL << 2); 2029 low = lower_32_bits(value); 2030 high = upper_32_bits(value); 2031 2032 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2033 } 2034 2035 /* Flush tlb to evict multi-match entries */ 2036 __flush_tlb_all(); 2037 2038 return true; 2039 } 2040 2041 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2042 { 2043 if (is_erratum_383()) { 2044 /* 2045 * Erratum 383 triggered. Guest state is corrupt so kill the 2046 * guest. 2047 */ 2048 pr_err("KVM: Guest triggered AMD Erratum 383\n"); 2049 2050 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2051 2052 return; 2053 } 2054 2055 /* 2056 * On an #MC intercept the MCE handler is not called automatically in 2057 * the host. So do it by hand here. 2058 */ 2059 kvm_machine_check(); 2060 } 2061 2062 static int mc_interception(struct kvm_vcpu *vcpu) 2063 { 2064 return 1; 2065 } 2066 2067 static int shutdown_interception(struct kvm_vcpu *vcpu) 2068 { 2069 struct kvm_run *kvm_run = vcpu->run; 2070 struct vcpu_svm *svm = to_svm(vcpu); 2071 2072 /* 2073 * The VM save area has already been encrypted so it 2074 * cannot be reinitialized - just terminate. 2075 */ 2076 if (sev_es_guest(vcpu->kvm)) 2077 return -EINVAL; 2078 2079 /* 2080 * VMCB is undefined after a SHUTDOWN intercept 2081 * so reinitialize it. 2082 */ 2083 clear_page(svm->vmcb); 2084 init_vmcb(vcpu); 2085 2086 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2087 return 0; 2088 } 2089 2090 static int io_interception(struct kvm_vcpu *vcpu) 2091 { 2092 struct vcpu_svm *svm = to_svm(vcpu); 2093 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2094 int size, in, string; 2095 unsigned port; 2096 2097 ++vcpu->stat.io_exits; 2098 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2099 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2100 port = io_info >> 16; 2101 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2102 2103 if (string) { 2104 if (sev_es_guest(vcpu->kvm)) 2105 return sev_es_string_io(svm, size, port, in); 2106 else 2107 return kvm_emulate_instruction(vcpu, 0); 2108 } 2109 2110 svm->next_rip = svm->vmcb->control.exit_info_2; 2111 2112 return kvm_fast_pio(vcpu, size, port, in); 2113 } 2114 2115 static int nmi_interception(struct kvm_vcpu *vcpu) 2116 { 2117 return 1; 2118 } 2119 2120 static int smi_interception(struct kvm_vcpu *vcpu) 2121 { 2122 return 1; 2123 } 2124 2125 static int intr_interception(struct kvm_vcpu *vcpu) 2126 { 2127 ++vcpu->stat.irq_exits; 2128 return 1; 2129 } 2130 2131 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2132 { 2133 struct vcpu_svm *svm = to_svm(vcpu); 2134 struct vmcb *vmcb12; 2135 struct kvm_host_map map; 2136 int ret; 2137 2138 if (nested_svm_check_permissions(vcpu)) 2139 return 1; 2140 2141 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2142 if (ret) { 2143 if (ret == -EINVAL) 2144 kvm_inject_gp(vcpu, 0); 2145 return 1; 2146 } 2147 2148 vmcb12 = map.hva; 2149 2150 ret = kvm_skip_emulated_instruction(vcpu); 2151 2152 if (vmload) { 2153 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2154 svm->sysenter_eip_hi = 0; 2155 svm->sysenter_esp_hi = 0; 2156 } else { 2157 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2158 } 2159 2160 kvm_vcpu_unmap(vcpu, &map, true); 2161 2162 return ret; 2163 } 2164 2165 static int vmload_interception(struct kvm_vcpu *vcpu) 2166 { 2167 return vmload_vmsave_interception(vcpu, true); 2168 } 2169 2170 static int vmsave_interception(struct kvm_vcpu *vcpu) 2171 { 2172 return vmload_vmsave_interception(vcpu, false); 2173 } 2174 2175 static int vmrun_interception(struct kvm_vcpu *vcpu) 2176 { 2177 if (nested_svm_check_permissions(vcpu)) 2178 return 1; 2179 2180 return nested_svm_vmrun(vcpu); 2181 } 2182 2183 enum { 2184 NONE_SVM_INSTR, 2185 SVM_INSTR_VMRUN, 2186 SVM_INSTR_VMLOAD, 2187 SVM_INSTR_VMSAVE, 2188 }; 2189 2190 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2191 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2192 { 2193 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2194 2195 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2196 return NONE_SVM_INSTR; 2197 2198 switch (ctxt->modrm) { 2199 case 0xd8: /* VMRUN */ 2200 return SVM_INSTR_VMRUN; 2201 case 0xda: /* VMLOAD */ 2202 return SVM_INSTR_VMLOAD; 2203 case 0xdb: /* VMSAVE */ 2204 return SVM_INSTR_VMSAVE; 2205 default: 2206 break; 2207 } 2208 2209 return NONE_SVM_INSTR; 2210 } 2211 2212 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2213 { 2214 const int guest_mode_exit_codes[] = { 2215 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2216 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2217 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2218 }; 2219 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2220 [SVM_INSTR_VMRUN] = vmrun_interception, 2221 [SVM_INSTR_VMLOAD] = vmload_interception, 2222 [SVM_INSTR_VMSAVE] = vmsave_interception, 2223 }; 2224 struct vcpu_svm *svm = to_svm(vcpu); 2225 int ret; 2226 2227 if (is_guest_mode(vcpu)) { 2228 /* Returns '1' or -errno on failure, '0' on success. */ 2229 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2230 if (ret) 2231 return ret; 2232 return 1; 2233 } 2234 return svm_instr_handlers[opcode](vcpu); 2235 } 2236 2237 /* 2238 * #GP handling code. Note that #GP can be triggered under the following two 2239 * cases: 2240 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2241 * some AMD CPUs when EAX of these instructions are in the reserved memory 2242 * regions (e.g. SMM memory on host). 2243 * 2) VMware backdoor 2244 */ 2245 static int gp_interception(struct kvm_vcpu *vcpu) 2246 { 2247 struct vcpu_svm *svm = to_svm(vcpu); 2248 u32 error_code = svm->vmcb->control.exit_info_1; 2249 int opcode; 2250 2251 /* Both #GP cases have zero error_code */ 2252 if (error_code) 2253 goto reinject; 2254 2255 /* Decode the instruction for usage later */ 2256 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2257 goto reinject; 2258 2259 opcode = svm_instr_opcode(vcpu); 2260 2261 if (opcode == NONE_SVM_INSTR) { 2262 if (!enable_vmware_backdoor) 2263 goto reinject; 2264 2265 /* 2266 * VMware backdoor emulation on #GP interception only handles 2267 * IN{S}, OUT{S}, and RDPMC. 2268 */ 2269 if (!is_guest_mode(vcpu)) 2270 return kvm_emulate_instruction(vcpu, 2271 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2272 } else 2273 return emulate_svm_instr(vcpu, opcode); 2274 2275 reinject: 2276 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2277 return 1; 2278 } 2279 2280 void svm_set_gif(struct vcpu_svm *svm, bool value) 2281 { 2282 if (value) { 2283 /* 2284 * If VGIF is enabled, the STGI intercept is only added to 2285 * detect the opening of the SMI/NMI window; remove it now. 2286 * Likewise, clear the VINTR intercept, we will set it 2287 * again while processing KVM_REQ_EVENT if needed. 2288 */ 2289 if (vgif_enabled(svm)) 2290 svm_clr_intercept(svm, INTERCEPT_STGI); 2291 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2292 svm_clear_vintr(svm); 2293 2294 enable_gif(svm); 2295 if (svm->vcpu.arch.smi_pending || 2296 svm->vcpu.arch.nmi_pending || 2297 kvm_cpu_has_injectable_intr(&svm->vcpu)) 2298 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2299 } else { 2300 disable_gif(svm); 2301 2302 /* 2303 * After a CLGI no interrupts should come. But if vGIF is 2304 * in use, we still rely on the VINTR intercept (rather than 2305 * STGI) to detect an open interrupt window. 2306 */ 2307 if (!vgif_enabled(svm)) 2308 svm_clear_vintr(svm); 2309 } 2310 } 2311 2312 static int stgi_interception(struct kvm_vcpu *vcpu) 2313 { 2314 int ret; 2315 2316 if (nested_svm_check_permissions(vcpu)) 2317 return 1; 2318 2319 ret = kvm_skip_emulated_instruction(vcpu); 2320 svm_set_gif(to_svm(vcpu), true); 2321 return ret; 2322 } 2323 2324 static int clgi_interception(struct kvm_vcpu *vcpu) 2325 { 2326 int ret; 2327 2328 if (nested_svm_check_permissions(vcpu)) 2329 return 1; 2330 2331 ret = kvm_skip_emulated_instruction(vcpu); 2332 svm_set_gif(to_svm(vcpu), false); 2333 return ret; 2334 } 2335 2336 static int invlpga_interception(struct kvm_vcpu *vcpu) 2337 { 2338 gva_t gva = kvm_rax_read(vcpu); 2339 u32 asid = kvm_rcx_read(vcpu); 2340 2341 /* FIXME: Handle an address size prefix. */ 2342 if (!is_long_mode(vcpu)) 2343 gva = (u32)gva; 2344 2345 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2346 2347 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2348 kvm_mmu_invlpg(vcpu, gva); 2349 2350 return kvm_skip_emulated_instruction(vcpu); 2351 } 2352 2353 static int skinit_interception(struct kvm_vcpu *vcpu) 2354 { 2355 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2356 2357 kvm_queue_exception(vcpu, UD_VECTOR); 2358 return 1; 2359 } 2360 2361 static int task_switch_interception(struct kvm_vcpu *vcpu) 2362 { 2363 struct vcpu_svm *svm = to_svm(vcpu); 2364 u16 tss_selector; 2365 int reason; 2366 int int_type = svm->vmcb->control.exit_int_info & 2367 SVM_EXITINTINFO_TYPE_MASK; 2368 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2369 uint32_t type = 2370 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2371 uint32_t idt_v = 2372 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2373 bool has_error_code = false; 2374 u32 error_code = 0; 2375 2376 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2377 2378 if (svm->vmcb->control.exit_info_2 & 2379 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2380 reason = TASK_SWITCH_IRET; 2381 else if (svm->vmcb->control.exit_info_2 & 2382 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2383 reason = TASK_SWITCH_JMP; 2384 else if (idt_v) 2385 reason = TASK_SWITCH_GATE; 2386 else 2387 reason = TASK_SWITCH_CALL; 2388 2389 if (reason == TASK_SWITCH_GATE) { 2390 switch (type) { 2391 case SVM_EXITINTINFO_TYPE_NMI: 2392 vcpu->arch.nmi_injected = false; 2393 break; 2394 case SVM_EXITINTINFO_TYPE_EXEPT: 2395 if (svm->vmcb->control.exit_info_2 & 2396 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2397 has_error_code = true; 2398 error_code = 2399 (u32)svm->vmcb->control.exit_info_2; 2400 } 2401 kvm_clear_exception_queue(vcpu); 2402 break; 2403 case SVM_EXITINTINFO_TYPE_INTR: 2404 kvm_clear_interrupt_queue(vcpu); 2405 break; 2406 default: 2407 break; 2408 } 2409 } 2410 2411 if (reason != TASK_SWITCH_GATE || 2412 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2413 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2414 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2415 if (!skip_emulated_instruction(vcpu)) 2416 return 0; 2417 } 2418 2419 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2420 int_vec = -1; 2421 2422 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2423 has_error_code, error_code); 2424 } 2425 2426 static int iret_interception(struct kvm_vcpu *vcpu) 2427 { 2428 struct vcpu_svm *svm = to_svm(vcpu); 2429 2430 ++vcpu->stat.nmi_window_exits; 2431 vcpu->arch.hflags |= HF_IRET_MASK; 2432 if (!sev_es_guest(vcpu->kvm)) { 2433 svm_clr_intercept(svm, INTERCEPT_IRET); 2434 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2435 } 2436 kvm_make_request(KVM_REQ_EVENT, vcpu); 2437 return 1; 2438 } 2439 2440 static int invlpg_interception(struct kvm_vcpu *vcpu) 2441 { 2442 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2443 return kvm_emulate_instruction(vcpu, 0); 2444 2445 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2446 return kvm_skip_emulated_instruction(vcpu); 2447 } 2448 2449 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2450 { 2451 return kvm_emulate_instruction(vcpu, 0); 2452 } 2453 2454 static int rsm_interception(struct kvm_vcpu *vcpu) 2455 { 2456 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2457 } 2458 2459 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2460 unsigned long val) 2461 { 2462 struct vcpu_svm *svm = to_svm(vcpu); 2463 unsigned long cr0 = vcpu->arch.cr0; 2464 bool ret = false; 2465 2466 if (!is_guest_mode(vcpu) || 2467 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2468 return false; 2469 2470 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2471 val &= ~SVM_CR0_SELECTIVE_MASK; 2472 2473 if (cr0 ^ val) { 2474 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2475 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2476 } 2477 2478 return ret; 2479 } 2480 2481 #define CR_VALID (1ULL << 63) 2482 2483 static int cr_interception(struct kvm_vcpu *vcpu) 2484 { 2485 struct vcpu_svm *svm = to_svm(vcpu); 2486 int reg, cr; 2487 unsigned long val; 2488 int err; 2489 2490 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2491 return emulate_on_interception(vcpu); 2492 2493 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2494 return emulate_on_interception(vcpu); 2495 2496 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2497 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2498 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2499 else 2500 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2501 2502 err = 0; 2503 if (cr >= 16) { /* mov to cr */ 2504 cr -= 16; 2505 val = kvm_register_read(vcpu, reg); 2506 trace_kvm_cr_write(cr, val); 2507 switch (cr) { 2508 case 0: 2509 if (!check_selective_cr0_intercepted(vcpu, val)) 2510 err = kvm_set_cr0(vcpu, val); 2511 else 2512 return 1; 2513 2514 break; 2515 case 3: 2516 err = kvm_set_cr3(vcpu, val); 2517 break; 2518 case 4: 2519 err = kvm_set_cr4(vcpu, val); 2520 break; 2521 case 8: 2522 err = kvm_set_cr8(vcpu, val); 2523 break; 2524 default: 2525 WARN(1, "unhandled write to CR%d", cr); 2526 kvm_queue_exception(vcpu, UD_VECTOR); 2527 return 1; 2528 } 2529 } else { /* mov from cr */ 2530 switch (cr) { 2531 case 0: 2532 val = kvm_read_cr0(vcpu); 2533 break; 2534 case 2: 2535 val = vcpu->arch.cr2; 2536 break; 2537 case 3: 2538 val = kvm_read_cr3(vcpu); 2539 break; 2540 case 4: 2541 val = kvm_read_cr4(vcpu); 2542 break; 2543 case 8: 2544 val = kvm_get_cr8(vcpu); 2545 break; 2546 default: 2547 WARN(1, "unhandled read from CR%d", cr); 2548 kvm_queue_exception(vcpu, UD_VECTOR); 2549 return 1; 2550 } 2551 kvm_register_write(vcpu, reg, val); 2552 trace_kvm_cr_read(cr, val); 2553 } 2554 return kvm_complete_insn_gp(vcpu, err); 2555 } 2556 2557 static int cr_trap(struct kvm_vcpu *vcpu) 2558 { 2559 struct vcpu_svm *svm = to_svm(vcpu); 2560 unsigned long old_value, new_value; 2561 unsigned int cr; 2562 int ret = 0; 2563 2564 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2565 2566 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2567 switch (cr) { 2568 case 0: 2569 old_value = kvm_read_cr0(vcpu); 2570 svm_set_cr0(vcpu, new_value); 2571 2572 kvm_post_set_cr0(vcpu, old_value, new_value); 2573 break; 2574 case 4: 2575 old_value = kvm_read_cr4(vcpu); 2576 svm_set_cr4(vcpu, new_value); 2577 2578 kvm_post_set_cr4(vcpu, old_value, new_value); 2579 break; 2580 case 8: 2581 ret = kvm_set_cr8(vcpu, new_value); 2582 break; 2583 default: 2584 WARN(1, "unhandled CR%d write trap", cr); 2585 kvm_queue_exception(vcpu, UD_VECTOR); 2586 return 1; 2587 } 2588 2589 return kvm_complete_insn_gp(vcpu, ret); 2590 } 2591 2592 static int dr_interception(struct kvm_vcpu *vcpu) 2593 { 2594 struct vcpu_svm *svm = to_svm(vcpu); 2595 int reg, dr; 2596 unsigned long val; 2597 int err = 0; 2598 2599 if (vcpu->guest_debug == 0) { 2600 /* 2601 * No more DR vmexits; force a reload of the debug registers 2602 * and reenter on this instruction. The next vmexit will 2603 * retrieve the full state of the debug registers. 2604 */ 2605 clr_dr_intercepts(svm); 2606 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2607 return 1; 2608 } 2609 2610 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2611 return emulate_on_interception(vcpu); 2612 2613 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2614 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2615 if (dr >= 16) { /* mov to DRn */ 2616 dr -= 16; 2617 val = kvm_register_read(vcpu, reg); 2618 err = kvm_set_dr(vcpu, dr, val); 2619 } else { 2620 kvm_get_dr(vcpu, dr, &val); 2621 kvm_register_write(vcpu, reg, val); 2622 } 2623 2624 return kvm_complete_insn_gp(vcpu, err); 2625 } 2626 2627 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2628 { 2629 int r; 2630 2631 u8 cr8_prev = kvm_get_cr8(vcpu); 2632 /* instruction emulation calls kvm_set_cr8() */ 2633 r = cr_interception(vcpu); 2634 if (lapic_in_kernel(vcpu)) 2635 return r; 2636 if (cr8_prev <= kvm_get_cr8(vcpu)) 2637 return r; 2638 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2639 return 0; 2640 } 2641 2642 static int efer_trap(struct kvm_vcpu *vcpu) 2643 { 2644 struct msr_data msr_info; 2645 int ret; 2646 2647 /* 2648 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2649 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2650 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2651 * the guest doesn't have X86_FEATURE_SVM. 2652 */ 2653 msr_info.host_initiated = false; 2654 msr_info.index = MSR_EFER; 2655 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2656 ret = kvm_set_msr_common(vcpu, &msr_info); 2657 2658 return kvm_complete_insn_gp(vcpu, ret); 2659 } 2660 2661 static int svm_get_msr_feature(struct kvm_msr_entry *msr) 2662 { 2663 msr->data = 0; 2664 2665 switch (msr->index) { 2666 case MSR_F10H_DECFG: 2667 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) 2668 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; 2669 break; 2670 case MSR_IA32_PERF_CAPABILITIES: 2671 return 0; 2672 default: 2673 return KVM_MSR_RET_INVALID; 2674 } 2675 2676 return 0; 2677 } 2678 2679 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2680 { 2681 struct vcpu_svm *svm = to_svm(vcpu); 2682 2683 switch (msr_info->index) { 2684 case MSR_STAR: 2685 msr_info->data = svm->vmcb01.ptr->save.star; 2686 break; 2687 #ifdef CONFIG_X86_64 2688 case MSR_LSTAR: 2689 msr_info->data = svm->vmcb01.ptr->save.lstar; 2690 break; 2691 case MSR_CSTAR: 2692 msr_info->data = svm->vmcb01.ptr->save.cstar; 2693 break; 2694 case MSR_KERNEL_GS_BASE: 2695 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2696 break; 2697 case MSR_SYSCALL_MASK: 2698 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2699 break; 2700 #endif 2701 case MSR_IA32_SYSENTER_CS: 2702 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2703 break; 2704 case MSR_IA32_SYSENTER_EIP: 2705 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2706 if (guest_cpuid_is_intel(vcpu)) 2707 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2708 break; 2709 case MSR_IA32_SYSENTER_ESP: 2710 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2711 if (guest_cpuid_is_intel(vcpu)) 2712 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2713 break; 2714 case MSR_TSC_AUX: 2715 msr_info->data = svm->tsc_aux; 2716 break; 2717 /* 2718 * Nobody will change the following 5 values in the VMCB so we can 2719 * safely return them on rdmsr. They will always be 0 until LBRV is 2720 * implemented. 2721 */ 2722 case MSR_IA32_DEBUGCTLMSR: 2723 msr_info->data = svm->vmcb->save.dbgctl; 2724 break; 2725 case MSR_IA32_LASTBRANCHFROMIP: 2726 msr_info->data = svm->vmcb->save.br_from; 2727 break; 2728 case MSR_IA32_LASTBRANCHTOIP: 2729 msr_info->data = svm->vmcb->save.br_to; 2730 break; 2731 case MSR_IA32_LASTINTFROMIP: 2732 msr_info->data = svm->vmcb->save.last_excp_from; 2733 break; 2734 case MSR_IA32_LASTINTTOIP: 2735 msr_info->data = svm->vmcb->save.last_excp_to; 2736 break; 2737 case MSR_VM_HSAVE_PA: 2738 msr_info->data = svm->nested.hsave_msr; 2739 break; 2740 case MSR_VM_CR: 2741 msr_info->data = svm->nested.vm_cr_msr; 2742 break; 2743 case MSR_IA32_SPEC_CTRL: 2744 if (!msr_info->host_initiated && 2745 !guest_has_spec_ctrl_msr(vcpu)) 2746 return 1; 2747 2748 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2749 msr_info->data = svm->vmcb->save.spec_ctrl; 2750 else 2751 msr_info->data = svm->spec_ctrl; 2752 break; 2753 case MSR_AMD64_VIRT_SPEC_CTRL: 2754 if (!msr_info->host_initiated && 2755 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2756 return 1; 2757 2758 msr_info->data = svm->virt_spec_ctrl; 2759 break; 2760 case MSR_F15H_IC_CFG: { 2761 2762 int family, model; 2763 2764 family = guest_cpuid_family(vcpu); 2765 model = guest_cpuid_model(vcpu); 2766 2767 if (family < 0 || model < 0) 2768 return kvm_get_msr_common(vcpu, msr_info); 2769 2770 msr_info->data = 0; 2771 2772 if (family == 0x15 && 2773 (model >= 0x2 && model < 0x20)) 2774 msr_info->data = 0x1E; 2775 } 2776 break; 2777 case MSR_F10H_DECFG: 2778 msr_info->data = svm->msr_decfg; 2779 break; 2780 default: 2781 return kvm_get_msr_common(vcpu, msr_info); 2782 } 2783 return 0; 2784 } 2785 2786 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2787 { 2788 struct vcpu_svm *svm = to_svm(vcpu); 2789 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb)) 2790 return kvm_complete_insn_gp(vcpu, err); 2791 2792 ghcb_set_sw_exit_info_1(svm->ghcb, 1); 2793 ghcb_set_sw_exit_info_2(svm->ghcb, 2794 X86_TRAP_GP | 2795 SVM_EVTINJ_TYPE_EXEPT | 2796 SVM_EVTINJ_VALID); 2797 return 1; 2798 } 2799 2800 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2801 { 2802 struct vcpu_svm *svm = to_svm(vcpu); 2803 int svm_dis, chg_mask; 2804 2805 if (data & ~SVM_VM_CR_VALID_MASK) 2806 return 1; 2807 2808 chg_mask = SVM_VM_CR_VALID_MASK; 2809 2810 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2811 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2812 2813 svm->nested.vm_cr_msr &= ~chg_mask; 2814 svm->nested.vm_cr_msr |= (data & chg_mask); 2815 2816 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2817 2818 /* check for svm_disable while efer.svme is set */ 2819 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2820 return 1; 2821 2822 return 0; 2823 } 2824 2825 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2826 { 2827 struct vcpu_svm *svm = to_svm(vcpu); 2828 int r; 2829 2830 u32 ecx = msr->index; 2831 u64 data = msr->data; 2832 switch (ecx) { 2833 case MSR_IA32_CR_PAT: 2834 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) 2835 return 1; 2836 vcpu->arch.pat = data; 2837 svm->vmcb01.ptr->save.g_pat = data; 2838 if (is_guest_mode(vcpu)) 2839 nested_vmcb02_compute_g_pat(svm); 2840 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2841 break; 2842 case MSR_IA32_SPEC_CTRL: 2843 if (!msr->host_initiated && 2844 !guest_has_spec_ctrl_msr(vcpu)) 2845 return 1; 2846 2847 if (kvm_spec_ctrl_test_value(data)) 2848 return 1; 2849 2850 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2851 svm->vmcb->save.spec_ctrl = data; 2852 else 2853 svm->spec_ctrl = data; 2854 if (!data) 2855 break; 2856 2857 /* 2858 * For non-nested: 2859 * When it's written (to non-zero) for the first time, pass 2860 * it through. 2861 * 2862 * For nested: 2863 * The handling of the MSR bitmap for L2 guests is done in 2864 * nested_svm_vmrun_msrpm. 2865 * We update the L1 MSR bit as well since it will end up 2866 * touching the MSR anyway now. 2867 */ 2868 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 2869 break; 2870 case MSR_IA32_PRED_CMD: 2871 if (!msr->host_initiated && 2872 !guest_has_pred_cmd_msr(vcpu)) 2873 return 1; 2874 2875 if (data & ~PRED_CMD_IBPB) 2876 return 1; 2877 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2878 return 1; 2879 if (!data) 2880 break; 2881 2882 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2883 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); 2884 break; 2885 case MSR_AMD64_VIRT_SPEC_CTRL: 2886 if (!msr->host_initiated && 2887 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2888 return 1; 2889 2890 if (data & ~SPEC_CTRL_SSBD) 2891 return 1; 2892 2893 svm->virt_spec_ctrl = data; 2894 break; 2895 case MSR_STAR: 2896 svm->vmcb01.ptr->save.star = data; 2897 break; 2898 #ifdef CONFIG_X86_64 2899 case MSR_LSTAR: 2900 svm->vmcb01.ptr->save.lstar = data; 2901 break; 2902 case MSR_CSTAR: 2903 svm->vmcb01.ptr->save.cstar = data; 2904 break; 2905 case MSR_KERNEL_GS_BASE: 2906 svm->vmcb01.ptr->save.kernel_gs_base = data; 2907 break; 2908 case MSR_SYSCALL_MASK: 2909 svm->vmcb01.ptr->save.sfmask = data; 2910 break; 2911 #endif 2912 case MSR_IA32_SYSENTER_CS: 2913 svm->vmcb01.ptr->save.sysenter_cs = data; 2914 break; 2915 case MSR_IA32_SYSENTER_EIP: 2916 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2917 /* 2918 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2919 * when we spoof an Intel vendor ID (for cross vendor migration). 2920 * In this case we use this intercept to track the high 2921 * 32 bit part of these msrs to support Intel's 2922 * implementation of SYSENTER/SYSEXIT. 2923 */ 2924 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2925 break; 2926 case MSR_IA32_SYSENTER_ESP: 2927 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2928 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0; 2929 break; 2930 case MSR_TSC_AUX: 2931 /* 2932 * TSC_AUX is usually changed only during boot and never read 2933 * directly. Intercept TSC_AUX instead of exposing it to the 2934 * guest via direct_access_msrs, and switch it via user return. 2935 */ 2936 preempt_disable(); 2937 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2938 preempt_enable(); 2939 if (r) 2940 return 1; 2941 2942 svm->tsc_aux = data; 2943 break; 2944 case MSR_IA32_DEBUGCTLMSR: 2945 if (!boot_cpu_has(X86_FEATURE_LBRV)) { 2946 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", 2947 __func__, data); 2948 break; 2949 } 2950 if (data & DEBUGCTL_RESERVED_BITS) 2951 return 1; 2952 2953 svm->vmcb->save.dbgctl = data; 2954 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2955 if (data & (1ULL<<0)) 2956 svm_enable_lbrv(vcpu); 2957 else 2958 svm_disable_lbrv(vcpu); 2959 break; 2960 case MSR_VM_HSAVE_PA: 2961 /* 2962 * Old kernels did not validate the value written to 2963 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 2964 * value to allow live migrating buggy or malicious guests 2965 * originating from those kernels. 2966 */ 2967 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 2968 return 1; 2969 2970 svm->nested.hsave_msr = data & PAGE_MASK; 2971 break; 2972 case MSR_VM_CR: 2973 return svm_set_vm_cr(vcpu, data); 2974 case MSR_VM_IGNNE: 2975 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); 2976 break; 2977 case MSR_F10H_DECFG: { 2978 struct kvm_msr_entry msr_entry; 2979 2980 msr_entry.index = msr->index; 2981 if (svm_get_msr_feature(&msr_entry)) 2982 return 1; 2983 2984 /* Check the supported bits */ 2985 if (data & ~msr_entry.data) 2986 return 1; 2987 2988 /* Don't allow the guest to change a bit, #GP */ 2989 if (!msr->host_initiated && (data ^ msr_entry.data)) 2990 return 1; 2991 2992 svm->msr_decfg = data; 2993 break; 2994 } 2995 case MSR_IA32_APICBASE: 2996 if (kvm_vcpu_apicv_active(vcpu)) 2997 avic_update_vapic_bar(to_svm(vcpu), data); 2998 fallthrough; 2999 default: 3000 return kvm_set_msr_common(vcpu, msr); 3001 } 3002 return 0; 3003 } 3004 3005 static int msr_interception(struct kvm_vcpu *vcpu) 3006 { 3007 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3008 return kvm_emulate_wrmsr(vcpu); 3009 else 3010 return kvm_emulate_rdmsr(vcpu); 3011 } 3012 3013 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3014 { 3015 kvm_make_request(KVM_REQ_EVENT, vcpu); 3016 svm_clear_vintr(to_svm(vcpu)); 3017 3018 /* 3019 * For AVIC, the only reason to end up here is ExtINTs. 3020 * In this case AVIC was temporarily disabled for 3021 * requesting the IRQ window and we have to re-enable it. 3022 */ 3023 svm_toggle_avic_for_irq_window(vcpu, true); 3024 3025 ++vcpu->stat.irq_window_exits; 3026 return 1; 3027 } 3028 3029 static int pause_interception(struct kvm_vcpu *vcpu) 3030 { 3031 bool in_kernel; 3032 3033 /* 3034 * CPL is not made available for an SEV-ES guest, therefore 3035 * vcpu->arch.preempted_in_kernel can never be true. Just 3036 * set in_kernel to false as well. 3037 */ 3038 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3039 3040 if (!kvm_pause_in_guest(vcpu->kvm)) 3041 grow_ple_window(vcpu); 3042 3043 kvm_vcpu_on_spin(vcpu, in_kernel); 3044 return kvm_skip_emulated_instruction(vcpu); 3045 } 3046 3047 static int invpcid_interception(struct kvm_vcpu *vcpu) 3048 { 3049 struct vcpu_svm *svm = to_svm(vcpu); 3050 unsigned long type; 3051 gva_t gva; 3052 3053 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 3054 kvm_queue_exception(vcpu, UD_VECTOR); 3055 return 1; 3056 } 3057 3058 /* 3059 * For an INVPCID intercept: 3060 * EXITINFO1 provides the linear address of the memory operand. 3061 * EXITINFO2 provides the contents of the register operand. 3062 */ 3063 type = svm->vmcb->control.exit_info_2; 3064 gva = svm->vmcb->control.exit_info_1; 3065 3066 if (type > 3) { 3067 kvm_inject_gp(vcpu, 0); 3068 return 1; 3069 } 3070 3071 return kvm_handle_invpcid(vcpu, type, gva); 3072 } 3073 3074 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3075 [SVM_EXIT_READ_CR0] = cr_interception, 3076 [SVM_EXIT_READ_CR3] = cr_interception, 3077 [SVM_EXIT_READ_CR4] = cr_interception, 3078 [SVM_EXIT_READ_CR8] = cr_interception, 3079 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3080 [SVM_EXIT_WRITE_CR0] = cr_interception, 3081 [SVM_EXIT_WRITE_CR3] = cr_interception, 3082 [SVM_EXIT_WRITE_CR4] = cr_interception, 3083 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3084 [SVM_EXIT_READ_DR0] = dr_interception, 3085 [SVM_EXIT_READ_DR1] = dr_interception, 3086 [SVM_EXIT_READ_DR2] = dr_interception, 3087 [SVM_EXIT_READ_DR3] = dr_interception, 3088 [SVM_EXIT_READ_DR4] = dr_interception, 3089 [SVM_EXIT_READ_DR5] = dr_interception, 3090 [SVM_EXIT_READ_DR6] = dr_interception, 3091 [SVM_EXIT_READ_DR7] = dr_interception, 3092 [SVM_EXIT_WRITE_DR0] = dr_interception, 3093 [SVM_EXIT_WRITE_DR1] = dr_interception, 3094 [SVM_EXIT_WRITE_DR2] = dr_interception, 3095 [SVM_EXIT_WRITE_DR3] = dr_interception, 3096 [SVM_EXIT_WRITE_DR4] = dr_interception, 3097 [SVM_EXIT_WRITE_DR5] = dr_interception, 3098 [SVM_EXIT_WRITE_DR6] = dr_interception, 3099 [SVM_EXIT_WRITE_DR7] = dr_interception, 3100 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3101 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3102 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3103 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3104 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3105 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3106 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3107 [SVM_EXIT_INTR] = intr_interception, 3108 [SVM_EXIT_NMI] = nmi_interception, 3109 [SVM_EXIT_SMI] = smi_interception, 3110 [SVM_EXIT_VINTR] = interrupt_window_interception, 3111 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3112 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3113 [SVM_EXIT_IRET] = iret_interception, 3114 [SVM_EXIT_INVD] = kvm_emulate_invd, 3115 [SVM_EXIT_PAUSE] = pause_interception, 3116 [SVM_EXIT_HLT] = kvm_emulate_halt, 3117 [SVM_EXIT_INVLPG] = invlpg_interception, 3118 [SVM_EXIT_INVLPGA] = invlpga_interception, 3119 [SVM_EXIT_IOIO] = io_interception, 3120 [SVM_EXIT_MSR] = msr_interception, 3121 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3122 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3123 [SVM_EXIT_VMRUN] = vmrun_interception, 3124 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3125 [SVM_EXIT_VMLOAD] = vmload_interception, 3126 [SVM_EXIT_VMSAVE] = vmsave_interception, 3127 [SVM_EXIT_STGI] = stgi_interception, 3128 [SVM_EXIT_CLGI] = clgi_interception, 3129 [SVM_EXIT_SKINIT] = skinit_interception, 3130 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3131 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3132 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3133 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3134 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3135 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3136 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3137 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3138 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3139 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3140 [SVM_EXIT_INVPCID] = invpcid_interception, 3141 [SVM_EXIT_NPF] = npf_interception, 3142 [SVM_EXIT_RSM] = rsm_interception, 3143 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3144 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3145 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3146 }; 3147 3148 static void dump_vmcb(struct kvm_vcpu *vcpu) 3149 { 3150 struct vcpu_svm *svm = to_svm(vcpu); 3151 struct vmcb_control_area *control = &svm->vmcb->control; 3152 struct vmcb_save_area *save = &svm->vmcb->save; 3153 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3154 3155 if (!dump_invalid_vmcb) { 3156 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3157 return; 3158 } 3159 3160 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3161 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3162 pr_err("VMCB Control Area:\n"); 3163 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3164 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3165 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3166 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3167 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3168 pr_err("%-20s%08x %08x\n", "intercepts:", 3169 control->intercepts[INTERCEPT_WORD3], 3170 control->intercepts[INTERCEPT_WORD4]); 3171 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3172 pr_err("%-20s%d\n", "pause filter threshold:", 3173 control->pause_filter_thresh); 3174 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3175 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3176 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3177 pr_err("%-20s%d\n", "asid:", control->asid); 3178 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3179 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3180 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3181 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3182 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3183 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3184 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3185 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3186 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3187 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3188 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3189 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3190 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3191 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3192 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3193 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3194 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3195 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3196 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3197 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3198 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3199 pr_err("VMCB State Save Area:\n"); 3200 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3201 "es:", 3202 save->es.selector, save->es.attrib, 3203 save->es.limit, save->es.base); 3204 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3205 "cs:", 3206 save->cs.selector, save->cs.attrib, 3207 save->cs.limit, save->cs.base); 3208 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3209 "ss:", 3210 save->ss.selector, save->ss.attrib, 3211 save->ss.limit, save->ss.base); 3212 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3213 "ds:", 3214 save->ds.selector, save->ds.attrib, 3215 save->ds.limit, save->ds.base); 3216 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3217 "fs:", 3218 save01->fs.selector, save01->fs.attrib, 3219 save01->fs.limit, save01->fs.base); 3220 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3221 "gs:", 3222 save01->gs.selector, save01->gs.attrib, 3223 save01->gs.limit, save01->gs.base); 3224 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3225 "gdtr:", 3226 save->gdtr.selector, save->gdtr.attrib, 3227 save->gdtr.limit, save->gdtr.base); 3228 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3229 "ldtr:", 3230 save01->ldtr.selector, save01->ldtr.attrib, 3231 save01->ldtr.limit, save01->ldtr.base); 3232 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3233 "idtr:", 3234 save->idtr.selector, save->idtr.attrib, 3235 save->idtr.limit, save->idtr.base); 3236 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3237 "tr:", 3238 save01->tr.selector, save01->tr.attrib, 3239 save01->tr.limit, save01->tr.base); 3240 pr_err("cpl: %d efer: %016llx\n", 3241 save->cpl, save->efer); 3242 pr_err("%-15s %016llx %-13s %016llx\n", 3243 "cr0:", save->cr0, "cr2:", save->cr2); 3244 pr_err("%-15s %016llx %-13s %016llx\n", 3245 "cr3:", save->cr3, "cr4:", save->cr4); 3246 pr_err("%-15s %016llx %-13s %016llx\n", 3247 "dr6:", save->dr6, "dr7:", save->dr7); 3248 pr_err("%-15s %016llx %-13s %016llx\n", 3249 "rip:", save->rip, "rflags:", save->rflags); 3250 pr_err("%-15s %016llx %-13s %016llx\n", 3251 "rsp:", save->rsp, "rax:", save->rax); 3252 pr_err("%-15s %016llx %-13s %016llx\n", 3253 "star:", save01->star, "lstar:", save01->lstar); 3254 pr_err("%-15s %016llx %-13s %016llx\n", 3255 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3256 pr_err("%-15s %016llx %-13s %016llx\n", 3257 "kernel_gs_base:", save01->kernel_gs_base, 3258 "sysenter_cs:", save01->sysenter_cs); 3259 pr_err("%-15s %016llx %-13s %016llx\n", 3260 "sysenter_esp:", save01->sysenter_esp, 3261 "sysenter_eip:", save01->sysenter_eip); 3262 pr_err("%-15s %016llx %-13s %016llx\n", 3263 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3264 pr_err("%-15s %016llx %-13s %016llx\n", 3265 "br_from:", save->br_from, "br_to:", save->br_to); 3266 pr_err("%-15s %016llx %-13s %016llx\n", 3267 "excp_from:", save->last_excp_from, 3268 "excp_to:", save->last_excp_to); 3269 } 3270 3271 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3272 { 3273 if (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3274 svm_exit_handlers[exit_code]) 3275 return 0; 3276 3277 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3278 dump_vmcb(vcpu); 3279 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3280 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3281 vcpu->run->internal.ndata = 2; 3282 vcpu->run->internal.data[0] = exit_code; 3283 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3284 3285 return -EINVAL; 3286 } 3287 3288 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3289 { 3290 if (svm_handle_invalid_exit(vcpu, exit_code)) 3291 return 0; 3292 3293 #ifdef CONFIG_RETPOLINE 3294 if (exit_code == SVM_EXIT_MSR) 3295 return msr_interception(vcpu); 3296 else if (exit_code == SVM_EXIT_VINTR) 3297 return interrupt_window_interception(vcpu); 3298 else if (exit_code == SVM_EXIT_INTR) 3299 return intr_interception(vcpu); 3300 else if (exit_code == SVM_EXIT_HLT) 3301 return kvm_emulate_halt(vcpu); 3302 else if (exit_code == SVM_EXIT_NPF) 3303 return npf_interception(vcpu); 3304 #endif 3305 return svm_exit_handlers[exit_code](vcpu); 3306 } 3307 3308 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 3309 u32 *intr_info, u32 *error_code) 3310 { 3311 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3312 3313 *info1 = control->exit_info_1; 3314 *info2 = control->exit_info_2; 3315 *intr_info = control->exit_int_info; 3316 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3317 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3318 *error_code = control->exit_int_info_err; 3319 else 3320 *error_code = 0; 3321 } 3322 3323 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3324 { 3325 struct vcpu_svm *svm = to_svm(vcpu); 3326 struct kvm_run *kvm_run = vcpu->run; 3327 u32 exit_code = svm->vmcb->control.exit_code; 3328 3329 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); 3330 3331 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3332 if (!sev_es_guest(vcpu->kvm)) { 3333 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3334 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3335 if (npt_enabled) 3336 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3337 } 3338 3339 if (is_guest_mode(vcpu)) { 3340 int vmexit; 3341 3342 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM); 3343 3344 vmexit = nested_svm_exit_special(svm); 3345 3346 if (vmexit == NESTED_EXIT_CONTINUE) 3347 vmexit = nested_svm_exit_handled(svm); 3348 3349 if (vmexit == NESTED_EXIT_DONE) 3350 return 1; 3351 } 3352 3353 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3354 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3355 kvm_run->fail_entry.hardware_entry_failure_reason 3356 = svm->vmcb->control.exit_code; 3357 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3358 dump_vmcb(vcpu); 3359 return 0; 3360 } 3361 3362 if (is_external_interrupt(svm->vmcb->control.exit_int_info) && 3363 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && 3364 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && 3365 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) 3366 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " 3367 "exit_code 0x%x\n", 3368 __func__, svm->vmcb->control.exit_int_info, 3369 exit_code); 3370 3371 if (exit_fastpath != EXIT_FASTPATH_NONE) 3372 return 1; 3373 3374 return svm_invoke_exit_handler(vcpu, exit_code); 3375 } 3376 3377 static void reload_tss(struct kvm_vcpu *vcpu) 3378 { 3379 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3380 3381 sd->tss_desc->type = 9; /* available 32/64-bit TSS */ 3382 load_TR_desc(); 3383 } 3384 3385 static void pre_svm_run(struct kvm_vcpu *vcpu) 3386 { 3387 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3388 struct vcpu_svm *svm = to_svm(vcpu); 3389 3390 /* 3391 * If the previous vmrun of the vmcb occurred on a different physical 3392 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3393 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3394 */ 3395 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3396 svm->current_vmcb->asid_generation = 0; 3397 vmcb_mark_all_dirty(svm->vmcb); 3398 svm->current_vmcb->cpu = vcpu->cpu; 3399 } 3400 3401 if (sev_guest(vcpu->kvm)) 3402 return pre_sev_run(svm, vcpu->cpu); 3403 3404 /* FIXME: handle wraparound of asid_generation */ 3405 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3406 new_asid(svm, sd); 3407 } 3408 3409 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3410 { 3411 struct vcpu_svm *svm = to_svm(vcpu); 3412 3413 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3414 vcpu->arch.hflags |= HF_NMI_MASK; 3415 if (!sev_es_guest(vcpu->kvm)) 3416 svm_set_intercept(svm, INTERCEPT_IRET); 3417 ++vcpu->stat.nmi_injections; 3418 } 3419 3420 static void svm_set_irq(struct kvm_vcpu *vcpu) 3421 { 3422 struct vcpu_svm *svm = to_svm(vcpu); 3423 3424 BUG_ON(!(gif_set(svm))); 3425 3426 trace_kvm_inj_virq(vcpu->arch.interrupt.nr); 3427 ++vcpu->stat.irq_injections; 3428 3429 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3430 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; 3431 } 3432 3433 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3434 { 3435 struct vcpu_svm *svm = to_svm(vcpu); 3436 3437 /* 3438 * SEV-ES guests must always keep the CR intercepts cleared. CR 3439 * tracking is done using the CR write traps. 3440 */ 3441 if (sev_es_guest(vcpu->kvm)) 3442 return; 3443 3444 if (nested_svm_virtualize_tpr(vcpu)) 3445 return; 3446 3447 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3448 3449 if (irr == -1) 3450 return; 3451 3452 if (tpr >= irr) 3453 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3454 } 3455 3456 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3457 { 3458 struct vcpu_svm *svm = to_svm(vcpu); 3459 struct vmcb *vmcb = svm->vmcb; 3460 bool ret; 3461 3462 if (!gif_set(svm)) 3463 return true; 3464 3465 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3466 return false; 3467 3468 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) || 3469 (vcpu->arch.hflags & HF_NMI_MASK); 3470 3471 return ret; 3472 } 3473 3474 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3475 { 3476 struct vcpu_svm *svm = to_svm(vcpu); 3477 if (svm->nested.nested_run_pending) 3478 return -EBUSY; 3479 3480 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3481 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3482 return -EBUSY; 3483 3484 return !svm_nmi_blocked(vcpu); 3485 } 3486 3487 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3488 { 3489 return !!(vcpu->arch.hflags & HF_NMI_MASK); 3490 } 3491 3492 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3493 { 3494 struct vcpu_svm *svm = to_svm(vcpu); 3495 3496 if (masked) { 3497 vcpu->arch.hflags |= HF_NMI_MASK; 3498 if (!sev_es_guest(vcpu->kvm)) 3499 svm_set_intercept(svm, INTERCEPT_IRET); 3500 } else { 3501 vcpu->arch.hflags &= ~HF_NMI_MASK; 3502 if (!sev_es_guest(vcpu->kvm)) 3503 svm_clr_intercept(svm, INTERCEPT_IRET); 3504 } 3505 } 3506 3507 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3508 { 3509 struct vcpu_svm *svm = to_svm(vcpu); 3510 struct vmcb *vmcb = svm->vmcb; 3511 3512 if (!gif_set(svm)) 3513 return true; 3514 3515 if (sev_es_guest(vcpu->kvm)) { 3516 /* 3517 * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask 3518 * bit to determine the state of the IF flag. 3519 */ 3520 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK)) 3521 return true; 3522 } else if (is_guest_mode(vcpu)) { 3523 /* As long as interrupts are being delivered... */ 3524 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3525 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3526 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3527 return true; 3528 3529 /* ... vmexits aren't blocked by the interrupt shadow */ 3530 if (nested_exit_on_intr(svm)) 3531 return false; 3532 } else { 3533 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3534 return true; 3535 } 3536 3537 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3538 } 3539 3540 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3541 { 3542 struct vcpu_svm *svm = to_svm(vcpu); 3543 if (svm->nested.nested_run_pending) 3544 return -EBUSY; 3545 3546 /* 3547 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3548 * e.g. if the IRQ arrived asynchronously after checking nested events. 3549 */ 3550 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3551 return -EBUSY; 3552 3553 return !svm_interrupt_blocked(vcpu); 3554 } 3555 3556 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3557 { 3558 struct vcpu_svm *svm = to_svm(vcpu); 3559 3560 /* 3561 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3562 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3563 * get that intercept, this function will be called again though and 3564 * we'll get the vintr intercept. However, if the vGIF feature is 3565 * enabled, the STGI interception will not occur. Enable the irq 3566 * window under the assumption that the hardware will set the GIF. 3567 */ 3568 if (vgif_enabled(svm) || gif_set(svm)) { 3569 /* 3570 * IRQ window is not needed when AVIC is enabled, 3571 * unless we have pending ExtINT since it cannot be injected 3572 * via AVIC. In such case, we need to temporarily disable AVIC, 3573 * and fallback to injecting IRQ via V_IRQ. 3574 */ 3575 svm_toggle_avic_for_irq_window(vcpu, false); 3576 svm_set_vintr(svm); 3577 } 3578 } 3579 3580 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3581 { 3582 struct vcpu_svm *svm = to_svm(vcpu); 3583 3584 if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK) 3585 return; /* IRET will cause a vm exit */ 3586 3587 if (!gif_set(svm)) { 3588 if (vgif_enabled(svm)) 3589 svm_set_intercept(svm, INTERCEPT_STGI); 3590 return; /* STGI will cause a vm exit */ 3591 } 3592 3593 /* 3594 * Something prevents NMI from been injected. Single step over possible 3595 * problem (IRET or exception injection or interrupt shadow) 3596 */ 3597 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3598 svm->nmi_singlestep = true; 3599 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3600 } 3601 3602 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) 3603 { 3604 return 0; 3605 } 3606 3607 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 3608 { 3609 return 0; 3610 } 3611 3612 void svm_flush_tlb(struct kvm_vcpu *vcpu) 3613 { 3614 struct vcpu_svm *svm = to_svm(vcpu); 3615 3616 /* 3617 * Flush only the current ASID even if the TLB flush was invoked via 3618 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3619 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3620 * unconditionally does a TLB flush on both nested VM-Enter and nested 3621 * VM-Exit (via kvm_mmu_reset_context()). 3622 */ 3623 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3624 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3625 else 3626 svm->current_vmcb->asid_generation--; 3627 } 3628 3629 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3630 { 3631 struct vcpu_svm *svm = to_svm(vcpu); 3632 3633 invlpga(gva, svm->vmcb->control.asid); 3634 } 3635 3636 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3637 { 3638 struct vcpu_svm *svm = to_svm(vcpu); 3639 3640 if (nested_svm_virtualize_tpr(vcpu)) 3641 return; 3642 3643 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3644 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3645 kvm_set_cr8(vcpu, cr8); 3646 } 3647 } 3648 3649 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3650 { 3651 struct vcpu_svm *svm = to_svm(vcpu); 3652 u64 cr8; 3653 3654 if (nested_svm_virtualize_tpr(vcpu) || 3655 kvm_vcpu_apicv_active(vcpu)) 3656 return; 3657 3658 cr8 = kvm_get_cr8(vcpu); 3659 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3660 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 3661 } 3662 3663 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 3664 { 3665 struct vcpu_svm *svm = to_svm(vcpu); 3666 u8 vector; 3667 int type; 3668 u32 exitintinfo = svm->vmcb->control.exit_int_info; 3669 unsigned int3_injected = svm->int3_injected; 3670 3671 svm->int3_injected = 0; 3672 3673 /* 3674 * If we've made progress since setting HF_IRET_MASK, we've 3675 * executed an IRET and can allow NMI injection. 3676 */ 3677 if ((vcpu->arch.hflags & HF_IRET_MASK) && 3678 (sev_es_guest(vcpu->kvm) || 3679 kvm_rip_read(vcpu) != svm->nmi_iret_rip)) { 3680 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); 3681 kvm_make_request(KVM_REQ_EVENT, vcpu); 3682 } 3683 3684 vcpu->arch.nmi_injected = false; 3685 kvm_clear_exception_queue(vcpu); 3686 kvm_clear_interrupt_queue(vcpu); 3687 3688 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 3689 return; 3690 3691 kvm_make_request(KVM_REQ_EVENT, vcpu); 3692 3693 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 3694 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 3695 3696 switch (type) { 3697 case SVM_EXITINTINFO_TYPE_NMI: 3698 vcpu->arch.nmi_injected = true; 3699 break; 3700 case SVM_EXITINTINFO_TYPE_EXEPT: 3701 /* 3702 * Never re-inject a #VC exception. 3703 */ 3704 if (vector == X86_TRAP_VC) 3705 break; 3706 3707 /* 3708 * In case of software exceptions, do not reinject the vector, 3709 * but re-execute the instruction instead. Rewind RIP first 3710 * if we emulated INT3 before. 3711 */ 3712 if (kvm_exception_is_soft(vector)) { 3713 if (vector == BP_VECTOR && int3_injected && 3714 kvm_is_linear_rip(vcpu, svm->int3_rip)) 3715 kvm_rip_write(vcpu, 3716 kvm_rip_read(vcpu) - int3_injected); 3717 break; 3718 } 3719 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 3720 u32 err = svm->vmcb->control.exit_int_info_err; 3721 kvm_requeue_exception_e(vcpu, vector, err); 3722 3723 } else 3724 kvm_requeue_exception(vcpu, vector); 3725 break; 3726 case SVM_EXITINTINFO_TYPE_INTR: 3727 kvm_queue_interrupt(vcpu, vector, false); 3728 break; 3729 default: 3730 break; 3731 } 3732 } 3733 3734 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 3735 { 3736 struct vcpu_svm *svm = to_svm(vcpu); 3737 struct vmcb_control_area *control = &svm->vmcb->control; 3738 3739 control->exit_int_info = control->event_inj; 3740 control->exit_int_info_err = control->event_inj_err; 3741 control->event_inj = 0; 3742 svm_complete_interrupts(vcpu); 3743 } 3744 3745 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 3746 { 3747 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR && 3748 to_svm(vcpu)->vmcb->control.exit_info_1) 3749 return handle_fastpath_set_msr_irqoff(vcpu); 3750 3751 return EXIT_FASTPATH_NONE; 3752 } 3753 3754 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu) 3755 { 3756 struct vcpu_svm *svm = to_svm(vcpu); 3757 unsigned long vmcb_pa = svm->current_vmcb->pa; 3758 3759 kvm_guest_enter_irqoff(); 3760 3761 if (sev_es_guest(vcpu->kvm)) { 3762 __svm_sev_es_vcpu_run(vmcb_pa); 3763 } else { 3764 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu); 3765 3766 /* 3767 * Use a single vmcb (vmcb01 because it's always valid) for 3768 * context switching guest state via VMLOAD/VMSAVE, that way 3769 * the state doesn't need to be copied between vmcb01 and 3770 * vmcb02 when switching vmcbs for nested virtualization. 3771 */ 3772 vmload(svm->vmcb01.pa); 3773 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs); 3774 vmsave(svm->vmcb01.pa); 3775 3776 vmload(__sme_page_pa(sd->save_area)); 3777 } 3778 3779 kvm_guest_exit_irqoff(); 3780 } 3781 3782 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu) 3783 { 3784 struct vcpu_svm *svm = to_svm(vcpu); 3785 3786 trace_kvm_entry(vcpu); 3787 3788 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 3789 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 3790 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 3791 3792 /* 3793 * Disable singlestep if we're injecting an interrupt/exception. 3794 * We don't want our modified rflags to be pushed on the stack where 3795 * we might not be able to easily reset them if we disabled NMI 3796 * singlestep later. 3797 */ 3798 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 3799 /* 3800 * Event injection happens before external interrupts cause a 3801 * vmexit and interrupts are disabled here, so smp_send_reschedule 3802 * is enough to force an immediate vmexit. 3803 */ 3804 disable_nmi_singlestep(svm); 3805 smp_send_reschedule(vcpu->cpu); 3806 } 3807 3808 pre_svm_run(vcpu); 3809 3810 sync_lapic_to_cr8(vcpu); 3811 3812 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 3813 svm->vmcb->control.asid = svm->asid; 3814 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3815 } 3816 svm->vmcb->save.cr2 = vcpu->arch.cr2; 3817 3818 svm_hv_update_vp_id(svm->vmcb, vcpu); 3819 3820 /* 3821 * Run with all-zero DR6 unless needed, so that we can get the exact cause 3822 * of a #DB. 3823 */ 3824 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 3825 svm_set_dr6(svm, vcpu->arch.dr6); 3826 else 3827 svm_set_dr6(svm, DR6_ACTIVE_LOW); 3828 3829 clgi(); 3830 kvm_load_guest_xsave_state(vcpu); 3831 3832 kvm_wait_lapic_expire(vcpu); 3833 3834 /* 3835 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 3836 * it's non-zero. Since vmentry is serialising on affected CPUs, there 3837 * is no need to worry about the conditional branch over the wrmsr 3838 * being speculatively taken. 3839 */ 3840 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3841 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); 3842 3843 svm_vcpu_enter_exit(vcpu); 3844 3845 /* 3846 * We do not use IBRS in the kernel. If this vCPU has used the 3847 * SPEC_CTRL MSR it may have left it on; save the value and 3848 * turn it off. This is much more efficient than blindly adding 3849 * it to the atomic save/restore list. Especially as the former 3850 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 3851 * 3852 * For non-nested case: 3853 * If the L01 MSR bitmap does not intercept the MSR, then we need to 3854 * save it. 3855 * 3856 * For nested case: 3857 * If the L02 MSR bitmap does not intercept the MSR, then we need to 3858 * save it. 3859 */ 3860 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) && 3861 unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 3862 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 3863 3864 if (!sev_es_guest(vcpu->kvm)) 3865 reload_tss(vcpu); 3866 3867 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3868 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); 3869 3870 if (!sev_es_guest(vcpu->kvm)) { 3871 vcpu->arch.cr2 = svm->vmcb->save.cr2; 3872 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 3873 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 3874 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 3875 } 3876 3877 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3878 kvm_before_interrupt(vcpu); 3879 3880 kvm_load_host_xsave_state(vcpu); 3881 stgi(); 3882 3883 /* Any pending NMI will happen here */ 3884 3885 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 3886 kvm_after_interrupt(vcpu); 3887 3888 sync_cr8_to_lapic(vcpu); 3889 3890 svm->next_rip = 0; 3891 if (is_guest_mode(vcpu)) { 3892 nested_sync_control_from_vmcb02(svm); 3893 3894 /* Track VMRUNs that have made past consistency checking */ 3895 if (svm->nested.nested_run_pending && 3896 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 3897 ++vcpu->stat.nested_run; 3898 3899 svm->nested.nested_run_pending = 0; 3900 } 3901 3902 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 3903 vmcb_mark_all_clean(svm->vmcb); 3904 3905 /* if exit due to PF check for async PF */ 3906 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 3907 vcpu->arch.apf.host_apf_flags = 3908 kvm_read_and_reset_apf_flags(); 3909 3910 if (npt_enabled) 3911 kvm_register_clear_available(vcpu, VCPU_EXREG_PDPTR); 3912 3913 /* 3914 * We need to handle MC intercepts here before the vcpu has a chance to 3915 * change the physical cpu 3916 */ 3917 if (unlikely(svm->vmcb->control.exit_code == 3918 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 3919 svm_handle_mce(vcpu); 3920 3921 svm_complete_interrupts(vcpu); 3922 3923 if (is_guest_mode(vcpu)) 3924 return EXIT_FASTPATH_NONE; 3925 3926 return svm_exit_handlers_fastpath(vcpu); 3927 } 3928 3929 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3930 int root_level) 3931 { 3932 struct vcpu_svm *svm = to_svm(vcpu); 3933 unsigned long cr3; 3934 3935 if (npt_enabled) { 3936 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 3937 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3938 3939 hv_track_root_tdp(vcpu, root_hpa); 3940 3941 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */ 3942 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3943 return; 3944 cr3 = vcpu->arch.cr3; 3945 } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { 3946 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 3947 } else { 3948 /* PCID in the guest should be impossible with a 32-bit MMU. */ 3949 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 3950 cr3 = root_hpa; 3951 } 3952 3953 svm->vmcb->save.cr3 = cr3; 3954 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 3955 } 3956 3957 static int is_disabled(void) 3958 { 3959 u64 vm_cr; 3960 3961 rdmsrl(MSR_VM_CR, vm_cr); 3962 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) 3963 return 1; 3964 3965 return 0; 3966 } 3967 3968 static void 3969 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 3970 { 3971 /* 3972 * Patch in the VMMCALL instruction: 3973 */ 3974 hypercall[0] = 0x0f; 3975 hypercall[1] = 0x01; 3976 hypercall[2] = 0xd9; 3977 } 3978 3979 static int __init svm_check_processor_compat(void) 3980 { 3981 return 0; 3982 } 3983 3984 static bool svm_cpu_has_accelerated_tpr(void) 3985 { 3986 return false; 3987 } 3988 3989 /* 3990 * The kvm parameter can be NULL (module initialization, or invocation before 3991 * VM creation). Be sure to check the kvm parameter before using it. 3992 */ 3993 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 3994 { 3995 switch (index) { 3996 case MSR_IA32_MCG_EXT_CTL: 3997 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 3998 return false; 3999 case MSR_IA32_SMBASE: 4000 /* SEV-ES guests do not support SMM, so report false */ 4001 if (kvm && sev_es_guest(kvm)) 4002 return false; 4003 break; 4004 default: 4005 break; 4006 } 4007 4008 return true; 4009 } 4010 4011 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 4012 { 4013 return 0; 4014 } 4015 4016 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4017 { 4018 struct vcpu_svm *svm = to_svm(vcpu); 4019 struct kvm_cpuid_entry2 *best; 4020 4021 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4022 boot_cpu_has(X86_FEATURE_XSAVE) && 4023 boot_cpu_has(X86_FEATURE_XSAVES); 4024 4025 /* Update nrips enabled cache */ 4026 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) && 4027 guest_cpuid_has(vcpu, X86_FEATURE_NRIPS); 4028 4029 svm_recalc_instruction_intercepts(vcpu, svm); 4030 4031 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4032 if (sev_guest(vcpu->kvm)) { 4033 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0); 4034 if (best) 4035 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4036 } 4037 4038 if (kvm_vcpu_apicv_active(vcpu)) { 4039 /* 4040 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature 4041 * is exposed to the guest, disable AVIC. 4042 */ 4043 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC)) 4044 kvm_request_apicv_update(vcpu->kvm, false, 4045 APICV_INHIBIT_REASON_X2APIC); 4046 4047 /* 4048 * Currently, AVIC does not work with nested virtualization. 4049 * So, we disable AVIC when cpuid for SVM is set in the L1 guest. 4050 */ 4051 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4052 kvm_request_apicv_update(vcpu->kvm, false, 4053 APICV_INHIBIT_REASON_NESTED); 4054 } 4055 4056 if (guest_cpuid_is_intel(vcpu)) { 4057 /* 4058 * We must intercept SYSENTER_EIP and SYSENTER_ESP 4059 * accesses because the processor only stores 32 bits. 4060 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 4061 */ 4062 svm_set_intercept(svm, INTERCEPT_VMLOAD); 4063 svm_set_intercept(svm, INTERCEPT_VMSAVE); 4064 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4065 4066 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 4067 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 4068 } else { 4069 /* 4070 * If hardware supports Virtual VMLOAD VMSAVE then enable it 4071 * in VMCB and clear intercepts to avoid #VMEXIT. 4072 */ 4073 if (vls) { 4074 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 4075 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 4076 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 4077 } 4078 /* No need to intercept these MSRs */ 4079 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 4080 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 4081 } 4082 } 4083 4084 static bool svm_has_wbinvd_exit(void) 4085 { 4086 return true; 4087 } 4088 4089 #define PRE_EX(exit) { .exit_code = (exit), \ 4090 .stage = X86_ICPT_PRE_EXCEPT, } 4091 #define POST_EX(exit) { .exit_code = (exit), \ 4092 .stage = X86_ICPT_POST_EXCEPT, } 4093 #define POST_MEM(exit) { .exit_code = (exit), \ 4094 .stage = X86_ICPT_POST_MEMACCESS, } 4095 4096 static const struct __x86_intercept { 4097 u32 exit_code; 4098 enum x86_intercept_stage stage; 4099 } x86_intercept_map[] = { 4100 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4101 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4102 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4103 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4104 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4105 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4106 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4107 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4108 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4109 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4110 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4111 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4112 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4113 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4114 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4115 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4116 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4117 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4118 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4119 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4120 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4121 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4122 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4123 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4124 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4125 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4126 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4127 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4128 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4129 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4130 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4131 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4132 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4133 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4134 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4135 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4136 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4137 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4138 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4139 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4140 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4141 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4142 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4143 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4144 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4145 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4146 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4147 }; 4148 4149 #undef PRE_EX 4150 #undef POST_EX 4151 #undef POST_MEM 4152 4153 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4154 struct x86_instruction_info *info, 4155 enum x86_intercept_stage stage, 4156 struct x86_exception *exception) 4157 { 4158 struct vcpu_svm *svm = to_svm(vcpu); 4159 int vmexit, ret = X86EMUL_CONTINUE; 4160 struct __x86_intercept icpt_info; 4161 struct vmcb *vmcb = svm->vmcb; 4162 4163 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4164 goto out; 4165 4166 icpt_info = x86_intercept_map[info->intercept]; 4167 4168 if (stage != icpt_info.stage) 4169 goto out; 4170 4171 switch (icpt_info.exit_code) { 4172 case SVM_EXIT_READ_CR0: 4173 if (info->intercept == x86_intercept_cr_read) 4174 icpt_info.exit_code += info->modrm_reg; 4175 break; 4176 case SVM_EXIT_WRITE_CR0: { 4177 unsigned long cr0, val; 4178 4179 if (info->intercept == x86_intercept_cr_write) 4180 icpt_info.exit_code += info->modrm_reg; 4181 4182 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4183 info->intercept == x86_intercept_clts) 4184 break; 4185 4186 if (!(vmcb_is_intercept(&svm->nested.ctl, 4187 INTERCEPT_SELECTIVE_CR0))) 4188 break; 4189 4190 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4191 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4192 4193 if (info->intercept == x86_intercept_lmsw) { 4194 cr0 &= 0xfUL; 4195 val &= 0xfUL; 4196 /* lmsw can't clear PE - catch this here */ 4197 if (cr0 & X86_CR0_PE) 4198 val |= X86_CR0_PE; 4199 } 4200 4201 if (cr0 ^ val) 4202 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4203 4204 break; 4205 } 4206 case SVM_EXIT_READ_DR0: 4207 case SVM_EXIT_WRITE_DR0: 4208 icpt_info.exit_code += info->modrm_reg; 4209 break; 4210 case SVM_EXIT_MSR: 4211 if (info->intercept == x86_intercept_wrmsr) 4212 vmcb->control.exit_info_1 = 1; 4213 else 4214 vmcb->control.exit_info_1 = 0; 4215 break; 4216 case SVM_EXIT_PAUSE: 4217 /* 4218 * We get this for NOP only, but pause 4219 * is rep not, check this here 4220 */ 4221 if (info->rep_prefix != REPE_PREFIX) 4222 goto out; 4223 break; 4224 case SVM_EXIT_IOIO: { 4225 u64 exit_info; 4226 u32 bytes; 4227 4228 if (info->intercept == x86_intercept_in || 4229 info->intercept == x86_intercept_ins) { 4230 exit_info = ((info->src_val & 0xffff) << 16) | 4231 SVM_IOIO_TYPE_MASK; 4232 bytes = info->dst_bytes; 4233 } else { 4234 exit_info = (info->dst_val & 0xffff) << 16; 4235 bytes = info->src_bytes; 4236 } 4237 4238 if (info->intercept == x86_intercept_outs || 4239 info->intercept == x86_intercept_ins) 4240 exit_info |= SVM_IOIO_STR_MASK; 4241 4242 if (info->rep_prefix) 4243 exit_info |= SVM_IOIO_REP_MASK; 4244 4245 bytes = min(bytes, 4u); 4246 4247 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4248 4249 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4250 4251 vmcb->control.exit_info_1 = exit_info; 4252 vmcb->control.exit_info_2 = info->next_rip; 4253 4254 break; 4255 } 4256 default: 4257 break; 4258 } 4259 4260 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4261 if (static_cpu_has(X86_FEATURE_NRIPS)) 4262 vmcb->control.next_rip = info->next_rip; 4263 vmcb->control.exit_code = icpt_info.exit_code; 4264 vmexit = nested_svm_exit_handled(svm); 4265 4266 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4267 : X86EMUL_CONTINUE; 4268 4269 out: 4270 return ret; 4271 } 4272 4273 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4274 { 4275 } 4276 4277 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) 4278 { 4279 if (!kvm_pause_in_guest(vcpu->kvm)) 4280 shrink_ple_window(vcpu); 4281 } 4282 4283 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4284 { 4285 /* [63:9] are reserved. */ 4286 vcpu->arch.mcg_cap &= 0x1ff; 4287 } 4288 4289 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4290 { 4291 struct vcpu_svm *svm = to_svm(vcpu); 4292 4293 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4294 if (!gif_set(svm)) 4295 return true; 4296 4297 return is_smm(vcpu); 4298 } 4299 4300 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4301 { 4302 struct vcpu_svm *svm = to_svm(vcpu); 4303 if (svm->nested.nested_run_pending) 4304 return -EBUSY; 4305 4306 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4307 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4308 return -EBUSY; 4309 4310 return !svm_smi_blocked(vcpu); 4311 } 4312 4313 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 4314 { 4315 struct vcpu_svm *svm = to_svm(vcpu); 4316 struct kvm_host_map map_save; 4317 int ret; 4318 4319 if (is_guest_mode(vcpu)) { 4320 /* FED8h - SVM Guest */ 4321 put_smstate(u64, smstate, 0x7ed8, 1); 4322 /* FEE0h - SVM Guest VMCB Physical Address */ 4323 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa); 4324 4325 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4326 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4327 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4328 4329 ret = nested_svm_vmexit(svm); 4330 if (ret) 4331 return ret; 4332 4333 /* 4334 * KVM uses VMCB01 to store L1 host state while L2 runs but 4335 * VMCB01 is going to be used during SMM and thus the state will 4336 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4337 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4338 * format of the area is identical to guest save area offsetted 4339 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4340 * within 'struct vmcb'). Note: HSAVE area may also be used by 4341 * L1 hypervisor to save additional host context (e.g. KVM does 4342 * that, see svm_prepare_guest_switch()) which must be 4343 * preserved. 4344 */ 4345 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), 4346 &map_save) == -EINVAL) 4347 return 1; 4348 4349 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4350 4351 svm_copy_vmrun_state(map_save.hva + 0x400, 4352 &svm->vmcb01.ptr->save); 4353 4354 kvm_vcpu_unmap(vcpu, &map_save, true); 4355 } 4356 return 0; 4357 } 4358 4359 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 4360 { 4361 struct vcpu_svm *svm = to_svm(vcpu); 4362 struct kvm_host_map map, map_save; 4363 int ret = 0; 4364 4365 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) { 4366 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0); 4367 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8); 4368 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0); 4369 struct vmcb *vmcb12; 4370 4371 if (guest) { 4372 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 4373 return 1; 4374 4375 if (!(saved_efer & EFER_SVME)) 4376 return 1; 4377 4378 if (kvm_vcpu_map(vcpu, 4379 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL) 4380 return 1; 4381 4382 if (svm_allocate_nested(svm)) 4383 return 1; 4384 4385 vmcb12 = map.hva; 4386 4387 nested_load_control_from_vmcb12(svm, &vmcb12->control); 4388 4389 ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12); 4390 kvm_vcpu_unmap(vcpu, &map, true); 4391 4392 /* 4393 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4394 * used during SMM (see svm_enter_smm()) 4395 */ 4396 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), 4397 &map_save) == -EINVAL) 4398 return 1; 4399 4400 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, 4401 map_save.hva + 0x400); 4402 4403 kvm_vcpu_unmap(vcpu, &map_save, true); 4404 } 4405 } 4406 4407 return ret; 4408 } 4409 4410 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4411 { 4412 struct vcpu_svm *svm = to_svm(vcpu); 4413 4414 if (!gif_set(svm)) { 4415 if (vgif_enabled(svm)) 4416 svm_set_intercept(svm, INTERCEPT_STGI); 4417 /* STGI will cause a vm exit */ 4418 } else { 4419 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4420 } 4421 } 4422 4423 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 4424 { 4425 bool smep, smap, is_user; 4426 unsigned long cr4; 4427 4428 /* 4429 * When the guest is an SEV-ES guest, emulation is not possible. 4430 */ 4431 if (sev_es_guest(vcpu->kvm)) 4432 return false; 4433 4434 /* 4435 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4436 * 4437 * Errata: 4438 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is 4439 * possible that CPU microcode implementing DecodeAssist will fail 4440 * to read bytes of instruction which caused #NPF. In this case, 4441 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly 4442 * return 0 instead of the correct guest instruction bytes. 4443 * 4444 * This happens because CPU microcode reading instruction bytes 4445 * uses a special opcode which attempts to read data using CPL=0 4446 * privileges. The microcode reads CS:RIP and if it hits a SMAP 4447 * fault, it gives up and returns no instruction bytes. 4448 * 4449 * Detection: 4450 * We reach here in case CPU supports DecodeAssist, raised #NPF and 4451 * returned 0 in GuestIntrBytes field of the VMCB. 4452 * First, errata can only be triggered in case vCPU CR4.SMAP=1. 4453 * Second, if vCPU CR4.SMEP=1, errata could only be triggered 4454 * in case vCPU CPL==3 (Because otherwise guest would have triggered 4455 * a SMEP fault instead of #NPF). 4456 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL. 4457 * As most guests enable SMAP if they have also enabled SMEP, use above 4458 * logic in order to attempt minimize false-positive of detecting errata 4459 * while still preserving all cases semantic correctness. 4460 * 4461 * Workaround: 4462 * To determine what instruction the guest was executing, the hypervisor 4463 * will have to decode the instruction at the instruction pointer. 4464 * 4465 * In non SEV guest, hypervisor will be able to read the guest 4466 * memory to decode the instruction pointer when insn_len is zero 4467 * so we return true to indicate that decoding is possible. 4468 * 4469 * But in the SEV guest, the guest memory is encrypted with the 4470 * guest specific key and hypervisor will not be able to decode the 4471 * instruction pointer so we will not able to workaround it. Lets 4472 * print the error and request to kill the guest. 4473 */ 4474 if (likely(!insn || insn_len)) 4475 return true; 4476 4477 /* 4478 * If RIP is invalid, go ahead with emulation which will cause an 4479 * internal error exit. 4480 */ 4481 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT)) 4482 return true; 4483 4484 cr4 = kvm_read_cr4(vcpu); 4485 smep = cr4 & X86_CR4_SMEP; 4486 smap = cr4 & X86_CR4_SMAP; 4487 is_user = svm_get_cpl(vcpu) == 3; 4488 if (smap && (!smep || is_user)) { 4489 if (!sev_guest(vcpu->kvm)) 4490 return true; 4491 4492 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n"); 4493 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4494 } 4495 4496 return false; 4497 } 4498 4499 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4500 { 4501 struct vcpu_svm *svm = to_svm(vcpu); 4502 4503 /* 4504 * TODO: Last condition latch INIT signals on vCPU when 4505 * vCPU is in guest-mode and vmcb12 defines intercept on INIT. 4506 * To properly emulate the INIT intercept, 4507 * svm_check_nested_events() should call nested_svm_vmexit() 4508 * if an INIT signal is pending. 4509 */ 4510 return !gif_set(svm) || 4511 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT)); 4512 } 4513 4514 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4515 { 4516 if (!sev_es_guest(vcpu->kvm)) 4517 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4518 4519 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4520 } 4521 4522 static void svm_vm_destroy(struct kvm *kvm) 4523 { 4524 avic_vm_destroy(kvm); 4525 sev_vm_destroy(kvm); 4526 } 4527 4528 static int svm_vm_init(struct kvm *kvm) 4529 { 4530 if (!pause_filter_count || !pause_filter_thresh) 4531 kvm->arch.pause_in_guest = true; 4532 4533 if (enable_apicv) { 4534 int ret = avic_vm_init(kvm); 4535 if (ret) 4536 return ret; 4537 } 4538 4539 return 0; 4540 } 4541 4542 static struct kvm_x86_ops svm_x86_ops __initdata = { 4543 .hardware_unsetup = svm_hardware_teardown, 4544 .hardware_enable = svm_hardware_enable, 4545 .hardware_disable = svm_hardware_disable, 4546 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, 4547 .has_emulated_msr = svm_has_emulated_msr, 4548 4549 .vcpu_create = svm_create_vcpu, 4550 .vcpu_free = svm_free_vcpu, 4551 .vcpu_reset = svm_vcpu_reset, 4552 4553 .vm_size = sizeof(struct kvm_svm), 4554 .vm_init = svm_vm_init, 4555 .vm_destroy = svm_vm_destroy, 4556 4557 .prepare_guest_switch = svm_prepare_guest_switch, 4558 .vcpu_load = svm_vcpu_load, 4559 .vcpu_put = svm_vcpu_put, 4560 .vcpu_blocking = svm_vcpu_blocking, 4561 .vcpu_unblocking = svm_vcpu_unblocking, 4562 4563 .update_exception_bitmap = svm_update_exception_bitmap, 4564 .get_msr_feature = svm_get_msr_feature, 4565 .get_msr = svm_get_msr, 4566 .set_msr = svm_set_msr, 4567 .get_segment_base = svm_get_segment_base, 4568 .get_segment = svm_get_segment, 4569 .set_segment = svm_set_segment, 4570 .get_cpl = svm_get_cpl, 4571 .get_cs_db_l_bits = kvm_get_cs_db_l_bits, 4572 .set_cr0 = svm_set_cr0, 4573 .is_valid_cr4 = svm_is_valid_cr4, 4574 .set_cr4 = svm_set_cr4, 4575 .set_efer = svm_set_efer, 4576 .get_idt = svm_get_idt, 4577 .set_idt = svm_set_idt, 4578 .get_gdt = svm_get_gdt, 4579 .set_gdt = svm_set_gdt, 4580 .set_dr7 = svm_set_dr7, 4581 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 4582 .cache_reg = svm_cache_reg, 4583 .get_rflags = svm_get_rflags, 4584 .set_rflags = svm_set_rflags, 4585 4586 .tlb_flush_all = svm_flush_tlb, 4587 .tlb_flush_current = svm_flush_tlb, 4588 .tlb_flush_gva = svm_flush_tlb_gva, 4589 .tlb_flush_guest = svm_flush_tlb, 4590 4591 .run = svm_vcpu_run, 4592 .handle_exit = handle_exit, 4593 .skip_emulated_instruction = skip_emulated_instruction, 4594 .update_emulated_instruction = NULL, 4595 .set_interrupt_shadow = svm_set_interrupt_shadow, 4596 .get_interrupt_shadow = svm_get_interrupt_shadow, 4597 .patch_hypercall = svm_patch_hypercall, 4598 .set_irq = svm_set_irq, 4599 .set_nmi = svm_inject_nmi, 4600 .queue_exception = svm_queue_exception, 4601 .cancel_injection = svm_cancel_injection, 4602 .interrupt_allowed = svm_interrupt_allowed, 4603 .nmi_allowed = svm_nmi_allowed, 4604 .get_nmi_mask = svm_get_nmi_mask, 4605 .set_nmi_mask = svm_set_nmi_mask, 4606 .enable_nmi_window = svm_enable_nmi_window, 4607 .enable_irq_window = svm_enable_irq_window, 4608 .update_cr8_intercept = svm_update_cr8_intercept, 4609 .set_virtual_apic_mode = svm_set_virtual_apic_mode, 4610 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, 4611 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons, 4612 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl, 4613 .load_eoi_exitmap = svm_load_eoi_exitmap, 4614 .hwapic_irr_update = svm_hwapic_irr_update, 4615 .hwapic_isr_update = svm_hwapic_isr_update, 4616 .sync_pir_to_irr = kvm_lapic_find_highest_irr, 4617 .apicv_post_state_restore = avic_post_state_restore, 4618 4619 .set_tss_addr = svm_set_tss_addr, 4620 .set_identity_map_addr = svm_set_identity_map_addr, 4621 .get_mt_mask = svm_get_mt_mask, 4622 4623 .get_exit_info = svm_get_exit_info, 4624 4625 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 4626 4627 .has_wbinvd_exit = svm_has_wbinvd_exit, 4628 4629 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 4630 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 4631 .write_tsc_offset = svm_write_tsc_offset, 4632 .write_tsc_multiplier = svm_write_tsc_multiplier, 4633 4634 .load_mmu_pgd = svm_load_mmu_pgd, 4635 4636 .check_intercept = svm_check_intercept, 4637 .handle_exit_irqoff = svm_handle_exit_irqoff, 4638 4639 .request_immediate_exit = __kvm_request_immediate_exit, 4640 4641 .sched_in = svm_sched_in, 4642 4643 .pmu_ops = &amd_pmu_ops, 4644 .nested_ops = &svm_nested_ops, 4645 4646 .deliver_posted_interrupt = svm_deliver_avic_intr, 4647 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, 4648 .update_pi_irte = svm_update_pi_irte, 4649 .setup_mce = svm_setup_mce, 4650 4651 .smi_allowed = svm_smi_allowed, 4652 .enter_smm = svm_enter_smm, 4653 .leave_smm = svm_leave_smm, 4654 .enable_smi_window = svm_enable_smi_window, 4655 4656 .mem_enc_op = svm_mem_enc_op, 4657 .mem_enc_reg_region = svm_register_enc_region, 4658 .mem_enc_unreg_region = svm_unregister_enc_region, 4659 4660 .vm_copy_enc_context_from = svm_vm_copy_asid_from, 4661 4662 .can_emulate_instruction = svm_can_emulate_instruction, 4663 4664 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 4665 4666 .msr_filter_changed = svm_msr_filter_changed, 4667 .complete_emulated_msr = svm_complete_emulated_msr, 4668 4669 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 4670 }; 4671 4672 static struct kvm_x86_init_ops svm_init_ops __initdata = { 4673 .cpu_has_kvm_support = has_svm, 4674 .disabled_by_bios = is_disabled, 4675 .hardware_setup = svm_hardware_setup, 4676 .check_processor_compatibility = svm_check_processor_compat, 4677 4678 .runtime_ops = &svm_x86_ops, 4679 }; 4680 4681 static int __init svm_init(void) 4682 { 4683 __unused_size_checks(); 4684 4685 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm), 4686 __alignof__(struct vcpu_svm), THIS_MODULE); 4687 } 4688 4689 static void __exit svm_exit(void) 4690 { 4691 kvm_exit(); 4692 } 4693 4694 module_init(svm_init) 4695 module_exit(svm_exit) 4696