1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 #include <linux/string_choices.h> 32 33 #include <asm/apic.h> 34 #include <asm/perf_event.h> 35 #include <asm/tlbflush.h> 36 #include <asm/desc.h> 37 #include <asm/debugreg.h> 38 #include <asm/kvm_para.h> 39 #include <asm/irq_remapping.h> 40 #include <asm/spec-ctrl.h> 41 #include <asm/cpu_device_id.h> 42 #include <asm/traps.h> 43 #include <asm/reboot.h> 44 #include <asm/fpu/api.h> 45 46 #include <trace/events/ipi.h> 47 48 #include "trace.h" 49 50 #include "svm.h" 51 #include "svm_ops.h" 52 53 #include "kvm_onhyperv.h" 54 #include "svm_onhyperv.h" 55 56 MODULE_AUTHOR("Qumranet"); 57 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 58 MODULE_LICENSE("GPL"); 59 60 #ifdef MODULE 61 static const struct x86_cpu_id svm_cpu_id[] = { 62 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 63 {} 64 }; 65 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 66 #endif 67 68 #define SEG_TYPE_LDT 2 69 #define SEG_TYPE_BUSY_TSS16 3 70 71 static bool erratum_383_found __read_mostly; 72 73 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 74 75 /* 76 * Set osvw_len to higher value when updated Revision Guides 77 * are published and we know what the new status bits are 78 */ 79 static uint64_t osvw_len = 4, osvw_status; 80 81 static DEFINE_PER_CPU(u64, current_tsc_ratio); 82 83 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 84 85 static const struct svm_direct_access_msrs { 86 u32 index; /* Index of the MSR */ 87 bool always; /* True if intercept is initially cleared */ 88 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 89 { .index = MSR_STAR, .always = true }, 90 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 91 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 92 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 93 #ifdef CONFIG_X86_64 94 { .index = MSR_GS_BASE, .always = true }, 95 { .index = MSR_FS_BASE, .always = true }, 96 { .index = MSR_KERNEL_GS_BASE, .always = true }, 97 { .index = MSR_LSTAR, .always = true }, 98 { .index = MSR_CSTAR, .always = true }, 99 { .index = MSR_SYSCALL_MASK, .always = true }, 100 #endif 101 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 102 { .index = MSR_IA32_PRED_CMD, .always = false }, 103 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 104 { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, 105 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 106 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 107 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 108 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 109 { .index = MSR_IA32_XSS, .always = false }, 110 { .index = MSR_EFER, .always = false }, 111 { .index = MSR_IA32_CR_PAT, .always = false }, 112 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 113 { .index = MSR_TSC_AUX, .always = false }, 114 { .index = X2APIC_MSR(APIC_ID), .always = false }, 115 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 116 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 117 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 118 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 119 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 120 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 121 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 122 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 123 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 124 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 125 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 126 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 127 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 128 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 129 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 130 131 /* 132 * Note: 133 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 134 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 135 * the AVIC hardware would generate GP fault. Therefore, always 136 * intercept the MSR 0x832, and do not setup direct_access_msr. 137 */ 138 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 139 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 140 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 141 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 142 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 143 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 144 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 145 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 146 { .index = MSR_INVALID, .always = false }, 147 }; 148 149 /* 150 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 151 * pause_filter_count: On processors that support Pause filtering(indicated 152 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 153 * count value. On VMRUN this value is loaded into an internal counter. 154 * Each time a pause instruction is executed, this counter is decremented 155 * until it reaches zero at which time a #VMEXIT is generated if pause 156 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 157 * Intercept Filtering for more details. 158 * This also indicate if ple logic enabled. 159 * 160 * pause_filter_thresh: In addition, some processor families support advanced 161 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 162 * the amount of time a guest is allowed to execute in a pause loop. 163 * In this mode, a 16-bit pause filter threshold field is added in the 164 * VMCB. The threshold value is a cycle count that is used to reset the 165 * pause counter. As with simple pause filtering, VMRUN loads the pause 166 * count value from VMCB into an internal counter. Then, on each pause 167 * instruction the hardware checks the elapsed number of cycles since 168 * the most recent pause instruction against the pause filter threshold. 169 * If the elapsed cycle count is greater than the pause filter threshold, 170 * then the internal pause count is reloaded from the VMCB and execution 171 * continues. If the elapsed cycle count is less than the pause filter 172 * threshold, then the internal pause count is decremented. If the count 173 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 174 * triggered. If advanced pause filtering is supported and pause filter 175 * threshold field is set to zero, the filter will operate in the simpler, 176 * count only mode. 177 */ 178 179 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 180 module_param(pause_filter_thresh, ushort, 0444); 181 182 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 183 module_param(pause_filter_count, ushort, 0444); 184 185 /* Default doubles per-vcpu window every exit. */ 186 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 187 module_param(pause_filter_count_grow, ushort, 0444); 188 189 /* Default resets per-vcpu window every exit to pause_filter_count. */ 190 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 191 module_param(pause_filter_count_shrink, ushort, 0444); 192 193 /* Default is to compute the maximum so we can never overflow. */ 194 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 195 module_param(pause_filter_count_max, ushort, 0444); 196 197 /* 198 * Use nested page tables by default. Note, NPT may get forced off by 199 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 200 */ 201 bool npt_enabled = true; 202 module_param_named(npt, npt_enabled, bool, 0444); 203 204 /* allow nested virtualization in KVM/SVM */ 205 static int nested = true; 206 module_param(nested, int, 0444); 207 208 /* enable/disable Next RIP Save */ 209 int nrips = true; 210 module_param(nrips, int, 0444); 211 212 /* enable/disable Virtual VMLOAD VMSAVE */ 213 static int vls = true; 214 module_param(vls, int, 0444); 215 216 /* enable/disable Virtual GIF */ 217 int vgif = true; 218 module_param(vgif, int, 0444); 219 220 /* enable/disable LBR virtualization */ 221 int lbrv = true; 222 module_param(lbrv, int, 0444); 223 224 static int tsc_scaling = true; 225 module_param(tsc_scaling, int, 0444); 226 227 /* 228 * enable / disable AVIC. Because the defaults differ for APICv 229 * support between VMX and SVM we cannot use module_param_named. 230 */ 231 static bool avic; 232 module_param(avic, bool, 0444); 233 234 bool __read_mostly dump_invalid_vmcb; 235 module_param(dump_invalid_vmcb, bool, 0644); 236 237 238 bool intercept_smi = true; 239 module_param(intercept_smi, bool, 0444); 240 241 bool vnmi = true; 242 module_param(vnmi, bool, 0444); 243 244 static bool svm_gp_erratum_intercept = true; 245 246 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 247 248 static unsigned long iopm_base; 249 250 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 251 252 /* 253 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 254 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 255 * 256 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 257 * defer the restoration of TSC_AUX until the CPU returns to userspace. 258 */ 259 static int tsc_aux_uret_slot __read_mostly = -1; 260 261 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 262 263 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 264 #define MSRS_RANGE_SIZE 2048 265 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 266 267 u32 svm_msrpm_offset(u32 msr) 268 { 269 u32 offset; 270 int i; 271 272 for (i = 0; i < NUM_MSR_MAPS; i++) { 273 if (msr < msrpm_ranges[i] || 274 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 275 continue; 276 277 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 278 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 279 280 /* Now we have the u8 offset - but need the u32 offset */ 281 return offset / 4; 282 } 283 284 /* MSR not in any range */ 285 return MSR_INVALID; 286 } 287 288 static int get_npt_level(void) 289 { 290 #ifdef CONFIG_X86_64 291 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 292 #else 293 return PT32E_ROOT_LEVEL; 294 #endif 295 } 296 297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 298 { 299 struct vcpu_svm *svm = to_svm(vcpu); 300 u64 old_efer = vcpu->arch.efer; 301 vcpu->arch.efer = efer; 302 303 if (!npt_enabled) { 304 /* Shadow paging assumes NX to be available. */ 305 efer |= EFER_NX; 306 307 if (!(efer & EFER_LMA)) 308 efer &= ~EFER_LME; 309 } 310 311 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 312 if (!(efer & EFER_SVME)) { 313 svm_leave_nested(vcpu); 314 svm_set_gif(svm, true); 315 /* #GP intercept is still needed for vmware backdoor */ 316 if (!enable_vmware_backdoor) 317 clr_exception_intercept(svm, GP_VECTOR); 318 319 /* 320 * Free the nested guest state, unless we are in SMM. 321 * In this case we will return to the nested guest 322 * as soon as we leave SMM. 323 */ 324 if (!is_smm(vcpu)) 325 svm_free_nested(svm); 326 327 } else { 328 int ret = svm_allocate_nested(svm); 329 330 if (ret) { 331 vcpu->arch.efer = old_efer; 332 return ret; 333 } 334 335 /* 336 * Never intercept #GP for SEV guests, KVM can't 337 * decrypt guest memory to workaround the erratum. 338 */ 339 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 340 set_exception_intercept(svm, GP_VECTOR); 341 } 342 } 343 344 svm->vmcb->save.efer = efer | EFER_SVME; 345 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 346 return 0; 347 } 348 349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 350 { 351 struct vcpu_svm *svm = to_svm(vcpu); 352 u32 ret = 0; 353 354 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 355 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 356 return ret; 357 } 358 359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 360 { 361 struct vcpu_svm *svm = to_svm(vcpu); 362 363 if (mask == 0) 364 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 365 else 366 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 367 368 } 369 370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 371 bool commit_side_effects) 372 { 373 struct vcpu_svm *svm = to_svm(vcpu); 374 unsigned long old_rflags; 375 376 /* 377 * SEV-ES does not expose the next RIP. The RIP update is controlled by 378 * the type of exit and the #VC handler in the guest. 379 */ 380 if (sev_es_guest(vcpu->kvm)) 381 goto done; 382 383 if (nrips && svm->vmcb->control.next_rip != 0) { 384 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 385 svm->next_rip = svm->vmcb->control.next_rip; 386 } 387 388 if (!svm->next_rip) { 389 if (unlikely(!commit_side_effects)) 390 old_rflags = svm->vmcb->save.rflags; 391 392 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 393 return 0; 394 395 if (unlikely(!commit_side_effects)) 396 svm->vmcb->save.rflags = old_rflags; 397 } else { 398 kvm_rip_write(vcpu, svm->next_rip); 399 } 400 401 done: 402 if (likely(commit_side_effects)) 403 svm_set_interrupt_shadow(vcpu, 0); 404 405 return 1; 406 } 407 408 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 409 { 410 return __svm_skip_emulated_instruction(vcpu, true); 411 } 412 413 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 414 { 415 unsigned long rip, old_rip = kvm_rip_read(vcpu); 416 struct vcpu_svm *svm = to_svm(vcpu); 417 418 /* 419 * Due to architectural shortcomings, the CPU doesn't always provide 420 * NextRIP, e.g. if KVM intercepted an exception that occurred while 421 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 422 * the instruction even if NextRIP is supported to acquire the next 423 * RIP so that it can be shoved into the NextRIP field, otherwise 424 * hardware will fail to advance guest RIP during event injection. 425 * Drop the exception/interrupt if emulation fails and effectively 426 * retry the instruction, it's the least awful option. If NRIPS is 427 * in use, the skip must not commit any side effects such as clearing 428 * the interrupt shadow or RFLAGS.RF. 429 */ 430 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 431 return -EIO; 432 433 rip = kvm_rip_read(vcpu); 434 435 /* 436 * Save the injection information, even when using next_rip, as the 437 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 438 * doesn't complete due to a VM-Exit occurring while the CPU is 439 * vectoring the event. Decoding the instruction isn't guaranteed to 440 * work as there may be no backing instruction, e.g. if the event is 441 * being injected by L1 for L2, or if the guest is patching INT3 into 442 * a different instruction. 443 */ 444 svm->soft_int_injected = true; 445 svm->soft_int_csbase = svm->vmcb->save.cs.base; 446 svm->soft_int_old_rip = old_rip; 447 svm->soft_int_next_rip = rip; 448 449 if (nrips) 450 kvm_rip_write(vcpu, old_rip); 451 452 if (static_cpu_has(X86_FEATURE_NRIPS)) 453 svm->vmcb->control.next_rip = rip; 454 455 return 0; 456 } 457 458 static void svm_inject_exception(struct kvm_vcpu *vcpu) 459 { 460 struct kvm_queued_exception *ex = &vcpu->arch.exception; 461 struct vcpu_svm *svm = to_svm(vcpu); 462 463 kvm_deliver_exception_payload(vcpu, ex); 464 465 if (kvm_exception_is_soft(ex->vector) && 466 svm_update_soft_interrupt_rip(vcpu)) 467 return; 468 469 svm->vmcb->control.event_inj = ex->vector 470 | SVM_EVTINJ_VALID 471 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 472 | SVM_EVTINJ_TYPE_EXEPT; 473 svm->vmcb->control.event_inj_err = ex->error_code; 474 } 475 476 static void svm_init_erratum_383(void) 477 { 478 u32 low, high; 479 int err; 480 u64 val; 481 482 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 483 return; 484 485 /* Use _safe variants to not break nested virtualization */ 486 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 487 if (err) 488 return; 489 490 val |= (1ULL << 47); 491 492 low = lower_32_bits(val); 493 high = upper_32_bits(val); 494 495 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 496 497 erratum_383_found = true; 498 } 499 500 static void svm_init_osvw(struct kvm_vcpu *vcpu) 501 { 502 /* 503 * Guests should see errata 400 and 415 as fixed (assuming that 504 * HLT and IO instructions are intercepted). 505 */ 506 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 507 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 508 509 /* 510 * By increasing VCPU's osvw.length to 3 we are telling the guest that 511 * all osvw.status bits inside that length, including bit 0 (which is 512 * reserved for erratum 298), are valid. However, if host processor's 513 * osvw_len is 0 then osvw_status[0] carries no information. We need to 514 * be conservative here and therefore we tell the guest that erratum 298 515 * is present (because we really don't know). 516 */ 517 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 518 vcpu->arch.osvw.status |= 1; 519 } 520 521 static bool __kvm_is_svm_supported(void) 522 { 523 int cpu = smp_processor_id(); 524 struct cpuinfo_x86 *c = &cpu_data(cpu); 525 526 if (c->x86_vendor != X86_VENDOR_AMD && 527 c->x86_vendor != X86_VENDOR_HYGON) { 528 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 529 return false; 530 } 531 532 if (!cpu_has(c, X86_FEATURE_SVM)) { 533 pr_err("SVM not supported by CPU %d\n", cpu); 534 return false; 535 } 536 537 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 538 pr_info("KVM is unsupported when running as an SEV guest\n"); 539 return false; 540 } 541 542 return true; 543 } 544 545 static bool kvm_is_svm_supported(void) 546 { 547 bool supported; 548 549 migrate_disable(); 550 supported = __kvm_is_svm_supported(); 551 migrate_enable(); 552 553 return supported; 554 } 555 556 static int svm_check_processor_compat(void) 557 { 558 if (!__kvm_is_svm_supported()) 559 return -EIO; 560 561 return 0; 562 } 563 564 static void __svm_write_tsc_multiplier(u64 multiplier) 565 { 566 if (multiplier == __this_cpu_read(current_tsc_ratio)) 567 return; 568 569 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 570 __this_cpu_write(current_tsc_ratio, multiplier); 571 } 572 573 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 574 { 575 return &sd->save_area->host_sev_es_save; 576 } 577 578 static inline void kvm_cpu_svm_disable(void) 579 { 580 uint64_t efer; 581 582 wrmsrl(MSR_VM_HSAVE_PA, 0); 583 rdmsrl(MSR_EFER, efer); 584 if (efer & EFER_SVME) { 585 /* 586 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 587 * NMI aren't blocked. 588 */ 589 stgi(); 590 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 591 } 592 } 593 594 static void svm_emergency_disable_virtualization_cpu(void) 595 { 596 kvm_rebooting = true; 597 598 kvm_cpu_svm_disable(); 599 } 600 601 static void svm_disable_virtualization_cpu(void) 602 { 603 /* Make sure we clean up behind us */ 604 if (tsc_scaling) 605 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 606 607 kvm_cpu_svm_disable(); 608 609 amd_pmu_disable_virt(); 610 } 611 612 static int svm_enable_virtualization_cpu(void) 613 { 614 615 struct svm_cpu_data *sd; 616 uint64_t efer; 617 int me = raw_smp_processor_id(); 618 619 rdmsrl(MSR_EFER, efer); 620 if (efer & EFER_SVME) 621 return -EBUSY; 622 623 sd = per_cpu_ptr(&svm_data, me); 624 sd->asid_generation = 1; 625 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 626 sd->next_asid = sd->max_asid + 1; 627 sd->min_asid = max_sev_asid + 1; 628 629 wrmsrl(MSR_EFER, efer | EFER_SVME); 630 631 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 632 633 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 634 /* 635 * Set the default value, even if we don't use TSC scaling 636 * to avoid having stale value in the msr 637 */ 638 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 639 } 640 641 642 /* 643 * Get OSVW bits. 644 * 645 * Note that it is possible to have a system with mixed processor 646 * revisions and therefore different OSVW bits. If bits are not the same 647 * on different processors then choose the worst case (i.e. if erratum 648 * is present on one processor and not on another then assume that the 649 * erratum is present everywhere). 650 */ 651 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 652 uint64_t len, status = 0; 653 int err; 654 655 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 656 if (!err) 657 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 658 &err); 659 660 if (err) 661 osvw_status = osvw_len = 0; 662 else { 663 if (len < osvw_len) 664 osvw_len = len; 665 osvw_status |= status; 666 osvw_status &= (1ULL << osvw_len) - 1; 667 } 668 } else 669 osvw_status = osvw_len = 0; 670 671 svm_init_erratum_383(); 672 673 amd_pmu_enable_virt(); 674 675 /* 676 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 677 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 678 * Since Linux does not change the value of TSC_AUX once set, prime the 679 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 680 */ 681 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 682 u32 __maybe_unused msr_hi; 683 684 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi); 685 } 686 687 return 0; 688 } 689 690 static void svm_cpu_uninit(int cpu) 691 { 692 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 693 694 if (!sd->save_area) 695 return; 696 697 kfree(sd->sev_vmcbs); 698 __free_page(__sme_pa_to_page(sd->save_area_pa)); 699 sd->save_area_pa = 0; 700 sd->save_area = NULL; 701 } 702 703 static int svm_cpu_init(int cpu) 704 { 705 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 706 struct page *save_area_page; 707 int ret = -ENOMEM; 708 709 memset(sd, 0, sizeof(struct svm_cpu_data)); 710 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 711 if (!save_area_page) 712 return ret; 713 714 ret = sev_cpu_init(sd); 715 if (ret) 716 goto free_save_area; 717 718 sd->save_area = page_address(save_area_page); 719 sd->save_area_pa = __sme_page_pa(save_area_page); 720 return 0; 721 722 free_save_area: 723 __free_page(save_area_page); 724 return ret; 725 726 } 727 728 static void set_dr_intercepts(struct vcpu_svm *svm) 729 { 730 struct vmcb *vmcb = svm->vmcb01.ptr; 731 732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 748 749 recalc_intercepts(svm); 750 } 751 752 static void clr_dr_intercepts(struct vcpu_svm *svm) 753 { 754 struct vmcb *vmcb = svm->vmcb01.ptr; 755 756 vmcb->control.intercepts[INTERCEPT_DR] = 0; 757 758 recalc_intercepts(svm); 759 } 760 761 static int direct_access_msr_slot(u32 msr) 762 { 763 u32 i; 764 765 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 766 if (direct_access_msrs[i].index == msr) 767 return i; 768 769 return -ENOENT; 770 } 771 772 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 773 int write) 774 { 775 struct vcpu_svm *svm = to_svm(vcpu); 776 int slot = direct_access_msr_slot(msr); 777 778 if (slot == -ENOENT) 779 return; 780 781 /* Set the shadow bitmaps to the desired intercept states */ 782 if (read) 783 set_bit(slot, svm->shadow_msr_intercept.read); 784 else 785 clear_bit(slot, svm->shadow_msr_intercept.read); 786 787 if (write) 788 set_bit(slot, svm->shadow_msr_intercept.write); 789 else 790 clear_bit(slot, svm->shadow_msr_intercept.write); 791 } 792 793 static bool valid_msr_intercept(u32 index) 794 { 795 return direct_access_msr_slot(index) != -ENOENT; 796 } 797 798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 799 { 800 u8 bit_write; 801 unsigned long tmp; 802 u32 offset; 803 u32 *msrpm; 804 805 /* 806 * For non-nested case: 807 * If the L01 MSR bitmap does not intercept the MSR, then we need to 808 * save it. 809 * 810 * For nested case: 811 * If the L02 MSR bitmap does not intercept the MSR, then we need to 812 * save it. 813 */ 814 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 815 to_svm(vcpu)->msrpm; 816 817 offset = svm_msrpm_offset(msr); 818 bit_write = 2 * (msr & 0x0f) + 1; 819 tmp = msrpm[offset]; 820 821 BUG_ON(offset == MSR_INVALID); 822 823 return test_bit(bit_write, &tmp); 824 } 825 826 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 827 u32 msr, int read, int write) 828 { 829 struct vcpu_svm *svm = to_svm(vcpu); 830 u8 bit_read, bit_write; 831 unsigned long tmp; 832 u32 offset; 833 834 /* 835 * If this warning triggers extend the direct_access_msrs list at the 836 * beginning of the file 837 */ 838 WARN_ON(!valid_msr_intercept(msr)); 839 840 /* Enforce non allowed MSRs to trap */ 841 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 842 read = 0; 843 844 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 845 write = 0; 846 847 offset = svm_msrpm_offset(msr); 848 bit_read = 2 * (msr & 0x0f); 849 bit_write = 2 * (msr & 0x0f) + 1; 850 tmp = msrpm[offset]; 851 852 BUG_ON(offset == MSR_INVALID); 853 854 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 855 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 856 857 msrpm[offset] = tmp; 858 859 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 860 svm->nested.force_msr_bitmap_recalc = true; 861 } 862 863 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 864 int read, int write) 865 { 866 set_shadow_msr_intercept(vcpu, msr, read, write); 867 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 868 } 869 870 u32 *svm_vcpu_alloc_msrpm(void) 871 { 872 unsigned int order = get_order(MSRPM_SIZE); 873 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 874 u32 *msrpm; 875 876 if (!pages) 877 return NULL; 878 879 msrpm = page_address(pages); 880 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 881 882 return msrpm; 883 } 884 885 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 886 { 887 int i; 888 889 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 890 if (!direct_access_msrs[i].always) 891 continue; 892 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 893 } 894 } 895 896 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 897 { 898 int i; 899 900 if (intercept == svm->x2avic_msrs_intercepted) 901 return; 902 903 if (!x2avic_enabled) 904 return; 905 906 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 907 int index = direct_access_msrs[i].index; 908 909 if ((index < APIC_BASE_MSR) || 910 (index > APIC_BASE_MSR + 0xff)) 911 continue; 912 set_msr_interception(&svm->vcpu, svm->msrpm, index, 913 !intercept, !intercept); 914 } 915 916 svm->x2avic_msrs_intercepted = intercept; 917 } 918 919 void svm_vcpu_free_msrpm(u32 *msrpm) 920 { 921 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 922 } 923 924 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 925 { 926 struct vcpu_svm *svm = to_svm(vcpu); 927 u32 i; 928 929 /* 930 * Set intercept permissions for all direct access MSRs again. They 931 * will automatically get filtered through the MSR filter, so we are 932 * back in sync after this. 933 */ 934 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 935 u32 msr = direct_access_msrs[i].index; 936 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 937 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 938 939 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 940 } 941 } 942 943 static void add_msr_offset(u32 offset) 944 { 945 int i; 946 947 for (i = 0; i < MSRPM_OFFSETS; ++i) { 948 949 /* Offset already in list? */ 950 if (msrpm_offsets[i] == offset) 951 return; 952 953 /* Slot used by another offset? */ 954 if (msrpm_offsets[i] != MSR_INVALID) 955 continue; 956 957 /* Add offset to list */ 958 msrpm_offsets[i] = offset; 959 960 return; 961 } 962 963 /* 964 * If this BUG triggers the msrpm_offsets table has an overflow. Just 965 * increase MSRPM_OFFSETS in this case. 966 */ 967 BUG(); 968 } 969 970 static void init_msrpm_offsets(void) 971 { 972 int i; 973 974 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 975 976 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 977 u32 offset; 978 979 offset = svm_msrpm_offset(direct_access_msrs[i].index); 980 BUG_ON(offset == MSR_INVALID); 981 982 add_msr_offset(offset); 983 } 984 } 985 986 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 987 { 988 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 989 to_vmcb->save.br_from = from_vmcb->save.br_from; 990 to_vmcb->save.br_to = from_vmcb->save.br_to; 991 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 992 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 993 994 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 995 } 996 997 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 998 { 999 struct vcpu_svm *svm = to_svm(vcpu); 1000 1001 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1005 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1006 1007 if (sev_es_guest(vcpu->kvm)) 1008 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); 1009 1010 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1011 if (is_guest_mode(vcpu)) 1012 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1013 } 1014 1015 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1016 { 1017 struct vcpu_svm *svm = to_svm(vcpu); 1018 1019 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 1020 1021 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1022 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1025 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1026 1027 /* 1028 * Move the LBR msrs back to the vmcb01 to avoid copying them 1029 * on nested guest entries. 1030 */ 1031 if (is_guest_mode(vcpu)) 1032 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1033 } 1034 1035 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1036 { 1037 /* 1038 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1039 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1040 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1041 */ 1042 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1043 svm->vmcb01.ptr; 1044 } 1045 1046 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1047 { 1048 struct vcpu_svm *svm = to_svm(vcpu); 1049 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1050 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1051 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 1052 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1053 1054 if (enable_lbrv == current_enable_lbrv) 1055 return; 1056 1057 if (enable_lbrv) 1058 svm_enable_lbrv(vcpu); 1059 else 1060 svm_disable_lbrv(vcpu); 1061 } 1062 1063 void disable_nmi_singlestep(struct vcpu_svm *svm) 1064 { 1065 svm->nmi_singlestep = false; 1066 1067 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1068 /* Clear our flags if they were not set by the guest */ 1069 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1070 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1071 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1072 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1073 } 1074 } 1075 1076 static void grow_ple_window(struct kvm_vcpu *vcpu) 1077 { 1078 struct vcpu_svm *svm = to_svm(vcpu); 1079 struct vmcb_control_area *control = &svm->vmcb->control; 1080 int old = control->pause_filter_count; 1081 1082 if (kvm_pause_in_guest(vcpu->kvm)) 1083 return; 1084 1085 control->pause_filter_count = __grow_ple_window(old, 1086 pause_filter_count, 1087 pause_filter_count_grow, 1088 pause_filter_count_max); 1089 1090 if (control->pause_filter_count != old) { 1091 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1092 trace_kvm_ple_window_update(vcpu->vcpu_id, 1093 control->pause_filter_count, old); 1094 } 1095 } 1096 1097 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1098 { 1099 struct vcpu_svm *svm = to_svm(vcpu); 1100 struct vmcb_control_area *control = &svm->vmcb->control; 1101 int old = control->pause_filter_count; 1102 1103 if (kvm_pause_in_guest(vcpu->kvm)) 1104 return; 1105 1106 control->pause_filter_count = 1107 __shrink_ple_window(old, 1108 pause_filter_count, 1109 pause_filter_count_shrink, 1110 pause_filter_count); 1111 if (control->pause_filter_count != old) { 1112 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1113 trace_kvm_ple_window_update(vcpu->vcpu_id, 1114 control->pause_filter_count, old); 1115 } 1116 } 1117 1118 static void svm_hardware_unsetup(void) 1119 { 1120 int cpu; 1121 1122 sev_hardware_unsetup(); 1123 1124 for_each_possible_cpu(cpu) 1125 svm_cpu_uninit(cpu); 1126 1127 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); 1128 iopm_base = 0; 1129 } 1130 1131 static void init_seg(struct vmcb_seg *seg) 1132 { 1133 seg->selector = 0; 1134 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1135 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1136 seg->limit = 0xffff; 1137 seg->base = 0; 1138 } 1139 1140 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1141 { 1142 seg->selector = 0; 1143 seg->attrib = SVM_SELECTOR_P_MASK | type; 1144 seg->limit = 0xffff; 1145 seg->base = 0; 1146 } 1147 1148 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1149 { 1150 struct vcpu_svm *svm = to_svm(vcpu); 1151 1152 return svm->nested.ctl.tsc_offset; 1153 } 1154 1155 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1156 { 1157 struct vcpu_svm *svm = to_svm(vcpu); 1158 1159 return svm->tsc_ratio_msr; 1160 } 1161 1162 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1163 { 1164 struct vcpu_svm *svm = to_svm(vcpu); 1165 1166 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1167 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1168 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1169 } 1170 1171 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1172 { 1173 preempt_disable(); 1174 if (to_svm(vcpu)->guest_state_loaded) 1175 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1176 preempt_enable(); 1177 } 1178 1179 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1180 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1181 struct vcpu_svm *svm) 1182 { 1183 /* 1184 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1185 * roots, or if INVPCID is disabled in the guest to inject #UD. 1186 */ 1187 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1188 if (!npt_enabled || 1189 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1190 svm_set_intercept(svm, INTERCEPT_INVPCID); 1191 else 1192 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1193 } 1194 1195 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1196 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP)) 1197 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1198 else 1199 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1200 } 1201 } 1202 1203 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1204 { 1205 struct vcpu_svm *svm = to_svm(vcpu); 1206 1207 if (guest_cpuid_is_intel_compatible(vcpu)) { 1208 /* 1209 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1210 * accesses because the processor only stores 32 bits. 1211 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1212 */ 1213 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1214 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1215 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1216 1217 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1218 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1219 } else { 1220 /* 1221 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1222 * in VMCB and clear intercepts to avoid #VMEXIT. 1223 */ 1224 if (vls) { 1225 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1226 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1227 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1228 } 1229 /* No need to intercept these MSRs */ 1230 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1231 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1232 } 1233 } 1234 1235 static void init_vmcb(struct kvm_vcpu *vcpu) 1236 { 1237 struct vcpu_svm *svm = to_svm(vcpu); 1238 struct vmcb *vmcb = svm->vmcb01.ptr; 1239 struct vmcb_control_area *control = &vmcb->control; 1240 struct vmcb_save_area *save = &vmcb->save; 1241 1242 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1243 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1244 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1245 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1246 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1247 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1248 if (!kvm_vcpu_apicv_active(vcpu)) 1249 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1250 1251 set_dr_intercepts(svm); 1252 1253 set_exception_intercept(svm, PF_VECTOR); 1254 set_exception_intercept(svm, UD_VECTOR); 1255 set_exception_intercept(svm, MC_VECTOR); 1256 set_exception_intercept(svm, AC_VECTOR); 1257 set_exception_intercept(svm, DB_VECTOR); 1258 /* 1259 * Guest access to VMware backdoor ports could legitimately 1260 * trigger #GP because of TSS I/O permission bitmap. 1261 * We intercept those #GP and allow access to them anyway 1262 * as VMware does. 1263 */ 1264 if (enable_vmware_backdoor) 1265 set_exception_intercept(svm, GP_VECTOR); 1266 1267 svm_set_intercept(svm, INTERCEPT_INTR); 1268 svm_set_intercept(svm, INTERCEPT_NMI); 1269 1270 if (intercept_smi) 1271 svm_set_intercept(svm, INTERCEPT_SMI); 1272 1273 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1274 svm_set_intercept(svm, INTERCEPT_RDPMC); 1275 svm_set_intercept(svm, INTERCEPT_CPUID); 1276 svm_set_intercept(svm, INTERCEPT_INVD); 1277 svm_set_intercept(svm, INTERCEPT_INVLPG); 1278 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1279 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1280 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1281 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1282 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1283 svm_set_intercept(svm, INTERCEPT_VMRUN); 1284 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1285 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1286 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1287 svm_set_intercept(svm, INTERCEPT_STGI); 1288 svm_set_intercept(svm, INTERCEPT_CLGI); 1289 svm_set_intercept(svm, INTERCEPT_SKINIT); 1290 svm_set_intercept(svm, INTERCEPT_WBINVD); 1291 svm_set_intercept(svm, INTERCEPT_XSETBV); 1292 svm_set_intercept(svm, INTERCEPT_RDPRU); 1293 svm_set_intercept(svm, INTERCEPT_RSM); 1294 1295 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1296 svm_set_intercept(svm, INTERCEPT_MONITOR); 1297 svm_set_intercept(svm, INTERCEPT_MWAIT); 1298 } 1299 1300 if (!kvm_hlt_in_guest(vcpu->kvm)) { 1301 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT)) 1302 svm_set_intercept(svm, INTERCEPT_IDLE_HLT); 1303 else 1304 svm_set_intercept(svm, INTERCEPT_HLT); 1305 } 1306 1307 control->iopm_base_pa = iopm_base; 1308 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1309 control->int_ctl = V_INTR_MASKING_MASK; 1310 1311 init_seg(&save->es); 1312 init_seg(&save->ss); 1313 init_seg(&save->ds); 1314 init_seg(&save->fs); 1315 init_seg(&save->gs); 1316 1317 save->cs.selector = 0xf000; 1318 save->cs.base = 0xffff0000; 1319 /* Executable/Readable Code Segment */ 1320 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1321 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1322 save->cs.limit = 0xffff; 1323 1324 save->gdtr.base = 0; 1325 save->gdtr.limit = 0xffff; 1326 save->idtr.base = 0; 1327 save->idtr.limit = 0xffff; 1328 1329 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1330 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1331 1332 if (npt_enabled) { 1333 /* Setup VMCB for Nested Paging */ 1334 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1335 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1336 clr_exception_intercept(svm, PF_VECTOR); 1337 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1338 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1339 save->g_pat = vcpu->arch.pat; 1340 save->cr3 = 0; 1341 } 1342 svm->current_vmcb->asid_generation = 0; 1343 svm->asid = 0; 1344 1345 svm->nested.vmcb12_gpa = INVALID_GPA; 1346 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1347 1348 if (!kvm_pause_in_guest(vcpu->kvm)) { 1349 control->pause_filter_count = pause_filter_count; 1350 if (pause_filter_thresh) 1351 control->pause_filter_thresh = pause_filter_thresh; 1352 svm_set_intercept(svm, INTERCEPT_PAUSE); 1353 } else { 1354 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1355 } 1356 1357 svm_recalc_instruction_intercepts(vcpu, svm); 1358 1359 /* 1360 * If the host supports V_SPEC_CTRL then disable the interception 1361 * of MSR_IA32_SPEC_CTRL. 1362 */ 1363 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1364 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1365 1366 if (kvm_vcpu_apicv_active(vcpu)) 1367 avic_init_vmcb(svm, vmcb); 1368 1369 if (vnmi) 1370 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1371 1372 if (vgif) { 1373 svm_clr_intercept(svm, INTERCEPT_STGI); 1374 svm_clr_intercept(svm, INTERCEPT_CLGI); 1375 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1376 } 1377 1378 if (sev_guest(vcpu->kvm)) 1379 sev_init_vmcb(svm); 1380 1381 svm_hv_init_vmcb(vmcb); 1382 init_vmcb_after_set_cpuid(vcpu); 1383 1384 vmcb_mark_all_dirty(vmcb); 1385 1386 enable_gif(svm); 1387 } 1388 1389 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1390 { 1391 struct vcpu_svm *svm = to_svm(vcpu); 1392 1393 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1394 1395 svm_init_osvw(vcpu); 1396 1397 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 1398 vcpu->arch.microcode_version = 0x01000065; 1399 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1400 1401 svm->nmi_masked = false; 1402 svm->awaiting_iret_completion = false; 1403 1404 if (sev_es_guest(vcpu->kvm)) 1405 sev_es_vcpu_reset(svm); 1406 } 1407 1408 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1409 { 1410 struct vcpu_svm *svm = to_svm(vcpu); 1411 1412 svm->spec_ctrl = 0; 1413 svm->virt_spec_ctrl = 0; 1414 1415 if (init_event) 1416 sev_snp_init_protected_guest_state(vcpu); 1417 1418 init_vmcb(vcpu); 1419 1420 if (!init_event) 1421 __svm_vcpu_reset(vcpu); 1422 } 1423 1424 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1425 { 1426 svm->current_vmcb = target_vmcb; 1427 svm->vmcb = target_vmcb->ptr; 1428 } 1429 1430 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1431 { 1432 struct vcpu_svm *svm; 1433 struct page *vmcb01_page; 1434 struct page *vmsa_page = NULL; 1435 int err; 1436 1437 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1438 svm = to_svm(vcpu); 1439 1440 err = -ENOMEM; 1441 vmcb01_page = snp_safe_alloc_page(); 1442 if (!vmcb01_page) 1443 goto out; 1444 1445 if (sev_es_guest(vcpu->kvm)) { 1446 /* 1447 * SEV-ES guests require a separate VMSA page used to contain 1448 * the encrypted register state of the guest. 1449 */ 1450 vmsa_page = snp_safe_alloc_page(); 1451 if (!vmsa_page) 1452 goto error_free_vmcb_page; 1453 } 1454 1455 err = avic_init_vcpu(svm); 1456 if (err) 1457 goto error_free_vmsa_page; 1458 1459 svm->msrpm = svm_vcpu_alloc_msrpm(); 1460 if (!svm->msrpm) { 1461 err = -ENOMEM; 1462 goto error_free_vmsa_page; 1463 } 1464 1465 svm->x2avic_msrs_intercepted = true; 1466 1467 svm->vmcb01.ptr = page_address(vmcb01_page); 1468 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1469 svm_switch_vmcb(svm, &svm->vmcb01); 1470 1471 if (vmsa_page) 1472 svm->sev_es.vmsa = page_address(vmsa_page); 1473 1474 svm->guest_state_loaded = false; 1475 1476 return 0; 1477 1478 error_free_vmsa_page: 1479 if (vmsa_page) 1480 __free_page(vmsa_page); 1481 error_free_vmcb_page: 1482 __free_page(vmcb01_page); 1483 out: 1484 return err; 1485 } 1486 1487 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1488 { 1489 int i; 1490 1491 for_each_online_cpu(i) 1492 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1493 } 1494 1495 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1496 { 1497 struct vcpu_svm *svm = to_svm(vcpu); 1498 1499 /* 1500 * The vmcb page can be recycled, causing a false negative in 1501 * svm_vcpu_load(). So, ensure that no logical CPU has this 1502 * vmcb page recorded as its current vmcb. 1503 */ 1504 svm_clear_current_vmcb(svm->vmcb); 1505 1506 svm_leave_nested(vcpu); 1507 svm_free_nested(svm); 1508 1509 sev_free_vcpu(vcpu); 1510 1511 __free_page(__sme_pa_to_page(svm->vmcb01.pa)); 1512 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1513 } 1514 1515 #ifdef CONFIG_CPU_MITIGATIONS 1516 static DEFINE_SPINLOCK(srso_lock); 1517 static atomic_t srso_nr_vms; 1518 1519 static void svm_srso_clear_bp_spec_reduce(void *ign) 1520 { 1521 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data); 1522 1523 if (!sd->bp_spec_reduce_set) 1524 return; 1525 1526 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1527 sd->bp_spec_reduce_set = false; 1528 } 1529 1530 static void svm_srso_vm_destroy(void) 1531 { 1532 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1533 return; 1534 1535 if (atomic_dec_return(&srso_nr_vms)) 1536 return; 1537 1538 guard(spinlock)(&srso_lock); 1539 1540 /* 1541 * Verify a new VM didn't come along, acquire the lock, and increment 1542 * the count before this task acquired the lock. 1543 */ 1544 if (atomic_read(&srso_nr_vms)) 1545 return; 1546 1547 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1); 1548 } 1549 1550 static void svm_srso_vm_init(void) 1551 { 1552 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1553 return; 1554 1555 /* 1556 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0 1557 * transition, i.e. destroying the last VM, is fully complete, e.g. so 1558 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs. 1559 */ 1560 if (atomic_inc_not_zero(&srso_nr_vms)) 1561 return; 1562 1563 guard(spinlock)(&srso_lock); 1564 1565 atomic_inc(&srso_nr_vms); 1566 } 1567 #else 1568 static void svm_srso_vm_init(void) { } 1569 static void svm_srso_vm_destroy(void) { } 1570 #endif 1571 1572 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1573 { 1574 struct vcpu_svm *svm = to_svm(vcpu); 1575 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1576 1577 if (sev_es_guest(vcpu->kvm)) 1578 sev_es_unmap_ghcb(svm); 1579 1580 if (svm->guest_state_loaded) 1581 return; 1582 1583 /* 1584 * Save additional host state that will be restored on VMEXIT (sev-es) 1585 * or subsequent vmload of host save area. 1586 */ 1587 vmsave(sd->save_area_pa); 1588 if (sev_es_guest(vcpu->kvm)) 1589 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1590 1591 if (tsc_scaling) 1592 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1593 1594 /* 1595 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1596 * available. The user return MSR support is not required in this case 1597 * because TSC_AUX is restored on #VMEXIT from the host save area 1598 * (which has been initialized in svm_enable_virtualization_cpu()). 1599 */ 1600 if (likely(tsc_aux_uret_slot >= 0) && 1601 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1602 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1603 1604 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) && 1605 !sd->bp_spec_reduce_set) { 1606 sd->bp_spec_reduce_set = true; 1607 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1608 } 1609 svm->guest_state_loaded = true; 1610 } 1611 1612 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1613 { 1614 to_svm(vcpu)->guest_state_loaded = false; 1615 } 1616 1617 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1618 { 1619 struct vcpu_svm *svm = to_svm(vcpu); 1620 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1621 1622 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1623 shrink_ple_window(vcpu); 1624 1625 if (sd->current_vmcb != svm->vmcb) { 1626 sd->current_vmcb = svm->vmcb; 1627 1628 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT) && 1629 static_branch_likely(&switch_vcpu_ibpb)) 1630 indirect_branch_prediction_barrier(); 1631 } 1632 if (kvm_vcpu_apicv_active(vcpu)) 1633 avic_vcpu_load(vcpu, cpu); 1634 } 1635 1636 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1637 { 1638 if (kvm_vcpu_apicv_active(vcpu)) 1639 avic_vcpu_put(vcpu); 1640 1641 svm_prepare_host_switch(vcpu); 1642 1643 ++vcpu->stat.host_state_reload; 1644 } 1645 1646 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1647 { 1648 struct vcpu_svm *svm = to_svm(vcpu); 1649 unsigned long rflags = svm->vmcb->save.rflags; 1650 1651 if (svm->nmi_singlestep) { 1652 /* Hide our flags if they were not set by the guest */ 1653 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1654 rflags &= ~X86_EFLAGS_TF; 1655 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1656 rflags &= ~X86_EFLAGS_RF; 1657 } 1658 return rflags; 1659 } 1660 1661 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1662 { 1663 if (to_svm(vcpu)->nmi_singlestep) 1664 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1665 1666 /* 1667 * Any change of EFLAGS.VM is accompanied by a reload of SS 1668 * (caused by either a task switch or an inter-privilege IRET), 1669 * so we do not need to update the CPL here. 1670 */ 1671 to_svm(vcpu)->vmcb->save.rflags = rflags; 1672 } 1673 1674 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1675 { 1676 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1677 1678 return sev_es_guest(vcpu->kvm) 1679 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1680 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1681 } 1682 1683 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1684 { 1685 kvm_register_mark_available(vcpu, reg); 1686 1687 switch (reg) { 1688 case VCPU_EXREG_PDPTR: 1689 /* 1690 * When !npt_enabled, mmu->pdptrs[] is already available since 1691 * it is always updated per SDM when moving to CRs. 1692 */ 1693 if (npt_enabled) 1694 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1695 break; 1696 default: 1697 KVM_BUG_ON(1, vcpu->kvm); 1698 } 1699 } 1700 1701 static void svm_set_vintr(struct vcpu_svm *svm) 1702 { 1703 struct vmcb_control_area *control; 1704 1705 /* 1706 * The following fields are ignored when AVIC is enabled 1707 */ 1708 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1709 1710 svm_set_intercept(svm, INTERCEPT_VINTR); 1711 1712 /* 1713 * Recalculating intercepts may have cleared the VINTR intercept. If 1714 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1715 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1716 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1717 * interrupts will never be unblocked while L2 is running. 1718 */ 1719 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1720 return; 1721 1722 /* 1723 * This is just a dummy VINTR to actually cause a vmexit to happen. 1724 * Actual injection of virtual interrupts happens through EVENTINJ. 1725 */ 1726 control = &svm->vmcb->control; 1727 control->int_vector = 0x0; 1728 control->int_ctl &= ~V_INTR_PRIO_MASK; 1729 control->int_ctl |= V_IRQ_MASK | 1730 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1731 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1732 } 1733 1734 static void svm_clear_vintr(struct vcpu_svm *svm) 1735 { 1736 svm_clr_intercept(svm, INTERCEPT_VINTR); 1737 1738 /* Drop int_ctl fields related to VINTR injection. */ 1739 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1740 if (is_guest_mode(&svm->vcpu)) { 1741 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1742 1743 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1744 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1745 1746 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1747 V_IRQ_INJECTION_BITS_MASK; 1748 1749 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1750 } 1751 1752 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1753 } 1754 1755 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1756 { 1757 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1758 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1759 1760 switch (seg) { 1761 case VCPU_SREG_CS: return &save->cs; 1762 case VCPU_SREG_DS: return &save->ds; 1763 case VCPU_SREG_ES: return &save->es; 1764 case VCPU_SREG_FS: return &save01->fs; 1765 case VCPU_SREG_GS: return &save01->gs; 1766 case VCPU_SREG_SS: return &save->ss; 1767 case VCPU_SREG_TR: return &save01->tr; 1768 case VCPU_SREG_LDTR: return &save01->ldtr; 1769 } 1770 BUG(); 1771 return NULL; 1772 } 1773 1774 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1775 { 1776 struct vmcb_seg *s = svm_seg(vcpu, seg); 1777 1778 return s->base; 1779 } 1780 1781 static void svm_get_segment(struct kvm_vcpu *vcpu, 1782 struct kvm_segment *var, int seg) 1783 { 1784 struct vmcb_seg *s = svm_seg(vcpu, seg); 1785 1786 var->base = s->base; 1787 var->limit = s->limit; 1788 var->selector = s->selector; 1789 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1790 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1791 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1792 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1793 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1794 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1795 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1796 1797 /* 1798 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1799 * However, the SVM spec states that the G bit is not observed by the 1800 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1801 * So let's synthesize a legal G bit for all segments, this helps 1802 * running KVM nested. It also helps cross-vendor migration, because 1803 * Intel's vmentry has a check on the 'G' bit. 1804 */ 1805 var->g = s->limit > 0xfffff; 1806 1807 /* 1808 * AMD's VMCB does not have an explicit unusable field, so emulate it 1809 * for cross vendor migration purposes by "not present" 1810 */ 1811 var->unusable = !var->present; 1812 1813 switch (seg) { 1814 case VCPU_SREG_TR: 1815 /* 1816 * Work around a bug where the busy flag in the tr selector 1817 * isn't exposed 1818 */ 1819 var->type |= 0x2; 1820 break; 1821 case VCPU_SREG_DS: 1822 case VCPU_SREG_ES: 1823 case VCPU_SREG_FS: 1824 case VCPU_SREG_GS: 1825 /* 1826 * The accessed bit must always be set in the segment 1827 * descriptor cache, although it can be cleared in the 1828 * descriptor, the cached bit always remains at 1. Since 1829 * Intel has a check on this, set it here to support 1830 * cross-vendor migration. 1831 */ 1832 if (!var->unusable) 1833 var->type |= 0x1; 1834 break; 1835 case VCPU_SREG_SS: 1836 /* 1837 * On AMD CPUs sometimes the DB bit in the segment 1838 * descriptor is left as 1, although the whole segment has 1839 * been made unusable. Clear it here to pass an Intel VMX 1840 * entry check when cross vendor migrating. 1841 */ 1842 if (var->unusable) 1843 var->db = 0; 1844 /* This is symmetric with svm_set_segment() */ 1845 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1846 break; 1847 } 1848 } 1849 1850 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1851 { 1852 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1853 1854 return save->cpl; 1855 } 1856 1857 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1858 { 1859 struct kvm_segment cs; 1860 1861 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1862 *db = cs.db; 1863 *l = cs.l; 1864 } 1865 1866 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1867 { 1868 struct vcpu_svm *svm = to_svm(vcpu); 1869 1870 dt->size = svm->vmcb->save.idtr.limit; 1871 dt->address = svm->vmcb->save.idtr.base; 1872 } 1873 1874 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1875 { 1876 struct vcpu_svm *svm = to_svm(vcpu); 1877 1878 svm->vmcb->save.idtr.limit = dt->size; 1879 svm->vmcb->save.idtr.base = dt->address ; 1880 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1881 } 1882 1883 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1884 { 1885 struct vcpu_svm *svm = to_svm(vcpu); 1886 1887 dt->size = svm->vmcb->save.gdtr.limit; 1888 dt->address = svm->vmcb->save.gdtr.base; 1889 } 1890 1891 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1892 { 1893 struct vcpu_svm *svm = to_svm(vcpu); 1894 1895 svm->vmcb->save.gdtr.limit = dt->size; 1896 svm->vmcb->save.gdtr.base = dt->address ; 1897 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1898 } 1899 1900 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1901 { 1902 struct vcpu_svm *svm = to_svm(vcpu); 1903 1904 /* 1905 * For guests that don't set guest_state_protected, the cr3 update is 1906 * handled via kvm_mmu_load() while entering the guest. For guests 1907 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1908 * VMCB save area now, since the save area will become the initial 1909 * contents of the VMSA, and future VMCB save area updates won't be 1910 * seen. 1911 */ 1912 if (sev_es_guest(vcpu->kvm)) { 1913 svm->vmcb->save.cr3 = cr3; 1914 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1915 } 1916 } 1917 1918 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1919 { 1920 return true; 1921 } 1922 1923 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1924 { 1925 struct vcpu_svm *svm = to_svm(vcpu); 1926 u64 hcr0 = cr0; 1927 bool old_paging = is_paging(vcpu); 1928 1929 #ifdef CONFIG_X86_64 1930 if (vcpu->arch.efer & EFER_LME) { 1931 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1932 vcpu->arch.efer |= EFER_LMA; 1933 if (!vcpu->arch.guest_state_protected) 1934 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1935 } 1936 1937 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1938 vcpu->arch.efer &= ~EFER_LMA; 1939 if (!vcpu->arch.guest_state_protected) 1940 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1941 } 1942 } 1943 #endif 1944 vcpu->arch.cr0 = cr0; 1945 1946 if (!npt_enabled) { 1947 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1948 if (old_paging != is_paging(vcpu)) 1949 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1950 } 1951 1952 /* 1953 * re-enable caching here because the QEMU bios 1954 * does not do it - this results in some delay at 1955 * reboot 1956 */ 1957 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1958 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1959 1960 svm->vmcb->save.cr0 = hcr0; 1961 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1962 1963 /* 1964 * SEV-ES guests must always keep the CR intercepts cleared. CR 1965 * tracking is done using the CR write traps. 1966 */ 1967 if (sev_es_guest(vcpu->kvm)) 1968 return; 1969 1970 if (hcr0 == cr0) { 1971 /* Selective CR0 write remains on. */ 1972 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1973 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1974 } else { 1975 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1976 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1977 } 1978 } 1979 1980 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1981 { 1982 return true; 1983 } 1984 1985 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1986 { 1987 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1988 unsigned long old_cr4 = vcpu->arch.cr4; 1989 1990 vcpu->arch.cr4 = cr4; 1991 if (!npt_enabled) { 1992 cr4 |= X86_CR4_PAE; 1993 1994 if (!is_paging(vcpu)) 1995 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1996 } 1997 cr4 |= host_cr4_mce; 1998 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1999 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 2000 2001 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 2002 vcpu->arch.cpuid_dynamic_bits_dirty = true; 2003 } 2004 2005 static void svm_set_segment(struct kvm_vcpu *vcpu, 2006 struct kvm_segment *var, int seg) 2007 { 2008 struct vcpu_svm *svm = to_svm(vcpu); 2009 struct vmcb_seg *s = svm_seg(vcpu, seg); 2010 2011 s->base = var->base; 2012 s->limit = var->limit; 2013 s->selector = var->selector; 2014 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 2015 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 2016 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 2017 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 2018 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 2019 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 2020 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 2021 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 2022 2023 /* 2024 * This is always accurate, except if SYSRET returned to a segment 2025 * with SS.DPL != 3. Intel does not have this quirk, and always 2026 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 2027 * would entail passing the CPL to userspace and back. 2028 */ 2029 if (seg == VCPU_SREG_SS) 2030 /* This is symmetric with svm_get_segment() */ 2031 svm->vmcb->save.cpl = (var->dpl & 3); 2032 2033 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 2034 } 2035 2036 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 2037 { 2038 struct vcpu_svm *svm = to_svm(vcpu); 2039 2040 clr_exception_intercept(svm, BP_VECTOR); 2041 2042 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 2043 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 2044 set_exception_intercept(svm, BP_VECTOR); 2045 } 2046 } 2047 2048 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 2049 { 2050 if (sd->next_asid > sd->max_asid) { 2051 ++sd->asid_generation; 2052 sd->next_asid = sd->min_asid; 2053 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 2054 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2055 } 2056 2057 svm->current_vmcb->asid_generation = sd->asid_generation; 2058 svm->asid = sd->next_asid++; 2059 } 2060 2061 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) 2062 { 2063 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 2064 2065 if (vcpu->arch.guest_state_protected) 2066 return; 2067 2068 if (unlikely(value != vmcb->save.dr6)) { 2069 vmcb->save.dr6 = value; 2070 vmcb_mark_dirty(vmcb, VMCB_DR); 2071 } 2072 } 2073 2074 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2075 { 2076 struct vcpu_svm *svm = to_svm(vcpu); 2077 2078 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2079 return; 2080 2081 get_debugreg(vcpu->arch.db[0], 0); 2082 get_debugreg(vcpu->arch.db[1], 1); 2083 get_debugreg(vcpu->arch.db[2], 2); 2084 get_debugreg(vcpu->arch.db[3], 3); 2085 /* 2086 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2087 * because db_interception might need it. We can do it before vmentry. 2088 */ 2089 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2090 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2091 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2092 set_dr_intercepts(svm); 2093 } 2094 2095 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2096 { 2097 struct vcpu_svm *svm = to_svm(vcpu); 2098 2099 if (vcpu->arch.guest_state_protected) 2100 return; 2101 2102 svm->vmcb->save.dr7 = value; 2103 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2104 } 2105 2106 static int pf_interception(struct kvm_vcpu *vcpu) 2107 { 2108 struct vcpu_svm *svm = to_svm(vcpu); 2109 2110 u64 fault_address = svm->vmcb->control.exit_info_2; 2111 u64 error_code = svm->vmcb->control.exit_info_1; 2112 2113 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2114 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2115 svm->vmcb->control.insn_bytes : NULL, 2116 svm->vmcb->control.insn_len); 2117 } 2118 2119 static int npf_interception(struct kvm_vcpu *vcpu) 2120 { 2121 struct vcpu_svm *svm = to_svm(vcpu); 2122 int rc; 2123 2124 u64 fault_address = svm->vmcb->control.exit_info_2; 2125 u64 error_code = svm->vmcb->control.exit_info_1; 2126 2127 /* 2128 * WARN if hardware generates a fault with an error code that collides 2129 * with KVM-defined sythentic flags. Clear the flags and continue on, 2130 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 2131 * flag that KVM doesn't know about. 2132 */ 2133 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 2134 error_code &= ~PFERR_SYNTHETIC_MASK; 2135 2136 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 2137 error_code |= PFERR_PRIVATE_ACCESS; 2138 2139 trace_kvm_page_fault(vcpu, fault_address, error_code); 2140 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, 2141 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2142 svm->vmcb->control.insn_bytes : NULL, 2143 svm->vmcb->control.insn_len); 2144 2145 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 2146 sev_handle_rmp_fault(vcpu, fault_address, error_code); 2147 2148 return rc; 2149 } 2150 2151 static int db_interception(struct kvm_vcpu *vcpu) 2152 { 2153 struct kvm_run *kvm_run = vcpu->run; 2154 struct vcpu_svm *svm = to_svm(vcpu); 2155 2156 if (!(vcpu->guest_debug & 2157 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2158 !svm->nmi_singlestep) { 2159 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2160 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2161 return 1; 2162 } 2163 2164 if (svm->nmi_singlestep) { 2165 disable_nmi_singlestep(svm); 2166 /* Make sure we check for pending NMIs upon entry */ 2167 kvm_make_request(KVM_REQ_EVENT, vcpu); 2168 } 2169 2170 if (vcpu->guest_debug & 2171 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2172 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2173 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2174 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2175 kvm_run->debug.arch.pc = 2176 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2177 kvm_run->debug.arch.exception = DB_VECTOR; 2178 return 0; 2179 } 2180 2181 return 1; 2182 } 2183 2184 static int bp_interception(struct kvm_vcpu *vcpu) 2185 { 2186 struct vcpu_svm *svm = to_svm(vcpu); 2187 struct kvm_run *kvm_run = vcpu->run; 2188 2189 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2190 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2191 kvm_run->debug.arch.exception = BP_VECTOR; 2192 return 0; 2193 } 2194 2195 static int ud_interception(struct kvm_vcpu *vcpu) 2196 { 2197 return handle_ud(vcpu); 2198 } 2199 2200 static int ac_interception(struct kvm_vcpu *vcpu) 2201 { 2202 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2203 return 1; 2204 } 2205 2206 static bool is_erratum_383(void) 2207 { 2208 int err, i; 2209 u64 value; 2210 2211 if (!erratum_383_found) 2212 return false; 2213 2214 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2215 if (err) 2216 return false; 2217 2218 /* Bit 62 may or may not be set for this mce */ 2219 value &= ~(1ULL << 62); 2220 2221 if (value != 0xb600000000010015ULL) 2222 return false; 2223 2224 /* Clear MCi_STATUS registers */ 2225 for (i = 0; i < 6; ++i) 2226 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2227 2228 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2229 if (!err) { 2230 u32 low, high; 2231 2232 value &= ~(1ULL << 2); 2233 low = lower_32_bits(value); 2234 high = upper_32_bits(value); 2235 2236 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2237 } 2238 2239 /* Flush tlb to evict multi-match entries */ 2240 __flush_tlb_all(); 2241 2242 return true; 2243 } 2244 2245 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2246 { 2247 if (is_erratum_383()) { 2248 /* 2249 * Erratum 383 triggered. Guest state is corrupt so kill the 2250 * guest. 2251 */ 2252 pr_err("Guest triggered AMD Erratum 383\n"); 2253 2254 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2255 2256 return; 2257 } 2258 2259 /* 2260 * On an #MC intercept the MCE handler is not called automatically in 2261 * the host. So do it by hand here. 2262 */ 2263 kvm_machine_check(); 2264 } 2265 2266 static int mc_interception(struct kvm_vcpu *vcpu) 2267 { 2268 return 1; 2269 } 2270 2271 static int shutdown_interception(struct kvm_vcpu *vcpu) 2272 { 2273 struct kvm_run *kvm_run = vcpu->run; 2274 struct vcpu_svm *svm = to_svm(vcpu); 2275 2276 2277 /* 2278 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2279 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2280 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2281 * userspace. At a platform view, INIT is acceptable behavior as 2282 * there exist bare metal platforms that automatically INIT the CPU 2283 * in response to shutdown. 2284 * 2285 * The VM save area for SEV-ES guests has already been encrypted so it 2286 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2287 */ 2288 if (!sev_es_guest(vcpu->kvm)) { 2289 clear_page(svm->vmcb); 2290 #ifdef CONFIG_KVM_SMM 2291 if (is_smm(vcpu)) 2292 kvm_smm_changed(vcpu, false); 2293 #endif 2294 kvm_vcpu_reset(vcpu, true); 2295 } 2296 2297 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2298 return 0; 2299 } 2300 2301 static int io_interception(struct kvm_vcpu *vcpu) 2302 { 2303 struct vcpu_svm *svm = to_svm(vcpu); 2304 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2305 int size, in, string; 2306 unsigned port; 2307 2308 ++vcpu->stat.io_exits; 2309 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2310 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2311 port = io_info >> 16; 2312 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2313 2314 if (string) { 2315 if (sev_es_guest(vcpu->kvm)) 2316 return sev_es_string_io(svm, size, port, in); 2317 else 2318 return kvm_emulate_instruction(vcpu, 0); 2319 } 2320 2321 svm->next_rip = svm->vmcb->control.exit_info_2; 2322 2323 return kvm_fast_pio(vcpu, size, port, in); 2324 } 2325 2326 static int nmi_interception(struct kvm_vcpu *vcpu) 2327 { 2328 return 1; 2329 } 2330 2331 static int smi_interception(struct kvm_vcpu *vcpu) 2332 { 2333 return 1; 2334 } 2335 2336 static int intr_interception(struct kvm_vcpu *vcpu) 2337 { 2338 ++vcpu->stat.irq_exits; 2339 return 1; 2340 } 2341 2342 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2343 { 2344 struct vcpu_svm *svm = to_svm(vcpu); 2345 struct vmcb *vmcb12; 2346 struct kvm_host_map map; 2347 int ret; 2348 2349 if (nested_svm_check_permissions(vcpu)) 2350 return 1; 2351 2352 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2353 if (ret) { 2354 if (ret == -EINVAL) 2355 kvm_inject_gp(vcpu, 0); 2356 return 1; 2357 } 2358 2359 vmcb12 = map.hva; 2360 2361 ret = kvm_skip_emulated_instruction(vcpu); 2362 2363 if (vmload) { 2364 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2365 svm->sysenter_eip_hi = 0; 2366 svm->sysenter_esp_hi = 0; 2367 } else { 2368 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2369 } 2370 2371 kvm_vcpu_unmap(vcpu, &map); 2372 2373 return ret; 2374 } 2375 2376 static int vmload_interception(struct kvm_vcpu *vcpu) 2377 { 2378 return vmload_vmsave_interception(vcpu, true); 2379 } 2380 2381 static int vmsave_interception(struct kvm_vcpu *vcpu) 2382 { 2383 return vmload_vmsave_interception(vcpu, false); 2384 } 2385 2386 static int vmrun_interception(struct kvm_vcpu *vcpu) 2387 { 2388 if (nested_svm_check_permissions(vcpu)) 2389 return 1; 2390 2391 return nested_svm_vmrun(vcpu); 2392 } 2393 2394 enum { 2395 NONE_SVM_INSTR, 2396 SVM_INSTR_VMRUN, 2397 SVM_INSTR_VMLOAD, 2398 SVM_INSTR_VMSAVE, 2399 }; 2400 2401 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2402 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2403 { 2404 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2405 2406 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2407 return NONE_SVM_INSTR; 2408 2409 switch (ctxt->modrm) { 2410 case 0xd8: /* VMRUN */ 2411 return SVM_INSTR_VMRUN; 2412 case 0xda: /* VMLOAD */ 2413 return SVM_INSTR_VMLOAD; 2414 case 0xdb: /* VMSAVE */ 2415 return SVM_INSTR_VMSAVE; 2416 default: 2417 break; 2418 } 2419 2420 return NONE_SVM_INSTR; 2421 } 2422 2423 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2424 { 2425 const int guest_mode_exit_codes[] = { 2426 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2427 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2428 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2429 }; 2430 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2431 [SVM_INSTR_VMRUN] = vmrun_interception, 2432 [SVM_INSTR_VMLOAD] = vmload_interception, 2433 [SVM_INSTR_VMSAVE] = vmsave_interception, 2434 }; 2435 struct vcpu_svm *svm = to_svm(vcpu); 2436 int ret; 2437 2438 if (is_guest_mode(vcpu)) { 2439 /* Returns '1' or -errno on failure, '0' on success. */ 2440 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2441 if (ret) 2442 return ret; 2443 return 1; 2444 } 2445 return svm_instr_handlers[opcode](vcpu); 2446 } 2447 2448 /* 2449 * #GP handling code. Note that #GP can be triggered under the following two 2450 * cases: 2451 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2452 * some AMD CPUs when EAX of these instructions are in the reserved memory 2453 * regions (e.g. SMM memory on host). 2454 * 2) VMware backdoor 2455 */ 2456 static int gp_interception(struct kvm_vcpu *vcpu) 2457 { 2458 struct vcpu_svm *svm = to_svm(vcpu); 2459 u32 error_code = svm->vmcb->control.exit_info_1; 2460 int opcode; 2461 2462 /* Both #GP cases have zero error_code */ 2463 if (error_code) 2464 goto reinject; 2465 2466 /* Decode the instruction for usage later */ 2467 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2468 goto reinject; 2469 2470 opcode = svm_instr_opcode(vcpu); 2471 2472 if (opcode == NONE_SVM_INSTR) { 2473 if (!enable_vmware_backdoor) 2474 goto reinject; 2475 2476 /* 2477 * VMware backdoor emulation on #GP interception only handles 2478 * IN{S}, OUT{S}, and RDPMC. 2479 */ 2480 if (!is_guest_mode(vcpu)) 2481 return kvm_emulate_instruction(vcpu, 2482 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2483 } else { 2484 /* All SVM instructions expect page aligned RAX */ 2485 if (svm->vmcb->save.rax & ~PAGE_MASK) 2486 goto reinject; 2487 2488 return emulate_svm_instr(vcpu, opcode); 2489 } 2490 2491 reinject: 2492 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2493 return 1; 2494 } 2495 2496 void svm_set_gif(struct vcpu_svm *svm, bool value) 2497 { 2498 if (value) { 2499 /* 2500 * If VGIF is enabled, the STGI intercept is only added to 2501 * detect the opening of the SMI/NMI window; remove it now. 2502 * Likewise, clear the VINTR intercept, we will set it 2503 * again while processing KVM_REQ_EVENT if needed. 2504 */ 2505 if (vgif) 2506 svm_clr_intercept(svm, INTERCEPT_STGI); 2507 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2508 svm_clear_vintr(svm); 2509 2510 enable_gif(svm); 2511 if (svm->vcpu.arch.smi_pending || 2512 svm->vcpu.arch.nmi_pending || 2513 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2514 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2515 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2516 } else { 2517 disable_gif(svm); 2518 2519 /* 2520 * After a CLGI no interrupts should come. But if vGIF is 2521 * in use, we still rely on the VINTR intercept (rather than 2522 * STGI) to detect an open interrupt window. 2523 */ 2524 if (!vgif) 2525 svm_clear_vintr(svm); 2526 } 2527 } 2528 2529 static int stgi_interception(struct kvm_vcpu *vcpu) 2530 { 2531 int ret; 2532 2533 if (nested_svm_check_permissions(vcpu)) 2534 return 1; 2535 2536 ret = kvm_skip_emulated_instruction(vcpu); 2537 svm_set_gif(to_svm(vcpu), true); 2538 return ret; 2539 } 2540 2541 static int clgi_interception(struct kvm_vcpu *vcpu) 2542 { 2543 int ret; 2544 2545 if (nested_svm_check_permissions(vcpu)) 2546 return 1; 2547 2548 ret = kvm_skip_emulated_instruction(vcpu); 2549 svm_set_gif(to_svm(vcpu), false); 2550 return ret; 2551 } 2552 2553 static int invlpga_interception(struct kvm_vcpu *vcpu) 2554 { 2555 gva_t gva = kvm_rax_read(vcpu); 2556 u32 asid = kvm_rcx_read(vcpu); 2557 2558 /* FIXME: Handle an address size prefix. */ 2559 if (!is_long_mode(vcpu)) 2560 gva = (u32)gva; 2561 2562 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2563 2564 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2565 kvm_mmu_invlpg(vcpu, gva); 2566 2567 return kvm_skip_emulated_instruction(vcpu); 2568 } 2569 2570 static int skinit_interception(struct kvm_vcpu *vcpu) 2571 { 2572 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2573 2574 kvm_queue_exception(vcpu, UD_VECTOR); 2575 return 1; 2576 } 2577 2578 static int task_switch_interception(struct kvm_vcpu *vcpu) 2579 { 2580 struct vcpu_svm *svm = to_svm(vcpu); 2581 u16 tss_selector; 2582 int reason; 2583 int int_type = svm->vmcb->control.exit_int_info & 2584 SVM_EXITINTINFO_TYPE_MASK; 2585 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2586 uint32_t type = 2587 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2588 uint32_t idt_v = 2589 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2590 bool has_error_code = false; 2591 u32 error_code = 0; 2592 2593 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2594 2595 if (svm->vmcb->control.exit_info_2 & 2596 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2597 reason = TASK_SWITCH_IRET; 2598 else if (svm->vmcb->control.exit_info_2 & 2599 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2600 reason = TASK_SWITCH_JMP; 2601 else if (idt_v) 2602 reason = TASK_SWITCH_GATE; 2603 else 2604 reason = TASK_SWITCH_CALL; 2605 2606 if (reason == TASK_SWITCH_GATE) { 2607 switch (type) { 2608 case SVM_EXITINTINFO_TYPE_NMI: 2609 vcpu->arch.nmi_injected = false; 2610 break; 2611 case SVM_EXITINTINFO_TYPE_EXEPT: 2612 if (svm->vmcb->control.exit_info_2 & 2613 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2614 has_error_code = true; 2615 error_code = 2616 (u32)svm->vmcb->control.exit_info_2; 2617 } 2618 kvm_clear_exception_queue(vcpu); 2619 break; 2620 case SVM_EXITINTINFO_TYPE_INTR: 2621 case SVM_EXITINTINFO_TYPE_SOFT: 2622 kvm_clear_interrupt_queue(vcpu); 2623 break; 2624 default: 2625 break; 2626 } 2627 } 2628 2629 if (reason != TASK_SWITCH_GATE || 2630 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2631 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2632 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2633 if (!svm_skip_emulated_instruction(vcpu)) 2634 return 0; 2635 } 2636 2637 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2638 int_vec = -1; 2639 2640 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2641 has_error_code, error_code); 2642 } 2643 2644 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2645 { 2646 if (!sev_es_guest(svm->vcpu.kvm)) 2647 svm_clr_intercept(svm, INTERCEPT_IRET); 2648 } 2649 2650 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2651 { 2652 if (!sev_es_guest(svm->vcpu.kvm)) 2653 svm_set_intercept(svm, INTERCEPT_IRET); 2654 } 2655 2656 static int iret_interception(struct kvm_vcpu *vcpu) 2657 { 2658 struct vcpu_svm *svm = to_svm(vcpu); 2659 2660 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2661 2662 ++vcpu->stat.nmi_window_exits; 2663 svm->awaiting_iret_completion = true; 2664 2665 svm_clr_iret_intercept(svm); 2666 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2667 2668 kvm_make_request(KVM_REQ_EVENT, vcpu); 2669 return 1; 2670 } 2671 2672 static int invlpg_interception(struct kvm_vcpu *vcpu) 2673 { 2674 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2675 return kvm_emulate_instruction(vcpu, 0); 2676 2677 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2678 return kvm_skip_emulated_instruction(vcpu); 2679 } 2680 2681 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2682 { 2683 return kvm_emulate_instruction(vcpu, 0); 2684 } 2685 2686 static int rsm_interception(struct kvm_vcpu *vcpu) 2687 { 2688 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2689 } 2690 2691 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2692 unsigned long val) 2693 { 2694 struct vcpu_svm *svm = to_svm(vcpu); 2695 unsigned long cr0 = vcpu->arch.cr0; 2696 bool ret = false; 2697 2698 if (!is_guest_mode(vcpu) || 2699 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2700 return false; 2701 2702 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2703 val &= ~SVM_CR0_SELECTIVE_MASK; 2704 2705 if (cr0 ^ val) { 2706 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2707 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2708 } 2709 2710 return ret; 2711 } 2712 2713 #define CR_VALID (1ULL << 63) 2714 2715 static int cr_interception(struct kvm_vcpu *vcpu) 2716 { 2717 struct vcpu_svm *svm = to_svm(vcpu); 2718 int reg, cr; 2719 unsigned long val; 2720 int err; 2721 2722 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2723 return emulate_on_interception(vcpu); 2724 2725 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2726 return emulate_on_interception(vcpu); 2727 2728 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2729 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2730 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2731 else 2732 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2733 2734 err = 0; 2735 if (cr >= 16) { /* mov to cr */ 2736 cr -= 16; 2737 val = kvm_register_read(vcpu, reg); 2738 trace_kvm_cr_write(cr, val); 2739 switch (cr) { 2740 case 0: 2741 if (!check_selective_cr0_intercepted(vcpu, val)) 2742 err = kvm_set_cr0(vcpu, val); 2743 else 2744 return 1; 2745 2746 break; 2747 case 3: 2748 err = kvm_set_cr3(vcpu, val); 2749 break; 2750 case 4: 2751 err = kvm_set_cr4(vcpu, val); 2752 break; 2753 case 8: 2754 err = kvm_set_cr8(vcpu, val); 2755 break; 2756 default: 2757 WARN(1, "unhandled write to CR%d", cr); 2758 kvm_queue_exception(vcpu, UD_VECTOR); 2759 return 1; 2760 } 2761 } else { /* mov from cr */ 2762 switch (cr) { 2763 case 0: 2764 val = kvm_read_cr0(vcpu); 2765 break; 2766 case 2: 2767 val = vcpu->arch.cr2; 2768 break; 2769 case 3: 2770 val = kvm_read_cr3(vcpu); 2771 break; 2772 case 4: 2773 val = kvm_read_cr4(vcpu); 2774 break; 2775 case 8: 2776 val = kvm_get_cr8(vcpu); 2777 break; 2778 default: 2779 WARN(1, "unhandled read from CR%d", cr); 2780 kvm_queue_exception(vcpu, UD_VECTOR); 2781 return 1; 2782 } 2783 kvm_register_write(vcpu, reg, val); 2784 trace_kvm_cr_read(cr, val); 2785 } 2786 return kvm_complete_insn_gp(vcpu, err); 2787 } 2788 2789 static int cr_trap(struct kvm_vcpu *vcpu) 2790 { 2791 struct vcpu_svm *svm = to_svm(vcpu); 2792 unsigned long old_value, new_value; 2793 unsigned int cr; 2794 int ret = 0; 2795 2796 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2797 2798 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2799 switch (cr) { 2800 case 0: 2801 old_value = kvm_read_cr0(vcpu); 2802 svm_set_cr0(vcpu, new_value); 2803 2804 kvm_post_set_cr0(vcpu, old_value, new_value); 2805 break; 2806 case 4: 2807 old_value = kvm_read_cr4(vcpu); 2808 svm_set_cr4(vcpu, new_value); 2809 2810 kvm_post_set_cr4(vcpu, old_value, new_value); 2811 break; 2812 case 8: 2813 ret = kvm_set_cr8(vcpu, new_value); 2814 break; 2815 default: 2816 WARN(1, "unhandled CR%d write trap", cr); 2817 kvm_queue_exception(vcpu, UD_VECTOR); 2818 return 1; 2819 } 2820 2821 return kvm_complete_insn_gp(vcpu, ret); 2822 } 2823 2824 static int dr_interception(struct kvm_vcpu *vcpu) 2825 { 2826 struct vcpu_svm *svm = to_svm(vcpu); 2827 int reg, dr; 2828 int err = 0; 2829 2830 /* 2831 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2832 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2833 */ 2834 if (sev_es_guest(vcpu->kvm)) 2835 return 1; 2836 2837 if (vcpu->guest_debug == 0) { 2838 /* 2839 * No more DR vmexits; force a reload of the debug registers 2840 * and reenter on this instruction. The next vmexit will 2841 * retrieve the full state of the debug registers. 2842 */ 2843 clr_dr_intercepts(svm); 2844 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2845 return 1; 2846 } 2847 2848 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2849 return emulate_on_interception(vcpu); 2850 2851 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2852 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2853 if (dr >= 16) { /* mov to DRn */ 2854 dr -= 16; 2855 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2856 } else { 2857 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2858 } 2859 2860 return kvm_complete_insn_gp(vcpu, err); 2861 } 2862 2863 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2864 { 2865 int r; 2866 2867 u8 cr8_prev = kvm_get_cr8(vcpu); 2868 /* instruction emulation calls kvm_set_cr8() */ 2869 r = cr_interception(vcpu); 2870 if (lapic_in_kernel(vcpu)) 2871 return r; 2872 if (cr8_prev <= kvm_get_cr8(vcpu)) 2873 return r; 2874 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2875 return 0; 2876 } 2877 2878 static int efer_trap(struct kvm_vcpu *vcpu) 2879 { 2880 struct msr_data msr_info; 2881 int ret; 2882 2883 /* 2884 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2885 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2886 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2887 * the guest doesn't have X86_FEATURE_SVM. 2888 */ 2889 msr_info.host_initiated = false; 2890 msr_info.index = MSR_EFER; 2891 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2892 ret = kvm_set_msr_common(vcpu, &msr_info); 2893 2894 return kvm_complete_insn_gp(vcpu, ret); 2895 } 2896 2897 static int svm_get_feature_msr(u32 msr, u64 *data) 2898 { 2899 *data = 0; 2900 2901 switch (msr) { 2902 case MSR_AMD64_DE_CFG: 2903 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2904 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2905 break; 2906 default: 2907 return KVM_MSR_RET_UNSUPPORTED; 2908 } 2909 2910 return 0; 2911 } 2912 2913 static bool 2914 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2915 { 2916 return sev_es_guest(vcpu->kvm) && 2917 vcpu->arch.guest_state_protected && 2918 svm_msrpm_offset(msr_info->index) != MSR_INVALID && 2919 !msr_write_intercepted(vcpu, msr_info->index); 2920 } 2921 2922 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2923 { 2924 struct vcpu_svm *svm = to_svm(vcpu); 2925 2926 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2927 msr_info->data = 0; 2928 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2929 } 2930 2931 switch (msr_info->index) { 2932 case MSR_AMD64_TSC_RATIO: 2933 if (!msr_info->host_initiated && 2934 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) 2935 return 1; 2936 msr_info->data = svm->tsc_ratio_msr; 2937 break; 2938 case MSR_STAR: 2939 msr_info->data = svm->vmcb01.ptr->save.star; 2940 break; 2941 #ifdef CONFIG_X86_64 2942 case MSR_LSTAR: 2943 msr_info->data = svm->vmcb01.ptr->save.lstar; 2944 break; 2945 case MSR_CSTAR: 2946 msr_info->data = svm->vmcb01.ptr->save.cstar; 2947 break; 2948 case MSR_GS_BASE: 2949 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2950 break; 2951 case MSR_FS_BASE: 2952 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2953 break; 2954 case MSR_KERNEL_GS_BASE: 2955 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2956 break; 2957 case MSR_SYSCALL_MASK: 2958 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2959 break; 2960 #endif 2961 case MSR_IA32_SYSENTER_CS: 2962 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2963 break; 2964 case MSR_IA32_SYSENTER_EIP: 2965 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2966 if (guest_cpuid_is_intel_compatible(vcpu)) 2967 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2968 break; 2969 case MSR_IA32_SYSENTER_ESP: 2970 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2971 if (guest_cpuid_is_intel_compatible(vcpu)) 2972 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2973 break; 2974 case MSR_TSC_AUX: 2975 msr_info->data = svm->tsc_aux; 2976 break; 2977 case MSR_IA32_DEBUGCTLMSR: 2978 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2979 break; 2980 case MSR_IA32_LASTBRANCHFROMIP: 2981 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2982 break; 2983 case MSR_IA32_LASTBRANCHTOIP: 2984 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2985 break; 2986 case MSR_IA32_LASTINTFROMIP: 2987 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2988 break; 2989 case MSR_IA32_LASTINTTOIP: 2990 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2991 break; 2992 case MSR_VM_HSAVE_PA: 2993 msr_info->data = svm->nested.hsave_msr; 2994 break; 2995 case MSR_VM_CR: 2996 msr_info->data = svm->nested.vm_cr_msr; 2997 break; 2998 case MSR_IA32_SPEC_CTRL: 2999 if (!msr_info->host_initiated && 3000 !guest_has_spec_ctrl_msr(vcpu)) 3001 return 1; 3002 3003 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3004 msr_info->data = svm->vmcb->save.spec_ctrl; 3005 else 3006 msr_info->data = svm->spec_ctrl; 3007 break; 3008 case MSR_AMD64_VIRT_SPEC_CTRL: 3009 if (!msr_info->host_initiated && 3010 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3011 return 1; 3012 3013 msr_info->data = svm->virt_spec_ctrl; 3014 break; 3015 case MSR_F15H_IC_CFG: { 3016 3017 int family, model; 3018 3019 family = guest_cpuid_family(vcpu); 3020 model = guest_cpuid_model(vcpu); 3021 3022 if (family < 0 || model < 0) 3023 return kvm_get_msr_common(vcpu, msr_info); 3024 3025 msr_info->data = 0; 3026 3027 if (family == 0x15 && 3028 (model >= 0x2 && model < 0x20)) 3029 msr_info->data = 0x1E; 3030 } 3031 break; 3032 case MSR_AMD64_DE_CFG: 3033 msr_info->data = svm->msr_decfg; 3034 break; 3035 default: 3036 return kvm_get_msr_common(vcpu, msr_info); 3037 } 3038 return 0; 3039 } 3040 3041 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 3042 { 3043 struct vcpu_svm *svm = to_svm(vcpu); 3044 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 3045 return kvm_complete_insn_gp(vcpu, err); 3046 3047 svm_vmgexit_inject_exception(svm, X86_TRAP_GP); 3048 return 1; 3049 } 3050 3051 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 3052 { 3053 struct vcpu_svm *svm = to_svm(vcpu); 3054 int svm_dis, chg_mask; 3055 3056 if (data & ~SVM_VM_CR_VALID_MASK) 3057 return 1; 3058 3059 chg_mask = SVM_VM_CR_VALID_MASK; 3060 3061 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 3062 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 3063 3064 svm->nested.vm_cr_msr &= ~chg_mask; 3065 svm->nested.vm_cr_msr |= (data & chg_mask); 3066 3067 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 3068 3069 /* check for svm_disable while efer.svme is set */ 3070 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 3071 return 1; 3072 3073 return 0; 3074 } 3075 3076 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 3077 { 3078 struct vcpu_svm *svm = to_svm(vcpu); 3079 int ret = 0; 3080 3081 u32 ecx = msr->index; 3082 u64 data = msr->data; 3083 3084 if (sev_es_prevent_msr_access(vcpu, msr)) 3085 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 3086 3087 switch (ecx) { 3088 case MSR_AMD64_TSC_RATIO: 3089 3090 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) { 3091 3092 if (!msr->host_initiated) 3093 return 1; 3094 /* 3095 * In case TSC scaling is not enabled, always 3096 * leave this MSR at the default value. 3097 * 3098 * Due to bug in qemu 6.2.0, it would try to set 3099 * this msr to 0 if tsc scaling is not enabled. 3100 * Ignore this value as well. 3101 */ 3102 if (data != 0 && data != svm->tsc_ratio_msr) 3103 return 1; 3104 break; 3105 } 3106 3107 if (data & SVM_TSC_RATIO_RSVD) 3108 return 1; 3109 3110 svm->tsc_ratio_msr = data; 3111 3112 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 3113 is_guest_mode(vcpu)) 3114 nested_svm_update_tsc_ratio_msr(vcpu); 3115 3116 break; 3117 case MSR_IA32_CR_PAT: 3118 ret = kvm_set_msr_common(vcpu, msr); 3119 if (ret) 3120 break; 3121 3122 svm->vmcb01.ptr->save.g_pat = data; 3123 if (is_guest_mode(vcpu)) 3124 nested_vmcb02_compute_g_pat(svm); 3125 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3126 break; 3127 case MSR_IA32_SPEC_CTRL: 3128 if (!msr->host_initiated && 3129 !guest_has_spec_ctrl_msr(vcpu)) 3130 return 1; 3131 3132 if (kvm_spec_ctrl_test_value(data)) 3133 return 1; 3134 3135 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3136 svm->vmcb->save.spec_ctrl = data; 3137 else 3138 svm->spec_ctrl = data; 3139 if (!data) 3140 break; 3141 3142 /* 3143 * For non-nested: 3144 * When it's written (to non-zero) for the first time, pass 3145 * it through. 3146 * 3147 * For nested: 3148 * The handling of the MSR bitmap for L2 guests is done in 3149 * nested_svm_vmrun_msrpm. 3150 * We update the L1 MSR bit as well since it will end up 3151 * touching the MSR anyway now. 3152 */ 3153 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3154 break; 3155 case MSR_AMD64_VIRT_SPEC_CTRL: 3156 if (!msr->host_initiated && 3157 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3158 return 1; 3159 3160 if (data & ~SPEC_CTRL_SSBD) 3161 return 1; 3162 3163 svm->virt_spec_ctrl = data; 3164 break; 3165 case MSR_STAR: 3166 svm->vmcb01.ptr->save.star = data; 3167 break; 3168 #ifdef CONFIG_X86_64 3169 case MSR_LSTAR: 3170 svm->vmcb01.ptr->save.lstar = data; 3171 break; 3172 case MSR_CSTAR: 3173 svm->vmcb01.ptr->save.cstar = data; 3174 break; 3175 case MSR_GS_BASE: 3176 svm->vmcb01.ptr->save.gs.base = data; 3177 break; 3178 case MSR_FS_BASE: 3179 svm->vmcb01.ptr->save.fs.base = data; 3180 break; 3181 case MSR_KERNEL_GS_BASE: 3182 svm->vmcb01.ptr->save.kernel_gs_base = data; 3183 break; 3184 case MSR_SYSCALL_MASK: 3185 svm->vmcb01.ptr->save.sfmask = data; 3186 break; 3187 #endif 3188 case MSR_IA32_SYSENTER_CS: 3189 svm->vmcb01.ptr->save.sysenter_cs = data; 3190 break; 3191 case MSR_IA32_SYSENTER_EIP: 3192 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3193 /* 3194 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3195 * when we spoof an Intel vendor ID (for cross vendor migration). 3196 * In this case we use this intercept to track the high 3197 * 32 bit part of these msrs to support Intel's 3198 * implementation of SYSENTER/SYSEXIT. 3199 */ 3200 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3201 break; 3202 case MSR_IA32_SYSENTER_ESP: 3203 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3204 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3205 break; 3206 case MSR_TSC_AUX: 3207 /* 3208 * TSC_AUX is always virtualized for SEV-ES guests when the 3209 * feature is available. The user return MSR support is not 3210 * required in this case because TSC_AUX is restored on #VMEXIT 3211 * from the host save area (which has been initialized in 3212 * svm_enable_virtualization_cpu()). 3213 */ 3214 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3215 break; 3216 3217 /* 3218 * TSC_AUX is usually changed only during boot and never read 3219 * directly. Intercept TSC_AUX instead of exposing it to the 3220 * guest via direct_access_msrs, and switch it via user return. 3221 */ 3222 preempt_disable(); 3223 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3224 preempt_enable(); 3225 if (ret) 3226 break; 3227 3228 svm->tsc_aux = data; 3229 break; 3230 case MSR_IA32_DEBUGCTLMSR: 3231 if (!lbrv) { 3232 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3233 break; 3234 } 3235 3236 /* 3237 * AMD changed the architectural behavior of bits 5:2. On CPUs 3238 * without BusLockTrap, bits 5:2 control "external pins", but 3239 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap 3240 * and bits 5:3 are reserved-to-zero. Sadly, old KVM allowed 3241 * the guest to set bits 5:2 despite not actually virtualizing 3242 * Performance-Monitoring/Breakpoint external pins. Drop bits 3243 * 5:2 for backwards compatibility. 3244 */ 3245 data &= ~GENMASK(5, 2); 3246 3247 /* 3248 * Suppress BTF as KVM doesn't virtualize BTF, but there's no 3249 * way to communicate lack of support to the guest. 3250 */ 3251 if (data & DEBUGCTLMSR_BTF) { 3252 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 3253 data &= ~DEBUGCTLMSR_BTF; 3254 } 3255 3256 if (data & DEBUGCTL_RESERVED_BITS) 3257 return 1; 3258 3259 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3260 svm_update_lbrv(vcpu); 3261 break; 3262 case MSR_VM_HSAVE_PA: 3263 /* 3264 * Old kernels did not validate the value written to 3265 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3266 * value to allow live migrating buggy or malicious guests 3267 * originating from those kernels. 3268 */ 3269 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3270 return 1; 3271 3272 svm->nested.hsave_msr = data & PAGE_MASK; 3273 break; 3274 case MSR_VM_CR: 3275 return svm_set_vm_cr(vcpu, data); 3276 case MSR_VM_IGNNE: 3277 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3278 break; 3279 case MSR_AMD64_DE_CFG: { 3280 u64 supported_de_cfg; 3281 3282 if (svm_get_feature_msr(ecx, &supported_de_cfg)) 3283 return 1; 3284 3285 if (data & ~supported_de_cfg) 3286 return 1; 3287 3288 svm->msr_decfg = data; 3289 break; 3290 } 3291 default: 3292 return kvm_set_msr_common(vcpu, msr); 3293 } 3294 return ret; 3295 } 3296 3297 static int msr_interception(struct kvm_vcpu *vcpu) 3298 { 3299 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3300 return kvm_emulate_wrmsr(vcpu); 3301 else 3302 return kvm_emulate_rdmsr(vcpu); 3303 } 3304 3305 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3306 { 3307 kvm_make_request(KVM_REQ_EVENT, vcpu); 3308 svm_clear_vintr(to_svm(vcpu)); 3309 3310 /* 3311 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3312 * In this case AVIC was temporarily disabled for 3313 * requesting the IRQ window and we have to re-enable it. 3314 * 3315 * If running nested, still remove the VM wide AVIC inhibit to 3316 * support case in which the interrupt window was requested when the 3317 * vCPU was not running nested. 3318 3319 * All vCPUs which run still run nested, will remain to have their 3320 * AVIC still inhibited due to per-cpu AVIC inhibition. 3321 */ 3322 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3323 3324 ++vcpu->stat.irq_window_exits; 3325 return 1; 3326 } 3327 3328 static int pause_interception(struct kvm_vcpu *vcpu) 3329 { 3330 bool in_kernel; 3331 /* 3332 * CPL is not made available for an SEV-ES guest, therefore 3333 * vcpu->arch.preempted_in_kernel can never be true. Just 3334 * set in_kernel to false as well. 3335 */ 3336 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3337 3338 grow_ple_window(vcpu); 3339 3340 kvm_vcpu_on_spin(vcpu, in_kernel); 3341 return kvm_skip_emulated_instruction(vcpu); 3342 } 3343 3344 static int invpcid_interception(struct kvm_vcpu *vcpu) 3345 { 3346 struct vcpu_svm *svm = to_svm(vcpu); 3347 unsigned long type; 3348 gva_t gva; 3349 3350 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 3351 kvm_queue_exception(vcpu, UD_VECTOR); 3352 return 1; 3353 } 3354 3355 /* 3356 * For an INVPCID intercept: 3357 * EXITINFO1 provides the linear address of the memory operand. 3358 * EXITINFO2 provides the contents of the register operand. 3359 */ 3360 type = svm->vmcb->control.exit_info_2; 3361 gva = svm->vmcb->control.exit_info_1; 3362 3363 /* 3364 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the 3365 * stack segment is used. The intercept takes priority over all 3366 * #GP checks except CPL>0, but somehow still generates a linear 3367 * address? The APM is sorely lacking. 3368 */ 3369 if (is_noncanonical_address(gva, vcpu, 0)) { 3370 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 3371 return 1; 3372 } 3373 3374 return kvm_handle_invpcid(vcpu, type, gva); 3375 } 3376 3377 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3378 [SVM_EXIT_READ_CR0] = cr_interception, 3379 [SVM_EXIT_READ_CR3] = cr_interception, 3380 [SVM_EXIT_READ_CR4] = cr_interception, 3381 [SVM_EXIT_READ_CR8] = cr_interception, 3382 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3383 [SVM_EXIT_WRITE_CR0] = cr_interception, 3384 [SVM_EXIT_WRITE_CR3] = cr_interception, 3385 [SVM_EXIT_WRITE_CR4] = cr_interception, 3386 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3387 [SVM_EXIT_READ_DR0] = dr_interception, 3388 [SVM_EXIT_READ_DR1] = dr_interception, 3389 [SVM_EXIT_READ_DR2] = dr_interception, 3390 [SVM_EXIT_READ_DR3] = dr_interception, 3391 [SVM_EXIT_READ_DR4] = dr_interception, 3392 [SVM_EXIT_READ_DR5] = dr_interception, 3393 [SVM_EXIT_READ_DR6] = dr_interception, 3394 [SVM_EXIT_READ_DR7] = dr_interception, 3395 [SVM_EXIT_WRITE_DR0] = dr_interception, 3396 [SVM_EXIT_WRITE_DR1] = dr_interception, 3397 [SVM_EXIT_WRITE_DR2] = dr_interception, 3398 [SVM_EXIT_WRITE_DR3] = dr_interception, 3399 [SVM_EXIT_WRITE_DR4] = dr_interception, 3400 [SVM_EXIT_WRITE_DR5] = dr_interception, 3401 [SVM_EXIT_WRITE_DR6] = dr_interception, 3402 [SVM_EXIT_WRITE_DR7] = dr_interception, 3403 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3404 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3405 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3406 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3407 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3408 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3409 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3410 [SVM_EXIT_INTR] = intr_interception, 3411 [SVM_EXIT_NMI] = nmi_interception, 3412 [SVM_EXIT_SMI] = smi_interception, 3413 [SVM_EXIT_VINTR] = interrupt_window_interception, 3414 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3415 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3416 [SVM_EXIT_IRET] = iret_interception, 3417 [SVM_EXIT_INVD] = kvm_emulate_invd, 3418 [SVM_EXIT_PAUSE] = pause_interception, 3419 [SVM_EXIT_HLT] = kvm_emulate_halt, 3420 [SVM_EXIT_INVLPG] = invlpg_interception, 3421 [SVM_EXIT_INVLPGA] = invlpga_interception, 3422 [SVM_EXIT_IOIO] = io_interception, 3423 [SVM_EXIT_MSR] = msr_interception, 3424 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3425 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3426 [SVM_EXIT_VMRUN] = vmrun_interception, 3427 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3428 [SVM_EXIT_VMLOAD] = vmload_interception, 3429 [SVM_EXIT_VMSAVE] = vmsave_interception, 3430 [SVM_EXIT_STGI] = stgi_interception, 3431 [SVM_EXIT_CLGI] = clgi_interception, 3432 [SVM_EXIT_SKINIT] = skinit_interception, 3433 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3434 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3435 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3436 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3437 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3438 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3439 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3440 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3441 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3442 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3443 [SVM_EXIT_INVPCID] = invpcid_interception, 3444 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt, 3445 [SVM_EXIT_NPF] = npf_interception, 3446 [SVM_EXIT_RSM] = rsm_interception, 3447 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3448 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3449 #ifdef CONFIG_KVM_AMD_SEV 3450 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3451 #endif 3452 }; 3453 3454 static void dump_vmcb(struct kvm_vcpu *vcpu) 3455 { 3456 struct vcpu_svm *svm = to_svm(vcpu); 3457 struct vmcb_control_area *control = &svm->vmcb->control; 3458 struct vmcb_save_area *save = &svm->vmcb->save; 3459 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3460 3461 if (!dump_invalid_vmcb) { 3462 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3463 return; 3464 } 3465 3466 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3467 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3468 pr_err("VMCB Control Area:\n"); 3469 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3470 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3471 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3472 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3473 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3474 pr_err("%-20s%08x %08x\n", "intercepts:", 3475 control->intercepts[INTERCEPT_WORD3], 3476 control->intercepts[INTERCEPT_WORD4]); 3477 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3478 pr_err("%-20s%d\n", "pause filter threshold:", 3479 control->pause_filter_thresh); 3480 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3481 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3482 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3483 pr_err("%-20s%d\n", "asid:", control->asid); 3484 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3485 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3486 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3487 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3488 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3489 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3490 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3491 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3492 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3493 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3494 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3495 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3496 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3497 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3498 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3499 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3500 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3501 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3502 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3503 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3504 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3505 pr_err("VMCB State Save Area:\n"); 3506 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3507 "es:", 3508 save->es.selector, save->es.attrib, 3509 save->es.limit, save->es.base); 3510 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3511 "cs:", 3512 save->cs.selector, save->cs.attrib, 3513 save->cs.limit, save->cs.base); 3514 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3515 "ss:", 3516 save->ss.selector, save->ss.attrib, 3517 save->ss.limit, save->ss.base); 3518 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3519 "ds:", 3520 save->ds.selector, save->ds.attrib, 3521 save->ds.limit, save->ds.base); 3522 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3523 "fs:", 3524 save01->fs.selector, save01->fs.attrib, 3525 save01->fs.limit, save01->fs.base); 3526 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3527 "gs:", 3528 save01->gs.selector, save01->gs.attrib, 3529 save01->gs.limit, save01->gs.base); 3530 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3531 "gdtr:", 3532 save->gdtr.selector, save->gdtr.attrib, 3533 save->gdtr.limit, save->gdtr.base); 3534 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3535 "ldtr:", 3536 save01->ldtr.selector, save01->ldtr.attrib, 3537 save01->ldtr.limit, save01->ldtr.base); 3538 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3539 "idtr:", 3540 save->idtr.selector, save->idtr.attrib, 3541 save->idtr.limit, save->idtr.base); 3542 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3543 "tr:", 3544 save01->tr.selector, save01->tr.attrib, 3545 save01->tr.limit, save01->tr.base); 3546 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3547 save->vmpl, save->cpl, save->efer); 3548 pr_err("%-15s %016llx %-13s %016llx\n", 3549 "cr0:", save->cr0, "cr2:", save->cr2); 3550 pr_err("%-15s %016llx %-13s %016llx\n", 3551 "cr3:", save->cr3, "cr4:", save->cr4); 3552 pr_err("%-15s %016llx %-13s %016llx\n", 3553 "dr6:", save->dr6, "dr7:", save->dr7); 3554 pr_err("%-15s %016llx %-13s %016llx\n", 3555 "rip:", save->rip, "rflags:", save->rflags); 3556 pr_err("%-15s %016llx %-13s %016llx\n", 3557 "rsp:", save->rsp, "rax:", save->rax); 3558 pr_err("%-15s %016llx %-13s %016llx\n", 3559 "star:", save01->star, "lstar:", save01->lstar); 3560 pr_err("%-15s %016llx %-13s %016llx\n", 3561 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3562 pr_err("%-15s %016llx %-13s %016llx\n", 3563 "kernel_gs_base:", save01->kernel_gs_base, 3564 "sysenter_cs:", save01->sysenter_cs); 3565 pr_err("%-15s %016llx %-13s %016llx\n", 3566 "sysenter_esp:", save01->sysenter_esp, 3567 "sysenter_eip:", save01->sysenter_eip); 3568 pr_err("%-15s %016llx %-13s %016llx\n", 3569 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3570 pr_err("%-15s %016llx %-13s %016llx\n", 3571 "br_from:", save->br_from, "br_to:", save->br_to); 3572 pr_err("%-15s %016llx %-13s %016llx\n", 3573 "excp_from:", save->last_excp_from, 3574 "excp_to:", save->last_excp_to); 3575 } 3576 3577 static bool svm_check_exit_valid(u64 exit_code) 3578 { 3579 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3580 svm_exit_handlers[exit_code]); 3581 } 3582 3583 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3584 { 3585 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3586 dump_vmcb(vcpu); 3587 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3588 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3589 vcpu->run->internal.ndata = 2; 3590 vcpu->run->internal.data[0] = exit_code; 3591 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3592 return 0; 3593 } 3594 3595 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3596 { 3597 if (!svm_check_exit_valid(exit_code)) 3598 return svm_handle_invalid_exit(vcpu, exit_code); 3599 3600 #ifdef CONFIG_MITIGATION_RETPOLINE 3601 if (exit_code == SVM_EXIT_MSR) 3602 return msr_interception(vcpu); 3603 else if (exit_code == SVM_EXIT_VINTR) 3604 return interrupt_window_interception(vcpu); 3605 else if (exit_code == SVM_EXIT_INTR) 3606 return intr_interception(vcpu); 3607 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT) 3608 return kvm_emulate_halt(vcpu); 3609 else if (exit_code == SVM_EXIT_NPF) 3610 return npf_interception(vcpu); 3611 #endif 3612 return svm_exit_handlers[exit_code](vcpu); 3613 } 3614 3615 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3616 u64 *info1, u64 *info2, 3617 u32 *intr_info, u32 *error_code) 3618 { 3619 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3620 3621 *reason = control->exit_code; 3622 *info1 = control->exit_info_1; 3623 *info2 = control->exit_info_2; 3624 *intr_info = control->exit_int_info; 3625 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3626 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3627 *error_code = control->exit_int_info_err; 3628 else 3629 *error_code = 0; 3630 } 3631 3632 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, 3633 u32 *error_code) 3634 { 3635 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3636 3637 *intr_info = control->event_inj; 3638 3639 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3640 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3641 *error_code = control->event_inj_err; 3642 else 3643 *error_code = 0; 3644 3645 } 3646 3647 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3648 { 3649 struct vcpu_svm *svm = to_svm(vcpu); 3650 struct kvm_run *kvm_run = vcpu->run; 3651 u32 exit_code = svm->vmcb->control.exit_code; 3652 3653 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3654 if (!sev_es_guest(vcpu->kvm)) { 3655 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3656 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3657 if (npt_enabled) 3658 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3659 } 3660 3661 if (is_guest_mode(vcpu)) { 3662 int vmexit; 3663 3664 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3665 3666 vmexit = nested_svm_exit_special(svm); 3667 3668 if (vmexit == NESTED_EXIT_CONTINUE) 3669 vmexit = nested_svm_exit_handled(svm); 3670 3671 if (vmexit == NESTED_EXIT_DONE) 3672 return 1; 3673 } 3674 3675 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3676 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3677 kvm_run->fail_entry.hardware_entry_failure_reason 3678 = svm->vmcb->control.exit_code; 3679 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3680 dump_vmcb(vcpu); 3681 return 0; 3682 } 3683 3684 if (exit_fastpath != EXIT_FASTPATH_NONE) 3685 return 1; 3686 3687 return svm_invoke_exit_handler(vcpu, exit_code); 3688 } 3689 3690 static int pre_svm_run(struct kvm_vcpu *vcpu) 3691 { 3692 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3693 struct vcpu_svm *svm = to_svm(vcpu); 3694 3695 /* 3696 * If the previous vmrun of the vmcb occurred on a different physical 3697 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3698 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3699 */ 3700 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3701 svm->current_vmcb->asid_generation = 0; 3702 vmcb_mark_all_dirty(svm->vmcb); 3703 svm->current_vmcb->cpu = vcpu->cpu; 3704 } 3705 3706 if (sev_guest(vcpu->kvm)) 3707 return pre_sev_run(svm, vcpu->cpu); 3708 3709 /* FIXME: handle wraparound of asid_generation */ 3710 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3711 new_asid(svm, sd); 3712 3713 return 0; 3714 } 3715 3716 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3717 { 3718 struct vcpu_svm *svm = to_svm(vcpu); 3719 3720 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3721 3722 if (svm->nmi_l1_to_l2) 3723 return; 3724 3725 /* 3726 * No need to manually track NMI masking when vNMI is enabled, hardware 3727 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3728 * case where software directly injects an NMI. 3729 */ 3730 if (!is_vnmi_enabled(svm)) { 3731 svm->nmi_masked = true; 3732 svm_set_iret_intercept(svm); 3733 } 3734 ++vcpu->stat.nmi_injections; 3735 } 3736 3737 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3738 { 3739 struct vcpu_svm *svm = to_svm(vcpu); 3740 3741 if (!is_vnmi_enabled(svm)) 3742 return false; 3743 3744 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3745 } 3746 3747 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3748 { 3749 struct vcpu_svm *svm = to_svm(vcpu); 3750 3751 if (!is_vnmi_enabled(svm)) 3752 return false; 3753 3754 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3755 return false; 3756 3757 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3758 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3759 3760 /* 3761 * Because the pending NMI is serviced by hardware, KVM can't know when 3762 * the NMI is "injected", but for all intents and purposes, passing the 3763 * NMI off to hardware counts as injection. 3764 */ 3765 ++vcpu->stat.nmi_injections; 3766 3767 return true; 3768 } 3769 3770 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3771 { 3772 struct vcpu_svm *svm = to_svm(vcpu); 3773 u32 type; 3774 3775 if (vcpu->arch.interrupt.soft) { 3776 if (svm_update_soft_interrupt_rip(vcpu)) 3777 return; 3778 3779 type = SVM_EVTINJ_TYPE_SOFT; 3780 } else { 3781 type = SVM_EVTINJ_TYPE_INTR; 3782 } 3783 3784 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3785 vcpu->arch.interrupt.soft, reinjected); 3786 ++vcpu->stat.irq_injections; 3787 3788 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3789 SVM_EVTINJ_VALID | type; 3790 } 3791 3792 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3793 int trig_mode, int vector) 3794 { 3795 /* 3796 * apic->apicv_active must be read after vcpu->mode. 3797 * Pairs with smp_store_release in vcpu_enter_guest. 3798 */ 3799 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3800 3801 /* Note, this is called iff the local APIC is in-kernel. */ 3802 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3803 /* Process the interrupt via kvm_check_and_inject_events(). */ 3804 kvm_make_request(KVM_REQ_EVENT, vcpu); 3805 kvm_vcpu_kick(vcpu); 3806 return; 3807 } 3808 3809 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3810 if (in_guest_mode) { 3811 /* 3812 * Signal the doorbell to tell hardware to inject the IRQ. If 3813 * the vCPU exits the guest before the doorbell chimes, hardware 3814 * will automatically process AVIC interrupts at the next VMRUN. 3815 */ 3816 avic_ring_doorbell(vcpu); 3817 } else { 3818 /* 3819 * Wake the vCPU if it was blocking. KVM will then detect the 3820 * pending IRQ when checking if the vCPU has a wake event. 3821 */ 3822 kvm_vcpu_wake_up(vcpu); 3823 } 3824 } 3825 3826 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3827 int trig_mode, int vector) 3828 { 3829 kvm_lapic_set_irr(vector, apic); 3830 3831 /* 3832 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3833 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3834 * the read of guest_mode. This guarantees that either VMRUN will see 3835 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3836 * will signal the doorbell if the CPU has already entered the guest. 3837 */ 3838 smp_mb__after_atomic(); 3839 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3840 } 3841 3842 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3843 { 3844 struct vcpu_svm *svm = to_svm(vcpu); 3845 3846 /* 3847 * SEV-ES guests must always keep the CR intercepts cleared. CR 3848 * tracking is done using the CR write traps. 3849 */ 3850 if (sev_es_guest(vcpu->kvm)) 3851 return; 3852 3853 if (nested_svm_virtualize_tpr(vcpu)) 3854 return; 3855 3856 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3857 3858 if (irr == -1) 3859 return; 3860 3861 if (tpr >= irr) 3862 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3863 } 3864 3865 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3866 { 3867 struct vcpu_svm *svm = to_svm(vcpu); 3868 3869 if (is_vnmi_enabled(svm)) 3870 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3871 else 3872 return svm->nmi_masked; 3873 } 3874 3875 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3876 { 3877 struct vcpu_svm *svm = to_svm(vcpu); 3878 3879 if (is_vnmi_enabled(svm)) { 3880 if (masked) 3881 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3882 else 3883 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3884 3885 } else { 3886 svm->nmi_masked = masked; 3887 if (masked) 3888 svm_set_iret_intercept(svm); 3889 else 3890 svm_clr_iret_intercept(svm); 3891 } 3892 } 3893 3894 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3895 { 3896 struct vcpu_svm *svm = to_svm(vcpu); 3897 struct vmcb *vmcb = svm->vmcb; 3898 3899 if (!gif_set(svm)) 3900 return true; 3901 3902 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3903 return false; 3904 3905 if (svm_get_nmi_mask(vcpu)) 3906 return true; 3907 3908 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3909 } 3910 3911 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3912 { 3913 struct vcpu_svm *svm = to_svm(vcpu); 3914 if (svm->nested.nested_run_pending) 3915 return -EBUSY; 3916 3917 if (svm_nmi_blocked(vcpu)) 3918 return 0; 3919 3920 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3921 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3922 return -EBUSY; 3923 return 1; 3924 } 3925 3926 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3927 { 3928 struct vcpu_svm *svm = to_svm(vcpu); 3929 struct vmcb *vmcb = svm->vmcb; 3930 3931 if (!gif_set(svm)) 3932 return true; 3933 3934 if (is_guest_mode(vcpu)) { 3935 /* As long as interrupts are being delivered... */ 3936 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3937 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3938 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3939 return true; 3940 3941 /* ... vmexits aren't blocked by the interrupt shadow */ 3942 if (nested_exit_on_intr(svm)) 3943 return false; 3944 } else { 3945 if (!svm_get_if_flag(vcpu)) 3946 return true; 3947 } 3948 3949 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3950 } 3951 3952 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3953 { 3954 struct vcpu_svm *svm = to_svm(vcpu); 3955 3956 if (svm->nested.nested_run_pending) 3957 return -EBUSY; 3958 3959 if (svm_interrupt_blocked(vcpu)) 3960 return 0; 3961 3962 /* 3963 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3964 * e.g. if the IRQ arrived asynchronously after checking nested events. 3965 */ 3966 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3967 return -EBUSY; 3968 3969 return 1; 3970 } 3971 3972 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3973 { 3974 struct vcpu_svm *svm = to_svm(vcpu); 3975 3976 /* 3977 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3978 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3979 * get that intercept, this function will be called again though and 3980 * we'll get the vintr intercept. However, if the vGIF feature is 3981 * enabled, the STGI interception will not occur. Enable the irq 3982 * window under the assumption that the hardware will set the GIF. 3983 */ 3984 if (vgif || gif_set(svm)) { 3985 /* 3986 * IRQ window is not needed when AVIC is enabled, 3987 * unless we have pending ExtINT since it cannot be injected 3988 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3989 * and fallback to injecting IRQ via V_IRQ. 3990 * 3991 * If running nested, AVIC is already locally inhibited 3992 * on this vCPU, therefore there is no need to request 3993 * the VM wide AVIC inhibition. 3994 */ 3995 if (!is_guest_mode(vcpu)) 3996 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3997 3998 svm_set_vintr(svm); 3999 } 4000 } 4001 4002 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 4003 { 4004 struct vcpu_svm *svm = to_svm(vcpu); 4005 4006 /* 4007 * If NMIs are outright masked, i.e. the vCPU is already handling an 4008 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 4009 * more to do at this time as KVM has already enabled IRET intercepts. 4010 * If KVM has already intercepted IRET, then single-step over the IRET, 4011 * as NMIs aren't architecturally unmasked until the IRET completes. 4012 * 4013 * If vNMI is enabled, KVM should never request an NMI window if NMIs 4014 * are masked, as KVM allows at most one to-be-injected NMI and one 4015 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 4016 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 4017 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 4018 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 4019 * inject the NMI. In those situations, KVM needs to single-step over 4020 * the STI shadow or intercept STGI. 4021 */ 4022 if (svm_get_nmi_mask(vcpu)) { 4023 WARN_ON_ONCE(is_vnmi_enabled(svm)); 4024 4025 if (!svm->awaiting_iret_completion) 4026 return; /* IRET will cause a vm exit */ 4027 } 4028 4029 /* 4030 * SEV-ES guests are responsible for signaling when a vCPU is ready to 4031 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 4032 * KVM can't intercept and single-step IRET to detect when NMIs are 4033 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 4034 * 4035 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 4036 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 4037 * supported NAEs in the GHCB protocol. 4038 */ 4039 if (sev_es_guest(vcpu->kvm)) 4040 return; 4041 4042 if (!gif_set(svm)) { 4043 if (vgif) 4044 svm_set_intercept(svm, INTERCEPT_STGI); 4045 return; /* STGI will cause a vm exit */ 4046 } 4047 4048 /* 4049 * Something prevents NMI from been injected. Single step over possible 4050 * problem (IRET or exception injection or interrupt shadow) 4051 */ 4052 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 4053 svm->nmi_singlestep = true; 4054 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 4055 } 4056 4057 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 4058 { 4059 struct vcpu_svm *svm = to_svm(vcpu); 4060 4061 /* 4062 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 4063 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 4064 * entries, and thus is a superset of Hyper-V's fine grained flushing. 4065 */ 4066 kvm_hv_vcpu_purge_flush_tlb(vcpu); 4067 4068 /* 4069 * Flush only the current ASID even if the TLB flush was invoked via 4070 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 4071 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 4072 * unconditionally does a TLB flush on both nested VM-Enter and nested 4073 * VM-Exit (via kvm_mmu_reset_context()). 4074 */ 4075 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 4076 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 4077 else 4078 svm->current_vmcb->asid_generation--; 4079 } 4080 4081 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 4082 { 4083 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 4084 4085 /* 4086 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 4087 * flush the NPT mappings via hypercall as flushing the ASID only 4088 * affects virtual to physical mappings, it does not invalidate guest 4089 * physical to host physical mappings. 4090 */ 4091 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 4092 hyperv_flush_guest_mapping(root_tdp); 4093 4094 svm_flush_tlb_asid(vcpu); 4095 } 4096 4097 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 4098 { 4099 /* 4100 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 4101 * flushes should be routed to hv_flush_remote_tlbs() without requesting 4102 * a "regular" remote flush. Reaching this point means either there's 4103 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 4104 * which might be fatal to the guest. Yell, but try to recover. 4105 */ 4106 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 4107 hv_flush_remote_tlbs(vcpu->kvm); 4108 4109 svm_flush_tlb_asid(vcpu); 4110 } 4111 4112 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 4113 { 4114 struct vcpu_svm *svm = to_svm(vcpu); 4115 4116 invlpga(gva, svm->vmcb->control.asid); 4117 } 4118 4119 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 4120 { 4121 struct vcpu_svm *svm = to_svm(vcpu); 4122 4123 if (nested_svm_virtualize_tpr(vcpu)) 4124 return; 4125 4126 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 4127 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 4128 kvm_set_cr8(vcpu, cr8); 4129 } 4130 } 4131 4132 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4133 { 4134 struct vcpu_svm *svm = to_svm(vcpu); 4135 u64 cr8; 4136 4137 if (nested_svm_virtualize_tpr(vcpu) || 4138 kvm_vcpu_apicv_active(vcpu)) 4139 return; 4140 4141 cr8 = kvm_get_cr8(vcpu); 4142 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4143 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4144 } 4145 4146 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4147 int type) 4148 { 4149 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4150 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4151 struct vcpu_svm *svm = to_svm(vcpu); 4152 4153 /* 4154 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4155 * associated with the original soft exception/interrupt. next_rip is 4156 * cleared on all exits that can occur while vectoring an event, so KVM 4157 * needs to manually set next_rip for re-injection. Unlike the !nrips 4158 * case below, this needs to be done if and only if KVM is re-injecting 4159 * the same event, i.e. if the event is a soft exception/interrupt, 4160 * otherwise next_rip is unused on VMRUN. 4161 */ 4162 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4163 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4164 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4165 /* 4166 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4167 * injecting the soft exception/interrupt. That advancement needs to 4168 * be unwound if vectoring didn't complete. Note, the new event may 4169 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4170 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4171 * be the reported vectored event, but RIP still needs to be unwound. 4172 */ 4173 else if (!nrips && (is_soft || is_exception) && 4174 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4175 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4176 } 4177 4178 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4179 { 4180 struct vcpu_svm *svm = to_svm(vcpu); 4181 u8 vector; 4182 int type; 4183 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4184 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4185 bool soft_int_injected = svm->soft_int_injected; 4186 4187 svm->nmi_l1_to_l2 = false; 4188 svm->soft_int_injected = false; 4189 4190 /* 4191 * If we've made progress since setting awaiting_iret_completion, we've 4192 * executed an IRET and can allow NMI injection. 4193 */ 4194 if (svm->awaiting_iret_completion && 4195 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4196 svm->awaiting_iret_completion = false; 4197 svm->nmi_masked = false; 4198 kvm_make_request(KVM_REQ_EVENT, vcpu); 4199 } 4200 4201 vcpu->arch.nmi_injected = false; 4202 kvm_clear_exception_queue(vcpu); 4203 kvm_clear_interrupt_queue(vcpu); 4204 4205 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4206 return; 4207 4208 kvm_make_request(KVM_REQ_EVENT, vcpu); 4209 4210 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4211 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4212 4213 if (soft_int_injected) 4214 svm_complete_soft_interrupt(vcpu, vector, type); 4215 4216 switch (type) { 4217 case SVM_EXITINTINFO_TYPE_NMI: 4218 vcpu->arch.nmi_injected = true; 4219 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4220 break; 4221 case SVM_EXITINTINFO_TYPE_EXEPT: { 4222 u32 error_code = 0; 4223 4224 /* 4225 * Never re-inject a #VC exception. 4226 */ 4227 if (vector == X86_TRAP_VC) 4228 break; 4229 4230 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) 4231 error_code = svm->vmcb->control.exit_int_info_err; 4232 4233 kvm_requeue_exception(vcpu, vector, 4234 exitintinfo & SVM_EXITINTINFO_VALID_ERR, 4235 error_code); 4236 break; 4237 } 4238 case SVM_EXITINTINFO_TYPE_INTR: 4239 kvm_queue_interrupt(vcpu, vector, false); 4240 break; 4241 case SVM_EXITINTINFO_TYPE_SOFT: 4242 kvm_queue_interrupt(vcpu, vector, true); 4243 break; 4244 default: 4245 break; 4246 } 4247 4248 } 4249 4250 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4251 { 4252 struct vcpu_svm *svm = to_svm(vcpu); 4253 struct vmcb_control_area *control = &svm->vmcb->control; 4254 4255 control->exit_int_info = control->event_inj; 4256 control->exit_int_info_err = control->event_inj_err; 4257 control->event_inj = 0; 4258 svm_complete_interrupts(vcpu); 4259 } 4260 4261 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4262 { 4263 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4264 return -EINVAL; 4265 4266 return 1; 4267 } 4268 4269 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4270 { 4271 struct vcpu_svm *svm = to_svm(vcpu); 4272 4273 if (is_guest_mode(vcpu)) 4274 return EXIT_FASTPATH_NONE; 4275 4276 switch (svm->vmcb->control.exit_code) { 4277 case SVM_EXIT_MSR: 4278 if (!svm->vmcb->control.exit_info_1) 4279 break; 4280 return handle_fastpath_set_msr_irqoff(vcpu); 4281 case SVM_EXIT_HLT: 4282 return handle_fastpath_hlt(vcpu); 4283 default: 4284 break; 4285 } 4286 4287 return EXIT_FASTPATH_NONE; 4288 } 4289 4290 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4291 { 4292 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4293 struct vcpu_svm *svm = to_svm(vcpu); 4294 4295 guest_state_enter_irqoff(); 4296 4297 /* 4298 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of 4299 * VMRUN controls whether or not physical IRQs are masked (KVM always 4300 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the 4301 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow 4302 * into guest state if delivery of an event during VMRUN triggers a 4303 * #VMEXIT, and the guest_state transitions already tell lockdep that 4304 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of 4305 * this path, so IRQs aren't actually unmasked while running host code. 4306 */ 4307 raw_local_irq_enable(); 4308 4309 amd_clear_divider(); 4310 4311 if (sev_es_guest(vcpu->kvm)) 4312 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4313 sev_es_host_save_area(sd)); 4314 else 4315 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4316 4317 raw_local_irq_disable(); 4318 4319 guest_state_exit_irqoff(); 4320 } 4321 4322 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, 4323 bool force_immediate_exit) 4324 { 4325 struct vcpu_svm *svm = to_svm(vcpu); 4326 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4327 4328 trace_kvm_entry(vcpu, force_immediate_exit); 4329 4330 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4331 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4332 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4333 4334 /* 4335 * Disable singlestep if we're injecting an interrupt/exception. 4336 * We don't want our modified rflags to be pushed on the stack where 4337 * we might not be able to easily reset them if we disabled NMI 4338 * singlestep later. 4339 */ 4340 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4341 /* 4342 * Event injection happens before external interrupts cause a 4343 * vmexit and interrupts are disabled here, so smp_send_reschedule 4344 * is enough to force an immediate vmexit. 4345 */ 4346 disable_nmi_singlestep(svm); 4347 force_immediate_exit = true; 4348 } 4349 4350 if (force_immediate_exit) 4351 smp_send_reschedule(vcpu->cpu); 4352 4353 if (pre_svm_run(vcpu)) { 4354 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4355 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR; 4356 vcpu->run->fail_entry.cpu = vcpu->cpu; 4357 return EXIT_FASTPATH_EXIT_USERSPACE; 4358 } 4359 4360 sync_lapic_to_cr8(vcpu); 4361 4362 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4363 svm->vmcb->control.asid = svm->asid; 4364 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4365 } 4366 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4367 4368 svm_hv_update_vp_id(svm->vmcb, vcpu); 4369 4370 /* 4371 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4372 * of a #DB. 4373 */ 4374 if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))) 4375 svm_set_dr6(vcpu, DR6_ACTIVE_LOW); 4376 4377 clgi(); 4378 kvm_load_guest_xsave_state(vcpu); 4379 4380 /* 4381 * Hardware only context switches DEBUGCTL if LBR virtualization is 4382 * enabled. Manually load DEBUGCTL if necessary (and restore it after 4383 * VM-Exit), as running with the host's DEBUGCTL can negatively affect 4384 * guest state and can even be fatal, e.g. due to Bus Lock Detect. 4385 */ 4386 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4387 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4388 update_debugctlmsr(svm->vmcb->save.dbgctl); 4389 4390 kvm_wait_lapic_expire(vcpu); 4391 4392 /* 4393 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4394 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4395 * is no need to worry about the conditional branch over the wrmsr 4396 * being speculatively taken. 4397 */ 4398 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4399 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4400 4401 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4402 4403 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4404 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4405 4406 if (!sev_es_guest(vcpu->kvm)) { 4407 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4408 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4409 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4410 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4411 } 4412 vcpu->arch.regs_dirty = 0; 4413 4414 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4415 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4416 4417 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4418 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4419 update_debugctlmsr(vcpu->arch.host_debugctl); 4420 4421 kvm_load_host_xsave_state(vcpu); 4422 stgi(); 4423 4424 /* Any pending NMI will happen here */ 4425 4426 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4427 kvm_after_interrupt(vcpu); 4428 4429 sync_cr8_to_lapic(vcpu); 4430 4431 svm->next_rip = 0; 4432 if (is_guest_mode(vcpu)) { 4433 nested_sync_control_from_vmcb02(svm); 4434 4435 /* Track VMRUNs that have made past consistency checking */ 4436 if (svm->nested.nested_run_pending && 4437 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4438 ++vcpu->stat.nested_run; 4439 4440 svm->nested.nested_run_pending = 0; 4441 } 4442 4443 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4444 vmcb_mark_all_clean(svm->vmcb); 4445 4446 /* if exit due to PF check for async PF */ 4447 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4448 vcpu->arch.apf.host_apf_flags = 4449 kvm_read_and_reset_apf_flags(); 4450 4451 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4452 4453 /* 4454 * We need to handle MC intercepts here before the vcpu has a chance to 4455 * change the physical cpu 4456 */ 4457 if (unlikely(svm->vmcb->control.exit_code == 4458 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4459 svm_handle_mce(vcpu); 4460 4461 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4462 4463 svm_complete_interrupts(vcpu); 4464 4465 return svm_exit_handlers_fastpath(vcpu); 4466 } 4467 4468 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4469 int root_level) 4470 { 4471 struct vcpu_svm *svm = to_svm(vcpu); 4472 unsigned long cr3; 4473 4474 if (npt_enabled) { 4475 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4476 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4477 4478 hv_track_root_tdp(vcpu, root_hpa); 4479 4480 cr3 = vcpu->arch.cr3; 4481 } else if (root_level >= PT64_ROOT_4LEVEL) { 4482 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4483 } else { 4484 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4485 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4486 cr3 = root_hpa; 4487 } 4488 4489 svm->vmcb->save.cr3 = cr3; 4490 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4491 } 4492 4493 static void 4494 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4495 { 4496 /* 4497 * Patch in the VMMCALL instruction: 4498 */ 4499 hypercall[0] = 0x0f; 4500 hypercall[1] = 0x01; 4501 hypercall[2] = 0xd9; 4502 } 4503 4504 /* 4505 * The kvm parameter can be NULL (module initialization, or invocation before 4506 * VM creation). Be sure to check the kvm parameter before using it. 4507 */ 4508 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4509 { 4510 switch (index) { 4511 case MSR_IA32_MCG_EXT_CTL: 4512 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4513 return false; 4514 case MSR_IA32_SMBASE: 4515 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4516 return false; 4517 /* SEV-ES guests do not support SMM, so report false */ 4518 if (kvm && sev_es_guest(kvm)) 4519 return false; 4520 break; 4521 default: 4522 break; 4523 } 4524 4525 return true; 4526 } 4527 4528 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4529 { 4530 struct vcpu_svm *svm = to_svm(vcpu); 4531 4532 /* 4533 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4534 * can only disable all variants of by disallowing CR4.OSXSAVE from 4535 * being set. As a result, if the host has XSAVE and XSAVES, and the 4536 * guest has XSAVE enabled, the guest can execute XSAVES without 4537 * faulting. Treat XSAVES as enabled in this case regardless of 4538 * whether it's advertised to the guest so that KVM context switches 4539 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4540 * the guest read/write access to the host's XSS. 4541 */ 4542 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES, 4543 boot_cpu_has(X86_FEATURE_XSAVES) && 4544 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)); 4545 4546 /* 4547 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4548 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4549 * SVM on Intel is bonkers and extremely unlikely to work). 4550 */ 4551 if (guest_cpuid_is_intel_compatible(vcpu)) 4552 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4553 4554 svm_recalc_instruction_intercepts(vcpu, svm); 4555 4556 if (boot_cpu_has(X86_FEATURE_IBPB)) 4557 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4558 !!guest_has_pred_cmd_msr(vcpu)); 4559 4560 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4561 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4562 !!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4563 4564 if (sev_guest(vcpu->kvm)) 4565 sev_vcpu_after_set_cpuid(svm); 4566 4567 init_vmcb_after_set_cpuid(vcpu); 4568 } 4569 4570 static bool svm_has_wbinvd_exit(void) 4571 { 4572 return true; 4573 } 4574 4575 #define PRE_EX(exit) { .exit_code = (exit), \ 4576 .stage = X86_ICPT_PRE_EXCEPT, } 4577 #define POST_EX(exit) { .exit_code = (exit), \ 4578 .stage = X86_ICPT_POST_EXCEPT, } 4579 #define POST_MEM(exit) { .exit_code = (exit), \ 4580 .stage = X86_ICPT_POST_MEMACCESS, } 4581 4582 static const struct __x86_intercept { 4583 u32 exit_code; 4584 enum x86_intercept_stage stage; 4585 } x86_intercept_map[] = { 4586 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4587 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4588 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4589 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4590 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4591 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4592 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4593 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4594 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4595 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4596 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4597 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4598 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4599 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4600 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4601 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4602 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4603 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4604 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4605 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4606 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4607 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4608 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4609 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4610 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4611 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4612 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4613 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4614 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4615 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4616 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4617 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4618 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4619 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4620 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4621 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4622 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4623 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4624 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4625 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4626 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4627 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4628 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4629 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4630 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4631 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4632 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4633 }; 4634 4635 #undef PRE_EX 4636 #undef POST_EX 4637 #undef POST_MEM 4638 4639 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4640 struct x86_instruction_info *info, 4641 enum x86_intercept_stage stage, 4642 struct x86_exception *exception) 4643 { 4644 struct vcpu_svm *svm = to_svm(vcpu); 4645 int vmexit, ret = X86EMUL_CONTINUE; 4646 struct __x86_intercept icpt_info; 4647 struct vmcb *vmcb = svm->vmcb; 4648 4649 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4650 goto out; 4651 4652 icpt_info = x86_intercept_map[info->intercept]; 4653 4654 if (stage != icpt_info.stage) 4655 goto out; 4656 4657 switch (icpt_info.exit_code) { 4658 case SVM_EXIT_READ_CR0: 4659 if (info->intercept == x86_intercept_cr_read) 4660 icpt_info.exit_code += info->modrm_reg; 4661 break; 4662 case SVM_EXIT_WRITE_CR0: { 4663 unsigned long cr0, val; 4664 4665 if (info->intercept == x86_intercept_cr_write) 4666 icpt_info.exit_code += info->modrm_reg; 4667 4668 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4669 info->intercept == x86_intercept_clts) 4670 break; 4671 4672 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4673 INTERCEPT_SELECTIVE_CR0))) 4674 break; 4675 4676 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4677 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4678 4679 if (info->intercept == x86_intercept_lmsw) { 4680 cr0 &= 0xfUL; 4681 val &= 0xfUL; 4682 /* lmsw can't clear PE - catch this here */ 4683 if (cr0 & X86_CR0_PE) 4684 val |= X86_CR0_PE; 4685 } 4686 4687 if (cr0 ^ val) 4688 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4689 4690 break; 4691 } 4692 case SVM_EXIT_READ_DR0: 4693 case SVM_EXIT_WRITE_DR0: 4694 icpt_info.exit_code += info->modrm_reg; 4695 break; 4696 case SVM_EXIT_MSR: 4697 if (info->intercept == x86_intercept_wrmsr) 4698 vmcb->control.exit_info_1 = 1; 4699 else 4700 vmcb->control.exit_info_1 = 0; 4701 break; 4702 case SVM_EXIT_PAUSE: 4703 /* 4704 * We get this for NOP only, but pause 4705 * is rep not, check this here 4706 */ 4707 if (info->rep_prefix != REPE_PREFIX) 4708 goto out; 4709 break; 4710 case SVM_EXIT_IOIO: { 4711 u64 exit_info; 4712 u32 bytes; 4713 4714 if (info->intercept == x86_intercept_in || 4715 info->intercept == x86_intercept_ins) { 4716 exit_info = ((info->src_val & 0xffff) << 16) | 4717 SVM_IOIO_TYPE_MASK; 4718 bytes = info->dst_bytes; 4719 } else { 4720 exit_info = (info->dst_val & 0xffff) << 16; 4721 bytes = info->src_bytes; 4722 } 4723 4724 if (info->intercept == x86_intercept_outs || 4725 info->intercept == x86_intercept_ins) 4726 exit_info |= SVM_IOIO_STR_MASK; 4727 4728 if (info->rep_prefix) 4729 exit_info |= SVM_IOIO_REP_MASK; 4730 4731 bytes = min(bytes, 4u); 4732 4733 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4734 4735 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4736 4737 vmcb->control.exit_info_1 = exit_info; 4738 vmcb->control.exit_info_2 = info->next_rip; 4739 4740 break; 4741 } 4742 default: 4743 break; 4744 } 4745 4746 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4747 if (static_cpu_has(X86_FEATURE_NRIPS)) 4748 vmcb->control.next_rip = info->next_rip; 4749 vmcb->control.exit_code = icpt_info.exit_code; 4750 vmexit = nested_svm_exit_handled(svm); 4751 4752 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4753 : X86EMUL_CONTINUE; 4754 4755 out: 4756 return ret; 4757 } 4758 4759 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4760 { 4761 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4762 vcpu->arch.at_instruction_boundary = true; 4763 } 4764 4765 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4766 { 4767 /* [63:9] are reserved. */ 4768 vcpu->arch.mcg_cap &= 0x1ff; 4769 } 4770 4771 #ifdef CONFIG_KVM_SMM 4772 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4773 { 4774 struct vcpu_svm *svm = to_svm(vcpu); 4775 4776 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4777 if (!gif_set(svm)) 4778 return true; 4779 4780 return is_smm(vcpu); 4781 } 4782 4783 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4784 { 4785 struct vcpu_svm *svm = to_svm(vcpu); 4786 if (svm->nested.nested_run_pending) 4787 return -EBUSY; 4788 4789 if (svm_smi_blocked(vcpu)) 4790 return 0; 4791 4792 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4793 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4794 return -EBUSY; 4795 4796 return 1; 4797 } 4798 4799 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4800 { 4801 struct vcpu_svm *svm = to_svm(vcpu); 4802 struct kvm_host_map map_save; 4803 int ret; 4804 4805 if (!is_guest_mode(vcpu)) 4806 return 0; 4807 4808 /* 4809 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4810 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4811 */ 4812 4813 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4814 return 1; 4815 4816 smram->smram64.svm_guest_flag = 1; 4817 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4818 4819 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4820 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4821 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4822 4823 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4824 if (ret) 4825 return ret; 4826 4827 /* 4828 * KVM uses VMCB01 to store L1 host state while L2 runs but 4829 * VMCB01 is going to be used during SMM and thus the state will 4830 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4831 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4832 * format of the area is identical to guest save area offsetted 4833 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4834 * within 'struct vmcb'). Note: HSAVE area may also be used by 4835 * L1 hypervisor to save additional host context (e.g. KVM does 4836 * that, see svm_prepare_switch_to_guest()) which must be 4837 * preserved. 4838 */ 4839 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4840 return 1; 4841 4842 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4843 4844 svm_copy_vmrun_state(map_save.hva + 0x400, 4845 &svm->vmcb01.ptr->save); 4846 4847 kvm_vcpu_unmap(vcpu, &map_save); 4848 return 0; 4849 } 4850 4851 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4852 { 4853 struct vcpu_svm *svm = to_svm(vcpu); 4854 struct kvm_host_map map, map_save; 4855 struct vmcb *vmcb12; 4856 int ret; 4857 4858 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4859 4860 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4861 return 0; 4862 4863 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4864 if (!smram64->svm_guest_flag) 4865 return 0; 4866 4867 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 4868 return 1; 4869 4870 if (!(smram64->efer & EFER_SVME)) 4871 return 1; 4872 4873 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4874 return 1; 4875 4876 ret = 1; 4877 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4878 goto unmap_map; 4879 4880 if (svm_allocate_nested(svm)) 4881 goto unmap_save; 4882 4883 /* 4884 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4885 * used during SMM (see svm_enter_smm()) 4886 */ 4887 4888 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4889 4890 /* 4891 * Enter the nested guest now 4892 */ 4893 4894 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4895 4896 vmcb12 = map.hva; 4897 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4898 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4899 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4900 4901 if (ret) 4902 goto unmap_save; 4903 4904 svm->nested.nested_run_pending = 1; 4905 4906 unmap_save: 4907 kvm_vcpu_unmap(vcpu, &map_save); 4908 unmap_map: 4909 kvm_vcpu_unmap(vcpu, &map); 4910 return ret; 4911 } 4912 4913 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4914 { 4915 struct vcpu_svm *svm = to_svm(vcpu); 4916 4917 if (!gif_set(svm)) { 4918 if (vgif) 4919 svm_set_intercept(svm, INTERCEPT_STGI); 4920 /* STGI will cause a vm exit */ 4921 } else { 4922 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4923 } 4924 } 4925 #endif 4926 4927 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4928 void *insn, int insn_len) 4929 { 4930 struct vcpu_svm *svm = to_svm(vcpu); 4931 bool smep, smap, is_user; 4932 u64 error_code; 4933 4934 /* Check that emulation is possible during event vectoring */ 4935 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) && 4936 !kvm_can_emulate_event_vectoring(emul_type)) 4937 return X86EMUL_UNHANDLEABLE_VECTORING; 4938 4939 /* Emulation is always possible when KVM has access to all guest state. */ 4940 if (!sev_guest(vcpu->kvm)) 4941 return X86EMUL_CONTINUE; 4942 4943 /* #UD and #GP should never be intercepted for SEV guests. */ 4944 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4945 EMULTYPE_TRAP_UD_FORCED | 4946 EMULTYPE_VMWARE_GP)); 4947 4948 /* 4949 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4950 * to guest register state. 4951 */ 4952 if (sev_es_guest(vcpu->kvm)) 4953 return X86EMUL_RETRY_INSTR; 4954 4955 /* 4956 * Emulation is possible if the instruction is already decoded, e.g. 4957 * when completing I/O after returning from userspace. 4958 */ 4959 if (emul_type & EMULTYPE_NO_DECODE) 4960 return X86EMUL_CONTINUE; 4961 4962 /* 4963 * Emulation is possible for SEV guests if and only if a prefilled 4964 * buffer containing the bytes of the intercepted instruction is 4965 * available. SEV guest memory is encrypted with a guest specific key 4966 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4967 * decode garbage. 4968 * 4969 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4970 * KVM reached this point without an instruction buffer. In practice, 4971 * this path should never be hit by a well-behaved guest, e.g. KVM 4972 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4973 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4974 * access, and needs to be handled by KVM to avoid putting the guest 4975 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4976 * its the least awful option given lack of insight into the guest. 4977 * 4978 * If KVM is trying to skip an instruction, simply resume the guest. 4979 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4980 * will attempt to re-inject the INT3/INTO and skip the instruction. 4981 * In that scenario, retrying the INT3/INTO and hoping the guest will 4982 * make forward progress is the only option that has a chance of 4983 * success (and in practice it will work the vast majority of the time). 4984 */ 4985 if (unlikely(!insn)) { 4986 if (emul_type & EMULTYPE_SKIP) 4987 return X86EMUL_UNHANDLEABLE; 4988 4989 kvm_queue_exception(vcpu, UD_VECTOR); 4990 return X86EMUL_PROPAGATE_FAULT; 4991 } 4992 4993 /* 4994 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4995 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4996 * the faulting instruction because the code fetch itself faulted, e.g. 4997 * the guest attempted to fetch from emulated MMIO or a guest page 4998 * table used to translate CS:RIP resides in emulated MMIO. 4999 */ 5000 if (likely(insn_len)) 5001 return X86EMUL_CONTINUE; 5002 5003 /* 5004 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 5005 * 5006 * Errata: 5007 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 5008 * possible that CPU microcode implementing DecodeAssist will fail to 5009 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 5010 * be '0'. This happens because microcode reads CS:RIP using a _data_ 5011 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 5012 * gives up and does not fill the instruction bytes buffer. 5013 * 5014 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 5015 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 5016 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 5017 * GuestIntrBytes field of the VMCB. 5018 * 5019 * This does _not_ mean that the erratum has been encountered, as the 5020 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 5021 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 5022 * encountered a reserved/not-present #PF. 5023 * 5024 * To hit the erratum, the following conditions must be true: 5025 * 1. CR4.SMAP=1 (obviously). 5026 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 5027 * have been hit as the guest would have encountered a SMEP 5028 * violation #PF, not a #NPF. 5029 * 3. The #NPF is not due to a code fetch, in which case failure to 5030 * retrieve the instruction bytes is legitimate (see abvoe). 5031 * 5032 * In addition, don't apply the erratum workaround if the #NPF occurred 5033 * while translating guest page tables (see below). 5034 */ 5035 error_code = svm->vmcb->control.exit_info_1; 5036 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 5037 goto resume_guest; 5038 5039 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 5040 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 5041 is_user = svm_get_cpl(vcpu) == 3; 5042 if (smap && (!smep || is_user)) { 5043 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 5044 5045 /* 5046 * If the fault occurred in userspace, arbitrarily inject #GP 5047 * to avoid killing the guest and to hopefully avoid confusing 5048 * the guest kernel too much, e.g. injecting #PF would not be 5049 * coherent with respect to the guest's page tables. Request 5050 * triple fault if the fault occurred in the kernel as there's 5051 * no fault that KVM can inject without confusing the guest. 5052 * In practice, the triple fault is moot as no sane SEV kernel 5053 * will execute from user memory while also running with SMAP=1. 5054 */ 5055 if (is_user) 5056 kvm_inject_gp(vcpu, 0); 5057 else 5058 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5059 return X86EMUL_PROPAGATE_FAULT; 5060 } 5061 5062 resume_guest: 5063 /* 5064 * If the erratum was not hit, simply resume the guest and let it fault 5065 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 5066 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 5067 * userspace will kill the guest, and letting the emulator read garbage 5068 * will yield random behavior and potentially corrupt the guest. 5069 * 5070 * Simply resuming the guest is technically not a violation of the SEV 5071 * architecture. AMD's APM states that all code fetches and page table 5072 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 5073 * APM also states that encrypted accesses to MMIO are "ignored", but 5074 * doesn't explicitly define "ignored", i.e. doing nothing and letting 5075 * the guest spin is technically "ignoring" the access. 5076 */ 5077 return X86EMUL_RETRY_INSTR; 5078 } 5079 5080 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 5081 { 5082 struct vcpu_svm *svm = to_svm(vcpu); 5083 5084 return !gif_set(svm); 5085 } 5086 5087 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 5088 { 5089 if (!sev_es_guest(vcpu->kvm)) 5090 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 5091 5092 sev_vcpu_deliver_sipi_vector(vcpu, vector); 5093 } 5094 5095 static void svm_vm_destroy(struct kvm *kvm) 5096 { 5097 avic_vm_destroy(kvm); 5098 sev_vm_destroy(kvm); 5099 5100 svm_srso_vm_destroy(); 5101 } 5102 5103 static int svm_vm_init(struct kvm *kvm) 5104 { 5105 int type = kvm->arch.vm_type; 5106 5107 if (type != KVM_X86_DEFAULT_VM && 5108 type != KVM_X86_SW_PROTECTED_VM) { 5109 kvm->arch.has_protected_state = 5110 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 5111 to_kvm_sev_info(kvm)->need_init = true; 5112 5113 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 5114 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 5115 } 5116 5117 if (!pause_filter_count || !pause_filter_thresh) 5118 kvm->arch.pause_in_guest = true; 5119 5120 if (enable_apicv) { 5121 int ret = avic_vm_init(kvm); 5122 if (ret) 5123 return ret; 5124 } 5125 5126 svm_srso_vm_init(); 5127 return 0; 5128 } 5129 5130 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 5131 { 5132 struct page *page = snp_safe_alloc_page(); 5133 5134 if (!page) 5135 return NULL; 5136 5137 return page_address(page); 5138 } 5139 5140 static struct kvm_x86_ops svm_x86_ops __initdata = { 5141 .name = KBUILD_MODNAME, 5142 5143 .check_processor_compatibility = svm_check_processor_compat, 5144 5145 .hardware_unsetup = svm_hardware_unsetup, 5146 .enable_virtualization_cpu = svm_enable_virtualization_cpu, 5147 .disable_virtualization_cpu = svm_disable_virtualization_cpu, 5148 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, 5149 .has_emulated_msr = svm_has_emulated_msr, 5150 5151 .vcpu_create = svm_vcpu_create, 5152 .vcpu_free = svm_vcpu_free, 5153 .vcpu_reset = svm_vcpu_reset, 5154 5155 .vm_size = sizeof(struct kvm_svm), 5156 .vm_init = svm_vm_init, 5157 .vm_destroy = svm_vm_destroy, 5158 5159 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5160 .vcpu_load = svm_vcpu_load, 5161 .vcpu_put = svm_vcpu_put, 5162 .vcpu_blocking = avic_vcpu_blocking, 5163 .vcpu_unblocking = avic_vcpu_unblocking, 5164 5165 .update_exception_bitmap = svm_update_exception_bitmap, 5166 .get_feature_msr = svm_get_feature_msr, 5167 .get_msr = svm_get_msr, 5168 .set_msr = svm_set_msr, 5169 .get_segment_base = svm_get_segment_base, 5170 .get_segment = svm_get_segment, 5171 .set_segment = svm_set_segment, 5172 .get_cpl = svm_get_cpl, 5173 .get_cpl_no_cache = svm_get_cpl, 5174 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5175 .is_valid_cr0 = svm_is_valid_cr0, 5176 .set_cr0 = svm_set_cr0, 5177 .post_set_cr3 = sev_post_set_cr3, 5178 .is_valid_cr4 = svm_is_valid_cr4, 5179 .set_cr4 = svm_set_cr4, 5180 .set_efer = svm_set_efer, 5181 .get_idt = svm_get_idt, 5182 .set_idt = svm_set_idt, 5183 .get_gdt = svm_get_gdt, 5184 .set_gdt = svm_set_gdt, 5185 .set_dr6 = svm_set_dr6, 5186 .set_dr7 = svm_set_dr7, 5187 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5188 .cache_reg = svm_cache_reg, 5189 .get_rflags = svm_get_rflags, 5190 .set_rflags = svm_set_rflags, 5191 .get_if_flag = svm_get_if_flag, 5192 5193 .flush_tlb_all = svm_flush_tlb_all, 5194 .flush_tlb_current = svm_flush_tlb_current, 5195 .flush_tlb_gva = svm_flush_tlb_gva, 5196 .flush_tlb_guest = svm_flush_tlb_asid, 5197 5198 .vcpu_pre_run = svm_vcpu_pre_run, 5199 .vcpu_run = svm_vcpu_run, 5200 .handle_exit = svm_handle_exit, 5201 .skip_emulated_instruction = svm_skip_emulated_instruction, 5202 .update_emulated_instruction = NULL, 5203 .set_interrupt_shadow = svm_set_interrupt_shadow, 5204 .get_interrupt_shadow = svm_get_interrupt_shadow, 5205 .patch_hypercall = svm_patch_hypercall, 5206 .inject_irq = svm_inject_irq, 5207 .inject_nmi = svm_inject_nmi, 5208 .is_vnmi_pending = svm_is_vnmi_pending, 5209 .set_vnmi_pending = svm_set_vnmi_pending, 5210 .inject_exception = svm_inject_exception, 5211 .cancel_injection = svm_cancel_injection, 5212 .interrupt_allowed = svm_interrupt_allowed, 5213 .nmi_allowed = svm_nmi_allowed, 5214 .get_nmi_mask = svm_get_nmi_mask, 5215 .set_nmi_mask = svm_set_nmi_mask, 5216 .enable_nmi_window = svm_enable_nmi_window, 5217 .enable_irq_window = svm_enable_irq_window, 5218 .update_cr8_intercept = svm_update_cr8_intercept, 5219 5220 .x2apic_icr_is_split = true, 5221 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5222 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5223 .apicv_post_state_restore = avic_apicv_post_state_restore, 5224 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5225 5226 .get_exit_info = svm_get_exit_info, 5227 .get_entry_info = svm_get_entry_info, 5228 5229 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5230 5231 .has_wbinvd_exit = svm_has_wbinvd_exit, 5232 5233 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5234 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5235 .write_tsc_offset = svm_write_tsc_offset, 5236 .write_tsc_multiplier = svm_write_tsc_multiplier, 5237 5238 .load_mmu_pgd = svm_load_mmu_pgd, 5239 5240 .check_intercept = svm_check_intercept, 5241 .handle_exit_irqoff = svm_handle_exit_irqoff, 5242 5243 .nested_ops = &svm_nested_ops, 5244 5245 .deliver_interrupt = svm_deliver_interrupt, 5246 .pi_update_irte = avic_pi_update_irte, 5247 .setup_mce = svm_setup_mce, 5248 5249 #ifdef CONFIG_KVM_SMM 5250 .smi_allowed = svm_smi_allowed, 5251 .enter_smm = svm_enter_smm, 5252 .leave_smm = svm_leave_smm, 5253 .enable_smi_window = svm_enable_smi_window, 5254 #endif 5255 5256 #ifdef CONFIG_KVM_AMD_SEV 5257 .dev_get_attr = sev_dev_get_attr, 5258 .mem_enc_ioctl = sev_mem_enc_ioctl, 5259 .mem_enc_register_region = sev_mem_enc_register_region, 5260 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5261 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5262 5263 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5264 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5265 #endif 5266 .check_emulate_instruction = svm_check_emulate_instruction, 5267 5268 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5269 5270 .msr_filter_changed = svm_msr_filter_changed, 5271 .complete_emulated_msr = svm_complete_emulated_msr, 5272 5273 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5274 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5275 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5276 5277 .gmem_prepare = sev_gmem_prepare, 5278 .gmem_invalidate = sev_gmem_invalidate, 5279 .private_max_mapping_level = sev_private_max_mapping_level, 5280 }; 5281 5282 /* 5283 * The default MMIO mask is a single bit (excluding the present bit), 5284 * which could conflict with the memory encryption bit. Check for 5285 * memory encryption support and override the default MMIO mask if 5286 * memory encryption is enabled. 5287 */ 5288 static __init void svm_adjust_mmio_mask(void) 5289 { 5290 unsigned int enc_bit, mask_bit; 5291 u64 msr, mask; 5292 5293 /* If there is no memory encryption support, use existing mask */ 5294 if (cpuid_eax(0x80000000) < 0x8000001f) 5295 return; 5296 5297 /* If memory encryption is not enabled, use existing mask */ 5298 rdmsrl(MSR_AMD64_SYSCFG, msr); 5299 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5300 return; 5301 5302 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5303 mask_bit = boot_cpu_data.x86_phys_bits; 5304 5305 /* Increment the mask bit if it is the same as the encryption bit */ 5306 if (enc_bit == mask_bit) 5307 mask_bit++; 5308 5309 /* 5310 * If the mask bit location is below 52, then some bits above the 5311 * physical addressing limit will always be reserved, so use the 5312 * rsvd_bits() function to generate the mask. This mask, along with 5313 * the present bit, will be used to generate a page fault with 5314 * PFER.RSV = 1. 5315 * 5316 * If the mask bit location is 52 (or above), then clear the mask. 5317 */ 5318 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5319 5320 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5321 } 5322 5323 static __init void svm_set_cpu_caps(void) 5324 { 5325 kvm_set_cpu_caps(); 5326 5327 kvm_caps.supported_perf_cap = 0; 5328 kvm_caps.supported_xss = 0; 5329 5330 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5331 if (nested) { 5332 kvm_cpu_cap_set(X86_FEATURE_SVM); 5333 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5334 5335 /* 5336 * KVM currently flushes TLBs on *every* nested SVM transition, 5337 * and so for all intents and purposes KVM supports flushing by 5338 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5339 */ 5340 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5341 5342 if (nrips) 5343 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5344 5345 if (npt_enabled) 5346 kvm_cpu_cap_set(X86_FEATURE_NPT); 5347 5348 if (tsc_scaling) 5349 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5350 5351 if (vls) 5352 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5353 if (lbrv) 5354 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5355 5356 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5357 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5358 5359 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5360 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5361 5362 if (vgif) 5363 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5364 5365 if (vnmi) 5366 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5367 5368 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5369 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5370 } 5371 5372 /* CPUID 0x80000008 */ 5373 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5374 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5375 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5376 5377 if (enable_pmu) { 5378 /* 5379 * Enumerate support for PERFCTR_CORE if and only if KVM has 5380 * access to enough counters to virtualize "core" support, 5381 * otherwise limit vPMU support to the legacy number of counters. 5382 */ 5383 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5384 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5385 kvm_pmu_cap.num_counters_gp); 5386 else 5387 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5388 5389 if (kvm_pmu_cap.version != 2 || 5390 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5391 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5392 } 5393 5394 /* CPUID 0x8000001F (SME/SEV features) */ 5395 sev_set_cpu_caps(); 5396 5397 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */ 5398 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5399 } 5400 5401 static __init int svm_hardware_setup(void) 5402 { 5403 int cpu; 5404 struct page *iopm_pages; 5405 void *iopm_va; 5406 int r; 5407 unsigned int order = get_order(IOPM_SIZE); 5408 5409 /* 5410 * NX is required for shadow paging and for NPT if the NX huge pages 5411 * mitigation is enabled. 5412 */ 5413 if (!boot_cpu_has(X86_FEATURE_NX)) { 5414 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5415 return -EOPNOTSUPP; 5416 } 5417 kvm_enable_efer_bits(EFER_NX); 5418 5419 iopm_pages = alloc_pages(GFP_KERNEL, order); 5420 5421 if (!iopm_pages) 5422 return -ENOMEM; 5423 5424 iopm_va = page_address(iopm_pages); 5425 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5426 iopm_base = __sme_page_pa(iopm_pages); 5427 5428 init_msrpm_offsets(); 5429 5430 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5431 XFEATURE_MASK_BNDCSR); 5432 5433 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5434 kvm_enable_efer_bits(EFER_FFXSR); 5435 5436 if (tsc_scaling) { 5437 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5438 tsc_scaling = false; 5439 } else { 5440 pr_info("TSC scaling supported\n"); 5441 kvm_caps.has_tsc_control = true; 5442 } 5443 } 5444 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5445 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5446 5447 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5448 5449 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5450 kvm_enable_efer_bits(EFER_AUTOIBRS); 5451 5452 /* Check for pause filtering support */ 5453 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5454 pause_filter_count = 0; 5455 pause_filter_thresh = 0; 5456 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5457 pause_filter_thresh = 0; 5458 } 5459 5460 if (nested) { 5461 pr_info("Nested Virtualization enabled\n"); 5462 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5463 } 5464 5465 /* 5466 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5467 * NPT isn't supported if the host is using 2-level paging since host 5468 * CR4 is unchanged on VMRUN. 5469 */ 5470 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5471 npt_enabled = false; 5472 5473 if (!boot_cpu_has(X86_FEATURE_NPT)) 5474 npt_enabled = false; 5475 5476 /* Force VM NPT level equal to the host's paging level */ 5477 kvm_configure_mmu(npt_enabled, get_npt_level(), 5478 get_npt_level(), PG_LEVEL_1G); 5479 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled)); 5480 5481 /* Setup shadow_me_value and shadow_me_mask */ 5482 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5483 5484 svm_adjust_mmio_mask(); 5485 5486 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5487 5488 if (lbrv) { 5489 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5490 lbrv = false; 5491 else 5492 pr_info("LBR virtualization supported\n"); 5493 } 5494 /* 5495 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5496 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5497 */ 5498 sev_hardware_setup(); 5499 5500 svm_hv_hardware_setup(); 5501 5502 for_each_possible_cpu(cpu) { 5503 r = svm_cpu_init(cpu); 5504 if (r) 5505 goto err; 5506 } 5507 5508 enable_apicv = avic = avic && avic_hardware_setup(); 5509 5510 if (!enable_apicv) { 5511 svm_x86_ops.vcpu_blocking = NULL; 5512 svm_x86_ops.vcpu_unblocking = NULL; 5513 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5514 } else if (!x2avic_enabled) { 5515 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5516 } 5517 5518 if (vls) { 5519 if (!npt_enabled || 5520 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5521 !IS_ENABLED(CONFIG_X86_64)) { 5522 vls = false; 5523 } else { 5524 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5525 } 5526 } 5527 5528 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5529 svm_gp_erratum_intercept = false; 5530 5531 if (vgif) { 5532 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5533 vgif = false; 5534 else 5535 pr_info("Virtual GIF supported\n"); 5536 } 5537 5538 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5539 if (vnmi) 5540 pr_info("Virtual NMI enabled\n"); 5541 5542 if (!vnmi) { 5543 svm_x86_ops.is_vnmi_pending = NULL; 5544 svm_x86_ops.set_vnmi_pending = NULL; 5545 } 5546 5547 if (!enable_pmu) 5548 pr_info("PMU virtualization is disabled\n"); 5549 5550 svm_set_cpu_caps(); 5551 5552 /* 5553 * It seems that on AMD processors PTE's accessed bit is 5554 * being set by the CPU hardware before the NPF vmexit. 5555 * This is not expected behaviour and our tests fail because 5556 * of it. 5557 * A workaround here is to disable support for 5558 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5559 * In this case userspace can know if there is support using 5560 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5561 * it 5562 * If future AMD CPU models change the behaviour described above, 5563 * this variable can be changed accordingly 5564 */ 5565 allow_smaller_maxphyaddr = !npt_enabled; 5566 5567 return 0; 5568 5569 err: 5570 svm_hardware_unsetup(); 5571 return r; 5572 } 5573 5574 5575 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5576 .hardware_setup = svm_hardware_setup, 5577 5578 .runtime_ops = &svm_x86_ops, 5579 .pmu_ops = &amd_pmu_ops, 5580 }; 5581 5582 static void __svm_exit(void) 5583 { 5584 kvm_x86_vendor_exit(); 5585 } 5586 5587 static int __init svm_init(void) 5588 { 5589 int r; 5590 5591 __unused_size_checks(); 5592 5593 if (!kvm_is_svm_supported()) 5594 return -EOPNOTSUPP; 5595 5596 r = kvm_x86_vendor_init(&svm_init_ops); 5597 if (r) 5598 return r; 5599 5600 /* 5601 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5602 * exposed to userspace! 5603 */ 5604 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5605 THIS_MODULE); 5606 if (r) 5607 goto err_kvm_init; 5608 5609 return 0; 5610 5611 err_kvm_init: 5612 __svm_exit(); 5613 return r; 5614 } 5615 5616 static void __exit svm_exit(void) 5617 { 5618 kvm_exit(); 5619 __svm_exit(); 5620 } 5621 5622 module_init(svm_init) 5623 module_exit(svm_exit) 5624