1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 #include <linux/string_choices.h> 32 #include <linux/mutex.h> 33 34 #include <asm/apic.h> 35 #include <asm/msr.h> 36 #include <asm/perf_event.h> 37 #include <asm/tlbflush.h> 38 #include <asm/desc.h> 39 #include <asm/debugreg.h> 40 #include <asm/kvm_para.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/cpu_device_id.h> 44 #include <asm/traps.h> 45 #include <asm/reboot.h> 46 #include <asm/fpu/api.h> 47 48 #include <trace/events/ipi.h> 49 50 #include "trace.h" 51 52 #include "svm.h" 53 #include "svm_ops.h" 54 55 #include "kvm_onhyperv.h" 56 #include "svm_onhyperv.h" 57 58 MODULE_AUTHOR("Qumranet"); 59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 60 MODULE_LICENSE("GPL"); 61 62 #ifdef MODULE 63 static const struct x86_cpu_id svm_cpu_id[] = { 64 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 65 {} 66 }; 67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 68 #endif 69 70 #define SEG_TYPE_LDT 2 71 #define SEG_TYPE_BUSY_TSS16 3 72 73 static bool erratum_383_found __read_mostly; 74 75 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 76 77 /* 78 * Set osvw_len to higher value when updated Revision Guides 79 * are published and we know what the new status bits are 80 */ 81 static uint64_t osvw_len = 4, osvw_status; 82 83 static DEFINE_PER_CPU(u64, current_tsc_ratio); 84 85 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 86 87 static const struct svm_direct_access_msrs { 88 u32 index; /* Index of the MSR */ 89 bool always; /* True if intercept is initially cleared */ 90 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 91 { .index = MSR_STAR, .always = true }, 92 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 93 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 94 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 95 #ifdef CONFIG_X86_64 96 { .index = MSR_GS_BASE, .always = true }, 97 { .index = MSR_FS_BASE, .always = true }, 98 { .index = MSR_KERNEL_GS_BASE, .always = true }, 99 { .index = MSR_LSTAR, .always = true }, 100 { .index = MSR_CSTAR, .always = true }, 101 { .index = MSR_SYSCALL_MASK, .always = true }, 102 #endif 103 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 104 { .index = MSR_IA32_PRED_CMD, .always = false }, 105 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 106 { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, 107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 109 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 110 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 111 { .index = MSR_IA32_XSS, .always = false }, 112 { .index = MSR_EFER, .always = false }, 113 { .index = MSR_IA32_CR_PAT, .always = false }, 114 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 115 { .index = MSR_TSC_AUX, .always = false }, 116 { .index = X2APIC_MSR(APIC_ID), .always = false }, 117 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 118 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 119 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 120 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 121 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 122 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 123 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 124 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 125 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 126 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 127 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 128 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 129 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 130 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 131 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 132 133 /* 134 * Note: 135 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 136 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 137 * the AVIC hardware would generate GP fault. Therefore, always 138 * intercept the MSR 0x832, and do not setup direct_access_msr. 139 */ 140 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 141 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 142 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 143 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 144 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 145 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 146 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 147 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 148 { .index = MSR_INVALID, .always = false }, 149 }; 150 151 /* 152 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 153 * pause_filter_count: On processors that support Pause filtering(indicated 154 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 155 * count value. On VMRUN this value is loaded into an internal counter. 156 * Each time a pause instruction is executed, this counter is decremented 157 * until it reaches zero at which time a #VMEXIT is generated if pause 158 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 159 * Intercept Filtering for more details. 160 * This also indicate if ple logic enabled. 161 * 162 * pause_filter_thresh: In addition, some processor families support advanced 163 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 164 * the amount of time a guest is allowed to execute in a pause loop. 165 * In this mode, a 16-bit pause filter threshold field is added in the 166 * VMCB. The threshold value is a cycle count that is used to reset the 167 * pause counter. As with simple pause filtering, VMRUN loads the pause 168 * count value from VMCB into an internal counter. Then, on each pause 169 * instruction the hardware checks the elapsed number of cycles since 170 * the most recent pause instruction against the pause filter threshold. 171 * If the elapsed cycle count is greater than the pause filter threshold, 172 * then the internal pause count is reloaded from the VMCB and execution 173 * continues. If the elapsed cycle count is less than the pause filter 174 * threshold, then the internal pause count is decremented. If the count 175 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 176 * triggered. If advanced pause filtering is supported and pause filter 177 * threshold field is set to zero, the filter will operate in the simpler, 178 * count only mode. 179 */ 180 181 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 182 module_param(pause_filter_thresh, ushort, 0444); 183 184 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 185 module_param(pause_filter_count, ushort, 0444); 186 187 /* Default doubles per-vcpu window every exit. */ 188 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 189 module_param(pause_filter_count_grow, ushort, 0444); 190 191 /* Default resets per-vcpu window every exit to pause_filter_count. */ 192 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 193 module_param(pause_filter_count_shrink, ushort, 0444); 194 195 /* Default is to compute the maximum so we can never overflow. */ 196 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 197 module_param(pause_filter_count_max, ushort, 0444); 198 199 /* 200 * Use nested page tables by default. Note, NPT may get forced off by 201 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 202 */ 203 bool npt_enabled = true; 204 module_param_named(npt, npt_enabled, bool, 0444); 205 206 /* allow nested virtualization in KVM/SVM */ 207 static int nested = true; 208 module_param(nested, int, 0444); 209 210 /* enable/disable Next RIP Save */ 211 int nrips = true; 212 module_param(nrips, int, 0444); 213 214 /* enable/disable Virtual VMLOAD VMSAVE */ 215 static int vls = true; 216 module_param(vls, int, 0444); 217 218 /* enable/disable Virtual GIF */ 219 int vgif = true; 220 module_param(vgif, int, 0444); 221 222 /* enable/disable LBR virtualization */ 223 int lbrv = true; 224 module_param(lbrv, int, 0444); 225 226 static int tsc_scaling = true; 227 module_param(tsc_scaling, int, 0444); 228 229 /* 230 * enable / disable AVIC. Because the defaults differ for APICv 231 * support between VMX and SVM we cannot use module_param_named. 232 */ 233 static bool avic; 234 module_param(avic, bool, 0444); 235 236 module_param(enable_device_posted_irqs, bool, 0444); 237 238 bool __read_mostly dump_invalid_vmcb; 239 module_param(dump_invalid_vmcb, bool, 0644); 240 241 242 bool intercept_smi = true; 243 module_param(intercept_smi, bool, 0444); 244 245 bool vnmi = true; 246 module_param(vnmi, bool, 0444); 247 248 static bool svm_gp_erratum_intercept = true; 249 250 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 251 252 static unsigned long iopm_base; 253 254 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 255 256 static DEFINE_MUTEX(vmcb_dump_mutex); 257 258 /* 259 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 260 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 261 * 262 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 263 * defer the restoration of TSC_AUX until the CPU returns to userspace. 264 */ 265 static int tsc_aux_uret_slot __read_mostly = -1; 266 267 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 268 269 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 270 #define MSRS_RANGE_SIZE 2048 271 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 272 273 u32 svm_msrpm_offset(u32 msr) 274 { 275 u32 offset; 276 int i; 277 278 for (i = 0; i < NUM_MSR_MAPS; i++) { 279 if (msr < msrpm_ranges[i] || 280 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 281 continue; 282 283 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 284 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 285 286 /* Now we have the u8 offset - but need the u32 offset */ 287 return offset / 4; 288 } 289 290 /* MSR not in any range */ 291 return MSR_INVALID; 292 } 293 294 static int get_npt_level(void) 295 { 296 #ifdef CONFIG_X86_64 297 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 298 #else 299 return PT32E_ROOT_LEVEL; 300 #endif 301 } 302 303 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 304 { 305 struct vcpu_svm *svm = to_svm(vcpu); 306 u64 old_efer = vcpu->arch.efer; 307 vcpu->arch.efer = efer; 308 309 if (!npt_enabled) { 310 /* Shadow paging assumes NX to be available. */ 311 efer |= EFER_NX; 312 313 if (!(efer & EFER_LMA)) 314 efer &= ~EFER_LME; 315 } 316 317 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 318 if (!(efer & EFER_SVME)) { 319 svm_leave_nested(vcpu); 320 svm_set_gif(svm, true); 321 /* #GP intercept is still needed for vmware backdoor */ 322 if (!enable_vmware_backdoor) 323 clr_exception_intercept(svm, GP_VECTOR); 324 325 /* 326 * Free the nested guest state, unless we are in SMM. 327 * In this case we will return to the nested guest 328 * as soon as we leave SMM. 329 */ 330 if (!is_smm(vcpu)) 331 svm_free_nested(svm); 332 333 } else { 334 int ret = svm_allocate_nested(svm); 335 336 if (ret) { 337 vcpu->arch.efer = old_efer; 338 return ret; 339 } 340 341 /* 342 * Never intercept #GP for SEV guests, KVM can't 343 * decrypt guest memory to workaround the erratum. 344 */ 345 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 346 set_exception_intercept(svm, GP_VECTOR); 347 } 348 } 349 350 svm->vmcb->save.efer = efer | EFER_SVME; 351 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 352 return 0; 353 } 354 355 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 356 { 357 struct vcpu_svm *svm = to_svm(vcpu); 358 u32 ret = 0; 359 360 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 361 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 362 return ret; 363 } 364 365 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 366 { 367 struct vcpu_svm *svm = to_svm(vcpu); 368 369 if (mask == 0) 370 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 371 else 372 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 373 374 } 375 376 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 377 bool commit_side_effects) 378 { 379 struct vcpu_svm *svm = to_svm(vcpu); 380 unsigned long old_rflags; 381 382 /* 383 * SEV-ES does not expose the next RIP. The RIP update is controlled by 384 * the type of exit and the #VC handler in the guest. 385 */ 386 if (sev_es_guest(vcpu->kvm)) 387 goto done; 388 389 if (nrips && svm->vmcb->control.next_rip != 0) { 390 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 391 svm->next_rip = svm->vmcb->control.next_rip; 392 } 393 394 if (!svm->next_rip) { 395 if (unlikely(!commit_side_effects)) 396 old_rflags = svm->vmcb->save.rflags; 397 398 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 399 return 0; 400 401 if (unlikely(!commit_side_effects)) 402 svm->vmcb->save.rflags = old_rflags; 403 } else { 404 kvm_rip_write(vcpu, svm->next_rip); 405 } 406 407 done: 408 if (likely(commit_side_effects)) 409 svm_set_interrupt_shadow(vcpu, 0); 410 411 return 1; 412 } 413 414 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 415 { 416 return __svm_skip_emulated_instruction(vcpu, true); 417 } 418 419 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 420 { 421 unsigned long rip, old_rip = kvm_rip_read(vcpu); 422 struct vcpu_svm *svm = to_svm(vcpu); 423 424 /* 425 * Due to architectural shortcomings, the CPU doesn't always provide 426 * NextRIP, e.g. if KVM intercepted an exception that occurred while 427 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 428 * the instruction even if NextRIP is supported to acquire the next 429 * RIP so that it can be shoved into the NextRIP field, otherwise 430 * hardware will fail to advance guest RIP during event injection. 431 * Drop the exception/interrupt if emulation fails and effectively 432 * retry the instruction, it's the least awful option. If NRIPS is 433 * in use, the skip must not commit any side effects such as clearing 434 * the interrupt shadow or RFLAGS.RF. 435 */ 436 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 437 return -EIO; 438 439 rip = kvm_rip_read(vcpu); 440 441 /* 442 * Save the injection information, even when using next_rip, as the 443 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 444 * doesn't complete due to a VM-Exit occurring while the CPU is 445 * vectoring the event. Decoding the instruction isn't guaranteed to 446 * work as there may be no backing instruction, e.g. if the event is 447 * being injected by L1 for L2, or if the guest is patching INT3 into 448 * a different instruction. 449 */ 450 svm->soft_int_injected = true; 451 svm->soft_int_csbase = svm->vmcb->save.cs.base; 452 svm->soft_int_old_rip = old_rip; 453 svm->soft_int_next_rip = rip; 454 455 if (nrips) 456 kvm_rip_write(vcpu, old_rip); 457 458 if (static_cpu_has(X86_FEATURE_NRIPS)) 459 svm->vmcb->control.next_rip = rip; 460 461 return 0; 462 } 463 464 static void svm_inject_exception(struct kvm_vcpu *vcpu) 465 { 466 struct kvm_queued_exception *ex = &vcpu->arch.exception; 467 struct vcpu_svm *svm = to_svm(vcpu); 468 469 kvm_deliver_exception_payload(vcpu, ex); 470 471 if (kvm_exception_is_soft(ex->vector) && 472 svm_update_soft_interrupt_rip(vcpu)) 473 return; 474 475 svm->vmcb->control.event_inj = ex->vector 476 | SVM_EVTINJ_VALID 477 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 478 | SVM_EVTINJ_TYPE_EXEPT; 479 svm->vmcb->control.event_inj_err = ex->error_code; 480 } 481 482 static void svm_init_erratum_383(void) 483 { 484 u64 val; 485 486 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 487 return; 488 489 /* Use _safe variants to not break nested virtualization */ 490 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val)) 491 return; 492 493 val |= (1ULL << 47); 494 495 native_write_msr_safe(MSR_AMD64_DC_CFG, val); 496 497 erratum_383_found = true; 498 } 499 500 static void svm_init_osvw(struct kvm_vcpu *vcpu) 501 { 502 /* 503 * Guests should see errata 400 and 415 as fixed (assuming that 504 * HLT and IO instructions are intercepted). 505 */ 506 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 507 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 508 509 /* 510 * By increasing VCPU's osvw.length to 3 we are telling the guest that 511 * all osvw.status bits inside that length, including bit 0 (which is 512 * reserved for erratum 298), are valid. However, if host processor's 513 * osvw_len is 0 then osvw_status[0] carries no information. We need to 514 * be conservative here and therefore we tell the guest that erratum 298 515 * is present (because we really don't know). 516 */ 517 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 518 vcpu->arch.osvw.status |= 1; 519 } 520 521 static bool __kvm_is_svm_supported(void) 522 { 523 int cpu = smp_processor_id(); 524 struct cpuinfo_x86 *c = &cpu_data(cpu); 525 526 if (c->x86_vendor != X86_VENDOR_AMD && 527 c->x86_vendor != X86_VENDOR_HYGON) { 528 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 529 return false; 530 } 531 532 if (!cpu_has(c, X86_FEATURE_SVM)) { 533 pr_err("SVM not supported by CPU %d\n", cpu); 534 return false; 535 } 536 537 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 538 pr_info("KVM is unsupported when running as an SEV guest\n"); 539 return false; 540 } 541 542 return true; 543 } 544 545 static bool kvm_is_svm_supported(void) 546 { 547 bool supported; 548 549 migrate_disable(); 550 supported = __kvm_is_svm_supported(); 551 migrate_enable(); 552 553 return supported; 554 } 555 556 static int svm_check_processor_compat(void) 557 { 558 if (!__kvm_is_svm_supported()) 559 return -EIO; 560 561 return 0; 562 } 563 564 static void __svm_write_tsc_multiplier(u64 multiplier) 565 { 566 if (multiplier == __this_cpu_read(current_tsc_ratio)) 567 return; 568 569 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier); 570 __this_cpu_write(current_tsc_ratio, multiplier); 571 } 572 573 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 574 { 575 return &sd->save_area->host_sev_es_save; 576 } 577 578 static inline void kvm_cpu_svm_disable(void) 579 { 580 uint64_t efer; 581 582 wrmsrq(MSR_VM_HSAVE_PA, 0); 583 rdmsrq(MSR_EFER, efer); 584 if (efer & EFER_SVME) { 585 /* 586 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 587 * NMI aren't blocked. 588 */ 589 stgi(); 590 wrmsrq(MSR_EFER, efer & ~EFER_SVME); 591 } 592 } 593 594 static void svm_emergency_disable_virtualization_cpu(void) 595 { 596 kvm_rebooting = true; 597 598 kvm_cpu_svm_disable(); 599 } 600 601 static void svm_disable_virtualization_cpu(void) 602 { 603 /* Make sure we clean up behind us */ 604 if (tsc_scaling) 605 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 606 607 kvm_cpu_svm_disable(); 608 609 amd_pmu_disable_virt(); 610 } 611 612 static int svm_enable_virtualization_cpu(void) 613 { 614 615 struct svm_cpu_data *sd; 616 uint64_t efer; 617 int me = raw_smp_processor_id(); 618 619 rdmsrq(MSR_EFER, efer); 620 if (efer & EFER_SVME) 621 return -EBUSY; 622 623 sd = per_cpu_ptr(&svm_data, me); 624 sd->asid_generation = 1; 625 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 626 sd->next_asid = sd->max_asid + 1; 627 sd->min_asid = max_sev_asid + 1; 628 629 wrmsrq(MSR_EFER, efer | EFER_SVME); 630 631 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa); 632 633 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 634 /* 635 * Set the default value, even if we don't use TSC scaling 636 * to avoid having stale value in the msr 637 */ 638 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 639 } 640 641 642 /* 643 * Get OSVW bits. 644 * 645 * Note that it is possible to have a system with mixed processor 646 * revisions and therefore different OSVW bits. If bits are not the same 647 * on different processors then choose the worst case (i.e. if erratum 648 * is present on one processor and not on another then assume that the 649 * erratum is present everywhere). 650 */ 651 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 652 u64 len, status = 0; 653 int err; 654 655 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len); 656 if (!err) 657 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status); 658 659 if (err) 660 osvw_status = osvw_len = 0; 661 else { 662 if (len < osvw_len) 663 osvw_len = len; 664 osvw_status |= status; 665 osvw_status &= (1ULL << osvw_len) - 1; 666 } 667 } else 668 osvw_status = osvw_len = 0; 669 670 svm_init_erratum_383(); 671 672 amd_pmu_enable_virt(); 673 674 /* 675 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 676 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 677 * Since Linux does not change the value of TSC_AUX once set, prime the 678 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 679 */ 680 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 681 u32 __maybe_unused msr_hi; 682 683 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi); 684 } 685 686 return 0; 687 } 688 689 static void svm_cpu_uninit(int cpu) 690 { 691 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 692 693 if (!sd->save_area) 694 return; 695 696 kfree(sd->sev_vmcbs); 697 __free_page(__sme_pa_to_page(sd->save_area_pa)); 698 sd->save_area_pa = 0; 699 sd->save_area = NULL; 700 } 701 702 static int svm_cpu_init(int cpu) 703 { 704 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 705 struct page *save_area_page; 706 int ret = -ENOMEM; 707 708 memset(sd, 0, sizeof(struct svm_cpu_data)); 709 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 710 if (!save_area_page) 711 return ret; 712 713 ret = sev_cpu_init(sd); 714 if (ret) 715 goto free_save_area; 716 717 sd->save_area = page_address(save_area_page); 718 sd->save_area_pa = __sme_page_pa(save_area_page); 719 return 0; 720 721 free_save_area: 722 __free_page(save_area_page); 723 return ret; 724 725 } 726 727 static void set_dr_intercepts(struct vcpu_svm *svm) 728 { 729 struct vmcb *vmcb = svm->vmcb01.ptr; 730 731 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 747 748 recalc_intercepts(svm); 749 } 750 751 static void clr_dr_intercepts(struct vcpu_svm *svm) 752 { 753 struct vmcb *vmcb = svm->vmcb01.ptr; 754 755 vmcb->control.intercepts[INTERCEPT_DR] = 0; 756 757 recalc_intercepts(svm); 758 } 759 760 static int direct_access_msr_slot(u32 msr) 761 { 762 u32 i; 763 764 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 765 if (direct_access_msrs[i].index == msr) 766 return i; 767 768 return -ENOENT; 769 } 770 771 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 772 int write) 773 { 774 struct vcpu_svm *svm = to_svm(vcpu); 775 int slot = direct_access_msr_slot(msr); 776 777 if (slot == -ENOENT) 778 return; 779 780 /* Set the shadow bitmaps to the desired intercept states */ 781 if (read) 782 set_bit(slot, svm->shadow_msr_intercept.read); 783 else 784 clear_bit(slot, svm->shadow_msr_intercept.read); 785 786 if (write) 787 set_bit(slot, svm->shadow_msr_intercept.write); 788 else 789 clear_bit(slot, svm->shadow_msr_intercept.write); 790 } 791 792 static bool valid_msr_intercept(u32 index) 793 { 794 return direct_access_msr_slot(index) != -ENOENT; 795 } 796 797 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 798 { 799 u8 bit_write; 800 unsigned long tmp; 801 u32 offset; 802 u32 *msrpm; 803 804 /* 805 * For non-nested case: 806 * If the L01 MSR bitmap does not intercept the MSR, then we need to 807 * save it. 808 * 809 * For nested case: 810 * If the L02 MSR bitmap does not intercept the MSR, then we need to 811 * save it. 812 */ 813 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 814 to_svm(vcpu)->msrpm; 815 816 offset = svm_msrpm_offset(msr); 817 bit_write = 2 * (msr & 0x0f) + 1; 818 tmp = msrpm[offset]; 819 820 BUG_ON(offset == MSR_INVALID); 821 822 return test_bit(bit_write, &tmp); 823 } 824 825 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 826 u32 msr, int read, int write) 827 { 828 struct vcpu_svm *svm = to_svm(vcpu); 829 u8 bit_read, bit_write; 830 unsigned long tmp; 831 u32 offset; 832 833 /* 834 * If this warning triggers extend the direct_access_msrs list at the 835 * beginning of the file 836 */ 837 WARN_ON(!valid_msr_intercept(msr)); 838 839 /* Enforce non allowed MSRs to trap */ 840 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 841 read = 0; 842 843 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 844 write = 0; 845 846 offset = svm_msrpm_offset(msr); 847 bit_read = 2 * (msr & 0x0f); 848 bit_write = 2 * (msr & 0x0f) + 1; 849 tmp = msrpm[offset]; 850 851 BUG_ON(offset == MSR_INVALID); 852 853 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 854 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 855 856 msrpm[offset] = tmp; 857 858 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 859 svm->nested.force_msr_bitmap_recalc = true; 860 } 861 862 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 863 int read, int write) 864 { 865 set_shadow_msr_intercept(vcpu, msr, read, write); 866 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 867 } 868 869 u32 *svm_vcpu_alloc_msrpm(void) 870 { 871 unsigned int order = get_order(MSRPM_SIZE); 872 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 873 u32 *msrpm; 874 875 if (!pages) 876 return NULL; 877 878 msrpm = page_address(pages); 879 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 880 881 return msrpm; 882 } 883 884 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 885 { 886 int i; 887 888 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 889 if (!direct_access_msrs[i].always) 890 continue; 891 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 892 } 893 } 894 895 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 896 { 897 int i; 898 899 if (intercept == svm->x2avic_msrs_intercepted) 900 return; 901 902 if (!x2avic_enabled) 903 return; 904 905 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 906 int index = direct_access_msrs[i].index; 907 908 if ((index < APIC_BASE_MSR) || 909 (index > APIC_BASE_MSR + 0xff)) 910 continue; 911 set_msr_interception(&svm->vcpu, svm->msrpm, index, 912 !intercept, !intercept); 913 } 914 915 svm->x2avic_msrs_intercepted = intercept; 916 } 917 918 void svm_vcpu_free_msrpm(u32 *msrpm) 919 { 920 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 921 } 922 923 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 924 { 925 struct vcpu_svm *svm = to_svm(vcpu); 926 u32 i; 927 928 /* 929 * Set intercept permissions for all direct access MSRs again. They 930 * will automatically get filtered through the MSR filter, so we are 931 * back in sync after this. 932 */ 933 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 934 u32 msr = direct_access_msrs[i].index; 935 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 936 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 937 938 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 939 } 940 } 941 942 static void add_msr_offset(u32 offset) 943 { 944 int i; 945 946 for (i = 0; i < MSRPM_OFFSETS; ++i) { 947 948 /* Offset already in list? */ 949 if (msrpm_offsets[i] == offset) 950 return; 951 952 /* Slot used by another offset? */ 953 if (msrpm_offsets[i] != MSR_INVALID) 954 continue; 955 956 /* Add offset to list */ 957 msrpm_offsets[i] = offset; 958 959 return; 960 } 961 962 /* 963 * If this BUG triggers the msrpm_offsets table has an overflow. Just 964 * increase MSRPM_OFFSETS in this case. 965 */ 966 BUG(); 967 } 968 969 static void init_msrpm_offsets(void) 970 { 971 int i; 972 973 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 974 975 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 976 u32 offset; 977 978 offset = svm_msrpm_offset(direct_access_msrs[i].index); 979 BUG_ON(offset == MSR_INVALID); 980 981 add_msr_offset(offset); 982 } 983 } 984 985 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 986 { 987 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 988 to_vmcb->save.br_from = from_vmcb->save.br_from; 989 to_vmcb->save.br_to = from_vmcb->save.br_to; 990 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 991 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 992 993 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 994 } 995 996 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 997 { 998 struct vcpu_svm *svm = to_svm(vcpu); 999 1000 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1001 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1005 1006 if (sev_es_guest(vcpu->kvm)) 1007 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); 1008 1009 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1010 if (is_guest_mode(vcpu)) 1011 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1012 } 1013 1014 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1015 { 1016 struct vcpu_svm *svm = to_svm(vcpu); 1017 1018 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 1019 1020 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1021 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1022 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1025 1026 /* 1027 * Move the LBR msrs back to the vmcb01 to avoid copying them 1028 * on nested guest entries. 1029 */ 1030 if (is_guest_mode(vcpu)) 1031 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1032 } 1033 1034 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1035 { 1036 /* 1037 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1038 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1039 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1040 */ 1041 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1042 svm->vmcb01.ptr; 1043 } 1044 1045 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1046 { 1047 struct vcpu_svm *svm = to_svm(vcpu); 1048 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1049 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1050 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 1051 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1052 1053 if (enable_lbrv == current_enable_lbrv) 1054 return; 1055 1056 if (enable_lbrv) 1057 svm_enable_lbrv(vcpu); 1058 else 1059 svm_disable_lbrv(vcpu); 1060 } 1061 1062 void disable_nmi_singlestep(struct vcpu_svm *svm) 1063 { 1064 svm->nmi_singlestep = false; 1065 1066 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1067 /* Clear our flags if they were not set by the guest */ 1068 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1069 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1070 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1071 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1072 } 1073 } 1074 1075 static void grow_ple_window(struct kvm_vcpu *vcpu) 1076 { 1077 struct vcpu_svm *svm = to_svm(vcpu); 1078 struct vmcb_control_area *control = &svm->vmcb->control; 1079 int old = control->pause_filter_count; 1080 1081 if (kvm_pause_in_guest(vcpu->kvm)) 1082 return; 1083 1084 control->pause_filter_count = __grow_ple_window(old, 1085 pause_filter_count, 1086 pause_filter_count_grow, 1087 pause_filter_count_max); 1088 1089 if (control->pause_filter_count != old) { 1090 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1091 trace_kvm_ple_window_update(vcpu->vcpu_id, 1092 control->pause_filter_count, old); 1093 } 1094 } 1095 1096 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1097 { 1098 struct vcpu_svm *svm = to_svm(vcpu); 1099 struct vmcb_control_area *control = &svm->vmcb->control; 1100 int old = control->pause_filter_count; 1101 1102 if (kvm_pause_in_guest(vcpu->kvm)) 1103 return; 1104 1105 control->pause_filter_count = 1106 __shrink_ple_window(old, 1107 pause_filter_count, 1108 pause_filter_count_shrink, 1109 pause_filter_count); 1110 if (control->pause_filter_count != old) { 1111 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1112 trace_kvm_ple_window_update(vcpu->vcpu_id, 1113 control->pause_filter_count, old); 1114 } 1115 } 1116 1117 static void svm_hardware_unsetup(void) 1118 { 1119 int cpu; 1120 1121 sev_hardware_unsetup(); 1122 1123 for_each_possible_cpu(cpu) 1124 svm_cpu_uninit(cpu); 1125 1126 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); 1127 iopm_base = 0; 1128 } 1129 1130 static void init_seg(struct vmcb_seg *seg) 1131 { 1132 seg->selector = 0; 1133 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1134 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1135 seg->limit = 0xffff; 1136 seg->base = 0; 1137 } 1138 1139 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1140 { 1141 seg->selector = 0; 1142 seg->attrib = SVM_SELECTOR_P_MASK | type; 1143 seg->limit = 0xffff; 1144 seg->base = 0; 1145 } 1146 1147 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1148 { 1149 struct vcpu_svm *svm = to_svm(vcpu); 1150 1151 return svm->nested.ctl.tsc_offset; 1152 } 1153 1154 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1155 { 1156 struct vcpu_svm *svm = to_svm(vcpu); 1157 1158 return svm->tsc_ratio_msr; 1159 } 1160 1161 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1162 { 1163 struct vcpu_svm *svm = to_svm(vcpu); 1164 1165 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1166 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1167 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1168 } 1169 1170 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1171 { 1172 preempt_disable(); 1173 if (to_svm(vcpu)->guest_state_loaded) 1174 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1175 preempt_enable(); 1176 } 1177 1178 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1179 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1180 struct vcpu_svm *svm) 1181 { 1182 /* 1183 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1184 * roots, or if INVPCID is disabled in the guest to inject #UD. 1185 */ 1186 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1187 if (!npt_enabled || 1188 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1189 svm_set_intercept(svm, INTERCEPT_INVPCID); 1190 else 1191 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1192 } 1193 1194 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1195 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP)) 1196 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1197 else 1198 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1199 } 1200 } 1201 1202 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1203 { 1204 struct vcpu_svm *svm = to_svm(vcpu); 1205 1206 if (guest_cpuid_is_intel_compatible(vcpu)) { 1207 /* 1208 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1209 * accesses because the processor only stores 32 bits. 1210 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1211 */ 1212 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1213 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1214 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1215 1216 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1217 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1218 } else { 1219 /* 1220 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1221 * in VMCB and clear intercepts to avoid #VMEXIT. 1222 */ 1223 if (vls) { 1224 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1225 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1226 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1227 } 1228 /* No need to intercept these MSRs */ 1229 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1230 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1231 } 1232 } 1233 1234 static void init_vmcb(struct kvm_vcpu *vcpu) 1235 { 1236 struct vcpu_svm *svm = to_svm(vcpu); 1237 struct vmcb *vmcb = svm->vmcb01.ptr; 1238 struct vmcb_control_area *control = &vmcb->control; 1239 struct vmcb_save_area *save = &vmcb->save; 1240 1241 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1242 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1243 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1244 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1245 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1246 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1247 if (!kvm_vcpu_apicv_active(vcpu)) 1248 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1249 1250 set_dr_intercepts(svm); 1251 1252 set_exception_intercept(svm, PF_VECTOR); 1253 set_exception_intercept(svm, UD_VECTOR); 1254 set_exception_intercept(svm, MC_VECTOR); 1255 set_exception_intercept(svm, AC_VECTOR); 1256 set_exception_intercept(svm, DB_VECTOR); 1257 /* 1258 * Guest access to VMware backdoor ports could legitimately 1259 * trigger #GP because of TSS I/O permission bitmap. 1260 * We intercept those #GP and allow access to them anyway 1261 * as VMware does. 1262 */ 1263 if (enable_vmware_backdoor) 1264 set_exception_intercept(svm, GP_VECTOR); 1265 1266 svm_set_intercept(svm, INTERCEPT_INTR); 1267 svm_set_intercept(svm, INTERCEPT_NMI); 1268 1269 if (intercept_smi) 1270 svm_set_intercept(svm, INTERCEPT_SMI); 1271 1272 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1273 svm_set_intercept(svm, INTERCEPT_RDPMC); 1274 svm_set_intercept(svm, INTERCEPT_CPUID); 1275 svm_set_intercept(svm, INTERCEPT_INVD); 1276 svm_set_intercept(svm, INTERCEPT_INVLPG); 1277 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1278 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1279 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1280 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1281 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1282 svm_set_intercept(svm, INTERCEPT_VMRUN); 1283 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1284 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1285 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1286 svm_set_intercept(svm, INTERCEPT_STGI); 1287 svm_set_intercept(svm, INTERCEPT_CLGI); 1288 svm_set_intercept(svm, INTERCEPT_SKINIT); 1289 svm_set_intercept(svm, INTERCEPT_WBINVD); 1290 svm_set_intercept(svm, INTERCEPT_XSETBV); 1291 svm_set_intercept(svm, INTERCEPT_RDPRU); 1292 svm_set_intercept(svm, INTERCEPT_RSM); 1293 1294 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1295 svm_set_intercept(svm, INTERCEPT_MONITOR); 1296 svm_set_intercept(svm, INTERCEPT_MWAIT); 1297 } 1298 1299 if (!kvm_hlt_in_guest(vcpu->kvm)) { 1300 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT)) 1301 svm_set_intercept(svm, INTERCEPT_IDLE_HLT); 1302 else 1303 svm_set_intercept(svm, INTERCEPT_HLT); 1304 } 1305 1306 control->iopm_base_pa = iopm_base; 1307 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1308 control->int_ctl = V_INTR_MASKING_MASK; 1309 1310 init_seg(&save->es); 1311 init_seg(&save->ss); 1312 init_seg(&save->ds); 1313 init_seg(&save->fs); 1314 init_seg(&save->gs); 1315 1316 save->cs.selector = 0xf000; 1317 save->cs.base = 0xffff0000; 1318 /* Executable/Readable Code Segment */ 1319 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1320 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1321 save->cs.limit = 0xffff; 1322 1323 save->gdtr.base = 0; 1324 save->gdtr.limit = 0xffff; 1325 save->idtr.base = 0; 1326 save->idtr.limit = 0xffff; 1327 1328 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1329 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1330 1331 if (npt_enabled) { 1332 /* Setup VMCB for Nested Paging */ 1333 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1334 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1335 clr_exception_intercept(svm, PF_VECTOR); 1336 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1337 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1338 save->g_pat = vcpu->arch.pat; 1339 save->cr3 = 0; 1340 } 1341 svm->current_vmcb->asid_generation = 0; 1342 svm->asid = 0; 1343 1344 svm->nested.vmcb12_gpa = INVALID_GPA; 1345 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1346 1347 if (!kvm_pause_in_guest(vcpu->kvm)) { 1348 control->pause_filter_count = pause_filter_count; 1349 if (pause_filter_thresh) 1350 control->pause_filter_thresh = pause_filter_thresh; 1351 svm_set_intercept(svm, INTERCEPT_PAUSE); 1352 } else { 1353 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1354 } 1355 1356 svm_recalc_instruction_intercepts(vcpu, svm); 1357 1358 /* 1359 * If the host supports V_SPEC_CTRL then disable the interception 1360 * of MSR_IA32_SPEC_CTRL. 1361 */ 1362 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1363 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1364 1365 if (kvm_vcpu_apicv_active(vcpu)) 1366 avic_init_vmcb(svm, vmcb); 1367 1368 if (vnmi) 1369 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1370 1371 if (vgif) { 1372 svm_clr_intercept(svm, INTERCEPT_STGI); 1373 svm_clr_intercept(svm, INTERCEPT_CLGI); 1374 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1375 } 1376 1377 if (vcpu->kvm->arch.bus_lock_detection_enabled) 1378 svm_set_intercept(svm, INTERCEPT_BUSLOCK); 1379 1380 if (sev_guest(vcpu->kvm)) 1381 sev_init_vmcb(svm); 1382 1383 svm_hv_init_vmcb(vmcb); 1384 init_vmcb_after_set_cpuid(vcpu); 1385 1386 vmcb_mark_all_dirty(vmcb); 1387 1388 enable_gif(svm); 1389 } 1390 1391 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1392 { 1393 struct vcpu_svm *svm = to_svm(vcpu); 1394 1395 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1396 1397 svm_init_osvw(vcpu); 1398 1399 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 1400 vcpu->arch.microcode_version = 0x01000065; 1401 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1402 1403 svm->nmi_masked = false; 1404 svm->awaiting_iret_completion = false; 1405 1406 if (sev_es_guest(vcpu->kvm)) 1407 sev_es_vcpu_reset(svm); 1408 } 1409 1410 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1411 { 1412 struct vcpu_svm *svm = to_svm(vcpu); 1413 1414 svm->spec_ctrl = 0; 1415 svm->virt_spec_ctrl = 0; 1416 1417 if (init_event) 1418 sev_snp_init_protected_guest_state(vcpu); 1419 1420 init_vmcb(vcpu); 1421 1422 if (!init_event) 1423 __svm_vcpu_reset(vcpu); 1424 } 1425 1426 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1427 { 1428 svm->current_vmcb = target_vmcb; 1429 svm->vmcb = target_vmcb->ptr; 1430 } 1431 1432 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1433 { 1434 struct vcpu_svm *svm; 1435 struct page *vmcb01_page; 1436 struct page *vmsa_page = NULL; 1437 int err; 1438 1439 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1440 svm = to_svm(vcpu); 1441 1442 err = -ENOMEM; 1443 vmcb01_page = snp_safe_alloc_page(); 1444 if (!vmcb01_page) 1445 goto out; 1446 1447 if (sev_es_guest(vcpu->kvm)) { 1448 /* 1449 * SEV-ES guests require a separate VMSA page used to contain 1450 * the encrypted register state of the guest. 1451 */ 1452 vmsa_page = snp_safe_alloc_page(); 1453 if (!vmsa_page) 1454 goto error_free_vmcb_page; 1455 } 1456 1457 err = avic_init_vcpu(svm); 1458 if (err) 1459 goto error_free_vmsa_page; 1460 1461 svm->msrpm = svm_vcpu_alloc_msrpm(); 1462 if (!svm->msrpm) { 1463 err = -ENOMEM; 1464 goto error_free_vmsa_page; 1465 } 1466 1467 svm->x2avic_msrs_intercepted = true; 1468 1469 svm->vmcb01.ptr = page_address(vmcb01_page); 1470 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1471 svm_switch_vmcb(svm, &svm->vmcb01); 1472 1473 if (vmsa_page) 1474 svm->sev_es.vmsa = page_address(vmsa_page); 1475 1476 svm->guest_state_loaded = false; 1477 1478 return 0; 1479 1480 error_free_vmsa_page: 1481 if (vmsa_page) 1482 __free_page(vmsa_page); 1483 error_free_vmcb_page: 1484 __free_page(vmcb01_page); 1485 out: 1486 return err; 1487 } 1488 1489 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1490 { 1491 struct vcpu_svm *svm = to_svm(vcpu); 1492 1493 svm_leave_nested(vcpu); 1494 svm_free_nested(svm); 1495 1496 sev_free_vcpu(vcpu); 1497 1498 __free_page(__sme_pa_to_page(svm->vmcb01.pa)); 1499 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1500 } 1501 1502 #ifdef CONFIG_CPU_MITIGATIONS 1503 static DEFINE_SPINLOCK(srso_lock); 1504 static atomic_t srso_nr_vms; 1505 1506 static void svm_srso_clear_bp_spec_reduce(void *ign) 1507 { 1508 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data); 1509 1510 if (!sd->bp_spec_reduce_set) 1511 return; 1512 1513 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1514 sd->bp_spec_reduce_set = false; 1515 } 1516 1517 static void svm_srso_vm_destroy(void) 1518 { 1519 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1520 return; 1521 1522 if (atomic_dec_return(&srso_nr_vms)) 1523 return; 1524 1525 guard(spinlock)(&srso_lock); 1526 1527 /* 1528 * Verify a new VM didn't come along, acquire the lock, and increment 1529 * the count before this task acquired the lock. 1530 */ 1531 if (atomic_read(&srso_nr_vms)) 1532 return; 1533 1534 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1); 1535 } 1536 1537 static void svm_srso_vm_init(void) 1538 { 1539 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1540 return; 1541 1542 /* 1543 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0 1544 * transition, i.e. destroying the last VM, is fully complete, e.g. so 1545 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs. 1546 */ 1547 if (atomic_inc_not_zero(&srso_nr_vms)) 1548 return; 1549 1550 guard(spinlock)(&srso_lock); 1551 1552 atomic_inc(&srso_nr_vms); 1553 } 1554 #else 1555 static void svm_srso_vm_init(void) { } 1556 static void svm_srso_vm_destroy(void) { } 1557 #endif 1558 1559 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1560 { 1561 struct vcpu_svm *svm = to_svm(vcpu); 1562 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1563 1564 if (sev_es_guest(vcpu->kvm)) 1565 sev_es_unmap_ghcb(svm); 1566 1567 if (svm->guest_state_loaded) 1568 return; 1569 1570 /* 1571 * Save additional host state that will be restored on VMEXIT (sev-es) 1572 * or subsequent vmload of host save area. 1573 */ 1574 vmsave(sd->save_area_pa); 1575 if (sev_es_guest(vcpu->kvm)) 1576 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1577 1578 if (tsc_scaling) 1579 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1580 1581 /* 1582 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1583 * available. The user return MSR support is not required in this case 1584 * because TSC_AUX is restored on #VMEXIT from the host save area 1585 * (which has been initialized in svm_enable_virtualization_cpu()). 1586 */ 1587 if (likely(tsc_aux_uret_slot >= 0) && 1588 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1589 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1590 1591 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) && 1592 !sd->bp_spec_reduce_set) { 1593 sd->bp_spec_reduce_set = true; 1594 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1595 } 1596 svm->guest_state_loaded = true; 1597 } 1598 1599 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1600 { 1601 to_svm(vcpu)->guest_state_loaded = false; 1602 } 1603 1604 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1605 { 1606 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1607 shrink_ple_window(vcpu); 1608 1609 if (kvm_vcpu_apicv_active(vcpu)) 1610 avic_vcpu_load(vcpu, cpu); 1611 } 1612 1613 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1614 { 1615 if (kvm_vcpu_apicv_active(vcpu)) 1616 avic_vcpu_put(vcpu); 1617 1618 svm_prepare_host_switch(vcpu); 1619 1620 ++vcpu->stat.host_state_reload; 1621 } 1622 1623 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1624 { 1625 struct vcpu_svm *svm = to_svm(vcpu); 1626 unsigned long rflags = svm->vmcb->save.rflags; 1627 1628 if (svm->nmi_singlestep) { 1629 /* Hide our flags if they were not set by the guest */ 1630 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1631 rflags &= ~X86_EFLAGS_TF; 1632 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1633 rflags &= ~X86_EFLAGS_RF; 1634 } 1635 return rflags; 1636 } 1637 1638 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1639 { 1640 if (to_svm(vcpu)->nmi_singlestep) 1641 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1642 1643 /* 1644 * Any change of EFLAGS.VM is accompanied by a reload of SS 1645 * (caused by either a task switch or an inter-privilege IRET), 1646 * so we do not need to update the CPL here. 1647 */ 1648 to_svm(vcpu)->vmcb->save.rflags = rflags; 1649 } 1650 1651 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1652 { 1653 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1654 1655 return sev_es_guest(vcpu->kvm) 1656 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1657 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1658 } 1659 1660 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1661 { 1662 kvm_register_mark_available(vcpu, reg); 1663 1664 switch (reg) { 1665 case VCPU_EXREG_PDPTR: 1666 /* 1667 * When !npt_enabled, mmu->pdptrs[] is already available since 1668 * it is always updated per SDM when moving to CRs. 1669 */ 1670 if (npt_enabled) 1671 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1672 break; 1673 default: 1674 KVM_BUG_ON(1, vcpu->kvm); 1675 } 1676 } 1677 1678 static void svm_set_vintr(struct vcpu_svm *svm) 1679 { 1680 struct vmcb_control_area *control; 1681 1682 /* 1683 * The following fields are ignored when AVIC is enabled 1684 */ 1685 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1686 1687 svm_set_intercept(svm, INTERCEPT_VINTR); 1688 1689 /* 1690 * Recalculating intercepts may have cleared the VINTR intercept. If 1691 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1692 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1693 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1694 * interrupts will never be unblocked while L2 is running. 1695 */ 1696 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1697 return; 1698 1699 /* 1700 * This is just a dummy VINTR to actually cause a vmexit to happen. 1701 * Actual injection of virtual interrupts happens through EVENTINJ. 1702 */ 1703 control = &svm->vmcb->control; 1704 control->int_vector = 0x0; 1705 control->int_ctl &= ~V_INTR_PRIO_MASK; 1706 control->int_ctl |= V_IRQ_MASK | 1707 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1708 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1709 } 1710 1711 static void svm_clear_vintr(struct vcpu_svm *svm) 1712 { 1713 svm_clr_intercept(svm, INTERCEPT_VINTR); 1714 1715 /* Drop int_ctl fields related to VINTR injection. */ 1716 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1717 if (is_guest_mode(&svm->vcpu)) { 1718 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1719 1720 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1721 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1722 1723 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1724 V_IRQ_INJECTION_BITS_MASK; 1725 1726 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1727 } 1728 1729 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1730 } 1731 1732 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1733 { 1734 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1735 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1736 1737 switch (seg) { 1738 case VCPU_SREG_CS: return &save->cs; 1739 case VCPU_SREG_DS: return &save->ds; 1740 case VCPU_SREG_ES: return &save->es; 1741 case VCPU_SREG_FS: return &save01->fs; 1742 case VCPU_SREG_GS: return &save01->gs; 1743 case VCPU_SREG_SS: return &save->ss; 1744 case VCPU_SREG_TR: return &save01->tr; 1745 case VCPU_SREG_LDTR: return &save01->ldtr; 1746 } 1747 BUG(); 1748 return NULL; 1749 } 1750 1751 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1752 { 1753 struct vmcb_seg *s = svm_seg(vcpu, seg); 1754 1755 return s->base; 1756 } 1757 1758 static void svm_get_segment(struct kvm_vcpu *vcpu, 1759 struct kvm_segment *var, int seg) 1760 { 1761 struct vmcb_seg *s = svm_seg(vcpu, seg); 1762 1763 var->base = s->base; 1764 var->limit = s->limit; 1765 var->selector = s->selector; 1766 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1767 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1768 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1769 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1770 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1771 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1772 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1773 1774 /* 1775 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1776 * However, the SVM spec states that the G bit is not observed by the 1777 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1778 * So let's synthesize a legal G bit for all segments, this helps 1779 * running KVM nested. It also helps cross-vendor migration, because 1780 * Intel's vmentry has a check on the 'G' bit. 1781 */ 1782 var->g = s->limit > 0xfffff; 1783 1784 /* 1785 * AMD's VMCB does not have an explicit unusable field, so emulate it 1786 * for cross vendor migration purposes by "not present" 1787 */ 1788 var->unusable = !var->present; 1789 1790 switch (seg) { 1791 case VCPU_SREG_TR: 1792 /* 1793 * Work around a bug where the busy flag in the tr selector 1794 * isn't exposed 1795 */ 1796 var->type |= 0x2; 1797 break; 1798 case VCPU_SREG_DS: 1799 case VCPU_SREG_ES: 1800 case VCPU_SREG_FS: 1801 case VCPU_SREG_GS: 1802 /* 1803 * The accessed bit must always be set in the segment 1804 * descriptor cache, although it can be cleared in the 1805 * descriptor, the cached bit always remains at 1. Since 1806 * Intel has a check on this, set it here to support 1807 * cross-vendor migration. 1808 */ 1809 if (!var->unusable) 1810 var->type |= 0x1; 1811 break; 1812 case VCPU_SREG_SS: 1813 /* 1814 * On AMD CPUs sometimes the DB bit in the segment 1815 * descriptor is left as 1, although the whole segment has 1816 * been made unusable. Clear it here to pass an Intel VMX 1817 * entry check when cross vendor migrating. 1818 */ 1819 if (var->unusable) 1820 var->db = 0; 1821 /* This is symmetric with svm_set_segment() */ 1822 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1823 break; 1824 } 1825 } 1826 1827 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1828 { 1829 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1830 1831 return save->cpl; 1832 } 1833 1834 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1835 { 1836 struct kvm_segment cs; 1837 1838 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1839 *db = cs.db; 1840 *l = cs.l; 1841 } 1842 1843 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1844 { 1845 struct vcpu_svm *svm = to_svm(vcpu); 1846 1847 dt->size = svm->vmcb->save.idtr.limit; 1848 dt->address = svm->vmcb->save.idtr.base; 1849 } 1850 1851 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1852 { 1853 struct vcpu_svm *svm = to_svm(vcpu); 1854 1855 svm->vmcb->save.idtr.limit = dt->size; 1856 svm->vmcb->save.idtr.base = dt->address ; 1857 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1858 } 1859 1860 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1861 { 1862 struct vcpu_svm *svm = to_svm(vcpu); 1863 1864 dt->size = svm->vmcb->save.gdtr.limit; 1865 dt->address = svm->vmcb->save.gdtr.base; 1866 } 1867 1868 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1869 { 1870 struct vcpu_svm *svm = to_svm(vcpu); 1871 1872 svm->vmcb->save.gdtr.limit = dt->size; 1873 svm->vmcb->save.gdtr.base = dt->address ; 1874 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1875 } 1876 1877 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1878 { 1879 struct vcpu_svm *svm = to_svm(vcpu); 1880 1881 /* 1882 * For guests that don't set guest_state_protected, the cr3 update is 1883 * handled via kvm_mmu_load() while entering the guest. For guests 1884 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1885 * VMCB save area now, since the save area will become the initial 1886 * contents of the VMSA, and future VMCB save area updates won't be 1887 * seen. 1888 */ 1889 if (sev_es_guest(vcpu->kvm)) { 1890 svm->vmcb->save.cr3 = cr3; 1891 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1892 } 1893 } 1894 1895 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1896 { 1897 return true; 1898 } 1899 1900 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1901 { 1902 struct vcpu_svm *svm = to_svm(vcpu); 1903 u64 hcr0 = cr0; 1904 bool old_paging = is_paging(vcpu); 1905 1906 #ifdef CONFIG_X86_64 1907 if (vcpu->arch.efer & EFER_LME) { 1908 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1909 vcpu->arch.efer |= EFER_LMA; 1910 if (!vcpu->arch.guest_state_protected) 1911 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1912 } 1913 1914 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1915 vcpu->arch.efer &= ~EFER_LMA; 1916 if (!vcpu->arch.guest_state_protected) 1917 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1918 } 1919 } 1920 #endif 1921 vcpu->arch.cr0 = cr0; 1922 1923 if (!npt_enabled) { 1924 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1925 if (old_paging != is_paging(vcpu)) 1926 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1927 } 1928 1929 /* 1930 * re-enable caching here because the QEMU bios 1931 * does not do it - this results in some delay at 1932 * reboot 1933 */ 1934 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1935 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1936 1937 svm->vmcb->save.cr0 = hcr0; 1938 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1939 1940 /* 1941 * SEV-ES guests must always keep the CR intercepts cleared. CR 1942 * tracking is done using the CR write traps. 1943 */ 1944 if (sev_es_guest(vcpu->kvm)) 1945 return; 1946 1947 if (hcr0 == cr0) { 1948 /* Selective CR0 write remains on. */ 1949 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1950 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1951 } else { 1952 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1953 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1954 } 1955 } 1956 1957 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1958 { 1959 return true; 1960 } 1961 1962 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1963 { 1964 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1965 unsigned long old_cr4 = vcpu->arch.cr4; 1966 1967 vcpu->arch.cr4 = cr4; 1968 if (!npt_enabled) { 1969 cr4 |= X86_CR4_PAE; 1970 1971 if (!is_paging(vcpu)) 1972 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1973 } 1974 cr4 |= host_cr4_mce; 1975 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1976 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1977 1978 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1979 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1980 } 1981 1982 static void svm_set_segment(struct kvm_vcpu *vcpu, 1983 struct kvm_segment *var, int seg) 1984 { 1985 struct vcpu_svm *svm = to_svm(vcpu); 1986 struct vmcb_seg *s = svm_seg(vcpu, seg); 1987 1988 s->base = var->base; 1989 s->limit = var->limit; 1990 s->selector = var->selector; 1991 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1992 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1993 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1994 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1995 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1996 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1997 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1998 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1999 2000 /* 2001 * This is always accurate, except if SYSRET returned to a segment 2002 * with SS.DPL != 3. Intel does not have this quirk, and always 2003 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 2004 * would entail passing the CPL to userspace and back. 2005 */ 2006 if (seg == VCPU_SREG_SS) 2007 /* This is symmetric with svm_get_segment() */ 2008 svm->vmcb->save.cpl = (var->dpl & 3); 2009 2010 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 2011 } 2012 2013 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 2014 { 2015 struct vcpu_svm *svm = to_svm(vcpu); 2016 2017 clr_exception_intercept(svm, BP_VECTOR); 2018 2019 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 2020 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 2021 set_exception_intercept(svm, BP_VECTOR); 2022 } 2023 } 2024 2025 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 2026 { 2027 if (sd->next_asid > sd->max_asid) { 2028 ++sd->asid_generation; 2029 sd->next_asid = sd->min_asid; 2030 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 2031 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2032 } 2033 2034 svm->current_vmcb->asid_generation = sd->asid_generation; 2035 svm->asid = sd->next_asid++; 2036 } 2037 2038 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) 2039 { 2040 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 2041 2042 if (vcpu->arch.guest_state_protected) 2043 return; 2044 2045 if (unlikely(value != vmcb->save.dr6)) { 2046 vmcb->save.dr6 = value; 2047 vmcb_mark_dirty(vmcb, VMCB_DR); 2048 } 2049 } 2050 2051 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2052 { 2053 struct vcpu_svm *svm = to_svm(vcpu); 2054 2055 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2056 return; 2057 2058 get_debugreg(vcpu->arch.db[0], 0); 2059 get_debugreg(vcpu->arch.db[1], 1); 2060 get_debugreg(vcpu->arch.db[2], 2); 2061 get_debugreg(vcpu->arch.db[3], 3); 2062 /* 2063 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2064 * because db_interception might need it. We can do it before vmentry. 2065 */ 2066 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2067 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2068 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2069 set_dr_intercepts(svm); 2070 } 2071 2072 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2073 { 2074 struct vcpu_svm *svm = to_svm(vcpu); 2075 2076 if (vcpu->arch.guest_state_protected) 2077 return; 2078 2079 svm->vmcb->save.dr7 = value; 2080 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2081 } 2082 2083 static int pf_interception(struct kvm_vcpu *vcpu) 2084 { 2085 struct vcpu_svm *svm = to_svm(vcpu); 2086 2087 u64 fault_address = svm->vmcb->control.exit_info_2; 2088 u64 error_code = svm->vmcb->control.exit_info_1; 2089 2090 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2091 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2092 svm->vmcb->control.insn_bytes : NULL, 2093 svm->vmcb->control.insn_len); 2094 } 2095 2096 static int npf_interception(struct kvm_vcpu *vcpu) 2097 { 2098 struct vcpu_svm *svm = to_svm(vcpu); 2099 int rc; 2100 2101 u64 fault_address = svm->vmcb->control.exit_info_2; 2102 u64 error_code = svm->vmcb->control.exit_info_1; 2103 2104 /* 2105 * WARN if hardware generates a fault with an error code that collides 2106 * with KVM-defined sythentic flags. Clear the flags and continue on, 2107 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 2108 * flag that KVM doesn't know about. 2109 */ 2110 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 2111 error_code &= ~PFERR_SYNTHETIC_MASK; 2112 2113 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 2114 error_code |= PFERR_PRIVATE_ACCESS; 2115 2116 trace_kvm_page_fault(vcpu, fault_address, error_code); 2117 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, 2118 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2119 svm->vmcb->control.insn_bytes : NULL, 2120 svm->vmcb->control.insn_len); 2121 2122 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 2123 sev_handle_rmp_fault(vcpu, fault_address, error_code); 2124 2125 return rc; 2126 } 2127 2128 static int db_interception(struct kvm_vcpu *vcpu) 2129 { 2130 struct kvm_run *kvm_run = vcpu->run; 2131 struct vcpu_svm *svm = to_svm(vcpu); 2132 2133 if (!(vcpu->guest_debug & 2134 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2135 !svm->nmi_singlestep) { 2136 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2137 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2138 return 1; 2139 } 2140 2141 if (svm->nmi_singlestep) { 2142 disable_nmi_singlestep(svm); 2143 /* Make sure we check for pending NMIs upon entry */ 2144 kvm_make_request(KVM_REQ_EVENT, vcpu); 2145 } 2146 2147 if (vcpu->guest_debug & 2148 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2149 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2150 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2151 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2152 kvm_run->debug.arch.pc = 2153 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2154 kvm_run->debug.arch.exception = DB_VECTOR; 2155 return 0; 2156 } 2157 2158 return 1; 2159 } 2160 2161 static int bp_interception(struct kvm_vcpu *vcpu) 2162 { 2163 struct vcpu_svm *svm = to_svm(vcpu); 2164 struct kvm_run *kvm_run = vcpu->run; 2165 2166 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2167 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2168 kvm_run->debug.arch.exception = BP_VECTOR; 2169 return 0; 2170 } 2171 2172 static int ud_interception(struct kvm_vcpu *vcpu) 2173 { 2174 return handle_ud(vcpu); 2175 } 2176 2177 static int ac_interception(struct kvm_vcpu *vcpu) 2178 { 2179 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2180 return 1; 2181 } 2182 2183 static bool is_erratum_383(void) 2184 { 2185 int i; 2186 u64 value; 2187 2188 if (!erratum_383_found) 2189 return false; 2190 2191 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value)) 2192 return false; 2193 2194 /* Bit 62 may or may not be set for this mce */ 2195 value &= ~(1ULL << 62); 2196 2197 if (value != 0xb600000000010015ULL) 2198 return false; 2199 2200 /* Clear MCi_STATUS registers */ 2201 for (i = 0; i < 6; ++i) 2202 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0); 2203 2204 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) { 2205 value &= ~(1ULL << 2); 2206 native_write_msr_safe(MSR_IA32_MCG_STATUS, value); 2207 } 2208 2209 /* Flush tlb to evict multi-match entries */ 2210 __flush_tlb_all(); 2211 2212 return true; 2213 } 2214 2215 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2216 { 2217 if (is_erratum_383()) { 2218 /* 2219 * Erratum 383 triggered. Guest state is corrupt so kill the 2220 * guest. 2221 */ 2222 pr_err("Guest triggered AMD Erratum 383\n"); 2223 2224 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2225 2226 return; 2227 } 2228 2229 /* 2230 * On an #MC intercept the MCE handler is not called automatically in 2231 * the host. So do it by hand here. 2232 */ 2233 kvm_machine_check(); 2234 } 2235 2236 static int mc_interception(struct kvm_vcpu *vcpu) 2237 { 2238 return 1; 2239 } 2240 2241 static int shutdown_interception(struct kvm_vcpu *vcpu) 2242 { 2243 struct kvm_run *kvm_run = vcpu->run; 2244 struct vcpu_svm *svm = to_svm(vcpu); 2245 2246 2247 /* 2248 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2249 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2250 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2251 * userspace. At a platform view, INIT is acceptable behavior as 2252 * there exist bare metal platforms that automatically INIT the CPU 2253 * in response to shutdown. 2254 * 2255 * The VM save area for SEV-ES guests has already been encrypted so it 2256 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2257 */ 2258 if (!sev_es_guest(vcpu->kvm)) { 2259 clear_page(svm->vmcb); 2260 #ifdef CONFIG_KVM_SMM 2261 if (is_smm(vcpu)) 2262 kvm_smm_changed(vcpu, false); 2263 #endif 2264 kvm_vcpu_reset(vcpu, true); 2265 } 2266 2267 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2268 return 0; 2269 } 2270 2271 static int io_interception(struct kvm_vcpu *vcpu) 2272 { 2273 struct vcpu_svm *svm = to_svm(vcpu); 2274 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2275 int size, in, string; 2276 unsigned port; 2277 2278 ++vcpu->stat.io_exits; 2279 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2280 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2281 port = io_info >> 16; 2282 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2283 2284 if (string) { 2285 if (sev_es_guest(vcpu->kvm)) 2286 return sev_es_string_io(svm, size, port, in); 2287 else 2288 return kvm_emulate_instruction(vcpu, 0); 2289 } 2290 2291 svm->next_rip = svm->vmcb->control.exit_info_2; 2292 2293 return kvm_fast_pio(vcpu, size, port, in); 2294 } 2295 2296 static int nmi_interception(struct kvm_vcpu *vcpu) 2297 { 2298 return 1; 2299 } 2300 2301 static int smi_interception(struct kvm_vcpu *vcpu) 2302 { 2303 return 1; 2304 } 2305 2306 static int intr_interception(struct kvm_vcpu *vcpu) 2307 { 2308 ++vcpu->stat.irq_exits; 2309 return 1; 2310 } 2311 2312 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2313 { 2314 struct vcpu_svm *svm = to_svm(vcpu); 2315 struct vmcb *vmcb12; 2316 struct kvm_host_map map; 2317 int ret; 2318 2319 if (nested_svm_check_permissions(vcpu)) 2320 return 1; 2321 2322 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2323 if (ret) { 2324 if (ret == -EINVAL) 2325 kvm_inject_gp(vcpu, 0); 2326 return 1; 2327 } 2328 2329 vmcb12 = map.hva; 2330 2331 ret = kvm_skip_emulated_instruction(vcpu); 2332 2333 if (vmload) { 2334 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2335 svm->sysenter_eip_hi = 0; 2336 svm->sysenter_esp_hi = 0; 2337 } else { 2338 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2339 } 2340 2341 kvm_vcpu_unmap(vcpu, &map); 2342 2343 return ret; 2344 } 2345 2346 static int vmload_interception(struct kvm_vcpu *vcpu) 2347 { 2348 return vmload_vmsave_interception(vcpu, true); 2349 } 2350 2351 static int vmsave_interception(struct kvm_vcpu *vcpu) 2352 { 2353 return vmload_vmsave_interception(vcpu, false); 2354 } 2355 2356 static int vmrun_interception(struct kvm_vcpu *vcpu) 2357 { 2358 if (nested_svm_check_permissions(vcpu)) 2359 return 1; 2360 2361 return nested_svm_vmrun(vcpu); 2362 } 2363 2364 enum { 2365 NONE_SVM_INSTR, 2366 SVM_INSTR_VMRUN, 2367 SVM_INSTR_VMLOAD, 2368 SVM_INSTR_VMSAVE, 2369 }; 2370 2371 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2372 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2373 { 2374 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2375 2376 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2377 return NONE_SVM_INSTR; 2378 2379 switch (ctxt->modrm) { 2380 case 0xd8: /* VMRUN */ 2381 return SVM_INSTR_VMRUN; 2382 case 0xda: /* VMLOAD */ 2383 return SVM_INSTR_VMLOAD; 2384 case 0xdb: /* VMSAVE */ 2385 return SVM_INSTR_VMSAVE; 2386 default: 2387 break; 2388 } 2389 2390 return NONE_SVM_INSTR; 2391 } 2392 2393 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2394 { 2395 const int guest_mode_exit_codes[] = { 2396 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2397 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2398 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2399 }; 2400 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2401 [SVM_INSTR_VMRUN] = vmrun_interception, 2402 [SVM_INSTR_VMLOAD] = vmload_interception, 2403 [SVM_INSTR_VMSAVE] = vmsave_interception, 2404 }; 2405 struct vcpu_svm *svm = to_svm(vcpu); 2406 int ret; 2407 2408 if (is_guest_mode(vcpu)) { 2409 /* Returns '1' or -errno on failure, '0' on success. */ 2410 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2411 if (ret) 2412 return ret; 2413 return 1; 2414 } 2415 return svm_instr_handlers[opcode](vcpu); 2416 } 2417 2418 /* 2419 * #GP handling code. Note that #GP can be triggered under the following two 2420 * cases: 2421 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2422 * some AMD CPUs when EAX of these instructions are in the reserved memory 2423 * regions (e.g. SMM memory on host). 2424 * 2) VMware backdoor 2425 */ 2426 static int gp_interception(struct kvm_vcpu *vcpu) 2427 { 2428 struct vcpu_svm *svm = to_svm(vcpu); 2429 u32 error_code = svm->vmcb->control.exit_info_1; 2430 int opcode; 2431 2432 /* Both #GP cases have zero error_code */ 2433 if (error_code) 2434 goto reinject; 2435 2436 /* Decode the instruction for usage later */ 2437 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2438 goto reinject; 2439 2440 opcode = svm_instr_opcode(vcpu); 2441 2442 if (opcode == NONE_SVM_INSTR) { 2443 if (!enable_vmware_backdoor) 2444 goto reinject; 2445 2446 /* 2447 * VMware backdoor emulation on #GP interception only handles 2448 * IN{S}, OUT{S}, and RDPMC. 2449 */ 2450 if (!is_guest_mode(vcpu)) 2451 return kvm_emulate_instruction(vcpu, 2452 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2453 } else { 2454 /* All SVM instructions expect page aligned RAX */ 2455 if (svm->vmcb->save.rax & ~PAGE_MASK) 2456 goto reinject; 2457 2458 return emulate_svm_instr(vcpu, opcode); 2459 } 2460 2461 reinject: 2462 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2463 return 1; 2464 } 2465 2466 void svm_set_gif(struct vcpu_svm *svm, bool value) 2467 { 2468 if (value) { 2469 /* 2470 * If VGIF is enabled, the STGI intercept is only added to 2471 * detect the opening of the SMI/NMI window; remove it now. 2472 * Likewise, clear the VINTR intercept, we will set it 2473 * again while processing KVM_REQ_EVENT if needed. 2474 */ 2475 if (vgif) 2476 svm_clr_intercept(svm, INTERCEPT_STGI); 2477 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2478 svm_clear_vintr(svm); 2479 2480 enable_gif(svm); 2481 if (svm->vcpu.arch.smi_pending || 2482 svm->vcpu.arch.nmi_pending || 2483 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2484 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2485 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2486 } else { 2487 disable_gif(svm); 2488 2489 /* 2490 * After a CLGI no interrupts should come. But if vGIF is 2491 * in use, we still rely on the VINTR intercept (rather than 2492 * STGI) to detect an open interrupt window. 2493 */ 2494 if (!vgif) 2495 svm_clear_vintr(svm); 2496 } 2497 } 2498 2499 static int stgi_interception(struct kvm_vcpu *vcpu) 2500 { 2501 int ret; 2502 2503 if (nested_svm_check_permissions(vcpu)) 2504 return 1; 2505 2506 ret = kvm_skip_emulated_instruction(vcpu); 2507 svm_set_gif(to_svm(vcpu), true); 2508 return ret; 2509 } 2510 2511 static int clgi_interception(struct kvm_vcpu *vcpu) 2512 { 2513 int ret; 2514 2515 if (nested_svm_check_permissions(vcpu)) 2516 return 1; 2517 2518 ret = kvm_skip_emulated_instruction(vcpu); 2519 svm_set_gif(to_svm(vcpu), false); 2520 return ret; 2521 } 2522 2523 static int invlpga_interception(struct kvm_vcpu *vcpu) 2524 { 2525 gva_t gva = kvm_rax_read(vcpu); 2526 u32 asid = kvm_rcx_read(vcpu); 2527 2528 /* FIXME: Handle an address size prefix. */ 2529 if (!is_long_mode(vcpu)) 2530 gva = (u32)gva; 2531 2532 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2533 2534 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2535 kvm_mmu_invlpg(vcpu, gva); 2536 2537 return kvm_skip_emulated_instruction(vcpu); 2538 } 2539 2540 static int skinit_interception(struct kvm_vcpu *vcpu) 2541 { 2542 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2543 2544 kvm_queue_exception(vcpu, UD_VECTOR); 2545 return 1; 2546 } 2547 2548 static int task_switch_interception(struct kvm_vcpu *vcpu) 2549 { 2550 struct vcpu_svm *svm = to_svm(vcpu); 2551 u16 tss_selector; 2552 int reason; 2553 int int_type = svm->vmcb->control.exit_int_info & 2554 SVM_EXITINTINFO_TYPE_MASK; 2555 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2556 uint32_t type = 2557 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2558 uint32_t idt_v = 2559 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2560 bool has_error_code = false; 2561 u32 error_code = 0; 2562 2563 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2564 2565 if (svm->vmcb->control.exit_info_2 & 2566 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2567 reason = TASK_SWITCH_IRET; 2568 else if (svm->vmcb->control.exit_info_2 & 2569 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2570 reason = TASK_SWITCH_JMP; 2571 else if (idt_v) 2572 reason = TASK_SWITCH_GATE; 2573 else 2574 reason = TASK_SWITCH_CALL; 2575 2576 if (reason == TASK_SWITCH_GATE) { 2577 switch (type) { 2578 case SVM_EXITINTINFO_TYPE_NMI: 2579 vcpu->arch.nmi_injected = false; 2580 break; 2581 case SVM_EXITINTINFO_TYPE_EXEPT: 2582 if (svm->vmcb->control.exit_info_2 & 2583 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2584 has_error_code = true; 2585 error_code = 2586 (u32)svm->vmcb->control.exit_info_2; 2587 } 2588 kvm_clear_exception_queue(vcpu); 2589 break; 2590 case SVM_EXITINTINFO_TYPE_INTR: 2591 case SVM_EXITINTINFO_TYPE_SOFT: 2592 kvm_clear_interrupt_queue(vcpu); 2593 break; 2594 default: 2595 break; 2596 } 2597 } 2598 2599 if (reason != TASK_SWITCH_GATE || 2600 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2601 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2602 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2603 if (!svm_skip_emulated_instruction(vcpu)) 2604 return 0; 2605 } 2606 2607 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2608 int_vec = -1; 2609 2610 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2611 has_error_code, error_code); 2612 } 2613 2614 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2615 { 2616 if (!sev_es_guest(svm->vcpu.kvm)) 2617 svm_clr_intercept(svm, INTERCEPT_IRET); 2618 } 2619 2620 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2621 { 2622 if (!sev_es_guest(svm->vcpu.kvm)) 2623 svm_set_intercept(svm, INTERCEPT_IRET); 2624 } 2625 2626 static int iret_interception(struct kvm_vcpu *vcpu) 2627 { 2628 struct vcpu_svm *svm = to_svm(vcpu); 2629 2630 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2631 2632 ++vcpu->stat.nmi_window_exits; 2633 svm->awaiting_iret_completion = true; 2634 2635 svm_clr_iret_intercept(svm); 2636 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2637 2638 kvm_make_request(KVM_REQ_EVENT, vcpu); 2639 return 1; 2640 } 2641 2642 static int invlpg_interception(struct kvm_vcpu *vcpu) 2643 { 2644 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2645 return kvm_emulate_instruction(vcpu, 0); 2646 2647 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2648 return kvm_skip_emulated_instruction(vcpu); 2649 } 2650 2651 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2652 { 2653 return kvm_emulate_instruction(vcpu, 0); 2654 } 2655 2656 static int rsm_interception(struct kvm_vcpu *vcpu) 2657 { 2658 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2659 } 2660 2661 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2662 unsigned long val) 2663 { 2664 struct vcpu_svm *svm = to_svm(vcpu); 2665 unsigned long cr0 = vcpu->arch.cr0; 2666 bool ret = false; 2667 2668 if (!is_guest_mode(vcpu) || 2669 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2670 return false; 2671 2672 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2673 val &= ~SVM_CR0_SELECTIVE_MASK; 2674 2675 if (cr0 ^ val) { 2676 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2677 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2678 } 2679 2680 return ret; 2681 } 2682 2683 #define CR_VALID (1ULL << 63) 2684 2685 static int cr_interception(struct kvm_vcpu *vcpu) 2686 { 2687 struct vcpu_svm *svm = to_svm(vcpu); 2688 int reg, cr; 2689 unsigned long val; 2690 int err; 2691 2692 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2693 return emulate_on_interception(vcpu); 2694 2695 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2696 return emulate_on_interception(vcpu); 2697 2698 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2699 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2700 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2701 else 2702 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2703 2704 err = 0; 2705 if (cr >= 16) { /* mov to cr */ 2706 cr -= 16; 2707 val = kvm_register_read(vcpu, reg); 2708 trace_kvm_cr_write(cr, val); 2709 switch (cr) { 2710 case 0: 2711 if (!check_selective_cr0_intercepted(vcpu, val)) 2712 err = kvm_set_cr0(vcpu, val); 2713 else 2714 return 1; 2715 2716 break; 2717 case 3: 2718 err = kvm_set_cr3(vcpu, val); 2719 break; 2720 case 4: 2721 err = kvm_set_cr4(vcpu, val); 2722 break; 2723 case 8: 2724 err = kvm_set_cr8(vcpu, val); 2725 break; 2726 default: 2727 WARN(1, "unhandled write to CR%d", cr); 2728 kvm_queue_exception(vcpu, UD_VECTOR); 2729 return 1; 2730 } 2731 } else { /* mov from cr */ 2732 switch (cr) { 2733 case 0: 2734 val = kvm_read_cr0(vcpu); 2735 break; 2736 case 2: 2737 val = vcpu->arch.cr2; 2738 break; 2739 case 3: 2740 val = kvm_read_cr3(vcpu); 2741 break; 2742 case 4: 2743 val = kvm_read_cr4(vcpu); 2744 break; 2745 case 8: 2746 val = kvm_get_cr8(vcpu); 2747 break; 2748 default: 2749 WARN(1, "unhandled read from CR%d", cr); 2750 kvm_queue_exception(vcpu, UD_VECTOR); 2751 return 1; 2752 } 2753 kvm_register_write(vcpu, reg, val); 2754 trace_kvm_cr_read(cr, val); 2755 } 2756 return kvm_complete_insn_gp(vcpu, err); 2757 } 2758 2759 static int cr_trap(struct kvm_vcpu *vcpu) 2760 { 2761 struct vcpu_svm *svm = to_svm(vcpu); 2762 unsigned long old_value, new_value; 2763 unsigned int cr; 2764 int ret = 0; 2765 2766 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2767 2768 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2769 switch (cr) { 2770 case 0: 2771 old_value = kvm_read_cr0(vcpu); 2772 svm_set_cr0(vcpu, new_value); 2773 2774 kvm_post_set_cr0(vcpu, old_value, new_value); 2775 break; 2776 case 4: 2777 old_value = kvm_read_cr4(vcpu); 2778 svm_set_cr4(vcpu, new_value); 2779 2780 kvm_post_set_cr4(vcpu, old_value, new_value); 2781 break; 2782 case 8: 2783 ret = kvm_set_cr8(vcpu, new_value); 2784 break; 2785 default: 2786 WARN(1, "unhandled CR%d write trap", cr); 2787 kvm_queue_exception(vcpu, UD_VECTOR); 2788 return 1; 2789 } 2790 2791 return kvm_complete_insn_gp(vcpu, ret); 2792 } 2793 2794 static int dr_interception(struct kvm_vcpu *vcpu) 2795 { 2796 struct vcpu_svm *svm = to_svm(vcpu); 2797 int reg, dr; 2798 int err = 0; 2799 2800 /* 2801 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2802 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2803 */ 2804 if (sev_es_guest(vcpu->kvm)) 2805 return 1; 2806 2807 if (vcpu->guest_debug == 0) { 2808 /* 2809 * No more DR vmexits; force a reload of the debug registers 2810 * and reenter on this instruction. The next vmexit will 2811 * retrieve the full state of the debug registers. 2812 */ 2813 clr_dr_intercepts(svm); 2814 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2815 return 1; 2816 } 2817 2818 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2819 return emulate_on_interception(vcpu); 2820 2821 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2822 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2823 if (dr >= 16) { /* mov to DRn */ 2824 dr -= 16; 2825 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2826 } else { 2827 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2828 } 2829 2830 return kvm_complete_insn_gp(vcpu, err); 2831 } 2832 2833 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2834 { 2835 int r; 2836 2837 u8 cr8_prev = kvm_get_cr8(vcpu); 2838 /* instruction emulation calls kvm_set_cr8() */ 2839 r = cr_interception(vcpu); 2840 if (lapic_in_kernel(vcpu)) 2841 return r; 2842 if (cr8_prev <= kvm_get_cr8(vcpu)) 2843 return r; 2844 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2845 return 0; 2846 } 2847 2848 static int efer_trap(struct kvm_vcpu *vcpu) 2849 { 2850 struct msr_data msr_info; 2851 int ret; 2852 2853 /* 2854 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2855 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2856 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2857 * the guest doesn't have X86_FEATURE_SVM. 2858 */ 2859 msr_info.host_initiated = false; 2860 msr_info.index = MSR_EFER; 2861 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2862 ret = kvm_set_msr_common(vcpu, &msr_info); 2863 2864 return kvm_complete_insn_gp(vcpu, ret); 2865 } 2866 2867 static int svm_get_feature_msr(u32 msr, u64 *data) 2868 { 2869 *data = 0; 2870 2871 switch (msr) { 2872 case MSR_AMD64_DE_CFG: 2873 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2874 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2875 break; 2876 default: 2877 return KVM_MSR_RET_UNSUPPORTED; 2878 } 2879 2880 return 0; 2881 } 2882 2883 static bool 2884 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2885 { 2886 return sev_es_guest(vcpu->kvm) && 2887 vcpu->arch.guest_state_protected && 2888 svm_msrpm_offset(msr_info->index) != MSR_INVALID && 2889 !msr_write_intercepted(vcpu, msr_info->index); 2890 } 2891 2892 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2893 { 2894 struct vcpu_svm *svm = to_svm(vcpu); 2895 2896 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2897 msr_info->data = 0; 2898 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2899 } 2900 2901 switch (msr_info->index) { 2902 case MSR_AMD64_TSC_RATIO: 2903 if (!msr_info->host_initiated && 2904 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) 2905 return 1; 2906 msr_info->data = svm->tsc_ratio_msr; 2907 break; 2908 case MSR_STAR: 2909 msr_info->data = svm->vmcb01.ptr->save.star; 2910 break; 2911 #ifdef CONFIG_X86_64 2912 case MSR_LSTAR: 2913 msr_info->data = svm->vmcb01.ptr->save.lstar; 2914 break; 2915 case MSR_CSTAR: 2916 msr_info->data = svm->vmcb01.ptr->save.cstar; 2917 break; 2918 case MSR_GS_BASE: 2919 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2920 break; 2921 case MSR_FS_BASE: 2922 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2923 break; 2924 case MSR_KERNEL_GS_BASE: 2925 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2926 break; 2927 case MSR_SYSCALL_MASK: 2928 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2929 break; 2930 #endif 2931 case MSR_IA32_SYSENTER_CS: 2932 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2933 break; 2934 case MSR_IA32_SYSENTER_EIP: 2935 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2936 if (guest_cpuid_is_intel_compatible(vcpu)) 2937 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2938 break; 2939 case MSR_IA32_SYSENTER_ESP: 2940 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2941 if (guest_cpuid_is_intel_compatible(vcpu)) 2942 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2943 break; 2944 case MSR_TSC_AUX: 2945 msr_info->data = svm->tsc_aux; 2946 break; 2947 case MSR_IA32_DEBUGCTLMSR: 2948 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2949 break; 2950 case MSR_IA32_LASTBRANCHFROMIP: 2951 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2952 break; 2953 case MSR_IA32_LASTBRANCHTOIP: 2954 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2955 break; 2956 case MSR_IA32_LASTINTFROMIP: 2957 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2958 break; 2959 case MSR_IA32_LASTINTTOIP: 2960 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2961 break; 2962 case MSR_VM_HSAVE_PA: 2963 msr_info->data = svm->nested.hsave_msr; 2964 break; 2965 case MSR_VM_CR: 2966 msr_info->data = svm->nested.vm_cr_msr; 2967 break; 2968 case MSR_IA32_SPEC_CTRL: 2969 if (!msr_info->host_initiated && 2970 !guest_has_spec_ctrl_msr(vcpu)) 2971 return 1; 2972 2973 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2974 msr_info->data = svm->vmcb->save.spec_ctrl; 2975 else 2976 msr_info->data = svm->spec_ctrl; 2977 break; 2978 case MSR_AMD64_VIRT_SPEC_CTRL: 2979 if (!msr_info->host_initiated && 2980 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2981 return 1; 2982 2983 msr_info->data = svm->virt_spec_ctrl; 2984 break; 2985 case MSR_F15H_IC_CFG: { 2986 2987 int family, model; 2988 2989 family = guest_cpuid_family(vcpu); 2990 model = guest_cpuid_model(vcpu); 2991 2992 if (family < 0 || model < 0) 2993 return kvm_get_msr_common(vcpu, msr_info); 2994 2995 msr_info->data = 0; 2996 2997 if (family == 0x15 && 2998 (model >= 0x2 && model < 0x20)) 2999 msr_info->data = 0x1E; 3000 } 3001 break; 3002 case MSR_AMD64_DE_CFG: 3003 msr_info->data = svm->msr_decfg; 3004 break; 3005 default: 3006 return kvm_get_msr_common(vcpu, msr_info); 3007 } 3008 return 0; 3009 } 3010 3011 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 3012 { 3013 struct vcpu_svm *svm = to_svm(vcpu); 3014 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 3015 return kvm_complete_insn_gp(vcpu, err); 3016 3017 svm_vmgexit_inject_exception(svm, X86_TRAP_GP); 3018 return 1; 3019 } 3020 3021 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 3022 { 3023 struct vcpu_svm *svm = to_svm(vcpu); 3024 int svm_dis, chg_mask; 3025 3026 if (data & ~SVM_VM_CR_VALID_MASK) 3027 return 1; 3028 3029 chg_mask = SVM_VM_CR_VALID_MASK; 3030 3031 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 3032 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 3033 3034 svm->nested.vm_cr_msr &= ~chg_mask; 3035 svm->nested.vm_cr_msr |= (data & chg_mask); 3036 3037 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 3038 3039 /* check for svm_disable while efer.svme is set */ 3040 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 3041 return 1; 3042 3043 return 0; 3044 } 3045 3046 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 3047 { 3048 struct vcpu_svm *svm = to_svm(vcpu); 3049 int ret = 0; 3050 3051 u32 ecx = msr->index; 3052 u64 data = msr->data; 3053 3054 if (sev_es_prevent_msr_access(vcpu, msr)) 3055 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 3056 3057 switch (ecx) { 3058 case MSR_AMD64_TSC_RATIO: 3059 3060 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) { 3061 3062 if (!msr->host_initiated) 3063 return 1; 3064 /* 3065 * In case TSC scaling is not enabled, always 3066 * leave this MSR at the default value. 3067 * 3068 * Due to bug in qemu 6.2.0, it would try to set 3069 * this msr to 0 if tsc scaling is not enabled. 3070 * Ignore this value as well. 3071 */ 3072 if (data != 0 && data != svm->tsc_ratio_msr) 3073 return 1; 3074 break; 3075 } 3076 3077 if (data & SVM_TSC_RATIO_RSVD) 3078 return 1; 3079 3080 svm->tsc_ratio_msr = data; 3081 3082 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 3083 is_guest_mode(vcpu)) 3084 nested_svm_update_tsc_ratio_msr(vcpu); 3085 3086 break; 3087 case MSR_IA32_CR_PAT: 3088 ret = kvm_set_msr_common(vcpu, msr); 3089 if (ret) 3090 break; 3091 3092 svm->vmcb01.ptr->save.g_pat = data; 3093 if (is_guest_mode(vcpu)) 3094 nested_vmcb02_compute_g_pat(svm); 3095 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3096 break; 3097 case MSR_IA32_SPEC_CTRL: 3098 if (!msr->host_initiated && 3099 !guest_has_spec_ctrl_msr(vcpu)) 3100 return 1; 3101 3102 if (kvm_spec_ctrl_test_value(data)) 3103 return 1; 3104 3105 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3106 svm->vmcb->save.spec_ctrl = data; 3107 else 3108 svm->spec_ctrl = data; 3109 if (!data) 3110 break; 3111 3112 /* 3113 * For non-nested: 3114 * When it's written (to non-zero) for the first time, pass 3115 * it through. 3116 * 3117 * For nested: 3118 * The handling of the MSR bitmap for L2 guests is done in 3119 * nested_svm_vmrun_msrpm. 3120 * We update the L1 MSR bit as well since it will end up 3121 * touching the MSR anyway now. 3122 */ 3123 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3124 break; 3125 case MSR_AMD64_VIRT_SPEC_CTRL: 3126 if (!msr->host_initiated && 3127 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3128 return 1; 3129 3130 if (data & ~SPEC_CTRL_SSBD) 3131 return 1; 3132 3133 svm->virt_spec_ctrl = data; 3134 break; 3135 case MSR_STAR: 3136 svm->vmcb01.ptr->save.star = data; 3137 break; 3138 #ifdef CONFIG_X86_64 3139 case MSR_LSTAR: 3140 svm->vmcb01.ptr->save.lstar = data; 3141 break; 3142 case MSR_CSTAR: 3143 svm->vmcb01.ptr->save.cstar = data; 3144 break; 3145 case MSR_GS_BASE: 3146 svm->vmcb01.ptr->save.gs.base = data; 3147 break; 3148 case MSR_FS_BASE: 3149 svm->vmcb01.ptr->save.fs.base = data; 3150 break; 3151 case MSR_KERNEL_GS_BASE: 3152 svm->vmcb01.ptr->save.kernel_gs_base = data; 3153 break; 3154 case MSR_SYSCALL_MASK: 3155 svm->vmcb01.ptr->save.sfmask = data; 3156 break; 3157 #endif 3158 case MSR_IA32_SYSENTER_CS: 3159 svm->vmcb01.ptr->save.sysenter_cs = data; 3160 break; 3161 case MSR_IA32_SYSENTER_EIP: 3162 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3163 /* 3164 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3165 * when we spoof an Intel vendor ID (for cross vendor migration). 3166 * In this case we use this intercept to track the high 3167 * 32 bit part of these msrs to support Intel's 3168 * implementation of SYSENTER/SYSEXIT. 3169 */ 3170 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3171 break; 3172 case MSR_IA32_SYSENTER_ESP: 3173 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3174 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3175 break; 3176 case MSR_TSC_AUX: 3177 /* 3178 * TSC_AUX is always virtualized for SEV-ES guests when the 3179 * feature is available. The user return MSR support is not 3180 * required in this case because TSC_AUX is restored on #VMEXIT 3181 * from the host save area (which has been initialized in 3182 * svm_enable_virtualization_cpu()). 3183 */ 3184 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3185 break; 3186 3187 /* 3188 * TSC_AUX is usually changed only during boot and never read 3189 * directly. Intercept TSC_AUX instead of exposing it to the 3190 * guest via direct_access_msrs, and switch it via user return. 3191 */ 3192 preempt_disable(); 3193 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3194 preempt_enable(); 3195 if (ret) 3196 break; 3197 3198 svm->tsc_aux = data; 3199 break; 3200 case MSR_IA32_DEBUGCTLMSR: 3201 if (!lbrv) { 3202 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3203 break; 3204 } 3205 3206 /* 3207 * Suppress BTF as KVM doesn't virtualize BTF, but there's no 3208 * way to communicate lack of support to the guest. 3209 */ 3210 if (data & DEBUGCTLMSR_BTF) { 3211 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 3212 data &= ~DEBUGCTLMSR_BTF; 3213 } 3214 3215 if (data & DEBUGCTL_RESERVED_BITS) 3216 return 1; 3217 3218 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3219 svm_update_lbrv(vcpu); 3220 break; 3221 case MSR_VM_HSAVE_PA: 3222 /* 3223 * Old kernels did not validate the value written to 3224 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3225 * value to allow live migrating buggy or malicious guests 3226 * originating from those kernels. 3227 */ 3228 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3229 return 1; 3230 3231 svm->nested.hsave_msr = data & PAGE_MASK; 3232 break; 3233 case MSR_VM_CR: 3234 return svm_set_vm_cr(vcpu, data); 3235 case MSR_VM_IGNNE: 3236 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3237 break; 3238 case MSR_AMD64_DE_CFG: { 3239 u64 supported_de_cfg; 3240 3241 if (svm_get_feature_msr(ecx, &supported_de_cfg)) 3242 return 1; 3243 3244 if (data & ~supported_de_cfg) 3245 return 1; 3246 3247 svm->msr_decfg = data; 3248 break; 3249 } 3250 default: 3251 return kvm_set_msr_common(vcpu, msr); 3252 } 3253 return ret; 3254 } 3255 3256 static int msr_interception(struct kvm_vcpu *vcpu) 3257 { 3258 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3259 return kvm_emulate_wrmsr(vcpu); 3260 else 3261 return kvm_emulate_rdmsr(vcpu); 3262 } 3263 3264 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3265 { 3266 kvm_make_request(KVM_REQ_EVENT, vcpu); 3267 svm_clear_vintr(to_svm(vcpu)); 3268 3269 /* 3270 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3271 * In this case AVIC was temporarily disabled for 3272 * requesting the IRQ window and we have to re-enable it. 3273 * 3274 * If running nested, still remove the VM wide AVIC inhibit to 3275 * support case in which the interrupt window was requested when the 3276 * vCPU was not running nested. 3277 3278 * All vCPUs which run still run nested, will remain to have their 3279 * AVIC still inhibited due to per-cpu AVIC inhibition. 3280 */ 3281 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3282 3283 ++vcpu->stat.irq_window_exits; 3284 return 1; 3285 } 3286 3287 static int pause_interception(struct kvm_vcpu *vcpu) 3288 { 3289 bool in_kernel; 3290 /* 3291 * CPL is not made available for an SEV-ES guest, therefore 3292 * vcpu->arch.preempted_in_kernel can never be true. Just 3293 * set in_kernel to false as well. 3294 */ 3295 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3296 3297 grow_ple_window(vcpu); 3298 3299 kvm_vcpu_on_spin(vcpu, in_kernel); 3300 return kvm_skip_emulated_instruction(vcpu); 3301 } 3302 3303 static int invpcid_interception(struct kvm_vcpu *vcpu) 3304 { 3305 struct vcpu_svm *svm = to_svm(vcpu); 3306 unsigned long type; 3307 gva_t gva; 3308 3309 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 3310 kvm_queue_exception(vcpu, UD_VECTOR); 3311 return 1; 3312 } 3313 3314 /* 3315 * For an INVPCID intercept: 3316 * EXITINFO1 provides the linear address of the memory operand. 3317 * EXITINFO2 provides the contents of the register operand. 3318 */ 3319 type = svm->vmcb->control.exit_info_2; 3320 gva = svm->vmcb->control.exit_info_1; 3321 3322 /* 3323 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the 3324 * stack segment is used. The intercept takes priority over all 3325 * #GP checks except CPL>0, but somehow still generates a linear 3326 * address? The APM is sorely lacking. 3327 */ 3328 if (is_noncanonical_address(gva, vcpu, 0)) { 3329 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 3330 return 1; 3331 } 3332 3333 return kvm_handle_invpcid(vcpu, type, gva); 3334 } 3335 3336 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu) 3337 { 3338 struct vcpu_svm *svm = to_svm(vcpu); 3339 3340 /* 3341 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest 3342 * execute the bus-locking instruction. Set the bus lock counter to '1' 3343 * to effectively step past the bus lock. 3344 */ 3345 if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)) 3346 svm->vmcb->control.bus_lock_counter = 1; 3347 3348 return 1; 3349 } 3350 3351 static int bus_lock_exit(struct kvm_vcpu *vcpu) 3352 { 3353 struct vcpu_svm *svm = to_svm(vcpu); 3354 3355 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 3356 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 3357 3358 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 3359 vcpu->arch.complete_userspace_io = complete_userspace_buslock; 3360 3361 if (is_guest_mode(vcpu)) 3362 svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip; 3363 3364 return 0; 3365 } 3366 3367 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3368 [SVM_EXIT_READ_CR0] = cr_interception, 3369 [SVM_EXIT_READ_CR3] = cr_interception, 3370 [SVM_EXIT_READ_CR4] = cr_interception, 3371 [SVM_EXIT_READ_CR8] = cr_interception, 3372 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3373 [SVM_EXIT_WRITE_CR0] = cr_interception, 3374 [SVM_EXIT_WRITE_CR3] = cr_interception, 3375 [SVM_EXIT_WRITE_CR4] = cr_interception, 3376 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3377 [SVM_EXIT_READ_DR0] = dr_interception, 3378 [SVM_EXIT_READ_DR1] = dr_interception, 3379 [SVM_EXIT_READ_DR2] = dr_interception, 3380 [SVM_EXIT_READ_DR3] = dr_interception, 3381 [SVM_EXIT_READ_DR4] = dr_interception, 3382 [SVM_EXIT_READ_DR5] = dr_interception, 3383 [SVM_EXIT_READ_DR6] = dr_interception, 3384 [SVM_EXIT_READ_DR7] = dr_interception, 3385 [SVM_EXIT_WRITE_DR0] = dr_interception, 3386 [SVM_EXIT_WRITE_DR1] = dr_interception, 3387 [SVM_EXIT_WRITE_DR2] = dr_interception, 3388 [SVM_EXIT_WRITE_DR3] = dr_interception, 3389 [SVM_EXIT_WRITE_DR4] = dr_interception, 3390 [SVM_EXIT_WRITE_DR5] = dr_interception, 3391 [SVM_EXIT_WRITE_DR6] = dr_interception, 3392 [SVM_EXIT_WRITE_DR7] = dr_interception, 3393 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3394 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3395 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3396 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3397 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3398 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3399 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3400 [SVM_EXIT_INTR] = intr_interception, 3401 [SVM_EXIT_NMI] = nmi_interception, 3402 [SVM_EXIT_SMI] = smi_interception, 3403 [SVM_EXIT_VINTR] = interrupt_window_interception, 3404 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3405 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3406 [SVM_EXIT_IRET] = iret_interception, 3407 [SVM_EXIT_INVD] = kvm_emulate_invd, 3408 [SVM_EXIT_PAUSE] = pause_interception, 3409 [SVM_EXIT_HLT] = kvm_emulate_halt, 3410 [SVM_EXIT_INVLPG] = invlpg_interception, 3411 [SVM_EXIT_INVLPGA] = invlpga_interception, 3412 [SVM_EXIT_IOIO] = io_interception, 3413 [SVM_EXIT_MSR] = msr_interception, 3414 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3415 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3416 [SVM_EXIT_VMRUN] = vmrun_interception, 3417 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3418 [SVM_EXIT_VMLOAD] = vmload_interception, 3419 [SVM_EXIT_VMSAVE] = vmsave_interception, 3420 [SVM_EXIT_STGI] = stgi_interception, 3421 [SVM_EXIT_CLGI] = clgi_interception, 3422 [SVM_EXIT_SKINIT] = skinit_interception, 3423 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3424 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3425 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3426 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3427 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3428 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3429 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3430 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3431 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3432 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3433 [SVM_EXIT_INVPCID] = invpcid_interception, 3434 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt, 3435 [SVM_EXIT_NPF] = npf_interception, 3436 [SVM_EXIT_BUS_LOCK] = bus_lock_exit, 3437 [SVM_EXIT_RSM] = rsm_interception, 3438 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3439 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3440 #ifdef CONFIG_KVM_AMD_SEV 3441 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3442 #endif 3443 }; 3444 3445 static void dump_vmcb(struct kvm_vcpu *vcpu) 3446 { 3447 struct vcpu_svm *svm = to_svm(vcpu); 3448 struct vmcb_control_area *control = &svm->vmcb->control; 3449 struct vmcb_save_area *save = &svm->vmcb->save; 3450 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3451 char *vm_type; 3452 3453 if (!dump_invalid_vmcb) { 3454 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3455 return; 3456 } 3457 3458 guard(mutex)(&vmcb_dump_mutex); 3459 3460 vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" : 3461 sev_es_guest(vcpu->kvm) ? "SEV-ES" : 3462 sev_guest(vcpu->kvm) ? "SEV" : "SVM"; 3463 3464 pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n", 3465 vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3466 pr_err("VMCB Control Area:\n"); 3467 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3468 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3469 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3470 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3471 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3472 pr_err("%-20s%08x %08x\n", "intercepts:", 3473 control->intercepts[INTERCEPT_WORD3], 3474 control->intercepts[INTERCEPT_WORD4]); 3475 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3476 pr_err("%-20s%d\n", "pause filter threshold:", 3477 control->pause_filter_thresh); 3478 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3479 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3480 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3481 pr_err("%-20s%d\n", "asid:", control->asid); 3482 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3483 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3484 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3485 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3486 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3487 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3488 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3489 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3490 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3491 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3492 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3493 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3494 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3495 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3496 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3497 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3498 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3499 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3500 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3501 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3502 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3503 pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features); 3504 pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features); 3505 3506 if (sev_es_guest(vcpu->kvm)) { 3507 save = sev_decrypt_vmsa(vcpu); 3508 if (!save) 3509 goto no_vmsa; 3510 3511 save01 = save; 3512 } 3513 3514 pr_err("VMCB State Save Area:\n"); 3515 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3516 "es:", 3517 save->es.selector, save->es.attrib, 3518 save->es.limit, save->es.base); 3519 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3520 "cs:", 3521 save->cs.selector, save->cs.attrib, 3522 save->cs.limit, save->cs.base); 3523 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3524 "ss:", 3525 save->ss.selector, save->ss.attrib, 3526 save->ss.limit, save->ss.base); 3527 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3528 "ds:", 3529 save->ds.selector, save->ds.attrib, 3530 save->ds.limit, save->ds.base); 3531 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3532 "fs:", 3533 save01->fs.selector, save01->fs.attrib, 3534 save01->fs.limit, save01->fs.base); 3535 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3536 "gs:", 3537 save01->gs.selector, save01->gs.attrib, 3538 save01->gs.limit, save01->gs.base); 3539 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3540 "gdtr:", 3541 save->gdtr.selector, save->gdtr.attrib, 3542 save->gdtr.limit, save->gdtr.base); 3543 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3544 "ldtr:", 3545 save01->ldtr.selector, save01->ldtr.attrib, 3546 save01->ldtr.limit, save01->ldtr.base); 3547 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3548 "idtr:", 3549 save->idtr.selector, save->idtr.attrib, 3550 save->idtr.limit, save->idtr.base); 3551 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3552 "tr:", 3553 save01->tr.selector, save01->tr.attrib, 3554 save01->tr.limit, save01->tr.base); 3555 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3556 save->vmpl, save->cpl, save->efer); 3557 pr_err("%-15s %016llx %-13s %016llx\n", 3558 "cr0:", save->cr0, "cr2:", save->cr2); 3559 pr_err("%-15s %016llx %-13s %016llx\n", 3560 "cr3:", save->cr3, "cr4:", save->cr4); 3561 pr_err("%-15s %016llx %-13s %016llx\n", 3562 "dr6:", save->dr6, "dr7:", save->dr7); 3563 pr_err("%-15s %016llx %-13s %016llx\n", 3564 "rip:", save->rip, "rflags:", save->rflags); 3565 pr_err("%-15s %016llx %-13s %016llx\n", 3566 "rsp:", save->rsp, "rax:", save->rax); 3567 pr_err("%-15s %016llx %-13s %016llx\n", 3568 "star:", save01->star, "lstar:", save01->lstar); 3569 pr_err("%-15s %016llx %-13s %016llx\n", 3570 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3571 pr_err("%-15s %016llx %-13s %016llx\n", 3572 "kernel_gs_base:", save01->kernel_gs_base, 3573 "sysenter_cs:", save01->sysenter_cs); 3574 pr_err("%-15s %016llx %-13s %016llx\n", 3575 "sysenter_esp:", save01->sysenter_esp, 3576 "sysenter_eip:", save01->sysenter_eip); 3577 pr_err("%-15s %016llx %-13s %016llx\n", 3578 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3579 pr_err("%-15s %016llx %-13s %016llx\n", 3580 "br_from:", save->br_from, "br_to:", save->br_to); 3581 pr_err("%-15s %016llx %-13s %016llx\n", 3582 "excp_from:", save->last_excp_from, 3583 "excp_to:", save->last_excp_to); 3584 3585 if (sev_es_guest(vcpu->kvm)) { 3586 struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save; 3587 3588 pr_err("%-15s %016llx\n", 3589 "sev_features", vmsa->sev_features); 3590 3591 pr_err("%-15s %016llx %-13s %016llx\n", 3592 "rax:", vmsa->rax, "rbx:", vmsa->rbx); 3593 pr_err("%-15s %016llx %-13s %016llx\n", 3594 "rcx:", vmsa->rcx, "rdx:", vmsa->rdx); 3595 pr_err("%-15s %016llx %-13s %016llx\n", 3596 "rsi:", vmsa->rsi, "rdi:", vmsa->rdi); 3597 pr_err("%-15s %016llx %-13s %016llx\n", 3598 "rbp:", vmsa->rbp, "rsp:", vmsa->rsp); 3599 pr_err("%-15s %016llx %-13s %016llx\n", 3600 "r8:", vmsa->r8, "r9:", vmsa->r9); 3601 pr_err("%-15s %016llx %-13s %016llx\n", 3602 "r10:", vmsa->r10, "r11:", vmsa->r11); 3603 pr_err("%-15s %016llx %-13s %016llx\n", 3604 "r12:", vmsa->r12, "r13:", vmsa->r13); 3605 pr_err("%-15s %016llx %-13s %016llx\n", 3606 "r14:", vmsa->r14, "r15:", vmsa->r15); 3607 pr_err("%-15s %016llx %-13s %016llx\n", 3608 "xcr0:", vmsa->xcr0, "xss:", vmsa->xss); 3609 } else { 3610 pr_err("%-15s %016llx %-13s %016lx\n", 3611 "rax:", save->rax, "rbx:", 3612 vcpu->arch.regs[VCPU_REGS_RBX]); 3613 pr_err("%-15s %016lx %-13s %016lx\n", 3614 "rcx:", vcpu->arch.regs[VCPU_REGS_RCX], 3615 "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]); 3616 pr_err("%-15s %016lx %-13s %016lx\n", 3617 "rsi:", vcpu->arch.regs[VCPU_REGS_RSI], 3618 "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]); 3619 pr_err("%-15s %016lx %-13s %016llx\n", 3620 "rbp:", vcpu->arch.regs[VCPU_REGS_RBP], 3621 "rsp:", save->rsp); 3622 #ifdef CONFIG_X86_64 3623 pr_err("%-15s %016lx %-13s %016lx\n", 3624 "r8:", vcpu->arch.regs[VCPU_REGS_R8], 3625 "r9:", vcpu->arch.regs[VCPU_REGS_R9]); 3626 pr_err("%-15s %016lx %-13s %016lx\n", 3627 "r10:", vcpu->arch.regs[VCPU_REGS_R10], 3628 "r11:", vcpu->arch.regs[VCPU_REGS_R11]); 3629 pr_err("%-15s %016lx %-13s %016lx\n", 3630 "r12:", vcpu->arch.regs[VCPU_REGS_R12], 3631 "r13:", vcpu->arch.regs[VCPU_REGS_R13]); 3632 pr_err("%-15s %016lx %-13s %016lx\n", 3633 "r14:", vcpu->arch.regs[VCPU_REGS_R14], 3634 "r15:", vcpu->arch.regs[VCPU_REGS_R15]); 3635 #endif 3636 } 3637 3638 no_vmsa: 3639 if (sev_es_guest(vcpu->kvm)) 3640 sev_free_decrypted_vmsa(vcpu, save); 3641 } 3642 3643 static bool svm_check_exit_valid(u64 exit_code) 3644 { 3645 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3646 svm_exit_handlers[exit_code]); 3647 } 3648 3649 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3650 { 3651 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3652 dump_vmcb(vcpu); 3653 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3654 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3655 vcpu->run->internal.ndata = 2; 3656 vcpu->run->internal.data[0] = exit_code; 3657 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3658 return 0; 3659 } 3660 3661 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3662 { 3663 if (!svm_check_exit_valid(exit_code)) 3664 return svm_handle_invalid_exit(vcpu, exit_code); 3665 3666 #ifdef CONFIG_MITIGATION_RETPOLINE 3667 if (exit_code == SVM_EXIT_MSR) 3668 return msr_interception(vcpu); 3669 else if (exit_code == SVM_EXIT_VINTR) 3670 return interrupt_window_interception(vcpu); 3671 else if (exit_code == SVM_EXIT_INTR) 3672 return intr_interception(vcpu); 3673 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT) 3674 return kvm_emulate_halt(vcpu); 3675 else if (exit_code == SVM_EXIT_NPF) 3676 return npf_interception(vcpu); 3677 #ifdef CONFIG_KVM_AMD_SEV 3678 else if (exit_code == SVM_EXIT_VMGEXIT) 3679 return sev_handle_vmgexit(vcpu); 3680 #endif 3681 #endif 3682 return svm_exit_handlers[exit_code](vcpu); 3683 } 3684 3685 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3686 u64 *info1, u64 *info2, 3687 u32 *intr_info, u32 *error_code) 3688 { 3689 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3690 3691 *reason = control->exit_code; 3692 *info1 = control->exit_info_1; 3693 *info2 = control->exit_info_2; 3694 *intr_info = control->exit_int_info; 3695 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3696 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3697 *error_code = control->exit_int_info_err; 3698 else 3699 *error_code = 0; 3700 } 3701 3702 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, 3703 u32 *error_code) 3704 { 3705 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3706 3707 *intr_info = control->event_inj; 3708 3709 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3710 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3711 *error_code = control->event_inj_err; 3712 else 3713 *error_code = 0; 3714 3715 } 3716 3717 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3718 { 3719 struct vcpu_svm *svm = to_svm(vcpu); 3720 struct kvm_run *kvm_run = vcpu->run; 3721 u32 exit_code = svm->vmcb->control.exit_code; 3722 3723 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3724 if (!sev_es_guest(vcpu->kvm)) { 3725 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3726 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3727 if (npt_enabled) 3728 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3729 } 3730 3731 if (is_guest_mode(vcpu)) { 3732 int vmexit; 3733 3734 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3735 3736 vmexit = nested_svm_exit_special(svm); 3737 3738 if (vmexit == NESTED_EXIT_CONTINUE) 3739 vmexit = nested_svm_exit_handled(svm); 3740 3741 if (vmexit == NESTED_EXIT_DONE) 3742 return 1; 3743 } 3744 3745 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3746 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3747 kvm_run->fail_entry.hardware_entry_failure_reason 3748 = svm->vmcb->control.exit_code; 3749 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3750 dump_vmcb(vcpu); 3751 return 0; 3752 } 3753 3754 if (exit_fastpath != EXIT_FASTPATH_NONE) 3755 return 1; 3756 3757 return svm_invoke_exit_handler(vcpu, exit_code); 3758 } 3759 3760 static int pre_svm_run(struct kvm_vcpu *vcpu) 3761 { 3762 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3763 struct vcpu_svm *svm = to_svm(vcpu); 3764 3765 /* 3766 * If the previous vmrun of the vmcb occurred on a different physical 3767 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3768 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3769 */ 3770 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3771 svm->current_vmcb->asid_generation = 0; 3772 vmcb_mark_all_dirty(svm->vmcb); 3773 svm->current_vmcb->cpu = vcpu->cpu; 3774 } 3775 3776 if (sev_guest(vcpu->kvm)) 3777 return pre_sev_run(svm, vcpu->cpu); 3778 3779 /* FIXME: handle wraparound of asid_generation */ 3780 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3781 new_asid(svm, sd); 3782 3783 return 0; 3784 } 3785 3786 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3787 { 3788 struct vcpu_svm *svm = to_svm(vcpu); 3789 3790 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3791 3792 if (svm->nmi_l1_to_l2) 3793 return; 3794 3795 /* 3796 * No need to manually track NMI masking when vNMI is enabled, hardware 3797 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3798 * case where software directly injects an NMI. 3799 */ 3800 if (!is_vnmi_enabled(svm)) { 3801 svm->nmi_masked = true; 3802 svm_set_iret_intercept(svm); 3803 } 3804 ++vcpu->stat.nmi_injections; 3805 } 3806 3807 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3808 { 3809 struct vcpu_svm *svm = to_svm(vcpu); 3810 3811 if (!is_vnmi_enabled(svm)) 3812 return false; 3813 3814 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3815 } 3816 3817 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3818 { 3819 struct vcpu_svm *svm = to_svm(vcpu); 3820 3821 if (!is_vnmi_enabled(svm)) 3822 return false; 3823 3824 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3825 return false; 3826 3827 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3828 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3829 3830 /* 3831 * Because the pending NMI is serviced by hardware, KVM can't know when 3832 * the NMI is "injected", but for all intents and purposes, passing the 3833 * NMI off to hardware counts as injection. 3834 */ 3835 ++vcpu->stat.nmi_injections; 3836 3837 return true; 3838 } 3839 3840 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3841 { 3842 struct vcpu_svm *svm = to_svm(vcpu); 3843 u32 type; 3844 3845 if (vcpu->arch.interrupt.soft) { 3846 if (svm_update_soft_interrupt_rip(vcpu)) 3847 return; 3848 3849 type = SVM_EVTINJ_TYPE_SOFT; 3850 } else { 3851 type = SVM_EVTINJ_TYPE_INTR; 3852 } 3853 3854 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3855 vcpu->arch.interrupt.soft, reinjected); 3856 ++vcpu->stat.irq_injections; 3857 3858 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3859 SVM_EVTINJ_VALID | type; 3860 } 3861 3862 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3863 int trig_mode, int vector) 3864 { 3865 /* 3866 * apic->apicv_active must be read after vcpu->mode. 3867 * Pairs with smp_store_release in vcpu_enter_guest. 3868 */ 3869 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3870 3871 /* Note, this is called iff the local APIC is in-kernel. */ 3872 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3873 /* Process the interrupt via kvm_check_and_inject_events(). */ 3874 kvm_make_request(KVM_REQ_EVENT, vcpu); 3875 kvm_vcpu_kick(vcpu); 3876 return; 3877 } 3878 3879 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3880 if (in_guest_mode) { 3881 /* 3882 * Signal the doorbell to tell hardware to inject the IRQ. If 3883 * the vCPU exits the guest before the doorbell chimes, hardware 3884 * will automatically process AVIC interrupts at the next VMRUN. 3885 */ 3886 avic_ring_doorbell(vcpu); 3887 } else { 3888 /* 3889 * Wake the vCPU if it was blocking. KVM will then detect the 3890 * pending IRQ when checking if the vCPU has a wake event. 3891 */ 3892 kvm_vcpu_wake_up(vcpu); 3893 } 3894 } 3895 3896 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3897 int trig_mode, int vector) 3898 { 3899 kvm_lapic_set_irr(vector, apic); 3900 3901 /* 3902 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3903 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3904 * the read of guest_mode. This guarantees that either VMRUN will see 3905 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3906 * will signal the doorbell if the CPU has already entered the guest. 3907 */ 3908 smp_mb__after_atomic(); 3909 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3910 } 3911 3912 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3913 { 3914 struct vcpu_svm *svm = to_svm(vcpu); 3915 3916 /* 3917 * SEV-ES guests must always keep the CR intercepts cleared. CR 3918 * tracking is done using the CR write traps. 3919 */ 3920 if (sev_es_guest(vcpu->kvm)) 3921 return; 3922 3923 if (nested_svm_virtualize_tpr(vcpu)) 3924 return; 3925 3926 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3927 3928 if (irr == -1) 3929 return; 3930 3931 if (tpr >= irr) 3932 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3933 } 3934 3935 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3936 { 3937 struct vcpu_svm *svm = to_svm(vcpu); 3938 3939 if (is_vnmi_enabled(svm)) 3940 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3941 else 3942 return svm->nmi_masked; 3943 } 3944 3945 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3946 { 3947 struct vcpu_svm *svm = to_svm(vcpu); 3948 3949 if (is_vnmi_enabled(svm)) { 3950 if (masked) 3951 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3952 else 3953 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3954 3955 } else { 3956 svm->nmi_masked = masked; 3957 if (masked) 3958 svm_set_iret_intercept(svm); 3959 else 3960 svm_clr_iret_intercept(svm); 3961 } 3962 } 3963 3964 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3965 { 3966 struct vcpu_svm *svm = to_svm(vcpu); 3967 struct vmcb *vmcb = svm->vmcb; 3968 3969 if (!gif_set(svm)) 3970 return true; 3971 3972 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3973 return false; 3974 3975 if (svm_get_nmi_mask(vcpu)) 3976 return true; 3977 3978 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3979 } 3980 3981 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3982 { 3983 struct vcpu_svm *svm = to_svm(vcpu); 3984 if (svm->nested.nested_run_pending) 3985 return -EBUSY; 3986 3987 if (svm_nmi_blocked(vcpu)) 3988 return 0; 3989 3990 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3991 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3992 return -EBUSY; 3993 return 1; 3994 } 3995 3996 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3997 { 3998 struct vcpu_svm *svm = to_svm(vcpu); 3999 struct vmcb *vmcb = svm->vmcb; 4000 4001 if (!gif_set(svm)) 4002 return true; 4003 4004 if (is_guest_mode(vcpu)) { 4005 /* As long as interrupts are being delivered... */ 4006 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 4007 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 4008 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 4009 return true; 4010 4011 /* ... vmexits aren't blocked by the interrupt shadow */ 4012 if (nested_exit_on_intr(svm)) 4013 return false; 4014 } else { 4015 if (!svm_get_if_flag(vcpu)) 4016 return true; 4017 } 4018 4019 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 4020 } 4021 4022 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4023 { 4024 struct vcpu_svm *svm = to_svm(vcpu); 4025 4026 if (svm->nested.nested_run_pending) 4027 return -EBUSY; 4028 4029 if (svm_interrupt_blocked(vcpu)) 4030 return 0; 4031 4032 /* 4033 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4034 * e.g. if the IRQ arrived asynchronously after checking nested events. 4035 */ 4036 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 4037 return -EBUSY; 4038 4039 return 1; 4040 } 4041 4042 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 4043 { 4044 struct vcpu_svm *svm = to_svm(vcpu); 4045 4046 /* 4047 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 4048 * 1, because that's a separate STGI/VMRUN intercept. The next time we 4049 * get that intercept, this function will be called again though and 4050 * we'll get the vintr intercept. However, if the vGIF feature is 4051 * enabled, the STGI interception will not occur. Enable the irq 4052 * window under the assumption that the hardware will set the GIF. 4053 */ 4054 if (vgif || gif_set(svm)) { 4055 /* 4056 * IRQ window is not needed when AVIC is enabled, 4057 * unless we have pending ExtINT since it cannot be injected 4058 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 4059 * and fallback to injecting IRQ via V_IRQ. 4060 * 4061 * If running nested, AVIC is already locally inhibited 4062 * on this vCPU, therefore there is no need to request 4063 * the VM wide AVIC inhibition. 4064 */ 4065 if (!is_guest_mode(vcpu)) 4066 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 4067 4068 svm_set_vintr(svm); 4069 } 4070 } 4071 4072 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 4073 { 4074 struct vcpu_svm *svm = to_svm(vcpu); 4075 4076 /* 4077 * If NMIs are outright masked, i.e. the vCPU is already handling an 4078 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 4079 * more to do at this time as KVM has already enabled IRET intercepts. 4080 * If KVM has already intercepted IRET, then single-step over the IRET, 4081 * as NMIs aren't architecturally unmasked until the IRET completes. 4082 * 4083 * If vNMI is enabled, KVM should never request an NMI window if NMIs 4084 * are masked, as KVM allows at most one to-be-injected NMI and one 4085 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 4086 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 4087 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 4088 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 4089 * inject the NMI. In those situations, KVM needs to single-step over 4090 * the STI shadow or intercept STGI. 4091 */ 4092 if (svm_get_nmi_mask(vcpu)) { 4093 WARN_ON_ONCE(is_vnmi_enabled(svm)); 4094 4095 if (!svm->awaiting_iret_completion) 4096 return; /* IRET will cause a vm exit */ 4097 } 4098 4099 /* 4100 * SEV-ES guests are responsible for signaling when a vCPU is ready to 4101 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 4102 * KVM can't intercept and single-step IRET to detect when NMIs are 4103 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 4104 * 4105 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 4106 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 4107 * supported NAEs in the GHCB protocol. 4108 */ 4109 if (sev_es_guest(vcpu->kvm)) 4110 return; 4111 4112 if (!gif_set(svm)) { 4113 if (vgif) 4114 svm_set_intercept(svm, INTERCEPT_STGI); 4115 return; /* STGI will cause a vm exit */ 4116 } 4117 4118 /* 4119 * Something prevents NMI from been injected. Single step over possible 4120 * problem (IRET or exception injection or interrupt shadow) 4121 */ 4122 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 4123 svm->nmi_singlestep = true; 4124 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 4125 } 4126 4127 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 4128 { 4129 struct vcpu_svm *svm = to_svm(vcpu); 4130 4131 /* 4132 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 4133 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 4134 * entries, and thus is a superset of Hyper-V's fine grained flushing. 4135 */ 4136 kvm_hv_vcpu_purge_flush_tlb(vcpu); 4137 4138 /* 4139 * Flush only the current ASID even if the TLB flush was invoked via 4140 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 4141 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 4142 * unconditionally does a TLB flush on both nested VM-Enter and nested 4143 * VM-Exit (via kvm_mmu_reset_context()). 4144 */ 4145 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 4146 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 4147 else 4148 svm->current_vmcb->asid_generation--; 4149 } 4150 4151 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 4152 { 4153 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 4154 4155 /* 4156 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 4157 * flush the NPT mappings via hypercall as flushing the ASID only 4158 * affects virtual to physical mappings, it does not invalidate guest 4159 * physical to host physical mappings. 4160 */ 4161 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 4162 hyperv_flush_guest_mapping(root_tdp); 4163 4164 svm_flush_tlb_asid(vcpu); 4165 } 4166 4167 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 4168 { 4169 /* 4170 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 4171 * flushes should be routed to hv_flush_remote_tlbs() without requesting 4172 * a "regular" remote flush. Reaching this point means either there's 4173 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 4174 * which might be fatal to the guest. Yell, but try to recover. 4175 */ 4176 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 4177 hv_flush_remote_tlbs(vcpu->kvm); 4178 4179 svm_flush_tlb_asid(vcpu); 4180 } 4181 4182 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 4183 { 4184 struct vcpu_svm *svm = to_svm(vcpu); 4185 4186 invlpga(gva, svm->vmcb->control.asid); 4187 } 4188 4189 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 4190 { 4191 struct vcpu_svm *svm = to_svm(vcpu); 4192 4193 if (nested_svm_virtualize_tpr(vcpu)) 4194 return; 4195 4196 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 4197 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 4198 kvm_set_cr8(vcpu, cr8); 4199 } 4200 } 4201 4202 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4203 { 4204 struct vcpu_svm *svm = to_svm(vcpu); 4205 u64 cr8; 4206 4207 if (nested_svm_virtualize_tpr(vcpu) || 4208 kvm_vcpu_apicv_active(vcpu)) 4209 return; 4210 4211 cr8 = kvm_get_cr8(vcpu); 4212 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4213 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4214 } 4215 4216 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4217 int type) 4218 { 4219 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4220 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4221 struct vcpu_svm *svm = to_svm(vcpu); 4222 4223 /* 4224 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4225 * associated with the original soft exception/interrupt. next_rip is 4226 * cleared on all exits that can occur while vectoring an event, so KVM 4227 * needs to manually set next_rip for re-injection. Unlike the !nrips 4228 * case below, this needs to be done if and only if KVM is re-injecting 4229 * the same event, i.e. if the event is a soft exception/interrupt, 4230 * otherwise next_rip is unused on VMRUN. 4231 */ 4232 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4233 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4234 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4235 /* 4236 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4237 * injecting the soft exception/interrupt. That advancement needs to 4238 * be unwound if vectoring didn't complete. Note, the new event may 4239 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4240 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4241 * be the reported vectored event, but RIP still needs to be unwound. 4242 */ 4243 else if (!nrips && (is_soft || is_exception) && 4244 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4245 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4246 } 4247 4248 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4249 { 4250 struct vcpu_svm *svm = to_svm(vcpu); 4251 u8 vector; 4252 int type; 4253 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4254 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4255 bool soft_int_injected = svm->soft_int_injected; 4256 4257 svm->nmi_l1_to_l2 = false; 4258 svm->soft_int_injected = false; 4259 4260 /* 4261 * If we've made progress since setting awaiting_iret_completion, we've 4262 * executed an IRET and can allow NMI injection. 4263 */ 4264 if (svm->awaiting_iret_completion && 4265 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4266 svm->awaiting_iret_completion = false; 4267 svm->nmi_masked = false; 4268 kvm_make_request(KVM_REQ_EVENT, vcpu); 4269 } 4270 4271 vcpu->arch.nmi_injected = false; 4272 kvm_clear_exception_queue(vcpu); 4273 kvm_clear_interrupt_queue(vcpu); 4274 4275 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4276 return; 4277 4278 kvm_make_request(KVM_REQ_EVENT, vcpu); 4279 4280 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4281 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4282 4283 if (soft_int_injected) 4284 svm_complete_soft_interrupt(vcpu, vector, type); 4285 4286 switch (type) { 4287 case SVM_EXITINTINFO_TYPE_NMI: 4288 vcpu->arch.nmi_injected = true; 4289 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4290 break; 4291 case SVM_EXITINTINFO_TYPE_EXEPT: { 4292 u32 error_code = 0; 4293 4294 /* 4295 * Never re-inject a #VC exception. 4296 */ 4297 if (vector == X86_TRAP_VC) 4298 break; 4299 4300 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) 4301 error_code = svm->vmcb->control.exit_int_info_err; 4302 4303 kvm_requeue_exception(vcpu, vector, 4304 exitintinfo & SVM_EXITINTINFO_VALID_ERR, 4305 error_code); 4306 break; 4307 } 4308 case SVM_EXITINTINFO_TYPE_INTR: 4309 kvm_queue_interrupt(vcpu, vector, false); 4310 break; 4311 case SVM_EXITINTINFO_TYPE_SOFT: 4312 kvm_queue_interrupt(vcpu, vector, true); 4313 break; 4314 default: 4315 break; 4316 } 4317 4318 } 4319 4320 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4321 { 4322 struct vcpu_svm *svm = to_svm(vcpu); 4323 struct vmcb_control_area *control = &svm->vmcb->control; 4324 4325 control->exit_int_info = control->event_inj; 4326 control->exit_int_info_err = control->event_inj_err; 4327 control->event_inj = 0; 4328 svm_complete_interrupts(vcpu); 4329 } 4330 4331 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4332 { 4333 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4334 return -EINVAL; 4335 4336 return 1; 4337 } 4338 4339 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4340 { 4341 struct vcpu_svm *svm = to_svm(vcpu); 4342 4343 if (is_guest_mode(vcpu)) 4344 return EXIT_FASTPATH_NONE; 4345 4346 switch (svm->vmcb->control.exit_code) { 4347 case SVM_EXIT_MSR: 4348 if (!svm->vmcb->control.exit_info_1) 4349 break; 4350 return handle_fastpath_set_msr_irqoff(vcpu); 4351 case SVM_EXIT_HLT: 4352 return handle_fastpath_hlt(vcpu); 4353 default: 4354 break; 4355 } 4356 4357 return EXIT_FASTPATH_NONE; 4358 } 4359 4360 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4361 { 4362 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4363 struct vcpu_svm *svm = to_svm(vcpu); 4364 4365 guest_state_enter_irqoff(); 4366 4367 /* 4368 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of 4369 * VMRUN controls whether or not physical IRQs are masked (KVM always 4370 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the 4371 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow 4372 * into guest state if delivery of an event during VMRUN triggers a 4373 * #VMEXIT, and the guest_state transitions already tell lockdep that 4374 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of 4375 * this path, so IRQs aren't actually unmasked while running host code. 4376 */ 4377 raw_local_irq_enable(); 4378 4379 amd_clear_divider(); 4380 4381 if (sev_es_guest(vcpu->kvm)) 4382 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4383 sev_es_host_save_area(sd)); 4384 else 4385 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4386 4387 raw_local_irq_disable(); 4388 4389 guest_state_exit_irqoff(); 4390 } 4391 4392 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, 4393 bool force_immediate_exit) 4394 { 4395 struct vcpu_svm *svm = to_svm(vcpu); 4396 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4397 4398 trace_kvm_entry(vcpu, force_immediate_exit); 4399 4400 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4401 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4402 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4403 4404 /* 4405 * Disable singlestep if we're injecting an interrupt/exception. 4406 * We don't want our modified rflags to be pushed on the stack where 4407 * we might not be able to easily reset them if we disabled NMI 4408 * singlestep later. 4409 */ 4410 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4411 /* 4412 * Event injection happens before external interrupts cause a 4413 * vmexit and interrupts are disabled here, so smp_send_reschedule 4414 * is enough to force an immediate vmexit. 4415 */ 4416 disable_nmi_singlestep(svm); 4417 force_immediate_exit = true; 4418 } 4419 4420 if (force_immediate_exit) 4421 smp_send_reschedule(vcpu->cpu); 4422 4423 if (pre_svm_run(vcpu)) { 4424 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4425 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR; 4426 vcpu->run->fail_entry.cpu = vcpu->cpu; 4427 return EXIT_FASTPATH_EXIT_USERSPACE; 4428 } 4429 4430 sync_lapic_to_cr8(vcpu); 4431 4432 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4433 svm->vmcb->control.asid = svm->asid; 4434 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4435 } 4436 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4437 4438 svm_hv_update_vp_id(svm->vmcb, vcpu); 4439 4440 /* 4441 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4442 * of a #DB. 4443 */ 4444 if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))) 4445 svm_set_dr6(vcpu, DR6_ACTIVE_LOW); 4446 4447 clgi(); 4448 kvm_load_guest_xsave_state(vcpu); 4449 4450 /* 4451 * Hardware only context switches DEBUGCTL if LBR virtualization is 4452 * enabled. Manually load DEBUGCTL if necessary (and restore it after 4453 * VM-Exit), as running with the host's DEBUGCTL can negatively affect 4454 * guest state and can even be fatal, e.g. due to Bus Lock Detect. 4455 */ 4456 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4457 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4458 update_debugctlmsr(svm->vmcb->save.dbgctl); 4459 4460 kvm_wait_lapic_expire(vcpu); 4461 4462 /* 4463 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4464 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4465 * is no need to worry about the conditional branch over the wrmsr 4466 * being speculatively taken. 4467 */ 4468 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4469 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4470 4471 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4472 4473 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4474 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4475 4476 if (!sev_es_guest(vcpu->kvm)) { 4477 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4478 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4479 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4480 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4481 } 4482 vcpu->arch.regs_dirty = 0; 4483 4484 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4485 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4486 4487 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4488 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4489 update_debugctlmsr(vcpu->arch.host_debugctl); 4490 4491 kvm_load_host_xsave_state(vcpu); 4492 stgi(); 4493 4494 /* Any pending NMI will happen here */ 4495 4496 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4497 kvm_after_interrupt(vcpu); 4498 4499 sync_cr8_to_lapic(vcpu); 4500 4501 svm->next_rip = 0; 4502 if (is_guest_mode(vcpu)) { 4503 nested_sync_control_from_vmcb02(svm); 4504 4505 /* Track VMRUNs that have made past consistency checking */ 4506 if (svm->nested.nested_run_pending && 4507 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4508 ++vcpu->stat.nested_run; 4509 4510 svm->nested.nested_run_pending = 0; 4511 } 4512 4513 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4514 vmcb_mark_all_clean(svm->vmcb); 4515 4516 /* if exit due to PF check for async PF */ 4517 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4518 vcpu->arch.apf.host_apf_flags = 4519 kvm_read_and_reset_apf_flags(); 4520 4521 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4522 4523 /* 4524 * We need to handle MC intercepts here before the vcpu has a chance to 4525 * change the physical cpu 4526 */ 4527 if (unlikely(svm->vmcb->control.exit_code == 4528 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4529 svm_handle_mce(vcpu); 4530 4531 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4532 4533 svm_complete_interrupts(vcpu); 4534 4535 return svm_exit_handlers_fastpath(vcpu); 4536 } 4537 4538 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4539 int root_level) 4540 { 4541 struct vcpu_svm *svm = to_svm(vcpu); 4542 unsigned long cr3; 4543 4544 if (npt_enabled) { 4545 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4546 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4547 4548 hv_track_root_tdp(vcpu, root_hpa); 4549 4550 cr3 = vcpu->arch.cr3; 4551 } else if (root_level >= PT64_ROOT_4LEVEL) { 4552 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4553 } else { 4554 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4555 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4556 cr3 = root_hpa; 4557 } 4558 4559 svm->vmcb->save.cr3 = cr3; 4560 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4561 } 4562 4563 static void 4564 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4565 { 4566 /* 4567 * Patch in the VMMCALL instruction: 4568 */ 4569 hypercall[0] = 0x0f; 4570 hypercall[1] = 0x01; 4571 hypercall[2] = 0xd9; 4572 } 4573 4574 /* 4575 * The kvm parameter can be NULL (module initialization, or invocation before 4576 * VM creation). Be sure to check the kvm parameter before using it. 4577 */ 4578 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4579 { 4580 switch (index) { 4581 case MSR_IA32_MCG_EXT_CTL: 4582 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4583 return false; 4584 case MSR_IA32_SMBASE: 4585 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4586 return false; 4587 /* SEV-ES guests do not support SMM, so report false */ 4588 if (kvm && sev_es_guest(kvm)) 4589 return false; 4590 break; 4591 default: 4592 break; 4593 } 4594 4595 return true; 4596 } 4597 4598 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4599 { 4600 struct vcpu_svm *svm = to_svm(vcpu); 4601 4602 /* 4603 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4604 * can only disable all variants of by disallowing CR4.OSXSAVE from 4605 * being set. As a result, if the host has XSAVE and XSAVES, and the 4606 * guest has XSAVE enabled, the guest can execute XSAVES without 4607 * faulting. Treat XSAVES as enabled in this case regardless of 4608 * whether it's advertised to the guest so that KVM context switches 4609 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4610 * the guest read/write access to the host's XSS. 4611 */ 4612 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES, 4613 boot_cpu_has(X86_FEATURE_XSAVES) && 4614 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)); 4615 4616 /* 4617 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4618 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4619 * SVM on Intel is bonkers and extremely unlikely to work). 4620 */ 4621 if (guest_cpuid_is_intel_compatible(vcpu)) 4622 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4623 4624 svm_recalc_instruction_intercepts(vcpu, svm); 4625 4626 if (boot_cpu_has(X86_FEATURE_IBPB)) 4627 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4628 !!guest_has_pred_cmd_msr(vcpu)); 4629 4630 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4631 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4632 !!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4633 4634 if (sev_guest(vcpu->kvm)) 4635 sev_vcpu_after_set_cpuid(svm); 4636 4637 init_vmcb_after_set_cpuid(vcpu); 4638 } 4639 4640 static bool svm_has_wbinvd_exit(void) 4641 { 4642 return true; 4643 } 4644 4645 #define PRE_EX(exit) { .exit_code = (exit), \ 4646 .stage = X86_ICPT_PRE_EXCEPT, } 4647 #define POST_EX(exit) { .exit_code = (exit), \ 4648 .stage = X86_ICPT_POST_EXCEPT, } 4649 #define POST_MEM(exit) { .exit_code = (exit), \ 4650 .stage = X86_ICPT_POST_MEMACCESS, } 4651 4652 static const struct __x86_intercept { 4653 u32 exit_code; 4654 enum x86_intercept_stage stage; 4655 } x86_intercept_map[] = { 4656 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4657 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4658 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4659 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4660 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4661 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4662 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4663 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4664 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4665 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4666 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4667 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4668 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4669 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4670 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4671 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4672 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4673 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4674 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4675 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4676 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4677 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4678 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4679 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4680 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4681 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4682 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4683 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4684 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4685 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4686 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4687 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4688 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4689 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4690 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4691 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4692 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4693 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4694 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4695 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4696 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4697 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4698 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4699 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4700 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4701 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4702 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4703 }; 4704 4705 #undef PRE_EX 4706 #undef POST_EX 4707 #undef POST_MEM 4708 4709 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4710 struct x86_instruction_info *info, 4711 enum x86_intercept_stage stage, 4712 struct x86_exception *exception) 4713 { 4714 struct vcpu_svm *svm = to_svm(vcpu); 4715 int vmexit, ret = X86EMUL_CONTINUE; 4716 struct __x86_intercept icpt_info; 4717 struct vmcb *vmcb = svm->vmcb; 4718 4719 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4720 goto out; 4721 4722 icpt_info = x86_intercept_map[info->intercept]; 4723 4724 if (stage != icpt_info.stage) 4725 goto out; 4726 4727 switch (icpt_info.exit_code) { 4728 case SVM_EXIT_READ_CR0: 4729 if (info->intercept == x86_intercept_cr_read) 4730 icpt_info.exit_code += info->modrm_reg; 4731 break; 4732 case SVM_EXIT_WRITE_CR0: { 4733 unsigned long cr0, val; 4734 4735 if (info->intercept == x86_intercept_cr_write) 4736 icpt_info.exit_code += info->modrm_reg; 4737 4738 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4739 info->intercept == x86_intercept_clts) 4740 break; 4741 4742 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4743 INTERCEPT_SELECTIVE_CR0))) 4744 break; 4745 4746 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4747 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4748 4749 if (info->intercept == x86_intercept_lmsw) { 4750 cr0 &= 0xfUL; 4751 val &= 0xfUL; 4752 /* lmsw can't clear PE - catch this here */ 4753 if (cr0 & X86_CR0_PE) 4754 val |= X86_CR0_PE; 4755 } 4756 4757 if (cr0 ^ val) 4758 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4759 4760 break; 4761 } 4762 case SVM_EXIT_READ_DR0: 4763 case SVM_EXIT_WRITE_DR0: 4764 icpt_info.exit_code += info->modrm_reg; 4765 break; 4766 case SVM_EXIT_MSR: 4767 if (info->intercept == x86_intercept_wrmsr) 4768 vmcb->control.exit_info_1 = 1; 4769 else 4770 vmcb->control.exit_info_1 = 0; 4771 break; 4772 case SVM_EXIT_PAUSE: 4773 /* 4774 * We get this for NOP only, but pause 4775 * is rep not, check this here 4776 */ 4777 if (info->rep_prefix != REPE_PREFIX) 4778 goto out; 4779 break; 4780 case SVM_EXIT_IOIO: { 4781 u64 exit_info; 4782 u32 bytes; 4783 4784 if (info->intercept == x86_intercept_in || 4785 info->intercept == x86_intercept_ins) { 4786 exit_info = ((info->src_val & 0xffff) << 16) | 4787 SVM_IOIO_TYPE_MASK; 4788 bytes = info->dst_bytes; 4789 } else { 4790 exit_info = (info->dst_val & 0xffff) << 16; 4791 bytes = info->src_bytes; 4792 } 4793 4794 if (info->intercept == x86_intercept_outs || 4795 info->intercept == x86_intercept_ins) 4796 exit_info |= SVM_IOIO_STR_MASK; 4797 4798 if (info->rep_prefix) 4799 exit_info |= SVM_IOIO_REP_MASK; 4800 4801 bytes = min(bytes, 4u); 4802 4803 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4804 4805 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4806 4807 vmcb->control.exit_info_1 = exit_info; 4808 vmcb->control.exit_info_2 = info->next_rip; 4809 4810 break; 4811 } 4812 default: 4813 break; 4814 } 4815 4816 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4817 if (static_cpu_has(X86_FEATURE_NRIPS)) 4818 vmcb->control.next_rip = info->next_rip; 4819 vmcb->control.exit_code = icpt_info.exit_code; 4820 vmexit = nested_svm_exit_handled(svm); 4821 4822 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4823 : X86EMUL_CONTINUE; 4824 4825 out: 4826 return ret; 4827 } 4828 4829 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4830 { 4831 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4832 vcpu->arch.at_instruction_boundary = true; 4833 } 4834 4835 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4836 { 4837 /* [63:9] are reserved. */ 4838 vcpu->arch.mcg_cap &= 0x1ff; 4839 } 4840 4841 #ifdef CONFIG_KVM_SMM 4842 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4843 { 4844 struct vcpu_svm *svm = to_svm(vcpu); 4845 4846 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4847 if (!gif_set(svm)) 4848 return true; 4849 4850 return is_smm(vcpu); 4851 } 4852 4853 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4854 { 4855 struct vcpu_svm *svm = to_svm(vcpu); 4856 if (svm->nested.nested_run_pending) 4857 return -EBUSY; 4858 4859 if (svm_smi_blocked(vcpu)) 4860 return 0; 4861 4862 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4863 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4864 return -EBUSY; 4865 4866 return 1; 4867 } 4868 4869 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4870 { 4871 struct vcpu_svm *svm = to_svm(vcpu); 4872 struct kvm_host_map map_save; 4873 int ret; 4874 4875 if (!is_guest_mode(vcpu)) 4876 return 0; 4877 4878 /* 4879 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4880 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4881 */ 4882 4883 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4884 return 1; 4885 4886 smram->smram64.svm_guest_flag = 1; 4887 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4888 4889 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4890 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4891 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4892 4893 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4894 if (ret) 4895 return ret; 4896 4897 /* 4898 * KVM uses VMCB01 to store L1 host state while L2 runs but 4899 * VMCB01 is going to be used during SMM and thus the state will 4900 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4901 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4902 * format of the area is identical to guest save area offsetted 4903 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4904 * within 'struct vmcb'). Note: HSAVE area may also be used by 4905 * L1 hypervisor to save additional host context (e.g. KVM does 4906 * that, see svm_prepare_switch_to_guest()) which must be 4907 * preserved. 4908 */ 4909 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4910 return 1; 4911 4912 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4913 4914 svm_copy_vmrun_state(map_save.hva + 0x400, 4915 &svm->vmcb01.ptr->save); 4916 4917 kvm_vcpu_unmap(vcpu, &map_save); 4918 return 0; 4919 } 4920 4921 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4922 { 4923 struct vcpu_svm *svm = to_svm(vcpu); 4924 struct kvm_host_map map, map_save; 4925 struct vmcb *vmcb12; 4926 int ret; 4927 4928 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4929 4930 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4931 return 0; 4932 4933 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4934 if (!smram64->svm_guest_flag) 4935 return 0; 4936 4937 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 4938 return 1; 4939 4940 if (!(smram64->efer & EFER_SVME)) 4941 return 1; 4942 4943 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4944 return 1; 4945 4946 ret = 1; 4947 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4948 goto unmap_map; 4949 4950 if (svm_allocate_nested(svm)) 4951 goto unmap_save; 4952 4953 /* 4954 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4955 * used during SMM (see svm_enter_smm()) 4956 */ 4957 4958 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4959 4960 /* 4961 * Enter the nested guest now 4962 */ 4963 4964 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4965 4966 vmcb12 = map.hva; 4967 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4968 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4969 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4970 4971 if (ret) 4972 goto unmap_save; 4973 4974 svm->nested.nested_run_pending = 1; 4975 4976 unmap_save: 4977 kvm_vcpu_unmap(vcpu, &map_save); 4978 unmap_map: 4979 kvm_vcpu_unmap(vcpu, &map); 4980 return ret; 4981 } 4982 4983 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4984 { 4985 struct vcpu_svm *svm = to_svm(vcpu); 4986 4987 if (!gif_set(svm)) { 4988 if (vgif) 4989 svm_set_intercept(svm, INTERCEPT_STGI); 4990 /* STGI will cause a vm exit */ 4991 } else { 4992 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4993 } 4994 } 4995 #endif 4996 4997 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4998 void *insn, int insn_len) 4999 { 5000 struct vcpu_svm *svm = to_svm(vcpu); 5001 bool smep, smap, is_user; 5002 u64 error_code; 5003 5004 /* Check that emulation is possible during event vectoring */ 5005 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) && 5006 !kvm_can_emulate_event_vectoring(emul_type)) 5007 return X86EMUL_UNHANDLEABLE_VECTORING; 5008 5009 /* Emulation is always possible when KVM has access to all guest state. */ 5010 if (!sev_guest(vcpu->kvm)) 5011 return X86EMUL_CONTINUE; 5012 5013 /* #UD and #GP should never be intercepted for SEV guests. */ 5014 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 5015 EMULTYPE_TRAP_UD_FORCED | 5016 EMULTYPE_VMWARE_GP)); 5017 5018 /* 5019 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 5020 * to guest register state. 5021 */ 5022 if (sev_es_guest(vcpu->kvm)) 5023 return X86EMUL_RETRY_INSTR; 5024 5025 /* 5026 * Emulation is possible if the instruction is already decoded, e.g. 5027 * when completing I/O after returning from userspace. 5028 */ 5029 if (emul_type & EMULTYPE_NO_DECODE) 5030 return X86EMUL_CONTINUE; 5031 5032 /* 5033 * Emulation is possible for SEV guests if and only if a prefilled 5034 * buffer containing the bytes of the intercepted instruction is 5035 * available. SEV guest memory is encrypted with a guest specific key 5036 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 5037 * decode garbage. 5038 * 5039 * If KVM is NOT trying to simply skip an instruction, inject #UD if 5040 * KVM reached this point without an instruction buffer. In practice, 5041 * this path should never be hit by a well-behaved guest, e.g. KVM 5042 * doesn't intercept #UD or #GP for SEV guests, but this path is still 5043 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 5044 * access, and needs to be handled by KVM to avoid putting the guest 5045 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 5046 * its the least awful option given lack of insight into the guest. 5047 * 5048 * If KVM is trying to skip an instruction, simply resume the guest. 5049 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 5050 * will attempt to re-inject the INT3/INTO and skip the instruction. 5051 * In that scenario, retrying the INT3/INTO and hoping the guest will 5052 * make forward progress is the only option that has a chance of 5053 * success (and in practice it will work the vast majority of the time). 5054 */ 5055 if (unlikely(!insn)) { 5056 if (emul_type & EMULTYPE_SKIP) 5057 return X86EMUL_UNHANDLEABLE; 5058 5059 kvm_queue_exception(vcpu, UD_VECTOR); 5060 return X86EMUL_PROPAGATE_FAULT; 5061 } 5062 5063 /* 5064 * Emulate for SEV guests if the insn buffer is not empty. The buffer 5065 * will be empty if the DecodeAssist microcode cannot fetch bytes for 5066 * the faulting instruction because the code fetch itself faulted, e.g. 5067 * the guest attempted to fetch from emulated MMIO or a guest page 5068 * table used to translate CS:RIP resides in emulated MMIO. 5069 */ 5070 if (likely(insn_len)) 5071 return X86EMUL_CONTINUE; 5072 5073 /* 5074 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 5075 * 5076 * Errata: 5077 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 5078 * possible that CPU microcode implementing DecodeAssist will fail to 5079 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 5080 * be '0'. This happens because microcode reads CS:RIP using a _data_ 5081 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 5082 * gives up and does not fill the instruction bytes buffer. 5083 * 5084 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 5085 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 5086 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 5087 * GuestIntrBytes field of the VMCB. 5088 * 5089 * This does _not_ mean that the erratum has been encountered, as the 5090 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 5091 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 5092 * encountered a reserved/not-present #PF. 5093 * 5094 * To hit the erratum, the following conditions must be true: 5095 * 1. CR4.SMAP=1 (obviously). 5096 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 5097 * have been hit as the guest would have encountered a SMEP 5098 * violation #PF, not a #NPF. 5099 * 3. The #NPF is not due to a code fetch, in which case failure to 5100 * retrieve the instruction bytes is legitimate (see abvoe). 5101 * 5102 * In addition, don't apply the erratum workaround if the #NPF occurred 5103 * while translating guest page tables (see below). 5104 */ 5105 error_code = svm->vmcb->control.exit_info_1; 5106 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 5107 goto resume_guest; 5108 5109 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 5110 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 5111 is_user = svm_get_cpl(vcpu) == 3; 5112 if (smap && (!smep || is_user)) { 5113 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 5114 5115 /* 5116 * If the fault occurred in userspace, arbitrarily inject #GP 5117 * to avoid killing the guest and to hopefully avoid confusing 5118 * the guest kernel too much, e.g. injecting #PF would not be 5119 * coherent with respect to the guest's page tables. Request 5120 * triple fault if the fault occurred in the kernel as there's 5121 * no fault that KVM can inject without confusing the guest. 5122 * In practice, the triple fault is moot as no sane SEV kernel 5123 * will execute from user memory while also running with SMAP=1. 5124 */ 5125 if (is_user) 5126 kvm_inject_gp(vcpu, 0); 5127 else 5128 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 5129 return X86EMUL_PROPAGATE_FAULT; 5130 } 5131 5132 resume_guest: 5133 /* 5134 * If the erratum was not hit, simply resume the guest and let it fault 5135 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 5136 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 5137 * userspace will kill the guest, and letting the emulator read garbage 5138 * will yield random behavior and potentially corrupt the guest. 5139 * 5140 * Simply resuming the guest is technically not a violation of the SEV 5141 * architecture. AMD's APM states that all code fetches and page table 5142 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 5143 * APM also states that encrypted accesses to MMIO are "ignored", but 5144 * doesn't explicitly define "ignored", i.e. doing nothing and letting 5145 * the guest spin is technically "ignoring" the access. 5146 */ 5147 return X86EMUL_RETRY_INSTR; 5148 } 5149 5150 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 5151 { 5152 struct vcpu_svm *svm = to_svm(vcpu); 5153 5154 return !gif_set(svm); 5155 } 5156 5157 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 5158 { 5159 if (!sev_es_guest(vcpu->kvm)) 5160 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 5161 5162 sev_vcpu_deliver_sipi_vector(vcpu, vector); 5163 } 5164 5165 static void svm_vm_destroy(struct kvm *kvm) 5166 { 5167 avic_vm_destroy(kvm); 5168 sev_vm_destroy(kvm); 5169 5170 svm_srso_vm_destroy(); 5171 } 5172 5173 static int svm_vm_init(struct kvm *kvm) 5174 { 5175 int type = kvm->arch.vm_type; 5176 5177 if (type != KVM_X86_DEFAULT_VM && 5178 type != KVM_X86_SW_PROTECTED_VM) { 5179 kvm->arch.has_protected_state = 5180 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 5181 to_kvm_sev_info(kvm)->need_init = true; 5182 5183 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 5184 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 5185 } 5186 5187 if (!pause_filter_count || !pause_filter_thresh) 5188 kvm->arch.pause_in_guest = true; 5189 5190 if (enable_apicv) { 5191 int ret = avic_vm_init(kvm); 5192 if (ret) 5193 return ret; 5194 } 5195 5196 svm_srso_vm_init(); 5197 return 0; 5198 } 5199 5200 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 5201 { 5202 struct page *page = snp_safe_alloc_page(); 5203 5204 if (!page) 5205 return NULL; 5206 5207 return page_address(page); 5208 } 5209 5210 static struct kvm_x86_ops svm_x86_ops __initdata = { 5211 .name = KBUILD_MODNAME, 5212 5213 .check_processor_compatibility = svm_check_processor_compat, 5214 5215 .hardware_unsetup = svm_hardware_unsetup, 5216 .enable_virtualization_cpu = svm_enable_virtualization_cpu, 5217 .disable_virtualization_cpu = svm_disable_virtualization_cpu, 5218 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, 5219 .has_emulated_msr = svm_has_emulated_msr, 5220 5221 .vcpu_create = svm_vcpu_create, 5222 .vcpu_free = svm_vcpu_free, 5223 .vcpu_reset = svm_vcpu_reset, 5224 5225 .vm_size = sizeof(struct kvm_svm), 5226 .vm_init = svm_vm_init, 5227 .vm_destroy = svm_vm_destroy, 5228 5229 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5230 .vcpu_load = svm_vcpu_load, 5231 .vcpu_put = svm_vcpu_put, 5232 .vcpu_blocking = avic_vcpu_blocking, 5233 .vcpu_unblocking = avic_vcpu_unblocking, 5234 5235 .update_exception_bitmap = svm_update_exception_bitmap, 5236 .get_feature_msr = svm_get_feature_msr, 5237 .get_msr = svm_get_msr, 5238 .set_msr = svm_set_msr, 5239 .get_segment_base = svm_get_segment_base, 5240 .get_segment = svm_get_segment, 5241 .set_segment = svm_set_segment, 5242 .get_cpl = svm_get_cpl, 5243 .get_cpl_no_cache = svm_get_cpl, 5244 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5245 .is_valid_cr0 = svm_is_valid_cr0, 5246 .set_cr0 = svm_set_cr0, 5247 .post_set_cr3 = sev_post_set_cr3, 5248 .is_valid_cr4 = svm_is_valid_cr4, 5249 .set_cr4 = svm_set_cr4, 5250 .set_efer = svm_set_efer, 5251 .get_idt = svm_get_idt, 5252 .set_idt = svm_set_idt, 5253 .get_gdt = svm_get_gdt, 5254 .set_gdt = svm_set_gdt, 5255 .set_dr6 = svm_set_dr6, 5256 .set_dr7 = svm_set_dr7, 5257 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5258 .cache_reg = svm_cache_reg, 5259 .get_rflags = svm_get_rflags, 5260 .set_rflags = svm_set_rflags, 5261 .get_if_flag = svm_get_if_flag, 5262 5263 .flush_tlb_all = svm_flush_tlb_all, 5264 .flush_tlb_current = svm_flush_tlb_current, 5265 .flush_tlb_gva = svm_flush_tlb_gva, 5266 .flush_tlb_guest = svm_flush_tlb_asid, 5267 5268 .vcpu_pre_run = svm_vcpu_pre_run, 5269 .vcpu_run = svm_vcpu_run, 5270 .handle_exit = svm_handle_exit, 5271 .skip_emulated_instruction = svm_skip_emulated_instruction, 5272 .update_emulated_instruction = NULL, 5273 .set_interrupt_shadow = svm_set_interrupt_shadow, 5274 .get_interrupt_shadow = svm_get_interrupt_shadow, 5275 .patch_hypercall = svm_patch_hypercall, 5276 .inject_irq = svm_inject_irq, 5277 .inject_nmi = svm_inject_nmi, 5278 .is_vnmi_pending = svm_is_vnmi_pending, 5279 .set_vnmi_pending = svm_set_vnmi_pending, 5280 .inject_exception = svm_inject_exception, 5281 .cancel_injection = svm_cancel_injection, 5282 .interrupt_allowed = svm_interrupt_allowed, 5283 .nmi_allowed = svm_nmi_allowed, 5284 .get_nmi_mask = svm_get_nmi_mask, 5285 .set_nmi_mask = svm_set_nmi_mask, 5286 .enable_nmi_window = svm_enable_nmi_window, 5287 .enable_irq_window = svm_enable_irq_window, 5288 .update_cr8_intercept = svm_update_cr8_intercept, 5289 5290 .x2apic_icr_is_split = true, 5291 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5292 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5293 .apicv_post_state_restore = avic_apicv_post_state_restore, 5294 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5295 5296 .get_exit_info = svm_get_exit_info, 5297 .get_entry_info = svm_get_entry_info, 5298 5299 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5300 5301 .has_wbinvd_exit = svm_has_wbinvd_exit, 5302 5303 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5304 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5305 .write_tsc_offset = svm_write_tsc_offset, 5306 .write_tsc_multiplier = svm_write_tsc_multiplier, 5307 5308 .load_mmu_pgd = svm_load_mmu_pgd, 5309 5310 .check_intercept = svm_check_intercept, 5311 .handle_exit_irqoff = svm_handle_exit_irqoff, 5312 5313 .nested_ops = &svm_nested_ops, 5314 5315 .deliver_interrupt = svm_deliver_interrupt, 5316 .pi_update_irte = avic_pi_update_irte, 5317 .setup_mce = svm_setup_mce, 5318 5319 #ifdef CONFIG_KVM_SMM 5320 .smi_allowed = svm_smi_allowed, 5321 .enter_smm = svm_enter_smm, 5322 .leave_smm = svm_leave_smm, 5323 .enable_smi_window = svm_enable_smi_window, 5324 #endif 5325 5326 #ifdef CONFIG_KVM_AMD_SEV 5327 .dev_get_attr = sev_dev_get_attr, 5328 .mem_enc_ioctl = sev_mem_enc_ioctl, 5329 .mem_enc_register_region = sev_mem_enc_register_region, 5330 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5331 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5332 5333 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5334 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5335 #endif 5336 .check_emulate_instruction = svm_check_emulate_instruction, 5337 5338 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5339 5340 .msr_filter_changed = svm_msr_filter_changed, 5341 .complete_emulated_msr = svm_complete_emulated_msr, 5342 5343 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5344 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5345 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5346 5347 .gmem_prepare = sev_gmem_prepare, 5348 .gmem_invalidate = sev_gmem_invalidate, 5349 .private_max_mapping_level = sev_private_max_mapping_level, 5350 }; 5351 5352 /* 5353 * The default MMIO mask is a single bit (excluding the present bit), 5354 * which could conflict with the memory encryption bit. Check for 5355 * memory encryption support and override the default MMIO mask if 5356 * memory encryption is enabled. 5357 */ 5358 static __init void svm_adjust_mmio_mask(void) 5359 { 5360 unsigned int enc_bit, mask_bit; 5361 u64 msr, mask; 5362 5363 /* If there is no memory encryption support, use existing mask */ 5364 if (cpuid_eax(0x80000000) < 0x8000001f) 5365 return; 5366 5367 /* If memory encryption is not enabled, use existing mask */ 5368 rdmsrq(MSR_AMD64_SYSCFG, msr); 5369 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5370 return; 5371 5372 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5373 mask_bit = boot_cpu_data.x86_phys_bits; 5374 5375 /* Increment the mask bit if it is the same as the encryption bit */ 5376 if (enc_bit == mask_bit) 5377 mask_bit++; 5378 5379 /* 5380 * If the mask bit location is below 52, then some bits above the 5381 * physical addressing limit will always be reserved, so use the 5382 * rsvd_bits() function to generate the mask. This mask, along with 5383 * the present bit, will be used to generate a page fault with 5384 * PFER.RSV = 1. 5385 * 5386 * If the mask bit location is 52 (or above), then clear the mask. 5387 */ 5388 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5389 5390 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5391 } 5392 5393 static __init void svm_set_cpu_caps(void) 5394 { 5395 kvm_set_cpu_caps(); 5396 5397 kvm_caps.supported_perf_cap = 0; 5398 kvm_caps.supported_xss = 0; 5399 5400 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5401 if (nested) { 5402 kvm_cpu_cap_set(X86_FEATURE_SVM); 5403 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5404 5405 /* 5406 * KVM currently flushes TLBs on *every* nested SVM transition, 5407 * and so for all intents and purposes KVM supports flushing by 5408 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5409 */ 5410 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5411 5412 if (nrips) 5413 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5414 5415 if (npt_enabled) 5416 kvm_cpu_cap_set(X86_FEATURE_NPT); 5417 5418 if (tsc_scaling) 5419 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5420 5421 if (vls) 5422 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5423 if (lbrv) 5424 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5425 5426 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5427 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5428 5429 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5430 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5431 5432 if (vgif) 5433 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5434 5435 if (vnmi) 5436 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5437 5438 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5439 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5440 } 5441 5442 if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD)) 5443 kvm_caps.has_bus_lock_exit = true; 5444 5445 /* CPUID 0x80000008 */ 5446 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5447 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5448 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5449 5450 if (enable_pmu) { 5451 /* 5452 * Enumerate support for PERFCTR_CORE if and only if KVM has 5453 * access to enough counters to virtualize "core" support, 5454 * otherwise limit vPMU support to the legacy number of counters. 5455 */ 5456 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5457 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5458 kvm_pmu_cap.num_counters_gp); 5459 else 5460 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5461 5462 if (kvm_pmu_cap.version != 2 || 5463 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5464 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5465 } 5466 5467 /* CPUID 0x8000001F (SME/SEV features) */ 5468 sev_set_cpu_caps(); 5469 5470 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */ 5471 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5472 } 5473 5474 static __init int svm_hardware_setup(void) 5475 { 5476 int cpu; 5477 struct page *iopm_pages; 5478 void *iopm_va; 5479 int r; 5480 unsigned int order = get_order(IOPM_SIZE); 5481 5482 /* 5483 * NX is required for shadow paging and for NPT if the NX huge pages 5484 * mitigation is enabled. 5485 */ 5486 if (!boot_cpu_has(X86_FEATURE_NX)) { 5487 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5488 return -EOPNOTSUPP; 5489 } 5490 kvm_enable_efer_bits(EFER_NX); 5491 5492 iopm_pages = alloc_pages(GFP_KERNEL, order); 5493 5494 if (!iopm_pages) 5495 return -ENOMEM; 5496 5497 iopm_va = page_address(iopm_pages); 5498 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5499 iopm_base = __sme_page_pa(iopm_pages); 5500 5501 init_msrpm_offsets(); 5502 5503 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5504 XFEATURE_MASK_BNDCSR); 5505 5506 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5507 kvm_enable_efer_bits(EFER_FFXSR); 5508 5509 if (tsc_scaling) { 5510 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5511 tsc_scaling = false; 5512 } else { 5513 pr_info("TSC scaling supported\n"); 5514 kvm_caps.has_tsc_control = true; 5515 } 5516 } 5517 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5518 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5519 5520 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5521 5522 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5523 kvm_enable_efer_bits(EFER_AUTOIBRS); 5524 5525 /* Check for pause filtering support */ 5526 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5527 pause_filter_count = 0; 5528 pause_filter_thresh = 0; 5529 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5530 pause_filter_thresh = 0; 5531 } 5532 5533 if (nested) { 5534 pr_info("Nested Virtualization enabled\n"); 5535 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5536 } 5537 5538 /* 5539 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5540 * NPT isn't supported if the host is using 2-level paging since host 5541 * CR4 is unchanged on VMRUN. 5542 */ 5543 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5544 npt_enabled = false; 5545 5546 if (!boot_cpu_has(X86_FEATURE_NPT)) 5547 npt_enabled = false; 5548 5549 /* Force VM NPT level equal to the host's paging level */ 5550 kvm_configure_mmu(npt_enabled, get_npt_level(), 5551 get_npt_level(), PG_LEVEL_1G); 5552 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled)); 5553 5554 /* Setup shadow_me_value and shadow_me_mask */ 5555 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5556 5557 svm_adjust_mmio_mask(); 5558 5559 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5560 5561 if (lbrv) { 5562 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5563 lbrv = false; 5564 else 5565 pr_info("LBR virtualization supported\n"); 5566 } 5567 /* 5568 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5569 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5570 */ 5571 sev_hardware_setup(); 5572 5573 svm_hv_hardware_setup(); 5574 5575 for_each_possible_cpu(cpu) { 5576 r = svm_cpu_init(cpu); 5577 if (r) 5578 goto err; 5579 } 5580 5581 enable_apicv = avic = avic && avic_hardware_setup(); 5582 5583 if (!enable_apicv) { 5584 svm_x86_ops.vcpu_blocking = NULL; 5585 svm_x86_ops.vcpu_unblocking = NULL; 5586 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5587 } else if (!x2avic_enabled) { 5588 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5589 } 5590 5591 if (vls) { 5592 if (!npt_enabled || 5593 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5594 !IS_ENABLED(CONFIG_X86_64)) { 5595 vls = false; 5596 } else { 5597 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5598 } 5599 } 5600 5601 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5602 svm_gp_erratum_intercept = false; 5603 5604 if (vgif) { 5605 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5606 vgif = false; 5607 else 5608 pr_info("Virtual GIF supported\n"); 5609 } 5610 5611 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5612 if (vnmi) 5613 pr_info("Virtual NMI enabled\n"); 5614 5615 if (!vnmi) { 5616 svm_x86_ops.is_vnmi_pending = NULL; 5617 svm_x86_ops.set_vnmi_pending = NULL; 5618 } 5619 5620 if (!enable_pmu) 5621 pr_info("PMU virtualization is disabled\n"); 5622 5623 svm_set_cpu_caps(); 5624 5625 /* 5626 * It seems that on AMD processors PTE's accessed bit is 5627 * being set by the CPU hardware before the NPF vmexit. 5628 * This is not expected behaviour and our tests fail because 5629 * of it. 5630 * A workaround here is to disable support for 5631 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5632 * In this case userspace can know if there is support using 5633 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5634 * it 5635 * If future AMD CPU models change the behaviour described above, 5636 * this variable can be changed accordingly 5637 */ 5638 allow_smaller_maxphyaddr = !npt_enabled; 5639 5640 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED; 5641 return 0; 5642 5643 err: 5644 svm_hardware_unsetup(); 5645 return r; 5646 } 5647 5648 5649 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5650 .hardware_setup = svm_hardware_setup, 5651 5652 .runtime_ops = &svm_x86_ops, 5653 .pmu_ops = &amd_pmu_ops, 5654 }; 5655 5656 static void __svm_exit(void) 5657 { 5658 kvm_x86_vendor_exit(); 5659 } 5660 5661 static int __init svm_init(void) 5662 { 5663 int r; 5664 5665 __unused_size_checks(); 5666 5667 if (!kvm_is_svm_supported()) 5668 return -EOPNOTSUPP; 5669 5670 r = kvm_x86_vendor_init(&svm_init_ops); 5671 if (r) 5672 return r; 5673 5674 /* 5675 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5676 * exposed to userspace! 5677 */ 5678 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5679 THIS_MODULE); 5680 if (r) 5681 goto err_kvm_init; 5682 5683 return 0; 5684 5685 err_kvm_init: 5686 __svm_exit(); 5687 return r; 5688 } 5689 5690 static void __exit svm_exit(void) 5691 { 5692 kvm_exit(); 5693 __svm_exit(); 5694 } 5695 5696 module_init(svm_init) 5697 module_exit(svm_exit) 5698