xref: /linux/arch/x86/kvm/svm/svm.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kvm_host.h>
4 
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "smm.h"
10 #include "cpuid.h"
11 #include "pmu.h"
12 
13 #include <linux/module.h>
14 #include <linux/mod_devicetable.h>
15 #include <linux/kernel.h>
16 #include <linux/vmalloc.h>
17 #include <linux/highmem.h>
18 #include <linux/amd-iommu.h>
19 #include <linux/sched.h>
20 #include <linux/trace_events.h>
21 #include <linux/slab.h>
22 #include <linux/hashtable.h>
23 #include <linux/objtool.h>
24 #include <linux/psp-sev.h>
25 #include <linux/file.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/rwsem.h>
29 #include <linux/cc_platform.h>
30 #include <linux/smp.h>
31 
32 #include <asm/apic.h>
33 #include <asm/perf_event.h>
34 #include <asm/tlbflush.h>
35 #include <asm/desc.h>
36 #include <asm/debugreg.h>
37 #include <asm/kvm_para.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/spec-ctrl.h>
40 #include <asm/cpu_device_id.h>
41 #include <asm/traps.h>
42 #include <asm/reboot.h>
43 #include <asm/fpu/api.h>
44 
45 #include <trace/events/ipi.h>
46 
47 #include "trace.h"
48 
49 #include "svm.h"
50 #include "svm_ops.h"
51 
52 #include "kvm_onhyperv.h"
53 #include "svm_onhyperv.h"
54 
55 MODULE_AUTHOR("Qumranet");
56 MODULE_LICENSE("GPL");
57 
58 #ifdef MODULE
59 static const struct x86_cpu_id svm_cpu_id[] = {
60 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61 	{}
62 };
63 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64 #endif
65 
66 #define SEG_TYPE_LDT 2
67 #define SEG_TYPE_BUSY_TSS16 3
68 
69 static bool erratum_383_found __read_mostly;
70 
71 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72 
73 /*
74  * Set osvw_len to higher value when updated Revision Guides
75  * are published and we know what the new status bits are
76  */
77 static uint64_t osvw_len = 4, osvw_status;
78 
79 static DEFINE_PER_CPU(u64, current_tsc_ratio);
80 
81 #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
82 
83 static const struct svm_direct_access_msrs {
84 	u32 index;   /* Index of the MSR */
85 	bool always; /* True if intercept is initially cleared */
86 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87 	{ .index = MSR_STAR,				.always = true  },
88 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
89 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
90 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
91 #ifdef CONFIG_X86_64
92 	{ .index = MSR_GS_BASE,				.always = true  },
93 	{ .index = MSR_FS_BASE,				.always = true  },
94 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
95 	{ .index = MSR_LSTAR,				.always = true  },
96 	{ .index = MSR_CSTAR,				.always = true  },
97 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
98 #endif
99 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
100 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
101 	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
102 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
103 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
104 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
105 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
106 	{ .index = MSR_EFER,				.always = false },
107 	{ .index = MSR_IA32_CR_PAT,			.always = false },
108 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
109 	{ .index = MSR_TSC_AUX,				.always = false },
110 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
111 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
112 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
113 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
114 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
115 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
116 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
117 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
118 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
119 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
120 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
121 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
122 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
123 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
124 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
125 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
126 
127 	/*
128 	 * Note:
129 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
130 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
131 	 * the AVIC hardware would generate GP fault. Therefore, always
132 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
133 	 */
134 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
135 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
136 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
137 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
138 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
139 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
140 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
141 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
142 	{ .index = MSR_INVALID,				.always = false },
143 };
144 
145 /*
146  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
147  * pause_filter_count: On processors that support Pause filtering(indicated
148  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
149  *	count value. On VMRUN this value is loaded into an internal counter.
150  *	Each time a pause instruction is executed, this counter is decremented
151  *	until it reaches zero at which time a #VMEXIT is generated if pause
152  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
153  *	Intercept Filtering for more details.
154  *	This also indicate if ple logic enabled.
155  *
156  * pause_filter_thresh: In addition, some processor families support advanced
157  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
158  *	the amount of time a guest is allowed to execute in a pause loop.
159  *	In this mode, a 16-bit pause filter threshold field is added in the
160  *	VMCB. The threshold value is a cycle count that is used to reset the
161  *	pause counter. As with simple pause filtering, VMRUN loads the pause
162  *	count value from VMCB into an internal counter. Then, on each pause
163  *	instruction the hardware checks the elapsed number of cycles since
164  *	the most recent pause instruction against the pause filter threshold.
165  *	If the elapsed cycle count is greater than the pause filter threshold,
166  *	then the internal pause count is reloaded from the VMCB and execution
167  *	continues. If the elapsed cycle count is less than the pause filter
168  *	threshold, then the internal pause count is decremented. If the count
169  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
170  *	triggered. If advanced pause filtering is supported and pause filter
171  *	threshold field is set to zero, the filter will operate in the simpler,
172  *	count only mode.
173  */
174 
175 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
176 module_param(pause_filter_thresh, ushort, 0444);
177 
178 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
179 module_param(pause_filter_count, ushort, 0444);
180 
181 /* Default doubles per-vcpu window every exit. */
182 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
183 module_param(pause_filter_count_grow, ushort, 0444);
184 
185 /* Default resets per-vcpu window every exit to pause_filter_count. */
186 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
187 module_param(pause_filter_count_shrink, ushort, 0444);
188 
189 /* Default is to compute the maximum so we can never overflow. */
190 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
191 module_param(pause_filter_count_max, ushort, 0444);
192 
193 /*
194  * Use nested page tables by default.  Note, NPT may get forced off by
195  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
196  */
197 bool npt_enabled = true;
198 module_param_named(npt, npt_enabled, bool, 0444);
199 
200 /* allow nested virtualization in KVM/SVM */
201 static int nested = true;
202 module_param(nested, int, S_IRUGO);
203 
204 /* enable/disable Next RIP Save */
205 int nrips = true;
206 module_param(nrips, int, 0444);
207 
208 /* enable/disable Virtual VMLOAD VMSAVE */
209 static int vls = true;
210 module_param(vls, int, 0444);
211 
212 /* enable/disable Virtual GIF */
213 int vgif = true;
214 module_param(vgif, int, 0444);
215 
216 /* enable/disable LBR virtualization */
217 static int lbrv = true;
218 module_param(lbrv, int, 0444);
219 
220 static int tsc_scaling = true;
221 module_param(tsc_scaling, int, 0444);
222 
223 /*
224  * enable / disable AVIC.  Because the defaults differ for APICv
225  * support between VMX and SVM we cannot use module_param_named.
226  */
227 static bool avic;
228 module_param(avic, bool, 0444);
229 
230 bool __read_mostly dump_invalid_vmcb;
231 module_param(dump_invalid_vmcb, bool, 0644);
232 
233 
234 bool intercept_smi = true;
235 module_param(intercept_smi, bool, 0444);
236 
237 bool vnmi = true;
238 module_param(vnmi, bool, 0444);
239 
240 static bool svm_gp_erratum_intercept = true;
241 
242 static u8 rsm_ins_bytes[] = "\x0f\xaa";
243 
244 static unsigned long iopm_base;
245 
246 DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
247 
248 /*
249  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
250  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
251  *
252  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
253  * defer the restoration of TSC_AUX until the CPU returns to userspace.
254  */
255 static int tsc_aux_uret_slot __read_mostly = -1;
256 
257 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
258 
259 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
260 #define MSRS_RANGE_SIZE 2048
261 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
262 
263 u32 svm_msrpm_offset(u32 msr)
264 {
265 	u32 offset;
266 	int i;
267 
268 	for (i = 0; i < NUM_MSR_MAPS; i++) {
269 		if (msr < msrpm_ranges[i] ||
270 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
271 			continue;
272 
273 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
274 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
275 
276 		/* Now we have the u8 offset - but need the u32 offset */
277 		return offset / 4;
278 	}
279 
280 	/* MSR not in any range */
281 	return MSR_INVALID;
282 }
283 
284 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
285 
286 static int get_npt_level(void)
287 {
288 #ifdef CONFIG_X86_64
289 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
290 #else
291 	return PT32E_ROOT_LEVEL;
292 #endif
293 }
294 
295 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
296 {
297 	struct vcpu_svm *svm = to_svm(vcpu);
298 	u64 old_efer = vcpu->arch.efer;
299 	vcpu->arch.efer = efer;
300 
301 	if (!npt_enabled) {
302 		/* Shadow paging assumes NX to be available.  */
303 		efer |= EFER_NX;
304 
305 		if (!(efer & EFER_LMA))
306 			efer &= ~EFER_LME;
307 	}
308 
309 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
310 		if (!(efer & EFER_SVME)) {
311 			svm_leave_nested(vcpu);
312 			svm_set_gif(svm, true);
313 			/* #GP intercept is still needed for vmware backdoor */
314 			if (!enable_vmware_backdoor)
315 				clr_exception_intercept(svm, GP_VECTOR);
316 
317 			/*
318 			 * Free the nested guest state, unless we are in SMM.
319 			 * In this case we will return to the nested guest
320 			 * as soon as we leave SMM.
321 			 */
322 			if (!is_smm(vcpu))
323 				svm_free_nested(svm);
324 
325 		} else {
326 			int ret = svm_allocate_nested(svm);
327 
328 			if (ret) {
329 				vcpu->arch.efer = old_efer;
330 				return ret;
331 			}
332 
333 			/*
334 			 * Never intercept #GP for SEV guests, KVM can't
335 			 * decrypt guest memory to workaround the erratum.
336 			 */
337 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
338 				set_exception_intercept(svm, GP_VECTOR);
339 		}
340 	}
341 
342 	svm->vmcb->save.efer = efer | EFER_SVME;
343 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
344 	return 0;
345 }
346 
347 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
348 {
349 	struct vcpu_svm *svm = to_svm(vcpu);
350 	u32 ret = 0;
351 
352 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
353 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
354 	return ret;
355 }
356 
357 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
358 {
359 	struct vcpu_svm *svm = to_svm(vcpu);
360 
361 	if (mask == 0)
362 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
363 	else
364 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
365 
366 }
367 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
368 					void *insn, int insn_len);
369 
370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
371 					   bool commit_side_effects)
372 {
373 	struct vcpu_svm *svm = to_svm(vcpu);
374 	unsigned long old_rflags;
375 
376 	/*
377 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
378 	 * the type of exit and the #VC handler in the guest.
379 	 */
380 	if (sev_es_guest(vcpu->kvm))
381 		goto done;
382 
383 	if (nrips && svm->vmcb->control.next_rip != 0) {
384 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
385 		svm->next_rip = svm->vmcb->control.next_rip;
386 	}
387 
388 	if (!svm->next_rip) {
389 		/*
390 		 * FIXME: Drop this when kvm_emulate_instruction() does the
391 		 * right thing and treats "can't emulate" as outright failure
392 		 * for EMULTYPE_SKIP.
393 		 */
394 		if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0))
395 			return 0;
396 
397 		if (unlikely(!commit_side_effects))
398 			old_rflags = svm->vmcb->save.rflags;
399 
400 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
401 			return 0;
402 
403 		if (unlikely(!commit_side_effects))
404 			svm->vmcb->save.rflags = old_rflags;
405 	} else {
406 		kvm_rip_write(vcpu, svm->next_rip);
407 	}
408 
409 done:
410 	if (likely(commit_side_effects))
411 		svm_set_interrupt_shadow(vcpu, 0);
412 
413 	return 1;
414 }
415 
416 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
417 {
418 	return __svm_skip_emulated_instruction(vcpu, true);
419 }
420 
421 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
422 {
423 	unsigned long rip, old_rip = kvm_rip_read(vcpu);
424 	struct vcpu_svm *svm = to_svm(vcpu);
425 
426 	/*
427 	 * Due to architectural shortcomings, the CPU doesn't always provide
428 	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
429 	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
430 	 * the instruction even if NextRIP is supported to acquire the next
431 	 * RIP so that it can be shoved into the NextRIP field, otherwise
432 	 * hardware will fail to advance guest RIP during event injection.
433 	 * Drop the exception/interrupt if emulation fails and effectively
434 	 * retry the instruction, it's the least awful option.  If NRIPS is
435 	 * in use, the skip must not commit any side effects such as clearing
436 	 * the interrupt shadow or RFLAGS.RF.
437 	 */
438 	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
439 		return -EIO;
440 
441 	rip = kvm_rip_read(vcpu);
442 
443 	/*
444 	 * Save the injection information, even when using next_rip, as the
445 	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
446 	 * doesn't complete due to a VM-Exit occurring while the CPU is
447 	 * vectoring the event.   Decoding the instruction isn't guaranteed to
448 	 * work as there may be no backing instruction, e.g. if the event is
449 	 * being injected by L1 for L2, or if the guest is patching INT3 into
450 	 * a different instruction.
451 	 */
452 	svm->soft_int_injected = true;
453 	svm->soft_int_csbase = svm->vmcb->save.cs.base;
454 	svm->soft_int_old_rip = old_rip;
455 	svm->soft_int_next_rip = rip;
456 
457 	if (nrips)
458 		kvm_rip_write(vcpu, old_rip);
459 
460 	if (static_cpu_has(X86_FEATURE_NRIPS))
461 		svm->vmcb->control.next_rip = rip;
462 
463 	return 0;
464 }
465 
466 static void svm_inject_exception(struct kvm_vcpu *vcpu)
467 {
468 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
469 	struct vcpu_svm *svm = to_svm(vcpu);
470 
471 	kvm_deliver_exception_payload(vcpu, ex);
472 
473 	if (kvm_exception_is_soft(ex->vector) &&
474 	    svm_update_soft_interrupt_rip(vcpu))
475 		return;
476 
477 	svm->vmcb->control.event_inj = ex->vector
478 		| SVM_EVTINJ_VALID
479 		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
480 		| SVM_EVTINJ_TYPE_EXEPT;
481 	svm->vmcb->control.event_inj_err = ex->error_code;
482 }
483 
484 static void svm_init_erratum_383(void)
485 {
486 	u32 low, high;
487 	int err;
488 	u64 val;
489 
490 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
491 		return;
492 
493 	/* Use _safe variants to not break nested virtualization */
494 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
495 	if (err)
496 		return;
497 
498 	val |= (1ULL << 47);
499 
500 	low  = lower_32_bits(val);
501 	high = upper_32_bits(val);
502 
503 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
504 
505 	erratum_383_found = true;
506 }
507 
508 static void svm_init_osvw(struct kvm_vcpu *vcpu)
509 {
510 	/*
511 	 * Guests should see errata 400 and 415 as fixed (assuming that
512 	 * HLT and IO instructions are intercepted).
513 	 */
514 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
515 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
516 
517 	/*
518 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
519 	 * all osvw.status bits inside that length, including bit 0 (which is
520 	 * reserved for erratum 298), are valid. However, if host processor's
521 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
522 	 * be conservative here and therefore we tell the guest that erratum 298
523 	 * is present (because we really don't know).
524 	 */
525 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
526 		vcpu->arch.osvw.status |= 1;
527 }
528 
529 static bool __kvm_is_svm_supported(void)
530 {
531 	int cpu = smp_processor_id();
532 	struct cpuinfo_x86 *c = &cpu_data(cpu);
533 
534 	u64 vm_cr;
535 
536 	if (c->x86_vendor != X86_VENDOR_AMD &&
537 	    c->x86_vendor != X86_VENDOR_HYGON) {
538 		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
539 		return false;
540 	}
541 
542 	if (!cpu_has(c, X86_FEATURE_SVM)) {
543 		pr_err("SVM not supported by CPU %d\n", cpu);
544 		return false;
545 	}
546 
547 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
548 		pr_info("KVM is unsupported when running as an SEV guest\n");
549 		return false;
550 	}
551 
552 	rdmsrl(MSR_VM_CR, vm_cr);
553 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
554 		pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
555 		return false;
556 	}
557 
558 	return true;
559 }
560 
561 static bool kvm_is_svm_supported(void)
562 {
563 	bool supported;
564 
565 	migrate_disable();
566 	supported = __kvm_is_svm_supported();
567 	migrate_enable();
568 
569 	return supported;
570 }
571 
572 static int svm_check_processor_compat(void)
573 {
574 	if (!__kvm_is_svm_supported())
575 		return -EIO;
576 
577 	return 0;
578 }
579 
580 static void __svm_write_tsc_multiplier(u64 multiplier)
581 {
582 	if (multiplier == __this_cpu_read(current_tsc_ratio))
583 		return;
584 
585 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
586 	__this_cpu_write(current_tsc_ratio, multiplier);
587 }
588 
589 static inline void kvm_cpu_svm_disable(void)
590 {
591 	uint64_t efer;
592 
593 	wrmsrl(MSR_VM_HSAVE_PA, 0);
594 	rdmsrl(MSR_EFER, efer);
595 	if (efer & EFER_SVME) {
596 		/*
597 		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
598 		 * NMI aren't blocked.
599 		 */
600 		stgi();
601 		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
602 	}
603 }
604 
605 static void svm_emergency_disable(void)
606 {
607 	kvm_rebooting = true;
608 
609 	kvm_cpu_svm_disable();
610 }
611 
612 static void svm_hardware_disable(void)
613 {
614 	/* Make sure we clean up behind us */
615 	if (tsc_scaling)
616 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
617 
618 	kvm_cpu_svm_disable();
619 
620 	amd_pmu_disable_virt();
621 }
622 
623 static int svm_hardware_enable(void)
624 {
625 
626 	struct svm_cpu_data *sd;
627 	uint64_t efer;
628 	int me = raw_smp_processor_id();
629 
630 	rdmsrl(MSR_EFER, efer);
631 	if (efer & EFER_SVME)
632 		return -EBUSY;
633 
634 	sd = per_cpu_ptr(&svm_data, me);
635 	sd->asid_generation = 1;
636 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
637 	sd->next_asid = sd->max_asid + 1;
638 	sd->min_asid = max_sev_asid + 1;
639 
640 	wrmsrl(MSR_EFER, efer | EFER_SVME);
641 
642 	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
643 
644 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
645 		/*
646 		 * Set the default value, even if we don't use TSC scaling
647 		 * to avoid having stale value in the msr
648 		 */
649 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
650 	}
651 
652 
653 	/*
654 	 * Get OSVW bits.
655 	 *
656 	 * Note that it is possible to have a system with mixed processor
657 	 * revisions and therefore different OSVW bits. If bits are not the same
658 	 * on different processors then choose the worst case (i.e. if erratum
659 	 * is present on one processor and not on another then assume that the
660 	 * erratum is present everywhere).
661 	 */
662 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
663 		uint64_t len, status = 0;
664 		int err;
665 
666 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
667 		if (!err)
668 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
669 						      &err);
670 
671 		if (err)
672 			osvw_status = osvw_len = 0;
673 		else {
674 			if (len < osvw_len)
675 				osvw_len = len;
676 			osvw_status |= status;
677 			osvw_status &= (1ULL << osvw_len) - 1;
678 		}
679 	} else
680 		osvw_status = osvw_len = 0;
681 
682 	svm_init_erratum_383();
683 
684 	amd_pmu_enable_virt();
685 
686 	return 0;
687 }
688 
689 static void svm_cpu_uninit(int cpu)
690 {
691 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
692 
693 	if (!sd->save_area)
694 		return;
695 
696 	kfree(sd->sev_vmcbs);
697 	__free_page(sd->save_area);
698 	sd->save_area_pa = 0;
699 	sd->save_area = NULL;
700 }
701 
702 static int svm_cpu_init(int cpu)
703 {
704 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
705 	int ret = -ENOMEM;
706 
707 	memset(sd, 0, sizeof(struct svm_cpu_data));
708 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
709 	if (!sd->save_area)
710 		return ret;
711 
712 	ret = sev_cpu_init(sd);
713 	if (ret)
714 		goto free_save_area;
715 
716 	sd->save_area_pa = __sme_page_pa(sd->save_area);
717 	return 0;
718 
719 free_save_area:
720 	__free_page(sd->save_area);
721 	sd->save_area = NULL;
722 	return ret;
723 
724 }
725 
726 static void set_dr_intercepts(struct vcpu_svm *svm)
727 {
728 	struct vmcb *vmcb = svm->vmcb01.ptr;
729 
730 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
731 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
732 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
733 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
734 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
735 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
736 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
737 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
738 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
739 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
740 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
741 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
742 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
743 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
744 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
745 	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
746 
747 	recalc_intercepts(svm);
748 }
749 
750 static void clr_dr_intercepts(struct vcpu_svm *svm)
751 {
752 	struct vmcb *vmcb = svm->vmcb01.ptr;
753 
754 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
755 
756 	recalc_intercepts(svm);
757 }
758 
759 static int direct_access_msr_slot(u32 msr)
760 {
761 	u32 i;
762 
763 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
764 		if (direct_access_msrs[i].index == msr)
765 			return i;
766 
767 	return -ENOENT;
768 }
769 
770 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
771 				     int write)
772 {
773 	struct vcpu_svm *svm = to_svm(vcpu);
774 	int slot = direct_access_msr_slot(msr);
775 
776 	if (slot == -ENOENT)
777 		return;
778 
779 	/* Set the shadow bitmaps to the desired intercept states */
780 	if (read)
781 		set_bit(slot, svm->shadow_msr_intercept.read);
782 	else
783 		clear_bit(slot, svm->shadow_msr_intercept.read);
784 
785 	if (write)
786 		set_bit(slot, svm->shadow_msr_intercept.write);
787 	else
788 		clear_bit(slot, svm->shadow_msr_intercept.write);
789 }
790 
791 static bool valid_msr_intercept(u32 index)
792 {
793 	return direct_access_msr_slot(index) != -ENOENT;
794 }
795 
796 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
797 {
798 	u8 bit_write;
799 	unsigned long tmp;
800 	u32 offset;
801 	u32 *msrpm;
802 
803 	/*
804 	 * For non-nested case:
805 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
806 	 * save it.
807 	 *
808 	 * For nested case:
809 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
810 	 * save it.
811 	 */
812 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
813 				      to_svm(vcpu)->msrpm;
814 
815 	offset    = svm_msrpm_offset(msr);
816 	bit_write = 2 * (msr & 0x0f) + 1;
817 	tmp       = msrpm[offset];
818 
819 	BUG_ON(offset == MSR_INVALID);
820 
821 	return test_bit(bit_write, &tmp);
822 }
823 
824 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
825 					u32 msr, int read, int write)
826 {
827 	struct vcpu_svm *svm = to_svm(vcpu);
828 	u8 bit_read, bit_write;
829 	unsigned long tmp;
830 	u32 offset;
831 
832 	/*
833 	 * If this warning triggers extend the direct_access_msrs list at the
834 	 * beginning of the file
835 	 */
836 	WARN_ON(!valid_msr_intercept(msr));
837 
838 	/* Enforce non allowed MSRs to trap */
839 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
840 		read = 0;
841 
842 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
843 		write = 0;
844 
845 	offset    = svm_msrpm_offset(msr);
846 	bit_read  = 2 * (msr & 0x0f);
847 	bit_write = 2 * (msr & 0x0f) + 1;
848 	tmp       = msrpm[offset];
849 
850 	BUG_ON(offset == MSR_INVALID);
851 
852 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
853 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
854 
855 	msrpm[offset] = tmp;
856 
857 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
858 	svm->nested.force_msr_bitmap_recalc = true;
859 }
860 
861 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
862 			  int read, int write)
863 {
864 	set_shadow_msr_intercept(vcpu, msr, read, write);
865 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
866 }
867 
868 u32 *svm_vcpu_alloc_msrpm(void)
869 {
870 	unsigned int order = get_order(MSRPM_SIZE);
871 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
872 	u32 *msrpm;
873 
874 	if (!pages)
875 		return NULL;
876 
877 	msrpm = page_address(pages);
878 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
879 
880 	return msrpm;
881 }
882 
883 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
884 {
885 	int i;
886 
887 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
888 		if (!direct_access_msrs[i].always)
889 			continue;
890 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
891 	}
892 }
893 
894 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
895 {
896 	int i;
897 
898 	if (intercept == svm->x2avic_msrs_intercepted)
899 		return;
900 
901 	if (!x2avic_enabled ||
902 	    !apic_x2apic_mode(svm->vcpu.arch.apic))
903 		return;
904 
905 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
906 		int index = direct_access_msrs[i].index;
907 
908 		if ((index < APIC_BASE_MSR) ||
909 		    (index > APIC_BASE_MSR + 0xff))
910 			continue;
911 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
912 				     !intercept, !intercept);
913 	}
914 
915 	svm->x2avic_msrs_intercepted = intercept;
916 }
917 
918 void svm_vcpu_free_msrpm(u32 *msrpm)
919 {
920 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
921 }
922 
923 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
924 {
925 	struct vcpu_svm *svm = to_svm(vcpu);
926 	u32 i;
927 
928 	/*
929 	 * Set intercept permissions for all direct access MSRs again. They
930 	 * will automatically get filtered through the MSR filter, so we are
931 	 * back in sync after this.
932 	 */
933 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
934 		u32 msr = direct_access_msrs[i].index;
935 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
936 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
937 
938 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
939 	}
940 }
941 
942 static void add_msr_offset(u32 offset)
943 {
944 	int i;
945 
946 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
947 
948 		/* Offset already in list? */
949 		if (msrpm_offsets[i] == offset)
950 			return;
951 
952 		/* Slot used by another offset? */
953 		if (msrpm_offsets[i] != MSR_INVALID)
954 			continue;
955 
956 		/* Add offset to list */
957 		msrpm_offsets[i] = offset;
958 
959 		return;
960 	}
961 
962 	/*
963 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
964 	 * increase MSRPM_OFFSETS in this case.
965 	 */
966 	BUG();
967 }
968 
969 static void init_msrpm_offsets(void)
970 {
971 	int i;
972 
973 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
974 
975 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
976 		u32 offset;
977 
978 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
979 		BUG_ON(offset == MSR_INVALID);
980 
981 		add_msr_offset(offset);
982 	}
983 }
984 
985 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
986 {
987 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
988 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
989 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
990 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
991 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
992 
993 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
994 }
995 
996 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
997 {
998 	struct vcpu_svm *svm = to_svm(vcpu);
999 
1000 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1001 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1002 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1003 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1004 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1005 
1006 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1007 	if (is_guest_mode(vcpu))
1008 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1009 }
1010 
1011 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1012 {
1013 	struct vcpu_svm *svm = to_svm(vcpu);
1014 
1015 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1016 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1017 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1018 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1019 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1020 
1021 	/*
1022 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
1023 	 * on nested guest entries.
1024 	 */
1025 	if (is_guest_mode(vcpu))
1026 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1027 }
1028 
1029 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1030 {
1031 	/*
1032 	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1033 	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1034 	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1035 	 */
1036 	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1037 								   svm->vmcb01.ptr;
1038 }
1039 
1040 void svm_update_lbrv(struct kvm_vcpu *vcpu)
1041 {
1042 	struct vcpu_svm *svm = to_svm(vcpu);
1043 	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1044 	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1045 			    (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1046 			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1047 
1048 	if (enable_lbrv == current_enable_lbrv)
1049 		return;
1050 
1051 	if (enable_lbrv)
1052 		svm_enable_lbrv(vcpu);
1053 	else
1054 		svm_disable_lbrv(vcpu);
1055 }
1056 
1057 void disable_nmi_singlestep(struct vcpu_svm *svm)
1058 {
1059 	svm->nmi_singlestep = false;
1060 
1061 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1062 		/* Clear our flags if they were not set by the guest */
1063 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1064 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1065 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1066 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1067 	}
1068 }
1069 
1070 static void grow_ple_window(struct kvm_vcpu *vcpu)
1071 {
1072 	struct vcpu_svm *svm = to_svm(vcpu);
1073 	struct vmcb_control_area *control = &svm->vmcb->control;
1074 	int old = control->pause_filter_count;
1075 
1076 	if (kvm_pause_in_guest(vcpu->kvm))
1077 		return;
1078 
1079 	control->pause_filter_count = __grow_ple_window(old,
1080 							pause_filter_count,
1081 							pause_filter_count_grow,
1082 							pause_filter_count_max);
1083 
1084 	if (control->pause_filter_count != old) {
1085 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1086 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1087 					    control->pause_filter_count, old);
1088 	}
1089 }
1090 
1091 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1092 {
1093 	struct vcpu_svm *svm = to_svm(vcpu);
1094 	struct vmcb_control_area *control = &svm->vmcb->control;
1095 	int old = control->pause_filter_count;
1096 
1097 	if (kvm_pause_in_guest(vcpu->kvm))
1098 		return;
1099 
1100 	control->pause_filter_count =
1101 				__shrink_ple_window(old,
1102 						    pause_filter_count,
1103 						    pause_filter_count_shrink,
1104 						    pause_filter_count);
1105 	if (control->pause_filter_count != old) {
1106 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1107 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1108 					    control->pause_filter_count, old);
1109 	}
1110 }
1111 
1112 static void svm_hardware_unsetup(void)
1113 {
1114 	int cpu;
1115 
1116 	sev_hardware_unsetup();
1117 
1118 	for_each_possible_cpu(cpu)
1119 		svm_cpu_uninit(cpu);
1120 
1121 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1122 	get_order(IOPM_SIZE));
1123 	iopm_base = 0;
1124 }
1125 
1126 static void init_seg(struct vmcb_seg *seg)
1127 {
1128 	seg->selector = 0;
1129 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1130 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1131 	seg->limit = 0xffff;
1132 	seg->base = 0;
1133 }
1134 
1135 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1136 {
1137 	seg->selector = 0;
1138 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1139 	seg->limit = 0xffff;
1140 	seg->base = 0;
1141 }
1142 
1143 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1144 {
1145 	struct vcpu_svm *svm = to_svm(vcpu);
1146 
1147 	return svm->nested.ctl.tsc_offset;
1148 }
1149 
1150 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1151 {
1152 	struct vcpu_svm *svm = to_svm(vcpu);
1153 
1154 	return svm->tsc_ratio_msr;
1155 }
1156 
1157 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1158 {
1159 	struct vcpu_svm *svm = to_svm(vcpu);
1160 
1161 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1162 	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1163 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1164 }
1165 
1166 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1167 {
1168 	preempt_disable();
1169 	if (to_svm(vcpu)->guest_state_loaded)
1170 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1171 	preempt_enable();
1172 }
1173 
1174 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1175 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1176 					      struct vcpu_svm *svm)
1177 {
1178 	/*
1179 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1180 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1181 	 */
1182 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1183 		if (!npt_enabled ||
1184 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1185 			svm_set_intercept(svm, INTERCEPT_INVPCID);
1186 		else
1187 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1188 	}
1189 
1190 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1191 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1192 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1193 		else
1194 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1195 	}
1196 }
1197 
1198 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1199 {
1200 	struct vcpu_svm *svm = to_svm(vcpu);
1201 
1202 	if (guest_cpuid_is_intel(vcpu)) {
1203 		/*
1204 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1205 		 * accesses because the processor only stores 32 bits.
1206 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1207 		 */
1208 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1209 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1210 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1211 
1212 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1213 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1214 	} else {
1215 		/*
1216 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1217 		 * in VMCB and clear intercepts to avoid #VMEXIT.
1218 		 */
1219 		if (vls) {
1220 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1221 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1222 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1223 		}
1224 		/* No need to intercept these MSRs */
1225 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1226 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1227 	}
1228 }
1229 
1230 static void init_vmcb(struct kvm_vcpu *vcpu)
1231 {
1232 	struct vcpu_svm *svm = to_svm(vcpu);
1233 	struct vmcb *vmcb = svm->vmcb01.ptr;
1234 	struct vmcb_control_area *control = &vmcb->control;
1235 	struct vmcb_save_area *save = &vmcb->save;
1236 
1237 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1238 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1239 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1240 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1241 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1242 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1243 	if (!kvm_vcpu_apicv_active(vcpu))
1244 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1245 
1246 	set_dr_intercepts(svm);
1247 
1248 	set_exception_intercept(svm, PF_VECTOR);
1249 	set_exception_intercept(svm, UD_VECTOR);
1250 	set_exception_intercept(svm, MC_VECTOR);
1251 	set_exception_intercept(svm, AC_VECTOR);
1252 	set_exception_intercept(svm, DB_VECTOR);
1253 	/*
1254 	 * Guest access to VMware backdoor ports could legitimately
1255 	 * trigger #GP because of TSS I/O permission bitmap.
1256 	 * We intercept those #GP and allow access to them anyway
1257 	 * as VMware does.
1258 	 */
1259 	if (enable_vmware_backdoor)
1260 		set_exception_intercept(svm, GP_VECTOR);
1261 
1262 	svm_set_intercept(svm, INTERCEPT_INTR);
1263 	svm_set_intercept(svm, INTERCEPT_NMI);
1264 
1265 	if (intercept_smi)
1266 		svm_set_intercept(svm, INTERCEPT_SMI);
1267 
1268 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1269 	svm_set_intercept(svm, INTERCEPT_RDPMC);
1270 	svm_set_intercept(svm, INTERCEPT_CPUID);
1271 	svm_set_intercept(svm, INTERCEPT_INVD);
1272 	svm_set_intercept(svm, INTERCEPT_INVLPG);
1273 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1274 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1275 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1276 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1277 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1278 	svm_set_intercept(svm, INTERCEPT_VMRUN);
1279 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1280 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1281 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1282 	svm_set_intercept(svm, INTERCEPT_STGI);
1283 	svm_set_intercept(svm, INTERCEPT_CLGI);
1284 	svm_set_intercept(svm, INTERCEPT_SKINIT);
1285 	svm_set_intercept(svm, INTERCEPT_WBINVD);
1286 	svm_set_intercept(svm, INTERCEPT_XSETBV);
1287 	svm_set_intercept(svm, INTERCEPT_RDPRU);
1288 	svm_set_intercept(svm, INTERCEPT_RSM);
1289 
1290 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1291 		svm_set_intercept(svm, INTERCEPT_MONITOR);
1292 		svm_set_intercept(svm, INTERCEPT_MWAIT);
1293 	}
1294 
1295 	if (!kvm_hlt_in_guest(vcpu->kvm))
1296 		svm_set_intercept(svm, INTERCEPT_HLT);
1297 
1298 	control->iopm_base_pa = __sme_set(iopm_base);
1299 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1300 	control->int_ctl = V_INTR_MASKING_MASK;
1301 
1302 	init_seg(&save->es);
1303 	init_seg(&save->ss);
1304 	init_seg(&save->ds);
1305 	init_seg(&save->fs);
1306 	init_seg(&save->gs);
1307 
1308 	save->cs.selector = 0xf000;
1309 	save->cs.base = 0xffff0000;
1310 	/* Executable/Readable Code Segment */
1311 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1312 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1313 	save->cs.limit = 0xffff;
1314 
1315 	save->gdtr.base = 0;
1316 	save->gdtr.limit = 0xffff;
1317 	save->idtr.base = 0;
1318 	save->idtr.limit = 0xffff;
1319 
1320 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1321 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1322 
1323 	if (npt_enabled) {
1324 		/* Setup VMCB for Nested Paging */
1325 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1326 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1327 		clr_exception_intercept(svm, PF_VECTOR);
1328 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1329 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1330 		save->g_pat = vcpu->arch.pat;
1331 		save->cr3 = 0;
1332 	}
1333 	svm->current_vmcb->asid_generation = 0;
1334 	svm->asid = 0;
1335 
1336 	svm->nested.vmcb12_gpa = INVALID_GPA;
1337 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1338 
1339 	if (!kvm_pause_in_guest(vcpu->kvm)) {
1340 		control->pause_filter_count = pause_filter_count;
1341 		if (pause_filter_thresh)
1342 			control->pause_filter_thresh = pause_filter_thresh;
1343 		svm_set_intercept(svm, INTERCEPT_PAUSE);
1344 	} else {
1345 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1346 	}
1347 
1348 	svm_recalc_instruction_intercepts(vcpu, svm);
1349 
1350 	/*
1351 	 * If the host supports V_SPEC_CTRL then disable the interception
1352 	 * of MSR_IA32_SPEC_CTRL.
1353 	 */
1354 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1355 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1356 
1357 	if (kvm_vcpu_apicv_active(vcpu))
1358 		avic_init_vmcb(svm, vmcb);
1359 
1360 	if (vnmi)
1361 		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1362 
1363 	if (vgif) {
1364 		svm_clr_intercept(svm, INTERCEPT_STGI);
1365 		svm_clr_intercept(svm, INTERCEPT_CLGI);
1366 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1367 	}
1368 
1369 	if (sev_guest(vcpu->kvm))
1370 		sev_init_vmcb(svm);
1371 
1372 	svm_hv_init_vmcb(vmcb);
1373 	init_vmcb_after_set_cpuid(vcpu);
1374 
1375 	vmcb_mark_all_dirty(vmcb);
1376 
1377 	enable_gif(svm);
1378 }
1379 
1380 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1381 {
1382 	struct vcpu_svm *svm = to_svm(vcpu);
1383 
1384 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1385 
1386 	svm_init_osvw(vcpu);
1387 	vcpu->arch.microcode_version = 0x01000065;
1388 	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1389 
1390 	svm->nmi_masked = false;
1391 	svm->awaiting_iret_completion = false;
1392 
1393 	if (sev_es_guest(vcpu->kvm))
1394 		sev_es_vcpu_reset(svm);
1395 }
1396 
1397 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1398 {
1399 	struct vcpu_svm *svm = to_svm(vcpu);
1400 
1401 	svm->spec_ctrl = 0;
1402 	svm->virt_spec_ctrl = 0;
1403 
1404 	init_vmcb(vcpu);
1405 
1406 	if (!init_event)
1407 		__svm_vcpu_reset(vcpu);
1408 }
1409 
1410 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1411 {
1412 	svm->current_vmcb = target_vmcb;
1413 	svm->vmcb = target_vmcb->ptr;
1414 }
1415 
1416 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1417 {
1418 	struct vcpu_svm *svm;
1419 	struct page *vmcb01_page;
1420 	struct page *vmsa_page = NULL;
1421 	int err;
1422 
1423 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1424 	svm = to_svm(vcpu);
1425 
1426 	err = -ENOMEM;
1427 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1428 	if (!vmcb01_page)
1429 		goto out;
1430 
1431 	if (sev_es_guest(vcpu->kvm)) {
1432 		/*
1433 		 * SEV-ES guests require a separate VMSA page used to contain
1434 		 * the encrypted register state of the guest.
1435 		 */
1436 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1437 		if (!vmsa_page)
1438 			goto error_free_vmcb_page;
1439 
1440 		/*
1441 		 * SEV-ES guests maintain an encrypted version of their FPU
1442 		 * state which is restored and saved on VMRUN and VMEXIT.
1443 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1444 		 * do xsave/xrstor on it.
1445 		 */
1446 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1447 	}
1448 
1449 	err = avic_init_vcpu(svm);
1450 	if (err)
1451 		goto error_free_vmsa_page;
1452 
1453 	svm->msrpm = svm_vcpu_alloc_msrpm();
1454 	if (!svm->msrpm) {
1455 		err = -ENOMEM;
1456 		goto error_free_vmsa_page;
1457 	}
1458 
1459 	svm->x2avic_msrs_intercepted = true;
1460 
1461 	svm->vmcb01.ptr = page_address(vmcb01_page);
1462 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1463 	svm_switch_vmcb(svm, &svm->vmcb01);
1464 
1465 	if (vmsa_page)
1466 		svm->sev_es.vmsa = page_address(vmsa_page);
1467 
1468 	svm->guest_state_loaded = false;
1469 
1470 	return 0;
1471 
1472 error_free_vmsa_page:
1473 	if (vmsa_page)
1474 		__free_page(vmsa_page);
1475 error_free_vmcb_page:
1476 	__free_page(vmcb01_page);
1477 out:
1478 	return err;
1479 }
1480 
1481 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1482 {
1483 	int i;
1484 
1485 	for_each_online_cpu(i)
1486 		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1487 }
1488 
1489 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1490 {
1491 	struct vcpu_svm *svm = to_svm(vcpu);
1492 
1493 	/*
1494 	 * The vmcb page can be recycled, causing a false negative in
1495 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1496 	 * vmcb page recorded as its current vmcb.
1497 	 */
1498 	svm_clear_current_vmcb(svm->vmcb);
1499 
1500 	svm_leave_nested(vcpu);
1501 	svm_free_nested(svm);
1502 
1503 	sev_free_vcpu(vcpu);
1504 
1505 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1506 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1507 }
1508 
1509 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1510 {
1511 	struct vcpu_svm *svm = to_svm(vcpu);
1512 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1513 
1514 	if (sev_es_guest(vcpu->kvm))
1515 		sev_es_unmap_ghcb(svm);
1516 
1517 	if (svm->guest_state_loaded)
1518 		return;
1519 
1520 	/*
1521 	 * Save additional host state that will be restored on VMEXIT (sev-es)
1522 	 * or subsequent vmload of host save area.
1523 	 */
1524 	vmsave(sd->save_area_pa);
1525 	if (sev_es_guest(vcpu->kvm)) {
1526 		struct sev_es_save_area *hostsa;
1527 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1528 
1529 		sev_es_prepare_switch_to_guest(hostsa);
1530 	}
1531 
1532 	if (tsc_scaling)
1533 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1534 
1535 	if (likely(tsc_aux_uret_slot >= 0))
1536 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1537 
1538 	svm->guest_state_loaded = true;
1539 }
1540 
1541 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1542 {
1543 	to_svm(vcpu)->guest_state_loaded = false;
1544 }
1545 
1546 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1547 {
1548 	struct vcpu_svm *svm = to_svm(vcpu);
1549 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1550 
1551 	if (sd->current_vmcb != svm->vmcb) {
1552 		sd->current_vmcb = svm->vmcb;
1553 
1554 		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1555 			indirect_branch_prediction_barrier();
1556 	}
1557 	if (kvm_vcpu_apicv_active(vcpu))
1558 		avic_vcpu_load(vcpu, cpu);
1559 }
1560 
1561 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1562 {
1563 	if (kvm_vcpu_apicv_active(vcpu))
1564 		avic_vcpu_put(vcpu);
1565 
1566 	svm_prepare_host_switch(vcpu);
1567 
1568 	++vcpu->stat.host_state_reload;
1569 }
1570 
1571 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1572 {
1573 	struct vcpu_svm *svm = to_svm(vcpu);
1574 	unsigned long rflags = svm->vmcb->save.rflags;
1575 
1576 	if (svm->nmi_singlestep) {
1577 		/* Hide our flags if they were not set by the guest */
1578 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1579 			rflags &= ~X86_EFLAGS_TF;
1580 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1581 			rflags &= ~X86_EFLAGS_RF;
1582 	}
1583 	return rflags;
1584 }
1585 
1586 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1587 {
1588 	if (to_svm(vcpu)->nmi_singlestep)
1589 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1590 
1591        /*
1592         * Any change of EFLAGS.VM is accompanied by a reload of SS
1593         * (caused by either a task switch or an inter-privilege IRET),
1594         * so we do not need to update the CPL here.
1595         */
1596 	to_svm(vcpu)->vmcb->save.rflags = rflags;
1597 }
1598 
1599 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1600 {
1601 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1602 
1603 	return sev_es_guest(vcpu->kvm)
1604 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1605 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1606 }
1607 
1608 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1609 {
1610 	kvm_register_mark_available(vcpu, reg);
1611 
1612 	switch (reg) {
1613 	case VCPU_EXREG_PDPTR:
1614 		/*
1615 		 * When !npt_enabled, mmu->pdptrs[] is already available since
1616 		 * it is always updated per SDM when moving to CRs.
1617 		 */
1618 		if (npt_enabled)
1619 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1620 		break;
1621 	default:
1622 		KVM_BUG_ON(1, vcpu->kvm);
1623 	}
1624 }
1625 
1626 static void svm_set_vintr(struct vcpu_svm *svm)
1627 {
1628 	struct vmcb_control_area *control;
1629 
1630 	/*
1631 	 * The following fields are ignored when AVIC is enabled
1632 	 */
1633 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1634 
1635 	svm_set_intercept(svm, INTERCEPT_VINTR);
1636 
1637 	/*
1638 	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1639 	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1640 	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1641 	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1642 	 * interrupts will never be unblocked while L2 is running.
1643 	 */
1644 	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1645 		return;
1646 
1647 	/*
1648 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1649 	 * Actual injection of virtual interrupts happens through EVENTINJ.
1650 	 */
1651 	control = &svm->vmcb->control;
1652 	control->int_vector = 0x0;
1653 	control->int_ctl &= ~V_INTR_PRIO_MASK;
1654 	control->int_ctl |= V_IRQ_MASK |
1655 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1656 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1657 }
1658 
1659 static void svm_clear_vintr(struct vcpu_svm *svm)
1660 {
1661 	svm_clr_intercept(svm, INTERCEPT_VINTR);
1662 
1663 	/* Drop int_ctl fields related to VINTR injection.  */
1664 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1665 	if (is_guest_mode(&svm->vcpu)) {
1666 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1667 
1668 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1669 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1670 
1671 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1672 			V_IRQ_INJECTION_BITS_MASK;
1673 
1674 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1675 	}
1676 
1677 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1678 }
1679 
1680 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1681 {
1682 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1683 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1684 
1685 	switch (seg) {
1686 	case VCPU_SREG_CS: return &save->cs;
1687 	case VCPU_SREG_DS: return &save->ds;
1688 	case VCPU_SREG_ES: return &save->es;
1689 	case VCPU_SREG_FS: return &save01->fs;
1690 	case VCPU_SREG_GS: return &save01->gs;
1691 	case VCPU_SREG_SS: return &save->ss;
1692 	case VCPU_SREG_TR: return &save01->tr;
1693 	case VCPU_SREG_LDTR: return &save01->ldtr;
1694 	}
1695 	BUG();
1696 	return NULL;
1697 }
1698 
1699 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1700 {
1701 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1702 
1703 	return s->base;
1704 }
1705 
1706 static void svm_get_segment(struct kvm_vcpu *vcpu,
1707 			    struct kvm_segment *var, int seg)
1708 {
1709 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1710 
1711 	var->base = s->base;
1712 	var->limit = s->limit;
1713 	var->selector = s->selector;
1714 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1715 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1716 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1717 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1718 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1719 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1720 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1721 
1722 	/*
1723 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1724 	 * However, the SVM spec states that the G bit is not observed by the
1725 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1726 	 * So let's synthesize a legal G bit for all segments, this helps
1727 	 * running KVM nested. It also helps cross-vendor migration, because
1728 	 * Intel's vmentry has a check on the 'G' bit.
1729 	 */
1730 	var->g = s->limit > 0xfffff;
1731 
1732 	/*
1733 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1734 	 * for cross vendor migration purposes by "not present"
1735 	 */
1736 	var->unusable = !var->present;
1737 
1738 	switch (seg) {
1739 	case VCPU_SREG_TR:
1740 		/*
1741 		 * Work around a bug where the busy flag in the tr selector
1742 		 * isn't exposed
1743 		 */
1744 		var->type |= 0x2;
1745 		break;
1746 	case VCPU_SREG_DS:
1747 	case VCPU_SREG_ES:
1748 	case VCPU_SREG_FS:
1749 	case VCPU_SREG_GS:
1750 		/*
1751 		 * The accessed bit must always be set in the segment
1752 		 * descriptor cache, although it can be cleared in the
1753 		 * descriptor, the cached bit always remains at 1. Since
1754 		 * Intel has a check on this, set it here to support
1755 		 * cross-vendor migration.
1756 		 */
1757 		if (!var->unusable)
1758 			var->type |= 0x1;
1759 		break;
1760 	case VCPU_SREG_SS:
1761 		/*
1762 		 * On AMD CPUs sometimes the DB bit in the segment
1763 		 * descriptor is left as 1, although the whole segment has
1764 		 * been made unusable. Clear it here to pass an Intel VMX
1765 		 * entry check when cross vendor migrating.
1766 		 */
1767 		if (var->unusable)
1768 			var->db = 0;
1769 		/* This is symmetric with svm_set_segment() */
1770 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1771 		break;
1772 	}
1773 }
1774 
1775 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1776 {
1777 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1778 
1779 	return save->cpl;
1780 }
1781 
1782 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1783 {
1784 	struct kvm_segment cs;
1785 
1786 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1787 	*db = cs.db;
1788 	*l = cs.l;
1789 }
1790 
1791 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1792 {
1793 	struct vcpu_svm *svm = to_svm(vcpu);
1794 
1795 	dt->size = svm->vmcb->save.idtr.limit;
1796 	dt->address = svm->vmcb->save.idtr.base;
1797 }
1798 
1799 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1800 {
1801 	struct vcpu_svm *svm = to_svm(vcpu);
1802 
1803 	svm->vmcb->save.idtr.limit = dt->size;
1804 	svm->vmcb->save.idtr.base = dt->address ;
1805 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1806 }
1807 
1808 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1809 {
1810 	struct vcpu_svm *svm = to_svm(vcpu);
1811 
1812 	dt->size = svm->vmcb->save.gdtr.limit;
1813 	dt->address = svm->vmcb->save.gdtr.base;
1814 }
1815 
1816 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1817 {
1818 	struct vcpu_svm *svm = to_svm(vcpu);
1819 
1820 	svm->vmcb->save.gdtr.limit = dt->size;
1821 	svm->vmcb->save.gdtr.base = dt->address ;
1822 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1823 }
1824 
1825 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1826 {
1827 	struct vcpu_svm *svm = to_svm(vcpu);
1828 
1829 	/*
1830 	 * For guests that don't set guest_state_protected, the cr3 update is
1831 	 * handled via kvm_mmu_load() while entering the guest. For guests
1832 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1833 	 * VMCB save area now, since the save area will become the initial
1834 	 * contents of the VMSA, and future VMCB save area updates won't be
1835 	 * seen.
1836 	 */
1837 	if (sev_es_guest(vcpu->kvm)) {
1838 		svm->vmcb->save.cr3 = cr3;
1839 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1840 	}
1841 }
1842 
1843 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1844 {
1845 	return true;
1846 }
1847 
1848 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1849 {
1850 	struct vcpu_svm *svm = to_svm(vcpu);
1851 	u64 hcr0 = cr0;
1852 	bool old_paging = is_paging(vcpu);
1853 
1854 #ifdef CONFIG_X86_64
1855 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1856 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1857 			vcpu->arch.efer |= EFER_LMA;
1858 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1859 		}
1860 
1861 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1862 			vcpu->arch.efer &= ~EFER_LMA;
1863 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1864 		}
1865 	}
1866 #endif
1867 	vcpu->arch.cr0 = cr0;
1868 
1869 	if (!npt_enabled) {
1870 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1871 		if (old_paging != is_paging(vcpu))
1872 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1873 	}
1874 
1875 	/*
1876 	 * re-enable caching here because the QEMU bios
1877 	 * does not do it - this results in some delay at
1878 	 * reboot
1879 	 */
1880 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1881 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1882 
1883 	svm->vmcb->save.cr0 = hcr0;
1884 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1885 
1886 	/*
1887 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1888 	 * tracking is done using the CR write traps.
1889 	 */
1890 	if (sev_es_guest(vcpu->kvm))
1891 		return;
1892 
1893 	if (hcr0 == cr0) {
1894 		/* Selective CR0 write remains on.  */
1895 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1896 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1897 	} else {
1898 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1899 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1900 	}
1901 }
1902 
1903 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1904 {
1905 	return true;
1906 }
1907 
1908 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1909 {
1910 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1911 	unsigned long old_cr4 = vcpu->arch.cr4;
1912 
1913 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1914 		svm_flush_tlb_current(vcpu);
1915 
1916 	vcpu->arch.cr4 = cr4;
1917 	if (!npt_enabled) {
1918 		cr4 |= X86_CR4_PAE;
1919 
1920 		if (!is_paging(vcpu))
1921 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1922 	}
1923 	cr4 |= host_cr4_mce;
1924 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1925 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1926 
1927 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1928 		kvm_update_cpuid_runtime(vcpu);
1929 }
1930 
1931 static void svm_set_segment(struct kvm_vcpu *vcpu,
1932 			    struct kvm_segment *var, int seg)
1933 {
1934 	struct vcpu_svm *svm = to_svm(vcpu);
1935 	struct vmcb_seg *s = svm_seg(vcpu, seg);
1936 
1937 	s->base = var->base;
1938 	s->limit = var->limit;
1939 	s->selector = var->selector;
1940 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1941 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1942 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1943 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1944 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1945 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1946 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1947 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1948 
1949 	/*
1950 	 * This is always accurate, except if SYSRET returned to a segment
1951 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1952 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1953 	 * would entail passing the CPL to userspace and back.
1954 	 */
1955 	if (seg == VCPU_SREG_SS)
1956 		/* This is symmetric with svm_get_segment() */
1957 		svm->vmcb->save.cpl = (var->dpl & 3);
1958 
1959 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1960 }
1961 
1962 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1963 {
1964 	struct vcpu_svm *svm = to_svm(vcpu);
1965 
1966 	clr_exception_intercept(svm, BP_VECTOR);
1967 
1968 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1969 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1970 			set_exception_intercept(svm, BP_VECTOR);
1971 	}
1972 }
1973 
1974 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1975 {
1976 	if (sd->next_asid > sd->max_asid) {
1977 		++sd->asid_generation;
1978 		sd->next_asid = sd->min_asid;
1979 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1980 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1981 	}
1982 
1983 	svm->current_vmcb->asid_generation = sd->asid_generation;
1984 	svm->asid = sd->next_asid++;
1985 }
1986 
1987 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1988 {
1989 	struct vmcb *vmcb = svm->vmcb;
1990 
1991 	if (svm->vcpu.arch.guest_state_protected)
1992 		return;
1993 
1994 	if (unlikely(value != vmcb->save.dr6)) {
1995 		vmcb->save.dr6 = value;
1996 		vmcb_mark_dirty(vmcb, VMCB_DR);
1997 	}
1998 }
1999 
2000 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2001 {
2002 	struct vcpu_svm *svm = to_svm(vcpu);
2003 
2004 	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2005 		return;
2006 
2007 	get_debugreg(vcpu->arch.db[0], 0);
2008 	get_debugreg(vcpu->arch.db[1], 1);
2009 	get_debugreg(vcpu->arch.db[2], 2);
2010 	get_debugreg(vcpu->arch.db[3], 3);
2011 	/*
2012 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2013 	 * because db_interception might need it.  We can do it before vmentry.
2014 	 */
2015 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
2016 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2017 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2018 	set_dr_intercepts(svm);
2019 }
2020 
2021 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2022 {
2023 	struct vcpu_svm *svm = to_svm(vcpu);
2024 
2025 	if (vcpu->arch.guest_state_protected)
2026 		return;
2027 
2028 	svm->vmcb->save.dr7 = value;
2029 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2030 }
2031 
2032 static int pf_interception(struct kvm_vcpu *vcpu)
2033 {
2034 	struct vcpu_svm *svm = to_svm(vcpu);
2035 
2036 	u64 fault_address = svm->vmcb->control.exit_info_2;
2037 	u64 error_code = svm->vmcb->control.exit_info_1;
2038 
2039 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
2040 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2041 			svm->vmcb->control.insn_bytes : NULL,
2042 			svm->vmcb->control.insn_len);
2043 }
2044 
2045 static int npf_interception(struct kvm_vcpu *vcpu)
2046 {
2047 	struct vcpu_svm *svm = to_svm(vcpu);
2048 
2049 	u64 fault_address = svm->vmcb->control.exit_info_2;
2050 	u64 error_code = svm->vmcb->control.exit_info_1;
2051 
2052 	trace_kvm_page_fault(vcpu, fault_address, error_code);
2053 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2054 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2055 			svm->vmcb->control.insn_bytes : NULL,
2056 			svm->vmcb->control.insn_len);
2057 }
2058 
2059 static int db_interception(struct kvm_vcpu *vcpu)
2060 {
2061 	struct kvm_run *kvm_run = vcpu->run;
2062 	struct vcpu_svm *svm = to_svm(vcpu);
2063 
2064 	if (!(vcpu->guest_debug &
2065 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2066 		!svm->nmi_singlestep) {
2067 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2068 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2069 		return 1;
2070 	}
2071 
2072 	if (svm->nmi_singlestep) {
2073 		disable_nmi_singlestep(svm);
2074 		/* Make sure we check for pending NMIs upon entry */
2075 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2076 	}
2077 
2078 	if (vcpu->guest_debug &
2079 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2080 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2081 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2082 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2083 		kvm_run->debug.arch.pc =
2084 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2085 		kvm_run->debug.arch.exception = DB_VECTOR;
2086 		return 0;
2087 	}
2088 
2089 	return 1;
2090 }
2091 
2092 static int bp_interception(struct kvm_vcpu *vcpu)
2093 {
2094 	struct vcpu_svm *svm = to_svm(vcpu);
2095 	struct kvm_run *kvm_run = vcpu->run;
2096 
2097 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2098 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2099 	kvm_run->debug.arch.exception = BP_VECTOR;
2100 	return 0;
2101 }
2102 
2103 static int ud_interception(struct kvm_vcpu *vcpu)
2104 {
2105 	return handle_ud(vcpu);
2106 }
2107 
2108 static int ac_interception(struct kvm_vcpu *vcpu)
2109 {
2110 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2111 	return 1;
2112 }
2113 
2114 static bool is_erratum_383(void)
2115 {
2116 	int err, i;
2117 	u64 value;
2118 
2119 	if (!erratum_383_found)
2120 		return false;
2121 
2122 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2123 	if (err)
2124 		return false;
2125 
2126 	/* Bit 62 may or may not be set for this mce */
2127 	value &= ~(1ULL << 62);
2128 
2129 	if (value != 0xb600000000010015ULL)
2130 		return false;
2131 
2132 	/* Clear MCi_STATUS registers */
2133 	for (i = 0; i < 6; ++i)
2134 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2135 
2136 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2137 	if (!err) {
2138 		u32 low, high;
2139 
2140 		value &= ~(1ULL << 2);
2141 		low    = lower_32_bits(value);
2142 		high   = upper_32_bits(value);
2143 
2144 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2145 	}
2146 
2147 	/* Flush tlb to evict multi-match entries */
2148 	__flush_tlb_all();
2149 
2150 	return true;
2151 }
2152 
2153 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2154 {
2155 	if (is_erratum_383()) {
2156 		/*
2157 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2158 		 * guest.
2159 		 */
2160 		pr_err("Guest triggered AMD Erratum 383\n");
2161 
2162 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2163 
2164 		return;
2165 	}
2166 
2167 	/*
2168 	 * On an #MC intercept the MCE handler is not called automatically in
2169 	 * the host. So do it by hand here.
2170 	 */
2171 	kvm_machine_check();
2172 }
2173 
2174 static int mc_interception(struct kvm_vcpu *vcpu)
2175 {
2176 	return 1;
2177 }
2178 
2179 static int shutdown_interception(struct kvm_vcpu *vcpu)
2180 {
2181 	struct kvm_run *kvm_run = vcpu->run;
2182 	struct vcpu_svm *svm = to_svm(vcpu);
2183 
2184 	/*
2185 	 * The VM save area has already been encrypted so it
2186 	 * cannot be reinitialized - just terminate.
2187 	 */
2188 	if (sev_es_guest(vcpu->kvm))
2189 		return -EINVAL;
2190 
2191 	/*
2192 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2193 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2194 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2195 	 * userspace.  At a platform view, INIT is acceptable behavior as
2196 	 * there exist bare metal platforms that automatically INIT the CPU
2197 	 * in response to shutdown.
2198 	 */
2199 	clear_page(svm->vmcb);
2200 	kvm_vcpu_reset(vcpu, true);
2201 
2202 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2203 	return 0;
2204 }
2205 
2206 static int io_interception(struct kvm_vcpu *vcpu)
2207 {
2208 	struct vcpu_svm *svm = to_svm(vcpu);
2209 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2210 	int size, in, string;
2211 	unsigned port;
2212 
2213 	++vcpu->stat.io_exits;
2214 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2215 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2216 	port = io_info >> 16;
2217 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2218 
2219 	if (string) {
2220 		if (sev_es_guest(vcpu->kvm))
2221 			return sev_es_string_io(svm, size, port, in);
2222 		else
2223 			return kvm_emulate_instruction(vcpu, 0);
2224 	}
2225 
2226 	svm->next_rip = svm->vmcb->control.exit_info_2;
2227 
2228 	return kvm_fast_pio(vcpu, size, port, in);
2229 }
2230 
2231 static int nmi_interception(struct kvm_vcpu *vcpu)
2232 {
2233 	return 1;
2234 }
2235 
2236 static int smi_interception(struct kvm_vcpu *vcpu)
2237 {
2238 	return 1;
2239 }
2240 
2241 static int intr_interception(struct kvm_vcpu *vcpu)
2242 {
2243 	++vcpu->stat.irq_exits;
2244 	return 1;
2245 }
2246 
2247 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2248 {
2249 	struct vcpu_svm *svm = to_svm(vcpu);
2250 	struct vmcb *vmcb12;
2251 	struct kvm_host_map map;
2252 	int ret;
2253 
2254 	if (nested_svm_check_permissions(vcpu))
2255 		return 1;
2256 
2257 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2258 	if (ret) {
2259 		if (ret == -EINVAL)
2260 			kvm_inject_gp(vcpu, 0);
2261 		return 1;
2262 	}
2263 
2264 	vmcb12 = map.hva;
2265 
2266 	ret = kvm_skip_emulated_instruction(vcpu);
2267 
2268 	if (vmload) {
2269 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2270 		svm->sysenter_eip_hi = 0;
2271 		svm->sysenter_esp_hi = 0;
2272 	} else {
2273 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2274 	}
2275 
2276 	kvm_vcpu_unmap(vcpu, &map, true);
2277 
2278 	return ret;
2279 }
2280 
2281 static int vmload_interception(struct kvm_vcpu *vcpu)
2282 {
2283 	return vmload_vmsave_interception(vcpu, true);
2284 }
2285 
2286 static int vmsave_interception(struct kvm_vcpu *vcpu)
2287 {
2288 	return vmload_vmsave_interception(vcpu, false);
2289 }
2290 
2291 static int vmrun_interception(struct kvm_vcpu *vcpu)
2292 {
2293 	if (nested_svm_check_permissions(vcpu))
2294 		return 1;
2295 
2296 	return nested_svm_vmrun(vcpu);
2297 }
2298 
2299 enum {
2300 	NONE_SVM_INSTR,
2301 	SVM_INSTR_VMRUN,
2302 	SVM_INSTR_VMLOAD,
2303 	SVM_INSTR_VMSAVE,
2304 };
2305 
2306 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2307 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2308 {
2309 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2310 
2311 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2312 		return NONE_SVM_INSTR;
2313 
2314 	switch (ctxt->modrm) {
2315 	case 0xd8: /* VMRUN */
2316 		return SVM_INSTR_VMRUN;
2317 	case 0xda: /* VMLOAD */
2318 		return SVM_INSTR_VMLOAD;
2319 	case 0xdb: /* VMSAVE */
2320 		return SVM_INSTR_VMSAVE;
2321 	default:
2322 		break;
2323 	}
2324 
2325 	return NONE_SVM_INSTR;
2326 }
2327 
2328 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2329 {
2330 	const int guest_mode_exit_codes[] = {
2331 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2332 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2333 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2334 	};
2335 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2336 		[SVM_INSTR_VMRUN] = vmrun_interception,
2337 		[SVM_INSTR_VMLOAD] = vmload_interception,
2338 		[SVM_INSTR_VMSAVE] = vmsave_interception,
2339 	};
2340 	struct vcpu_svm *svm = to_svm(vcpu);
2341 	int ret;
2342 
2343 	if (is_guest_mode(vcpu)) {
2344 		/* Returns '1' or -errno on failure, '0' on success. */
2345 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2346 		if (ret)
2347 			return ret;
2348 		return 1;
2349 	}
2350 	return svm_instr_handlers[opcode](vcpu);
2351 }
2352 
2353 /*
2354  * #GP handling code. Note that #GP can be triggered under the following two
2355  * cases:
2356  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2357  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2358  *      regions (e.g. SMM memory on host).
2359  *   2) VMware backdoor
2360  */
2361 static int gp_interception(struct kvm_vcpu *vcpu)
2362 {
2363 	struct vcpu_svm *svm = to_svm(vcpu);
2364 	u32 error_code = svm->vmcb->control.exit_info_1;
2365 	int opcode;
2366 
2367 	/* Both #GP cases have zero error_code */
2368 	if (error_code)
2369 		goto reinject;
2370 
2371 	/* Decode the instruction for usage later */
2372 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2373 		goto reinject;
2374 
2375 	opcode = svm_instr_opcode(vcpu);
2376 
2377 	if (opcode == NONE_SVM_INSTR) {
2378 		if (!enable_vmware_backdoor)
2379 			goto reinject;
2380 
2381 		/*
2382 		 * VMware backdoor emulation on #GP interception only handles
2383 		 * IN{S}, OUT{S}, and RDPMC.
2384 		 */
2385 		if (!is_guest_mode(vcpu))
2386 			return kvm_emulate_instruction(vcpu,
2387 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2388 	} else {
2389 		/* All SVM instructions expect page aligned RAX */
2390 		if (svm->vmcb->save.rax & ~PAGE_MASK)
2391 			goto reinject;
2392 
2393 		return emulate_svm_instr(vcpu, opcode);
2394 	}
2395 
2396 reinject:
2397 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2398 	return 1;
2399 }
2400 
2401 void svm_set_gif(struct vcpu_svm *svm, bool value)
2402 {
2403 	if (value) {
2404 		/*
2405 		 * If VGIF is enabled, the STGI intercept is only added to
2406 		 * detect the opening of the SMI/NMI window; remove it now.
2407 		 * Likewise, clear the VINTR intercept, we will set it
2408 		 * again while processing KVM_REQ_EVENT if needed.
2409 		 */
2410 		if (vgif)
2411 			svm_clr_intercept(svm, INTERCEPT_STGI);
2412 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2413 			svm_clear_vintr(svm);
2414 
2415 		enable_gif(svm);
2416 		if (svm->vcpu.arch.smi_pending ||
2417 		    svm->vcpu.arch.nmi_pending ||
2418 		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2419 		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2420 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2421 	} else {
2422 		disable_gif(svm);
2423 
2424 		/*
2425 		 * After a CLGI no interrupts should come.  But if vGIF is
2426 		 * in use, we still rely on the VINTR intercept (rather than
2427 		 * STGI) to detect an open interrupt window.
2428 		*/
2429 		if (!vgif)
2430 			svm_clear_vintr(svm);
2431 	}
2432 }
2433 
2434 static int stgi_interception(struct kvm_vcpu *vcpu)
2435 {
2436 	int ret;
2437 
2438 	if (nested_svm_check_permissions(vcpu))
2439 		return 1;
2440 
2441 	ret = kvm_skip_emulated_instruction(vcpu);
2442 	svm_set_gif(to_svm(vcpu), true);
2443 	return ret;
2444 }
2445 
2446 static int clgi_interception(struct kvm_vcpu *vcpu)
2447 {
2448 	int ret;
2449 
2450 	if (nested_svm_check_permissions(vcpu))
2451 		return 1;
2452 
2453 	ret = kvm_skip_emulated_instruction(vcpu);
2454 	svm_set_gif(to_svm(vcpu), false);
2455 	return ret;
2456 }
2457 
2458 static int invlpga_interception(struct kvm_vcpu *vcpu)
2459 {
2460 	gva_t gva = kvm_rax_read(vcpu);
2461 	u32 asid = kvm_rcx_read(vcpu);
2462 
2463 	/* FIXME: Handle an address size prefix. */
2464 	if (!is_long_mode(vcpu))
2465 		gva = (u32)gva;
2466 
2467 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2468 
2469 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2470 	kvm_mmu_invlpg(vcpu, gva);
2471 
2472 	return kvm_skip_emulated_instruction(vcpu);
2473 }
2474 
2475 static int skinit_interception(struct kvm_vcpu *vcpu)
2476 {
2477 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2478 
2479 	kvm_queue_exception(vcpu, UD_VECTOR);
2480 	return 1;
2481 }
2482 
2483 static int task_switch_interception(struct kvm_vcpu *vcpu)
2484 {
2485 	struct vcpu_svm *svm = to_svm(vcpu);
2486 	u16 tss_selector;
2487 	int reason;
2488 	int int_type = svm->vmcb->control.exit_int_info &
2489 		SVM_EXITINTINFO_TYPE_MASK;
2490 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2491 	uint32_t type =
2492 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2493 	uint32_t idt_v =
2494 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2495 	bool has_error_code = false;
2496 	u32 error_code = 0;
2497 
2498 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2499 
2500 	if (svm->vmcb->control.exit_info_2 &
2501 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2502 		reason = TASK_SWITCH_IRET;
2503 	else if (svm->vmcb->control.exit_info_2 &
2504 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2505 		reason = TASK_SWITCH_JMP;
2506 	else if (idt_v)
2507 		reason = TASK_SWITCH_GATE;
2508 	else
2509 		reason = TASK_SWITCH_CALL;
2510 
2511 	if (reason == TASK_SWITCH_GATE) {
2512 		switch (type) {
2513 		case SVM_EXITINTINFO_TYPE_NMI:
2514 			vcpu->arch.nmi_injected = false;
2515 			break;
2516 		case SVM_EXITINTINFO_TYPE_EXEPT:
2517 			if (svm->vmcb->control.exit_info_2 &
2518 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2519 				has_error_code = true;
2520 				error_code =
2521 					(u32)svm->vmcb->control.exit_info_2;
2522 			}
2523 			kvm_clear_exception_queue(vcpu);
2524 			break;
2525 		case SVM_EXITINTINFO_TYPE_INTR:
2526 		case SVM_EXITINTINFO_TYPE_SOFT:
2527 			kvm_clear_interrupt_queue(vcpu);
2528 			break;
2529 		default:
2530 			break;
2531 		}
2532 	}
2533 
2534 	if (reason != TASK_SWITCH_GATE ||
2535 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2536 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2537 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2538 		if (!svm_skip_emulated_instruction(vcpu))
2539 			return 0;
2540 	}
2541 
2542 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2543 		int_vec = -1;
2544 
2545 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2546 			       has_error_code, error_code);
2547 }
2548 
2549 static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2550 {
2551 	if (!sev_es_guest(svm->vcpu.kvm))
2552 		svm_clr_intercept(svm, INTERCEPT_IRET);
2553 }
2554 
2555 static void svm_set_iret_intercept(struct vcpu_svm *svm)
2556 {
2557 	if (!sev_es_guest(svm->vcpu.kvm))
2558 		svm_set_intercept(svm, INTERCEPT_IRET);
2559 }
2560 
2561 static int iret_interception(struct kvm_vcpu *vcpu)
2562 {
2563 	struct vcpu_svm *svm = to_svm(vcpu);
2564 
2565 	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2566 
2567 	++vcpu->stat.nmi_window_exits;
2568 	svm->awaiting_iret_completion = true;
2569 
2570 	svm_clr_iret_intercept(svm);
2571 	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2572 
2573 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2574 	return 1;
2575 }
2576 
2577 static int invlpg_interception(struct kvm_vcpu *vcpu)
2578 {
2579 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2580 		return kvm_emulate_instruction(vcpu, 0);
2581 
2582 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2583 	return kvm_skip_emulated_instruction(vcpu);
2584 }
2585 
2586 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2587 {
2588 	return kvm_emulate_instruction(vcpu, 0);
2589 }
2590 
2591 static int rsm_interception(struct kvm_vcpu *vcpu)
2592 {
2593 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2594 }
2595 
2596 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2597 					    unsigned long val)
2598 {
2599 	struct vcpu_svm *svm = to_svm(vcpu);
2600 	unsigned long cr0 = vcpu->arch.cr0;
2601 	bool ret = false;
2602 
2603 	if (!is_guest_mode(vcpu) ||
2604 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2605 		return false;
2606 
2607 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2608 	val &= ~SVM_CR0_SELECTIVE_MASK;
2609 
2610 	if (cr0 ^ val) {
2611 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2612 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2613 	}
2614 
2615 	return ret;
2616 }
2617 
2618 #define CR_VALID (1ULL << 63)
2619 
2620 static int cr_interception(struct kvm_vcpu *vcpu)
2621 {
2622 	struct vcpu_svm *svm = to_svm(vcpu);
2623 	int reg, cr;
2624 	unsigned long val;
2625 	int err;
2626 
2627 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2628 		return emulate_on_interception(vcpu);
2629 
2630 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2631 		return emulate_on_interception(vcpu);
2632 
2633 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2634 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2635 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2636 	else
2637 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2638 
2639 	err = 0;
2640 	if (cr >= 16) { /* mov to cr */
2641 		cr -= 16;
2642 		val = kvm_register_read(vcpu, reg);
2643 		trace_kvm_cr_write(cr, val);
2644 		switch (cr) {
2645 		case 0:
2646 			if (!check_selective_cr0_intercepted(vcpu, val))
2647 				err = kvm_set_cr0(vcpu, val);
2648 			else
2649 				return 1;
2650 
2651 			break;
2652 		case 3:
2653 			err = kvm_set_cr3(vcpu, val);
2654 			break;
2655 		case 4:
2656 			err = kvm_set_cr4(vcpu, val);
2657 			break;
2658 		case 8:
2659 			err = kvm_set_cr8(vcpu, val);
2660 			break;
2661 		default:
2662 			WARN(1, "unhandled write to CR%d", cr);
2663 			kvm_queue_exception(vcpu, UD_VECTOR);
2664 			return 1;
2665 		}
2666 	} else { /* mov from cr */
2667 		switch (cr) {
2668 		case 0:
2669 			val = kvm_read_cr0(vcpu);
2670 			break;
2671 		case 2:
2672 			val = vcpu->arch.cr2;
2673 			break;
2674 		case 3:
2675 			val = kvm_read_cr3(vcpu);
2676 			break;
2677 		case 4:
2678 			val = kvm_read_cr4(vcpu);
2679 			break;
2680 		case 8:
2681 			val = kvm_get_cr8(vcpu);
2682 			break;
2683 		default:
2684 			WARN(1, "unhandled read from CR%d", cr);
2685 			kvm_queue_exception(vcpu, UD_VECTOR);
2686 			return 1;
2687 		}
2688 		kvm_register_write(vcpu, reg, val);
2689 		trace_kvm_cr_read(cr, val);
2690 	}
2691 	return kvm_complete_insn_gp(vcpu, err);
2692 }
2693 
2694 static int cr_trap(struct kvm_vcpu *vcpu)
2695 {
2696 	struct vcpu_svm *svm = to_svm(vcpu);
2697 	unsigned long old_value, new_value;
2698 	unsigned int cr;
2699 	int ret = 0;
2700 
2701 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2702 
2703 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2704 	switch (cr) {
2705 	case 0:
2706 		old_value = kvm_read_cr0(vcpu);
2707 		svm_set_cr0(vcpu, new_value);
2708 
2709 		kvm_post_set_cr0(vcpu, old_value, new_value);
2710 		break;
2711 	case 4:
2712 		old_value = kvm_read_cr4(vcpu);
2713 		svm_set_cr4(vcpu, new_value);
2714 
2715 		kvm_post_set_cr4(vcpu, old_value, new_value);
2716 		break;
2717 	case 8:
2718 		ret = kvm_set_cr8(vcpu, new_value);
2719 		break;
2720 	default:
2721 		WARN(1, "unhandled CR%d write trap", cr);
2722 		kvm_queue_exception(vcpu, UD_VECTOR);
2723 		return 1;
2724 	}
2725 
2726 	return kvm_complete_insn_gp(vcpu, ret);
2727 }
2728 
2729 static int dr_interception(struct kvm_vcpu *vcpu)
2730 {
2731 	struct vcpu_svm *svm = to_svm(vcpu);
2732 	int reg, dr;
2733 	unsigned long val;
2734 	int err = 0;
2735 
2736 	/*
2737 	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2738 	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2739 	 */
2740 	if (sev_es_guest(vcpu->kvm))
2741 		return 1;
2742 
2743 	if (vcpu->guest_debug == 0) {
2744 		/*
2745 		 * No more DR vmexits; force a reload of the debug registers
2746 		 * and reenter on this instruction.  The next vmexit will
2747 		 * retrieve the full state of the debug registers.
2748 		 */
2749 		clr_dr_intercepts(svm);
2750 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2751 		return 1;
2752 	}
2753 
2754 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2755 		return emulate_on_interception(vcpu);
2756 
2757 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2758 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2759 	if (dr >= 16) { /* mov to DRn  */
2760 		dr -= 16;
2761 		val = kvm_register_read(vcpu, reg);
2762 		err = kvm_set_dr(vcpu, dr, val);
2763 	} else {
2764 		kvm_get_dr(vcpu, dr, &val);
2765 		kvm_register_write(vcpu, reg, val);
2766 	}
2767 
2768 	return kvm_complete_insn_gp(vcpu, err);
2769 }
2770 
2771 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2772 {
2773 	int r;
2774 
2775 	u8 cr8_prev = kvm_get_cr8(vcpu);
2776 	/* instruction emulation calls kvm_set_cr8() */
2777 	r = cr_interception(vcpu);
2778 	if (lapic_in_kernel(vcpu))
2779 		return r;
2780 	if (cr8_prev <= kvm_get_cr8(vcpu))
2781 		return r;
2782 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2783 	return 0;
2784 }
2785 
2786 static int efer_trap(struct kvm_vcpu *vcpu)
2787 {
2788 	struct msr_data msr_info;
2789 	int ret;
2790 
2791 	/*
2792 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2793 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2794 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2795 	 * the guest doesn't have X86_FEATURE_SVM.
2796 	 */
2797 	msr_info.host_initiated = false;
2798 	msr_info.index = MSR_EFER;
2799 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2800 	ret = kvm_set_msr_common(vcpu, &msr_info);
2801 
2802 	return kvm_complete_insn_gp(vcpu, ret);
2803 }
2804 
2805 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2806 {
2807 	msr->data = 0;
2808 
2809 	switch (msr->index) {
2810 	case MSR_AMD64_DE_CFG:
2811 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2812 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2813 		break;
2814 	default:
2815 		return KVM_MSR_RET_INVALID;
2816 	}
2817 
2818 	return 0;
2819 }
2820 
2821 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2822 {
2823 	struct vcpu_svm *svm = to_svm(vcpu);
2824 
2825 	switch (msr_info->index) {
2826 	case MSR_AMD64_TSC_RATIO:
2827 		if (!msr_info->host_initiated &&
2828 		    !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2829 			return 1;
2830 		msr_info->data = svm->tsc_ratio_msr;
2831 		break;
2832 	case MSR_STAR:
2833 		msr_info->data = svm->vmcb01.ptr->save.star;
2834 		break;
2835 #ifdef CONFIG_X86_64
2836 	case MSR_LSTAR:
2837 		msr_info->data = svm->vmcb01.ptr->save.lstar;
2838 		break;
2839 	case MSR_CSTAR:
2840 		msr_info->data = svm->vmcb01.ptr->save.cstar;
2841 		break;
2842 	case MSR_KERNEL_GS_BASE:
2843 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2844 		break;
2845 	case MSR_SYSCALL_MASK:
2846 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2847 		break;
2848 #endif
2849 	case MSR_IA32_SYSENTER_CS:
2850 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2851 		break;
2852 	case MSR_IA32_SYSENTER_EIP:
2853 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2854 		if (guest_cpuid_is_intel(vcpu))
2855 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2856 		break;
2857 	case MSR_IA32_SYSENTER_ESP:
2858 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2859 		if (guest_cpuid_is_intel(vcpu))
2860 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2861 		break;
2862 	case MSR_TSC_AUX:
2863 		msr_info->data = svm->tsc_aux;
2864 		break;
2865 	case MSR_IA32_DEBUGCTLMSR:
2866 		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2867 		break;
2868 	case MSR_IA32_LASTBRANCHFROMIP:
2869 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2870 		break;
2871 	case MSR_IA32_LASTBRANCHTOIP:
2872 		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2873 		break;
2874 	case MSR_IA32_LASTINTFROMIP:
2875 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2876 		break;
2877 	case MSR_IA32_LASTINTTOIP:
2878 		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2879 		break;
2880 	case MSR_VM_HSAVE_PA:
2881 		msr_info->data = svm->nested.hsave_msr;
2882 		break;
2883 	case MSR_VM_CR:
2884 		msr_info->data = svm->nested.vm_cr_msr;
2885 		break;
2886 	case MSR_IA32_SPEC_CTRL:
2887 		if (!msr_info->host_initiated &&
2888 		    !guest_has_spec_ctrl_msr(vcpu))
2889 			return 1;
2890 
2891 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2892 			msr_info->data = svm->vmcb->save.spec_ctrl;
2893 		else
2894 			msr_info->data = svm->spec_ctrl;
2895 		break;
2896 	case MSR_AMD64_VIRT_SPEC_CTRL:
2897 		if (!msr_info->host_initiated &&
2898 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2899 			return 1;
2900 
2901 		msr_info->data = svm->virt_spec_ctrl;
2902 		break;
2903 	case MSR_F15H_IC_CFG: {
2904 
2905 		int family, model;
2906 
2907 		family = guest_cpuid_family(vcpu);
2908 		model  = guest_cpuid_model(vcpu);
2909 
2910 		if (family < 0 || model < 0)
2911 			return kvm_get_msr_common(vcpu, msr_info);
2912 
2913 		msr_info->data = 0;
2914 
2915 		if (family == 0x15 &&
2916 		    (model >= 0x2 && model < 0x20))
2917 			msr_info->data = 0x1E;
2918 		}
2919 		break;
2920 	case MSR_AMD64_DE_CFG:
2921 		msr_info->data = svm->msr_decfg;
2922 		break;
2923 	default:
2924 		return kvm_get_msr_common(vcpu, msr_info);
2925 	}
2926 	return 0;
2927 }
2928 
2929 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2930 {
2931 	struct vcpu_svm *svm = to_svm(vcpu);
2932 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2933 		return kvm_complete_insn_gp(vcpu, err);
2934 
2935 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2936 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2937 				X86_TRAP_GP |
2938 				SVM_EVTINJ_TYPE_EXEPT |
2939 				SVM_EVTINJ_VALID);
2940 	return 1;
2941 }
2942 
2943 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2944 {
2945 	struct vcpu_svm *svm = to_svm(vcpu);
2946 	int svm_dis, chg_mask;
2947 
2948 	if (data & ~SVM_VM_CR_VALID_MASK)
2949 		return 1;
2950 
2951 	chg_mask = SVM_VM_CR_VALID_MASK;
2952 
2953 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2954 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2955 
2956 	svm->nested.vm_cr_msr &= ~chg_mask;
2957 	svm->nested.vm_cr_msr |= (data & chg_mask);
2958 
2959 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2960 
2961 	/* check for svm_disable while efer.svme is set */
2962 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2963 		return 1;
2964 
2965 	return 0;
2966 }
2967 
2968 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2969 {
2970 	struct vcpu_svm *svm = to_svm(vcpu);
2971 	int ret = 0;
2972 
2973 	u32 ecx = msr->index;
2974 	u64 data = msr->data;
2975 	switch (ecx) {
2976 	case MSR_AMD64_TSC_RATIO:
2977 
2978 		if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
2979 
2980 			if (!msr->host_initiated)
2981 				return 1;
2982 			/*
2983 			 * In case TSC scaling is not enabled, always
2984 			 * leave this MSR at the default value.
2985 			 *
2986 			 * Due to bug in qemu 6.2.0, it would try to set
2987 			 * this msr to 0 if tsc scaling is not enabled.
2988 			 * Ignore this value as well.
2989 			 */
2990 			if (data != 0 && data != svm->tsc_ratio_msr)
2991 				return 1;
2992 			break;
2993 		}
2994 
2995 		if (data & SVM_TSC_RATIO_RSVD)
2996 			return 1;
2997 
2998 		svm->tsc_ratio_msr = data;
2999 
3000 		if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3001 		    is_guest_mode(vcpu))
3002 			nested_svm_update_tsc_ratio_msr(vcpu);
3003 
3004 		break;
3005 	case MSR_IA32_CR_PAT:
3006 		ret = kvm_set_msr_common(vcpu, msr);
3007 		if (ret)
3008 			break;
3009 
3010 		svm->vmcb01.ptr->save.g_pat = data;
3011 		if (is_guest_mode(vcpu))
3012 			nested_vmcb02_compute_g_pat(svm);
3013 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3014 		break;
3015 	case MSR_IA32_SPEC_CTRL:
3016 		if (!msr->host_initiated &&
3017 		    !guest_has_spec_ctrl_msr(vcpu))
3018 			return 1;
3019 
3020 		if (kvm_spec_ctrl_test_value(data))
3021 			return 1;
3022 
3023 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3024 			svm->vmcb->save.spec_ctrl = data;
3025 		else
3026 			svm->spec_ctrl = data;
3027 		if (!data)
3028 			break;
3029 
3030 		/*
3031 		 * For non-nested:
3032 		 * When it's written (to non-zero) for the first time, pass
3033 		 * it through.
3034 		 *
3035 		 * For nested:
3036 		 * The handling of the MSR bitmap for L2 guests is done in
3037 		 * nested_svm_vmrun_msrpm.
3038 		 * We update the L1 MSR bit as well since it will end up
3039 		 * touching the MSR anyway now.
3040 		 */
3041 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3042 		break;
3043 	case MSR_AMD64_VIRT_SPEC_CTRL:
3044 		if (!msr->host_initiated &&
3045 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3046 			return 1;
3047 
3048 		if (data & ~SPEC_CTRL_SSBD)
3049 			return 1;
3050 
3051 		svm->virt_spec_ctrl = data;
3052 		break;
3053 	case MSR_STAR:
3054 		svm->vmcb01.ptr->save.star = data;
3055 		break;
3056 #ifdef CONFIG_X86_64
3057 	case MSR_LSTAR:
3058 		svm->vmcb01.ptr->save.lstar = data;
3059 		break;
3060 	case MSR_CSTAR:
3061 		svm->vmcb01.ptr->save.cstar = data;
3062 		break;
3063 	case MSR_KERNEL_GS_BASE:
3064 		svm->vmcb01.ptr->save.kernel_gs_base = data;
3065 		break;
3066 	case MSR_SYSCALL_MASK:
3067 		svm->vmcb01.ptr->save.sfmask = data;
3068 		break;
3069 #endif
3070 	case MSR_IA32_SYSENTER_CS:
3071 		svm->vmcb01.ptr->save.sysenter_cs = data;
3072 		break;
3073 	case MSR_IA32_SYSENTER_EIP:
3074 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3075 		/*
3076 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3077 		 * when we spoof an Intel vendor ID (for cross vendor migration).
3078 		 * In this case we use this intercept to track the high
3079 		 * 32 bit part of these msrs to support Intel's
3080 		 * implementation of SYSENTER/SYSEXIT.
3081 		 */
3082 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3083 		break;
3084 	case MSR_IA32_SYSENTER_ESP:
3085 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3086 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3087 		break;
3088 	case MSR_TSC_AUX:
3089 		/*
3090 		 * TSC_AUX is usually changed only during boot and never read
3091 		 * directly.  Intercept TSC_AUX instead of exposing it to the
3092 		 * guest via direct_access_msrs, and switch it via user return.
3093 		 */
3094 		preempt_disable();
3095 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3096 		preempt_enable();
3097 		if (ret)
3098 			break;
3099 
3100 		svm->tsc_aux = data;
3101 		break;
3102 	case MSR_IA32_DEBUGCTLMSR:
3103 		if (!lbrv) {
3104 			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3105 			break;
3106 		}
3107 		if (data & DEBUGCTL_RESERVED_BITS)
3108 			return 1;
3109 
3110 		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3111 		svm_update_lbrv(vcpu);
3112 		break;
3113 	case MSR_VM_HSAVE_PA:
3114 		/*
3115 		 * Old kernels did not validate the value written to
3116 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3117 		 * value to allow live migrating buggy or malicious guests
3118 		 * originating from those kernels.
3119 		 */
3120 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3121 			return 1;
3122 
3123 		svm->nested.hsave_msr = data & PAGE_MASK;
3124 		break;
3125 	case MSR_VM_CR:
3126 		return svm_set_vm_cr(vcpu, data);
3127 	case MSR_VM_IGNNE:
3128 		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3129 		break;
3130 	case MSR_AMD64_DE_CFG: {
3131 		struct kvm_msr_entry msr_entry;
3132 
3133 		msr_entry.index = msr->index;
3134 		if (svm_get_msr_feature(&msr_entry))
3135 			return 1;
3136 
3137 		/* Check the supported bits */
3138 		if (data & ~msr_entry.data)
3139 			return 1;
3140 
3141 		/* Don't allow the guest to change a bit, #GP */
3142 		if (!msr->host_initiated && (data ^ msr_entry.data))
3143 			return 1;
3144 
3145 		svm->msr_decfg = data;
3146 		break;
3147 	}
3148 	default:
3149 		return kvm_set_msr_common(vcpu, msr);
3150 	}
3151 	return ret;
3152 }
3153 
3154 static int msr_interception(struct kvm_vcpu *vcpu)
3155 {
3156 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3157 		return kvm_emulate_wrmsr(vcpu);
3158 	else
3159 		return kvm_emulate_rdmsr(vcpu);
3160 }
3161 
3162 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3163 {
3164 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3165 	svm_clear_vintr(to_svm(vcpu));
3166 
3167 	/*
3168 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3169 	 * In this case AVIC was temporarily disabled for
3170 	 * requesting the IRQ window and we have to re-enable it.
3171 	 *
3172 	 * If running nested, still remove the VM wide AVIC inhibit to
3173 	 * support case in which the interrupt window was requested when the
3174 	 * vCPU was not running nested.
3175 
3176 	 * All vCPUs which run still run nested, will remain to have their
3177 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3178 	 */
3179 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3180 
3181 	++vcpu->stat.irq_window_exits;
3182 	return 1;
3183 }
3184 
3185 static int pause_interception(struct kvm_vcpu *vcpu)
3186 {
3187 	bool in_kernel;
3188 	/*
3189 	 * CPL is not made available for an SEV-ES guest, therefore
3190 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3191 	 * set in_kernel to false as well.
3192 	 */
3193 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3194 
3195 	grow_ple_window(vcpu);
3196 
3197 	kvm_vcpu_on_spin(vcpu, in_kernel);
3198 	return kvm_skip_emulated_instruction(vcpu);
3199 }
3200 
3201 static int invpcid_interception(struct kvm_vcpu *vcpu)
3202 {
3203 	struct vcpu_svm *svm = to_svm(vcpu);
3204 	unsigned long type;
3205 	gva_t gva;
3206 
3207 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3208 		kvm_queue_exception(vcpu, UD_VECTOR);
3209 		return 1;
3210 	}
3211 
3212 	/*
3213 	 * For an INVPCID intercept:
3214 	 * EXITINFO1 provides the linear address of the memory operand.
3215 	 * EXITINFO2 provides the contents of the register operand.
3216 	 */
3217 	type = svm->vmcb->control.exit_info_2;
3218 	gva = svm->vmcb->control.exit_info_1;
3219 
3220 	return kvm_handle_invpcid(vcpu, type, gva);
3221 }
3222 
3223 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3224 	[SVM_EXIT_READ_CR0]			= cr_interception,
3225 	[SVM_EXIT_READ_CR3]			= cr_interception,
3226 	[SVM_EXIT_READ_CR4]			= cr_interception,
3227 	[SVM_EXIT_READ_CR8]			= cr_interception,
3228 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3229 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3230 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3231 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3232 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3233 	[SVM_EXIT_READ_DR0]			= dr_interception,
3234 	[SVM_EXIT_READ_DR1]			= dr_interception,
3235 	[SVM_EXIT_READ_DR2]			= dr_interception,
3236 	[SVM_EXIT_READ_DR3]			= dr_interception,
3237 	[SVM_EXIT_READ_DR4]			= dr_interception,
3238 	[SVM_EXIT_READ_DR5]			= dr_interception,
3239 	[SVM_EXIT_READ_DR6]			= dr_interception,
3240 	[SVM_EXIT_READ_DR7]			= dr_interception,
3241 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3242 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3243 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3244 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3245 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3246 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3247 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3248 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3249 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3250 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3251 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3252 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3253 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3254 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3255 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3256 	[SVM_EXIT_INTR]				= intr_interception,
3257 	[SVM_EXIT_NMI]				= nmi_interception,
3258 	[SVM_EXIT_SMI]				= smi_interception,
3259 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3260 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3261 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3262 	[SVM_EXIT_IRET]                         = iret_interception,
3263 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3264 	[SVM_EXIT_PAUSE]			= pause_interception,
3265 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3266 	[SVM_EXIT_INVLPG]			= invlpg_interception,
3267 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3268 	[SVM_EXIT_IOIO]				= io_interception,
3269 	[SVM_EXIT_MSR]				= msr_interception,
3270 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3271 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3272 	[SVM_EXIT_VMRUN]			= vmrun_interception,
3273 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3274 	[SVM_EXIT_VMLOAD]			= vmload_interception,
3275 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3276 	[SVM_EXIT_STGI]				= stgi_interception,
3277 	[SVM_EXIT_CLGI]				= clgi_interception,
3278 	[SVM_EXIT_SKINIT]			= skinit_interception,
3279 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3280 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3281 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3282 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3283 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3284 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3285 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3286 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3287 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3288 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3289 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3290 	[SVM_EXIT_NPF]				= npf_interception,
3291 	[SVM_EXIT_RSM]                          = rsm_interception,
3292 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3293 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3294 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3295 };
3296 
3297 static void dump_vmcb(struct kvm_vcpu *vcpu)
3298 {
3299 	struct vcpu_svm *svm = to_svm(vcpu);
3300 	struct vmcb_control_area *control = &svm->vmcb->control;
3301 	struct vmcb_save_area *save = &svm->vmcb->save;
3302 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3303 
3304 	if (!dump_invalid_vmcb) {
3305 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3306 		return;
3307 	}
3308 
3309 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3310 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3311 	pr_err("VMCB Control Area:\n");
3312 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3313 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3314 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3315 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3316 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3317 	pr_err("%-20s%08x %08x\n", "intercepts:",
3318               control->intercepts[INTERCEPT_WORD3],
3319 	       control->intercepts[INTERCEPT_WORD4]);
3320 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3321 	pr_err("%-20s%d\n", "pause filter threshold:",
3322 	       control->pause_filter_thresh);
3323 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3324 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3325 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3326 	pr_err("%-20s%d\n", "asid:", control->asid);
3327 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3328 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3329 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3330 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3331 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3332 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3333 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3334 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3335 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3336 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3337 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3338 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3339 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3340 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3341 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3342 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3343 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3344 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3345 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3346 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3347 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3348 	pr_err("VMCB State Save Area:\n");
3349 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3350 	       "es:",
3351 	       save->es.selector, save->es.attrib,
3352 	       save->es.limit, save->es.base);
3353 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3354 	       "cs:",
3355 	       save->cs.selector, save->cs.attrib,
3356 	       save->cs.limit, save->cs.base);
3357 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3358 	       "ss:",
3359 	       save->ss.selector, save->ss.attrib,
3360 	       save->ss.limit, save->ss.base);
3361 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3362 	       "ds:",
3363 	       save->ds.selector, save->ds.attrib,
3364 	       save->ds.limit, save->ds.base);
3365 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3366 	       "fs:",
3367 	       save01->fs.selector, save01->fs.attrib,
3368 	       save01->fs.limit, save01->fs.base);
3369 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3370 	       "gs:",
3371 	       save01->gs.selector, save01->gs.attrib,
3372 	       save01->gs.limit, save01->gs.base);
3373 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3374 	       "gdtr:",
3375 	       save->gdtr.selector, save->gdtr.attrib,
3376 	       save->gdtr.limit, save->gdtr.base);
3377 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3378 	       "ldtr:",
3379 	       save01->ldtr.selector, save01->ldtr.attrib,
3380 	       save01->ldtr.limit, save01->ldtr.base);
3381 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3382 	       "idtr:",
3383 	       save->idtr.selector, save->idtr.attrib,
3384 	       save->idtr.limit, save->idtr.base);
3385 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3386 	       "tr:",
3387 	       save01->tr.selector, save01->tr.attrib,
3388 	       save01->tr.limit, save01->tr.base);
3389 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3390 	       save->vmpl, save->cpl, save->efer);
3391 	pr_err("%-15s %016llx %-13s %016llx\n",
3392 	       "cr0:", save->cr0, "cr2:", save->cr2);
3393 	pr_err("%-15s %016llx %-13s %016llx\n",
3394 	       "cr3:", save->cr3, "cr4:", save->cr4);
3395 	pr_err("%-15s %016llx %-13s %016llx\n",
3396 	       "dr6:", save->dr6, "dr7:", save->dr7);
3397 	pr_err("%-15s %016llx %-13s %016llx\n",
3398 	       "rip:", save->rip, "rflags:", save->rflags);
3399 	pr_err("%-15s %016llx %-13s %016llx\n",
3400 	       "rsp:", save->rsp, "rax:", save->rax);
3401 	pr_err("%-15s %016llx %-13s %016llx\n",
3402 	       "star:", save01->star, "lstar:", save01->lstar);
3403 	pr_err("%-15s %016llx %-13s %016llx\n",
3404 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3405 	pr_err("%-15s %016llx %-13s %016llx\n",
3406 	       "kernel_gs_base:", save01->kernel_gs_base,
3407 	       "sysenter_cs:", save01->sysenter_cs);
3408 	pr_err("%-15s %016llx %-13s %016llx\n",
3409 	       "sysenter_esp:", save01->sysenter_esp,
3410 	       "sysenter_eip:", save01->sysenter_eip);
3411 	pr_err("%-15s %016llx %-13s %016llx\n",
3412 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3413 	pr_err("%-15s %016llx %-13s %016llx\n",
3414 	       "br_from:", save->br_from, "br_to:", save->br_to);
3415 	pr_err("%-15s %016llx %-13s %016llx\n",
3416 	       "excp_from:", save->last_excp_from,
3417 	       "excp_to:", save->last_excp_to);
3418 }
3419 
3420 static bool svm_check_exit_valid(u64 exit_code)
3421 {
3422 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3423 		svm_exit_handlers[exit_code]);
3424 }
3425 
3426 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3427 {
3428 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3429 	dump_vmcb(vcpu);
3430 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3431 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3432 	vcpu->run->internal.ndata = 2;
3433 	vcpu->run->internal.data[0] = exit_code;
3434 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3435 	return 0;
3436 }
3437 
3438 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3439 {
3440 	if (!svm_check_exit_valid(exit_code))
3441 		return svm_handle_invalid_exit(vcpu, exit_code);
3442 
3443 #ifdef CONFIG_RETPOLINE
3444 	if (exit_code == SVM_EXIT_MSR)
3445 		return msr_interception(vcpu);
3446 	else if (exit_code == SVM_EXIT_VINTR)
3447 		return interrupt_window_interception(vcpu);
3448 	else if (exit_code == SVM_EXIT_INTR)
3449 		return intr_interception(vcpu);
3450 	else if (exit_code == SVM_EXIT_HLT)
3451 		return kvm_emulate_halt(vcpu);
3452 	else if (exit_code == SVM_EXIT_NPF)
3453 		return npf_interception(vcpu);
3454 #endif
3455 	return svm_exit_handlers[exit_code](vcpu);
3456 }
3457 
3458 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3459 			      u64 *info1, u64 *info2,
3460 			      u32 *intr_info, u32 *error_code)
3461 {
3462 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3463 
3464 	*reason = control->exit_code;
3465 	*info1 = control->exit_info_1;
3466 	*info2 = control->exit_info_2;
3467 	*intr_info = control->exit_int_info;
3468 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3469 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3470 		*error_code = control->exit_int_info_err;
3471 	else
3472 		*error_code = 0;
3473 }
3474 
3475 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3476 {
3477 	struct vcpu_svm *svm = to_svm(vcpu);
3478 	struct kvm_run *kvm_run = vcpu->run;
3479 	u32 exit_code = svm->vmcb->control.exit_code;
3480 
3481 	/* SEV-ES guests must use the CR write traps to track CR registers. */
3482 	if (!sev_es_guest(vcpu->kvm)) {
3483 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3484 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3485 		if (npt_enabled)
3486 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3487 	}
3488 
3489 	if (is_guest_mode(vcpu)) {
3490 		int vmexit;
3491 
3492 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3493 
3494 		vmexit = nested_svm_exit_special(svm);
3495 
3496 		if (vmexit == NESTED_EXIT_CONTINUE)
3497 			vmexit = nested_svm_exit_handled(svm);
3498 
3499 		if (vmexit == NESTED_EXIT_DONE)
3500 			return 1;
3501 	}
3502 
3503 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3504 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3505 		kvm_run->fail_entry.hardware_entry_failure_reason
3506 			= svm->vmcb->control.exit_code;
3507 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3508 		dump_vmcb(vcpu);
3509 		return 0;
3510 	}
3511 
3512 	if (exit_fastpath != EXIT_FASTPATH_NONE)
3513 		return 1;
3514 
3515 	return svm_invoke_exit_handler(vcpu, exit_code);
3516 }
3517 
3518 static void pre_svm_run(struct kvm_vcpu *vcpu)
3519 {
3520 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3521 	struct vcpu_svm *svm = to_svm(vcpu);
3522 
3523 	/*
3524 	 * If the previous vmrun of the vmcb occurred on a different physical
3525 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3526 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3527 	 */
3528 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3529 		svm->current_vmcb->asid_generation = 0;
3530 		vmcb_mark_all_dirty(svm->vmcb);
3531 		svm->current_vmcb->cpu = vcpu->cpu;
3532         }
3533 
3534 	if (sev_guest(vcpu->kvm))
3535 		return pre_sev_run(svm, vcpu->cpu);
3536 
3537 	/* FIXME: handle wraparound of asid_generation */
3538 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3539 		new_asid(svm, sd);
3540 }
3541 
3542 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3543 {
3544 	struct vcpu_svm *svm = to_svm(vcpu);
3545 
3546 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3547 
3548 	if (svm->nmi_l1_to_l2)
3549 		return;
3550 
3551 	svm->nmi_masked = true;
3552 	svm_set_iret_intercept(svm);
3553 	++vcpu->stat.nmi_injections;
3554 }
3555 
3556 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3557 {
3558 	struct vcpu_svm *svm = to_svm(vcpu);
3559 
3560 	if (!is_vnmi_enabled(svm))
3561 		return false;
3562 
3563 	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3564 }
3565 
3566 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3567 {
3568 	struct vcpu_svm *svm = to_svm(vcpu);
3569 
3570 	if (!is_vnmi_enabled(svm))
3571 		return false;
3572 
3573 	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3574 		return false;
3575 
3576 	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3577 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3578 
3579 	/*
3580 	 * Because the pending NMI is serviced by hardware, KVM can't know when
3581 	 * the NMI is "injected", but for all intents and purposes, passing the
3582 	 * NMI off to hardware counts as injection.
3583 	 */
3584 	++vcpu->stat.nmi_injections;
3585 
3586 	return true;
3587 }
3588 
3589 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3590 {
3591 	struct vcpu_svm *svm = to_svm(vcpu);
3592 	u32 type;
3593 
3594 	if (vcpu->arch.interrupt.soft) {
3595 		if (svm_update_soft_interrupt_rip(vcpu))
3596 			return;
3597 
3598 		type = SVM_EVTINJ_TYPE_SOFT;
3599 	} else {
3600 		type = SVM_EVTINJ_TYPE_INTR;
3601 	}
3602 
3603 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3604 			   vcpu->arch.interrupt.soft, reinjected);
3605 	++vcpu->stat.irq_injections;
3606 
3607 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3608 				       SVM_EVTINJ_VALID | type;
3609 }
3610 
3611 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3612 				     int trig_mode, int vector)
3613 {
3614 	/*
3615 	 * apic->apicv_active must be read after vcpu->mode.
3616 	 * Pairs with smp_store_release in vcpu_enter_guest.
3617 	 */
3618 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3619 
3620 	/* Note, this is called iff the local APIC is in-kernel. */
3621 	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3622 		/* Process the interrupt via kvm_check_and_inject_events(). */
3623 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3624 		kvm_vcpu_kick(vcpu);
3625 		return;
3626 	}
3627 
3628 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3629 	if (in_guest_mode) {
3630 		/*
3631 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3632 		 * the vCPU exits the guest before the doorbell chimes, hardware
3633 		 * will automatically process AVIC interrupts at the next VMRUN.
3634 		 */
3635 		avic_ring_doorbell(vcpu);
3636 	} else {
3637 		/*
3638 		 * Wake the vCPU if it was blocking.  KVM will then detect the
3639 		 * pending IRQ when checking if the vCPU has a wake event.
3640 		 */
3641 		kvm_vcpu_wake_up(vcpu);
3642 	}
3643 }
3644 
3645 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3646 				  int trig_mode, int vector)
3647 {
3648 	kvm_lapic_set_irr(vector, apic);
3649 
3650 	/*
3651 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3652 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3653 	 * the read of guest_mode.  This guarantees that either VMRUN will see
3654 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3655 	 * will signal the doorbell if the CPU has already entered the guest.
3656 	 */
3657 	smp_mb__after_atomic();
3658 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3659 }
3660 
3661 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3662 {
3663 	struct vcpu_svm *svm = to_svm(vcpu);
3664 
3665 	/*
3666 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3667 	 * tracking is done using the CR write traps.
3668 	 */
3669 	if (sev_es_guest(vcpu->kvm))
3670 		return;
3671 
3672 	if (nested_svm_virtualize_tpr(vcpu))
3673 		return;
3674 
3675 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3676 
3677 	if (irr == -1)
3678 		return;
3679 
3680 	if (tpr >= irr)
3681 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3682 }
3683 
3684 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3685 {
3686 	struct vcpu_svm *svm = to_svm(vcpu);
3687 
3688 	if (is_vnmi_enabled(svm))
3689 		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3690 	else
3691 		return svm->nmi_masked;
3692 }
3693 
3694 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3695 {
3696 	struct vcpu_svm *svm = to_svm(vcpu);
3697 
3698 	if (is_vnmi_enabled(svm)) {
3699 		if (masked)
3700 			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3701 		else
3702 			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3703 
3704 	} else {
3705 		svm->nmi_masked = masked;
3706 		if (masked)
3707 			svm_set_iret_intercept(svm);
3708 		else
3709 			svm_clr_iret_intercept(svm);
3710 	}
3711 }
3712 
3713 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3714 {
3715 	struct vcpu_svm *svm = to_svm(vcpu);
3716 	struct vmcb *vmcb = svm->vmcb;
3717 
3718 	if (!gif_set(svm))
3719 		return true;
3720 
3721 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3722 		return false;
3723 
3724 	if (svm_get_nmi_mask(vcpu))
3725 		return true;
3726 
3727 	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3728 }
3729 
3730 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3731 {
3732 	struct vcpu_svm *svm = to_svm(vcpu);
3733 	if (svm->nested.nested_run_pending)
3734 		return -EBUSY;
3735 
3736 	if (svm_nmi_blocked(vcpu))
3737 		return 0;
3738 
3739 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3740 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3741 		return -EBUSY;
3742 	return 1;
3743 }
3744 
3745 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3746 {
3747 	struct vcpu_svm *svm = to_svm(vcpu);
3748 	struct vmcb *vmcb = svm->vmcb;
3749 
3750 	if (!gif_set(svm))
3751 		return true;
3752 
3753 	if (is_guest_mode(vcpu)) {
3754 		/* As long as interrupts are being delivered...  */
3755 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3756 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3757 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3758 			return true;
3759 
3760 		/* ... vmexits aren't blocked by the interrupt shadow  */
3761 		if (nested_exit_on_intr(svm))
3762 			return false;
3763 	} else {
3764 		if (!svm_get_if_flag(vcpu))
3765 			return true;
3766 	}
3767 
3768 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3769 }
3770 
3771 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3772 {
3773 	struct vcpu_svm *svm = to_svm(vcpu);
3774 
3775 	if (svm->nested.nested_run_pending)
3776 		return -EBUSY;
3777 
3778 	if (svm_interrupt_blocked(vcpu))
3779 		return 0;
3780 
3781 	/*
3782 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3783 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3784 	 */
3785 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3786 		return -EBUSY;
3787 
3788 	return 1;
3789 }
3790 
3791 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3792 {
3793 	struct vcpu_svm *svm = to_svm(vcpu);
3794 
3795 	/*
3796 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3797 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3798 	 * get that intercept, this function will be called again though and
3799 	 * we'll get the vintr intercept. However, if the vGIF feature is
3800 	 * enabled, the STGI interception will not occur. Enable the irq
3801 	 * window under the assumption that the hardware will set the GIF.
3802 	 */
3803 	if (vgif || gif_set(svm)) {
3804 		/*
3805 		 * IRQ window is not needed when AVIC is enabled,
3806 		 * unless we have pending ExtINT since it cannot be injected
3807 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3808 		 * and fallback to injecting IRQ via V_IRQ.
3809 		 *
3810 		 * If running nested, AVIC is already locally inhibited
3811 		 * on this vCPU, therefore there is no need to request
3812 		 * the VM wide AVIC inhibition.
3813 		 */
3814 		if (!is_guest_mode(vcpu))
3815 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3816 
3817 		svm_set_vintr(svm);
3818 	}
3819 }
3820 
3821 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3822 {
3823 	struct vcpu_svm *svm = to_svm(vcpu);
3824 
3825 	/*
3826 	 * KVM should never request an NMI window when vNMI is enabled, as KVM
3827 	 * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3828 	 * two NMIs arrive simultaneously, KVM will inject one and set
3829 	 * V_NMI_PENDING for the other.  WARN, but continue with the standard
3830 	 * single-step approach to try and salvage the pending NMI.
3831 	 */
3832 	WARN_ON_ONCE(is_vnmi_enabled(svm));
3833 
3834 	if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3835 		return; /* IRET will cause a vm exit */
3836 
3837 	/*
3838 	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3839 	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3840 	 * KVM can't intercept and single-step IRET to detect when NMIs are
3841 	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3842 	 *
3843 	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3844 	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3845 	 * supported NAEs in the GHCB protocol.
3846 	 */
3847 	if (sev_es_guest(vcpu->kvm))
3848 		return;
3849 
3850 	if (!gif_set(svm)) {
3851 		if (vgif)
3852 			svm_set_intercept(svm, INTERCEPT_STGI);
3853 		return; /* STGI will cause a vm exit */
3854 	}
3855 
3856 	/*
3857 	 * Something prevents NMI from been injected. Single step over possible
3858 	 * problem (IRET or exception injection or interrupt shadow)
3859 	 */
3860 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3861 	svm->nmi_singlestep = true;
3862 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3863 }
3864 
3865 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3866 {
3867 	struct vcpu_svm *svm = to_svm(vcpu);
3868 
3869 	/*
3870 	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3871 	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3872 	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3873 	 */
3874 	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3875 
3876 	/*
3877 	 * Flush only the current ASID even if the TLB flush was invoked via
3878 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3879 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3880 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3881 	 * VM-Exit (via kvm_mmu_reset_context()).
3882 	 */
3883 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3884 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3885 	else
3886 		svm->current_vmcb->asid_generation--;
3887 }
3888 
3889 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3890 {
3891 	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3892 
3893 	/*
3894 	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3895 	 * flush the NPT mappings via hypercall as flushing the ASID only
3896 	 * affects virtual to physical mappings, it does not invalidate guest
3897 	 * physical to host physical mappings.
3898 	 */
3899 	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3900 		hyperv_flush_guest_mapping(root_tdp);
3901 
3902 	svm_flush_tlb_asid(vcpu);
3903 }
3904 
3905 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3906 {
3907 	/*
3908 	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3909 	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3910 	 * a "regular" remote flush.  Reaching this point means either there's
3911 	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3912 	 * which might be fatal to the guest.  Yell, but try to recover.
3913 	 */
3914 	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3915 		hv_flush_remote_tlbs(vcpu->kvm);
3916 
3917 	svm_flush_tlb_asid(vcpu);
3918 }
3919 
3920 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3921 {
3922 	struct vcpu_svm *svm = to_svm(vcpu);
3923 
3924 	invlpga(gva, svm->vmcb->control.asid);
3925 }
3926 
3927 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3928 {
3929 	struct vcpu_svm *svm = to_svm(vcpu);
3930 
3931 	if (nested_svm_virtualize_tpr(vcpu))
3932 		return;
3933 
3934 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3935 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3936 		kvm_set_cr8(vcpu, cr8);
3937 	}
3938 }
3939 
3940 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3941 {
3942 	struct vcpu_svm *svm = to_svm(vcpu);
3943 	u64 cr8;
3944 
3945 	if (nested_svm_virtualize_tpr(vcpu) ||
3946 	    kvm_vcpu_apicv_active(vcpu))
3947 		return;
3948 
3949 	cr8 = kvm_get_cr8(vcpu);
3950 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3951 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3952 }
3953 
3954 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3955 					int type)
3956 {
3957 	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3958 	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3959 	struct vcpu_svm *svm = to_svm(vcpu);
3960 
3961 	/*
3962 	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3963 	 * associated with the original soft exception/interrupt.  next_rip is
3964 	 * cleared on all exits that can occur while vectoring an event, so KVM
3965 	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3966 	 * case below, this needs to be done if and only if KVM is re-injecting
3967 	 * the same event, i.e. if the event is a soft exception/interrupt,
3968 	 * otherwise next_rip is unused on VMRUN.
3969 	 */
3970 	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3971 	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3972 		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3973 	/*
3974 	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3975 	 * injecting the soft exception/interrupt.  That advancement needs to
3976 	 * be unwound if vectoring didn't complete.  Note, the new event may
3977 	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
3978 	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3979 	 * be the reported vectored event, but RIP still needs to be unwound.
3980 	 */
3981 	else if (!nrips && (is_soft || is_exception) &&
3982 		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3983 		kvm_rip_write(vcpu, svm->soft_int_old_rip);
3984 }
3985 
3986 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3987 {
3988 	struct vcpu_svm *svm = to_svm(vcpu);
3989 	u8 vector;
3990 	int type;
3991 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3992 	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3993 	bool soft_int_injected = svm->soft_int_injected;
3994 
3995 	svm->nmi_l1_to_l2 = false;
3996 	svm->soft_int_injected = false;
3997 
3998 	/*
3999 	 * If we've made progress since setting awaiting_iret_completion, we've
4000 	 * executed an IRET and can allow NMI injection.
4001 	 */
4002 	if (svm->awaiting_iret_completion &&
4003 	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4004 		svm->awaiting_iret_completion = false;
4005 		svm->nmi_masked = false;
4006 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4007 	}
4008 
4009 	vcpu->arch.nmi_injected = false;
4010 	kvm_clear_exception_queue(vcpu);
4011 	kvm_clear_interrupt_queue(vcpu);
4012 
4013 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4014 		return;
4015 
4016 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4017 
4018 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4019 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4020 
4021 	if (soft_int_injected)
4022 		svm_complete_soft_interrupt(vcpu, vector, type);
4023 
4024 	switch (type) {
4025 	case SVM_EXITINTINFO_TYPE_NMI:
4026 		vcpu->arch.nmi_injected = true;
4027 		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4028 		break;
4029 	case SVM_EXITINTINFO_TYPE_EXEPT:
4030 		/*
4031 		 * Never re-inject a #VC exception.
4032 		 */
4033 		if (vector == X86_TRAP_VC)
4034 			break;
4035 
4036 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4037 			u32 err = svm->vmcb->control.exit_int_info_err;
4038 			kvm_requeue_exception_e(vcpu, vector, err);
4039 
4040 		} else
4041 			kvm_requeue_exception(vcpu, vector);
4042 		break;
4043 	case SVM_EXITINTINFO_TYPE_INTR:
4044 		kvm_queue_interrupt(vcpu, vector, false);
4045 		break;
4046 	case SVM_EXITINTINFO_TYPE_SOFT:
4047 		kvm_queue_interrupt(vcpu, vector, true);
4048 		break;
4049 	default:
4050 		break;
4051 	}
4052 
4053 }
4054 
4055 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4056 {
4057 	struct vcpu_svm *svm = to_svm(vcpu);
4058 	struct vmcb_control_area *control = &svm->vmcb->control;
4059 
4060 	control->exit_int_info = control->event_inj;
4061 	control->exit_int_info_err = control->event_inj_err;
4062 	control->event_inj = 0;
4063 	svm_complete_interrupts(vcpu);
4064 }
4065 
4066 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4067 {
4068 	return 1;
4069 }
4070 
4071 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4072 {
4073 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4074 	    to_svm(vcpu)->vmcb->control.exit_info_1)
4075 		return handle_fastpath_set_msr_irqoff(vcpu);
4076 
4077 	return EXIT_FASTPATH_NONE;
4078 }
4079 
4080 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4081 {
4082 	struct vcpu_svm *svm = to_svm(vcpu);
4083 
4084 	guest_state_enter_irqoff();
4085 
4086 	amd_clear_divider();
4087 
4088 	if (sev_es_guest(vcpu->kvm))
4089 		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4090 	else
4091 		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4092 
4093 	guest_state_exit_irqoff();
4094 }
4095 
4096 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4097 {
4098 	struct vcpu_svm *svm = to_svm(vcpu);
4099 	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4100 
4101 	trace_kvm_entry(vcpu);
4102 
4103 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4104 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4105 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4106 
4107 	/*
4108 	 * Disable singlestep if we're injecting an interrupt/exception.
4109 	 * We don't want our modified rflags to be pushed on the stack where
4110 	 * we might not be able to easily reset them if we disabled NMI
4111 	 * singlestep later.
4112 	 */
4113 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4114 		/*
4115 		 * Event injection happens before external interrupts cause a
4116 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4117 		 * is enough to force an immediate vmexit.
4118 		 */
4119 		disable_nmi_singlestep(svm);
4120 		smp_send_reschedule(vcpu->cpu);
4121 	}
4122 
4123 	pre_svm_run(vcpu);
4124 
4125 	sync_lapic_to_cr8(vcpu);
4126 
4127 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4128 		svm->vmcb->control.asid = svm->asid;
4129 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4130 	}
4131 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4132 
4133 	svm_hv_update_vp_id(svm->vmcb, vcpu);
4134 
4135 	/*
4136 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4137 	 * of a #DB.
4138 	 */
4139 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4140 		svm_set_dr6(svm, vcpu->arch.dr6);
4141 	else
4142 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
4143 
4144 	clgi();
4145 	kvm_load_guest_xsave_state(vcpu);
4146 
4147 	kvm_wait_lapic_expire(vcpu);
4148 
4149 	/*
4150 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4151 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4152 	 * is no need to worry about the conditional branch over the wrmsr
4153 	 * being speculatively taken.
4154 	 */
4155 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4156 		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4157 
4158 	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4159 
4160 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4161 		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4162 
4163 	if (!sev_es_guest(vcpu->kvm)) {
4164 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4165 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4166 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4167 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4168 	}
4169 	vcpu->arch.regs_dirty = 0;
4170 
4171 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4172 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4173 
4174 	kvm_load_host_xsave_state(vcpu);
4175 	stgi();
4176 
4177 	/* Any pending NMI will happen here */
4178 
4179 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4180 		kvm_after_interrupt(vcpu);
4181 
4182 	sync_cr8_to_lapic(vcpu);
4183 
4184 	svm->next_rip = 0;
4185 	if (is_guest_mode(vcpu)) {
4186 		nested_sync_control_from_vmcb02(svm);
4187 
4188 		/* Track VMRUNs that have made past consistency checking */
4189 		if (svm->nested.nested_run_pending &&
4190 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4191                         ++vcpu->stat.nested_run;
4192 
4193 		svm->nested.nested_run_pending = 0;
4194 	}
4195 
4196 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4197 	vmcb_mark_all_clean(svm->vmcb);
4198 
4199 	/* if exit due to PF check for async PF */
4200 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4201 		vcpu->arch.apf.host_apf_flags =
4202 			kvm_read_and_reset_apf_flags();
4203 
4204 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4205 
4206 	/*
4207 	 * We need to handle MC intercepts here before the vcpu has a chance to
4208 	 * change the physical cpu
4209 	 */
4210 	if (unlikely(svm->vmcb->control.exit_code ==
4211 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4212 		svm_handle_mce(vcpu);
4213 
4214 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4215 
4216 	svm_complete_interrupts(vcpu);
4217 
4218 	if (is_guest_mode(vcpu))
4219 		return EXIT_FASTPATH_NONE;
4220 
4221 	return svm_exit_handlers_fastpath(vcpu);
4222 }
4223 
4224 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4225 			     int root_level)
4226 {
4227 	struct vcpu_svm *svm = to_svm(vcpu);
4228 	unsigned long cr3;
4229 
4230 	if (npt_enabled) {
4231 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4232 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4233 
4234 		hv_track_root_tdp(vcpu, root_hpa);
4235 
4236 		cr3 = vcpu->arch.cr3;
4237 	} else if (root_level >= PT64_ROOT_4LEVEL) {
4238 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4239 	} else {
4240 		/* PCID in the guest should be impossible with a 32-bit MMU. */
4241 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4242 		cr3 = root_hpa;
4243 	}
4244 
4245 	svm->vmcb->save.cr3 = cr3;
4246 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4247 }
4248 
4249 static void
4250 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4251 {
4252 	/*
4253 	 * Patch in the VMMCALL instruction:
4254 	 */
4255 	hypercall[0] = 0x0f;
4256 	hypercall[1] = 0x01;
4257 	hypercall[2] = 0xd9;
4258 }
4259 
4260 /*
4261  * The kvm parameter can be NULL (module initialization, or invocation before
4262  * VM creation). Be sure to check the kvm parameter before using it.
4263  */
4264 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4265 {
4266 	switch (index) {
4267 	case MSR_IA32_MCG_EXT_CTL:
4268 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4269 		return false;
4270 	case MSR_IA32_SMBASE:
4271 		if (!IS_ENABLED(CONFIG_KVM_SMM))
4272 			return false;
4273 		/* SEV-ES guests do not support SMM, so report false */
4274 		if (kvm && sev_es_guest(kvm))
4275 			return false;
4276 		break;
4277 	default:
4278 		break;
4279 	}
4280 
4281 	return true;
4282 }
4283 
4284 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4285 {
4286 	struct vcpu_svm *svm = to_svm(vcpu);
4287 	struct kvm_cpuid_entry2 *best;
4288 
4289 	/*
4290 	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4291 	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4292 	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4293 	 * guest has XSAVE enabled, the guest can execute XSAVES without
4294 	 * faulting.  Treat XSAVES as enabled in this case regardless of
4295 	 * whether it's advertised to the guest so that KVM context switches
4296 	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4297 	 * the guest read/write access to the host's XSS.
4298 	 */
4299 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4300 	    boot_cpu_has(X86_FEATURE_XSAVES) &&
4301 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4302 		kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4303 
4304 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4305 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4306 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4307 
4308 	/*
4309 	 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4310 	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4311 	 * SVM on Intel is bonkers and extremely unlikely to work).
4312 	 */
4313 	if (!guest_cpuid_is_intel(vcpu))
4314 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4315 
4316 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4317 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4318 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4319 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4320 
4321 	svm_recalc_instruction_intercepts(vcpu, svm);
4322 
4323 	if (boot_cpu_has(X86_FEATURE_IBPB))
4324 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4325 				     !!guest_has_pred_cmd_msr(vcpu));
4326 
4327 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4328 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4329 				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4330 
4331 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
4332 	if (sev_guest(vcpu->kvm)) {
4333 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4334 		if (best)
4335 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4336 	}
4337 
4338 	init_vmcb_after_set_cpuid(vcpu);
4339 }
4340 
4341 static bool svm_has_wbinvd_exit(void)
4342 {
4343 	return true;
4344 }
4345 
4346 #define PRE_EX(exit)  { .exit_code = (exit), \
4347 			.stage = X86_ICPT_PRE_EXCEPT, }
4348 #define POST_EX(exit) { .exit_code = (exit), \
4349 			.stage = X86_ICPT_POST_EXCEPT, }
4350 #define POST_MEM(exit) { .exit_code = (exit), \
4351 			.stage = X86_ICPT_POST_MEMACCESS, }
4352 
4353 static const struct __x86_intercept {
4354 	u32 exit_code;
4355 	enum x86_intercept_stage stage;
4356 } x86_intercept_map[] = {
4357 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4358 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4359 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4360 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4361 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4362 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4363 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4364 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4365 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4366 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4367 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4368 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4369 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4370 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4371 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4372 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4373 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4374 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4375 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4376 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4377 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4378 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4379 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4380 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4381 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4382 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4383 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4384 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4385 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4386 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4387 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4388 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4389 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4390 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4391 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4392 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4393 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4394 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4395 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4396 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4397 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4398 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4399 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4400 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4401 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4402 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4403 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4404 };
4405 
4406 #undef PRE_EX
4407 #undef POST_EX
4408 #undef POST_MEM
4409 
4410 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4411 			       struct x86_instruction_info *info,
4412 			       enum x86_intercept_stage stage,
4413 			       struct x86_exception *exception)
4414 {
4415 	struct vcpu_svm *svm = to_svm(vcpu);
4416 	int vmexit, ret = X86EMUL_CONTINUE;
4417 	struct __x86_intercept icpt_info;
4418 	struct vmcb *vmcb = svm->vmcb;
4419 
4420 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4421 		goto out;
4422 
4423 	icpt_info = x86_intercept_map[info->intercept];
4424 
4425 	if (stage != icpt_info.stage)
4426 		goto out;
4427 
4428 	switch (icpt_info.exit_code) {
4429 	case SVM_EXIT_READ_CR0:
4430 		if (info->intercept == x86_intercept_cr_read)
4431 			icpt_info.exit_code += info->modrm_reg;
4432 		break;
4433 	case SVM_EXIT_WRITE_CR0: {
4434 		unsigned long cr0, val;
4435 
4436 		if (info->intercept == x86_intercept_cr_write)
4437 			icpt_info.exit_code += info->modrm_reg;
4438 
4439 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4440 		    info->intercept == x86_intercept_clts)
4441 			break;
4442 
4443 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4444 					INTERCEPT_SELECTIVE_CR0)))
4445 			break;
4446 
4447 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4448 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4449 
4450 		if (info->intercept == x86_intercept_lmsw) {
4451 			cr0 &= 0xfUL;
4452 			val &= 0xfUL;
4453 			/* lmsw can't clear PE - catch this here */
4454 			if (cr0 & X86_CR0_PE)
4455 				val |= X86_CR0_PE;
4456 		}
4457 
4458 		if (cr0 ^ val)
4459 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4460 
4461 		break;
4462 	}
4463 	case SVM_EXIT_READ_DR0:
4464 	case SVM_EXIT_WRITE_DR0:
4465 		icpt_info.exit_code += info->modrm_reg;
4466 		break;
4467 	case SVM_EXIT_MSR:
4468 		if (info->intercept == x86_intercept_wrmsr)
4469 			vmcb->control.exit_info_1 = 1;
4470 		else
4471 			vmcb->control.exit_info_1 = 0;
4472 		break;
4473 	case SVM_EXIT_PAUSE:
4474 		/*
4475 		 * We get this for NOP only, but pause
4476 		 * is rep not, check this here
4477 		 */
4478 		if (info->rep_prefix != REPE_PREFIX)
4479 			goto out;
4480 		break;
4481 	case SVM_EXIT_IOIO: {
4482 		u64 exit_info;
4483 		u32 bytes;
4484 
4485 		if (info->intercept == x86_intercept_in ||
4486 		    info->intercept == x86_intercept_ins) {
4487 			exit_info = ((info->src_val & 0xffff) << 16) |
4488 				SVM_IOIO_TYPE_MASK;
4489 			bytes = info->dst_bytes;
4490 		} else {
4491 			exit_info = (info->dst_val & 0xffff) << 16;
4492 			bytes = info->src_bytes;
4493 		}
4494 
4495 		if (info->intercept == x86_intercept_outs ||
4496 		    info->intercept == x86_intercept_ins)
4497 			exit_info |= SVM_IOIO_STR_MASK;
4498 
4499 		if (info->rep_prefix)
4500 			exit_info |= SVM_IOIO_REP_MASK;
4501 
4502 		bytes = min(bytes, 4u);
4503 
4504 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4505 
4506 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4507 
4508 		vmcb->control.exit_info_1 = exit_info;
4509 		vmcb->control.exit_info_2 = info->next_rip;
4510 
4511 		break;
4512 	}
4513 	default:
4514 		break;
4515 	}
4516 
4517 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4518 	if (static_cpu_has(X86_FEATURE_NRIPS))
4519 		vmcb->control.next_rip  = info->next_rip;
4520 	vmcb->control.exit_code = icpt_info.exit_code;
4521 	vmexit = nested_svm_exit_handled(svm);
4522 
4523 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4524 					   : X86EMUL_CONTINUE;
4525 
4526 out:
4527 	return ret;
4528 }
4529 
4530 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4531 {
4532 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4533 		vcpu->arch.at_instruction_boundary = true;
4534 }
4535 
4536 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4537 {
4538 	if (!kvm_pause_in_guest(vcpu->kvm))
4539 		shrink_ple_window(vcpu);
4540 }
4541 
4542 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4543 {
4544 	/* [63:9] are reserved. */
4545 	vcpu->arch.mcg_cap &= 0x1ff;
4546 }
4547 
4548 #ifdef CONFIG_KVM_SMM
4549 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4550 {
4551 	struct vcpu_svm *svm = to_svm(vcpu);
4552 
4553 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4554 	if (!gif_set(svm))
4555 		return true;
4556 
4557 	return is_smm(vcpu);
4558 }
4559 
4560 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4561 {
4562 	struct vcpu_svm *svm = to_svm(vcpu);
4563 	if (svm->nested.nested_run_pending)
4564 		return -EBUSY;
4565 
4566 	if (svm_smi_blocked(vcpu))
4567 		return 0;
4568 
4569 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4570 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4571 		return -EBUSY;
4572 
4573 	return 1;
4574 }
4575 
4576 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4577 {
4578 	struct vcpu_svm *svm = to_svm(vcpu);
4579 	struct kvm_host_map map_save;
4580 	int ret;
4581 
4582 	if (!is_guest_mode(vcpu))
4583 		return 0;
4584 
4585 	/*
4586 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4587 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4588 	 */
4589 
4590 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4591 		return 1;
4592 
4593 	smram->smram64.svm_guest_flag = 1;
4594 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4595 
4596 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4597 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4598 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4599 
4600 	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4601 	if (ret)
4602 		return ret;
4603 
4604 	/*
4605 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4606 	 * VMCB01 is going to be used during SMM and thus the state will
4607 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4608 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4609 	 * format of the area is identical to guest save area offsetted
4610 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4611 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4612 	 * L1 hypervisor to save additional host context (e.g. KVM does
4613 	 * that, see svm_prepare_switch_to_guest()) which must be
4614 	 * preserved.
4615 	 */
4616 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4617 		return 1;
4618 
4619 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4620 
4621 	svm_copy_vmrun_state(map_save.hva + 0x400,
4622 			     &svm->vmcb01.ptr->save);
4623 
4624 	kvm_vcpu_unmap(vcpu, &map_save, true);
4625 	return 0;
4626 }
4627 
4628 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4629 {
4630 	struct vcpu_svm *svm = to_svm(vcpu);
4631 	struct kvm_host_map map, map_save;
4632 	struct vmcb *vmcb12;
4633 	int ret;
4634 
4635 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4636 
4637 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4638 		return 0;
4639 
4640 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4641 	if (!smram64->svm_guest_flag)
4642 		return 0;
4643 
4644 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4645 		return 1;
4646 
4647 	if (!(smram64->efer & EFER_SVME))
4648 		return 1;
4649 
4650 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4651 		return 1;
4652 
4653 	ret = 1;
4654 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4655 		goto unmap_map;
4656 
4657 	if (svm_allocate_nested(svm))
4658 		goto unmap_save;
4659 
4660 	/*
4661 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4662 	 * used during SMM (see svm_enter_smm())
4663 	 */
4664 
4665 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4666 
4667 	/*
4668 	 * Enter the nested guest now
4669 	 */
4670 
4671 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4672 
4673 	vmcb12 = map.hva;
4674 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4675 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4676 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4677 
4678 	if (ret)
4679 		goto unmap_save;
4680 
4681 	svm->nested.nested_run_pending = 1;
4682 
4683 unmap_save:
4684 	kvm_vcpu_unmap(vcpu, &map_save, true);
4685 unmap_map:
4686 	kvm_vcpu_unmap(vcpu, &map, true);
4687 	return ret;
4688 }
4689 
4690 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4691 {
4692 	struct vcpu_svm *svm = to_svm(vcpu);
4693 
4694 	if (!gif_set(svm)) {
4695 		if (vgif)
4696 			svm_set_intercept(svm, INTERCEPT_STGI);
4697 		/* STGI will cause a vm exit */
4698 	} else {
4699 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4700 	}
4701 }
4702 #endif
4703 
4704 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4705 					void *insn, int insn_len)
4706 {
4707 	bool smep, smap, is_user;
4708 	u64 error_code;
4709 
4710 	/* Emulation is always possible when KVM has access to all guest state. */
4711 	if (!sev_guest(vcpu->kvm))
4712 		return true;
4713 
4714 	/* #UD and #GP should never be intercepted for SEV guests. */
4715 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4716 				  EMULTYPE_TRAP_UD_FORCED |
4717 				  EMULTYPE_VMWARE_GP));
4718 
4719 	/*
4720 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4721 	 * to guest register state.
4722 	 */
4723 	if (sev_es_guest(vcpu->kvm))
4724 		return false;
4725 
4726 	/*
4727 	 * Emulation is possible if the instruction is already decoded, e.g.
4728 	 * when completing I/O after returning from userspace.
4729 	 */
4730 	if (emul_type & EMULTYPE_NO_DECODE)
4731 		return true;
4732 
4733 	/*
4734 	 * Emulation is possible for SEV guests if and only if a prefilled
4735 	 * buffer containing the bytes of the intercepted instruction is
4736 	 * available. SEV guest memory is encrypted with a guest specific key
4737 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4738 	 * decode garbage.
4739 	 *
4740 	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4741 	 * KVM reached this point without an instruction buffer.  In practice,
4742 	 * this path should never be hit by a well-behaved guest, e.g. KVM
4743 	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4744 	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4745 	 * access, and needs to be handled by KVM to avoid putting the guest
4746 	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4747 	 * its the least awful option given lack of insight into the guest.
4748 	 *
4749 	 * If KVM is trying to skip an instruction, simply resume the guest.
4750 	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4751 	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4752 	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4753 	 * make forward progress is the only option that has a chance of
4754 	 * success (and in practice it will work the vast majority of the time).
4755 	 */
4756 	if (unlikely(!insn)) {
4757 		if (!(emul_type & EMULTYPE_SKIP))
4758 			kvm_queue_exception(vcpu, UD_VECTOR);
4759 		return false;
4760 	}
4761 
4762 	/*
4763 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4764 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4765 	 * the faulting instruction because the code fetch itself faulted, e.g.
4766 	 * the guest attempted to fetch from emulated MMIO or a guest page
4767 	 * table used to translate CS:RIP resides in emulated MMIO.
4768 	 */
4769 	if (likely(insn_len))
4770 		return true;
4771 
4772 	/*
4773 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4774 	 *
4775 	 * Errata:
4776 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4777 	 * possible that CPU microcode implementing DecodeAssist will fail to
4778 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4779 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4780 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4781 	 * gives up and does not fill the instruction bytes buffer.
4782 	 *
4783 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4784 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4785 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4786 	 * GuestIntrBytes field of the VMCB.
4787 	 *
4788 	 * This does _not_ mean that the erratum has been encountered, as the
4789 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4790 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4791 	 * encountered a reserved/not-present #PF.
4792 	 *
4793 	 * To hit the erratum, the following conditions must be true:
4794 	 *    1. CR4.SMAP=1 (obviously).
4795 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4796 	 *       have been hit as the guest would have encountered a SMEP
4797 	 *       violation #PF, not a #NPF.
4798 	 *    3. The #NPF is not due to a code fetch, in which case failure to
4799 	 *       retrieve the instruction bytes is legitimate (see abvoe).
4800 	 *
4801 	 * In addition, don't apply the erratum workaround if the #NPF occurred
4802 	 * while translating guest page tables (see below).
4803 	 */
4804 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4805 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4806 		goto resume_guest;
4807 
4808 	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4809 	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4810 	is_user = svm_get_cpl(vcpu) == 3;
4811 	if (smap && (!smep || is_user)) {
4812 		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4813 
4814 		/*
4815 		 * If the fault occurred in userspace, arbitrarily inject #GP
4816 		 * to avoid killing the guest and to hopefully avoid confusing
4817 		 * the guest kernel too much, e.g. injecting #PF would not be
4818 		 * coherent with respect to the guest's page tables.  Request
4819 		 * triple fault if the fault occurred in the kernel as there's
4820 		 * no fault that KVM can inject without confusing the guest.
4821 		 * In practice, the triple fault is moot as no sane SEV kernel
4822 		 * will execute from user memory while also running with SMAP=1.
4823 		 */
4824 		if (is_user)
4825 			kvm_inject_gp(vcpu, 0);
4826 		else
4827 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4828 	}
4829 
4830 resume_guest:
4831 	/*
4832 	 * If the erratum was not hit, simply resume the guest and let it fault
4833 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4834 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4835 	 * userspace will kill the guest, and letting the emulator read garbage
4836 	 * will yield random behavior and potentially corrupt the guest.
4837 	 *
4838 	 * Simply resuming the guest is technically not a violation of the SEV
4839 	 * architecture.  AMD's APM states that all code fetches and page table
4840 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4841 	 * APM also states that encrypted accesses to MMIO are "ignored", but
4842 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4843 	 * the guest spin is technically "ignoring" the access.
4844 	 */
4845 	return false;
4846 }
4847 
4848 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4849 {
4850 	struct vcpu_svm *svm = to_svm(vcpu);
4851 
4852 	return !gif_set(svm);
4853 }
4854 
4855 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4856 {
4857 	if (!sev_es_guest(vcpu->kvm))
4858 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4859 
4860 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4861 }
4862 
4863 static void svm_vm_destroy(struct kvm *kvm)
4864 {
4865 	avic_vm_destroy(kvm);
4866 	sev_vm_destroy(kvm);
4867 }
4868 
4869 static int svm_vm_init(struct kvm *kvm)
4870 {
4871 	if (!pause_filter_count || !pause_filter_thresh)
4872 		kvm->arch.pause_in_guest = true;
4873 
4874 	if (enable_apicv) {
4875 		int ret = avic_vm_init(kvm);
4876 		if (ret)
4877 			return ret;
4878 	}
4879 
4880 	return 0;
4881 }
4882 
4883 static struct kvm_x86_ops svm_x86_ops __initdata = {
4884 	.name = KBUILD_MODNAME,
4885 
4886 	.check_processor_compatibility = svm_check_processor_compat,
4887 
4888 	.hardware_unsetup = svm_hardware_unsetup,
4889 	.hardware_enable = svm_hardware_enable,
4890 	.hardware_disable = svm_hardware_disable,
4891 	.has_emulated_msr = svm_has_emulated_msr,
4892 
4893 	.vcpu_create = svm_vcpu_create,
4894 	.vcpu_free = svm_vcpu_free,
4895 	.vcpu_reset = svm_vcpu_reset,
4896 
4897 	.vm_size = sizeof(struct kvm_svm),
4898 	.vm_init = svm_vm_init,
4899 	.vm_destroy = svm_vm_destroy,
4900 
4901 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4902 	.vcpu_load = svm_vcpu_load,
4903 	.vcpu_put = svm_vcpu_put,
4904 	.vcpu_blocking = avic_vcpu_blocking,
4905 	.vcpu_unblocking = avic_vcpu_unblocking,
4906 
4907 	.update_exception_bitmap = svm_update_exception_bitmap,
4908 	.get_msr_feature = svm_get_msr_feature,
4909 	.get_msr = svm_get_msr,
4910 	.set_msr = svm_set_msr,
4911 	.get_segment_base = svm_get_segment_base,
4912 	.get_segment = svm_get_segment,
4913 	.set_segment = svm_set_segment,
4914 	.get_cpl = svm_get_cpl,
4915 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4916 	.is_valid_cr0 = svm_is_valid_cr0,
4917 	.set_cr0 = svm_set_cr0,
4918 	.post_set_cr3 = sev_post_set_cr3,
4919 	.is_valid_cr4 = svm_is_valid_cr4,
4920 	.set_cr4 = svm_set_cr4,
4921 	.set_efer = svm_set_efer,
4922 	.get_idt = svm_get_idt,
4923 	.set_idt = svm_set_idt,
4924 	.get_gdt = svm_get_gdt,
4925 	.set_gdt = svm_set_gdt,
4926 	.set_dr7 = svm_set_dr7,
4927 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4928 	.cache_reg = svm_cache_reg,
4929 	.get_rflags = svm_get_rflags,
4930 	.set_rflags = svm_set_rflags,
4931 	.get_if_flag = svm_get_if_flag,
4932 
4933 	.flush_tlb_all = svm_flush_tlb_all,
4934 	.flush_tlb_current = svm_flush_tlb_current,
4935 	.flush_tlb_gva = svm_flush_tlb_gva,
4936 	.flush_tlb_guest = svm_flush_tlb_asid,
4937 
4938 	.vcpu_pre_run = svm_vcpu_pre_run,
4939 	.vcpu_run = svm_vcpu_run,
4940 	.handle_exit = svm_handle_exit,
4941 	.skip_emulated_instruction = svm_skip_emulated_instruction,
4942 	.update_emulated_instruction = NULL,
4943 	.set_interrupt_shadow = svm_set_interrupt_shadow,
4944 	.get_interrupt_shadow = svm_get_interrupt_shadow,
4945 	.patch_hypercall = svm_patch_hypercall,
4946 	.inject_irq = svm_inject_irq,
4947 	.inject_nmi = svm_inject_nmi,
4948 	.is_vnmi_pending = svm_is_vnmi_pending,
4949 	.set_vnmi_pending = svm_set_vnmi_pending,
4950 	.inject_exception = svm_inject_exception,
4951 	.cancel_injection = svm_cancel_injection,
4952 	.interrupt_allowed = svm_interrupt_allowed,
4953 	.nmi_allowed = svm_nmi_allowed,
4954 	.get_nmi_mask = svm_get_nmi_mask,
4955 	.set_nmi_mask = svm_set_nmi_mask,
4956 	.enable_nmi_window = svm_enable_nmi_window,
4957 	.enable_irq_window = svm_enable_irq_window,
4958 	.update_cr8_intercept = svm_update_cr8_intercept,
4959 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4960 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4961 	.apicv_post_state_restore = avic_apicv_post_state_restore,
4962 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4963 
4964 	.get_exit_info = svm_get_exit_info,
4965 
4966 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4967 
4968 	.has_wbinvd_exit = svm_has_wbinvd_exit,
4969 
4970 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4971 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4972 	.write_tsc_offset = svm_write_tsc_offset,
4973 	.write_tsc_multiplier = svm_write_tsc_multiplier,
4974 
4975 	.load_mmu_pgd = svm_load_mmu_pgd,
4976 
4977 	.check_intercept = svm_check_intercept,
4978 	.handle_exit_irqoff = svm_handle_exit_irqoff,
4979 
4980 	.request_immediate_exit = __kvm_request_immediate_exit,
4981 
4982 	.sched_in = svm_sched_in,
4983 
4984 	.nested_ops = &svm_nested_ops,
4985 
4986 	.deliver_interrupt = svm_deliver_interrupt,
4987 	.pi_update_irte = avic_pi_update_irte,
4988 	.setup_mce = svm_setup_mce,
4989 
4990 #ifdef CONFIG_KVM_SMM
4991 	.smi_allowed = svm_smi_allowed,
4992 	.enter_smm = svm_enter_smm,
4993 	.leave_smm = svm_leave_smm,
4994 	.enable_smi_window = svm_enable_smi_window,
4995 #endif
4996 
4997 	.mem_enc_ioctl = sev_mem_enc_ioctl,
4998 	.mem_enc_register_region = sev_mem_enc_register_region,
4999 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5000 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5001 
5002 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5003 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5004 
5005 	.can_emulate_instruction = svm_can_emulate_instruction,
5006 
5007 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5008 
5009 	.msr_filter_changed = svm_msr_filter_changed,
5010 	.complete_emulated_msr = svm_complete_emulated_msr,
5011 
5012 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5013 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5014 };
5015 
5016 /*
5017  * The default MMIO mask is a single bit (excluding the present bit),
5018  * which could conflict with the memory encryption bit. Check for
5019  * memory encryption support and override the default MMIO mask if
5020  * memory encryption is enabled.
5021  */
5022 static __init void svm_adjust_mmio_mask(void)
5023 {
5024 	unsigned int enc_bit, mask_bit;
5025 	u64 msr, mask;
5026 
5027 	/* If there is no memory encryption support, use existing mask */
5028 	if (cpuid_eax(0x80000000) < 0x8000001f)
5029 		return;
5030 
5031 	/* If memory encryption is not enabled, use existing mask */
5032 	rdmsrl(MSR_AMD64_SYSCFG, msr);
5033 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5034 		return;
5035 
5036 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5037 	mask_bit = boot_cpu_data.x86_phys_bits;
5038 
5039 	/* Increment the mask bit if it is the same as the encryption bit */
5040 	if (enc_bit == mask_bit)
5041 		mask_bit++;
5042 
5043 	/*
5044 	 * If the mask bit location is below 52, then some bits above the
5045 	 * physical addressing limit will always be reserved, so use the
5046 	 * rsvd_bits() function to generate the mask. This mask, along with
5047 	 * the present bit, will be used to generate a page fault with
5048 	 * PFER.RSV = 1.
5049 	 *
5050 	 * If the mask bit location is 52 (or above), then clear the mask.
5051 	 */
5052 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5053 
5054 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5055 }
5056 
5057 static __init void svm_set_cpu_caps(void)
5058 {
5059 	kvm_set_cpu_caps();
5060 
5061 	kvm_caps.supported_perf_cap = 0;
5062 	kvm_caps.supported_xss = 0;
5063 
5064 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5065 	if (nested) {
5066 		kvm_cpu_cap_set(X86_FEATURE_SVM);
5067 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5068 
5069 		if (nrips)
5070 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5071 
5072 		if (npt_enabled)
5073 			kvm_cpu_cap_set(X86_FEATURE_NPT);
5074 
5075 		if (tsc_scaling)
5076 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5077 
5078 		if (vls)
5079 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5080 		if (lbrv)
5081 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5082 
5083 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5084 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5085 
5086 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5087 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5088 
5089 		if (vgif)
5090 			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5091 
5092 		if (vnmi)
5093 			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5094 
5095 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5096 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5097 	}
5098 
5099 	/* CPUID 0x80000008 */
5100 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5101 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5102 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5103 
5104 	if (enable_pmu) {
5105 		/*
5106 		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5107 		 * access to enough counters to virtualize "core" support,
5108 		 * otherwise limit vPMU support to the legacy number of counters.
5109 		 */
5110 		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5111 			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5112 							  kvm_pmu_cap.num_counters_gp);
5113 		else
5114 			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5115 
5116 		if (kvm_pmu_cap.version != 2 ||
5117 		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5118 			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5119 	}
5120 
5121 	/* CPUID 0x8000001F (SME/SEV features) */
5122 	sev_set_cpu_caps();
5123 }
5124 
5125 static __init int svm_hardware_setup(void)
5126 {
5127 	int cpu;
5128 	struct page *iopm_pages;
5129 	void *iopm_va;
5130 	int r;
5131 	unsigned int order = get_order(IOPM_SIZE);
5132 
5133 	/*
5134 	 * NX is required for shadow paging and for NPT if the NX huge pages
5135 	 * mitigation is enabled.
5136 	 */
5137 	if (!boot_cpu_has(X86_FEATURE_NX)) {
5138 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5139 		return -EOPNOTSUPP;
5140 	}
5141 	kvm_enable_efer_bits(EFER_NX);
5142 
5143 	iopm_pages = alloc_pages(GFP_KERNEL, order);
5144 
5145 	if (!iopm_pages)
5146 		return -ENOMEM;
5147 
5148 	iopm_va = page_address(iopm_pages);
5149 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5150 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5151 
5152 	init_msrpm_offsets();
5153 
5154 	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5155 				     XFEATURE_MASK_BNDCSR);
5156 
5157 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5158 		kvm_enable_efer_bits(EFER_FFXSR);
5159 
5160 	if (tsc_scaling) {
5161 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5162 			tsc_scaling = false;
5163 		} else {
5164 			pr_info("TSC scaling supported\n");
5165 			kvm_caps.has_tsc_control = true;
5166 		}
5167 	}
5168 	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5169 	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5170 
5171 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5172 
5173 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5174 		kvm_enable_efer_bits(EFER_AUTOIBRS);
5175 
5176 	/* Check for pause filtering support */
5177 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5178 		pause_filter_count = 0;
5179 		pause_filter_thresh = 0;
5180 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5181 		pause_filter_thresh = 0;
5182 	}
5183 
5184 	if (nested) {
5185 		pr_info("Nested Virtualization enabled\n");
5186 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5187 	}
5188 
5189 	/*
5190 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5191 	 * NPT isn't supported if the host is using 2-level paging since host
5192 	 * CR4 is unchanged on VMRUN.
5193 	 */
5194 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5195 		npt_enabled = false;
5196 
5197 	if (!boot_cpu_has(X86_FEATURE_NPT))
5198 		npt_enabled = false;
5199 
5200 	/* Force VM NPT level equal to the host's paging level */
5201 	kvm_configure_mmu(npt_enabled, get_npt_level(),
5202 			  get_npt_level(), PG_LEVEL_1G);
5203 	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5204 
5205 	/* Setup shadow_me_value and shadow_me_mask */
5206 	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5207 
5208 	svm_adjust_mmio_mask();
5209 
5210 	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5211 
5212 	/*
5213 	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5214 	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5215 	 */
5216 	sev_hardware_setup();
5217 
5218 	svm_hv_hardware_setup();
5219 
5220 	for_each_possible_cpu(cpu) {
5221 		r = svm_cpu_init(cpu);
5222 		if (r)
5223 			goto err;
5224 	}
5225 
5226 	enable_apicv = avic = avic && avic_hardware_setup();
5227 
5228 	if (!enable_apicv) {
5229 		svm_x86_ops.vcpu_blocking = NULL;
5230 		svm_x86_ops.vcpu_unblocking = NULL;
5231 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5232 	} else if (!x2avic_enabled) {
5233 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5234 	}
5235 
5236 	if (vls) {
5237 		if (!npt_enabled ||
5238 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5239 		    !IS_ENABLED(CONFIG_X86_64)) {
5240 			vls = false;
5241 		} else {
5242 			pr_info("Virtual VMLOAD VMSAVE supported\n");
5243 		}
5244 	}
5245 
5246 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5247 		svm_gp_erratum_intercept = false;
5248 
5249 	if (vgif) {
5250 		if (!boot_cpu_has(X86_FEATURE_VGIF))
5251 			vgif = false;
5252 		else
5253 			pr_info("Virtual GIF supported\n");
5254 	}
5255 
5256 	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5257 	if (vnmi)
5258 		pr_info("Virtual NMI enabled\n");
5259 
5260 	if (!vnmi) {
5261 		svm_x86_ops.is_vnmi_pending = NULL;
5262 		svm_x86_ops.set_vnmi_pending = NULL;
5263 	}
5264 
5265 
5266 	if (lbrv) {
5267 		if (!boot_cpu_has(X86_FEATURE_LBRV))
5268 			lbrv = false;
5269 		else
5270 			pr_info("LBR virtualization supported\n");
5271 	}
5272 
5273 	if (!enable_pmu)
5274 		pr_info("PMU virtualization is disabled\n");
5275 
5276 	svm_set_cpu_caps();
5277 
5278 	/*
5279 	 * It seems that on AMD processors PTE's accessed bit is
5280 	 * being set by the CPU hardware before the NPF vmexit.
5281 	 * This is not expected behaviour and our tests fail because
5282 	 * of it.
5283 	 * A workaround here is to disable support for
5284 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5285 	 * In this case userspace can know if there is support using
5286 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5287 	 * it
5288 	 * If future AMD CPU models change the behaviour described above,
5289 	 * this variable can be changed accordingly
5290 	 */
5291 	allow_smaller_maxphyaddr = !npt_enabled;
5292 
5293 	return 0;
5294 
5295 err:
5296 	svm_hardware_unsetup();
5297 	return r;
5298 }
5299 
5300 
5301 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5302 	.hardware_setup = svm_hardware_setup,
5303 
5304 	.runtime_ops = &svm_x86_ops,
5305 	.pmu_ops = &amd_pmu_ops,
5306 };
5307 
5308 static void __svm_exit(void)
5309 {
5310 	kvm_x86_vendor_exit();
5311 
5312 	cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5313 }
5314 
5315 static int __init svm_init(void)
5316 {
5317 	int r;
5318 
5319 	__unused_size_checks();
5320 
5321 	if (!kvm_is_svm_supported())
5322 		return -EOPNOTSUPP;
5323 
5324 	r = kvm_x86_vendor_init(&svm_init_ops);
5325 	if (r)
5326 		return r;
5327 
5328 	cpu_emergency_register_virt_callback(svm_emergency_disable);
5329 
5330 	/*
5331 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5332 	 * exposed to userspace!
5333 	 */
5334 	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5335 		     THIS_MODULE);
5336 	if (r)
5337 		goto err_kvm_init;
5338 
5339 	return 0;
5340 
5341 err_kvm_init:
5342 	__svm_exit();
5343 	return r;
5344 }
5345 
5346 static void __exit svm_exit(void)
5347 {
5348 	kvm_exit();
5349 	__svm_exit();
5350 }
5351 
5352 module_init(svm_init)
5353 module_exit(svm_exit)
5354