1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 #include <linux/string_choices.h> 32 33 #include <asm/apic.h> 34 #include <asm/perf_event.h> 35 #include <asm/tlbflush.h> 36 #include <asm/desc.h> 37 #include <asm/debugreg.h> 38 #include <asm/kvm_para.h> 39 #include <asm/irq_remapping.h> 40 #include <asm/spec-ctrl.h> 41 #include <asm/cpu_device_id.h> 42 #include <asm/traps.h> 43 #include <asm/reboot.h> 44 #include <asm/fpu/api.h> 45 46 #include <trace/events/ipi.h> 47 48 #include "trace.h" 49 50 #include "svm.h" 51 #include "svm_ops.h" 52 53 #include "kvm_onhyperv.h" 54 #include "svm_onhyperv.h" 55 56 MODULE_AUTHOR("Qumranet"); 57 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 58 MODULE_LICENSE("GPL"); 59 60 #ifdef MODULE 61 static const struct x86_cpu_id svm_cpu_id[] = { 62 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 63 {} 64 }; 65 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 66 #endif 67 68 #define SEG_TYPE_LDT 2 69 #define SEG_TYPE_BUSY_TSS16 3 70 71 static bool erratum_383_found __read_mostly; 72 73 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; 74 75 /* 76 * Set osvw_len to higher value when updated Revision Guides 77 * are published and we know what the new status bits are 78 */ 79 static uint64_t osvw_len = 4, osvw_status; 80 81 static DEFINE_PER_CPU(u64, current_tsc_ratio); 82 83 #define X2APIC_MSR(x) (APIC_BASE_MSR + (x >> 4)) 84 85 static const struct svm_direct_access_msrs { 86 u32 index; /* Index of the MSR */ 87 bool always; /* True if intercept is initially cleared */ 88 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = { 89 { .index = MSR_STAR, .always = true }, 90 { .index = MSR_IA32_SYSENTER_CS, .always = true }, 91 { .index = MSR_IA32_SYSENTER_EIP, .always = false }, 92 { .index = MSR_IA32_SYSENTER_ESP, .always = false }, 93 #ifdef CONFIG_X86_64 94 { .index = MSR_GS_BASE, .always = true }, 95 { .index = MSR_FS_BASE, .always = true }, 96 { .index = MSR_KERNEL_GS_BASE, .always = true }, 97 { .index = MSR_LSTAR, .always = true }, 98 { .index = MSR_CSTAR, .always = true }, 99 { .index = MSR_SYSCALL_MASK, .always = true }, 100 #endif 101 { .index = MSR_IA32_SPEC_CTRL, .always = false }, 102 { .index = MSR_IA32_PRED_CMD, .always = false }, 103 { .index = MSR_IA32_FLUSH_CMD, .always = false }, 104 { .index = MSR_IA32_DEBUGCTLMSR, .always = false }, 105 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false }, 106 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false }, 107 { .index = MSR_IA32_LASTINTFROMIP, .always = false }, 108 { .index = MSR_IA32_LASTINTTOIP, .always = false }, 109 { .index = MSR_IA32_XSS, .always = false }, 110 { .index = MSR_EFER, .always = false }, 111 { .index = MSR_IA32_CR_PAT, .always = false }, 112 { .index = MSR_AMD64_SEV_ES_GHCB, .always = true }, 113 { .index = MSR_TSC_AUX, .always = false }, 114 { .index = X2APIC_MSR(APIC_ID), .always = false }, 115 { .index = X2APIC_MSR(APIC_LVR), .always = false }, 116 { .index = X2APIC_MSR(APIC_TASKPRI), .always = false }, 117 { .index = X2APIC_MSR(APIC_ARBPRI), .always = false }, 118 { .index = X2APIC_MSR(APIC_PROCPRI), .always = false }, 119 { .index = X2APIC_MSR(APIC_EOI), .always = false }, 120 { .index = X2APIC_MSR(APIC_RRR), .always = false }, 121 { .index = X2APIC_MSR(APIC_LDR), .always = false }, 122 { .index = X2APIC_MSR(APIC_DFR), .always = false }, 123 { .index = X2APIC_MSR(APIC_SPIV), .always = false }, 124 { .index = X2APIC_MSR(APIC_ISR), .always = false }, 125 { .index = X2APIC_MSR(APIC_TMR), .always = false }, 126 { .index = X2APIC_MSR(APIC_IRR), .always = false }, 127 { .index = X2APIC_MSR(APIC_ESR), .always = false }, 128 { .index = X2APIC_MSR(APIC_ICR), .always = false }, 129 { .index = X2APIC_MSR(APIC_ICR2), .always = false }, 130 131 /* 132 * Note: 133 * AMD does not virtualize APIC TSC-deadline timer mode, but it is 134 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18, 135 * the AVIC hardware would generate GP fault. Therefore, always 136 * intercept the MSR 0x832, and do not setup direct_access_msr. 137 */ 138 { .index = X2APIC_MSR(APIC_LVTTHMR), .always = false }, 139 { .index = X2APIC_MSR(APIC_LVTPC), .always = false }, 140 { .index = X2APIC_MSR(APIC_LVT0), .always = false }, 141 { .index = X2APIC_MSR(APIC_LVT1), .always = false }, 142 { .index = X2APIC_MSR(APIC_LVTERR), .always = false }, 143 { .index = X2APIC_MSR(APIC_TMICT), .always = false }, 144 { .index = X2APIC_MSR(APIC_TMCCT), .always = false }, 145 { .index = X2APIC_MSR(APIC_TDCR), .always = false }, 146 { .index = MSR_INVALID, .always = false }, 147 }; 148 149 /* 150 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 151 * pause_filter_count: On processors that support Pause filtering(indicated 152 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 153 * count value. On VMRUN this value is loaded into an internal counter. 154 * Each time a pause instruction is executed, this counter is decremented 155 * until it reaches zero at which time a #VMEXIT is generated if pause 156 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 157 * Intercept Filtering for more details. 158 * This also indicate if ple logic enabled. 159 * 160 * pause_filter_thresh: In addition, some processor families support advanced 161 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 162 * the amount of time a guest is allowed to execute in a pause loop. 163 * In this mode, a 16-bit pause filter threshold field is added in the 164 * VMCB. The threshold value is a cycle count that is used to reset the 165 * pause counter. As with simple pause filtering, VMRUN loads the pause 166 * count value from VMCB into an internal counter. Then, on each pause 167 * instruction the hardware checks the elapsed number of cycles since 168 * the most recent pause instruction against the pause filter threshold. 169 * If the elapsed cycle count is greater than the pause filter threshold, 170 * then the internal pause count is reloaded from the VMCB and execution 171 * continues. If the elapsed cycle count is less than the pause filter 172 * threshold, then the internal pause count is decremented. If the count 173 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 174 * triggered. If advanced pause filtering is supported and pause filter 175 * threshold field is set to zero, the filter will operate in the simpler, 176 * count only mode. 177 */ 178 179 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 180 module_param(pause_filter_thresh, ushort, 0444); 181 182 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 183 module_param(pause_filter_count, ushort, 0444); 184 185 /* Default doubles per-vcpu window every exit. */ 186 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 187 module_param(pause_filter_count_grow, ushort, 0444); 188 189 /* Default resets per-vcpu window every exit to pause_filter_count. */ 190 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 191 module_param(pause_filter_count_shrink, ushort, 0444); 192 193 /* Default is to compute the maximum so we can never overflow. */ 194 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 195 module_param(pause_filter_count_max, ushort, 0444); 196 197 /* 198 * Use nested page tables by default. Note, NPT may get forced off by 199 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 200 */ 201 bool npt_enabled = true; 202 module_param_named(npt, npt_enabled, bool, 0444); 203 204 /* allow nested virtualization in KVM/SVM */ 205 static int nested = true; 206 module_param(nested, int, 0444); 207 208 /* enable/disable Next RIP Save */ 209 int nrips = true; 210 module_param(nrips, int, 0444); 211 212 /* enable/disable Virtual VMLOAD VMSAVE */ 213 static int vls = true; 214 module_param(vls, int, 0444); 215 216 /* enable/disable Virtual GIF */ 217 int vgif = true; 218 module_param(vgif, int, 0444); 219 220 /* enable/disable LBR virtualization */ 221 int lbrv = true; 222 module_param(lbrv, int, 0444); 223 224 static int tsc_scaling = true; 225 module_param(tsc_scaling, int, 0444); 226 227 /* 228 * enable / disable AVIC. Because the defaults differ for APICv 229 * support between VMX and SVM we cannot use module_param_named. 230 */ 231 static bool avic; 232 module_param(avic, bool, 0444); 233 234 bool __read_mostly dump_invalid_vmcb; 235 module_param(dump_invalid_vmcb, bool, 0644); 236 237 238 bool intercept_smi = true; 239 module_param(intercept_smi, bool, 0444); 240 241 bool vnmi = true; 242 module_param(vnmi, bool, 0444); 243 244 static bool svm_gp_erratum_intercept = true; 245 246 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 247 248 static unsigned long iopm_base; 249 250 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 251 252 /* 253 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 254 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 255 * 256 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 257 * defer the restoration of TSC_AUX until the CPU returns to userspace. 258 */ 259 static int tsc_aux_uret_slot __read_mostly = -1; 260 261 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; 262 263 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) 264 #define MSRS_RANGE_SIZE 2048 265 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) 266 267 u32 svm_msrpm_offset(u32 msr) 268 { 269 u32 offset; 270 int i; 271 272 for (i = 0; i < NUM_MSR_MAPS; i++) { 273 if (msr < msrpm_ranges[i] || 274 msr >= msrpm_ranges[i] + MSRS_IN_RANGE) 275 continue; 276 277 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ 278 offset += (i * MSRS_RANGE_SIZE); /* add range offset */ 279 280 /* Now we have the u8 offset - but need the u32 offset */ 281 return offset / 4; 282 } 283 284 /* MSR not in any range */ 285 return MSR_INVALID; 286 } 287 288 static int get_npt_level(void) 289 { 290 #ifdef CONFIG_X86_64 291 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 292 #else 293 return PT32E_ROOT_LEVEL; 294 #endif 295 } 296 297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 298 { 299 struct vcpu_svm *svm = to_svm(vcpu); 300 u64 old_efer = vcpu->arch.efer; 301 vcpu->arch.efer = efer; 302 303 if (!npt_enabled) { 304 /* Shadow paging assumes NX to be available. */ 305 efer |= EFER_NX; 306 307 if (!(efer & EFER_LMA)) 308 efer &= ~EFER_LME; 309 } 310 311 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 312 if (!(efer & EFER_SVME)) { 313 svm_leave_nested(vcpu); 314 svm_set_gif(svm, true); 315 /* #GP intercept is still needed for vmware backdoor */ 316 if (!enable_vmware_backdoor) 317 clr_exception_intercept(svm, GP_VECTOR); 318 319 /* 320 * Free the nested guest state, unless we are in SMM. 321 * In this case we will return to the nested guest 322 * as soon as we leave SMM. 323 */ 324 if (!is_smm(vcpu)) 325 svm_free_nested(svm); 326 327 } else { 328 int ret = svm_allocate_nested(svm); 329 330 if (ret) { 331 vcpu->arch.efer = old_efer; 332 return ret; 333 } 334 335 /* 336 * Never intercept #GP for SEV guests, KVM can't 337 * decrypt guest memory to workaround the erratum. 338 */ 339 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 340 set_exception_intercept(svm, GP_VECTOR); 341 } 342 } 343 344 svm->vmcb->save.efer = efer | EFER_SVME; 345 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 346 return 0; 347 } 348 349 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 350 { 351 struct vcpu_svm *svm = to_svm(vcpu); 352 u32 ret = 0; 353 354 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 355 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 356 return ret; 357 } 358 359 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 360 { 361 struct vcpu_svm *svm = to_svm(vcpu); 362 363 if (mask == 0) 364 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 365 else 366 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 367 368 } 369 370 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 371 bool commit_side_effects) 372 { 373 struct vcpu_svm *svm = to_svm(vcpu); 374 unsigned long old_rflags; 375 376 /* 377 * SEV-ES does not expose the next RIP. The RIP update is controlled by 378 * the type of exit and the #VC handler in the guest. 379 */ 380 if (sev_es_guest(vcpu->kvm)) 381 goto done; 382 383 if (nrips && svm->vmcb->control.next_rip != 0) { 384 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 385 svm->next_rip = svm->vmcb->control.next_rip; 386 } 387 388 if (!svm->next_rip) { 389 if (unlikely(!commit_side_effects)) 390 old_rflags = svm->vmcb->save.rflags; 391 392 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 393 return 0; 394 395 if (unlikely(!commit_side_effects)) 396 svm->vmcb->save.rflags = old_rflags; 397 } else { 398 kvm_rip_write(vcpu, svm->next_rip); 399 } 400 401 done: 402 if (likely(commit_side_effects)) 403 svm_set_interrupt_shadow(vcpu, 0); 404 405 return 1; 406 } 407 408 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 409 { 410 return __svm_skip_emulated_instruction(vcpu, true); 411 } 412 413 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 414 { 415 unsigned long rip, old_rip = kvm_rip_read(vcpu); 416 struct vcpu_svm *svm = to_svm(vcpu); 417 418 /* 419 * Due to architectural shortcomings, the CPU doesn't always provide 420 * NextRIP, e.g. if KVM intercepted an exception that occurred while 421 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 422 * the instruction even if NextRIP is supported to acquire the next 423 * RIP so that it can be shoved into the NextRIP field, otherwise 424 * hardware will fail to advance guest RIP during event injection. 425 * Drop the exception/interrupt if emulation fails and effectively 426 * retry the instruction, it's the least awful option. If NRIPS is 427 * in use, the skip must not commit any side effects such as clearing 428 * the interrupt shadow or RFLAGS.RF. 429 */ 430 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 431 return -EIO; 432 433 rip = kvm_rip_read(vcpu); 434 435 /* 436 * Save the injection information, even when using next_rip, as the 437 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 438 * doesn't complete due to a VM-Exit occurring while the CPU is 439 * vectoring the event. Decoding the instruction isn't guaranteed to 440 * work as there may be no backing instruction, e.g. if the event is 441 * being injected by L1 for L2, or if the guest is patching INT3 into 442 * a different instruction. 443 */ 444 svm->soft_int_injected = true; 445 svm->soft_int_csbase = svm->vmcb->save.cs.base; 446 svm->soft_int_old_rip = old_rip; 447 svm->soft_int_next_rip = rip; 448 449 if (nrips) 450 kvm_rip_write(vcpu, old_rip); 451 452 if (static_cpu_has(X86_FEATURE_NRIPS)) 453 svm->vmcb->control.next_rip = rip; 454 455 return 0; 456 } 457 458 static void svm_inject_exception(struct kvm_vcpu *vcpu) 459 { 460 struct kvm_queued_exception *ex = &vcpu->arch.exception; 461 struct vcpu_svm *svm = to_svm(vcpu); 462 463 kvm_deliver_exception_payload(vcpu, ex); 464 465 if (kvm_exception_is_soft(ex->vector) && 466 svm_update_soft_interrupt_rip(vcpu)) 467 return; 468 469 svm->vmcb->control.event_inj = ex->vector 470 | SVM_EVTINJ_VALID 471 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 472 | SVM_EVTINJ_TYPE_EXEPT; 473 svm->vmcb->control.event_inj_err = ex->error_code; 474 } 475 476 static void svm_init_erratum_383(void) 477 { 478 u32 low, high; 479 int err; 480 u64 val; 481 482 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 483 return; 484 485 /* Use _safe variants to not break nested virtualization */ 486 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); 487 if (err) 488 return; 489 490 val |= (1ULL << 47); 491 492 low = lower_32_bits(val); 493 high = upper_32_bits(val); 494 495 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); 496 497 erratum_383_found = true; 498 } 499 500 static void svm_init_osvw(struct kvm_vcpu *vcpu) 501 { 502 /* 503 * Guests should see errata 400 and 415 as fixed (assuming that 504 * HLT and IO instructions are intercepted). 505 */ 506 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 507 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 508 509 /* 510 * By increasing VCPU's osvw.length to 3 we are telling the guest that 511 * all osvw.status bits inside that length, including bit 0 (which is 512 * reserved for erratum 298), are valid. However, if host processor's 513 * osvw_len is 0 then osvw_status[0] carries no information. We need to 514 * be conservative here and therefore we tell the guest that erratum 298 515 * is present (because we really don't know). 516 */ 517 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 518 vcpu->arch.osvw.status |= 1; 519 } 520 521 static bool __kvm_is_svm_supported(void) 522 { 523 int cpu = smp_processor_id(); 524 struct cpuinfo_x86 *c = &cpu_data(cpu); 525 526 if (c->x86_vendor != X86_VENDOR_AMD && 527 c->x86_vendor != X86_VENDOR_HYGON) { 528 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 529 return false; 530 } 531 532 if (!cpu_has(c, X86_FEATURE_SVM)) { 533 pr_err("SVM not supported by CPU %d\n", cpu); 534 return false; 535 } 536 537 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 538 pr_info("KVM is unsupported when running as an SEV guest\n"); 539 return false; 540 } 541 542 return true; 543 } 544 545 static bool kvm_is_svm_supported(void) 546 { 547 bool supported; 548 549 migrate_disable(); 550 supported = __kvm_is_svm_supported(); 551 migrate_enable(); 552 553 return supported; 554 } 555 556 static int svm_check_processor_compat(void) 557 { 558 if (!__kvm_is_svm_supported()) 559 return -EIO; 560 561 return 0; 562 } 563 564 static void __svm_write_tsc_multiplier(u64 multiplier) 565 { 566 if (multiplier == __this_cpu_read(current_tsc_ratio)) 567 return; 568 569 wrmsrl(MSR_AMD64_TSC_RATIO, multiplier); 570 __this_cpu_write(current_tsc_ratio, multiplier); 571 } 572 573 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 574 { 575 return &sd->save_area->host_sev_es_save; 576 } 577 578 static inline void kvm_cpu_svm_disable(void) 579 { 580 uint64_t efer; 581 582 wrmsrl(MSR_VM_HSAVE_PA, 0); 583 rdmsrl(MSR_EFER, efer); 584 if (efer & EFER_SVME) { 585 /* 586 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 587 * NMI aren't blocked. 588 */ 589 stgi(); 590 wrmsrl(MSR_EFER, efer & ~EFER_SVME); 591 } 592 } 593 594 static void svm_emergency_disable_virtualization_cpu(void) 595 { 596 kvm_rebooting = true; 597 598 kvm_cpu_svm_disable(); 599 } 600 601 static void svm_disable_virtualization_cpu(void) 602 { 603 /* Make sure we clean up behind us */ 604 if (tsc_scaling) 605 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 606 607 kvm_cpu_svm_disable(); 608 609 amd_pmu_disable_virt(); 610 } 611 612 static int svm_enable_virtualization_cpu(void) 613 { 614 615 struct svm_cpu_data *sd; 616 uint64_t efer; 617 int me = raw_smp_processor_id(); 618 619 rdmsrl(MSR_EFER, efer); 620 if (efer & EFER_SVME) 621 return -EBUSY; 622 623 sd = per_cpu_ptr(&svm_data, me); 624 sd->asid_generation = 1; 625 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 626 sd->next_asid = sd->max_asid + 1; 627 sd->min_asid = max_sev_asid + 1; 628 629 wrmsrl(MSR_EFER, efer | EFER_SVME); 630 631 wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa); 632 633 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 634 /* 635 * Set the default value, even if we don't use TSC scaling 636 * to avoid having stale value in the msr 637 */ 638 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 639 } 640 641 642 /* 643 * Get OSVW bits. 644 * 645 * Note that it is possible to have a system with mixed processor 646 * revisions and therefore different OSVW bits. If bits are not the same 647 * on different processors then choose the worst case (i.e. if erratum 648 * is present on one processor and not on another then assume that the 649 * erratum is present everywhere). 650 */ 651 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 652 uint64_t len, status = 0; 653 int err; 654 655 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); 656 if (!err) 657 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, 658 &err); 659 660 if (err) 661 osvw_status = osvw_len = 0; 662 else { 663 if (len < osvw_len) 664 osvw_len = len; 665 osvw_status |= status; 666 osvw_status &= (1ULL << osvw_len) - 1; 667 } 668 } else 669 osvw_status = osvw_len = 0; 670 671 svm_init_erratum_383(); 672 673 amd_pmu_enable_virt(); 674 675 /* 676 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type 677 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests. 678 * Since Linux does not change the value of TSC_AUX once set, prime the 679 * TSC_AUX field now to avoid a RDMSR on every vCPU run. 680 */ 681 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 682 u32 __maybe_unused msr_hi; 683 684 rdmsr(MSR_TSC_AUX, sev_es_host_save_area(sd)->tsc_aux, msr_hi); 685 } 686 687 return 0; 688 } 689 690 static void svm_cpu_uninit(int cpu) 691 { 692 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 693 694 if (!sd->save_area) 695 return; 696 697 kfree(sd->sev_vmcbs); 698 __free_page(__sme_pa_to_page(sd->save_area_pa)); 699 sd->save_area_pa = 0; 700 sd->save_area = NULL; 701 } 702 703 static int svm_cpu_init(int cpu) 704 { 705 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 706 struct page *save_area_page; 707 int ret = -ENOMEM; 708 709 memset(sd, 0, sizeof(struct svm_cpu_data)); 710 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 711 if (!save_area_page) 712 return ret; 713 714 ret = sev_cpu_init(sd); 715 if (ret) 716 goto free_save_area; 717 718 sd->save_area = page_address(save_area_page); 719 sd->save_area_pa = __sme_page_pa(save_area_page); 720 return 0; 721 722 free_save_area: 723 __free_page(save_area_page); 724 return ret; 725 726 } 727 728 static void set_dr_intercepts(struct vcpu_svm *svm) 729 { 730 struct vmcb *vmcb = svm->vmcb01.ptr; 731 732 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 733 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 734 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 735 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 736 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 737 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 738 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 739 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 740 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 741 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 742 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 743 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 744 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 745 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 746 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 747 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 748 749 recalc_intercepts(svm); 750 } 751 752 static void clr_dr_intercepts(struct vcpu_svm *svm) 753 { 754 struct vmcb *vmcb = svm->vmcb01.ptr; 755 756 vmcb->control.intercepts[INTERCEPT_DR] = 0; 757 758 recalc_intercepts(svm); 759 } 760 761 static int direct_access_msr_slot(u32 msr) 762 { 763 u32 i; 764 765 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) 766 if (direct_access_msrs[i].index == msr) 767 return i; 768 769 return -ENOENT; 770 } 771 772 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read, 773 int write) 774 { 775 struct vcpu_svm *svm = to_svm(vcpu); 776 int slot = direct_access_msr_slot(msr); 777 778 if (slot == -ENOENT) 779 return; 780 781 /* Set the shadow bitmaps to the desired intercept states */ 782 if (read) 783 set_bit(slot, svm->shadow_msr_intercept.read); 784 else 785 clear_bit(slot, svm->shadow_msr_intercept.read); 786 787 if (write) 788 set_bit(slot, svm->shadow_msr_intercept.write); 789 else 790 clear_bit(slot, svm->shadow_msr_intercept.write); 791 } 792 793 static bool valid_msr_intercept(u32 index) 794 { 795 return direct_access_msr_slot(index) != -ENOENT; 796 } 797 798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 799 { 800 u8 bit_write; 801 unsigned long tmp; 802 u32 offset; 803 u32 *msrpm; 804 805 /* 806 * For non-nested case: 807 * If the L01 MSR bitmap does not intercept the MSR, then we need to 808 * save it. 809 * 810 * For nested case: 811 * If the L02 MSR bitmap does not intercept the MSR, then we need to 812 * save it. 813 */ 814 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: 815 to_svm(vcpu)->msrpm; 816 817 offset = svm_msrpm_offset(msr); 818 bit_write = 2 * (msr & 0x0f) + 1; 819 tmp = msrpm[offset]; 820 821 BUG_ON(offset == MSR_INVALID); 822 823 return test_bit(bit_write, &tmp); 824 } 825 826 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm, 827 u32 msr, int read, int write) 828 { 829 struct vcpu_svm *svm = to_svm(vcpu); 830 u8 bit_read, bit_write; 831 unsigned long tmp; 832 u32 offset; 833 834 /* 835 * If this warning triggers extend the direct_access_msrs list at the 836 * beginning of the file 837 */ 838 WARN_ON(!valid_msr_intercept(msr)); 839 840 /* Enforce non allowed MSRs to trap */ 841 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 842 read = 0; 843 844 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 845 write = 0; 846 847 offset = svm_msrpm_offset(msr); 848 bit_read = 2 * (msr & 0x0f); 849 bit_write = 2 * (msr & 0x0f) + 1; 850 tmp = msrpm[offset]; 851 852 BUG_ON(offset == MSR_INVALID); 853 854 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp); 855 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); 856 857 msrpm[offset] = tmp; 858 859 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 860 svm->nested.force_msr_bitmap_recalc = true; 861 } 862 863 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, 864 int read, int write) 865 { 866 set_shadow_msr_intercept(vcpu, msr, read, write); 867 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write); 868 } 869 870 u32 *svm_vcpu_alloc_msrpm(void) 871 { 872 unsigned int order = get_order(MSRPM_SIZE); 873 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order); 874 u32 *msrpm; 875 876 if (!pages) 877 return NULL; 878 879 msrpm = page_address(pages); 880 memset(msrpm, 0xff, PAGE_SIZE * (1 << order)); 881 882 return msrpm; 883 } 884 885 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm) 886 { 887 int i; 888 889 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 890 if (!direct_access_msrs[i].always) 891 continue; 892 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1); 893 } 894 } 895 896 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept) 897 { 898 int i; 899 900 if (intercept == svm->x2avic_msrs_intercepted) 901 return; 902 903 if (!x2avic_enabled) 904 return; 905 906 for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) { 907 int index = direct_access_msrs[i].index; 908 909 if ((index < APIC_BASE_MSR) || 910 (index > APIC_BASE_MSR + 0xff)) 911 continue; 912 set_msr_interception(&svm->vcpu, svm->msrpm, index, 913 !intercept, !intercept); 914 } 915 916 svm->x2avic_msrs_intercepted = intercept; 917 } 918 919 void svm_vcpu_free_msrpm(u32 *msrpm) 920 { 921 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 922 } 923 924 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu) 925 { 926 struct vcpu_svm *svm = to_svm(vcpu); 927 u32 i; 928 929 /* 930 * Set intercept permissions for all direct access MSRs again. They 931 * will automatically get filtered through the MSR filter, so we are 932 * back in sync after this. 933 */ 934 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 935 u32 msr = direct_access_msrs[i].index; 936 u32 read = test_bit(i, svm->shadow_msr_intercept.read); 937 u32 write = test_bit(i, svm->shadow_msr_intercept.write); 938 939 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write); 940 } 941 } 942 943 static void add_msr_offset(u32 offset) 944 { 945 int i; 946 947 for (i = 0; i < MSRPM_OFFSETS; ++i) { 948 949 /* Offset already in list? */ 950 if (msrpm_offsets[i] == offset) 951 return; 952 953 /* Slot used by another offset? */ 954 if (msrpm_offsets[i] != MSR_INVALID) 955 continue; 956 957 /* Add offset to list */ 958 msrpm_offsets[i] = offset; 959 960 return; 961 } 962 963 /* 964 * If this BUG triggers the msrpm_offsets table has an overflow. Just 965 * increase MSRPM_OFFSETS in this case. 966 */ 967 BUG(); 968 } 969 970 static void init_msrpm_offsets(void) 971 { 972 int i; 973 974 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); 975 976 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { 977 u32 offset; 978 979 offset = svm_msrpm_offset(direct_access_msrs[i].index); 980 BUG_ON(offset == MSR_INVALID); 981 982 add_msr_offset(offset); 983 } 984 } 985 986 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 987 { 988 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 989 to_vmcb->save.br_from = from_vmcb->save.br_from; 990 to_vmcb->save.br_to = from_vmcb->save.br_to; 991 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 992 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 993 994 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 995 } 996 997 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 998 { 999 struct vcpu_svm *svm = to_svm(vcpu); 1000 1001 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 1002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 1003 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 1004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 1005 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 1006 1007 if (sev_es_guest(vcpu->kvm)) 1008 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_DEBUGCTLMSR, 1, 1); 1009 1010 /* Move the LBR msrs to the vmcb02 so that the guest can see them. */ 1011 if (is_guest_mode(vcpu)) 1012 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr); 1013 } 1014 1015 static void svm_disable_lbrv(struct kvm_vcpu *vcpu) 1016 { 1017 struct vcpu_svm *svm = to_svm(vcpu); 1018 1019 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 1020 1021 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 1022 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); 1023 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); 1024 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); 1025 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0); 1026 1027 /* 1028 * Move the LBR msrs back to the vmcb01 to avoid copying them 1029 * on nested guest entries. 1030 */ 1031 if (is_guest_mode(vcpu)) 1032 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb); 1033 } 1034 1035 static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm) 1036 { 1037 /* 1038 * If LBR virtualization is disabled, the LBR MSRs are always kept in 1039 * vmcb01. If LBR virtualization is enabled and L1 is running VMs of 1040 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed. 1041 */ 1042 return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb : 1043 svm->vmcb01.ptr; 1044 } 1045 1046 void svm_update_lbrv(struct kvm_vcpu *vcpu) 1047 { 1048 struct vcpu_svm *svm = to_svm(vcpu); 1049 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 1050 bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) || 1051 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 1052 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 1053 1054 if (enable_lbrv == current_enable_lbrv) 1055 return; 1056 1057 if (enable_lbrv) 1058 svm_enable_lbrv(vcpu); 1059 else 1060 svm_disable_lbrv(vcpu); 1061 } 1062 1063 void disable_nmi_singlestep(struct vcpu_svm *svm) 1064 { 1065 svm->nmi_singlestep = false; 1066 1067 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 1068 /* Clear our flags if they were not set by the guest */ 1069 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1070 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 1071 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1072 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 1073 } 1074 } 1075 1076 static void grow_ple_window(struct kvm_vcpu *vcpu) 1077 { 1078 struct vcpu_svm *svm = to_svm(vcpu); 1079 struct vmcb_control_area *control = &svm->vmcb->control; 1080 int old = control->pause_filter_count; 1081 1082 if (kvm_pause_in_guest(vcpu->kvm)) 1083 return; 1084 1085 control->pause_filter_count = __grow_ple_window(old, 1086 pause_filter_count, 1087 pause_filter_count_grow, 1088 pause_filter_count_max); 1089 1090 if (control->pause_filter_count != old) { 1091 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1092 trace_kvm_ple_window_update(vcpu->vcpu_id, 1093 control->pause_filter_count, old); 1094 } 1095 } 1096 1097 static void shrink_ple_window(struct kvm_vcpu *vcpu) 1098 { 1099 struct vcpu_svm *svm = to_svm(vcpu); 1100 struct vmcb_control_area *control = &svm->vmcb->control; 1101 int old = control->pause_filter_count; 1102 1103 if (kvm_pause_in_guest(vcpu->kvm)) 1104 return; 1105 1106 control->pause_filter_count = 1107 __shrink_ple_window(old, 1108 pause_filter_count, 1109 pause_filter_count_shrink, 1110 pause_filter_count); 1111 if (control->pause_filter_count != old) { 1112 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1113 trace_kvm_ple_window_update(vcpu->vcpu_id, 1114 control->pause_filter_count, old); 1115 } 1116 } 1117 1118 static void svm_hardware_unsetup(void) 1119 { 1120 int cpu; 1121 1122 sev_hardware_unsetup(); 1123 1124 for_each_possible_cpu(cpu) 1125 svm_cpu_uninit(cpu); 1126 1127 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); 1128 iopm_base = 0; 1129 } 1130 1131 static void init_seg(struct vmcb_seg *seg) 1132 { 1133 seg->selector = 0; 1134 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 1135 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 1136 seg->limit = 0xffff; 1137 seg->base = 0; 1138 } 1139 1140 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 1141 { 1142 seg->selector = 0; 1143 seg->attrib = SVM_SELECTOR_P_MASK | type; 1144 seg->limit = 0xffff; 1145 seg->base = 0; 1146 } 1147 1148 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1149 { 1150 struct vcpu_svm *svm = to_svm(vcpu); 1151 1152 return svm->nested.ctl.tsc_offset; 1153 } 1154 1155 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1156 { 1157 struct vcpu_svm *svm = to_svm(vcpu); 1158 1159 return svm->tsc_ratio_msr; 1160 } 1161 1162 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 1163 { 1164 struct vcpu_svm *svm = to_svm(vcpu); 1165 1166 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 1167 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 1168 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 1169 } 1170 1171 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1172 { 1173 preempt_disable(); 1174 if (to_svm(vcpu)->guest_state_loaded) 1175 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1176 preempt_enable(); 1177 } 1178 1179 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 1180 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu, 1181 struct vcpu_svm *svm) 1182 { 1183 /* 1184 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 1185 * roots, or if INVPCID is disabled in the guest to inject #UD. 1186 */ 1187 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 1188 if (!npt_enabled || 1189 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID)) 1190 svm_set_intercept(svm, INTERCEPT_INVPCID); 1191 else 1192 svm_clr_intercept(svm, INTERCEPT_INVPCID); 1193 } 1194 1195 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 1196 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP)) 1197 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 1198 else 1199 svm_set_intercept(svm, INTERCEPT_RDTSCP); 1200 } 1201 } 1202 1203 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu) 1204 { 1205 struct vcpu_svm *svm = to_svm(vcpu); 1206 1207 if (guest_cpuid_is_intel_compatible(vcpu)) { 1208 /* 1209 * We must intercept SYSENTER_EIP and SYSENTER_ESP 1210 * accesses because the processor only stores 32 bits. 1211 * For the same reason we cannot use virtual VMLOAD/VMSAVE. 1212 */ 1213 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1214 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1215 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1216 1217 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0); 1218 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0); 1219 } else { 1220 /* 1221 * If hardware supports Virtual VMLOAD VMSAVE then enable it 1222 * in VMCB and clear intercepts to avoid #VMEXIT. 1223 */ 1224 if (vls) { 1225 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1226 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1227 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1228 } 1229 /* No need to intercept these MSRs */ 1230 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1); 1231 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1); 1232 } 1233 } 1234 1235 static void init_vmcb(struct kvm_vcpu *vcpu) 1236 { 1237 struct vcpu_svm *svm = to_svm(vcpu); 1238 struct vmcb *vmcb = svm->vmcb01.ptr; 1239 struct vmcb_control_area *control = &vmcb->control; 1240 struct vmcb_save_area *save = &vmcb->save; 1241 1242 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1243 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1244 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1245 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1246 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1247 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1248 if (!kvm_vcpu_apicv_active(vcpu)) 1249 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1250 1251 set_dr_intercepts(svm); 1252 1253 set_exception_intercept(svm, PF_VECTOR); 1254 set_exception_intercept(svm, UD_VECTOR); 1255 set_exception_intercept(svm, MC_VECTOR); 1256 set_exception_intercept(svm, AC_VECTOR); 1257 set_exception_intercept(svm, DB_VECTOR); 1258 /* 1259 * Guest access to VMware backdoor ports could legitimately 1260 * trigger #GP because of TSS I/O permission bitmap. 1261 * We intercept those #GP and allow access to them anyway 1262 * as VMware does. 1263 */ 1264 if (enable_vmware_backdoor) 1265 set_exception_intercept(svm, GP_VECTOR); 1266 1267 svm_set_intercept(svm, INTERCEPT_INTR); 1268 svm_set_intercept(svm, INTERCEPT_NMI); 1269 1270 if (intercept_smi) 1271 svm_set_intercept(svm, INTERCEPT_SMI); 1272 1273 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1274 svm_set_intercept(svm, INTERCEPT_RDPMC); 1275 svm_set_intercept(svm, INTERCEPT_CPUID); 1276 svm_set_intercept(svm, INTERCEPT_INVD); 1277 svm_set_intercept(svm, INTERCEPT_INVLPG); 1278 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1279 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1280 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1281 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1282 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1283 svm_set_intercept(svm, INTERCEPT_VMRUN); 1284 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1285 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1286 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1287 svm_set_intercept(svm, INTERCEPT_STGI); 1288 svm_set_intercept(svm, INTERCEPT_CLGI); 1289 svm_set_intercept(svm, INTERCEPT_SKINIT); 1290 svm_set_intercept(svm, INTERCEPT_WBINVD); 1291 svm_set_intercept(svm, INTERCEPT_XSETBV); 1292 svm_set_intercept(svm, INTERCEPT_RDPRU); 1293 svm_set_intercept(svm, INTERCEPT_RSM); 1294 1295 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1296 svm_set_intercept(svm, INTERCEPT_MONITOR); 1297 svm_set_intercept(svm, INTERCEPT_MWAIT); 1298 } 1299 1300 if (!kvm_hlt_in_guest(vcpu->kvm)) 1301 svm_set_intercept(svm, INTERCEPT_HLT); 1302 1303 control->iopm_base_pa = iopm_base; 1304 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1305 control->int_ctl = V_INTR_MASKING_MASK; 1306 1307 init_seg(&save->es); 1308 init_seg(&save->ss); 1309 init_seg(&save->ds); 1310 init_seg(&save->fs); 1311 init_seg(&save->gs); 1312 1313 save->cs.selector = 0xf000; 1314 save->cs.base = 0xffff0000; 1315 /* Executable/Readable Code Segment */ 1316 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1317 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1318 save->cs.limit = 0xffff; 1319 1320 save->gdtr.base = 0; 1321 save->gdtr.limit = 0xffff; 1322 save->idtr.base = 0; 1323 save->idtr.limit = 0xffff; 1324 1325 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1326 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1327 1328 if (npt_enabled) { 1329 /* Setup VMCB for Nested Paging */ 1330 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1331 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1332 clr_exception_intercept(svm, PF_VECTOR); 1333 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1334 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1335 save->g_pat = vcpu->arch.pat; 1336 save->cr3 = 0; 1337 } 1338 svm->current_vmcb->asid_generation = 0; 1339 svm->asid = 0; 1340 1341 svm->nested.vmcb12_gpa = INVALID_GPA; 1342 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1343 1344 if (!kvm_pause_in_guest(vcpu->kvm)) { 1345 control->pause_filter_count = pause_filter_count; 1346 if (pause_filter_thresh) 1347 control->pause_filter_thresh = pause_filter_thresh; 1348 svm_set_intercept(svm, INTERCEPT_PAUSE); 1349 } else { 1350 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1351 } 1352 1353 svm_recalc_instruction_intercepts(vcpu, svm); 1354 1355 /* 1356 * If the host supports V_SPEC_CTRL then disable the interception 1357 * of MSR_IA32_SPEC_CTRL. 1358 */ 1359 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 1360 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 1361 1362 if (kvm_vcpu_apicv_active(vcpu)) 1363 avic_init_vmcb(svm, vmcb); 1364 1365 if (vnmi) 1366 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1367 1368 if (vgif) { 1369 svm_clr_intercept(svm, INTERCEPT_STGI); 1370 svm_clr_intercept(svm, INTERCEPT_CLGI); 1371 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1372 } 1373 1374 if (sev_guest(vcpu->kvm)) 1375 sev_init_vmcb(svm); 1376 1377 svm_hv_init_vmcb(vmcb); 1378 init_vmcb_after_set_cpuid(vcpu); 1379 1380 vmcb_mark_all_dirty(vmcb); 1381 1382 enable_gif(svm); 1383 } 1384 1385 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1386 { 1387 struct vcpu_svm *svm = to_svm(vcpu); 1388 1389 svm_vcpu_init_msrpm(vcpu, svm->msrpm); 1390 1391 svm_init_osvw(vcpu); 1392 1393 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 1394 vcpu->arch.microcode_version = 0x01000065; 1395 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1396 1397 svm->nmi_masked = false; 1398 svm->awaiting_iret_completion = false; 1399 1400 if (sev_es_guest(vcpu->kvm)) 1401 sev_es_vcpu_reset(svm); 1402 } 1403 1404 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1405 { 1406 struct vcpu_svm *svm = to_svm(vcpu); 1407 1408 svm->spec_ctrl = 0; 1409 svm->virt_spec_ctrl = 0; 1410 1411 if (init_event) 1412 sev_snp_init_protected_guest_state(vcpu); 1413 1414 init_vmcb(vcpu); 1415 1416 if (!init_event) 1417 __svm_vcpu_reset(vcpu); 1418 } 1419 1420 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1421 { 1422 svm->current_vmcb = target_vmcb; 1423 svm->vmcb = target_vmcb->ptr; 1424 } 1425 1426 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1427 { 1428 struct vcpu_svm *svm; 1429 struct page *vmcb01_page; 1430 struct page *vmsa_page = NULL; 1431 int err; 1432 1433 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1434 svm = to_svm(vcpu); 1435 1436 err = -ENOMEM; 1437 vmcb01_page = snp_safe_alloc_page(); 1438 if (!vmcb01_page) 1439 goto out; 1440 1441 if (sev_es_guest(vcpu->kvm)) { 1442 /* 1443 * SEV-ES guests require a separate VMSA page used to contain 1444 * the encrypted register state of the guest. 1445 */ 1446 vmsa_page = snp_safe_alloc_page(); 1447 if (!vmsa_page) 1448 goto error_free_vmcb_page; 1449 } 1450 1451 err = avic_init_vcpu(svm); 1452 if (err) 1453 goto error_free_vmsa_page; 1454 1455 svm->msrpm = svm_vcpu_alloc_msrpm(); 1456 if (!svm->msrpm) { 1457 err = -ENOMEM; 1458 goto error_free_vmsa_page; 1459 } 1460 1461 svm->x2avic_msrs_intercepted = true; 1462 1463 svm->vmcb01.ptr = page_address(vmcb01_page); 1464 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1465 svm_switch_vmcb(svm, &svm->vmcb01); 1466 1467 if (vmsa_page) 1468 svm->sev_es.vmsa = page_address(vmsa_page); 1469 1470 svm->guest_state_loaded = false; 1471 1472 return 0; 1473 1474 error_free_vmsa_page: 1475 if (vmsa_page) 1476 __free_page(vmsa_page); 1477 error_free_vmcb_page: 1478 __free_page(vmcb01_page); 1479 out: 1480 return err; 1481 } 1482 1483 static void svm_clear_current_vmcb(struct vmcb *vmcb) 1484 { 1485 int i; 1486 1487 for_each_online_cpu(i) 1488 cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL); 1489 } 1490 1491 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1492 { 1493 struct vcpu_svm *svm = to_svm(vcpu); 1494 1495 /* 1496 * The vmcb page can be recycled, causing a false negative in 1497 * svm_vcpu_load(). So, ensure that no logical CPU has this 1498 * vmcb page recorded as its current vmcb. 1499 */ 1500 svm_clear_current_vmcb(svm->vmcb); 1501 1502 svm_leave_nested(vcpu); 1503 svm_free_nested(svm); 1504 1505 sev_free_vcpu(vcpu); 1506 1507 __free_page(__sme_pa_to_page(svm->vmcb01.pa)); 1508 __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE)); 1509 } 1510 1511 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1512 { 1513 struct vcpu_svm *svm = to_svm(vcpu); 1514 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1515 1516 if (sev_es_guest(vcpu->kvm)) 1517 sev_es_unmap_ghcb(svm); 1518 1519 if (svm->guest_state_loaded) 1520 return; 1521 1522 /* 1523 * Save additional host state that will be restored on VMEXIT (sev-es) 1524 * or subsequent vmload of host save area. 1525 */ 1526 vmsave(sd->save_area_pa); 1527 if (sev_es_guest(vcpu->kvm)) 1528 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1529 1530 if (tsc_scaling) 1531 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1532 1533 /* 1534 * TSC_AUX is always virtualized for SEV-ES guests when the feature is 1535 * available. The user return MSR support is not required in this case 1536 * because TSC_AUX is restored on #VMEXIT from the host save area 1537 * (which has been initialized in svm_enable_virtualization_cpu()). 1538 */ 1539 if (likely(tsc_aux_uret_slot >= 0) && 1540 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1541 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1542 1543 svm->guest_state_loaded = true; 1544 } 1545 1546 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1547 { 1548 to_svm(vcpu)->guest_state_loaded = false; 1549 } 1550 1551 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1552 { 1553 struct vcpu_svm *svm = to_svm(vcpu); 1554 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 1555 1556 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1557 shrink_ple_window(vcpu); 1558 1559 if (sd->current_vmcb != svm->vmcb) { 1560 sd->current_vmcb = svm->vmcb; 1561 1562 if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT)) 1563 indirect_branch_prediction_barrier(); 1564 } 1565 if (kvm_vcpu_apicv_active(vcpu)) 1566 avic_vcpu_load(vcpu, cpu); 1567 } 1568 1569 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1570 { 1571 if (kvm_vcpu_apicv_active(vcpu)) 1572 avic_vcpu_put(vcpu); 1573 1574 svm_prepare_host_switch(vcpu); 1575 1576 ++vcpu->stat.host_state_reload; 1577 } 1578 1579 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1580 { 1581 struct vcpu_svm *svm = to_svm(vcpu); 1582 unsigned long rflags = svm->vmcb->save.rflags; 1583 1584 if (svm->nmi_singlestep) { 1585 /* Hide our flags if they were not set by the guest */ 1586 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1587 rflags &= ~X86_EFLAGS_TF; 1588 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1589 rflags &= ~X86_EFLAGS_RF; 1590 } 1591 return rflags; 1592 } 1593 1594 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1595 { 1596 if (to_svm(vcpu)->nmi_singlestep) 1597 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1598 1599 /* 1600 * Any change of EFLAGS.VM is accompanied by a reload of SS 1601 * (caused by either a task switch or an inter-privilege IRET), 1602 * so we do not need to update the CPL here. 1603 */ 1604 to_svm(vcpu)->vmcb->save.rflags = rflags; 1605 } 1606 1607 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1608 { 1609 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1610 1611 return sev_es_guest(vcpu->kvm) 1612 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1613 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1614 } 1615 1616 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1617 { 1618 kvm_register_mark_available(vcpu, reg); 1619 1620 switch (reg) { 1621 case VCPU_EXREG_PDPTR: 1622 /* 1623 * When !npt_enabled, mmu->pdptrs[] is already available since 1624 * it is always updated per SDM when moving to CRs. 1625 */ 1626 if (npt_enabled) 1627 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1628 break; 1629 default: 1630 KVM_BUG_ON(1, vcpu->kvm); 1631 } 1632 } 1633 1634 static void svm_set_vintr(struct vcpu_svm *svm) 1635 { 1636 struct vmcb_control_area *control; 1637 1638 /* 1639 * The following fields are ignored when AVIC is enabled 1640 */ 1641 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1642 1643 svm_set_intercept(svm, INTERCEPT_VINTR); 1644 1645 /* 1646 * Recalculating intercepts may have cleared the VINTR intercept. If 1647 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1648 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1649 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1650 * interrupts will never be unblocked while L2 is running. 1651 */ 1652 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1653 return; 1654 1655 /* 1656 * This is just a dummy VINTR to actually cause a vmexit to happen. 1657 * Actual injection of virtual interrupts happens through EVENTINJ. 1658 */ 1659 control = &svm->vmcb->control; 1660 control->int_vector = 0x0; 1661 control->int_ctl &= ~V_INTR_PRIO_MASK; 1662 control->int_ctl |= V_IRQ_MASK | 1663 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1664 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1665 } 1666 1667 static void svm_clear_vintr(struct vcpu_svm *svm) 1668 { 1669 svm_clr_intercept(svm, INTERCEPT_VINTR); 1670 1671 /* Drop int_ctl fields related to VINTR injection. */ 1672 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1673 if (is_guest_mode(&svm->vcpu)) { 1674 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1675 1676 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1677 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1678 1679 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1680 V_IRQ_INJECTION_BITS_MASK; 1681 1682 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1683 } 1684 1685 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1686 } 1687 1688 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1689 { 1690 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1691 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1692 1693 switch (seg) { 1694 case VCPU_SREG_CS: return &save->cs; 1695 case VCPU_SREG_DS: return &save->ds; 1696 case VCPU_SREG_ES: return &save->es; 1697 case VCPU_SREG_FS: return &save01->fs; 1698 case VCPU_SREG_GS: return &save01->gs; 1699 case VCPU_SREG_SS: return &save->ss; 1700 case VCPU_SREG_TR: return &save01->tr; 1701 case VCPU_SREG_LDTR: return &save01->ldtr; 1702 } 1703 BUG(); 1704 return NULL; 1705 } 1706 1707 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1708 { 1709 struct vmcb_seg *s = svm_seg(vcpu, seg); 1710 1711 return s->base; 1712 } 1713 1714 static void svm_get_segment(struct kvm_vcpu *vcpu, 1715 struct kvm_segment *var, int seg) 1716 { 1717 struct vmcb_seg *s = svm_seg(vcpu, seg); 1718 1719 var->base = s->base; 1720 var->limit = s->limit; 1721 var->selector = s->selector; 1722 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1723 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1724 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1725 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1726 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1727 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1728 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1729 1730 /* 1731 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1732 * However, the SVM spec states that the G bit is not observed by the 1733 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1734 * So let's synthesize a legal G bit for all segments, this helps 1735 * running KVM nested. It also helps cross-vendor migration, because 1736 * Intel's vmentry has a check on the 'G' bit. 1737 */ 1738 var->g = s->limit > 0xfffff; 1739 1740 /* 1741 * AMD's VMCB does not have an explicit unusable field, so emulate it 1742 * for cross vendor migration purposes by "not present" 1743 */ 1744 var->unusable = !var->present; 1745 1746 switch (seg) { 1747 case VCPU_SREG_TR: 1748 /* 1749 * Work around a bug where the busy flag in the tr selector 1750 * isn't exposed 1751 */ 1752 var->type |= 0x2; 1753 break; 1754 case VCPU_SREG_DS: 1755 case VCPU_SREG_ES: 1756 case VCPU_SREG_FS: 1757 case VCPU_SREG_GS: 1758 /* 1759 * The accessed bit must always be set in the segment 1760 * descriptor cache, although it can be cleared in the 1761 * descriptor, the cached bit always remains at 1. Since 1762 * Intel has a check on this, set it here to support 1763 * cross-vendor migration. 1764 */ 1765 if (!var->unusable) 1766 var->type |= 0x1; 1767 break; 1768 case VCPU_SREG_SS: 1769 /* 1770 * On AMD CPUs sometimes the DB bit in the segment 1771 * descriptor is left as 1, although the whole segment has 1772 * been made unusable. Clear it here to pass an Intel VMX 1773 * entry check when cross vendor migrating. 1774 */ 1775 if (var->unusable) 1776 var->db = 0; 1777 /* This is symmetric with svm_set_segment() */ 1778 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1779 break; 1780 } 1781 } 1782 1783 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1784 { 1785 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1786 1787 return save->cpl; 1788 } 1789 1790 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1791 { 1792 struct kvm_segment cs; 1793 1794 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1795 *db = cs.db; 1796 *l = cs.l; 1797 } 1798 1799 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1800 { 1801 struct vcpu_svm *svm = to_svm(vcpu); 1802 1803 dt->size = svm->vmcb->save.idtr.limit; 1804 dt->address = svm->vmcb->save.idtr.base; 1805 } 1806 1807 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1808 { 1809 struct vcpu_svm *svm = to_svm(vcpu); 1810 1811 svm->vmcb->save.idtr.limit = dt->size; 1812 svm->vmcb->save.idtr.base = dt->address ; 1813 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1814 } 1815 1816 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1817 { 1818 struct vcpu_svm *svm = to_svm(vcpu); 1819 1820 dt->size = svm->vmcb->save.gdtr.limit; 1821 dt->address = svm->vmcb->save.gdtr.base; 1822 } 1823 1824 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1825 { 1826 struct vcpu_svm *svm = to_svm(vcpu); 1827 1828 svm->vmcb->save.gdtr.limit = dt->size; 1829 svm->vmcb->save.gdtr.base = dt->address ; 1830 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1831 } 1832 1833 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1834 { 1835 struct vcpu_svm *svm = to_svm(vcpu); 1836 1837 /* 1838 * For guests that don't set guest_state_protected, the cr3 update is 1839 * handled via kvm_mmu_load() while entering the guest. For guests 1840 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1841 * VMCB save area now, since the save area will become the initial 1842 * contents of the VMSA, and future VMCB save area updates won't be 1843 * seen. 1844 */ 1845 if (sev_es_guest(vcpu->kvm)) { 1846 svm->vmcb->save.cr3 = cr3; 1847 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1848 } 1849 } 1850 1851 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1852 { 1853 return true; 1854 } 1855 1856 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1857 { 1858 struct vcpu_svm *svm = to_svm(vcpu); 1859 u64 hcr0 = cr0; 1860 bool old_paging = is_paging(vcpu); 1861 1862 #ifdef CONFIG_X86_64 1863 if (vcpu->arch.efer & EFER_LME) { 1864 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1865 vcpu->arch.efer |= EFER_LMA; 1866 if (!vcpu->arch.guest_state_protected) 1867 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1868 } 1869 1870 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1871 vcpu->arch.efer &= ~EFER_LMA; 1872 if (!vcpu->arch.guest_state_protected) 1873 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1874 } 1875 } 1876 #endif 1877 vcpu->arch.cr0 = cr0; 1878 1879 if (!npt_enabled) { 1880 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1881 if (old_paging != is_paging(vcpu)) 1882 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1883 } 1884 1885 /* 1886 * re-enable caching here because the QEMU bios 1887 * does not do it - this results in some delay at 1888 * reboot 1889 */ 1890 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1891 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1892 1893 svm->vmcb->save.cr0 = hcr0; 1894 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1895 1896 /* 1897 * SEV-ES guests must always keep the CR intercepts cleared. CR 1898 * tracking is done using the CR write traps. 1899 */ 1900 if (sev_es_guest(vcpu->kvm)) 1901 return; 1902 1903 if (hcr0 == cr0) { 1904 /* Selective CR0 write remains on. */ 1905 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1906 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1907 } else { 1908 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1909 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1910 } 1911 } 1912 1913 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1914 { 1915 return true; 1916 } 1917 1918 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1919 { 1920 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1921 unsigned long old_cr4 = vcpu->arch.cr4; 1922 1923 vcpu->arch.cr4 = cr4; 1924 if (!npt_enabled) { 1925 cr4 |= X86_CR4_PAE; 1926 1927 if (!is_paging(vcpu)) 1928 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1929 } 1930 cr4 |= host_cr4_mce; 1931 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1932 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1933 1934 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1935 kvm_update_cpuid_runtime(vcpu); 1936 } 1937 1938 static void svm_set_segment(struct kvm_vcpu *vcpu, 1939 struct kvm_segment *var, int seg) 1940 { 1941 struct vcpu_svm *svm = to_svm(vcpu); 1942 struct vmcb_seg *s = svm_seg(vcpu, seg); 1943 1944 s->base = var->base; 1945 s->limit = var->limit; 1946 s->selector = var->selector; 1947 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1948 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1949 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1950 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1951 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1952 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1953 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1954 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1955 1956 /* 1957 * This is always accurate, except if SYSRET returned to a segment 1958 * with SS.DPL != 3. Intel does not have this quirk, and always 1959 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1960 * would entail passing the CPL to userspace and back. 1961 */ 1962 if (seg == VCPU_SREG_SS) 1963 /* This is symmetric with svm_get_segment() */ 1964 svm->vmcb->save.cpl = (var->dpl & 3); 1965 1966 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1967 } 1968 1969 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1970 { 1971 struct vcpu_svm *svm = to_svm(vcpu); 1972 1973 clr_exception_intercept(svm, BP_VECTOR); 1974 1975 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1976 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1977 set_exception_intercept(svm, BP_VECTOR); 1978 } 1979 } 1980 1981 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1982 { 1983 if (sd->next_asid > sd->max_asid) { 1984 ++sd->asid_generation; 1985 sd->next_asid = sd->min_asid; 1986 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1987 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1988 } 1989 1990 svm->current_vmcb->asid_generation = sd->asid_generation; 1991 svm->asid = sd->next_asid++; 1992 } 1993 1994 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) 1995 { 1996 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1997 1998 if (vcpu->arch.guest_state_protected) 1999 return; 2000 2001 if (unlikely(value != vmcb->save.dr6)) { 2002 vmcb->save.dr6 = value; 2003 vmcb_mark_dirty(vmcb, VMCB_DR); 2004 } 2005 } 2006 2007 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 2008 { 2009 struct vcpu_svm *svm = to_svm(vcpu); 2010 2011 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 2012 return; 2013 2014 get_debugreg(vcpu->arch.db[0], 0); 2015 get_debugreg(vcpu->arch.db[1], 1); 2016 get_debugreg(vcpu->arch.db[2], 2); 2017 get_debugreg(vcpu->arch.db[3], 3); 2018 /* 2019 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 2020 * because db_interception might need it. We can do it before vmentry. 2021 */ 2022 vcpu->arch.dr6 = svm->vmcb->save.dr6; 2023 vcpu->arch.dr7 = svm->vmcb->save.dr7; 2024 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 2025 set_dr_intercepts(svm); 2026 } 2027 2028 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 2029 { 2030 struct vcpu_svm *svm = to_svm(vcpu); 2031 2032 if (vcpu->arch.guest_state_protected) 2033 return; 2034 2035 svm->vmcb->save.dr7 = value; 2036 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 2037 } 2038 2039 static int pf_interception(struct kvm_vcpu *vcpu) 2040 { 2041 struct vcpu_svm *svm = to_svm(vcpu); 2042 2043 u64 fault_address = svm->vmcb->control.exit_info_2; 2044 u64 error_code = svm->vmcb->control.exit_info_1; 2045 2046 return kvm_handle_page_fault(vcpu, error_code, fault_address, 2047 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2048 svm->vmcb->control.insn_bytes : NULL, 2049 svm->vmcb->control.insn_len); 2050 } 2051 2052 static int npf_interception(struct kvm_vcpu *vcpu) 2053 { 2054 struct vcpu_svm *svm = to_svm(vcpu); 2055 int rc; 2056 2057 u64 fault_address = svm->vmcb->control.exit_info_2; 2058 u64 error_code = svm->vmcb->control.exit_info_1; 2059 2060 /* 2061 * WARN if hardware generates a fault with an error code that collides 2062 * with KVM-defined sythentic flags. Clear the flags and continue on, 2063 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 2064 * flag that KVM doesn't know about. 2065 */ 2066 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 2067 error_code &= ~PFERR_SYNTHETIC_MASK; 2068 2069 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 2070 error_code |= PFERR_PRIVATE_ACCESS; 2071 2072 trace_kvm_page_fault(vcpu, fault_address, error_code); 2073 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, 2074 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 2075 svm->vmcb->control.insn_bytes : NULL, 2076 svm->vmcb->control.insn_len); 2077 2078 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 2079 sev_handle_rmp_fault(vcpu, fault_address, error_code); 2080 2081 return rc; 2082 } 2083 2084 static int db_interception(struct kvm_vcpu *vcpu) 2085 { 2086 struct kvm_run *kvm_run = vcpu->run; 2087 struct vcpu_svm *svm = to_svm(vcpu); 2088 2089 if (!(vcpu->guest_debug & 2090 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 2091 !svm->nmi_singlestep) { 2092 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 2093 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 2094 return 1; 2095 } 2096 2097 if (svm->nmi_singlestep) { 2098 disable_nmi_singlestep(svm); 2099 /* Make sure we check for pending NMIs upon entry */ 2100 kvm_make_request(KVM_REQ_EVENT, vcpu); 2101 } 2102 2103 if (vcpu->guest_debug & 2104 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 2105 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2106 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 2107 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 2108 kvm_run->debug.arch.pc = 2109 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2110 kvm_run->debug.arch.exception = DB_VECTOR; 2111 return 0; 2112 } 2113 2114 return 1; 2115 } 2116 2117 static int bp_interception(struct kvm_vcpu *vcpu) 2118 { 2119 struct vcpu_svm *svm = to_svm(vcpu); 2120 struct kvm_run *kvm_run = vcpu->run; 2121 2122 kvm_run->exit_reason = KVM_EXIT_DEBUG; 2123 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 2124 kvm_run->debug.arch.exception = BP_VECTOR; 2125 return 0; 2126 } 2127 2128 static int ud_interception(struct kvm_vcpu *vcpu) 2129 { 2130 return handle_ud(vcpu); 2131 } 2132 2133 static int ac_interception(struct kvm_vcpu *vcpu) 2134 { 2135 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 2136 return 1; 2137 } 2138 2139 static bool is_erratum_383(void) 2140 { 2141 int err, i; 2142 u64 value; 2143 2144 if (!erratum_383_found) 2145 return false; 2146 2147 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); 2148 if (err) 2149 return false; 2150 2151 /* Bit 62 may or may not be set for this mce */ 2152 value &= ~(1ULL << 62); 2153 2154 if (value != 0xb600000000010015ULL) 2155 return false; 2156 2157 /* Clear MCi_STATUS registers */ 2158 for (i = 0; i < 6; ++i) 2159 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); 2160 2161 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); 2162 if (!err) { 2163 u32 low, high; 2164 2165 value &= ~(1ULL << 2); 2166 low = lower_32_bits(value); 2167 high = upper_32_bits(value); 2168 2169 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); 2170 } 2171 2172 /* Flush tlb to evict multi-match entries */ 2173 __flush_tlb_all(); 2174 2175 return true; 2176 } 2177 2178 static void svm_handle_mce(struct kvm_vcpu *vcpu) 2179 { 2180 if (is_erratum_383()) { 2181 /* 2182 * Erratum 383 triggered. Guest state is corrupt so kill the 2183 * guest. 2184 */ 2185 pr_err("Guest triggered AMD Erratum 383\n"); 2186 2187 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 2188 2189 return; 2190 } 2191 2192 /* 2193 * On an #MC intercept the MCE handler is not called automatically in 2194 * the host. So do it by hand here. 2195 */ 2196 kvm_machine_check(); 2197 } 2198 2199 static int mc_interception(struct kvm_vcpu *vcpu) 2200 { 2201 return 1; 2202 } 2203 2204 static int shutdown_interception(struct kvm_vcpu *vcpu) 2205 { 2206 struct kvm_run *kvm_run = vcpu->run; 2207 struct vcpu_svm *svm = to_svm(vcpu); 2208 2209 2210 /* 2211 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2212 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2213 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2214 * userspace. At a platform view, INIT is acceptable behavior as 2215 * there exist bare metal platforms that automatically INIT the CPU 2216 * in response to shutdown. 2217 * 2218 * The VM save area for SEV-ES guests has already been encrypted so it 2219 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2220 */ 2221 if (!sev_es_guest(vcpu->kvm)) { 2222 clear_page(svm->vmcb); 2223 kvm_vcpu_reset(vcpu, true); 2224 } 2225 2226 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2227 return 0; 2228 } 2229 2230 static int io_interception(struct kvm_vcpu *vcpu) 2231 { 2232 struct vcpu_svm *svm = to_svm(vcpu); 2233 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2234 int size, in, string; 2235 unsigned port; 2236 2237 ++vcpu->stat.io_exits; 2238 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2239 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2240 port = io_info >> 16; 2241 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2242 2243 if (string) { 2244 if (sev_es_guest(vcpu->kvm)) 2245 return sev_es_string_io(svm, size, port, in); 2246 else 2247 return kvm_emulate_instruction(vcpu, 0); 2248 } 2249 2250 svm->next_rip = svm->vmcb->control.exit_info_2; 2251 2252 return kvm_fast_pio(vcpu, size, port, in); 2253 } 2254 2255 static int nmi_interception(struct kvm_vcpu *vcpu) 2256 { 2257 return 1; 2258 } 2259 2260 static int smi_interception(struct kvm_vcpu *vcpu) 2261 { 2262 return 1; 2263 } 2264 2265 static int intr_interception(struct kvm_vcpu *vcpu) 2266 { 2267 ++vcpu->stat.irq_exits; 2268 return 1; 2269 } 2270 2271 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2272 { 2273 struct vcpu_svm *svm = to_svm(vcpu); 2274 struct vmcb *vmcb12; 2275 struct kvm_host_map map; 2276 int ret; 2277 2278 if (nested_svm_check_permissions(vcpu)) 2279 return 1; 2280 2281 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2282 if (ret) { 2283 if (ret == -EINVAL) 2284 kvm_inject_gp(vcpu, 0); 2285 return 1; 2286 } 2287 2288 vmcb12 = map.hva; 2289 2290 ret = kvm_skip_emulated_instruction(vcpu); 2291 2292 if (vmload) { 2293 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2294 svm->sysenter_eip_hi = 0; 2295 svm->sysenter_esp_hi = 0; 2296 } else { 2297 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2298 } 2299 2300 kvm_vcpu_unmap(vcpu, &map); 2301 2302 return ret; 2303 } 2304 2305 static int vmload_interception(struct kvm_vcpu *vcpu) 2306 { 2307 return vmload_vmsave_interception(vcpu, true); 2308 } 2309 2310 static int vmsave_interception(struct kvm_vcpu *vcpu) 2311 { 2312 return vmload_vmsave_interception(vcpu, false); 2313 } 2314 2315 static int vmrun_interception(struct kvm_vcpu *vcpu) 2316 { 2317 if (nested_svm_check_permissions(vcpu)) 2318 return 1; 2319 2320 return nested_svm_vmrun(vcpu); 2321 } 2322 2323 enum { 2324 NONE_SVM_INSTR, 2325 SVM_INSTR_VMRUN, 2326 SVM_INSTR_VMLOAD, 2327 SVM_INSTR_VMSAVE, 2328 }; 2329 2330 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2331 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2332 { 2333 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2334 2335 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2336 return NONE_SVM_INSTR; 2337 2338 switch (ctxt->modrm) { 2339 case 0xd8: /* VMRUN */ 2340 return SVM_INSTR_VMRUN; 2341 case 0xda: /* VMLOAD */ 2342 return SVM_INSTR_VMLOAD; 2343 case 0xdb: /* VMSAVE */ 2344 return SVM_INSTR_VMSAVE; 2345 default: 2346 break; 2347 } 2348 2349 return NONE_SVM_INSTR; 2350 } 2351 2352 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2353 { 2354 const int guest_mode_exit_codes[] = { 2355 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2356 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2357 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2358 }; 2359 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2360 [SVM_INSTR_VMRUN] = vmrun_interception, 2361 [SVM_INSTR_VMLOAD] = vmload_interception, 2362 [SVM_INSTR_VMSAVE] = vmsave_interception, 2363 }; 2364 struct vcpu_svm *svm = to_svm(vcpu); 2365 int ret; 2366 2367 if (is_guest_mode(vcpu)) { 2368 /* Returns '1' or -errno on failure, '0' on success. */ 2369 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2370 if (ret) 2371 return ret; 2372 return 1; 2373 } 2374 return svm_instr_handlers[opcode](vcpu); 2375 } 2376 2377 /* 2378 * #GP handling code. Note that #GP can be triggered under the following two 2379 * cases: 2380 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2381 * some AMD CPUs when EAX of these instructions are in the reserved memory 2382 * regions (e.g. SMM memory on host). 2383 * 2) VMware backdoor 2384 */ 2385 static int gp_interception(struct kvm_vcpu *vcpu) 2386 { 2387 struct vcpu_svm *svm = to_svm(vcpu); 2388 u32 error_code = svm->vmcb->control.exit_info_1; 2389 int opcode; 2390 2391 /* Both #GP cases have zero error_code */ 2392 if (error_code) 2393 goto reinject; 2394 2395 /* Decode the instruction for usage later */ 2396 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2397 goto reinject; 2398 2399 opcode = svm_instr_opcode(vcpu); 2400 2401 if (opcode == NONE_SVM_INSTR) { 2402 if (!enable_vmware_backdoor) 2403 goto reinject; 2404 2405 /* 2406 * VMware backdoor emulation on #GP interception only handles 2407 * IN{S}, OUT{S}, and RDPMC. 2408 */ 2409 if (!is_guest_mode(vcpu)) 2410 return kvm_emulate_instruction(vcpu, 2411 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2412 } else { 2413 /* All SVM instructions expect page aligned RAX */ 2414 if (svm->vmcb->save.rax & ~PAGE_MASK) 2415 goto reinject; 2416 2417 return emulate_svm_instr(vcpu, opcode); 2418 } 2419 2420 reinject: 2421 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2422 return 1; 2423 } 2424 2425 void svm_set_gif(struct vcpu_svm *svm, bool value) 2426 { 2427 if (value) { 2428 /* 2429 * If VGIF is enabled, the STGI intercept is only added to 2430 * detect the opening of the SMI/NMI window; remove it now. 2431 * Likewise, clear the VINTR intercept, we will set it 2432 * again while processing KVM_REQ_EVENT if needed. 2433 */ 2434 if (vgif) 2435 svm_clr_intercept(svm, INTERCEPT_STGI); 2436 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2437 svm_clear_vintr(svm); 2438 2439 enable_gif(svm); 2440 if (svm->vcpu.arch.smi_pending || 2441 svm->vcpu.arch.nmi_pending || 2442 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2443 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2444 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2445 } else { 2446 disable_gif(svm); 2447 2448 /* 2449 * After a CLGI no interrupts should come. But if vGIF is 2450 * in use, we still rely on the VINTR intercept (rather than 2451 * STGI) to detect an open interrupt window. 2452 */ 2453 if (!vgif) 2454 svm_clear_vintr(svm); 2455 } 2456 } 2457 2458 static int stgi_interception(struct kvm_vcpu *vcpu) 2459 { 2460 int ret; 2461 2462 if (nested_svm_check_permissions(vcpu)) 2463 return 1; 2464 2465 ret = kvm_skip_emulated_instruction(vcpu); 2466 svm_set_gif(to_svm(vcpu), true); 2467 return ret; 2468 } 2469 2470 static int clgi_interception(struct kvm_vcpu *vcpu) 2471 { 2472 int ret; 2473 2474 if (nested_svm_check_permissions(vcpu)) 2475 return 1; 2476 2477 ret = kvm_skip_emulated_instruction(vcpu); 2478 svm_set_gif(to_svm(vcpu), false); 2479 return ret; 2480 } 2481 2482 static int invlpga_interception(struct kvm_vcpu *vcpu) 2483 { 2484 gva_t gva = kvm_rax_read(vcpu); 2485 u32 asid = kvm_rcx_read(vcpu); 2486 2487 /* FIXME: Handle an address size prefix. */ 2488 if (!is_long_mode(vcpu)) 2489 gva = (u32)gva; 2490 2491 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2492 2493 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2494 kvm_mmu_invlpg(vcpu, gva); 2495 2496 return kvm_skip_emulated_instruction(vcpu); 2497 } 2498 2499 static int skinit_interception(struct kvm_vcpu *vcpu) 2500 { 2501 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2502 2503 kvm_queue_exception(vcpu, UD_VECTOR); 2504 return 1; 2505 } 2506 2507 static int task_switch_interception(struct kvm_vcpu *vcpu) 2508 { 2509 struct vcpu_svm *svm = to_svm(vcpu); 2510 u16 tss_selector; 2511 int reason; 2512 int int_type = svm->vmcb->control.exit_int_info & 2513 SVM_EXITINTINFO_TYPE_MASK; 2514 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2515 uint32_t type = 2516 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2517 uint32_t idt_v = 2518 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2519 bool has_error_code = false; 2520 u32 error_code = 0; 2521 2522 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2523 2524 if (svm->vmcb->control.exit_info_2 & 2525 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2526 reason = TASK_SWITCH_IRET; 2527 else if (svm->vmcb->control.exit_info_2 & 2528 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2529 reason = TASK_SWITCH_JMP; 2530 else if (idt_v) 2531 reason = TASK_SWITCH_GATE; 2532 else 2533 reason = TASK_SWITCH_CALL; 2534 2535 if (reason == TASK_SWITCH_GATE) { 2536 switch (type) { 2537 case SVM_EXITINTINFO_TYPE_NMI: 2538 vcpu->arch.nmi_injected = false; 2539 break; 2540 case SVM_EXITINTINFO_TYPE_EXEPT: 2541 if (svm->vmcb->control.exit_info_2 & 2542 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2543 has_error_code = true; 2544 error_code = 2545 (u32)svm->vmcb->control.exit_info_2; 2546 } 2547 kvm_clear_exception_queue(vcpu); 2548 break; 2549 case SVM_EXITINTINFO_TYPE_INTR: 2550 case SVM_EXITINTINFO_TYPE_SOFT: 2551 kvm_clear_interrupt_queue(vcpu); 2552 break; 2553 default: 2554 break; 2555 } 2556 } 2557 2558 if (reason != TASK_SWITCH_GATE || 2559 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2560 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2561 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2562 if (!svm_skip_emulated_instruction(vcpu)) 2563 return 0; 2564 } 2565 2566 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2567 int_vec = -1; 2568 2569 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2570 has_error_code, error_code); 2571 } 2572 2573 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2574 { 2575 if (!sev_es_guest(svm->vcpu.kvm)) 2576 svm_clr_intercept(svm, INTERCEPT_IRET); 2577 } 2578 2579 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2580 { 2581 if (!sev_es_guest(svm->vcpu.kvm)) 2582 svm_set_intercept(svm, INTERCEPT_IRET); 2583 } 2584 2585 static int iret_interception(struct kvm_vcpu *vcpu) 2586 { 2587 struct vcpu_svm *svm = to_svm(vcpu); 2588 2589 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2590 2591 ++vcpu->stat.nmi_window_exits; 2592 svm->awaiting_iret_completion = true; 2593 2594 svm_clr_iret_intercept(svm); 2595 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2596 2597 kvm_make_request(KVM_REQ_EVENT, vcpu); 2598 return 1; 2599 } 2600 2601 static int invlpg_interception(struct kvm_vcpu *vcpu) 2602 { 2603 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2604 return kvm_emulate_instruction(vcpu, 0); 2605 2606 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2607 return kvm_skip_emulated_instruction(vcpu); 2608 } 2609 2610 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2611 { 2612 return kvm_emulate_instruction(vcpu, 0); 2613 } 2614 2615 static int rsm_interception(struct kvm_vcpu *vcpu) 2616 { 2617 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2618 } 2619 2620 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2621 unsigned long val) 2622 { 2623 struct vcpu_svm *svm = to_svm(vcpu); 2624 unsigned long cr0 = vcpu->arch.cr0; 2625 bool ret = false; 2626 2627 if (!is_guest_mode(vcpu) || 2628 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2629 return false; 2630 2631 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2632 val &= ~SVM_CR0_SELECTIVE_MASK; 2633 2634 if (cr0 ^ val) { 2635 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2636 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2637 } 2638 2639 return ret; 2640 } 2641 2642 #define CR_VALID (1ULL << 63) 2643 2644 static int cr_interception(struct kvm_vcpu *vcpu) 2645 { 2646 struct vcpu_svm *svm = to_svm(vcpu); 2647 int reg, cr; 2648 unsigned long val; 2649 int err; 2650 2651 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2652 return emulate_on_interception(vcpu); 2653 2654 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2655 return emulate_on_interception(vcpu); 2656 2657 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2658 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2659 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2660 else 2661 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2662 2663 err = 0; 2664 if (cr >= 16) { /* mov to cr */ 2665 cr -= 16; 2666 val = kvm_register_read(vcpu, reg); 2667 trace_kvm_cr_write(cr, val); 2668 switch (cr) { 2669 case 0: 2670 if (!check_selective_cr0_intercepted(vcpu, val)) 2671 err = kvm_set_cr0(vcpu, val); 2672 else 2673 return 1; 2674 2675 break; 2676 case 3: 2677 err = kvm_set_cr3(vcpu, val); 2678 break; 2679 case 4: 2680 err = kvm_set_cr4(vcpu, val); 2681 break; 2682 case 8: 2683 err = kvm_set_cr8(vcpu, val); 2684 break; 2685 default: 2686 WARN(1, "unhandled write to CR%d", cr); 2687 kvm_queue_exception(vcpu, UD_VECTOR); 2688 return 1; 2689 } 2690 } else { /* mov from cr */ 2691 switch (cr) { 2692 case 0: 2693 val = kvm_read_cr0(vcpu); 2694 break; 2695 case 2: 2696 val = vcpu->arch.cr2; 2697 break; 2698 case 3: 2699 val = kvm_read_cr3(vcpu); 2700 break; 2701 case 4: 2702 val = kvm_read_cr4(vcpu); 2703 break; 2704 case 8: 2705 val = kvm_get_cr8(vcpu); 2706 break; 2707 default: 2708 WARN(1, "unhandled read from CR%d", cr); 2709 kvm_queue_exception(vcpu, UD_VECTOR); 2710 return 1; 2711 } 2712 kvm_register_write(vcpu, reg, val); 2713 trace_kvm_cr_read(cr, val); 2714 } 2715 return kvm_complete_insn_gp(vcpu, err); 2716 } 2717 2718 static int cr_trap(struct kvm_vcpu *vcpu) 2719 { 2720 struct vcpu_svm *svm = to_svm(vcpu); 2721 unsigned long old_value, new_value; 2722 unsigned int cr; 2723 int ret = 0; 2724 2725 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2726 2727 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2728 switch (cr) { 2729 case 0: 2730 old_value = kvm_read_cr0(vcpu); 2731 svm_set_cr0(vcpu, new_value); 2732 2733 kvm_post_set_cr0(vcpu, old_value, new_value); 2734 break; 2735 case 4: 2736 old_value = kvm_read_cr4(vcpu); 2737 svm_set_cr4(vcpu, new_value); 2738 2739 kvm_post_set_cr4(vcpu, old_value, new_value); 2740 break; 2741 case 8: 2742 ret = kvm_set_cr8(vcpu, new_value); 2743 break; 2744 default: 2745 WARN(1, "unhandled CR%d write trap", cr); 2746 kvm_queue_exception(vcpu, UD_VECTOR); 2747 return 1; 2748 } 2749 2750 return kvm_complete_insn_gp(vcpu, ret); 2751 } 2752 2753 static int dr_interception(struct kvm_vcpu *vcpu) 2754 { 2755 struct vcpu_svm *svm = to_svm(vcpu); 2756 int reg, dr; 2757 int err = 0; 2758 2759 /* 2760 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2761 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2762 */ 2763 if (sev_es_guest(vcpu->kvm)) 2764 return 1; 2765 2766 if (vcpu->guest_debug == 0) { 2767 /* 2768 * No more DR vmexits; force a reload of the debug registers 2769 * and reenter on this instruction. The next vmexit will 2770 * retrieve the full state of the debug registers. 2771 */ 2772 clr_dr_intercepts(svm); 2773 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2774 return 1; 2775 } 2776 2777 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2778 return emulate_on_interception(vcpu); 2779 2780 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2781 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2782 if (dr >= 16) { /* mov to DRn */ 2783 dr -= 16; 2784 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2785 } else { 2786 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2787 } 2788 2789 return kvm_complete_insn_gp(vcpu, err); 2790 } 2791 2792 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2793 { 2794 int r; 2795 2796 u8 cr8_prev = kvm_get_cr8(vcpu); 2797 /* instruction emulation calls kvm_set_cr8() */ 2798 r = cr_interception(vcpu); 2799 if (lapic_in_kernel(vcpu)) 2800 return r; 2801 if (cr8_prev <= kvm_get_cr8(vcpu)) 2802 return r; 2803 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2804 return 0; 2805 } 2806 2807 static int efer_trap(struct kvm_vcpu *vcpu) 2808 { 2809 struct msr_data msr_info; 2810 int ret; 2811 2812 /* 2813 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2814 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2815 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2816 * the guest doesn't have X86_FEATURE_SVM. 2817 */ 2818 msr_info.host_initiated = false; 2819 msr_info.index = MSR_EFER; 2820 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2821 ret = kvm_set_msr_common(vcpu, &msr_info); 2822 2823 return kvm_complete_insn_gp(vcpu, ret); 2824 } 2825 2826 static int svm_get_feature_msr(u32 msr, u64 *data) 2827 { 2828 *data = 0; 2829 2830 switch (msr) { 2831 case MSR_AMD64_DE_CFG: 2832 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2833 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2834 break; 2835 default: 2836 return KVM_MSR_RET_UNSUPPORTED; 2837 } 2838 2839 return 0; 2840 } 2841 2842 static bool 2843 sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2844 { 2845 return sev_es_guest(vcpu->kvm) && 2846 vcpu->arch.guest_state_protected && 2847 svm_msrpm_offset(msr_info->index) != MSR_INVALID && 2848 !msr_write_intercepted(vcpu, msr_info->index); 2849 } 2850 2851 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2852 { 2853 struct vcpu_svm *svm = to_svm(vcpu); 2854 2855 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2856 msr_info->data = 0; 2857 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2858 } 2859 2860 switch (msr_info->index) { 2861 case MSR_AMD64_TSC_RATIO: 2862 if (!msr_info->host_initiated && 2863 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) 2864 return 1; 2865 msr_info->data = svm->tsc_ratio_msr; 2866 break; 2867 case MSR_STAR: 2868 msr_info->data = svm->vmcb01.ptr->save.star; 2869 break; 2870 #ifdef CONFIG_X86_64 2871 case MSR_LSTAR: 2872 msr_info->data = svm->vmcb01.ptr->save.lstar; 2873 break; 2874 case MSR_CSTAR: 2875 msr_info->data = svm->vmcb01.ptr->save.cstar; 2876 break; 2877 case MSR_GS_BASE: 2878 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2879 break; 2880 case MSR_FS_BASE: 2881 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2882 break; 2883 case MSR_KERNEL_GS_BASE: 2884 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2885 break; 2886 case MSR_SYSCALL_MASK: 2887 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2888 break; 2889 #endif 2890 case MSR_IA32_SYSENTER_CS: 2891 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2892 break; 2893 case MSR_IA32_SYSENTER_EIP: 2894 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2895 if (guest_cpuid_is_intel_compatible(vcpu)) 2896 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2897 break; 2898 case MSR_IA32_SYSENTER_ESP: 2899 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2900 if (guest_cpuid_is_intel_compatible(vcpu)) 2901 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2902 break; 2903 case MSR_TSC_AUX: 2904 msr_info->data = svm->tsc_aux; 2905 break; 2906 case MSR_IA32_DEBUGCTLMSR: 2907 msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl; 2908 break; 2909 case MSR_IA32_LASTBRANCHFROMIP: 2910 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from; 2911 break; 2912 case MSR_IA32_LASTBRANCHTOIP: 2913 msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to; 2914 break; 2915 case MSR_IA32_LASTINTFROMIP: 2916 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from; 2917 break; 2918 case MSR_IA32_LASTINTTOIP: 2919 msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to; 2920 break; 2921 case MSR_VM_HSAVE_PA: 2922 msr_info->data = svm->nested.hsave_msr; 2923 break; 2924 case MSR_VM_CR: 2925 msr_info->data = svm->nested.vm_cr_msr; 2926 break; 2927 case MSR_IA32_SPEC_CTRL: 2928 if (!msr_info->host_initiated && 2929 !guest_has_spec_ctrl_msr(vcpu)) 2930 return 1; 2931 2932 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2933 msr_info->data = svm->vmcb->save.spec_ctrl; 2934 else 2935 msr_info->data = svm->spec_ctrl; 2936 break; 2937 case MSR_AMD64_VIRT_SPEC_CTRL: 2938 if (!msr_info->host_initiated && 2939 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2940 return 1; 2941 2942 msr_info->data = svm->virt_spec_ctrl; 2943 break; 2944 case MSR_F15H_IC_CFG: { 2945 2946 int family, model; 2947 2948 family = guest_cpuid_family(vcpu); 2949 model = guest_cpuid_model(vcpu); 2950 2951 if (family < 0 || model < 0) 2952 return kvm_get_msr_common(vcpu, msr_info); 2953 2954 msr_info->data = 0; 2955 2956 if (family == 0x15 && 2957 (model >= 0x2 && model < 0x20)) 2958 msr_info->data = 0x1E; 2959 } 2960 break; 2961 case MSR_AMD64_DE_CFG: 2962 msr_info->data = svm->msr_decfg; 2963 break; 2964 default: 2965 return kvm_get_msr_common(vcpu, msr_info); 2966 } 2967 return 0; 2968 } 2969 2970 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2971 { 2972 struct vcpu_svm *svm = to_svm(vcpu); 2973 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2974 return kvm_complete_insn_gp(vcpu, err); 2975 2976 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1); 2977 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 2978 X86_TRAP_GP | 2979 SVM_EVTINJ_TYPE_EXEPT | 2980 SVM_EVTINJ_VALID); 2981 return 1; 2982 } 2983 2984 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2985 { 2986 struct vcpu_svm *svm = to_svm(vcpu); 2987 int svm_dis, chg_mask; 2988 2989 if (data & ~SVM_VM_CR_VALID_MASK) 2990 return 1; 2991 2992 chg_mask = SVM_VM_CR_VALID_MASK; 2993 2994 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2995 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2996 2997 svm->nested.vm_cr_msr &= ~chg_mask; 2998 svm->nested.vm_cr_msr |= (data & chg_mask); 2999 3000 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 3001 3002 /* check for svm_disable while efer.svme is set */ 3003 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 3004 return 1; 3005 3006 return 0; 3007 } 3008 3009 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 3010 { 3011 struct vcpu_svm *svm = to_svm(vcpu); 3012 int ret = 0; 3013 3014 u32 ecx = msr->index; 3015 u64 data = msr->data; 3016 3017 if (sev_es_prevent_msr_access(vcpu, msr)) 3018 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 3019 3020 switch (ecx) { 3021 case MSR_AMD64_TSC_RATIO: 3022 3023 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) { 3024 3025 if (!msr->host_initiated) 3026 return 1; 3027 /* 3028 * In case TSC scaling is not enabled, always 3029 * leave this MSR at the default value. 3030 * 3031 * Due to bug in qemu 6.2.0, it would try to set 3032 * this msr to 0 if tsc scaling is not enabled. 3033 * Ignore this value as well. 3034 */ 3035 if (data != 0 && data != svm->tsc_ratio_msr) 3036 return 1; 3037 break; 3038 } 3039 3040 if (data & SVM_TSC_RATIO_RSVD) 3041 return 1; 3042 3043 svm->tsc_ratio_msr = data; 3044 3045 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 3046 is_guest_mode(vcpu)) 3047 nested_svm_update_tsc_ratio_msr(vcpu); 3048 3049 break; 3050 case MSR_IA32_CR_PAT: 3051 ret = kvm_set_msr_common(vcpu, msr); 3052 if (ret) 3053 break; 3054 3055 svm->vmcb01.ptr->save.g_pat = data; 3056 if (is_guest_mode(vcpu)) 3057 nested_vmcb02_compute_g_pat(svm); 3058 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 3059 break; 3060 case MSR_IA32_SPEC_CTRL: 3061 if (!msr->host_initiated && 3062 !guest_has_spec_ctrl_msr(vcpu)) 3063 return 1; 3064 3065 if (kvm_spec_ctrl_test_value(data)) 3066 return 1; 3067 3068 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 3069 svm->vmcb->save.spec_ctrl = data; 3070 else 3071 svm->spec_ctrl = data; 3072 if (!data) 3073 break; 3074 3075 /* 3076 * For non-nested: 3077 * When it's written (to non-zero) for the first time, pass 3078 * it through. 3079 * 3080 * For nested: 3081 * The handling of the MSR bitmap for L2 guests is done in 3082 * nested_svm_vmrun_msrpm. 3083 * We update the L1 MSR bit as well since it will end up 3084 * touching the MSR anyway now. 3085 */ 3086 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); 3087 break; 3088 case MSR_AMD64_VIRT_SPEC_CTRL: 3089 if (!msr->host_initiated && 3090 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 3091 return 1; 3092 3093 if (data & ~SPEC_CTRL_SSBD) 3094 return 1; 3095 3096 svm->virt_spec_ctrl = data; 3097 break; 3098 case MSR_STAR: 3099 svm->vmcb01.ptr->save.star = data; 3100 break; 3101 #ifdef CONFIG_X86_64 3102 case MSR_LSTAR: 3103 svm->vmcb01.ptr->save.lstar = data; 3104 break; 3105 case MSR_CSTAR: 3106 svm->vmcb01.ptr->save.cstar = data; 3107 break; 3108 case MSR_GS_BASE: 3109 svm->vmcb01.ptr->save.gs.base = data; 3110 break; 3111 case MSR_FS_BASE: 3112 svm->vmcb01.ptr->save.fs.base = data; 3113 break; 3114 case MSR_KERNEL_GS_BASE: 3115 svm->vmcb01.ptr->save.kernel_gs_base = data; 3116 break; 3117 case MSR_SYSCALL_MASK: 3118 svm->vmcb01.ptr->save.sfmask = data; 3119 break; 3120 #endif 3121 case MSR_IA32_SYSENTER_CS: 3122 svm->vmcb01.ptr->save.sysenter_cs = data; 3123 break; 3124 case MSR_IA32_SYSENTER_EIP: 3125 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 3126 /* 3127 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 3128 * when we spoof an Intel vendor ID (for cross vendor migration). 3129 * In this case we use this intercept to track the high 3130 * 32 bit part of these msrs to support Intel's 3131 * implementation of SYSENTER/SYSEXIT. 3132 */ 3133 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3134 break; 3135 case MSR_IA32_SYSENTER_ESP: 3136 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 3137 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 3138 break; 3139 case MSR_TSC_AUX: 3140 /* 3141 * TSC_AUX is always virtualized for SEV-ES guests when the 3142 * feature is available. The user return MSR support is not 3143 * required in this case because TSC_AUX is restored on #VMEXIT 3144 * from the host save area (which has been initialized in 3145 * svm_enable_virtualization_cpu()). 3146 */ 3147 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 3148 break; 3149 3150 /* 3151 * TSC_AUX is usually changed only during boot and never read 3152 * directly. Intercept TSC_AUX instead of exposing it to the 3153 * guest via direct_access_msrs, and switch it via user return. 3154 */ 3155 preempt_disable(); 3156 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 3157 preempt_enable(); 3158 if (ret) 3159 break; 3160 3161 svm->tsc_aux = data; 3162 break; 3163 case MSR_IA32_DEBUGCTLMSR: 3164 if (!lbrv) { 3165 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3166 break; 3167 } 3168 3169 /* 3170 * AMD changed the architectural behavior of bits 5:2. On CPUs 3171 * without BusLockTrap, bits 5:2 control "external pins", but 3172 * on CPUs that support BusLockDetect, bit 2 enables BusLockTrap 3173 * and bits 5:3 are reserved-to-zero. Sadly, old KVM allowed 3174 * the guest to set bits 5:2 despite not actually virtualizing 3175 * Performance-Monitoring/Breakpoint external pins. Drop bits 3176 * 5:2 for backwards compatibility. 3177 */ 3178 data &= ~GENMASK(5, 2); 3179 3180 /* 3181 * Suppress BTF as KVM doesn't virtualize BTF, but there's no 3182 * way to communicate lack of support to the guest. 3183 */ 3184 if (data & DEBUGCTLMSR_BTF) { 3185 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 3186 data &= ~DEBUGCTLMSR_BTF; 3187 } 3188 3189 if (data & DEBUGCTL_RESERVED_BITS) 3190 return 1; 3191 3192 svm_get_lbr_vmcb(svm)->save.dbgctl = data; 3193 svm_update_lbrv(vcpu); 3194 break; 3195 case MSR_VM_HSAVE_PA: 3196 /* 3197 * Old kernels did not validate the value written to 3198 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3199 * value to allow live migrating buggy or malicious guests 3200 * originating from those kernels. 3201 */ 3202 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3203 return 1; 3204 3205 svm->nested.hsave_msr = data & PAGE_MASK; 3206 break; 3207 case MSR_VM_CR: 3208 return svm_set_vm_cr(vcpu, data); 3209 case MSR_VM_IGNNE: 3210 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3211 break; 3212 case MSR_AMD64_DE_CFG: { 3213 u64 supported_de_cfg; 3214 3215 if (svm_get_feature_msr(ecx, &supported_de_cfg)) 3216 return 1; 3217 3218 if (data & ~supported_de_cfg) 3219 return 1; 3220 3221 svm->msr_decfg = data; 3222 break; 3223 } 3224 default: 3225 return kvm_set_msr_common(vcpu, msr); 3226 } 3227 return ret; 3228 } 3229 3230 static int msr_interception(struct kvm_vcpu *vcpu) 3231 { 3232 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3233 return kvm_emulate_wrmsr(vcpu); 3234 else 3235 return kvm_emulate_rdmsr(vcpu); 3236 } 3237 3238 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3239 { 3240 kvm_make_request(KVM_REQ_EVENT, vcpu); 3241 svm_clear_vintr(to_svm(vcpu)); 3242 3243 /* 3244 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3245 * In this case AVIC was temporarily disabled for 3246 * requesting the IRQ window and we have to re-enable it. 3247 * 3248 * If running nested, still remove the VM wide AVIC inhibit to 3249 * support case in which the interrupt window was requested when the 3250 * vCPU was not running nested. 3251 3252 * All vCPUs which run still run nested, will remain to have their 3253 * AVIC still inhibited due to per-cpu AVIC inhibition. 3254 */ 3255 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3256 3257 ++vcpu->stat.irq_window_exits; 3258 return 1; 3259 } 3260 3261 static int pause_interception(struct kvm_vcpu *vcpu) 3262 { 3263 bool in_kernel; 3264 /* 3265 * CPL is not made available for an SEV-ES guest, therefore 3266 * vcpu->arch.preempted_in_kernel can never be true. Just 3267 * set in_kernel to false as well. 3268 */ 3269 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3270 3271 grow_ple_window(vcpu); 3272 3273 kvm_vcpu_on_spin(vcpu, in_kernel); 3274 return kvm_skip_emulated_instruction(vcpu); 3275 } 3276 3277 static int invpcid_interception(struct kvm_vcpu *vcpu) 3278 { 3279 struct vcpu_svm *svm = to_svm(vcpu); 3280 unsigned long type; 3281 gva_t gva; 3282 3283 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 3284 kvm_queue_exception(vcpu, UD_VECTOR); 3285 return 1; 3286 } 3287 3288 /* 3289 * For an INVPCID intercept: 3290 * EXITINFO1 provides the linear address of the memory operand. 3291 * EXITINFO2 provides the contents of the register operand. 3292 */ 3293 type = svm->vmcb->control.exit_info_2; 3294 gva = svm->vmcb->control.exit_info_1; 3295 3296 return kvm_handle_invpcid(vcpu, type, gva); 3297 } 3298 3299 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3300 [SVM_EXIT_READ_CR0] = cr_interception, 3301 [SVM_EXIT_READ_CR3] = cr_interception, 3302 [SVM_EXIT_READ_CR4] = cr_interception, 3303 [SVM_EXIT_READ_CR8] = cr_interception, 3304 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3305 [SVM_EXIT_WRITE_CR0] = cr_interception, 3306 [SVM_EXIT_WRITE_CR3] = cr_interception, 3307 [SVM_EXIT_WRITE_CR4] = cr_interception, 3308 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3309 [SVM_EXIT_READ_DR0] = dr_interception, 3310 [SVM_EXIT_READ_DR1] = dr_interception, 3311 [SVM_EXIT_READ_DR2] = dr_interception, 3312 [SVM_EXIT_READ_DR3] = dr_interception, 3313 [SVM_EXIT_READ_DR4] = dr_interception, 3314 [SVM_EXIT_READ_DR5] = dr_interception, 3315 [SVM_EXIT_READ_DR6] = dr_interception, 3316 [SVM_EXIT_READ_DR7] = dr_interception, 3317 [SVM_EXIT_WRITE_DR0] = dr_interception, 3318 [SVM_EXIT_WRITE_DR1] = dr_interception, 3319 [SVM_EXIT_WRITE_DR2] = dr_interception, 3320 [SVM_EXIT_WRITE_DR3] = dr_interception, 3321 [SVM_EXIT_WRITE_DR4] = dr_interception, 3322 [SVM_EXIT_WRITE_DR5] = dr_interception, 3323 [SVM_EXIT_WRITE_DR6] = dr_interception, 3324 [SVM_EXIT_WRITE_DR7] = dr_interception, 3325 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3326 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3327 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3328 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3329 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3330 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3331 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3332 [SVM_EXIT_INTR] = intr_interception, 3333 [SVM_EXIT_NMI] = nmi_interception, 3334 [SVM_EXIT_SMI] = smi_interception, 3335 [SVM_EXIT_VINTR] = interrupt_window_interception, 3336 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3337 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3338 [SVM_EXIT_IRET] = iret_interception, 3339 [SVM_EXIT_INVD] = kvm_emulate_invd, 3340 [SVM_EXIT_PAUSE] = pause_interception, 3341 [SVM_EXIT_HLT] = kvm_emulate_halt, 3342 [SVM_EXIT_INVLPG] = invlpg_interception, 3343 [SVM_EXIT_INVLPGA] = invlpga_interception, 3344 [SVM_EXIT_IOIO] = io_interception, 3345 [SVM_EXIT_MSR] = msr_interception, 3346 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3347 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3348 [SVM_EXIT_VMRUN] = vmrun_interception, 3349 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3350 [SVM_EXIT_VMLOAD] = vmload_interception, 3351 [SVM_EXIT_VMSAVE] = vmsave_interception, 3352 [SVM_EXIT_STGI] = stgi_interception, 3353 [SVM_EXIT_CLGI] = clgi_interception, 3354 [SVM_EXIT_SKINIT] = skinit_interception, 3355 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3356 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3357 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3358 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3359 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3360 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3361 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3362 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3363 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3364 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3365 [SVM_EXIT_INVPCID] = invpcid_interception, 3366 [SVM_EXIT_NPF] = npf_interception, 3367 [SVM_EXIT_RSM] = rsm_interception, 3368 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3369 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3370 #ifdef CONFIG_KVM_AMD_SEV 3371 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3372 #endif 3373 }; 3374 3375 static void dump_vmcb(struct kvm_vcpu *vcpu) 3376 { 3377 struct vcpu_svm *svm = to_svm(vcpu); 3378 struct vmcb_control_area *control = &svm->vmcb->control; 3379 struct vmcb_save_area *save = &svm->vmcb->save; 3380 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3381 3382 if (!dump_invalid_vmcb) { 3383 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3384 return; 3385 } 3386 3387 pr_err("VMCB %p, last attempted VMRUN on CPU %d\n", 3388 svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3389 pr_err("VMCB Control Area:\n"); 3390 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3391 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3392 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3393 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3394 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3395 pr_err("%-20s%08x %08x\n", "intercepts:", 3396 control->intercepts[INTERCEPT_WORD3], 3397 control->intercepts[INTERCEPT_WORD4]); 3398 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3399 pr_err("%-20s%d\n", "pause filter threshold:", 3400 control->pause_filter_thresh); 3401 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3402 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3403 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3404 pr_err("%-20s%d\n", "asid:", control->asid); 3405 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3406 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3407 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3408 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3409 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3410 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3411 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3412 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3413 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3414 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3415 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3416 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3417 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3418 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3419 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3420 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3421 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3422 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3423 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3424 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3425 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3426 pr_err("VMCB State Save Area:\n"); 3427 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3428 "es:", 3429 save->es.selector, save->es.attrib, 3430 save->es.limit, save->es.base); 3431 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3432 "cs:", 3433 save->cs.selector, save->cs.attrib, 3434 save->cs.limit, save->cs.base); 3435 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3436 "ss:", 3437 save->ss.selector, save->ss.attrib, 3438 save->ss.limit, save->ss.base); 3439 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3440 "ds:", 3441 save->ds.selector, save->ds.attrib, 3442 save->ds.limit, save->ds.base); 3443 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3444 "fs:", 3445 save01->fs.selector, save01->fs.attrib, 3446 save01->fs.limit, save01->fs.base); 3447 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3448 "gs:", 3449 save01->gs.selector, save01->gs.attrib, 3450 save01->gs.limit, save01->gs.base); 3451 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3452 "gdtr:", 3453 save->gdtr.selector, save->gdtr.attrib, 3454 save->gdtr.limit, save->gdtr.base); 3455 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3456 "ldtr:", 3457 save01->ldtr.selector, save01->ldtr.attrib, 3458 save01->ldtr.limit, save01->ldtr.base); 3459 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3460 "idtr:", 3461 save->idtr.selector, save->idtr.attrib, 3462 save->idtr.limit, save->idtr.base); 3463 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3464 "tr:", 3465 save01->tr.selector, save01->tr.attrib, 3466 save01->tr.limit, save01->tr.base); 3467 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3468 save->vmpl, save->cpl, save->efer); 3469 pr_err("%-15s %016llx %-13s %016llx\n", 3470 "cr0:", save->cr0, "cr2:", save->cr2); 3471 pr_err("%-15s %016llx %-13s %016llx\n", 3472 "cr3:", save->cr3, "cr4:", save->cr4); 3473 pr_err("%-15s %016llx %-13s %016llx\n", 3474 "dr6:", save->dr6, "dr7:", save->dr7); 3475 pr_err("%-15s %016llx %-13s %016llx\n", 3476 "rip:", save->rip, "rflags:", save->rflags); 3477 pr_err("%-15s %016llx %-13s %016llx\n", 3478 "rsp:", save->rsp, "rax:", save->rax); 3479 pr_err("%-15s %016llx %-13s %016llx\n", 3480 "star:", save01->star, "lstar:", save01->lstar); 3481 pr_err("%-15s %016llx %-13s %016llx\n", 3482 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3483 pr_err("%-15s %016llx %-13s %016llx\n", 3484 "kernel_gs_base:", save01->kernel_gs_base, 3485 "sysenter_cs:", save01->sysenter_cs); 3486 pr_err("%-15s %016llx %-13s %016llx\n", 3487 "sysenter_esp:", save01->sysenter_esp, 3488 "sysenter_eip:", save01->sysenter_eip); 3489 pr_err("%-15s %016llx %-13s %016llx\n", 3490 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3491 pr_err("%-15s %016llx %-13s %016llx\n", 3492 "br_from:", save->br_from, "br_to:", save->br_to); 3493 pr_err("%-15s %016llx %-13s %016llx\n", 3494 "excp_from:", save->last_excp_from, 3495 "excp_to:", save->last_excp_to); 3496 } 3497 3498 static bool svm_check_exit_valid(u64 exit_code) 3499 { 3500 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3501 svm_exit_handlers[exit_code]); 3502 } 3503 3504 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3505 { 3506 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3507 dump_vmcb(vcpu); 3508 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3509 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3510 vcpu->run->internal.ndata = 2; 3511 vcpu->run->internal.data[0] = exit_code; 3512 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3513 return 0; 3514 } 3515 3516 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3517 { 3518 if (!svm_check_exit_valid(exit_code)) 3519 return svm_handle_invalid_exit(vcpu, exit_code); 3520 3521 #ifdef CONFIG_MITIGATION_RETPOLINE 3522 if (exit_code == SVM_EXIT_MSR) 3523 return msr_interception(vcpu); 3524 else if (exit_code == SVM_EXIT_VINTR) 3525 return interrupt_window_interception(vcpu); 3526 else if (exit_code == SVM_EXIT_INTR) 3527 return intr_interception(vcpu); 3528 else if (exit_code == SVM_EXIT_HLT) 3529 return kvm_emulate_halt(vcpu); 3530 else if (exit_code == SVM_EXIT_NPF) 3531 return npf_interception(vcpu); 3532 #endif 3533 return svm_exit_handlers[exit_code](vcpu); 3534 } 3535 3536 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3537 u64 *info1, u64 *info2, 3538 u32 *intr_info, u32 *error_code) 3539 { 3540 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3541 3542 *reason = control->exit_code; 3543 *info1 = control->exit_info_1; 3544 *info2 = control->exit_info_2; 3545 *intr_info = control->exit_int_info; 3546 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3547 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3548 *error_code = control->exit_int_info_err; 3549 else 3550 *error_code = 0; 3551 } 3552 3553 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, 3554 u32 *error_code) 3555 { 3556 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3557 3558 *intr_info = control->event_inj; 3559 3560 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3561 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3562 *error_code = control->event_inj_err; 3563 else 3564 *error_code = 0; 3565 3566 } 3567 3568 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3569 { 3570 struct vcpu_svm *svm = to_svm(vcpu); 3571 struct kvm_run *kvm_run = vcpu->run; 3572 u32 exit_code = svm->vmcb->control.exit_code; 3573 3574 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3575 if (!sev_es_guest(vcpu->kvm)) { 3576 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3577 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3578 if (npt_enabled) 3579 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3580 } 3581 3582 if (is_guest_mode(vcpu)) { 3583 int vmexit; 3584 3585 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3586 3587 vmexit = nested_svm_exit_special(svm); 3588 3589 if (vmexit == NESTED_EXIT_CONTINUE) 3590 vmexit = nested_svm_exit_handled(svm); 3591 3592 if (vmexit == NESTED_EXIT_DONE) 3593 return 1; 3594 } 3595 3596 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3597 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3598 kvm_run->fail_entry.hardware_entry_failure_reason 3599 = svm->vmcb->control.exit_code; 3600 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3601 dump_vmcb(vcpu); 3602 return 0; 3603 } 3604 3605 if (exit_fastpath != EXIT_FASTPATH_NONE) 3606 return 1; 3607 3608 return svm_invoke_exit_handler(vcpu, exit_code); 3609 } 3610 3611 static void pre_svm_run(struct kvm_vcpu *vcpu) 3612 { 3613 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3614 struct vcpu_svm *svm = to_svm(vcpu); 3615 3616 /* 3617 * If the previous vmrun of the vmcb occurred on a different physical 3618 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3619 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3620 */ 3621 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3622 svm->current_vmcb->asid_generation = 0; 3623 vmcb_mark_all_dirty(svm->vmcb); 3624 svm->current_vmcb->cpu = vcpu->cpu; 3625 } 3626 3627 if (sev_guest(vcpu->kvm)) 3628 return pre_sev_run(svm, vcpu->cpu); 3629 3630 /* FIXME: handle wraparound of asid_generation */ 3631 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3632 new_asid(svm, sd); 3633 } 3634 3635 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3636 { 3637 struct vcpu_svm *svm = to_svm(vcpu); 3638 3639 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3640 3641 if (svm->nmi_l1_to_l2) 3642 return; 3643 3644 /* 3645 * No need to manually track NMI masking when vNMI is enabled, hardware 3646 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3647 * case where software directly injects an NMI. 3648 */ 3649 if (!is_vnmi_enabled(svm)) { 3650 svm->nmi_masked = true; 3651 svm_set_iret_intercept(svm); 3652 } 3653 ++vcpu->stat.nmi_injections; 3654 } 3655 3656 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3657 { 3658 struct vcpu_svm *svm = to_svm(vcpu); 3659 3660 if (!is_vnmi_enabled(svm)) 3661 return false; 3662 3663 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3664 } 3665 3666 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3667 { 3668 struct vcpu_svm *svm = to_svm(vcpu); 3669 3670 if (!is_vnmi_enabled(svm)) 3671 return false; 3672 3673 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3674 return false; 3675 3676 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3677 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3678 3679 /* 3680 * Because the pending NMI is serviced by hardware, KVM can't know when 3681 * the NMI is "injected", but for all intents and purposes, passing the 3682 * NMI off to hardware counts as injection. 3683 */ 3684 ++vcpu->stat.nmi_injections; 3685 3686 return true; 3687 } 3688 3689 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3690 { 3691 struct vcpu_svm *svm = to_svm(vcpu); 3692 u32 type; 3693 3694 if (vcpu->arch.interrupt.soft) { 3695 if (svm_update_soft_interrupt_rip(vcpu)) 3696 return; 3697 3698 type = SVM_EVTINJ_TYPE_SOFT; 3699 } else { 3700 type = SVM_EVTINJ_TYPE_INTR; 3701 } 3702 3703 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3704 vcpu->arch.interrupt.soft, reinjected); 3705 ++vcpu->stat.irq_injections; 3706 3707 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3708 SVM_EVTINJ_VALID | type; 3709 } 3710 3711 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3712 int trig_mode, int vector) 3713 { 3714 /* 3715 * apic->apicv_active must be read after vcpu->mode. 3716 * Pairs with smp_store_release in vcpu_enter_guest. 3717 */ 3718 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3719 3720 /* Note, this is called iff the local APIC is in-kernel. */ 3721 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3722 /* Process the interrupt via kvm_check_and_inject_events(). */ 3723 kvm_make_request(KVM_REQ_EVENT, vcpu); 3724 kvm_vcpu_kick(vcpu); 3725 return; 3726 } 3727 3728 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3729 if (in_guest_mode) { 3730 /* 3731 * Signal the doorbell to tell hardware to inject the IRQ. If 3732 * the vCPU exits the guest before the doorbell chimes, hardware 3733 * will automatically process AVIC interrupts at the next VMRUN. 3734 */ 3735 avic_ring_doorbell(vcpu); 3736 } else { 3737 /* 3738 * Wake the vCPU if it was blocking. KVM will then detect the 3739 * pending IRQ when checking if the vCPU has a wake event. 3740 */ 3741 kvm_vcpu_wake_up(vcpu); 3742 } 3743 } 3744 3745 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3746 int trig_mode, int vector) 3747 { 3748 kvm_lapic_set_irr(vector, apic); 3749 3750 /* 3751 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3752 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3753 * the read of guest_mode. This guarantees that either VMRUN will see 3754 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3755 * will signal the doorbell if the CPU has already entered the guest. 3756 */ 3757 smp_mb__after_atomic(); 3758 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3759 } 3760 3761 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3762 { 3763 struct vcpu_svm *svm = to_svm(vcpu); 3764 3765 /* 3766 * SEV-ES guests must always keep the CR intercepts cleared. CR 3767 * tracking is done using the CR write traps. 3768 */ 3769 if (sev_es_guest(vcpu->kvm)) 3770 return; 3771 3772 if (nested_svm_virtualize_tpr(vcpu)) 3773 return; 3774 3775 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3776 3777 if (irr == -1) 3778 return; 3779 3780 if (tpr >= irr) 3781 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3782 } 3783 3784 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3785 { 3786 struct vcpu_svm *svm = to_svm(vcpu); 3787 3788 if (is_vnmi_enabled(svm)) 3789 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3790 else 3791 return svm->nmi_masked; 3792 } 3793 3794 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3795 { 3796 struct vcpu_svm *svm = to_svm(vcpu); 3797 3798 if (is_vnmi_enabled(svm)) { 3799 if (masked) 3800 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3801 else 3802 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3803 3804 } else { 3805 svm->nmi_masked = masked; 3806 if (masked) 3807 svm_set_iret_intercept(svm); 3808 else 3809 svm_clr_iret_intercept(svm); 3810 } 3811 } 3812 3813 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3814 { 3815 struct vcpu_svm *svm = to_svm(vcpu); 3816 struct vmcb *vmcb = svm->vmcb; 3817 3818 if (!gif_set(svm)) 3819 return true; 3820 3821 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3822 return false; 3823 3824 if (svm_get_nmi_mask(vcpu)) 3825 return true; 3826 3827 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3828 } 3829 3830 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3831 { 3832 struct vcpu_svm *svm = to_svm(vcpu); 3833 if (svm->nested.nested_run_pending) 3834 return -EBUSY; 3835 3836 if (svm_nmi_blocked(vcpu)) 3837 return 0; 3838 3839 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3840 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3841 return -EBUSY; 3842 return 1; 3843 } 3844 3845 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3846 { 3847 struct vcpu_svm *svm = to_svm(vcpu); 3848 struct vmcb *vmcb = svm->vmcb; 3849 3850 if (!gif_set(svm)) 3851 return true; 3852 3853 if (is_guest_mode(vcpu)) { 3854 /* As long as interrupts are being delivered... */ 3855 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3856 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3857 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3858 return true; 3859 3860 /* ... vmexits aren't blocked by the interrupt shadow */ 3861 if (nested_exit_on_intr(svm)) 3862 return false; 3863 } else { 3864 if (!svm_get_if_flag(vcpu)) 3865 return true; 3866 } 3867 3868 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3869 } 3870 3871 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3872 { 3873 struct vcpu_svm *svm = to_svm(vcpu); 3874 3875 if (svm->nested.nested_run_pending) 3876 return -EBUSY; 3877 3878 if (svm_interrupt_blocked(vcpu)) 3879 return 0; 3880 3881 /* 3882 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3883 * e.g. if the IRQ arrived asynchronously after checking nested events. 3884 */ 3885 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3886 return -EBUSY; 3887 3888 return 1; 3889 } 3890 3891 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3892 { 3893 struct vcpu_svm *svm = to_svm(vcpu); 3894 3895 /* 3896 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3897 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3898 * get that intercept, this function will be called again though and 3899 * we'll get the vintr intercept. However, if the vGIF feature is 3900 * enabled, the STGI interception will not occur. Enable the irq 3901 * window under the assumption that the hardware will set the GIF. 3902 */ 3903 if (vgif || gif_set(svm)) { 3904 /* 3905 * IRQ window is not needed when AVIC is enabled, 3906 * unless we have pending ExtINT since it cannot be injected 3907 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3908 * and fallback to injecting IRQ via V_IRQ. 3909 * 3910 * If running nested, AVIC is already locally inhibited 3911 * on this vCPU, therefore there is no need to request 3912 * the VM wide AVIC inhibition. 3913 */ 3914 if (!is_guest_mode(vcpu)) 3915 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3916 3917 svm_set_vintr(svm); 3918 } 3919 } 3920 3921 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3922 { 3923 struct vcpu_svm *svm = to_svm(vcpu); 3924 3925 /* 3926 * If NMIs are outright masked, i.e. the vCPU is already handling an 3927 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3928 * more to do at this time as KVM has already enabled IRET intercepts. 3929 * If KVM has already intercepted IRET, then single-step over the IRET, 3930 * as NMIs aren't architecturally unmasked until the IRET completes. 3931 * 3932 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3933 * are masked, as KVM allows at most one to-be-injected NMI and one 3934 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3935 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3936 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3937 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3938 * inject the NMI. In those situations, KVM needs to single-step over 3939 * the STI shadow or intercept STGI. 3940 */ 3941 if (svm_get_nmi_mask(vcpu)) { 3942 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3943 3944 if (!svm->awaiting_iret_completion) 3945 return; /* IRET will cause a vm exit */ 3946 } 3947 3948 /* 3949 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3950 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3951 * KVM can't intercept and single-step IRET to detect when NMIs are 3952 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3953 * 3954 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3955 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3956 * supported NAEs in the GHCB protocol. 3957 */ 3958 if (sev_es_guest(vcpu->kvm)) 3959 return; 3960 3961 if (!gif_set(svm)) { 3962 if (vgif) 3963 svm_set_intercept(svm, INTERCEPT_STGI); 3964 return; /* STGI will cause a vm exit */ 3965 } 3966 3967 /* 3968 * Something prevents NMI from been injected. Single step over possible 3969 * problem (IRET or exception injection or interrupt shadow) 3970 */ 3971 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3972 svm->nmi_singlestep = true; 3973 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3974 } 3975 3976 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3977 { 3978 struct vcpu_svm *svm = to_svm(vcpu); 3979 3980 /* 3981 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3982 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3983 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3984 */ 3985 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3986 3987 /* 3988 * Flush only the current ASID even if the TLB flush was invoked via 3989 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3990 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3991 * unconditionally does a TLB flush on both nested VM-Enter and nested 3992 * VM-Exit (via kvm_mmu_reset_context()). 3993 */ 3994 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3995 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3996 else 3997 svm->current_vmcb->asid_generation--; 3998 } 3999 4000 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 4001 { 4002 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 4003 4004 /* 4005 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 4006 * flush the NPT mappings via hypercall as flushing the ASID only 4007 * affects virtual to physical mappings, it does not invalidate guest 4008 * physical to host physical mappings. 4009 */ 4010 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 4011 hyperv_flush_guest_mapping(root_tdp); 4012 4013 svm_flush_tlb_asid(vcpu); 4014 } 4015 4016 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 4017 { 4018 /* 4019 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 4020 * flushes should be routed to hv_flush_remote_tlbs() without requesting 4021 * a "regular" remote flush. Reaching this point means either there's 4022 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 4023 * which might be fatal to the guest. Yell, but try to recover. 4024 */ 4025 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 4026 hv_flush_remote_tlbs(vcpu->kvm); 4027 4028 svm_flush_tlb_asid(vcpu); 4029 } 4030 4031 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 4032 { 4033 struct vcpu_svm *svm = to_svm(vcpu); 4034 4035 invlpga(gva, svm->vmcb->control.asid); 4036 } 4037 4038 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 4039 { 4040 struct vcpu_svm *svm = to_svm(vcpu); 4041 4042 if (nested_svm_virtualize_tpr(vcpu)) 4043 return; 4044 4045 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 4046 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 4047 kvm_set_cr8(vcpu, cr8); 4048 } 4049 } 4050 4051 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 4052 { 4053 struct vcpu_svm *svm = to_svm(vcpu); 4054 u64 cr8; 4055 4056 if (nested_svm_virtualize_tpr(vcpu) || 4057 kvm_vcpu_apicv_active(vcpu)) 4058 return; 4059 4060 cr8 = kvm_get_cr8(vcpu); 4061 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 4062 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4063 } 4064 4065 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4066 int type) 4067 { 4068 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4069 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4070 struct vcpu_svm *svm = to_svm(vcpu); 4071 4072 /* 4073 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4074 * associated with the original soft exception/interrupt. next_rip is 4075 * cleared on all exits that can occur while vectoring an event, so KVM 4076 * needs to manually set next_rip for re-injection. Unlike the !nrips 4077 * case below, this needs to be done if and only if KVM is re-injecting 4078 * the same event, i.e. if the event is a soft exception/interrupt, 4079 * otherwise next_rip is unused on VMRUN. 4080 */ 4081 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4082 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4083 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4084 /* 4085 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4086 * injecting the soft exception/interrupt. That advancement needs to 4087 * be unwound if vectoring didn't complete. Note, the new event may 4088 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4089 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4090 * be the reported vectored event, but RIP still needs to be unwound. 4091 */ 4092 else if (!nrips && (is_soft || is_exception) && 4093 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4094 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4095 } 4096 4097 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4098 { 4099 struct vcpu_svm *svm = to_svm(vcpu); 4100 u8 vector; 4101 int type; 4102 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4103 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4104 bool soft_int_injected = svm->soft_int_injected; 4105 4106 svm->nmi_l1_to_l2 = false; 4107 svm->soft_int_injected = false; 4108 4109 /* 4110 * If we've made progress since setting awaiting_iret_completion, we've 4111 * executed an IRET and can allow NMI injection. 4112 */ 4113 if (svm->awaiting_iret_completion && 4114 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4115 svm->awaiting_iret_completion = false; 4116 svm->nmi_masked = false; 4117 kvm_make_request(KVM_REQ_EVENT, vcpu); 4118 } 4119 4120 vcpu->arch.nmi_injected = false; 4121 kvm_clear_exception_queue(vcpu); 4122 kvm_clear_interrupt_queue(vcpu); 4123 4124 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4125 return; 4126 4127 kvm_make_request(KVM_REQ_EVENT, vcpu); 4128 4129 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4130 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4131 4132 if (soft_int_injected) 4133 svm_complete_soft_interrupt(vcpu, vector, type); 4134 4135 switch (type) { 4136 case SVM_EXITINTINFO_TYPE_NMI: 4137 vcpu->arch.nmi_injected = true; 4138 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4139 break; 4140 case SVM_EXITINTINFO_TYPE_EXEPT: 4141 /* 4142 * Never re-inject a #VC exception. 4143 */ 4144 if (vector == X86_TRAP_VC) 4145 break; 4146 4147 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { 4148 u32 err = svm->vmcb->control.exit_int_info_err; 4149 kvm_requeue_exception_e(vcpu, vector, err); 4150 4151 } else 4152 kvm_requeue_exception(vcpu, vector); 4153 break; 4154 case SVM_EXITINTINFO_TYPE_INTR: 4155 kvm_queue_interrupt(vcpu, vector, false); 4156 break; 4157 case SVM_EXITINTINFO_TYPE_SOFT: 4158 kvm_queue_interrupt(vcpu, vector, true); 4159 break; 4160 default: 4161 break; 4162 } 4163 4164 } 4165 4166 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4167 { 4168 struct vcpu_svm *svm = to_svm(vcpu); 4169 struct vmcb_control_area *control = &svm->vmcb->control; 4170 4171 control->exit_int_info = control->event_inj; 4172 control->exit_int_info_err = control->event_inj_err; 4173 control->event_inj = 0; 4174 svm_complete_interrupts(vcpu); 4175 } 4176 4177 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4178 { 4179 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4180 return -EINVAL; 4181 4182 return 1; 4183 } 4184 4185 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4186 { 4187 struct vcpu_svm *svm = to_svm(vcpu); 4188 4189 if (is_guest_mode(vcpu)) 4190 return EXIT_FASTPATH_NONE; 4191 4192 switch (svm->vmcb->control.exit_code) { 4193 case SVM_EXIT_MSR: 4194 if (!svm->vmcb->control.exit_info_1) 4195 break; 4196 return handle_fastpath_set_msr_irqoff(vcpu); 4197 case SVM_EXIT_HLT: 4198 return handle_fastpath_hlt(vcpu); 4199 default: 4200 break; 4201 } 4202 4203 return EXIT_FASTPATH_NONE; 4204 } 4205 4206 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4207 { 4208 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4209 struct vcpu_svm *svm = to_svm(vcpu); 4210 4211 guest_state_enter_irqoff(); 4212 4213 /* 4214 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of 4215 * VMRUN controls whether or not physical IRQs are masked (KVM always 4216 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the 4217 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow 4218 * into guest state if delivery of an event during VMRUN triggers a 4219 * #VMEXIT, and the guest_state transitions already tell lockdep that 4220 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of 4221 * this path, so IRQs aren't actually unmasked while running host code. 4222 */ 4223 raw_local_irq_enable(); 4224 4225 amd_clear_divider(); 4226 4227 if (sev_es_guest(vcpu->kvm)) 4228 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4229 sev_es_host_save_area(sd)); 4230 else 4231 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4232 4233 raw_local_irq_disable(); 4234 4235 guest_state_exit_irqoff(); 4236 } 4237 4238 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, 4239 bool force_immediate_exit) 4240 { 4241 struct vcpu_svm *svm = to_svm(vcpu); 4242 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4243 4244 trace_kvm_entry(vcpu, force_immediate_exit); 4245 4246 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4247 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4248 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4249 4250 /* 4251 * Disable singlestep if we're injecting an interrupt/exception. 4252 * We don't want our modified rflags to be pushed on the stack where 4253 * we might not be able to easily reset them if we disabled NMI 4254 * singlestep later. 4255 */ 4256 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4257 /* 4258 * Event injection happens before external interrupts cause a 4259 * vmexit and interrupts are disabled here, so smp_send_reschedule 4260 * is enough to force an immediate vmexit. 4261 */ 4262 disable_nmi_singlestep(svm); 4263 force_immediate_exit = true; 4264 } 4265 4266 if (force_immediate_exit) 4267 smp_send_reschedule(vcpu->cpu); 4268 4269 pre_svm_run(vcpu); 4270 4271 sync_lapic_to_cr8(vcpu); 4272 4273 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4274 svm->vmcb->control.asid = svm->asid; 4275 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4276 } 4277 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4278 4279 svm_hv_update_vp_id(svm->vmcb, vcpu); 4280 4281 /* 4282 * Run with all-zero DR6 unless needed, so that we can get the exact cause 4283 * of a #DB. 4284 */ 4285 if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))) 4286 svm_set_dr6(vcpu, DR6_ACTIVE_LOW); 4287 4288 clgi(); 4289 kvm_load_guest_xsave_state(vcpu); 4290 4291 /* 4292 * Hardware only context switches DEBUGCTL if LBR virtualization is 4293 * enabled. Manually load DEBUGCTL if necessary (and restore it after 4294 * VM-Exit), as running with the host's DEBUGCTL can negatively affect 4295 * guest state and can even be fatal, e.g. due to Bus Lock Detect. 4296 */ 4297 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4298 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4299 update_debugctlmsr(svm->vmcb->save.dbgctl); 4300 4301 kvm_wait_lapic_expire(vcpu); 4302 4303 /* 4304 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4305 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4306 * is no need to worry about the conditional branch over the wrmsr 4307 * being speculatively taken. 4308 */ 4309 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4310 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4311 4312 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4313 4314 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4315 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4316 4317 if (!sev_es_guest(vcpu->kvm)) { 4318 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4319 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4320 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4321 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4322 } 4323 vcpu->arch.regs_dirty = 0; 4324 4325 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4326 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4327 4328 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4329 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4330 update_debugctlmsr(vcpu->arch.host_debugctl); 4331 4332 kvm_load_host_xsave_state(vcpu); 4333 stgi(); 4334 4335 /* Any pending NMI will happen here */ 4336 4337 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4338 kvm_after_interrupt(vcpu); 4339 4340 sync_cr8_to_lapic(vcpu); 4341 4342 svm->next_rip = 0; 4343 if (is_guest_mode(vcpu)) { 4344 nested_sync_control_from_vmcb02(svm); 4345 4346 /* Track VMRUNs that have made past consistency checking */ 4347 if (svm->nested.nested_run_pending && 4348 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4349 ++vcpu->stat.nested_run; 4350 4351 svm->nested.nested_run_pending = 0; 4352 } 4353 4354 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4355 vmcb_mark_all_clean(svm->vmcb); 4356 4357 /* if exit due to PF check for async PF */ 4358 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4359 vcpu->arch.apf.host_apf_flags = 4360 kvm_read_and_reset_apf_flags(); 4361 4362 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4363 4364 /* 4365 * We need to handle MC intercepts here before the vcpu has a chance to 4366 * change the physical cpu 4367 */ 4368 if (unlikely(svm->vmcb->control.exit_code == 4369 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4370 svm_handle_mce(vcpu); 4371 4372 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4373 4374 svm_complete_interrupts(vcpu); 4375 4376 return svm_exit_handlers_fastpath(vcpu); 4377 } 4378 4379 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4380 int root_level) 4381 { 4382 struct vcpu_svm *svm = to_svm(vcpu); 4383 unsigned long cr3; 4384 4385 if (npt_enabled) { 4386 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4387 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4388 4389 hv_track_root_tdp(vcpu, root_hpa); 4390 4391 cr3 = vcpu->arch.cr3; 4392 } else if (root_level >= PT64_ROOT_4LEVEL) { 4393 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4394 } else { 4395 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4396 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4397 cr3 = root_hpa; 4398 } 4399 4400 svm->vmcb->save.cr3 = cr3; 4401 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4402 } 4403 4404 static void 4405 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4406 { 4407 /* 4408 * Patch in the VMMCALL instruction: 4409 */ 4410 hypercall[0] = 0x0f; 4411 hypercall[1] = 0x01; 4412 hypercall[2] = 0xd9; 4413 } 4414 4415 /* 4416 * The kvm parameter can be NULL (module initialization, or invocation before 4417 * VM creation). Be sure to check the kvm parameter before using it. 4418 */ 4419 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4420 { 4421 switch (index) { 4422 case MSR_IA32_MCG_EXT_CTL: 4423 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4424 return false; 4425 case MSR_IA32_SMBASE: 4426 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4427 return false; 4428 /* SEV-ES guests do not support SMM, so report false */ 4429 if (kvm && sev_es_guest(kvm)) 4430 return false; 4431 break; 4432 default: 4433 break; 4434 } 4435 4436 return true; 4437 } 4438 4439 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4440 { 4441 struct vcpu_svm *svm = to_svm(vcpu); 4442 4443 /* 4444 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4445 * can only disable all variants of by disallowing CR4.OSXSAVE from 4446 * being set. As a result, if the host has XSAVE and XSAVES, and the 4447 * guest has XSAVE enabled, the guest can execute XSAVES without 4448 * faulting. Treat XSAVES as enabled in this case regardless of 4449 * whether it's advertised to the guest so that KVM context switches 4450 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4451 * the guest read/write access to the host's XSS. 4452 */ 4453 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES, 4454 boot_cpu_has(X86_FEATURE_XSAVES) && 4455 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)); 4456 4457 /* 4458 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4459 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4460 * SVM on Intel is bonkers and extremely unlikely to work). 4461 */ 4462 if (guest_cpuid_is_intel_compatible(vcpu)) 4463 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4464 4465 svm_recalc_instruction_intercepts(vcpu, svm); 4466 4467 if (boot_cpu_has(X86_FEATURE_IBPB)) 4468 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 4469 !!guest_has_pred_cmd_msr(vcpu)); 4470 4471 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 4472 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0, 4473 !!guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 4474 4475 if (sev_guest(vcpu->kvm)) 4476 sev_vcpu_after_set_cpuid(svm); 4477 4478 init_vmcb_after_set_cpuid(vcpu); 4479 } 4480 4481 static bool svm_has_wbinvd_exit(void) 4482 { 4483 return true; 4484 } 4485 4486 #define PRE_EX(exit) { .exit_code = (exit), \ 4487 .stage = X86_ICPT_PRE_EXCEPT, } 4488 #define POST_EX(exit) { .exit_code = (exit), \ 4489 .stage = X86_ICPT_POST_EXCEPT, } 4490 #define POST_MEM(exit) { .exit_code = (exit), \ 4491 .stage = X86_ICPT_POST_MEMACCESS, } 4492 4493 static const struct __x86_intercept { 4494 u32 exit_code; 4495 enum x86_intercept_stage stage; 4496 } x86_intercept_map[] = { 4497 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4498 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4499 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4500 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4501 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4502 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4503 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4504 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4505 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4506 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4507 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4508 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4509 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4510 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4511 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4512 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4513 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4514 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4515 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4516 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4517 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4518 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4519 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4520 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4521 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4522 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4523 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4524 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4525 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4526 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4527 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4528 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4529 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4530 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4531 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4532 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4533 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4534 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4535 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4536 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4537 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4538 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4539 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4540 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4541 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4542 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4543 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4544 }; 4545 4546 #undef PRE_EX 4547 #undef POST_EX 4548 #undef POST_MEM 4549 4550 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4551 struct x86_instruction_info *info, 4552 enum x86_intercept_stage stage, 4553 struct x86_exception *exception) 4554 { 4555 struct vcpu_svm *svm = to_svm(vcpu); 4556 int vmexit, ret = X86EMUL_CONTINUE; 4557 struct __x86_intercept icpt_info; 4558 struct vmcb *vmcb = svm->vmcb; 4559 4560 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4561 goto out; 4562 4563 icpt_info = x86_intercept_map[info->intercept]; 4564 4565 if (stage != icpt_info.stage) 4566 goto out; 4567 4568 switch (icpt_info.exit_code) { 4569 case SVM_EXIT_READ_CR0: 4570 if (info->intercept == x86_intercept_cr_read) 4571 icpt_info.exit_code += info->modrm_reg; 4572 break; 4573 case SVM_EXIT_WRITE_CR0: { 4574 unsigned long cr0, val; 4575 4576 if (info->intercept == x86_intercept_cr_write) 4577 icpt_info.exit_code += info->modrm_reg; 4578 4579 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4580 info->intercept == x86_intercept_clts) 4581 break; 4582 4583 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4584 INTERCEPT_SELECTIVE_CR0))) 4585 break; 4586 4587 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4588 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4589 4590 if (info->intercept == x86_intercept_lmsw) { 4591 cr0 &= 0xfUL; 4592 val &= 0xfUL; 4593 /* lmsw can't clear PE - catch this here */ 4594 if (cr0 & X86_CR0_PE) 4595 val |= X86_CR0_PE; 4596 } 4597 4598 if (cr0 ^ val) 4599 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4600 4601 break; 4602 } 4603 case SVM_EXIT_READ_DR0: 4604 case SVM_EXIT_WRITE_DR0: 4605 icpt_info.exit_code += info->modrm_reg; 4606 break; 4607 case SVM_EXIT_MSR: 4608 if (info->intercept == x86_intercept_wrmsr) 4609 vmcb->control.exit_info_1 = 1; 4610 else 4611 vmcb->control.exit_info_1 = 0; 4612 break; 4613 case SVM_EXIT_PAUSE: 4614 /* 4615 * We get this for NOP only, but pause 4616 * is rep not, check this here 4617 */ 4618 if (info->rep_prefix != REPE_PREFIX) 4619 goto out; 4620 break; 4621 case SVM_EXIT_IOIO: { 4622 u64 exit_info; 4623 u32 bytes; 4624 4625 if (info->intercept == x86_intercept_in || 4626 info->intercept == x86_intercept_ins) { 4627 exit_info = ((info->src_val & 0xffff) << 16) | 4628 SVM_IOIO_TYPE_MASK; 4629 bytes = info->dst_bytes; 4630 } else { 4631 exit_info = (info->dst_val & 0xffff) << 16; 4632 bytes = info->src_bytes; 4633 } 4634 4635 if (info->intercept == x86_intercept_outs || 4636 info->intercept == x86_intercept_ins) 4637 exit_info |= SVM_IOIO_STR_MASK; 4638 4639 if (info->rep_prefix) 4640 exit_info |= SVM_IOIO_REP_MASK; 4641 4642 bytes = min(bytes, 4u); 4643 4644 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4645 4646 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4647 4648 vmcb->control.exit_info_1 = exit_info; 4649 vmcb->control.exit_info_2 = info->next_rip; 4650 4651 break; 4652 } 4653 default: 4654 break; 4655 } 4656 4657 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4658 if (static_cpu_has(X86_FEATURE_NRIPS)) 4659 vmcb->control.next_rip = info->next_rip; 4660 vmcb->control.exit_code = icpt_info.exit_code; 4661 vmexit = nested_svm_exit_handled(svm); 4662 4663 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4664 : X86EMUL_CONTINUE; 4665 4666 out: 4667 return ret; 4668 } 4669 4670 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4671 { 4672 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4673 vcpu->arch.at_instruction_boundary = true; 4674 } 4675 4676 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4677 { 4678 /* [63:9] are reserved. */ 4679 vcpu->arch.mcg_cap &= 0x1ff; 4680 } 4681 4682 #ifdef CONFIG_KVM_SMM 4683 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4684 { 4685 struct vcpu_svm *svm = to_svm(vcpu); 4686 4687 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4688 if (!gif_set(svm)) 4689 return true; 4690 4691 return is_smm(vcpu); 4692 } 4693 4694 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4695 { 4696 struct vcpu_svm *svm = to_svm(vcpu); 4697 if (svm->nested.nested_run_pending) 4698 return -EBUSY; 4699 4700 if (svm_smi_blocked(vcpu)) 4701 return 0; 4702 4703 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4704 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4705 return -EBUSY; 4706 4707 return 1; 4708 } 4709 4710 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4711 { 4712 struct vcpu_svm *svm = to_svm(vcpu); 4713 struct kvm_host_map map_save; 4714 int ret; 4715 4716 if (!is_guest_mode(vcpu)) 4717 return 0; 4718 4719 /* 4720 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4721 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4722 */ 4723 4724 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4725 return 1; 4726 4727 smram->smram64.svm_guest_flag = 1; 4728 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4729 4730 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4731 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4732 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4733 4734 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4735 if (ret) 4736 return ret; 4737 4738 /* 4739 * KVM uses VMCB01 to store L1 host state while L2 runs but 4740 * VMCB01 is going to be used during SMM and thus the state will 4741 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4742 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4743 * format of the area is identical to guest save area offsetted 4744 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4745 * within 'struct vmcb'). Note: HSAVE area may also be used by 4746 * L1 hypervisor to save additional host context (e.g. KVM does 4747 * that, see svm_prepare_switch_to_guest()) which must be 4748 * preserved. 4749 */ 4750 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4751 return 1; 4752 4753 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4754 4755 svm_copy_vmrun_state(map_save.hva + 0x400, 4756 &svm->vmcb01.ptr->save); 4757 4758 kvm_vcpu_unmap(vcpu, &map_save); 4759 return 0; 4760 } 4761 4762 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4763 { 4764 struct vcpu_svm *svm = to_svm(vcpu); 4765 struct kvm_host_map map, map_save; 4766 struct vmcb *vmcb12; 4767 int ret; 4768 4769 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4770 4771 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4772 return 0; 4773 4774 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4775 if (!smram64->svm_guest_flag) 4776 return 0; 4777 4778 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 4779 return 1; 4780 4781 if (!(smram64->efer & EFER_SVME)) 4782 return 1; 4783 4784 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4785 return 1; 4786 4787 ret = 1; 4788 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4789 goto unmap_map; 4790 4791 if (svm_allocate_nested(svm)) 4792 goto unmap_save; 4793 4794 /* 4795 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4796 * used during SMM (see svm_enter_smm()) 4797 */ 4798 4799 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4800 4801 /* 4802 * Enter the nested guest now 4803 */ 4804 4805 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4806 4807 vmcb12 = map.hva; 4808 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4809 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4810 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4811 4812 if (ret) 4813 goto unmap_save; 4814 4815 svm->nested.nested_run_pending = 1; 4816 4817 unmap_save: 4818 kvm_vcpu_unmap(vcpu, &map_save); 4819 unmap_map: 4820 kvm_vcpu_unmap(vcpu, &map); 4821 return ret; 4822 } 4823 4824 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4825 { 4826 struct vcpu_svm *svm = to_svm(vcpu); 4827 4828 if (!gif_set(svm)) { 4829 if (vgif) 4830 svm_set_intercept(svm, INTERCEPT_STGI); 4831 /* STGI will cause a vm exit */ 4832 } else { 4833 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4834 } 4835 } 4836 #endif 4837 4838 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4839 void *insn, int insn_len) 4840 { 4841 struct vcpu_svm *svm = to_svm(vcpu); 4842 bool smep, smap, is_user; 4843 u64 error_code; 4844 4845 /* Check that emulation is possible during event vectoring */ 4846 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) && 4847 !kvm_can_emulate_event_vectoring(emul_type)) 4848 return X86EMUL_UNHANDLEABLE_VECTORING; 4849 4850 /* Emulation is always possible when KVM has access to all guest state. */ 4851 if (!sev_guest(vcpu->kvm)) 4852 return X86EMUL_CONTINUE; 4853 4854 /* #UD and #GP should never be intercepted for SEV guests. */ 4855 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4856 EMULTYPE_TRAP_UD_FORCED | 4857 EMULTYPE_VMWARE_GP)); 4858 4859 /* 4860 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4861 * to guest register state. 4862 */ 4863 if (sev_es_guest(vcpu->kvm)) 4864 return X86EMUL_RETRY_INSTR; 4865 4866 /* 4867 * Emulation is possible if the instruction is already decoded, e.g. 4868 * when completing I/O after returning from userspace. 4869 */ 4870 if (emul_type & EMULTYPE_NO_DECODE) 4871 return X86EMUL_CONTINUE; 4872 4873 /* 4874 * Emulation is possible for SEV guests if and only if a prefilled 4875 * buffer containing the bytes of the intercepted instruction is 4876 * available. SEV guest memory is encrypted with a guest specific key 4877 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4878 * decode garbage. 4879 * 4880 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4881 * KVM reached this point without an instruction buffer. In practice, 4882 * this path should never be hit by a well-behaved guest, e.g. KVM 4883 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4884 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4885 * access, and needs to be handled by KVM to avoid putting the guest 4886 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4887 * its the least awful option given lack of insight into the guest. 4888 * 4889 * If KVM is trying to skip an instruction, simply resume the guest. 4890 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4891 * will attempt to re-inject the INT3/INTO and skip the instruction. 4892 * In that scenario, retrying the INT3/INTO and hoping the guest will 4893 * make forward progress is the only option that has a chance of 4894 * success (and in practice it will work the vast majority of the time). 4895 */ 4896 if (unlikely(!insn)) { 4897 if (emul_type & EMULTYPE_SKIP) 4898 return X86EMUL_UNHANDLEABLE; 4899 4900 kvm_queue_exception(vcpu, UD_VECTOR); 4901 return X86EMUL_PROPAGATE_FAULT; 4902 } 4903 4904 /* 4905 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4906 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4907 * the faulting instruction because the code fetch itself faulted, e.g. 4908 * the guest attempted to fetch from emulated MMIO or a guest page 4909 * table used to translate CS:RIP resides in emulated MMIO. 4910 */ 4911 if (likely(insn_len)) 4912 return X86EMUL_CONTINUE; 4913 4914 /* 4915 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4916 * 4917 * Errata: 4918 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4919 * possible that CPU microcode implementing DecodeAssist will fail to 4920 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4921 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4922 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4923 * gives up and does not fill the instruction bytes buffer. 4924 * 4925 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4926 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4927 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4928 * GuestIntrBytes field of the VMCB. 4929 * 4930 * This does _not_ mean that the erratum has been encountered, as the 4931 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4932 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4933 * encountered a reserved/not-present #PF. 4934 * 4935 * To hit the erratum, the following conditions must be true: 4936 * 1. CR4.SMAP=1 (obviously). 4937 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4938 * have been hit as the guest would have encountered a SMEP 4939 * violation #PF, not a #NPF. 4940 * 3. The #NPF is not due to a code fetch, in which case failure to 4941 * retrieve the instruction bytes is legitimate (see abvoe). 4942 * 4943 * In addition, don't apply the erratum workaround if the #NPF occurred 4944 * while translating guest page tables (see below). 4945 */ 4946 error_code = svm->vmcb->control.exit_info_1; 4947 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4948 goto resume_guest; 4949 4950 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4951 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4952 is_user = svm_get_cpl(vcpu) == 3; 4953 if (smap && (!smep || is_user)) { 4954 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4955 4956 /* 4957 * If the fault occurred in userspace, arbitrarily inject #GP 4958 * to avoid killing the guest and to hopefully avoid confusing 4959 * the guest kernel too much, e.g. injecting #PF would not be 4960 * coherent with respect to the guest's page tables. Request 4961 * triple fault if the fault occurred in the kernel as there's 4962 * no fault that KVM can inject without confusing the guest. 4963 * In practice, the triple fault is moot as no sane SEV kernel 4964 * will execute from user memory while also running with SMAP=1. 4965 */ 4966 if (is_user) 4967 kvm_inject_gp(vcpu, 0); 4968 else 4969 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4970 return X86EMUL_PROPAGATE_FAULT; 4971 } 4972 4973 resume_guest: 4974 /* 4975 * If the erratum was not hit, simply resume the guest and let it fault 4976 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4977 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4978 * userspace will kill the guest, and letting the emulator read garbage 4979 * will yield random behavior and potentially corrupt the guest. 4980 * 4981 * Simply resuming the guest is technically not a violation of the SEV 4982 * architecture. AMD's APM states that all code fetches and page table 4983 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4984 * APM also states that encrypted accesses to MMIO are "ignored", but 4985 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4986 * the guest spin is technically "ignoring" the access. 4987 */ 4988 return X86EMUL_RETRY_INSTR; 4989 } 4990 4991 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4992 { 4993 struct vcpu_svm *svm = to_svm(vcpu); 4994 4995 return !gif_set(svm); 4996 } 4997 4998 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4999 { 5000 if (!sev_es_guest(vcpu->kvm)) 5001 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 5002 5003 sev_vcpu_deliver_sipi_vector(vcpu, vector); 5004 } 5005 5006 static void svm_vm_destroy(struct kvm *kvm) 5007 { 5008 avic_vm_destroy(kvm); 5009 sev_vm_destroy(kvm); 5010 } 5011 5012 static int svm_vm_init(struct kvm *kvm) 5013 { 5014 int type = kvm->arch.vm_type; 5015 5016 if (type != KVM_X86_DEFAULT_VM && 5017 type != KVM_X86_SW_PROTECTED_VM) { 5018 kvm->arch.has_protected_state = 5019 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 5020 to_kvm_sev_info(kvm)->need_init = true; 5021 5022 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 5023 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 5024 } 5025 5026 if (!pause_filter_count || !pause_filter_thresh) 5027 kvm->arch.pause_in_guest = true; 5028 5029 if (enable_apicv) { 5030 int ret = avic_vm_init(kvm); 5031 if (ret) 5032 return ret; 5033 } 5034 5035 return 0; 5036 } 5037 5038 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 5039 { 5040 struct page *page = snp_safe_alloc_page(); 5041 5042 if (!page) 5043 return NULL; 5044 5045 return page_address(page); 5046 } 5047 5048 static struct kvm_x86_ops svm_x86_ops __initdata = { 5049 .name = KBUILD_MODNAME, 5050 5051 .check_processor_compatibility = svm_check_processor_compat, 5052 5053 .hardware_unsetup = svm_hardware_unsetup, 5054 .enable_virtualization_cpu = svm_enable_virtualization_cpu, 5055 .disable_virtualization_cpu = svm_disable_virtualization_cpu, 5056 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, 5057 .has_emulated_msr = svm_has_emulated_msr, 5058 5059 .vcpu_create = svm_vcpu_create, 5060 .vcpu_free = svm_vcpu_free, 5061 .vcpu_reset = svm_vcpu_reset, 5062 5063 .vm_size = sizeof(struct kvm_svm), 5064 .vm_init = svm_vm_init, 5065 .vm_destroy = svm_vm_destroy, 5066 5067 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5068 .vcpu_load = svm_vcpu_load, 5069 .vcpu_put = svm_vcpu_put, 5070 .vcpu_blocking = avic_vcpu_blocking, 5071 .vcpu_unblocking = avic_vcpu_unblocking, 5072 5073 .update_exception_bitmap = svm_update_exception_bitmap, 5074 .get_feature_msr = svm_get_feature_msr, 5075 .get_msr = svm_get_msr, 5076 .set_msr = svm_set_msr, 5077 .get_segment_base = svm_get_segment_base, 5078 .get_segment = svm_get_segment, 5079 .set_segment = svm_set_segment, 5080 .get_cpl = svm_get_cpl, 5081 .get_cpl_no_cache = svm_get_cpl, 5082 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5083 .is_valid_cr0 = svm_is_valid_cr0, 5084 .set_cr0 = svm_set_cr0, 5085 .post_set_cr3 = sev_post_set_cr3, 5086 .is_valid_cr4 = svm_is_valid_cr4, 5087 .set_cr4 = svm_set_cr4, 5088 .set_efer = svm_set_efer, 5089 .get_idt = svm_get_idt, 5090 .set_idt = svm_set_idt, 5091 .get_gdt = svm_get_gdt, 5092 .set_gdt = svm_set_gdt, 5093 .set_dr6 = svm_set_dr6, 5094 .set_dr7 = svm_set_dr7, 5095 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5096 .cache_reg = svm_cache_reg, 5097 .get_rflags = svm_get_rflags, 5098 .set_rflags = svm_set_rflags, 5099 .get_if_flag = svm_get_if_flag, 5100 5101 .flush_tlb_all = svm_flush_tlb_all, 5102 .flush_tlb_current = svm_flush_tlb_current, 5103 .flush_tlb_gva = svm_flush_tlb_gva, 5104 .flush_tlb_guest = svm_flush_tlb_asid, 5105 5106 .vcpu_pre_run = svm_vcpu_pre_run, 5107 .vcpu_run = svm_vcpu_run, 5108 .handle_exit = svm_handle_exit, 5109 .skip_emulated_instruction = svm_skip_emulated_instruction, 5110 .update_emulated_instruction = NULL, 5111 .set_interrupt_shadow = svm_set_interrupt_shadow, 5112 .get_interrupt_shadow = svm_get_interrupt_shadow, 5113 .patch_hypercall = svm_patch_hypercall, 5114 .inject_irq = svm_inject_irq, 5115 .inject_nmi = svm_inject_nmi, 5116 .is_vnmi_pending = svm_is_vnmi_pending, 5117 .set_vnmi_pending = svm_set_vnmi_pending, 5118 .inject_exception = svm_inject_exception, 5119 .cancel_injection = svm_cancel_injection, 5120 .interrupt_allowed = svm_interrupt_allowed, 5121 .nmi_allowed = svm_nmi_allowed, 5122 .get_nmi_mask = svm_get_nmi_mask, 5123 .set_nmi_mask = svm_set_nmi_mask, 5124 .enable_nmi_window = svm_enable_nmi_window, 5125 .enable_irq_window = svm_enable_irq_window, 5126 .update_cr8_intercept = svm_update_cr8_intercept, 5127 5128 .x2apic_icr_is_split = true, 5129 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5130 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5131 .apicv_post_state_restore = avic_apicv_post_state_restore, 5132 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5133 5134 .get_exit_info = svm_get_exit_info, 5135 .get_entry_info = svm_get_entry_info, 5136 5137 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5138 5139 .has_wbinvd_exit = svm_has_wbinvd_exit, 5140 5141 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5142 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5143 .write_tsc_offset = svm_write_tsc_offset, 5144 .write_tsc_multiplier = svm_write_tsc_multiplier, 5145 5146 .load_mmu_pgd = svm_load_mmu_pgd, 5147 5148 .check_intercept = svm_check_intercept, 5149 .handle_exit_irqoff = svm_handle_exit_irqoff, 5150 5151 .nested_ops = &svm_nested_ops, 5152 5153 .deliver_interrupt = svm_deliver_interrupt, 5154 .pi_update_irte = avic_pi_update_irte, 5155 .setup_mce = svm_setup_mce, 5156 5157 #ifdef CONFIG_KVM_SMM 5158 .smi_allowed = svm_smi_allowed, 5159 .enter_smm = svm_enter_smm, 5160 .leave_smm = svm_leave_smm, 5161 .enable_smi_window = svm_enable_smi_window, 5162 #endif 5163 5164 #ifdef CONFIG_KVM_AMD_SEV 5165 .dev_get_attr = sev_dev_get_attr, 5166 .mem_enc_ioctl = sev_mem_enc_ioctl, 5167 .mem_enc_register_region = sev_mem_enc_register_region, 5168 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5169 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5170 5171 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5172 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5173 #endif 5174 .check_emulate_instruction = svm_check_emulate_instruction, 5175 5176 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5177 5178 .msr_filter_changed = svm_msr_filter_changed, 5179 .complete_emulated_msr = svm_complete_emulated_msr, 5180 5181 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5182 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5183 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5184 5185 .gmem_prepare = sev_gmem_prepare, 5186 .gmem_invalidate = sev_gmem_invalidate, 5187 .private_max_mapping_level = sev_private_max_mapping_level, 5188 }; 5189 5190 /* 5191 * The default MMIO mask is a single bit (excluding the present bit), 5192 * which could conflict with the memory encryption bit. Check for 5193 * memory encryption support and override the default MMIO mask if 5194 * memory encryption is enabled. 5195 */ 5196 static __init void svm_adjust_mmio_mask(void) 5197 { 5198 unsigned int enc_bit, mask_bit; 5199 u64 msr, mask; 5200 5201 /* If there is no memory encryption support, use existing mask */ 5202 if (cpuid_eax(0x80000000) < 0x8000001f) 5203 return; 5204 5205 /* If memory encryption is not enabled, use existing mask */ 5206 rdmsrl(MSR_AMD64_SYSCFG, msr); 5207 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5208 return; 5209 5210 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5211 mask_bit = boot_cpu_data.x86_phys_bits; 5212 5213 /* Increment the mask bit if it is the same as the encryption bit */ 5214 if (enc_bit == mask_bit) 5215 mask_bit++; 5216 5217 /* 5218 * If the mask bit location is below 52, then some bits above the 5219 * physical addressing limit will always be reserved, so use the 5220 * rsvd_bits() function to generate the mask. This mask, along with 5221 * the present bit, will be used to generate a page fault with 5222 * PFER.RSV = 1. 5223 * 5224 * If the mask bit location is 52 (or above), then clear the mask. 5225 */ 5226 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5227 5228 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5229 } 5230 5231 static __init void svm_set_cpu_caps(void) 5232 { 5233 kvm_set_cpu_caps(); 5234 5235 kvm_caps.supported_perf_cap = 0; 5236 kvm_caps.supported_xss = 0; 5237 5238 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5239 if (nested) { 5240 kvm_cpu_cap_set(X86_FEATURE_SVM); 5241 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5242 5243 /* 5244 * KVM currently flushes TLBs on *every* nested SVM transition, 5245 * and so for all intents and purposes KVM supports flushing by 5246 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5247 */ 5248 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5249 5250 if (nrips) 5251 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5252 5253 if (npt_enabled) 5254 kvm_cpu_cap_set(X86_FEATURE_NPT); 5255 5256 if (tsc_scaling) 5257 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5258 5259 if (vls) 5260 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5261 if (lbrv) 5262 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5263 5264 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5265 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5266 5267 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5268 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5269 5270 if (vgif) 5271 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5272 5273 if (vnmi) 5274 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5275 5276 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5277 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5278 } 5279 5280 /* CPUID 0x80000008 */ 5281 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5282 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5283 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5284 5285 if (enable_pmu) { 5286 /* 5287 * Enumerate support for PERFCTR_CORE if and only if KVM has 5288 * access to enough counters to virtualize "core" support, 5289 * otherwise limit vPMU support to the legacy number of counters. 5290 */ 5291 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5292 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5293 kvm_pmu_cap.num_counters_gp); 5294 else 5295 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5296 5297 if (kvm_pmu_cap.version != 2 || 5298 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5299 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5300 } 5301 5302 /* CPUID 0x8000001F (SME/SEV features) */ 5303 sev_set_cpu_caps(); 5304 5305 /* Don't advertise Bus Lock Detect to guest if SVM support is absent */ 5306 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5307 } 5308 5309 static __init int svm_hardware_setup(void) 5310 { 5311 int cpu; 5312 struct page *iopm_pages; 5313 void *iopm_va; 5314 int r; 5315 unsigned int order = get_order(IOPM_SIZE); 5316 5317 /* 5318 * NX is required for shadow paging and for NPT if the NX huge pages 5319 * mitigation is enabled. 5320 */ 5321 if (!boot_cpu_has(X86_FEATURE_NX)) { 5322 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5323 return -EOPNOTSUPP; 5324 } 5325 kvm_enable_efer_bits(EFER_NX); 5326 5327 iopm_pages = alloc_pages(GFP_KERNEL, order); 5328 5329 if (!iopm_pages) 5330 return -ENOMEM; 5331 5332 iopm_va = page_address(iopm_pages); 5333 memset(iopm_va, 0xff, PAGE_SIZE * (1 << order)); 5334 iopm_base = __sme_page_pa(iopm_pages); 5335 5336 init_msrpm_offsets(); 5337 5338 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5339 XFEATURE_MASK_BNDCSR); 5340 5341 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5342 kvm_enable_efer_bits(EFER_FFXSR); 5343 5344 if (tsc_scaling) { 5345 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5346 tsc_scaling = false; 5347 } else { 5348 pr_info("TSC scaling supported\n"); 5349 kvm_caps.has_tsc_control = true; 5350 } 5351 } 5352 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5353 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5354 5355 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5356 5357 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5358 kvm_enable_efer_bits(EFER_AUTOIBRS); 5359 5360 /* Check for pause filtering support */ 5361 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5362 pause_filter_count = 0; 5363 pause_filter_thresh = 0; 5364 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5365 pause_filter_thresh = 0; 5366 } 5367 5368 if (nested) { 5369 pr_info("Nested Virtualization enabled\n"); 5370 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5371 } 5372 5373 /* 5374 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5375 * NPT isn't supported if the host is using 2-level paging since host 5376 * CR4 is unchanged on VMRUN. 5377 */ 5378 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5379 npt_enabled = false; 5380 5381 if (!boot_cpu_has(X86_FEATURE_NPT)) 5382 npt_enabled = false; 5383 5384 /* Force VM NPT level equal to the host's paging level */ 5385 kvm_configure_mmu(npt_enabled, get_npt_level(), 5386 get_npt_level(), PG_LEVEL_1G); 5387 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled)); 5388 5389 /* Setup shadow_me_value and shadow_me_mask */ 5390 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5391 5392 svm_adjust_mmio_mask(); 5393 5394 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5395 5396 if (lbrv) { 5397 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5398 lbrv = false; 5399 else 5400 pr_info("LBR virtualization supported\n"); 5401 } 5402 /* 5403 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5404 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5405 */ 5406 sev_hardware_setup(); 5407 5408 svm_hv_hardware_setup(); 5409 5410 for_each_possible_cpu(cpu) { 5411 r = svm_cpu_init(cpu); 5412 if (r) 5413 goto err; 5414 } 5415 5416 enable_apicv = avic = avic && avic_hardware_setup(); 5417 5418 if (!enable_apicv) { 5419 svm_x86_ops.vcpu_blocking = NULL; 5420 svm_x86_ops.vcpu_unblocking = NULL; 5421 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5422 } else if (!x2avic_enabled) { 5423 svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true; 5424 } 5425 5426 if (vls) { 5427 if (!npt_enabled || 5428 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5429 !IS_ENABLED(CONFIG_X86_64)) { 5430 vls = false; 5431 } else { 5432 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5433 } 5434 } 5435 5436 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5437 svm_gp_erratum_intercept = false; 5438 5439 if (vgif) { 5440 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5441 vgif = false; 5442 else 5443 pr_info("Virtual GIF supported\n"); 5444 } 5445 5446 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5447 if (vnmi) 5448 pr_info("Virtual NMI enabled\n"); 5449 5450 if (!vnmi) { 5451 svm_x86_ops.is_vnmi_pending = NULL; 5452 svm_x86_ops.set_vnmi_pending = NULL; 5453 } 5454 5455 if (!enable_pmu) 5456 pr_info("PMU virtualization is disabled\n"); 5457 5458 svm_set_cpu_caps(); 5459 5460 /* 5461 * It seems that on AMD processors PTE's accessed bit is 5462 * being set by the CPU hardware before the NPF vmexit. 5463 * This is not expected behaviour and our tests fail because 5464 * of it. 5465 * A workaround here is to disable support for 5466 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5467 * In this case userspace can know if there is support using 5468 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5469 * it 5470 * If future AMD CPU models change the behaviour described above, 5471 * this variable can be changed accordingly 5472 */ 5473 allow_smaller_maxphyaddr = !npt_enabled; 5474 5475 return 0; 5476 5477 err: 5478 svm_hardware_unsetup(); 5479 return r; 5480 } 5481 5482 5483 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5484 .hardware_setup = svm_hardware_setup, 5485 5486 .runtime_ops = &svm_x86_ops, 5487 .pmu_ops = &amd_pmu_ops, 5488 }; 5489 5490 static void __svm_exit(void) 5491 { 5492 kvm_x86_vendor_exit(); 5493 } 5494 5495 static int __init svm_init(void) 5496 { 5497 int r; 5498 5499 __unused_size_checks(); 5500 5501 if (!kvm_is_svm_supported()) 5502 return -EOPNOTSUPP; 5503 5504 r = kvm_x86_vendor_init(&svm_init_ops); 5505 if (r) 5506 return r; 5507 5508 /* 5509 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5510 * exposed to userspace! 5511 */ 5512 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5513 THIS_MODULE); 5514 if (r) 5515 goto err_kvm_init; 5516 5517 return 0; 5518 5519 err_kvm_init: 5520 __svm_exit(); 5521 return r; 5522 } 5523 5524 static void __exit svm_exit(void) 5525 { 5526 kvm_exit(); 5527 __svm_exit(); 5528 } 5529 5530 module_init(svm_init) 5531 module_exit(svm_exit) 5532