1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kvm_host.h> 4 5 #include "irq.h" 6 #include "mmu.h" 7 #include "kvm_cache_regs.h" 8 #include "x86.h" 9 #include "smm.h" 10 #include "cpuid.h" 11 #include "pmu.h" 12 13 #include <linux/module.h> 14 #include <linux/mod_devicetable.h> 15 #include <linux/kernel.h> 16 #include <linux/vmalloc.h> 17 #include <linux/highmem.h> 18 #include <linux/amd-iommu.h> 19 #include <linux/sched.h> 20 #include <linux/trace_events.h> 21 #include <linux/slab.h> 22 #include <linux/hashtable.h> 23 #include <linux/objtool.h> 24 #include <linux/psp-sev.h> 25 #include <linux/file.h> 26 #include <linux/pagemap.h> 27 #include <linux/swap.h> 28 #include <linux/rwsem.h> 29 #include <linux/cc_platform.h> 30 #include <linux/smp.h> 31 #include <linux/string_choices.h> 32 #include <linux/mutex.h> 33 34 #include <asm/apic.h> 35 #include <asm/msr.h> 36 #include <asm/perf_event.h> 37 #include <asm/tlbflush.h> 38 #include <asm/desc.h> 39 #include <asm/debugreg.h> 40 #include <asm/kvm_para.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/spec-ctrl.h> 43 #include <asm/cpu_device_id.h> 44 #include <asm/traps.h> 45 #include <asm/reboot.h> 46 #include <asm/fpu/api.h> 47 48 #include <trace/events/ipi.h> 49 50 #include "trace.h" 51 52 #include "svm.h" 53 #include "svm_ops.h" 54 55 #include "kvm_onhyperv.h" 56 #include "svm_onhyperv.h" 57 58 MODULE_AUTHOR("Qumranet"); 59 MODULE_DESCRIPTION("KVM support for SVM (AMD-V) extensions"); 60 MODULE_LICENSE("GPL"); 61 62 #ifdef MODULE 63 static const struct x86_cpu_id svm_cpu_id[] = { 64 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL), 65 {} 66 }; 67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); 68 #endif 69 70 #define SEG_TYPE_LDT 2 71 #define SEG_TYPE_BUSY_TSS16 3 72 73 static bool erratum_383_found __read_mostly; 74 75 /* 76 * Set osvw_len to higher value when updated Revision Guides 77 * are published and we know what the new status bits are 78 */ 79 static uint64_t osvw_len = 4, osvw_status; 80 81 static DEFINE_PER_CPU(u64, current_tsc_ratio); 82 83 /* 84 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 85 * pause_filter_count: On processors that support Pause filtering(indicated 86 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter 87 * count value. On VMRUN this value is loaded into an internal counter. 88 * Each time a pause instruction is executed, this counter is decremented 89 * until it reaches zero at which time a #VMEXIT is generated if pause 90 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause 91 * Intercept Filtering for more details. 92 * This also indicate if ple logic enabled. 93 * 94 * pause_filter_thresh: In addition, some processor families support advanced 95 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on 96 * the amount of time a guest is allowed to execute in a pause loop. 97 * In this mode, a 16-bit pause filter threshold field is added in the 98 * VMCB. The threshold value is a cycle count that is used to reset the 99 * pause counter. As with simple pause filtering, VMRUN loads the pause 100 * count value from VMCB into an internal counter. Then, on each pause 101 * instruction the hardware checks the elapsed number of cycles since 102 * the most recent pause instruction against the pause filter threshold. 103 * If the elapsed cycle count is greater than the pause filter threshold, 104 * then the internal pause count is reloaded from the VMCB and execution 105 * continues. If the elapsed cycle count is less than the pause filter 106 * threshold, then the internal pause count is decremented. If the count 107 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is 108 * triggered. If advanced pause filtering is supported and pause filter 109 * threshold field is set to zero, the filter will operate in the simpler, 110 * count only mode. 111 */ 112 113 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; 114 module_param(pause_filter_thresh, ushort, 0444); 115 116 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; 117 module_param(pause_filter_count, ushort, 0444); 118 119 /* Default doubles per-vcpu window every exit. */ 120 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 121 module_param(pause_filter_count_grow, ushort, 0444); 122 123 /* Default resets per-vcpu window every exit to pause_filter_count. */ 124 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 125 module_param(pause_filter_count_shrink, ushort, 0444); 126 127 /* Default is to compute the maximum so we can never overflow. */ 128 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; 129 module_param(pause_filter_count_max, ushort, 0444); 130 131 /* 132 * Use nested page tables by default. Note, NPT may get forced off by 133 * svm_hardware_setup() if it's unsupported by hardware or the host kernel. 134 */ 135 bool npt_enabled = true; 136 module_param_named(npt, npt_enabled, bool, 0444); 137 138 /* allow nested virtualization in KVM/SVM */ 139 static int nested = true; 140 module_param(nested, int, 0444); 141 142 /* enable/disable Next RIP Save */ 143 int nrips = true; 144 module_param(nrips, int, 0444); 145 146 /* enable/disable Virtual VMLOAD VMSAVE */ 147 static int vls = true; 148 module_param(vls, int, 0444); 149 150 /* enable/disable Virtual GIF */ 151 int vgif = true; 152 module_param(vgif, int, 0444); 153 154 /* enable/disable LBR virtualization */ 155 int lbrv = true; 156 module_param(lbrv, int, 0444); 157 158 static int tsc_scaling = true; 159 module_param(tsc_scaling, int, 0444); 160 161 module_param(enable_device_posted_irqs, bool, 0444); 162 163 bool __read_mostly dump_invalid_vmcb; 164 module_param(dump_invalid_vmcb, bool, 0644); 165 166 167 bool intercept_smi = true; 168 module_param(intercept_smi, bool, 0444); 169 170 bool vnmi = true; 171 module_param(vnmi, bool, 0444); 172 173 static bool svm_gp_erratum_intercept = true; 174 175 static u8 rsm_ins_bytes[] = "\x0f\xaa"; 176 177 static unsigned long iopm_base; 178 179 DEFINE_PER_CPU(struct svm_cpu_data, svm_data); 180 181 static DEFINE_MUTEX(vmcb_dump_mutex); 182 183 /* 184 * Only MSR_TSC_AUX is switched via the user return hook. EFER is switched via 185 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE. 186 * 187 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to 188 * defer the restoration of TSC_AUX until the CPU returns to userspace. 189 */ 190 int tsc_aux_uret_slot __ro_after_init = -1; 191 192 static int get_npt_level(void) 193 { 194 #ifdef CONFIG_X86_64 195 return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 196 #else 197 return PT32E_ROOT_LEVEL; 198 #endif 199 } 200 201 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) 202 { 203 struct vcpu_svm *svm = to_svm(vcpu); 204 u64 old_efer = vcpu->arch.efer; 205 vcpu->arch.efer = efer; 206 207 if (!npt_enabled) { 208 /* Shadow paging assumes NX to be available. */ 209 efer |= EFER_NX; 210 211 if (!(efer & EFER_LMA)) 212 efer &= ~EFER_LME; 213 } 214 215 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) { 216 if (!(efer & EFER_SVME)) { 217 svm_leave_nested(vcpu); 218 svm_set_gif(svm, true); 219 /* #GP intercept is still needed for vmware backdoor */ 220 if (!enable_vmware_backdoor) 221 clr_exception_intercept(svm, GP_VECTOR); 222 223 /* 224 * Free the nested guest state, unless we are in SMM. 225 * In this case we will return to the nested guest 226 * as soon as we leave SMM. 227 */ 228 if (!is_smm(vcpu)) 229 svm_free_nested(svm); 230 231 } else { 232 int ret = svm_allocate_nested(svm); 233 234 if (ret) { 235 vcpu->arch.efer = old_efer; 236 return ret; 237 } 238 239 /* 240 * Never intercept #GP for SEV guests, KVM can't 241 * decrypt guest memory to workaround the erratum. 242 */ 243 if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm)) 244 set_exception_intercept(svm, GP_VECTOR); 245 } 246 } 247 248 svm->vmcb->save.efer = efer | EFER_SVME; 249 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 250 return 0; 251 } 252 253 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) 254 { 255 struct vcpu_svm *svm = to_svm(vcpu); 256 u32 ret = 0; 257 258 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) 259 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; 260 return ret; 261 } 262 263 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 264 { 265 struct vcpu_svm *svm = to_svm(vcpu); 266 267 if (mask == 0) 268 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; 269 else 270 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; 271 272 } 273 274 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, 275 bool commit_side_effects) 276 { 277 struct vcpu_svm *svm = to_svm(vcpu); 278 unsigned long old_rflags; 279 280 /* 281 * SEV-ES does not expose the next RIP. The RIP update is controlled by 282 * the type of exit and the #VC handler in the guest. 283 */ 284 if (sev_es_guest(vcpu->kvm)) 285 goto done; 286 287 if (nrips && svm->vmcb->control.next_rip != 0) { 288 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); 289 svm->next_rip = svm->vmcb->control.next_rip; 290 } 291 292 if (!svm->next_rip) { 293 if (unlikely(!commit_side_effects)) 294 old_rflags = svm->vmcb->save.rflags; 295 296 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 297 return 0; 298 299 if (unlikely(!commit_side_effects)) 300 svm->vmcb->save.rflags = old_rflags; 301 } else { 302 kvm_rip_write(vcpu, svm->next_rip); 303 } 304 305 done: 306 if (likely(commit_side_effects)) 307 svm_set_interrupt_shadow(vcpu, 0); 308 309 return 1; 310 } 311 312 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 313 { 314 return __svm_skip_emulated_instruction(vcpu, true); 315 } 316 317 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu) 318 { 319 unsigned long rip, old_rip = kvm_rip_read(vcpu); 320 struct vcpu_svm *svm = to_svm(vcpu); 321 322 /* 323 * Due to architectural shortcomings, the CPU doesn't always provide 324 * NextRIP, e.g. if KVM intercepted an exception that occurred while 325 * the CPU was vectoring an INTO/INT3 in the guest. Temporarily skip 326 * the instruction even if NextRIP is supported to acquire the next 327 * RIP so that it can be shoved into the NextRIP field, otherwise 328 * hardware will fail to advance guest RIP during event injection. 329 * Drop the exception/interrupt if emulation fails and effectively 330 * retry the instruction, it's the least awful option. If NRIPS is 331 * in use, the skip must not commit any side effects such as clearing 332 * the interrupt shadow or RFLAGS.RF. 333 */ 334 if (!__svm_skip_emulated_instruction(vcpu, !nrips)) 335 return -EIO; 336 337 rip = kvm_rip_read(vcpu); 338 339 /* 340 * Save the injection information, even when using next_rip, as the 341 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection 342 * doesn't complete due to a VM-Exit occurring while the CPU is 343 * vectoring the event. Decoding the instruction isn't guaranteed to 344 * work as there may be no backing instruction, e.g. if the event is 345 * being injected by L1 for L2, or if the guest is patching INT3 into 346 * a different instruction. 347 */ 348 svm->soft_int_injected = true; 349 svm->soft_int_csbase = svm->vmcb->save.cs.base; 350 svm->soft_int_old_rip = old_rip; 351 svm->soft_int_next_rip = rip; 352 353 if (nrips) 354 kvm_rip_write(vcpu, old_rip); 355 356 if (static_cpu_has(X86_FEATURE_NRIPS)) 357 svm->vmcb->control.next_rip = rip; 358 359 return 0; 360 } 361 362 static void svm_inject_exception(struct kvm_vcpu *vcpu) 363 { 364 struct kvm_queued_exception *ex = &vcpu->arch.exception; 365 struct vcpu_svm *svm = to_svm(vcpu); 366 367 kvm_deliver_exception_payload(vcpu, ex); 368 369 if (kvm_exception_is_soft(ex->vector) && 370 svm_update_soft_interrupt_rip(vcpu)) 371 return; 372 373 svm->vmcb->control.event_inj = ex->vector 374 | SVM_EVTINJ_VALID 375 | (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0) 376 | SVM_EVTINJ_TYPE_EXEPT; 377 svm->vmcb->control.event_inj_err = ex->error_code; 378 } 379 380 static void svm_init_erratum_383(void) 381 { 382 u64 val; 383 384 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) 385 return; 386 387 /* Use _safe variants to not break nested virtualization */ 388 if (native_read_msr_safe(MSR_AMD64_DC_CFG, &val)) 389 return; 390 391 val |= (1ULL << 47); 392 393 native_write_msr_safe(MSR_AMD64_DC_CFG, val); 394 395 erratum_383_found = true; 396 } 397 398 static void svm_init_osvw(struct kvm_vcpu *vcpu) 399 { 400 /* 401 * Guests should see errata 400 and 415 as fixed (assuming that 402 * HLT and IO instructions are intercepted). 403 */ 404 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; 405 vcpu->arch.osvw.status = osvw_status & ~(6ULL); 406 407 /* 408 * By increasing VCPU's osvw.length to 3 we are telling the guest that 409 * all osvw.status bits inside that length, including bit 0 (which is 410 * reserved for erratum 298), are valid. However, if host processor's 411 * osvw_len is 0 then osvw_status[0] carries no information. We need to 412 * be conservative here and therefore we tell the guest that erratum 298 413 * is present (because we really don't know). 414 */ 415 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) 416 vcpu->arch.osvw.status |= 1; 417 } 418 419 static bool __kvm_is_svm_supported(void) 420 { 421 int cpu = smp_processor_id(); 422 struct cpuinfo_x86 *c = &cpu_data(cpu); 423 424 if (c->x86_vendor != X86_VENDOR_AMD && 425 c->x86_vendor != X86_VENDOR_HYGON) { 426 pr_err("CPU %d isn't AMD or Hygon\n", cpu); 427 return false; 428 } 429 430 if (!cpu_has(c, X86_FEATURE_SVM)) { 431 pr_err("SVM not supported by CPU %d\n", cpu); 432 return false; 433 } 434 435 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) { 436 pr_info("KVM is unsupported when running as an SEV guest\n"); 437 return false; 438 } 439 440 return true; 441 } 442 443 static bool kvm_is_svm_supported(void) 444 { 445 bool supported; 446 447 migrate_disable(); 448 supported = __kvm_is_svm_supported(); 449 migrate_enable(); 450 451 return supported; 452 } 453 454 static int svm_check_processor_compat(void) 455 { 456 if (!__kvm_is_svm_supported()) 457 return -EIO; 458 459 return 0; 460 } 461 462 static void __svm_write_tsc_multiplier(u64 multiplier) 463 { 464 if (multiplier == __this_cpu_read(current_tsc_ratio)) 465 return; 466 467 wrmsrq(MSR_AMD64_TSC_RATIO, multiplier); 468 __this_cpu_write(current_tsc_ratio, multiplier); 469 } 470 471 static __always_inline struct sev_es_save_area *sev_es_host_save_area(struct svm_cpu_data *sd) 472 { 473 return &sd->save_area->host_sev_es_save; 474 } 475 476 static inline void kvm_cpu_svm_disable(void) 477 { 478 uint64_t efer; 479 480 wrmsrq(MSR_VM_HSAVE_PA, 0); 481 rdmsrq(MSR_EFER, efer); 482 if (efer & EFER_SVME) { 483 /* 484 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and 485 * NMI aren't blocked. 486 */ 487 stgi(); 488 wrmsrq(MSR_EFER, efer & ~EFER_SVME); 489 } 490 } 491 492 static void svm_emergency_disable_virtualization_cpu(void) 493 { 494 kvm_rebooting = true; 495 496 kvm_cpu_svm_disable(); 497 } 498 499 static void svm_disable_virtualization_cpu(void) 500 { 501 /* Make sure we clean up behind us */ 502 if (tsc_scaling) 503 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 504 505 kvm_cpu_svm_disable(); 506 507 amd_pmu_disable_virt(); 508 } 509 510 static int svm_enable_virtualization_cpu(void) 511 { 512 513 struct svm_cpu_data *sd; 514 uint64_t efer; 515 int me = raw_smp_processor_id(); 516 517 rdmsrq(MSR_EFER, efer); 518 if (efer & EFER_SVME) 519 return -EBUSY; 520 521 sd = per_cpu_ptr(&svm_data, me); 522 sd->asid_generation = 1; 523 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; 524 sd->next_asid = sd->max_asid + 1; 525 sd->min_asid = max_sev_asid + 1; 526 527 wrmsrq(MSR_EFER, efer | EFER_SVME); 528 529 wrmsrq(MSR_VM_HSAVE_PA, sd->save_area_pa); 530 531 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { 532 /* 533 * Set the default value, even if we don't use TSC scaling 534 * to avoid having stale value in the msr 535 */ 536 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT); 537 } 538 539 540 /* 541 * Get OSVW bits. 542 * 543 * Note that it is possible to have a system with mixed processor 544 * revisions and therefore different OSVW bits. If bits are not the same 545 * on different processors then choose the worst case (i.e. if erratum 546 * is present on one processor and not on another then assume that the 547 * erratum is present everywhere). 548 */ 549 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { 550 u64 len, status = 0; 551 int err; 552 553 err = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &len); 554 if (!err) 555 err = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, &status); 556 557 if (err) 558 osvw_status = osvw_len = 0; 559 else { 560 if (len < osvw_len) 561 osvw_len = len; 562 osvw_status |= status; 563 osvw_status &= (1ULL << osvw_len) - 1; 564 } 565 } else 566 osvw_status = osvw_len = 0; 567 568 svm_init_erratum_383(); 569 570 amd_pmu_enable_virt(); 571 572 return 0; 573 } 574 575 static void svm_cpu_uninit(int cpu) 576 { 577 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 578 579 if (!sd->save_area) 580 return; 581 582 kfree(sd->sev_vmcbs); 583 __free_page(__sme_pa_to_page(sd->save_area_pa)); 584 sd->save_area_pa = 0; 585 sd->save_area = NULL; 586 } 587 588 static int svm_cpu_init(int cpu) 589 { 590 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 591 struct page *save_area_page; 592 int ret = -ENOMEM; 593 594 memset(sd, 0, sizeof(struct svm_cpu_data)); 595 save_area_page = snp_safe_alloc_page_node(cpu_to_node(cpu), GFP_KERNEL); 596 if (!save_area_page) 597 return ret; 598 599 ret = sev_cpu_init(sd); 600 if (ret) 601 goto free_save_area; 602 603 sd->save_area = page_address(save_area_page); 604 sd->save_area_pa = __sme_page_pa(save_area_page); 605 return 0; 606 607 free_save_area: 608 __free_page(save_area_page); 609 return ret; 610 611 } 612 613 static void set_dr_intercepts(struct vcpu_svm *svm) 614 { 615 struct vmcb *vmcb = svm->vmcb01.ptr; 616 617 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ); 618 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ); 619 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ); 620 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ); 621 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ); 622 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ); 623 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ); 624 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE); 625 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE); 626 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE); 627 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE); 628 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE); 629 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE); 630 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE); 631 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 632 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 633 634 recalc_intercepts(svm); 635 } 636 637 static void clr_dr_intercepts(struct vcpu_svm *svm) 638 { 639 struct vmcb *vmcb = svm->vmcb01.ptr; 640 641 vmcb->control.intercepts[INTERCEPT_DR] = 0; 642 643 recalc_intercepts(svm); 644 } 645 646 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 647 { 648 /* 649 * For non-nested case: 650 * If the L01 MSR bitmap does not intercept the MSR, then we need to 651 * save it. 652 * 653 * For nested case: 654 * If the L02 MSR bitmap does not intercept the MSR, then we need to 655 * save it. 656 */ 657 void *msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm : 658 to_svm(vcpu)->msrpm; 659 660 return svm_test_msr_bitmap_write(msrpm, msr); 661 } 662 663 void svm_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set) 664 { 665 struct vcpu_svm *svm = to_svm(vcpu); 666 void *msrpm = svm->msrpm; 667 668 /* Don't disable interception for MSRs userspace wants to handle. */ 669 if (type & MSR_TYPE_R) { 670 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) 671 svm_clear_msr_bitmap_read(msrpm, msr); 672 else 673 svm_set_msr_bitmap_read(msrpm, msr); 674 } 675 676 if (type & MSR_TYPE_W) { 677 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) 678 svm_clear_msr_bitmap_write(msrpm, msr); 679 else 680 svm_set_msr_bitmap_write(msrpm, msr); 681 } 682 683 svm_hv_vmcb_dirty_nested_enlightenments(vcpu); 684 svm->nested.force_msr_bitmap_recalc = true; 685 } 686 687 void *svm_alloc_permissions_map(unsigned long size, gfp_t gfp_mask) 688 { 689 unsigned int order = get_order(size); 690 struct page *pages = alloc_pages(gfp_mask, order); 691 void *pm; 692 693 if (!pages) 694 return NULL; 695 696 /* 697 * Set all bits in the permissions map so that all MSR and I/O accesses 698 * are intercepted by default. 699 */ 700 pm = page_address(pages); 701 memset(pm, 0xff, PAGE_SIZE * (1 << order)); 702 703 return pm; 704 } 705 706 static void svm_recalc_lbr_msr_intercepts(struct kvm_vcpu *vcpu) 707 { 708 bool intercept = !(to_svm(vcpu)->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK); 709 710 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHFROMIP, MSR_TYPE_RW, intercept); 711 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTBRANCHTOIP, MSR_TYPE_RW, intercept); 712 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTFROMIP, MSR_TYPE_RW, intercept); 713 svm_set_intercept_for_msr(vcpu, MSR_IA32_LASTINTTOIP, MSR_TYPE_RW, intercept); 714 715 if (sev_es_guest(vcpu->kvm)) 716 svm_set_intercept_for_msr(vcpu, MSR_IA32_DEBUGCTLMSR, MSR_TYPE_RW, intercept); 717 } 718 719 void svm_vcpu_free_msrpm(void *msrpm) 720 { 721 __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE)); 722 } 723 724 static void svm_recalc_msr_intercepts(struct kvm_vcpu *vcpu) 725 { 726 struct vcpu_svm *svm = to_svm(vcpu); 727 728 svm_disable_intercept_for_msr(vcpu, MSR_STAR, MSR_TYPE_RW); 729 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 730 731 #ifdef CONFIG_X86_64 732 svm_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 733 svm_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 734 svm_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 735 svm_disable_intercept_for_msr(vcpu, MSR_LSTAR, MSR_TYPE_RW); 736 svm_disable_intercept_for_msr(vcpu, MSR_CSTAR, MSR_TYPE_RW); 737 svm_disable_intercept_for_msr(vcpu, MSR_SYSCALL_MASK, MSR_TYPE_RW); 738 #endif 739 740 if (lbrv) 741 svm_recalc_lbr_msr_intercepts(vcpu); 742 743 if (cpu_feature_enabled(X86_FEATURE_IBPB)) 744 svm_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 745 !guest_has_pred_cmd_msr(vcpu)); 746 747 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D)) 748 svm_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 749 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)); 750 751 /* 752 * Disable interception of SPEC_CTRL if KVM doesn't need to manually 753 * context switch the MSR (SPEC_CTRL is virtualized by the CPU), or if 754 * the guest has a non-zero SPEC_CTRL value, i.e. is likely actively 755 * using SPEC_CTRL. 756 */ 757 if (cpu_feature_enabled(X86_FEATURE_V_SPEC_CTRL)) 758 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, 759 !guest_has_spec_ctrl_msr(vcpu)); 760 else 761 svm_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW, 762 !svm->spec_ctrl); 763 764 /* 765 * Intercept SYSENTER_EIP and SYSENTER_ESP when emulating an Intel CPU, 766 * as AMD hardware only store 32 bits, whereas Intel CPUs track 64 bits. 767 */ 768 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW, 769 guest_cpuid_is_intel_compatible(vcpu)); 770 svm_set_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW, 771 guest_cpuid_is_intel_compatible(vcpu)); 772 773 if (kvm_aperfmperf_in_guest(vcpu->kvm)) { 774 svm_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R); 775 svm_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R); 776 } 777 778 if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) { 779 bool shstk_enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK); 780 781 svm_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, !shstk_enabled); 782 svm_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, !shstk_enabled); 783 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, !shstk_enabled); 784 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, !shstk_enabled); 785 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, !shstk_enabled); 786 svm_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, !shstk_enabled); 787 } 788 789 if (sev_es_guest(vcpu->kvm)) 790 sev_es_recalc_msr_intercepts(vcpu); 791 792 /* 793 * x2APIC intercepts are modified on-demand and cannot be filtered by 794 * userspace. 795 */ 796 } 797 798 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb) 799 { 800 to_vmcb->save.dbgctl = from_vmcb->save.dbgctl; 801 to_vmcb->save.br_from = from_vmcb->save.br_from; 802 to_vmcb->save.br_to = from_vmcb->save.br_to; 803 to_vmcb->save.last_excp_from = from_vmcb->save.last_excp_from; 804 to_vmcb->save.last_excp_to = from_vmcb->save.last_excp_to; 805 806 vmcb_mark_dirty(to_vmcb, VMCB_LBR); 807 } 808 809 static void __svm_enable_lbrv(struct kvm_vcpu *vcpu) 810 { 811 to_svm(vcpu)->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 812 } 813 814 void svm_enable_lbrv(struct kvm_vcpu *vcpu) 815 { 816 __svm_enable_lbrv(vcpu); 817 svm_recalc_lbr_msr_intercepts(vcpu); 818 } 819 820 static void __svm_disable_lbrv(struct kvm_vcpu *vcpu) 821 { 822 KVM_BUG_ON(sev_es_guest(vcpu->kvm), vcpu->kvm); 823 to_svm(vcpu)->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; 824 } 825 826 void svm_update_lbrv(struct kvm_vcpu *vcpu) 827 { 828 struct vcpu_svm *svm = to_svm(vcpu); 829 bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK; 830 bool enable_lbrv = (svm->vmcb->save.dbgctl & DEBUGCTLMSR_LBR) || 831 (is_guest_mode(vcpu) && guest_cpu_cap_has(vcpu, X86_FEATURE_LBRV) && 832 (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK)); 833 834 if (enable_lbrv && !current_enable_lbrv) 835 __svm_enable_lbrv(vcpu); 836 else if (!enable_lbrv && current_enable_lbrv) 837 __svm_disable_lbrv(vcpu); 838 839 /* 840 * During nested transitions, it is possible that the current VMCB has 841 * LBR_CTL set, but the previous LBR_CTL had it cleared (or vice versa). 842 * In this case, even though LBR_CTL does not need an update, intercepts 843 * do, so always recalculate the intercepts here. 844 */ 845 svm_recalc_lbr_msr_intercepts(vcpu); 846 } 847 848 void disable_nmi_singlestep(struct vcpu_svm *svm) 849 { 850 svm->nmi_singlestep = false; 851 852 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { 853 /* Clear our flags if they were not set by the guest */ 854 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 855 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; 856 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 857 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; 858 } 859 } 860 861 static void grow_ple_window(struct kvm_vcpu *vcpu) 862 { 863 struct vcpu_svm *svm = to_svm(vcpu); 864 struct vmcb_control_area *control = &svm->vmcb->control; 865 int old = control->pause_filter_count; 866 867 if (kvm_pause_in_guest(vcpu->kvm)) 868 return; 869 870 control->pause_filter_count = __grow_ple_window(old, 871 pause_filter_count, 872 pause_filter_count_grow, 873 pause_filter_count_max); 874 875 if (control->pause_filter_count != old) { 876 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 877 trace_kvm_ple_window_update(vcpu->vcpu_id, 878 control->pause_filter_count, old); 879 } 880 } 881 882 static void shrink_ple_window(struct kvm_vcpu *vcpu) 883 { 884 struct vcpu_svm *svm = to_svm(vcpu); 885 struct vmcb_control_area *control = &svm->vmcb->control; 886 int old = control->pause_filter_count; 887 888 if (kvm_pause_in_guest(vcpu->kvm)) 889 return; 890 891 control->pause_filter_count = 892 __shrink_ple_window(old, 893 pause_filter_count, 894 pause_filter_count_shrink, 895 pause_filter_count); 896 if (control->pause_filter_count != old) { 897 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 898 trace_kvm_ple_window_update(vcpu->vcpu_id, 899 control->pause_filter_count, old); 900 } 901 } 902 903 static void svm_hardware_unsetup(void) 904 { 905 int cpu; 906 907 avic_hardware_unsetup(); 908 909 sev_hardware_unsetup(); 910 911 for_each_possible_cpu(cpu) 912 svm_cpu_uninit(cpu); 913 914 __free_pages(__sme_pa_to_page(iopm_base), get_order(IOPM_SIZE)); 915 iopm_base = 0; 916 } 917 918 static void init_seg(struct vmcb_seg *seg) 919 { 920 seg->selector = 0; 921 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | 922 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ 923 seg->limit = 0xffff; 924 seg->base = 0; 925 } 926 927 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) 928 { 929 seg->selector = 0; 930 seg->attrib = SVM_SELECTOR_P_MASK | type; 931 seg->limit = 0xffff; 932 seg->base = 0; 933 } 934 935 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 936 { 937 struct vcpu_svm *svm = to_svm(vcpu); 938 939 return svm->nested.ctl.tsc_offset; 940 } 941 942 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 943 { 944 struct vcpu_svm *svm = to_svm(vcpu); 945 946 return svm->tsc_ratio_msr; 947 } 948 949 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu) 950 { 951 struct vcpu_svm *svm = to_svm(vcpu); 952 953 svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset; 954 svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset; 955 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS); 956 } 957 958 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu) 959 { 960 preempt_disable(); 961 if (to_svm(vcpu)->guest_state_loaded) 962 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 963 preempt_enable(); 964 } 965 966 /* Evaluate instruction intercepts that depend on guest CPUID features. */ 967 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu) 968 { 969 struct vcpu_svm *svm = to_svm(vcpu); 970 971 /* 972 * Intercept INVPCID if shadow paging is enabled to sync/free shadow 973 * roots, or if INVPCID is disabled in the guest to inject #UD. 974 */ 975 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) { 976 if (!npt_enabled || 977 !guest_cpu_cap_has(&svm->vcpu, X86_FEATURE_INVPCID)) 978 svm_set_intercept(svm, INTERCEPT_INVPCID); 979 else 980 svm_clr_intercept(svm, INTERCEPT_INVPCID); 981 } 982 983 if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) { 984 if (guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP)) 985 svm_clr_intercept(svm, INTERCEPT_RDTSCP); 986 else 987 svm_set_intercept(svm, INTERCEPT_RDTSCP); 988 } 989 990 if (guest_cpuid_is_intel_compatible(vcpu)) { 991 svm_set_intercept(svm, INTERCEPT_VMLOAD); 992 svm_set_intercept(svm, INTERCEPT_VMSAVE); 993 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 994 } else { 995 /* 996 * If hardware supports Virtual VMLOAD VMSAVE then enable it 997 * in VMCB and clear intercepts to avoid #VMEXIT. 998 */ 999 if (vls) { 1000 svm_clr_intercept(svm, INTERCEPT_VMLOAD); 1001 svm_clr_intercept(svm, INTERCEPT_VMSAVE); 1002 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; 1003 } 1004 } 1005 } 1006 1007 static void svm_recalc_intercepts(struct kvm_vcpu *vcpu) 1008 { 1009 svm_recalc_instruction_intercepts(vcpu); 1010 svm_recalc_msr_intercepts(vcpu); 1011 } 1012 1013 static void init_vmcb(struct kvm_vcpu *vcpu, bool init_event) 1014 { 1015 struct vcpu_svm *svm = to_svm(vcpu); 1016 struct vmcb *vmcb = svm->vmcb01.ptr; 1017 struct vmcb_control_area *control = &vmcb->control; 1018 struct vmcb_save_area *save = &vmcb->save; 1019 1020 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1021 svm_set_intercept(svm, INTERCEPT_CR3_READ); 1022 svm_set_intercept(svm, INTERCEPT_CR4_READ); 1023 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1024 svm_set_intercept(svm, INTERCEPT_CR3_WRITE); 1025 svm_set_intercept(svm, INTERCEPT_CR4_WRITE); 1026 if (!kvm_vcpu_apicv_active(vcpu)) 1027 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 1028 1029 set_dr_intercepts(svm); 1030 1031 set_exception_intercept(svm, PF_VECTOR); 1032 set_exception_intercept(svm, UD_VECTOR); 1033 set_exception_intercept(svm, MC_VECTOR); 1034 set_exception_intercept(svm, AC_VECTOR); 1035 set_exception_intercept(svm, DB_VECTOR); 1036 /* 1037 * Guest access to VMware backdoor ports could legitimately 1038 * trigger #GP because of TSS I/O permission bitmap. 1039 * We intercept those #GP and allow access to them anyway 1040 * as VMware does. 1041 */ 1042 if (enable_vmware_backdoor) 1043 set_exception_intercept(svm, GP_VECTOR); 1044 1045 svm_set_intercept(svm, INTERCEPT_INTR); 1046 svm_set_intercept(svm, INTERCEPT_NMI); 1047 1048 if (intercept_smi) 1049 svm_set_intercept(svm, INTERCEPT_SMI); 1050 1051 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0); 1052 svm_set_intercept(svm, INTERCEPT_RDPMC); 1053 svm_set_intercept(svm, INTERCEPT_CPUID); 1054 svm_set_intercept(svm, INTERCEPT_INVD); 1055 svm_set_intercept(svm, INTERCEPT_INVLPG); 1056 svm_set_intercept(svm, INTERCEPT_INVLPGA); 1057 svm_set_intercept(svm, INTERCEPT_IOIO_PROT); 1058 svm_set_intercept(svm, INTERCEPT_MSR_PROT); 1059 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH); 1060 svm_set_intercept(svm, INTERCEPT_SHUTDOWN); 1061 svm_set_intercept(svm, INTERCEPT_VMRUN); 1062 svm_set_intercept(svm, INTERCEPT_VMMCALL); 1063 svm_set_intercept(svm, INTERCEPT_VMLOAD); 1064 svm_set_intercept(svm, INTERCEPT_VMSAVE); 1065 svm_set_intercept(svm, INTERCEPT_STGI); 1066 svm_set_intercept(svm, INTERCEPT_CLGI); 1067 svm_set_intercept(svm, INTERCEPT_SKINIT); 1068 svm_set_intercept(svm, INTERCEPT_WBINVD); 1069 svm_set_intercept(svm, INTERCEPT_XSETBV); 1070 svm_set_intercept(svm, INTERCEPT_RDPRU); 1071 svm_set_intercept(svm, INTERCEPT_RSM); 1072 1073 if (!kvm_mwait_in_guest(vcpu->kvm)) { 1074 svm_set_intercept(svm, INTERCEPT_MONITOR); 1075 svm_set_intercept(svm, INTERCEPT_MWAIT); 1076 } 1077 1078 if (!kvm_hlt_in_guest(vcpu->kvm)) { 1079 if (cpu_feature_enabled(X86_FEATURE_IDLE_HLT)) 1080 svm_set_intercept(svm, INTERCEPT_IDLE_HLT); 1081 else 1082 svm_set_intercept(svm, INTERCEPT_HLT); 1083 } 1084 1085 control->iopm_base_pa = iopm_base; 1086 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); 1087 control->int_ctl = V_INTR_MASKING_MASK; 1088 1089 init_seg(&save->es); 1090 init_seg(&save->ss); 1091 init_seg(&save->ds); 1092 init_seg(&save->fs); 1093 init_seg(&save->gs); 1094 1095 save->cs.selector = 0xf000; 1096 save->cs.base = 0xffff0000; 1097 /* Executable/Readable Code Segment */ 1098 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | 1099 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; 1100 save->cs.limit = 0xffff; 1101 1102 save->gdtr.base = 0; 1103 save->gdtr.limit = 0xffff; 1104 save->idtr.base = 0; 1105 save->idtr.limit = 0xffff; 1106 1107 init_sys_seg(&save->ldtr, SEG_TYPE_LDT); 1108 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); 1109 1110 if (npt_enabled) { 1111 /* Setup VMCB for Nested Paging */ 1112 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; 1113 svm_clr_intercept(svm, INTERCEPT_INVLPG); 1114 clr_exception_intercept(svm, PF_VECTOR); 1115 svm_clr_intercept(svm, INTERCEPT_CR3_READ); 1116 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE); 1117 save->g_pat = vcpu->arch.pat; 1118 save->cr3 = 0; 1119 } 1120 svm->current_vmcb->asid_generation = 0; 1121 svm->asid = 0; 1122 1123 svm->nested.vmcb12_gpa = INVALID_GPA; 1124 svm->nested.last_vmcb12_gpa = INVALID_GPA; 1125 1126 if (!kvm_pause_in_guest(vcpu->kvm)) { 1127 control->pause_filter_count = pause_filter_count; 1128 if (pause_filter_thresh) 1129 control->pause_filter_thresh = pause_filter_thresh; 1130 svm_set_intercept(svm, INTERCEPT_PAUSE); 1131 } else { 1132 svm_clr_intercept(svm, INTERCEPT_PAUSE); 1133 } 1134 1135 if (kvm_vcpu_apicv_active(vcpu)) 1136 avic_init_vmcb(svm, vmcb); 1137 1138 if (vnmi) 1139 svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK; 1140 1141 if (vgif) { 1142 svm_clr_intercept(svm, INTERCEPT_STGI); 1143 svm_clr_intercept(svm, INTERCEPT_CLGI); 1144 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; 1145 } 1146 1147 if (vcpu->kvm->arch.bus_lock_detection_enabled) 1148 svm_set_intercept(svm, INTERCEPT_BUSLOCK); 1149 1150 if (sev_guest(vcpu->kvm)) 1151 sev_init_vmcb(svm, init_event); 1152 1153 svm_hv_init_vmcb(vmcb); 1154 1155 kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu); 1156 1157 vmcb_mark_all_dirty(vmcb); 1158 1159 enable_gif(svm); 1160 } 1161 1162 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu) 1163 { 1164 struct vcpu_svm *svm = to_svm(vcpu); 1165 1166 svm_init_osvw(vcpu); 1167 1168 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) 1169 vcpu->arch.microcode_version = 0x01000065; 1170 svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio; 1171 1172 svm->nmi_masked = false; 1173 svm->awaiting_iret_completion = false; 1174 } 1175 1176 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 1177 { 1178 struct vcpu_svm *svm = to_svm(vcpu); 1179 1180 svm->spec_ctrl = 0; 1181 svm->virt_spec_ctrl = 0; 1182 1183 init_vmcb(vcpu, init_event); 1184 1185 if (!init_event) 1186 __svm_vcpu_reset(vcpu); 1187 } 1188 1189 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb) 1190 { 1191 svm->current_vmcb = target_vmcb; 1192 svm->vmcb = target_vmcb->ptr; 1193 } 1194 1195 static int svm_vcpu_create(struct kvm_vcpu *vcpu) 1196 { 1197 struct vcpu_svm *svm; 1198 struct page *vmcb01_page; 1199 int err; 1200 1201 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0); 1202 svm = to_svm(vcpu); 1203 1204 err = -ENOMEM; 1205 vmcb01_page = snp_safe_alloc_page(); 1206 if (!vmcb01_page) 1207 goto out; 1208 1209 err = sev_vcpu_create(vcpu); 1210 if (err) 1211 goto error_free_vmcb_page; 1212 1213 err = avic_init_vcpu(svm); 1214 if (err) 1215 goto error_free_sev; 1216 1217 svm->msrpm = svm_vcpu_alloc_msrpm(); 1218 if (!svm->msrpm) { 1219 err = -ENOMEM; 1220 goto error_free_sev; 1221 } 1222 1223 svm->x2avic_msrs_intercepted = true; 1224 1225 svm->vmcb01.ptr = page_address(vmcb01_page); 1226 svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT); 1227 svm_switch_vmcb(svm, &svm->vmcb01); 1228 1229 svm->guest_state_loaded = false; 1230 1231 return 0; 1232 1233 error_free_sev: 1234 sev_free_vcpu(vcpu); 1235 error_free_vmcb_page: 1236 __free_page(vmcb01_page); 1237 out: 1238 return err; 1239 } 1240 1241 static void svm_vcpu_free(struct kvm_vcpu *vcpu) 1242 { 1243 struct vcpu_svm *svm = to_svm(vcpu); 1244 1245 WARN_ON_ONCE(!list_empty(&svm->ir_list)); 1246 1247 svm_leave_nested(vcpu); 1248 svm_free_nested(svm); 1249 1250 sev_free_vcpu(vcpu); 1251 1252 __free_page(__sme_pa_to_page(svm->vmcb01.pa)); 1253 svm_vcpu_free_msrpm(svm->msrpm); 1254 } 1255 1256 #ifdef CONFIG_CPU_MITIGATIONS 1257 static DEFINE_SPINLOCK(srso_lock); 1258 static atomic_t srso_nr_vms; 1259 1260 static void svm_srso_clear_bp_spec_reduce(void *ign) 1261 { 1262 struct svm_cpu_data *sd = this_cpu_ptr(&svm_data); 1263 1264 if (!sd->bp_spec_reduce_set) 1265 return; 1266 1267 msr_clear_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1268 sd->bp_spec_reduce_set = false; 1269 } 1270 1271 static void svm_srso_vm_destroy(void) 1272 { 1273 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1274 return; 1275 1276 if (atomic_dec_return(&srso_nr_vms)) 1277 return; 1278 1279 guard(spinlock)(&srso_lock); 1280 1281 /* 1282 * Verify a new VM didn't come along, acquire the lock, and increment 1283 * the count before this task acquired the lock. 1284 */ 1285 if (atomic_read(&srso_nr_vms)) 1286 return; 1287 1288 on_each_cpu(svm_srso_clear_bp_spec_reduce, NULL, 1); 1289 } 1290 1291 static void svm_srso_vm_init(void) 1292 { 1293 if (!cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE)) 1294 return; 1295 1296 /* 1297 * Acquire the lock on 0 => 1 transitions to ensure a potential 1 => 0 1298 * transition, i.e. destroying the last VM, is fully complete, e.g. so 1299 * that a delayed IPI doesn't clear BP_SPEC_REDUCE after a vCPU runs. 1300 */ 1301 if (atomic_inc_not_zero(&srso_nr_vms)) 1302 return; 1303 1304 guard(spinlock)(&srso_lock); 1305 1306 atomic_inc(&srso_nr_vms); 1307 } 1308 #else 1309 static void svm_srso_vm_init(void) { } 1310 static void svm_srso_vm_destroy(void) { } 1311 #endif 1312 1313 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1314 { 1315 struct vcpu_svm *svm = to_svm(vcpu); 1316 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 1317 1318 if (sev_es_guest(vcpu->kvm)) 1319 sev_es_unmap_ghcb(svm); 1320 1321 if (svm->guest_state_loaded) 1322 return; 1323 1324 /* 1325 * Save additional host state that will be restored on VMEXIT (sev-es) 1326 * or subsequent vmload of host save area. 1327 */ 1328 vmsave(sd->save_area_pa); 1329 if (sev_es_guest(vcpu->kvm)) 1330 sev_es_prepare_switch_to_guest(svm, sev_es_host_save_area(sd)); 1331 1332 if (tsc_scaling) 1333 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio); 1334 1335 /* 1336 * TSC_AUX is always virtualized (context switched by hardware) for 1337 * SEV-ES guests when the feature is available. For non-SEV-ES guests, 1338 * context switch TSC_AUX via the user_return MSR infrastructure (not 1339 * all CPUs support TSC_AUX virtualization). 1340 */ 1341 if (likely(tsc_aux_uret_slot >= 0) && 1342 (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm))) 1343 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull); 1344 1345 if (cpu_feature_enabled(X86_FEATURE_SRSO_BP_SPEC_REDUCE) && 1346 !sd->bp_spec_reduce_set) { 1347 sd->bp_spec_reduce_set = true; 1348 msr_set_bit(MSR_ZEN4_BP_CFG, MSR_ZEN4_BP_CFG_BP_SPEC_REDUCE_BIT); 1349 } 1350 svm->guest_state_loaded = true; 1351 } 1352 1353 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu) 1354 { 1355 to_svm(vcpu)->guest_state_loaded = false; 1356 } 1357 1358 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1359 { 1360 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm)) 1361 shrink_ple_window(vcpu); 1362 1363 if (kvm_vcpu_apicv_active(vcpu)) 1364 avic_vcpu_load(vcpu, cpu); 1365 } 1366 1367 static void svm_vcpu_put(struct kvm_vcpu *vcpu) 1368 { 1369 if (kvm_vcpu_apicv_active(vcpu)) 1370 avic_vcpu_put(vcpu); 1371 1372 svm_prepare_host_switch(vcpu); 1373 1374 ++vcpu->stat.host_state_reload; 1375 } 1376 1377 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) 1378 { 1379 struct vcpu_svm *svm = to_svm(vcpu); 1380 unsigned long rflags = svm->vmcb->save.rflags; 1381 1382 if (svm->nmi_singlestep) { 1383 /* Hide our flags if they were not set by the guest */ 1384 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) 1385 rflags &= ~X86_EFLAGS_TF; 1386 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) 1387 rflags &= ~X86_EFLAGS_RF; 1388 } 1389 return rflags; 1390 } 1391 1392 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1393 { 1394 if (to_svm(vcpu)->nmi_singlestep) 1395 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 1396 1397 /* 1398 * Any change of EFLAGS.VM is accompanied by a reload of SS 1399 * (caused by either a task switch or an inter-privilege IRET), 1400 * so we do not need to update the CPL here. 1401 */ 1402 to_svm(vcpu)->vmcb->save.rflags = rflags; 1403 } 1404 1405 static bool svm_get_if_flag(struct kvm_vcpu *vcpu) 1406 { 1407 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1408 1409 return sev_es_guest(vcpu->kvm) 1410 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK 1411 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF; 1412 } 1413 1414 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 1415 { 1416 kvm_register_mark_available(vcpu, reg); 1417 1418 switch (reg) { 1419 case VCPU_EXREG_PDPTR: 1420 /* 1421 * When !npt_enabled, mmu->pdptrs[] is already available since 1422 * it is always updated per SDM when moving to CRs. 1423 */ 1424 if (npt_enabled) 1425 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 1426 break; 1427 default: 1428 KVM_BUG_ON(1, vcpu->kvm); 1429 } 1430 } 1431 1432 static void svm_set_vintr(struct vcpu_svm *svm) 1433 { 1434 struct vmcb_control_area *control; 1435 1436 /* 1437 * The following fields are ignored when AVIC is enabled 1438 */ 1439 WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu)); 1440 1441 svm_set_intercept(svm, INTERCEPT_VINTR); 1442 1443 /* 1444 * Recalculating intercepts may have cleared the VINTR intercept. If 1445 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF 1446 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN. 1447 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as 1448 * interrupts will never be unblocked while L2 is running. 1449 */ 1450 if (!svm_is_intercept(svm, INTERCEPT_VINTR)) 1451 return; 1452 1453 /* 1454 * This is just a dummy VINTR to actually cause a vmexit to happen. 1455 * Actual injection of virtual interrupts happens through EVENTINJ. 1456 */ 1457 control = &svm->vmcb->control; 1458 control->int_vector = 0x0; 1459 control->int_ctl &= ~V_INTR_PRIO_MASK; 1460 control->int_ctl |= V_IRQ_MASK | 1461 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); 1462 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1463 } 1464 1465 static void svm_clear_vintr(struct vcpu_svm *svm) 1466 { 1467 svm_clr_intercept(svm, INTERCEPT_VINTR); 1468 1469 /* Drop int_ctl fields related to VINTR injection. */ 1470 svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1471 if (is_guest_mode(&svm->vcpu)) { 1472 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK; 1473 1474 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) != 1475 (svm->nested.ctl.int_ctl & V_TPR_MASK)); 1476 1477 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & 1478 V_IRQ_INJECTION_BITS_MASK; 1479 1480 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector; 1481 } 1482 1483 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 1484 } 1485 1486 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) 1487 { 1488 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1489 struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save; 1490 1491 switch (seg) { 1492 case VCPU_SREG_CS: return &save->cs; 1493 case VCPU_SREG_DS: return &save->ds; 1494 case VCPU_SREG_ES: return &save->es; 1495 case VCPU_SREG_FS: return &save01->fs; 1496 case VCPU_SREG_GS: return &save01->gs; 1497 case VCPU_SREG_SS: return &save->ss; 1498 case VCPU_SREG_TR: return &save01->tr; 1499 case VCPU_SREG_LDTR: return &save01->ldtr; 1500 } 1501 BUG(); 1502 return NULL; 1503 } 1504 1505 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) 1506 { 1507 struct vmcb_seg *s = svm_seg(vcpu, seg); 1508 1509 return s->base; 1510 } 1511 1512 static void svm_get_segment(struct kvm_vcpu *vcpu, 1513 struct kvm_segment *var, int seg) 1514 { 1515 struct vmcb_seg *s = svm_seg(vcpu, seg); 1516 1517 var->base = s->base; 1518 var->limit = s->limit; 1519 var->selector = s->selector; 1520 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; 1521 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; 1522 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; 1523 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; 1524 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; 1525 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; 1526 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; 1527 1528 /* 1529 * AMD CPUs circa 2014 track the G bit for all segments except CS. 1530 * However, the SVM spec states that the G bit is not observed by the 1531 * CPU, and some VMware virtual CPUs drop the G bit for all segments. 1532 * So let's synthesize a legal G bit for all segments, this helps 1533 * running KVM nested. It also helps cross-vendor migration, because 1534 * Intel's vmentry has a check on the 'G' bit. 1535 */ 1536 var->g = s->limit > 0xfffff; 1537 1538 /* 1539 * AMD's VMCB does not have an explicit unusable field, so emulate it 1540 * for cross vendor migration purposes by "not present" 1541 */ 1542 var->unusable = !var->present; 1543 1544 switch (seg) { 1545 case VCPU_SREG_TR: 1546 /* 1547 * Work around a bug where the busy flag in the tr selector 1548 * isn't exposed 1549 */ 1550 var->type |= 0x2; 1551 break; 1552 case VCPU_SREG_DS: 1553 case VCPU_SREG_ES: 1554 case VCPU_SREG_FS: 1555 case VCPU_SREG_GS: 1556 /* 1557 * The accessed bit must always be set in the segment 1558 * descriptor cache, although it can be cleared in the 1559 * descriptor, the cached bit always remains at 1. Since 1560 * Intel has a check on this, set it here to support 1561 * cross-vendor migration. 1562 */ 1563 if (!var->unusable) 1564 var->type |= 0x1; 1565 break; 1566 case VCPU_SREG_SS: 1567 /* 1568 * On AMD CPUs sometimes the DB bit in the segment 1569 * descriptor is left as 1, although the whole segment has 1570 * been made unusable. Clear it here to pass an Intel VMX 1571 * entry check when cross vendor migrating. 1572 */ 1573 if (var->unusable) 1574 var->db = 0; 1575 /* This is symmetric with svm_set_segment() */ 1576 var->dpl = to_svm(vcpu)->vmcb->save.cpl; 1577 break; 1578 } 1579 } 1580 1581 static int svm_get_cpl(struct kvm_vcpu *vcpu) 1582 { 1583 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; 1584 1585 return save->cpl; 1586 } 1587 1588 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 1589 { 1590 struct kvm_segment cs; 1591 1592 svm_get_segment(vcpu, &cs, VCPU_SREG_CS); 1593 *db = cs.db; 1594 *l = cs.l; 1595 } 1596 1597 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1598 { 1599 struct vcpu_svm *svm = to_svm(vcpu); 1600 1601 dt->size = svm->vmcb->save.idtr.limit; 1602 dt->address = svm->vmcb->save.idtr.base; 1603 } 1604 1605 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1606 { 1607 struct vcpu_svm *svm = to_svm(vcpu); 1608 1609 svm->vmcb->save.idtr.limit = dt->size; 1610 svm->vmcb->save.idtr.base = dt->address ; 1611 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1612 } 1613 1614 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1615 { 1616 struct vcpu_svm *svm = to_svm(vcpu); 1617 1618 dt->size = svm->vmcb->save.gdtr.limit; 1619 dt->address = svm->vmcb->save.gdtr.base; 1620 } 1621 1622 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 1623 { 1624 struct vcpu_svm *svm = to_svm(vcpu); 1625 1626 svm->vmcb->save.gdtr.limit = dt->size; 1627 svm->vmcb->save.gdtr.base = dt->address ; 1628 vmcb_mark_dirty(svm->vmcb, VMCB_DT); 1629 } 1630 1631 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1632 { 1633 struct vcpu_svm *svm = to_svm(vcpu); 1634 1635 /* 1636 * For guests that don't set guest_state_protected, the cr3 update is 1637 * handled via kvm_mmu_load() while entering the guest. For guests 1638 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to 1639 * VMCB save area now, since the save area will become the initial 1640 * contents of the VMSA, and future VMCB save area updates won't be 1641 * seen. 1642 */ 1643 if (sev_es_guest(vcpu->kvm)) { 1644 svm->vmcb->save.cr3 = cr3; 1645 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1646 } 1647 } 1648 1649 static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1650 { 1651 return true; 1652 } 1653 1654 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 1655 { 1656 struct vcpu_svm *svm = to_svm(vcpu); 1657 u64 hcr0 = cr0; 1658 bool old_paging = is_paging(vcpu); 1659 1660 #ifdef CONFIG_X86_64 1661 if (vcpu->arch.efer & EFER_LME) { 1662 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 1663 vcpu->arch.efer |= EFER_LMA; 1664 if (!vcpu->arch.guest_state_protected) 1665 svm->vmcb->save.efer |= EFER_LMA | EFER_LME; 1666 } 1667 1668 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { 1669 vcpu->arch.efer &= ~EFER_LMA; 1670 if (!vcpu->arch.guest_state_protected) 1671 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); 1672 } 1673 } 1674 #endif 1675 vcpu->arch.cr0 = cr0; 1676 1677 if (!npt_enabled) { 1678 hcr0 |= X86_CR0_PG | X86_CR0_WP; 1679 if (old_paging != is_paging(vcpu)) 1680 svm_set_cr4(vcpu, kvm_read_cr4(vcpu)); 1681 } 1682 1683 /* 1684 * re-enable caching here because the QEMU bios 1685 * does not do it - this results in some delay at 1686 * reboot 1687 */ 1688 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 1689 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW); 1690 1691 svm->vmcb->save.cr0 = hcr0; 1692 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 1693 1694 /* 1695 * SEV-ES guests must always keep the CR intercepts cleared. CR 1696 * tracking is done using the CR write traps. 1697 */ 1698 if (sev_es_guest(vcpu->kvm)) 1699 return; 1700 1701 if (hcr0 == cr0) { 1702 /* Selective CR0 write remains on. */ 1703 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 1704 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 1705 } else { 1706 svm_set_intercept(svm, INTERCEPT_CR0_READ); 1707 svm_set_intercept(svm, INTERCEPT_CR0_WRITE); 1708 } 1709 } 1710 1711 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1712 { 1713 return true; 1714 } 1715 1716 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1717 { 1718 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; 1719 unsigned long old_cr4 = vcpu->arch.cr4; 1720 1721 vcpu->arch.cr4 = cr4; 1722 if (!npt_enabled) { 1723 cr4 |= X86_CR4_PAE; 1724 1725 if (!is_paging(vcpu)) 1726 cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 1727 } 1728 cr4 |= host_cr4_mce; 1729 to_svm(vcpu)->vmcb->save.cr4 = cr4; 1730 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); 1731 1732 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 1733 vcpu->arch.cpuid_dynamic_bits_dirty = true; 1734 } 1735 1736 static void svm_set_segment(struct kvm_vcpu *vcpu, 1737 struct kvm_segment *var, int seg) 1738 { 1739 struct vcpu_svm *svm = to_svm(vcpu); 1740 struct vmcb_seg *s = svm_seg(vcpu, seg); 1741 1742 s->base = var->base; 1743 s->limit = var->limit; 1744 s->selector = var->selector; 1745 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); 1746 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; 1747 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; 1748 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; 1749 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; 1750 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; 1751 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; 1752 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; 1753 1754 /* 1755 * This is always accurate, except if SYSRET returned to a segment 1756 * with SS.DPL != 3. Intel does not have this quirk, and always 1757 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it 1758 * would entail passing the CPL to userspace and back. 1759 */ 1760 if (seg == VCPU_SREG_SS) 1761 /* This is symmetric with svm_get_segment() */ 1762 svm->vmcb->save.cpl = (var->dpl & 3); 1763 1764 vmcb_mark_dirty(svm->vmcb, VMCB_SEG); 1765 } 1766 1767 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu) 1768 { 1769 struct vcpu_svm *svm = to_svm(vcpu); 1770 1771 clr_exception_intercept(svm, BP_VECTOR); 1772 1773 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { 1774 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 1775 set_exception_intercept(svm, BP_VECTOR); 1776 } 1777 } 1778 1779 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) 1780 { 1781 if (sd->next_asid > sd->max_asid) { 1782 ++sd->asid_generation; 1783 sd->next_asid = sd->min_asid; 1784 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; 1785 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1786 } 1787 1788 svm->current_vmcb->asid_generation = sd->asid_generation; 1789 svm->asid = sd->next_asid++; 1790 } 1791 1792 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) 1793 { 1794 struct vmcb *vmcb = to_svm(vcpu)->vmcb; 1795 1796 if (vcpu->arch.guest_state_protected) 1797 return; 1798 1799 if (unlikely(value != vmcb->save.dr6)) { 1800 vmcb->save.dr6 = value; 1801 vmcb_mark_dirty(vmcb, VMCB_DR); 1802 } 1803 } 1804 1805 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 1806 { 1807 struct vcpu_svm *svm = to_svm(vcpu); 1808 1809 if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm))) 1810 return; 1811 1812 get_debugreg(vcpu->arch.db[0], 0); 1813 get_debugreg(vcpu->arch.db[1], 1); 1814 get_debugreg(vcpu->arch.db[2], 2); 1815 get_debugreg(vcpu->arch.db[3], 3); 1816 /* 1817 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here, 1818 * because db_interception might need it. We can do it before vmentry. 1819 */ 1820 vcpu->arch.dr6 = svm->vmcb->save.dr6; 1821 vcpu->arch.dr7 = svm->vmcb->save.dr7; 1822 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 1823 set_dr_intercepts(svm); 1824 } 1825 1826 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) 1827 { 1828 struct vcpu_svm *svm = to_svm(vcpu); 1829 1830 if (vcpu->arch.guest_state_protected) 1831 return; 1832 1833 svm->vmcb->save.dr7 = value; 1834 vmcb_mark_dirty(svm->vmcb, VMCB_DR); 1835 } 1836 1837 static int pf_interception(struct kvm_vcpu *vcpu) 1838 { 1839 struct vcpu_svm *svm = to_svm(vcpu); 1840 1841 u64 fault_address = svm->vmcb->control.exit_info_2; 1842 u64 error_code = svm->vmcb->control.exit_info_1; 1843 1844 return kvm_handle_page_fault(vcpu, error_code, fault_address, 1845 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1846 svm->vmcb->control.insn_bytes : NULL, 1847 svm->vmcb->control.insn_len); 1848 } 1849 1850 static int npf_interception(struct kvm_vcpu *vcpu) 1851 { 1852 struct vcpu_svm *svm = to_svm(vcpu); 1853 int rc; 1854 1855 u64 fault_address = svm->vmcb->control.exit_info_2; 1856 u64 error_code = svm->vmcb->control.exit_info_1; 1857 1858 /* 1859 * WARN if hardware generates a fault with an error code that collides 1860 * with KVM-defined sythentic flags. Clear the flags and continue on, 1861 * i.e. don't terminate the VM, as KVM can't possibly be relying on a 1862 * flag that KVM doesn't know about. 1863 */ 1864 if (WARN_ON_ONCE(error_code & PFERR_SYNTHETIC_MASK)) 1865 error_code &= ~PFERR_SYNTHETIC_MASK; 1866 1867 if (sev_snp_guest(vcpu->kvm) && (error_code & PFERR_GUEST_ENC_MASK)) 1868 error_code |= PFERR_PRIVATE_ACCESS; 1869 1870 trace_kvm_page_fault(vcpu, fault_address, error_code); 1871 rc = kvm_mmu_page_fault(vcpu, fault_address, error_code, 1872 static_cpu_has(X86_FEATURE_DECODEASSISTS) ? 1873 svm->vmcb->control.insn_bytes : NULL, 1874 svm->vmcb->control.insn_len); 1875 1876 if (rc > 0 && error_code & PFERR_GUEST_RMP_MASK) 1877 sev_handle_rmp_fault(vcpu, fault_address, error_code); 1878 1879 return rc; 1880 } 1881 1882 static int db_interception(struct kvm_vcpu *vcpu) 1883 { 1884 struct kvm_run *kvm_run = vcpu->run; 1885 struct vcpu_svm *svm = to_svm(vcpu); 1886 1887 if (!(vcpu->guest_debug & 1888 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && 1889 !svm->nmi_singlestep) { 1890 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW; 1891 kvm_queue_exception_p(vcpu, DB_VECTOR, payload); 1892 return 1; 1893 } 1894 1895 if (svm->nmi_singlestep) { 1896 disable_nmi_singlestep(svm); 1897 /* Make sure we check for pending NMIs upon entry */ 1898 kvm_make_request(KVM_REQ_EVENT, vcpu); 1899 } 1900 1901 if (vcpu->guest_debug & 1902 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { 1903 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1904 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6; 1905 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7; 1906 kvm_run->debug.arch.pc = 1907 svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1908 kvm_run->debug.arch.exception = DB_VECTOR; 1909 return 0; 1910 } 1911 1912 return 1; 1913 } 1914 1915 static int bp_interception(struct kvm_vcpu *vcpu) 1916 { 1917 struct vcpu_svm *svm = to_svm(vcpu); 1918 struct kvm_run *kvm_run = vcpu->run; 1919 1920 kvm_run->exit_reason = KVM_EXIT_DEBUG; 1921 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; 1922 kvm_run->debug.arch.exception = BP_VECTOR; 1923 return 0; 1924 } 1925 1926 static int ud_interception(struct kvm_vcpu *vcpu) 1927 { 1928 return handle_ud(vcpu); 1929 } 1930 1931 static int ac_interception(struct kvm_vcpu *vcpu) 1932 { 1933 kvm_queue_exception_e(vcpu, AC_VECTOR, 0); 1934 return 1; 1935 } 1936 1937 static bool is_erratum_383(void) 1938 { 1939 int i; 1940 u64 value; 1941 1942 if (!erratum_383_found) 1943 return false; 1944 1945 if (native_read_msr_safe(MSR_IA32_MC0_STATUS, &value)) 1946 return false; 1947 1948 /* Bit 62 may or may not be set for this mce */ 1949 value &= ~(1ULL << 62); 1950 1951 if (value != 0xb600000000010015ULL) 1952 return false; 1953 1954 /* Clear MCi_STATUS registers */ 1955 for (i = 0; i < 6; ++i) 1956 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0); 1957 1958 if (!native_read_msr_safe(MSR_IA32_MCG_STATUS, &value)) { 1959 value &= ~(1ULL << 2); 1960 native_write_msr_safe(MSR_IA32_MCG_STATUS, value); 1961 } 1962 1963 /* Flush tlb to evict multi-match entries */ 1964 __flush_tlb_all(); 1965 1966 return true; 1967 } 1968 1969 static void svm_handle_mce(struct kvm_vcpu *vcpu) 1970 { 1971 if (is_erratum_383()) { 1972 /* 1973 * Erratum 383 triggered. Guest state is corrupt so kill the 1974 * guest. 1975 */ 1976 pr_err("Guest triggered AMD Erratum 383\n"); 1977 1978 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1979 1980 return; 1981 } 1982 1983 /* 1984 * On an #MC intercept the MCE handler is not called automatically in 1985 * the host. So do it by hand here. 1986 */ 1987 kvm_machine_check(); 1988 } 1989 1990 static int mc_interception(struct kvm_vcpu *vcpu) 1991 { 1992 return 1; 1993 } 1994 1995 static int shutdown_interception(struct kvm_vcpu *vcpu) 1996 { 1997 struct kvm_run *kvm_run = vcpu->run; 1998 struct vcpu_svm *svm = to_svm(vcpu); 1999 2000 2001 /* 2002 * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put 2003 * the VMCB in a known good state. Unfortuately, KVM doesn't have 2004 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking 2005 * userspace. At a platform view, INIT is acceptable behavior as 2006 * there exist bare metal platforms that automatically INIT the CPU 2007 * in response to shutdown. 2008 * 2009 * The VM save area for SEV-ES guests has already been encrypted so it 2010 * cannot be reinitialized, i.e. synthesizing INIT is futile. 2011 */ 2012 if (!sev_es_guest(vcpu->kvm)) { 2013 clear_page(svm->vmcb); 2014 #ifdef CONFIG_KVM_SMM 2015 if (is_smm(vcpu)) 2016 kvm_smm_changed(vcpu, false); 2017 #endif 2018 kvm_vcpu_reset(vcpu, true); 2019 } 2020 2021 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; 2022 return 0; 2023 } 2024 2025 static int io_interception(struct kvm_vcpu *vcpu) 2026 { 2027 struct vcpu_svm *svm = to_svm(vcpu); 2028 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ 2029 int size, in, string; 2030 unsigned port; 2031 2032 ++vcpu->stat.io_exits; 2033 string = (io_info & SVM_IOIO_STR_MASK) != 0; 2034 in = (io_info & SVM_IOIO_TYPE_MASK) != 0; 2035 port = io_info >> 16; 2036 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; 2037 2038 if (string) { 2039 if (sev_es_guest(vcpu->kvm)) 2040 return sev_es_string_io(svm, size, port, in); 2041 else 2042 return kvm_emulate_instruction(vcpu, 0); 2043 } 2044 2045 svm->next_rip = svm->vmcb->control.exit_info_2; 2046 2047 return kvm_fast_pio(vcpu, size, port, in); 2048 } 2049 2050 static int nmi_interception(struct kvm_vcpu *vcpu) 2051 { 2052 return 1; 2053 } 2054 2055 static int smi_interception(struct kvm_vcpu *vcpu) 2056 { 2057 return 1; 2058 } 2059 2060 static int intr_interception(struct kvm_vcpu *vcpu) 2061 { 2062 ++vcpu->stat.irq_exits; 2063 return 1; 2064 } 2065 2066 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload) 2067 { 2068 struct vcpu_svm *svm = to_svm(vcpu); 2069 struct vmcb *vmcb12; 2070 struct kvm_host_map map; 2071 int ret; 2072 2073 if (nested_svm_check_permissions(vcpu)) 2074 return 1; 2075 2076 ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map); 2077 if (ret) { 2078 if (ret == -EINVAL) 2079 kvm_inject_gp(vcpu, 0); 2080 return 1; 2081 } 2082 2083 vmcb12 = map.hva; 2084 2085 ret = kvm_skip_emulated_instruction(vcpu); 2086 2087 if (vmload) { 2088 svm_copy_vmloadsave_state(svm->vmcb, vmcb12); 2089 svm->sysenter_eip_hi = 0; 2090 svm->sysenter_esp_hi = 0; 2091 } else { 2092 svm_copy_vmloadsave_state(vmcb12, svm->vmcb); 2093 } 2094 2095 kvm_vcpu_unmap(vcpu, &map); 2096 2097 return ret; 2098 } 2099 2100 static int vmload_interception(struct kvm_vcpu *vcpu) 2101 { 2102 return vmload_vmsave_interception(vcpu, true); 2103 } 2104 2105 static int vmsave_interception(struct kvm_vcpu *vcpu) 2106 { 2107 return vmload_vmsave_interception(vcpu, false); 2108 } 2109 2110 static int vmrun_interception(struct kvm_vcpu *vcpu) 2111 { 2112 if (nested_svm_check_permissions(vcpu)) 2113 return 1; 2114 2115 return nested_svm_vmrun(vcpu); 2116 } 2117 2118 enum { 2119 NONE_SVM_INSTR, 2120 SVM_INSTR_VMRUN, 2121 SVM_INSTR_VMLOAD, 2122 SVM_INSTR_VMSAVE, 2123 }; 2124 2125 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */ 2126 static int svm_instr_opcode(struct kvm_vcpu *vcpu) 2127 { 2128 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 2129 2130 if (ctxt->b != 0x1 || ctxt->opcode_len != 2) 2131 return NONE_SVM_INSTR; 2132 2133 switch (ctxt->modrm) { 2134 case 0xd8: /* VMRUN */ 2135 return SVM_INSTR_VMRUN; 2136 case 0xda: /* VMLOAD */ 2137 return SVM_INSTR_VMLOAD; 2138 case 0xdb: /* VMSAVE */ 2139 return SVM_INSTR_VMSAVE; 2140 default: 2141 break; 2142 } 2143 2144 return NONE_SVM_INSTR; 2145 } 2146 2147 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode) 2148 { 2149 const int guest_mode_exit_codes[] = { 2150 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN, 2151 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD, 2152 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE, 2153 }; 2154 int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = { 2155 [SVM_INSTR_VMRUN] = vmrun_interception, 2156 [SVM_INSTR_VMLOAD] = vmload_interception, 2157 [SVM_INSTR_VMSAVE] = vmsave_interception, 2158 }; 2159 struct vcpu_svm *svm = to_svm(vcpu); 2160 int ret; 2161 2162 if (is_guest_mode(vcpu)) { 2163 /* Returns '1' or -errno on failure, '0' on success. */ 2164 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]); 2165 if (ret) 2166 return ret; 2167 return 1; 2168 } 2169 return svm_instr_handlers[opcode](vcpu); 2170 } 2171 2172 /* 2173 * #GP handling code. Note that #GP can be triggered under the following two 2174 * cases: 2175 * 1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on 2176 * some AMD CPUs when EAX of these instructions are in the reserved memory 2177 * regions (e.g. SMM memory on host). 2178 * 2) VMware backdoor 2179 */ 2180 static int gp_interception(struct kvm_vcpu *vcpu) 2181 { 2182 struct vcpu_svm *svm = to_svm(vcpu); 2183 u32 error_code = svm->vmcb->control.exit_info_1; 2184 int opcode; 2185 2186 /* Both #GP cases have zero error_code */ 2187 if (error_code) 2188 goto reinject; 2189 2190 /* Decode the instruction for usage later */ 2191 if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK) 2192 goto reinject; 2193 2194 opcode = svm_instr_opcode(vcpu); 2195 2196 if (opcode == NONE_SVM_INSTR) { 2197 if (!enable_vmware_backdoor) 2198 goto reinject; 2199 2200 /* 2201 * VMware backdoor emulation on #GP interception only handles 2202 * IN{S}, OUT{S}, and RDPMC. 2203 */ 2204 if (!is_guest_mode(vcpu)) 2205 return kvm_emulate_instruction(vcpu, 2206 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE); 2207 } else { 2208 /* All SVM instructions expect page aligned RAX */ 2209 if (svm->vmcb->save.rax & ~PAGE_MASK) 2210 goto reinject; 2211 2212 return emulate_svm_instr(vcpu, opcode); 2213 } 2214 2215 reinject: 2216 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 2217 return 1; 2218 } 2219 2220 void svm_set_gif(struct vcpu_svm *svm, bool value) 2221 { 2222 if (value) { 2223 /* 2224 * If VGIF is enabled, the STGI intercept is only added to 2225 * detect the opening of the SMI/NMI window; remove it now. 2226 * Likewise, clear the VINTR intercept, we will set it 2227 * again while processing KVM_REQ_EVENT if needed. 2228 */ 2229 if (vgif) 2230 svm_clr_intercept(svm, INTERCEPT_STGI); 2231 if (svm_is_intercept(svm, INTERCEPT_VINTR)) 2232 svm_clear_vintr(svm); 2233 2234 enable_gif(svm); 2235 if (svm->vcpu.arch.smi_pending || 2236 svm->vcpu.arch.nmi_pending || 2237 kvm_cpu_has_injectable_intr(&svm->vcpu) || 2238 kvm_apic_has_pending_init_or_sipi(&svm->vcpu)) 2239 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); 2240 } else { 2241 disable_gif(svm); 2242 2243 /* 2244 * After a CLGI no interrupts should come. But if vGIF is 2245 * in use, we still rely on the VINTR intercept (rather than 2246 * STGI) to detect an open interrupt window. 2247 */ 2248 if (!vgif) 2249 svm_clear_vintr(svm); 2250 } 2251 } 2252 2253 static int stgi_interception(struct kvm_vcpu *vcpu) 2254 { 2255 int ret; 2256 2257 if (nested_svm_check_permissions(vcpu)) 2258 return 1; 2259 2260 ret = kvm_skip_emulated_instruction(vcpu); 2261 svm_set_gif(to_svm(vcpu), true); 2262 return ret; 2263 } 2264 2265 static int clgi_interception(struct kvm_vcpu *vcpu) 2266 { 2267 int ret; 2268 2269 if (nested_svm_check_permissions(vcpu)) 2270 return 1; 2271 2272 ret = kvm_skip_emulated_instruction(vcpu); 2273 svm_set_gif(to_svm(vcpu), false); 2274 return ret; 2275 } 2276 2277 static int invlpga_interception(struct kvm_vcpu *vcpu) 2278 { 2279 gva_t gva = kvm_rax_read(vcpu); 2280 u32 asid = kvm_rcx_read(vcpu); 2281 2282 /* FIXME: Handle an address size prefix. */ 2283 if (!is_long_mode(vcpu)) 2284 gva = (u32)gva; 2285 2286 trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva); 2287 2288 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ 2289 kvm_mmu_invlpg(vcpu, gva); 2290 2291 return kvm_skip_emulated_instruction(vcpu); 2292 } 2293 2294 static int skinit_interception(struct kvm_vcpu *vcpu) 2295 { 2296 trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu)); 2297 2298 kvm_queue_exception(vcpu, UD_VECTOR); 2299 return 1; 2300 } 2301 2302 static int task_switch_interception(struct kvm_vcpu *vcpu) 2303 { 2304 struct vcpu_svm *svm = to_svm(vcpu); 2305 u16 tss_selector; 2306 int reason; 2307 int int_type = svm->vmcb->control.exit_int_info & 2308 SVM_EXITINTINFO_TYPE_MASK; 2309 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; 2310 uint32_t type = 2311 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; 2312 uint32_t idt_v = 2313 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; 2314 bool has_error_code = false; 2315 u32 error_code = 0; 2316 2317 tss_selector = (u16)svm->vmcb->control.exit_info_1; 2318 2319 if (svm->vmcb->control.exit_info_2 & 2320 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) 2321 reason = TASK_SWITCH_IRET; 2322 else if (svm->vmcb->control.exit_info_2 & 2323 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) 2324 reason = TASK_SWITCH_JMP; 2325 else if (idt_v) 2326 reason = TASK_SWITCH_GATE; 2327 else 2328 reason = TASK_SWITCH_CALL; 2329 2330 if (reason == TASK_SWITCH_GATE) { 2331 switch (type) { 2332 case SVM_EXITINTINFO_TYPE_NMI: 2333 vcpu->arch.nmi_injected = false; 2334 break; 2335 case SVM_EXITINTINFO_TYPE_EXEPT: 2336 if (svm->vmcb->control.exit_info_2 & 2337 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { 2338 has_error_code = true; 2339 error_code = 2340 (u32)svm->vmcb->control.exit_info_2; 2341 } 2342 kvm_clear_exception_queue(vcpu); 2343 break; 2344 case SVM_EXITINTINFO_TYPE_INTR: 2345 case SVM_EXITINTINFO_TYPE_SOFT: 2346 kvm_clear_interrupt_queue(vcpu); 2347 break; 2348 default: 2349 break; 2350 } 2351 } 2352 2353 if (reason != TASK_SWITCH_GATE || 2354 int_type == SVM_EXITINTINFO_TYPE_SOFT || 2355 (int_type == SVM_EXITINTINFO_TYPE_EXEPT && 2356 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) { 2357 if (!svm_skip_emulated_instruction(vcpu)) 2358 return 0; 2359 } 2360 2361 if (int_type != SVM_EXITINTINFO_TYPE_SOFT) 2362 int_vec = -1; 2363 2364 return kvm_task_switch(vcpu, tss_selector, int_vec, reason, 2365 has_error_code, error_code); 2366 } 2367 2368 static void svm_clr_iret_intercept(struct vcpu_svm *svm) 2369 { 2370 if (!sev_es_guest(svm->vcpu.kvm)) 2371 svm_clr_intercept(svm, INTERCEPT_IRET); 2372 } 2373 2374 static void svm_set_iret_intercept(struct vcpu_svm *svm) 2375 { 2376 if (!sev_es_guest(svm->vcpu.kvm)) 2377 svm_set_intercept(svm, INTERCEPT_IRET); 2378 } 2379 2380 static int iret_interception(struct kvm_vcpu *vcpu) 2381 { 2382 struct vcpu_svm *svm = to_svm(vcpu); 2383 2384 WARN_ON_ONCE(sev_es_guest(vcpu->kvm)); 2385 2386 ++vcpu->stat.nmi_window_exits; 2387 svm->awaiting_iret_completion = true; 2388 2389 svm_clr_iret_intercept(svm); 2390 svm->nmi_iret_rip = kvm_rip_read(vcpu); 2391 2392 kvm_make_request(KVM_REQ_EVENT, vcpu); 2393 return 1; 2394 } 2395 2396 static int invlpg_interception(struct kvm_vcpu *vcpu) 2397 { 2398 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2399 return kvm_emulate_instruction(vcpu, 0); 2400 2401 kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1); 2402 return kvm_skip_emulated_instruction(vcpu); 2403 } 2404 2405 static int emulate_on_interception(struct kvm_vcpu *vcpu) 2406 { 2407 return kvm_emulate_instruction(vcpu, 0); 2408 } 2409 2410 static int rsm_interception(struct kvm_vcpu *vcpu) 2411 { 2412 return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2); 2413 } 2414 2415 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu, 2416 unsigned long val) 2417 { 2418 struct vcpu_svm *svm = to_svm(vcpu); 2419 unsigned long cr0 = vcpu->arch.cr0; 2420 bool ret = false; 2421 2422 if (!is_guest_mode(vcpu) || 2423 (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0)))) 2424 return false; 2425 2426 cr0 &= ~SVM_CR0_SELECTIVE_MASK; 2427 val &= ~SVM_CR0_SELECTIVE_MASK; 2428 2429 if (cr0 ^ val) { 2430 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; 2431 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); 2432 } 2433 2434 return ret; 2435 } 2436 2437 #define CR_VALID (1ULL << 63) 2438 2439 static int cr_interception(struct kvm_vcpu *vcpu) 2440 { 2441 struct vcpu_svm *svm = to_svm(vcpu); 2442 int reg, cr; 2443 unsigned long val; 2444 int err; 2445 2446 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) 2447 return emulate_on_interception(vcpu); 2448 2449 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) 2450 return emulate_on_interception(vcpu); 2451 2452 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2453 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) 2454 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; 2455 else 2456 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; 2457 2458 err = 0; 2459 if (cr >= 16) { /* mov to cr */ 2460 cr -= 16; 2461 val = kvm_register_read(vcpu, reg); 2462 trace_kvm_cr_write(cr, val); 2463 switch (cr) { 2464 case 0: 2465 if (!check_selective_cr0_intercepted(vcpu, val)) 2466 err = kvm_set_cr0(vcpu, val); 2467 else 2468 return 1; 2469 2470 break; 2471 case 3: 2472 err = kvm_set_cr3(vcpu, val); 2473 break; 2474 case 4: 2475 err = kvm_set_cr4(vcpu, val); 2476 break; 2477 case 8: 2478 err = kvm_set_cr8(vcpu, val); 2479 break; 2480 default: 2481 WARN(1, "unhandled write to CR%d", cr); 2482 kvm_queue_exception(vcpu, UD_VECTOR); 2483 return 1; 2484 } 2485 } else { /* mov from cr */ 2486 switch (cr) { 2487 case 0: 2488 val = kvm_read_cr0(vcpu); 2489 break; 2490 case 2: 2491 val = vcpu->arch.cr2; 2492 break; 2493 case 3: 2494 val = kvm_read_cr3(vcpu); 2495 break; 2496 case 4: 2497 val = kvm_read_cr4(vcpu); 2498 break; 2499 case 8: 2500 val = kvm_get_cr8(vcpu); 2501 break; 2502 default: 2503 WARN(1, "unhandled read from CR%d", cr); 2504 kvm_queue_exception(vcpu, UD_VECTOR); 2505 return 1; 2506 } 2507 kvm_register_write(vcpu, reg, val); 2508 trace_kvm_cr_read(cr, val); 2509 } 2510 return kvm_complete_insn_gp(vcpu, err); 2511 } 2512 2513 static int cr_trap(struct kvm_vcpu *vcpu) 2514 { 2515 struct vcpu_svm *svm = to_svm(vcpu); 2516 unsigned long old_value, new_value; 2517 unsigned int cr; 2518 int ret = 0; 2519 2520 new_value = (unsigned long)svm->vmcb->control.exit_info_1; 2521 2522 cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP; 2523 switch (cr) { 2524 case 0: 2525 old_value = kvm_read_cr0(vcpu); 2526 svm_set_cr0(vcpu, new_value); 2527 2528 kvm_post_set_cr0(vcpu, old_value, new_value); 2529 break; 2530 case 4: 2531 old_value = kvm_read_cr4(vcpu); 2532 svm_set_cr4(vcpu, new_value); 2533 2534 kvm_post_set_cr4(vcpu, old_value, new_value); 2535 break; 2536 case 8: 2537 ret = kvm_set_cr8(vcpu, new_value); 2538 break; 2539 default: 2540 WARN(1, "unhandled CR%d write trap", cr); 2541 kvm_queue_exception(vcpu, UD_VECTOR); 2542 return 1; 2543 } 2544 2545 return kvm_complete_insn_gp(vcpu, ret); 2546 } 2547 2548 static int dr_interception(struct kvm_vcpu *vcpu) 2549 { 2550 struct vcpu_svm *svm = to_svm(vcpu); 2551 int reg, dr; 2552 int err = 0; 2553 2554 /* 2555 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT 2556 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early. 2557 */ 2558 if (sev_es_guest(vcpu->kvm)) 2559 return 1; 2560 2561 if (vcpu->guest_debug == 0) { 2562 /* 2563 * No more DR vmexits; force a reload of the debug registers 2564 * and reenter on this instruction. The next vmexit will 2565 * retrieve the full state of the debug registers. 2566 */ 2567 clr_dr_intercepts(svm); 2568 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 2569 return 1; 2570 } 2571 2572 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) 2573 return emulate_on_interception(vcpu); 2574 2575 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; 2576 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; 2577 if (dr >= 16) { /* mov to DRn */ 2578 dr -= 16; 2579 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 2580 } else { 2581 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr)); 2582 } 2583 2584 return kvm_complete_insn_gp(vcpu, err); 2585 } 2586 2587 static int cr8_write_interception(struct kvm_vcpu *vcpu) 2588 { 2589 int r; 2590 2591 u8 cr8_prev = kvm_get_cr8(vcpu); 2592 /* instruction emulation calls kvm_set_cr8() */ 2593 r = cr_interception(vcpu); 2594 if (lapic_in_kernel(vcpu)) 2595 return r; 2596 if (cr8_prev <= kvm_get_cr8(vcpu)) 2597 return r; 2598 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 2599 return 0; 2600 } 2601 2602 static int efer_trap(struct kvm_vcpu *vcpu) 2603 { 2604 struct msr_data msr_info; 2605 int ret; 2606 2607 /* 2608 * Clear the EFER_SVME bit from EFER. The SVM code always sets this 2609 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against 2610 * whether the guest has X86_FEATURE_SVM - this avoids a failure if 2611 * the guest doesn't have X86_FEATURE_SVM. 2612 */ 2613 msr_info.host_initiated = false; 2614 msr_info.index = MSR_EFER; 2615 msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME; 2616 ret = kvm_set_msr_common(vcpu, &msr_info); 2617 2618 return kvm_complete_insn_gp(vcpu, ret); 2619 } 2620 2621 static int svm_get_feature_msr(u32 msr, u64 *data) 2622 { 2623 *data = 0; 2624 2625 switch (msr) { 2626 case MSR_AMD64_DE_CFG: 2627 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC)) 2628 *data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE; 2629 break; 2630 default: 2631 return KVM_MSR_RET_UNSUPPORTED; 2632 } 2633 2634 return 0; 2635 } 2636 2637 static bool sev_es_prevent_msr_access(struct kvm_vcpu *vcpu, 2638 struct msr_data *msr_info) 2639 { 2640 return sev_es_guest(vcpu->kvm) && vcpu->arch.guest_state_protected && 2641 msr_info->index != MSR_IA32_XSS && 2642 !msr_write_intercepted(vcpu, msr_info->index); 2643 } 2644 2645 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2646 { 2647 struct vcpu_svm *svm = to_svm(vcpu); 2648 2649 if (sev_es_prevent_msr_access(vcpu, msr_info)) { 2650 msr_info->data = 0; 2651 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2652 } 2653 2654 switch (msr_info->index) { 2655 case MSR_AMD64_TSC_RATIO: 2656 if (!msr_info->host_initiated && 2657 !guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) 2658 return 1; 2659 msr_info->data = svm->tsc_ratio_msr; 2660 break; 2661 case MSR_STAR: 2662 msr_info->data = svm->vmcb01.ptr->save.star; 2663 break; 2664 #ifdef CONFIG_X86_64 2665 case MSR_LSTAR: 2666 msr_info->data = svm->vmcb01.ptr->save.lstar; 2667 break; 2668 case MSR_CSTAR: 2669 msr_info->data = svm->vmcb01.ptr->save.cstar; 2670 break; 2671 case MSR_GS_BASE: 2672 msr_info->data = svm->vmcb01.ptr->save.gs.base; 2673 break; 2674 case MSR_FS_BASE: 2675 msr_info->data = svm->vmcb01.ptr->save.fs.base; 2676 break; 2677 case MSR_KERNEL_GS_BASE: 2678 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base; 2679 break; 2680 case MSR_SYSCALL_MASK: 2681 msr_info->data = svm->vmcb01.ptr->save.sfmask; 2682 break; 2683 #endif 2684 case MSR_IA32_SYSENTER_CS: 2685 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs; 2686 break; 2687 case MSR_IA32_SYSENTER_EIP: 2688 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip; 2689 if (guest_cpuid_is_intel_compatible(vcpu)) 2690 msr_info->data |= (u64)svm->sysenter_eip_hi << 32; 2691 break; 2692 case MSR_IA32_SYSENTER_ESP: 2693 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp; 2694 if (guest_cpuid_is_intel_compatible(vcpu)) 2695 msr_info->data |= (u64)svm->sysenter_esp_hi << 32; 2696 break; 2697 case MSR_IA32_S_CET: 2698 msr_info->data = svm->vmcb->save.s_cet; 2699 break; 2700 case MSR_IA32_INT_SSP_TAB: 2701 msr_info->data = svm->vmcb->save.isst_addr; 2702 break; 2703 case MSR_KVM_INTERNAL_GUEST_SSP: 2704 msr_info->data = svm->vmcb->save.ssp; 2705 break; 2706 case MSR_TSC_AUX: 2707 msr_info->data = svm->tsc_aux; 2708 break; 2709 case MSR_IA32_DEBUGCTLMSR: 2710 msr_info->data = svm->vmcb->save.dbgctl; 2711 break; 2712 case MSR_IA32_LASTBRANCHFROMIP: 2713 msr_info->data = svm->vmcb->save.br_from; 2714 break; 2715 case MSR_IA32_LASTBRANCHTOIP: 2716 msr_info->data = svm->vmcb->save.br_to; 2717 break; 2718 case MSR_IA32_LASTINTFROMIP: 2719 msr_info->data = svm->vmcb->save.last_excp_from; 2720 break; 2721 case MSR_IA32_LASTINTTOIP: 2722 msr_info->data = svm->vmcb->save.last_excp_to; 2723 break; 2724 case MSR_VM_HSAVE_PA: 2725 msr_info->data = svm->nested.hsave_msr; 2726 break; 2727 case MSR_VM_CR: 2728 msr_info->data = svm->nested.vm_cr_msr; 2729 break; 2730 case MSR_IA32_SPEC_CTRL: 2731 if (!msr_info->host_initiated && 2732 !guest_has_spec_ctrl_msr(vcpu)) 2733 return 1; 2734 2735 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2736 msr_info->data = svm->vmcb->save.spec_ctrl; 2737 else 2738 msr_info->data = svm->spec_ctrl; 2739 break; 2740 case MSR_AMD64_VIRT_SPEC_CTRL: 2741 if (!msr_info->host_initiated && 2742 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2743 return 1; 2744 2745 msr_info->data = svm->virt_spec_ctrl; 2746 break; 2747 case MSR_F15H_IC_CFG: { 2748 2749 int family, model; 2750 2751 family = guest_cpuid_family(vcpu); 2752 model = guest_cpuid_model(vcpu); 2753 2754 if (family < 0 || model < 0) 2755 return kvm_get_msr_common(vcpu, msr_info); 2756 2757 msr_info->data = 0; 2758 2759 if (family == 0x15 && 2760 (model >= 0x2 && model < 0x20)) 2761 msr_info->data = 0x1E; 2762 } 2763 break; 2764 case MSR_AMD64_DE_CFG: 2765 msr_info->data = svm->msr_decfg; 2766 break; 2767 default: 2768 return kvm_get_msr_common(vcpu, msr_info); 2769 } 2770 return 0; 2771 } 2772 2773 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err) 2774 { 2775 struct vcpu_svm *svm = to_svm(vcpu); 2776 if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb)) 2777 return kvm_complete_insn_gp(vcpu, err); 2778 2779 svm_vmgexit_inject_exception(svm, X86_TRAP_GP); 2780 return 1; 2781 } 2782 2783 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) 2784 { 2785 struct vcpu_svm *svm = to_svm(vcpu); 2786 int svm_dis, chg_mask; 2787 2788 if (data & ~SVM_VM_CR_VALID_MASK) 2789 return 1; 2790 2791 chg_mask = SVM_VM_CR_VALID_MASK; 2792 2793 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) 2794 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); 2795 2796 svm->nested.vm_cr_msr &= ~chg_mask; 2797 svm->nested.vm_cr_msr |= (data & chg_mask); 2798 2799 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; 2800 2801 /* check for svm_disable while efer.svme is set */ 2802 if (svm_dis && (vcpu->arch.efer & EFER_SVME)) 2803 return 1; 2804 2805 return 0; 2806 } 2807 2808 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2809 { 2810 struct vcpu_svm *svm = to_svm(vcpu); 2811 int ret = 0; 2812 2813 u32 ecx = msr->index; 2814 u64 data = msr->data; 2815 2816 if (sev_es_prevent_msr_access(vcpu, msr)) 2817 return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; 2818 2819 switch (ecx) { 2820 case MSR_AMD64_TSC_RATIO: 2821 2822 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR)) { 2823 2824 if (!msr->host_initiated) 2825 return 1; 2826 /* 2827 * In case TSC scaling is not enabled, always 2828 * leave this MSR at the default value. 2829 * 2830 * Due to bug in qemu 6.2.0, it would try to set 2831 * this msr to 0 if tsc scaling is not enabled. 2832 * Ignore this value as well. 2833 */ 2834 if (data != 0 && data != svm->tsc_ratio_msr) 2835 return 1; 2836 break; 2837 } 2838 2839 if (data & SVM_TSC_RATIO_RSVD) 2840 return 1; 2841 2842 svm->tsc_ratio_msr = data; 2843 2844 if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSCRATEMSR) && 2845 is_guest_mode(vcpu)) 2846 nested_svm_update_tsc_ratio_msr(vcpu); 2847 2848 break; 2849 case MSR_IA32_CR_PAT: 2850 ret = kvm_set_msr_common(vcpu, msr); 2851 if (ret) 2852 break; 2853 2854 svm->vmcb01.ptr->save.g_pat = data; 2855 if (is_guest_mode(vcpu)) 2856 nested_vmcb02_compute_g_pat(svm); 2857 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 2858 break; 2859 case MSR_IA32_SPEC_CTRL: 2860 if (!msr->host_initiated && 2861 !guest_has_spec_ctrl_msr(vcpu)) 2862 return 1; 2863 2864 if (kvm_spec_ctrl_test_value(data)) 2865 return 1; 2866 2867 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 2868 svm->vmcb->save.spec_ctrl = data; 2869 else 2870 svm->spec_ctrl = data; 2871 if (!data) 2872 break; 2873 2874 /* 2875 * For non-nested: 2876 * When it's written (to non-zero) for the first time, pass 2877 * it through. 2878 * 2879 * For nested: 2880 * The handling of the MSR bitmap for L2 guests is done in 2881 * nested_svm_merge_msrpm(). 2882 * We update the L1 MSR bit as well since it will end up 2883 * touching the MSR anyway now. 2884 */ 2885 svm_disable_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW); 2886 break; 2887 case MSR_AMD64_VIRT_SPEC_CTRL: 2888 if (!msr->host_initiated && 2889 !guest_cpu_cap_has(vcpu, X86_FEATURE_VIRT_SSBD)) 2890 return 1; 2891 2892 if (data & ~SPEC_CTRL_SSBD) 2893 return 1; 2894 2895 svm->virt_spec_ctrl = data; 2896 break; 2897 case MSR_STAR: 2898 svm->vmcb01.ptr->save.star = data; 2899 break; 2900 #ifdef CONFIG_X86_64 2901 case MSR_LSTAR: 2902 svm->vmcb01.ptr->save.lstar = data; 2903 break; 2904 case MSR_CSTAR: 2905 svm->vmcb01.ptr->save.cstar = data; 2906 break; 2907 case MSR_GS_BASE: 2908 svm->vmcb01.ptr->save.gs.base = data; 2909 break; 2910 case MSR_FS_BASE: 2911 svm->vmcb01.ptr->save.fs.base = data; 2912 break; 2913 case MSR_KERNEL_GS_BASE: 2914 svm->vmcb01.ptr->save.kernel_gs_base = data; 2915 break; 2916 case MSR_SYSCALL_MASK: 2917 svm->vmcb01.ptr->save.sfmask = data; 2918 break; 2919 #endif 2920 case MSR_IA32_SYSENTER_CS: 2921 svm->vmcb01.ptr->save.sysenter_cs = data; 2922 break; 2923 case MSR_IA32_SYSENTER_EIP: 2924 svm->vmcb01.ptr->save.sysenter_eip = (u32)data; 2925 /* 2926 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs 2927 * when we spoof an Intel vendor ID (for cross vendor migration). 2928 * In this case we use this intercept to track the high 2929 * 32 bit part of these msrs to support Intel's 2930 * implementation of SYSENTER/SYSEXIT. 2931 */ 2932 svm->sysenter_eip_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 2933 break; 2934 case MSR_IA32_SYSENTER_ESP: 2935 svm->vmcb01.ptr->save.sysenter_esp = (u32)data; 2936 svm->sysenter_esp_hi = guest_cpuid_is_intel_compatible(vcpu) ? (data >> 32) : 0; 2937 break; 2938 case MSR_IA32_S_CET: 2939 svm->vmcb->save.s_cet = data; 2940 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 2941 break; 2942 case MSR_IA32_INT_SSP_TAB: 2943 svm->vmcb->save.isst_addr = data; 2944 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 2945 break; 2946 case MSR_KVM_INTERNAL_GUEST_SSP: 2947 svm->vmcb->save.ssp = data; 2948 vmcb_mark_dirty(svm->vmcb01.ptr, VMCB_CET); 2949 break; 2950 case MSR_TSC_AUX: 2951 /* 2952 * TSC_AUX is always virtualized for SEV-ES guests when the 2953 * feature is available. The user return MSR support is not 2954 * required in this case because TSC_AUX is restored on #VMEXIT 2955 * from the host save area. 2956 */ 2957 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm)) 2958 break; 2959 2960 /* 2961 * TSC_AUX is usually changed only during boot and never read 2962 * directly. Intercept TSC_AUX and switch it via user return. 2963 */ 2964 preempt_disable(); 2965 ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull); 2966 preempt_enable(); 2967 if (ret) 2968 break; 2969 2970 svm->tsc_aux = data; 2971 break; 2972 case MSR_IA32_DEBUGCTLMSR: 2973 if (!lbrv) { 2974 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 2975 break; 2976 } 2977 2978 /* 2979 * Suppress BTF as KVM doesn't virtualize BTF, but there's no 2980 * way to communicate lack of support to the guest. 2981 */ 2982 if (data & DEBUGCTLMSR_BTF) { 2983 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data); 2984 data &= ~DEBUGCTLMSR_BTF; 2985 } 2986 2987 if (data & DEBUGCTL_RESERVED_BITS) 2988 return 1; 2989 2990 if (svm->vmcb->save.dbgctl == data) 2991 break; 2992 2993 svm->vmcb->save.dbgctl = data; 2994 vmcb_mark_dirty(svm->vmcb, VMCB_LBR); 2995 svm_update_lbrv(vcpu); 2996 break; 2997 case MSR_VM_HSAVE_PA: 2998 /* 2999 * Old kernels did not validate the value written to 3000 * MSR_VM_HSAVE_PA. Allow KVM_SET_MSR to set an invalid 3001 * value to allow live migrating buggy or malicious guests 3002 * originating from those kernels. 3003 */ 3004 if (!msr->host_initiated && !page_address_valid(vcpu, data)) 3005 return 1; 3006 3007 svm->nested.hsave_msr = data & PAGE_MASK; 3008 break; 3009 case MSR_VM_CR: 3010 return svm_set_vm_cr(vcpu, data); 3011 case MSR_VM_IGNNE: 3012 kvm_pr_unimpl_wrmsr(vcpu, ecx, data); 3013 break; 3014 case MSR_AMD64_DE_CFG: { 3015 u64 supported_de_cfg; 3016 3017 if (svm_get_feature_msr(ecx, &supported_de_cfg)) 3018 return 1; 3019 3020 if (data & ~supported_de_cfg) 3021 return 1; 3022 3023 svm->msr_decfg = data; 3024 break; 3025 } 3026 default: 3027 return kvm_set_msr_common(vcpu, msr); 3028 } 3029 return ret; 3030 } 3031 3032 static int msr_interception(struct kvm_vcpu *vcpu) 3033 { 3034 if (to_svm(vcpu)->vmcb->control.exit_info_1) 3035 return kvm_emulate_wrmsr(vcpu); 3036 else 3037 return kvm_emulate_rdmsr(vcpu); 3038 } 3039 3040 static int interrupt_window_interception(struct kvm_vcpu *vcpu) 3041 { 3042 kvm_make_request(KVM_REQ_EVENT, vcpu); 3043 svm_clear_vintr(to_svm(vcpu)); 3044 3045 /* 3046 * If not running nested, for AVIC, the only reason to end up here is ExtINTs. 3047 * In this case AVIC was temporarily disabled for 3048 * requesting the IRQ window and we have to re-enable it. 3049 * 3050 * If running nested, still remove the VM wide AVIC inhibit to 3051 * support case in which the interrupt window was requested when the 3052 * vCPU was not running nested. 3053 3054 * All vCPUs which run still run nested, will remain to have their 3055 * AVIC still inhibited due to per-cpu AVIC inhibition. 3056 */ 3057 kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3058 3059 ++vcpu->stat.irq_window_exits; 3060 return 1; 3061 } 3062 3063 static int pause_interception(struct kvm_vcpu *vcpu) 3064 { 3065 bool in_kernel; 3066 /* 3067 * CPL is not made available for an SEV-ES guest, therefore 3068 * vcpu->arch.preempted_in_kernel can never be true. Just 3069 * set in_kernel to false as well. 3070 */ 3071 in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0; 3072 3073 grow_ple_window(vcpu); 3074 3075 kvm_vcpu_on_spin(vcpu, in_kernel); 3076 return kvm_skip_emulated_instruction(vcpu); 3077 } 3078 3079 static int invpcid_interception(struct kvm_vcpu *vcpu) 3080 { 3081 struct vcpu_svm *svm = to_svm(vcpu); 3082 unsigned long type; 3083 gva_t gva; 3084 3085 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) { 3086 kvm_queue_exception(vcpu, UD_VECTOR); 3087 return 1; 3088 } 3089 3090 /* 3091 * For an INVPCID intercept: 3092 * EXITINFO1 provides the linear address of the memory operand. 3093 * EXITINFO2 provides the contents of the register operand. 3094 */ 3095 type = svm->vmcb->control.exit_info_2; 3096 gva = svm->vmcb->control.exit_info_1; 3097 3098 /* 3099 * FIXME: Perform segment checks for 32-bit mode, and inject #SS if the 3100 * stack segment is used. The intercept takes priority over all 3101 * #GP checks except CPL>0, but somehow still generates a linear 3102 * address? The APM is sorely lacking. 3103 */ 3104 if (is_noncanonical_address(gva, vcpu, 0)) { 3105 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 3106 return 1; 3107 } 3108 3109 return kvm_handle_invpcid(vcpu, type, gva); 3110 } 3111 3112 static inline int complete_userspace_buslock(struct kvm_vcpu *vcpu) 3113 { 3114 struct vcpu_svm *svm = to_svm(vcpu); 3115 3116 /* 3117 * If userspace has NOT changed RIP, then KVM's ABI is to let the guest 3118 * execute the bus-locking instruction. Set the bus lock counter to '1' 3119 * to effectively step past the bus lock. 3120 */ 3121 if (kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip)) 3122 svm->vmcb->control.bus_lock_counter = 1; 3123 3124 return 1; 3125 } 3126 3127 static int bus_lock_exit(struct kvm_vcpu *vcpu) 3128 { 3129 struct vcpu_svm *svm = to_svm(vcpu); 3130 3131 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 3132 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 3133 3134 vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); 3135 vcpu->arch.complete_userspace_io = complete_userspace_buslock; 3136 3137 if (is_guest_mode(vcpu)) 3138 svm->nested.ctl.bus_lock_rip = vcpu->arch.cui_linear_rip; 3139 3140 return 0; 3141 } 3142 3143 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = { 3144 [SVM_EXIT_READ_CR0] = cr_interception, 3145 [SVM_EXIT_READ_CR3] = cr_interception, 3146 [SVM_EXIT_READ_CR4] = cr_interception, 3147 [SVM_EXIT_READ_CR8] = cr_interception, 3148 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception, 3149 [SVM_EXIT_WRITE_CR0] = cr_interception, 3150 [SVM_EXIT_WRITE_CR3] = cr_interception, 3151 [SVM_EXIT_WRITE_CR4] = cr_interception, 3152 [SVM_EXIT_WRITE_CR8] = cr8_write_interception, 3153 [SVM_EXIT_READ_DR0] = dr_interception, 3154 [SVM_EXIT_READ_DR1] = dr_interception, 3155 [SVM_EXIT_READ_DR2] = dr_interception, 3156 [SVM_EXIT_READ_DR3] = dr_interception, 3157 [SVM_EXIT_READ_DR4] = dr_interception, 3158 [SVM_EXIT_READ_DR5] = dr_interception, 3159 [SVM_EXIT_READ_DR6] = dr_interception, 3160 [SVM_EXIT_READ_DR7] = dr_interception, 3161 [SVM_EXIT_WRITE_DR0] = dr_interception, 3162 [SVM_EXIT_WRITE_DR1] = dr_interception, 3163 [SVM_EXIT_WRITE_DR2] = dr_interception, 3164 [SVM_EXIT_WRITE_DR3] = dr_interception, 3165 [SVM_EXIT_WRITE_DR4] = dr_interception, 3166 [SVM_EXIT_WRITE_DR5] = dr_interception, 3167 [SVM_EXIT_WRITE_DR6] = dr_interception, 3168 [SVM_EXIT_WRITE_DR7] = dr_interception, 3169 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception, 3170 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception, 3171 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception, 3172 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, 3173 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception, 3174 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception, 3175 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception, 3176 [SVM_EXIT_INTR] = intr_interception, 3177 [SVM_EXIT_NMI] = nmi_interception, 3178 [SVM_EXIT_SMI] = smi_interception, 3179 [SVM_EXIT_VINTR] = interrupt_window_interception, 3180 [SVM_EXIT_RDPMC] = kvm_emulate_rdpmc, 3181 [SVM_EXIT_CPUID] = kvm_emulate_cpuid, 3182 [SVM_EXIT_IRET] = iret_interception, 3183 [SVM_EXIT_INVD] = kvm_emulate_invd, 3184 [SVM_EXIT_PAUSE] = pause_interception, 3185 [SVM_EXIT_HLT] = kvm_emulate_halt, 3186 [SVM_EXIT_INVLPG] = invlpg_interception, 3187 [SVM_EXIT_INVLPGA] = invlpga_interception, 3188 [SVM_EXIT_IOIO] = io_interception, 3189 [SVM_EXIT_MSR] = msr_interception, 3190 [SVM_EXIT_TASK_SWITCH] = task_switch_interception, 3191 [SVM_EXIT_SHUTDOWN] = shutdown_interception, 3192 [SVM_EXIT_VMRUN] = vmrun_interception, 3193 [SVM_EXIT_VMMCALL] = kvm_emulate_hypercall, 3194 [SVM_EXIT_VMLOAD] = vmload_interception, 3195 [SVM_EXIT_VMSAVE] = vmsave_interception, 3196 [SVM_EXIT_STGI] = stgi_interception, 3197 [SVM_EXIT_CLGI] = clgi_interception, 3198 [SVM_EXIT_SKINIT] = skinit_interception, 3199 [SVM_EXIT_RDTSCP] = kvm_handle_invalid_op, 3200 [SVM_EXIT_WBINVD] = kvm_emulate_wbinvd, 3201 [SVM_EXIT_MONITOR] = kvm_emulate_monitor, 3202 [SVM_EXIT_MWAIT] = kvm_emulate_mwait, 3203 [SVM_EXIT_XSETBV] = kvm_emulate_xsetbv, 3204 [SVM_EXIT_RDPRU] = kvm_handle_invalid_op, 3205 [SVM_EXIT_EFER_WRITE_TRAP] = efer_trap, 3206 [SVM_EXIT_CR0_WRITE_TRAP] = cr_trap, 3207 [SVM_EXIT_CR4_WRITE_TRAP] = cr_trap, 3208 [SVM_EXIT_CR8_WRITE_TRAP] = cr_trap, 3209 [SVM_EXIT_INVPCID] = invpcid_interception, 3210 [SVM_EXIT_IDLE_HLT] = kvm_emulate_halt, 3211 [SVM_EXIT_NPF] = npf_interception, 3212 [SVM_EXIT_BUS_LOCK] = bus_lock_exit, 3213 [SVM_EXIT_RSM] = rsm_interception, 3214 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception, 3215 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception, 3216 #ifdef CONFIG_KVM_AMD_SEV 3217 [SVM_EXIT_VMGEXIT] = sev_handle_vmgexit, 3218 #endif 3219 }; 3220 3221 static void dump_vmcb(struct kvm_vcpu *vcpu) 3222 { 3223 struct vcpu_svm *svm = to_svm(vcpu); 3224 struct vmcb_control_area *control = &svm->vmcb->control; 3225 struct vmcb_save_area *save = &svm->vmcb->save; 3226 struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save; 3227 char *vm_type; 3228 3229 if (!dump_invalid_vmcb) { 3230 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3231 return; 3232 } 3233 3234 guard(mutex)(&vmcb_dump_mutex); 3235 3236 vm_type = sev_snp_guest(vcpu->kvm) ? "SEV-SNP" : 3237 sev_es_guest(vcpu->kvm) ? "SEV-ES" : 3238 sev_guest(vcpu->kvm) ? "SEV" : "SVM"; 3239 3240 pr_err("%s vCPU%u VMCB %p, last attempted VMRUN on CPU %d\n", 3241 vm_type, vcpu->vcpu_id, svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu); 3242 pr_err("VMCB Control Area:\n"); 3243 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff); 3244 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16); 3245 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff); 3246 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16); 3247 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]); 3248 pr_err("%-20s%08x %08x\n", "intercepts:", 3249 control->intercepts[INTERCEPT_WORD3], 3250 control->intercepts[INTERCEPT_WORD4]); 3251 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); 3252 pr_err("%-20s%d\n", "pause filter threshold:", 3253 control->pause_filter_thresh); 3254 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); 3255 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); 3256 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); 3257 pr_err("%-20s%d\n", "asid:", control->asid); 3258 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); 3259 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); 3260 pr_err("%-20s%08x\n", "int_vector:", control->int_vector); 3261 pr_err("%-20s%08x\n", "int_state:", control->int_state); 3262 pr_err("%-20s%08x\n", "exit_code:", control->exit_code); 3263 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); 3264 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); 3265 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); 3266 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); 3267 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); 3268 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); 3269 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); 3270 pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa); 3271 pr_err("%-20s%08x\n", "event_inj:", control->event_inj); 3272 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); 3273 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); 3274 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); 3275 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); 3276 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); 3277 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); 3278 pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa); 3279 pr_err("%-20s%016llx\n", "allowed_sev_features:", control->allowed_sev_features); 3280 pr_err("%-20s%016llx\n", "guest_sev_features:", control->guest_sev_features); 3281 3282 if (sev_es_guest(vcpu->kvm)) { 3283 save = sev_decrypt_vmsa(vcpu); 3284 if (!save) 3285 goto no_vmsa; 3286 3287 save01 = save; 3288 } 3289 3290 pr_err("VMCB State Save Area:\n"); 3291 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3292 "es:", 3293 save->es.selector, save->es.attrib, 3294 save->es.limit, save->es.base); 3295 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3296 "cs:", 3297 save->cs.selector, save->cs.attrib, 3298 save->cs.limit, save->cs.base); 3299 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3300 "ss:", 3301 save->ss.selector, save->ss.attrib, 3302 save->ss.limit, save->ss.base); 3303 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3304 "ds:", 3305 save->ds.selector, save->ds.attrib, 3306 save->ds.limit, save->ds.base); 3307 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3308 "fs:", 3309 save01->fs.selector, save01->fs.attrib, 3310 save01->fs.limit, save01->fs.base); 3311 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3312 "gs:", 3313 save01->gs.selector, save01->gs.attrib, 3314 save01->gs.limit, save01->gs.base); 3315 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3316 "gdtr:", 3317 save->gdtr.selector, save->gdtr.attrib, 3318 save->gdtr.limit, save->gdtr.base); 3319 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3320 "ldtr:", 3321 save01->ldtr.selector, save01->ldtr.attrib, 3322 save01->ldtr.limit, save01->ldtr.base); 3323 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3324 "idtr:", 3325 save->idtr.selector, save->idtr.attrib, 3326 save->idtr.limit, save->idtr.base); 3327 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", 3328 "tr:", 3329 save01->tr.selector, save01->tr.attrib, 3330 save01->tr.limit, save01->tr.base); 3331 pr_err("vmpl: %d cpl: %d efer: %016llx\n", 3332 save->vmpl, save->cpl, save->efer); 3333 pr_err("%-15s %016llx %-13s %016llx\n", 3334 "cr0:", save->cr0, "cr2:", save->cr2); 3335 pr_err("%-15s %016llx %-13s %016llx\n", 3336 "cr3:", save->cr3, "cr4:", save->cr4); 3337 pr_err("%-15s %016llx %-13s %016llx\n", 3338 "dr6:", save->dr6, "dr7:", save->dr7); 3339 pr_err("%-15s %016llx %-13s %016llx\n", 3340 "rip:", save->rip, "rflags:", save->rflags); 3341 pr_err("%-15s %016llx %-13s %016llx\n", 3342 "rsp:", save->rsp, "rax:", save->rax); 3343 pr_err("%-15s %016llx %-13s %016llx\n", 3344 "s_cet:", save->s_cet, "ssp:", save->ssp); 3345 pr_err("%-15s %016llx\n", 3346 "isst_addr:", save->isst_addr); 3347 pr_err("%-15s %016llx %-13s %016llx\n", 3348 "star:", save01->star, "lstar:", save01->lstar); 3349 pr_err("%-15s %016llx %-13s %016llx\n", 3350 "cstar:", save01->cstar, "sfmask:", save01->sfmask); 3351 pr_err("%-15s %016llx %-13s %016llx\n", 3352 "kernel_gs_base:", save01->kernel_gs_base, 3353 "sysenter_cs:", save01->sysenter_cs); 3354 pr_err("%-15s %016llx %-13s %016llx\n", 3355 "sysenter_esp:", save01->sysenter_esp, 3356 "sysenter_eip:", save01->sysenter_eip); 3357 pr_err("%-15s %016llx %-13s %016llx\n", 3358 "gpat:", save->g_pat, "dbgctl:", save->dbgctl); 3359 pr_err("%-15s %016llx %-13s %016llx\n", 3360 "br_from:", save->br_from, "br_to:", save->br_to); 3361 pr_err("%-15s %016llx %-13s %016llx\n", 3362 "excp_from:", save->last_excp_from, 3363 "excp_to:", save->last_excp_to); 3364 3365 if (sev_es_guest(vcpu->kvm)) { 3366 struct sev_es_save_area *vmsa = (struct sev_es_save_area *)save; 3367 3368 pr_err("%-15s %016llx\n", 3369 "sev_features", vmsa->sev_features); 3370 3371 pr_err("%-15s %016llx %-13s %016llx\n", 3372 "pl0_ssp:", vmsa->pl0_ssp, "pl1_ssp:", vmsa->pl1_ssp); 3373 pr_err("%-15s %016llx %-13s %016llx\n", 3374 "pl2_ssp:", vmsa->pl2_ssp, "pl3_ssp:", vmsa->pl3_ssp); 3375 pr_err("%-15s %016llx\n", 3376 "u_cet:", vmsa->u_cet); 3377 3378 pr_err("%-15s %016llx %-13s %016llx\n", 3379 "rax:", vmsa->rax, "rbx:", vmsa->rbx); 3380 pr_err("%-15s %016llx %-13s %016llx\n", 3381 "rcx:", vmsa->rcx, "rdx:", vmsa->rdx); 3382 pr_err("%-15s %016llx %-13s %016llx\n", 3383 "rsi:", vmsa->rsi, "rdi:", vmsa->rdi); 3384 pr_err("%-15s %016llx %-13s %016llx\n", 3385 "rbp:", vmsa->rbp, "rsp:", vmsa->rsp); 3386 pr_err("%-15s %016llx %-13s %016llx\n", 3387 "r8:", vmsa->r8, "r9:", vmsa->r9); 3388 pr_err("%-15s %016llx %-13s %016llx\n", 3389 "r10:", vmsa->r10, "r11:", vmsa->r11); 3390 pr_err("%-15s %016llx %-13s %016llx\n", 3391 "r12:", vmsa->r12, "r13:", vmsa->r13); 3392 pr_err("%-15s %016llx %-13s %016llx\n", 3393 "r14:", vmsa->r14, "r15:", vmsa->r15); 3394 pr_err("%-15s %016llx %-13s %016llx\n", 3395 "xcr0:", vmsa->xcr0, "xss:", vmsa->xss); 3396 } else { 3397 pr_err("%-15s %016llx %-13s %016lx\n", 3398 "rax:", save->rax, "rbx:", 3399 vcpu->arch.regs[VCPU_REGS_RBX]); 3400 pr_err("%-15s %016lx %-13s %016lx\n", 3401 "rcx:", vcpu->arch.regs[VCPU_REGS_RCX], 3402 "rdx:", vcpu->arch.regs[VCPU_REGS_RDX]); 3403 pr_err("%-15s %016lx %-13s %016lx\n", 3404 "rsi:", vcpu->arch.regs[VCPU_REGS_RSI], 3405 "rdi:", vcpu->arch.regs[VCPU_REGS_RDI]); 3406 pr_err("%-15s %016lx %-13s %016llx\n", 3407 "rbp:", vcpu->arch.regs[VCPU_REGS_RBP], 3408 "rsp:", save->rsp); 3409 #ifdef CONFIG_X86_64 3410 pr_err("%-15s %016lx %-13s %016lx\n", 3411 "r8:", vcpu->arch.regs[VCPU_REGS_R8], 3412 "r9:", vcpu->arch.regs[VCPU_REGS_R9]); 3413 pr_err("%-15s %016lx %-13s %016lx\n", 3414 "r10:", vcpu->arch.regs[VCPU_REGS_R10], 3415 "r11:", vcpu->arch.regs[VCPU_REGS_R11]); 3416 pr_err("%-15s %016lx %-13s %016lx\n", 3417 "r12:", vcpu->arch.regs[VCPU_REGS_R12], 3418 "r13:", vcpu->arch.regs[VCPU_REGS_R13]); 3419 pr_err("%-15s %016lx %-13s %016lx\n", 3420 "r14:", vcpu->arch.regs[VCPU_REGS_R14], 3421 "r15:", vcpu->arch.regs[VCPU_REGS_R15]); 3422 #endif 3423 } 3424 3425 no_vmsa: 3426 if (sev_es_guest(vcpu->kvm)) 3427 sev_free_decrypted_vmsa(vcpu, save); 3428 } 3429 3430 static bool svm_check_exit_valid(u64 exit_code) 3431 { 3432 return (exit_code < ARRAY_SIZE(svm_exit_handlers) && 3433 svm_exit_handlers[exit_code]); 3434 } 3435 3436 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code) 3437 { 3438 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code); 3439 dump_vmcb(vcpu); 3440 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3441 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 3442 vcpu->run->internal.ndata = 2; 3443 vcpu->run->internal.data[0] = exit_code; 3444 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 3445 return 0; 3446 } 3447 3448 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code) 3449 { 3450 if (!svm_check_exit_valid(exit_code)) 3451 return svm_handle_invalid_exit(vcpu, exit_code); 3452 3453 #ifdef CONFIG_MITIGATION_RETPOLINE 3454 if (exit_code == SVM_EXIT_MSR) 3455 return msr_interception(vcpu); 3456 else if (exit_code == SVM_EXIT_VINTR) 3457 return interrupt_window_interception(vcpu); 3458 else if (exit_code == SVM_EXIT_INTR) 3459 return intr_interception(vcpu); 3460 else if (exit_code == SVM_EXIT_HLT || exit_code == SVM_EXIT_IDLE_HLT) 3461 return kvm_emulate_halt(vcpu); 3462 else if (exit_code == SVM_EXIT_NPF) 3463 return npf_interception(vcpu); 3464 #ifdef CONFIG_KVM_AMD_SEV 3465 else if (exit_code == SVM_EXIT_VMGEXIT) 3466 return sev_handle_vmgexit(vcpu); 3467 #endif 3468 #endif 3469 return svm_exit_handlers[exit_code](vcpu); 3470 } 3471 3472 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 3473 u64 *info1, u64 *info2, 3474 u32 *intr_info, u32 *error_code) 3475 { 3476 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3477 3478 *reason = control->exit_code; 3479 *info1 = control->exit_info_1; 3480 *info2 = control->exit_info_2; 3481 *intr_info = control->exit_int_info; 3482 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3483 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3484 *error_code = control->exit_int_info_err; 3485 else 3486 *error_code = 0; 3487 } 3488 3489 static void svm_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, 3490 u32 *error_code) 3491 { 3492 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; 3493 3494 *intr_info = control->event_inj; 3495 3496 if ((*intr_info & SVM_EXITINTINFO_VALID) && 3497 (*intr_info & SVM_EXITINTINFO_VALID_ERR)) 3498 *error_code = control->event_inj_err; 3499 else 3500 *error_code = 0; 3501 3502 } 3503 3504 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 3505 { 3506 struct vcpu_svm *svm = to_svm(vcpu); 3507 struct kvm_run *kvm_run = vcpu->run; 3508 u32 exit_code = svm->vmcb->control.exit_code; 3509 3510 /* SEV-ES guests must use the CR write traps to track CR registers. */ 3511 if (!sev_es_guest(vcpu->kvm)) { 3512 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE)) 3513 vcpu->arch.cr0 = svm->vmcb->save.cr0; 3514 if (npt_enabled) 3515 vcpu->arch.cr3 = svm->vmcb->save.cr3; 3516 } 3517 3518 if (is_guest_mode(vcpu)) { 3519 int vmexit; 3520 3521 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM); 3522 3523 vmexit = nested_svm_exit_special(svm); 3524 3525 if (vmexit == NESTED_EXIT_CONTINUE) 3526 vmexit = nested_svm_exit_handled(svm); 3527 3528 if (vmexit == NESTED_EXIT_DONE) 3529 return 1; 3530 } 3531 3532 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { 3533 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3534 kvm_run->fail_entry.hardware_entry_failure_reason 3535 = svm->vmcb->control.exit_code; 3536 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 3537 dump_vmcb(vcpu); 3538 return 0; 3539 } 3540 3541 if (exit_fastpath != EXIT_FASTPATH_NONE) 3542 return 1; 3543 3544 return svm_invoke_exit_handler(vcpu, exit_code); 3545 } 3546 3547 static int pre_svm_run(struct kvm_vcpu *vcpu) 3548 { 3549 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 3550 struct vcpu_svm *svm = to_svm(vcpu); 3551 3552 /* 3553 * If the previous vmrun of the vmcb occurred on a different physical 3554 * cpu, then mark the vmcb dirty and assign a new asid. Hardware's 3555 * vmcb clean bits are per logical CPU, as are KVM's asid assignments. 3556 */ 3557 if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) { 3558 svm->current_vmcb->asid_generation = 0; 3559 vmcb_mark_all_dirty(svm->vmcb); 3560 svm->current_vmcb->cpu = vcpu->cpu; 3561 } 3562 3563 if (sev_guest(vcpu->kvm)) 3564 return pre_sev_run(svm, vcpu->cpu); 3565 3566 /* FIXME: handle wraparound of asid_generation */ 3567 if (svm->current_vmcb->asid_generation != sd->asid_generation) 3568 new_asid(svm, sd); 3569 3570 return 0; 3571 } 3572 3573 static void svm_inject_nmi(struct kvm_vcpu *vcpu) 3574 { 3575 struct vcpu_svm *svm = to_svm(vcpu); 3576 3577 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; 3578 3579 if (svm->nmi_l1_to_l2) 3580 return; 3581 3582 /* 3583 * No need to manually track NMI masking when vNMI is enabled, hardware 3584 * automatically sets V_NMI_BLOCKING_MASK as appropriate, including the 3585 * case where software directly injects an NMI. 3586 */ 3587 if (!is_vnmi_enabled(svm)) { 3588 svm->nmi_masked = true; 3589 svm_set_iret_intercept(svm); 3590 } 3591 ++vcpu->stat.nmi_injections; 3592 } 3593 3594 static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu) 3595 { 3596 struct vcpu_svm *svm = to_svm(vcpu); 3597 3598 if (!is_vnmi_enabled(svm)) 3599 return false; 3600 3601 return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK); 3602 } 3603 3604 static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu) 3605 { 3606 struct vcpu_svm *svm = to_svm(vcpu); 3607 3608 if (!is_vnmi_enabled(svm)) 3609 return false; 3610 3611 if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK) 3612 return false; 3613 3614 svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK; 3615 vmcb_mark_dirty(svm->vmcb, VMCB_INTR); 3616 3617 /* 3618 * Because the pending NMI is serviced by hardware, KVM can't know when 3619 * the NMI is "injected", but for all intents and purposes, passing the 3620 * NMI off to hardware counts as injection. 3621 */ 3622 ++vcpu->stat.nmi_injections; 3623 3624 return true; 3625 } 3626 3627 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 3628 { 3629 struct vcpu_svm *svm = to_svm(vcpu); 3630 u32 type; 3631 3632 if (vcpu->arch.interrupt.soft) { 3633 if (svm_update_soft_interrupt_rip(vcpu)) 3634 return; 3635 3636 type = SVM_EVTINJ_TYPE_SOFT; 3637 } else { 3638 type = SVM_EVTINJ_TYPE_INTR; 3639 } 3640 3641 trace_kvm_inj_virq(vcpu->arch.interrupt.nr, 3642 vcpu->arch.interrupt.soft, reinjected); 3643 ++vcpu->stat.irq_injections; 3644 3645 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | 3646 SVM_EVTINJ_VALID | type; 3647 } 3648 3649 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, 3650 int trig_mode, int vector) 3651 { 3652 /* 3653 * apic->apicv_active must be read after vcpu->mode. 3654 * Pairs with smp_store_release in vcpu_enter_guest. 3655 */ 3656 bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE); 3657 3658 /* Note, this is called iff the local APIC is in-kernel. */ 3659 if (!READ_ONCE(vcpu->arch.apic->apicv_active)) { 3660 /* Process the interrupt via kvm_check_and_inject_events(). */ 3661 kvm_make_request(KVM_REQ_EVENT, vcpu); 3662 kvm_vcpu_kick(vcpu); 3663 return; 3664 } 3665 3666 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector); 3667 if (in_guest_mode) { 3668 /* 3669 * Signal the doorbell to tell hardware to inject the IRQ. If 3670 * the vCPU exits the guest before the doorbell chimes, hardware 3671 * will automatically process AVIC interrupts at the next VMRUN. 3672 */ 3673 avic_ring_doorbell(vcpu); 3674 } else { 3675 /* 3676 * Wake the vCPU if it was blocking. KVM will then detect the 3677 * pending IRQ when checking if the vCPU has a wake event. 3678 */ 3679 kvm_vcpu_wake_up(vcpu); 3680 } 3681 } 3682 3683 static void svm_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 3684 int trig_mode, int vector) 3685 { 3686 kvm_lapic_set_irr(vector, apic); 3687 3688 /* 3689 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in 3690 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before 3691 * the read of guest_mode. This guarantees that either VMRUN will see 3692 * and process the new vIRR entry, or that svm_complete_interrupt_delivery 3693 * will signal the doorbell if the CPU has already entered the guest. 3694 */ 3695 smp_mb__after_atomic(); 3696 svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector); 3697 } 3698 3699 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 3700 { 3701 struct vcpu_svm *svm = to_svm(vcpu); 3702 3703 /* 3704 * SEV-ES guests must always keep the CR intercepts cleared. CR 3705 * tracking is done using the CR write traps. 3706 */ 3707 if (sev_es_guest(vcpu->kvm)) 3708 return; 3709 3710 if (nested_svm_virtualize_tpr(vcpu)) 3711 return; 3712 3713 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 3714 3715 if (irr == -1) 3716 return; 3717 3718 if (tpr >= irr) 3719 svm_set_intercept(svm, INTERCEPT_CR8_WRITE); 3720 } 3721 3722 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) 3723 { 3724 struct vcpu_svm *svm = to_svm(vcpu); 3725 3726 if (is_vnmi_enabled(svm)) 3727 return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK; 3728 else 3729 return svm->nmi_masked; 3730 } 3731 3732 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 3733 { 3734 struct vcpu_svm *svm = to_svm(vcpu); 3735 3736 if (is_vnmi_enabled(svm)) { 3737 if (masked) 3738 svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK; 3739 else 3740 svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK; 3741 3742 } else { 3743 svm->nmi_masked = masked; 3744 if (masked) 3745 svm_set_iret_intercept(svm); 3746 else 3747 svm_clr_iret_intercept(svm); 3748 } 3749 } 3750 3751 bool svm_nmi_blocked(struct kvm_vcpu *vcpu) 3752 { 3753 struct vcpu_svm *svm = to_svm(vcpu); 3754 struct vmcb *vmcb = svm->vmcb; 3755 3756 if (!gif_set(svm)) 3757 return true; 3758 3759 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3760 return false; 3761 3762 if (svm_get_nmi_mask(vcpu)) 3763 return true; 3764 3765 return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK; 3766 } 3767 3768 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3769 { 3770 struct vcpu_svm *svm = to_svm(vcpu); 3771 if (svm->nested.nested_run_pending) 3772 return -EBUSY; 3773 3774 if (svm_nmi_blocked(vcpu)) 3775 return 0; 3776 3777 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 3778 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm)) 3779 return -EBUSY; 3780 return 1; 3781 } 3782 3783 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu) 3784 { 3785 struct vcpu_svm *svm = to_svm(vcpu); 3786 struct vmcb *vmcb = svm->vmcb; 3787 3788 if (!gif_set(svm)) 3789 return true; 3790 3791 if (is_guest_mode(vcpu)) { 3792 /* As long as interrupts are being delivered... */ 3793 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) 3794 ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF) 3795 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF)) 3796 return true; 3797 3798 /* ... vmexits aren't blocked by the interrupt shadow */ 3799 if (nested_exit_on_intr(svm)) 3800 return false; 3801 } else { 3802 if (!svm_get_if_flag(vcpu)) 3803 return true; 3804 } 3805 3806 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK); 3807 } 3808 3809 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 3810 { 3811 struct vcpu_svm *svm = to_svm(vcpu); 3812 3813 if (svm->nested.nested_run_pending) 3814 return -EBUSY; 3815 3816 if (svm_interrupt_blocked(vcpu)) 3817 return 0; 3818 3819 /* 3820 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 3821 * e.g. if the IRQ arrived asynchronously after checking nested events. 3822 */ 3823 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm)) 3824 return -EBUSY; 3825 3826 return 1; 3827 } 3828 3829 static void svm_enable_irq_window(struct kvm_vcpu *vcpu) 3830 { 3831 struct vcpu_svm *svm = to_svm(vcpu); 3832 3833 /* 3834 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes 3835 * 1, because that's a separate STGI/VMRUN intercept. The next time we 3836 * get that intercept, this function will be called again though and 3837 * we'll get the vintr intercept. However, if the vGIF feature is 3838 * enabled, the STGI interception will not occur. Enable the irq 3839 * window under the assumption that the hardware will set the GIF. 3840 */ 3841 if (vgif || gif_set(svm)) { 3842 /* 3843 * IRQ window is not needed when AVIC is enabled, 3844 * unless we have pending ExtINT since it cannot be injected 3845 * via AVIC. In such case, KVM needs to temporarily disable AVIC, 3846 * and fallback to injecting IRQ via V_IRQ. 3847 * 3848 * If running nested, AVIC is already locally inhibited 3849 * on this vCPU, therefore there is no need to request 3850 * the VM wide AVIC inhibition. 3851 */ 3852 if (!is_guest_mode(vcpu)) 3853 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN); 3854 3855 svm_set_vintr(svm); 3856 } 3857 } 3858 3859 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu) 3860 { 3861 struct vcpu_svm *svm = to_svm(vcpu); 3862 3863 /* 3864 * If NMIs are outright masked, i.e. the vCPU is already handling an 3865 * NMI, and KVM has not yet intercepted an IRET, then there is nothing 3866 * more to do at this time as KVM has already enabled IRET intercepts. 3867 * If KVM has already intercepted IRET, then single-step over the IRET, 3868 * as NMIs aren't architecturally unmasked until the IRET completes. 3869 * 3870 * If vNMI is enabled, KVM should never request an NMI window if NMIs 3871 * are masked, as KVM allows at most one to-be-injected NMI and one 3872 * pending NMI. If two NMIs arrive simultaneously, KVM will inject one 3873 * NMI and set V_NMI_PENDING for the other, but if and only if NMIs are 3874 * unmasked. KVM _will_ request an NMI window in some situations, e.g. 3875 * if the vCPU is in an STI shadow or if GIF=0, KVM can't immediately 3876 * inject the NMI. In those situations, KVM needs to single-step over 3877 * the STI shadow or intercept STGI. 3878 */ 3879 if (svm_get_nmi_mask(vcpu)) { 3880 WARN_ON_ONCE(is_vnmi_enabled(svm)); 3881 3882 if (!svm->awaiting_iret_completion) 3883 return; /* IRET will cause a vm exit */ 3884 } 3885 3886 /* 3887 * SEV-ES guests are responsible for signaling when a vCPU is ready to 3888 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e. 3889 * KVM can't intercept and single-step IRET to detect when NMIs are 3890 * unblocked (architecturally speaking). See SVM_VMGEXIT_NMI_COMPLETE. 3891 * 3892 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware 3893 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not 3894 * supported NAEs in the GHCB protocol. 3895 */ 3896 if (sev_es_guest(vcpu->kvm)) 3897 return; 3898 3899 if (!gif_set(svm)) { 3900 if (vgif) 3901 svm_set_intercept(svm, INTERCEPT_STGI); 3902 return; /* STGI will cause a vm exit */ 3903 } 3904 3905 /* 3906 * Something prevents NMI from been injected. Single step over possible 3907 * problem (IRET or exception injection or interrupt shadow) 3908 */ 3909 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); 3910 svm->nmi_singlestep = true; 3911 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); 3912 } 3913 3914 static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu) 3915 { 3916 struct vcpu_svm *svm = to_svm(vcpu); 3917 3918 /* 3919 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries. 3920 * A TLB flush for the current ASID flushes both "host" and "guest" TLB 3921 * entries, and thus is a superset of Hyper-V's fine grained flushing. 3922 */ 3923 kvm_hv_vcpu_purge_flush_tlb(vcpu); 3924 3925 /* 3926 * Flush only the current ASID even if the TLB flush was invoked via 3927 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all 3928 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and 3929 * unconditionally does a TLB flush on both nested VM-Enter and nested 3930 * VM-Exit (via kvm_mmu_reset_context()). 3931 */ 3932 if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) 3933 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3934 else 3935 svm->current_vmcb->asid_generation--; 3936 } 3937 3938 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu) 3939 { 3940 hpa_t root_tdp = vcpu->arch.mmu->root.hpa; 3941 3942 /* 3943 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly 3944 * flush the NPT mappings via hypercall as flushing the ASID only 3945 * affects virtual to physical mappings, it does not invalidate guest 3946 * physical to host physical mappings. 3947 */ 3948 if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp)) 3949 hyperv_flush_guest_mapping(root_tdp); 3950 3951 svm_flush_tlb_asid(vcpu); 3952 } 3953 3954 static void svm_flush_tlb_all(struct kvm_vcpu *vcpu) 3955 { 3956 /* 3957 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB 3958 * flushes should be routed to hv_flush_remote_tlbs() without requesting 3959 * a "regular" remote flush. Reaching this point means either there's 3960 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of 3961 * which might be fatal to the guest. Yell, but try to recover. 3962 */ 3963 if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu))) 3964 hv_flush_remote_tlbs(vcpu->kvm); 3965 3966 svm_flush_tlb_asid(vcpu); 3967 } 3968 3969 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) 3970 { 3971 struct vcpu_svm *svm = to_svm(vcpu); 3972 3973 invlpga(gva, svm->vmcb->control.asid); 3974 } 3975 3976 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) 3977 { 3978 struct vcpu_svm *svm = to_svm(vcpu); 3979 3980 if (nested_svm_virtualize_tpr(vcpu)) 3981 return; 3982 3983 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) { 3984 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; 3985 kvm_set_cr8(vcpu, cr8); 3986 } 3987 } 3988 3989 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) 3990 { 3991 struct vcpu_svm *svm = to_svm(vcpu); 3992 u64 cr8; 3993 3994 if (nested_svm_virtualize_tpr(vcpu)) 3995 return; 3996 3997 cr8 = kvm_get_cr8(vcpu); 3998 svm->vmcb->control.int_ctl &= ~V_TPR_MASK; 3999 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; 4000 } 4001 4002 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector, 4003 int type) 4004 { 4005 bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT); 4006 bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT); 4007 struct vcpu_svm *svm = to_svm(vcpu); 4008 4009 /* 4010 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's 4011 * associated with the original soft exception/interrupt. next_rip is 4012 * cleared on all exits that can occur while vectoring an event, so KVM 4013 * needs to manually set next_rip for re-injection. Unlike the !nrips 4014 * case below, this needs to be done if and only if KVM is re-injecting 4015 * the same event, i.e. if the event is a soft exception/interrupt, 4016 * otherwise next_rip is unused on VMRUN. 4017 */ 4018 if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) && 4019 kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase)) 4020 svm->vmcb->control.next_rip = svm->soft_int_next_rip; 4021 /* 4022 * If NRIPS isn't enabled, KVM must manually advance RIP prior to 4023 * injecting the soft exception/interrupt. That advancement needs to 4024 * be unwound if vectoring didn't complete. Note, the new event may 4025 * not be the injected event, e.g. if KVM injected an INTn, the INTn 4026 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will 4027 * be the reported vectored event, but RIP still needs to be unwound. 4028 */ 4029 else if (!nrips && (is_soft || is_exception) && 4030 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase)) 4031 kvm_rip_write(vcpu, svm->soft_int_old_rip); 4032 } 4033 4034 static void svm_complete_interrupts(struct kvm_vcpu *vcpu) 4035 { 4036 struct vcpu_svm *svm = to_svm(vcpu); 4037 u8 vector; 4038 int type; 4039 u32 exitintinfo = svm->vmcb->control.exit_int_info; 4040 bool nmi_l1_to_l2 = svm->nmi_l1_to_l2; 4041 bool soft_int_injected = svm->soft_int_injected; 4042 4043 svm->nmi_l1_to_l2 = false; 4044 svm->soft_int_injected = false; 4045 4046 /* 4047 * If we've made progress since setting awaiting_iret_completion, we've 4048 * executed an IRET and can allow NMI injection. 4049 */ 4050 if (svm->awaiting_iret_completion && 4051 kvm_rip_read(vcpu) != svm->nmi_iret_rip) { 4052 svm->awaiting_iret_completion = false; 4053 svm->nmi_masked = false; 4054 kvm_make_request(KVM_REQ_EVENT, vcpu); 4055 } 4056 4057 vcpu->arch.nmi_injected = false; 4058 kvm_clear_exception_queue(vcpu); 4059 kvm_clear_interrupt_queue(vcpu); 4060 4061 if (!(exitintinfo & SVM_EXITINTINFO_VALID)) 4062 return; 4063 4064 kvm_make_request(KVM_REQ_EVENT, vcpu); 4065 4066 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; 4067 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; 4068 4069 if (soft_int_injected) 4070 svm_complete_soft_interrupt(vcpu, vector, type); 4071 4072 switch (type) { 4073 case SVM_EXITINTINFO_TYPE_NMI: 4074 vcpu->arch.nmi_injected = true; 4075 svm->nmi_l1_to_l2 = nmi_l1_to_l2; 4076 break; 4077 case SVM_EXITINTINFO_TYPE_EXEPT: { 4078 u32 error_code = 0; 4079 4080 /* 4081 * Never re-inject a #VC exception. 4082 */ 4083 if (vector == X86_TRAP_VC) 4084 break; 4085 4086 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) 4087 error_code = svm->vmcb->control.exit_int_info_err; 4088 4089 kvm_requeue_exception(vcpu, vector, 4090 exitintinfo & SVM_EXITINTINFO_VALID_ERR, 4091 error_code); 4092 break; 4093 } 4094 case SVM_EXITINTINFO_TYPE_INTR: 4095 kvm_queue_interrupt(vcpu, vector, false); 4096 break; 4097 case SVM_EXITINTINFO_TYPE_SOFT: 4098 kvm_queue_interrupt(vcpu, vector, true); 4099 break; 4100 default: 4101 break; 4102 } 4103 4104 } 4105 4106 static void svm_cancel_injection(struct kvm_vcpu *vcpu) 4107 { 4108 struct vcpu_svm *svm = to_svm(vcpu); 4109 struct vmcb_control_area *control = &svm->vmcb->control; 4110 4111 control->exit_int_info = control->event_inj; 4112 control->exit_int_info_err = control->event_inj_err; 4113 control->event_inj = 0; 4114 svm_complete_interrupts(vcpu); 4115 } 4116 4117 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu) 4118 { 4119 if (to_kvm_sev_info(vcpu->kvm)->need_init) 4120 return -EINVAL; 4121 4122 return 1; 4123 } 4124 4125 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 4126 { 4127 struct vcpu_svm *svm = to_svm(vcpu); 4128 struct vmcb_control_area *control = &svm->vmcb->control; 4129 4130 /* 4131 * Next RIP must be provided as IRQs are disabled, and accessing guest 4132 * memory to decode the instruction might fault, i.e. might sleep. 4133 */ 4134 if (!nrips || !control->next_rip) 4135 return EXIT_FASTPATH_NONE; 4136 4137 if (is_guest_mode(vcpu)) 4138 return EXIT_FASTPATH_NONE; 4139 4140 switch (control->exit_code) { 4141 case SVM_EXIT_MSR: 4142 if (!control->exit_info_1) 4143 break; 4144 return handle_fastpath_wrmsr(vcpu); 4145 case SVM_EXIT_HLT: 4146 return handle_fastpath_hlt(vcpu); 4147 case SVM_EXIT_INVD: 4148 return handle_fastpath_invd(vcpu); 4149 default: 4150 break; 4151 } 4152 4153 return EXIT_FASTPATH_NONE; 4154 } 4155 4156 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted) 4157 { 4158 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu); 4159 struct vcpu_svm *svm = to_svm(vcpu); 4160 4161 guest_state_enter_irqoff(); 4162 4163 /* 4164 * Set RFLAGS.IF prior to VMRUN, as the host's RFLAGS.IF at the time of 4165 * VMRUN controls whether or not physical IRQs are masked (KVM always 4166 * runs with V_INTR_MASKING_MASK). Toggle RFLAGS.IF here to avoid the 4167 * temptation to do STI+VMRUN+CLI, as AMD CPUs bleed the STI shadow 4168 * into guest state if delivery of an event during VMRUN triggers a 4169 * #VMEXIT, and the guest_state transitions already tell lockdep that 4170 * IRQs are being enabled/disabled. Note! GIF=0 for the entirety of 4171 * this path, so IRQs aren't actually unmasked while running host code. 4172 */ 4173 raw_local_irq_enable(); 4174 4175 amd_clear_divider(); 4176 4177 if (sev_es_guest(vcpu->kvm)) 4178 __svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted, 4179 sev_es_host_save_area(sd)); 4180 else 4181 __svm_vcpu_run(svm, spec_ctrl_intercepted); 4182 4183 raw_local_irq_disable(); 4184 4185 guest_state_exit_irqoff(); 4186 } 4187 4188 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags) 4189 { 4190 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT; 4191 struct vcpu_svm *svm = to_svm(vcpu); 4192 bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL); 4193 4194 trace_kvm_entry(vcpu, force_immediate_exit); 4195 4196 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4197 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4198 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4199 4200 /* 4201 * Disable singlestep if we're injecting an interrupt/exception. 4202 * We don't want our modified rflags to be pushed on the stack where 4203 * we might not be able to easily reset them if we disabled NMI 4204 * singlestep later. 4205 */ 4206 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { 4207 /* 4208 * Event injection happens before external interrupts cause a 4209 * vmexit and interrupts are disabled here, so smp_send_reschedule 4210 * is enough to force an immediate vmexit. 4211 */ 4212 disable_nmi_singlestep(svm); 4213 force_immediate_exit = true; 4214 } 4215 4216 if (force_immediate_exit) 4217 smp_send_reschedule(vcpu->cpu); 4218 4219 if (pre_svm_run(vcpu)) { 4220 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4221 vcpu->run->fail_entry.hardware_entry_failure_reason = SVM_EXIT_ERR; 4222 vcpu->run->fail_entry.cpu = vcpu->cpu; 4223 return EXIT_FASTPATH_EXIT_USERSPACE; 4224 } 4225 4226 sync_lapic_to_cr8(vcpu); 4227 4228 if (unlikely(svm->asid != svm->vmcb->control.asid)) { 4229 svm->vmcb->control.asid = svm->asid; 4230 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 4231 } 4232 svm->vmcb->save.cr2 = vcpu->arch.cr2; 4233 4234 svm_hv_update_vp_id(svm->vmcb, vcpu); 4235 4236 /* 4237 * Run with all-zero DR6 unless the guest can write DR6 freely, so that 4238 * KVM can get the exact cause of a #DB. Note, loading guest DR6 from 4239 * KVM's snapshot is only necessary when DR accesses won't exit. 4240 */ 4241 if (unlikely(run_flags & KVM_RUN_LOAD_GUEST_DR6)) 4242 svm_set_dr6(vcpu, vcpu->arch.dr6); 4243 else if (likely(!(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))) 4244 svm_set_dr6(vcpu, DR6_ACTIVE_LOW); 4245 4246 clgi(); 4247 kvm_load_guest_xsave_state(vcpu); 4248 4249 /* 4250 * Hardware only context switches DEBUGCTL if LBR virtualization is 4251 * enabled. Manually load DEBUGCTL if necessary (and restore it after 4252 * VM-Exit), as running with the host's DEBUGCTL can negatively affect 4253 * guest state and can even be fatal, e.g. due to Bus Lock Detect. 4254 */ 4255 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4256 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4257 update_debugctlmsr(svm->vmcb->save.dbgctl); 4258 4259 kvm_wait_lapic_expire(vcpu); 4260 4261 /* 4262 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 4263 * it's non-zero. Since vmentry is serialising on affected CPUs, there 4264 * is no need to worry about the conditional branch over the wrmsr 4265 * being speculatively taken. 4266 */ 4267 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4268 x86_spec_ctrl_set_guest(svm->virt_spec_ctrl); 4269 4270 svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted); 4271 4272 if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL)) 4273 x86_spec_ctrl_restore_host(svm->virt_spec_ctrl); 4274 4275 if (!sev_es_guest(vcpu->kvm)) { 4276 vcpu->arch.cr2 = svm->vmcb->save.cr2; 4277 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; 4278 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; 4279 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; 4280 } 4281 vcpu->arch.regs_dirty = 0; 4282 4283 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4284 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 4285 4286 if (!(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) && 4287 vcpu->arch.host_debugctl != svm->vmcb->save.dbgctl) 4288 update_debugctlmsr(vcpu->arch.host_debugctl); 4289 4290 kvm_load_host_xsave_state(vcpu); 4291 stgi(); 4292 4293 /* Any pending NMI will happen here */ 4294 4295 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) 4296 kvm_after_interrupt(vcpu); 4297 4298 sync_cr8_to_lapic(vcpu); 4299 4300 svm->next_rip = 0; 4301 if (is_guest_mode(vcpu)) { 4302 nested_sync_control_from_vmcb02(svm); 4303 4304 /* Track VMRUNs that have made past consistency checking */ 4305 if (svm->nested.nested_run_pending && 4306 svm->vmcb->control.exit_code != SVM_EXIT_ERR) 4307 ++vcpu->stat.nested_run; 4308 4309 svm->nested.nested_run_pending = 0; 4310 } 4311 4312 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; 4313 vmcb_mark_all_clean(svm->vmcb); 4314 4315 /* if exit due to PF check for async PF */ 4316 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) 4317 vcpu->arch.apf.host_apf_flags = 4318 kvm_read_and_reset_apf_flags(); 4319 4320 vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET; 4321 4322 /* 4323 * We need to handle MC intercepts here before the vcpu has a chance to 4324 * change the physical cpu 4325 */ 4326 if (unlikely(svm->vmcb->control.exit_code == 4327 SVM_EXIT_EXCP_BASE + MC_VECTOR)) 4328 svm_handle_mce(vcpu); 4329 4330 trace_kvm_exit(vcpu, KVM_ISA_SVM); 4331 4332 svm_complete_interrupts(vcpu); 4333 4334 return svm_exit_handlers_fastpath(vcpu); 4335 } 4336 4337 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 4338 int root_level) 4339 { 4340 struct vcpu_svm *svm = to_svm(vcpu); 4341 unsigned long cr3; 4342 4343 if (npt_enabled) { 4344 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa); 4345 vmcb_mark_dirty(svm->vmcb, VMCB_NPT); 4346 4347 hv_track_root_tdp(vcpu, root_hpa); 4348 4349 cr3 = vcpu->arch.cr3; 4350 } else if (root_level >= PT64_ROOT_4LEVEL) { 4351 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu); 4352 } else { 4353 /* PCID in the guest should be impossible with a 32-bit MMU. */ 4354 WARN_ON_ONCE(kvm_get_active_pcid(vcpu)); 4355 cr3 = root_hpa; 4356 } 4357 4358 svm->vmcb->save.cr3 = cr3; 4359 vmcb_mark_dirty(svm->vmcb, VMCB_CR); 4360 } 4361 4362 static void 4363 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4364 { 4365 /* 4366 * Patch in the VMMCALL instruction: 4367 */ 4368 hypercall[0] = 0x0f; 4369 hypercall[1] = 0x01; 4370 hypercall[2] = 0xd9; 4371 } 4372 4373 /* 4374 * The kvm parameter can be NULL (module initialization, or invocation before 4375 * VM creation). Be sure to check the kvm parameter before using it. 4376 */ 4377 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index) 4378 { 4379 switch (index) { 4380 case MSR_IA32_MCG_EXT_CTL: 4381 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 4382 return false; 4383 case MSR_IA32_SMBASE: 4384 if (!IS_ENABLED(CONFIG_KVM_SMM)) 4385 return false; 4386 /* SEV-ES guests do not support SMM, so report false */ 4387 if (kvm && sev_es_guest(kvm)) 4388 return false; 4389 break; 4390 default: 4391 break; 4392 } 4393 4394 return true; 4395 } 4396 4397 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 4398 { 4399 struct vcpu_svm *svm = to_svm(vcpu); 4400 4401 /* 4402 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM 4403 * can only disable all variants of by disallowing CR4.OSXSAVE from 4404 * being set. As a result, if the host has XSAVE and XSAVES, and the 4405 * guest has XSAVE enabled, the guest can execute XSAVES without 4406 * faulting. Treat XSAVES as enabled in this case regardless of 4407 * whether it's advertised to the guest so that KVM context switches 4408 * XSS on VM-Enter/VM-Exit. Failure to do so would effectively give 4409 * the guest read/write access to the host's XSS. 4410 */ 4411 guest_cpu_cap_change(vcpu, X86_FEATURE_XSAVES, 4412 boot_cpu_has(X86_FEATURE_XSAVES) && 4413 guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE)); 4414 4415 /* 4416 * Intercept VMLOAD if the vCPU model is Intel in order to emulate that 4417 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing 4418 * SVM on Intel is bonkers and extremely unlikely to work). 4419 */ 4420 if (guest_cpuid_is_intel_compatible(vcpu)) 4421 guest_cpu_cap_clear(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD); 4422 4423 if (sev_guest(vcpu->kvm)) 4424 sev_vcpu_after_set_cpuid(svm); 4425 } 4426 4427 static bool svm_has_wbinvd_exit(void) 4428 { 4429 return true; 4430 } 4431 4432 #define PRE_EX(exit) { .exit_code = (exit), \ 4433 .stage = X86_ICPT_PRE_EXCEPT, } 4434 #define POST_EX(exit) { .exit_code = (exit), \ 4435 .stage = X86_ICPT_POST_EXCEPT, } 4436 #define POST_MEM(exit) { .exit_code = (exit), \ 4437 .stage = X86_ICPT_POST_MEMACCESS, } 4438 4439 static const struct __x86_intercept { 4440 u32 exit_code; 4441 enum x86_intercept_stage stage; 4442 } x86_intercept_map[] = { 4443 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0), 4444 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0), 4445 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0), 4446 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0), 4447 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0), 4448 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0), 4449 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0), 4450 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ), 4451 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ), 4452 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE), 4453 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE), 4454 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ), 4455 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ), 4456 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE), 4457 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE), 4458 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN), 4459 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL), 4460 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD), 4461 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE), 4462 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI), 4463 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI), 4464 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT), 4465 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA), 4466 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP), 4467 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR), 4468 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT), 4469 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG), 4470 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD), 4471 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD), 4472 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR), 4473 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC), 4474 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR), 4475 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC), 4476 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID), 4477 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM), 4478 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE), 4479 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF), 4480 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF), 4481 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT), 4482 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET), 4483 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP), 4484 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT), 4485 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO), 4486 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO), 4487 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO), 4488 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO), 4489 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV), 4490 }; 4491 4492 #undef PRE_EX 4493 #undef POST_EX 4494 #undef POST_MEM 4495 4496 static int svm_check_intercept(struct kvm_vcpu *vcpu, 4497 struct x86_instruction_info *info, 4498 enum x86_intercept_stage stage, 4499 struct x86_exception *exception) 4500 { 4501 struct vcpu_svm *svm = to_svm(vcpu); 4502 int vmexit, ret = X86EMUL_CONTINUE; 4503 struct __x86_intercept icpt_info; 4504 struct vmcb *vmcb = svm->vmcb; 4505 4506 if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) 4507 goto out; 4508 4509 icpt_info = x86_intercept_map[info->intercept]; 4510 4511 if (stage != icpt_info.stage) 4512 goto out; 4513 4514 switch (icpt_info.exit_code) { 4515 case SVM_EXIT_READ_CR0: 4516 if (info->intercept == x86_intercept_cr_read) 4517 icpt_info.exit_code += info->modrm_reg; 4518 break; 4519 case SVM_EXIT_WRITE_CR0: { 4520 unsigned long cr0, val; 4521 4522 if (info->intercept == x86_intercept_cr_write) 4523 icpt_info.exit_code += info->modrm_reg; 4524 4525 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || 4526 info->intercept == x86_intercept_clts) 4527 break; 4528 4529 if (!(vmcb12_is_intercept(&svm->nested.ctl, 4530 INTERCEPT_SELECTIVE_CR0))) 4531 break; 4532 4533 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; 4534 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK; 4535 4536 if (info->intercept == x86_intercept_lmsw) { 4537 cr0 &= 0xfUL; 4538 val &= 0xfUL; 4539 /* lmsw can't clear PE - catch this here */ 4540 if (cr0 & X86_CR0_PE) 4541 val |= X86_CR0_PE; 4542 } 4543 4544 if (cr0 ^ val) 4545 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; 4546 4547 break; 4548 } 4549 case SVM_EXIT_READ_DR0: 4550 case SVM_EXIT_WRITE_DR0: 4551 icpt_info.exit_code += info->modrm_reg; 4552 break; 4553 case SVM_EXIT_MSR: 4554 if (info->intercept == x86_intercept_wrmsr) 4555 vmcb->control.exit_info_1 = 1; 4556 else 4557 vmcb->control.exit_info_1 = 0; 4558 break; 4559 case SVM_EXIT_PAUSE: 4560 /* 4561 * We get this for NOP only, but pause 4562 * is rep not, check this here 4563 */ 4564 if (info->rep_prefix != REPE_PREFIX) 4565 goto out; 4566 break; 4567 case SVM_EXIT_IOIO: { 4568 u64 exit_info; 4569 u32 bytes; 4570 4571 if (info->intercept == x86_intercept_in || 4572 info->intercept == x86_intercept_ins) { 4573 exit_info = ((info->src_val & 0xffff) << 16) | 4574 SVM_IOIO_TYPE_MASK; 4575 bytes = info->dst_bytes; 4576 } else { 4577 exit_info = (info->dst_val & 0xffff) << 16; 4578 bytes = info->src_bytes; 4579 } 4580 4581 if (info->intercept == x86_intercept_outs || 4582 info->intercept == x86_intercept_ins) 4583 exit_info |= SVM_IOIO_STR_MASK; 4584 4585 if (info->rep_prefix) 4586 exit_info |= SVM_IOIO_REP_MASK; 4587 4588 bytes = min(bytes, 4u); 4589 4590 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; 4591 4592 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); 4593 4594 vmcb->control.exit_info_1 = exit_info; 4595 vmcb->control.exit_info_2 = info->next_rip; 4596 4597 break; 4598 } 4599 default: 4600 break; 4601 } 4602 4603 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ 4604 if (static_cpu_has(X86_FEATURE_NRIPS)) 4605 vmcb->control.next_rip = info->next_rip; 4606 vmcb->control.exit_code = icpt_info.exit_code; 4607 vmexit = nested_svm_exit_handled(svm); 4608 4609 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED 4610 : X86EMUL_CONTINUE; 4611 4612 out: 4613 return ret; 4614 } 4615 4616 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) 4617 { 4618 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR) 4619 vcpu->arch.at_instruction_boundary = true; 4620 } 4621 4622 static void svm_setup_mce(struct kvm_vcpu *vcpu) 4623 { 4624 /* [63:9] are reserved. */ 4625 vcpu->arch.mcg_cap &= 0x1ff; 4626 } 4627 4628 #ifdef CONFIG_KVM_SMM 4629 bool svm_smi_blocked(struct kvm_vcpu *vcpu) 4630 { 4631 struct vcpu_svm *svm = to_svm(vcpu); 4632 4633 /* Per APM Vol.2 15.22.2 "Response to SMI" */ 4634 if (!gif_set(svm)) 4635 return true; 4636 4637 return is_smm(vcpu); 4638 } 4639 4640 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4641 { 4642 struct vcpu_svm *svm = to_svm(vcpu); 4643 if (svm->nested.nested_run_pending) 4644 return -EBUSY; 4645 4646 if (svm_smi_blocked(vcpu)) 4647 return 0; 4648 4649 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */ 4650 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm)) 4651 return -EBUSY; 4652 4653 return 1; 4654 } 4655 4656 static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 4657 { 4658 struct vcpu_svm *svm = to_svm(vcpu); 4659 struct kvm_host_map map_save; 4660 int ret; 4661 4662 if (!is_guest_mode(vcpu)) 4663 return 0; 4664 4665 /* 4666 * 32-bit SMRAM format doesn't preserve EFER and SVM state. Userspace is 4667 * responsible for ensuring nested SVM and SMIs are mutually exclusive. 4668 */ 4669 4670 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4671 return 1; 4672 4673 smram->smram64.svm_guest_flag = 1; 4674 smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa; 4675 4676 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; 4677 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; 4678 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; 4679 4680 ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW); 4681 if (ret) 4682 return ret; 4683 4684 /* 4685 * KVM uses VMCB01 to store L1 host state while L2 runs but 4686 * VMCB01 is going to be used during SMM and thus the state will 4687 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save 4688 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the 4689 * format of the area is identical to guest save area offsetted 4690 * by 0x400 (matches the offset of 'struct vmcb_save_area' 4691 * within 'struct vmcb'). Note: HSAVE area may also be used by 4692 * L1 hypervisor to save additional host context (e.g. KVM does 4693 * that, see svm_prepare_switch_to_guest()) which must be 4694 * preserved. 4695 */ 4696 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4697 return 1; 4698 4699 BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400); 4700 4701 svm_copy_vmrun_state(map_save.hva + 0x400, 4702 &svm->vmcb01.ptr->save); 4703 4704 kvm_vcpu_unmap(vcpu, &map_save); 4705 return 0; 4706 } 4707 4708 static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 4709 { 4710 struct vcpu_svm *svm = to_svm(vcpu); 4711 struct kvm_host_map map, map_save; 4712 struct vmcb *vmcb12; 4713 int ret; 4714 4715 const struct kvm_smram_state_64 *smram64 = &smram->smram64; 4716 4717 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) 4718 return 0; 4719 4720 /* Non-zero if SMI arrived while vCPU was in guest mode. */ 4721 if (!smram64->svm_guest_flag) 4722 return 0; 4723 4724 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) 4725 return 1; 4726 4727 if (!(smram64->efer & EFER_SVME)) 4728 return 1; 4729 4730 if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map)) 4731 return 1; 4732 4733 ret = 1; 4734 if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save)) 4735 goto unmap_map; 4736 4737 if (svm_allocate_nested(svm)) 4738 goto unmap_save; 4739 4740 /* 4741 * Restore L1 host state from L1 HSAVE area as VMCB01 was 4742 * used during SMM (see svm_enter_smm()) 4743 */ 4744 4745 svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400); 4746 4747 /* 4748 * Enter the nested guest now 4749 */ 4750 4751 vmcb_mark_all_dirty(svm->vmcb01.ptr); 4752 4753 vmcb12 = map.hva; 4754 nested_copy_vmcb_control_to_cache(svm, &vmcb12->control); 4755 nested_copy_vmcb_save_to_cache(svm, &vmcb12->save); 4756 ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false); 4757 4758 if (ret) 4759 goto unmap_save; 4760 4761 svm->nested.nested_run_pending = 1; 4762 4763 unmap_save: 4764 kvm_vcpu_unmap(vcpu, &map_save); 4765 unmap_map: 4766 kvm_vcpu_unmap(vcpu, &map); 4767 return ret; 4768 } 4769 4770 static void svm_enable_smi_window(struct kvm_vcpu *vcpu) 4771 { 4772 struct vcpu_svm *svm = to_svm(vcpu); 4773 4774 if (!gif_set(svm)) { 4775 if (vgif) 4776 svm_set_intercept(svm, INTERCEPT_STGI); 4777 /* STGI will cause a vm exit */ 4778 } else { 4779 /* We must be in SMM; RSM will cause a vmexit anyway. */ 4780 } 4781 } 4782 #endif 4783 4784 static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 4785 void *insn, int insn_len) 4786 { 4787 struct vcpu_svm *svm = to_svm(vcpu); 4788 bool smep, smap, is_user; 4789 u64 error_code; 4790 4791 /* Check that emulation is possible during event vectoring */ 4792 if ((svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK) && 4793 !kvm_can_emulate_event_vectoring(emul_type)) 4794 return X86EMUL_UNHANDLEABLE_VECTORING; 4795 4796 /* Emulation is always possible when KVM has access to all guest state. */ 4797 if (!sev_guest(vcpu->kvm)) 4798 return X86EMUL_CONTINUE; 4799 4800 /* #UD and #GP should never be intercepted for SEV guests. */ 4801 WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | 4802 EMULTYPE_TRAP_UD_FORCED | 4803 EMULTYPE_VMWARE_GP)); 4804 4805 /* 4806 * Emulation is impossible for SEV-ES guests as KVM doesn't have access 4807 * to guest register state. 4808 */ 4809 if (sev_es_guest(vcpu->kvm)) 4810 return X86EMUL_RETRY_INSTR; 4811 4812 /* 4813 * Emulation is possible if the instruction is already decoded, e.g. 4814 * when completing I/O after returning from userspace. 4815 */ 4816 if (emul_type & EMULTYPE_NO_DECODE) 4817 return X86EMUL_CONTINUE; 4818 4819 /* 4820 * Emulation is possible for SEV guests if and only if a prefilled 4821 * buffer containing the bytes of the intercepted instruction is 4822 * available. SEV guest memory is encrypted with a guest specific key 4823 * and cannot be decrypted by KVM, i.e. KVM would read ciphertext and 4824 * decode garbage. 4825 * 4826 * If KVM is NOT trying to simply skip an instruction, inject #UD if 4827 * KVM reached this point without an instruction buffer. In practice, 4828 * this path should never be hit by a well-behaved guest, e.g. KVM 4829 * doesn't intercept #UD or #GP for SEV guests, but this path is still 4830 * theoretically reachable, e.g. via unaccelerated fault-like AVIC 4831 * access, and needs to be handled by KVM to avoid putting the guest 4832 * into an infinite loop. Injecting #UD is somewhat arbitrary, but 4833 * its the least awful option given lack of insight into the guest. 4834 * 4835 * If KVM is trying to skip an instruction, simply resume the guest. 4836 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM 4837 * will attempt to re-inject the INT3/INTO and skip the instruction. 4838 * In that scenario, retrying the INT3/INTO and hoping the guest will 4839 * make forward progress is the only option that has a chance of 4840 * success (and in practice it will work the vast majority of the time). 4841 */ 4842 if (unlikely(!insn)) { 4843 if (emul_type & EMULTYPE_SKIP) 4844 return X86EMUL_UNHANDLEABLE; 4845 4846 kvm_queue_exception(vcpu, UD_VECTOR); 4847 return X86EMUL_PROPAGATE_FAULT; 4848 } 4849 4850 /* 4851 * Emulate for SEV guests if the insn buffer is not empty. The buffer 4852 * will be empty if the DecodeAssist microcode cannot fetch bytes for 4853 * the faulting instruction because the code fetch itself faulted, e.g. 4854 * the guest attempted to fetch from emulated MMIO or a guest page 4855 * table used to translate CS:RIP resides in emulated MMIO. 4856 */ 4857 if (likely(insn_len)) 4858 return X86EMUL_CONTINUE; 4859 4860 /* 4861 * Detect and workaround Errata 1096 Fam_17h_00_0Fh. 4862 * 4863 * Errata: 4864 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is 4865 * possible that CPU microcode implementing DecodeAssist will fail to 4866 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly 4867 * be '0'. This happens because microcode reads CS:RIP using a _data_ 4868 * loap uop with CPL=0 privileges. If the load hits a SMAP #PF, ucode 4869 * gives up and does not fill the instruction bytes buffer. 4870 * 4871 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU 4872 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler 4873 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the 4874 * GuestIntrBytes field of the VMCB. 4875 * 4876 * This does _not_ mean that the erratum has been encountered, as the 4877 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate 4878 * #PF, e.g. if the guest attempt to execute from emulated MMIO and 4879 * encountered a reserved/not-present #PF. 4880 * 4881 * To hit the erratum, the following conditions must be true: 4882 * 1. CR4.SMAP=1 (obviously). 4883 * 2. CR4.SMEP=0 || CPL=3. If SMEP=1 and CPL<3, the erratum cannot 4884 * have been hit as the guest would have encountered a SMEP 4885 * violation #PF, not a #NPF. 4886 * 3. The #NPF is not due to a code fetch, in which case failure to 4887 * retrieve the instruction bytes is legitimate (see abvoe). 4888 * 4889 * In addition, don't apply the erratum workaround if the #NPF occurred 4890 * while translating guest page tables (see below). 4891 */ 4892 error_code = svm->vmcb->control.exit_info_1; 4893 if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK)) 4894 goto resume_guest; 4895 4896 smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP); 4897 smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP); 4898 is_user = svm_get_cpl(vcpu) == 3; 4899 if (smap && (!smep || is_user)) { 4900 pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n"); 4901 4902 /* 4903 * If the fault occurred in userspace, arbitrarily inject #GP 4904 * to avoid killing the guest and to hopefully avoid confusing 4905 * the guest kernel too much, e.g. injecting #PF would not be 4906 * coherent with respect to the guest's page tables. Request 4907 * triple fault if the fault occurred in the kernel as there's 4908 * no fault that KVM can inject without confusing the guest. 4909 * In practice, the triple fault is moot as no sane SEV kernel 4910 * will execute from user memory while also running with SMAP=1. 4911 */ 4912 if (is_user) 4913 kvm_inject_gp(vcpu, 0); 4914 else 4915 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4916 return X86EMUL_PROPAGATE_FAULT; 4917 } 4918 4919 resume_guest: 4920 /* 4921 * If the erratum was not hit, simply resume the guest and let it fault 4922 * again. While awful, e.g. the vCPU may get stuck in an infinite loop 4923 * if the fault is at CPL=0, it's the lesser of all evils. Exiting to 4924 * userspace will kill the guest, and letting the emulator read garbage 4925 * will yield random behavior and potentially corrupt the guest. 4926 * 4927 * Simply resuming the guest is technically not a violation of the SEV 4928 * architecture. AMD's APM states that all code fetches and page table 4929 * accesses for SEV guest are encrypted, regardless of the C-Bit. The 4930 * APM also states that encrypted accesses to MMIO are "ignored", but 4931 * doesn't explicitly define "ignored", i.e. doing nothing and letting 4932 * the guest spin is technically "ignoring" the access. 4933 */ 4934 return X86EMUL_RETRY_INSTR; 4935 } 4936 4937 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 4938 { 4939 struct vcpu_svm *svm = to_svm(vcpu); 4940 4941 return !gif_set(svm); 4942 } 4943 4944 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4945 { 4946 if (!sev_es_guest(vcpu->kvm)) 4947 return kvm_vcpu_deliver_sipi_vector(vcpu, vector); 4948 4949 sev_vcpu_deliver_sipi_vector(vcpu, vector); 4950 } 4951 4952 static void svm_vm_destroy(struct kvm *kvm) 4953 { 4954 avic_vm_destroy(kvm); 4955 sev_vm_destroy(kvm); 4956 4957 svm_srso_vm_destroy(); 4958 } 4959 4960 static int svm_vm_init(struct kvm *kvm) 4961 { 4962 int type = kvm->arch.vm_type; 4963 4964 if (type != KVM_X86_DEFAULT_VM && 4965 type != KVM_X86_SW_PROTECTED_VM) { 4966 kvm->arch.has_protected_state = 4967 (type == KVM_X86_SEV_ES_VM || type == KVM_X86_SNP_VM); 4968 to_kvm_sev_info(kvm)->need_init = true; 4969 4970 kvm->arch.has_private_mem = (type == KVM_X86_SNP_VM); 4971 kvm->arch.pre_fault_allowed = !kvm->arch.has_private_mem; 4972 } 4973 4974 if (!pause_filter_count || !pause_filter_thresh) 4975 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE); 4976 4977 if (enable_apicv) { 4978 int ret = avic_vm_init(kvm); 4979 if (ret) 4980 return ret; 4981 } 4982 4983 svm_srso_vm_init(); 4984 return 0; 4985 } 4986 4987 static void *svm_alloc_apic_backing_page(struct kvm_vcpu *vcpu) 4988 { 4989 struct page *page = snp_safe_alloc_page(); 4990 4991 if (!page) 4992 return NULL; 4993 4994 return page_address(page); 4995 } 4996 4997 struct kvm_x86_ops svm_x86_ops __initdata = { 4998 .name = KBUILD_MODNAME, 4999 5000 .check_processor_compatibility = svm_check_processor_compat, 5001 5002 .hardware_unsetup = svm_hardware_unsetup, 5003 .enable_virtualization_cpu = svm_enable_virtualization_cpu, 5004 .disable_virtualization_cpu = svm_disable_virtualization_cpu, 5005 .emergency_disable_virtualization_cpu = svm_emergency_disable_virtualization_cpu, 5006 .has_emulated_msr = svm_has_emulated_msr, 5007 5008 .vcpu_create = svm_vcpu_create, 5009 .vcpu_free = svm_vcpu_free, 5010 .vcpu_reset = svm_vcpu_reset, 5011 5012 .vm_size = sizeof(struct kvm_svm), 5013 .vm_init = svm_vm_init, 5014 .vm_destroy = svm_vm_destroy, 5015 5016 .prepare_switch_to_guest = svm_prepare_switch_to_guest, 5017 .vcpu_load = svm_vcpu_load, 5018 .vcpu_put = svm_vcpu_put, 5019 .vcpu_blocking = avic_vcpu_blocking, 5020 .vcpu_unblocking = avic_vcpu_unblocking, 5021 5022 .update_exception_bitmap = svm_update_exception_bitmap, 5023 .get_feature_msr = svm_get_feature_msr, 5024 .get_msr = svm_get_msr, 5025 .set_msr = svm_set_msr, 5026 .get_segment_base = svm_get_segment_base, 5027 .get_segment = svm_get_segment, 5028 .set_segment = svm_set_segment, 5029 .get_cpl = svm_get_cpl, 5030 .get_cpl_no_cache = svm_get_cpl, 5031 .get_cs_db_l_bits = svm_get_cs_db_l_bits, 5032 .is_valid_cr0 = svm_is_valid_cr0, 5033 .set_cr0 = svm_set_cr0, 5034 .post_set_cr3 = sev_post_set_cr3, 5035 .is_valid_cr4 = svm_is_valid_cr4, 5036 .set_cr4 = svm_set_cr4, 5037 .set_efer = svm_set_efer, 5038 .get_idt = svm_get_idt, 5039 .set_idt = svm_set_idt, 5040 .get_gdt = svm_get_gdt, 5041 .set_gdt = svm_set_gdt, 5042 .set_dr7 = svm_set_dr7, 5043 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, 5044 .cache_reg = svm_cache_reg, 5045 .get_rflags = svm_get_rflags, 5046 .set_rflags = svm_set_rflags, 5047 .get_if_flag = svm_get_if_flag, 5048 5049 .flush_tlb_all = svm_flush_tlb_all, 5050 .flush_tlb_current = svm_flush_tlb_current, 5051 .flush_tlb_gva = svm_flush_tlb_gva, 5052 .flush_tlb_guest = svm_flush_tlb_asid, 5053 5054 .vcpu_pre_run = svm_vcpu_pre_run, 5055 .vcpu_run = svm_vcpu_run, 5056 .handle_exit = svm_handle_exit, 5057 .skip_emulated_instruction = svm_skip_emulated_instruction, 5058 .update_emulated_instruction = NULL, 5059 .set_interrupt_shadow = svm_set_interrupt_shadow, 5060 .get_interrupt_shadow = svm_get_interrupt_shadow, 5061 .patch_hypercall = svm_patch_hypercall, 5062 .inject_irq = svm_inject_irq, 5063 .inject_nmi = svm_inject_nmi, 5064 .is_vnmi_pending = svm_is_vnmi_pending, 5065 .set_vnmi_pending = svm_set_vnmi_pending, 5066 .inject_exception = svm_inject_exception, 5067 .cancel_injection = svm_cancel_injection, 5068 .interrupt_allowed = svm_interrupt_allowed, 5069 .nmi_allowed = svm_nmi_allowed, 5070 .get_nmi_mask = svm_get_nmi_mask, 5071 .set_nmi_mask = svm_set_nmi_mask, 5072 .enable_nmi_window = svm_enable_nmi_window, 5073 .enable_irq_window = svm_enable_irq_window, 5074 .update_cr8_intercept = svm_update_cr8_intercept, 5075 5076 .x2apic_icr_is_split = true, 5077 .set_virtual_apic_mode = avic_refresh_virtual_apic_mode, 5078 .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl, 5079 .apicv_post_state_restore = avic_apicv_post_state_restore, 5080 .required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS, 5081 5082 .get_exit_info = svm_get_exit_info, 5083 .get_entry_info = svm_get_entry_info, 5084 5085 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid, 5086 5087 .has_wbinvd_exit = svm_has_wbinvd_exit, 5088 5089 .get_l2_tsc_offset = svm_get_l2_tsc_offset, 5090 .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier, 5091 .write_tsc_offset = svm_write_tsc_offset, 5092 .write_tsc_multiplier = svm_write_tsc_multiplier, 5093 5094 .load_mmu_pgd = svm_load_mmu_pgd, 5095 5096 .check_intercept = svm_check_intercept, 5097 .handle_exit_irqoff = svm_handle_exit_irqoff, 5098 5099 .nested_ops = &svm_nested_ops, 5100 5101 .deliver_interrupt = svm_deliver_interrupt, 5102 .pi_update_irte = avic_pi_update_irte, 5103 .setup_mce = svm_setup_mce, 5104 5105 #ifdef CONFIG_KVM_SMM 5106 .smi_allowed = svm_smi_allowed, 5107 .enter_smm = svm_enter_smm, 5108 .leave_smm = svm_leave_smm, 5109 .enable_smi_window = svm_enable_smi_window, 5110 #endif 5111 5112 #ifdef CONFIG_KVM_AMD_SEV 5113 .dev_get_attr = sev_dev_get_attr, 5114 .mem_enc_ioctl = sev_mem_enc_ioctl, 5115 .mem_enc_register_region = sev_mem_enc_register_region, 5116 .mem_enc_unregister_region = sev_mem_enc_unregister_region, 5117 .guest_memory_reclaimed = sev_guest_memory_reclaimed, 5118 5119 .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, 5120 .vm_move_enc_context_from = sev_vm_move_enc_context_from, 5121 #endif 5122 .check_emulate_instruction = svm_check_emulate_instruction, 5123 5124 .apic_init_signal_blocked = svm_apic_init_signal_blocked, 5125 5126 .recalc_intercepts = svm_recalc_intercepts, 5127 .complete_emulated_msr = svm_complete_emulated_msr, 5128 5129 .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector, 5130 .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons, 5131 .alloc_apic_backing_page = svm_alloc_apic_backing_page, 5132 5133 .gmem_prepare = sev_gmem_prepare, 5134 .gmem_invalidate = sev_gmem_invalidate, 5135 .gmem_max_mapping_level = sev_gmem_max_mapping_level, 5136 }; 5137 5138 /* 5139 * The default MMIO mask is a single bit (excluding the present bit), 5140 * which could conflict with the memory encryption bit. Check for 5141 * memory encryption support and override the default MMIO mask if 5142 * memory encryption is enabled. 5143 */ 5144 static __init void svm_adjust_mmio_mask(void) 5145 { 5146 unsigned int enc_bit, mask_bit; 5147 u64 msr, mask; 5148 5149 /* If there is no memory encryption support, use existing mask */ 5150 if (cpuid_eax(0x80000000) < 0x8000001f) 5151 return; 5152 5153 /* If memory encryption is not enabled, use existing mask */ 5154 rdmsrq(MSR_AMD64_SYSCFG, msr); 5155 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) 5156 return; 5157 5158 enc_bit = cpuid_ebx(0x8000001f) & 0x3f; 5159 mask_bit = boot_cpu_data.x86_phys_bits; 5160 5161 /* Increment the mask bit if it is the same as the encryption bit */ 5162 if (enc_bit == mask_bit) 5163 mask_bit++; 5164 5165 /* 5166 * If the mask bit location is below 52, then some bits above the 5167 * physical addressing limit will always be reserved, so use the 5168 * rsvd_bits() function to generate the mask. This mask, along with 5169 * the present bit, will be used to generate a page fault with 5170 * PFER.RSV = 1. 5171 * 5172 * If the mask bit location is 52 (or above), then clear the mask. 5173 */ 5174 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0; 5175 5176 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK); 5177 } 5178 5179 static __init void svm_set_cpu_caps(void) 5180 { 5181 kvm_set_cpu_caps(); 5182 5183 kvm_caps.supported_perf_cap = 0; 5184 5185 kvm_cpu_cap_clear(X86_FEATURE_IBT); 5186 5187 /* CPUID 0x80000001 and 0x8000000A (SVM features) */ 5188 if (nested) { 5189 kvm_cpu_cap_set(X86_FEATURE_SVM); 5190 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN); 5191 5192 /* 5193 * KVM currently flushes TLBs on *every* nested SVM transition, 5194 * and so for all intents and purposes KVM supports flushing by 5195 * ASID, i.e. KVM is guaranteed to honor every L1 ASID flush. 5196 */ 5197 kvm_cpu_cap_set(X86_FEATURE_FLUSHBYASID); 5198 5199 if (nrips) 5200 kvm_cpu_cap_set(X86_FEATURE_NRIPS); 5201 5202 if (npt_enabled) 5203 kvm_cpu_cap_set(X86_FEATURE_NPT); 5204 5205 if (tsc_scaling) 5206 kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR); 5207 5208 if (vls) 5209 kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD); 5210 if (lbrv) 5211 kvm_cpu_cap_set(X86_FEATURE_LBRV); 5212 5213 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) 5214 kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER); 5215 5216 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) 5217 kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD); 5218 5219 if (vgif) 5220 kvm_cpu_cap_set(X86_FEATURE_VGIF); 5221 5222 if (vnmi) 5223 kvm_cpu_cap_set(X86_FEATURE_VNMI); 5224 5225 /* Nested VM can receive #VMEXIT instead of triggering #GP */ 5226 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK); 5227 } 5228 5229 if (cpu_feature_enabled(X86_FEATURE_BUS_LOCK_THRESHOLD)) 5230 kvm_caps.has_bus_lock_exit = true; 5231 5232 /* CPUID 0x80000008 */ 5233 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) || 5234 boot_cpu_has(X86_FEATURE_AMD_SSBD)) 5235 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD); 5236 5237 if (enable_pmu) { 5238 /* 5239 * Enumerate support for PERFCTR_CORE if and only if KVM has 5240 * access to enough counters to virtualize "core" support, 5241 * otherwise limit vPMU support to the legacy number of counters. 5242 */ 5243 if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE) 5244 kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS, 5245 kvm_pmu_cap.num_counters_gp); 5246 else 5247 kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE); 5248 5249 if (kvm_pmu_cap.version != 2 || 5250 !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE)) 5251 kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2); 5252 } 5253 5254 /* CPUID 0x8000001F (SME/SEV features) */ 5255 sev_set_cpu_caps(); 5256 5257 /* 5258 * Clear capabilities that are automatically configured by common code, 5259 * but that require explicit SVM support (that isn't yet implemented). 5260 */ 5261 kvm_cpu_cap_clear(X86_FEATURE_BUS_LOCK_DETECT); 5262 kvm_cpu_cap_clear(X86_FEATURE_MSR_IMM); 5263 } 5264 5265 static __init int svm_hardware_setup(void) 5266 { 5267 void *iopm_va; 5268 int cpu, r; 5269 5270 /* 5271 * NX is required for shadow paging and for NPT if the NX huge pages 5272 * mitigation is enabled. 5273 */ 5274 if (!boot_cpu_has(X86_FEATURE_NX)) { 5275 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 5276 return -EOPNOTSUPP; 5277 } 5278 kvm_enable_efer_bits(EFER_NX); 5279 5280 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 5281 XFEATURE_MASK_BNDCSR); 5282 5283 if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) 5284 kvm_enable_efer_bits(EFER_FFXSR); 5285 5286 if (tsc_scaling) { 5287 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { 5288 tsc_scaling = false; 5289 } else { 5290 pr_info("TSC scaling supported\n"); 5291 kvm_caps.has_tsc_control = true; 5292 } 5293 } 5294 kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX; 5295 kvm_caps.tsc_scaling_ratio_frac_bits = 32; 5296 5297 tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX); 5298 5299 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) 5300 kvm_enable_efer_bits(EFER_AUTOIBRS); 5301 5302 /* Check for pause filtering support */ 5303 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { 5304 pause_filter_count = 0; 5305 pause_filter_thresh = 0; 5306 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { 5307 pause_filter_thresh = 0; 5308 } 5309 5310 if (nested) { 5311 pr_info("Nested Virtualization enabled\n"); 5312 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); 5313 5314 r = nested_svm_init_msrpm_merge_offsets(); 5315 if (r) 5316 return r; 5317 } 5318 5319 /* 5320 * KVM's MMU doesn't support using 2-level paging for itself, and thus 5321 * NPT isn't supported if the host is using 2-level paging since host 5322 * CR4 is unchanged on VMRUN. 5323 */ 5324 if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE)) 5325 npt_enabled = false; 5326 5327 if (!boot_cpu_has(X86_FEATURE_NPT)) 5328 npt_enabled = false; 5329 5330 /* Force VM NPT level equal to the host's paging level */ 5331 kvm_configure_mmu(npt_enabled, get_npt_level(), 5332 get_npt_level(), PG_LEVEL_1G); 5333 pr_info("Nested Paging %s\n", str_enabled_disabled(npt_enabled)); 5334 5335 /* 5336 * It seems that on AMD processors PTE's accessed bit is 5337 * being set by the CPU hardware before the NPF vmexit. 5338 * This is not expected behaviour and our tests fail because 5339 * of it. 5340 * A workaround here is to disable support for 5341 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled. 5342 * In this case userspace can know if there is support using 5343 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle 5344 * it 5345 * If future AMD CPU models change the behaviour described above, 5346 * this variable can be changed accordingly 5347 */ 5348 allow_smaller_maxphyaddr = !npt_enabled; 5349 5350 /* Setup shadow_me_value and shadow_me_mask */ 5351 kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask); 5352 5353 svm_adjust_mmio_mask(); 5354 5355 nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS); 5356 5357 if (lbrv) { 5358 if (!boot_cpu_has(X86_FEATURE_LBRV)) 5359 lbrv = false; 5360 else 5361 pr_info("LBR virtualization supported\n"); 5362 } 5363 5364 iopm_va = svm_alloc_permissions_map(IOPM_SIZE, GFP_KERNEL); 5365 if (!iopm_va) 5366 return -ENOMEM; 5367 5368 iopm_base = __sme_set(__pa(iopm_va)); 5369 5370 /* 5371 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which 5372 * may be modified by svm_adjust_mmio_mask()), as well as nrips. 5373 */ 5374 sev_hardware_setup(); 5375 5376 svm_hv_hardware_setup(); 5377 5378 enable_apicv = avic_hardware_setup(); 5379 if (!enable_apicv) { 5380 enable_ipiv = false; 5381 svm_x86_ops.vcpu_blocking = NULL; 5382 svm_x86_ops.vcpu_unblocking = NULL; 5383 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL; 5384 } 5385 5386 if (vls) { 5387 if (!npt_enabled || 5388 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || 5389 !IS_ENABLED(CONFIG_X86_64)) { 5390 vls = false; 5391 } else { 5392 pr_info("Virtual VMLOAD VMSAVE supported\n"); 5393 } 5394 } 5395 5396 if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK)) 5397 svm_gp_erratum_intercept = false; 5398 5399 if (vgif) { 5400 if (!boot_cpu_has(X86_FEATURE_VGIF)) 5401 vgif = false; 5402 else 5403 pr_info("Virtual GIF supported\n"); 5404 } 5405 5406 vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI); 5407 if (vnmi) 5408 pr_info("Virtual NMI enabled\n"); 5409 5410 if (!vnmi) { 5411 svm_x86_ops.is_vnmi_pending = NULL; 5412 svm_x86_ops.set_vnmi_pending = NULL; 5413 } 5414 5415 if (!enable_pmu) 5416 pr_info("PMU virtualization is disabled\n"); 5417 5418 svm_set_cpu_caps(); 5419 5420 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_CD_NW_CLEARED; 5421 5422 for_each_possible_cpu(cpu) { 5423 r = svm_cpu_init(cpu); 5424 if (r) 5425 goto err; 5426 } 5427 5428 return 0; 5429 5430 err: 5431 svm_hardware_unsetup(); 5432 return r; 5433 } 5434 5435 5436 static struct kvm_x86_init_ops svm_init_ops __initdata = { 5437 .hardware_setup = svm_hardware_setup, 5438 5439 .runtime_ops = &svm_x86_ops, 5440 .pmu_ops = &amd_pmu_ops, 5441 }; 5442 5443 static void __svm_exit(void) 5444 { 5445 kvm_x86_vendor_exit(); 5446 } 5447 5448 static int __init svm_init(void) 5449 { 5450 int r; 5451 5452 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_svm); 5453 5454 __unused_size_checks(); 5455 5456 if (!kvm_is_svm_supported()) 5457 return -EOPNOTSUPP; 5458 5459 r = kvm_x86_vendor_init(&svm_init_ops); 5460 if (r) 5461 return r; 5462 5463 /* 5464 * Common KVM initialization _must_ come last, after this, /dev/kvm is 5465 * exposed to userspace! 5466 */ 5467 r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm), 5468 THIS_MODULE); 5469 if (r) 5470 goto err_kvm_init; 5471 5472 return 0; 5473 5474 err_kvm_init: 5475 __svm_exit(); 5476 return r; 5477 } 5478 5479 static void __exit svm_exit(void) 5480 { 5481 kvm_exit(); 5482 __svm_exit(); 5483 } 5484 5485 module_init(svm_init) 5486 module_exit(svm_exit) 5487