xref: /linux/arch/x86/kvm/svm/sev.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 
23 #include <asm/pkru.h>
24 #include <asm/trapnr.h>
25 #include <asm/fpu/xcr.h>
26 #include <asm/debugreg.h>
27 
28 #include "mmu.h"
29 #include "x86.h"
30 #include "svm.h"
31 #include "svm_ops.h"
32 #include "cpuid.h"
33 #include "trace.h"
34 
35 #ifndef CONFIG_KVM_AMD_SEV
36 /*
37  * When this config is not defined, SEV feature is not supported and APIs in
38  * this file are not used but this file still gets compiled into the KVM AMD
39  * module.
40  *
41  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42  * misc_res_type {} defined in linux/misc_cgroup.h.
43  *
44  * Below macros allow compilation to succeed.
45  */
46 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48 #endif
49 
50 #ifdef CONFIG_KVM_AMD_SEV
51 /* enable/disable SEV support */
52 static bool sev_enabled = true;
53 module_param_named(sev, sev_enabled, bool, 0444);
54 
55 /* enable/disable SEV-ES support */
56 static bool sev_es_enabled = true;
57 module_param_named(sev_es, sev_es_enabled, bool, 0444);
58 
59 /* enable/disable SEV-ES DebugSwap support */
60 static bool sev_es_debug_swap_enabled = false;
61 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
62 #else
63 #define sev_enabled false
64 #define sev_es_enabled false
65 #define sev_es_debug_swap_enabled false
66 #endif /* CONFIG_KVM_AMD_SEV */
67 
68 static u8 sev_enc_bit;
69 static DECLARE_RWSEM(sev_deactivate_lock);
70 static DEFINE_MUTEX(sev_bitmap_lock);
71 unsigned int max_sev_asid;
72 static unsigned int min_sev_asid;
73 static unsigned long sev_me_mask;
74 static unsigned int nr_asids;
75 static unsigned long *sev_asid_bitmap;
76 static unsigned long *sev_reclaim_asid_bitmap;
77 
78 struct enc_region {
79 	struct list_head list;
80 	unsigned long npages;
81 	struct page **pages;
82 	unsigned long uaddr;
83 	unsigned long size;
84 };
85 
86 /* Called with the sev_bitmap_lock held, or on shutdown  */
87 static int sev_flush_asids(int min_asid, int max_asid)
88 {
89 	int ret, asid, error = 0;
90 
91 	/* Check if there are any ASIDs to reclaim before performing a flush */
92 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
93 	if (asid > max_asid)
94 		return -EBUSY;
95 
96 	/*
97 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
98 	 * so it must be guarded.
99 	 */
100 	down_write(&sev_deactivate_lock);
101 
102 	wbinvd_on_all_cpus();
103 	ret = sev_guest_df_flush(&error);
104 
105 	up_write(&sev_deactivate_lock);
106 
107 	if (ret)
108 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
109 
110 	return ret;
111 }
112 
113 static inline bool is_mirroring_enc_context(struct kvm *kvm)
114 {
115 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
116 }
117 
118 /* Must be called with the sev_bitmap_lock held */
119 static bool __sev_recycle_asids(int min_asid, int max_asid)
120 {
121 	if (sev_flush_asids(min_asid, max_asid))
122 		return false;
123 
124 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
125 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
126 		   nr_asids);
127 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
128 
129 	return true;
130 }
131 
132 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
133 {
134 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
135 	return misc_cg_try_charge(type, sev->misc_cg, 1);
136 }
137 
138 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
139 {
140 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
141 	misc_cg_uncharge(type, sev->misc_cg, 1);
142 }
143 
144 static int sev_asid_new(struct kvm_sev_info *sev)
145 {
146 	int asid, min_asid, max_asid, ret;
147 	bool retry = true;
148 
149 	WARN_ON(sev->misc_cg);
150 	sev->misc_cg = get_current_misc_cg();
151 	ret = sev_misc_cg_try_charge(sev);
152 	if (ret) {
153 		put_misc_cg(sev->misc_cg);
154 		sev->misc_cg = NULL;
155 		return ret;
156 	}
157 
158 	mutex_lock(&sev_bitmap_lock);
159 
160 	/*
161 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
162 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
163 	 */
164 	min_asid = sev->es_active ? 1 : min_sev_asid;
165 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
166 again:
167 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
168 	if (asid > max_asid) {
169 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
170 			retry = false;
171 			goto again;
172 		}
173 		mutex_unlock(&sev_bitmap_lock);
174 		ret = -EBUSY;
175 		goto e_uncharge;
176 	}
177 
178 	__set_bit(asid, sev_asid_bitmap);
179 
180 	mutex_unlock(&sev_bitmap_lock);
181 
182 	return asid;
183 e_uncharge:
184 	sev_misc_cg_uncharge(sev);
185 	put_misc_cg(sev->misc_cg);
186 	sev->misc_cg = NULL;
187 	return ret;
188 }
189 
190 static int sev_get_asid(struct kvm *kvm)
191 {
192 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
193 
194 	return sev->asid;
195 }
196 
197 static void sev_asid_free(struct kvm_sev_info *sev)
198 {
199 	struct svm_cpu_data *sd;
200 	int cpu;
201 
202 	mutex_lock(&sev_bitmap_lock);
203 
204 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
205 
206 	for_each_possible_cpu(cpu) {
207 		sd = per_cpu_ptr(&svm_data, cpu);
208 		sd->sev_vmcbs[sev->asid] = NULL;
209 	}
210 
211 	mutex_unlock(&sev_bitmap_lock);
212 
213 	sev_misc_cg_uncharge(sev);
214 	put_misc_cg(sev->misc_cg);
215 	sev->misc_cg = NULL;
216 }
217 
218 static void sev_decommission(unsigned int handle)
219 {
220 	struct sev_data_decommission decommission;
221 
222 	if (!handle)
223 		return;
224 
225 	decommission.handle = handle;
226 	sev_guest_decommission(&decommission, NULL);
227 }
228 
229 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
230 {
231 	struct sev_data_deactivate deactivate;
232 
233 	if (!handle)
234 		return;
235 
236 	deactivate.handle = handle;
237 
238 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
239 	down_read(&sev_deactivate_lock);
240 	sev_guest_deactivate(&deactivate, NULL);
241 	up_read(&sev_deactivate_lock);
242 
243 	sev_decommission(handle);
244 }
245 
246 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
247 {
248 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
249 	struct sev_platform_init_args init_args = {0};
250 	int asid, ret;
251 
252 	if (kvm->created_vcpus)
253 		return -EINVAL;
254 
255 	ret = -EBUSY;
256 	if (unlikely(sev->active))
257 		return ret;
258 
259 	sev->active = true;
260 	sev->es_active = argp->id == KVM_SEV_ES_INIT;
261 	asid = sev_asid_new(sev);
262 	if (asid < 0)
263 		goto e_no_asid;
264 	sev->asid = asid;
265 
266 	init_args.probe = false;
267 	ret = sev_platform_init(&init_args);
268 	if (ret)
269 		goto e_free;
270 
271 	INIT_LIST_HEAD(&sev->regions_list);
272 	INIT_LIST_HEAD(&sev->mirror_vms);
273 
274 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
275 
276 	return 0;
277 
278 e_free:
279 	argp->error = init_args.error;
280 	sev_asid_free(sev);
281 	sev->asid = 0;
282 e_no_asid:
283 	sev->es_active = false;
284 	sev->active = false;
285 	return ret;
286 }
287 
288 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
289 {
290 	struct sev_data_activate activate;
291 	int asid = sev_get_asid(kvm);
292 	int ret;
293 
294 	/* activate ASID on the given handle */
295 	activate.handle = handle;
296 	activate.asid   = asid;
297 	ret = sev_guest_activate(&activate, error);
298 
299 	return ret;
300 }
301 
302 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
303 {
304 	struct fd f;
305 	int ret;
306 
307 	f = fdget(fd);
308 	if (!f.file)
309 		return -EBADF;
310 
311 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
312 
313 	fdput(f);
314 	return ret;
315 }
316 
317 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
318 {
319 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
320 
321 	return __sev_issue_cmd(sev->fd, id, data, error);
322 }
323 
324 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
325 {
326 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
327 	struct sev_data_launch_start start;
328 	struct kvm_sev_launch_start params;
329 	void *dh_blob, *session_blob;
330 	int *error = &argp->error;
331 	int ret;
332 
333 	if (!sev_guest(kvm))
334 		return -ENOTTY;
335 
336 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
337 		return -EFAULT;
338 
339 	memset(&start, 0, sizeof(start));
340 
341 	dh_blob = NULL;
342 	if (params.dh_uaddr) {
343 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
344 		if (IS_ERR(dh_blob))
345 			return PTR_ERR(dh_blob);
346 
347 		start.dh_cert_address = __sme_set(__pa(dh_blob));
348 		start.dh_cert_len = params.dh_len;
349 	}
350 
351 	session_blob = NULL;
352 	if (params.session_uaddr) {
353 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
354 		if (IS_ERR(session_blob)) {
355 			ret = PTR_ERR(session_blob);
356 			goto e_free_dh;
357 		}
358 
359 		start.session_address = __sme_set(__pa(session_blob));
360 		start.session_len = params.session_len;
361 	}
362 
363 	start.handle = params.handle;
364 	start.policy = params.policy;
365 
366 	/* create memory encryption context */
367 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
368 	if (ret)
369 		goto e_free_session;
370 
371 	/* Bind ASID to this guest */
372 	ret = sev_bind_asid(kvm, start.handle, error);
373 	if (ret) {
374 		sev_decommission(start.handle);
375 		goto e_free_session;
376 	}
377 
378 	/* return handle to userspace */
379 	params.handle = start.handle;
380 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
381 		sev_unbind_asid(kvm, start.handle);
382 		ret = -EFAULT;
383 		goto e_free_session;
384 	}
385 
386 	sev->handle = start.handle;
387 	sev->fd = argp->sev_fd;
388 
389 e_free_session:
390 	kfree(session_blob);
391 e_free_dh:
392 	kfree(dh_blob);
393 	return ret;
394 }
395 
396 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
397 				    unsigned long ulen, unsigned long *n,
398 				    int write)
399 {
400 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
401 	unsigned long npages, size;
402 	int npinned;
403 	unsigned long locked, lock_limit;
404 	struct page **pages;
405 	unsigned long first, last;
406 	int ret;
407 
408 	lockdep_assert_held(&kvm->lock);
409 
410 	if (ulen == 0 || uaddr + ulen < uaddr)
411 		return ERR_PTR(-EINVAL);
412 
413 	/* Calculate number of pages. */
414 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
415 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
416 	npages = (last - first + 1);
417 
418 	locked = sev->pages_locked + npages;
419 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
420 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
421 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
422 		return ERR_PTR(-ENOMEM);
423 	}
424 
425 	if (WARN_ON_ONCE(npages > INT_MAX))
426 		return ERR_PTR(-EINVAL);
427 
428 	/* Avoid using vmalloc for smaller buffers. */
429 	size = npages * sizeof(struct page *);
430 	if (size > PAGE_SIZE)
431 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
432 	else
433 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
434 
435 	if (!pages)
436 		return ERR_PTR(-ENOMEM);
437 
438 	/* Pin the user virtual address. */
439 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
440 	if (npinned != npages) {
441 		pr_err("SEV: Failure locking %lu pages.\n", npages);
442 		ret = -ENOMEM;
443 		goto err;
444 	}
445 
446 	*n = npages;
447 	sev->pages_locked = locked;
448 
449 	return pages;
450 
451 err:
452 	if (npinned > 0)
453 		unpin_user_pages(pages, npinned);
454 
455 	kvfree(pages);
456 	return ERR_PTR(ret);
457 }
458 
459 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
460 			     unsigned long npages)
461 {
462 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
463 
464 	unpin_user_pages(pages, npages);
465 	kvfree(pages);
466 	sev->pages_locked -= npages;
467 }
468 
469 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
470 {
471 	uint8_t *page_virtual;
472 	unsigned long i;
473 
474 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
475 	    pages == NULL)
476 		return;
477 
478 	for (i = 0; i < npages; i++) {
479 		page_virtual = kmap_local_page(pages[i]);
480 		clflush_cache_range(page_virtual, PAGE_SIZE);
481 		kunmap_local(page_virtual);
482 		cond_resched();
483 	}
484 }
485 
486 static unsigned long get_num_contig_pages(unsigned long idx,
487 				struct page **inpages, unsigned long npages)
488 {
489 	unsigned long paddr, next_paddr;
490 	unsigned long i = idx + 1, pages = 1;
491 
492 	/* find the number of contiguous pages starting from idx */
493 	paddr = __sme_page_pa(inpages[idx]);
494 	while (i < npages) {
495 		next_paddr = __sme_page_pa(inpages[i++]);
496 		if ((paddr + PAGE_SIZE) == next_paddr) {
497 			pages++;
498 			paddr = next_paddr;
499 			continue;
500 		}
501 		break;
502 	}
503 
504 	return pages;
505 }
506 
507 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
508 {
509 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
510 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
511 	struct kvm_sev_launch_update_data params;
512 	struct sev_data_launch_update_data data;
513 	struct page **inpages;
514 	int ret;
515 
516 	if (!sev_guest(kvm))
517 		return -ENOTTY;
518 
519 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
520 		return -EFAULT;
521 
522 	vaddr = params.uaddr;
523 	size = params.len;
524 	vaddr_end = vaddr + size;
525 
526 	/* Lock the user memory. */
527 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
528 	if (IS_ERR(inpages))
529 		return PTR_ERR(inpages);
530 
531 	/*
532 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
533 	 * place; the cache may contain the data that was written unencrypted.
534 	 */
535 	sev_clflush_pages(inpages, npages);
536 
537 	data.reserved = 0;
538 	data.handle = sev->handle;
539 
540 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
541 		int offset, len;
542 
543 		/*
544 		 * If the user buffer is not page-aligned, calculate the offset
545 		 * within the page.
546 		 */
547 		offset = vaddr & (PAGE_SIZE - 1);
548 
549 		/* Calculate the number of pages that can be encrypted in one go. */
550 		pages = get_num_contig_pages(i, inpages, npages);
551 
552 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
553 
554 		data.len = len;
555 		data.address = __sme_page_pa(inpages[i]) + offset;
556 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
557 		if (ret)
558 			goto e_unpin;
559 
560 		size -= len;
561 		next_vaddr = vaddr + len;
562 	}
563 
564 e_unpin:
565 	/* content of memory is updated, mark pages dirty */
566 	for (i = 0; i < npages; i++) {
567 		set_page_dirty_lock(inpages[i]);
568 		mark_page_accessed(inpages[i]);
569 	}
570 	/* unlock the user pages */
571 	sev_unpin_memory(kvm, inpages, npages);
572 	return ret;
573 }
574 
575 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
576 {
577 	struct sev_es_save_area *save = svm->sev_es.vmsa;
578 
579 	/* Check some debug related fields before encrypting the VMSA */
580 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
581 		return -EINVAL;
582 
583 	/*
584 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
585 	 * the traditional VMSA that is part of the VMCB. Copy the
586 	 * traditional VMSA as it has been built so far (in prep
587 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
588 	 */
589 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
590 
591 	/* Sync registgers */
592 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
593 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
594 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
595 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
596 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
597 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
598 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
599 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
600 #ifdef CONFIG_X86_64
601 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
602 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
603 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
604 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
605 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
606 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
607 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
608 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
609 #endif
610 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
611 
612 	/* Sync some non-GPR registers before encrypting */
613 	save->xcr0 = svm->vcpu.arch.xcr0;
614 	save->pkru = svm->vcpu.arch.pkru;
615 	save->xss  = svm->vcpu.arch.ia32_xss;
616 	save->dr6  = svm->vcpu.arch.dr6;
617 
618 	if (sev_es_debug_swap_enabled) {
619 		save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
620 		pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. "
621 			     "This will not work starting with Linux 6.10\n");
622 	}
623 
624 	pr_debug("Virtual Machine Save Area (VMSA):\n");
625 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
626 
627 	return 0;
628 }
629 
630 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
631 				    int *error)
632 {
633 	struct sev_data_launch_update_vmsa vmsa;
634 	struct vcpu_svm *svm = to_svm(vcpu);
635 	int ret;
636 
637 	if (vcpu->guest_debug) {
638 		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
639 		return -EINVAL;
640 	}
641 
642 	/* Perform some pre-encryption checks against the VMSA */
643 	ret = sev_es_sync_vmsa(svm);
644 	if (ret)
645 		return ret;
646 
647 	/*
648 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
649 	 * the VMSA memory content (i.e it will write the same memory region
650 	 * with the guest's key), so invalidate it first.
651 	 */
652 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
653 
654 	vmsa.reserved = 0;
655 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
656 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
657 	vmsa.len = PAGE_SIZE;
658 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
659 	if (ret)
660 	  return ret;
661 
662 	vcpu->arch.guest_state_protected = true;
663 	return 0;
664 }
665 
666 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
667 {
668 	struct kvm_vcpu *vcpu;
669 	unsigned long i;
670 	int ret;
671 
672 	if (!sev_es_guest(kvm))
673 		return -ENOTTY;
674 
675 	kvm_for_each_vcpu(i, vcpu, kvm) {
676 		ret = mutex_lock_killable(&vcpu->mutex);
677 		if (ret)
678 			return ret;
679 
680 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
681 
682 		mutex_unlock(&vcpu->mutex);
683 		if (ret)
684 			return ret;
685 	}
686 
687 	return 0;
688 }
689 
690 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
691 {
692 	void __user *measure = (void __user *)(uintptr_t)argp->data;
693 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
694 	struct sev_data_launch_measure data;
695 	struct kvm_sev_launch_measure params;
696 	void __user *p = NULL;
697 	void *blob = NULL;
698 	int ret;
699 
700 	if (!sev_guest(kvm))
701 		return -ENOTTY;
702 
703 	if (copy_from_user(&params, measure, sizeof(params)))
704 		return -EFAULT;
705 
706 	memset(&data, 0, sizeof(data));
707 
708 	/* User wants to query the blob length */
709 	if (!params.len)
710 		goto cmd;
711 
712 	p = (void __user *)(uintptr_t)params.uaddr;
713 	if (p) {
714 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
715 			return -EINVAL;
716 
717 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
718 		if (!blob)
719 			return -ENOMEM;
720 
721 		data.address = __psp_pa(blob);
722 		data.len = params.len;
723 	}
724 
725 cmd:
726 	data.handle = sev->handle;
727 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
728 
729 	/*
730 	 * If we query the session length, FW responded with expected data.
731 	 */
732 	if (!params.len)
733 		goto done;
734 
735 	if (ret)
736 		goto e_free_blob;
737 
738 	if (blob) {
739 		if (copy_to_user(p, blob, params.len))
740 			ret = -EFAULT;
741 	}
742 
743 done:
744 	params.len = data.len;
745 	if (copy_to_user(measure, &params, sizeof(params)))
746 		ret = -EFAULT;
747 e_free_blob:
748 	kfree(blob);
749 	return ret;
750 }
751 
752 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
753 {
754 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
755 	struct sev_data_launch_finish data;
756 
757 	if (!sev_guest(kvm))
758 		return -ENOTTY;
759 
760 	data.handle = sev->handle;
761 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
762 }
763 
764 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
765 {
766 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
767 	struct kvm_sev_guest_status params;
768 	struct sev_data_guest_status data;
769 	int ret;
770 
771 	if (!sev_guest(kvm))
772 		return -ENOTTY;
773 
774 	memset(&data, 0, sizeof(data));
775 
776 	data.handle = sev->handle;
777 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
778 	if (ret)
779 		return ret;
780 
781 	params.policy = data.policy;
782 	params.state = data.state;
783 	params.handle = data.handle;
784 
785 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
786 		ret = -EFAULT;
787 
788 	return ret;
789 }
790 
791 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
792 			       unsigned long dst, int size,
793 			       int *error, bool enc)
794 {
795 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
796 	struct sev_data_dbg data;
797 
798 	data.reserved = 0;
799 	data.handle = sev->handle;
800 	data.dst_addr = dst;
801 	data.src_addr = src;
802 	data.len = size;
803 
804 	return sev_issue_cmd(kvm,
805 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
806 			     &data, error);
807 }
808 
809 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
810 			     unsigned long dst_paddr, int sz, int *err)
811 {
812 	int offset;
813 
814 	/*
815 	 * Its safe to read more than we are asked, caller should ensure that
816 	 * destination has enough space.
817 	 */
818 	offset = src_paddr & 15;
819 	src_paddr = round_down(src_paddr, 16);
820 	sz = round_up(sz + offset, 16);
821 
822 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
823 }
824 
825 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
826 				  void __user *dst_uaddr,
827 				  unsigned long dst_paddr,
828 				  int size, int *err)
829 {
830 	struct page *tpage = NULL;
831 	int ret, offset;
832 
833 	/* if inputs are not 16-byte then use intermediate buffer */
834 	if (!IS_ALIGNED(dst_paddr, 16) ||
835 	    !IS_ALIGNED(paddr,     16) ||
836 	    !IS_ALIGNED(size,      16)) {
837 		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
838 		if (!tpage)
839 			return -ENOMEM;
840 
841 		dst_paddr = __sme_page_pa(tpage);
842 	}
843 
844 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
845 	if (ret)
846 		goto e_free;
847 
848 	if (tpage) {
849 		offset = paddr & 15;
850 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
851 			ret = -EFAULT;
852 	}
853 
854 e_free:
855 	if (tpage)
856 		__free_page(tpage);
857 
858 	return ret;
859 }
860 
861 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
862 				  void __user *vaddr,
863 				  unsigned long dst_paddr,
864 				  void __user *dst_vaddr,
865 				  int size, int *error)
866 {
867 	struct page *src_tpage = NULL;
868 	struct page *dst_tpage = NULL;
869 	int ret, len = size;
870 
871 	/* If source buffer is not aligned then use an intermediate buffer */
872 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
873 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
874 		if (!src_tpage)
875 			return -ENOMEM;
876 
877 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
878 			__free_page(src_tpage);
879 			return -EFAULT;
880 		}
881 
882 		paddr = __sme_page_pa(src_tpage);
883 	}
884 
885 	/*
886 	 *  If destination buffer or length is not aligned then do read-modify-write:
887 	 *   - decrypt destination in an intermediate buffer
888 	 *   - copy the source buffer in an intermediate buffer
889 	 *   - use the intermediate buffer as source buffer
890 	 */
891 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
892 		int dst_offset;
893 
894 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
895 		if (!dst_tpage) {
896 			ret = -ENOMEM;
897 			goto e_free;
898 		}
899 
900 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
901 					__sme_page_pa(dst_tpage), size, error);
902 		if (ret)
903 			goto e_free;
904 
905 		/*
906 		 *  If source is kernel buffer then use memcpy() otherwise
907 		 *  copy_from_user().
908 		 */
909 		dst_offset = dst_paddr & 15;
910 
911 		if (src_tpage)
912 			memcpy(page_address(dst_tpage) + dst_offset,
913 			       page_address(src_tpage), size);
914 		else {
915 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
916 					   vaddr, size)) {
917 				ret = -EFAULT;
918 				goto e_free;
919 			}
920 		}
921 
922 		paddr = __sme_page_pa(dst_tpage);
923 		dst_paddr = round_down(dst_paddr, 16);
924 		len = round_up(size, 16);
925 	}
926 
927 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
928 
929 e_free:
930 	if (src_tpage)
931 		__free_page(src_tpage);
932 	if (dst_tpage)
933 		__free_page(dst_tpage);
934 	return ret;
935 }
936 
937 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
938 {
939 	unsigned long vaddr, vaddr_end, next_vaddr;
940 	unsigned long dst_vaddr;
941 	struct page **src_p, **dst_p;
942 	struct kvm_sev_dbg debug;
943 	unsigned long n;
944 	unsigned int size;
945 	int ret;
946 
947 	if (!sev_guest(kvm))
948 		return -ENOTTY;
949 
950 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
951 		return -EFAULT;
952 
953 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
954 		return -EINVAL;
955 	if (!debug.dst_uaddr)
956 		return -EINVAL;
957 
958 	vaddr = debug.src_uaddr;
959 	size = debug.len;
960 	vaddr_end = vaddr + size;
961 	dst_vaddr = debug.dst_uaddr;
962 
963 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
964 		int len, s_off, d_off;
965 
966 		/* lock userspace source and destination page */
967 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
968 		if (IS_ERR(src_p))
969 			return PTR_ERR(src_p);
970 
971 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
972 		if (IS_ERR(dst_p)) {
973 			sev_unpin_memory(kvm, src_p, n);
974 			return PTR_ERR(dst_p);
975 		}
976 
977 		/*
978 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
979 		 * the pages; flush the destination too so that future accesses do not
980 		 * see stale data.
981 		 */
982 		sev_clflush_pages(src_p, 1);
983 		sev_clflush_pages(dst_p, 1);
984 
985 		/*
986 		 * Since user buffer may not be page aligned, calculate the
987 		 * offset within the page.
988 		 */
989 		s_off = vaddr & ~PAGE_MASK;
990 		d_off = dst_vaddr & ~PAGE_MASK;
991 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
992 
993 		if (dec)
994 			ret = __sev_dbg_decrypt_user(kvm,
995 						     __sme_page_pa(src_p[0]) + s_off,
996 						     (void __user *)dst_vaddr,
997 						     __sme_page_pa(dst_p[0]) + d_off,
998 						     len, &argp->error);
999 		else
1000 			ret = __sev_dbg_encrypt_user(kvm,
1001 						     __sme_page_pa(src_p[0]) + s_off,
1002 						     (void __user *)vaddr,
1003 						     __sme_page_pa(dst_p[0]) + d_off,
1004 						     (void __user *)dst_vaddr,
1005 						     len, &argp->error);
1006 
1007 		sev_unpin_memory(kvm, src_p, n);
1008 		sev_unpin_memory(kvm, dst_p, n);
1009 
1010 		if (ret)
1011 			goto err;
1012 
1013 		next_vaddr = vaddr + len;
1014 		dst_vaddr = dst_vaddr + len;
1015 		size -= len;
1016 	}
1017 err:
1018 	return ret;
1019 }
1020 
1021 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1022 {
1023 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1024 	struct sev_data_launch_secret data;
1025 	struct kvm_sev_launch_secret params;
1026 	struct page **pages;
1027 	void *blob, *hdr;
1028 	unsigned long n, i;
1029 	int ret, offset;
1030 
1031 	if (!sev_guest(kvm))
1032 		return -ENOTTY;
1033 
1034 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1035 		return -EFAULT;
1036 
1037 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1038 	if (IS_ERR(pages))
1039 		return PTR_ERR(pages);
1040 
1041 	/*
1042 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1043 	 * place; the cache may contain the data that was written unencrypted.
1044 	 */
1045 	sev_clflush_pages(pages, n);
1046 
1047 	/*
1048 	 * The secret must be copied into contiguous memory region, lets verify
1049 	 * that userspace memory pages are contiguous before we issue command.
1050 	 */
1051 	if (get_num_contig_pages(0, pages, n) != n) {
1052 		ret = -EINVAL;
1053 		goto e_unpin_memory;
1054 	}
1055 
1056 	memset(&data, 0, sizeof(data));
1057 
1058 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1059 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1060 	data.guest_len = params.guest_len;
1061 
1062 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1063 	if (IS_ERR(blob)) {
1064 		ret = PTR_ERR(blob);
1065 		goto e_unpin_memory;
1066 	}
1067 
1068 	data.trans_address = __psp_pa(blob);
1069 	data.trans_len = params.trans_len;
1070 
1071 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1072 	if (IS_ERR(hdr)) {
1073 		ret = PTR_ERR(hdr);
1074 		goto e_free_blob;
1075 	}
1076 	data.hdr_address = __psp_pa(hdr);
1077 	data.hdr_len = params.hdr_len;
1078 
1079 	data.handle = sev->handle;
1080 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1081 
1082 	kfree(hdr);
1083 
1084 e_free_blob:
1085 	kfree(blob);
1086 e_unpin_memory:
1087 	/* content of memory is updated, mark pages dirty */
1088 	for (i = 0; i < n; i++) {
1089 		set_page_dirty_lock(pages[i]);
1090 		mark_page_accessed(pages[i]);
1091 	}
1092 	sev_unpin_memory(kvm, pages, n);
1093 	return ret;
1094 }
1095 
1096 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1097 {
1098 	void __user *report = (void __user *)(uintptr_t)argp->data;
1099 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1100 	struct sev_data_attestation_report data;
1101 	struct kvm_sev_attestation_report params;
1102 	void __user *p;
1103 	void *blob = NULL;
1104 	int ret;
1105 
1106 	if (!sev_guest(kvm))
1107 		return -ENOTTY;
1108 
1109 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1110 		return -EFAULT;
1111 
1112 	memset(&data, 0, sizeof(data));
1113 
1114 	/* User wants to query the blob length */
1115 	if (!params.len)
1116 		goto cmd;
1117 
1118 	p = (void __user *)(uintptr_t)params.uaddr;
1119 	if (p) {
1120 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1121 			return -EINVAL;
1122 
1123 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1124 		if (!blob)
1125 			return -ENOMEM;
1126 
1127 		data.address = __psp_pa(blob);
1128 		data.len = params.len;
1129 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1130 	}
1131 cmd:
1132 	data.handle = sev->handle;
1133 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1134 	/*
1135 	 * If we query the session length, FW responded with expected data.
1136 	 */
1137 	if (!params.len)
1138 		goto done;
1139 
1140 	if (ret)
1141 		goto e_free_blob;
1142 
1143 	if (blob) {
1144 		if (copy_to_user(p, blob, params.len))
1145 			ret = -EFAULT;
1146 	}
1147 
1148 done:
1149 	params.len = data.len;
1150 	if (copy_to_user(report, &params, sizeof(params)))
1151 		ret = -EFAULT;
1152 e_free_blob:
1153 	kfree(blob);
1154 	return ret;
1155 }
1156 
1157 /* Userspace wants to query session length. */
1158 static int
1159 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1160 				      struct kvm_sev_send_start *params)
1161 {
1162 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1163 	struct sev_data_send_start data;
1164 	int ret;
1165 
1166 	memset(&data, 0, sizeof(data));
1167 	data.handle = sev->handle;
1168 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1169 
1170 	params->session_len = data.session_len;
1171 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1172 				sizeof(struct kvm_sev_send_start)))
1173 		ret = -EFAULT;
1174 
1175 	return ret;
1176 }
1177 
1178 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1179 {
1180 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1181 	struct sev_data_send_start data;
1182 	struct kvm_sev_send_start params;
1183 	void *amd_certs, *session_data;
1184 	void *pdh_cert, *plat_certs;
1185 	int ret;
1186 
1187 	if (!sev_guest(kvm))
1188 		return -ENOTTY;
1189 
1190 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1191 				sizeof(struct kvm_sev_send_start)))
1192 		return -EFAULT;
1193 
1194 	/* if session_len is zero, userspace wants to query the session length */
1195 	if (!params.session_len)
1196 		return __sev_send_start_query_session_length(kvm, argp,
1197 				&params);
1198 
1199 	/* some sanity checks */
1200 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1201 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1202 		return -EINVAL;
1203 
1204 	/* allocate the memory to hold the session data blob */
1205 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1206 	if (!session_data)
1207 		return -ENOMEM;
1208 
1209 	/* copy the certificate blobs from userspace */
1210 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1211 				params.pdh_cert_len);
1212 	if (IS_ERR(pdh_cert)) {
1213 		ret = PTR_ERR(pdh_cert);
1214 		goto e_free_session;
1215 	}
1216 
1217 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1218 				params.plat_certs_len);
1219 	if (IS_ERR(plat_certs)) {
1220 		ret = PTR_ERR(plat_certs);
1221 		goto e_free_pdh;
1222 	}
1223 
1224 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1225 				params.amd_certs_len);
1226 	if (IS_ERR(amd_certs)) {
1227 		ret = PTR_ERR(amd_certs);
1228 		goto e_free_plat_cert;
1229 	}
1230 
1231 	/* populate the FW SEND_START field with system physical address */
1232 	memset(&data, 0, sizeof(data));
1233 	data.pdh_cert_address = __psp_pa(pdh_cert);
1234 	data.pdh_cert_len = params.pdh_cert_len;
1235 	data.plat_certs_address = __psp_pa(plat_certs);
1236 	data.plat_certs_len = params.plat_certs_len;
1237 	data.amd_certs_address = __psp_pa(amd_certs);
1238 	data.amd_certs_len = params.amd_certs_len;
1239 	data.session_address = __psp_pa(session_data);
1240 	data.session_len = params.session_len;
1241 	data.handle = sev->handle;
1242 
1243 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1244 
1245 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1246 			session_data, params.session_len)) {
1247 		ret = -EFAULT;
1248 		goto e_free_amd_cert;
1249 	}
1250 
1251 	params.policy = data.policy;
1252 	params.session_len = data.session_len;
1253 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1254 				sizeof(struct kvm_sev_send_start)))
1255 		ret = -EFAULT;
1256 
1257 e_free_amd_cert:
1258 	kfree(amd_certs);
1259 e_free_plat_cert:
1260 	kfree(plat_certs);
1261 e_free_pdh:
1262 	kfree(pdh_cert);
1263 e_free_session:
1264 	kfree(session_data);
1265 	return ret;
1266 }
1267 
1268 /* Userspace wants to query either header or trans length. */
1269 static int
1270 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1271 				     struct kvm_sev_send_update_data *params)
1272 {
1273 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1274 	struct sev_data_send_update_data data;
1275 	int ret;
1276 
1277 	memset(&data, 0, sizeof(data));
1278 	data.handle = sev->handle;
1279 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1280 
1281 	params->hdr_len = data.hdr_len;
1282 	params->trans_len = data.trans_len;
1283 
1284 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1285 			 sizeof(struct kvm_sev_send_update_data)))
1286 		ret = -EFAULT;
1287 
1288 	return ret;
1289 }
1290 
1291 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1292 {
1293 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1294 	struct sev_data_send_update_data data;
1295 	struct kvm_sev_send_update_data params;
1296 	void *hdr, *trans_data;
1297 	struct page **guest_page;
1298 	unsigned long n;
1299 	int ret, offset;
1300 
1301 	if (!sev_guest(kvm))
1302 		return -ENOTTY;
1303 
1304 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1305 			sizeof(struct kvm_sev_send_update_data)))
1306 		return -EFAULT;
1307 
1308 	/* userspace wants to query either header or trans length */
1309 	if (!params.trans_len || !params.hdr_len)
1310 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1311 
1312 	if (!params.trans_uaddr || !params.guest_uaddr ||
1313 	    !params.guest_len || !params.hdr_uaddr)
1314 		return -EINVAL;
1315 
1316 	/* Check if we are crossing the page boundary */
1317 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1318 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1319 		return -EINVAL;
1320 
1321 	/* Pin guest memory */
1322 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1323 				    PAGE_SIZE, &n, 0);
1324 	if (IS_ERR(guest_page))
1325 		return PTR_ERR(guest_page);
1326 
1327 	/* allocate memory for header and transport buffer */
1328 	ret = -ENOMEM;
1329 	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1330 	if (!hdr)
1331 		goto e_unpin;
1332 
1333 	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1334 	if (!trans_data)
1335 		goto e_free_hdr;
1336 
1337 	memset(&data, 0, sizeof(data));
1338 	data.hdr_address = __psp_pa(hdr);
1339 	data.hdr_len = params.hdr_len;
1340 	data.trans_address = __psp_pa(trans_data);
1341 	data.trans_len = params.trans_len;
1342 
1343 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1344 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1345 	data.guest_address |= sev_me_mask;
1346 	data.guest_len = params.guest_len;
1347 	data.handle = sev->handle;
1348 
1349 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1350 
1351 	if (ret)
1352 		goto e_free_trans_data;
1353 
1354 	/* copy transport buffer to user space */
1355 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1356 			 trans_data, params.trans_len)) {
1357 		ret = -EFAULT;
1358 		goto e_free_trans_data;
1359 	}
1360 
1361 	/* Copy packet header to userspace. */
1362 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1363 			 params.hdr_len))
1364 		ret = -EFAULT;
1365 
1366 e_free_trans_data:
1367 	kfree(trans_data);
1368 e_free_hdr:
1369 	kfree(hdr);
1370 e_unpin:
1371 	sev_unpin_memory(kvm, guest_page, n);
1372 
1373 	return ret;
1374 }
1375 
1376 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1377 {
1378 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1379 	struct sev_data_send_finish data;
1380 
1381 	if (!sev_guest(kvm))
1382 		return -ENOTTY;
1383 
1384 	data.handle = sev->handle;
1385 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1386 }
1387 
1388 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1389 {
1390 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1391 	struct sev_data_send_cancel data;
1392 
1393 	if (!sev_guest(kvm))
1394 		return -ENOTTY;
1395 
1396 	data.handle = sev->handle;
1397 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1398 }
1399 
1400 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1401 {
1402 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1403 	struct sev_data_receive_start start;
1404 	struct kvm_sev_receive_start params;
1405 	int *error = &argp->error;
1406 	void *session_data;
1407 	void *pdh_data;
1408 	int ret;
1409 
1410 	if (!sev_guest(kvm))
1411 		return -ENOTTY;
1412 
1413 	/* Get parameter from the userspace */
1414 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1415 			sizeof(struct kvm_sev_receive_start)))
1416 		return -EFAULT;
1417 
1418 	/* some sanity checks */
1419 	if (!params.pdh_uaddr || !params.pdh_len ||
1420 	    !params.session_uaddr || !params.session_len)
1421 		return -EINVAL;
1422 
1423 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1424 	if (IS_ERR(pdh_data))
1425 		return PTR_ERR(pdh_data);
1426 
1427 	session_data = psp_copy_user_blob(params.session_uaddr,
1428 			params.session_len);
1429 	if (IS_ERR(session_data)) {
1430 		ret = PTR_ERR(session_data);
1431 		goto e_free_pdh;
1432 	}
1433 
1434 	memset(&start, 0, sizeof(start));
1435 	start.handle = params.handle;
1436 	start.policy = params.policy;
1437 	start.pdh_cert_address = __psp_pa(pdh_data);
1438 	start.pdh_cert_len = params.pdh_len;
1439 	start.session_address = __psp_pa(session_data);
1440 	start.session_len = params.session_len;
1441 
1442 	/* create memory encryption context */
1443 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1444 				error);
1445 	if (ret)
1446 		goto e_free_session;
1447 
1448 	/* Bind ASID to this guest */
1449 	ret = sev_bind_asid(kvm, start.handle, error);
1450 	if (ret) {
1451 		sev_decommission(start.handle);
1452 		goto e_free_session;
1453 	}
1454 
1455 	params.handle = start.handle;
1456 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1457 			 &params, sizeof(struct kvm_sev_receive_start))) {
1458 		ret = -EFAULT;
1459 		sev_unbind_asid(kvm, start.handle);
1460 		goto e_free_session;
1461 	}
1462 
1463     	sev->handle = start.handle;
1464 	sev->fd = argp->sev_fd;
1465 
1466 e_free_session:
1467 	kfree(session_data);
1468 e_free_pdh:
1469 	kfree(pdh_data);
1470 
1471 	return ret;
1472 }
1473 
1474 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1475 {
1476 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1477 	struct kvm_sev_receive_update_data params;
1478 	struct sev_data_receive_update_data data;
1479 	void *hdr = NULL, *trans = NULL;
1480 	struct page **guest_page;
1481 	unsigned long n;
1482 	int ret, offset;
1483 
1484 	if (!sev_guest(kvm))
1485 		return -EINVAL;
1486 
1487 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1488 			sizeof(struct kvm_sev_receive_update_data)))
1489 		return -EFAULT;
1490 
1491 	if (!params.hdr_uaddr || !params.hdr_len ||
1492 	    !params.guest_uaddr || !params.guest_len ||
1493 	    !params.trans_uaddr || !params.trans_len)
1494 		return -EINVAL;
1495 
1496 	/* Check if we are crossing the page boundary */
1497 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1498 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1499 		return -EINVAL;
1500 
1501 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1502 	if (IS_ERR(hdr))
1503 		return PTR_ERR(hdr);
1504 
1505 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1506 	if (IS_ERR(trans)) {
1507 		ret = PTR_ERR(trans);
1508 		goto e_free_hdr;
1509 	}
1510 
1511 	memset(&data, 0, sizeof(data));
1512 	data.hdr_address = __psp_pa(hdr);
1513 	data.hdr_len = params.hdr_len;
1514 	data.trans_address = __psp_pa(trans);
1515 	data.trans_len = params.trans_len;
1516 
1517 	/* Pin guest memory */
1518 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1519 				    PAGE_SIZE, &n, 1);
1520 	if (IS_ERR(guest_page)) {
1521 		ret = PTR_ERR(guest_page);
1522 		goto e_free_trans;
1523 	}
1524 
1525 	/*
1526 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1527 	 * encrypts the written data with the guest's key, and the cache may
1528 	 * contain dirty, unencrypted data.
1529 	 */
1530 	sev_clflush_pages(guest_page, n);
1531 
1532 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1533 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1534 	data.guest_address |= sev_me_mask;
1535 	data.guest_len = params.guest_len;
1536 	data.handle = sev->handle;
1537 
1538 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1539 				&argp->error);
1540 
1541 	sev_unpin_memory(kvm, guest_page, n);
1542 
1543 e_free_trans:
1544 	kfree(trans);
1545 e_free_hdr:
1546 	kfree(hdr);
1547 
1548 	return ret;
1549 }
1550 
1551 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1552 {
1553 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1554 	struct sev_data_receive_finish data;
1555 
1556 	if (!sev_guest(kvm))
1557 		return -ENOTTY;
1558 
1559 	data.handle = sev->handle;
1560 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1561 }
1562 
1563 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1564 {
1565 	/*
1566 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1567 	 * active mirror VMs. Also allow the debugging and status commands.
1568 	 */
1569 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1570 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1571 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1572 		return true;
1573 
1574 	return false;
1575 }
1576 
1577 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1578 {
1579 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1580 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1581 	int r = -EBUSY;
1582 
1583 	if (dst_kvm == src_kvm)
1584 		return -EINVAL;
1585 
1586 	/*
1587 	 * Bail if these VMs are already involved in a migration to avoid
1588 	 * deadlock between two VMs trying to migrate to/from each other.
1589 	 */
1590 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1591 		return -EBUSY;
1592 
1593 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1594 		goto release_dst;
1595 
1596 	r = -EINTR;
1597 	if (mutex_lock_killable(&dst_kvm->lock))
1598 		goto release_src;
1599 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1600 		goto unlock_dst;
1601 	return 0;
1602 
1603 unlock_dst:
1604 	mutex_unlock(&dst_kvm->lock);
1605 release_src:
1606 	atomic_set_release(&src_sev->migration_in_progress, 0);
1607 release_dst:
1608 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1609 	return r;
1610 }
1611 
1612 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1613 {
1614 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1615 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1616 
1617 	mutex_unlock(&dst_kvm->lock);
1618 	mutex_unlock(&src_kvm->lock);
1619 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1620 	atomic_set_release(&src_sev->migration_in_progress, 0);
1621 }
1622 
1623 /* vCPU mutex subclasses.  */
1624 enum sev_migration_role {
1625 	SEV_MIGRATION_SOURCE = 0,
1626 	SEV_MIGRATION_TARGET,
1627 	SEV_NR_MIGRATION_ROLES,
1628 };
1629 
1630 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1631 					enum sev_migration_role role)
1632 {
1633 	struct kvm_vcpu *vcpu;
1634 	unsigned long i, j;
1635 
1636 	kvm_for_each_vcpu(i, vcpu, kvm) {
1637 		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1638 			goto out_unlock;
1639 
1640 #ifdef CONFIG_PROVE_LOCKING
1641 		if (!i)
1642 			/*
1643 			 * Reset the role to one that avoids colliding with
1644 			 * the role used for the first vcpu mutex.
1645 			 */
1646 			role = SEV_NR_MIGRATION_ROLES;
1647 		else
1648 			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1649 #endif
1650 	}
1651 
1652 	return 0;
1653 
1654 out_unlock:
1655 
1656 	kvm_for_each_vcpu(j, vcpu, kvm) {
1657 		if (i == j)
1658 			break;
1659 
1660 #ifdef CONFIG_PROVE_LOCKING
1661 		if (j)
1662 			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1663 #endif
1664 
1665 		mutex_unlock(&vcpu->mutex);
1666 	}
1667 	return -EINTR;
1668 }
1669 
1670 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1671 {
1672 	struct kvm_vcpu *vcpu;
1673 	unsigned long i;
1674 	bool first = true;
1675 
1676 	kvm_for_each_vcpu(i, vcpu, kvm) {
1677 		if (first)
1678 			first = false;
1679 		else
1680 			mutex_acquire(&vcpu->mutex.dep_map,
1681 				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1682 
1683 		mutex_unlock(&vcpu->mutex);
1684 	}
1685 }
1686 
1687 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1688 {
1689 	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1690 	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1691 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1692 	struct vcpu_svm *dst_svm, *src_svm;
1693 	struct kvm_sev_info *mirror;
1694 	unsigned long i;
1695 
1696 	dst->active = true;
1697 	dst->asid = src->asid;
1698 	dst->handle = src->handle;
1699 	dst->pages_locked = src->pages_locked;
1700 	dst->enc_context_owner = src->enc_context_owner;
1701 	dst->es_active = src->es_active;
1702 
1703 	src->asid = 0;
1704 	src->active = false;
1705 	src->handle = 0;
1706 	src->pages_locked = 0;
1707 	src->enc_context_owner = NULL;
1708 	src->es_active = false;
1709 
1710 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1711 
1712 	/*
1713 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1714 	 * source to the destination (this KVM).  The caller holds a reference
1715 	 * to the source, so there's no danger of use-after-free.
1716 	 */
1717 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1718 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1719 		kvm_get_kvm(dst_kvm);
1720 		kvm_put_kvm(src_kvm);
1721 		mirror->enc_context_owner = dst_kvm;
1722 	}
1723 
1724 	/*
1725 	 * If this VM is a mirror, remove the old mirror from the owners list
1726 	 * and add the new mirror to the list.
1727 	 */
1728 	if (is_mirroring_enc_context(dst_kvm)) {
1729 		struct kvm_sev_info *owner_sev_info =
1730 			&to_kvm_svm(dst->enc_context_owner)->sev_info;
1731 
1732 		list_del(&src->mirror_entry);
1733 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1734 	}
1735 
1736 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1737 		dst_svm = to_svm(dst_vcpu);
1738 
1739 		sev_init_vmcb(dst_svm);
1740 
1741 		if (!dst->es_active)
1742 			continue;
1743 
1744 		/*
1745 		 * Note, the source is not required to have the same number of
1746 		 * vCPUs as the destination when migrating a vanilla SEV VM.
1747 		 */
1748 		src_vcpu = kvm_get_vcpu(src_kvm, i);
1749 		src_svm = to_svm(src_vcpu);
1750 
1751 		/*
1752 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1753 		 * clear source fields as appropriate, the state now belongs to
1754 		 * the destination.
1755 		 */
1756 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1757 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1758 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1759 		dst_vcpu->arch.guest_state_protected = true;
1760 
1761 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1762 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1763 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1764 		src_vcpu->arch.guest_state_protected = false;
1765 	}
1766 }
1767 
1768 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1769 {
1770 	struct kvm_vcpu *src_vcpu;
1771 	unsigned long i;
1772 
1773 	if (!sev_es_guest(src))
1774 		return 0;
1775 
1776 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1777 		return -EINVAL;
1778 
1779 	kvm_for_each_vcpu(i, src_vcpu, src) {
1780 		if (!src_vcpu->arch.guest_state_protected)
1781 			return -EINVAL;
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1788 {
1789 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1790 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1791 	struct fd f = fdget(source_fd);
1792 	struct kvm *source_kvm;
1793 	bool charged = false;
1794 	int ret;
1795 
1796 	if (!f.file)
1797 		return -EBADF;
1798 
1799 	if (!file_is_kvm(f.file)) {
1800 		ret = -EBADF;
1801 		goto out_fput;
1802 	}
1803 
1804 	source_kvm = f.file->private_data;
1805 	ret = sev_lock_two_vms(kvm, source_kvm);
1806 	if (ret)
1807 		goto out_fput;
1808 
1809 	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1810 		ret = -EINVAL;
1811 		goto out_unlock;
1812 	}
1813 
1814 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1815 
1816 	dst_sev->misc_cg = get_current_misc_cg();
1817 	cg_cleanup_sev = dst_sev;
1818 	if (dst_sev->misc_cg != src_sev->misc_cg) {
1819 		ret = sev_misc_cg_try_charge(dst_sev);
1820 		if (ret)
1821 			goto out_dst_cgroup;
1822 		charged = true;
1823 	}
1824 
1825 	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1826 	if (ret)
1827 		goto out_dst_cgroup;
1828 	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1829 	if (ret)
1830 		goto out_dst_vcpu;
1831 
1832 	ret = sev_check_source_vcpus(kvm, source_kvm);
1833 	if (ret)
1834 		goto out_source_vcpu;
1835 
1836 	sev_migrate_from(kvm, source_kvm);
1837 	kvm_vm_dead(source_kvm);
1838 	cg_cleanup_sev = src_sev;
1839 	ret = 0;
1840 
1841 out_source_vcpu:
1842 	sev_unlock_vcpus_for_migration(source_kvm);
1843 out_dst_vcpu:
1844 	sev_unlock_vcpus_for_migration(kvm);
1845 out_dst_cgroup:
1846 	/* Operates on the source on success, on the destination on failure.  */
1847 	if (charged)
1848 		sev_misc_cg_uncharge(cg_cleanup_sev);
1849 	put_misc_cg(cg_cleanup_sev->misc_cg);
1850 	cg_cleanup_sev->misc_cg = NULL;
1851 out_unlock:
1852 	sev_unlock_two_vms(kvm, source_kvm);
1853 out_fput:
1854 	fdput(f);
1855 	return ret;
1856 }
1857 
1858 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1859 {
1860 	struct kvm_sev_cmd sev_cmd;
1861 	int r;
1862 
1863 	if (!sev_enabled)
1864 		return -ENOTTY;
1865 
1866 	if (!argp)
1867 		return 0;
1868 
1869 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1870 		return -EFAULT;
1871 
1872 	mutex_lock(&kvm->lock);
1873 
1874 	/* Only the enc_context_owner handles some memory enc operations. */
1875 	if (is_mirroring_enc_context(kvm) &&
1876 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1877 		r = -EINVAL;
1878 		goto out;
1879 	}
1880 
1881 	switch (sev_cmd.id) {
1882 	case KVM_SEV_ES_INIT:
1883 		if (!sev_es_enabled) {
1884 			r = -ENOTTY;
1885 			goto out;
1886 		}
1887 		fallthrough;
1888 	case KVM_SEV_INIT:
1889 		r = sev_guest_init(kvm, &sev_cmd);
1890 		break;
1891 	case KVM_SEV_LAUNCH_START:
1892 		r = sev_launch_start(kvm, &sev_cmd);
1893 		break;
1894 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1895 		r = sev_launch_update_data(kvm, &sev_cmd);
1896 		break;
1897 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1898 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1899 		break;
1900 	case KVM_SEV_LAUNCH_MEASURE:
1901 		r = sev_launch_measure(kvm, &sev_cmd);
1902 		break;
1903 	case KVM_SEV_LAUNCH_FINISH:
1904 		r = sev_launch_finish(kvm, &sev_cmd);
1905 		break;
1906 	case KVM_SEV_GUEST_STATUS:
1907 		r = sev_guest_status(kvm, &sev_cmd);
1908 		break;
1909 	case KVM_SEV_DBG_DECRYPT:
1910 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1911 		break;
1912 	case KVM_SEV_DBG_ENCRYPT:
1913 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1914 		break;
1915 	case KVM_SEV_LAUNCH_SECRET:
1916 		r = sev_launch_secret(kvm, &sev_cmd);
1917 		break;
1918 	case KVM_SEV_GET_ATTESTATION_REPORT:
1919 		r = sev_get_attestation_report(kvm, &sev_cmd);
1920 		break;
1921 	case KVM_SEV_SEND_START:
1922 		r = sev_send_start(kvm, &sev_cmd);
1923 		break;
1924 	case KVM_SEV_SEND_UPDATE_DATA:
1925 		r = sev_send_update_data(kvm, &sev_cmd);
1926 		break;
1927 	case KVM_SEV_SEND_FINISH:
1928 		r = sev_send_finish(kvm, &sev_cmd);
1929 		break;
1930 	case KVM_SEV_SEND_CANCEL:
1931 		r = sev_send_cancel(kvm, &sev_cmd);
1932 		break;
1933 	case KVM_SEV_RECEIVE_START:
1934 		r = sev_receive_start(kvm, &sev_cmd);
1935 		break;
1936 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1937 		r = sev_receive_update_data(kvm, &sev_cmd);
1938 		break;
1939 	case KVM_SEV_RECEIVE_FINISH:
1940 		r = sev_receive_finish(kvm, &sev_cmd);
1941 		break;
1942 	default:
1943 		r = -EINVAL;
1944 		goto out;
1945 	}
1946 
1947 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1948 		r = -EFAULT;
1949 
1950 out:
1951 	mutex_unlock(&kvm->lock);
1952 	return r;
1953 }
1954 
1955 int sev_mem_enc_register_region(struct kvm *kvm,
1956 				struct kvm_enc_region *range)
1957 {
1958 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1959 	struct enc_region *region;
1960 	int ret = 0;
1961 
1962 	if (!sev_guest(kvm))
1963 		return -ENOTTY;
1964 
1965 	/* If kvm is mirroring encryption context it isn't responsible for it */
1966 	if (is_mirroring_enc_context(kvm))
1967 		return -EINVAL;
1968 
1969 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1970 		return -EINVAL;
1971 
1972 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1973 	if (!region)
1974 		return -ENOMEM;
1975 
1976 	mutex_lock(&kvm->lock);
1977 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1978 	if (IS_ERR(region->pages)) {
1979 		ret = PTR_ERR(region->pages);
1980 		mutex_unlock(&kvm->lock);
1981 		goto e_free;
1982 	}
1983 
1984 	/*
1985 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1986 	 * or vice versa for this memory range. Lets make sure caches are
1987 	 * flushed to ensure that guest data gets written into memory with
1988 	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
1989 	 * as region and its array of pages can be freed by a different task
1990 	 * once kvm->lock is released.
1991 	 */
1992 	sev_clflush_pages(region->pages, region->npages);
1993 
1994 	region->uaddr = range->addr;
1995 	region->size = range->size;
1996 
1997 	list_add_tail(&region->list, &sev->regions_list);
1998 	mutex_unlock(&kvm->lock);
1999 
2000 	return ret;
2001 
2002 e_free:
2003 	kfree(region);
2004 	return ret;
2005 }
2006 
2007 static struct enc_region *
2008 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2009 {
2010 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2011 	struct list_head *head = &sev->regions_list;
2012 	struct enc_region *i;
2013 
2014 	list_for_each_entry(i, head, list) {
2015 		if (i->uaddr == range->addr &&
2016 		    i->size == range->size)
2017 			return i;
2018 	}
2019 
2020 	return NULL;
2021 }
2022 
2023 static void __unregister_enc_region_locked(struct kvm *kvm,
2024 					   struct enc_region *region)
2025 {
2026 	sev_unpin_memory(kvm, region->pages, region->npages);
2027 	list_del(&region->list);
2028 	kfree(region);
2029 }
2030 
2031 int sev_mem_enc_unregister_region(struct kvm *kvm,
2032 				  struct kvm_enc_region *range)
2033 {
2034 	struct enc_region *region;
2035 	int ret;
2036 
2037 	/* If kvm is mirroring encryption context it isn't responsible for it */
2038 	if (is_mirroring_enc_context(kvm))
2039 		return -EINVAL;
2040 
2041 	mutex_lock(&kvm->lock);
2042 
2043 	if (!sev_guest(kvm)) {
2044 		ret = -ENOTTY;
2045 		goto failed;
2046 	}
2047 
2048 	region = find_enc_region(kvm, range);
2049 	if (!region) {
2050 		ret = -EINVAL;
2051 		goto failed;
2052 	}
2053 
2054 	/*
2055 	 * Ensure that all guest tagged cache entries are flushed before
2056 	 * releasing the pages back to the system for use. CLFLUSH will
2057 	 * not do this, so issue a WBINVD.
2058 	 */
2059 	wbinvd_on_all_cpus();
2060 
2061 	__unregister_enc_region_locked(kvm, region);
2062 
2063 	mutex_unlock(&kvm->lock);
2064 	return 0;
2065 
2066 failed:
2067 	mutex_unlock(&kvm->lock);
2068 	return ret;
2069 }
2070 
2071 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2072 {
2073 	struct fd f = fdget(source_fd);
2074 	struct kvm *source_kvm;
2075 	struct kvm_sev_info *source_sev, *mirror_sev;
2076 	int ret;
2077 
2078 	if (!f.file)
2079 		return -EBADF;
2080 
2081 	if (!file_is_kvm(f.file)) {
2082 		ret = -EBADF;
2083 		goto e_source_fput;
2084 	}
2085 
2086 	source_kvm = f.file->private_data;
2087 	ret = sev_lock_two_vms(kvm, source_kvm);
2088 	if (ret)
2089 		goto e_source_fput;
2090 
2091 	/*
2092 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2093 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2094 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2095 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2096 	 */
2097 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2098 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2099 		ret = -EINVAL;
2100 		goto e_unlock;
2101 	}
2102 
2103 	/*
2104 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2105 	 * disappear until we're done with it
2106 	 */
2107 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2108 	kvm_get_kvm(source_kvm);
2109 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2110 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2111 
2112 	/* Set enc_context_owner and copy its encryption context over */
2113 	mirror_sev->enc_context_owner = source_kvm;
2114 	mirror_sev->active = true;
2115 	mirror_sev->asid = source_sev->asid;
2116 	mirror_sev->fd = source_sev->fd;
2117 	mirror_sev->es_active = source_sev->es_active;
2118 	mirror_sev->handle = source_sev->handle;
2119 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2120 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2121 	ret = 0;
2122 
2123 	/*
2124 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2125 	 * KVM contexts as the original, and they may have different
2126 	 * memory-views.
2127 	 */
2128 
2129 e_unlock:
2130 	sev_unlock_two_vms(kvm, source_kvm);
2131 e_source_fput:
2132 	fdput(f);
2133 	return ret;
2134 }
2135 
2136 void sev_vm_destroy(struct kvm *kvm)
2137 {
2138 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2139 	struct list_head *head = &sev->regions_list;
2140 	struct list_head *pos, *q;
2141 
2142 	if (!sev_guest(kvm))
2143 		return;
2144 
2145 	WARN_ON(!list_empty(&sev->mirror_vms));
2146 
2147 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2148 	if (is_mirroring_enc_context(kvm)) {
2149 		struct kvm *owner_kvm = sev->enc_context_owner;
2150 
2151 		mutex_lock(&owner_kvm->lock);
2152 		list_del(&sev->mirror_entry);
2153 		mutex_unlock(&owner_kvm->lock);
2154 		kvm_put_kvm(owner_kvm);
2155 		return;
2156 	}
2157 
2158 	/*
2159 	 * Ensure that all guest tagged cache entries are flushed before
2160 	 * releasing the pages back to the system for use. CLFLUSH will
2161 	 * not do this, so issue a WBINVD.
2162 	 */
2163 	wbinvd_on_all_cpus();
2164 
2165 	/*
2166 	 * if userspace was terminated before unregistering the memory regions
2167 	 * then lets unpin all the registered memory.
2168 	 */
2169 	if (!list_empty(head)) {
2170 		list_for_each_safe(pos, q, head) {
2171 			__unregister_enc_region_locked(kvm,
2172 				list_entry(pos, struct enc_region, list));
2173 			cond_resched();
2174 		}
2175 	}
2176 
2177 	sev_unbind_asid(kvm, sev->handle);
2178 	sev_asid_free(sev);
2179 }
2180 
2181 void __init sev_set_cpu_caps(void)
2182 {
2183 	if (!sev_enabled)
2184 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2185 	if (!sev_es_enabled)
2186 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2187 }
2188 
2189 void __init sev_hardware_setup(void)
2190 {
2191 #ifdef CONFIG_KVM_AMD_SEV
2192 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2193 	bool sev_es_supported = false;
2194 	bool sev_supported = false;
2195 
2196 	if (!sev_enabled || !npt_enabled || !nrips)
2197 		goto out;
2198 
2199 	/*
2200 	 * SEV must obviously be supported in hardware.  Sanity check that the
2201 	 * CPU supports decode assists, which is mandatory for SEV guests to
2202 	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
2203 	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2204 	 * ASID to effect a TLB flush.
2205 	 */
2206 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2207 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2208 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
2209 		goto out;
2210 
2211 	/* Retrieve SEV CPUID information */
2212 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2213 
2214 	/* Set encryption bit location for SEV-ES guests */
2215 	sev_enc_bit = ebx & 0x3f;
2216 
2217 	/* Maximum number of encrypted guests supported simultaneously */
2218 	max_sev_asid = ecx;
2219 	if (!max_sev_asid)
2220 		goto out;
2221 
2222 	/* Minimum ASID value that should be used for SEV guest */
2223 	min_sev_asid = edx;
2224 	sev_me_mask = 1UL << (ebx & 0x3f);
2225 
2226 	/*
2227 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2228 	 * even though it's never used, so that the bitmap is indexed by the
2229 	 * actual ASID.
2230 	 */
2231 	nr_asids = max_sev_asid + 1;
2232 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2233 	if (!sev_asid_bitmap)
2234 		goto out;
2235 
2236 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2237 	if (!sev_reclaim_asid_bitmap) {
2238 		bitmap_free(sev_asid_bitmap);
2239 		sev_asid_bitmap = NULL;
2240 		goto out;
2241 	}
2242 
2243 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
2244 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2245 	sev_supported = true;
2246 
2247 	/* SEV-ES support requested? */
2248 	if (!sev_es_enabled)
2249 		goto out;
2250 
2251 	/*
2252 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2253 	 * instruction stream, i.e. can't emulate in response to a #NPF and
2254 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2255 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2256 	 */
2257 	if (!enable_mmio_caching)
2258 		goto out;
2259 
2260 	/* Does the CPU support SEV-ES? */
2261 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2262 		goto out;
2263 
2264 	/* Has the system been allocated ASIDs for SEV-ES? */
2265 	if (min_sev_asid == 1)
2266 		goto out;
2267 
2268 	sev_es_asid_count = min_sev_asid - 1;
2269 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2270 	sev_es_supported = true;
2271 
2272 out:
2273 	if (boot_cpu_has(X86_FEATURE_SEV))
2274 		pr_info("SEV %s (ASIDs %u - %u)\n",
2275 			sev_supported ? "enabled" : "disabled",
2276 			min_sev_asid, max_sev_asid);
2277 	if (boot_cpu_has(X86_FEATURE_SEV_ES))
2278 		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2279 			sev_es_supported ? "enabled" : "disabled",
2280 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2281 
2282 	sev_enabled = sev_supported;
2283 	sev_es_enabled = sev_es_supported;
2284 	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2285 	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2286 		sev_es_debug_swap_enabled = false;
2287 #endif
2288 }
2289 
2290 void sev_hardware_unsetup(void)
2291 {
2292 	if (!sev_enabled)
2293 		return;
2294 
2295 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2296 	sev_flush_asids(1, max_sev_asid);
2297 
2298 	bitmap_free(sev_asid_bitmap);
2299 	bitmap_free(sev_reclaim_asid_bitmap);
2300 
2301 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2302 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2303 }
2304 
2305 int sev_cpu_init(struct svm_cpu_data *sd)
2306 {
2307 	if (!sev_enabled)
2308 		return 0;
2309 
2310 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2311 	if (!sd->sev_vmcbs)
2312 		return -ENOMEM;
2313 
2314 	return 0;
2315 }
2316 
2317 /*
2318  * Pages used by hardware to hold guest encrypted state must be flushed before
2319  * returning them to the system.
2320  */
2321 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2322 {
2323 	int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2324 
2325 	/*
2326 	 * Note!  The address must be a kernel address, as regular page walk
2327 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2328 	 * address is non-deterministic and unsafe.  This function deliberately
2329 	 * takes a pointer to deter passing in a user address.
2330 	 */
2331 	unsigned long addr = (unsigned long)va;
2332 
2333 	/*
2334 	 * If CPU enforced cache coherency for encrypted mappings of the
2335 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2336 	 * flush is still needed in order to work properly with DMA devices.
2337 	 */
2338 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2339 		clflush_cache_range(va, PAGE_SIZE);
2340 		return;
2341 	}
2342 
2343 	/*
2344 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2345 	 * back to WBINVD if this faults so as not to make any problems worse
2346 	 * by leaving stale encrypted data in the cache.
2347 	 */
2348 	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2349 		goto do_wbinvd;
2350 
2351 	return;
2352 
2353 do_wbinvd:
2354 	wbinvd_on_all_cpus();
2355 }
2356 
2357 void sev_guest_memory_reclaimed(struct kvm *kvm)
2358 {
2359 	if (!sev_guest(kvm))
2360 		return;
2361 
2362 	wbinvd_on_all_cpus();
2363 }
2364 
2365 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2366 {
2367 	struct vcpu_svm *svm;
2368 
2369 	if (!sev_es_guest(vcpu->kvm))
2370 		return;
2371 
2372 	svm = to_svm(vcpu);
2373 
2374 	if (vcpu->arch.guest_state_protected)
2375 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2376 
2377 	__free_page(virt_to_page(svm->sev_es.vmsa));
2378 
2379 	if (svm->sev_es.ghcb_sa_free)
2380 		kvfree(svm->sev_es.ghcb_sa);
2381 }
2382 
2383 static void dump_ghcb(struct vcpu_svm *svm)
2384 {
2385 	struct ghcb *ghcb = svm->sev_es.ghcb;
2386 	unsigned int nbits;
2387 
2388 	/* Re-use the dump_invalid_vmcb module parameter */
2389 	if (!dump_invalid_vmcb) {
2390 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2391 		return;
2392 	}
2393 
2394 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2395 
2396 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2397 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2398 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2399 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2400 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2401 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2402 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2403 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2404 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2405 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2406 }
2407 
2408 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2409 {
2410 	struct kvm_vcpu *vcpu = &svm->vcpu;
2411 	struct ghcb *ghcb = svm->sev_es.ghcb;
2412 
2413 	/*
2414 	 * The GHCB protocol so far allows for the following data
2415 	 * to be returned:
2416 	 *   GPRs RAX, RBX, RCX, RDX
2417 	 *
2418 	 * Copy their values, even if they may not have been written during the
2419 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2420 	 */
2421 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2422 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2423 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2424 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2425 }
2426 
2427 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2428 {
2429 	struct vmcb_control_area *control = &svm->vmcb->control;
2430 	struct kvm_vcpu *vcpu = &svm->vcpu;
2431 	struct ghcb *ghcb = svm->sev_es.ghcb;
2432 	u64 exit_code;
2433 
2434 	/*
2435 	 * The GHCB protocol so far allows for the following data
2436 	 * to be supplied:
2437 	 *   GPRs RAX, RBX, RCX, RDX
2438 	 *   XCR0
2439 	 *   CPL
2440 	 *
2441 	 * VMMCALL allows the guest to provide extra registers. KVM also
2442 	 * expects RSI for hypercalls, so include that, too.
2443 	 *
2444 	 * Copy their values to the appropriate location if supplied.
2445 	 */
2446 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2447 
2448 	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2449 	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2450 
2451 	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2452 	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2453 	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2454 	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2455 	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2456 
2457 	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2458 
2459 	if (kvm_ghcb_xcr0_is_valid(svm)) {
2460 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2461 		kvm_update_cpuid_runtime(vcpu);
2462 	}
2463 
2464 	/* Copy the GHCB exit information into the VMCB fields */
2465 	exit_code = ghcb_get_sw_exit_code(ghcb);
2466 	control->exit_code = lower_32_bits(exit_code);
2467 	control->exit_code_hi = upper_32_bits(exit_code);
2468 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2469 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2470 	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2471 
2472 	/* Clear the valid entries fields */
2473 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2474 }
2475 
2476 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2477 {
2478 	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2479 }
2480 
2481 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2482 {
2483 	struct vmcb_control_area *control = &svm->vmcb->control;
2484 	struct kvm_vcpu *vcpu = &svm->vcpu;
2485 	u64 exit_code;
2486 	u64 reason;
2487 
2488 	/*
2489 	 * Retrieve the exit code now even though it may not be marked valid
2490 	 * as it could help with debugging.
2491 	 */
2492 	exit_code = kvm_ghcb_get_sw_exit_code(control);
2493 
2494 	/* Only GHCB Usage code 0 is supported */
2495 	if (svm->sev_es.ghcb->ghcb_usage) {
2496 		reason = GHCB_ERR_INVALID_USAGE;
2497 		goto vmgexit_err;
2498 	}
2499 
2500 	reason = GHCB_ERR_MISSING_INPUT;
2501 
2502 	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2503 	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2504 	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2505 		goto vmgexit_err;
2506 
2507 	switch (exit_code) {
2508 	case SVM_EXIT_READ_DR7:
2509 		break;
2510 	case SVM_EXIT_WRITE_DR7:
2511 		if (!kvm_ghcb_rax_is_valid(svm))
2512 			goto vmgexit_err;
2513 		break;
2514 	case SVM_EXIT_RDTSC:
2515 		break;
2516 	case SVM_EXIT_RDPMC:
2517 		if (!kvm_ghcb_rcx_is_valid(svm))
2518 			goto vmgexit_err;
2519 		break;
2520 	case SVM_EXIT_CPUID:
2521 		if (!kvm_ghcb_rax_is_valid(svm) ||
2522 		    !kvm_ghcb_rcx_is_valid(svm))
2523 			goto vmgexit_err;
2524 		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2525 			if (!kvm_ghcb_xcr0_is_valid(svm))
2526 				goto vmgexit_err;
2527 		break;
2528 	case SVM_EXIT_INVD:
2529 		break;
2530 	case SVM_EXIT_IOIO:
2531 		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2532 			if (!kvm_ghcb_sw_scratch_is_valid(svm))
2533 				goto vmgexit_err;
2534 		} else {
2535 			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2536 				if (!kvm_ghcb_rax_is_valid(svm))
2537 					goto vmgexit_err;
2538 		}
2539 		break;
2540 	case SVM_EXIT_MSR:
2541 		if (!kvm_ghcb_rcx_is_valid(svm))
2542 			goto vmgexit_err;
2543 		if (control->exit_info_1) {
2544 			if (!kvm_ghcb_rax_is_valid(svm) ||
2545 			    !kvm_ghcb_rdx_is_valid(svm))
2546 				goto vmgexit_err;
2547 		}
2548 		break;
2549 	case SVM_EXIT_VMMCALL:
2550 		if (!kvm_ghcb_rax_is_valid(svm) ||
2551 		    !kvm_ghcb_cpl_is_valid(svm))
2552 			goto vmgexit_err;
2553 		break;
2554 	case SVM_EXIT_RDTSCP:
2555 		break;
2556 	case SVM_EXIT_WBINVD:
2557 		break;
2558 	case SVM_EXIT_MONITOR:
2559 		if (!kvm_ghcb_rax_is_valid(svm) ||
2560 		    !kvm_ghcb_rcx_is_valid(svm) ||
2561 		    !kvm_ghcb_rdx_is_valid(svm))
2562 			goto vmgexit_err;
2563 		break;
2564 	case SVM_EXIT_MWAIT:
2565 		if (!kvm_ghcb_rax_is_valid(svm) ||
2566 		    !kvm_ghcb_rcx_is_valid(svm))
2567 			goto vmgexit_err;
2568 		break;
2569 	case SVM_VMGEXIT_MMIO_READ:
2570 	case SVM_VMGEXIT_MMIO_WRITE:
2571 		if (!kvm_ghcb_sw_scratch_is_valid(svm))
2572 			goto vmgexit_err;
2573 		break;
2574 	case SVM_VMGEXIT_NMI_COMPLETE:
2575 	case SVM_VMGEXIT_AP_HLT_LOOP:
2576 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2577 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2578 		break;
2579 	default:
2580 		reason = GHCB_ERR_INVALID_EVENT;
2581 		goto vmgexit_err;
2582 	}
2583 
2584 	return 0;
2585 
2586 vmgexit_err:
2587 	if (reason == GHCB_ERR_INVALID_USAGE) {
2588 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2589 			    svm->sev_es.ghcb->ghcb_usage);
2590 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2591 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2592 			    exit_code);
2593 	} else {
2594 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2595 			    exit_code);
2596 		dump_ghcb(svm);
2597 	}
2598 
2599 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2600 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
2601 
2602 	/* Resume the guest to "return" the error code. */
2603 	return 1;
2604 }
2605 
2606 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2607 {
2608 	if (!svm->sev_es.ghcb)
2609 		return;
2610 
2611 	if (svm->sev_es.ghcb_sa_free) {
2612 		/*
2613 		 * The scratch area lives outside the GHCB, so there is a
2614 		 * buffer that, depending on the operation performed, may
2615 		 * need to be synced, then freed.
2616 		 */
2617 		if (svm->sev_es.ghcb_sa_sync) {
2618 			kvm_write_guest(svm->vcpu.kvm,
2619 					svm->sev_es.sw_scratch,
2620 					svm->sev_es.ghcb_sa,
2621 					svm->sev_es.ghcb_sa_len);
2622 			svm->sev_es.ghcb_sa_sync = false;
2623 		}
2624 
2625 		kvfree(svm->sev_es.ghcb_sa);
2626 		svm->sev_es.ghcb_sa = NULL;
2627 		svm->sev_es.ghcb_sa_free = false;
2628 	}
2629 
2630 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2631 
2632 	sev_es_sync_to_ghcb(svm);
2633 
2634 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2635 	svm->sev_es.ghcb = NULL;
2636 }
2637 
2638 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2639 {
2640 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2641 	int asid = sev_get_asid(svm->vcpu.kvm);
2642 
2643 	/* Assign the asid allocated with this SEV guest */
2644 	svm->asid = asid;
2645 
2646 	/*
2647 	 * Flush guest TLB:
2648 	 *
2649 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2650 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2651 	 */
2652 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2653 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2654 		return;
2655 
2656 	sd->sev_vmcbs[asid] = svm->vmcb;
2657 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2658 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2659 }
2660 
2661 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2662 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2663 {
2664 	struct vmcb_control_area *control = &svm->vmcb->control;
2665 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2666 	u64 scratch_gpa_beg, scratch_gpa_end;
2667 	void *scratch_va;
2668 
2669 	scratch_gpa_beg = svm->sev_es.sw_scratch;
2670 	if (!scratch_gpa_beg) {
2671 		pr_err("vmgexit: scratch gpa not provided\n");
2672 		goto e_scratch;
2673 	}
2674 
2675 	scratch_gpa_end = scratch_gpa_beg + len;
2676 	if (scratch_gpa_end < scratch_gpa_beg) {
2677 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2678 		       len, scratch_gpa_beg);
2679 		goto e_scratch;
2680 	}
2681 
2682 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2683 		/* Scratch area begins within GHCB */
2684 		ghcb_scratch_beg = control->ghcb_gpa +
2685 				   offsetof(struct ghcb, shared_buffer);
2686 		ghcb_scratch_end = control->ghcb_gpa +
2687 				   offsetof(struct ghcb, reserved_0xff0);
2688 
2689 		/*
2690 		 * If the scratch area begins within the GHCB, it must be
2691 		 * completely contained in the GHCB shared buffer area.
2692 		 */
2693 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2694 		    scratch_gpa_end > ghcb_scratch_end) {
2695 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2696 			       scratch_gpa_beg, scratch_gpa_end);
2697 			goto e_scratch;
2698 		}
2699 
2700 		scratch_va = (void *)svm->sev_es.ghcb;
2701 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2702 	} else {
2703 		/*
2704 		 * The guest memory must be read into a kernel buffer, so
2705 		 * limit the size
2706 		 */
2707 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2708 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2709 			       len, GHCB_SCRATCH_AREA_LIMIT);
2710 			goto e_scratch;
2711 		}
2712 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2713 		if (!scratch_va)
2714 			return -ENOMEM;
2715 
2716 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2717 			/* Unable to copy scratch area from guest */
2718 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2719 
2720 			kvfree(scratch_va);
2721 			return -EFAULT;
2722 		}
2723 
2724 		/*
2725 		 * The scratch area is outside the GHCB. The operation will
2726 		 * dictate whether the buffer needs to be synced before running
2727 		 * the vCPU next time (i.e. a read was requested so the data
2728 		 * must be written back to the guest memory).
2729 		 */
2730 		svm->sev_es.ghcb_sa_sync = sync;
2731 		svm->sev_es.ghcb_sa_free = true;
2732 	}
2733 
2734 	svm->sev_es.ghcb_sa = scratch_va;
2735 	svm->sev_es.ghcb_sa_len = len;
2736 
2737 	return 0;
2738 
2739 e_scratch:
2740 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2741 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2742 
2743 	return 1;
2744 }
2745 
2746 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2747 			      unsigned int pos)
2748 {
2749 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2750 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2751 }
2752 
2753 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2754 {
2755 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2756 }
2757 
2758 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2759 {
2760 	svm->vmcb->control.ghcb_gpa = value;
2761 }
2762 
2763 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2764 {
2765 	struct vmcb_control_area *control = &svm->vmcb->control;
2766 	struct kvm_vcpu *vcpu = &svm->vcpu;
2767 	u64 ghcb_info;
2768 	int ret = 1;
2769 
2770 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2771 
2772 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2773 					     control->ghcb_gpa);
2774 
2775 	switch (ghcb_info) {
2776 	case GHCB_MSR_SEV_INFO_REQ:
2777 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2778 						    GHCB_VERSION_MIN,
2779 						    sev_enc_bit));
2780 		break;
2781 	case GHCB_MSR_CPUID_REQ: {
2782 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2783 
2784 		cpuid_fn = get_ghcb_msr_bits(svm,
2785 					     GHCB_MSR_CPUID_FUNC_MASK,
2786 					     GHCB_MSR_CPUID_FUNC_POS);
2787 
2788 		/* Initialize the registers needed by the CPUID intercept */
2789 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2790 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2791 
2792 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2793 		if (!ret) {
2794 			/* Error, keep GHCB MSR value as-is */
2795 			break;
2796 		}
2797 
2798 		cpuid_reg = get_ghcb_msr_bits(svm,
2799 					      GHCB_MSR_CPUID_REG_MASK,
2800 					      GHCB_MSR_CPUID_REG_POS);
2801 		if (cpuid_reg == 0)
2802 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2803 		else if (cpuid_reg == 1)
2804 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2805 		else if (cpuid_reg == 2)
2806 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2807 		else
2808 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2809 
2810 		set_ghcb_msr_bits(svm, cpuid_value,
2811 				  GHCB_MSR_CPUID_VALUE_MASK,
2812 				  GHCB_MSR_CPUID_VALUE_POS);
2813 
2814 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2815 				  GHCB_MSR_INFO_MASK,
2816 				  GHCB_MSR_INFO_POS);
2817 		break;
2818 	}
2819 	case GHCB_MSR_TERM_REQ: {
2820 		u64 reason_set, reason_code;
2821 
2822 		reason_set = get_ghcb_msr_bits(svm,
2823 					       GHCB_MSR_TERM_REASON_SET_MASK,
2824 					       GHCB_MSR_TERM_REASON_SET_POS);
2825 		reason_code = get_ghcb_msr_bits(svm,
2826 						GHCB_MSR_TERM_REASON_MASK,
2827 						GHCB_MSR_TERM_REASON_POS);
2828 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2829 			reason_set, reason_code);
2830 
2831 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2832 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2833 		vcpu->run->system_event.ndata = 1;
2834 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
2835 
2836 		return 0;
2837 	}
2838 	default:
2839 		/* Error, keep GHCB MSR value as-is */
2840 		break;
2841 	}
2842 
2843 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2844 					    control->ghcb_gpa, ret);
2845 
2846 	return ret;
2847 }
2848 
2849 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2850 {
2851 	struct vcpu_svm *svm = to_svm(vcpu);
2852 	struct vmcb_control_area *control = &svm->vmcb->control;
2853 	u64 ghcb_gpa, exit_code;
2854 	int ret;
2855 
2856 	/* Validate the GHCB */
2857 	ghcb_gpa = control->ghcb_gpa;
2858 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2859 		return sev_handle_vmgexit_msr_protocol(svm);
2860 
2861 	if (!ghcb_gpa) {
2862 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2863 
2864 		/* Without a GHCB, just return right back to the guest */
2865 		return 1;
2866 	}
2867 
2868 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2869 		/* Unable to map GHCB from guest */
2870 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2871 			    ghcb_gpa);
2872 
2873 		/* Without a GHCB, just return right back to the guest */
2874 		return 1;
2875 	}
2876 
2877 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2878 
2879 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
2880 
2881 	sev_es_sync_from_ghcb(svm);
2882 	ret = sev_es_validate_vmgexit(svm);
2883 	if (ret)
2884 		return ret;
2885 
2886 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
2887 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
2888 
2889 	exit_code = kvm_ghcb_get_sw_exit_code(control);
2890 	switch (exit_code) {
2891 	case SVM_VMGEXIT_MMIO_READ:
2892 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2893 		if (ret)
2894 			break;
2895 
2896 		ret = kvm_sev_es_mmio_read(vcpu,
2897 					   control->exit_info_1,
2898 					   control->exit_info_2,
2899 					   svm->sev_es.ghcb_sa);
2900 		break;
2901 	case SVM_VMGEXIT_MMIO_WRITE:
2902 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2903 		if (ret)
2904 			break;
2905 
2906 		ret = kvm_sev_es_mmio_write(vcpu,
2907 					    control->exit_info_1,
2908 					    control->exit_info_2,
2909 					    svm->sev_es.ghcb_sa);
2910 		break;
2911 	case SVM_VMGEXIT_NMI_COMPLETE:
2912 		++vcpu->stat.nmi_window_exits;
2913 		svm->nmi_masked = false;
2914 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2915 		ret = 1;
2916 		break;
2917 	case SVM_VMGEXIT_AP_HLT_LOOP:
2918 		ret = kvm_emulate_ap_reset_hold(vcpu);
2919 		break;
2920 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2921 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2922 
2923 		switch (control->exit_info_1) {
2924 		case 0:
2925 			/* Set AP jump table address */
2926 			sev->ap_jump_table = control->exit_info_2;
2927 			break;
2928 		case 1:
2929 			/* Get AP jump table address */
2930 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
2931 			break;
2932 		default:
2933 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2934 			       control->exit_info_1);
2935 			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2936 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
2937 		}
2938 
2939 		ret = 1;
2940 		break;
2941 	}
2942 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2943 		vcpu_unimpl(vcpu,
2944 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2945 			    control->exit_info_1, control->exit_info_2);
2946 		ret = -EINVAL;
2947 		break;
2948 	default:
2949 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2950 	}
2951 
2952 	return ret;
2953 }
2954 
2955 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2956 {
2957 	int count;
2958 	int bytes;
2959 	int r;
2960 
2961 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2962 		return -EINVAL;
2963 
2964 	count = svm->vmcb->control.exit_info_2;
2965 	if (unlikely(check_mul_overflow(count, size, &bytes)))
2966 		return -EINVAL;
2967 
2968 	r = setup_vmgexit_scratch(svm, in, bytes);
2969 	if (r)
2970 		return r;
2971 
2972 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2973 				    count, in);
2974 }
2975 
2976 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2977 {
2978 	struct kvm_vcpu *vcpu = &svm->vcpu;
2979 
2980 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2981 		bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2982 				 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2983 
2984 		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
2985 	}
2986 
2987 	/*
2988 	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
2989 	 * the host/guest supports its use.
2990 	 *
2991 	 * guest_can_use() checks a number of requirements on the host/guest to
2992 	 * ensure that MSR_IA32_XSS is available, but it might report true even
2993 	 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
2994 	 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
2995 	 * to further check that the guest CPUID actually supports
2996 	 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
2997 	 * guests will still get intercepted and caught in the normal
2998 	 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
2999 	 */
3000 	if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
3001 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3002 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
3003 	else
3004 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
3005 }
3006 
3007 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3008 {
3009 	struct kvm_vcpu *vcpu = &svm->vcpu;
3010 	struct kvm_cpuid_entry2 *best;
3011 
3012 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
3013 	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
3014 	if (best)
3015 		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3016 
3017 	if (sev_es_guest(svm->vcpu.kvm))
3018 		sev_es_vcpu_after_set_cpuid(svm);
3019 }
3020 
3021 static void sev_es_init_vmcb(struct vcpu_svm *svm)
3022 {
3023 	struct vmcb *vmcb = svm->vmcb01.ptr;
3024 	struct kvm_vcpu *vcpu = &svm->vcpu;
3025 
3026 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
3027 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
3028 
3029 	/*
3030 	 * An SEV-ES guest requires a VMSA area that is a separate from the
3031 	 * VMCB page. Do not include the encryption mask on the VMSA physical
3032 	 * address since hardware will access it using the guest key.  Note,
3033 	 * the VMSA will be NULL if this vCPU is the destination for intrahost
3034 	 * migration, and will be copied later.
3035 	 */
3036 	if (svm->sev_es.vmsa)
3037 		svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3038 
3039 	/* Can't intercept CR register access, HV can't modify CR registers */
3040 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3041 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3042 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3043 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3044 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3045 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3046 
3047 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3048 
3049 	/* Track EFER/CR register changes */
3050 	svm_set_intercept(svm, TRAP_EFER_WRITE);
3051 	svm_set_intercept(svm, TRAP_CR0_WRITE);
3052 	svm_set_intercept(svm, TRAP_CR4_WRITE);
3053 	svm_set_intercept(svm, TRAP_CR8_WRITE);
3054 
3055 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
3056 	if (!sev_es_debug_swap_enabled) {
3057 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3058 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3059 		recalc_intercepts(svm);
3060 	} else {
3061 		/*
3062 		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
3063 		 * allow debugging SEV-ES guests, and enables DebugSwap iff
3064 		 * NO_NESTED_DATA_BP is supported, so there's no reason to
3065 		 * intercept #DB when DebugSwap is enabled.  For simplicity
3066 		 * with respect to guest debug, intercept #DB for other VMs
3067 		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3068 		 * guest can't DoS the CPU with infinite #DB vectoring.
3069 		 */
3070 		clr_exception_intercept(svm, DB_VECTOR);
3071 	}
3072 
3073 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
3074 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
3075 
3076 	/* Clear intercepts on selected MSRs */
3077 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3078 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3079 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
3080 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
3081 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
3082 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
3083 }
3084 
3085 void sev_init_vmcb(struct vcpu_svm *svm)
3086 {
3087 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3088 	clr_exception_intercept(svm, UD_VECTOR);
3089 
3090 	/*
3091 	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3092 	 * KVM can't decrypt guest memory to decode the faulting instruction.
3093 	 */
3094 	clr_exception_intercept(svm, GP_VECTOR);
3095 
3096 	if (sev_es_guest(svm->vcpu.kvm))
3097 		sev_es_init_vmcb(svm);
3098 }
3099 
3100 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3101 {
3102 	/*
3103 	 * Set the GHCB MSR value as per the GHCB specification when emulating
3104 	 * vCPU RESET for an SEV-ES guest.
3105 	 */
3106 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3107 					    GHCB_VERSION_MIN,
3108 					    sev_enc_bit));
3109 }
3110 
3111 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3112 {
3113 	/*
3114 	 * All host state for SEV-ES guests is categorized into three swap types
3115 	 * based on how it is handled by hardware during a world switch:
3116 	 *
3117 	 * A: VMRUN:   Host state saved in host save area
3118 	 *    VMEXIT:  Host state loaded from host save area
3119 	 *
3120 	 * B: VMRUN:   Host state _NOT_ saved in host save area
3121 	 *    VMEXIT:  Host state loaded from host save area
3122 	 *
3123 	 * C: VMRUN:   Host state _NOT_ saved in host save area
3124 	 *    VMEXIT:  Host state initialized to default(reset) values
3125 	 *
3126 	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3127 	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3128 	 * by common SVM code).
3129 	 */
3130 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3131 	hostsa->pkru = read_pkru();
3132 	hostsa->xss = host_xss;
3133 
3134 	/*
3135 	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3136 	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3137 	 * saves and loads debug registers (Type-A).
3138 	 */
3139 	if (sev_es_debug_swap_enabled) {
3140 		hostsa->dr0 = native_get_debugreg(0);
3141 		hostsa->dr1 = native_get_debugreg(1);
3142 		hostsa->dr2 = native_get_debugreg(2);
3143 		hostsa->dr3 = native_get_debugreg(3);
3144 		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3145 		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3146 		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3147 		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3148 	}
3149 }
3150 
3151 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3152 {
3153 	struct vcpu_svm *svm = to_svm(vcpu);
3154 
3155 	/* First SIPI: Use the values as initially set by the VMM */
3156 	if (!svm->sev_es.received_first_sipi) {
3157 		svm->sev_es.received_first_sipi = true;
3158 		return;
3159 	}
3160 
3161 	/*
3162 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3163 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3164 	 * non-zero value.
3165 	 */
3166 	if (!svm->sev_es.ghcb)
3167 		return;
3168 
3169 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3170 }
3171 
3172 struct page *snp_safe_alloc_page(struct kvm_vcpu *vcpu)
3173 {
3174 	unsigned long pfn;
3175 	struct page *p;
3176 
3177 	if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
3178 		return alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3179 
3180 	/*
3181 	 * Allocate an SNP-safe page to workaround the SNP erratum where
3182 	 * the CPU will incorrectly signal an RMP violation #PF if a
3183 	 * hugepage (2MB or 1GB) collides with the RMP entry of a
3184 	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
3185 	 *
3186 	 * Allocate one extra page, choose a page which is not
3187 	 * 2MB-aligned, and free the other.
3188 	 */
3189 	p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
3190 	if (!p)
3191 		return NULL;
3192 
3193 	split_page(p, 1);
3194 
3195 	pfn = page_to_pfn(p);
3196 	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
3197 		__free_page(p++);
3198 	else
3199 		__free_page(p + 1);
3200 
3201 	return p;
3202 }
3203