1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/sev.h> 30 31 #include "mmu.h" 32 #include "x86.h" 33 #include "svm.h" 34 #include "svm_ops.h" 35 #include "cpuid.h" 36 #include "trace.h" 37 38 #define GHCB_VERSION_MAX 2ULL 39 #define GHCB_VERSION_DEFAULT 2ULL 40 #define GHCB_VERSION_MIN 1ULL 41 42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 43 44 /* enable/disable SEV support */ 45 static bool sev_enabled = true; 46 module_param_named(sev, sev_enabled, bool, 0444); 47 48 /* enable/disable SEV-ES support */ 49 static bool sev_es_enabled = true; 50 module_param_named(sev_es, sev_es_enabled, bool, 0444); 51 52 /* enable/disable SEV-SNP support */ 53 static bool sev_snp_enabled = true; 54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 55 56 /* enable/disable SEV-ES DebugSwap support */ 57 static bool sev_es_debug_swap_enabled = true; 58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 59 static u64 sev_supported_vmsa_features; 60 61 #define AP_RESET_HOLD_NONE 0 62 #define AP_RESET_HOLD_NAE_EVENT 1 63 #define AP_RESET_HOLD_MSR_PROTO 2 64 65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 66 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 67 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 68 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 69 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 70 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 71 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 72 73 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 74 SNP_POLICY_MASK_API_MAJOR | \ 75 SNP_POLICY_MASK_SMT | \ 76 SNP_POLICY_MASK_RSVD_MBO | \ 77 SNP_POLICY_MASK_DEBUG | \ 78 SNP_POLICY_MASK_SINGLE_SOCKET) 79 80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 81 82 static u8 sev_enc_bit; 83 static DECLARE_RWSEM(sev_deactivate_lock); 84 static DEFINE_MUTEX(sev_bitmap_lock); 85 unsigned int max_sev_asid; 86 static unsigned int min_sev_asid; 87 static unsigned long sev_me_mask; 88 static unsigned int nr_asids; 89 static unsigned long *sev_asid_bitmap; 90 static unsigned long *sev_reclaim_asid_bitmap; 91 92 static int snp_decommission_context(struct kvm *kvm); 93 94 struct enc_region { 95 struct list_head list; 96 unsigned long npages; 97 struct page **pages; 98 unsigned long uaddr; 99 unsigned long size; 100 }; 101 102 /* Called with the sev_bitmap_lock held, or on shutdown */ 103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 104 { 105 int ret, error = 0; 106 unsigned int asid; 107 108 /* Check if there are any ASIDs to reclaim before performing a flush */ 109 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 110 if (asid > max_asid) 111 return -EBUSY; 112 113 /* 114 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 115 * so it must be guarded. 116 */ 117 down_write(&sev_deactivate_lock); 118 119 wbinvd_on_all_cpus(); 120 121 if (sev_snp_enabled) 122 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 123 else 124 ret = sev_guest_df_flush(&error); 125 126 up_write(&sev_deactivate_lock); 127 128 if (ret) 129 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 130 sev_snp_enabled ? "-SNP" : "", ret, error); 131 132 return ret; 133 } 134 135 static inline bool is_mirroring_enc_context(struct kvm *kvm) 136 { 137 return !!to_kvm_sev_info(kvm)->enc_context_owner; 138 } 139 140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 141 { 142 struct kvm_vcpu *vcpu = &svm->vcpu; 143 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 144 145 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 146 } 147 148 /* Must be called with the sev_bitmap_lock held */ 149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 150 { 151 if (sev_flush_asids(min_asid, max_asid)) 152 return false; 153 154 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 155 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 156 nr_asids); 157 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 158 159 return true; 160 } 161 162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 163 { 164 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 165 return misc_cg_try_charge(type, sev->misc_cg, 1); 166 } 167 168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 169 { 170 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 171 misc_cg_uncharge(type, sev->misc_cg, 1); 172 } 173 174 static int sev_asid_new(struct kvm_sev_info *sev) 175 { 176 /* 177 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 178 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 179 * Note: min ASID can end up larger than the max if basic SEV support is 180 * effectively disabled by disallowing use of ASIDs for SEV guests. 181 */ 182 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 183 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 184 unsigned int asid; 185 bool retry = true; 186 int ret; 187 188 if (min_asid > max_asid) 189 return -ENOTTY; 190 191 WARN_ON(sev->misc_cg); 192 sev->misc_cg = get_current_misc_cg(); 193 ret = sev_misc_cg_try_charge(sev); 194 if (ret) { 195 put_misc_cg(sev->misc_cg); 196 sev->misc_cg = NULL; 197 return ret; 198 } 199 200 mutex_lock(&sev_bitmap_lock); 201 202 again: 203 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 204 if (asid > max_asid) { 205 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 206 retry = false; 207 goto again; 208 } 209 mutex_unlock(&sev_bitmap_lock); 210 ret = -EBUSY; 211 goto e_uncharge; 212 } 213 214 __set_bit(asid, sev_asid_bitmap); 215 216 mutex_unlock(&sev_bitmap_lock); 217 218 sev->asid = asid; 219 return 0; 220 e_uncharge: 221 sev_misc_cg_uncharge(sev); 222 put_misc_cg(sev->misc_cg); 223 sev->misc_cg = NULL; 224 return ret; 225 } 226 227 static unsigned int sev_get_asid(struct kvm *kvm) 228 { 229 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 230 231 return sev->asid; 232 } 233 234 static void sev_asid_free(struct kvm_sev_info *sev) 235 { 236 struct svm_cpu_data *sd; 237 int cpu; 238 239 mutex_lock(&sev_bitmap_lock); 240 241 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 242 243 for_each_possible_cpu(cpu) { 244 sd = per_cpu_ptr(&svm_data, cpu); 245 sd->sev_vmcbs[sev->asid] = NULL; 246 } 247 248 mutex_unlock(&sev_bitmap_lock); 249 250 sev_misc_cg_uncharge(sev); 251 put_misc_cg(sev->misc_cg); 252 sev->misc_cg = NULL; 253 } 254 255 static void sev_decommission(unsigned int handle) 256 { 257 struct sev_data_decommission decommission; 258 259 if (!handle) 260 return; 261 262 decommission.handle = handle; 263 sev_guest_decommission(&decommission, NULL); 264 } 265 266 /* 267 * Transition a page to hypervisor-owned/shared state in the RMP table. This 268 * should not fail under normal conditions, but leak the page should that 269 * happen since it will no longer be usable by the host due to RMP protections. 270 */ 271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 272 { 273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 275 return -EIO; 276 } 277 278 return 0; 279 } 280 281 /* 282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 285 * unless they are reclaimed first. 286 * 287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 288 * might not be usable by the host due to being set as immutable or still 289 * being associated with a guest ASID. 290 * 291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 292 * converted back to shared, as the page is no longer usable due to RMP 293 * protections, and it's infeasible for the guest to continue on. 294 */ 295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 296 { 297 struct sev_data_snp_page_reclaim data = {0}; 298 int fw_err, rc; 299 300 data.paddr = __sme_set(pfn << PAGE_SHIFT); 301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 303 snp_leak_pages(pfn, 1); 304 return -EIO; 305 } 306 307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 308 return -EIO; 309 310 return rc; 311 } 312 313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 314 { 315 struct sev_data_deactivate deactivate; 316 317 if (!handle) 318 return; 319 320 deactivate.handle = handle; 321 322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 323 down_read(&sev_deactivate_lock); 324 sev_guest_deactivate(&deactivate, NULL); 325 up_read(&sev_deactivate_lock); 326 327 sev_decommission(handle); 328 } 329 330 /* 331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 333 * 2.0 specification for more details. 334 * 335 * Technically, when an SNP Guest Request is issued, the guest will provide its 336 * own request/response pages, which could in theory be passed along directly 337 * to firmware rather than using bounce pages. However, these pages would need 338 * special care: 339 * 340 * - Both pages are from shared guest memory, so they need to be protected 341 * from migration/etc. occurring while firmware reads/writes to them. At a 342 * minimum, this requires elevating the ref counts and potentially needing 343 * an explicit pinning of the memory. This places additional restrictions 344 * on what type of memory backends userspace can use for shared guest 345 * memory since there is some reliance on using refcounted pages. 346 * 347 * - The response page needs to be switched to Firmware-owned[1] state 348 * before the firmware can write to it, which can lead to potential 349 * host RMP #PFs if the guest is misbehaved and hands the host a 350 * guest page that KVM might write to for other reasons (e.g. virtio 351 * buffers/etc.). 352 * 353 * Both of these issues can be avoided completely by using separately-allocated 354 * bounce pages for both the request/response pages and passing those to 355 * firmware instead. So that's what is being set up here. 356 * 357 * Guest requests rely on message sequence numbers to ensure requests are 358 * issued to firmware in the order the guest issues them, so concurrent guest 359 * requests generally shouldn't happen. But a misbehaved guest could issue 360 * concurrent guest requests in theory, so a mutex is used to serialize 361 * access to the bounce buffers. 362 * 363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 365 * in the APM for details on the related RMP restrictions. 366 */ 367 static int snp_guest_req_init(struct kvm *kvm) 368 { 369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 370 struct page *req_page; 371 372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 373 if (!req_page) 374 return -ENOMEM; 375 376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 377 if (!sev->guest_resp_buf) { 378 __free_page(req_page); 379 return -EIO; 380 } 381 382 sev->guest_req_buf = page_address(req_page); 383 mutex_init(&sev->guest_req_mutex); 384 385 return 0; 386 } 387 388 static void snp_guest_req_cleanup(struct kvm *kvm) 389 { 390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 391 392 if (sev->guest_resp_buf) 393 snp_free_firmware_page(sev->guest_resp_buf); 394 395 if (sev->guest_req_buf) 396 __free_page(virt_to_page(sev->guest_req_buf)); 397 398 sev->guest_req_buf = NULL; 399 sev->guest_resp_buf = NULL; 400 } 401 402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 403 struct kvm_sev_init *data, 404 unsigned long vm_type) 405 { 406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 407 struct sev_platform_init_args init_args = {0}; 408 bool es_active = vm_type != KVM_X86_SEV_VM; 409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 410 int ret; 411 412 if (kvm->created_vcpus) 413 return -EINVAL; 414 415 if (data->flags) 416 return -EINVAL; 417 418 if (data->vmsa_features & ~valid_vmsa_features) 419 return -EINVAL; 420 421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 422 return -EINVAL; 423 424 if (unlikely(sev->active)) 425 return -EINVAL; 426 427 sev->active = true; 428 sev->es_active = es_active; 429 sev->vmsa_features = data->vmsa_features; 430 sev->ghcb_version = data->ghcb_version; 431 432 /* 433 * Currently KVM supports the full range of mandatory features defined 434 * by version 2 of the GHCB protocol, so default to that for SEV-ES 435 * guests created via KVM_SEV_INIT2. 436 */ 437 if (sev->es_active && !sev->ghcb_version) 438 sev->ghcb_version = GHCB_VERSION_DEFAULT; 439 440 if (vm_type == KVM_X86_SNP_VM) 441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 442 443 ret = sev_asid_new(sev); 444 if (ret) 445 goto e_no_asid; 446 447 init_args.probe = false; 448 ret = sev_platform_init(&init_args); 449 if (ret) 450 goto e_free; 451 452 /* This needs to happen after SEV/SNP firmware initialization. */ 453 if (vm_type == KVM_X86_SNP_VM && snp_guest_req_init(kvm)) 454 goto e_free; 455 456 INIT_LIST_HEAD(&sev->regions_list); 457 INIT_LIST_HEAD(&sev->mirror_vms); 458 sev->need_init = false; 459 460 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 461 462 return 0; 463 464 e_free: 465 argp->error = init_args.error; 466 sev_asid_free(sev); 467 sev->asid = 0; 468 e_no_asid: 469 sev->vmsa_features = 0; 470 sev->es_active = false; 471 sev->active = false; 472 return ret; 473 } 474 475 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 476 { 477 struct kvm_sev_init data = { 478 .vmsa_features = 0, 479 .ghcb_version = 0, 480 }; 481 unsigned long vm_type; 482 483 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 484 return -EINVAL; 485 486 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 487 488 /* 489 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 490 * continue to only ever support the minimal GHCB protocol version. 491 */ 492 if (vm_type == KVM_X86_SEV_ES_VM) 493 data.ghcb_version = GHCB_VERSION_MIN; 494 495 return __sev_guest_init(kvm, argp, &data, vm_type); 496 } 497 498 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 499 { 500 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 501 struct kvm_sev_init data; 502 503 if (!sev->need_init) 504 return -EINVAL; 505 506 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 507 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 508 kvm->arch.vm_type != KVM_X86_SNP_VM) 509 return -EINVAL; 510 511 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 512 return -EFAULT; 513 514 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 515 } 516 517 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 518 { 519 unsigned int asid = sev_get_asid(kvm); 520 struct sev_data_activate activate; 521 int ret; 522 523 /* activate ASID on the given handle */ 524 activate.handle = handle; 525 activate.asid = asid; 526 ret = sev_guest_activate(&activate, error); 527 528 return ret; 529 } 530 531 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 532 { 533 struct fd f; 534 int ret; 535 536 f = fdget(fd); 537 if (!f.file) 538 return -EBADF; 539 540 ret = sev_issue_cmd_external_user(f.file, id, data, error); 541 542 fdput(f); 543 return ret; 544 } 545 546 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 547 { 548 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 549 550 return __sev_issue_cmd(sev->fd, id, data, error); 551 } 552 553 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 554 { 555 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 556 struct sev_data_launch_start start; 557 struct kvm_sev_launch_start params; 558 void *dh_blob, *session_blob; 559 int *error = &argp->error; 560 int ret; 561 562 if (!sev_guest(kvm)) 563 return -ENOTTY; 564 565 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 566 return -EFAULT; 567 568 memset(&start, 0, sizeof(start)); 569 570 dh_blob = NULL; 571 if (params.dh_uaddr) { 572 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 573 if (IS_ERR(dh_blob)) 574 return PTR_ERR(dh_blob); 575 576 start.dh_cert_address = __sme_set(__pa(dh_blob)); 577 start.dh_cert_len = params.dh_len; 578 } 579 580 session_blob = NULL; 581 if (params.session_uaddr) { 582 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 583 if (IS_ERR(session_blob)) { 584 ret = PTR_ERR(session_blob); 585 goto e_free_dh; 586 } 587 588 start.session_address = __sme_set(__pa(session_blob)); 589 start.session_len = params.session_len; 590 } 591 592 start.handle = params.handle; 593 start.policy = params.policy; 594 595 /* create memory encryption context */ 596 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 597 if (ret) 598 goto e_free_session; 599 600 /* Bind ASID to this guest */ 601 ret = sev_bind_asid(kvm, start.handle, error); 602 if (ret) { 603 sev_decommission(start.handle); 604 goto e_free_session; 605 } 606 607 /* return handle to userspace */ 608 params.handle = start.handle; 609 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 610 sev_unbind_asid(kvm, start.handle); 611 ret = -EFAULT; 612 goto e_free_session; 613 } 614 615 sev->handle = start.handle; 616 sev->fd = argp->sev_fd; 617 618 e_free_session: 619 kfree(session_blob); 620 e_free_dh: 621 kfree(dh_blob); 622 return ret; 623 } 624 625 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 626 unsigned long ulen, unsigned long *n, 627 int write) 628 { 629 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 630 unsigned long npages, size; 631 int npinned; 632 unsigned long locked, lock_limit; 633 struct page **pages; 634 unsigned long first, last; 635 int ret; 636 637 lockdep_assert_held(&kvm->lock); 638 639 if (ulen == 0 || uaddr + ulen < uaddr) 640 return ERR_PTR(-EINVAL); 641 642 /* Calculate number of pages. */ 643 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 644 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 645 npages = (last - first + 1); 646 647 locked = sev->pages_locked + npages; 648 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 649 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 650 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 651 return ERR_PTR(-ENOMEM); 652 } 653 654 if (WARN_ON_ONCE(npages > INT_MAX)) 655 return ERR_PTR(-EINVAL); 656 657 /* Avoid using vmalloc for smaller buffers. */ 658 size = npages * sizeof(struct page *); 659 if (size > PAGE_SIZE) 660 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 661 else 662 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 663 664 if (!pages) 665 return ERR_PTR(-ENOMEM); 666 667 /* Pin the user virtual address. */ 668 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 669 if (npinned != npages) { 670 pr_err("SEV: Failure locking %lu pages.\n", npages); 671 ret = -ENOMEM; 672 goto err; 673 } 674 675 *n = npages; 676 sev->pages_locked = locked; 677 678 return pages; 679 680 err: 681 if (npinned > 0) 682 unpin_user_pages(pages, npinned); 683 684 kvfree(pages); 685 return ERR_PTR(ret); 686 } 687 688 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 689 unsigned long npages) 690 { 691 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 692 693 unpin_user_pages(pages, npages); 694 kvfree(pages); 695 sev->pages_locked -= npages; 696 } 697 698 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 699 { 700 uint8_t *page_virtual; 701 unsigned long i; 702 703 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 704 pages == NULL) 705 return; 706 707 for (i = 0; i < npages; i++) { 708 page_virtual = kmap_local_page(pages[i]); 709 clflush_cache_range(page_virtual, PAGE_SIZE); 710 kunmap_local(page_virtual); 711 cond_resched(); 712 } 713 } 714 715 static unsigned long get_num_contig_pages(unsigned long idx, 716 struct page **inpages, unsigned long npages) 717 { 718 unsigned long paddr, next_paddr; 719 unsigned long i = idx + 1, pages = 1; 720 721 /* find the number of contiguous pages starting from idx */ 722 paddr = __sme_page_pa(inpages[idx]); 723 while (i < npages) { 724 next_paddr = __sme_page_pa(inpages[i++]); 725 if ((paddr + PAGE_SIZE) == next_paddr) { 726 pages++; 727 paddr = next_paddr; 728 continue; 729 } 730 break; 731 } 732 733 return pages; 734 } 735 736 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 737 { 738 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 739 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 740 struct kvm_sev_launch_update_data params; 741 struct sev_data_launch_update_data data; 742 struct page **inpages; 743 int ret; 744 745 if (!sev_guest(kvm)) 746 return -ENOTTY; 747 748 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 749 return -EFAULT; 750 751 vaddr = params.uaddr; 752 size = params.len; 753 vaddr_end = vaddr + size; 754 755 /* Lock the user memory. */ 756 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 757 if (IS_ERR(inpages)) 758 return PTR_ERR(inpages); 759 760 /* 761 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 762 * place; the cache may contain the data that was written unencrypted. 763 */ 764 sev_clflush_pages(inpages, npages); 765 766 data.reserved = 0; 767 data.handle = sev->handle; 768 769 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 770 int offset, len; 771 772 /* 773 * If the user buffer is not page-aligned, calculate the offset 774 * within the page. 775 */ 776 offset = vaddr & (PAGE_SIZE - 1); 777 778 /* Calculate the number of pages that can be encrypted in one go. */ 779 pages = get_num_contig_pages(i, inpages, npages); 780 781 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 782 783 data.len = len; 784 data.address = __sme_page_pa(inpages[i]) + offset; 785 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 786 if (ret) 787 goto e_unpin; 788 789 size -= len; 790 next_vaddr = vaddr + len; 791 } 792 793 e_unpin: 794 /* content of memory is updated, mark pages dirty */ 795 for (i = 0; i < npages; i++) { 796 set_page_dirty_lock(inpages[i]); 797 mark_page_accessed(inpages[i]); 798 } 799 /* unlock the user pages */ 800 sev_unpin_memory(kvm, inpages, npages); 801 return ret; 802 } 803 804 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 805 { 806 struct kvm_vcpu *vcpu = &svm->vcpu; 807 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 808 struct sev_es_save_area *save = svm->sev_es.vmsa; 809 struct xregs_state *xsave; 810 const u8 *s; 811 u8 *d; 812 int i; 813 814 /* Check some debug related fields before encrypting the VMSA */ 815 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 816 return -EINVAL; 817 818 /* 819 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 820 * the traditional VMSA that is part of the VMCB. Copy the 821 * traditional VMSA as it has been built so far (in prep 822 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 823 */ 824 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 825 826 /* Sync registgers */ 827 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 828 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 829 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 830 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 831 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 832 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 833 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 834 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 835 #ifdef CONFIG_X86_64 836 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 837 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 838 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 839 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 840 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 841 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 842 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 843 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 844 #endif 845 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 846 847 /* Sync some non-GPR registers before encrypting */ 848 save->xcr0 = svm->vcpu.arch.xcr0; 849 save->pkru = svm->vcpu.arch.pkru; 850 save->xss = svm->vcpu.arch.ia32_xss; 851 save->dr6 = svm->vcpu.arch.dr6; 852 853 save->sev_features = sev->vmsa_features; 854 855 /* 856 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 857 * breaking older measurements. 858 */ 859 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 860 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 861 save->x87_dp = xsave->i387.rdp; 862 save->mxcsr = xsave->i387.mxcsr; 863 save->x87_ftw = xsave->i387.twd; 864 save->x87_fsw = xsave->i387.swd; 865 save->x87_fcw = xsave->i387.cwd; 866 save->x87_fop = xsave->i387.fop; 867 save->x87_ds = 0; 868 save->x87_cs = 0; 869 save->x87_rip = xsave->i387.rip; 870 871 for (i = 0; i < 8; i++) { 872 /* 873 * The format of the x87 save area is undocumented and 874 * definitely not what you would expect. It consists of 875 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 876 * area with bytes 8-9 of each register. 877 */ 878 d = save->fpreg_x87 + i * 8; 879 s = ((u8 *)xsave->i387.st_space) + i * 16; 880 memcpy(d, s, 8); 881 save->fpreg_x87[64 + i * 2] = s[8]; 882 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 883 } 884 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 885 886 s = get_xsave_addr(xsave, XFEATURE_YMM); 887 if (s) 888 memcpy(save->fpreg_ymm, s, 256); 889 else 890 memset(save->fpreg_ymm, 0, 256); 891 } 892 893 pr_debug("Virtual Machine Save Area (VMSA):\n"); 894 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 895 896 return 0; 897 } 898 899 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 900 int *error) 901 { 902 struct sev_data_launch_update_vmsa vmsa; 903 struct vcpu_svm *svm = to_svm(vcpu); 904 int ret; 905 906 if (vcpu->guest_debug) { 907 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 908 return -EINVAL; 909 } 910 911 /* Perform some pre-encryption checks against the VMSA */ 912 ret = sev_es_sync_vmsa(svm); 913 if (ret) 914 return ret; 915 916 /* 917 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 918 * the VMSA memory content (i.e it will write the same memory region 919 * with the guest's key), so invalidate it first. 920 */ 921 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 922 923 vmsa.reserved = 0; 924 vmsa.handle = to_kvm_sev_info(kvm)->handle; 925 vmsa.address = __sme_pa(svm->sev_es.vmsa); 926 vmsa.len = PAGE_SIZE; 927 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 928 if (ret) 929 return ret; 930 931 /* 932 * SEV-ES guests maintain an encrypted version of their FPU 933 * state which is restored and saved on VMRUN and VMEXIT. 934 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 935 * do xsave/xrstor on it. 936 */ 937 fpstate_set_confidential(&vcpu->arch.guest_fpu); 938 vcpu->arch.guest_state_protected = true; 939 940 /* 941 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 942 * only after setting guest_state_protected because KVM_SET_MSRS allows 943 * dynamic toggling of LBRV (for performance reason) on write access to 944 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 945 */ 946 svm_enable_lbrv(vcpu); 947 return 0; 948 } 949 950 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 951 { 952 struct kvm_vcpu *vcpu; 953 unsigned long i; 954 int ret; 955 956 if (!sev_es_guest(kvm)) 957 return -ENOTTY; 958 959 kvm_for_each_vcpu(i, vcpu, kvm) { 960 ret = mutex_lock_killable(&vcpu->mutex); 961 if (ret) 962 return ret; 963 964 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 965 966 mutex_unlock(&vcpu->mutex); 967 if (ret) 968 return ret; 969 } 970 971 return 0; 972 } 973 974 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 975 { 976 void __user *measure = u64_to_user_ptr(argp->data); 977 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 978 struct sev_data_launch_measure data; 979 struct kvm_sev_launch_measure params; 980 void __user *p = NULL; 981 void *blob = NULL; 982 int ret; 983 984 if (!sev_guest(kvm)) 985 return -ENOTTY; 986 987 if (copy_from_user(¶ms, measure, sizeof(params))) 988 return -EFAULT; 989 990 memset(&data, 0, sizeof(data)); 991 992 /* User wants to query the blob length */ 993 if (!params.len) 994 goto cmd; 995 996 p = u64_to_user_ptr(params.uaddr); 997 if (p) { 998 if (params.len > SEV_FW_BLOB_MAX_SIZE) 999 return -EINVAL; 1000 1001 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1002 if (!blob) 1003 return -ENOMEM; 1004 1005 data.address = __psp_pa(blob); 1006 data.len = params.len; 1007 } 1008 1009 cmd: 1010 data.handle = sev->handle; 1011 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1012 1013 /* 1014 * If we query the session length, FW responded with expected data. 1015 */ 1016 if (!params.len) 1017 goto done; 1018 1019 if (ret) 1020 goto e_free_blob; 1021 1022 if (blob) { 1023 if (copy_to_user(p, blob, params.len)) 1024 ret = -EFAULT; 1025 } 1026 1027 done: 1028 params.len = data.len; 1029 if (copy_to_user(measure, ¶ms, sizeof(params))) 1030 ret = -EFAULT; 1031 e_free_blob: 1032 kfree(blob); 1033 return ret; 1034 } 1035 1036 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1037 { 1038 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1039 struct sev_data_launch_finish data; 1040 1041 if (!sev_guest(kvm)) 1042 return -ENOTTY; 1043 1044 data.handle = sev->handle; 1045 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1046 } 1047 1048 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1049 { 1050 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1051 struct kvm_sev_guest_status params; 1052 struct sev_data_guest_status data; 1053 int ret; 1054 1055 if (!sev_guest(kvm)) 1056 return -ENOTTY; 1057 1058 memset(&data, 0, sizeof(data)); 1059 1060 data.handle = sev->handle; 1061 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1062 if (ret) 1063 return ret; 1064 1065 params.policy = data.policy; 1066 params.state = data.state; 1067 params.handle = data.handle; 1068 1069 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1070 ret = -EFAULT; 1071 1072 return ret; 1073 } 1074 1075 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1076 unsigned long dst, int size, 1077 int *error, bool enc) 1078 { 1079 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1080 struct sev_data_dbg data; 1081 1082 data.reserved = 0; 1083 data.handle = sev->handle; 1084 data.dst_addr = dst; 1085 data.src_addr = src; 1086 data.len = size; 1087 1088 return sev_issue_cmd(kvm, 1089 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1090 &data, error); 1091 } 1092 1093 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1094 unsigned long dst_paddr, int sz, int *err) 1095 { 1096 int offset; 1097 1098 /* 1099 * Its safe to read more than we are asked, caller should ensure that 1100 * destination has enough space. 1101 */ 1102 offset = src_paddr & 15; 1103 src_paddr = round_down(src_paddr, 16); 1104 sz = round_up(sz + offset, 16); 1105 1106 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1107 } 1108 1109 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1110 void __user *dst_uaddr, 1111 unsigned long dst_paddr, 1112 int size, int *err) 1113 { 1114 struct page *tpage = NULL; 1115 int ret, offset; 1116 1117 /* if inputs are not 16-byte then use intermediate buffer */ 1118 if (!IS_ALIGNED(dst_paddr, 16) || 1119 !IS_ALIGNED(paddr, 16) || 1120 !IS_ALIGNED(size, 16)) { 1121 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1122 if (!tpage) 1123 return -ENOMEM; 1124 1125 dst_paddr = __sme_page_pa(tpage); 1126 } 1127 1128 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1129 if (ret) 1130 goto e_free; 1131 1132 if (tpage) { 1133 offset = paddr & 15; 1134 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1135 ret = -EFAULT; 1136 } 1137 1138 e_free: 1139 if (tpage) 1140 __free_page(tpage); 1141 1142 return ret; 1143 } 1144 1145 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1146 void __user *vaddr, 1147 unsigned long dst_paddr, 1148 void __user *dst_vaddr, 1149 int size, int *error) 1150 { 1151 struct page *src_tpage = NULL; 1152 struct page *dst_tpage = NULL; 1153 int ret, len = size; 1154 1155 /* If source buffer is not aligned then use an intermediate buffer */ 1156 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1157 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1158 if (!src_tpage) 1159 return -ENOMEM; 1160 1161 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1162 __free_page(src_tpage); 1163 return -EFAULT; 1164 } 1165 1166 paddr = __sme_page_pa(src_tpage); 1167 } 1168 1169 /* 1170 * If destination buffer or length is not aligned then do read-modify-write: 1171 * - decrypt destination in an intermediate buffer 1172 * - copy the source buffer in an intermediate buffer 1173 * - use the intermediate buffer as source buffer 1174 */ 1175 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1176 int dst_offset; 1177 1178 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1179 if (!dst_tpage) { 1180 ret = -ENOMEM; 1181 goto e_free; 1182 } 1183 1184 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1185 __sme_page_pa(dst_tpage), size, error); 1186 if (ret) 1187 goto e_free; 1188 1189 /* 1190 * If source is kernel buffer then use memcpy() otherwise 1191 * copy_from_user(). 1192 */ 1193 dst_offset = dst_paddr & 15; 1194 1195 if (src_tpage) 1196 memcpy(page_address(dst_tpage) + dst_offset, 1197 page_address(src_tpage), size); 1198 else { 1199 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1200 vaddr, size)) { 1201 ret = -EFAULT; 1202 goto e_free; 1203 } 1204 } 1205 1206 paddr = __sme_page_pa(dst_tpage); 1207 dst_paddr = round_down(dst_paddr, 16); 1208 len = round_up(size, 16); 1209 } 1210 1211 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1212 1213 e_free: 1214 if (src_tpage) 1215 __free_page(src_tpage); 1216 if (dst_tpage) 1217 __free_page(dst_tpage); 1218 return ret; 1219 } 1220 1221 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1222 { 1223 unsigned long vaddr, vaddr_end, next_vaddr; 1224 unsigned long dst_vaddr; 1225 struct page **src_p, **dst_p; 1226 struct kvm_sev_dbg debug; 1227 unsigned long n; 1228 unsigned int size; 1229 int ret; 1230 1231 if (!sev_guest(kvm)) 1232 return -ENOTTY; 1233 1234 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1235 return -EFAULT; 1236 1237 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1238 return -EINVAL; 1239 if (!debug.dst_uaddr) 1240 return -EINVAL; 1241 1242 vaddr = debug.src_uaddr; 1243 size = debug.len; 1244 vaddr_end = vaddr + size; 1245 dst_vaddr = debug.dst_uaddr; 1246 1247 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1248 int len, s_off, d_off; 1249 1250 /* lock userspace source and destination page */ 1251 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1252 if (IS_ERR(src_p)) 1253 return PTR_ERR(src_p); 1254 1255 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 1256 if (IS_ERR(dst_p)) { 1257 sev_unpin_memory(kvm, src_p, n); 1258 return PTR_ERR(dst_p); 1259 } 1260 1261 /* 1262 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1263 * the pages; flush the destination too so that future accesses do not 1264 * see stale data. 1265 */ 1266 sev_clflush_pages(src_p, 1); 1267 sev_clflush_pages(dst_p, 1); 1268 1269 /* 1270 * Since user buffer may not be page aligned, calculate the 1271 * offset within the page. 1272 */ 1273 s_off = vaddr & ~PAGE_MASK; 1274 d_off = dst_vaddr & ~PAGE_MASK; 1275 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1276 1277 if (dec) 1278 ret = __sev_dbg_decrypt_user(kvm, 1279 __sme_page_pa(src_p[0]) + s_off, 1280 (void __user *)dst_vaddr, 1281 __sme_page_pa(dst_p[0]) + d_off, 1282 len, &argp->error); 1283 else 1284 ret = __sev_dbg_encrypt_user(kvm, 1285 __sme_page_pa(src_p[0]) + s_off, 1286 (void __user *)vaddr, 1287 __sme_page_pa(dst_p[0]) + d_off, 1288 (void __user *)dst_vaddr, 1289 len, &argp->error); 1290 1291 sev_unpin_memory(kvm, src_p, n); 1292 sev_unpin_memory(kvm, dst_p, n); 1293 1294 if (ret) 1295 goto err; 1296 1297 next_vaddr = vaddr + len; 1298 dst_vaddr = dst_vaddr + len; 1299 size -= len; 1300 } 1301 err: 1302 return ret; 1303 } 1304 1305 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1306 { 1307 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1308 struct sev_data_launch_secret data; 1309 struct kvm_sev_launch_secret params; 1310 struct page **pages; 1311 void *blob, *hdr; 1312 unsigned long n, i; 1313 int ret, offset; 1314 1315 if (!sev_guest(kvm)) 1316 return -ENOTTY; 1317 1318 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1319 return -EFAULT; 1320 1321 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1322 if (IS_ERR(pages)) 1323 return PTR_ERR(pages); 1324 1325 /* 1326 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1327 * place; the cache may contain the data that was written unencrypted. 1328 */ 1329 sev_clflush_pages(pages, n); 1330 1331 /* 1332 * The secret must be copied into contiguous memory region, lets verify 1333 * that userspace memory pages are contiguous before we issue command. 1334 */ 1335 if (get_num_contig_pages(0, pages, n) != n) { 1336 ret = -EINVAL; 1337 goto e_unpin_memory; 1338 } 1339 1340 memset(&data, 0, sizeof(data)); 1341 1342 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1343 data.guest_address = __sme_page_pa(pages[0]) + offset; 1344 data.guest_len = params.guest_len; 1345 1346 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1347 if (IS_ERR(blob)) { 1348 ret = PTR_ERR(blob); 1349 goto e_unpin_memory; 1350 } 1351 1352 data.trans_address = __psp_pa(blob); 1353 data.trans_len = params.trans_len; 1354 1355 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1356 if (IS_ERR(hdr)) { 1357 ret = PTR_ERR(hdr); 1358 goto e_free_blob; 1359 } 1360 data.hdr_address = __psp_pa(hdr); 1361 data.hdr_len = params.hdr_len; 1362 1363 data.handle = sev->handle; 1364 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1365 1366 kfree(hdr); 1367 1368 e_free_blob: 1369 kfree(blob); 1370 e_unpin_memory: 1371 /* content of memory is updated, mark pages dirty */ 1372 for (i = 0; i < n; i++) { 1373 set_page_dirty_lock(pages[i]); 1374 mark_page_accessed(pages[i]); 1375 } 1376 sev_unpin_memory(kvm, pages, n); 1377 return ret; 1378 } 1379 1380 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1381 { 1382 void __user *report = u64_to_user_ptr(argp->data); 1383 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1384 struct sev_data_attestation_report data; 1385 struct kvm_sev_attestation_report params; 1386 void __user *p; 1387 void *blob = NULL; 1388 int ret; 1389 1390 if (!sev_guest(kvm)) 1391 return -ENOTTY; 1392 1393 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1394 return -EFAULT; 1395 1396 memset(&data, 0, sizeof(data)); 1397 1398 /* User wants to query the blob length */ 1399 if (!params.len) 1400 goto cmd; 1401 1402 p = u64_to_user_ptr(params.uaddr); 1403 if (p) { 1404 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1405 return -EINVAL; 1406 1407 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1408 if (!blob) 1409 return -ENOMEM; 1410 1411 data.address = __psp_pa(blob); 1412 data.len = params.len; 1413 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1414 } 1415 cmd: 1416 data.handle = sev->handle; 1417 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1418 /* 1419 * If we query the session length, FW responded with expected data. 1420 */ 1421 if (!params.len) 1422 goto done; 1423 1424 if (ret) 1425 goto e_free_blob; 1426 1427 if (blob) { 1428 if (copy_to_user(p, blob, params.len)) 1429 ret = -EFAULT; 1430 } 1431 1432 done: 1433 params.len = data.len; 1434 if (copy_to_user(report, ¶ms, sizeof(params))) 1435 ret = -EFAULT; 1436 e_free_blob: 1437 kfree(blob); 1438 return ret; 1439 } 1440 1441 /* Userspace wants to query session length. */ 1442 static int 1443 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1444 struct kvm_sev_send_start *params) 1445 { 1446 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1447 struct sev_data_send_start data; 1448 int ret; 1449 1450 memset(&data, 0, sizeof(data)); 1451 data.handle = sev->handle; 1452 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1453 1454 params->session_len = data.session_len; 1455 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1456 sizeof(struct kvm_sev_send_start))) 1457 ret = -EFAULT; 1458 1459 return ret; 1460 } 1461 1462 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1463 { 1464 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1465 struct sev_data_send_start data; 1466 struct kvm_sev_send_start params; 1467 void *amd_certs, *session_data; 1468 void *pdh_cert, *plat_certs; 1469 int ret; 1470 1471 if (!sev_guest(kvm)) 1472 return -ENOTTY; 1473 1474 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1475 sizeof(struct kvm_sev_send_start))) 1476 return -EFAULT; 1477 1478 /* if session_len is zero, userspace wants to query the session length */ 1479 if (!params.session_len) 1480 return __sev_send_start_query_session_length(kvm, argp, 1481 ¶ms); 1482 1483 /* some sanity checks */ 1484 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1485 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1486 return -EINVAL; 1487 1488 /* allocate the memory to hold the session data blob */ 1489 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1490 if (!session_data) 1491 return -ENOMEM; 1492 1493 /* copy the certificate blobs from userspace */ 1494 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1495 params.pdh_cert_len); 1496 if (IS_ERR(pdh_cert)) { 1497 ret = PTR_ERR(pdh_cert); 1498 goto e_free_session; 1499 } 1500 1501 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1502 params.plat_certs_len); 1503 if (IS_ERR(plat_certs)) { 1504 ret = PTR_ERR(plat_certs); 1505 goto e_free_pdh; 1506 } 1507 1508 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1509 params.amd_certs_len); 1510 if (IS_ERR(amd_certs)) { 1511 ret = PTR_ERR(amd_certs); 1512 goto e_free_plat_cert; 1513 } 1514 1515 /* populate the FW SEND_START field with system physical address */ 1516 memset(&data, 0, sizeof(data)); 1517 data.pdh_cert_address = __psp_pa(pdh_cert); 1518 data.pdh_cert_len = params.pdh_cert_len; 1519 data.plat_certs_address = __psp_pa(plat_certs); 1520 data.plat_certs_len = params.plat_certs_len; 1521 data.amd_certs_address = __psp_pa(amd_certs); 1522 data.amd_certs_len = params.amd_certs_len; 1523 data.session_address = __psp_pa(session_data); 1524 data.session_len = params.session_len; 1525 data.handle = sev->handle; 1526 1527 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1528 1529 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1530 session_data, params.session_len)) { 1531 ret = -EFAULT; 1532 goto e_free_amd_cert; 1533 } 1534 1535 params.policy = data.policy; 1536 params.session_len = data.session_len; 1537 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1538 sizeof(struct kvm_sev_send_start))) 1539 ret = -EFAULT; 1540 1541 e_free_amd_cert: 1542 kfree(amd_certs); 1543 e_free_plat_cert: 1544 kfree(plat_certs); 1545 e_free_pdh: 1546 kfree(pdh_cert); 1547 e_free_session: 1548 kfree(session_data); 1549 return ret; 1550 } 1551 1552 /* Userspace wants to query either header or trans length. */ 1553 static int 1554 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1555 struct kvm_sev_send_update_data *params) 1556 { 1557 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1558 struct sev_data_send_update_data data; 1559 int ret; 1560 1561 memset(&data, 0, sizeof(data)); 1562 data.handle = sev->handle; 1563 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1564 1565 params->hdr_len = data.hdr_len; 1566 params->trans_len = data.trans_len; 1567 1568 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1569 sizeof(struct kvm_sev_send_update_data))) 1570 ret = -EFAULT; 1571 1572 return ret; 1573 } 1574 1575 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1576 { 1577 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1578 struct sev_data_send_update_data data; 1579 struct kvm_sev_send_update_data params; 1580 void *hdr, *trans_data; 1581 struct page **guest_page; 1582 unsigned long n; 1583 int ret, offset; 1584 1585 if (!sev_guest(kvm)) 1586 return -ENOTTY; 1587 1588 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1589 sizeof(struct kvm_sev_send_update_data))) 1590 return -EFAULT; 1591 1592 /* userspace wants to query either header or trans length */ 1593 if (!params.trans_len || !params.hdr_len) 1594 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1595 1596 if (!params.trans_uaddr || !params.guest_uaddr || 1597 !params.guest_len || !params.hdr_uaddr) 1598 return -EINVAL; 1599 1600 /* Check if we are crossing the page boundary */ 1601 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1602 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1603 return -EINVAL; 1604 1605 /* Pin guest memory */ 1606 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1607 PAGE_SIZE, &n, 0); 1608 if (IS_ERR(guest_page)) 1609 return PTR_ERR(guest_page); 1610 1611 /* allocate memory for header and transport buffer */ 1612 ret = -ENOMEM; 1613 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1614 if (!hdr) 1615 goto e_unpin; 1616 1617 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1618 if (!trans_data) 1619 goto e_free_hdr; 1620 1621 memset(&data, 0, sizeof(data)); 1622 data.hdr_address = __psp_pa(hdr); 1623 data.hdr_len = params.hdr_len; 1624 data.trans_address = __psp_pa(trans_data); 1625 data.trans_len = params.trans_len; 1626 1627 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1628 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1629 data.guest_address |= sev_me_mask; 1630 data.guest_len = params.guest_len; 1631 data.handle = sev->handle; 1632 1633 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1634 1635 if (ret) 1636 goto e_free_trans_data; 1637 1638 /* copy transport buffer to user space */ 1639 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1640 trans_data, params.trans_len)) { 1641 ret = -EFAULT; 1642 goto e_free_trans_data; 1643 } 1644 1645 /* Copy packet header to userspace. */ 1646 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1647 params.hdr_len)) 1648 ret = -EFAULT; 1649 1650 e_free_trans_data: 1651 kfree(trans_data); 1652 e_free_hdr: 1653 kfree(hdr); 1654 e_unpin: 1655 sev_unpin_memory(kvm, guest_page, n); 1656 1657 return ret; 1658 } 1659 1660 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1661 { 1662 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1663 struct sev_data_send_finish data; 1664 1665 if (!sev_guest(kvm)) 1666 return -ENOTTY; 1667 1668 data.handle = sev->handle; 1669 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1670 } 1671 1672 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1673 { 1674 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1675 struct sev_data_send_cancel data; 1676 1677 if (!sev_guest(kvm)) 1678 return -ENOTTY; 1679 1680 data.handle = sev->handle; 1681 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1682 } 1683 1684 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1685 { 1686 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1687 struct sev_data_receive_start start; 1688 struct kvm_sev_receive_start params; 1689 int *error = &argp->error; 1690 void *session_data; 1691 void *pdh_data; 1692 int ret; 1693 1694 if (!sev_guest(kvm)) 1695 return -ENOTTY; 1696 1697 /* Get parameter from the userspace */ 1698 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1699 sizeof(struct kvm_sev_receive_start))) 1700 return -EFAULT; 1701 1702 /* some sanity checks */ 1703 if (!params.pdh_uaddr || !params.pdh_len || 1704 !params.session_uaddr || !params.session_len) 1705 return -EINVAL; 1706 1707 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1708 if (IS_ERR(pdh_data)) 1709 return PTR_ERR(pdh_data); 1710 1711 session_data = psp_copy_user_blob(params.session_uaddr, 1712 params.session_len); 1713 if (IS_ERR(session_data)) { 1714 ret = PTR_ERR(session_data); 1715 goto e_free_pdh; 1716 } 1717 1718 memset(&start, 0, sizeof(start)); 1719 start.handle = params.handle; 1720 start.policy = params.policy; 1721 start.pdh_cert_address = __psp_pa(pdh_data); 1722 start.pdh_cert_len = params.pdh_len; 1723 start.session_address = __psp_pa(session_data); 1724 start.session_len = params.session_len; 1725 1726 /* create memory encryption context */ 1727 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1728 error); 1729 if (ret) 1730 goto e_free_session; 1731 1732 /* Bind ASID to this guest */ 1733 ret = sev_bind_asid(kvm, start.handle, error); 1734 if (ret) { 1735 sev_decommission(start.handle); 1736 goto e_free_session; 1737 } 1738 1739 params.handle = start.handle; 1740 if (copy_to_user(u64_to_user_ptr(argp->data), 1741 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1742 ret = -EFAULT; 1743 sev_unbind_asid(kvm, start.handle); 1744 goto e_free_session; 1745 } 1746 1747 sev->handle = start.handle; 1748 sev->fd = argp->sev_fd; 1749 1750 e_free_session: 1751 kfree(session_data); 1752 e_free_pdh: 1753 kfree(pdh_data); 1754 1755 return ret; 1756 } 1757 1758 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1759 { 1760 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1761 struct kvm_sev_receive_update_data params; 1762 struct sev_data_receive_update_data data; 1763 void *hdr = NULL, *trans = NULL; 1764 struct page **guest_page; 1765 unsigned long n; 1766 int ret, offset; 1767 1768 if (!sev_guest(kvm)) 1769 return -EINVAL; 1770 1771 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1772 sizeof(struct kvm_sev_receive_update_data))) 1773 return -EFAULT; 1774 1775 if (!params.hdr_uaddr || !params.hdr_len || 1776 !params.guest_uaddr || !params.guest_len || 1777 !params.trans_uaddr || !params.trans_len) 1778 return -EINVAL; 1779 1780 /* Check if we are crossing the page boundary */ 1781 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1782 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1783 return -EINVAL; 1784 1785 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1786 if (IS_ERR(hdr)) 1787 return PTR_ERR(hdr); 1788 1789 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1790 if (IS_ERR(trans)) { 1791 ret = PTR_ERR(trans); 1792 goto e_free_hdr; 1793 } 1794 1795 memset(&data, 0, sizeof(data)); 1796 data.hdr_address = __psp_pa(hdr); 1797 data.hdr_len = params.hdr_len; 1798 data.trans_address = __psp_pa(trans); 1799 data.trans_len = params.trans_len; 1800 1801 /* Pin guest memory */ 1802 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1803 PAGE_SIZE, &n, 1); 1804 if (IS_ERR(guest_page)) { 1805 ret = PTR_ERR(guest_page); 1806 goto e_free_trans; 1807 } 1808 1809 /* 1810 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1811 * encrypts the written data with the guest's key, and the cache may 1812 * contain dirty, unencrypted data. 1813 */ 1814 sev_clflush_pages(guest_page, n); 1815 1816 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1817 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1818 data.guest_address |= sev_me_mask; 1819 data.guest_len = params.guest_len; 1820 data.handle = sev->handle; 1821 1822 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1823 &argp->error); 1824 1825 sev_unpin_memory(kvm, guest_page, n); 1826 1827 e_free_trans: 1828 kfree(trans); 1829 e_free_hdr: 1830 kfree(hdr); 1831 1832 return ret; 1833 } 1834 1835 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1836 { 1837 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1838 struct sev_data_receive_finish data; 1839 1840 if (!sev_guest(kvm)) 1841 return -ENOTTY; 1842 1843 data.handle = sev->handle; 1844 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1845 } 1846 1847 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1848 { 1849 /* 1850 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1851 * active mirror VMs. Also allow the debugging and status commands. 1852 */ 1853 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1854 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1855 cmd_id == KVM_SEV_DBG_ENCRYPT) 1856 return true; 1857 1858 return false; 1859 } 1860 1861 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1862 { 1863 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1864 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1865 int r = -EBUSY; 1866 1867 if (dst_kvm == src_kvm) 1868 return -EINVAL; 1869 1870 /* 1871 * Bail if these VMs are already involved in a migration to avoid 1872 * deadlock between two VMs trying to migrate to/from each other. 1873 */ 1874 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1875 return -EBUSY; 1876 1877 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1878 goto release_dst; 1879 1880 r = -EINTR; 1881 if (mutex_lock_killable(&dst_kvm->lock)) 1882 goto release_src; 1883 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1884 goto unlock_dst; 1885 return 0; 1886 1887 unlock_dst: 1888 mutex_unlock(&dst_kvm->lock); 1889 release_src: 1890 atomic_set_release(&src_sev->migration_in_progress, 0); 1891 release_dst: 1892 atomic_set_release(&dst_sev->migration_in_progress, 0); 1893 return r; 1894 } 1895 1896 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1897 { 1898 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1899 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1900 1901 mutex_unlock(&dst_kvm->lock); 1902 mutex_unlock(&src_kvm->lock); 1903 atomic_set_release(&dst_sev->migration_in_progress, 0); 1904 atomic_set_release(&src_sev->migration_in_progress, 0); 1905 } 1906 1907 /* vCPU mutex subclasses. */ 1908 enum sev_migration_role { 1909 SEV_MIGRATION_SOURCE = 0, 1910 SEV_MIGRATION_TARGET, 1911 SEV_NR_MIGRATION_ROLES, 1912 }; 1913 1914 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1915 enum sev_migration_role role) 1916 { 1917 struct kvm_vcpu *vcpu; 1918 unsigned long i, j; 1919 1920 kvm_for_each_vcpu(i, vcpu, kvm) { 1921 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1922 goto out_unlock; 1923 1924 #ifdef CONFIG_PROVE_LOCKING 1925 if (!i) 1926 /* 1927 * Reset the role to one that avoids colliding with 1928 * the role used for the first vcpu mutex. 1929 */ 1930 role = SEV_NR_MIGRATION_ROLES; 1931 else 1932 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1933 #endif 1934 } 1935 1936 return 0; 1937 1938 out_unlock: 1939 1940 kvm_for_each_vcpu(j, vcpu, kvm) { 1941 if (i == j) 1942 break; 1943 1944 #ifdef CONFIG_PROVE_LOCKING 1945 if (j) 1946 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1947 #endif 1948 1949 mutex_unlock(&vcpu->mutex); 1950 } 1951 return -EINTR; 1952 } 1953 1954 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1955 { 1956 struct kvm_vcpu *vcpu; 1957 unsigned long i; 1958 bool first = true; 1959 1960 kvm_for_each_vcpu(i, vcpu, kvm) { 1961 if (first) 1962 first = false; 1963 else 1964 mutex_acquire(&vcpu->mutex.dep_map, 1965 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1966 1967 mutex_unlock(&vcpu->mutex); 1968 } 1969 } 1970 1971 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1972 { 1973 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1974 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1975 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1976 struct vcpu_svm *dst_svm, *src_svm; 1977 struct kvm_sev_info *mirror; 1978 unsigned long i; 1979 1980 dst->active = true; 1981 dst->asid = src->asid; 1982 dst->handle = src->handle; 1983 dst->pages_locked = src->pages_locked; 1984 dst->enc_context_owner = src->enc_context_owner; 1985 dst->es_active = src->es_active; 1986 dst->vmsa_features = src->vmsa_features; 1987 1988 src->asid = 0; 1989 src->active = false; 1990 src->handle = 0; 1991 src->pages_locked = 0; 1992 src->enc_context_owner = NULL; 1993 src->es_active = false; 1994 1995 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1996 1997 /* 1998 * If this VM has mirrors, "transfer" each mirror's refcount of the 1999 * source to the destination (this KVM). The caller holds a reference 2000 * to the source, so there's no danger of use-after-free. 2001 */ 2002 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 2003 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 2004 kvm_get_kvm(dst_kvm); 2005 kvm_put_kvm(src_kvm); 2006 mirror->enc_context_owner = dst_kvm; 2007 } 2008 2009 /* 2010 * If this VM is a mirror, remove the old mirror from the owners list 2011 * and add the new mirror to the list. 2012 */ 2013 if (is_mirroring_enc_context(dst_kvm)) { 2014 struct kvm_sev_info *owner_sev_info = 2015 &to_kvm_svm(dst->enc_context_owner)->sev_info; 2016 2017 list_del(&src->mirror_entry); 2018 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 2019 } 2020 2021 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 2022 dst_svm = to_svm(dst_vcpu); 2023 2024 sev_init_vmcb(dst_svm); 2025 2026 if (!dst->es_active) 2027 continue; 2028 2029 /* 2030 * Note, the source is not required to have the same number of 2031 * vCPUs as the destination when migrating a vanilla SEV VM. 2032 */ 2033 src_vcpu = kvm_get_vcpu(src_kvm, i); 2034 src_svm = to_svm(src_vcpu); 2035 2036 /* 2037 * Transfer VMSA and GHCB state to the destination. Nullify and 2038 * clear source fields as appropriate, the state now belongs to 2039 * the destination. 2040 */ 2041 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 2042 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 2043 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 2044 dst_vcpu->arch.guest_state_protected = true; 2045 2046 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 2047 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 2048 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 2049 src_vcpu->arch.guest_state_protected = false; 2050 } 2051 } 2052 2053 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 2054 { 2055 struct kvm_vcpu *src_vcpu; 2056 unsigned long i; 2057 2058 if (!sev_es_guest(src)) 2059 return 0; 2060 2061 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 2062 return -EINVAL; 2063 2064 kvm_for_each_vcpu(i, src_vcpu, src) { 2065 if (!src_vcpu->arch.guest_state_protected) 2066 return -EINVAL; 2067 } 2068 2069 return 0; 2070 } 2071 2072 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2073 { 2074 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 2075 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 2076 struct fd f = fdget(source_fd); 2077 struct kvm *source_kvm; 2078 bool charged = false; 2079 int ret; 2080 2081 if (!f.file) 2082 return -EBADF; 2083 2084 if (!file_is_kvm(f.file)) { 2085 ret = -EBADF; 2086 goto out_fput; 2087 } 2088 2089 source_kvm = f.file->private_data; 2090 ret = sev_lock_two_vms(kvm, source_kvm); 2091 if (ret) 2092 goto out_fput; 2093 2094 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2095 sev_guest(kvm) || !sev_guest(source_kvm)) { 2096 ret = -EINVAL; 2097 goto out_unlock; 2098 } 2099 2100 src_sev = &to_kvm_svm(source_kvm)->sev_info; 2101 2102 dst_sev->misc_cg = get_current_misc_cg(); 2103 cg_cleanup_sev = dst_sev; 2104 if (dst_sev->misc_cg != src_sev->misc_cg) { 2105 ret = sev_misc_cg_try_charge(dst_sev); 2106 if (ret) 2107 goto out_dst_cgroup; 2108 charged = true; 2109 } 2110 2111 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 2112 if (ret) 2113 goto out_dst_cgroup; 2114 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 2115 if (ret) 2116 goto out_dst_vcpu; 2117 2118 ret = sev_check_source_vcpus(kvm, source_kvm); 2119 if (ret) 2120 goto out_source_vcpu; 2121 2122 sev_migrate_from(kvm, source_kvm); 2123 kvm_vm_dead(source_kvm); 2124 cg_cleanup_sev = src_sev; 2125 ret = 0; 2126 2127 out_source_vcpu: 2128 sev_unlock_vcpus_for_migration(source_kvm); 2129 out_dst_vcpu: 2130 sev_unlock_vcpus_for_migration(kvm); 2131 out_dst_cgroup: 2132 /* Operates on the source on success, on the destination on failure. */ 2133 if (charged) 2134 sev_misc_cg_uncharge(cg_cleanup_sev); 2135 put_misc_cg(cg_cleanup_sev->misc_cg); 2136 cg_cleanup_sev->misc_cg = NULL; 2137 out_unlock: 2138 sev_unlock_two_vms(kvm, source_kvm); 2139 out_fput: 2140 fdput(f); 2141 return ret; 2142 } 2143 2144 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2145 { 2146 if (group != KVM_X86_GRP_SEV) 2147 return -ENXIO; 2148 2149 switch (attr) { 2150 case KVM_X86_SEV_VMSA_FEATURES: 2151 *val = sev_supported_vmsa_features; 2152 return 0; 2153 2154 default: 2155 return -ENXIO; 2156 } 2157 } 2158 2159 /* 2160 * The guest context contains all the information, keys and metadata 2161 * associated with the guest that the firmware tracks to implement SEV 2162 * and SNP features. The firmware stores the guest context in hypervisor 2163 * provide page via the SNP_GCTX_CREATE command. 2164 */ 2165 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2166 { 2167 struct sev_data_snp_addr data = {}; 2168 void *context; 2169 int rc; 2170 2171 /* Allocate memory for context page */ 2172 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2173 if (!context) 2174 return NULL; 2175 2176 data.address = __psp_pa(context); 2177 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2178 if (rc) { 2179 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2180 rc, argp->error); 2181 snp_free_firmware_page(context); 2182 return NULL; 2183 } 2184 2185 return context; 2186 } 2187 2188 static int snp_bind_asid(struct kvm *kvm, int *error) 2189 { 2190 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2191 struct sev_data_snp_activate data = {0}; 2192 2193 data.gctx_paddr = __psp_pa(sev->snp_context); 2194 data.asid = sev_get_asid(kvm); 2195 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2196 } 2197 2198 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2199 { 2200 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2201 struct sev_data_snp_launch_start start = {0}; 2202 struct kvm_sev_snp_launch_start params; 2203 int rc; 2204 2205 if (!sev_snp_guest(kvm)) 2206 return -ENOTTY; 2207 2208 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2209 return -EFAULT; 2210 2211 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2212 if (sev->snp_context) 2213 return -EINVAL; 2214 2215 sev->snp_context = snp_context_create(kvm, argp); 2216 if (!sev->snp_context) 2217 return -ENOTTY; 2218 2219 if (params.flags) 2220 return -EINVAL; 2221 2222 if (params.policy & ~SNP_POLICY_MASK_VALID) 2223 return -EINVAL; 2224 2225 /* Check for policy bits that must be set */ 2226 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || 2227 !(params.policy & SNP_POLICY_MASK_SMT)) 2228 return -EINVAL; 2229 2230 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) 2231 return -EINVAL; 2232 2233 start.gctx_paddr = __psp_pa(sev->snp_context); 2234 start.policy = params.policy; 2235 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2236 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2237 if (rc) { 2238 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2239 __func__, rc); 2240 goto e_free_context; 2241 } 2242 2243 sev->fd = argp->sev_fd; 2244 rc = snp_bind_asid(kvm, &argp->error); 2245 if (rc) { 2246 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2247 __func__, rc); 2248 goto e_free_context; 2249 } 2250 2251 return 0; 2252 2253 e_free_context: 2254 snp_decommission_context(kvm); 2255 2256 return rc; 2257 } 2258 2259 struct sev_gmem_populate_args { 2260 __u8 type; 2261 int sev_fd; 2262 int fw_error; 2263 }; 2264 2265 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2266 void __user *src, int order, void *opaque) 2267 { 2268 struct sev_gmem_populate_args *sev_populate_args = opaque; 2269 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2270 int n_private = 0, ret, i; 2271 int npages = (1 << order); 2272 gfn_t gfn; 2273 2274 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2275 return -EINVAL; 2276 2277 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2278 struct sev_data_snp_launch_update fw_args = {0}; 2279 bool assigned = false; 2280 int level; 2281 2282 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2283 if (ret || assigned) { 2284 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2285 __func__, gfn, ret, assigned); 2286 ret = ret ? -EINVAL : -EEXIST; 2287 goto err; 2288 } 2289 2290 if (src) { 2291 void *vaddr = kmap_local_pfn(pfn + i); 2292 2293 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { 2294 ret = -EFAULT; 2295 goto err; 2296 } 2297 kunmap_local(vaddr); 2298 } 2299 2300 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2301 sev_get_asid(kvm), true); 2302 if (ret) 2303 goto err; 2304 2305 n_private++; 2306 2307 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2308 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2309 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2310 fw_args.page_type = sev_populate_args->type; 2311 2312 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2313 &fw_args, &sev_populate_args->fw_error); 2314 if (ret) 2315 goto fw_err; 2316 } 2317 2318 return 0; 2319 2320 fw_err: 2321 /* 2322 * If the firmware command failed handle the reclaim and cleanup of that 2323 * PFN specially vs. prior pages which can be cleaned up below without 2324 * needing to reclaim in advance. 2325 * 2326 * Additionally, when invalid CPUID function entries are detected, 2327 * firmware writes the expected values into the page and leaves it 2328 * unencrypted so it can be used for debugging and error-reporting. 2329 * 2330 * Copy this page back into the source buffer so userspace can use this 2331 * information to provide information on which CPUID leaves/fields 2332 * failed CPUID validation. 2333 */ 2334 if (!snp_page_reclaim(kvm, pfn + i) && 2335 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2336 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2337 void *vaddr = kmap_local_pfn(pfn + i); 2338 2339 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2340 pr_debug("Failed to write CPUID page back to userspace\n"); 2341 2342 kunmap_local(vaddr); 2343 } 2344 2345 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2346 n_private--; 2347 2348 err: 2349 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2350 __func__, ret, sev_populate_args->fw_error, n_private); 2351 for (i = 0; i < n_private; i++) 2352 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2353 2354 return ret; 2355 } 2356 2357 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2358 { 2359 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2360 struct sev_gmem_populate_args sev_populate_args = {0}; 2361 struct kvm_sev_snp_launch_update params; 2362 struct kvm_memory_slot *memslot; 2363 long npages, count; 2364 void __user *src; 2365 int ret = 0; 2366 2367 if (!sev_snp_guest(kvm) || !sev->snp_context) 2368 return -EINVAL; 2369 2370 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2371 return -EFAULT; 2372 2373 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2374 params.gfn_start, params.len, params.type, params.flags); 2375 2376 if (!PAGE_ALIGNED(params.len) || params.flags || 2377 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2378 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2379 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2380 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2381 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2382 return -EINVAL; 2383 2384 npages = params.len / PAGE_SIZE; 2385 2386 /* 2387 * For each GFN that's being prepared as part of the initial guest 2388 * state, the following pre-conditions are verified: 2389 * 2390 * 1) The backing memslot is a valid private memslot. 2391 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2392 * beforehand. 2393 * 3) The PFN of the guest_memfd has not already been set to private 2394 * in the RMP table. 2395 * 2396 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2397 * faults if there's a race between a fault and an attribute update via 2398 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2399 * here. However, kvm->slots_lock guards against both this as well as 2400 * concurrent memslot updates occurring while these checks are being 2401 * performed, so use that here to make it easier to reason about the 2402 * initial expected state and better guard against unexpected 2403 * situations. 2404 */ 2405 mutex_lock(&kvm->slots_lock); 2406 2407 memslot = gfn_to_memslot(kvm, params.gfn_start); 2408 if (!kvm_slot_can_be_private(memslot)) { 2409 ret = -EINVAL; 2410 goto out; 2411 } 2412 2413 sev_populate_args.sev_fd = argp->sev_fd; 2414 sev_populate_args.type = params.type; 2415 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2416 2417 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2418 sev_gmem_post_populate, &sev_populate_args); 2419 if (count < 0) { 2420 argp->error = sev_populate_args.fw_error; 2421 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2422 __func__, count, argp->error); 2423 ret = -EIO; 2424 } else { 2425 params.gfn_start += count; 2426 params.len -= count * PAGE_SIZE; 2427 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2428 params.uaddr += count * PAGE_SIZE; 2429 2430 ret = 0; 2431 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2432 ret = -EFAULT; 2433 } 2434 2435 out: 2436 mutex_unlock(&kvm->slots_lock); 2437 2438 return ret; 2439 } 2440 2441 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2442 { 2443 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2444 struct sev_data_snp_launch_update data = {}; 2445 struct kvm_vcpu *vcpu; 2446 unsigned long i; 2447 int ret; 2448 2449 data.gctx_paddr = __psp_pa(sev->snp_context); 2450 data.page_type = SNP_PAGE_TYPE_VMSA; 2451 2452 kvm_for_each_vcpu(i, vcpu, kvm) { 2453 struct vcpu_svm *svm = to_svm(vcpu); 2454 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2455 2456 ret = sev_es_sync_vmsa(svm); 2457 if (ret) 2458 return ret; 2459 2460 /* Transition the VMSA page to a firmware state. */ 2461 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2462 if (ret) 2463 return ret; 2464 2465 /* Issue the SNP command to encrypt the VMSA */ 2466 data.address = __sme_pa(svm->sev_es.vmsa); 2467 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2468 &data, &argp->error); 2469 if (ret) { 2470 snp_page_reclaim(kvm, pfn); 2471 2472 return ret; 2473 } 2474 2475 svm->vcpu.arch.guest_state_protected = true; 2476 /* 2477 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2478 * be _always_ ON. Enable it only after setting 2479 * guest_state_protected because KVM_SET_MSRS allows dynamic 2480 * toggling of LBRV (for performance reason) on write access to 2481 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2482 */ 2483 svm_enable_lbrv(vcpu); 2484 } 2485 2486 return 0; 2487 } 2488 2489 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2490 { 2491 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2492 struct kvm_sev_snp_launch_finish params; 2493 struct sev_data_snp_launch_finish *data; 2494 void *id_block = NULL, *id_auth = NULL; 2495 int ret; 2496 2497 if (!sev_snp_guest(kvm)) 2498 return -ENOTTY; 2499 2500 if (!sev->snp_context) 2501 return -EINVAL; 2502 2503 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2504 return -EFAULT; 2505 2506 if (params.flags) 2507 return -EINVAL; 2508 2509 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2510 ret = snp_launch_update_vmsa(kvm, argp); 2511 if (ret) 2512 return ret; 2513 2514 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2515 if (!data) 2516 return -ENOMEM; 2517 2518 if (params.id_block_en) { 2519 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2520 if (IS_ERR(id_block)) { 2521 ret = PTR_ERR(id_block); 2522 goto e_free; 2523 } 2524 2525 data->id_block_en = 1; 2526 data->id_block_paddr = __sme_pa(id_block); 2527 2528 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2529 if (IS_ERR(id_auth)) { 2530 ret = PTR_ERR(id_auth); 2531 goto e_free_id_block; 2532 } 2533 2534 data->id_auth_paddr = __sme_pa(id_auth); 2535 2536 if (params.auth_key_en) 2537 data->auth_key_en = 1; 2538 } 2539 2540 data->vcek_disabled = params.vcek_disabled; 2541 2542 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2543 data->gctx_paddr = __psp_pa(sev->snp_context); 2544 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2545 2546 /* 2547 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2548 * can be given to the guest simply by marking the RMP entry as private. 2549 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2550 */ 2551 if (!ret) 2552 kvm->arch.pre_fault_allowed = true; 2553 2554 kfree(id_auth); 2555 2556 e_free_id_block: 2557 kfree(id_block); 2558 2559 e_free: 2560 kfree(data); 2561 2562 return ret; 2563 } 2564 2565 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2566 { 2567 struct kvm_sev_cmd sev_cmd; 2568 int r; 2569 2570 if (!sev_enabled) 2571 return -ENOTTY; 2572 2573 if (!argp) 2574 return 0; 2575 2576 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2577 return -EFAULT; 2578 2579 mutex_lock(&kvm->lock); 2580 2581 /* Only the enc_context_owner handles some memory enc operations. */ 2582 if (is_mirroring_enc_context(kvm) && 2583 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2584 r = -EINVAL; 2585 goto out; 2586 } 2587 2588 /* 2589 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2590 * allow the use of SNP-specific commands. 2591 */ 2592 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2593 r = -EPERM; 2594 goto out; 2595 } 2596 2597 switch (sev_cmd.id) { 2598 case KVM_SEV_ES_INIT: 2599 if (!sev_es_enabled) { 2600 r = -ENOTTY; 2601 goto out; 2602 } 2603 fallthrough; 2604 case KVM_SEV_INIT: 2605 r = sev_guest_init(kvm, &sev_cmd); 2606 break; 2607 case KVM_SEV_INIT2: 2608 r = sev_guest_init2(kvm, &sev_cmd); 2609 break; 2610 case KVM_SEV_LAUNCH_START: 2611 r = sev_launch_start(kvm, &sev_cmd); 2612 break; 2613 case KVM_SEV_LAUNCH_UPDATE_DATA: 2614 r = sev_launch_update_data(kvm, &sev_cmd); 2615 break; 2616 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2617 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2618 break; 2619 case KVM_SEV_LAUNCH_MEASURE: 2620 r = sev_launch_measure(kvm, &sev_cmd); 2621 break; 2622 case KVM_SEV_LAUNCH_FINISH: 2623 r = sev_launch_finish(kvm, &sev_cmd); 2624 break; 2625 case KVM_SEV_GUEST_STATUS: 2626 r = sev_guest_status(kvm, &sev_cmd); 2627 break; 2628 case KVM_SEV_DBG_DECRYPT: 2629 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2630 break; 2631 case KVM_SEV_DBG_ENCRYPT: 2632 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2633 break; 2634 case KVM_SEV_LAUNCH_SECRET: 2635 r = sev_launch_secret(kvm, &sev_cmd); 2636 break; 2637 case KVM_SEV_GET_ATTESTATION_REPORT: 2638 r = sev_get_attestation_report(kvm, &sev_cmd); 2639 break; 2640 case KVM_SEV_SEND_START: 2641 r = sev_send_start(kvm, &sev_cmd); 2642 break; 2643 case KVM_SEV_SEND_UPDATE_DATA: 2644 r = sev_send_update_data(kvm, &sev_cmd); 2645 break; 2646 case KVM_SEV_SEND_FINISH: 2647 r = sev_send_finish(kvm, &sev_cmd); 2648 break; 2649 case KVM_SEV_SEND_CANCEL: 2650 r = sev_send_cancel(kvm, &sev_cmd); 2651 break; 2652 case KVM_SEV_RECEIVE_START: 2653 r = sev_receive_start(kvm, &sev_cmd); 2654 break; 2655 case KVM_SEV_RECEIVE_UPDATE_DATA: 2656 r = sev_receive_update_data(kvm, &sev_cmd); 2657 break; 2658 case KVM_SEV_RECEIVE_FINISH: 2659 r = sev_receive_finish(kvm, &sev_cmd); 2660 break; 2661 case KVM_SEV_SNP_LAUNCH_START: 2662 r = snp_launch_start(kvm, &sev_cmd); 2663 break; 2664 case KVM_SEV_SNP_LAUNCH_UPDATE: 2665 r = snp_launch_update(kvm, &sev_cmd); 2666 break; 2667 case KVM_SEV_SNP_LAUNCH_FINISH: 2668 r = snp_launch_finish(kvm, &sev_cmd); 2669 break; 2670 default: 2671 r = -EINVAL; 2672 goto out; 2673 } 2674 2675 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2676 r = -EFAULT; 2677 2678 out: 2679 mutex_unlock(&kvm->lock); 2680 return r; 2681 } 2682 2683 int sev_mem_enc_register_region(struct kvm *kvm, 2684 struct kvm_enc_region *range) 2685 { 2686 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2687 struct enc_region *region; 2688 int ret = 0; 2689 2690 if (!sev_guest(kvm)) 2691 return -ENOTTY; 2692 2693 /* If kvm is mirroring encryption context it isn't responsible for it */ 2694 if (is_mirroring_enc_context(kvm)) 2695 return -EINVAL; 2696 2697 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2698 return -EINVAL; 2699 2700 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2701 if (!region) 2702 return -ENOMEM; 2703 2704 mutex_lock(&kvm->lock); 2705 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 2706 if (IS_ERR(region->pages)) { 2707 ret = PTR_ERR(region->pages); 2708 mutex_unlock(&kvm->lock); 2709 goto e_free; 2710 } 2711 2712 /* 2713 * The guest may change the memory encryption attribute from C=0 -> C=1 2714 * or vice versa for this memory range. Lets make sure caches are 2715 * flushed to ensure that guest data gets written into memory with 2716 * correct C-bit. Note, this must be done before dropping kvm->lock, 2717 * as region and its array of pages can be freed by a different task 2718 * once kvm->lock is released. 2719 */ 2720 sev_clflush_pages(region->pages, region->npages); 2721 2722 region->uaddr = range->addr; 2723 region->size = range->size; 2724 2725 list_add_tail(®ion->list, &sev->regions_list); 2726 mutex_unlock(&kvm->lock); 2727 2728 return ret; 2729 2730 e_free: 2731 kfree(region); 2732 return ret; 2733 } 2734 2735 static struct enc_region * 2736 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2737 { 2738 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2739 struct list_head *head = &sev->regions_list; 2740 struct enc_region *i; 2741 2742 list_for_each_entry(i, head, list) { 2743 if (i->uaddr == range->addr && 2744 i->size == range->size) 2745 return i; 2746 } 2747 2748 return NULL; 2749 } 2750 2751 static void __unregister_enc_region_locked(struct kvm *kvm, 2752 struct enc_region *region) 2753 { 2754 sev_unpin_memory(kvm, region->pages, region->npages); 2755 list_del(®ion->list); 2756 kfree(region); 2757 } 2758 2759 int sev_mem_enc_unregister_region(struct kvm *kvm, 2760 struct kvm_enc_region *range) 2761 { 2762 struct enc_region *region; 2763 int ret; 2764 2765 /* If kvm is mirroring encryption context it isn't responsible for it */ 2766 if (is_mirroring_enc_context(kvm)) 2767 return -EINVAL; 2768 2769 mutex_lock(&kvm->lock); 2770 2771 if (!sev_guest(kvm)) { 2772 ret = -ENOTTY; 2773 goto failed; 2774 } 2775 2776 region = find_enc_region(kvm, range); 2777 if (!region) { 2778 ret = -EINVAL; 2779 goto failed; 2780 } 2781 2782 /* 2783 * Ensure that all guest tagged cache entries are flushed before 2784 * releasing the pages back to the system for use. CLFLUSH will 2785 * not do this, so issue a WBINVD. 2786 */ 2787 wbinvd_on_all_cpus(); 2788 2789 __unregister_enc_region_locked(kvm, region); 2790 2791 mutex_unlock(&kvm->lock); 2792 return 0; 2793 2794 failed: 2795 mutex_unlock(&kvm->lock); 2796 return ret; 2797 } 2798 2799 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2800 { 2801 struct fd f = fdget(source_fd); 2802 struct kvm *source_kvm; 2803 struct kvm_sev_info *source_sev, *mirror_sev; 2804 int ret; 2805 2806 if (!f.file) 2807 return -EBADF; 2808 2809 if (!file_is_kvm(f.file)) { 2810 ret = -EBADF; 2811 goto e_source_fput; 2812 } 2813 2814 source_kvm = f.file->private_data; 2815 ret = sev_lock_two_vms(kvm, source_kvm); 2816 if (ret) 2817 goto e_source_fput; 2818 2819 /* 2820 * Mirrors of mirrors should work, but let's not get silly. Also 2821 * disallow out-of-band SEV/SEV-ES init if the target is already an 2822 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2823 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2824 */ 2825 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2826 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2827 ret = -EINVAL; 2828 goto e_unlock; 2829 } 2830 2831 /* 2832 * The mirror kvm holds an enc_context_owner ref so its asid can't 2833 * disappear until we're done with it 2834 */ 2835 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2836 kvm_get_kvm(source_kvm); 2837 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2838 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2839 2840 /* Set enc_context_owner and copy its encryption context over */ 2841 mirror_sev->enc_context_owner = source_kvm; 2842 mirror_sev->active = true; 2843 mirror_sev->asid = source_sev->asid; 2844 mirror_sev->fd = source_sev->fd; 2845 mirror_sev->es_active = source_sev->es_active; 2846 mirror_sev->need_init = false; 2847 mirror_sev->handle = source_sev->handle; 2848 INIT_LIST_HEAD(&mirror_sev->regions_list); 2849 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2850 ret = 0; 2851 2852 /* 2853 * Do not copy ap_jump_table. Since the mirror does not share the same 2854 * KVM contexts as the original, and they may have different 2855 * memory-views. 2856 */ 2857 2858 e_unlock: 2859 sev_unlock_two_vms(kvm, source_kvm); 2860 e_source_fput: 2861 fdput(f); 2862 return ret; 2863 } 2864 2865 static int snp_decommission_context(struct kvm *kvm) 2866 { 2867 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2868 struct sev_data_snp_addr data = {}; 2869 int ret; 2870 2871 /* If context is not created then do nothing */ 2872 if (!sev->snp_context) 2873 return 0; 2874 2875 /* Do the decommision, which will unbind the ASID from the SNP context */ 2876 data.address = __sme_pa(sev->snp_context); 2877 down_write(&sev_deactivate_lock); 2878 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2879 up_write(&sev_deactivate_lock); 2880 2881 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2882 return ret; 2883 2884 snp_free_firmware_page(sev->snp_context); 2885 sev->snp_context = NULL; 2886 2887 return 0; 2888 } 2889 2890 void sev_vm_destroy(struct kvm *kvm) 2891 { 2892 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2893 struct list_head *head = &sev->regions_list; 2894 struct list_head *pos, *q; 2895 2896 if (!sev_guest(kvm)) 2897 return; 2898 2899 WARN_ON(!list_empty(&sev->mirror_vms)); 2900 2901 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2902 if (is_mirroring_enc_context(kvm)) { 2903 struct kvm *owner_kvm = sev->enc_context_owner; 2904 2905 mutex_lock(&owner_kvm->lock); 2906 list_del(&sev->mirror_entry); 2907 mutex_unlock(&owner_kvm->lock); 2908 kvm_put_kvm(owner_kvm); 2909 return; 2910 } 2911 2912 /* 2913 * Ensure that all guest tagged cache entries are flushed before 2914 * releasing the pages back to the system for use. CLFLUSH will 2915 * not do this, so issue a WBINVD. 2916 */ 2917 wbinvd_on_all_cpus(); 2918 2919 /* 2920 * if userspace was terminated before unregistering the memory regions 2921 * then lets unpin all the registered memory. 2922 */ 2923 if (!list_empty(head)) { 2924 list_for_each_safe(pos, q, head) { 2925 __unregister_enc_region_locked(kvm, 2926 list_entry(pos, struct enc_region, list)); 2927 cond_resched(); 2928 } 2929 } 2930 2931 if (sev_snp_guest(kvm)) { 2932 snp_guest_req_cleanup(kvm); 2933 2934 /* 2935 * Decomission handles unbinding of the ASID. If it fails for 2936 * some unexpected reason, just leak the ASID. 2937 */ 2938 if (snp_decommission_context(kvm)) 2939 return; 2940 } else { 2941 sev_unbind_asid(kvm, sev->handle); 2942 } 2943 2944 sev_asid_free(sev); 2945 } 2946 2947 void __init sev_set_cpu_caps(void) 2948 { 2949 if (sev_enabled) { 2950 kvm_cpu_cap_set(X86_FEATURE_SEV); 2951 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2952 } 2953 if (sev_es_enabled) { 2954 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2955 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2956 } 2957 if (sev_snp_enabled) { 2958 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2959 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2960 } 2961 } 2962 2963 void __init sev_hardware_setup(void) 2964 { 2965 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2966 bool sev_snp_supported = false; 2967 bool sev_es_supported = false; 2968 bool sev_supported = false; 2969 2970 if (!sev_enabled || !npt_enabled || !nrips) 2971 goto out; 2972 2973 /* 2974 * SEV must obviously be supported in hardware. Sanity check that the 2975 * CPU supports decode assists, which is mandatory for SEV guests to 2976 * support instruction emulation. Ditto for flushing by ASID, as SEV 2977 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2978 * ASID to effect a TLB flush. 2979 */ 2980 if (!boot_cpu_has(X86_FEATURE_SEV) || 2981 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2982 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2983 goto out; 2984 2985 /* Retrieve SEV CPUID information */ 2986 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2987 2988 /* Set encryption bit location for SEV-ES guests */ 2989 sev_enc_bit = ebx & 0x3f; 2990 2991 /* Maximum number of encrypted guests supported simultaneously */ 2992 max_sev_asid = ecx; 2993 if (!max_sev_asid) 2994 goto out; 2995 2996 /* Minimum ASID value that should be used for SEV guest */ 2997 min_sev_asid = edx; 2998 sev_me_mask = 1UL << (ebx & 0x3f); 2999 3000 /* 3001 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 3002 * even though it's never used, so that the bitmap is indexed by the 3003 * actual ASID. 3004 */ 3005 nr_asids = max_sev_asid + 1; 3006 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3007 if (!sev_asid_bitmap) 3008 goto out; 3009 3010 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3011 if (!sev_reclaim_asid_bitmap) { 3012 bitmap_free(sev_asid_bitmap); 3013 sev_asid_bitmap = NULL; 3014 goto out; 3015 } 3016 3017 if (min_sev_asid <= max_sev_asid) { 3018 sev_asid_count = max_sev_asid - min_sev_asid + 1; 3019 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 3020 } 3021 sev_supported = true; 3022 3023 /* SEV-ES support requested? */ 3024 if (!sev_es_enabled) 3025 goto out; 3026 3027 /* 3028 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 3029 * instruction stream, i.e. can't emulate in response to a #NPF and 3030 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 3031 * (the guest can then do a #VMGEXIT to request MMIO emulation). 3032 */ 3033 if (!enable_mmio_caching) 3034 goto out; 3035 3036 /* Does the CPU support SEV-ES? */ 3037 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 3038 goto out; 3039 3040 if (!lbrv) { 3041 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 3042 "LBRV must be present for SEV-ES support"); 3043 goto out; 3044 } 3045 3046 /* Has the system been allocated ASIDs for SEV-ES? */ 3047 if (min_sev_asid == 1) 3048 goto out; 3049 3050 sev_es_asid_count = min_sev_asid - 1; 3051 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3052 sev_es_supported = true; 3053 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3054 3055 out: 3056 if (boot_cpu_has(X86_FEATURE_SEV)) 3057 pr_info("SEV %s (ASIDs %u - %u)\n", 3058 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3059 "unusable" : 3060 "disabled", 3061 min_sev_asid, max_sev_asid); 3062 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3063 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3064 sev_es_supported ? "enabled" : "disabled", 3065 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3066 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3067 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3068 sev_snp_supported ? "enabled" : "disabled", 3069 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3070 3071 sev_enabled = sev_supported; 3072 sev_es_enabled = sev_es_supported; 3073 sev_snp_enabled = sev_snp_supported; 3074 3075 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3076 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3077 sev_es_debug_swap_enabled = false; 3078 3079 sev_supported_vmsa_features = 0; 3080 if (sev_es_debug_swap_enabled) 3081 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3082 } 3083 3084 void sev_hardware_unsetup(void) 3085 { 3086 if (!sev_enabled) 3087 return; 3088 3089 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3090 sev_flush_asids(1, max_sev_asid); 3091 3092 bitmap_free(sev_asid_bitmap); 3093 bitmap_free(sev_reclaim_asid_bitmap); 3094 3095 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3096 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3097 } 3098 3099 int sev_cpu_init(struct svm_cpu_data *sd) 3100 { 3101 if (!sev_enabled) 3102 return 0; 3103 3104 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3105 if (!sd->sev_vmcbs) 3106 return -ENOMEM; 3107 3108 return 0; 3109 } 3110 3111 /* 3112 * Pages used by hardware to hold guest encrypted state must be flushed before 3113 * returning them to the system. 3114 */ 3115 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3116 { 3117 unsigned int asid = sev_get_asid(vcpu->kvm); 3118 3119 /* 3120 * Note! The address must be a kernel address, as regular page walk 3121 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3122 * address is non-deterministic and unsafe. This function deliberately 3123 * takes a pointer to deter passing in a user address. 3124 */ 3125 unsigned long addr = (unsigned long)va; 3126 3127 /* 3128 * If CPU enforced cache coherency for encrypted mappings of the 3129 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3130 * flush is still needed in order to work properly with DMA devices. 3131 */ 3132 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3133 clflush_cache_range(va, PAGE_SIZE); 3134 return; 3135 } 3136 3137 /* 3138 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3139 * back to WBINVD if this faults so as not to make any problems worse 3140 * by leaving stale encrypted data in the cache. 3141 */ 3142 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3143 goto do_wbinvd; 3144 3145 return; 3146 3147 do_wbinvd: 3148 wbinvd_on_all_cpus(); 3149 } 3150 3151 void sev_guest_memory_reclaimed(struct kvm *kvm) 3152 { 3153 /* 3154 * With SNP+gmem, private/encrypted memory is unreachable via the 3155 * hva-based mmu notifiers, so these events are only actually 3156 * pertaining to shared pages where there is no need to perform 3157 * the WBINVD to flush associated caches. 3158 */ 3159 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3160 return; 3161 3162 wbinvd_on_all_cpus(); 3163 } 3164 3165 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3166 { 3167 struct vcpu_svm *svm; 3168 3169 if (!sev_es_guest(vcpu->kvm)) 3170 return; 3171 3172 svm = to_svm(vcpu); 3173 3174 /* 3175 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3176 * a guest-owned page. Transition the page to hypervisor state before 3177 * releasing it back to the system. 3178 */ 3179 if (sev_snp_guest(vcpu->kvm)) { 3180 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3181 3182 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3183 goto skip_vmsa_free; 3184 } 3185 3186 if (vcpu->arch.guest_state_protected) 3187 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3188 3189 __free_page(virt_to_page(svm->sev_es.vmsa)); 3190 3191 skip_vmsa_free: 3192 if (svm->sev_es.ghcb_sa_free) 3193 kvfree(svm->sev_es.ghcb_sa); 3194 } 3195 3196 static void dump_ghcb(struct vcpu_svm *svm) 3197 { 3198 struct ghcb *ghcb = svm->sev_es.ghcb; 3199 unsigned int nbits; 3200 3201 /* Re-use the dump_invalid_vmcb module parameter */ 3202 if (!dump_invalid_vmcb) { 3203 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3204 return; 3205 } 3206 3207 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 3208 3209 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 3210 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3211 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 3212 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3213 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 3214 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3215 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 3216 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3217 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 3218 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 3219 } 3220 3221 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3222 { 3223 struct kvm_vcpu *vcpu = &svm->vcpu; 3224 struct ghcb *ghcb = svm->sev_es.ghcb; 3225 3226 /* 3227 * The GHCB protocol so far allows for the following data 3228 * to be returned: 3229 * GPRs RAX, RBX, RCX, RDX 3230 * 3231 * Copy their values, even if they may not have been written during the 3232 * VM-Exit. It's the guest's responsibility to not consume random data. 3233 */ 3234 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3235 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3236 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3237 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3238 } 3239 3240 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3241 { 3242 struct vmcb_control_area *control = &svm->vmcb->control; 3243 struct kvm_vcpu *vcpu = &svm->vcpu; 3244 struct ghcb *ghcb = svm->sev_es.ghcb; 3245 u64 exit_code; 3246 3247 /* 3248 * The GHCB protocol so far allows for the following data 3249 * to be supplied: 3250 * GPRs RAX, RBX, RCX, RDX 3251 * XCR0 3252 * CPL 3253 * 3254 * VMMCALL allows the guest to provide extra registers. KVM also 3255 * expects RSI for hypercalls, so include that, too. 3256 * 3257 * Copy their values to the appropriate location if supplied. 3258 */ 3259 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3260 3261 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3262 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3263 3264 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3265 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3266 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3267 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3268 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3269 3270 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3271 3272 if (kvm_ghcb_xcr0_is_valid(svm)) { 3273 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3274 kvm_update_cpuid_runtime(vcpu); 3275 } 3276 3277 /* Copy the GHCB exit information into the VMCB fields */ 3278 exit_code = ghcb_get_sw_exit_code(ghcb); 3279 control->exit_code = lower_32_bits(exit_code); 3280 control->exit_code_hi = upper_32_bits(exit_code); 3281 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3282 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3283 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3284 3285 /* Clear the valid entries fields */ 3286 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3287 } 3288 3289 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3290 { 3291 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3292 } 3293 3294 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3295 { 3296 struct vmcb_control_area *control = &svm->vmcb->control; 3297 struct kvm_vcpu *vcpu = &svm->vcpu; 3298 u64 exit_code; 3299 u64 reason; 3300 3301 /* 3302 * Retrieve the exit code now even though it may not be marked valid 3303 * as it could help with debugging. 3304 */ 3305 exit_code = kvm_ghcb_get_sw_exit_code(control); 3306 3307 /* Only GHCB Usage code 0 is supported */ 3308 if (svm->sev_es.ghcb->ghcb_usage) { 3309 reason = GHCB_ERR_INVALID_USAGE; 3310 goto vmgexit_err; 3311 } 3312 3313 reason = GHCB_ERR_MISSING_INPUT; 3314 3315 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3316 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3317 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3318 goto vmgexit_err; 3319 3320 switch (exit_code) { 3321 case SVM_EXIT_READ_DR7: 3322 break; 3323 case SVM_EXIT_WRITE_DR7: 3324 if (!kvm_ghcb_rax_is_valid(svm)) 3325 goto vmgexit_err; 3326 break; 3327 case SVM_EXIT_RDTSC: 3328 break; 3329 case SVM_EXIT_RDPMC: 3330 if (!kvm_ghcb_rcx_is_valid(svm)) 3331 goto vmgexit_err; 3332 break; 3333 case SVM_EXIT_CPUID: 3334 if (!kvm_ghcb_rax_is_valid(svm) || 3335 !kvm_ghcb_rcx_is_valid(svm)) 3336 goto vmgexit_err; 3337 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3338 if (!kvm_ghcb_xcr0_is_valid(svm)) 3339 goto vmgexit_err; 3340 break; 3341 case SVM_EXIT_INVD: 3342 break; 3343 case SVM_EXIT_IOIO: 3344 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3345 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3346 goto vmgexit_err; 3347 } else { 3348 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3349 if (!kvm_ghcb_rax_is_valid(svm)) 3350 goto vmgexit_err; 3351 } 3352 break; 3353 case SVM_EXIT_MSR: 3354 if (!kvm_ghcb_rcx_is_valid(svm)) 3355 goto vmgexit_err; 3356 if (control->exit_info_1) { 3357 if (!kvm_ghcb_rax_is_valid(svm) || 3358 !kvm_ghcb_rdx_is_valid(svm)) 3359 goto vmgexit_err; 3360 } 3361 break; 3362 case SVM_EXIT_VMMCALL: 3363 if (!kvm_ghcb_rax_is_valid(svm) || 3364 !kvm_ghcb_cpl_is_valid(svm)) 3365 goto vmgexit_err; 3366 break; 3367 case SVM_EXIT_RDTSCP: 3368 break; 3369 case SVM_EXIT_WBINVD: 3370 break; 3371 case SVM_EXIT_MONITOR: 3372 if (!kvm_ghcb_rax_is_valid(svm) || 3373 !kvm_ghcb_rcx_is_valid(svm) || 3374 !kvm_ghcb_rdx_is_valid(svm)) 3375 goto vmgexit_err; 3376 break; 3377 case SVM_EXIT_MWAIT: 3378 if (!kvm_ghcb_rax_is_valid(svm) || 3379 !kvm_ghcb_rcx_is_valid(svm)) 3380 goto vmgexit_err; 3381 break; 3382 case SVM_VMGEXIT_MMIO_READ: 3383 case SVM_VMGEXIT_MMIO_WRITE: 3384 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3385 goto vmgexit_err; 3386 break; 3387 case SVM_VMGEXIT_AP_CREATION: 3388 if (!sev_snp_guest(vcpu->kvm)) 3389 goto vmgexit_err; 3390 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3391 if (!kvm_ghcb_rax_is_valid(svm)) 3392 goto vmgexit_err; 3393 break; 3394 case SVM_VMGEXIT_NMI_COMPLETE: 3395 case SVM_VMGEXIT_AP_HLT_LOOP: 3396 case SVM_VMGEXIT_AP_JUMP_TABLE: 3397 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3398 case SVM_VMGEXIT_HV_FEATURES: 3399 case SVM_VMGEXIT_TERM_REQUEST: 3400 break; 3401 case SVM_VMGEXIT_PSC: 3402 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3403 goto vmgexit_err; 3404 break; 3405 case SVM_VMGEXIT_GUEST_REQUEST: 3406 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3407 if (!sev_snp_guest(vcpu->kvm) || 3408 !PAGE_ALIGNED(control->exit_info_1) || 3409 !PAGE_ALIGNED(control->exit_info_2) || 3410 control->exit_info_1 == control->exit_info_2) 3411 goto vmgexit_err; 3412 break; 3413 default: 3414 reason = GHCB_ERR_INVALID_EVENT; 3415 goto vmgexit_err; 3416 } 3417 3418 return 0; 3419 3420 vmgexit_err: 3421 if (reason == GHCB_ERR_INVALID_USAGE) { 3422 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3423 svm->sev_es.ghcb->ghcb_usage); 3424 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3425 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3426 exit_code); 3427 } else { 3428 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3429 exit_code); 3430 dump_ghcb(svm); 3431 } 3432 3433 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3434 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); 3435 3436 /* Resume the guest to "return" the error code. */ 3437 return 1; 3438 } 3439 3440 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3441 { 3442 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3443 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3444 3445 if (!svm->sev_es.ghcb) 3446 return; 3447 3448 if (svm->sev_es.ghcb_sa_free) { 3449 /* 3450 * The scratch area lives outside the GHCB, so there is a 3451 * buffer that, depending on the operation performed, may 3452 * need to be synced, then freed. 3453 */ 3454 if (svm->sev_es.ghcb_sa_sync) { 3455 kvm_write_guest(svm->vcpu.kvm, 3456 svm->sev_es.sw_scratch, 3457 svm->sev_es.ghcb_sa, 3458 svm->sev_es.ghcb_sa_len); 3459 svm->sev_es.ghcb_sa_sync = false; 3460 } 3461 3462 kvfree(svm->sev_es.ghcb_sa); 3463 svm->sev_es.ghcb_sa = NULL; 3464 svm->sev_es.ghcb_sa_free = false; 3465 } 3466 3467 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3468 3469 sev_es_sync_to_ghcb(svm); 3470 3471 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 3472 svm->sev_es.ghcb = NULL; 3473 } 3474 3475 void pre_sev_run(struct vcpu_svm *svm, int cpu) 3476 { 3477 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3478 unsigned int asid = sev_get_asid(svm->vcpu.kvm); 3479 3480 /* Assign the asid allocated with this SEV guest */ 3481 svm->asid = asid; 3482 3483 /* 3484 * Flush guest TLB: 3485 * 3486 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3487 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3488 */ 3489 if (sd->sev_vmcbs[asid] == svm->vmcb && 3490 svm->vcpu.arch.last_vmentry_cpu == cpu) 3491 return; 3492 3493 sd->sev_vmcbs[asid] = svm->vmcb; 3494 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3495 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3496 } 3497 3498 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3499 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3500 { 3501 struct vmcb_control_area *control = &svm->vmcb->control; 3502 u64 ghcb_scratch_beg, ghcb_scratch_end; 3503 u64 scratch_gpa_beg, scratch_gpa_end; 3504 void *scratch_va; 3505 3506 scratch_gpa_beg = svm->sev_es.sw_scratch; 3507 if (!scratch_gpa_beg) { 3508 pr_err("vmgexit: scratch gpa not provided\n"); 3509 goto e_scratch; 3510 } 3511 3512 scratch_gpa_end = scratch_gpa_beg + len; 3513 if (scratch_gpa_end < scratch_gpa_beg) { 3514 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3515 len, scratch_gpa_beg); 3516 goto e_scratch; 3517 } 3518 3519 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3520 /* Scratch area begins within GHCB */ 3521 ghcb_scratch_beg = control->ghcb_gpa + 3522 offsetof(struct ghcb, shared_buffer); 3523 ghcb_scratch_end = control->ghcb_gpa + 3524 offsetof(struct ghcb, reserved_0xff0); 3525 3526 /* 3527 * If the scratch area begins within the GHCB, it must be 3528 * completely contained in the GHCB shared buffer area. 3529 */ 3530 if (scratch_gpa_beg < ghcb_scratch_beg || 3531 scratch_gpa_end > ghcb_scratch_end) { 3532 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3533 scratch_gpa_beg, scratch_gpa_end); 3534 goto e_scratch; 3535 } 3536 3537 scratch_va = (void *)svm->sev_es.ghcb; 3538 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3539 } else { 3540 /* 3541 * The guest memory must be read into a kernel buffer, so 3542 * limit the size 3543 */ 3544 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3545 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3546 len, GHCB_SCRATCH_AREA_LIMIT); 3547 goto e_scratch; 3548 } 3549 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3550 if (!scratch_va) 3551 return -ENOMEM; 3552 3553 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3554 /* Unable to copy scratch area from guest */ 3555 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3556 3557 kvfree(scratch_va); 3558 return -EFAULT; 3559 } 3560 3561 /* 3562 * The scratch area is outside the GHCB. The operation will 3563 * dictate whether the buffer needs to be synced before running 3564 * the vCPU next time (i.e. a read was requested so the data 3565 * must be written back to the guest memory). 3566 */ 3567 svm->sev_es.ghcb_sa_sync = sync; 3568 svm->sev_es.ghcb_sa_free = true; 3569 } 3570 3571 svm->sev_es.ghcb_sa = scratch_va; 3572 svm->sev_es.ghcb_sa_len = len; 3573 3574 return 0; 3575 3576 e_scratch: 3577 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3578 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 3579 3580 return 1; 3581 } 3582 3583 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3584 unsigned int pos) 3585 { 3586 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3587 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3588 } 3589 3590 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3591 { 3592 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3593 } 3594 3595 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3596 { 3597 svm->vmcb->control.ghcb_gpa = value; 3598 } 3599 3600 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3601 { 3602 int ret; 3603 3604 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3605 3606 /* 3607 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3608 * entry, so retry until that's no longer the case. 3609 */ 3610 do { 3611 ret = psmash(pfn); 3612 } while (ret == PSMASH_FAIL_INUSE); 3613 3614 return ret; 3615 } 3616 3617 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3618 { 3619 struct vcpu_svm *svm = to_svm(vcpu); 3620 3621 if (vcpu->run->hypercall.ret) 3622 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3623 else 3624 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3625 3626 return 1; /* resume guest */ 3627 } 3628 3629 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3630 { 3631 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3632 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3633 struct kvm_vcpu *vcpu = &svm->vcpu; 3634 3635 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3636 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3637 return 1; /* resume guest */ 3638 } 3639 3640 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3641 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3642 return 1; /* resume guest */ 3643 } 3644 3645 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3646 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3647 vcpu->run->hypercall.args[0] = gpa; 3648 vcpu->run->hypercall.args[1] = 1; 3649 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3650 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3651 : KVM_MAP_GPA_RANGE_DECRYPTED; 3652 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3653 3654 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3655 3656 return 0; /* forward request to userspace */ 3657 } 3658 3659 struct psc_buffer { 3660 struct psc_hdr hdr; 3661 struct psc_entry entries[]; 3662 } __packed; 3663 3664 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3665 3666 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3667 { 3668 svm->sev_es.psc_inflight = 0; 3669 svm->sev_es.psc_idx = 0; 3670 svm->sev_es.psc_2m = false; 3671 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret); 3672 } 3673 3674 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3675 { 3676 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3677 struct psc_entry *entries = psc->entries; 3678 struct psc_hdr *hdr = &psc->hdr; 3679 __u16 idx; 3680 3681 /* 3682 * Everything in-flight has been processed successfully. Update the 3683 * corresponding entries in the guest's PSC buffer and zero out the 3684 * count of in-flight PSC entries. 3685 */ 3686 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3687 svm->sev_es.psc_inflight--, idx++) { 3688 struct psc_entry *entry = &entries[idx]; 3689 3690 entry->cur_page = entry->pagesize ? 512 : 1; 3691 } 3692 3693 hdr->cur_entry = idx; 3694 } 3695 3696 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3697 { 3698 struct vcpu_svm *svm = to_svm(vcpu); 3699 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3700 3701 if (vcpu->run->hypercall.ret) { 3702 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3703 return 1; /* resume guest */ 3704 } 3705 3706 __snp_complete_one_psc(svm); 3707 3708 /* Handle the next range (if any). */ 3709 return snp_begin_psc(svm, psc); 3710 } 3711 3712 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3713 { 3714 struct psc_entry *entries = psc->entries; 3715 struct kvm_vcpu *vcpu = &svm->vcpu; 3716 struct psc_hdr *hdr = &psc->hdr; 3717 struct psc_entry entry_start; 3718 u16 idx, idx_start, idx_end; 3719 int npages; 3720 bool huge; 3721 u64 gfn; 3722 3723 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3724 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3725 return 1; 3726 } 3727 3728 next_range: 3729 /* There should be no other PSCs in-flight at this point. */ 3730 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3731 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3732 return 1; 3733 } 3734 3735 /* 3736 * The PSC descriptor buffer can be modified by a misbehaved guest after 3737 * validation, so take care to only use validated copies of values used 3738 * for things like array indexing. 3739 */ 3740 idx_start = hdr->cur_entry; 3741 idx_end = hdr->end_entry; 3742 3743 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3744 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3745 return 1; 3746 } 3747 3748 /* Find the start of the next range which needs processing. */ 3749 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3750 entry_start = entries[idx]; 3751 3752 gfn = entry_start.gfn; 3753 huge = entry_start.pagesize; 3754 npages = huge ? 512 : 1; 3755 3756 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3757 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3758 return 1; 3759 } 3760 3761 if (entry_start.cur_page) { 3762 /* 3763 * If this is a partially-completed 2M range, force 4K handling 3764 * for the remaining pages since they're effectively split at 3765 * this point. Subsequent code should ensure this doesn't get 3766 * combined with adjacent PSC entries where 2M handling is still 3767 * possible. 3768 */ 3769 npages -= entry_start.cur_page; 3770 gfn += entry_start.cur_page; 3771 huge = false; 3772 } 3773 3774 if (npages) 3775 break; 3776 } 3777 3778 if (idx > idx_end) { 3779 /* Nothing more to process. */ 3780 snp_complete_psc(svm, 0); 3781 return 1; 3782 } 3783 3784 svm->sev_es.psc_2m = huge; 3785 svm->sev_es.psc_idx = idx; 3786 svm->sev_es.psc_inflight = 1; 3787 3788 /* 3789 * Find all subsequent PSC entries that contain adjacent GPA 3790 * ranges/operations and can be combined into a single 3791 * KVM_HC_MAP_GPA_RANGE exit. 3792 */ 3793 while (++idx <= idx_end) { 3794 struct psc_entry entry = entries[idx]; 3795 3796 if (entry.operation != entry_start.operation || 3797 entry.gfn != entry_start.gfn + npages || 3798 entry.cur_page || !!entry.pagesize != huge) 3799 break; 3800 3801 svm->sev_es.psc_inflight++; 3802 npages += huge ? 512 : 1; 3803 } 3804 3805 switch (entry_start.operation) { 3806 case VMGEXIT_PSC_OP_PRIVATE: 3807 case VMGEXIT_PSC_OP_SHARED: 3808 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3809 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3810 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3811 vcpu->run->hypercall.args[1] = npages; 3812 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3813 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3814 : KVM_MAP_GPA_RANGE_DECRYPTED; 3815 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3816 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3817 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3818 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3819 return 0; /* forward request to userspace */ 3820 default: 3821 /* 3822 * Only shared/private PSC operations are currently supported, so if the 3823 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3824 * then consider the entire range completed and avoid exiting to 3825 * userspace. In theory snp_complete_psc() can always be called directly 3826 * at this point to complete the current range and start the next one, 3827 * but that could lead to unexpected levels of recursion. 3828 */ 3829 __snp_complete_one_psc(svm); 3830 goto next_range; 3831 } 3832 3833 unreachable(); 3834 } 3835 3836 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu) 3837 { 3838 struct vcpu_svm *svm = to_svm(vcpu); 3839 3840 WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex)); 3841 3842 /* Mark the vCPU as offline and not runnable */ 3843 vcpu->arch.pv.pv_unhalted = false; 3844 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 3845 3846 /* Clear use of the VMSA */ 3847 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3848 3849 if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) { 3850 gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3851 struct kvm_memory_slot *slot; 3852 kvm_pfn_t pfn; 3853 3854 slot = gfn_to_memslot(vcpu->kvm, gfn); 3855 if (!slot) 3856 return -EINVAL; 3857 3858 /* 3859 * The new VMSA will be private memory guest memory, so 3860 * retrieve the PFN from the gmem backend. 3861 */ 3862 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL)) 3863 return -EINVAL; 3864 3865 /* 3866 * From this point forward, the VMSA will always be a 3867 * guest-mapped page rather than the initial one allocated 3868 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa 3869 * could be free'd and cleaned up here, but that involves 3870 * cleanups like wbinvd_on_all_cpus() which would ideally 3871 * be handled during teardown rather than guest boot. 3872 * Deferring that also allows the existing logic for SEV-ES 3873 * VMSAs to be re-used with minimal SNP-specific changes. 3874 */ 3875 svm->sev_es.snp_has_guest_vmsa = true; 3876 3877 /* Use the new VMSA */ 3878 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3879 3880 /* Mark the vCPU as runnable */ 3881 vcpu->arch.pv.pv_unhalted = false; 3882 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3883 3884 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3885 3886 /* 3887 * gmem pages aren't currently migratable, but if this ever 3888 * changes then care should be taken to ensure 3889 * svm->sev_es.vmsa is pinned through some other means. 3890 */ 3891 kvm_release_pfn_clean(pfn); 3892 } 3893 3894 /* 3895 * When replacing the VMSA during SEV-SNP AP creation, 3896 * mark the VMCB dirty so that full state is always reloaded. 3897 */ 3898 vmcb_mark_all_dirty(svm->vmcb); 3899 3900 return 0; 3901 } 3902 3903 /* 3904 * Invoked as part of svm_vcpu_reset() processing of an init event. 3905 */ 3906 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3907 { 3908 struct vcpu_svm *svm = to_svm(vcpu); 3909 int ret; 3910 3911 if (!sev_snp_guest(vcpu->kvm)) 3912 return; 3913 3914 mutex_lock(&svm->sev_es.snp_vmsa_mutex); 3915 3916 if (!svm->sev_es.snp_ap_waiting_for_reset) 3917 goto unlock; 3918 3919 svm->sev_es.snp_ap_waiting_for_reset = false; 3920 3921 ret = __sev_snp_update_protected_guest_state(vcpu); 3922 if (ret) 3923 vcpu_unimpl(vcpu, "snp: AP state update on init failed\n"); 3924 3925 unlock: 3926 mutex_unlock(&svm->sev_es.snp_vmsa_mutex); 3927 } 3928 3929 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3930 { 3931 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 3932 struct kvm_vcpu *vcpu = &svm->vcpu; 3933 struct kvm_vcpu *target_vcpu; 3934 struct vcpu_svm *target_svm; 3935 unsigned int request; 3936 unsigned int apic_id; 3937 bool kick; 3938 int ret; 3939 3940 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3941 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3942 3943 /* Validate the APIC ID */ 3944 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3945 if (!target_vcpu) { 3946 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3947 apic_id); 3948 return -EINVAL; 3949 } 3950 3951 ret = 0; 3952 3953 target_svm = to_svm(target_vcpu); 3954 3955 /* 3956 * The target vCPU is valid, so the vCPU will be kicked unless the 3957 * request is for CREATE_ON_INIT. For any errors at this stage, the 3958 * kick will place the vCPU in an non-runnable state. 3959 */ 3960 kick = true; 3961 3962 mutex_lock(&target_svm->sev_es.snp_vmsa_mutex); 3963 3964 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3965 target_svm->sev_es.snp_ap_waiting_for_reset = true; 3966 3967 /* Interrupt injection mode shouldn't change for AP creation */ 3968 if (request < SVM_VMGEXIT_AP_DESTROY) { 3969 u64 sev_features; 3970 3971 sev_features = vcpu->arch.regs[VCPU_REGS_RAX]; 3972 sev_features ^= sev->vmsa_features; 3973 3974 if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) { 3975 vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n", 3976 vcpu->arch.regs[VCPU_REGS_RAX]); 3977 ret = -EINVAL; 3978 goto out; 3979 } 3980 } 3981 3982 switch (request) { 3983 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3984 kick = false; 3985 fallthrough; 3986 case SVM_VMGEXIT_AP_CREATE: 3987 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3988 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3989 svm->vmcb->control.exit_info_2); 3990 ret = -EINVAL; 3991 goto out; 3992 } 3993 3994 /* 3995 * Malicious guest can RMPADJUST a large page into VMSA which 3996 * will hit the SNP erratum where the CPU will incorrectly signal 3997 * an RMP violation #PF if a hugepage collides with the RMP entry 3998 * of VMSA page, reject the AP CREATE request if VMSA address from 3999 * guest is 2M aligned. 4000 */ 4001 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 4002 vcpu_unimpl(vcpu, 4003 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 4004 svm->vmcb->control.exit_info_2); 4005 ret = -EINVAL; 4006 goto out; 4007 } 4008 4009 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 4010 break; 4011 case SVM_VMGEXIT_AP_DESTROY: 4012 break; 4013 default: 4014 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 4015 request); 4016 ret = -EINVAL; 4017 break; 4018 } 4019 4020 out: 4021 if (kick) { 4022 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 4023 kvm_vcpu_kick(target_vcpu); 4024 } 4025 4026 mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex); 4027 4028 return ret; 4029 } 4030 4031 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4032 { 4033 struct sev_data_snp_guest_request data = {0}; 4034 struct kvm *kvm = svm->vcpu.kvm; 4035 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4036 sev_ret_code fw_err = 0; 4037 int ret; 4038 4039 if (!sev_snp_guest(kvm)) 4040 return -EINVAL; 4041 4042 mutex_lock(&sev->guest_req_mutex); 4043 4044 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4045 ret = -EIO; 4046 goto out_unlock; 4047 } 4048 4049 data.gctx_paddr = __psp_pa(sev->snp_context); 4050 data.req_paddr = __psp_pa(sev->guest_req_buf); 4051 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4052 4053 /* 4054 * Firmware failures are propagated on to guest, but any other failure 4055 * condition along the way should be reported to userspace. E.g. if 4056 * the PSP is dead and commands are timing out. 4057 */ 4058 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4059 if (ret && !fw_err) 4060 goto out_unlock; 4061 4062 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4063 ret = -EIO; 4064 goto out_unlock; 4065 } 4066 4067 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err)); 4068 4069 ret = 1; /* resume guest */ 4070 4071 out_unlock: 4072 mutex_unlock(&sev->guest_req_mutex); 4073 return ret; 4074 } 4075 4076 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4077 { 4078 struct kvm *kvm = svm->vcpu.kvm; 4079 u8 msg_type; 4080 4081 if (!sev_snp_guest(kvm)) 4082 return -EINVAL; 4083 4084 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4085 &msg_type, 1)) 4086 return -EIO; 4087 4088 /* 4089 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4090 * additional certificate data to be provided alongside the attestation 4091 * report via the guest-provided data pages indicated by RAX/RBX. The 4092 * certificate data is optional and requires additional KVM enablement 4093 * to provide an interface for userspace to provide it, but KVM still 4094 * needs to be able to handle extended guest requests either way. So 4095 * provide a stub implementation that will always return an empty 4096 * certificate table in the guest-provided data pages. 4097 */ 4098 if (msg_type == SNP_MSG_REPORT_REQ) { 4099 struct kvm_vcpu *vcpu = &svm->vcpu; 4100 u64 data_npages; 4101 gpa_t data_gpa; 4102 4103 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4104 goto request_invalid; 4105 4106 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4107 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4108 4109 if (!PAGE_ALIGNED(data_gpa)) 4110 goto request_invalid; 4111 4112 /* 4113 * As per GHCB spec (see "SNP Extended Guest Request"), the 4114 * certificate table is terminated by 24-bytes of zeroes. 4115 */ 4116 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4117 return -EIO; 4118 } 4119 4120 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4121 4122 request_invalid: 4123 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4124 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4125 return 1; /* resume guest */ 4126 } 4127 4128 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4129 { 4130 struct vmcb_control_area *control = &svm->vmcb->control; 4131 struct kvm_vcpu *vcpu = &svm->vcpu; 4132 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4133 u64 ghcb_info; 4134 int ret = 1; 4135 4136 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4137 4138 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4139 control->ghcb_gpa); 4140 4141 switch (ghcb_info) { 4142 case GHCB_MSR_SEV_INFO_REQ: 4143 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4144 GHCB_VERSION_MIN, 4145 sev_enc_bit)); 4146 break; 4147 case GHCB_MSR_CPUID_REQ: { 4148 u64 cpuid_fn, cpuid_reg, cpuid_value; 4149 4150 cpuid_fn = get_ghcb_msr_bits(svm, 4151 GHCB_MSR_CPUID_FUNC_MASK, 4152 GHCB_MSR_CPUID_FUNC_POS); 4153 4154 /* Initialize the registers needed by the CPUID intercept */ 4155 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4156 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4157 4158 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4159 if (!ret) { 4160 /* Error, keep GHCB MSR value as-is */ 4161 break; 4162 } 4163 4164 cpuid_reg = get_ghcb_msr_bits(svm, 4165 GHCB_MSR_CPUID_REG_MASK, 4166 GHCB_MSR_CPUID_REG_POS); 4167 if (cpuid_reg == 0) 4168 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4169 else if (cpuid_reg == 1) 4170 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4171 else if (cpuid_reg == 2) 4172 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4173 else 4174 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4175 4176 set_ghcb_msr_bits(svm, cpuid_value, 4177 GHCB_MSR_CPUID_VALUE_MASK, 4178 GHCB_MSR_CPUID_VALUE_POS); 4179 4180 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4181 GHCB_MSR_INFO_MASK, 4182 GHCB_MSR_INFO_POS); 4183 break; 4184 } 4185 case GHCB_MSR_AP_RESET_HOLD_REQ: 4186 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4187 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4188 4189 /* 4190 * Preset the result to a non-SIPI return and then only set 4191 * the result to non-zero when delivering a SIPI. 4192 */ 4193 set_ghcb_msr_bits(svm, 0, 4194 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4195 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4196 4197 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4198 GHCB_MSR_INFO_MASK, 4199 GHCB_MSR_INFO_POS); 4200 break; 4201 case GHCB_MSR_HV_FT_REQ: 4202 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4203 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4204 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4205 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4206 break; 4207 case GHCB_MSR_PREF_GPA_REQ: 4208 if (!sev_snp_guest(vcpu->kvm)) 4209 goto out_terminate; 4210 4211 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4212 GHCB_MSR_GPA_VALUE_POS); 4213 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4214 GHCB_MSR_INFO_POS); 4215 break; 4216 case GHCB_MSR_REG_GPA_REQ: { 4217 u64 gfn; 4218 4219 if (!sev_snp_guest(vcpu->kvm)) 4220 goto out_terminate; 4221 4222 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4223 GHCB_MSR_GPA_VALUE_POS); 4224 4225 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4226 4227 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4228 GHCB_MSR_GPA_VALUE_POS); 4229 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4230 GHCB_MSR_INFO_POS); 4231 break; 4232 } 4233 case GHCB_MSR_PSC_REQ: 4234 if (!sev_snp_guest(vcpu->kvm)) 4235 goto out_terminate; 4236 4237 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4238 break; 4239 case GHCB_MSR_TERM_REQ: { 4240 u64 reason_set, reason_code; 4241 4242 reason_set = get_ghcb_msr_bits(svm, 4243 GHCB_MSR_TERM_REASON_SET_MASK, 4244 GHCB_MSR_TERM_REASON_SET_POS); 4245 reason_code = get_ghcb_msr_bits(svm, 4246 GHCB_MSR_TERM_REASON_MASK, 4247 GHCB_MSR_TERM_REASON_POS); 4248 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4249 reason_set, reason_code); 4250 4251 goto out_terminate; 4252 } 4253 default: 4254 /* Error, keep GHCB MSR value as-is */ 4255 break; 4256 } 4257 4258 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4259 control->ghcb_gpa, ret); 4260 4261 return ret; 4262 4263 out_terminate: 4264 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4265 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4266 vcpu->run->system_event.ndata = 1; 4267 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4268 4269 return 0; 4270 } 4271 4272 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4273 { 4274 struct vcpu_svm *svm = to_svm(vcpu); 4275 struct vmcb_control_area *control = &svm->vmcb->control; 4276 u64 ghcb_gpa, exit_code; 4277 int ret; 4278 4279 /* Validate the GHCB */ 4280 ghcb_gpa = control->ghcb_gpa; 4281 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4282 return sev_handle_vmgexit_msr_protocol(svm); 4283 4284 if (!ghcb_gpa) { 4285 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4286 4287 /* Without a GHCB, just return right back to the guest */ 4288 return 1; 4289 } 4290 4291 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4292 /* Unable to map GHCB from guest */ 4293 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4294 ghcb_gpa); 4295 4296 /* Without a GHCB, just return right back to the guest */ 4297 return 1; 4298 } 4299 4300 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4301 4302 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4303 4304 sev_es_sync_from_ghcb(svm); 4305 4306 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4307 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4308 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4309 return -EINVAL; 4310 } 4311 4312 ret = sev_es_validate_vmgexit(svm); 4313 if (ret) 4314 return ret; 4315 4316 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); 4317 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); 4318 4319 exit_code = kvm_ghcb_get_sw_exit_code(control); 4320 switch (exit_code) { 4321 case SVM_VMGEXIT_MMIO_READ: 4322 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4323 if (ret) 4324 break; 4325 4326 ret = kvm_sev_es_mmio_read(vcpu, 4327 control->exit_info_1, 4328 control->exit_info_2, 4329 svm->sev_es.ghcb_sa); 4330 break; 4331 case SVM_VMGEXIT_MMIO_WRITE: 4332 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4333 if (ret) 4334 break; 4335 4336 ret = kvm_sev_es_mmio_write(vcpu, 4337 control->exit_info_1, 4338 control->exit_info_2, 4339 svm->sev_es.ghcb_sa); 4340 break; 4341 case SVM_VMGEXIT_NMI_COMPLETE: 4342 ++vcpu->stat.nmi_window_exits; 4343 svm->nmi_masked = false; 4344 kvm_make_request(KVM_REQ_EVENT, vcpu); 4345 ret = 1; 4346 break; 4347 case SVM_VMGEXIT_AP_HLT_LOOP: 4348 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4349 ret = kvm_emulate_ap_reset_hold(vcpu); 4350 break; 4351 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4352 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4353 4354 switch (control->exit_info_1) { 4355 case 0: 4356 /* Set AP jump table address */ 4357 sev->ap_jump_table = control->exit_info_2; 4358 break; 4359 case 1: 4360 /* Get AP jump table address */ 4361 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); 4362 break; 4363 default: 4364 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4365 control->exit_info_1); 4366 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4367 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4368 } 4369 4370 ret = 1; 4371 break; 4372 } 4373 case SVM_VMGEXIT_HV_FEATURES: 4374 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED); 4375 4376 ret = 1; 4377 break; 4378 case SVM_VMGEXIT_TERM_REQUEST: 4379 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4380 control->exit_info_1, control->exit_info_2); 4381 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4382 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4383 vcpu->run->system_event.ndata = 1; 4384 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4385 break; 4386 case SVM_VMGEXIT_PSC: 4387 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4388 if (ret) 4389 break; 4390 4391 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4392 break; 4393 case SVM_VMGEXIT_AP_CREATION: 4394 ret = sev_snp_ap_creation(svm); 4395 if (ret) { 4396 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4397 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4398 } 4399 4400 ret = 1; 4401 break; 4402 case SVM_VMGEXIT_GUEST_REQUEST: 4403 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4404 break; 4405 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4406 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4407 break; 4408 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4409 vcpu_unimpl(vcpu, 4410 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4411 control->exit_info_1, control->exit_info_2); 4412 ret = -EINVAL; 4413 break; 4414 default: 4415 ret = svm_invoke_exit_handler(vcpu, exit_code); 4416 } 4417 4418 return ret; 4419 } 4420 4421 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4422 { 4423 int count; 4424 int bytes; 4425 int r; 4426 4427 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4428 return -EINVAL; 4429 4430 count = svm->vmcb->control.exit_info_2; 4431 if (unlikely(check_mul_overflow(count, size, &bytes))) 4432 return -EINVAL; 4433 4434 r = setup_vmgexit_scratch(svm, in, bytes); 4435 if (r) 4436 return r; 4437 4438 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4439 count, in); 4440 } 4441 4442 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4443 { 4444 struct kvm_vcpu *vcpu = &svm->vcpu; 4445 4446 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 4447 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4448 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4449 4450 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 4451 } 4452 4453 /* 4454 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4455 * the host/guest supports its use. 4456 * 4457 * guest_can_use() checks a number of requirements on the host/guest to 4458 * ensure that MSR_IA32_XSS is available, but it might report true even 4459 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host 4460 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better 4461 * to further check that the guest CPUID actually supports 4462 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved 4463 * guests will still get intercepted and caught in the normal 4464 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. 4465 */ 4466 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 4467 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4468 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 4469 else 4470 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 4471 } 4472 4473 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4474 { 4475 struct kvm_vcpu *vcpu = &svm->vcpu; 4476 struct kvm_cpuid_entry2 *best; 4477 4478 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4479 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4480 if (best) 4481 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4482 4483 if (sev_es_guest(svm->vcpu.kvm)) 4484 sev_es_vcpu_after_set_cpuid(svm); 4485 } 4486 4487 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4488 { 4489 struct vmcb *vmcb = svm->vmcb01.ptr; 4490 struct kvm_vcpu *vcpu = &svm->vcpu; 4491 4492 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4493 4494 /* 4495 * An SEV-ES guest requires a VMSA area that is a separate from the 4496 * VMCB page. Do not include the encryption mask on the VMSA physical 4497 * address since hardware will access it using the guest key. Note, 4498 * the VMSA will be NULL if this vCPU is the destination for intrahost 4499 * migration, and will be copied later. 4500 */ 4501 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) 4502 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4503 4504 /* Can't intercept CR register access, HV can't modify CR registers */ 4505 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4506 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4507 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4508 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4509 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4510 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4511 4512 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4513 4514 /* Track EFER/CR register changes */ 4515 svm_set_intercept(svm, TRAP_EFER_WRITE); 4516 svm_set_intercept(svm, TRAP_CR0_WRITE); 4517 svm_set_intercept(svm, TRAP_CR4_WRITE); 4518 svm_set_intercept(svm, TRAP_CR8_WRITE); 4519 4520 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4521 if (!sev_vcpu_has_debug_swap(svm)) { 4522 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4523 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4524 recalc_intercepts(svm); 4525 } else { 4526 /* 4527 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4528 * allow debugging SEV-ES guests, and enables DebugSwap iff 4529 * NO_NESTED_DATA_BP is supported, so there's no reason to 4530 * intercept #DB when DebugSwap is enabled. For simplicity 4531 * with respect to guest debug, intercept #DB for other VMs 4532 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4533 * guest can't DoS the CPU with infinite #DB vectoring. 4534 */ 4535 clr_exception_intercept(svm, DB_VECTOR); 4536 } 4537 4538 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4539 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4540 4541 /* Clear intercepts on selected MSRs */ 4542 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 4543 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 4544 } 4545 4546 void sev_init_vmcb(struct vcpu_svm *svm) 4547 { 4548 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4549 clr_exception_intercept(svm, UD_VECTOR); 4550 4551 /* 4552 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4553 * KVM can't decrypt guest memory to decode the faulting instruction. 4554 */ 4555 clr_exception_intercept(svm, GP_VECTOR); 4556 4557 if (sev_es_guest(svm->vcpu.kvm)) 4558 sev_es_init_vmcb(svm); 4559 } 4560 4561 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4562 { 4563 struct kvm_vcpu *vcpu = &svm->vcpu; 4564 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4565 4566 /* 4567 * Set the GHCB MSR value as per the GHCB specification when emulating 4568 * vCPU RESET for an SEV-ES guest. 4569 */ 4570 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4571 GHCB_VERSION_MIN, 4572 sev_enc_bit)); 4573 4574 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4575 } 4576 4577 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4578 { 4579 /* 4580 * All host state for SEV-ES guests is categorized into three swap types 4581 * based on how it is handled by hardware during a world switch: 4582 * 4583 * A: VMRUN: Host state saved in host save area 4584 * VMEXIT: Host state loaded from host save area 4585 * 4586 * B: VMRUN: Host state _NOT_ saved in host save area 4587 * VMEXIT: Host state loaded from host save area 4588 * 4589 * C: VMRUN: Host state _NOT_ saved in host save area 4590 * VMEXIT: Host state initialized to default(reset) values 4591 * 4592 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4593 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4594 * by common SVM code). 4595 */ 4596 hostsa->xcr0 = kvm_host.xcr0; 4597 hostsa->pkru = read_pkru(); 4598 hostsa->xss = kvm_host.xss; 4599 4600 /* 4601 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4602 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both 4603 * saves and loads debug registers (Type-A). 4604 */ 4605 if (sev_vcpu_has_debug_swap(svm)) { 4606 hostsa->dr0 = native_get_debugreg(0); 4607 hostsa->dr1 = native_get_debugreg(1); 4608 hostsa->dr2 = native_get_debugreg(2); 4609 hostsa->dr3 = native_get_debugreg(3); 4610 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4611 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4612 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4613 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4614 } 4615 } 4616 4617 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4618 { 4619 struct vcpu_svm *svm = to_svm(vcpu); 4620 4621 /* First SIPI: Use the values as initially set by the VMM */ 4622 if (!svm->sev_es.received_first_sipi) { 4623 svm->sev_es.received_first_sipi = true; 4624 return; 4625 } 4626 4627 /* Subsequent SIPI */ 4628 switch (svm->sev_es.ap_reset_hold_type) { 4629 case AP_RESET_HOLD_NAE_EVENT: 4630 /* 4631 * Return from an AP Reset Hold VMGEXIT, where the guest will 4632 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4633 */ 4634 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 4635 break; 4636 case AP_RESET_HOLD_MSR_PROTO: 4637 /* 4638 * Return from an AP Reset Hold VMGEXIT, where the guest will 4639 * set the CS and RIP. Set GHCB data field to a non-zero value. 4640 */ 4641 set_ghcb_msr_bits(svm, 1, 4642 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4643 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4644 4645 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4646 GHCB_MSR_INFO_MASK, 4647 GHCB_MSR_INFO_POS); 4648 break; 4649 default: 4650 break; 4651 } 4652 } 4653 4654 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4655 { 4656 unsigned long pfn; 4657 struct page *p; 4658 4659 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4660 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4661 4662 /* 4663 * Allocate an SNP-safe page to workaround the SNP erratum where 4664 * the CPU will incorrectly signal an RMP violation #PF if a 4665 * hugepage (2MB or 1GB) collides with the RMP entry of a 4666 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4667 * 4668 * Allocate one extra page, choose a page which is not 4669 * 2MB-aligned, and free the other. 4670 */ 4671 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4672 if (!p) 4673 return NULL; 4674 4675 split_page(p, 1); 4676 4677 pfn = page_to_pfn(p); 4678 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4679 __free_page(p++); 4680 else 4681 __free_page(p + 1); 4682 4683 return p; 4684 } 4685 4686 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4687 { 4688 struct kvm_memory_slot *slot; 4689 struct kvm *kvm = vcpu->kvm; 4690 int order, rmp_level, ret; 4691 bool assigned; 4692 kvm_pfn_t pfn; 4693 gfn_t gfn; 4694 4695 gfn = gpa >> PAGE_SHIFT; 4696 4697 /* 4698 * The only time RMP faults occur for shared pages is when the guest is 4699 * triggering an RMP fault for an implicit page-state change from 4700 * shared->private. Implicit page-state changes are forwarded to 4701 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4702 * for shared pages should not end up here. 4703 */ 4704 if (!kvm_mem_is_private(kvm, gfn)) { 4705 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4706 gpa); 4707 return; 4708 } 4709 4710 slot = gfn_to_memslot(kvm, gfn); 4711 if (!kvm_slot_can_be_private(slot)) { 4712 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4713 gpa); 4714 return; 4715 } 4716 4717 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order); 4718 if (ret) { 4719 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4720 gpa); 4721 return; 4722 } 4723 4724 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4725 if (ret || !assigned) { 4726 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4727 gpa, pfn, ret); 4728 goto out_no_trace; 4729 } 4730 4731 /* 4732 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4733 * with PFERR_GUEST_RMP_BIT set: 4734 * 4735 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4736 * bit set if the guest issues them with a smaller granularity than 4737 * what is indicated by the page-size bit in the 2MB RMP entry for 4738 * the PFN that backs the GPA. 4739 * 4740 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4741 * smaller than what is indicated by the 2MB RMP entry for the PFN 4742 * that backs the GPA. 4743 * 4744 * In both these cases, the corresponding 2M RMP entry needs to 4745 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4746 * split into 4K RMP entries, then this is likely a spurious case which 4747 * can occur when there are concurrent accesses by the guest to a 2MB 4748 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4749 * the process of being PMASH'd into 4K entries. These cases should 4750 * resolve automatically on subsequent accesses, so just ignore them 4751 * here. 4752 */ 4753 if (rmp_level == PG_LEVEL_4K) 4754 goto out; 4755 4756 ret = snp_rmptable_psmash(pfn); 4757 if (ret) { 4758 /* 4759 * Look it up again. If it's 4K now then the PSMASH may have 4760 * raced with another process and the issue has already resolved 4761 * itself. 4762 */ 4763 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4764 assigned && rmp_level == PG_LEVEL_4K) 4765 goto out; 4766 4767 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4768 gpa, pfn, ret); 4769 } 4770 4771 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4772 out: 4773 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4774 out_no_trace: 4775 put_page(pfn_to_page(pfn)); 4776 } 4777 4778 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4779 { 4780 kvm_pfn_t pfn = start; 4781 4782 while (pfn < end) { 4783 int ret, rmp_level; 4784 bool assigned; 4785 4786 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4787 if (ret) { 4788 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4789 pfn, start, end, rmp_level, ret); 4790 return false; 4791 } 4792 4793 if (assigned) { 4794 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4795 __func__, pfn, start, end, rmp_level); 4796 return false; 4797 } 4798 4799 pfn++; 4800 } 4801 4802 return true; 4803 } 4804 4805 static u8 max_level_for_order(int order) 4806 { 4807 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4808 return PG_LEVEL_2M; 4809 4810 return PG_LEVEL_4K; 4811 } 4812 4813 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4814 { 4815 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4816 4817 /* 4818 * If this is a large folio, and the entire 2M range containing the 4819 * PFN is currently shared, then the entire 2M-aligned range can be 4820 * set to private via a single 2M RMP entry. 4821 */ 4822 if (max_level_for_order(order) > PG_LEVEL_4K && 4823 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4824 return true; 4825 4826 return false; 4827 } 4828 4829 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4830 { 4831 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 4832 kvm_pfn_t pfn_aligned; 4833 gfn_t gfn_aligned; 4834 int level, rc; 4835 bool assigned; 4836 4837 if (!sev_snp_guest(kvm)) 4838 return 0; 4839 4840 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4841 if (rc) { 4842 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4843 gfn, pfn, rc); 4844 return -ENOENT; 4845 } 4846 4847 if (assigned) { 4848 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4849 __func__, gfn, pfn, max_order, level); 4850 return 0; 4851 } 4852 4853 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4854 level = PG_LEVEL_2M; 4855 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4856 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4857 } else { 4858 level = PG_LEVEL_4K; 4859 pfn_aligned = pfn; 4860 gfn_aligned = gfn; 4861 } 4862 4863 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4864 if (rc) { 4865 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4866 gfn, pfn, level, rc); 4867 return -EINVAL; 4868 } 4869 4870 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4871 __func__, gfn, pfn, pfn_aligned, max_order, level); 4872 4873 return 0; 4874 } 4875 4876 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4877 { 4878 kvm_pfn_t pfn; 4879 4880 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4881 return; 4882 4883 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4884 4885 for (pfn = start; pfn < end;) { 4886 bool use_2m_update = false; 4887 int rc, rmp_level; 4888 bool assigned; 4889 4890 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4891 if (rc || !assigned) 4892 goto next_pfn; 4893 4894 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4895 end >= (pfn + PTRS_PER_PMD) && 4896 rmp_level > PG_LEVEL_4K; 4897 4898 /* 4899 * If an unaligned PFN corresponds to a 2M region assigned as a 4900 * large page in the RMP table, PSMASH the region into individual 4901 * 4K RMP entries before attempting to convert a 4K sub-page. 4902 */ 4903 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4904 /* 4905 * This shouldn't fail, but if it does, report it, but 4906 * still try to update RMP entry to shared and pray this 4907 * was a spurious error that can be addressed later. 4908 */ 4909 rc = snp_rmptable_psmash(pfn); 4910 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4911 pfn, rc); 4912 } 4913 4914 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4915 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4916 pfn, rc)) 4917 goto next_pfn; 4918 4919 /* 4920 * SEV-ES avoids host/guest cache coherency issues through 4921 * WBINVD hooks issued via MMU notifiers during run-time, and 4922 * KVM's VM destroy path at shutdown. Those MMU notifier events 4923 * don't cover gmem since there is no requirement to map pages 4924 * to a HVA in order to use them for a running guest. While the 4925 * shutdown path would still likely cover things for SNP guests, 4926 * userspace may also free gmem pages during run-time via 4927 * hole-punching operations on the guest_memfd, so flush the 4928 * cache entries for these pages before free'ing them back to 4929 * the host. 4930 */ 4931 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4932 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4933 next_pfn: 4934 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4935 cond_resched(); 4936 } 4937 } 4938 4939 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4940 { 4941 int level, rc; 4942 bool assigned; 4943 4944 if (!sev_snp_guest(kvm)) 4945 return 0; 4946 4947 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4948 if (rc || !assigned) 4949 return PG_LEVEL_4K; 4950 4951 return level; 4952 } 4953