1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 #include <asm/fpu/internal.h> 21 22 #include <asm/pkru.h> 23 #include <asm/trapnr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #define __ex(x) __kvm_handle_fault_on_reboot(x) 32 33 #ifndef CONFIG_KVM_AMD_SEV 34 /* 35 * When this config is not defined, SEV feature is not supported and APIs in 36 * this file are not used but this file still gets compiled into the KVM AMD 37 * module. 38 * 39 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 40 * misc_res_type {} defined in linux/misc_cgroup.h. 41 * 42 * Below macros allow compilation to succeed. 43 */ 44 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 45 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 46 #endif 47 48 #ifdef CONFIG_KVM_AMD_SEV 49 /* enable/disable SEV support */ 50 static bool sev_enabled = true; 51 module_param_named(sev, sev_enabled, bool, 0444); 52 53 /* enable/disable SEV-ES support */ 54 static bool sev_es_enabled = true; 55 module_param_named(sev_es, sev_es_enabled, bool, 0444); 56 #else 57 #define sev_enabled false 58 #define sev_es_enabled false 59 #endif /* CONFIG_KVM_AMD_SEV */ 60 61 static u8 sev_enc_bit; 62 static DECLARE_RWSEM(sev_deactivate_lock); 63 static DEFINE_MUTEX(sev_bitmap_lock); 64 unsigned int max_sev_asid; 65 static unsigned int min_sev_asid; 66 static unsigned long sev_me_mask; 67 static unsigned long *sev_asid_bitmap; 68 static unsigned long *sev_reclaim_asid_bitmap; 69 70 struct enc_region { 71 struct list_head list; 72 unsigned long npages; 73 struct page **pages; 74 unsigned long uaddr; 75 unsigned long size; 76 }; 77 78 /* Called with the sev_bitmap_lock held, or on shutdown */ 79 static int sev_flush_asids(int min_asid, int max_asid) 80 { 81 int ret, pos, error = 0; 82 83 /* Check if there are any ASIDs to reclaim before performing a flush */ 84 pos = find_next_bit(sev_reclaim_asid_bitmap, max_asid, min_asid); 85 if (pos >= max_asid) 86 return -EBUSY; 87 88 /* 89 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 90 * so it must be guarded. 91 */ 92 down_write(&sev_deactivate_lock); 93 94 wbinvd_on_all_cpus(); 95 ret = sev_guest_df_flush(&error); 96 97 up_write(&sev_deactivate_lock); 98 99 if (ret) 100 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 101 102 return ret; 103 } 104 105 static inline bool is_mirroring_enc_context(struct kvm *kvm) 106 { 107 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 108 } 109 110 /* Must be called with the sev_bitmap_lock held */ 111 static bool __sev_recycle_asids(int min_asid, int max_asid) 112 { 113 if (sev_flush_asids(min_asid, max_asid)) 114 return false; 115 116 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 117 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 118 max_sev_asid); 119 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); 120 121 return true; 122 } 123 124 static int sev_asid_new(struct kvm_sev_info *sev) 125 { 126 int pos, min_asid, max_asid, ret; 127 bool retry = true; 128 enum misc_res_type type; 129 130 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 131 WARN_ON(sev->misc_cg); 132 sev->misc_cg = get_current_misc_cg(); 133 ret = misc_cg_try_charge(type, sev->misc_cg, 1); 134 if (ret) { 135 put_misc_cg(sev->misc_cg); 136 sev->misc_cg = NULL; 137 return ret; 138 } 139 140 mutex_lock(&sev_bitmap_lock); 141 142 /* 143 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 144 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 145 */ 146 min_asid = sev->es_active ? 0 : min_sev_asid - 1; 147 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 148 again: 149 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid); 150 if (pos >= max_asid) { 151 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 152 retry = false; 153 goto again; 154 } 155 mutex_unlock(&sev_bitmap_lock); 156 ret = -EBUSY; 157 goto e_uncharge; 158 } 159 160 __set_bit(pos, sev_asid_bitmap); 161 162 mutex_unlock(&sev_bitmap_lock); 163 164 return pos + 1; 165 e_uncharge: 166 misc_cg_uncharge(type, sev->misc_cg, 1); 167 put_misc_cg(sev->misc_cg); 168 sev->misc_cg = NULL; 169 return ret; 170 } 171 172 static int sev_get_asid(struct kvm *kvm) 173 { 174 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 175 176 return sev->asid; 177 } 178 179 static void sev_asid_free(struct kvm_sev_info *sev) 180 { 181 struct svm_cpu_data *sd; 182 int cpu, pos; 183 enum misc_res_type type; 184 185 mutex_lock(&sev_bitmap_lock); 186 187 pos = sev->asid - 1; 188 __set_bit(pos, sev_reclaim_asid_bitmap); 189 190 for_each_possible_cpu(cpu) { 191 sd = per_cpu(svm_data, cpu); 192 sd->sev_vmcbs[pos] = NULL; 193 } 194 195 mutex_unlock(&sev_bitmap_lock); 196 197 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 198 misc_cg_uncharge(type, sev->misc_cg, 1); 199 put_misc_cg(sev->misc_cg); 200 sev->misc_cg = NULL; 201 } 202 203 static void sev_decommission(unsigned int handle) 204 { 205 struct sev_data_decommission decommission; 206 207 if (!handle) 208 return; 209 210 decommission.handle = handle; 211 sev_guest_decommission(&decommission, NULL); 212 } 213 214 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 215 { 216 struct sev_data_deactivate deactivate; 217 218 if (!handle) 219 return; 220 221 deactivate.handle = handle; 222 223 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 224 down_read(&sev_deactivate_lock); 225 sev_guest_deactivate(&deactivate, NULL); 226 up_read(&sev_deactivate_lock); 227 228 sev_decommission(handle); 229 } 230 231 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 232 { 233 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 234 bool es_active = argp->id == KVM_SEV_ES_INIT; 235 int asid, ret; 236 237 if (kvm->created_vcpus) 238 return -EINVAL; 239 240 ret = -EBUSY; 241 if (unlikely(sev->active)) 242 return ret; 243 244 sev->es_active = es_active; 245 asid = sev_asid_new(sev); 246 if (asid < 0) 247 goto e_no_asid; 248 sev->asid = asid; 249 250 ret = sev_platform_init(&argp->error); 251 if (ret) 252 goto e_free; 253 254 sev->active = true; 255 sev->asid = asid; 256 INIT_LIST_HEAD(&sev->regions_list); 257 258 return 0; 259 260 e_free: 261 sev_asid_free(sev); 262 sev->asid = 0; 263 e_no_asid: 264 sev->es_active = false; 265 return ret; 266 } 267 268 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 269 { 270 struct sev_data_activate activate; 271 int asid = sev_get_asid(kvm); 272 int ret; 273 274 /* activate ASID on the given handle */ 275 activate.handle = handle; 276 activate.asid = asid; 277 ret = sev_guest_activate(&activate, error); 278 279 return ret; 280 } 281 282 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 283 { 284 struct fd f; 285 int ret; 286 287 f = fdget(fd); 288 if (!f.file) 289 return -EBADF; 290 291 ret = sev_issue_cmd_external_user(f.file, id, data, error); 292 293 fdput(f); 294 return ret; 295 } 296 297 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 298 { 299 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 300 301 return __sev_issue_cmd(sev->fd, id, data, error); 302 } 303 304 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 305 { 306 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 307 struct sev_data_launch_start start; 308 struct kvm_sev_launch_start params; 309 void *dh_blob, *session_blob; 310 int *error = &argp->error; 311 int ret; 312 313 if (!sev_guest(kvm)) 314 return -ENOTTY; 315 316 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 317 return -EFAULT; 318 319 memset(&start, 0, sizeof(start)); 320 321 dh_blob = NULL; 322 if (params.dh_uaddr) { 323 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 324 if (IS_ERR(dh_blob)) 325 return PTR_ERR(dh_blob); 326 327 start.dh_cert_address = __sme_set(__pa(dh_blob)); 328 start.dh_cert_len = params.dh_len; 329 } 330 331 session_blob = NULL; 332 if (params.session_uaddr) { 333 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 334 if (IS_ERR(session_blob)) { 335 ret = PTR_ERR(session_blob); 336 goto e_free_dh; 337 } 338 339 start.session_address = __sme_set(__pa(session_blob)); 340 start.session_len = params.session_len; 341 } 342 343 start.handle = params.handle; 344 start.policy = params.policy; 345 346 /* create memory encryption context */ 347 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 348 if (ret) 349 goto e_free_session; 350 351 /* Bind ASID to this guest */ 352 ret = sev_bind_asid(kvm, start.handle, error); 353 if (ret) { 354 sev_decommission(start.handle); 355 goto e_free_session; 356 } 357 358 /* return handle to userspace */ 359 params.handle = start.handle; 360 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 361 sev_unbind_asid(kvm, start.handle); 362 ret = -EFAULT; 363 goto e_free_session; 364 } 365 366 sev->handle = start.handle; 367 sev->fd = argp->sev_fd; 368 369 e_free_session: 370 kfree(session_blob); 371 e_free_dh: 372 kfree(dh_blob); 373 return ret; 374 } 375 376 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 377 unsigned long ulen, unsigned long *n, 378 int write) 379 { 380 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 381 unsigned long npages, size; 382 int npinned; 383 unsigned long locked, lock_limit; 384 struct page **pages; 385 unsigned long first, last; 386 int ret; 387 388 lockdep_assert_held(&kvm->lock); 389 390 if (ulen == 0 || uaddr + ulen < uaddr) 391 return ERR_PTR(-EINVAL); 392 393 /* Calculate number of pages. */ 394 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 395 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 396 npages = (last - first + 1); 397 398 locked = sev->pages_locked + npages; 399 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 400 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 401 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 402 return ERR_PTR(-ENOMEM); 403 } 404 405 if (WARN_ON_ONCE(npages > INT_MAX)) 406 return ERR_PTR(-EINVAL); 407 408 /* Avoid using vmalloc for smaller buffers. */ 409 size = npages * sizeof(struct page *); 410 if (size > PAGE_SIZE) 411 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 412 else 413 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 414 415 if (!pages) 416 return ERR_PTR(-ENOMEM); 417 418 /* Pin the user virtual address. */ 419 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 420 if (npinned != npages) { 421 pr_err("SEV: Failure locking %lu pages.\n", npages); 422 ret = -ENOMEM; 423 goto err; 424 } 425 426 *n = npages; 427 sev->pages_locked = locked; 428 429 return pages; 430 431 err: 432 if (npinned > 0) 433 unpin_user_pages(pages, npinned); 434 435 kvfree(pages); 436 return ERR_PTR(ret); 437 } 438 439 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 440 unsigned long npages) 441 { 442 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 443 444 unpin_user_pages(pages, npages); 445 kvfree(pages); 446 sev->pages_locked -= npages; 447 } 448 449 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 450 { 451 uint8_t *page_virtual; 452 unsigned long i; 453 454 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 455 pages == NULL) 456 return; 457 458 for (i = 0; i < npages; i++) { 459 page_virtual = kmap_atomic(pages[i]); 460 clflush_cache_range(page_virtual, PAGE_SIZE); 461 kunmap_atomic(page_virtual); 462 } 463 } 464 465 static unsigned long get_num_contig_pages(unsigned long idx, 466 struct page **inpages, unsigned long npages) 467 { 468 unsigned long paddr, next_paddr; 469 unsigned long i = idx + 1, pages = 1; 470 471 /* find the number of contiguous pages starting from idx */ 472 paddr = __sme_page_pa(inpages[idx]); 473 while (i < npages) { 474 next_paddr = __sme_page_pa(inpages[i++]); 475 if ((paddr + PAGE_SIZE) == next_paddr) { 476 pages++; 477 paddr = next_paddr; 478 continue; 479 } 480 break; 481 } 482 483 return pages; 484 } 485 486 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 487 { 488 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 489 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 490 struct kvm_sev_launch_update_data params; 491 struct sev_data_launch_update_data data; 492 struct page **inpages; 493 int ret; 494 495 if (!sev_guest(kvm)) 496 return -ENOTTY; 497 498 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 499 return -EFAULT; 500 501 vaddr = params.uaddr; 502 size = params.len; 503 vaddr_end = vaddr + size; 504 505 /* Lock the user memory. */ 506 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 507 if (IS_ERR(inpages)) 508 return PTR_ERR(inpages); 509 510 /* 511 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 512 * place; the cache may contain the data that was written unencrypted. 513 */ 514 sev_clflush_pages(inpages, npages); 515 516 data.reserved = 0; 517 data.handle = sev->handle; 518 519 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 520 int offset, len; 521 522 /* 523 * If the user buffer is not page-aligned, calculate the offset 524 * within the page. 525 */ 526 offset = vaddr & (PAGE_SIZE - 1); 527 528 /* Calculate the number of pages that can be encrypted in one go. */ 529 pages = get_num_contig_pages(i, inpages, npages); 530 531 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 532 533 data.len = len; 534 data.address = __sme_page_pa(inpages[i]) + offset; 535 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 536 if (ret) 537 goto e_unpin; 538 539 size -= len; 540 next_vaddr = vaddr + len; 541 } 542 543 e_unpin: 544 /* content of memory is updated, mark pages dirty */ 545 for (i = 0; i < npages; i++) { 546 set_page_dirty_lock(inpages[i]); 547 mark_page_accessed(inpages[i]); 548 } 549 /* unlock the user pages */ 550 sev_unpin_memory(kvm, inpages, npages); 551 return ret; 552 } 553 554 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 555 { 556 struct vmcb_save_area *save = &svm->vmcb->save; 557 558 /* Check some debug related fields before encrypting the VMSA */ 559 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 560 return -EINVAL; 561 562 /* Sync registgers */ 563 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 564 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 565 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 566 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 567 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 568 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 569 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 570 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 571 #ifdef CONFIG_X86_64 572 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 573 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 574 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 575 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 576 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 577 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 578 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 579 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 580 #endif 581 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 582 583 /* Sync some non-GPR registers before encrypting */ 584 save->xcr0 = svm->vcpu.arch.xcr0; 585 save->pkru = svm->vcpu.arch.pkru; 586 save->xss = svm->vcpu.arch.ia32_xss; 587 588 /* 589 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 590 * the traditional VMSA that is part of the VMCB. Copy the 591 * traditional VMSA as it has been built so far (in prep 592 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 593 */ 594 memcpy(svm->vmsa, save, sizeof(*save)); 595 596 return 0; 597 } 598 599 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 600 { 601 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 602 struct sev_data_launch_update_vmsa vmsa; 603 struct kvm_vcpu *vcpu; 604 int i, ret; 605 606 if (!sev_es_guest(kvm)) 607 return -ENOTTY; 608 609 vmsa.reserved = 0; 610 611 kvm_for_each_vcpu(i, vcpu, kvm) { 612 struct vcpu_svm *svm = to_svm(vcpu); 613 614 /* Perform some pre-encryption checks against the VMSA */ 615 ret = sev_es_sync_vmsa(svm); 616 if (ret) 617 return ret; 618 619 /* 620 * The LAUNCH_UPDATE_VMSA command will perform in-place 621 * encryption of the VMSA memory content (i.e it will write 622 * the same memory region with the guest's key), so invalidate 623 * it first. 624 */ 625 clflush_cache_range(svm->vmsa, PAGE_SIZE); 626 627 vmsa.handle = sev->handle; 628 vmsa.address = __sme_pa(svm->vmsa); 629 vmsa.len = PAGE_SIZE; 630 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, 631 &argp->error); 632 if (ret) 633 return ret; 634 635 svm->vcpu.arch.guest_state_protected = true; 636 } 637 638 return 0; 639 } 640 641 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 642 { 643 void __user *measure = (void __user *)(uintptr_t)argp->data; 644 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 645 struct sev_data_launch_measure data; 646 struct kvm_sev_launch_measure params; 647 void __user *p = NULL; 648 void *blob = NULL; 649 int ret; 650 651 if (!sev_guest(kvm)) 652 return -ENOTTY; 653 654 if (copy_from_user(¶ms, measure, sizeof(params))) 655 return -EFAULT; 656 657 memset(&data, 0, sizeof(data)); 658 659 /* User wants to query the blob length */ 660 if (!params.len) 661 goto cmd; 662 663 p = (void __user *)(uintptr_t)params.uaddr; 664 if (p) { 665 if (params.len > SEV_FW_BLOB_MAX_SIZE) 666 return -EINVAL; 667 668 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 669 if (!blob) 670 return -ENOMEM; 671 672 data.address = __psp_pa(blob); 673 data.len = params.len; 674 } 675 676 cmd: 677 data.handle = sev->handle; 678 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 679 680 /* 681 * If we query the session length, FW responded with expected data. 682 */ 683 if (!params.len) 684 goto done; 685 686 if (ret) 687 goto e_free_blob; 688 689 if (blob) { 690 if (copy_to_user(p, blob, params.len)) 691 ret = -EFAULT; 692 } 693 694 done: 695 params.len = data.len; 696 if (copy_to_user(measure, ¶ms, sizeof(params))) 697 ret = -EFAULT; 698 e_free_blob: 699 kfree(blob); 700 return ret; 701 } 702 703 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 704 { 705 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 706 struct sev_data_launch_finish data; 707 708 if (!sev_guest(kvm)) 709 return -ENOTTY; 710 711 data.handle = sev->handle; 712 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 713 } 714 715 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 716 { 717 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 718 struct kvm_sev_guest_status params; 719 struct sev_data_guest_status data; 720 int ret; 721 722 if (!sev_guest(kvm)) 723 return -ENOTTY; 724 725 memset(&data, 0, sizeof(data)); 726 727 data.handle = sev->handle; 728 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 729 if (ret) 730 return ret; 731 732 params.policy = data.policy; 733 params.state = data.state; 734 params.handle = data.handle; 735 736 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 737 ret = -EFAULT; 738 739 return ret; 740 } 741 742 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 743 unsigned long dst, int size, 744 int *error, bool enc) 745 { 746 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 747 struct sev_data_dbg data; 748 749 data.reserved = 0; 750 data.handle = sev->handle; 751 data.dst_addr = dst; 752 data.src_addr = src; 753 data.len = size; 754 755 return sev_issue_cmd(kvm, 756 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 757 &data, error); 758 } 759 760 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 761 unsigned long dst_paddr, int sz, int *err) 762 { 763 int offset; 764 765 /* 766 * Its safe to read more than we are asked, caller should ensure that 767 * destination has enough space. 768 */ 769 offset = src_paddr & 15; 770 src_paddr = round_down(src_paddr, 16); 771 sz = round_up(sz + offset, 16); 772 773 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 774 } 775 776 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 777 void __user *dst_uaddr, 778 unsigned long dst_paddr, 779 int size, int *err) 780 { 781 struct page *tpage = NULL; 782 int ret, offset; 783 784 /* if inputs are not 16-byte then use intermediate buffer */ 785 if (!IS_ALIGNED(dst_paddr, 16) || 786 !IS_ALIGNED(paddr, 16) || 787 !IS_ALIGNED(size, 16)) { 788 tpage = (void *)alloc_page(GFP_KERNEL); 789 if (!tpage) 790 return -ENOMEM; 791 792 dst_paddr = __sme_page_pa(tpage); 793 } 794 795 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 796 if (ret) 797 goto e_free; 798 799 if (tpage) { 800 offset = paddr & 15; 801 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 802 ret = -EFAULT; 803 } 804 805 e_free: 806 if (tpage) 807 __free_page(tpage); 808 809 return ret; 810 } 811 812 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 813 void __user *vaddr, 814 unsigned long dst_paddr, 815 void __user *dst_vaddr, 816 int size, int *error) 817 { 818 struct page *src_tpage = NULL; 819 struct page *dst_tpage = NULL; 820 int ret, len = size; 821 822 /* If source buffer is not aligned then use an intermediate buffer */ 823 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 824 src_tpage = alloc_page(GFP_KERNEL); 825 if (!src_tpage) 826 return -ENOMEM; 827 828 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 829 __free_page(src_tpage); 830 return -EFAULT; 831 } 832 833 paddr = __sme_page_pa(src_tpage); 834 } 835 836 /* 837 * If destination buffer or length is not aligned then do read-modify-write: 838 * - decrypt destination in an intermediate buffer 839 * - copy the source buffer in an intermediate buffer 840 * - use the intermediate buffer as source buffer 841 */ 842 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 843 int dst_offset; 844 845 dst_tpage = alloc_page(GFP_KERNEL); 846 if (!dst_tpage) { 847 ret = -ENOMEM; 848 goto e_free; 849 } 850 851 ret = __sev_dbg_decrypt(kvm, dst_paddr, 852 __sme_page_pa(dst_tpage), size, error); 853 if (ret) 854 goto e_free; 855 856 /* 857 * If source is kernel buffer then use memcpy() otherwise 858 * copy_from_user(). 859 */ 860 dst_offset = dst_paddr & 15; 861 862 if (src_tpage) 863 memcpy(page_address(dst_tpage) + dst_offset, 864 page_address(src_tpage), size); 865 else { 866 if (copy_from_user(page_address(dst_tpage) + dst_offset, 867 vaddr, size)) { 868 ret = -EFAULT; 869 goto e_free; 870 } 871 } 872 873 paddr = __sme_page_pa(dst_tpage); 874 dst_paddr = round_down(dst_paddr, 16); 875 len = round_up(size, 16); 876 } 877 878 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 879 880 e_free: 881 if (src_tpage) 882 __free_page(src_tpage); 883 if (dst_tpage) 884 __free_page(dst_tpage); 885 return ret; 886 } 887 888 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 889 { 890 unsigned long vaddr, vaddr_end, next_vaddr; 891 unsigned long dst_vaddr; 892 struct page **src_p, **dst_p; 893 struct kvm_sev_dbg debug; 894 unsigned long n; 895 unsigned int size; 896 int ret; 897 898 if (!sev_guest(kvm)) 899 return -ENOTTY; 900 901 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 902 return -EFAULT; 903 904 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 905 return -EINVAL; 906 if (!debug.dst_uaddr) 907 return -EINVAL; 908 909 vaddr = debug.src_uaddr; 910 size = debug.len; 911 vaddr_end = vaddr + size; 912 dst_vaddr = debug.dst_uaddr; 913 914 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 915 int len, s_off, d_off; 916 917 /* lock userspace source and destination page */ 918 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 919 if (IS_ERR(src_p)) 920 return PTR_ERR(src_p); 921 922 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 923 if (IS_ERR(dst_p)) { 924 sev_unpin_memory(kvm, src_p, n); 925 return PTR_ERR(dst_p); 926 } 927 928 /* 929 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 930 * the pages; flush the destination too so that future accesses do not 931 * see stale data. 932 */ 933 sev_clflush_pages(src_p, 1); 934 sev_clflush_pages(dst_p, 1); 935 936 /* 937 * Since user buffer may not be page aligned, calculate the 938 * offset within the page. 939 */ 940 s_off = vaddr & ~PAGE_MASK; 941 d_off = dst_vaddr & ~PAGE_MASK; 942 len = min_t(size_t, (PAGE_SIZE - s_off), size); 943 944 if (dec) 945 ret = __sev_dbg_decrypt_user(kvm, 946 __sme_page_pa(src_p[0]) + s_off, 947 (void __user *)dst_vaddr, 948 __sme_page_pa(dst_p[0]) + d_off, 949 len, &argp->error); 950 else 951 ret = __sev_dbg_encrypt_user(kvm, 952 __sme_page_pa(src_p[0]) + s_off, 953 (void __user *)vaddr, 954 __sme_page_pa(dst_p[0]) + d_off, 955 (void __user *)dst_vaddr, 956 len, &argp->error); 957 958 sev_unpin_memory(kvm, src_p, n); 959 sev_unpin_memory(kvm, dst_p, n); 960 961 if (ret) 962 goto err; 963 964 next_vaddr = vaddr + len; 965 dst_vaddr = dst_vaddr + len; 966 size -= len; 967 } 968 err: 969 return ret; 970 } 971 972 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 973 { 974 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 975 struct sev_data_launch_secret data; 976 struct kvm_sev_launch_secret params; 977 struct page **pages; 978 void *blob, *hdr; 979 unsigned long n, i; 980 int ret, offset; 981 982 if (!sev_guest(kvm)) 983 return -ENOTTY; 984 985 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 986 return -EFAULT; 987 988 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 989 if (IS_ERR(pages)) 990 return PTR_ERR(pages); 991 992 /* 993 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 994 * place; the cache may contain the data that was written unencrypted. 995 */ 996 sev_clflush_pages(pages, n); 997 998 /* 999 * The secret must be copied into contiguous memory region, lets verify 1000 * that userspace memory pages are contiguous before we issue command. 1001 */ 1002 if (get_num_contig_pages(0, pages, n) != n) { 1003 ret = -EINVAL; 1004 goto e_unpin_memory; 1005 } 1006 1007 memset(&data, 0, sizeof(data)); 1008 1009 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1010 data.guest_address = __sme_page_pa(pages[0]) + offset; 1011 data.guest_len = params.guest_len; 1012 1013 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1014 if (IS_ERR(blob)) { 1015 ret = PTR_ERR(blob); 1016 goto e_unpin_memory; 1017 } 1018 1019 data.trans_address = __psp_pa(blob); 1020 data.trans_len = params.trans_len; 1021 1022 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1023 if (IS_ERR(hdr)) { 1024 ret = PTR_ERR(hdr); 1025 goto e_free_blob; 1026 } 1027 data.hdr_address = __psp_pa(hdr); 1028 data.hdr_len = params.hdr_len; 1029 1030 data.handle = sev->handle; 1031 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1032 1033 kfree(hdr); 1034 1035 e_free_blob: 1036 kfree(blob); 1037 e_unpin_memory: 1038 /* content of memory is updated, mark pages dirty */ 1039 for (i = 0; i < n; i++) { 1040 set_page_dirty_lock(pages[i]); 1041 mark_page_accessed(pages[i]); 1042 } 1043 sev_unpin_memory(kvm, pages, n); 1044 return ret; 1045 } 1046 1047 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1048 { 1049 void __user *report = (void __user *)(uintptr_t)argp->data; 1050 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1051 struct sev_data_attestation_report data; 1052 struct kvm_sev_attestation_report params; 1053 void __user *p; 1054 void *blob = NULL; 1055 int ret; 1056 1057 if (!sev_guest(kvm)) 1058 return -ENOTTY; 1059 1060 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1061 return -EFAULT; 1062 1063 memset(&data, 0, sizeof(data)); 1064 1065 /* User wants to query the blob length */ 1066 if (!params.len) 1067 goto cmd; 1068 1069 p = (void __user *)(uintptr_t)params.uaddr; 1070 if (p) { 1071 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1072 return -EINVAL; 1073 1074 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1075 if (!blob) 1076 return -ENOMEM; 1077 1078 data.address = __psp_pa(blob); 1079 data.len = params.len; 1080 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1081 } 1082 cmd: 1083 data.handle = sev->handle; 1084 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1085 /* 1086 * If we query the session length, FW responded with expected data. 1087 */ 1088 if (!params.len) 1089 goto done; 1090 1091 if (ret) 1092 goto e_free_blob; 1093 1094 if (blob) { 1095 if (copy_to_user(p, blob, params.len)) 1096 ret = -EFAULT; 1097 } 1098 1099 done: 1100 params.len = data.len; 1101 if (copy_to_user(report, ¶ms, sizeof(params))) 1102 ret = -EFAULT; 1103 e_free_blob: 1104 kfree(blob); 1105 return ret; 1106 } 1107 1108 /* Userspace wants to query session length. */ 1109 static int 1110 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1111 struct kvm_sev_send_start *params) 1112 { 1113 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1114 struct sev_data_send_start data; 1115 int ret; 1116 1117 memset(&data, 0, sizeof(data)); 1118 data.handle = sev->handle; 1119 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1120 1121 params->session_len = data.session_len; 1122 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1123 sizeof(struct kvm_sev_send_start))) 1124 ret = -EFAULT; 1125 1126 return ret; 1127 } 1128 1129 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1130 { 1131 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1132 struct sev_data_send_start data; 1133 struct kvm_sev_send_start params; 1134 void *amd_certs, *session_data; 1135 void *pdh_cert, *plat_certs; 1136 int ret; 1137 1138 if (!sev_guest(kvm)) 1139 return -ENOTTY; 1140 1141 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1142 sizeof(struct kvm_sev_send_start))) 1143 return -EFAULT; 1144 1145 /* if session_len is zero, userspace wants to query the session length */ 1146 if (!params.session_len) 1147 return __sev_send_start_query_session_length(kvm, argp, 1148 ¶ms); 1149 1150 /* some sanity checks */ 1151 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1152 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1153 return -EINVAL; 1154 1155 /* allocate the memory to hold the session data blob */ 1156 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1157 if (!session_data) 1158 return -ENOMEM; 1159 1160 /* copy the certificate blobs from userspace */ 1161 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1162 params.pdh_cert_len); 1163 if (IS_ERR(pdh_cert)) { 1164 ret = PTR_ERR(pdh_cert); 1165 goto e_free_session; 1166 } 1167 1168 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1169 params.plat_certs_len); 1170 if (IS_ERR(plat_certs)) { 1171 ret = PTR_ERR(plat_certs); 1172 goto e_free_pdh; 1173 } 1174 1175 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1176 params.amd_certs_len); 1177 if (IS_ERR(amd_certs)) { 1178 ret = PTR_ERR(amd_certs); 1179 goto e_free_plat_cert; 1180 } 1181 1182 /* populate the FW SEND_START field with system physical address */ 1183 memset(&data, 0, sizeof(data)); 1184 data.pdh_cert_address = __psp_pa(pdh_cert); 1185 data.pdh_cert_len = params.pdh_cert_len; 1186 data.plat_certs_address = __psp_pa(plat_certs); 1187 data.plat_certs_len = params.plat_certs_len; 1188 data.amd_certs_address = __psp_pa(amd_certs); 1189 data.amd_certs_len = params.amd_certs_len; 1190 data.session_address = __psp_pa(session_data); 1191 data.session_len = params.session_len; 1192 data.handle = sev->handle; 1193 1194 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1195 1196 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1197 session_data, params.session_len)) { 1198 ret = -EFAULT; 1199 goto e_free_amd_cert; 1200 } 1201 1202 params.policy = data.policy; 1203 params.session_len = data.session_len; 1204 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1205 sizeof(struct kvm_sev_send_start))) 1206 ret = -EFAULT; 1207 1208 e_free_amd_cert: 1209 kfree(amd_certs); 1210 e_free_plat_cert: 1211 kfree(plat_certs); 1212 e_free_pdh: 1213 kfree(pdh_cert); 1214 e_free_session: 1215 kfree(session_data); 1216 return ret; 1217 } 1218 1219 /* Userspace wants to query either header or trans length. */ 1220 static int 1221 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1222 struct kvm_sev_send_update_data *params) 1223 { 1224 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1225 struct sev_data_send_update_data data; 1226 int ret; 1227 1228 memset(&data, 0, sizeof(data)); 1229 data.handle = sev->handle; 1230 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1231 1232 params->hdr_len = data.hdr_len; 1233 params->trans_len = data.trans_len; 1234 1235 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1236 sizeof(struct kvm_sev_send_update_data))) 1237 ret = -EFAULT; 1238 1239 return ret; 1240 } 1241 1242 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1243 { 1244 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1245 struct sev_data_send_update_data data; 1246 struct kvm_sev_send_update_data params; 1247 void *hdr, *trans_data; 1248 struct page **guest_page; 1249 unsigned long n; 1250 int ret, offset; 1251 1252 if (!sev_guest(kvm)) 1253 return -ENOTTY; 1254 1255 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1256 sizeof(struct kvm_sev_send_update_data))) 1257 return -EFAULT; 1258 1259 /* userspace wants to query either header or trans length */ 1260 if (!params.trans_len || !params.hdr_len) 1261 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1262 1263 if (!params.trans_uaddr || !params.guest_uaddr || 1264 !params.guest_len || !params.hdr_uaddr) 1265 return -EINVAL; 1266 1267 /* Check if we are crossing the page boundary */ 1268 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1269 if ((params.guest_len + offset > PAGE_SIZE)) 1270 return -EINVAL; 1271 1272 /* Pin guest memory */ 1273 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1274 PAGE_SIZE, &n, 0); 1275 if (!guest_page) 1276 return -EFAULT; 1277 1278 /* allocate memory for header and transport buffer */ 1279 ret = -ENOMEM; 1280 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1281 if (!hdr) 1282 goto e_unpin; 1283 1284 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1285 if (!trans_data) 1286 goto e_free_hdr; 1287 1288 memset(&data, 0, sizeof(data)); 1289 data.hdr_address = __psp_pa(hdr); 1290 data.hdr_len = params.hdr_len; 1291 data.trans_address = __psp_pa(trans_data); 1292 data.trans_len = params.trans_len; 1293 1294 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1295 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1296 data.guest_address |= sev_me_mask; 1297 data.guest_len = params.guest_len; 1298 data.handle = sev->handle; 1299 1300 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1301 1302 if (ret) 1303 goto e_free_trans_data; 1304 1305 /* copy transport buffer to user space */ 1306 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1307 trans_data, params.trans_len)) { 1308 ret = -EFAULT; 1309 goto e_free_trans_data; 1310 } 1311 1312 /* Copy packet header to userspace. */ 1313 ret = copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1314 params.hdr_len); 1315 1316 e_free_trans_data: 1317 kfree(trans_data); 1318 e_free_hdr: 1319 kfree(hdr); 1320 e_unpin: 1321 sev_unpin_memory(kvm, guest_page, n); 1322 1323 return ret; 1324 } 1325 1326 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1327 { 1328 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1329 struct sev_data_send_finish data; 1330 1331 if (!sev_guest(kvm)) 1332 return -ENOTTY; 1333 1334 data.handle = sev->handle; 1335 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1336 } 1337 1338 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1339 { 1340 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1341 struct sev_data_send_cancel data; 1342 1343 if (!sev_guest(kvm)) 1344 return -ENOTTY; 1345 1346 data.handle = sev->handle; 1347 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1348 } 1349 1350 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1351 { 1352 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1353 struct sev_data_receive_start start; 1354 struct kvm_sev_receive_start params; 1355 int *error = &argp->error; 1356 void *session_data; 1357 void *pdh_data; 1358 int ret; 1359 1360 if (!sev_guest(kvm)) 1361 return -ENOTTY; 1362 1363 /* Get parameter from the userspace */ 1364 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1365 sizeof(struct kvm_sev_receive_start))) 1366 return -EFAULT; 1367 1368 /* some sanity checks */ 1369 if (!params.pdh_uaddr || !params.pdh_len || 1370 !params.session_uaddr || !params.session_len) 1371 return -EINVAL; 1372 1373 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1374 if (IS_ERR(pdh_data)) 1375 return PTR_ERR(pdh_data); 1376 1377 session_data = psp_copy_user_blob(params.session_uaddr, 1378 params.session_len); 1379 if (IS_ERR(session_data)) { 1380 ret = PTR_ERR(session_data); 1381 goto e_free_pdh; 1382 } 1383 1384 memset(&start, 0, sizeof(start)); 1385 start.handle = params.handle; 1386 start.policy = params.policy; 1387 start.pdh_cert_address = __psp_pa(pdh_data); 1388 start.pdh_cert_len = params.pdh_len; 1389 start.session_address = __psp_pa(session_data); 1390 start.session_len = params.session_len; 1391 1392 /* create memory encryption context */ 1393 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1394 error); 1395 if (ret) 1396 goto e_free_session; 1397 1398 /* Bind ASID to this guest */ 1399 ret = sev_bind_asid(kvm, start.handle, error); 1400 if (ret) 1401 goto e_free_session; 1402 1403 params.handle = start.handle; 1404 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1405 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1406 ret = -EFAULT; 1407 sev_unbind_asid(kvm, start.handle); 1408 goto e_free_session; 1409 } 1410 1411 sev->handle = start.handle; 1412 sev->fd = argp->sev_fd; 1413 1414 e_free_session: 1415 kfree(session_data); 1416 e_free_pdh: 1417 kfree(pdh_data); 1418 1419 return ret; 1420 } 1421 1422 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1423 { 1424 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1425 struct kvm_sev_receive_update_data params; 1426 struct sev_data_receive_update_data data; 1427 void *hdr = NULL, *trans = NULL; 1428 struct page **guest_page; 1429 unsigned long n; 1430 int ret, offset; 1431 1432 if (!sev_guest(kvm)) 1433 return -EINVAL; 1434 1435 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1436 sizeof(struct kvm_sev_receive_update_data))) 1437 return -EFAULT; 1438 1439 if (!params.hdr_uaddr || !params.hdr_len || 1440 !params.guest_uaddr || !params.guest_len || 1441 !params.trans_uaddr || !params.trans_len) 1442 return -EINVAL; 1443 1444 /* Check if we are crossing the page boundary */ 1445 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1446 if ((params.guest_len + offset > PAGE_SIZE)) 1447 return -EINVAL; 1448 1449 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1450 if (IS_ERR(hdr)) 1451 return PTR_ERR(hdr); 1452 1453 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1454 if (IS_ERR(trans)) { 1455 ret = PTR_ERR(trans); 1456 goto e_free_hdr; 1457 } 1458 1459 memset(&data, 0, sizeof(data)); 1460 data.hdr_address = __psp_pa(hdr); 1461 data.hdr_len = params.hdr_len; 1462 data.trans_address = __psp_pa(trans); 1463 data.trans_len = params.trans_len; 1464 1465 /* Pin guest memory */ 1466 ret = -EFAULT; 1467 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1468 PAGE_SIZE, &n, 0); 1469 if (!guest_page) 1470 goto e_free_trans; 1471 1472 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1473 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1474 data.guest_address |= sev_me_mask; 1475 data.guest_len = params.guest_len; 1476 data.handle = sev->handle; 1477 1478 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1479 &argp->error); 1480 1481 sev_unpin_memory(kvm, guest_page, n); 1482 1483 e_free_trans: 1484 kfree(trans); 1485 e_free_hdr: 1486 kfree(hdr); 1487 1488 return ret; 1489 } 1490 1491 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1492 { 1493 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1494 struct sev_data_receive_finish data; 1495 1496 if (!sev_guest(kvm)) 1497 return -ENOTTY; 1498 1499 data.handle = sev->handle; 1500 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1501 } 1502 1503 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1504 { 1505 struct kvm_sev_cmd sev_cmd; 1506 int r; 1507 1508 if (!sev_enabled) 1509 return -ENOTTY; 1510 1511 if (!argp) 1512 return 0; 1513 1514 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1515 return -EFAULT; 1516 1517 mutex_lock(&kvm->lock); 1518 1519 /* enc_context_owner handles all memory enc operations */ 1520 if (is_mirroring_enc_context(kvm)) { 1521 r = -EINVAL; 1522 goto out; 1523 } 1524 1525 switch (sev_cmd.id) { 1526 case KVM_SEV_ES_INIT: 1527 if (!sev_es_enabled) { 1528 r = -ENOTTY; 1529 goto out; 1530 } 1531 fallthrough; 1532 case KVM_SEV_INIT: 1533 r = sev_guest_init(kvm, &sev_cmd); 1534 break; 1535 case KVM_SEV_LAUNCH_START: 1536 r = sev_launch_start(kvm, &sev_cmd); 1537 break; 1538 case KVM_SEV_LAUNCH_UPDATE_DATA: 1539 r = sev_launch_update_data(kvm, &sev_cmd); 1540 break; 1541 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1542 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1543 break; 1544 case KVM_SEV_LAUNCH_MEASURE: 1545 r = sev_launch_measure(kvm, &sev_cmd); 1546 break; 1547 case KVM_SEV_LAUNCH_FINISH: 1548 r = sev_launch_finish(kvm, &sev_cmd); 1549 break; 1550 case KVM_SEV_GUEST_STATUS: 1551 r = sev_guest_status(kvm, &sev_cmd); 1552 break; 1553 case KVM_SEV_DBG_DECRYPT: 1554 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1555 break; 1556 case KVM_SEV_DBG_ENCRYPT: 1557 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1558 break; 1559 case KVM_SEV_LAUNCH_SECRET: 1560 r = sev_launch_secret(kvm, &sev_cmd); 1561 break; 1562 case KVM_SEV_GET_ATTESTATION_REPORT: 1563 r = sev_get_attestation_report(kvm, &sev_cmd); 1564 break; 1565 case KVM_SEV_SEND_START: 1566 r = sev_send_start(kvm, &sev_cmd); 1567 break; 1568 case KVM_SEV_SEND_UPDATE_DATA: 1569 r = sev_send_update_data(kvm, &sev_cmd); 1570 break; 1571 case KVM_SEV_SEND_FINISH: 1572 r = sev_send_finish(kvm, &sev_cmd); 1573 break; 1574 case KVM_SEV_SEND_CANCEL: 1575 r = sev_send_cancel(kvm, &sev_cmd); 1576 break; 1577 case KVM_SEV_RECEIVE_START: 1578 r = sev_receive_start(kvm, &sev_cmd); 1579 break; 1580 case KVM_SEV_RECEIVE_UPDATE_DATA: 1581 r = sev_receive_update_data(kvm, &sev_cmd); 1582 break; 1583 case KVM_SEV_RECEIVE_FINISH: 1584 r = sev_receive_finish(kvm, &sev_cmd); 1585 break; 1586 default: 1587 r = -EINVAL; 1588 goto out; 1589 } 1590 1591 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1592 r = -EFAULT; 1593 1594 out: 1595 mutex_unlock(&kvm->lock); 1596 return r; 1597 } 1598 1599 int svm_register_enc_region(struct kvm *kvm, 1600 struct kvm_enc_region *range) 1601 { 1602 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1603 struct enc_region *region; 1604 int ret = 0; 1605 1606 if (!sev_guest(kvm)) 1607 return -ENOTTY; 1608 1609 /* If kvm is mirroring encryption context it isn't responsible for it */ 1610 if (is_mirroring_enc_context(kvm)) 1611 return -EINVAL; 1612 1613 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1614 return -EINVAL; 1615 1616 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1617 if (!region) 1618 return -ENOMEM; 1619 1620 mutex_lock(&kvm->lock); 1621 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1622 if (IS_ERR(region->pages)) { 1623 ret = PTR_ERR(region->pages); 1624 mutex_unlock(&kvm->lock); 1625 goto e_free; 1626 } 1627 1628 region->uaddr = range->addr; 1629 region->size = range->size; 1630 1631 list_add_tail(®ion->list, &sev->regions_list); 1632 mutex_unlock(&kvm->lock); 1633 1634 /* 1635 * The guest may change the memory encryption attribute from C=0 -> C=1 1636 * or vice versa for this memory range. Lets make sure caches are 1637 * flushed to ensure that guest data gets written into memory with 1638 * correct C-bit. 1639 */ 1640 sev_clflush_pages(region->pages, region->npages); 1641 1642 return ret; 1643 1644 e_free: 1645 kfree(region); 1646 return ret; 1647 } 1648 1649 static struct enc_region * 1650 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1651 { 1652 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1653 struct list_head *head = &sev->regions_list; 1654 struct enc_region *i; 1655 1656 list_for_each_entry(i, head, list) { 1657 if (i->uaddr == range->addr && 1658 i->size == range->size) 1659 return i; 1660 } 1661 1662 return NULL; 1663 } 1664 1665 static void __unregister_enc_region_locked(struct kvm *kvm, 1666 struct enc_region *region) 1667 { 1668 sev_unpin_memory(kvm, region->pages, region->npages); 1669 list_del(®ion->list); 1670 kfree(region); 1671 } 1672 1673 int svm_unregister_enc_region(struct kvm *kvm, 1674 struct kvm_enc_region *range) 1675 { 1676 struct enc_region *region; 1677 int ret; 1678 1679 /* If kvm is mirroring encryption context it isn't responsible for it */ 1680 if (is_mirroring_enc_context(kvm)) 1681 return -EINVAL; 1682 1683 mutex_lock(&kvm->lock); 1684 1685 if (!sev_guest(kvm)) { 1686 ret = -ENOTTY; 1687 goto failed; 1688 } 1689 1690 region = find_enc_region(kvm, range); 1691 if (!region) { 1692 ret = -EINVAL; 1693 goto failed; 1694 } 1695 1696 /* 1697 * Ensure that all guest tagged cache entries are flushed before 1698 * releasing the pages back to the system for use. CLFLUSH will 1699 * not do this, so issue a WBINVD. 1700 */ 1701 wbinvd_on_all_cpus(); 1702 1703 __unregister_enc_region_locked(kvm, region); 1704 1705 mutex_unlock(&kvm->lock); 1706 return 0; 1707 1708 failed: 1709 mutex_unlock(&kvm->lock); 1710 return ret; 1711 } 1712 1713 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1714 { 1715 struct file *source_kvm_file; 1716 struct kvm *source_kvm; 1717 struct kvm_sev_info *mirror_sev; 1718 unsigned int asid; 1719 int ret; 1720 1721 source_kvm_file = fget(source_fd); 1722 if (!file_is_kvm(source_kvm_file)) { 1723 ret = -EBADF; 1724 goto e_source_put; 1725 } 1726 1727 source_kvm = source_kvm_file->private_data; 1728 mutex_lock(&source_kvm->lock); 1729 1730 if (!sev_guest(source_kvm)) { 1731 ret = -EINVAL; 1732 goto e_source_unlock; 1733 } 1734 1735 /* Mirrors of mirrors should work, but let's not get silly */ 1736 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1737 ret = -EINVAL; 1738 goto e_source_unlock; 1739 } 1740 1741 asid = to_kvm_svm(source_kvm)->sev_info.asid; 1742 1743 /* 1744 * The mirror kvm holds an enc_context_owner ref so its asid can't 1745 * disappear until we're done with it 1746 */ 1747 kvm_get_kvm(source_kvm); 1748 1749 fput(source_kvm_file); 1750 mutex_unlock(&source_kvm->lock); 1751 mutex_lock(&kvm->lock); 1752 1753 if (sev_guest(kvm)) { 1754 ret = -EINVAL; 1755 goto e_mirror_unlock; 1756 } 1757 1758 /* Set enc_context_owner and copy its encryption context over */ 1759 mirror_sev = &to_kvm_svm(kvm)->sev_info; 1760 mirror_sev->enc_context_owner = source_kvm; 1761 mirror_sev->asid = asid; 1762 mirror_sev->active = true; 1763 1764 mutex_unlock(&kvm->lock); 1765 return 0; 1766 1767 e_mirror_unlock: 1768 mutex_unlock(&kvm->lock); 1769 kvm_put_kvm(source_kvm); 1770 return ret; 1771 e_source_unlock: 1772 mutex_unlock(&source_kvm->lock); 1773 e_source_put: 1774 if (source_kvm_file) 1775 fput(source_kvm_file); 1776 return ret; 1777 } 1778 1779 void sev_vm_destroy(struct kvm *kvm) 1780 { 1781 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1782 struct list_head *head = &sev->regions_list; 1783 struct list_head *pos, *q; 1784 1785 if (!sev_guest(kvm)) 1786 return; 1787 1788 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 1789 if (is_mirroring_enc_context(kvm)) { 1790 kvm_put_kvm(sev->enc_context_owner); 1791 return; 1792 } 1793 1794 mutex_lock(&kvm->lock); 1795 1796 /* 1797 * Ensure that all guest tagged cache entries are flushed before 1798 * releasing the pages back to the system for use. CLFLUSH will 1799 * not do this, so issue a WBINVD. 1800 */ 1801 wbinvd_on_all_cpus(); 1802 1803 /* 1804 * if userspace was terminated before unregistering the memory regions 1805 * then lets unpin all the registered memory. 1806 */ 1807 if (!list_empty(head)) { 1808 list_for_each_safe(pos, q, head) { 1809 __unregister_enc_region_locked(kvm, 1810 list_entry(pos, struct enc_region, list)); 1811 cond_resched(); 1812 } 1813 } 1814 1815 mutex_unlock(&kvm->lock); 1816 1817 sev_unbind_asid(kvm, sev->handle); 1818 sev_asid_free(sev); 1819 } 1820 1821 void __init sev_set_cpu_caps(void) 1822 { 1823 if (!sev_enabled) 1824 kvm_cpu_cap_clear(X86_FEATURE_SEV); 1825 if (!sev_es_enabled) 1826 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 1827 } 1828 1829 void __init sev_hardware_setup(void) 1830 { 1831 #ifdef CONFIG_KVM_AMD_SEV 1832 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 1833 bool sev_es_supported = false; 1834 bool sev_supported = false; 1835 1836 if (!sev_enabled || !npt_enabled) 1837 goto out; 1838 1839 /* Does the CPU support SEV? */ 1840 if (!boot_cpu_has(X86_FEATURE_SEV)) 1841 goto out; 1842 1843 /* Retrieve SEV CPUID information */ 1844 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1845 1846 /* Set encryption bit location for SEV-ES guests */ 1847 sev_enc_bit = ebx & 0x3f; 1848 1849 /* Maximum number of encrypted guests supported simultaneously */ 1850 max_sev_asid = ecx; 1851 if (!max_sev_asid) 1852 goto out; 1853 1854 /* Minimum ASID value that should be used for SEV guest */ 1855 min_sev_asid = edx; 1856 sev_me_mask = 1UL << (ebx & 0x3f); 1857 1858 /* Initialize SEV ASID bitmaps */ 1859 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1860 if (!sev_asid_bitmap) 1861 goto out; 1862 1863 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1864 if (!sev_reclaim_asid_bitmap) { 1865 bitmap_free(sev_asid_bitmap); 1866 sev_asid_bitmap = NULL; 1867 goto out; 1868 } 1869 1870 sev_asid_count = max_sev_asid - min_sev_asid + 1; 1871 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 1872 goto out; 1873 1874 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 1875 sev_supported = true; 1876 1877 /* SEV-ES support requested? */ 1878 if (!sev_es_enabled) 1879 goto out; 1880 1881 /* Does the CPU support SEV-ES? */ 1882 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1883 goto out; 1884 1885 /* Has the system been allocated ASIDs for SEV-ES? */ 1886 if (min_sev_asid == 1) 1887 goto out; 1888 1889 sev_es_asid_count = min_sev_asid - 1; 1890 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 1891 goto out; 1892 1893 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 1894 sev_es_supported = true; 1895 1896 out: 1897 sev_enabled = sev_supported; 1898 sev_es_enabled = sev_es_supported; 1899 #endif 1900 } 1901 1902 void sev_hardware_teardown(void) 1903 { 1904 if (!sev_enabled) 1905 return; 1906 1907 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 1908 sev_flush_asids(0, max_sev_asid); 1909 1910 bitmap_free(sev_asid_bitmap); 1911 bitmap_free(sev_reclaim_asid_bitmap); 1912 1913 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 1914 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 1915 } 1916 1917 int sev_cpu_init(struct svm_cpu_data *sd) 1918 { 1919 if (!sev_enabled) 1920 return 0; 1921 1922 sd->sev_vmcbs = kcalloc(max_sev_asid + 1, sizeof(void *), GFP_KERNEL); 1923 if (!sd->sev_vmcbs) 1924 return -ENOMEM; 1925 1926 return 0; 1927 } 1928 1929 /* 1930 * Pages used by hardware to hold guest encrypted state must be flushed before 1931 * returning them to the system. 1932 */ 1933 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1934 unsigned long len) 1935 { 1936 /* 1937 * If hardware enforced cache coherency for encrypted mappings of the 1938 * same physical page is supported, nothing to do. 1939 */ 1940 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1941 return; 1942 1943 /* 1944 * If the VM Page Flush MSR is supported, use it to flush the page 1945 * (using the page virtual address and the guest ASID). 1946 */ 1947 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1948 struct kvm_sev_info *sev; 1949 unsigned long va_start; 1950 u64 start, stop; 1951 1952 /* Align start and stop to page boundaries. */ 1953 va_start = (unsigned long)va; 1954 start = (u64)va_start & PAGE_MASK; 1955 stop = PAGE_ALIGN((u64)va_start + len); 1956 1957 if (start < stop) { 1958 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1959 1960 while (start < stop) { 1961 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 1962 start | sev->asid); 1963 1964 start += PAGE_SIZE; 1965 } 1966 1967 return; 1968 } 1969 1970 WARN(1, "Address overflow, using WBINVD\n"); 1971 } 1972 1973 /* 1974 * Hardware should always have one of the above features, 1975 * but if not, use WBINVD and issue a warning. 1976 */ 1977 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 1978 wbinvd_on_all_cpus(); 1979 } 1980 1981 void sev_free_vcpu(struct kvm_vcpu *vcpu) 1982 { 1983 struct vcpu_svm *svm; 1984 1985 if (!sev_es_guest(vcpu->kvm)) 1986 return; 1987 1988 svm = to_svm(vcpu); 1989 1990 if (vcpu->arch.guest_state_protected) 1991 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 1992 __free_page(virt_to_page(svm->vmsa)); 1993 1994 if (svm->ghcb_sa_free) 1995 kfree(svm->ghcb_sa); 1996 } 1997 1998 static void dump_ghcb(struct vcpu_svm *svm) 1999 { 2000 struct ghcb *ghcb = svm->ghcb; 2001 unsigned int nbits; 2002 2003 /* Re-use the dump_invalid_vmcb module parameter */ 2004 if (!dump_invalid_vmcb) { 2005 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2006 return; 2007 } 2008 2009 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2010 2011 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2012 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2013 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2014 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2015 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2016 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2017 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2018 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2019 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2020 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2021 } 2022 2023 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2024 { 2025 struct kvm_vcpu *vcpu = &svm->vcpu; 2026 struct ghcb *ghcb = svm->ghcb; 2027 2028 /* 2029 * The GHCB protocol so far allows for the following data 2030 * to be returned: 2031 * GPRs RAX, RBX, RCX, RDX 2032 * 2033 * Copy their values, even if they may not have been written during the 2034 * VM-Exit. It's the guest's responsibility to not consume random data. 2035 */ 2036 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2037 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2038 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2039 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2040 } 2041 2042 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2043 { 2044 struct vmcb_control_area *control = &svm->vmcb->control; 2045 struct kvm_vcpu *vcpu = &svm->vcpu; 2046 struct ghcb *ghcb = svm->ghcb; 2047 u64 exit_code; 2048 2049 /* 2050 * The GHCB protocol so far allows for the following data 2051 * to be supplied: 2052 * GPRs RAX, RBX, RCX, RDX 2053 * XCR0 2054 * CPL 2055 * 2056 * VMMCALL allows the guest to provide extra registers. KVM also 2057 * expects RSI for hypercalls, so include that, too. 2058 * 2059 * Copy their values to the appropriate location if supplied. 2060 */ 2061 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2062 2063 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2064 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2065 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2066 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2067 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2068 2069 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2070 2071 if (ghcb_xcr0_is_valid(ghcb)) { 2072 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2073 kvm_update_cpuid_runtime(vcpu); 2074 } 2075 2076 /* Copy the GHCB exit information into the VMCB fields */ 2077 exit_code = ghcb_get_sw_exit_code(ghcb); 2078 control->exit_code = lower_32_bits(exit_code); 2079 control->exit_code_hi = upper_32_bits(exit_code); 2080 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2081 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2082 2083 /* Clear the valid entries fields */ 2084 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2085 } 2086 2087 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2088 { 2089 struct kvm_vcpu *vcpu; 2090 struct ghcb *ghcb; 2091 u64 exit_code = 0; 2092 2093 ghcb = svm->ghcb; 2094 2095 /* Only GHCB Usage code 0 is supported */ 2096 if (ghcb->ghcb_usage) 2097 goto vmgexit_err; 2098 2099 /* 2100 * Retrieve the exit code now even though is may not be marked valid 2101 * as it could help with debugging. 2102 */ 2103 exit_code = ghcb_get_sw_exit_code(ghcb); 2104 2105 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2106 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2107 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2108 goto vmgexit_err; 2109 2110 switch (ghcb_get_sw_exit_code(ghcb)) { 2111 case SVM_EXIT_READ_DR7: 2112 break; 2113 case SVM_EXIT_WRITE_DR7: 2114 if (!ghcb_rax_is_valid(ghcb)) 2115 goto vmgexit_err; 2116 break; 2117 case SVM_EXIT_RDTSC: 2118 break; 2119 case SVM_EXIT_RDPMC: 2120 if (!ghcb_rcx_is_valid(ghcb)) 2121 goto vmgexit_err; 2122 break; 2123 case SVM_EXIT_CPUID: 2124 if (!ghcb_rax_is_valid(ghcb) || 2125 !ghcb_rcx_is_valid(ghcb)) 2126 goto vmgexit_err; 2127 if (ghcb_get_rax(ghcb) == 0xd) 2128 if (!ghcb_xcr0_is_valid(ghcb)) 2129 goto vmgexit_err; 2130 break; 2131 case SVM_EXIT_INVD: 2132 break; 2133 case SVM_EXIT_IOIO: 2134 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2135 if (!ghcb_sw_scratch_is_valid(ghcb)) 2136 goto vmgexit_err; 2137 } else { 2138 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2139 if (!ghcb_rax_is_valid(ghcb)) 2140 goto vmgexit_err; 2141 } 2142 break; 2143 case SVM_EXIT_MSR: 2144 if (!ghcb_rcx_is_valid(ghcb)) 2145 goto vmgexit_err; 2146 if (ghcb_get_sw_exit_info_1(ghcb)) { 2147 if (!ghcb_rax_is_valid(ghcb) || 2148 !ghcb_rdx_is_valid(ghcb)) 2149 goto vmgexit_err; 2150 } 2151 break; 2152 case SVM_EXIT_VMMCALL: 2153 if (!ghcb_rax_is_valid(ghcb) || 2154 !ghcb_cpl_is_valid(ghcb)) 2155 goto vmgexit_err; 2156 break; 2157 case SVM_EXIT_RDTSCP: 2158 break; 2159 case SVM_EXIT_WBINVD: 2160 break; 2161 case SVM_EXIT_MONITOR: 2162 if (!ghcb_rax_is_valid(ghcb) || 2163 !ghcb_rcx_is_valid(ghcb) || 2164 !ghcb_rdx_is_valid(ghcb)) 2165 goto vmgexit_err; 2166 break; 2167 case SVM_EXIT_MWAIT: 2168 if (!ghcb_rax_is_valid(ghcb) || 2169 !ghcb_rcx_is_valid(ghcb)) 2170 goto vmgexit_err; 2171 break; 2172 case SVM_VMGEXIT_MMIO_READ: 2173 case SVM_VMGEXIT_MMIO_WRITE: 2174 if (!ghcb_sw_scratch_is_valid(ghcb)) 2175 goto vmgexit_err; 2176 break; 2177 case SVM_VMGEXIT_NMI_COMPLETE: 2178 case SVM_VMGEXIT_AP_HLT_LOOP: 2179 case SVM_VMGEXIT_AP_JUMP_TABLE: 2180 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2181 break; 2182 default: 2183 goto vmgexit_err; 2184 } 2185 2186 return 0; 2187 2188 vmgexit_err: 2189 vcpu = &svm->vcpu; 2190 2191 if (ghcb->ghcb_usage) { 2192 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2193 ghcb->ghcb_usage); 2194 } else { 2195 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2196 exit_code); 2197 dump_ghcb(svm); 2198 } 2199 2200 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2201 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2202 vcpu->run->internal.ndata = 2; 2203 vcpu->run->internal.data[0] = exit_code; 2204 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2205 2206 return -EINVAL; 2207 } 2208 2209 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2210 { 2211 if (!svm->ghcb) 2212 return; 2213 2214 if (svm->ghcb_sa_free) { 2215 /* 2216 * The scratch area lives outside the GHCB, so there is a 2217 * buffer that, depending on the operation performed, may 2218 * need to be synced, then freed. 2219 */ 2220 if (svm->ghcb_sa_sync) { 2221 kvm_write_guest(svm->vcpu.kvm, 2222 ghcb_get_sw_scratch(svm->ghcb), 2223 svm->ghcb_sa, svm->ghcb_sa_len); 2224 svm->ghcb_sa_sync = false; 2225 } 2226 2227 kfree(svm->ghcb_sa); 2228 svm->ghcb_sa = NULL; 2229 svm->ghcb_sa_free = false; 2230 } 2231 2232 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 2233 2234 sev_es_sync_to_ghcb(svm); 2235 2236 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 2237 svm->ghcb = NULL; 2238 } 2239 2240 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2241 { 2242 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2243 int asid = sev_get_asid(svm->vcpu.kvm); 2244 2245 /* Assign the asid allocated with this SEV guest */ 2246 svm->asid = asid; 2247 2248 /* 2249 * Flush guest TLB: 2250 * 2251 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2252 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2253 */ 2254 if (sd->sev_vmcbs[asid] == svm->vmcb && 2255 svm->vcpu.arch.last_vmentry_cpu == cpu) 2256 return; 2257 2258 sd->sev_vmcbs[asid] = svm->vmcb; 2259 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2260 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2261 } 2262 2263 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2264 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2265 { 2266 struct vmcb_control_area *control = &svm->vmcb->control; 2267 struct ghcb *ghcb = svm->ghcb; 2268 u64 ghcb_scratch_beg, ghcb_scratch_end; 2269 u64 scratch_gpa_beg, scratch_gpa_end; 2270 void *scratch_va; 2271 2272 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2273 if (!scratch_gpa_beg) { 2274 pr_err("vmgexit: scratch gpa not provided\n"); 2275 return false; 2276 } 2277 2278 scratch_gpa_end = scratch_gpa_beg + len; 2279 if (scratch_gpa_end < scratch_gpa_beg) { 2280 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2281 len, scratch_gpa_beg); 2282 return false; 2283 } 2284 2285 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2286 /* Scratch area begins within GHCB */ 2287 ghcb_scratch_beg = control->ghcb_gpa + 2288 offsetof(struct ghcb, shared_buffer); 2289 ghcb_scratch_end = control->ghcb_gpa + 2290 offsetof(struct ghcb, reserved_1); 2291 2292 /* 2293 * If the scratch area begins within the GHCB, it must be 2294 * completely contained in the GHCB shared buffer area. 2295 */ 2296 if (scratch_gpa_beg < ghcb_scratch_beg || 2297 scratch_gpa_end > ghcb_scratch_end) { 2298 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2299 scratch_gpa_beg, scratch_gpa_end); 2300 return false; 2301 } 2302 2303 scratch_va = (void *)svm->ghcb; 2304 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2305 } else { 2306 /* 2307 * The guest memory must be read into a kernel buffer, so 2308 * limit the size 2309 */ 2310 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2311 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2312 len, GHCB_SCRATCH_AREA_LIMIT); 2313 return false; 2314 } 2315 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2316 if (!scratch_va) 2317 return false; 2318 2319 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2320 /* Unable to copy scratch area from guest */ 2321 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2322 2323 kfree(scratch_va); 2324 return false; 2325 } 2326 2327 /* 2328 * The scratch area is outside the GHCB. The operation will 2329 * dictate whether the buffer needs to be synced before running 2330 * the vCPU next time (i.e. a read was requested so the data 2331 * must be written back to the guest memory). 2332 */ 2333 svm->ghcb_sa_sync = sync; 2334 svm->ghcb_sa_free = true; 2335 } 2336 2337 svm->ghcb_sa = scratch_va; 2338 svm->ghcb_sa_len = len; 2339 2340 return true; 2341 } 2342 2343 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2344 unsigned int pos) 2345 { 2346 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2347 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2348 } 2349 2350 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2351 { 2352 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2353 } 2354 2355 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2356 { 2357 svm->vmcb->control.ghcb_gpa = value; 2358 } 2359 2360 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2361 { 2362 struct vmcb_control_area *control = &svm->vmcb->control; 2363 struct kvm_vcpu *vcpu = &svm->vcpu; 2364 u64 ghcb_info; 2365 int ret = 1; 2366 2367 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2368 2369 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2370 control->ghcb_gpa); 2371 2372 switch (ghcb_info) { 2373 case GHCB_MSR_SEV_INFO_REQ: 2374 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2375 GHCB_VERSION_MIN, 2376 sev_enc_bit)); 2377 break; 2378 case GHCB_MSR_CPUID_REQ: { 2379 u64 cpuid_fn, cpuid_reg, cpuid_value; 2380 2381 cpuid_fn = get_ghcb_msr_bits(svm, 2382 GHCB_MSR_CPUID_FUNC_MASK, 2383 GHCB_MSR_CPUID_FUNC_POS); 2384 2385 /* Initialize the registers needed by the CPUID intercept */ 2386 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2387 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2388 2389 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2390 if (!ret) { 2391 ret = -EINVAL; 2392 break; 2393 } 2394 2395 cpuid_reg = get_ghcb_msr_bits(svm, 2396 GHCB_MSR_CPUID_REG_MASK, 2397 GHCB_MSR_CPUID_REG_POS); 2398 if (cpuid_reg == 0) 2399 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2400 else if (cpuid_reg == 1) 2401 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2402 else if (cpuid_reg == 2) 2403 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2404 else 2405 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2406 2407 set_ghcb_msr_bits(svm, cpuid_value, 2408 GHCB_MSR_CPUID_VALUE_MASK, 2409 GHCB_MSR_CPUID_VALUE_POS); 2410 2411 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2412 GHCB_MSR_INFO_MASK, 2413 GHCB_MSR_INFO_POS); 2414 break; 2415 } 2416 case GHCB_MSR_TERM_REQ: { 2417 u64 reason_set, reason_code; 2418 2419 reason_set = get_ghcb_msr_bits(svm, 2420 GHCB_MSR_TERM_REASON_SET_MASK, 2421 GHCB_MSR_TERM_REASON_SET_POS); 2422 reason_code = get_ghcb_msr_bits(svm, 2423 GHCB_MSR_TERM_REASON_MASK, 2424 GHCB_MSR_TERM_REASON_POS); 2425 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2426 reason_set, reason_code); 2427 fallthrough; 2428 } 2429 default: 2430 ret = -EINVAL; 2431 } 2432 2433 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2434 control->ghcb_gpa, ret); 2435 2436 return ret; 2437 } 2438 2439 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2440 { 2441 struct vcpu_svm *svm = to_svm(vcpu); 2442 struct vmcb_control_area *control = &svm->vmcb->control; 2443 u64 ghcb_gpa, exit_code; 2444 struct ghcb *ghcb; 2445 int ret; 2446 2447 /* Validate the GHCB */ 2448 ghcb_gpa = control->ghcb_gpa; 2449 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2450 return sev_handle_vmgexit_msr_protocol(svm); 2451 2452 if (!ghcb_gpa) { 2453 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2454 return -EINVAL; 2455 } 2456 2457 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 2458 /* Unable to map GHCB from guest */ 2459 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2460 ghcb_gpa); 2461 return -EINVAL; 2462 } 2463 2464 svm->ghcb = svm->ghcb_map.hva; 2465 ghcb = svm->ghcb_map.hva; 2466 2467 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2468 2469 exit_code = ghcb_get_sw_exit_code(ghcb); 2470 2471 ret = sev_es_validate_vmgexit(svm); 2472 if (ret) 2473 return ret; 2474 2475 sev_es_sync_from_ghcb(svm); 2476 ghcb_set_sw_exit_info_1(ghcb, 0); 2477 ghcb_set_sw_exit_info_2(ghcb, 0); 2478 2479 ret = -EINVAL; 2480 switch (exit_code) { 2481 case SVM_VMGEXIT_MMIO_READ: 2482 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2483 break; 2484 2485 ret = kvm_sev_es_mmio_read(vcpu, 2486 control->exit_info_1, 2487 control->exit_info_2, 2488 svm->ghcb_sa); 2489 break; 2490 case SVM_VMGEXIT_MMIO_WRITE: 2491 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2492 break; 2493 2494 ret = kvm_sev_es_mmio_write(vcpu, 2495 control->exit_info_1, 2496 control->exit_info_2, 2497 svm->ghcb_sa); 2498 break; 2499 case SVM_VMGEXIT_NMI_COMPLETE: 2500 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2501 break; 2502 case SVM_VMGEXIT_AP_HLT_LOOP: 2503 ret = kvm_emulate_ap_reset_hold(vcpu); 2504 break; 2505 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2506 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2507 2508 switch (control->exit_info_1) { 2509 case 0: 2510 /* Set AP jump table address */ 2511 sev->ap_jump_table = control->exit_info_2; 2512 break; 2513 case 1: 2514 /* Get AP jump table address */ 2515 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2516 break; 2517 default: 2518 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2519 control->exit_info_1); 2520 ghcb_set_sw_exit_info_1(ghcb, 1); 2521 ghcb_set_sw_exit_info_2(ghcb, 2522 X86_TRAP_UD | 2523 SVM_EVTINJ_TYPE_EXEPT | 2524 SVM_EVTINJ_VALID); 2525 } 2526 2527 ret = 1; 2528 break; 2529 } 2530 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2531 vcpu_unimpl(vcpu, 2532 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2533 control->exit_info_1, control->exit_info_2); 2534 break; 2535 default: 2536 ret = svm_invoke_exit_handler(vcpu, exit_code); 2537 } 2538 2539 return ret; 2540 } 2541 2542 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2543 { 2544 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2545 return -EINVAL; 2546 2547 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2548 svm->ghcb_sa, svm->ghcb_sa_len, in); 2549 } 2550 2551 void sev_es_init_vmcb(struct vcpu_svm *svm) 2552 { 2553 struct kvm_vcpu *vcpu = &svm->vcpu; 2554 2555 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2556 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2557 2558 /* 2559 * An SEV-ES guest requires a VMSA area that is a separate from the 2560 * VMCB page. Do not include the encryption mask on the VMSA physical 2561 * address since hardware will access it using the guest key. 2562 */ 2563 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2564 2565 /* Can't intercept CR register access, HV can't modify CR registers */ 2566 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2567 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2568 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2569 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2570 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2571 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2572 2573 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2574 2575 /* Track EFER/CR register changes */ 2576 svm_set_intercept(svm, TRAP_EFER_WRITE); 2577 svm_set_intercept(svm, TRAP_CR0_WRITE); 2578 svm_set_intercept(svm, TRAP_CR4_WRITE); 2579 svm_set_intercept(svm, TRAP_CR8_WRITE); 2580 2581 /* No support for enable_vmware_backdoor */ 2582 clr_exception_intercept(svm, GP_VECTOR); 2583 2584 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2585 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2586 2587 /* Clear intercepts on selected MSRs */ 2588 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2589 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2590 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2591 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2592 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2593 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2594 } 2595 2596 void sev_es_create_vcpu(struct vcpu_svm *svm) 2597 { 2598 /* 2599 * Set the GHCB MSR value as per the GHCB specification when creating 2600 * a vCPU for an SEV-ES guest. 2601 */ 2602 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2603 GHCB_VERSION_MIN, 2604 sev_enc_bit)); 2605 } 2606 2607 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2608 { 2609 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2610 struct vmcb_save_area *hostsa; 2611 2612 /* 2613 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2614 * of which one step is to perform a VMLOAD. Since hardware does not 2615 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2616 */ 2617 vmsave(__sme_page_pa(sd->save_area)); 2618 2619 /* XCR0 is restored on VMEXIT, save the current host value */ 2620 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2621 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2622 2623 /* PKRU is restored on VMEXIT, save the current host value */ 2624 hostsa->pkru = read_pkru(); 2625 2626 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2627 hostsa->xss = host_xss; 2628 } 2629 2630 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2631 { 2632 struct vcpu_svm *svm = to_svm(vcpu); 2633 2634 /* First SIPI: Use the values as initially set by the VMM */ 2635 if (!svm->received_first_sipi) { 2636 svm->received_first_sipi = true; 2637 return; 2638 } 2639 2640 /* 2641 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2642 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2643 * non-zero value. 2644 */ 2645 if (!svm->ghcb) 2646 return; 2647 2648 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2649 } 2650