1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/sev.h> 30 31 #include "mmu.h" 32 #include "x86.h" 33 #include "svm.h" 34 #include "svm_ops.h" 35 #include "cpuid.h" 36 #include "trace.h" 37 38 #define GHCB_VERSION_MAX 2ULL 39 #define GHCB_VERSION_DEFAULT 2ULL 40 #define GHCB_VERSION_MIN 1ULL 41 42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 43 44 /* enable/disable SEV support */ 45 static bool sev_enabled = true; 46 module_param_named(sev, sev_enabled, bool, 0444); 47 48 /* enable/disable SEV-ES support */ 49 static bool sev_es_enabled = true; 50 module_param_named(sev_es, sev_es_enabled, bool, 0444); 51 52 /* enable/disable SEV-SNP support */ 53 static bool sev_snp_enabled = true; 54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 55 56 /* enable/disable SEV-ES DebugSwap support */ 57 static bool sev_es_debug_swap_enabled = true; 58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 59 static u64 sev_supported_vmsa_features; 60 61 #define AP_RESET_HOLD_NONE 0 62 #define AP_RESET_HOLD_NAE_EVENT 1 63 #define AP_RESET_HOLD_MSR_PROTO 2 64 65 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 66 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 67 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 68 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 69 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 70 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 71 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 72 73 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 74 SNP_POLICY_MASK_API_MAJOR | \ 75 SNP_POLICY_MASK_SMT | \ 76 SNP_POLICY_MASK_RSVD_MBO | \ 77 SNP_POLICY_MASK_DEBUG | \ 78 SNP_POLICY_MASK_SINGLE_SOCKET) 79 80 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 81 82 static u8 sev_enc_bit; 83 static DECLARE_RWSEM(sev_deactivate_lock); 84 static DEFINE_MUTEX(sev_bitmap_lock); 85 unsigned int max_sev_asid; 86 static unsigned int min_sev_asid; 87 static unsigned long sev_me_mask; 88 static unsigned int nr_asids; 89 static unsigned long *sev_asid_bitmap; 90 static unsigned long *sev_reclaim_asid_bitmap; 91 92 static int snp_decommission_context(struct kvm *kvm); 93 94 struct enc_region { 95 struct list_head list; 96 unsigned long npages; 97 struct page **pages; 98 unsigned long uaddr; 99 unsigned long size; 100 }; 101 102 /* Called with the sev_bitmap_lock held, or on shutdown */ 103 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 104 { 105 int ret, error = 0; 106 unsigned int asid; 107 108 /* Check if there are any ASIDs to reclaim before performing a flush */ 109 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 110 if (asid > max_asid) 111 return -EBUSY; 112 113 /* 114 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 115 * so it must be guarded. 116 */ 117 down_write(&sev_deactivate_lock); 118 119 wbinvd_on_all_cpus(); 120 121 if (sev_snp_enabled) 122 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 123 else 124 ret = sev_guest_df_flush(&error); 125 126 up_write(&sev_deactivate_lock); 127 128 if (ret) 129 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 130 sev_snp_enabled ? "-SNP" : "", ret, error); 131 132 return ret; 133 } 134 135 static inline bool is_mirroring_enc_context(struct kvm *kvm) 136 { 137 return !!to_kvm_sev_info(kvm)->enc_context_owner; 138 } 139 140 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 141 { 142 struct kvm_vcpu *vcpu = &svm->vcpu; 143 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 144 145 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 146 } 147 148 /* Must be called with the sev_bitmap_lock held */ 149 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 150 { 151 if (sev_flush_asids(min_asid, max_asid)) 152 return false; 153 154 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 155 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 156 nr_asids); 157 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 158 159 return true; 160 } 161 162 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 163 { 164 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 165 return misc_cg_try_charge(type, sev->misc_cg, 1); 166 } 167 168 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 169 { 170 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 171 misc_cg_uncharge(type, sev->misc_cg, 1); 172 } 173 174 static int sev_asid_new(struct kvm_sev_info *sev) 175 { 176 /* 177 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 178 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 179 * Note: min ASID can end up larger than the max if basic SEV support is 180 * effectively disabled by disallowing use of ASIDs for SEV guests. 181 */ 182 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 183 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 184 unsigned int asid; 185 bool retry = true; 186 int ret; 187 188 if (min_asid > max_asid) 189 return -ENOTTY; 190 191 WARN_ON(sev->misc_cg); 192 sev->misc_cg = get_current_misc_cg(); 193 ret = sev_misc_cg_try_charge(sev); 194 if (ret) { 195 put_misc_cg(sev->misc_cg); 196 sev->misc_cg = NULL; 197 return ret; 198 } 199 200 mutex_lock(&sev_bitmap_lock); 201 202 again: 203 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 204 if (asid > max_asid) { 205 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 206 retry = false; 207 goto again; 208 } 209 mutex_unlock(&sev_bitmap_lock); 210 ret = -EBUSY; 211 goto e_uncharge; 212 } 213 214 __set_bit(asid, sev_asid_bitmap); 215 216 mutex_unlock(&sev_bitmap_lock); 217 218 sev->asid = asid; 219 return 0; 220 e_uncharge: 221 sev_misc_cg_uncharge(sev); 222 put_misc_cg(sev->misc_cg); 223 sev->misc_cg = NULL; 224 return ret; 225 } 226 227 static unsigned int sev_get_asid(struct kvm *kvm) 228 { 229 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 230 231 return sev->asid; 232 } 233 234 static void sev_asid_free(struct kvm_sev_info *sev) 235 { 236 struct svm_cpu_data *sd; 237 int cpu; 238 239 mutex_lock(&sev_bitmap_lock); 240 241 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 242 243 for_each_possible_cpu(cpu) { 244 sd = per_cpu_ptr(&svm_data, cpu); 245 sd->sev_vmcbs[sev->asid] = NULL; 246 } 247 248 mutex_unlock(&sev_bitmap_lock); 249 250 sev_misc_cg_uncharge(sev); 251 put_misc_cg(sev->misc_cg); 252 sev->misc_cg = NULL; 253 } 254 255 static void sev_decommission(unsigned int handle) 256 { 257 struct sev_data_decommission decommission; 258 259 if (!handle) 260 return; 261 262 decommission.handle = handle; 263 sev_guest_decommission(&decommission, NULL); 264 } 265 266 /* 267 * Transition a page to hypervisor-owned/shared state in the RMP table. This 268 * should not fail under normal conditions, but leak the page should that 269 * happen since it will no longer be usable by the host due to RMP protections. 270 */ 271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 272 { 273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 275 return -EIO; 276 } 277 278 return 0; 279 } 280 281 /* 282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 285 * unless they are reclaimed first. 286 * 287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 288 * might not be usable by the host due to being set as immutable or still 289 * being associated with a guest ASID. 290 * 291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 292 * converted back to shared, as the page is no longer usable due to RMP 293 * protections, and it's infeasible for the guest to continue on. 294 */ 295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 296 { 297 struct sev_data_snp_page_reclaim data = {0}; 298 int fw_err, rc; 299 300 data.paddr = __sme_set(pfn << PAGE_SHIFT); 301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 303 snp_leak_pages(pfn, 1); 304 return -EIO; 305 } 306 307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 308 return -EIO; 309 310 return rc; 311 } 312 313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 314 { 315 struct sev_data_deactivate deactivate; 316 317 if (!handle) 318 return; 319 320 deactivate.handle = handle; 321 322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 323 down_read(&sev_deactivate_lock); 324 sev_guest_deactivate(&deactivate, NULL); 325 up_read(&sev_deactivate_lock); 326 327 sev_decommission(handle); 328 } 329 330 /* 331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 333 * 2.0 specification for more details. 334 * 335 * Technically, when an SNP Guest Request is issued, the guest will provide its 336 * own request/response pages, which could in theory be passed along directly 337 * to firmware rather than using bounce pages. However, these pages would need 338 * special care: 339 * 340 * - Both pages are from shared guest memory, so they need to be protected 341 * from migration/etc. occurring while firmware reads/writes to them. At a 342 * minimum, this requires elevating the ref counts and potentially needing 343 * an explicit pinning of the memory. This places additional restrictions 344 * on what type of memory backends userspace can use for shared guest 345 * memory since there is some reliance on using refcounted pages. 346 * 347 * - The response page needs to be switched to Firmware-owned[1] state 348 * before the firmware can write to it, which can lead to potential 349 * host RMP #PFs if the guest is misbehaved and hands the host a 350 * guest page that KVM might write to for other reasons (e.g. virtio 351 * buffers/etc.). 352 * 353 * Both of these issues can be avoided completely by using separately-allocated 354 * bounce pages for both the request/response pages and passing those to 355 * firmware instead. So that's what is being set up here. 356 * 357 * Guest requests rely on message sequence numbers to ensure requests are 358 * issued to firmware in the order the guest issues them, so concurrent guest 359 * requests generally shouldn't happen. But a misbehaved guest could issue 360 * concurrent guest requests in theory, so a mutex is used to serialize 361 * access to the bounce buffers. 362 * 363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 365 * in the APM for details on the related RMP restrictions. 366 */ 367 static int snp_guest_req_init(struct kvm *kvm) 368 { 369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 370 struct page *req_page; 371 372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 373 if (!req_page) 374 return -ENOMEM; 375 376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 377 if (!sev->guest_resp_buf) { 378 __free_page(req_page); 379 return -EIO; 380 } 381 382 sev->guest_req_buf = page_address(req_page); 383 mutex_init(&sev->guest_req_mutex); 384 385 return 0; 386 } 387 388 static void snp_guest_req_cleanup(struct kvm *kvm) 389 { 390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 391 392 if (sev->guest_resp_buf) 393 snp_free_firmware_page(sev->guest_resp_buf); 394 395 if (sev->guest_req_buf) 396 __free_page(virt_to_page(sev->guest_req_buf)); 397 398 sev->guest_req_buf = NULL; 399 sev->guest_resp_buf = NULL; 400 } 401 402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 403 struct kvm_sev_init *data, 404 unsigned long vm_type) 405 { 406 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 407 struct sev_platform_init_args init_args = {0}; 408 bool es_active = vm_type != KVM_X86_SEV_VM; 409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 410 int ret; 411 412 if (kvm->created_vcpus) 413 return -EINVAL; 414 415 if (data->flags) 416 return -EINVAL; 417 418 if (data->vmsa_features & ~valid_vmsa_features) 419 return -EINVAL; 420 421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 422 return -EINVAL; 423 424 if (unlikely(sev->active)) 425 return -EINVAL; 426 427 sev->active = true; 428 sev->es_active = es_active; 429 sev->vmsa_features = data->vmsa_features; 430 sev->ghcb_version = data->ghcb_version; 431 432 /* 433 * Currently KVM supports the full range of mandatory features defined 434 * by version 2 of the GHCB protocol, so default to that for SEV-ES 435 * guests created via KVM_SEV_INIT2. 436 */ 437 if (sev->es_active && !sev->ghcb_version) 438 sev->ghcb_version = GHCB_VERSION_DEFAULT; 439 440 if (vm_type == KVM_X86_SNP_VM) 441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 442 443 ret = sev_asid_new(sev); 444 if (ret) 445 goto e_no_asid; 446 447 init_args.probe = false; 448 ret = sev_platform_init(&init_args); 449 if (ret) 450 goto e_free; 451 452 /* This needs to happen after SEV/SNP firmware initialization. */ 453 if (vm_type == KVM_X86_SNP_VM) { 454 ret = snp_guest_req_init(kvm); 455 if (ret) 456 goto e_free; 457 } 458 459 INIT_LIST_HEAD(&sev->regions_list); 460 INIT_LIST_HEAD(&sev->mirror_vms); 461 sev->need_init = false; 462 463 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 464 465 return 0; 466 467 e_free: 468 argp->error = init_args.error; 469 sev_asid_free(sev); 470 sev->asid = 0; 471 e_no_asid: 472 sev->vmsa_features = 0; 473 sev->es_active = false; 474 sev->active = false; 475 return ret; 476 } 477 478 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 479 { 480 struct kvm_sev_init data = { 481 .vmsa_features = 0, 482 .ghcb_version = 0, 483 }; 484 unsigned long vm_type; 485 486 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 487 return -EINVAL; 488 489 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 490 491 /* 492 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 493 * continue to only ever support the minimal GHCB protocol version. 494 */ 495 if (vm_type == KVM_X86_SEV_ES_VM) 496 data.ghcb_version = GHCB_VERSION_MIN; 497 498 return __sev_guest_init(kvm, argp, &data, vm_type); 499 } 500 501 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 502 { 503 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 504 struct kvm_sev_init data; 505 506 if (!sev->need_init) 507 return -EINVAL; 508 509 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 510 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 511 kvm->arch.vm_type != KVM_X86_SNP_VM) 512 return -EINVAL; 513 514 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 515 return -EFAULT; 516 517 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 518 } 519 520 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 521 { 522 unsigned int asid = sev_get_asid(kvm); 523 struct sev_data_activate activate; 524 int ret; 525 526 /* activate ASID on the given handle */ 527 activate.handle = handle; 528 activate.asid = asid; 529 ret = sev_guest_activate(&activate, error); 530 531 return ret; 532 } 533 534 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 535 { 536 CLASS(fd, f)(fd); 537 538 if (fd_empty(f)) 539 return -EBADF; 540 541 return sev_issue_cmd_external_user(fd_file(f), id, data, error); 542 } 543 544 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 545 { 546 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 547 548 return __sev_issue_cmd(sev->fd, id, data, error); 549 } 550 551 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 552 { 553 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 554 struct sev_data_launch_start start; 555 struct kvm_sev_launch_start params; 556 void *dh_blob, *session_blob; 557 int *error = &argp->error; 558 int ret; 559 560 if (!sev_guest(kvm)) 561 return -ENOTTY; 562 563 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 564 return -EFAULT; 565 566 memset(&start, 0, sizeof(start)); 567 568 dh_blob = NULL; 569 if (params.dh_uaddr) { 570 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 571 if (IS_ERR(dh_blob)) 572 return PTR_ERR(dh_blob); 573 574 start.dh_cert_address = __sme_set(__pa(dh_blob)); 575 start.dh_cert_len = params.dh_len; 576 } 577 578 session_blob = NULL; 579 if (params.session_uaddr) { 580 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 581 if (IS_ERR(session_blob)) { 582 ret = PTR_ERR(session_blob); 583 goto e_free_dh; 584 } 585 586 start.session_address = __sme_set(__pa(session_blob)); 587 start.session_len = params.session_len; 588 } 589 590 start.handle = params.handle; 591 start.policy = params.policy; 592 593 /* create memory encryption context */ 594 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 595 if (ret) 596 goto e_free_session; 597 598 /* Bind ASID to this guest */ 599 ret = sev_bind_asid(kvm, start.handle, error); 600 if (ret) { 601 sev_decommission(start.handle); 602 goto e_free_session; 603 } 604 605 /* return handle to userspace */ 606 params.handle = start.handle; 607 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 608 sev_unbind_asid(kvm, start.handle); 609 ret = -EFAULT; 610 goto e_free_session; 611 } 612 613 sev->handle = start.handle; 614 sev->fd = argp->sev_fd; 615 616 e_free_session: 617 kfree(session_blob); 618 e_free_dh: 619 kfree(dh_blob); 620 return ret; 621 } 622 623 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 624 unsigned long ulen, unsigned long *n, 625 int write) 626 { 627 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 628 unsigned long npages, size; 629 int npinned; 630 unsigned long locked, lock_limit; 631 struct page **pages; 632 unsigned long first, last; 633 int ret; 634 635 lockdep_assert_held(&kvm->lock); 636 637 if (ulen == 0 || uaddr + ulen < uaddr) 638 return ERR_PTR(-EINVAL); 639 640 /* Calculate number of pages. */ 641 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 642 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 643 npages = (last - first + 1); 644 645 locked = sev->pages_locked + npages; 646 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 647 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 648 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 649 return ERR_PTR(-ENOMEM); 650 } 651 652 if (WARN_ON_ONCE(npages > INT_MAX)) 653 return ERR_PTR(-EINVAL); 654 655 /* Avoid using vmalloc for smaller buffers. */ 656 size = npages * sizeof(struct page *); 657 if (size > PAGE_SIZE) 658 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 659 else 660 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 661 662 if (!pages) 663 return ERR_PTR(-ENOMEM); 664 665 /* Pin the user virtual address. */ 666 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 667 if (npinned != npages) { 668 pr_err("SEV: Failure locking %lu pages.\n", npages); 669 ret = -ENOMEM; 670 goto err; 671 } 672 673 *n = npages; 674 sev->pages_locked = locked; 675 676 return pages; 677 678 err: 679 if (npinned > 0) 680 unpin_user_pages(pages, npinned); 681 682 kvfree(pages); 683 return ERR_PTR(ret); 684 } 685 686 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 687 unsigned long npages) 688 { 689 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 690 691 unpin_user_pages(pages, npages); 692 kvfree(pages); 693 sev->pages_locked -= npages; 694 } 695 696 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 697 { 698 uint8_t *page_virtual; 699 unsigned long i; 700 701 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 702 pages == NULL) 703 return; 704 705 for (i = 0; i < npages; i++) { 706 page_virtual = kmap_local_page(pages[i]); 707 clflush_cache_range(page_virtual, PAGE_SIZE); 708 kunmap_local(page_virtual); 709 cond_resched(); 710 } 711 } 712 713 static unsigned long get_num_contig_pages(unsigned long idx, 714 struct page **inpages, unsigned long npages) 715 { 716 unsigned long paddr, next_paddr; 717 unsigned long i = idx + 1, pages = 1; 718 719 /* find the number of contiguous pages starting from idx */ 720 paddr = __sme_page_pa(inpages[idx]); 721 while (i < npages) { 722 next_paddr = __sme_page_pa(inpages[i++]); 723 if ((paddr + PAGE_SIZE) == next_paddr) { 724 pages++; 725 paddr = next_paddr; 726 continue; 727 } 728 break; 729 } 730 731 return pages; 732 } 733 734 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 735 { 736 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 737 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 738 struct kvm_sev_launch_update_data params; 739 struct sev_data_launch_update_data data; 740 struct page **inpages; 741 int ret; 742 743 if (!sev_guest(kvm)) 744 return -ENOTTY; 745 746 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 747 return -EFAULT; 748 749 vaddr = params.uaddr; 750 size = params.len; 751 vaddr_end = vaddr + size; 752 753 /* Lock the user memory. */ 754 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 755 if (IS_ERR(inpages)) 756 return PTR_ERR(inpages); 757 758 /* 759 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 760 * place; the cache may contain the data that was written unencrypted. 761 */ 762 sev_clflush_pages(inpages, npages); 763 764 data.reserved = 0; 765 data.handle = sev->handle; 766 767 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 768 int offset, len; 769 770 /* 771 * If the user buffer is not page-aligned, calculate the offset 772 * within the page. 773 */ 774 offset = vaddr & (PAGE_SIZE - 1); 775 776 /* Calculate the number of pages that can be encrypted in one go. */ 777 pages = get_num_contig_pages(i, inpages, npages); 778 779 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 780 781 data.len = len; 782 data.address = __sme_page_pa(inpages[i]) + offset; 783 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 784 if (ret) 785 goto e_unpin; 786 787 size -= len; 788 next_vaddr = vaddr + len; 789 } 790 791 e_unpin: 792 /* content of memory is updated, mark pages dirty */ 793 for (i = 0; i < npages; i++) { 794 set_page_dirty_lock(inpages[i]); 795 mark_page_accessed(inpages[i]); 796 } 797 /* unlock the user pages */ 798 sev_unpin_memory(kvm, inpages, npages); 799 return ret; 800 } 801 802 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 803 { 804 struct kvm_vcpu *vcpu = &svm->vcpu; 805 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 806 struct sev_es_save_area *save = svm->sev_es.vmsa; 807 struct xregs_state *xsave; 808 const u8 *s; 809 u8 *d; 810 int i; 811 812 /* Check some debug related fields before encrypting the VMSA */ 813 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 814 return -EINVAL; 815 816 /* 817 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 818 * the traditional VMSA that is part of the VMCB. Copy the 819 * traditional VMSA as it has been built so far (in prep 820 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 821 */ 822 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 823 824 /* Sync registgers */ 825 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 826 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 827 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 828 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 829 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 830 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 831 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 832 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 833 #ifdef CONFIG_X86_64 834 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 835 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 836 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 837 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 838 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 839 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 840 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 841 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 842 #endif 843 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 844 845 /* Sync some non-GPR registers before encrypting */ 846 save->xcr0 = svm->vcpu.arch.xcr0; 847 save->pkru = svm->vcpu.arch.pkru; 848 save->xss = svm->vcpu.arch.ia32_xss; 849 save->dr6 = svm->vcpu.arch.dr6; 850 851 save->sev_features = sev->vmsa_features; 852 853 /* 854 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 855 * breaking older measurements. 856 */ 857 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 858 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 859 save->x87_dp = xsave->i387.rdp; 860 save->mxcsr = xsave->i387.mxcsr; 861 save->x87_ftw = xsave->i387.twd; 862 save->x87_fsw = xsave->i387.swd; 863 save->x87_fcw = xsave->i387.cwd; 864 save->x87_fop = xsave->i387.fop; 865 save->x87_ds = 0; 866 save->x87_cs = 0; 867 save->x87_rip = xsave->i387.rip; 868 869 for (i = 0; i < 8; i++) { 870 /* 871 * The format of the x87 save area is undocumented and 872 * definitely not what you would expect. It consists of 873 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 874 * area with bytes 8-9 of each register. 875 */ 876 d = save->fpreg_x87 + i * 8; 877 s = ((u8 *)xsave->i387.st_space) + i * 16; 878 memcpy(d, s, 8); 879 save->fpreg_x87[64 + i * 2] = s[8]; 880 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 881 } 882 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 883 884 s = get_xsave_addr(xsave, XFEATURE_YMM); 885 if (s) 886 memcpy(save->fpreg_ymm, s, 256); 887 else 888 memset(save->fpreg_ymm, 0, 256); 889 } 890 891 pr_debug("Virtual Machine Save Area (VMSA):\n"); 892 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 893 894 return 0; 895 } 896 897 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 898 int *error) 899 { 900 struct sev_data_launch_update_vmsa vmsa; 901 struct vcpu_svm *svm = to_svm(vcpu); 902 int ret; 903 904 if (vcpu->guest_debug) { 905 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 906 return -EINVAL; 907 } 908 909 /* Perform some pre-encryption checks against the VMSA */ 910 ret = sev_es_sync_vmsa(svm); 911 if (ret) 912 return ret; 913 914 /* 915 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 916 * the VMSA memory content (i.e it will write the same memory region 917 * with the guest's key), so invalidate it first. 918 */ 919 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 920 921 vmsa.reserved = 0; 922 vmsa.handle = to_kvm_sev_info(kvm)->handle; 923 vmsa.address = __sme_pa(svm->sev_es.vmsa); 924 vmsa.len = PAGE_SIZE; 925 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 926 if (ret) 927 return ret; 928 929 /* 930 * SEV-ES guests maintain an encrypted version of their FPU 931 * state which is restored and saved on VMRUN and VMEXIT. 932 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 933 * do xsave/xrstor on it. 934 */ 935 fpstate_set_confidential(&vcpu->arch.guest_fpu); 936 vcpu->arch.guest_state_protected = true; 937 938 /* 939 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 940 * only after setting guest_state_protected because KVM_SET_MSRS allows 941 * dynamic toggling of LBRV (for performance reason) on write access to 942 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 943 */ 944 svm_enable_lbrv(vcpu); 945 return 0; 946 } 947 948 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 949 { 950 struct kvm_vcpu *vcpu; 951 unsigned long i; 952 int ret; 953 954 if (!sev_es_guest(kvm)) 955 return -ENOTTY; 956 957 kvm_for_each_vcpu(i, vcpu, kvm) { 958 ret = mutex_lock_killable(&vcpu->mutex); 959 if (ret) 960 return ret; 961 962 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 963 964 mutex_unlock(&vcpu->mutex); 965 if (ret) 966 return ret; 967 } 968 969 return 0; 970 } 971 972 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 973 { 974 void __user *measure = u64_to_user_ptr(argp->data); 975 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 976 struct sev_data_launch_measure data; 977 struct kvm_sev_launch_measure params; 978 void __user *p = NULL; 979 void *blob = NULL; 980 int ret; 981 982 if (!sev_guest(kvm)) 983 return -ENOTTY; 984 985 if (copy_from_user(¶ms, measure, sizeof(params))) 986 return -EFAULT; 987 988 memset(&data, 0, sizeof(data)); 989 990 /* User wants to query the blob length */ 991 if (!params.len) 992 goto cmd; 993 994 p = u64_to_user_ptr(params.uaddr); 995 if (p) { 996 if (params.len > SEV_FW_BLOB_MAX_SIZE) 997 return -EINVAL; 998 999 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1000 if (!blob) 1001 return -ENOMEM; 1002 1003 data.address = __psp_pa(blob); 1004 data.len = params.len; 1005 } 1006 1007 cmd: 1008 data.handle = sev->handle; 1009 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1010 1011 /* 1012 * If we query the session length, FW responded with expected data. 1013 */ 1014 if (!params.len) 1015 goto done; 1016 1017 if (ret) 1018 goto e_free_blob; 1019 1020 if (blob) { 1021 if (copy_to_user(p, blob, params.len)) 1022 ret = -EFAULT; 1023 } 1024 1025 done: 1026 params.len = data.len; 1027 if (copy_to_user(measure, ¶ms, sizeof(params))) 1028 ret = -EFAULT; 1029 e_free_blob: 1030 kfree(blob); 1031 return ret; 1032 } 1033 1034 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1035 { 1036 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1037 struct sev_data_launch_finish data; 1038 1039 if (!sev_guest(kvm)) 1040 return -ENOTTY; 1041 1042 data.handle = sev->handle; 1043 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1044 } 1045 1046 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1047 { 1048 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1049 struct kvm_sev_guest_status params; 1050 struct sev_data_guest_status data; 1051 int ret; 1052 1053 if (!sev_guest(kvm)) 1054 return -ENOTTY; 1055 1056 memset(&data, 0, sizeof(data)); 1057 1058 data.handle = sev->handle; 1059 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1060 if (ret) 1061 return ret; 1062 1063 params.policy = data.policy; 1064 params.state = data.state; 1065 params.handle = data.handle; 1066 1067 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1068 ret = -EFAULT; 1069 1070 return ret; 1071 } 1072 1073 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1074 unsigned long dst, int size, 1075 int *error, bool enc) 1076 { 1077 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1078 struct sev_data_dbg data; 1079 1080 data.reserved = 0; 1081 data.handle = sev->handle; 1082 data.dst_addr = dst; 1083 data.src_addr = src; 1084 data.len = size; 1085 1086 return sev_issue_cmd(kvm, 1087 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1088 &data, error); 1089 } 1090 1091 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1092 unsigned long dst_paddr, int sz, int *err) 1093 { 1094 int offset; 1095 1096 /* 1097 * Its safe to read more than we are asked, caller should ensure that 1098 * destination has enough space. 1099 */ 1100 offset = src_paddr & 15; 1101 src_paddr = round_down(src_paddr, 16); 1102 sz = round_up(sz + offset, 16); 1103 1104 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1105 } 1106 1107 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1108 void __user *dst_uaddr, 1109 unsigned long dst_paddr, 1110 int size, int *err) 1111 { 1112 struct page *tpage = NULL; 1113 int ret, offset; 1114 1115 /* if inputs are not 16-byte then use intermediate buffer */ 1116 if (!IS_ALIGNED(dst_paddr, 16) || 1117 !IS_ALIGNED(paddr, 16) || 1118 !IS_ALIGNED(size, 16)) { 1119 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1120 if (!tpage) 1121 return -ENOMEM; 1122 1123 dst_paddr = __sme_page_pa(tpage); 1124 } 1125 1126 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1127 if (ret) 1128 goto e_free; 1129 1130 if (tpage) { 1131 offset = paddr & 15; 1132 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1133 ret = -EFAULT; 1134 } 1135 1136 e_free: 1137 if (tpage) 1138 __free_page(tpage); 1139 1140 return ret; 1141 } 1142 1143 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1144 void __user *vaddr, 1145 unsigned long dst_paddr, 1146 void __user *dst_vaddr, 1147 int size, int *error) 1148 { 1149 struct page *src_tpage = NULL; 1150 struct page *dst_tpage = NULL; 1151 int ret, len = size; 1152 1153 /* If source buffer is not aligned then use an intermediate buffer */ 1154 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1155 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1156 if (!src_tpage) 1157 return -ENOMEM; 1158 1159 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1160 __free_page(src_tpage); 1161 return -EFAULT; 1162 } 1163 1164 paddr = __sme_page_pa(src_tpage); 1165 } 1166 1167 /* 1168 * If destination buffer or length is not aligned then do read-modify-write: 1169 * - decrypt destination in an intermediate buffer 1170 * - copy the source buffer in an intermediate buffer 1171 * - use the intermediate buffer as source buffer 1172 */ 1173 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1174 int dst_offset; 1175 1176 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1177 if (!dst_tpage) { 1178 ret = -ENOMEM; 1179 goto e_free; 1180 } 1181 1182 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1183 __sme_page_pa(dst_tpage), size, error); 1184 if (ret) 1185 goto e_free; 1186 1187 /* 1188 * If source is kernel buffer then use memcpy() otherwise 1189 * copy_from_user(). 1190 */ 1191 dst_offset = dst_paddr & 15; 1192 1193 if (src_tpage) 1194 memcpy(page_address(dst_tpage) + dst_offset, 1195 page_address(src_tpage), size); 1196 else { 1197 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1198 vaddr, size)) { 1199 ret = -EFAULT; 1200 goto e_free; 1201 } 1202 } 1203 1204 paddr = __sme_page_pa(dst_tpage); 1205 dst_paddr = round_down(dst_paddr, 16); 1206 len = round_up(size, 16); 1207 } 1208 1209 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1210 1211 e_free: 1212 if (src_tpage) 1213 __free_page(src_tpage); 1214 if (dst_tpage) 1215 __free_page(dst_tpage); 1216 return ret; 1217 } 1218 1219 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1220 { 1221 unsigned long vaddr, vaddr_end, next_vaddr; 1222 unsigned long dst_vaddr; 1223 struct page **src_p, **dst_p; 1224 struct kvm_sev_dbg debug; 1225 unsigned long n; 1226 unsigned int size; 1227 int ret; 1228 1229 if (!sev_guest(kvm)) 1230 return -ENOTTY; 1231 1232 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1233 return -EFAULT; 1234 1235 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1236 return -EINVAL; 1237 if (!debug.dst_uaddr) 1238 return -EINVAL; 1239 1240 vaddr = debug.src_uaddr; 1241 size = debug.len; 1242 vaddr_end = vaddr + size; 1243 dst_vaddr = debug.dst_uaddr; 1244 1245 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1246 int len, s_off, d_off; 1247 1248 /* lock userspace source and destination page */ 1249 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1250 if (IS_ERR(src_p)) 1251 return PTR_ERR(src_p); 1252 1253 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 1254 if (IS_ERR(dst_p)) { 1255 sev_unpin_memory(kvm, src_p, n); 1256 return PTR_ERR(dst_p); 1257 } 1258 1259 /* 1260 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1261 * the pages; flush the destination too so that future accesses do not 1262 * see stale data. 1263 */ 1264 sev_clflush_pages(src_p, 1); 1265 sev_clflush_pages(dst_p, 1); 1266 1267 /* 1268 * Since user buffer may not be page aligned, calculate the 1269 * offset within the page. 1270 */ 1271 s_off = vaddr & ~PAGE_MASK; 1272 d_off = dst_vaddr & ~PAGE_MASK; 1273 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1274 1275 if (dec) 1276 ret = __sev_dbg_decrypt_user(kvm, 1277 __sme_page_pa(src_p[0]) + s_off, 1278 (void __user *)dst_vaddr, 1279 __sme_page_pa(dst_p[0]) + d_off, 1280 len, &argp->error); 1281 else 1282 ret = __sev_dbg_encrypt_user(kvm, 1283 __sme_page_pa(src_p[0]) + s_off, 1284 (void __user *)vaddr, 1285 __sme_page_pa(dst_p[0]) + d_off, 1286 (void __user *)dst_vaddr, 1287 len, &argp->error); 1288 1289 sev_unpin_memory(kvm, src_p, n); 1290 sev_unpin_memory(kvm, dst_p, n); 1291 1292 if (ret) 1293 goto err; 1294 1295 next_vaddr = vaddr + len; 1296 dst_vaddr = dst_vaddr + len; 1297 size -= len; 1298 } 1299 err: 1300 return ret; 1301 } 1302 1303 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1304 { 1305 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1306 struct sev_data_launch_secret data; 1307 struct kvm_sev_launch_secret params; 1308 struct page **pages; 1309 void *blob, *hdr; 1310 unsigned long n, i; 1311 int ret, offset; 1312 1313 if (!sev_guest(kvm)) 1314 return -ENOTTY; 1315 1316 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1317 return -EFAULT; 1318 1319 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1320 if (IS_ERR(pages)) 1321 return PTR_ERR(pages); 1322 1323 /* 1324 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1325 * place; the cache may contain the data that was written unencrypted. 1326 */ 1327 sev_clflush_pages(pages, n); 1328 1329 /* 1330 * The secret must be copied into contiguous memory region, lets verify 1331 * that userspace memory pages are contiguous before we issue command. 1332 */ 1333 if (get_num_contig_pages(0, pages, n) != n) { 1334 ret = -EINVAL; 1335 goto e_unpin_memory; 1336 } 1337 1338 memset(&data, 0, sizeof(data)); 1339 1340 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1341 data.guest_address = __sme_page_pa(pages[0]) + offset; 1342 data.guest_len = params.guest_len; 1343 1344 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1345 if (IS_ERR(blob)) { 1346 ret = PTR_ERR(blob); 1347 goto e_unpin_memory; 1348 } 1349 1350 data.trans_address = __psp_pa(blob); 1351 data.trans_len = params.trans_len; 1352 1353 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1354 if (IS_ERR(hdr)) { 1355 ret = PTR_ERR(hdr); 1356 goto e_free_blob; 1357 } 1358 data.hdr_address = __psp_pa(hdr); 1359 data.hdr_len = params.hdr_len; 1360 1361 data.handle = sev->handle; 1362 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1363 1364 kfree(hdr); 1365 1366 e_free_blob: 1367 kfree(blob); 1368 e_unpin_memory: 1369 /* content of memory is updated, mark pages dirty */ 1370 for (i = 0; i < n; i++) { 1371 set_page_dirty_lock(pages[i]); 1372 mark_page_accessed(pages[i]); 1373 } 1374 sev_unpin_memory(kvm, pages, n); 1375 return ret; 1376 } 1377 1378 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1379 { 1380 void __user *report = u64_to_user_ptr(argp->data); 1381 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1382 struct sev_data_attestation_report data; 1383 struct kvm_sev_attestation_report params; 1384 void __user *p; 1385 void *blob = NULL; 1386 int ret; 1387 1388 if (!sev_guest(kvm)) 1389 return -ENOTTY; 1390 1391 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1392 return -EFAULT; 1393 1394 memset(&data, 0, sizeof(data)); 1395 1396 /* User wants to query the blob length */ 1397 if (!params.len) 1398 goto cmd; 1399 1400 p = u64_to_user_ptr(params.uaddr); 1401 if (p) { 1402 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1403 return -EINVAL; 1404 1405 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1406 if (!blob) 1407 return -ENOMEM; 1408 1409 data.address = __psp_pa(blob); 1410 data.len = params.len; 1411 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1412 } 1413 cmd: 1414 data.handle = sev->handle; 1415 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1416 /* 1417 * If we query the session length, FW responded with expected data. 1418 */ 1419 if (!params.len) 1420 goto done; 1421 1422 if (ret) 1423 goto e_free_blob; 1424 1425 if (blob) { 1426 if (copy_to_user(p, blob, params.len)) 1427 ret = -EFAULT; 1428 } 1429 1430 done: 1431 params.len = data.len; 1432 if (copy_to_user(report, ¶ms, sizeof(params))) 1433 ret = -EFAULT; 1434 e_free_blob: 1435 kfree(blob); 1436 return ret; 1437 } 1438 1439 /* Userspace wants to query session length. */ 1440 static int 1441 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1442 struct kvm_sev_send_start *params) 1443 { 1444 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1445 struct sev_data_send_start data; 1446 int ret; 1447 1448 memset(&data, 0, sizeof(data)); 1449 data.handle = sev->handle; 1450 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1451 1452 params->session_len = data.session_len; 1453 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1454 sizeof(struct kvm_sev_send_start))) 1455 ret = -EFAULT; 1456 1457 return ret; 1458 } 1459 1460 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1461 { 1462 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1463 struct sev_data_send_start data; 1464 struct kvm_sev_send_start params; 1465 void *amd_certs, *session_data; 1466 void *pdh_cert, *plat_certs; 1467 int ret; 1468 1469 if (!sev_guest(kvm)) 1470 return -ENOTTY; 1471 1472 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1473 sizeof(struct kvm_sev_send_start))) 1474 return -EFAULT; 1475 1476 /* if session_len is zero, userspace wants to query the session length */ 1477 if (!params.session_len) 1478 return __sev_send_start_query_session_length(kvm, argp, 1479 ¶ms); 1480 1481 /* some sanity checks */ 1482 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1483 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1484 return -EINVAL; 1485 1486 /* allocate the memory to hold the session data blob */ 1487 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1488 if (!session_data) 1489 return -ENOMEM; 1490 1491 /* copy the certificate blobs from userspace */ 1492 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1493 params.pdh_cert_len); 1494 if (IS_ERR(pdh_cert)) { 1495 ret = PTR_ERR(pdh_cert); 1496 goto e_free_session; 1497 } 1498 1499 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1500 params.plat_certs_len); 1501 if (IS_ERR(plat_certs)) { 1502 ret = PTR_ERR(plat_certs); 1503 goto e_free_pdh; 1504 } 1505 1506 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1507 params.amd_certs_len); 1508 if (IS_ERR(amd_certs)) { 1509 ret = PTR_ERR(amd_certs); 1510 goto e_free_plat_cert; 1511 } 1512 1513 /* populate the FW SEND_START field with system physical address */ 1514 memset(&data, 0, sizeof(data)); 1515 data.pdh_cert_address = __psp_pa(pdh_cert); 1516 data.pdh_cert_len = params.pdh_cert_len; 1517 data.plat_certs_address = __psp_pa(plat_certs); 1518 data.plat_certs_len = params.plat_certs_len; 1519 data.amd_certs_address = __psp_pa(amd_certs); 1520 data.amd_certs_len = params.amd_certs_len; 1521 data.session_address = __psp_pa(session_data); 1522 data.session_len = params.session_len; 1523 data.handle = sev->handle; 1524 1525 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1526 1527 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1528 session_data, params.session_len)) { 1529 ret = -EFAULT; 1530 goto e_free_amd_cert; 1531 } 1532 1533 params.policy = data.policy; 1534 params.session_len = data.session_len; 1535 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1536 sizeof(struct kvm_sev_send_start))) 1537 ret = -EFAULT; 1538 1539 e_free_amd_cert: 1540 kfree(amd_certs); 1541 e_free_plat_cert: 1542 kfree(plat_certs); 1543 e_free_pdh: 1544 kfree(pdh_cert); 1545 e_free_session: 1546 kfree(session_data); 1547 return ret; 1548 } 1549 1550 /* Userspace wants to query either header or trans length. */ 1551 static int 1552 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1553 struct kvm_sev_send_update_data *params) 1554 { 1555 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1556 struct sev_data_send_update_data data; 1557 int ret; 1558 1559 memset(&data, 0, sizeof(data)); 1560 data.handle = sev->handle; 1561 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1562 1563 params->hdr_len = data.hdr_len; 1564 params->trans_len = data.trans_len; 1565 1566 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1567 sizeof(struct kvm_sev_send_update_data))) 1568 ret = -EFAULT; 1569 1570 return ret; 1571 } 1572 1573 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1574 { 1575 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1576 struct sev_data_send_update_data data; 1577 struct kvm_sev_send_update_data params; 1578 void *hdr, *trans_data; 1579 struct page **guest_page; 1580 unsigned long n; 1581 int ret, offset; 1582 1583 if (!sev_guest(kvm)) 1584 return -ENOTTY; 1585 1586 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1587 sizeof(struct kvm_sev_send_update_data))) 1588 return -EFAULT; 1589 1590 /* userspace wants to query either header or trans length */ 1591 if (!params.trans_len || !params.hdr_len) 1592 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1593 1594 if (!params.trans_uaddr || !params.guest_uaddr || 1595 !params.guest_len || !params.hdr_uaddr) 1596 return -EINVAL; 1597 1598 /* Check if we are crossing the page boundary */ 1599 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1600 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1601 return -EINVAL; 1602 1603 /* Pin guest memory */ 1604 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1605 PAGE_SIZE, &n, 0); 1606 if (IS_ERR(guest_page)) 1607 return PTR_ERR(guest_page); 1608 1609 /* allocate memory for header and transport buffer */ 1610 ret = -ENOMEM; 1611 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1612 if (!hdr) 1613 goto e_unpin; 1614 1615 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1616 if (!trans_data) 1617 goto e_free_hdr; 1618 1619 memset(&data, 0, sizeof(data)); 1620 data.hdr_address = __psp_pa(hdr); 1621 data.hdr_len = params.hdr_len; 1622 data.trans_address = __psp_pa(trans_data); 1623 data.trans_len = params.trans_len; 1624 1625 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1626 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1627 data.guest_address |= sev_me_mask; 1628 data.guest_len = params.guest_len; 1629 data.handle = sev->handle; 1630 1631 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1632 1633 if (ret) 1634 goto e_free_trans_data; 1635 1636 /* copy transport buffer to user space */ 1637 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1638 trans_data, params.trans_len)) { 1639 ret = -EFAULT; 1640 goto e_free_trans_data; 1641 } 1642 1643 /* Copy packet header to userspace. */ 1644 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1645 params.hdr_len)) 1646 ret = -EFAULT; 1647 1648 e_free_trans_data: 1649 kfree(trans_data); 1650 e_free_hdr: 1651 kfree(hdr); 1652 e_unpin: 1653 sev_unpin_memory(kvm, guest_page, n); 1654 1655 return ret; 1656 } 1657 1658 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1659 { 1660 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1661 struct sev_data_send_finish data; 1662 1663 if (!sev_guest(kvm)) 1664 return -ENOTTY; 1665 1666 data.handle = sev->handle; 1667 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1668 } 1669 1670 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1671 { 1672 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1673 struct sev_data_send_cancel data; 1674 1675 if (!sev_guest(kvm)) 1676 return -ENOTTY; 1677 1678 data.handle = sev->handle; 1679 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1680 } 1681 1682 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1683 { 1684 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1685 struct sev_data_receive_start start; 1686 struct kvm_sev_receive_start params; 1687 int *error = &argp->error; 1688 void *session_data; 1689 void *pdh_data; 1690 int ret; 1691 1692 if (!sev_guest(kvm)) 1693 return -ENOTTY; 1694 1695 /* Get parameter from the userspace */ 1696 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1697 sizeof(struct kvm_sev_receive_start))) 1698 return -EFAULT; 1699 1700 /* some sanity checks */ 1701 if (!params.pdh_uaddr || !params.pdh_len || 1702 !params.session_uaddr || !params.session_len) 1703 return -EINVAL; 1704 1705 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1706 if (IS_ERR(pdh_data)) 1707 return PTR_ERR(pdh_data); 1708 1709 session_data = psp_copy_user_blob(params.session_uaddr, 1710 params.session_len); 1711 if (IS_ERR(session_data)) { 1712 ret = PTR_ERR(session_data); 1713 goto e_free_pdh; 1714 } 1715 1716 memset(&start, 0, sizeof(start)); 1717 start.handle = params.handle; 1718 start.policy = params.policy; 1719 start.pdh_cert_address = __psp_pa(pdh_data); 1720 start.pdh_cert_len = params.pdh_len; 1721 start.session_address = __psp_pa(session_data); 1722 start.session_len = params.session_len; 1723 1724 /* create memory encryption context */ 1725 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1726 error); 1727 if (ret) 1728 goto e_free_session; 1729 1730 /* Bind ASID to this guest */ 1731 ret = sev_bind_asid(kvm, start.handle, error); 1732 if (ret) { 1733 sev_decommission(start.handle); 1734 goto e_free_session; 1735 } 1736 1737 params.handle = start.handle; 1738 if (copy_to_user(u64_to_user_ptr(argp->data), 1739 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1740 ret = -EFAULT; 1741 sev_unbind_asid(kvm, start.handle); 1742 goto e_free_session; 1743 } 1744 1745 sev->handle = start.handle; 1746 sev->fd = argp->sev_fd; 1747 1748 e_free_session: 1749 kfree(session_data); 1750 e_free_pdh: 1751 kfree(pdh_data); 1752 1753 return ret; 1754 } 1755 1756 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1757 { 1758 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1759 struct kvm_sev_receive_update_data params; 1760 struct sev_data_receive_update_data data; 1761 void *hdr = NULL, *trans = NULL; 1762 struct page **guest_page; 1763 unsigned long n; 1764 int ret, offset; 1765 1766 if (!sev_guest(kvm)) 1767 return -EINVAL; 1768 1769 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1770 sizeof(struct kvm_sev_receive_update_data))) 1771 return -EFAULT; 1772 1773 if (!params.hdr_uaddr || !params.hdr_len || 1774 !params.guest_uaddr || !params.guest_len || 1775 !params.trans_uaddr || !params.trans_len) 1776 return -EINVAL; 1777 1778 /* Check if we are crossing the page boundary */ 1779 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1780 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1781 return -EINVAL; 1782 1783 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1784 if (IS_ERR(hdr)) 1785 return PTR_ERR(hdr); 1786 1787 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1788 if (IS_ERR(trans)) { 1789 ret = PTR_ERR(trans); 1790 goto e_free_hdr; 1791 } 1792 1793 memset(&data, 0, sizeof(data)); 1794 data.hdr_address = __psp_pa(hdr); 1795 data.hdr_len = params.hdr_len; 1796 data.trans_address = __psp_pa(trans); 1797 data.trans_len = params.trans_len; 1798 1799 /* Pin guest memory */ 1800 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1801 PAGE_SIZE, &n, 1); 1802 if (IS_ERR(guest_page)) { 1803 ret = PTR_ERR(guest_page); 1804 goto e_free_trans; 1805 } 1806 1807 /* 1808 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1809 * encrypts the written data with the guest's key, and the cache may 1810 * contain dirty, unencrypted data. 1811 */ 1812 sev_clflush_pages(guest_page, n); 1813 1814 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1815 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1816 data.guest_address |= sev_me_mask; 1817 data.guest_len = params.guest_len; 1818 data.handle = sev->handle; 1819 1820 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1821 &argp->error); 1822 1823 sev_unpin_memory(kvm, guest_page, n); 1824 1825 e_free_trans: 1826 kfree(trans); 1827 e_free_hdr: 1828 kfree(hdr); 1829 1830 return ret; 1831 } 1832 1833 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1834 { 1835 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1836 struct sev_data_receive_finish data; 1837 1838 if (!sev_guest(kvm)) 1839 return -ENOTTY; 1840 1841 data.handle = sev->handle; 1842 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1843 } 1844 1845 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1846 { 1847 /* 1848 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1849 * active mirror VMs. Also allow the debugging and status commands. 1850 */ 1851 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1852 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1853 cmd_id == KVM_SEV_DBG_ENCRYPT) 1854 return true; 1855 1856 return false; 1857 } 1858 1859 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1860 { 1861 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1862 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1863 int r = -EBUSY; 1864 1865 if (dst_kvm == src_kvm) 1866 return -EINVAL; 1867 1868 /* 1869 * Bail if these VMs are already involved in a migration to avoid 1870 * deadlock between two VMs trying to migrate to/from each other. 1871 */ 1872 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1873 return -EBUSY; 1874 1875 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1876 goto release_dst; 1877 1878 r = -EINTR; 1879 if (mutex_lock_killable(&dst_kvm->lock)) 1880 goto release_src; 1881 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1882 goto unlock_dst; 1883 return 0; 1884 1885 unlock_dst: 1886 mutex_unlock(&dst_kvm->lock); 1887 release_src: 1888 atomic_set_release(&src_sev->migration_in_progress, 0); 1889 release_dst: 1890 atomic_set_release(&dst_sev->migration_in_progress, 0); 1891 return r; 1892 } 1893 1894 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1895 { 1896 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info; 1897 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info; 1898 1899 mutex_unlock(&dst_kvm->lock); 1900 mutex_unlock(&src_kvm->lock); 1901 atomic_set_release(&dst_sev->migration_in_progress, 0); 1902 atomic_set_release(&src_sev->migration_in_progress, 0); 1903 } 1904 1905 /* vCPU mutex subclasses. */ 1906 enum sev_migration_role { 1907 SEV_MIGRATION_SOURCE = 0, 1908 SEV_MIGRATION_TARGET, 1909 SEV_NR_MIGRATION_ROLES, 1910 }; 1911 1912 static int sev_lock_vcpus_for_migration(struct kvm *kvm, 1913 enum sev_migration_role role) 1914 { 1915 struct kvm_vcpu *vcpu; 1916 unsigned long i, j; 1917 1918 kvm_for_each_vcpu(i, vcpu, kvm) { 1919 if (mutex_lock_killable_nested(&vcpu->mutex, role)) 1920 goto out_unlock; 1921 1922 #ifdef CONFIG_PROVE_LOCKING 1923 if (!i) 1924 /* 1925 * Reset the role to one that avoids colliding with 1926 * the role used for the first vcpu mutex. 1927 */ 1928 role = SEV_NR_MIGRATION_ROLES; 1929 else 1930 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_); 1931 #endif 1932 } 1933 1934 return 0; 1935 1936 out_unlock: 1937 1938 kvm_for_each_vcpu(j, vcpu, kvm) { 1939 if (i == j) 1940 break; 1941 1942 #ifdef CONFIG_PROVE_LOCKING 1943 if (j) 1944 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_); 1945 #endif 1946 1947 mutex_unlock(&vcpu->mutex); 1948 } 1949 return -EINTR; 1950 } 1951 1952 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1953 { 1954 struct kvm_vcpu *vcpu; 1955 unsigned long i; 1956 bool first = true; 1957 1958 kvm_for_each_vcpu(i, vcpu, kvm) { 1959 if (first) 1960 first = false; 1961 else 1962 mutex_acquire(&vcpu->mutex.dep_map, 1963 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_); 1964 1965 mutex_unlock(&vcpu->mutex); 1966 } 1967 } 1968 1969 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1970 { 1971 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info; 1972 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info; 1973 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1974 struct vcpu_svm *dst_svm, *src_svm; 1975 struct kvm_sev_info *mirror; 1976 unsigned long i; 1977 1978 dst->active = true; 1979 dst->asid = src->asid; 1980 dst->handle = src->handle; 1981 dst->pages_locked = src->pages_locked; 1982 dst->enc_context_owner = src->enc_context_owner; 1983 dst->es_active = src->es_active; 1984 dst->vmsa_features = src->vmsa_features; 1985 1986 src->asid = 0; 1987 src->active = false; 1988 src->handle = 0; 1989 src->pages_locked = 0; 1990 src->enc_context_owner = NULL; 1991 src->es_active = false; 1992 1993 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1994 1995 /* 1996 * If this VM has mirrors, "transfer" each mirror's refcount of the 1997 * source to the destination (this KVM). The caller holds a reference 1998 * to the source, so there's no danger of use-after-free. 1999 */ 2000 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 2001 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 2002 kvm_get_kvm(dst_kvm); 2003 kvm_put_kvm(src_kvm); 2004 mirror->enc_context_owner = dst_kvm; 2005 } 2006 2007 /* 2008 * If this VM is a mirror, remove the old mirror from the owners list 2009 * and add the new mirror to the list. 2010 */ 2011 if (is_mirroring_enc_context(dst_kvm)) { 2012 struct kvm_sev_info *owner_sev_info = 2013 &to_kvm_svm(dst->enc_context_owner)->sev_info; 2014 2015 list_del(&src->mirror_entry); 2016 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 2017 } 2018 2019 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 2020 dst_svm = to_svm(dst_vcpu); 2021 2022 sev_init_vmcb(dst_svm); 2023 2024 if (!dst->es_active) 2025 continue; 2026 2027 /* 2028 * Note, the source is not required to have the same number of 2029 * vCPUs as the destination when migrating a vanilla SEV VM. 2030 */ 2031 src_vcpu = kvm_get_vcpu(src_kvm, i); 2032 src_svm = to_svm(src_vcpu); 2033 2034 /* 2035 * Transfer VMSA and GHCB state to the destination. Nullify and 2036 * clear source fields as appropriate, the state now belongs to 2037 * the destination. 2038 */ 2039 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 2040 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 2041 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 2042 dst_vcpu->arch.guest_state_protected = true; 2043 2044 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 2045 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 2046 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 2047 src_vcpu->arch.guest_state_protected = false; 2048 } 2049 } 2050 2051 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 2052 { 2053 struct kvm_vcpu *src_vcpu; 2054 unsigned long i; 2055 2056 if (!sev_es_guest(src)) 2057 return 0; 2058 2059 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 2060 return -EINVAL; 2061 2062 kvm_for_each_vcpu(i, src_vcpu, src) { 2063 if (!src_vcpu->arch.guest_state_protected) 2064 return -EINVAL; 2065 } 2066 2067 return 0; 2068 } 2069 2070 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2071 { 2072 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 2073 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 2074 CLASS(fd, f)(source_fd); 2075 struct kvm *source_kvm; 2076 bool charged = false; 2077 int ret; 2078 2079 if (fd_empty(f)) 2080 return -EBADF; 2081 2082 if (!file_is_kvm(fd_file(f))) 2083 return -EBADF; 2084 2085 source_kvm = fd_file(f)->private_data; 2086 ret = sev_lock_two_vms(kvm, source_kvm); 2087 if (ret) 2088 return ret; 2089 2090 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2091 sev_guest(kvm) || !sev_guest(source_kvm)) { 2092 ret = -EINVAL; 2093 goto out_unlock; 2094 } 2095 2096 src_sev = &to_kvm_svm(source_kvm)->sev_info; 2097 2098 dst_sev->misc_cg = get_current_misc_cg(); 2099 cg_cleanup_sev = dst_sev; 2100 if (dst_sev->misc_cg != src_sev->misc_cg) { 2101 ret = sev_misc_cg_try_charge(dst_sev); 2102 if (ret) 2103 goto out_dst_cgroup; 2104 charged = true; 2105 } 2106 2107 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE); 2108 if (ret) 2109 goto out_dst_cgroup; 2110 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET); 2111 if (ret) 2112 goto out_dst_vcpu; 2113 2114 ret = sev_check_source_vcpus(kvm, source_kvm); 2115 if (ret) 2116 goto out_source_vcpu; 2117 2118 sev_migrate_from(kvm, source_kvm); 2119 kvm_vm_dead(source_kvm); 2120 cg_cleanup_sev = src_sev; 2121 ret = 0; 2122 2123 out_source_vcpu: 2124 sev_unlock_vcpus_for_migration(source_kvm); 2125 out_dst_vcpu: 2126 sev_unlock_vcpus_for_migration(kvm); 2127 out_dst_cgroup: 2128 /* Operates on the source on success, on the destination on failure. */ 2129 if (charged) 2130 sev_misc_cg_uncharge(cg_cleanup_sev); 2131 put_misc_cg(cg_cleanup_sev->misc_cg); 2132 cg_cleanup_sev->misc_cg = NULL; 2133 out_unlock: 2134 sev_unlock_two_vms(kvm, source_kvm); 2135 return ret; 2136 } 2137 2138 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2139 { 2140 if (group != KVM_X86_GRP_SEV) 2141 return -ENXIO; 2142 2143 switch (attr) { 2144 case KVM_X86_SEV_VMSA_FEATURES: 2145 *val = sev_supported_vmsa_features; 2146 return 0; 2147 2148 default: 2149 return -ENXIO; 2150 } 2151 } 2152 2153 /* 2154 * The guest context contains all the information, keys and metadata 2155 * associated with the guest that the firmware tracks to implement SEV 2156 * and SNP features. The firmware stores the guest context in hypervisor 2157 * provide page via the SNP_GCTX_CREATE command. 2158 */ 2159 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2160 { 2161 struct sev_data_snp_addr data = {}; 2162 void *context; 2163 int rc; 2164 2165 /* Allocate memory for context page */ 2166 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2167 if (!context) 2168 return NULL; 2169 2170 data.address = __psp_pa(context); 2171 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2172 if (rc) { 2173 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2174 rc, argp->error); 2175 snp_free_firmware_page(context); 2176 return NULL; 2177 } 2178 2179 return context; 2180 } 2181 2182 static int snp_bind_asid(struct kvm *kvm, int *error) 2183 { 2184 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2185 struct sev_data_snp_activate data = {0}; 2186 2187 data.gctx_paddr = __psp_pa(sev->snp_context); 2188 data.asid = sev_get_asid(kvm); 2189 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2190 } 2191 2192 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2193 { 2194 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2195 struct sev_data_snp_launch_start start = {0}; 2196 struct kvm_sev_snp_launch_start params; 2197 int rc; 2198 2199 if (!sev_snp_guest(kvm)) 2200 return -ENOTTY; 2201 2202 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2203 return -EFAULT; 2204 2205 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2206 if (sev->snp_context) 2207 return -EINVAL; 2208 2209 if (params.flags) 2210 return -EINVAL; 2211 2212 if (params.policy & ~SNP_POLICY_MASK_VALID) 2213 return -EINVAL; 2214 2215 /* Check for policy bits that must be set */ 2216 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || 2217 !(params.policy & SNP_POLICY_MASK_SMT)) 2218 return -EINVAL; 2219 2220 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) 2221 return -EINVAL; 2222 2223 sev->snp_context = snp_context_create(kvm, argp); 2224 if (!sev->snp_context) 2225 return -ENOTTY; 2226 2227 start.gctx_paddr = __psp_pa(sev->snp_context); 2228 start.policy = params.policy; 2229 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2230 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2231 if (rc) { 2232 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2233 __func__, rc); 2234 goto e_free_context; 2235 } 2236 2237 sev->fd = argp->sev_fd; 2238 rc = snp_bind_asid(kvm, &argp->error); 2239 if (rc) { 2240 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2241 __func__, rc); 2242 goto e_free_context; 2243 } 2244 2245 return 0; 2246 2247 e_free_context: 2248 snp_decommission_context(kvm); 2249 2250 return rc; 2251 } 2252 2253 struct sev_gmem_populate_args { 2254 __u8 type; 2255 int sev_fd; 2256 int fw_error; 2257 }; 2258 2259 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2260 void __user *src, int order, void *opaque) 2261 { 2262 struct sev_gmem_populate_args *sev_populate_args = opaque; 2263 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2264 int n_private = 0, ret, i; 2265 int npages = (1 << order); 2266 gfn_t gfn; 2267 2268 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2269 return -EINVAL; 2270 2271 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2272 struct sev_data_snp_launch_update fw_args = {0}; 2273 bool assigned = false; 2274 int level; 2275 2276 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2277 if (ret || assigned) { 2278 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2279 __func__, gfn, ret, assigned); 2280 ret = ret ? -EINVAL : -EEXIST; 2281 goto err; 2282 } 2283 2284 if (src) { 2285 void *vaddr = kmap_local_pfn(pfn + i); 2286 2287 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { 2288 ret = -EFAULT; 2289 goto err; 2290 } 2291 kunmap_local(vaddr); 2292 } 2293 2294 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2295 sev_get_asid(kvm), true); 2296 if (ret) 2297 goto err; 2298 2299 n_private++; 2300 2301 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2302 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2303 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2304 fw_args.page_type = sev_populate_args->type; 2305 2306 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2307 &fw_args, &sev_populate_args->fw_error); 2308 if (ret) 2309 goto fw_err; 2310 } 2311 2312 return 0; 2313 2314 fw_err: 2315 /* 2316 * If the firmware command failed handle the reclaim and cleanup of that 2317 * PFN specially vs. prior pages which can be cleaned up below without 2318 * needing to reclaim in advance. 2319 * 2320 * Additionally, when invalid CPUID function entries are detected, 2321 * firmware writes the expected values into the page and leaves it 2322 * unencrypted so it can be used for debugging and error-reporting. 2323 * 2324 * Copy this page back into the source buffer so userspace can use this 2325 * information to provide information on which CPUID leaves/fields 2326 * failed CPUID validation. 2327 */ 2328 if (!snp_page_reclaim(kvm, pfn + i) && 2329 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2330 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2331 void *vaddr = kmap_local_pfn(pfn + i); 2332 2333 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2334 pr_debug("Failed to write CPUID page back to userspace\n"); 2335 2336 kunmap_local(vaddr); 2337 } 2338 2339 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2340 n_private--; 2341 2342 err: 2343 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2344 __func__, ret, sev_populate_args->fw_error, n_private); 2345 for (i = 0; i < n_private; i++) 2346 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2347 2348 return ret; 2349 } 2350 2351 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2352 { 2353 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2354 struct sev_gmem_populate_args sev_populate_args = {0}; 2355 struct kvm_sev_snp_launch_update params; 2356 struct kvm_memory_slot *memslot; 2357 long npages, count; 2358 void __user *src; 2359 int ret = 0; 2360 2361 if (!sev_snp_guest(kvm) || !sev->snp_context) 2362 return -EINVAL; 2363 2364 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2365 return -EFAULT; 2366 2367 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2368 params.gfn_start, params.len, params.type, params.flags); 2369 2370 if (!PAGE_ALIGNED(params.len) || params.flags || 2371 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2372 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2373 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2374 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2375 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2376 return -EINVAL; 2377 2378 npages = params.len / PAGE_SIZE; 2379 2380 /* 2381 * For each GFN that's being prepared as part of the initial guest 2382 * state, the following pre-conditions are verified: 2383 * 2384 * 1) The backing memslot is a valid private memslot. 2385 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2386 * beforehand. 2387 * 3) The PFN of the guest_memfd has not already been set to private 2388 * in the RMP table. 2389 * 2390 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2391 * faults if there's a race between a fault and an attribute update via 2392 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2393 * here. However, kvm->slots_lock guards against both this as well as 2394 * concurrent memslot updates occurring while these checks are being 2395 * performed, so use that here to make it easier to reason about the 2396 * initial expected state and better guard against unexpected 2397 * situations. 2398 */ 2399 mutex_lock(&kvm->slots_lock); 2400 2401 memslot = gfn_to_memslot(kvm, params.gfn_start); 2402 if (!kvm_slot_can_be_private(memslot)) { 2403 ret = -EINVAL; 2404 goto out; 2405 } 2406 2407 sev_populate_args.sev_fd = argp->sev_fd; 2408 sev_populate_args.type = params.type; 2409 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2410 2411 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2412 sev_gmem_post_populate, &sev_populate_args); 2413 if (count < 0) { 2414 argp->error = sev_populate_args.fw_error; 2415 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2416 __func__, count, argp->error); 2417 ret = -EIO; 2418 } else { 2419 params.gfn_start += count; 2420 params.len -= count * PAGE_SIZE; 2421 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2422 params.uaddr += count * PAGE_SIZE; 2423 2424 ret = 0; 2425 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2426 ret = -EFAULT; 2427 } 2428 2429 out: 2430 mutex_unlock(&kvm->slots_lock); 2431 2432 return ret; 2433 } 2434 2435 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2436 { 2437 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2438 struct sev_data_snp_launch_update data = {}; 2439 struct kvm_vcpu *vcpu; 2440 unsigned long i; 2441 int ret; 2442 2443 data.gctx_paddr = __psp_pa(sev->snp_context); 2444 data.page_type = SNP_PAGE_TYPE_VMSA; 2445 2446 kvm_for_each_vcpu(i, vcpu, kvm) { 2447 struct vcpu_svm *svm = to_svm(vcpu); 2448 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2449 2450 ret = sev_es_sync_vmsa(svm); 2451 if (ret) 2452 return ret; 2453 2454 /* Transition the VMSA page to a firmware state. */ 2455 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2456 if (ret) 2457 return ret; 2458 2459 /* Issue the SNP command to encrypt the VMSA */ 2460 data.address = __sme_pa(svm->sev_es.vmsa); 2461 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2462 &data, &argp->error); 2463 if (ret) { 2464 snp_page_reclaim(kvm, pfn); 2465 2466 return ret; 2467 } 2468 2469 svm->vcpu.arch.guest_state_protected = true; 2470 /* 2471 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2472 * be _always_ ON. Enable it only after setting 2473 * guest_state_protected because KVM_SET_MSRS allows dynamic 2474 * toggling of LBRV (for performance reason) on write access to 2475 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2476 */ 2477 svm_enable_lbrv(vcpu); 2478 } 2479 2480 return 0; 2481 } 2482 2483 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2484 { 2485 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2486 struct kvm_sev_snp_launch_finish params; 2487 struct sev_data_snp_launch_finish *data; 2488 void *id_block = NULL, *id_auth = NULL; 2489 int ret; 2490 2491 if (!sev_snp_guest(kvm)) 2492 return -ENOTTY; 2493 2494 if (!sev->snp_context) 2495 return -EINVAL; 2496 2497 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2498 return -EFAULT; 2499 2500 if (params.flags) 2501 return -EINVAL; 2502 2503 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2504 ret = snp_launch_update_vmsa(kvm, argp); 2505 if (ret) 2506 return ret; 2507 2508 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2509 if (!data) 2510 return -ENOMEM; 2511 2512 if (params.id_block_en) { 2513 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2514 if (IS_ERR(id_block)) { 2515 ret = PTR_ERR(id_block); 2516 goto e_free; 2517 } 2518 2519 data->id_block_en = 1; 2520 data->id_block_paddr = __sme_pa(id_block); 2521 2522 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2523 if (IS_ERR(id_auth)) { 2524 ret = PTR_ERR(id_auth); 2525 goto e_free_id_block; 2526 } 2527 2528 data->id_auth_paddr = __sme_pa(id_auth); 2529 2530 if (params.auth_key_en) 2531 data->auth_key_en = 1; 2532 } 2533 2534 data->vcek_disabled = params.vcek_disabled; 2535 2536 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2537 data->gctx_paddr = __psp_pa(sev->snp_context); 2538 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2539 2540 /* 2541 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2542 * can be given to the guest simply by marking the RMP entry as private. 2543 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2544 */ 2545 if (!ret) 2546 kvm->arch.pre_fault_allowed = true; 2547 2548 kfree(id_auth); 2549 2550 e_free_id_block: 2551 kfree(id_block); 2552 2553 e_free: 2554 kfree(data); 2555 2556 return ret; 2557 } 2558 2559 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2560 { 2561 struct kvm_sev_cmd sev_cmd; 2562 int r; 2563 2564 if (!sev_enabled) 2565 return -ENOTTY; 2566 2567 if (!argp) 2568 return 0; 2569 2570 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2571 return -EFAULT; 2572 2573 mutex_lock(&kvm->lock); 2574 2575 /* Only the enc_context_owner handles some memory enc operations. */ 2576 if (is_mirroring_enc_context(kvm) && 2577 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2578 r = -EINVAL; 2579 goto out; 2580 } 2581 2582 /* 2583 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2584 * allow the use of SNP-specific commands. 2585 */ 2586 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2587 r = -EPERM; 2588 goto out; 2589 } 2590 2591 switch (sev_cmd.id) { 2592 case KVM_SEV_ES_INIT: 2593 if (!sev_es_enabled) { 2594 r = -ENOTTY; 2595 goto out; 2596 } 2597 fallthrough; 2598 case KVM_SEV_INIT: 2599 r = sev_guest_init(kvm, &sev_cmd); 2600 break; 2601 case KVM_SEV_INIT2: 2602 r = sev_guest_init2(kvm, &sev_cmd); 2603 break; 2604 case KVM_SEV_LAUNCH_START: 2605 r = sev_launch_start(kvm, &sev_cmd); 2606 break; 2607 case KVM_SEV_LAUNCH_UPDATE_DATA: 2608 r = sev_launch_update_data(kvm, &sev_cmd); 2609 break; 2610 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2611 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2612 break; 2613 case KVM_SEV_LAUNCH_MEASURE: 2614 r = sev_launch_measure(kvm, &sev_cmd); 2615 break; 2616 case KVM_SEV_LAUNCH_FINISH: 2617 r = sev_launch_finish(kvm, &sev_cmd); 2618 break; 2619 case KVM_SEV_GUEST_STATUS: 2620 r = sev_guest_status(kvm, &sev_cmd); 2621 break; 2622 case KVM_SEV_DBG_DECRYPT: 2623 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2624 break; 2625 case KVM_SEV_DBG_ENCRYPT: 2626 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2627 break; 2628 case KVM_SEV_LAUNCH_SECRET: 2629 r = sev_launch_secret(kvm, &sev_cmd); 2630 break; 2631 case KVM_SEV_GET_ATTESTATION_REPORT: 2632 r = sev_get_attestation_report(kvm, &sev_cmd); 2633 break; 2634 case KVM_SEV_SEND_START: 2635 r = sev_send_start(kvm, &sev_cmd); 2636 break; 2637 case KVM_SEV_SEND_UPDATE_DATA: 2638 r = sev_send_update_data(kvm, &sev_cmd); 2639 break; 2640 case KVM_SEV_SEND_FINISH: 2641 r = sev_send_finish(kvm, &sev_cmd); 2642 break; 2643 case KVM_SEV_SEND_CANCEL: 2644 r = sev_send_cancel(kvm, &sev_cmd); 2645 break; 2646 case KVM_SEV_RECEIVE_START: 2647 r = sev_receive_start(kvm, &sev_cmd); 2648 break; 2649 case KVM_SEV_RECEIVE_UPDATE_DATA: 2650 r = sev_receive_update_data(kvm, &sev_cmd); 2651 break; 2652 case KVM_SEV_RECEIVE_FINISH: 2653 r = sev_receive_finish(kvm, &sev_cmd); 2654 break; 2655 case KVM_SEV_SNP_LAUNCH_START: 2656 r = snp_launch_start(kvm, &sev_cmd); 2657 break; 2658 case KVM_SEV_SNP_LAUNCH_UPDATE: 2659 r = snp_launch_update(kvm, &sev_cmd); 2660 break; 2661 case KVM_SEV_SNP_LAUNCH_FINISH: 2662 r = snp_launch_finish(kvm, &sev_cmd); 2663 break; 2664 default: 2665 r = -EINVAL; 2666 goto out; 2667 } 2668 2669 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2670 r = -EFAULT; 2671 2672 out: 2673 mutex_unlock(&kvm->lock); 2674 return r; 2675 } 2676 2677 int sev_mem_enc_register_region(struct kvm *kvm, 2678 struct kvm_enc_region *range) 2679 { 2680 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2681 struct enc_region *region; 2682 int ret = 0; 2683 2684 if (!sev_guest(kvm)) 2685 return -ENOTTY; 2686 2687 /* If kvm is mirroring encryption context it isn't responsible for it */ 2688 if (is_mirroring_enc_context(kvm)) 2689 return -EINVAL; 2690 2691 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2692 return -EINVAL; 2693 2694 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2695 if (!region) 2696 return -ENOMEM; 2697 2698 mutex_lock(&kvm->lock); 2699 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 2700 if (IS_ERR(region->pages)) { 2701 ret = PTR_ERR(region->pages); 2702 mutex_unlock(&kvm->lock); 2703 goto e_free; 2704 } 2705 2706 /* 2707 * The guest may change the memory encryption attribute from C=0 -> C=1 2708 * or vice versa for this memory range. Lets make sure caches are 2709 * flushed to ensure that guest data gets written into memory with 2710 * correct C-bit. Note, this must be done before dropping kvm->lock, 2711 * as region and its array of pages can be freed by a different task 2712 * once kvm->lock is released. 2713 */ 2714 sev_clflush_pages(region->pages, region->npages); 2715 2716 region->uaddr = range->addr; 2717 region->size = range->size; 2718 2719 list_add_tail(®ion->list, &sev->regions_list); 2720 mutex_unlock(&kvm->lock); 2721 2722 return ret; 2723 2724 e_free: 2725 kfree(region); 2726 return ret; 2727 } 2728 2729 static struct enc_region * 2730 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2731 { 2732 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2733 struct list_head *head = &sev->regions_list; 2734 struct enc_region *i; 2735 2736 list_for_each_entry(i, head, list) { 2737 if (i->uaddr == range->addr && 2738 i->size == range->size) 2739 return i; 2740 } 2741 2742 return NULL; 2743 } 2744 2745 static void __unregister_enc_region_locked(struct kvm *kvm, 2746 struct enc_region *region) 2747 { 2748 sev_unpin_memory(kvm, region->pages, region->npages); 2749 list_del(®ion->list); 2750 kfree(region); 2751 } 2752 2753 int sev_mem_enc_unregister_region(struct kvm *kvm, 2754 struct kvm_enc_region *range) 2755 { 2756 struct enc_region *region; 2757 int ret; 2758 2759 /* If kvm is mirroring encryption context it isn't responsible for it */ 2760 if (is_mirroring_enc_context(kvm)) 2761 return -EINVAL; 2762 2763 mutex_lock(&kvm->lock); 2764 2765 if (!sev_guest(kvm)) { 2766 ret = -ENOTTY; 2767 goto failed; 2768 } 2769 2770 region = find_enc_region(kvm, range); 2771 if (!region) { 2772 ret = -EINVAL; 2773 goto failed; 2774 } 2775 2776 /* 2777 * Ensure that all guest tagged cache entries are flushed before 2778 * releasing the pages back to the system for use. CLFLUSH will 2779 * not do this, so issue a WBINVD. 2780 */ 2781 wbinvd_on_all_cpus(); 2782 2783 __unregister_enc_region_locked(kvm, region); 2784 2785 mutex_unlock(&kvm->lock); 2786 return 0; 2787 2788 failed: 2789 mutex_unlock(&kvm->lock); 2790 return ret; 2791 } 2792 2793 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2794 { 2795 CLASS(fd, f)(source_fd); 2796 struct kvm *source_kvm; 2797 struct kvm_sev_info *source_sev, *mirror_sev; 2798 int ret; 2799 2800 if (fd_empty(f)) 2801 return -EBADF; 2802 2803 if (!file_is_kvm(fd_file(f))) 2804 return -EBADF; 2805 2806 source_kvm = fd_file(f)->private_data; 2807 ret = sev_lock_two_vms(kvm, source_kvm); 2808 if (ret) 2809 return ret; 2810 2811 /* 2812 * Mirrors of mirrors should work, but let's not get silly. Also 2813 * disallow out-of-band SEV/SEV-ES init if the target is already an 2814 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2815 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2816 */ 2817 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2818 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2819 ret = -EINVAL; 2820 goto e_unlock; 2821 } 2822 2823 /* 2824 * The mirror kvm holds an enc_context_owner ref so its asid can't 2825 * disappear until we're done with it 2826 */ 2827 source_sev = &to_kvm_svm(source_kvm)->sev_info; 2828 kvm_get_kvm(source_kvm); 2829 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2830 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2831 2832 /* Set enc_context_owner and copy its encryption context over */ 2833 mirror_sev->enc_context_owner = source_kvm; 2834 mirror_sev->active = true; 2835 mirror_sev->asid = source_sev->asid; 2836 mirror_sev->fd = source_sev->fd; 2837 mirror_sev->es_active = source_sev->es_active; 2838 mirror_sev->need_init = false; 2839 mirror_sev->handle = source_sev->handle; 2840 INIT_LIST_HEAD(&mirror_sev->regions_list); 2841 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2842 ret = 0; 2843 2844 /* 2845 * Do not copy ap_jump_table. Since the mirror does not share the same 2846 * KVM contexts as the original, and they may have different 2847 * memory-views. 2848 */ 2849 2850 e_unlock: 2851 sev_unlock_two_vms(kvm, source_kvm); 2852 return ret; 2853 } 2854 2855 static int snp_decommission_context(struct kvm *kvm) 2856 { 2857 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2858 struct sev_data_snp_addr data = {}; 2859 int ret; 2860 2861 /* If context is not created then do nothing */ 2862 if (!sev->snp_context) 2863 return 0; 2864 2865 /* Do the decommision, which will unbind the ASID from the SNP context */ 2866 data.address = __sme_pa(sev->snp_context); 2867 down_write(&sev_deactivate_lock); 2868 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2869 up_write(&sev_deactivate_lock); 2870 2871 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2872 return ret; 2873 2874 snp_free_firmware_page(sev->snp_context); 2875 sev->snp_context = NULL; 2876 2877 return 0; 2878 } 2879 2880 void sev_vm_destroy(struct kvm *kvm) 2881 { 2882 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2883 struct list_head *head = &sev->regions_list; 2884 struct list_head *pos, *q; 2885 2886 if (!sev_guest(kvm)) 2887 return; 2888 2889 WARN_ON(!list_empty(&sev->mirror_vms)); 2890 2891 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2892 if (is_mirroring_enc_context(kvm)) { 2893 struct kvm *owner_kvm = sev->enc_context_owner; 2894 2895 mutex_lock(&owner_kvm->lock); 2896 list_del(&sev->mirror_entry); 2897 mutex_unlock(&owner_kvm->lock); 2898 kvm_put_kvm(owner_kvm); 2899 return; 2900 } 2901 2902 /* 2903 * Ensure that all guest tagged cache entries are flushed before 2904 * releasing the pages back to the system for use. CLFLUSH will 2905 * not do this, so issue a WBINVD. 2906 */ 2907 wbinvd_on_all_cpus(); 2908 2909 /* 2910 * if userspace was terminated before unregistering the memory regions 2911 * then lets unpin all the registered memory. 2912 */ 2913 if (!list_empty(head)) { 2914 list_for_each_safe(pos, q, head) { 2915 __unregister_enc_region_locked(kvm, 2916 list_entry(pos, struct enc_region, list)); 2917 cond_resched(); 2918 } 2919 } 2920 2921 if (sev_snp_guest(kvm)) { 2922 snp_guest_req_cleanup(kvm); 2923 2924 /* 2925 * Decomission handles unbinding of the ASID. If it fails for 2926 * some unexpected reason, just leak the ASID. 2927 */ 2928 if (snp_decommission_context(kvm)) 2929 return; 2930 } else { 2931 sev_unbind_asid(kvm, sev->handle); 2932 } 2933 2934 sev_asid_free(sev); 2935 } 2936 2937 void __init sev_set_cpu_caps(void) 2938 { 2939 if (sev_enabled) { 2940 kvm_cpu_cap_set(X86_FEATURE_SEV); 2941 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2942 } 2943 if (sev_es_enabled) { 2944 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2945 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2946 } 2947 if (sev_snp_enabled) { 2948 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2949 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2950 } 2951 } 2952 2953 void __init sev_hardware_setup(void) 2954 { 2955 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2956 bool sev_snp_supported = false; 2957 bool sev_es_supported = false; 2958 bool sev_supported = false; 2959 2960 if (!sev_enabled || !npt_enabled || !nrips) 2961 goto out; 2962 2963 /* 2964 * SEV must obviously be supported in hardware. Sanity check that the 2965 * CPU supports decode assists, which is mandatory for SEV guests to 2966 * support instruction emulation. Ditto for flushing by ASID, as SEV 2967 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2968 * ASID to effect a TLB flush. 2969 */ 2970 if (!boot_cpu_has(X86_FEATURE_SEV) || 2971 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2972 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2973 goto out; 2974 2975 /* Retrieve SEV CPUID information */ 2976 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2977 2978 /* Set encryption bit location for SEV-ES guests */ 2979 sev_enc_bit = ebx & 0x3f; 2980 2981 /* Maximum number of encrypted guests supported simultaneously */ 2982 max_sev_asid = ecx; 2983 if (!max_sev_asid) 2984 goto out; 2985 2986 /* Minimum ASID value that should be used for SEV guest */ 2987 min_sev_asid = edx; 2988 sev_me_mask = 1UL << (ebx & 0x3f); 2989 2990 /* 2991 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2992 * even though it's never used, so that the bitmap is indexed by the 2993 * actual ASID. 2994 */ 2995 nr_asids = max_sev_asid + 1; 2996 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2997 if (!sev_asid_bitmap) 2998 goto out; 2999 3000 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3001 if (!sev_reclaim_asid_bitmap) { 3002 bitmap_free(sev_asid_bitmap); 3003 sev_asid_bitmap = NULL; 3004 goto out; 3005 } 3006 3007 if (min_sev_asid <= max_sev_asid) { 3008 sev_asid_count = max_sev_asid - min_sev_asid + 1; 3009 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 3010 } 3011 sev_supported = true; 3012 3013 /* SEV-ES support requested? */ 3014 if (!sev_es_enabled) 3015 goto out; 3016 3017 /* 3018 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 3019 * instruction stream, i.e. can't emulate in response to a #NPF and 3020 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 3021 * (the guest can then do a #VMGEXIT to request MMIO emulation). 3022 */ 3023 if (!enable_mmio_caching) 3024 goto out; 3025 3026 /* Does the CPU support SEV-ES? */ 3027 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 3028 goto out; 3029 3030 if (!lbrv) { 3031 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 3032 "LBRV must be present for SEV-ES support"); 3033 goto out; 3034 } 3035 3036 /* Has the system been allocated ASIDs for SEV-ES? */ 3037 if (min_sev_asid == 1) 3038 goto out; 3039 3040 sev_es_asid_count = min_sev_asid - 1; 3041 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3042 sev_es_supported = true; 3043 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3044 3045 out: 3046 if (boot_cpu_has(X86_FEATURE_SEV)) 3047 pr_info("SEV %s (ASIDs %u - %u)\n", 3048 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3049 "unusable" : 3050 "disabled", 3051 min_sev_asid, max_sev_asid); 3052 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3053 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3054 sev_es_supported ? "enabled" : "disabled", 3055 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3056 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3057 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3058 sev_snp_supported ? "enabled" : "disabled", 3059 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3060 3061 sev_enabled = sev_supported; 3062 sev_es_enabled = sev_es_supported; 3063 sev_snp_enabled = sev_snp_supported; 3064 3065 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3066 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3067 sev_es_debug_swap_enabled = false; 3068 3069 sev_supported_vmsa_features = 0; 3070 if (sev_es_debug_swap_enabled) 3071 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3072 } 3073 3074 void sev_hardware_unsetup(void) 3075 { 3076 if (!sev_enabled) 3077 return; 3078 3079 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3080 sev_flush_asids(1, max_sev_asid); 3081 3082 bitmap_free(sev_asid_bitmap); 3083 bitmap_free(sev_reclaim_asid_bitmap); 3084 3085 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3086 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3087 } 3088 3089 int sev_cpu_init(struct svm_cpu_data *sd) 3090 { 3091 if (!sev_enabled) 3092 return 0; 3093 3094 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3095 if (!sd->sev_vmcbs) 3096 return -ENOMEM; 3097 3098 return 0; 3099 } 3100 3101 /* 3102 * Pages used by hardware to hold guest encrypted state must be flushed before 3103 * returning them to the system. 3104 */ 3105 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3106 { 3107 unsigned int asid = sev_get_asid(vcpu->kvm); 3108 3109 /* 3110 * Note! The address must be a kernel address, as regular page walk 3111 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3112 * address is non-deterministic and unsafe. This function deliberately 3113 * takes a pointer to deter passing in a user address. 3114 */ 3115 unsigned long addr = (unsigned long)va; 3116 3117 /* 3118 * If CPU enforced cache coherency for encrypted mappings of the 3119 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3120 * flush is still needed in order to work properly with DMA devices. 3121 */ 3122 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3123 clflush_cache_range(va, PAGE_SIZE); 3124 return; 3125 } 3126 3127 /* 3128 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3129 * back to WBINVD if this faults so as not to make any problems worse 3130 * by leaving stale encrypted data in the cache. 3131 */ 3132 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3133 goto do_wbinvd; 3134 3135 return; 3136 3137 do_wbinvd: 3138 wbinvd_on_all_cpus(); 3139 } 3140 3141 void sev_guest_memory_reclaimed(struct kvm *kvm) 3142 { 3143 /* 3144 * With SNP+gmem, private/encrypted memory is unreachable via the 3145 * hva-based mmu notifiers, so these events are only actually 3146 * pertaining to shared pages where there is no need to perform 3147 * the WBINVD to flush associated caches. 3148 */ 3149 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3150 return; 3151 3152 wbinvd_on_all_cpus(); 3153 } 3154 3155 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3156 { 3157 struct vcpu_svm *svm; 3158 3159 if (!sev_es_guest(vcpu->kvm)) 3160 return; 3161 3162 svm = to_svm(vcpu); 3163 3164 /* 3165 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3166 * a guest-owned page. Transition the page to hypervisor state before 3167 * releasing it back to the system. 3168 */ 3169 if (sev_snp_guest(vcpu->kvm)) { 3170 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3171 3172 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3173 goto skip_vmsa_free; 3174 } 3175 3176 if (vcpu->arch.guest_state_protected) 3177 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3178 3179 __free_page(virt_to_page(svm->sev_es.vmsa)); 3180 3181 skip_vmsa_free: 3182 if (svm->sev_es.ghcb_sa_free) 3183 kvfree(svm->sev_es.ghcb_sa); 3184 } 3185 3186 static void dump_ghcb(struct vcpu_svm *svm) 3187 { 3188 struct ghcb *ghcb = svm->sev_es.ghcb; 3189 unsigned int nbits; 3190 3191 /* Re-use the dump_invalid_vmcb module parameter */ 3192 if (!dump_invalid_vmcb) { 3193 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3194 return; 3195 } 3196 3197 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 3198 3199 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 3200 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3201 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 3202 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3203 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 3204 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3205 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 3206 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3207 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 3208 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 3209 } 3210 3211 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3212 { 3213 struct kvm_vcpu *vcpu = &svm->vcpu; 3214 struct ghcb *ghcb = svm->sev_es.ghcb; 3215 3216 /* 3217 * The GHCB protocol so far allows for the following data 3218 * to be returned: 3219 * GPRs RAX, RBX, RCX, RDX 3220 * 3221 * Copy their values, even if they may not have been written during the 3222 * VM-Exit. It's the guest's responsibility to not consume random data. 3223 */ 3224 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3225 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3226 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3227 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3228 } 3229 3230 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3231 { 3232 struct vmcb_control_area *control = &svm->vmcb->control; 3233 struct kvm_vcpu *vcpu = &svm->vcpu; 3234 struct ghcb *ghcb = svm->sev_es.ghcb; 3235 u64 exit_code; 3236 3237 /* 3238 * The GHCB protocol so far allows for the following data 3239 * to be supplied: 3240 * GPRs RAX, RBX, RCX, RDX 3241 * XCR0 3242 * CPL 3243 * 3244 * VMMCALL allows the guest to provide extra registers. KVM also 3245 * expects RSI for hypercalls, so include that, too. 3246 * 3247 * Copy their values to the appropriate location if supplied. 3248 */ 3249 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3250 3251 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3252 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3253 3254 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3255 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3256 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3257 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3258 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3259 3260 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3261 3262 if (kvm_ghcb_xcr0_is_valid(svm)) { 3263 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3264 kvm_update_cpuid_runtime(vcpu); 3265 } 3266 3267 /* Copy the GHCB exit information into the VMCB fields */ 3268 exit_code = ghcb_get_sw_exit_code(ghcb); 3269 control->exit_code = lower_32_bits(exit_code); 3270 control->exit_code_hi = upper_32_bits(exit_code); 3271 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3272 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3273 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3274 3275 /* Clear the valid entries fields */ 3276 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3277 } 3278 3279 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3280 { 3281 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3282 } 3283 3284 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3285 { 3286 struct vmcb_control_area *control = &svm->vmcb->control; 3287 struct kvm_vcpu *vcpu = &svm->vcpu; 3288 u64 exit_code; 3289 u64 reason; 3290 3291 /* 3292 * Retrieve the exit code now even though it may not be marked valid 3293 * as it could help with debugging. 3294 */ 3295 exit_code = kvm_ghcb_get_sw_exit_code(control); 3296 3297 /* Only GHCB Usage code 0 is supported */ 3298 if (svm->sev_es.ghcb->ghcb_usage) { 3299 reason = GHCB_ERR_INVALID_USAGE; 3300 goto vmgexit_err; 3301 } 3302 3303 reason = GHCB_ERR_MISSING_INPUT; 3304 3305 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3306 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3307 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3308 goto vmgexit_err; 3309 3310 switch (exit_code) { 3311 case SVM_EXIT_READ_DR7: 3312 break; 3313 case SVM_EXIT_WRITE_DR7: 3314 if (!kvm_ghcb_rax_is_valid(svm)) 3315 goto vmgexit_err; 3316 break; 3317 case SVM_EXIT_RDTSC: 3318 break; 3319 case SVM_EXIT_RDPMC: 3320 if (!kvm_ghcb_rcx_is_valid(svm)) 3321 goto vmgexit_err; 3322 break; 3323 case SVM_EXIT_CPUID: 3324 if (!kvm_ghcb_rax_is_valid(svm) || 3325 !kvm_ghcb_rcx_is_valid(svm)) 3326 goto vmgexit_err; 3327 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3328 if (!kvm_ghcb_xcr0_is_valid(svm)) 3329 goto vmgexit_err; 3330 break; 3331 case SVM_EXIT_INVD: 3332 break; 3333 case SVM_EXIT_IOIO: 3334 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3335 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3336 goto vmgexit_err; 3337 } else { 3338 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3339 if (!kvm_ghcb_rax_is_valid(svm)) 3340 goto vmgexit_err; 3341 } 3342 break; 3343 case SVM_EXIT_MSR: 3344 if (!kvm_ghcb_rcx_is_valid(svm)) 3345 goto vmgexit_err; 3346 if (control->exit_info_1) { 3347 if (!kvm_ghcb_rax_is_valid(svm) || 3348 !kvm_ghcb_rdx_is_valid(svm)) 3349 goto vmgexit_err; 3350 } 3351 break; 3352 case SVM_EXIT_VMMCALL: 3353 if (!kvm_ghcb_rax_is_valid(svm) || 3354 !kvm_ghcb_cpl_is_valid(svm)) 3355 goto vmgexit_err; 3356 break; 3357 case SVM_EXIT_RDTSCP: 3358 break; 3359 case SVM_EXIT_WBINVD: 3360 break; 3361 case SVM_EXIT_MONITOR: 3362 if (!kvm_ghcb_rax_is_valid(svm) || 3363 !kvm_ghcb_rcx_is_valid(svm) || 3364 !kvm_ghcb_rdx_is_valid(svm)) 3365 goto vmgexit_err; 3366 break; 3367 case SVM_EXIT_MWAIT: 3368 if (!kvm_ghcb_rax_is_valid(svm) || 3369 !kvm_ghcb_rcx_is_valid(svm)) 3370 goto vmgexit_err; 3371 break; 3372 case SVM_VMGEXIT_MMIO_READ: 3373 case SVM_VMGEXIT_MMIO_WRITE: 3374 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3375 goto vmgexit_err; 3376 break; 3377 case SVM_VMGEXIT_AP_CREATION: 3378 if (!sev_snp_guest(vcpu->kvm)) 3379 goto vmgexit_err; 3380 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3381 if (!kvm_ghcb_rax_is_valid(svm)) 3382 goto vmgexit_err; 3383 break; 3384 case SVM_VMGEXIT_NMI_COMPLETE: 3385 case SVM_VMGEXIT_AP_HLT_LOOP: 3386 case SVM_VMGEXIT_AP_JUMP_TABLE: 3387 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3388 case SVM_VMGEXIT_HV_FEATURES: 3389 case SVM_VMGEXIT_TERM_REQUEST: 3390 break; 3391 case SVM_VMGEXIT_PSC: 3392 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3393 goto vmgexit_err; 3394 break; 3395 case SVM_VMGEXIT_GUEST_REQUEST: 3396 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3397 if (!sev_snp_guest(vcpu->kvm) || 3398 !PAGE_ALIGNED(control->exit_info_1) || 3399 !PAGE_ALIGNED(control->exit_info_2) || 3400 control->exit_info_1 == control->exit_info_2) 3401 goto vmgexit_err; 3402 break; 3403 default: 3404 reason = GHCB_ERR_INVALID_EVENT; 3405 goto vmgexit_err; 3406 } 3407 3408 return 0; 3409 3410 vmgexit_err: 3411 if (reason == GHCB_ERR_INVALID_USAGE) { 3412 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3413 svm->sev_es.ghcb->ghcb_usage); 3414 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3415 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3416 exit_code); 3417 } else { 3418 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3419 exit_code); 3420 dump_ghcb(svm); 3421 } 3422 3423 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3424 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason); 3425 3426 /* Resume the guest to "return" the error code. */ 3427 return 1; 3428 } 3429 3430 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3431 { 3432 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3433 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3434 3435 if (!svm->sev_es.ghcb) 3436 return; 3437 3438 if (svm->sev_es.ghcb_sa_free) { 3439 /* 3440 * The scratch area lives outside the GHCB, so there is a 3441 * buffer that, depending on the operation performed, may 3442 * need to be synced, then freed. 3443 */ 3444 if (svm->sev_es.ghcb_sa_sync) { 3445 kvm_write_guest(svm->vcpu.kvm, 3446 svm->sev_es.sw_scratch, 3447 svm->sev_es.ghcb_sa, 3448 svm->sev_es.ghcb_sa_len); 3449 svm->sev_es.ghcb_sa_sync = false; 3450 } 3451 3452 kvfree(svm->sev_es.ghcb_sa); 3453 svm->sev_es.ghcb_sa = NULL; 3454 svm->sev_es.ghcb_sa_free = false; 3455 } 3456 3457 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3458 3459 sev_es_sync_to_ghcb(svm); 3460 3461 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map); 3462 svm->sev_es.ghcb = NULL; 3463 } 3464 3465 void pre_sev_run(struct vcpu_svm *svm, int cpu) 3466 { 3467 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3468 unsigned int asid = sev_get_asid(svm->vcpu.kvm); 3469 3470 /* Assign the asid allocated with this SEV guest */ 3471 svm->asid = asid; 3472 3473 /* 3474 * Flush guest TLB: 3475 * 3476 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3477 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3478 */ 3479 if (sd->sev_vmcbs[asid] == svm->vmcb && 3480 svm->vcpu.arch.last_vmentry_cpu == cpu) 3481 return; 3482 3483 sd->sev_vmcbs[asid] = svm->vmcb; 3484 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3485 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3486 } 3487 3488 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3489 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3490 { 3491 struct vmcb_control_area *control = &svm->vmcb->control; 3492 u64 ghcb_scratch_beg, ghcb_scratch_end; 3493 u64 scratch_gpa_beg, scratch_gpa_end; 3494 void *scratch_va; 3495 3496 scratch_gpa_beg = svm->sev_es.sw_scratch; 3497 if (!scratch_gpa_beg) { 3498 pr_err("vmgexit: scratch gpa not provided\n"); 3499 goto e_scratch; 3500 } 3501 3502 scratch_gpa_end = scratch_gpa_beg + len; 3503 if (scratch_gpa_end < scratch_gpa_beg) { 3504 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3505 len, scratch_gpa_beg); 3506 goto e_scratch; 3507 } 3508 3509 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3510 /* Scratch area begins within GHCB */ 3511 ghcb_scratch_beg = control->ghcb_gpa + 3512 offsetof(struct ghcb, shared_buffer); 3513 ghcb_scratch_end = control->ghcb_gpa + 3514 offsetof(struct ghcb, reserved_0xff0); 3515 3516 /* 3517 * If the scratch area begins within the GHCB, it must be 3518 * completely contained in the GHCB shared buffer area. 3519 */ 3520 if (scratch_gpa_beg < ghcb_scratch_beg || 3521 scratch_gpa_end > ghcb_scratch_end) { 3522 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3523 scratch_gpa_beg, scratch_gpa_end); 3524 goto e_scratch; 3525 } 3526 3527 scratch_va = (void *)svm->sev_es.ghcb; 3528 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3529 } else { 3530 /* 3531 * The guest memory must be read into a kernel buffer, so 3532 * limit the size 3533 */ 3534 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3535 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3536 len, GHCB_SCRATCH_AREA_LIMIT); 3537 goto e_scratch; 3538 } 3539 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3540 if (!scratch_va) 3541 return -ENOMEM; 3542 3543 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3544 /* Unable to copy scratch area from guest */ 3545 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3546 3547 kvfree(scratch_va); 3548 return -EFAULT; 3549 } 3550 3551 /* 3552 * The scratch area is outside the GHCB. The operation will 3553 * dictate whether the buffer needs to be synced before running 3554 * the vCPU next time (i.e. a read was requested so the data 3555 * must be written back to the guest memory). 3556 */ 3557 svm->sev_es.ghcb_sa_sync = sync; 3558 svm->sev_es.ghcb_sa_free = true; 3559 } 3560 3561 svm->sev_es.ghcb_sa = scratch_va; 3562 svm->sev_es.ghcb_sa_len = len; 3563 3564 return 0; 3565 3566 e_scratch: 3567 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 3568 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA); 3569 3570 return 1; 3571 } 3572 3573 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3574 unsigned int pos) 3575 { 3576 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3577 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3578 } 3579 3580 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3581 { 3582 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3583 } 3584 3585 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3586 { 3587 svm->vmcb->control.ghcb_gpa = value; 3588 } 3589 3590 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3591 { 3592 int ret; 3593 3594 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3595 3596 /* 3597 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3598 * entry, so retry until that's no longer the case. 3599 */ 3600 do { 3601 ret = psmash(pfn); 3602 } while (ret == PSMASH_FAIL_INUSE); 3603 3604 return ret; 3605 } 3606 3607 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3608 { 3609 struct vcpu_svm *svm = to_svm(vcpu); 3610 3611 if (vcpu->run->hypercall.ret) 3612 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3613 else 3614 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3615 3616 return 1; /* resume guest */ 3617 } 3618 3619 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3620 { 3621 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3622 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3623 struct kvm_vcpu *vcpu = &svm->vcpu; 3624 3625 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3626 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3627 return 1; /* resume guest */ 3628 } 3629 3630 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3631 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3632 return 1; /* resume guest */ 3633 } 3634 3635 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3636 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3637 vcpu->run->hypercall.args[0] = gpa; 3638 vcpu->run->hypercall.args[1] = 1; 3639 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3640 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3641 : KVM_MAP_GPA_RANGE_DECRYPTED; 3642 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3643 3644 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3645 3646 return 0; /* forward request to userspace */ 3647 } 3648 3649 struct psc_buffer { 3650 struct psc_hdr hdr; 3651 struct psc_entry entries[]; 3652 } __packed; 3653 3654 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3655 3656 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3657 { 3658 svm->sev_es.psc_inflight = 0; 3659 svm->sev_es.psc_idx = 0; 3660 svm->sev_es.psc_2m = false; 3661 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret); 3662 } 3663 3664 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3665 { 3666 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3667 struct psc_entry *entries = psc->entries; 3668 struct psc_hdr *hdr = &psc->hdr; 3669 __u16 idx; 3670 3671 /* 3672 * Everything in-flight has been processed successfully. Update the 3673 * corresponding entries in the guest's PSC buffer and zero out the 3674 * count of in-flight PSC entries. 3675 */ 3676 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3677 svm->sev_es.psc_inflight--, idx++) { 3678 struct psc_entry *entry = &entries[idx]; 3679 3680 entry->cur_page = entry->pagesize ? 512 : 1; 3681 } 3682 3683 hdr->cur_entry = idx; 3684 } 3685 3686 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3687 { 3688 struct vcpu_svm *svm = to_svm(vcpu); 3689 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3690 3691 if (vcpu->run->hypercall.ret) { 3692 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3693 return 1; /* resume guest */ 3694 } 3695 3696 __snp_complete_one_psc(svm); 3697 3698 /* Handle the next range (if any). */ 3699 return snp_begin_psc(svm, psc); 3700 } 3701 3702 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3703 { 3704 struct psc_entry *entries = psc->entries; 3705 struct kvm_vcpu *vcpu = &svm->vcpu; 3706 struct psc_hdr *hdr = &psc->hdr; 3707 struct psc_entry entry_start; 3708 u16 idx, idx_start, idx_end; 3709 int npages; 3710 bool huge; 3711 u64 gfn; 3712 3713 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { 3714 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3715 return 1; 3716 } 3717 3718 next_range: 3719 /* There should be no other PSCs in-flight at this point. */ 3720 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3721 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3722 return 1; 3723 } 3724 3725 /* 3726 * The PSC descriptor buffer can be modified by a misbehaved guest after 3727 * validation, so take care to only use validated copies of values used 3728 * for things like array indexing. 3729 */ 3730 idx_start = hdr->cur_entry; 3731 idx_end = hdr->end_entry; 3732 3733 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3734 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3735 return 1; 3736 } 3737 3738 /* Find the start of the next range which needs processing. */ 3739 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3740 entry_start = entries[idx]; 3741 3742 gfn = entry_start.gfn; 3743 huge = entry_start.pagesize; 3744 npages = huge ? 512 : 1; 3745 3746 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3747 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3748 return 1; 3749 } 3750 3751 if (entry_start.cur_page) { 3752 /* 3753 * If this is a partially-completed 2M range, force 4K handling 3754 * for the remaining pages since they're effectively split at 3755 * this point. Subsequent code should ensure this doesn't get 3756 * combined with adjacent PSC entries where 2M handling is still 3757 * possible. 3758 */ 3759 npages -= entry_start.cur_page; 3760 gfn += entry_start.cur_page; 3761 huge = false; 3762 } 3763 3764 if (npages) 3765 break; 3766 } 3767 3768 if (idx > idx_end) { 3769 /* Nothing more to process. */ 3770 snp_complete_psc(svm, 0); 3771 return 1; 3772 } 3773 3774 svm->sev_es.psc_2m = huge; 3775 svm->sev_es.psc_idx = idx; 3776 svm->sev_es.psc_inflight = 1; 3777 3778 /* 3779 * Find all subsequent PSC entries that contain adjacent GPA 3780 * ranges/operations and can be combined into a single 3781 * KVM_HC_MAP_GPA_RANGE exit. 3782 */ 3783 while (++idx <= idx_end) { 3784 struct psc_entry entry = entries[idx]; 3785 3786 if (entry.operation != entry_start.operation || 3787 entry.gfn != entry_start.gfn + npages || 3788 entry.cur_page || !!entry.pagesize != huge) 3789 break; 3790 3791 svm->sev_es.psc_inflight++; 3792 npages += huge ? 512 : 1; 3793 } 3794 3795 switch (entry_start.operation) { 3796 case VMGEXIT_PSC_OP_PRIVATE: 3797 case VMGEXIT_PSC_OP_SHARED: 3798 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3799 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3800 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3801 vcpu->run->hypercall.args[1] = npages; 3802 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3803 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3804 : KVM_MAP_GPA_RANGE_DECRYPTED; 3805 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3806 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3807 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3808 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3809 return 0; /* forward request to userspace */ 3810 default: 3811 /* 3812 * Only shared/private PSC operations are currently supported, so if the 3813 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3814 * then consider the entire range completed and avoid exiting to 3815 * userspace. In theory snp_complete_psc() can always be called directly 3816 * at this point to complete the current range and start the next one, 3817 * but that could lead to unexpected levels of recursion. 3818 */ 3819 __snp_complete_one_psc(svm); 3820 goto next_range; 3821 } 3822 3823 unreachable(); 3824 } 3825 3826 static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu) 3827 { 3828 struct vcpu_svm *svm = to_svm(vcpu); 3829 3830 WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex)); 3831 3832 /* Mark the vCPU as offline and not runnable */ 3833 vcpu->arch.pv.pv_unhalted = false; 3834 vcpu->arch.mp_state = KVM_MP_STATE_HALTED; 3835 3836 /* Clear use of the VMSA */ 3837 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3838 3839 if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) { 3840 gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3841 struct kvm_memory_slot *slot; 3842 struct page *page; 3843 kvm_pfn_t pfn; 3844 3845 slot = gfn_to_memslot(vcpu->kvm, gfn); 3846 if (!slot) 3847 return -EINVAL; 3848 3849 /* 3850 * The new VMSA will be private memory guest memory, so 3851 * retrieve the PFN from the gmem backend. 3852 */ 3853 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL)) 3854 return -EINVAL; 3855 3856 /* 3857 * From this point forward, the VMSA will always be a 3858 * guest-mapped page rather than the initial one allocated 3859 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa 3860 * could be free'd and cleaned up here, but that involves 3861 * cleanups like wbinvd_on_all_cpus() which would ideally 3862 * be handled during teardown rather than guest boot. 3863 * Deferring that also allows the existing logic for SEV-ES 3864 * VMSAs to be re-used with minimal SNP-specific changes. 3865 */ 3866 svm->sev_es.snp_has_guest_vmsa = true; 3867 3868 /* Use the new VMSA */ 3869 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3870 3871 /* Mark the vCPU as runnable */ 3872 vcpu->arch.pv.pv_unhalted = false; 3873 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 3874 3875 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3876 3877 /* 3878 * gmem pages aren't currently migratable, but if this ever 3879 * changes then care should be taken to ensure 3880 * svm->sev_es.vmsa is pinned through some other means. 3881 */ 3882 kvm_release_page_clean(page); 3883 } 3884 3885 /* 3886 * When replacing the VMSA during SEV-SNP AP creation, 3887 * mark the VMCB dirty so that full state is always reloaded. 3888 */ 3889 vmcb_mark_all_dirty(svm->vmcb); 3890 3891 return 0; 3892 } 3893 3894 /* 3895 * Invoked as part of svm_vcpu_reset() processing of an init event. 3896 */ 3897 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3898 { 3899 struct vcpu_svm *svm = to_svm(vcpu); 3900 int ret; 3901 3902 if (!sev_snp_guest(vcpu->kvm)) 3903 return; 3904 3905 mutex_lock(&svm->sev_es.snp_vmsa_mutex); 3906 3907 if (!svm->sev_es.snp_ap_waiting_for_reset) 3908 goto unlock; 3909 3910 svm->sev_es.snp_ap_waiting_for_reset = false; 3911 3912 ret = __sev_snp_update_protected_guest_state(vcpu); 3913 if (ret) 3914 vcpu_unimpl(vcpu, "snp: AP state update on init failed\n"); 3915 3916 unlock: 3917 mutex_unlock(&svm->sev_es.snp_vmsa_mutex); 3918 } 3919 3920 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3921 { 3922 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 3923 struct kvm_vcpu *vcpu = &svm->vcpu; 3924 struct kvm_vcpu *target_vcpu; 3925 struct vcpu_svm *target_svm; 3926 unsigned int request; 3927 unsigned int apic_id; 3928 bool kick; 3929 int ret; 3930 3931 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3932 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3933 3934 /* Validate the APIC ID */ 3935 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3936 if (!target_vcpu) { 3937 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3938 apic_id); 3939 return -EINVAL; 3940 } 3941 3942 ret = 0; 3943 3944 target_svm = to_svm(target_vcpu); 3945 3946 /* 3947 * The target vCPU is valid, so the vCPU will be kicked unless the 3948 * request is for CREATE_ON_INIT. For any errors at this stage, the 3949 * kick will place the vCPU in an non-runnable state. 3950 */ 3951 kick = true; 3952 3953 mutex_lock(&target_svm->sev_es.snp_vmsa_mutex); 3954 3955 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3956 target_svm->sev_es.snp_ap_waiting_for_reset = true; 3957 3958 /* Interrupt injection mode shouldn't change for AP creation */ 3959 if (request < SVM_VMGEXIT_AP_DESTROY) { 3960 u64 sev_features; 3961 3962 sev_features = vcpu->arch.regs[VCPU_REGS_RAX]; 3963 sev_features ^= sev->vmsa_features; 3964 3965 if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) { 3966 vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n", 3967 vcpu->arch.regs[VCPU_REGS_RAX]); 3968 ret = -EINVAL; 3969 goto out; 3970 } 3971 } 3972 3973 switch (request) { 3974 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3975 kick = false; 3976 fallthrough; 3977 case SVM_VMGEXIT_AP_CREATE: 3978 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3979 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3980 svm->vmcb->control.exit_info_2); 3981 ret = -EINVAL; 3982 goto out; 3983 } 3984 3985 /* 3986 * Malicious guest can RMPADJUST a large page into VMSA which 3987 * will hit the SNP erratum where the CPU will incorrectly signal 3988 * an RMP violation #PF if a hugepage collides with the RMP entry 3989 * of VMSA page, reject the AP CREATE request if VMSA address from 3990 * guest is 2M aligned. 3991 */ 3992 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 3993 vcpu_unimpl(vcpu, 3994 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 3995 svm->vmcb->control.exit_info_2); 3996 ret = -EINVAL; 3997 goto out; 3998 } 3999 4000 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 4001 break; 4002 case SVM_VMGEXIT_AP_DESTROY: 4003 break; 4004 default: 4005 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 4006 request); 4007 ret = -EINVAL; 4008 break; 4009 } 4010 4011 out: 4012 if (kick) { 4013 kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 4014 kvm_vcpu_kick(target_vcpu); 4015 } 4016 4017 mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex); 4018 4019 return ret; 4020 } 4021 4022 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4023 { 4024 struct sev_data_snp_guest_request data = {0}; 4025 struct kvm *kvm = svm->vcpu.kvm; 4026 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4027 sev_ret_code fw_err = 0; 4028 int ret; 4029 4030 if (!sev_snp_guest(kvm)) 4031 return -EINVAL; 4032 4033 mutex_lock(&sev->guest_req_mutex); 4034 4035 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4036 ret = -EIO; 4037 goto out_unlock; 4038 } 4039 4040 data.gctx_paddr = __psp_pa(sev->snp_context); 4041 data.req_paddr = __psp_pa(sev->guest_req_buf); 4042 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4043 4044 /* 4045 * Firmware failures are propagated on to guest, but any other failure 4046 * condition along the way should be reported to userspace. E.g. if 4047 * the PSP is dead and commands are timing out. 4048 */ 4049 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4050 if (ret && !fw_err) 4051 goto out_unlock; 4052 4053 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4054 ret = -EIO; 4055 goto out_unlock; 4056 } 4057 4058 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err)); 4059 4060 ret = 1; /* resume guest */ 4061 4062 out_unlock: 4063 mutex_unlock(&sev->guest_req_mutex); 4064 return ret; 4065 } 4066 4067 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4068 { 4069 struct kvm *kvm = svm->vcpu.kvm; 4070 u8 msg_type; 4071 4072 if (!sev_snp_guest(kvm)) 4073 return -EINVAL; 4074 4075 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4076 &msg_type, 1)) 4077 return -EIO; 4078 4079 /* 4080 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4081 * additional certificate data to be provided alongside the attestation 4082 * report via the guest-provided data pages indicated by RAX/RBX. The 4083 * certificate data is optional and requires additional KVM enablement 4084 * to provide an interface for userspace to provide it, but KVM still 4085 * needs to be able to handle extended guest requests either way. So 4086 * provide a stub implementation that will always return an empty 4087 * certificate table in the guest-provided data pages. 4088 */ 4089 if (msg_type == SNP_MSG_REPORT_REQ) { 4090 struct kvm_vcpu *vcpu = &svm->vcpu; 4091 u64 data_npages; 4092 gpa_t data_gpa; 4093 4094 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4095 goto request_invalid; 4096 4097 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4098 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4099 4100 if (!PAGE_ALIGNED(data_gpa)) 4101 goto request_invalid; 4102 4103 /* 4104 * As per GHCB spec (see "SNP Extended Guest Request"), the 4105 * certificate table is terminated by 24-bytes of zeroes. 4106 */ 4107 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4108 return -EIO; 4109 } 4110 4111 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4112 4113 request_invalid: 4114 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4115 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4116 return 1; /* resume guest */ 4117 } 4118 4119 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4120 { 4121 struct vmcb_control_area *control = &svm->vmcb->control; 4122 struct kvm_vcpu *vcpu = &svm->vcpu; 4123 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4124 u64 ghcb_info; 4125 int ret = 1; 4126 4127 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4128 4129 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4130 control->ghcb_gpa); 4131 4132 switch (ghcb_info) { 4133 case GHCB_MSR_SEV_INFO_REQ: 4134 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4135 GHCB_VERSION_MIN, 4136 sev_enc_bit)); 4137 break; 4138 case GHCB_MSR_CPUID_REQ: { 4139 u64 cpuid_fn, cpuid_reg, cpuid_value; 4140 4141 cpuid_fn = get_ghcb_msr_bits(svm, 4142 GHCB_MSR_CPUID_FUNC_MASK, 4143 GHCB_MSR_CPUID_FUNC_POS); 4144 4145 /* Initialize the registers needed by the CPUID intercept */ 4146 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4147 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4148 4149 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4150 if (!ret) { 4151 /* Error, keep GHCB MSR value as-is */ 4152 break; 4153 } 4154 4155 cpuid_reg = get_ghcb_msr_bits(svm, 4156 GHCB_MSR_CPUID_REG_MASK, 4157 GHCB_MSR_CPUID_REG_POS); 4158 if (cpuid_reg == 0) 4159 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4160 else if (cpuid_reg == 1) 4161 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4162 else if (cpuid_reg == 2) 4163 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4164 else 4165 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4166 4167 set_ghcb_msr_bits(svm, cpuid_value, 4168 GHCB_MSR_CPUID_VALUE_MASK, 4169 GHCB_MSR_CPUID_VALUE_POS); 4170 4171 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4172 GHCB_MSR_INFO_MASK, 4173 GHCB_MSR_INFO_POS); 4174 break; 4175 } 4176 case GHCB_MSR_AP_RESET_HOLD_REQ: 4177 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4178 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4179 4180 /* 4181 * Preset the result to a non-SIPI return and then only set 4182 * the result to non-zero when delivering a SIPI. 4183 */ 4184 set_ghcb_msr_bits(svm, 0, 4185 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4186 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4187 4188 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4189 GHCB_MSR_INFO_MASK, 4190 GHCB_MSR_INFO_POS); 4191 break; 4192 case GHCB_MSR_HV_FT_REQ: 4193 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4194 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4195 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4196 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4197 break; 4198 case GHCB_MSR_PREF_GPA_REQ: 4199 if (!sev_snp_guest(vcpu->kvm)) 4200 goto out_terminate; 4201 4202 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4203 GHCB_MSR_GPA_VALUE_POS); 4204 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4205 GHCB_MSR_INFO_POS); 4206 break; 4207 case GHCB_MSR_REG_GPA_REQ: { 4208 u64 gfn; 4209 4210 if (!sev_snp_guest(vcpu->kvm)) 4211 goto out_terminate; 4212 4213 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4214 GHCB_MSR_GPA_VALUE_POS); 4215 4216 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4217 4218 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4219 GHCB_MSR_GPA_VALUE_POS); 4220 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4221 GHCB_MSR_INFO_POS); 4222 break; 4223 } 4224 case GHCB_MSR_PSC_REQ: 4225 if (!sev_snp_guest(vcpu->kvm)) 4226 goto out_terminate; 4227 4228 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4229 break; 4230 case GHCB_MSR_TERM_REQ: { 4231 u64 reason_set, reason_code; 4232 4233 reason_set = get_ghcb_msr_bits(svm, 4234 GHCB_MSR_TERM_REASON_SET_MASK, 4235 GHCB_MSR_TERM_REASON_SET_POS); 4236 reason_code = get_ghcb_msr_bits(svm, 4237 GHCB_MSR_TERM_REASON_MASK, 4238 GHCB_MSR_TERM_REASON_POS); 4239 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4240 reason_set, reason_code); 4241 4242 goto out_terminate; 4243 } 4244 default: 4245 /* Error, keep GHCB MSR value as-is */ 4246 break; 4247 } 4248 4249 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4250 control->ghcb_gpa, ret); 4251 4252 return ret; 4253 4254 out_terminate: 4255 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4256 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4257 vcpu->run->system_event.ndata = 1; 4258 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4259 4260 return 0; 4261 } 4262 4263 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4264 { 4265 struct vcpu_svm *svm = to_svm(vcpu); 4266 struct vmcb_control_area *control = &svm->vmcb->control; 4267 u64 ghcb_gpa, exit_code; 4268 int ret; 4269 4270 /* Validate the GHCB */ 4271 ghcb_gpa = control->ghcb_gpa; 4272 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4273 return sev_handle_vmgexit_msr_protocol(svm); 4274 4275 if (!ghcb_gpa) { 4276 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4277 4278 /* Without a GHCB, just return right back to the guest */ 4279 return 1; 4280 } 4281 4282 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4283 /* Unable to map GHCB from guest */ 4284 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4285 ghcb_gpa); 4286 4287 /* Without a GHCB, just return right back to the guest */ 4288 return 1; 4289 } 4290 4291 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4292 4293 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4294 4295 sev_es_sync_from_ghcb(svm); 4296 4297 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4298 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4299 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4300 return -EINVAL; 4301 } 4302 4303 ret = sev_es_validate_vmgexit(svm); 4304 if (ret) 4305 return ret; 4306 4307 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0); 4308 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0); 4309 4310 exit_code = kvm_ghcb_get_sw_exit_code(control); 4311 switch (exit_code) { 4312 case SVM_VMGEXIT_MMIO_READ: 4313 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4314 if (ret) 4315 break; 4316 4317 ret = kvm_sev_es_mmio_read(vcpu, 4318 control->exit_info_1, 4319 control->exit_info_2, 4320 svm->sev_es.ghcb_sa); 4321 break; 4322 case SVM_VMGEXIT_MMIO_WRITE: 4323 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4324 if (ret) 4325 break; 4326 4327 ret = kvm_sev_es_mmio_write(vcpu, 4328 control->exit_info_1, 4329 control->exit_info_2, 4330 svm->sev_es.ghcb_sa); 4331 break; 4332 case SVM_VMGEXIT_NMI_COMPLETE: 4333 ++vcpu->stat.nmi_window_exits; 4334 svm->nmi_masked = false; 4335 kvm_make_request(KVM_REQ_EVENT, vcpu); 4336 ret = 1; 4337 break; 4338 case SVM_VMGEXIT_AP_HLT_LOOP: 4339 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4340 ret = kvm_emulate_ap_reset_hold(vcpu); 4341 break; 4342 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4343 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4344 4345 switch (control->exit_info_1) { 4346 case 0: 4347 /* Set AP jump table address */ 4348 sev->ap_jump_table = control->exit_info_2; 4349 break; 4350 case 1: 4351 /* Get AP jump table address */ 4352 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table); 4353 break; 4354 default: 4355 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4356 control->exit_info_1); 4357 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4358 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4359 } 4360 4361 ret = 1; 4362 break; 4363 } 4364 case SVM_VMGEXIT_HV_FEATURES: 4365 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED); 4366 4367 ret = 1; 4368 break; 4369 case SVM_VMGEXIT_TERM_REQUEST: 4370 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4371 control->exit_info_1, control->exit_info_2); 4372 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4373 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4374 vcpu->run->system_event.ndata = 1; 4375 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4376 break; 4377 case SVM_VMGEXIT_PSC: 4378 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4379 if (ret) 4380 break; 4381 4382 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4383 break; 4384 case SVM_VMGEXIT_AP_CREATION: 4385 ret = sev_snp_ap_creation(svm); 4386 if (ret) { 4387 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2); 4388 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT); 4389 } 4390 4391 ret = 1; 4392 break; 4393 case SVM_VMGEXIT_GUEST_REQUEST: 4394 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4395 break; 4396 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4397 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4398 break; 4399 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4400 vcpu_unimpl(vcpu, 4401 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4402 control->exit_info_1, control->exit_info_2); 4403 ret = -EINVAL; 4404 break; 4405 default: 4406 ret = svm_invoke_exit_handler(vcpu, exit_code); 4407 } 4408 4409 return ret; 4410 } 4411 4412 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4413 { 4414 int count; 4415 int bytes; 4416 int r; 4417 4418 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4419 return -EINVAL; 4420 4421 count = svm->vmcb->control.exit_info_2; 4422 if (unlikely(check_mul_overflow(count, size, &bytes))) 4423 return -EINVAL; 4424 4425 r = setup_vmgexit_scratch(svm, in, bytes); 4426 if (r) 4427 return r; 4428 4429 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4430 count, in); 4431 } 4432 4433 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4434 { 4435 struct kvm_vcpu *vcpu = &svm->vcpu; 4436 4437 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 4438 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4439 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4440 4441 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 4442 } 4443 4444 /* 4445 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4446 * the host/guest supports its use. 4447 * 4448 * guest_can_use() checks a number of requirements on the host/guest to 4449 * ensure that MSR_IA32_XSS is available, but it might report true even 4450 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host 4451 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better 4452 * to further check that the guest CPUID actually supports 4453 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved 4454 * guests will still get intercepted and caught in the normal 4455 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. 4456 */ 4457 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && 4458 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4459 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 4460 else 4461 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 4462 } 4463 4464 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4465 { 4466 struct kvm_vcpu *vcpu = &svm->vcpu; 4467 struct kvm_cpuid_entry2 *best; 4468 4469 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4470 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4471 if (best) 4472 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4473 4474 if (sev_es_guest(svm->vcpu.kvm)) 4475 sev_es_vcpu_after_set_cpuid(svm); 4476 } 4477 4478 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4479 { 4480 struct vmcb *vmcb = svm->vmcb01.ptr; 4481 struct kvm_vcpu *vcpu = &svm->vcpu; 4482 4483 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4484 4485 /* 4486 * An SEV-ES guest requires a VMSA area that is a separate from the 4487 * VMCB page. Do not include the encryption mask on the VMSA physical 4488 * address since hardware will access it using the guest key. Note, 4489 * the VMSA will be NULL if this vCPU is the destination for intrahost 4490 * migration, and will be copied later. 4491 */ 4492 if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa) 4493 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4494 4495 /* Can't intercept CR register access, HV can't modify CR registers */ 4496 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4497 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4498 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4499 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4500 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4501 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4502 4503 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4504 4505 /* Track EFER/CR register changes */ 4506 svm_set_intercept(svm, TRAP_EFER_WRITE); 4507 svm_set_intercept(svm, TRAP_CR0_WRITE); 4508 svm_set_intercept(svm, TRAP_CR4_WRITE); 4509 svm_set_intercept(svm, TRAP_CR8_WRITE); 4510 4511 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4512 if (!sev_vcpu_has_debug_swap(svm)) { 4513 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4514 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4515 recalc_intercepts(svm); 4516 } else { 4517 /* 4518 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4519 * allow debugging SEV-ES guests, and enables DebugSwap iff 4520 * NO_NESTED_DATA_BP is supported, so there's no reason to 4521 * intercept #DB when DebugSwap is enabled. For simplicity 4522 * with respect to guest debug, intercept #DB for other VMs 4523 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4524 * guest can't DoS the CPU with infinite #DB vectoring. 4525 */ 4526 clr_exception_intercept(svm, DB_VECTOR); 4527 } 4528 4529 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4530 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4531 4532 /* Clear intercepts on selected MSRs */ 4533 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 4534 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 4535 } 4536 4537 void sev_init_vmcb(struct vcpu_svm *svm) 4538 { 4539 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4540 clr_exception_intercept(svm, UD_VECTOR); 4541 4542 /* 4543 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4544 * KVM can't decrypt guest memory to decode the faulting instruction. 4545 */ 4546 clr_exception_intercept(svm, GP_VECTOR); 4547 4548 if (sev_es_guest(svm->vcpu.kvm)) 4549 sev_es_init_vmcb(svm); 4550 } 4551 4552 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4553 { 4554 struct kvm_vcpu *vcpu = &svm->vcpu; 4555 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 4556 4557 /* 4558 * Set the GHCB MSR value as per the GHCB specification when emulating 4559 * vCPU RESET for an SEV-ES guest. 4560 */ 4561 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4562 GHCB_VERSION_MIN, 4563 sev_enc_bit)); 4564 4565 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4566 } 4567 4568 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4569 { 4570 /* 4571 * All host state for SEV-ES guests is categorized into three swap types 4572 * based on how it is handled by hardware during a world switch: 4573 * 4574 * A: VMRUN: Host state saved in host save area 4575 * VMEXIT: Host state loaded from host save area 4576 * 4577 * B: VMRUN: Host state _NOT_ saved in host save area 4578 * VMEXIT: Host state loaded from host save area 4579 * 4580 * C: VMRUN: Host state _NOT_ saved in host save area 4581 * VMEXIT: Host state initialized to default(reset) values 4582 * 4583 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4584 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4585 * by common SVM code). 4586 */ 4587 hostsa->xcr0 = kvm_host.xcr0; 4588 hostsa->pkru = read_pkru(); 4589 hostsa->xss = kvm_host.xss; 4590 4591 /* 4592 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4593 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both 4594 * saves and loads debug registers (Type-A). 4595 */ 4596 if (sev_vcpu_has_debug_swap(svm)) { 4597 hostsa->dr0 = native_get_debugreg(0); 4598 hostsa->dr1 = native_get_debugreg(1); 4599 hostsa->dr2 = native_get_debugreg(2); 4600 hostsa->dr3 = native_get_debugreg(3); 4601 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4602 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4603 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4604 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4605 } 4606 } 4607 4608 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4609 { 4610 struct vcpu_svm *svm = to_svm(vcpu); 4611 4612 /* First SIPI: Use the values as initially set by the VMM */ 4613 if (!svm->sev_es.received_first_sipi) { 4614 svm->sev_es.received_first_sipi = true; 4615 return; 4616 } 4617 4618 /* Subsequent SIPI */ 4619 switch (svm->sev_es.ap_reset_hold_type) { 4620 case AP_RESET_HOLD_NAE_EVENT: 4621 /* 4622 * Return from an AP Reset Hold VMGEXIT, where the guest will 4623 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4624 */ 4625 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 4626 break; 4627 case AP_RESET_HOLD_MSR_PROTO: 4628 /* 4629 * Return from an AP Reset Hold VMGEXIT, where the guest will 4630 * set the CS and RIP. Set GHCB data field to a non-zero value. 4631 */ 4632 set_ghcb_msr_bits(svm, 1, 4633 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4634 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4635 4636 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4637 GHCB_MSR_INFO_MASK, 4638 GHCB_MSR_INFO_POS); 4639 break; 4640 default: 4641 break; 4642 } 4643 } 4644 4645 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4646 { 4647 unsigned long pfn; 4648 struct page *p; 4649 4650 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4651 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4652 4653 /* 4654 * Allocate an SNP-safe page to workaround the SNP erratum where 4655 * the CPU will incorrectly signal an RMP violation #PF if a 4656 * hugepage (2MB or 1GB) collides with the RMP entry of a 4657 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4658 * 4659 * Allocate one extra page, choose a page which is not 4660 * 2MB-aligned, and free the other. 4661 */ 4662 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4663 if (!p) 4664 return NULL; 4665 4666 split_page(p, 1); 4667 4668 pfn = page_to_pfn(p); 4669 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4670 __free_page(p++); 4671 else 4672 __free_page(p + 1); 4673 4674 return p; 4675 } 4676 4677 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4678 { 4679 struct kvm_memory_slot *slot; 4680 struct kvm *kvm = vcpu->kvm; 4681 int order, rmp_level, ret; 4682 struct page *page; 4683 bool assigned; 4684 kvm_pfn_t pfn; 4685 gfn_t gfn; 4686 4687 gfn = gpa >> PAGE_SHIFT; 4688 4689 /* 4690 * The only time RMP faults occur for shared pages is when the guest is 4691 * triggering an RMP fault for an implicit page-state change from 4692 * shared->private. Implicit page-state changes are forwarded to 4693 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4694 * for shared pages should not end up here. 4695 */ 4696 if (!kvm_mem_is_private(kvm, gfn)) { 4697 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4698 gpa); 4699 return; 4700 } 4701 4702 slot = gfn_to_memslot(kvm, gfn); 4703 if (!kvm_slot_can_be_private(slot)) { 4704 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4705 gpa); 4706 return; 4707 } 4708 4709 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order); 4710 if (ret) { 4711 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4712 gpa); 4713 return; 4714 } 4715 4716 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4717 if (ret || !assigned) { 4718 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4719 gpa, pfn, ret); 4720 goto out_no_trace; 4721 } 4722 4723 /* 4724 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4725 * with PFERR_GUEST_RMP_BIT set: 4726 * 4727 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4728 * bit set if the guest issues them with a smaller granularity than 4729 * what is indicated by the page-size bit in the 2MB RMP entry for 4730 * the PFN that backs the GPA. 4731 * 4732 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4733 * smaller than what is indicated by the 2MB RMP entry for the PFN 4734 * that backs the GPA. 4735 * 4736 * In both these cases, the corresponding 2M RMP entry needs to 4737 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4738 * split into 4K RMP entries, then this is likely a spurious case which 4739 * can occur when there are concurrent accesses by the guest to a 2MB 4740 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4741 * the process of being PMASH'd into 4K entries. These cases should 4742 * resolve automatically on subsequent accesses, so just ignore them 4743 * here. 4744 */ 4745 if (rmp_level == PG_LEVEL_4K) 4746 goto out; 4747 4748 ret = snp_rmptable_psmash(pfn); 4749 if (ret) { 4750 /* 4751 * Look it up again. If it's 4K now then the PSMASH may have 4752 * raced with another process and the issue has already resolved 4753 * itself. 4754 */ 4755 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4756 assigned && rmp_level == PG_LEVEL_4K) 4757 goto out; 4758 4759 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4760 gpa, pfn, ret); 4761 } 4762 4763 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4764 out: 4765 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4766 out_no_trace: 4767 kvm_release_page_unused(page); 4768 } 4769 4770 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4771 { 4772 kvm_pfn_t pfn = start; 4773 4774 while (pfn < end) { 4775 int ret, rmp_level; 4776 bool assigned; 4777 4778 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4779 if (ret) { 4780 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4781 pfn, start, end, rmp_level, ret); 4782 return false; 4783 } 4784 4785 if (assigned) { 4786 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4787 __func__, pfn, start, end, rmp_level); 4788 return false; 4789 } 4790 4791 pfn++; 4792 } 4793 4794 return true; 4795 } 4796 4797 static u8 max_level_for_order(int order) 4798 { 4799 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4800 return PG_LEVEL_2M; 4801 4802 return PG_LEVEL_4K; 4803 } 4804 4805 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4806 { 4807 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4808 4809 /* 4810 * If this is a large folio, and the entire 2M range containing the 4811 * PFN is currently shared, then the entire 2M-aligned range can be 4812 * set to private via a single 2M RMP entry. 4813 */ 4814 if (max_level_for_order(order) > PG_LEVEL_4K && 4815 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4816 return true; 4817 4818 return false; 4819 } 4820 4821 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4822 { 4823 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 4824 kvm_pfn_t pfn_aligned; 4825 gfn_t gfn_aligned; 4826 int level, rc; 4827 bool assigned; 4828 4829 if (!sev_snp_guest(kvm)) 4830 return 0; 4831 4832 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4833 if (rc) { 4834 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4835 gfn, pfn, rc); 4836 return -ENOENT; 4837 } 4838 4839 if (assigned) { 4840 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4841 __func__, gfn, pfn, max_order, level); 4842 return 0; 4843 } 4844 4845 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4846 level = PG_LEVEL_2M; 4847 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4848 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4849 } else { 4850 level = PG_LEVEL_4K; 4851 pfn_aligned = pfn; 4852 gfn_aligned = gfn; 4853 } 4854 4855 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4856 if (rc) { 4857 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4858 gfn, pfn, level, rc); 4859 return -EINVAL; 4860 } 4861 4862 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4863 __func__, gfn, pfn, pfn_aligned, max_order, level); 4864 4865 return 0; 4866 } 4867 4868 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4869 { 4870 kvm_pfn_t pfn; 4871 4872 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4873 return; 4874 4875 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4876 4877 for (pfn = start; pfn < end;) { 4878 bool use_2m_update = false; 4879 int rc, rmp_level; 4880 bool assigned; 4881 4882 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4883 if (rc || !assigned) 4884 goto next_pfn; 4885 4886 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4887 end >= (pfn + PTRS_PER_PMD) && 4888 rmp_level > PG_LEVEL_4K; 4889 4890 /* 4891 * If an unaligned PFN corresponds to a 2M region assigned as a 4892 * large page in the RMP table, PSMASH the region into individual 4893 * 4K RMP entries before attempting to convert a 4K sub-page. 4894 */ 4895 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4896 /* 4897 * This shouldn't fail, but if it does, report it, but 4898 * still try to update RMP entry to shared and pray this 4899 * was a spurious error that can be addressed later. 4900 */ 4901 rc = snp_rmptable_psmash(pfn); 4902 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4903 pfn, rc); 4904 } 4905 4906 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4907 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4908 pfn, rc)) 4909 goto next_pfn; 4910 4911 /* 4912 * SEV-ES avoids host/guest cache coherency issues through 4913 * WBINVD hooks issued via MMU notifiers during run-time, and 4914 * KVM's VM destroy path at shutdown. Those MMU notifier events 4915 * don't cover gmem since there is no requirement to map pages 4916 * to a HVA in order to use them for a running guest. While the 4917 * shutdown path would still likely cover things for SNP guests, 4918 * userspace may also free gmem pages during run-time via 4919 * hole-punching operations on the guest_memfd, so flush the 4920 * cache entries for these pages before free'ing them back to 4921 * the host. 4922 */ 4923 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4924 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4925 next_pfn: 4926 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4927 cond_resched(); 4928 } 4929 } 4930 4931 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4932 { 4933 int level, rc; 4934 bool assigned; 4935 4936 if (!sev_snp_guest(kvm)) 4937 return 0; 4938 4939 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4940 if (rc || !assigned) 4941 return PG_LEVEL_4K; 4942 4943 return level; 4944 } 4945