1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/msr.h> 30 #include <asm/sev.h> 31 32 #include "mmu.h" 33 #include "x86.h" 34 #include "svm.h" 35 #include "svm_ops.h" 36 #include "cpuid.h" 37 #include "trace.h" 38 39 #define GHCB_VERSION_MAX 2ULL 40 #define GHCB_VERSION_DEFAULT 2ULL 41 #define GHCB_VERSION_MIN 1ULL 42 43 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 44 45 /* enable/disable SEV support */ 46 static bool sev_enabled = true; 47 module_param_named(sev, sev_enabled, bool, 0444); 48 49 /* enable/disable SEV-ES support */ 50 static bool sev_es_enabled = true; 51 module_param_named(sev_es, sev_es_enabled, bool, 0444); 52 53 /* enable/disable SEV-SNP support */ 54 static bool sev_snp_enabled = true; 55 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 56 57 /* enable/disable SEV-ES DebugSwap support */ 58 static bool sev_es_debug_swap_enabled = true; 59 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 60 static u64 sev_supported_vmsa_features; 61 62 #define AP_RESET_HOLD_NONE 0 63 #define AP_RESET_HOLD_NAE_EVENT 1 64 #define AP_RESET_HOLD_MSR_PROTO 2 65 66 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 67 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 68 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 69 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 70 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 71 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 72 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 73 74 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 75 SNP_POLICY_MASK_API_MAJOR | \ 76 SNP_POLICY_MASK_SMT | \ 77 SNP_POLICY_MASK_RSVD_MBO | \ 78 SNP_POLICY_MASK_DEBUG | \ 79 SNP_POLICY_MASK_SINGLE_SOCKET) 80 81 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 82 83 static u8 sev_enc_bit; 84 static DECLARE_RWSEM(sev_deactivate_lock); 85 static DEFINE_MUTEX(sev_bitmap_lock); 86 unsigned int max_sev_asid; 87 static unsigned int min_sev_asid; 88 static unsigned long sev_me_mask; 89 static unsigned int nr_asids; 90 static unsigned long *sev_asid_bitmap; 91 static unsigned long *sev_reclaim_asid_bitmap; 92 93 static int snp_decommission_context(struct kvm *kvm); 94 95 struct enc_region { 96 struct list_head list; 97 unsigned long npages; 98 struct page **pages; 99 unsigned long uaddr; 100 unsigned long size; 101 }; 102 103 /* Called with the sev_bitmap_lock held, or on shutdown */ 104 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 105 { 106 int ret, error = 0; 107 unsigned int asid; 108 109 /* Check if there are any ASIDs to reclaim before performing a flush */ 110 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 111 if (asid > max_asid) 112 return -EBUSY; 113 114 /* 115 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 116 * so it must be guarded. 117 */ 118 down_write(&sev_deactivate_lock); 119 120 /* SNP firmware requires use of WBINVD for ASID recycling. */ 121 wbinvd_on_all_cpus(); 122 123 if (sev_snp_enabled) 124 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 125 else 126 ret = sev_guest_df_flush(&error); 127 128 up_write(&sev_deactivate_lock); 129 130 if (ret) 131 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 132 sev_snp_enabled ? "-SNP" : "", ret, error); 133 134 return ret; 135 } 136 137 static inline bool is_mirroring_enc_context(struct kvm *kvm) 138 { 139 return !!to_kvm_sev_info(kvm)->enc_context_owner; 140 } 141 142 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 143 { 144 struct kvm_vcpu *vcpu = &svm->vcpu; 145 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 146 147 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 148 } 149 150 /* Must be called with the sev_bitmap_lock held */ 151 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 152 { 153 if (sev_flush_asids(min_asid, max_asid)) 154 return false; 155 156 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 157 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 158 nr_asids); 159 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 160 161 return true; 162 } 163 164 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 165 { 166 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 167 return misc_cg_try_charge(type, sev->misc_cg, 1); 168 } 169 170 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 171 { 172 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 173 misc_cg_uncharge(type, sev->misc_cg, 1); 174 } 175 176 static int sev_asid_new(struct kvm_sev_info *sev) 177 { 178 /* 179 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 180 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 181 * Note: min ASID can end up larger than the max if basic SEV support is 182 * effectively disabled by disallowing use of ASIDs for SEV guests. 183 */ 184 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 185 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 186 unsigned int asid; 187 bool retry = true; 188 int ret; 189 190 if (min_asid > max_asid) 191 return -ENOTTY; 192 193 WARN_ON(sev->misc_cg); 194 sev->misc_cg = get_current_misc_cg(); 195 ret = sev_misc_cg_try_charge(sev); 196 if (ret) { 197 put_misc_cg(sev->misc_cg); 198 sev->misc_cg = NULL; 199 return ret; 200 } 201 202 mutex_lock(&sev_bitmap_lock); 203 204 again: 205 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 206 if (asid > max_asid) { 207 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 208 retry = false; 209 goto again; 210 } 211 mutex_unlock(&sev_bitmap_lock); 212 ret = -EBUSY; 213 goto e_uncharge; 214 } 215 216 __set_bit(asid, sev_asid_bitmap); 217 218 mutex_unlock(&sev_bitmap_lock); 219 220 sev->asid = asid; 221 return 0; 222 e_uncharge: 223 sev_misc_cg_uncharge(sev); 224 put_misc_cg(sev->misc_cg); 225 sev->misc_cg = NULL; 226 return ret; 227 } 228 229 static unsigned int sev_get_asid(struct kvm *kvm) 230 { 231 return to_kvm_sev_info(kvm)->asid; 232 } 233 234 static void sev_asid_free(struct kvm_sev_info *sev) 235 { 236 struct svm_cpu_data *sd; 237 int cpu; 238 239 mutex_lock(&sev_bitmap_lock); 240 241 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 242 243 for_each_possible_cpu(cpu) { 244 sd = per_cpu_ptr(&svm_data, cpu); 245 sd->sev_vmcbs[sev->asid] = NULL; 246 } 247 248 mutex_unlock(&sev_bitmap_lock); 249 250 sev_misc_cg_uncharge(sev); 251 put_misc_cg(sev->misc_cg); 252 sev->misc_cg = NULL; 253 } 254 255 static void sev_decommission(unsigned int handle) 256 { 257 struct sev_data_decommission decommission; 258 259 if (!handle) 260 return; 261 262 decommission.handle = handle; 263 sev_guest_decommission(&decommission, NULL); 264 } 265 266 /* 267 * Transition a page to hypervisor-owned/shared state in the RMP table. This 268 * should not fail under normal conditions, but leak the page should that 269 * happen since it will no longer be usable by the host due to RMP protections. 270 */ 271 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 272 { 273 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 274 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 275 return -EIO; 276 } 277 278 return 0; 279 } 280 281 /* 282 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 283 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 284 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 285 * unless they are reclaimed first. 286 * 287 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 288 * might not be usable by the host due to being set as immutable or still 289 * being associated with a guest ASID. 290 * 291 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 292 * converted back to shared, as the page is no longer usable due to RMP 293 * protections, and it's infeasible for the guest to continue on. 294 */ 295 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 296 { 297 struct sev_data_snp_page_reclaim data = {0}; 298 int fw_err, rc; 299 300 data.paddr = __sme_set(pfn << PAGE_SHIFT); 301 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 302 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 303 snp_leak_pages(pfn, 1); 304 return -EIO; 305 } 306 307 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 308 return -EIO; 309 310 return rc; 311 } 312 313 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 314 { 315 struct sev_data_deactivate deactivate; 316 317 if (!handle) 318 return; 319 320 deactivate.handle = handle; 321 322 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 323 down_read(&sev_deactivate_lock); 324 sev_guest_deactivate(&deactivate, NULL); 325 up_read(&sev_deactivate_lock); 326 327 sev_decommission(handle); 328 } 329 330 /* 331 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 332 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 333 * 2.0 specification for more details. 334 * 335 * Technically, when an SNP Guest Request is issued, the guest will provide its 336 * own request/response pages, which could in theory be passed along directly 337 * to firmware rather than using bounce pages. However, these pages would need 338 * special care: 339 * 340 * - Both pages are from shared guest memory, so they need to be protected 341 * from migration/etc. occurring while firmware reads/writes to them. At a 342 * minimum, this requires elevating the ref counts and potentially needing 343 * an explicit pinning of the memory. This places additional restrictions 344 * on what type of memory backends userspace can use for shared guest 345 * memory since there is some reliance on using refcounted pages. 346 * 347 * - The response page needs to be switched to Firmware-owned[1] state 348 * before the firmware can write to it, which can lead to potential 349 * host RMP #PFs if the guest is misbehaved and hands the host a 350 * guest page that KVM might write to for other reasons (e.g. virtio 351 * buffers/etc.). 352 * 353 * Both of these issues can be avoided completely by using separately-allocated 354 * bounce pages for both the request/response pages and passing those to 355 * firmware instead. So that's what is being set up here. 356 * 357 * Guest requests rely on message sequence numbers to ensure requests are 358 * issued to firmware in the order the guest issues them, so concurrent guest 359 * requests generally shouldn't happen. But a misbehaved guest could issue 360 * concurrent guest requests in theory, so a mutex is used to serialize 361 * access to the bounce buffers. 362 * 363 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 364 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 365 * in the APM for details on the related RMP restrictions. 366 */ 367 static int snp_guest_req_init(struct kvm *kvm) 368 { 369 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 370 struct page *req_page; 371 372 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 373 if (!req_page) 374 return -ENOMEM; 375 376 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 377 if (!sev->guest_resp_buf) { 378 __free_page(req_page); 379 return -EIO; 380 } 381 382 sev->guest_req_buf = page_address(req_page); 383 mutex_init(&sev->guest_req_mutex); 384 385 return 0; 386 } 387 388 static void snp_guest_req_cleanup(struct kvm *kvm) 389 { 390 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 391 392 if (sev->guest_resp_buf) 393 snp_free_firmware_page(sev->guest_resp_buf); 394 395 if (sev->guest_req_buf) 396 __free_page(virt_to_page(sev->guest_req_buf)); 397 398 sev->guest_req_buf = NULL; 399 sev->guest_resp_buf = NULL; 400 } 401 402 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 403 struct kvm_sev_init *data, 404 unsigned long vm_type) 405 { 406 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 407 struct sev_platform_init_args init_args = {0}; 408 bool es_active = vm_type != KVM_X86_SEV_VM; 409 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 410 int ret; 411 412 if (kvm->created_vcpus) 413 return -EINVAL; 414 415 if (data->flags) 416 return -EINVAL; 417 418 if (data->vmsa_features & ~valid_vmsa_features) 419 return -EINVAL; 420 421 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 422 return -EINVAL; 423 424 if (unlikely(sev->active)) 425 return -EINVAL; 426 427 sev->active = true; 428 sev->es_active = es_active; 429 sev->vmsa_features = data->vmsa_features; 430 sev->ghcb_version = data->ghcb_version; 431 432 /* 433 * Currently KVM supports the full range of mandatory features defined 434 * by version 2 of the GHCB protocol, so default to that for SEV-ES 435 * guests created via KVM_SEV_INIT2. 436 */ 437 if (sev->es_active && !sev->ghcb_version) 438 sev->ghcb_version = GHCB_VERSION_DEFAULT; 439 440 if (vm_type == KVM_X86_SNP_VM) 441 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 442 443 ret = sev_asid_new(sev); 444 if (ret) 445 goto e_no_asid; 446 447 init_args.probe = false; 448 ret = sev_platform_init(&init_args); 449 if (ret) 450 goto e_free_asid; 451 452 if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) { 453 ret = -ENOMEM; 454 goto e_free_asid; 455 } 456 457 /* This needs to happen after SEV/SNP firmware initialization. */ 458 if (vm_type == KVM_X86_SNP_VM) { 459 ret = snp_guest_req_init(kvm); 460 if (ret) 461 goto e_free; 462 } 463 464 INIT_LIST_HEAD(&sev->regions_list); 465 INIT_LIST_HEAD(&sev->mirror_vms); 466 sev->need_init = false; 467 468 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 469 470 return 0; 471 472 e_free: 473 free_cpumask_var(sev->have_run_cpus); 474 e_free_asid: 475 argp->error = init_args.error; 476 sev_asid_free(sev); 477 sev->asid = 0; 478 e_no_asid: 479 sev->vmsa_features = 0; 480 sev->es_active = false; 481 sev->active = false; 482 return ret; 483 } 484 485 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 486 { 487 struct kvm_sev_init data = { 488 .vmsa_features = 0, 489 .ghcb_version = 0, 490 }; 491 unsigned long vm_type; 492 493 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 494 return -EINVAL; 495 496 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 497 498 /* 499 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 500 * continue to only ever support the minimal GHCB protocol version. 501 */ 502 if (vm_type == KVM_X86_SEV_ES_VM) 503 data.ghcb_version = GHCB_VERSION_MIN; 504 505 return __sev_guest_init(kvm, argp, &data, vm_type); 506 } 507 508 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 509 { 510 struct kvm_sev_init data; 511 512 if (!to_kvm_sev_info(kvm)->need_init) 513 return -EINVAL; 514 515 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 516 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 517 kvm->arch.vm_type != KVM_X86_SNP_VM) 518 return -EINVAL; 519 520 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 521 return -EFAULT; 522 523 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 524 } 525 526 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 527 { 528 unsigned int asid = sev_get_asid(kvm); 529 struct sev_data_activate activate; 530 int ret; 531 532 /* activate ASID on the given handle */ 533 activate.handle = handle; 534 activate.asid = asid; 535 ret = sev_guest_activate(&activate, error); 536 537 return ret; 538 } 539 540 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 541 { 542 CLASS(fd, f)(fd); 543 544 if (fd_empty(f)) 545 return -EBADF; 546 547 return sev_issue_cmd_external_user(fd_file(f), id, data, error); 548 } 549 550 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 551 { 552 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 553 554 return __sev_issue_cmd(sev->fd, id, data, error); 555 } 556 557 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 558 { 559 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 560 struct sev_data_launch_start start; 561 struct kvm_sev_launch_start params; 562 void *dh_blob, *session_blob; 563 int *error = &argp->error; 564 int ret; 565 566 if (!sev_guest(kvm)) 567 return -ENOTTY; 568 569 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 570 return -EFAULT; 571 572 sev->policy = params.policy; 573 574 memset(&start, 0, sizeof(start)); 575 576 dh_blob = NULL; 577 if (params.dh_uaddr) { 578 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 579 if (IS_ERR(dh_blob)) 580 return PTR_ERR(dh_blob); 581 582 start.dh_cert_address = __sme_set(__pa(dh_blob)); 583 start.dh_cert_len = params.dh_len; 584 } 585 586 session_blob = NULL; 587 if (params.session_uaddr) { 588 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 589 if (IS_ERR(session_blob)) { 590 ret = PTR_ERR(session_blob); 591 goto e_free_dh; 592 } 593 594 start.session_address = __sme_set(__pa(session_blob)); 595 start.session_len = params.session_len; 596 } 597 598 start.handle = params.handle; 599 start.policy = params.policy; 600 601 /* create memory encryption context */ 602 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 603 if (ret) 604 goto e_free_session; 605 606 /* Bind ASID to this guest */ 607 ret = sev_bind_asid(kvm, start.handle, error); 608 if (ret) { 609 sev_decommission(start.handle); 610 goto e_free_session; 611 } 612 613 /* return handle to userspace */ 614 params.handle = start.handle; 615 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 616 sev_unbind_asid(kvm, start.handle); 617 ret = -EFAULT; 618 goto e_free_session; 619 } 620 621 sev->handle = start.handle; 622 sev->fd = argp->sev_fd; 623 624 e_free_session: 625 kfree(session_blob); 626 e_free_dh: 627 kfree(dh_blob); 628 return ret; 629 } 630 631 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 632 unsigned long ulen, unsigned long *n, 633 unsigned int flags) 634 { 635 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 636 unsigned long npages, size; 637 int npinned; 638 unsigned long locked, lock_limit; 639 struct page **pages; 640 unsigned long first, last; 641 int ret; 642 643 lockdep_assert_held(&kvm->lock); 644 645 if (ulen == 0 || uaddr + ulen < uaddr) 646 return ERR_PTR(-EINVAL); 647 648 /* Calculate number of pages. */ 649 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 650 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 651 npages = (last - first + 1); 652 653 locked = sev->pages_locked + npages; 654 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 655 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 656 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 657 return ERR_PTR(-ENOMEM); 658 } 659 660 if (WARN_ON_ONCE(npages > INT_MAX)) 661 return ERR_PTR(-EINVAL); 662 663 /* Avoid using vmalloc for smaller buffers. */ 664 size = npages * sizeof(struct page *); 665 if (size > PAGE_SIZE) 666 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 667 else 668 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 669 670 if (!pages) 671 return ERR_PTR(-ENOMEM); 672 673 /* Pin the user virtual address. */ 674 npinned = pin_user_pages_fast(uaddr, npages, flags, pages); 675 if (npinned != npages) { 676 pr_err("SEV: Failure locking %lu pages.\n", npages); 677 ret = -ENOMEM; 678 goto err; 679 } 680 681 *n = npages; 682 sev->pages_locked = locked; 683 684 return pages; 685 686 err: 687 if (npinned > 0) 688 unpin_user_pages(pages, npinned); 689 690 kvfree(pages); 691 return ERR_PTR(ret); 692 } 693 694 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 695 unsigned long npages) 696 { 697 unpin_user_pages(pages, npages); 698 kvfree(pages); 699 to_kvm_sev_info(kvm)->pages_locked -= npages; 700 } 701 702 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 703 { 704 uint8_t *page_virtual; 705 unsigned long i; 706 707 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 708 pages == NULL) 709 return; 710 711 for (i = 0; i < npages; i++) { 712 page_virtual = kmap_local_page(pages[i]); 713 clflush_cache_range(page_virtual, PAGE_SIZE); 714 kunmap_local(page_virtual); 715 cond_resched(); 716 } 717 } 718 719 static void sev_writeback_caches(struct kvm *kvm) 720 { 721 /* 722 * Ensure that all dirty guest tagged cache entries are written back 723 * before releasing the pages back to the system for use. CLFLUSH will 724 * not do this without SME_COHERENT, and flushing many cache lines 725 * individually is slower than blasting WBINVD for large VMs, so issue 726 * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported) 727 * on CPUs that have done VMRUN, i.e. may have dirtied data using the 728 * VM's ASID. 729 * 730 * For simplicity, never remove CPUs from the bitmap. Ideally, KVM 731 * would clear the mask when flushing caches, but doing so requires 732 * serializing multiple calls and having responding CPUs (to the IPI) 733 * mark themselves as still running if they are running (or about to 734 * run) a vCPU for the VM. 735 * 736 * Note, the caller is responsible for ensuring correctness if the mask 737 * can be modified, e.g. if a CPU could be doing VMRUN. 738 */ 739 wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus); 740 } 741 742 static unsigned long get_num_contig_pages(unsigned long idx, 743 struct page **inpages, unsigned long npages) 744 { 745 unsigned long paddr, next_paddr; 746 unsigned long i = idx + 1, pages = 1; 747 748 /* find the number of contiguous pages starting from idx */ 749 paddr = __sme_page_pa(inpages[idx]); 750 while (i < npages) { 751 next_paddr = __sme_page_pa(inpages[i++]); 752 if ((paddr + PAGE_SIZE) == next_paddr) { 753 pages++; 754 paddr = next_paddr; 755 continue; 756 } 757 break; 758 } 759 760 return pages; 761 } 762 763 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 764 { 765 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 766 struct kvm_sev_launch_update_data params; 767 struct sev_data_launch_update_data data; 768 struct page **inpages; 769 int ret; 770 771 if (!sev_guest(kvm)) 772 return -ENOTTY; 773 774 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 775 return -EFAULT; 776 777 vaddr = params.uaddr; 778 size = params.len; 779 vaddr_end = vaddr + size; 780 781 /* Lock the user memory. */ 782 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE); 783 if (IS_ERR(inpages)) 784 return PTR_ERR(inpages); 785 786 /* 787 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 788 * place; the cache may contain the data that was written unencrypted. 789 */ 790 sev_clflush_pages(inpages, npages); 791 792 data.reserved = 0; 793 data.handle = to_kvm_sev_info(kvm)->handle; 794 795 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 796 int offset, len; 797 798 /* 799 * If the user buffer is not page-aligned, calculate the offset 800 * within the page. 801 */ 802 offset = vaddr & (PAGE_SIZE - 1); 803 804 /* Calculate the number of pages that can be encrypted in one go. */ 805 pages = get_num_contig_pages(i, inpages, npages); 806 807 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 808 809 data.len = len; 810 data.address = __sme_page_pa(inpages[i]) + offset; 811 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 812 if (ret) 813 goto e_unpin; 814 815 size -= len; 816 next_vaddr = vaddr + len; 817 } 818 819 e_unpin: 820 /* content of memory is updated, mark pages dirty */ 821 for (i = 0; i < npages; i++) { 822 set_page_dirty_lock(inpages[i]); 823 mark_page_accessed(inpages[i]); 824 } 825 /* unlock the user pages */ 826 sev_unpin_memory(kvm, inpages, npages); 827 return ret; 828 } 829 830 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 831 { 832 struct kvm_vcpu *vcpu = &svm->vcpu; 833 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 834 struct sev_es_save_area *save = svm->sev_es.vmsa; 835 struct xregs_state *xsave; 836 const u8 *s; 837 u8 *d; 838 int i; 839 840 /* Check some debug related fields before encrypting the VMSA */ 841 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 842 return -EINVAL; 843 844 /* 845 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 846 * the traditional VMSA that is part of the VMCB. Copy the 847 * traditional VMSA as it has been built so far (in prep 848 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 849 */ 850 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 851 852 /* Sync registgers */ 853 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 854 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 855 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 856 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 857 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 858 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 859 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 860 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 861 #ifdef CONFIG_X86_64 862 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 863 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 864 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 865 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 866 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 867 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 868 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 869 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 870 #endif 871 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 872 873 /* Sync some non-GPR registers before encrypting */ 874 save->xcr0 = svm->vcpu.arch.xcr0; 875 save->pkru = svm->vcpu.arch.pkru; 876 save->xss = svm->vcpu.arch.ia32_xss; 877 save->dr6 = svm->vcpu.arch.dr6; 878 879 save->sev_features = sev->vmsa_features; 880 881 /* 882 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 883 * breaking older measurements. 884 */ 885 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 886 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 887 save->x87_dp = xsave->i387.rdp; 888 save->mxcsr = xsave->i387.mxcsr; 889 save->x87_ftw = xsave->i387.twd; 890 save->x87_fsw = xsave->i387.swd; 891 save->x87_fcw = xsave->i387.cwd; 892 save->x87_fop = xsave->i387.fop; 893 save->x87_ds = 0; 894 save->x87_cs = 0; 895 save->x87_rip = xsave->i387.rip; 896 897 for (i = 0; i < 8; i++) { 898 /* 899 * The format of the x87 save area is undocumented and 900 * definitely not what you would expect. It consists of 901 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 902 * area with bytes 8-9 of each register. 903 */ 904 d = save->fpreg_x87 + i * 8; 905 s = ((u8 *)xsave->i387.st_space) + i * 16; 906 memcpy(d, s, 8); 907 save->fpreg_x87[64 + i * 2] = s[8]; 908 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 909 } 910 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 911 912 s = get_xsave_addr(xsave, XFEATURE_YMM); 913 if (s) 914 memcpy(save->fpreg_ymm, s, 256); 915 else 916 memset(save->fpreg_ymm, 0, 256); 917 } 918 919 pr_debug("Virtual Machine Save Area (VMSA):\n"); 920 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 921 922 return 0; 923 } 924 925 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 926 int *error) 927 { 928 struct sev_data_launch_update_vmsa vmsa; 929 struct vcpu_svm *svm = to_svm(vcpu); 930 int ret; 931 932 if (vcpu->guest_debug) { 933 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 934 return -EINVAL; 935 } 936 937 /* Perform some pre-encryption checks against the VMSA */ 938 ret = sev_es_sync_vmsa(svm); 939 if (ret) 940 return ret; 941 942 /* 943 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 944 * the VMSA memory content (i.e it will write the same memory region 945 * with the guest's key), so invalidate it first. 946 */ 947 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 948 949 vmsa.reserved = 0; 950 vmsa.handle = to_kvm_sev_info(kvm)->handle; 951 vmsa.address = __sme_pa(svm->sev_es.vmsa); 952 vmsa.len = PAGE_SIZE; 953 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 954 if (ret) 955 return ret; 956 957 /* 958 * SEV-ES guests maintain an encrypted version of their FPU 959 * state which is restored and saved on VMRUN and VMEXIT. 960 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 961 * do xsave/xrstor on it. 962 */ 963 fpstate_set_confidential(&vcpu->arch.guest_fpu); 964 vcpu->arch.guest_state_protected = true; 965 966 /* 967 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 968 * only after setting guest_state_protected because KVM_SET_MSRS allows 969 * dynamic toggling of LBRV (for performance reason) on write access to 970 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 971 */ 972 svm_enable_lbrv(vcpu); 973 return 0; 974 } 975 976 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 977 { 978 struct kvm_vcpu *vcpu; 979 unsigned long i; 980 int ret; 981 982 if (!sev_es_guest(kvm)) 983 return -ENOTTY; 984 985 kvm_for_each_vcpu(i, vcpu, kvm) { 986 ret = mutex_lock_killable(&vcpu->mutex); 987 if (ret) 988 return ret; 989 990 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 991 992 mutex_unlock(&vcpu->mutex); 993 if (ret) 994 return ret; 995 } 996 997 return 0; 998 } 999 1000 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 1001 { 1002 void __user *measure = u64_to_user_ptr(argp->data); 1003 struct sev_data_launch_measure data; 1004 struct kvm_sev_launch_measure params; 1005 void __user *p = NULL; 1006 void *blob = NULL; 1007 int ret; 1008 1009 if (!sev_guest(kvm)) 1010 return -ENOTTY; 1011 1012 if (copy_from_user(¶ms, measure, sizeof(params))) 1013 return -EFAULT; 1014 1015 memset(&data, 0, sizeof(data)); 1016 1017 /* User wants to query the blob length */ 1018 if (!params.len) 1019 goto cmd; 1020 1021 p = u64_to_user_ptr(params.uaddr); 1022 if (p) { 1023 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1024 return -EINVAL; 1025 1026 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1027 if (!blob) 1028 return -ENOMEM; 1029 1030 data.address = __psp_pa(blob); 1031 data.len = params.len; 1032 } 1033 1034 cmd: 1035 data.handle = to_kvm_sev_info(kvm)->handle; 1036 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1037 1038 /* 1039 * If we query the session length, FW responded with expected data. 1040 */ 1041 if (!params.len) 1042 goto done; 1043 1044 if (ret) 1045 goto e_free_blob; 1046 1047 if (blob) { 1048 if (copy_to_user(p, blob, params.len)) 1049 ret = -EFAULT; 1050 } 1051 1052 done: 1053 params.len = data.len; 1054 if (copy_to_user(measure, ¶ms, sizeof(params))) 1055 ret = -EFAULT; 1056 e_free_blob: 1057 kfree(blob); 1058 return ret; 1059 } 1060 1061 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1062 { 1063 struct sev_data_launch_finish data; 1064 1065 if (!sev_guest(kvm)) 1066 return -ENOTTY; 1067 1068 data.handle = to_kvm_sev_info(kvm)->handle; 1069 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1070 } 1071 1072 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1073 { 1074 struct kvm_sev_guest_status params; 1075 struct sev_data_guest_status data; 1076 int ret; 1077 1078 if (!sev_guest(kvm)) 1079 return -ENOTTY; 1080 1081 memset(&data, 0, sizeof(data)); 1082 1083 data.handle = to_kvm_sev_info(kvm)->handle; 1084 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1085 if (ret) 1086 return ret; 1087 1088 params.policy = data.policy; 1089 params.state = data.state; 1090 params.handle = data.handle; 1091 1092 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1093 ret = -EFAULT; 1094 1095 return ret; 1096 } 1097 1098 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1099 unsigned long dst, int size, 1100 int *error, bool enc) 1101 { 1102 struct sev_data_dbg data; 1103 1104 data.reserved = 0; 1105 data.handle = to_kvm_sev_info(kvm)->handle; 1106 data.dst_addr = dst; 1107 data.src_addr = src; 1108 data.len = size; 1109 1110 return sev_issue_cmd(kvm, 1111 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1112 &data, error); 1113 } 1114 1115 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1116 unsigned long dst_paddr, int sz, int *err) 1117 { 1118 int offset; 1119 1120 /* 1121 * Its safe to read more than we are asked, caller should ensure that 1122 * destination has enough space. 1123 */ 1124 offset = src_paddr & 15; 1125 src_paddr = round_down(src_paddr, 16); 1126 sz = round_up(sz + offset, 16); 1127 1128 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1129 } 1130 1131 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1132 void __user *dst_uaddr, 1133 unsigned long dst_paddr, 1134 int size, int *err) 1135 { 1136 struct page *tpage = NULL; 1137 int ret, offset; 1138 1139 /* if inputs are not 16-byte then use intermediate buffer */ 1140 if (!IS_ALIGNED(dst_paddr, 16) || 1141 !IS_ALIGNED(paddr, 16) || 1142 !IS_ALIGNED(size, 16)) { 1143 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1144 if (!tpage) 1145 return -ENOMEM; 1146 1147 dst_paddr = __sme_page_pa(tpage); 1148 } 1149 1150 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1151 if (ret) 1152 goto e_free; 1153 1154 if (tpage) { 1155 offset = paddr & 15; 1156 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1157 ret = -EFAULT; 1158 } 1159 1160 e_free: 1161 if (tpage) 1162 __free_page(tpage); 1163 1164 return ret; 1165 } 1166 1167 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1168 void __user *vaddr, 1169 unsigned long dst_paddr, 1170 void __user *dst_vaddr, 1171 int size, int *error) 1172 { 1173 struct page *src_tpage = NULL; 1174 struct page *dst_tpage = NULL; 1175 int ret, len = size; 1176 1177 /* If source buffer is not aligned then use an intermediate buffer */ 1178 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1179 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1180 if (!src_tpage) 1181 return -ENOMEM; 1182 1183 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1184 __free_page(src_tpage); 1185 return -EFAULT; 1186 } 1187 1188 paddr = __sme_page_pa(src_tpage); 1189 } 1190 1191 /* 1192 * If destination buffer or length is not aligned then do read-modify-write: 1193 * - decrypt destination in an intermediate buffer 1194 * - copy the source buffer in an intermediate buffer 1195 * - use the intermediate buffer as source buffer 1196 */ 1197 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1198 int dst_offset; 1199 1200 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1201 if (!dst_tpage) { 1202 ret = -ENOMEM; 1203 goto e_free; 1204 } 1205 1206 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1207 __sme_page_pa(dst_tpage), size, error); 1208 if (ret) 1209 goto e_free; 1210 1211 /* 1212 * If source is kernel buffer then use memcpy() otherwise 1213 * copy_from_user(). 1214 */ 1215 dst_offset = dst_paddr & 15; 1216 1217 if (src_tpage) 1218 memcpy(page_address(dst_tpage) + dst_offset, 1219 page_address(src_tpage), size); 1220 else { 1221 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1222 vaddr, size)) { 1223 ret = -EFAULT; 1224 goto e_free; 1225 } 1226 } 1227 1228 paddr = __sme_page_pa(dst_tpage); 1229 dst_paddr = round_down(dst_paddr, 16); 1230 len = round_up(size, 16); 1231 } 1232 1233 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1234 1235 e_free: 1236 if (src_tpage) 1237 __free_page(src_tpage); 1238 if (dst_tpage) 1239 __free_page(dst_tpage); 1240 return ret; 1241 } 1242 1243 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1244 { 1245 unsigned long vaddr, vaddr_end, next_vaddr; 1246 unsigned long dst_vaddr; 1247 struct page **src_p, **dst_p; 1248 struct kvm_sev_dbg debug; 1249 unsigned long n; 1250 unsigned int size; 1251 int ret; 1252 1253 if (!sev_guest(kvm)) 1254 return -ENOTTY; 1255 1256 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1257 return -EFAULT; 1258 1259 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1260 return -EINVAL; 1261 if (!debug.dst_uaddr) 1262 return -EINVAL; 1263 1264 vaddr = debug.src_uaddr; 1265 size = debug.len; 1266 vaddr_end = vaddr + size; 1267 dst_vaddr = debug.dst_uaddr; 1268 1269 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1270 int len, s_off, d_off; 1271 1272 /* lock userspace source and destination page */ 1273 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1274 if (IS_ERR(src_p)) 1275 return PTR_ERR(src_p); 1276 1277 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE); 1278 if (IS_ERR(dst_p)) { 1279 sev_unpin_memory(kvm, src_p, n); 1280 return PTR_ERR(dst_p); 1281 } 1282 1283 /* 1284 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1285 * the pages; flush the destination too so that future accesses do not 1286 * see stale data. 1287 */ 1288 sev_clflush_pages(src_p, 1); 1289 sev_clflush_pages(dst_p, 1); 1290 1291 /* 1292 * Since user buffer may not be page aligned, calculate the 1293 * offset within the page. 1294 */ 1295 s_off = vaddr & ~PAGE_MASK; 1296 d_off = dst_vaddr & ~PAGE_MASK; 1297 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1298 1299 if (dec) 1300 ret = __sev_dbg_decrypt_user(kvm, 1301 __sme_page_pa(src_p[0]) + s_off, 1302 (void __user *)dst_vaddr, 1303 __sme_page_pa(dst_p[0]) + d_off, 1304 len, &argp->error); 1305 else 1306 ret = __sev_dbg_encrypt_user(kvm, 1307 __sme_page_pa(src_p[0]) + s_off, 1308 (void __user *)vaddr, 1309 __sme_page_pa(dst_p[0]) + d_off, 1310 (void __user *)dst_vaddr, 1311 len, &argp->error); 1312 1313 sev_unpin_memory(kvm, src_p, n); 1314 sev_unpin_memory(kvm, dst_p, n); 1315 1316 if (ret) 1317 goto err; 1318 1319 next_vaddr = vaddr + len; 1320 dst_vaddr = dst_vaddr + len; 1321 size -= len; 1322 } 1323 err: 1324 return ret; 1325 } 1326 1327 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1328 { 1329 struct sev_data_launch_secret data; 1330 struct kvm_sev_launch_secret params; 1331 struct page **pages; 1332 void *blob, *hdr; 1333 unsigned long n, i; 1334 int ret, offset; 1335 1336 if (!sev_guest(kvm)) 1337 return -ENOTTY; 1338 1339 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1340 return -EFAULT; 1341 1342 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE); 1343 if (IS_ERR(pages)) 1344 return PTR_ERR(pages); 1345 1346 /* 1347 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1348 * place; the cache may contain the data that was written unencrypted. 1349 */ 1350 sev_clflush_pages(pages, n); 1351 1352 /* 1353 * The secret must be copied into contiguous memory region, lets verify 1354 * that userspace memory pages are contiguous before we issue command. 1355 */ 1356 if (get_num_contig_pages(0, pages, n) != n) { 1357 ret = -EINVAL; 1358 goto e_unpin_memory; 1359 } 1360 1361 memset(&data, 0, sizeof(data)); 1362 1363 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1364 data.guest_address = __sme_page_pa(pages[0]) + offset; 1365 data.guest_len = params.guest_len; 1366 1367 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1368 if (IS_ERR(blob)) { 1369 ret = PTR_ERR(blob); 1370 goto e_unpin_memory; 1371 } 1372 1373 data.trans_address = __psp_pa(blob); 1374 data.trans_len = params.trans_len; 1375 1376 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1377 if (IS_ERR(hdr)) { 1378 ret = PTR_ERR(hdr); 1379 goto e_free_blob; 1380 } 1381 data.hdr_address = __psp_pa(hdr); 1382 data.hdr_len = params.hdr_len; 1383 1384 data.handle = to_kvm_sev_info(kvm)->handle; 1385 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1386 1387 kfree(hdr); 1388 1389 e_free_blob: 1390 kfree(blob); 1391 e_unpin_memory: 1392 /* content of memory is updated, mark pages dirty */ 1393 for (i = 0; i < n; i++) { 1394 set_page_dirty_lock(pages[i]); 1395 mark_page_accessed(pages[i]); 1396 } 1397 sev_unpin_memory(kvm, pages, n); 1398 return ret; 1399 } 1400 1401 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1402 { 1403 void __user *report = u64_to_user_ptr(argp->data); 1404 struct sev_data_attestation_report data; 1405 struct kvm_sev_attestation_report params; 1406 void __user *p; 1407 void *blob = NULL; 1408 int ret; 1409 1410 if (!sev_guest(kvm)) 1411 return -ENOTTY; 1412 1413 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1414 return -EFAULT; 1415 1416 memset(&data, 0, sizeof(data)); 1417 1418 /* User wants to query the blob length */ 1419 if (!params.len) 1420 goto cmd; 1421 1422 p = u64_to_user_ptr(params.uaddr); 1423 if (p) { 1424 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1425 return -EINVAL; 1426 1427 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1428 if (!blob) 1429 return -ENOMEM; 1430 1431 data.address = __psp_pa(blob); 1432 data.len = params.len; 1433 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1434 } 1435 cmd: 1436 data.handle = to_kvm_sev_info(kvm)->handle; 1437 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1438 /* 1439 * If we query the session length, FW responded with expected data. 1440 */ 1441 if (!params.len) 1442 goto done; 1443 1444 if (ret) 1445 goto e_free_blob; 1446 1447 if (blob) { 1448 if (copy_to_user(p, blob, params.len)) 1449 ret = -EFAULT; 1450 } 1451 1452 done: 1453 params.len = data.len; 1454 if (copy_to_user(report, ¶ms, sizeof(params))) 1455 ret = -EFAULT; 1456 e_free_blob: 1457 kfree(blob); 1458 return ret; 1459 } 1460 1461 /* Userspace wants to query session length. */ 1462 static int 1463 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1464 struct kvm_sev_send_start *params) 1465 { 1466 struct sev_data_send_start data; 1467 int ret; 1468 1469 memset(&data, 0, sizeof(data)); 1470 data.handle = to_kvm_sev_info(kvm)->handle; 1471 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1472 1473 params->session_len = data.session_len; 1474 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1475 sizeof(struct kvm_sev_send_start))) 1476 ret = -EFAULT; 1477 1478 return ret; 1479 } 1480 1481 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1482 { 1483 struct sev_data_send_start data; 1484 struct kvm_sev_send_start params; 1485 void *amd_certs, *session_data; 1486 void *pdh_cert, *plat_certs; 1487 int ret; 1488 1489 if (!sev_guest(kvm)) 1490 return -ENOTTY; 1491 1492 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1493 sizeof(struct kvm_sev_send_start))) 1494 return -EFAULT; 1495 1496 /* if session_len is zero, userspace wants to query the session length */ 1497 if (!params.session_len) 1498 return __sev_send_start_query_session_length(kvm, argp, 1499 ¶ms); 1500 1501 /* some sanity checks */ 1502 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1503 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1504 return -EINVAL; 1505 1506 /* allocate the memory to hold the session data blob */ 1507 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1508 if (!session_data) 1509 return -ENOMEM; 1510 1511 /* copy the certificate blobs from userspace */ 1512 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1513 params.pdh_cert_len); 1514 if (IS_ERR(pdh_cert)) { 1515 ret = PTR_ERR(pdh_cert); 1516 goto e_free_session; 1517 } 1518 1519 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1520 params.plat_certs_len); 1521 if (IS_ERR(plat_certs)) { 1522 ret = PTR_ERR(plat_certs); 1523 goto e_free_pdh; 1524 } 1525 1526 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1527 params.amd_certs_len); 1528 if (IS_ERR(amd_certs)) { 1529 ret = PTR_ERR(amd_certs); 1530 goto e_free_plat_cert; 1531 } 1532 1533 /* populate the FW SEND_START field with system physical address */ 1534 memset(&data, 0, sizeof(data)); 1535 data.pdh_cert_address = __psp_pa(pdh_cert); 1536 data.pdh_cert_len = params.pdh_cert_len; 1537 data.plat_certs_address = __psp_pa(plat_certs); 1538 data.plat_certs_len = params.plat_certs_len; 1539 data.amd_certs_address = __psp_pa(amd_certs); 1540 data.amd_certs_len = params.amd_certs_len; 1541 data.session_address = __psp_pa(session_data); 1542 data.session_len = params.session_len; 1543 data.handle = to_kvm_sev_info(kvm)->handle; 1544 1545 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1546 1547 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1548 session_data, params.session_len)) { 1549 ret = -EFAULT; 1550 goto e_free_amd_cert; 1551 } 1552 1553 params.policy = data.policy; 1554 params.session_len = data.session_len; 1555 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1556 sizeof(struct kvm_sev_send_start))) 1557 ret = -EFAULT; 1558 1559 e_free_amd_cert: 1560 kfree(amd_certs); 1561 e_free_plat_cert: 1562 kfree(plat_certs); 1563 e_free_pdh: 1564 kfree(pdh_cert); 1565 e_free_session: 1566 kfree(session_data); 1567 return ret; 1568 } 1569 1570 /* Userspace wants to query either header or trans length. */ 1571 static int 1572 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1573 struct kvm_sev_send_update_data *params) 1574 { 1575 struct sev_data_send_update_data data; 1576 int ret; 1577 1578 memset(&data, 0, sizeof(data)); 1579 data.handle = to_kvm_sev_info(kvm)->handle; 1580 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1581 1582 params->hdr_len = data.hdr_len; 1583 params->trans_len = data.trans_len; 1584 1585 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1586 sizeof(struct kvm_sev_send_update_data))) 1587 ret = -EFAULT; 1588 1589 return ret; 1590 } 1591 1592 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1593 { 1594 struct sev_data_send_update_data data; 1595 struct kvm_sev_send_update_data params; 1596 void *hdr, *trans_data; 1597 struct page **guest_page; 1598 unsigned long n; 1599 int ret, offset; 1600 1601 if (!sev_guest(kvm)) 1602 return -ENOTTY; 1603 1604 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1605 sizeof(struct kvm_sev_send_update_data))) 1606 return -EFAULT; 1607 1608 /* userspace wants to query either header or trans length */ 1609 if (!params.trans_len || !params.hdr_len) 1610 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1611 1612 if (!params.trans_uaddr || !params.guest_uaddr || 1613 !params.guest_len || !params.hdr_uaddr) 1614 return -EINVAL; 1615 1616 /* Check if we are crossing the page boundary */ 1617 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1618 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1619 return -EINVAL; 1620 1621 /* Pin guest memory */ 1622 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1623 PAGE_SIZE, &n, 0); 1624 if (IS_ERR(guest_page)) 1625 return PTR_ERR(guest_page); 1626 1627 /* allocate memory for header and transport buffer */ 1628 ret = -ENOMEM; 1629 hdr = kzalloc(params.hdr_len, GFP_KERNEL); 1630 if (!hdr) 1631 goto e_unpin; 1632 1633 trans_data = kzalloc(params.trans_len, GFP_KERNEL); 1634 if (!trans_data) 1635 goto e_free_hdr; 1636 1637 memset(&data, 0, sizeof(data)); 1638 data.hdr_address = __psp_pa(hdr); 1639 data.hdr_len = params.hdr_len; 1640 data.trans_address = __psp_pa(trans_data); 1641 data.trans_len = params.trans_len; 1642 1643 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1644 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1645 data.guest_address |= sev_me_mask; 1646 data.guest_len = params.guest_len; 1647 data.handle = to_kvm_sev_info(kvm)->handle; 1648 1649 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1650 1651 if (ret) 1652 goto e_free_trans_data; 1653 1654 /* copy transport buffer to user space */ 1655 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1656 trans_data, params.trans_len)) { 1657 ret = -EFAULT; 1658 goto e_free_trans_data; 1659 } 1660 1661 /* Copy packet header to userspace. */ 1662 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1663 params.hdr_len)) 1664 ret = -EFAULT; 1665 1666 e_free_trans_data: 1667 kfree(trans_data); 1668 e_free_hdr: 1669 kfree(hdr); 1670 e_unpin: 1671 sev_unpin_memory(kvm, guest_page, n); 1672 1673 return ret; 1674 } 1675 1676 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1677 { 1678 struct sev_data_send_finish data; 1679 1680 if (!sev_guest(kvm)) 1681 return -ENOTTY; 1682 1683 data.handle = to_kvm_sev_info(kvm)->handle; 1684 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1685 } 1686 1687 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1688 { 1689 struct sev_data_send_cancel data; 1690 1691 if (!sev_guest(kvm)) 1692 return -ENOTTY; 1693 1694 data.handle = to_kvm_sev_info(kvm)->handle; 1695 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1696 } 1697 1698 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1699 { 1700 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 1701 struct sev_data_receive_start start; 1702 struct kvm_sev_receive_start params; 1703 int *error = &argp->error; 1704 void *session_data; 1705 void *pdh_data; 1706 int ret; 1707 1708 if (!sev_guest(kvm)) 1709 return -ENOTTY; 1710 1711 /* Get parameter from the userspace */ 1712 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1713 sizeof(struct kvm_sev_receive_start))) 1714 return -EFAULT; 1715 1716 /* some sanity checks */ 1717 if (!params.pdh_uaddr || !params.pdh_len || 1718 !params.session_uaddr || !params.session_len) 1719 return -EINVAL; 1720 1721 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1722 if (IS_ERR(pdh_data)) 1723 return PTR_ERR(pdh_data); 1724 1725 session_data = psp_copy_user_blob(params.session_uaddr, 1726 params.session_len); 1727 if (IS_ERR(session_data)) { 1728 ret = PTR_ERR(session_data); 1729 goto e_free_pdh; 1730 } 1731 1732 memset(&start, 0, sizeof(start)); 1733 start.handle = params.handle; 1734 start.policy = params.policy; 1735 start.pdh_cert_address = __psp_pa(pdh_data); 1736 start.pdh_cert_len = params.pdh_len; 1737 start.session_address = __psp_pa(session_data); 1738 start.session_len = params.session_len; 1739 1740 /* create memory encryption context */ 1741 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1742 error); 1743 if (ret) 1744 goto e_free_session; 1745 1746 /* Bind ASID to this guest */ 1747 ret = sev_bind_asid(kvm, start.handle, error); 1748 if (ret) { 1749 sev_decommission(start.handle); 1750 goto e_free_session; 1751 } 1752 1753 params.handle = start.handle; 1754 if (copy_to_user(u64_to_user_ptr(argp->data), 1755 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1756 ret = -EFAULT; 1757 sev_unbind_asid(kvm, start.handle); 1758 goto e_free_session; 1759 } 1760 1761 sev->handle = start.handle; 1762 sev->fd = argp->sev_fd; 1763 1764 e_free_session: 1765 kfree(session_data); 1766 e_free_pdh: 1767 kfree(pdh_data); 1768 1769 return ret; 1770 } 1771 1772 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1773 { 1774 struct kvm_sev_receive_update_data params; 1775 struct sev_data_receive_update_data data; 1776 void *hdr = NULL, *trans = NULL; 1777 struct page **guest_page; 1778 unsigned long n; 1779 int ret, offset; 1780 1781 if (!sev_guest(kvm)) 1782 return -EINVAL; 1783 1784 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1785 sizeof(struct kvm_sev_receive_update_data))) 1786 return -EFAULT; 1787 1788 if (!params.hdr_uaddr || !params.hdr_len || 1789 !params.guest_uaddr || !params.guest_len || 1790 !params.trans_uaddr || !params.trans_len) 1791 return -EINVAL; 1792 1793 /* Check if we are crossing the page boundary */ 1794 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1795 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1796 return -EINVAL; 1797 1798 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1799 if (IS_ERR(hdr)) 1800 return PTR_ERR(hdr); 1801 1802 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1803 if (IS_ERR(trans)) { 1804 ret = PTR_ERR(trans); 1805 goto e_free_hdr; 1806 } 1807 1808 memset(&data, 0, sizeof(data)); 1809 data.hdr_address = __psp_pa(hdr); 1810 data.hdr_len = params.hdr_len; 1811 data.trans_address = __psp_pa(trans); 1812 data.trans_len = params.trans_len; 1813 1814 /* Pin guest memory */ 1815 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1816 PAGE_SIZE, &n, FOLL_WRITE); 1817 if (IS_ERR(guest_page)) { 1818 ret = PTR_ERR(guest_page); 1819 goto e_free_trans; 1820 } 1821 1822 /* 1823 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1824 * encrypts the written data with the guest's key, and the cache may 1825 * contain dirty, unencrypted data. 1826 */ 1827 sev_clflush_pages(guest_page, n); 1828 1829 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1830 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1831 data.guest_address |= sev_me_mask; 1832 data.guest_len = params.guest_len; 1833 data.handle = to_kvm_sev_info(kvm)->handle; 1834 1835 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1836 &argp->error); 1837 1838 sev_unpin_memory(kvm, guest_page, n); 1839 1840 e_free_trans: 1841 kfree(trans); 1842 e_free_hdr: 1843 kfree(hdr); 1844 1845 return ret; 1846 } 1847 1848 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1849 { 1850 struct sev_data_receive_finish data; 1851 1852 if (!sev_guest(kvm)) 1853 return -ENOTTY; 1854 1855 data.handle = to_kvm_sev_info(kvm)->handle; 1856 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1857 } 1858 1859 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1860 { 1861 /* 1862 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1863 * active mirror VMs. Also allow the debugging and status commands. 1864 */ 1865 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1866 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1867 cmd_id == KVM_SEV_DBG_ENCRYPT) 1868 return true; 1869 1870 return false; 1871 } 1872 1873 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1874 { 1875 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1876 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1877 int r = -EBUSY; 1878 1879 if (dst_kvm == src_kvm) 1880 return -EINVAL; 1881 1882 /* 1883 * Bail if these VMs are already involved in a migration to avoid 1884 * deadlock between two VMs trying to migrate to/from each other. 1885 */ 1886 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1887 return -EBUSY; 1888 1889 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1890 goto release_dst; 1891 1892 r = -EINTR; 1893 if (mutex_lock_killable(&dst_kvm->lock)) 1894 goto release_src; 1895 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1896 goto unlock_dst; 1897 return 0; 1898 1899 unlock_dst: 1900 mutex_unlock(&dst_kvm->lock); 1901 release_src: 1902 atomic_set_release(&src_sev->migration_in_progress, 0); 1903 release_dst: 1904 atomic_set_release(&dst_sev->migration_in_progress, 0); 1905 return r; 1906 } 1907 1908 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1909 { 1910 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1911 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1912 1913 mutex_unlock(&dst_kvm->lock); 1914 mutex_unlock(&src_kvm->lock); 1915 atomic_set_release(&dst_sev->migration_in_progress, 0); 1916 atomic_set_release(&src_sev->migration_in_progress, 0); 1917 } 1918 1919 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1920 { 1921 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm); 1922 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm); 1923 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1924 struct vcpu_svm *dst_svm, *src_svm; 1925 struct kvm_sev_info *mirror; 1926 unsigned long i; 1927 1928 dst->active = true; 1929 dst->asid = src->asid; 1930 dst->handle = src->handle; 1931 dst->pages_locked = src->pages_locked; 1932 dst->enc_context_owner = src->enc_context_owner; 1933 dst->es_active = src->es_active; 1934 dst->vmsa_features = src->vmsa_features; 1935 1936 src->asid = 0; 1937 src->active = false; 1938 src->handle = 0; 1939 src->pages_locked = 0; 1940 src->enc_context_owner = NULL; 1941 src->es_active = false; 1942 1943 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1944 1945 /* 1946 * If this VM has mirrors, "transfer" each mirror's refcount of the 1947 * source to the destination (this KVM). The caller holds a reference 1948 * to the source, so there's no danger of use-after-free. 1949 */ 1950 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1951 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1952 kvm_get_kvm(dst_kvm); 1953 kvm_put_kvm(src_kvm); 1954 mirror->enc_context_owner = dst_kvm; 1955 } 1956 1957 /* 1958 * If this VM is a mirror, remove the old mirror from the owners list 1959 * and add the new mirror to the list. 1960 */ 1961 if (is_mirroring_enc_context(dst_kvm)) { 1962 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner); 1963 1964 list_del(&src->mirror_entry); 1965 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1966 } 1967 1968 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 1969 dst_svm = to_svm(dst_vcpu); 1970 1971 sev_init_vmcb(dst_svm); 1972 1973 if (!dst->es_active) 1974 continue; 1975 1976 /* 1977 * Note, the source is not required to have the same number of 1978 * vCPUs as the destination when migrating a vanilla SEV VM. 1979 */ 1980 src_vcpu = kvm_get_vcpu(src_kvm, i); 1981 src_svm = to_svm(src_vcpu); 1982 1983 /* 1984 * Transfer VMSA and GHCB state to the destination. Nullify and 1985 * clear source fields as appropriate, the state now belongs to 1986 * the destination. 1987 */ 1988 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1989 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1990 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1991 dst_vcpu->arch.guest_state_protected = true; 1992 1993 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1994 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1995 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1996 src_vcpu->arch.guest_state_protected = false; 1997 } 1998 } 1999 2000 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 2001 { 2002 struct kvm_vcpu *src_vcpu; 2003 unsigned long i; 2004 2005 if (src->created_vcpus != atomic_read(&src->online_vcpus) || 2006 dst->created_vcpus != atomic_read(&dst->online_vcpus)) 2007 return -EBUSY; 2008 2009 if (!sev_es_guest(src)) 2010 return 0; 2011 2012 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 2013 return -EINVAL; 2014 2015 kvm_for_each_vcpu(i, src_vcpu, src) { 2016 if (!src_vcpu->arch.guest_state_protected) 2017 return -EINVAL; 2018 } 2019 2020 return 0; 2021 } 2022 2023 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2024 { 2025 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm); 2026 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 2027 CLASS(fd, f)(source_fd); 2028 struct kvm *source_kvm; 2029 bool charged = false; 2030 int ret; 2031 2032 if (fd_empty(f)) 2033 return -EBADF; 2034 2035 if (!file_is_kvm(fd_file(f))) 2036 return -EBADF; 2037 2038 source_kvm = fd_file(f)->private_data; 2039 ret = sev_lock_two_vms(kvm, source_kvm); 2040 if (ret) 2041 return ret; 2042 2043 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2044 sev_guest(kvm) || !sev_guest(source_kvm)) { 2045 ret = -EINVAL; 2046 goto out_unlock; 2047 } 2048 2049 src_sev = to_kvm_sev_info(source_kvm); 2050 2051 dst_sev->misc_cg = get_current_misc_cg(); 2052 cg_cleanup_sev = dst_sev; 2053 if (dst_sev->misc_cg != src_sev->misc_cg) { 2054 ret = sev_misc_cg_try_charge(dst_sev); 2055 if (ret) 2056 goto out_dst_cgroup; 2057 charged = true; 2058 } 2059 2060 ret = kvm_lock_all_vcpus(kvm); 2061 if (ret) 2062 goto out_dst_cgroup; 2063 ret = kvm_lock_all_vcpus(source_kvm); 2064 if (ret) 2065 goto out_dst_vcpu; 2066 2067 ret = sev_check_source_vcpus(kvm, source_kvm); 2068 if (ret) 2069 goto out_source_vcpu; 2070 2071 /* 2072 * Allocate a new have_run_cpus for the destination, i.e. don't copy 2073 * the set of CPUs from the source. If a CPU was used to run a vCPU in 2074 * the source VM but is never used for the destination VM, then the CPU 2075 * can only have cached memory that was accessible to the source VM. 2076 */ 2077 if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) { 2078 ret = -ENOMEM; 2079 goto out_source_vcpu; 2080 } 2081 2082 sev_migrate_from(kvm, source_kvm); 2083 kvm_vm_dead(source_kvm); 2084 cg_cleanup_sev = src_sev; 2085 ret = 0; 2086 2087 out_source_vcpu: 2088 kvm_unlock_all_vcpus(source_kvm); 2089 out_dst_vcpu: 2090 kvm_unlock_all_vcpus(kvm); 2091 out_dst_cgroup: 2092 /* Operates on the source on success, on the destination on failure. */ 2093 if (charged) 2094 sev_misc_cg_uncharge(cg_cleanup_sev); 2095 put_misc_cg(cg_cleanup_sev->misc_cg); 2096 cg_cleanup_sev->misc_cg = NULL; 2097 out_unlock: 2098 sev_unlock_two_vms(kvm, source_kvm); 2099 return ret; 2100 } 2101 2102 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2103 { 2104 if (group != KVM_X86_GRP_SEV) 2105 return -ENXIO; 2106 2107 switch (attr) { 2108 case KVM_X86_SEV_VMSA_FEATURES: 2109 *val = sev_supported_vmsa_features; 2110 return 0; 2111 2112 default: 2113 return -ENXIO; 2114 } 2115 } 2116 2117 /* 2118 * The guest context contains all the information, keys and metadata 2119 * associated with the guest that the firmware tracks to implement SEV 2120 * and SNP features. The firmware stores the guest context in hypervisor 2121 * provide page via the SNP_GCTX_CREATE command. 2122 */ 2123 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2124 { 2125 struct sev_data_snp_addr data = {}; 2126 void *context; 2127 int rc; 2128 2129 /* Allocate memory for context page */ 2130 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2131 if (!context) 2132 return NULL; 2133 2134 data.address = __psp_pa(context); 2135 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2136 if (rc) { 2137 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2138 rc, argp->error); 2139 snp_free_firmware_page(context); 2140 return NULL; 2141 } 2142 2143 return context; 2144 } 2145 2146 static int snp_bind_asid(struct kvm *kvm, int *error) 2147 { 2148 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2149 struct sev_data_snp_activate data = {0}; 2150 2151 data.gctx_paddr = __psp_pa(sev->snp_context); 2152 data.asid = sev_get_asid(kvm); 2153 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2154 } 2155 2156 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2157 { 2158 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2159 struct sev_data_snp_launch_start start = {0}; 2160 struct kvm_sev_snp_launch_start params; 2161 int rc; 2162 2163 if (!sev_snp_guest(kvm)) 2164 return -ENOTTY; 2165 2166 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2167 return -EFAULT; 2168 2169 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2170 if (sev->snp_context) 2171 return -EINVAL; 2172 2173 if (params.flags) 2174 return -EINVAL; 2175 2176 if (params.policy & ~SNP_POLICY_MASK_VALID) 2177 return -EINVAL; 2178 2179 /* Check for policy bits that must be set */ 2180 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO)) 2181 return -EINVAL; 2182 2183 sev->policy = params.policy; 2184 2185 sev->snp_context = snp_context_create(kvm, argp); 2186 if (!sev->snp_context) 2187 return -ENOTTY; 2188 2189 start.gctx_paddr = __psp_pa(sev->snp_context); 2190 start.policy = params.policy; 2191 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2192 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2193 if (rc) { 2194 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2195 __func__, rc); 2196 goto e_free_context; 2197 } 2198 2199 sev->fd = argp->sev_fd; 2200 rc = snp_bind_asid(kvm, &argp->error); 2201 if (rc) { 2202 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2203 __func__, rc); 2204 goto e_free_context; 2205 } 2206 2207 return 0; 2208 2209 e_free_context: 2210 snp_decommission_context(kvm); 2211 2212 return rc; 2213 } 2214 2215 struct sev_gmem_populate_args { 2216 __u8 type; 2217 int sev_fd; 2218 int fw_error; 2219 }; 2220 2221 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2222 void __user *src, int order, void *opaque) 2223 { 2224 struct sev_gmem_populate_args *sev_populate_args = opaque; 2225 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2226 int n_private = 0, ret, i; 2227 int npages = (1 << order); 2228 gfn_t gfn; 2229 2230 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2231 return -EINVAL; 2232 2233 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2234 struct sev_data_snp_launch_update fw_args = {0}; 2235 bool assigned = false; 2236 int level; 2237 2238 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2239 if (ret || assigned) { 2240 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2241 __func__, gfn, ret, assigned); 2242 ret = ret ? -EINVAL : -EEXIST; 2243 goto err; 2244 } 2245 2246 if (src) { 2247 void *vaddr = kmap_local_pfn(pfn + i); 2248 2249 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { 2250 ret = -EFAULT; 2251 goto err; 2252 } 2253 kunmap_local(vaddr); 2254 } 2255 2256 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2257 sev_get_asid(kvm), true); 2258 if (ret) 2259 goto err; 2260 2261 n_private++; 2262 2263 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2264 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2265 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2266 fw_args.page_type = sev_populate_args->type; 2267 2268 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2269 &fw_args, &sev_populate_args->fw_error); 2270 if (ret) 2271 goto fw_err; 2272 } 2273 2274 return 0; 2275 2276 fw_err: 2277 /* 2278 * If the firmware command failed handle the reclaim and cleanup of that 2279 * PFN specially vs. prior pages which can be cleaned up below without 2280 * needing to reclaim in advance. 2281 * 2282 * Additionally, when invalid CPUID function entries are detected, 2283 * firmware writes the expected values into the page and leaves it 2284 * unencrypted so it can be used for debugging and error-reporting. 2285 * 2286 * Copy this page back into the source buffer so userspace can use this 2287 * information to provide information on which CPUID leaves/fields 2288 * failed CPUID validation. 2289 */ 2290 if (!snp_page_reclaim(kvm, pfn + i) && 2291 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2292 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2293 void *vaddr = kmap_local_pfn(pfn + i); 2294 2295 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2296 pr_debug("Failed to write CPUID page back to userspace\n"); 2297 2298 kunmap_local(vaddr); 2299 } 2300 2301 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2302 n_private--; 2303 2304 err: 2305 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2306 __func__, ret, sev_populate_args->fw_error, n_private); 2307 for (i = 0; i < n_private; i++) 2308 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2309 2310 return ret; 2311 } 2312 2313 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2314 { 2315 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2316 struct sev_gmem_populate_args sev_populate_args = {0}; 2317 struct kvm_sev_snp_launch_update params; 2318 struct kvm_memory_slot *memslot; 2319 long npages, count; 2320 void __user *src; 2321 int ret = 0; 2322 2323 if (!sev_snp_guest(kvm) || !sev->snp_context) 2324 return -EINVAL; 2325 2326 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2327 return -EFAULT; 2328 2329 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2330 params.gfn_start, params.len, params.type, params.flags); 2331 2332 if (!PAGE_ALIGNED(params.len) || params.flags || 2333 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2334 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2335 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2336 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2337 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2338 return -EINVAL; 2339 2340 npages = params.len / PAGE_SIZE; 2341 2342 /* 2343 * For each GFN that's being prepared as part of the initial guest 2344 * state, the following pre-conditions are verified: 2345 * 2346 * 1) The backing memslot is a valid private memslot. 2347 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2348 * beforehand. 2349 * 3) The PFN of the guest_memfd has not already been set to private 2350 * in the RMP table. 2351 * 2352 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2353 * faults if there's a race between a fault and an attribute update via 2354 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2355 * here. However, kvm->slots_lock guards against both this as well as 2356 * concurrent memslot updates occurring while these checks are being 2357 * performed, so use that here to make it easier to reason about the 2358 * initial expected state and better guard against unexpected 2359 * situations. 2360 */ 2361 mutex_lock(&kvm->slots_lock); 2362 2363 memslot = gfn_to_memslot(kvm, params.gfn_start); 2364 if (!kvm_slot_can_be_private(memslot)) { 2365 ret = -EINVAL; 2366 goto out; 2367 } 2368 2369 sev_populate_args.sev_fd = argp->sev_fd; 2370 sev_populate_args.type = params.type; 2371 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2372 2373 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2374 sev_gmem_post_populate, &sev_populate_args); 2375 if (count < 0) { 2376 argp->error = sev_populate_args.fw_error; 2377 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2378 __func__, count, argp->error); 2379 ret = -EIO; 2380 } else { 2381 params.gfn_start += count; 2382 params.len -= count * PAGE_SIZE; 2383 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2384 params.uaddr += count * PAGE_SIZE; 2385 2386 ret = 0; 2387 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2388 ret = -EFAULT; 2389 } 2390 2391 out: 2392 mutex_unlock(&kvm->slots_lock); 2393 2394 return ret; 2395 } 2396 2397 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2398 { 2399 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2400 struct sev_data_snp_launch_update data = {}; 2401 struct kvm_vcpu *vcpu; 2402 unsigned long i; 2403 int ret; 2404 2405 data.gctx_paddr = __psp_pa(sev->snp_context); 2406 data.page_type = SNP_PAGE_TYPE_VMSA; 2407 2408 kvm_for_each_vcpu(i, vcpu, kvm) { 2409 struct vcpu_svm *svm = to_svm(vcpu); 2410 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2411 2412 ret = sev_es_sync_vmsa(svm); 2413 if (ret) 2414 return ret; 2415 2416 /* Transition the VMSA page to a firmware state. */ 2417 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2418 if (ret) 2419 return ret; 2420 2421 /* Issue the SNP command to encrypt the VMSA */ 2422 data.address = __sme_pa(svm->sev_es.vmsa); 2423 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2424 &data, &argp->error); 2425 if (ret) { 2426 snp_page_reclaim(kvm, pfn); 2427 2428 return ret; 2429 } 2430 2431 svm->vcpu.arch.guest_state_protected = true; 2432 /* 2433 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2434 * be _always_ ON. Enable it only after setting 2435 * guest_state_protected because KVM_SET_MSRS allows dynamic 2436 * toggling of LBRV (for performance reason) on write access to 2437 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2438 */ 2439 svm_enable_lbrv(vcpu); 2440 } 2441 2442 return 0; 2443 } 2444 2445 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2446 { 2447 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2448 struct kvm_sev_snp_launch_finish params; 2449 struct sev_data_snp_launch_finish *data; 2450 void *id_block = NULL, *id_auth = NULL; 2451 int ret; 2452 2453 if (!sev_snp_guest(kvm)) 2454 return -ENOTTY; 2455 2456 if (!sev->snp_context) 2457 return -EINVAL; 2458 2459 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2460 return -EFAULT; 2461 2462 if (params.flags) 2463 return -EINVAL; 2464 2465 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2466 ret = snp_launch_update_vmsa(kvm, argp); 2467 if (ret) 2468 return ret; 2469 2470 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2471 if (!data) 2472 return -ENOMEM; 2473 2474 if (params.id_block_en) { 2475 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2476 if (IS_ERR(id_block)) { 2477 ret = PTR_ERR(id_block); 2478 goto e_free; 2479 } 2480 2481 data->id_block_en = 1; 2482 data->id_block_paddr = __sme_pa(id_block); 2483 2484 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2485 if (IS_ERR(id_auth)) { 2486 ret = PTR_ERR(id_auth); 2487 goto e_free_id_block; 2488 } 2489 2490 data->id_auth_paddr = __sme_pa(id_auth); 2491 2492 if (params.auth_key_en) 2493 data->auth_key_en = 1; 2494 } 2495 2496 data->vcek_disabled = params.vcek_disabled; 2497 2498 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2499 data->gctx_paddr = __psp_pa(sev->snp_context); 2500 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2501 2502 /* 2503 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2504 * can be given to the guest simply by marking the RMP entry as private. 2505 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2506 */ 2507 if (!ret) 2508 kvm->arch.pre_fault_allowed = true; 2509 2510 kfree(id_auth); 2511 2512 e_free_id_block: 2513 kfree(id_block); 2514 2515 e_free: 2516 kfree(data); 2517 2518 return ret; 2519 } 2520 2521 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2522 { 2523 struct kvm_sev_cmd sev_cmd; 2524 int r; 2525 2526 if (!sev_enabled) 2527 return -ENOTTY; 2528 2529 if (!argp) 2530 return 0; 2531 2532 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2533 return -EFAULT; 2534 2535 mutex_lock(&kvm->lock); 2536 2537 /* Only the enc_context_owner handles some memory enc operations. */ 2538 if (is_mirroring_enc_context(kvm) && 2539 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2540 r = -EINVAL; 2541 goto out; 2542 } 2543 2544 /* 2545 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2546 * allow the use of SNP-specific commands. 2547 */ 2548 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2549 r = -EPERM; 2550 goto out; 2551 } 2552 2553 switch (sev_cmd.id) { 2554 case KVM_SEV_ES_INIT: 2555 if (!sev_es_enabled) { 2556 r = -ENOTTY; 2557 goto out; 2558 } 2559 fallthrough; 2560 case KVM_SEV_INIT: 2561 r = sev_guest_init(kvm, &sev_cmd); 2562 break; 2563 case KVM_SEV_INIT2: 2564 r = sev_guest_init2(kvm, &sev_cmd); 2565 break; 2566 case KVM_SEV_LAUNCH_START: 2567 r = sev_launch_start(kvm, &sev_cmd); 2568 break; 2569 case KVM_SEV_LAUNCH_UPDATE_DATA: 2570 r = sev_launch_update_data(kvm, &sev_cmd); 2571 break; 2572 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2573 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2574 break; 2575 case KVM_SEV_LAUNCH_MEASURE: 2576 r = sev_launch_measure(kvm, &sev_cmd); 2577 break; 2578 case KVM_SEV_LAUNCH_FINISH: 2579 r = sev_launch_finish(kvm, &sev_cmd); 2580 break; 2581 case KVM_SEV_GUEST_STATUS: 2582 r = sev_guest_status(kvm, &sev_cmd); 2583 break; 2584 case KVM_SEV_DBG_DECRYPT: 2585 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2586 break; 2587 case KVM_SEV_DBG_ENCRYPT: 2588 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2589 break; 2590 case KVM_SEV_LAUNCH_SECRET: 2591 r = sev_launch_secret(kvm, &sev_cmd); 2592 break; 2593 case KVM_SEV_GET_ATTESTATION_REPORT: 2594 r = sev_get_attestation_report(kvm, &sev_cmd); 2595 break; 2596 case KVM_SEV_SEND_START: 2597 r = sev_send_start(kvm, &sev_cmd); 2598 break; 2599 case KVM_SEV_SEND_UPDATE_DATA: 2600 r = sev_send_update_data(kvm, &sev_cmd); 2601 break; 2602 case KVM_SEV_SEND_FINISH: 2603 r = sev_send_finish(kvm, &sev_cmd); 2604 break; 2605 case KVM_SEV_SEND_CANCEL: 2606 r = sev_send_cancel(kvm, &sev_cmd); 2607 break; 2608 case KVM_SEV_RECEIVE_START: 2609 r = sev_receive_start(kvm, &sev_cmd); 2610 break; 2611 case KVM_SEV_RECEIVE_UPDATE_DATA: 2612 r = sev_receive_update_data(kvm, &sev_cmd); 2613 break; 2614 case KVM_SEV_RECEIVE_FINISH: 2615 r = sev_receive_finish(kvm, &sev_cmd); 2616 break; 2617 case KVM_SEV_SNP_LAUNCH_START: 2618 r = snp_launch_start(kvm, &sev_cmd); 2619 break; 2620 case KVM_SEV_SNP_LAUNCH_UPDATE: 2621 r = snp_launch_update(kvm, &sev_cmd); 2622 break; 2623 case KVM_SEV_SNP_LAUNCH_FINISH: 2624 r = snp_launch_finish(kvm, &sev_cmd); 2625 break; 2626 default: 2627 r = -EINVAL; 2628 goto out; 2629 } 2630 2631 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2632 r = -EFAULT; 2633 2634 out: 2635 mutex_unlock(&kvm->lock); 2636 return r; 2637 } 2638 2639 int sev_mem_enc_register_region(struct kvm *kvm, 2640 struct kvm_enc_region *range) 2641 { 2642 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2643 struct enc_region *region; 2644 int ret = 0; 2645 2646 if (!sev_guest(kvm)) 2647 return -ENOTTY; 2648 2649 /* If kvm is mirroring encryption context it isn't responsible for it */ 2650 if (is_mirroring_enc_context(kvm)) 2651 return -EINVAL; 2652 2653 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2654 return -EINVAL; 2655 2656 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2657 if (!region) 2658 return -ENOMEM; 2659 2660 mutex_lock(&kvm->lock); 2661 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 2662 FOLL_WRITE | FOLL_LONGTERM); 2663 if (IS_ERR(region->pages)) { 2664 ret = PTR_ERR(region->pages); 2665 mutex_unlock(&kvm->lock); 2666 goto e_free; 2667 } 2668 2669 /* 2670 * The guest may change the memory encryption attribute from C=0 -> C=1 2671 * or vice versa for this memory range. Lets make sure caches are 2672 * flushed to ensure that guest data gets written into memory with 2673 * correct C-bit. Note, this must be done before dropping kvm->lock, 2674 * as region and its array of pages can be freed by a different task 2675 * once kvm->lock is released. 2676 */ 2677 sev_clflush_pages(region->pages, region->npages); 2678 2679 region->uaddr = range->addr; 2680 region->size = range->size; 2681 2682 list_add_tail(®ion->list, &sev->regions_list); 2683 mutex_unlock(&kvm->lock); 2684 2685 return ret; 2686 2687 e_free: 2688 kfree(region); 2689 return ret; 2690 } 2691 2692 static struct enc_region * 2693 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2694 { 2695 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2696 struct list_head *head = &sev->regions_list; 2697 struct enc_region *i; 2698 2699 list_for_each_entry(i, head, list) { 2700 if (i->uaddr == range->addr && 2701 i->size == range->size) 2702 return i; 2703 } 2704 2705 return NULL; 2706 } 2707 2708 static void __unregister_enc_region_locked(struct kvm *kvm, 2709 struct enc_region *region) 2710 { 2711 sev_unpin_memory(kvm, region->pages, region->npages); 2712 list_del(®ion->list); 2713 kfree(region); 2714 } 2715 2716 int sev_mem_enc_unregister_region(struct kvm *kvm, 2717 struct kvm_enc_region *range) 2718 { 2719 struct enc_region *region; 2720 int ret; 2721 2722 /* If kvm is mirroring encryption context it isn't responsible for it */ 2723 if (is_mirroring_enc_context(kvm)) 2724 return -EINVAL; 2725 2726 mutex_lock(&kvm->lock); 2727 2728 if (!sev_guest(kvm)) { 2729 ret = -ENOTTY; 2730 goto failed; 2731 } 2732 2733 region = find_enc_region(kvm, range); 2734 if (!region) { 2735 ret = -EINVAL; 2736 goto failed; 2737 } 2738 2739 sev_writeback_caches(kvm); 2740 2741 __unregister_enc_region_locked(kvm, region); 2742 2743 mutex_unlock(&kvm->lock); 2744 return 0; 2745 2746 failed: 2747 mutex_unlock(&kvm->lock); 2748 return ret; 2749 } 2750 2751 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2752 { 2753 CLASS(fd, f)(source_fd); 2754 struct kvm *source_kvm; 2755 struct kvm_sev_info *source_sev, *mirror_sev; 2756 int ret; 2757 2758 if (fd_empty(f)) 2759 return -EBADF; 2760 2761 if (!file_is_kvm(fd_file(f))) 2762 return -EBADF; 2763 2764 source_kvm = fd_file(f)->private_data; 2765 ret = sev_lock_two_vms(kvm, source_kvm); 2766 if (ret) 2767 return ret; 2768 2769 /* 2770 * Mirrors of mirrors should work, but let's not get silly. Also 2771 * disallow out-of-band SEV/SEV-ES init if the target is already an 2772 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2773 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2774 */ 2775 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2776 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2777 ret = -EINVAL; 2778 goto e_unlock; 2779 } 2780 2781 mirror_sev = to_kvm_sev_info(kvm); 2782 if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) { 2783 ret = -ENOMEM; 2784 goto e_unlock; 2785 } 2786 2787 /* 2788 * The mirror kvm holds an enc_context_owner ref so its asid can't 2789 * disappear until we're done with it 2790 */ 2791 source_sev = to_kvm_sev_info(source_kvm); 2792 kvm_get_kvm(source_kvm); 2793 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2794 2795 /* Set enc_context_owner and copy its encryption context over */ 2796 mirror_sev->enc_context_owner = source_kvm; 2797 mirror_sev->active = true; 2798 mirror_sev->asid = source_sev->asid; 2799 mirror_sev->fd = source_sev->fd; 2800 mirror_sev->es_active = source_sev->es_active; 2801 mirror_sev->need_init = false; 2802 mirror_sev->handle = source_sev->handle; 2803 INIT_LIST_HEAD(&mirror_sev->regions_list); 2804 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2805 ret = 0; 2806 2807 /* 2808 * Do not copy ap_jump_table. Since the mirror does not share the same 2809 * KVM contexts as the original, and they may have different 2810 * memory-views. 2811 */ 2812 2813 e_unlock: 2814 sev_unlock_two_vms(kvm, source_kvm); 2815 return ret; 2816 } 2817 2818 static int snp_decommission_context(struct kvm *kvm) 2819 { 2820 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2821 struct sev_data_snp_addr data = {}; 2822 int ret; 2823 2824 /* If context is not created then do nothing */ 2825 if (!sev->snp_context) 2826 return 0; 2827 2828 /* Do the decommision, which will unbind the ASID from the SNP context */ 2829 data.address = __sme_pa(sev->snp_context); 2830 down_write(&sev_deactivate_lock); 2831 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2832 up_write(&sev_deactivate_lock); 2833 2834 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2835 return ret; 2836 2837 snp_free_firmware_page(sev->snp_context); 2838 sev->snp_context = NULL; 2839 2840 return 0; 2841 } 2842 2843 void sev_vm_destroy(struct kvm *kvm) 2844 { 2845 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2846 struct list_head *head = &sev->regions_list; 2847 struct list_head *pos, *q; 2848 2849 if (!sev_guest(kvm)) 2850 return; 2851 2852 WARN_ON(!list_empty(&sev->mirror_vms)); 2853 2854 free_cpumask_var(sev->have_run_cpus); 2855 2856 /* 2857 * If this is a mirror VM, remove it from the owner's list of a mirrors 2858 * and skip ASID cleanup (the ASID is tied to the lifetime of the owner). 2859 * Note, mirror VMs don't support registering encrypted regions. 2860 */ 2861 if (is_mirroring_enc_context(kvm)) { 2862 struct kvm *owner_kvm = sev->enc_context_owner; 2863 2864 mutex_lock(&owner_kvm->lock); 2865 list_del(&sev->mirror_entry); 2866 mutex_unlock(&owner_kvm->lock); 2867 kvm_put_kvm(owner_kvm); 2868 return; 2869 } 2870 2871 2872 /* 2873 * if userspace was terminated before unregistering the memory regions 2874 * then lets unpin all the registered memory. 2875 */ 2876 if (!list_empty(head)) { 2877 list_for_each_safe(pos, q, head) { 2878 __unregister_enc_region_locked(kvm, 2879 list_entry(pos, struct enc_region, list)); 2880 cond_resched(); 2881 } 2882 } 2883 2884 if (sev_snp_guest(kvm)) { 2885 snp_guest_req_cleanup(kvm); 2886 2887 /* 2888 * Decomission handles unbinding of the ASID. If it fails for 2889 * some unexpected reason, just leak the ASID. 2890 */ 2891 if (snp_decommission_context(kvm)) 2892 return; 2893 } else { 2894 sev_unbind_asid(kvm, sev->handle); 2895 } 2896 2897 sev_asid_free(sev); 2898 } 2899 2900 void __init sev_set_cpu_caps(void) 2901 { 2902 if (sev_enabled) { 2903 kvm_cpu_cap_set(X86_FEATURE_SEV); 2904 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2905 } 2906 if (sev_es_enabled) { 2907 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2908 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2909 } 2910 if (sev_snp_enabled) { 2911 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2912 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2913 } 2914 } 2915 2916 static bool is_sev_snp_initialized(void) 2917 { 2918 struct sev_user_data_snp_status *status; 2919 struct sev_data_snp_addr buf; 2920 bool initialized = false; 2921 int ret, error = 0; 2922 2923 status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO); 2924 if (!status) 2925 return false; 2926 2927 buf.address = __psp_pa(status); 2928 ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error); 2929 if (ret) { 2930 pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n", 2931 ret, error, error); 2932 goto out; 2933 } 2934 2935 initialized = !!status->state; 2936 2937 out: 2938 snp_free_firmware_page(status); 2939 2940 return initialized; 2941 } 2942 2943 void __init sev_hardware_setup(void) 2944 { 2945 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2946 struct sev_platform_init_args init_args = {0}; 2947 bool sev_snp_supported = false; 2948 bool sev_es_supported = false; 2949 bool sev_supported = false; 2950 2951 if (!sev_enabled || !npt_enabled || !nrips) 2952 goto out; 2953 2954 /* 2955 * SEV must obviously be supported in hardware. Sanity check that the 2956 * CPU supports decode assists, which is mandatory for SEV guests to 2957 * support instruction emulation. Ditto for flushing by ASID, as SEV 2958 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2959 * ASID to effect a TLB flush. 2960 */ 2961 if (!boot_cpu_has(X86_FEATURE_SEV) || 2962 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2963 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2964 goto out; 2965 2966 /* 2967 * The kernel's initcall infrastructure lacks the ability to express 2968 * dependencies between initcalls, whereas the modules infrastructure 2969 * automatically handles dependencies via symbol loading. Ensure the 2970 * PSP SEV driver is initialized before proceeding if KVM is built-in, 2971 * as the dependency isn't handled by the initcall infrastructure. 2972 */ 2973 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init()) 2974 goto out; 2975 2976 /* Retrieve SEV CPUID information */ 2977 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2978 2979 /* Set encryption bit location for SEV-ES guests */ 2980 sev_enc_bit = ebx & 0x3f; 2981 2982 /* Maximum number of encrypted guests supported simultaneously */ 2983 max_sev_asid = ecx; 2984 if (!max_sev_asid) 2985 goto out; 2986 2987 /* Minimum ASID value that should be used for SEV guest */ 2988 min_sev_asid = edx; 2989 sev_me_mask = 1UL << (ebx & 0x3f); 2990 2991 /* 2992 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2993 * even though it's never used, so that the bitmap is indexed by the 2994 * actual ASID. 2995 */ 2996 nr_asids = max_sev_asid + 1; 2997 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2998 if (!sev_asid_bitmap) 2999 goto out; 3000 3001 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 3002 if (!sev_reclaim_asid_bitmap) { 3003 bitmap_free(sev_asid_bitmap); 3004 sev_asid_bitmap = NULL; 3005 goto out; 3006 } 3007 3008 if (min_sev_asid <= max_sev_asid) { 3009 sev_asid_count = max_sev_asid - min_sev_asid + 1; 3010 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 3011 } 3012 sev_supported = true; 3013 3014 /* SEV-ES support requested? */ 3015 if (!sev_es_enabled) 3016 goto out; 3017 3018 /* 3019 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 3020 * instruction stream, i.e. can't emulate in response to a #NPF and 3021 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 3022 * (the guest can then do a #VMGEXIT to request MMIO emulation). 3023 */ 3024 if (!enable_mmio_caching) 3025 goto out; 3026 3027 /* Does the CPU support SEV-ES? */ 3028 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 3029 goto out; 3030 3031 if (!lbrv) { 3032 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 3033 "LBRV must be present for SEV-ES support"); 3034 goto out; 3035 } 3036 3037 /* Has the system been allocated ASIDs for SEV-ES? */ 3038 if (min_sev_asid == 1) 3039 goto out; 3040 3041 sev_es_asid_count = min_sev_asid - 1; 3042 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3043 sev_es_supported = true; 3044 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3045 3046 out: 3047 if (sev_enabled) { 3048 init_args.probe = true; 3049 if (sev_platform_init(&init_args)) 3050 sev_supported = sev_es_supported = sev_snp_supported = false; 3051 else if (sev_snp_supported) 3052 sev_snp_supported = is_sev_snp_initialized(); 3053 } 3054 3055 if (boot_cpu_has(X86_FEATURE_SEV)) 3056 pr_info("SEV %s (ASIDs %u - %u)\n", 3057 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3058 "unusable" : 3059 "disabled", 3060 min_sev_asid, max_sev_asid); 3061 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3062 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3063 str_enabled_disabled(sev_es_supported), 3064 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3065 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3066 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3067 str_enabled_disabled(sev_snp_supported), 3068 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3069 3070 sev_enabled = sev_supported; 3071 sev_es_enabled = sev_es_supported; 3072 sev_snp_enabled = sev_snp_supported; 3073 3074 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3075 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3076 sev_es_debug_swap_enabled = false; 3077 3078 sev_supported_vmsa_features = 0; 3079 if (sev_es_debug_swap_enabled) 3080 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3081 } 3082 3083 void sev_hardware_unsetup(void) 3084 { 3085 if (!sev_enabled) 3086 return; 3087 3088 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3089 sev_flush_asids(1, max_sev_asid); 3090 3091 bitmap_free(sev_asid_bitmap); 3092 bitmap_free(sev_reclaim_asid_bitmap); 3093 3094 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3095 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3096 3097 sev_platform_shutdown(); 3098 } 3099 3100 int sev_cpu_init(struct svm_cpu_data *sd) 3101 { 3102 if (!sev_enabled) 3103 return 0; 3104 3105 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3106 if (!sd->sev_vmcbs) 3107 return -ENOMEM; 3108 3109 return 0; 3110 } 3111 3112 /* 3113 * Pages used by hardware to hold guest encrypted state must be flushed before 3114 * returning them to the system. 3115 */ 3116 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3117 { 3118 unsigned int asid = sev_get_asid(vcpu->kvm); 3119 3120 /* 3121 * Note! The address must be a kernel address, as regular page walk 3122 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3123 * address is non-deterministic and unsafe. This function deliberately 3124 * takes a pointer to deter passing in a user address. 3125 */ 3126 unsigned long addr = (unsigned long)va; 3127 3128 /* 3129 * If CPU enforced cache coherency for encrypted mappings of the 3130 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3131 * flush is still needed in order to work properly with DMA devices. 3132 */ 3133 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3134 clflush_cache_range(va, PAGE_SIZE); 3135 return; 3136 } 3137 3138 /* 3139 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3140 * back to full writeback of caches if this faults so as not to make 3141 * any problems worse by leaving stale encrypted data in the cache. 3142 */ 3143 if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3144 goto do_sev_writeback_caches; 3145 3146 return; 3147 3148 do_sev_writeback_caches: 3149 sev_writeback_caches(vcpu->kvm); 3150 } 3151 3152 void sev_guest_memory_reclaimed(struct kvm *kvm) 3153 { 3154 /* 3155 * With SNP+gmem, private/encrypted memory is unreachable via the 3156 * hva-based mmu notifiers, i.e. these events are explicitly scoped to 3157 * shared pages, where there's no need to flush caches. 3158 */ 3159 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3160 return; 3161 3162 sev_writeback_caches(kvm); 3163 } 3164 3165 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3166 { 3167 struct vcpu_svm *svm; 3168 3169 if (!sev_es_guest(vcpu->kvm)) 3170 return; 3171 3172 svm = to_svm(vcpu); 3173 3174 /* 3175 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3176 * a guest-owned page. Transition the page to hypervisor state before 3177 * releasing it back to the system. 3178 */ 3179 if (sev_snp_guest(vcpu->kvm)) { 3180 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3181 3182 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3183 goto skip_vmsa_free; 3184 } 3185 3186 if (vcpu->arch.guest_state_protected) 3187 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3188 3189 __free_page(virt_to_page(svm->sev_es.vmsa)); 3190 3191 skip_vmsa_free: 3192 if (svm->sev_es.ghcb_sa_free) 3193 kvfree(svm->sev_es.ghcb_sa); 3194 } 3195 3196 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3197 { 3198 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3199 } 3200 3201 static void dump_ghcb(struct vcpu_svm *svm) 3202 { 3203 struct vmcb_control_area *control = &svm->vmcb->control; 3204 unsigned int nbits; 3205 3206 /* Re-use the dump_invalid_vmcb module parameter */ 3207 if (!dump_invalid_vmcb) { 3208 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3209 return; 3210 } 3211 3212 nbits = sizeof(svm->sev_es.valid_bitmap) * 8; 3213 3214 /* 3215 * Print KVM's snapshot of the GHCB values that were (unsuccessfully) 3216 * used to handle the exit. If the guest has since modified the GHCB 3217 * itself, dumping the raw GHCB won't help debug why KVM was unable to 3218 * handle the VMGEXIT that KVM observed. 3219 */ 3220 pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa); 3221 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3222 kvm_ghcb_get_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm)); 3223 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3224 control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm)); 3225 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3226 control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm)); 3227 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3228 svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm)); 3229 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap); 3230 } 3231 3232 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3233 { 3234 struct kvm_vcpu *vcpu = &svm->vcpu; 3235 struct ghcb *ghcb = svm->sev_es.ghcb; 3236 3237 /* 3238 * The GHCB protocol so far allows for the following data 3239 * to be returned: 3240 * GPRs RAX, RBX, RCX, RDX 3241 * 3242 * Copy their values, even if they may not have been written during the 3243 * VM-Exit. It's the guest's responsibility to not consume random data. 3244 */ 3245 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3246 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3247 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3248 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3249 } 3250 3251 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3252 { 3253 struct vmcb_control_area *control = &svm->vmcb->control; 3254 struct kvm_vcpu *vcpu = &svm->vcpu; 3255 struct ghcb *ghcb = svm->sev_es.ghcb; 3256 u64 exit_code; 3257 3258 /* 3259 * The GHCB protocol so far allows for the following data 3260 * to be supplied: 3261 * GPRs RAX, RBX, RCX, RDX 3262 * XCR0 3263 * CPL 3264 * 3265 * VMMCALL allows the guest to provide extra registers. KVM also 3266 * expects RSI for hypercalls, so include that, too. 3267 * 3268 * Copy their values to the appropriate location if supplied. 3269 */ 3270 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3271 3272 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3273 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3274 3275 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3276 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3277 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3278 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3279 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3280 3281 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3282 3283 if (kvm_ghcb_xcr0_is_valid(svm)) { 3284 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3285 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3286 } 3287 3288 /* Copy the GHCB exit information into the VMCB fields */ 3289 exit_code = ghcb_get_sw_exit_code(ghcb); 3290 control->exit_code = lower_32_bits(exit_code); 3291 control->exit_code_hi = upper_32_bits(exit_code); 3292 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3293 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3294 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3295 3296 /* Clear the valid entries fields */ 3297 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3298 } 3299 3300 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3301 { 3302 struct vmcb_control_area *control = &svm->vmcb->control; 3303 struct kvm_vcpu *vcpu = &svm->vcpu; 3304 u64 exit_code; 3305 u64 reason; 3306 3307 /* 3308 * Retrieve the exit code now even though it may not be marked valid 3309 * as it could help with debugging. 3310 */ 3311 exit_code = kvm_ghcb_get_sw_exit_code(control); 3312 3313 /* Only GHCB Usage code 0 is supported */ 3314 if (svm->sev_es.ghcb->ghcb_usage) { 3315 reason = GHCB_ERR_INVALID_USAGE; 3316 goto vmgexit_err; 3317 } 3318 3319 reason = GHCB_ERR_MISSING_INPUT; 3320 3321 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3322 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3323 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3324 goto vmgexit_err; 3325 3326 switch (exit_code) { 3327 case SVM_EXIT_READ_DR7: 3328 break; 3329 case SVM_EXIT_WRITE_DR7: 3330 if (!kvm_ghcb_rax_is_valid(svm)) 3331 goto vmgexit_err; 3332 break; 3333 case SVM_EXIT_RDTSC: 3334 break; 3335 case SVM_EXIT_RDPMC: 3336 if (!kvm_ghcb_rcx_is_valid(svm)) 3337 goto vmgexit_err; 3338 break; 3339 case SVM_EXIT_CPUID: 3340 if (!kvm_ghcb_rax_is_valid(svm) || 3341 !kvm_ghcb_rcx_is_valid(svm)) 3342 goto vmgexit_err; 3343 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3344 if (!kvm_ghcb_xcr0_is_valid(svm)) 3345 goto vmgexit_err; 3346 break; 3347 case SVM_EXIT_INVD: 3348 break; 3349 case SVM_EXIT_IOIO: 3350 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3351 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3352 goto vmgexit_err; 3353 } else { 3354 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3355 if (!kvm_ghcb_rax_is_valid(svm)) 3356 goto vmgexit_err; 3357 } 3358 break; 3359 case SVM_EXIT_MSR: 3360 if (!kvm_ghcb_rcx_is_valid(svm)) 3361 goto vmgexit_err; 3362 if (control->exit_info_1) { 3363 if (!kvm_ghcb_rax_is_valid(svm) || 3364 !kvm_ghcb_rdx_is_valid(svm)) 3365 goto vmgexit_err; 3366 } 3367 break; 3368 case SVM_EXIT_VMMCALL: 3369 if (!kvm_ghcb_rax_is_valid(svm) || 3370 !kvm_ghcb_cpl_is_valid(svm)) 3371 goto vmgexit_err; 3372 break; 3373 case SVM_EXIT_RDTSCP: 3374 break; 3375 case SVM_EXIT_WBINVD: 3376 break; 3377 case SVM_EXIT_MONITOR: 3378 if (!kvm_ghcb_rax_is_valid(svm) || 3379 !kvm_ghcb_rcx_is_valid(svm) || 3380 !kvm_ghcb_rdx_is_valid(svm)) 3381 goto vmgexit_err; 3382 break; 3383 case SVM_EXIT_MWAIT: 3384 if (!kvm_ghcb_rax_is_valid(svm) || 3385 !kvm_ghcb_rcx_is_valid(svm)) 3386 goto vmgexit_err; 3387 break; 3388 case SVM_VMGEXIT_MMIO_READ: 3389 case SVM_VMGEXIT_MMIO_WRITE: 3390 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3391 goto vmgexit_err; 3392 break; 3393 case SVM_VMGEXIT_AP_CREATION: 3394 if (!sev_snp_guest(vcpu->kvm)) 3395 goto vmgexit_err; 3396 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3397 if (!kvm_ghcb_rax_is_valid(svm)) 3398 goto vmgexit_err; 3399 break; 3400 case SVM_VMGEXIT_NMI_COMPLETE: 3401 case SVM_VMGEXIT_AP_HLT_LOOP: 3402 case SVM_VMGEXIT_AP_JUMP_TABLE: 3403 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3404 case SVM_VMGEXIT_HV_FEATURES: 3405 case SVM_VMGEXIT_TERM_REQUEST: 3406 break; 3407 case SVM_VMGEXIT_PSC: 3408 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3409 goto vmgexit_err; 3410 break; 3411 case SVM_VMGEXIT_GUEST_REQUEST: 3412 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3413 if (!sev_snp_guest(vcpu->kvm) || 3414 !PAGE_ALIGNED(control->exit_info_1) || 3415 !PAGE_ALIGNED(control->exit_info_2) || 3416 control->exit_info_1 == control->exit_info_2) 3417 goto vmgexit_err; 3418 break; 3419 default: 3420 reason = GHCB_ERR_INVALID_EVENT; 3421 goto vmgexit_err; 3422 } 3423 3424 return 0; 3425 3426 vmgexit_err: 3427 if (reason == GHCB_ERR_INVALID_USAGE) { 3428 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3429 svm->sev_es.ghcb->ghcb_usage); 3430 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3431 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3432 exit_code); 3433 } else { 3434 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3435 exit_code); 3436 dump_ghcb(svm); 3437 } 3438 3439 svm_vmgexit_bad_input(svm, reason); 3440 3441 /* Resume the guest to "return" the error code. */ 3442 return 1; 3443 } 3444 3445 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3446 { 3447 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3448 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3449 3450 if (!svm->sev_es.ghcb) 3451 return; 3452 3453 if (svm->sev_es.ghcb_sa_free) { 3454 /* 3455 * The scratch area lives outside the GHCB, so there is a 3456 * buffer that, depending on the operation performed, may 3457 * need to be synced, then freed. 3458 */ 3459 if (svm->sev_es.ghcb_sa_sync) { 3460 kvm_write_guest(svm->vcpu.kvm, 3461 svm->sev_es.sw_scratch, 3462 svm->sev_es.ghcb_sa, 3463 svm->sev_es.ghcb_sa_len); 3464 svm->sev_es.ghcb_sa_sync = false; 3465 } 3466 3467 kvfree(svm->sev_es.ghcb_sa); 3468 svm->sev_es.ghcb_sa = NULL; 3469 svm->sev_es.ghcb_sa_free = false; 3470 } 3471 3472 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3473 3474 sev_es_sync_to_ghcb(svm); 3475 3476 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map); 3477 svm->sev_es.ghcb = NULL; 3478 } 3479 3480 int pre_sev_run(struct vcpu_svm *svm, int cpu) 3481 { 3482 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3483 struct kvm *kvm = svm->vcpu.kvm; 3484 unsigned int asid = sev_get_asid(kvm); 3485 3486 /* 3487 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid 3488 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP 3489 * AP Destroy event. 3490 */ 3491 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa)) 3492 return -EINVAL; 3493 3494 /* 3495 * To optimize cache flushes when memory is reclaimed from an SEV VM, 3496 * track physical CPUs that enter the guest for SEV VMs and thus can 3497 * have encrypted, dirty data in the cache, and flush caches only for 3498 * CPUs that have entered the guest. 3499 */ 3500 if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus)) 3501 cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus); 3502 3503 /* Assign the asid allocated with this SEV guest */ 3504 svm->asid = asid; 3505 3506 /* 3507 * Flush guest TLB: 3508 * 3509 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3510 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3511 */ 3512 if (sd->sev_vmcbs[asid] == svm->vmcb && 3513 svm->vcpu.arch.last_vmentry_cpu == cpu) 3514 return 0; 3515 3516 sd->sev_vmcbs[asid] = svm->vmcb; 3517 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3518 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3519 return 0; 3520 } 3521 3522 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3523 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3524 { 3525 struct vmcb_control_area *control = &svm->vmcb->control; 3526 u64 ghcb_scratch_beg, ghcb_scratch_end; 3527 u64 scratch_gpa_beg, scratch_gpa_end; 3528 void *scratch_va; 3529 3530 scratch_gpa_beg = svm->sev_es.sw_scratch; 3531 if (!scratch_gpa_beg) { 3532 pr_err("vmgexit: scratch gpa not provided\n"); 3533 goto e_scratch; 3534 } 3535 3536 scratch_gpa_end = scratch_gpa_beg + len; 3537 if (scratch_gpa_end < scratch_gpa_beg) { 3538 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3539 len, scratch_gpa_beg); 3540 goto e_scratch; 3541 } 3542 3543 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3544 /* Scratch area begins within GHCB */ 3545 ghcb_scratch_beg = control->ghcb_gpa + 3546 offsetof(struct ghcb, shared_buffer); 3547 ghcb_scratch_end = control->ghcb_gpa + 3548 offsetof(struct ghcb, reserved_0xff0); 3549 3550 /* 3551 * If the scratch area begins within the GHCB, it must be 3552 * completely contained in the GHCB shared buffer area. 3553 */ 3554 if (scratch_gpa_beg < ghcb_scratch_beg || 3555 scratch_gpa_end > ghcb_scratch_end) { 3556 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3557 scratch_gpa_beg, scratch_gpa_end); 3558 goto e_scratch; 3559 } 3560 3561 scratch_va = (void *)svm->sev_es.ghcb; 3562 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3563 } else { 3564 /* 3565 * The guest memory must be read into a kernel buffer, so 3566 * limit the size 3567 */ 3568 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3569 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3570 len, GHCB_SCRATCH_AREA_LIMIT); 3571 goto e_scratch; 3572 } 3573 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3574 if (!scratch_va) 3575 return -ENOMEM; 3576 3577 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3578 /* Unable to copy scratch area from guest */ 3579 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3580 3581 kvfree(scratch_va); 3582 return -EFAULT; 3583 } 3584 3585 /* 3586 * The scratch area is outside the GHCB. The operation will 3587 * dictate whether the buffer needs to be synced before running 3588 * the vCPU next time (i.e. a read was requested so the data 3589 * must be written back to the guest memory). 3590 */ 3591 svm->sev_es.ghcb_sa_sync = sync; 3592 svm->sev_es.ghcb_sa_free = true; 3593 } 3594 3595 svm->sev_es.ghcb_sa = scratch_va; 3596 svm->sev_es.ghcb_sa_len = len; 3597 3598 return 0; 3599 3600 e_scratch: 3601 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA); 3602 3603 return 1; 3604 } 3605 3606 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3607 unsigned int pos) 3608 { 3609 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3610 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3611 } 3612 3613 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3614 { 3615 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3616 } 3617 3618 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3619 { 3620 svm->vmcb->control.ghcb_gpa = value; 3621 } 3622 3623 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3624 { 3625 int ret; 3626 3627 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3628 3629 /* 3630 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3631 * entry, so retry until that's no longer the case. 3632 */ 3633 do { 3634 ret = psmash(pfn); 3635 } while (ret == PSMASH_FAIL_INUSE); 3636 3637 return ret; 3638 } 3639 3640 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3641 { 3642 struct vcpu_svm *svm = to_svm(vcpu); 3643 3644 if (vcpu->run->hypercall.ret) 3645 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3646 else 3647 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3648 3649 return 1; /* resume guest */ 3650 } 3651 3652 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3653 { 3654 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3655 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3656 struct kvm_vcpu *vcpu = &svm->vcpu; 3657 3658 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3659 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3660 return 1; /* resume guest */ 3661 } 3662 3663 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3664 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3665 return 1; /* resume guest */ 3666 } 3667 3668 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3669 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3670 /* 3671 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3672 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3673 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3674 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3675 */ 3676 vcpu->run->hypercall.ret = 0; 3677 vcpu->run->hypercall.args[0] = gpa; 3678 vcpu->run->hypercall.args[1] = 1; 3679 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3680 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3681 : KVM_MAP_GPA_RANGE_DECRYPTED; 3682 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3683 3684 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3685 3686 return 0; /* forward request to userspace */ 3687 } 3688 3689 struct psc_buffer { 3690 struct psc_hdr hdr; 3691 struct psc_entry entries[]; 3692 } __packed; 3693 3694 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3695 3696 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3697 { 3698 svm->sev_es.psc_inflight = 0; 3699 svm->sev_es.psc_idx = 0; 3700 svm->sev_es.psc_2m = false; 3701 3702 /* 3703 * PSC requests always get a "no action" response in SW_EXITINFO1, with 3704 * a PSC-specific return code in SW_EXITINFO2 that provides the "real" 3705 * return code. E.g. if the PSC request was interrupted, the need to 3706 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1. 3707 */ 3708 svm_vmgexit_no_action(svm, psc_ret); 3709 } 3710 3711 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3712 { 3713 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3714 struct psc_entry *entries = psc->entries; 3715 struct psc_hdr *hdr = &psc->hdr; 3716 __u16 idx; 3717 3718 /* 3719 * Everything in-flight has been processed successfully. Update the 3720 * corresponding entries in the guest's PSC buffer and zero out the 3721 * count of in-flight PSC entries. 3722 */ 3723 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3724 svm->sev_es.psc_inflight--, idx++) { 3725 struct psc_entry *entry = &entries[idx]; 3726 3727 entry->cur_page = entry->pagesize ? 512 : 1; 3728 } 3729 3730 hdr->cur_entry = idx; 3731 } 3732 3733 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3734 { 3735 struct vcpu_svm *svm = to_svm(vcpu); 3736 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3737 3738 if (vcpu->run->hypercall.ret) { 3739 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3740 return 1; /* resume guest */ 3741 } 3742 3743 __snp_complete_one_psc(svm); 3744 3745 /* Handle the next range (if any). */ 3746 return snp_begin_psc(svm, psc); 3747 } 3748 3749 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3750 { 3751 struct psc_entry *entries = psc->entries; 3752 struct kvm_vcpu *vcpu = &svm->vcpu; 3753 struct psc_hdr *hdr = &psc->hdr; 3754 struct psc_entry entry_start; 3755 u16 idx, idx_start, idx_end; 3756 int npages; 3757 bool huge; 3758 u64 gfn; 3759 3760 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3761 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3762 return 1; 3763 } 3764 3765 next_range: 3766 /* There should be no other PSCs in-flight at this point. */ 3767 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3768 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3769 return 1; 3770 } 3771 3772 /* 3773 * The PSC descriptor buffer can be modified by a misbehaved guest after 3774 * validation, so take care to only use validated copies of values used 3775 * for things like array indexing. 3776 */ 3777 idx_start = hdr->cur_entry; 3778 idx_end = hdr->end_entry; 3779 3780 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3781 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3782 return 1; 3783 } 3784 3785 /* Find the start of the next range which needs processing. */ 3786 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3787 entry_start = entries[idx]; 3788 3789 gfn = entry_start.gfn; 3790 huge = entry_start.pagesize; 3791 npages = huge ? 512 : 1; 3792 3793 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3794 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3795 return 1; 3796 } 3797 3798 if (entry_start.cur_page) { 3799 /* 3800 * If this is a partially-completed 2M range, force 4K handling 3801 * for the remaining pages since they're effectively split at 3802 * this point. Subsequent code should ensure this doesn't get 3803 * combined with adjacent PSC entries where 2M handling is still 3804 * possible. 3805 */ 3806 npages -= entry_start.cur_page; 3807 gfn += entry_start.cur_page; 3808 huge = false; 3809 } 3810 3811 if (npages) 3812 break; 3813 } 3814 3815 if (idx > idx_end) { 3816 /* Nothing more to process. */ 3817 snp_complete_psc(svm, 0); 3818 return 1; 3819 } 3820 3821 svm->sev_es.psc_2m = huge; 3822 svm->sev_es.psc_idx = idx; 3823 svm->sev_es.psc_inflight = 1; 3824 3825 /* 3826 * Find all subsequent PSC entries that contain adjacent GPA 3827 * ranges/operations and can be combined into a single 3828 * KVM_HC_MAP_GPA_RANGE exit. 3829 */ 3830 while (++idx <= idx_end) { 3831 struct psc_entry entry = entries[idx]; 3832 3833 if (entry.operation != entry_start.operation || 3834 entry.gfn != entry_start.gfn + npages || 3835 entry.cur_page || !!entry.pagesize != huge) 3836 break; 3837 3838 svm->sev_es.psc_inflight++; 3839 npages += huge ? 512 : 1; 3840 } 3841 3842 switch (entry_start.operation) { 3843 case VMGEXIT_PSC_OP_PRIVATE: 3844 case VMGEXIT_PSC_OP_SHARED: 3845 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3846 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3847 /* 3848 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3849 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3850 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3851 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3852 */ 3853 vcpu->run->hypercall.ret = 0; 3854 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3855 vcpu->run->hypercall.args[1] = npages; 3856 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3857 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3858 : KVM_MAP_GPA_RANGE_DECRYPTED; 3859 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3860 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3861 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3862 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3863 return 0; /* forward request to userspace */ 3864 default: 3865 /* 3866 * Only shared/private PSC operations are currently supported, so if the 3867 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3868 * then consider the entire range completed and avoid exiting to 3869 * userspace. In theory snp_complete_psc() can always be called directly 3870 * at this point to complete the current range and start the next one, 3871 * but that could lead to unexpected levels of recursion. 3872 */ 3873 __snp_complete_one_psc(svm); 3874 goto next_range; 3875 } 3876 3877 BUG(); 3878 } 3879 3880 /* 3881 * Invoked as part of svm_vcpu_reset() processing of an init event. 3882 */ 3883 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3884 { 3885 struct vcpu_svm *svm = to_svm(vcpu); 3886 struct kvm_memory_slot *slot; 3887 struct page *page; 3888 kvm_pfn_t pfn; 3889 gfn_t gfn; 3890 3891 if (!sev_snp_guest(vcpu->kvm)) 3892 return; 3893 3894 guard(mutex)(&svm->sev_es.snp_vmsa_mutex); 3895 3896 if (!svm->sev_es.snp_ap_waiting_for_reset) 3897 return; 3898 3899 svm->sev_es.snp_ap_waiting_for_reset = false; 3900 3901 /* Mark the vCPU as offline and not runnable */ 3902 vcpu->arch.pv.pv_unhalted = false; 3903 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED); 3904 3905 /* Clear use of the VMSA */ 3906 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3907 3908 /* 3909 * When replacing the VMSA during SEV-SNP AP creation, 3910 * mark the VMCB dirty so that full state is always reloaded. 3911 */ 3912 vmcb_mark_all_dirty(svm->vmcb); 3913 3914 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) 3915 return; 3916 3917 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3918 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3919 3920 slot = gfn_to_memslot(vcpu->kvm, gfn); 3921 if (!slot) 3922 return; 3923 3924 /* 3925 * The new VMSA will be private memory guest memory, so retrieve the 3926 * PFN from the gmem backend. 3927 */ 3928 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL)) 3929 return; 3930 3931 /* 3932 * From this point forward, the VMSA will always be a guest-mapped page 3933 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In 3934 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but 3935 * that involves cleanups like flushing caches, which would ideally be 3936 * handled during teardown rather than guest boot. Deferring that also 3937 * allows the existing logic for SEV-ES VMSAs to be re-used with 3938 * minimal SNP-specific changes. 3939 */ 3940 svm->sev_es.snp_has_guest_vmsa = true; 3941 3942 /* Use the new VMSA */ 3943 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3944 3945 /* Mark the vCPU as runnable */ 3946 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3947 3948 /* 3949 * gmem pages aren't currently migratable, but if this ever changes 3950 * then care should be taken to ensure svm->sev_es.vmsa is pinned 3951 * through some other means. 3952 */ 3953 kvm_release_page_clean(page); 3954 } 3955 3956 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3957 { 3958 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 3959 struct kvm_vcpu *vcpu = &svm->vcpu; 3960 struct kvm_vcpu *target_vcpu; 3961 struct vcpu_svm *target_svm; 3962 unsigned int request; 3963 unsigned int apic_id; 3964 3965 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3966 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3967 3968 /* Validate the APIC ID */ 3969 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3970 if (!target_vcpu) { 3971 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3972 apic_id); 3973 return -EINVAL; 3974 } 3975 3976 target_svm = to_svm(target_vcpu); 3977 3978 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex); 3979 3980 switch (request) { 3981 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3982 case SVM_VMGEXIT_AP_CREATE: 3983 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) { 3984 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n", 3985 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features); 3986 return -EINVAL; 3987 } 3988 3989 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3990 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3991 svm->vmcb->control.exit_info_2); 3992 return -EINVAL; 3993 } 3994 3995 /* 3996 * Malicious guest can RMPADJUST a large page into VMSA which 3997 * will hit the SNP erratum where the CPU will incorrectly signal 3998 * an RMP violation #PF if a hugepage collides with the RMP entry 3999 * of VMSA page, reject the AP CREATE request if VMSA address from 4000 * guest is 2M aligned. 4001 */ 4002 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 4003 vcpu_unimpl(vcpu, 4004 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 4005 svm->vmcb->control.exit_info_2); 4006 return -EINVAL; 4007 } 4008 4009 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 4010 break; 4011 case SVM_VMGEXIT_AP_DESTROY: 4012 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 4013 break; 4014 default: 4015 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 4016 request); 4017 return -EINVAL; 4018 } 4019 4020 target_svm->sev_es.snp_ap_waiting_for_reset = true; 4021 4022 /* 4023 * Unless Creation is deferred until INIT, signal the vCPU to update 4024 * its state. 4025 */ 4026 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT) 4027 kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 4028 4029 return 0; 4030 } 4031 4032 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4033 { 4034 struct sev_data_snp_guest_request data = {0}; 4035 struct kvm *kvm = svm->vcpu.kvm; 4036 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4037 sev_ret_code fw_err = 0; 4038 int ret; 4039 4040 if (!sev_snp_guest(kvm)) 4041 return -EINVAL; 4042 4043 mutex_lock(&sev->guest_req_mutex); 4044 4045 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4046 ret = -EIO; 4047 goto out_unlock; 4048 } 4049 4050 data.gctx_paddr = __psp_pa(sev->snp_context); 4051 data.req_paddr = __psp_pa(sev->guest_req_buf); 4052 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4053 4054 /* 4055 * Firmware failures are propagated on to guest, but any other failure 4056 * condition along the way should be reported to userspace. E.g. if 4057 * the PSP is dead and commands are timing out. 4058 */ 4059 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4060 if (ret && !fw_err) 4061 goto out_unlock; 4062 4063 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4064 ret = -EIO; 4065 goto out_unlock; 4066 } 4067 4068 /* No action is requested *from KVM* if there was a firmware error. */ 4069 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err)); 4070 4071 ret = 1; /* resume guest */ 4072 4073 out_unlock: 4074 mutex_unlock(&sev->guest_req_mutex); 4075 return ret; 4076 } 4077 4078 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4079 { 4080 struct kvm *kvm = svm->vcpu.kvm; 4081 u8 msg_type; 4082 4083 if (!sev_snp_guest(kvm)) 4084 return -EINVAL; 4085 4086 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4087 &msg_type, 1)) 4088 return -EIO; 4089 4090 /* 4091 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4092 * additional certificate data to be provided alongside the attestation 4093 * report via the guest-provided data pages indicated by RAX/RBX. The 4094 * certificate data is optional and requires additional KVM enablement 4095 * to provide an interface for userspace to provide it, but KVM still 4096 * needs to be able to handle extended guest requests either way. So 4097 * provide a stub implementation that will always return an empty 4098 * certificate table in the guest-provided data pages. 4099 */ 4100 if (msg_type == SNP_MSG_REPORT_REQ) { 4101 struct kvm_vcpu *vcpu = &svm->vcpu; 4102 u64 data_npages; 4103 gpa_t data_gpa; 4104 4105 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4106 goto request_invalid; 4107 4108 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4109 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4110 4111 if (!PAGE_ALIGNED(data_gpa)) 4112 goto request_invalid; 4113 4114 /* 4115 * As per GHCB spec (see "SNP Extended Guest Request"), the 4116 * certificate table is terminated by 24-bytes of zeroes. 4117 */ 4118 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4119 return -EIO; 4120 } 4121 4122 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4123 4124 request_invalid: 4125 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4126 return 1; /* resume guest */ 4127 } 4128 4129 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4130 { 4131 struct vmcb_control_area *control = &svm->vmcb->control; 4132 struct kvm_vcpu *vcpu = &svm->vcpu; 4133 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4134 u64 ghcb_info; 4135 int ret = 1; 4136 4137 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4138 4139 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4140 control->ghcb_gpa); 4141 4142 switch (ghcb_info) { 4143 case GHCB_MSR_SEV_INFO_REQ: 4144 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4145 GHCB_VERSION_MIN, 4146 sev_enc_bit)); 4147 break; 4148 case GHCB_MSR_CPUID_REQ: { 4149 u64 cpuid_fn, cpuid_reg, cpuid_value; 4150 4151 cpuid_fn = get_ghcb_msr_bits(svm, 4152 GHCB_MSR_CPUID_FUNC_MASK, 4153 GHCB_MSR_CPUID_FUNC_POS); 4154 4155 /* Initialize the registers needed by the CPUID intercept */ 4156 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4157 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4158 4159 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4160 if (!ret) { 4161 /* Error, keep GHCB MSR value as-is */ 4162 break; 4163 } 4164 4165 cpuid_reg = get_ghcb_msr_bits(svm, 4166 GHCB_MSR_CPUID_REG_MASK, 4167 GHCB_MSR_CPUID_REG_POS); 4168 if (cpuid_reg == 0) 4169 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4170 else if (cpuid_reg == 1) 4171 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4172 else if (cpuid_reg == 2) 4173 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4174 else 4175 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4176 4177 set_ghcb_msr_bits(svm, cpuid_value, 4178 GHCB_MSR_CPUID_VALUE_MASK, 4179 GHCB_MSR_CPUID_VALUE_POS); 4180 4181 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4182 GHCB_MSR_INFO_MASK, 4183 GHCB_MSR_INFO_POS); 4184 break; 4185 } 4186 case GHCB_MSR_AP_RESET_HOLD_REQ: 4187 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4188 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4189 4190 /* 4191 * Preset the result to a non-SIPI return and then only set 4192 * the result to non-zero when delivering a SIPI. 4193 */ 4194 set_ghcb_msr_bits(svm, 0, 4195 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4196 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4197 4198 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4199 GHCB_MSR_INFO_MASK, 4200 GHCB_MSR_INFO_POS); 4201 break; 4202 case GHCB_MSR_HV_FT_REQ: 4203 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4204 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4205 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4206 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4207 break; 4208 case GHCB_MSR_PREF_GPA_REQ: 4209 if (!sev_snp_guest(vcpu->kvm)) 4210 goto out_terminate; 4211 4212 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4213 GHCB_MSR_GPA_VALUE_POS); 4214 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4215 GHCB_MSR_INFO_POS); 4216 break; 4217 case GHCB_MSR_REG_GPA_REQ: { 4218 u64 gfn; 4219 4220 if (!sev_snp_guest(vcpu->kvm)) 4221 goto out_terminate; 4222 4223 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4224 GHCB_MSR_GPA_VALUE_POS); 4225 4226 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4227 4228 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4229 GHCB_MSR_GPA_VALUE_POS); 4230 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4231 GHCB_MSR_INFO_POS); 4232 break; 4233 } 4234 case GHCB_MSR_PSC_REQ: 4235 if (!sev_snp_guest(vcpu->kvm)) 4236 goto out_terminate; 4237 4238 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4239 break; 4240 case GHCB_MSR_TERM_REQ: { 4241 u64 reason_set, reason_code; 4242 4243 reason_set = get_ghcb_msr_bits(svm, 4244 GHCB_MSR_TERM_REASON_SET_MASK, 4245 GHCB_MSR_TERM_REASON_SET_POS); 4246 reason_code = get_ghcb_msr_bits(svm, 4247 GHCB_MSR_TERM_REASON_MASK, 4248 GHCB_MSR_TERM_REASON_POS); 4249 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4250 reason_set, reason_code); 4251 4252 goto out_terminate; 4253 } 4254 default: 4255 /* Error, keep GHCB MSR value as-is */ 4256 break; 4257 } 4258 4259 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4260 control->ghcb_gpa, ret); 4261 4262 return ret; 4263 4264 out_terminate: 4265 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4266 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4267 vcpu->run->system_event.ndata = 1; 4268 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4269 4270 return 0; 4271 } 4272 4273 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4274 { 4275 struct vcpu_svm *svm = to_svm(vcpu); 4276 struct vmcb_control_area *control = &svm->vmcb->control; 4277 u64 ghcb_gpa, exit_code; 4278 int ret; 4279 4280 /* Validate the GHCB */ 4281 ghcb_gpa = control->ghcb_gpa; 4282 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4283 return sev_handle_vmgexit_msr_protocol(svm); 4284 4285 if (!ghcb_gpa) { 4286 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4287 4288 /* Without a GHCB, just return right back to the guest */ 4289 return 1; 4290 } 4291 4292 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4293 /* Unable to map GHCB from guest */ 4294 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4295 ghcb_gpa); 4296 4297 /* Without a GHCB, just return right back to the guest */ 4298 return 1; 4299 } 4300 4301 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4302 4303 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4304 4305 sev_es_sync_from_ghcb(svm); 4306 4307 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4308 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4309 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4310 return -EINVAL; 4311 } 4312 4313 ret = sev_es_validate_vmgexit(svm); 4314 if (ret) 4315 return ret; 4316 4317 svm_vmgexit_success(svm, 0); 4318 4319 exit_code = kvm_ghcb_get_sw_exit_code(control); 4320 switch (exit_code) { 4321 case SVM_VMGEXIT_MMIO_READ: 4322 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4323 if (ret) 4324 break; 4325 4326 ret = kvm_sev_es_mmio_read(vcpu, 4327 control->exit_info_1, 4328 control->exit_info_2, 4329 svm->sev_es.ghcb_sa); 4330 break; 4331 case SVM_VMGEXIT_MMIO_WRITE: 4332 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4333 if (ret) 4334 break; 4335 4336 ret = kvm_sev_es_mmio_write(vcpu, 4337 control->exit_info_1, 4338 control->exit_info_2, 4339 svm->sev_es.ghcb_sa); 4340 break; 4341 case SVM_VMGEXIT_NMI_COMPLETE: 4342 ++vcpu->stat.nmi_window_exits; 4343 svm->nmi_masked = false; 4344 kvm_make_request(KVM_REQ_EVENT, vcpu); 4345 ret = 1; 4346 break; 4347 case SVM_VMGEXIT_AP_HLT_LOOP: 4348 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4349 ret = kvm_emulate_ap_reset_hold(vcpu); 4350 break; 4351 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4352 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4353 4354 switch (control->exit_info_1) { 4355 case 0: 4356 /* Set AP jump table address */ 4357 sev->ap_jump_table = control->exit_info_2; 4358 break; 4359 case 1: 4360 /* Get AP jump table address */ 4361 svm_vmgexit_success(svm, sev->ap_jump_table); 4362 break; 4363 default: 4364 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4365 control->exit_info_1); 4366 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4367 } 4368 4369 ret = 1; 4370 break; 4371 } 4372 case SVM_VMGEXIT_HV_FEATURES: 4373 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED); 4374 ret = 1; 4375 break; 4376 case SVM_VMGEXIT_TERM_REQUEST: 4377 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4378 control->exit_info_1, control->exit_info_2); 4379 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4380 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4381 vcpu->run->system_event.ndata = 1; 4382 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4383 break; 4384 case SVM_VMGEXIT_PSC: 4385 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4386 if (ret) 4387 break; 4388 4389 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4390 break; 4391 case SVM_VMGEXIT_AP_CREATION: 4392 ret = sev_snp_ap_creation(svm); 4393 if (ret) { 4394 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4395 } 4396 4397 ret = 1; 4398 break; 4399 case SVM_VMGEXIT_GUEST_REQUEST: 4400 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4401 break; 4402 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4403 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4404 break; 4405 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4406 vcpu_unimpl(vcpu, 4407 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4408 control->exit_info_1, control->exit_info_2); 4409 ret = -EINVAL; 4410 break; 4411 default: 4412 ret = svm_invoke_exit_handler(vcpu, exit_code); 4413 } 4414 4415 return ret; 4416 } 4417 4418 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4419 { 4420 int count; 4421 int bytes; 4422 int r; 4423 4424 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4425 return -EINVAL; 4426 4427 count = svm->vmcb->control.exit_info_2; 4428 if (unlikely(check_mul_overflow(count, size, &bytes))) 4429 return -EINVAL; 4430 4431 r = setup_vmgexit_scratch(svm, in, bytes); 4432 if (r) 4433 return r; 4434 4435 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4436 count, in); 4437 } 4438 4439 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu) 4440 { 4441 /* Clear intercepts on MSRs that are context switched by hardware. */ 4442 svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW); 4443 svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW); 4444 svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW); 4445 4446 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) 4447 svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW, 4448 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && 4449 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)); 4450 4451 /* 4452 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4453 * the host/guest supports its use. 4454 * 4455 * KVM treats the guest as being capable of using XSAVES even if XSAVES 4456 * isn't enabled in guest CPUID as there is no intercept for XSAVES, 4457 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is 4458 * exposed to the guest and XSAVES is supported in hardware. Condition 4459 * full XSS passthrough on the guest being able to use XSAVES *and* 4460 * XSAVES being exposed to the guest so that KVM can at least honor 4461 * guest CPUID for RDMSR and WRMSR. 4462 */ 4463 svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW, 4464 !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) || 4465 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)); 4466 } 4467 4468 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4469 { 4470 struct kvm_vcpu *vcpu = &svm->vcpu; 4471 struct kvm_cpuid_entry2 *best; 4472 4473 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4474 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4475 if (best) 4476 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4477 } 4478 4479 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4480 { 4481 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 4482 struct vmcb *vmcb = svm->vmcb01.ptr; 4483 4484 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4485 4486 /* 4487 * An SEV-ES guest requires a VMSA area that is a separate from the 4488 * VMCB page. Do not include the encryption mask on the VMSA physical 4489 * address since hardware will access it using the guest key. Note, 4490 * the VMSA will be NULL if this vCPU is the destination for intrahost 4491 * migration, and will be copied later. 4492 */ 4493 if (!svm->sev_es.snp_has_guest_vmsa) { 4494 if (svm->sev_es.vmsa) 4495 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4496 else 4497 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 4498 } 4499 4500 if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES)) 4501 svm->vmcb->control.allowed_sev_features = sev->vmsa_features | 4502 VMCB_ALLOWED_SEV_FEATURES_VALID; 4503 4504 /* Can't intercept CR register access, HV can't modify CR registers */ 4505 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4506 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4507 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4508 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4509 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4510 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4511 4512 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4513 4514 /* Track EFER/CR register changes */ 4515 svm_set_intercept(svm, TRAP_EFER_WRITE); 4516 svm_set_intercept(svm, TRAP_CR0_WRITE); 4517 svm_set_intercept(svm, TRAP_CR4_WRITE); 4518 svm_set_intercept(svm, TRAP_CR8_WRITE); 4519 4520 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4521 if (!sev_vcpu_has_debug_swap(svm)) { 4522 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4523 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4524 recalc_intercepts(svm); 4525 } else { 4526 /* 4527 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4528 * allow debugging SEV-ES guests, and enables DebugSwap iff 4529 * NO_NESTED_DATA_BP is supported, so there's no reason to 4530 * intercept #DB when DebugSwap is enabled. For simplicity 4531 * with respect to guest debug, intercept #DB for other VMs 4532 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4533 * guest can't DoS the CPU with infinite #DB vectoring. 4534 */ 4535 clr_exception_intercept(svm, DB_VECTOR); 4536 } 4537 4538 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4539 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4540 } 4541 4542 void sev_init_vmcb(struct vcpu_svm *svm) 4543 { 4544 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4545 clr_exception_intercept(svm, UD_VECTOR); 4546 4547 /* 4548 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4549 * KVM can't decrypt guest memory to decode the faulting instruction. 4550 */ 4551 clr_exception_intercept(svm, GP_VECTOR); 4552 4553 if (sev_es_guest(svm->vcpu.kvm)) 4554 sev_es_init_vmcb(svm); 4555 } 4556 4557 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4558 { 4559 struct kvm_vcpu *vcpu = &svm->vcpu; 4560 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4561 4562 /* 4563 * Set the GHCB MSR value as per the GHCB specification when emulating 4564 * vCPU RESET for an SEV-ES guest. 4565 */ 4566 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4567 GHCB_VERSION_MIN, 4568 sev_enc_bit)); 4569 4570 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4571 } 4572 4573 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4574 { 4575 struct kvm *kvm = svm->vcpu.kvm; 4576 4577 /* 4578 * All host state for SEV-ES guests is categorized into three swap types 4579 * based on how it is handled by hardware during a world switch: 4580 * 4581 * A: VMRUN: Host state saved in host save area 4582 * VMEXIT: Host state loaded from host save area 4583 * 4584 * B: VMRUN: Host state _NOT_ saved in host save area 4585 * VMEXIT: Host state loaded from host save area 4586 * 4587 * C: VMRUN: Host state _NOT_ saved in host save area 4588 * VMEXIT: Host state initialized to default(reset) values 4589 * 4590 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4591 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4592 * by common SVM code). 4593 */ 4594 hostsa->xcr0 = kvm_host.xcr0; 4595 hostsa->pkru = read_pkru(); 4596 hostsa->xss = kvm_host.xss; 4597 4598 /* 4599 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4600 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does 4601 * not save or load debug registers. Sadly, KVM can't prevent SNP 4602 * guests from lying about DebugSwap on secondary vCPUs, i.e. the 4603 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what 4604 * the guest has actually enabled (or not!) in the VMSA. 4605 * 4606 * If DebugSwap is *possible*, save the masks so that they're restored 4607 * if the guest enables DebugSwap. But for the DRs themselves, do NOT 4608 * rely on the CPU to restore the host values; KVM will restore them as 4609 * needed in common code, via hw_breakpoint_restore(). Note, KVM does 4610 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs 4611 * don't need to be restored per se, KVM just needs to ensure they are 4612 * loaded with the correct values *if* the CPU writes the MSRs. 4613 */ 4614 if (sev_vcpu_has_debug_swap(svm) || 4615 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) { 4616 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4617 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4618 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4619 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4620 } 4621 } 4622 4623 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4624 { 4625 struct vcpu_svm *svm = to_svm(vcpu); 4626 4627 /* First SIPI: Use the values as initially set by the VMM */ 4628 if (!svm->sev_es.received_first_sipi) { 4629 svm->sev_es.received_first_sipi = true; 4630 return; 4631 } 4632 4633 /* Subsequent SIPI */ 4634 switch (svm->sev_es.ap_reset_hold_type) { 4635 case AP_RESET_HOLD_NAE_EVENT: 4636 /* 4637 * Return from an AP Reset Hold VMGEXIT, where the guest will 4638 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4639 */ 4640 svm_vmgexit_success(svm, 1); 4641 break; 4642 case AP_RESET_HOLD_MSR_PROTO: 4643 /* 4644 * Return from an AP Reset Hold VMGEXIT, where the guest will 4645 * set the CS and RIP. Set GHCB data field to a non-zero value. 4646 */ 4647 set_ghcb_msr_bits(svm, 1, 4648 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4649 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4650 4651 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4652 GHCB_MSR_INFO_MASK, 4653 GHCB_MSR_INFO_POS); 4654 break; 4655 default: 4656 break; 4657 } 4658 } 4659 4660 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4661 { 4662 unsigned long pfn; 4663 struct page *p; 4664 4665 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4666 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4667 4668 /* 4669 * Allocate an SNP-safe page to workaround the SNP erratum where 4670 * the CPU will incorrectly signal an RMP violation #PF if a 4671 * hugepage (2MB or 1GB) collides with the RMP entry of a 4672 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4673 * 4674 * Allocate one extra page, choose a page which is not 4675 * 2MB-aligned, and free the other. 4676 */ 4677 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4678 if (!p) 4679 return NULL; 4680 4681 split_page(p, 1); 4682 4683 pfn = page_to_pfn(p); 4684 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4685 __free_page(p++); 4686 else 4687 __free_page(p + 1); 4688 4689 return p; 4690 } 4691 4692 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4693 { 4694 struct kvm_memory_slot *slot; 4695 struct kvm *kvm = vcpu->kvm; 4696 int order, rmp_level, ret; 4697 struct page *page; 4698 bool assigned; 4699 kvm_pfn_t pfn; 4700 gfn_t gfn; 4701 4702 gfn = gpa >> PAGE_SHIFT; 4703 4704 /* 4705 * The only time RMP faults occur for shared pages is when the guest is 4706 * triggering an RMP fault for an implicit page-state change from 4707 * shared->private. Implicit page-state changes are forwarded to 4708 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4709 * for shared pages should not end up here. 4710 */ 4711 if (!kvm_mem_is_private(kvm, gfn)) { 4712 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4713 gpa); 4714 return; 4715 } 4716 4717 slot = gfn_to_memslot(kvm, gfn); 4718 if (!kvm_slot_can_be_private(slot)) { 4719 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4720 gpa); 4721 return; 4722 } 4723 4724 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order); 4725 if (ret) { 4726 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4727 gpa); 4728 return; 4729 } 4730 4731 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4732 if (ret || !assigned) { 4733 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4734 gpa, pfn, ret); 4735 goto out_no_trace; 4736 } 4737 4738 /* 4739 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4740 * with PFERR_GUEST_RMP_BIT set: 4741 * 4742 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4743 * bit set if the guest issues them with a smaller granularity than 4744 * what is indicated by the page-size bit in the 2MB RMP entry for 4745 * the PFN that backs the GPA. 4746 * 4747 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4748 * smaller than what is indicated by the 2MB RMP entry for the PFN 4749 * that backs the GPA. 4750 * 4751 * In both these cases, the corresponding 2M RMP entry needs to 4752 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4753 * split into 4K RMP entries, then this is likely a spurious case which 4754 * can occur when there are concurrent accesses by the guest to a 2MB 4755 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4756 * the process of being PMASH'd into 4K entries. These cases should 4757 * resolve automatically on subsequent accesses, so just ignore them 4758 * here. 4759 */ 4760 if (rmp_level == PG_LEVEL_4K) 4761 goto out; 4762 4763 ret = snp_rmptable_psmash(pfn); 4764 if (ret) { 4765 /* 4766 * Look it up again. If it's 4K now then the PSMASH may have 4767 * raced with another process and the issue has already resolved 4768 * itself. 4769 */ 4770 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4771 assigned && rmp_level == PG_LEVEL_4K) 4772 goto out; 4773 4774 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4775 gpa, pfn, ret); 4776 } 4777 4778 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4779 out: 4780 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4781 out_no_trace: 4782 kvm_release_page_unused(page); 4783 } 4784 4785 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4786 { 4787 kvm_pfn_t pfn = start; 4788 4789 while (pfn < end) { 4790 int ret, rmp_level; 4791 bool assigned; 4792 4793 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4794 if (ret) { 4795 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4796 pfn, start, end, rmp_level, ret); 4797 return false; 4798 } 4799 4800 if (assigned) { 4801 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4802 __func__, pfn, start, end, rmp_level); 4803 return false; 4804 } 4805 4806 pfn++; 4807 } 4808 4809 return true; 4810 } 4811 4812 static u8 max_level_for_order(int order) 4813 { 4814 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4815 return PG_LEVEL_2M; 4816 4817 return PG_LEVEL_4K; 4818 } 4819 4820 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4821 { 4822 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4823 4824 /* 4825 * If this is a large folio, and the entire 2M range containing the 4826 * PFN is currently shared, then the entire 2M-aligned range can be 4827 * set to private via a single 2M RMP entry. 4828 */ 4829 if (max_level_for_order(order) > PG_LEVEL_4K && 4830 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4831 return true; 4832 4833 return false; 4834 } 4835 4836 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4837 { 4838 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4839 kvm_pfn_t pfn_aligned; 4840 gfn_t gfn_aligned; 4841 int level, rc; 4842 bool assigned; 4843 4844 if (!sev_snp_guest(kvm)) 4845 return 0; 4846 4847 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4848 if (rc) { 4849 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4850 gfn, pfn, rc); 4851 return -ENOENT; 4852 } 4853 4854 if (assigned) { 4855 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4856 __func__, gfn, pfn, max_order, level); 4857 return 0; 4858 } 4859 4860 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4861 level = PG_LEVEL_2M; 4862 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4863 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4864 } else { 4865 level = PG_LEVEL_4K; 4866 pfn_aligned = pfn; 4867 gfn_aligned = gfn; 4868 } 4869 4870 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4871 if (rc) { 4872 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4873 gfn, pfn, level, rc); 4874 return -EINVAL; 4875 } 4876 4877 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4878 __func__, gfn, pfn, pfn_aligned, max_order, level); 4879 4880 return 0; 4881 } 4882 4883 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4884 { 4885 kvm_pfn_t pfn; 4886 4887 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4888 return; 4889 4890 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4891 4892 for (pfn = start; pfn < end;) { 4893 bool use_2m_update = false; 4894 int rc, rmp_level; 4895 bool assigned; 4896 4897 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4898 if (rc || !assigned) 4899 goto next_pfn; 4900 4901 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4902 end >= (pfn + PTRS_PER_PMD) && 4903 rmp_level > PG_LEVEL_4K; 4904 4905 /* 4906 * If an unaligned PFN corresponds to a 2M region assigned as a 4907 * large page in the RMP table, PSMASH the region into individual 4908 * 4K RMP entries before attempting to convert a 4K sub-page. 4909 */ 4910 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4911 /* 4912 * This shouldn't fail, but if it does, report it, but 4913 * still try to update RMP entry to shared and pray this 4914 * was a spurious error that can be addressed later. 4915 */ 4916 rc = snp_rmptable_psmash(pfn); 4917 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4918 pfn, rc); 4919 } 4920 4921 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4922 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4923 pfn, rc)) 4924 goto next_pfn; 4925 4926 /* 4927 * SEV-ES avoids host/guest cache coherency issues through 4928 * WBNOINVD hooks issued via MMU notifiers during run-time, and 4929 * KVM's VM destroy path at shutdown. Those MMU notifier events 4930 * don't cover gmem since there is no requirement to map pages 4931 * to a HVA in order to use them for a running guest. While the 4932 * shutdown path would still likely cover things for SNP guests, 4933 * userspace may also free gmem pages during run-time via 4934 * hole-punching operations on the guest_memfd, so flush the 4935 * cache entries for these pages before free'ing them back to 4936 * the host. 4937 */ 4938 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4939 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4940 next_pfn: 4941 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4942 cond_resched(); 4943 } 4944 } 4945 4946 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4947 { 4948 int level, rc; 4949 bool assigned; 4950 4951 if (!sev_snp_guest(kvm)) 4952 return 0; 4953 4954 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4955 if (rc || !assigned) 4956 return PG_LEVEL_4K; 4957 4958 return level; 4959 } 4960 4961 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu) 4962 { 4963 struct vcpu_svm *svm = to_svm(vcpu); 4964 struct vmcb_save_area *vmsa; 4965 struct kvm_sev_info *sev; 4966 int error = 0; 4967 int ret; 4968 4969 if (!sev_es_guest(vcpu->kvm)) 4970 return NULL; 4971 4972 /* 4973 * If the VMSA has not yet been encrypted, return a pointer to the 4974 * current un-encrypted VMSA. 4975 */ 4976 if (!vcpu->arch.guest_state_protected) 4977 return (struct vmcb_save_area *)svm->sev_es.vmsa; 4978 4979 sev = to_kvm_sev_info(vcpu->kvm); 4980 4981 /* Check if the SEV policy allows debugging */ 4982 if (sev_snp_guest(vcpu->kvm)) { 4983 if (!(sev->policy & SNP_POLICY_DEBUG)) 4984 return NULL; 4985 } else { 4986 if (sev->policy & SEV_POLICY_NODBG) 4987 return NULL; 4988 } 4989 4990 if (sev_snp_guest(vcpu->kvm)) { 4991 struct sev_data_snp_dbg dbg = {0}; 4992 4993 vmsa = snp_alloc_firmware_page(__GFP_ZERO); 4994 if (!vmsa) 4995 return NULL; 4996 4997 dbg.gctx_paddr = __psp_pa(sev->snp_context); 4998 dbg.src_addr = svm->vmcb->control.vmsa_pa; 4999 dbg.dst_addr = __psp_pa(vmsa); 5000 5001 ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error); 5002 5003 /* 5004 * Return the target page to a hypervisor page no matter what. 5005 * If this fails, the page can't be used, so leak it and don't 5006 * try to use it. 5007 */ 5008 if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa)))) 5009 return NULL; 5010 5011 if (ret) { 5012 pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n", 5013 ret, error, error); 5014 free_page((unsigned long)vmsa); 5015 5016 return NULL; 5017 } 5018 } else { 5019 struct sev_data_dbg dbg = {0}; 5020 struct page *vmsa_page; 5021 5022 vmsa_page = alloc_page(GFP_KERNEL); 5023 if (!vmsa_page) 5024 return NULL; 5025 5026 vmsa = page_address(vmsa_page); 5027 5028 dbg.handle = sev->handle; 5029 dbg.src_addr = svm->vmcb->control.vmsa_pa; 5030 dbg.dst_addr = __psp_pa(vmsa); 5031 dbg.len = PAGE_SIZE; 5032 5033 ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error); 5034 if (ret) { 5035 pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n", 5036 ret, error, error); 5037 __free_page(vmsa_page); 5038 5039 return NULL; 5040 } 5041 } 5042 5043 return vmsa; 5044 } 5045 5046 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) 5047 { 5048 /* If the VMSA has not yet been encrypted, nothing was allocated */ 5049 if (!vcpu->arch.guest_state_protected || !vmsa) 5050 return; 5051 5052 free_page((unsigned long)vmsa); 5053 } 5054