1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kvm_types.h> 12 #include <linux/kvm_host.h> 13 #include <linux/kernel.h> 14 #include <linux/highmem.h> 15 #include <linux/psp.h> 16 #include <linux/psp-sev.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/misc_cgroup.h> 20 #include <linux/processor.h> 21 #include <linux/trace_events.h> 22 #include <uapi/linux/sev-guest.h> 23 24 #include <asm/pkru.h> 25 #include <asm/trapnr.h> 26 #include <asm/fpu/xcr.h> 27 #include <asm/fpu/xstate.h> 28 #include <asm/debugreg.h> 29 #include <asm/msr.h> 30 #include <asm/sev.h> 31 32 #include "mmu.h" 33 #include "x86.h" 34 #include "svm.h" 35 #include "svm_ops.h" 36 #include "cpuid.h" 37 #include "trace.h" 38 39 #define GHCB_VERSION_MAX 2ULL 40 #define GHCB_VERSION_DEFAULT 2ULL 41 #define GHCB_VERSION_MIN 1ULL 42 43 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION) 44 45 /* enable/disable SEV support */ 46 static bool sev_enabled = true; 47 module_param_named(sev, sev_enabled, bool, 0444); 48 49 /* enable/disable SEV-ES support */ 50 static bool sev_es_enabled = true; 51 module_param_named(sev_es, sev_es_enabled, bool, 0444); 52 53 /* enable/disable SEV-SNP support */ 54 static bool sev_snp_enabled = true; 55 module_param_named(sev_snp, sev_snp_enabled, bool, 0444); 56 57 /* enable/disable SEV-ES DebugSwap support */ 58 static bool sev_es_debug_swap_enabled = true; 59 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444); 60 static u64 sev_supported_vmsa_features; 61 62 #define AP_RESET_HOLD_NONE 0 63 #define AP_RESET_HOLD_NAE_EVENT 1 64 #define AP_RESET_HOLD_MSR_PROTO 2 65 66 /* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */ 67 #define SNP_POLICY_MASK_API_MINOR GENMASK_ULL(7, 0) 68 #define SNP_POLICY_MASK_API_MAJOR GENMASK_ULL(15, 8) 69 #define SNP_POLICY_MASK_SMT BIT_ULL(16) 70 #define SNP_POLICY_MASK_RSVD_MBO BIT_ULL(17) 71 #define SNP_POLICY_MASK_DEBUG BIT_ULL(19) 72 #define SNP_POLICY_MASK_SINGLE_SOCKET BIT_ULL(20) 73 74 #define SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \ 75 SNP_POLICY_MASK_API_MAJOR | \ 76 SNP_POLICY_MASK_SMT | \ 77 SNP_POLICY_MASK_RSVD_MBO | \ 78 SNP_POLICY_MASK_DEBUG | \ 79 SNP_POLICY_MASK_SINGLE_SOCKET) 80 81 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000 82 83 static u8 sev_enc_bit; 84 static DECLARE_RWSEM(sev_deactivate_lock); 85 static DEFINE_MUTEX(sev_bitmap_lock); 86 unsigned int max_sev_asid; 87 static unsigned int min_sev_asid; 88 static unsigned long sev_me_mask; 89 static unsigned int nr_asids; 90 static unsigned long *sev_asid_bitmap; 91 static unsigned long *sev_reclaim_asid_bitmap; 92 93 static int snp_decommission_context(struct kvm *kvm); 94 95 struct enc_region { 96 struct list_head list; 97 unsigned long npages; 98 struct page **pages; 99 unsigned long uaddr; 100 unsigned long size; 101 }; 102 103 /* Called with the sev_bitmap_lock held, or on shutdown */ 104 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid) 105 { 106 int ret, error = 0; 107 unsigned int asid; 108 109 /* Check if there are any ASIDs to reclaim before performing a flush */ 110 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 111 if (asid > max_asid) 112 return -EBUSY; 113 114 /* 115 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 116 * so it must be guarded. 117 */ 118 down_write(&sev_deactivate_lock); 119 120 wbinvd_on_all_cpus(); 121 122 if (sev_snp_enabled) 123 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error); 124 else 125 ret = sev_guest_df_flush(&error); 126 127 up_write(&sev_deactivate_lock); 128 129 if (ret) 130 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n", 131 sev_snp_enabled ? "-SNP" : "", ret, error); 132 133 return ret; 134 } 135 136 static inline bool is_mirroring_enc_context(struct kvm *kvm) 137 { 138 return !!to_kvm_sev_info(kvm)->enc_context_owner; 139 } 140 141 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm) 142 { 143 struct kvm_vcpu *vcpu = &svm->vcpu; 144 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 145 146 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP; 147 } 148 149 /* Must be called with the sev_bitmap_lock held */ 150 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid) 151 { 152 if (sev_flush_asids(min_asid, max_asid)) 153 return false; 154 155 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 156 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 157 nr_asids); 158 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 159 160 return true; 161 } 162 163 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 164 { 165 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 166 return misc_cg_try_charge(type, sev->misc_cg, 1); 167 } 168 169 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 170 { 171 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 172 misc_cg_uncharge(type, sev->misc_cg, 1); 173 } 174 175 static int sev_asid_new(struct kvm_sev_info *sev) 176 { 177 /* 178 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 179 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 180 * Note: min ASID can end up larger than the max if basic SEV support is 181 * effectively disabled by disallowing use of ASIDs for SEV guests. 182 */ 183 unsigned int min_asid = sev->es_active ? 1 : min_sev_asid; 184 unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 185 unsigned int asid; 186 bool retry = true; 187 int ret; 188 189 if (min_asid > max_asid) 190 return -ENOTTY; 191 192 WARN_ON(sev->misc_cg); 193 sev->misc_cg = get_current_misc_cg(); 194 ret = sev_misc_cg_try_charge(sev); 195 if (ret) { 196 put_misc_cg(sev->misc_cg); 197 sev->misc_cg = NULL; 198 return ret; 199 } 200 201 mutex_lock(&sev_bitmap_lock); 202 203 again: 204 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 205 if (asid > max_asid) { 206 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 207 retry = false; 208 goto again; 209 } 210 mutex_unlock(&sev_bitmap_lock); 211 ret = -EBUSY; 212 goto e_uncharge; 213 } 214 215 __set_bit(asid, sev_asid_bitmap); 216 217 mutex_unlock(&sev_bitmap_lock); 218 219 sev->asid = asid; 220 return 0; 221 e_uncharge: 222 sev_misc_cg_uncharge(sev); 223 put_misc_cg(sev->misc_cg); 224 sev->misc_cg = NULL; 225 return ret; 226 } 227 228 static unsigned int sev_get_asid(struct kvm *kvm) 229 { 230 return to_kvm_sev_info(kvm)->asid; 231 } 232 233 static void sev_asid_free(struct kvm_sev_info *sev) 234 { 235 struct svm_cpu_data *sd; 236 int cpu; 237 238 mutex_lock(&sev_bitmap_lock); 239 240 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 241 242 for_each_possible_cpu(cpu) { 243 sd = per_cpu_ptr(&svm_data, cpu); 244 sd->sev_vmcbs[sev->asid] = NULL; 245 } 246 247 mutex_unlock(&sev_bitmap_lock); 248 249 sev_misc_cg_uncharge(sev); 250 put_misc_cg(sev->misc_cg); 251 sev->misc_cg = NULL; 252 } 253 254 static void sev_decommission(unsigned int handle) 255 { 256 struct sev_data_decommission decommission; 257 258 if (!handle) 259 return; 260 261 decommission.handle = handle; 262 sev_guest_decommission(&decommission, NULL); 263 } 264 265 /* 266 * Transition a page to hypervisor-owned/shared state in the RMP table. This 267 * should not fail under normal conditions, but leak the page should that 268 * happen since it will no longer be usable by the host due to RMP protections. 269 */ 270 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level) 271 { 272 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) { 273 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT); 274 return -EIO; 275 } 276 277 return 0; 278 } 279 280 /* 281 * Certain page-states, such as Pre-Guest and Firmware pages (as documented 282 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be 283 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE 284 * unless they are reclaimed first. 285 * 286 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they 287 * might not be usable by the host due to being set as immutable or still 288 * being associated with a guest ASID. 289 * 290 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be 291 * converted back to shared, as the page is no longer usable due to RMP 292 * protections, and it's infeasible for the guest to continue on. 293 */ 294 static int snp_page_reclaim(struct kvm *kvm, u64 pfn) 295 { 296 struct sev_data_snp_page_reclaim data = {0}; 297 int fw_err, rc; 298 299 data.paddr = __sme_set(pfn << PAGE_SHIFT); 300 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err); 301 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) { 302 snp_leak_pages(pfn, 1); 303 return -EIO; 304 } 305 306 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K)) 307 return -EIO; 308 309 return rc; 310 } 311 312 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 313 { 314 struct sev_data_deactivate deactivate; 315 316 if (!handle) 317 return; 318 319 deactivate.handle = handle; 320 321 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 322 down_read(&sev_deactivate_lock); 323 sev_guest_deactivate(&deactivate, NULL); 324 up_read(&sev_deactivate_lock); 325 326 sev_decommission(handle); 327 } 328 329 /* 330 * This sets up bounce buffers/firmware pages to handle SNP Guest Request 331 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB 332 * 2.0 specification for more details. 333 * 334 * Technically, when an SNP Guest Request is issued, the guest will provide its 335 * own request/response pages, which could in theory be passed along directly 336 * to firmware rather than using bounce pages. However, these pages would need 337 * special care: 338 * 339 * - Both pages are from shared guest memory, so they need to be protected 340 * from migration/etc. occurring while firmware reads/writes to them. At a 341 * minimum, this requires elevating the ref counts and potentially needing 342 * an explicit pinning of the memory. This places additional restrictions 343 * on what type of memory backends userspace can use for shared guest 344 * memory since there is some reliance on using refcounted pages. 345 * 346 * - The response page needs to be switched to Firmware-owned[1] state 347 * before the firmware can write to it, which can lead to potential 348 * host RMP #PFs if the guest is misbehaved and hands the host a 349 * guest page that KVM might write to for other reasons (e.g. virtio 350 * buffers/etc.). 351 * 352 * Both of these issues can be avoided completely by using separately-allocated 353 * bounce pages for both the request/response pages and passing those to 354 * firmware instead. So that's what is being set up here. 355 * 356 * Guest requests rely on message sequence numbers to ensure requests are 357 * issued to firmware in the order the guest issues them, so concurrent guest 358 * requests generally shouldn't happen. But a misbehaved guest could issue 359 * concurrent guest requests in theory, so a mutex is used to serialize 360 * access to the bounce buffers. 361 * 362 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more 363 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks" 364 * in the APM for details on the related RMP restrictions. 365 */ 366 static int snp_guest_req_init(struct kvm *kvm) 367 { 368 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 369 struct page *req_page; 370 371 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 372 if (!req_page) 373 return -ENOMEM; 374 375 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 376 if (!sev->guest_resp_buf) { 377 __free_page(req_page); 378 return -EIO; 379 } 380 381 sev->guest_req_buf = page_address(req_page); 382 mutex_init(&sev->guest_req_mutex); 383 384 return 0; 385 } 386 387 static void snp_guest_req_cleanup(struct kvm *kvm) 388 { 389 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 390 391 if (sev->guest_resp_buf) 392 snp_free_firmware_page(sev->guest_resp_buf); 393 394 if (sev->guest_req_buf) 395 __free_page(virt_to_page(sev->guest_req_buf)); 396 397 sev->guest_req_buf = NULL; 398 sev->guest_resp_buf = NULL; 399 } 400 401 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp, 402 struct kvm_sev_init *data, 403 unsigned long vm_type) 404 { 405 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 406 struct sev_platform_init_args init_args = {0}; 407 bool es_active = vm_type != KVM_X86_SEV_VM; 408 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0; 409 int ret; 410 411 if (kvm->created_vcpus) 412 return -EINVAL; 413 414 if (data->flags) 415 return -EINVAL; 416 417 if (data->vmsa_features & ~valid_vmsa_features) 418 return -EINVAL; 419 420 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version)) 421 return -EINVAL; 422 423 if (unlikely(sev->active)) 424 return -EINVAL; 425 426 sev->active = true; 427 sev->es_active = es_active; 428 sev->vmsa_features = data->vmsa_features; 429 sev->ghcb_version = data->ghcb_version; 430 431 /* 432 * Currently KVM supports the full range of mandatory features defined 433 * by version 2 of the GHCB protocol, so default to that for SEV-ES 434 * guests created via KVM_SEV_INIT2. 435 */ 436 if (sev->es_active && !sev->ghcb_version) 437 sev->ghcb_version = GHCB_VERSION_DEFAULT; 438 439 if (vm_type == KVM_X86_SNP_VM) 440 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE; 441 442 ret = sev_asid_new(sev); 443 if (ret) 444 goto e_no_asid; 445 446 init_args.probe = false; 447 ret = sev_platform_init(&init_args); 448 if (ret) 449 goto e_free; 450 451 /* This needs to happen after SEV/SNP firmware initialization. */ 452 if (vm_type == KVM_X86_SNP_VM) { 453 ret = snp_guest_req_init(kvm); 454 if (ret) 455 goto e_free; 456 } 457 458 INIT_LIST_HEAD(&sev->regions_list); 459 INIT_LIST_HEAD(&sev->mirror_vms); 460 sev->need_init = false; 461 462 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV); 463 464 return 0; 465 466 e_free: 467 argp->error = init_args.error; 468 sev_asid_free(sev); 469 sev->asid = 0; 470 e_no_asid: 471 sev->vmsa_features = 0; 472 sev->es_active = false; 473 sev->active = false; 474 return ret; 475 } 476 477 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 478 { 479 struct kvm_sev_init data = { 480 .vmsa_features = 0, 481 .ghcb_version = 0, 482 }; 483 unsigned long vm_type; 484 485 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM) 486 return -EINVAL; 487 488 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM); 489 490 /* 491 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will 492 * continue to only ever support the minimal GHCB protocol version. 493 */ 494 if (vm_type == KVM_X86_SEV_ES_VM) 495 data.ghcb_version = GHCB_VERSION_MIN; 496 497 return __sev_guest_init(kvm, argp, &data, vm_type); 498 } 499 500 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp) 501 { 502 struct kvm_sev_init data; 503 504 if (!to_kvm_sev_info(kvm)->need_init) 505 return -EINVAL; 506 507 if (kvm->arch.vm_type != KVM_X86_SEV_VM && 508 kvm->arch.vm_type != KVM_X86_SEV_ES_VM && 509 kvm->arch.vm_type != KVM_X86_SNP_VM) 510 return -EINVAL; 511 512 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data))) 513 return -EFAULT; 514 515 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type); 516 } 517 518 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 519 { 520 unsigned int asid = sev_get_asid(kvm); 521 struct sev_data_activate activate; 522 int ret; 523 524 /* activate ASID on the given handle */ 525 activate.handle = handle; 526 activate.asid = asid; 527 ret = sev_guest_activate(&activate, error); 528 529 return ret; 530 } 531 532 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 533 { 534 CLASS(fd, f)(fd); 535 536 if (fd_empty(f)) 537 return -EBADF; 538 539 return sev_issue_cmd_external_user(fd_file(f), id, data, error); 540 } 541 542 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 543 { 544 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 545 546 return __sev_issue_cmd(sev->fd, id, data, error); 547 } 548 549 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 550 { 551 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 552 struct sev_data_launch_start start; 553 struct kvm_sev_launch_start params; 554 void *dh_blob, *session_blob; 555 int *error = &argp->error; 556 int ret; 557 558 if (!sev_guest(kvm)) 559 return -ENOTTY; 560 561 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 562 return -EFAULT; 563 564 sev->policy = params.policy; 565 566 memset(&start, 0, sizeof(start)); 567 568 dh_blob = NULL; 569 if (params.dh_uaddr) { 570 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 571 if (IS_ERR(dh_blob)) 572 return PTR_ERR(dh_blob); 573 574 start.dh_cert_address = __sme_set(__pa(dh_blob)); 575 start.dh_cert_len = params.dh_len; 576 } 577 578 session_blob = NULL; 579 if (params.session_uaddr) { 580 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 581 if (IS_ERR(session_blob)) { 582 ret = PTR_ERR(session_blob); 583 goto e_free_dh; 584 } 585 586 start.session_address = __sme_set(__pa(session_blob)); 587 start.session_len = params.session_len; 588 } 589 590 start.handle = params.handle; 591 start.policy = params.policy; 592 593 /* create memory encryption context */ 594 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 595 if (ret) 596 goto e_free_session; 597 598 /* Bind ASID to this guest */ 599 ret = sev_bind_asid(kvm, start.handle, error); 600 if (ret) { 601 sev_decommission(start.handle); 602 goto e_free_session; 603 } 604 605 /* return handle to userspace */ 606 params.handle = start.handle; 607 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) { 608 sev_unbind_asid(kvm, start.handle); 609 ret = -EFAULT; 610 goto e_free_session; 611 } 612 613 sev->handle = start.handle; 614 sev->fd = argp->sev_fd; 615 616 e_free_session: 617 kfree(session_blob); 618 e_free_dh: 619 kfree(dh_blob); 620 return ret; 621 } 622 623 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 624 unsigned long ulen, unsigned long *n, 625 unsigned int flags) 626 { 627 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 628 unsigned long npages, size; 629 int npinned; 630 unsigned long locked, lock_limit; 631 struct page **pages; 632 unsigned long first, last; 633 int ret; 634 635 lockdep_assert_held(&kvm->lock); 636 637 if (ulen == 0 || uaddr + ulen < uaddr) 638 return ERR_PTR(-EINVAL); 639 640 /* Calculate number of pages. */ 641 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 642 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 643 npages = (last - first + 1); 644 645 locked = sev->pages_locked + npages; 646 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 647 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 648 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 649 return ERR_PTR(-ENOMEM); 650 } 651 652 if (WARN_ON_ONCE(npages > INT_MAX)) 653 return ERR_PTR(-EINVAL); 654 655 /* Avoid using vmalloc for smaller buffers. */ 656 size = npages * sizeof(struct page *); 657 if (size > PAGE_SIZE) 658 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT); 659 else 660 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 661 662 if (!pages) 663 return ERR_PTR(-ENOMEM); 664 665 /* Pin the user virtual address. */ 666 npinned = pin_user_pages_fast(uaddr, npages, flags, pages); 667 if (npinned != npages) { 668 pr_err("SEV: Failure locking %lu pages.\n", npages); 669 ret = -ENOMEM; 670 goto err; 671 } 672 673 *n = npages; 674 sev->pages_locked = locked; 675 676 return pages; 677 678 err: 679 if (npinned > 0) 680 unpin_user_pages(pages, npinned); 681 682 kvfree(pages); 683 return ERR_PTR(ret); 684 } 685 686 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 687 unsigned long npages) 688 { 689 unpin_user_pages(pages, npages); 690 kvfree(pages); 691 to_kvm_sev_info(kvm)->pages_locked -= npages; 692 } 693 694 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 695 { 696 uint8_t *page_virtual; 697 unsigned long i; 698 699 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 700 pages == NULL) 701 return; 702 703 for (i = 0; i < npages; i++) { 704 page_virtual = kmap_local_page(pages[i]); 705 clflush_cache_range(page_virtual, PAGE_SIZE); 706 kunmap_local(page_virtual); 707 cond_resched(); 708 } 709 } 710 711 static unsigned long get_num_contig_pages(unsigned long idx, 712 struct page **inpages, unsigned long npages) 713 { 714 unsigned long paddr, next_paddr; 715 unsigned long i = idx + 1, pages = 1; 716 717 /* find the number of contiguous pages starting from idx */ 718 paddr = __sme_page_pa(inpages[idx]); 719 while (i < npages) { 720 next_paddr = __sme_page_pa(inpages[i++]); 721 if ((paddr + PAGE_SIZE) == next_paddr) { 722 pages++; 723 paddr = next_paddr; 724 continue; 725 } 726 break; 727 } 728 729 return pages; 730 } 731 732 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 733 { 734 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 735 struct kvm_sev_launch_update_data params; 736 struct sev_data_launch_update_data data; 737 struct page **inpages; 738 int ret; 739 740 if (!sev_guest(kvm)) 741 return -ENOTTY; 742 743 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 744 return -EFAULT; 745 746 vaddr = params.uaddr; 747 size = params.len; 748 vaddr_end = vaddr + size; 749 750 /* Lock the user memory. */ 751 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE); 752 if (IS_ERR(inpages)) 753 return PTR_ERR(inpages); 754 755 /* 756 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 757 * place; the cache may contain the data that was written unencrypted. 758 */ 759 sev_clflush_pages(inpages, npages); 760 761 data.reserved = 0; 762 data.handle = to_kvm_sev_info(kvm)->handle; 763 764 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 765 int offset, len; 766 767 /* 768 * If the user buffer is not page-aligned, calculate the offset 769 * within the page. 770 */ 771 offset = vaddr & (PAGE_SIZE - 1); 772 773 /* Calculate the number of pages that can be encrypted in one go. */ 774 pages = get_num_contig_pages(i, inpages, npages); 775 776 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 777 778 data.len = len; 779 data.address = __sme_page_pa(inpages[i]) + offset; 780 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 781 if (ret) 782 goto e_unpin; 783 784 size -= len; 785 next_vaddr = vaddr + len; 786 } 787 788 e_unpin: 789 /* content of memory is updated, mark pages dirty */ 790 for (i = 0; i < npages; i++) { 791 set_page_dirty_lock(inpages[i]); 792 mark_page_accessed(inpages[i]); 793 } 794 /* unlock the user pages */ 795 sev_unpin_memory(kvm, inpages, npages); 796 return ret; 797 } 798 799 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 800 { 801 struct kvm_vcpu *vcpu = &svm->vcpu; 802 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 803 struct sev_es_save_area *save = svm->sev_es.vmsa; 804 struct xregs_state *xsave; 805 const u8 *s; 806 u8 *d; 807 int i; 808 809 /* Check some debug related fields before encrypting the VMSA */ 810 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1)) 811 return -EINVAL; 812 813 /* 814 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 815 * the traditional VMSA that is part of the VMCB. Copy the 816 * traditional VMSA as it has been built so far (in prep 817 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 818 */ 819 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save)); 820 821 /* Sync registgers */ 822 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 823 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 824 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 825 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 826 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 827 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 828 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 829 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 830 #ifdef CONFIG_X86_64 831 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 832 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 833 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 834 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 835 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 836 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 837 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 838 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 839 #endif 840 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 841 842 /* Sync some non-GPR registers before encrypting */ 843 save->xcr0 = svm->vcpu.arch.xcr0; 844 save->pkru = svm->vcpu.arch.pkru; 845 save->xss = svm->vcpu.arch.ia32_xss; 846 save->dr6 = svm->vcpu.arch.dr6; 847 848 save->sev_features = sev->vmsa_features; 849 850 /* 851 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid 852 * breaking older measurements. 853 */ 854 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) { 855 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave; 856 save->x87_dp = xsave->i387.rdp; 857 save->mxcsr = xsave->i387.mxcsr; 858 save->x87_ftw = xsave->i387.twd; 859 save->x87_fsw = xsave->i387.swd; 860 save->x87_fcw = xsave->i387.cwd; 861 save->x87_fop = xsave->i387.fop; 862 save->x87_ds = 0; 863 save->x87_cs = 0; 864 save->x87_rip = xsave->i387.rip; 865 866 for (i = 0; i < 8; i++) { 867 /* 868 * The format of the x87 save area is undocumented and 869 * definitely not what you would expect. It consists of 870 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes 871 * area with bytes 8-9 of each register. 872 */ 873 d = save->fpreg_x87 + i * 8; 874 s = ((u8 *)xsave->i387.st_space) + i * 16; 875 memcpy(d, s, 8); 876 save->fpreg_x87[64 + i * 2] = s[8]; 877 save->fpreg_x87[64 + i * 2 + 1] = s[9]; 878 } 879 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256); 880 881 s = get_xsave_addr(xsave, XFEATURE_YMM); 882 if (s) 883 memcpy(save->fpreg_ymm, s, 256); 884 else 885 memset(save->fpreg_ymm, 0, 256); 886 } 887 888 pr_debug("Virtual Machine Save Area (VMSA):\n"); 889 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false); 890 891 return 0; 892 } 893 894 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 895 int *error) 896 { 897 struct sev_data_launch_update_vmsa vmsa; 898 struct vcpu_svm *svm = to_svm(vcpu); 899 int ret; 900 901 if (vcpu->guest_debug) { 902 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported"); 903 return -EINVAL; 904 } 905 906 /* Perform some pre-encryption checks against the VMSA */ 907 ret = sev_es_sync_vmsa(svm); 908 if (ret) 909 return ret; 910 911 /* 912 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 913 * the VMSA memory content (i.e it will write the same memory region 914 * with the guest's key), so invalidate it first. 915 */ 916 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 917 918 vmsa.reserved = 0; 919 vmsa.handle = to_kvm_sev_info(kvm)->handle; 920 vmsa.address = __sme_pa(svm->sev_es.vmsa); 921 vmsa.len = PAGE_SIZE; 922 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 923 if (ret) 924 return ret; 925 926 /* 927 * SEV-ES guests maintain an encrypted version of their FPU 928 * state which is restored and saved on VMRUN and VMEXIT. 929 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't 930 * do xsave/xrstor on it. 931 */ 932 fpstate_set_confidential(&vcpu->arch.guest_fpu); 933 vcpu->arch.guest_state_protected = true; 934 935 /* 936 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it 937 * only after setting guest_state_protected because KVM_SET_MSRS allows 938 * dynamic toggling of LBRV (for performance reason) on write access to 939 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 940 */ 941 svm_enable_lbrv(vcpu); 942 return 0; 943 } 944 945 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 946 { 947 struct kvm_vcpu *vcpu; 948 unsigned long i; 949 int ret; 950 951 if (!sev_es_guest(kvm)) 952 return -ENOTTY; 953 954 kvm_for_each_vcpu(i, vcpu, kvm) { 955 ret = mutex_lock_killable(&vcpu->mutex); 956 if (ret) 957 return ret; 958 959 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 960 961 mutex_unlock(&vcpu->mutex); 962 if (ret) 963 return ret; 964 } 965 966 return 0; 967 } 968 969 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 970 { 971 void __user *measure = u64_to_user_ptr(argp->data); 972 struct sev_data_launch_measure data; 973 struct kvm_sev_launch_measure params; 974 void __user *p = NULL; 975 void *blob = NULL; 976 int ret; 977 978 if (!sev_guest(kvm)) 979 return -ENOTTY; 980 981 if (copy_from_user(¶ms, measure, sizeof(params))) 982 return -EFAULT; 983 984 memset(&data, 0, sizeof(data)); 985 986 /* User wants to query the blob length */ 987 if (!params.len) 988 goto cmd; 989 990 p = u64_to_user_ptr(params.uaddr); 991 if (p) { 992 if (params.len > SEV_FW_BLOB_MAX_SIZE) 993 return -EINVAL; 994 995 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 996 if (!blob) 997 return -ENOMEM; 998 999 data.address = __psp_pa(blob); 1000 data.len = params.len; 1001 } 1002 1003 cmd: 1004 data.handle = to_kvm_sev_info(kvm)->handle; 1005 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 1006 1007 /* 1008 * If we query the session length, FW responded with expected data. 1009 */ 1010 if (!params.len) 1011 goto done; 1012 1013 if (ret) 1014 goto e_free_blob; 1015 1016 if (blob) { 1017 if (copy_to_user(p, blob, params.len)) 1018 ret = -EFAULT; 1019 } 1020 1021 done: 1022 params.len = data.len; 1023 if (copy_to_user(measure, ¶ms, sizeof(params))) 1024 ret = -EFAULT; 1025 e_free_blob: 1026 kfree(blob); 1027 return ret; 1028 } 1029 1030 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1031 { 1032 struct sev_data_launch_finish data; 1033 1034 if (!sev_guest(kvm)) 1035 return -ENOTTY; 1036 1037 data.handle = to_kvm_sev_info(kvm)->handle; 1038 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 1039 } 1040 1041 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 1042 { 1043 struct kvm_sev_guest_status params; 1044 struct sev_data_guest_status data; 1045 int ret; 1046 1047 if (!sev_guest(kvm)) 1048 return -ENOTTY; 1049 1050 memset(&data, 0, sizeof(data)); 1051 1052 data.handle = to_kvm_sev_info(kvm)->handle; 1053 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 1054 if (ret) 1055 return ret; 1056 1057 params.policy = data.policy; 1058 params.state = data.state; 1059 params.handle = data.handle; 1060 1061 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 1062 ret = -EFAULT; 1063 1064 return ret; 1065 } 1066 1067 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 1068 unsigned long dst, int size, 1069 int *error, bool enc) 1070 { 1071 struct sev_data_dbg data; 1072 1073 data.reserved = 0; 1074 data.handle = to_kvm_sev_info(kvm)->handle; 1075 data.dst_addr = dst; 1076 data.src_addr = src; 1077 data.len = size; 1078 1079 return sev_issue_cmd(kvm, 1080 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 1081 &data, error); 1082 } 1083 1084 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 1085 unsigned long dst_paddr, int sz, int *err) 1086 { 1087 int offset; 1088 1089 /* 1090 * Its safe to read more than we are asked, caller should ensure that 1091 * destination has enough space. 1092 */ 1093 offset = src_paddr & 15; 1094 src_paddr = round_down(src_paddr, 16); 1095 sz = round_up(sz + offset, 16); 1096 1097 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 1098 } 1099 1100 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 1101 void __user *dst_uaddr, 1102 unsigned long dst_paddr, 1103 int size, int *err) 1104 { 1105 struct page *tpage = NULL; 1106 int ret, offset; 1107 1108 /* if inputs are not 16-byte then use intermediate buffer */ 1109 if (!IS_ALIGNED(dst_paddr, 16) || 1110 !IS_ALIGNED(paddr, 16) || 1111 !IS_ALIGNED(size, 16)) { 1112 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 1113 if (!tpage) 1114 return -ENOMEM; 1115 1116 dst_paddr = __sme_page_pa(tpage); 1117 } 1118 1119 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 1120 if (ret) 1121 goto e_free; 1122 1123 if (tpage) { 1124 offset = paddr & 15; 1125 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 1126 ret = -EFAULT; 1127 } 1128 1129 e_free: 1130 if (tpage) 1131 __free_page(tpage); 1132 1133 return ret; 1134 } 1135 1136 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 1137 void __user *vaddr, 1138 unsigned long dst_paddr, 1139 void __user *dst_vaddr, 1140 int size, int *error) 1141 { 1142 struct page *src_tpage = NULL; 1143 struct page *dst_tpage = NULL; 1144 int ret, len = size; 1145 1146 /* If source buffer is not aligned then use an intermediate buffer */ 1147 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 1148 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1149 if (!src_tpage) 1150 return -ENOMEM; 1151 1152 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 1153 __free_page(src_tpage); 1154 return -EFAULT; 1155 } 1156 1157 paddr = __sme_page_pa(src_tpage); 1158 } 1159 1160 /* 1161 * If destination buffer or length is not aligned then do read-modify-write: 1162 * - decrypt destination in an intermediate buffer 1163 * - copy the source buffer in an intermediate buffer 1164 * - use the intermediate buffer as source buffer 1165 */ 1166 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 1167 int dst_offset; 1168 1169 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT); 1170 if (!dst_tpage) { 1171 ret = -ENOMEM; 1172 goto e_free; 1173 } 1174 1175 ret = __sev_dbg_decrypt(kvm, dst_paddr, 1176 __sme_page_pa(dst_tpage), size, error); 1177 if (ret) 1178 goto e_free; 1179 1180 /* 1181 * If source is kernel buffer then use memcpy() otherwise 1182 * copy_from_user(). 1183 */ 1184 dst_offset = dst_paddr & 15; 1185 1186 if (src_tpage) 1187 memcpy(page_address(dst_tpage) + dst_offset, 1188 page_address(src_tpage), size); 1189 else { 1190 if (copy_from_user(page_address(dst_tpage) + dst_offset, 1191 vaddr, size)) { 1192 ret = -EFAULT; 1193 goto e_free; 1194 } 1195 } 1196 1197 paddr = __sme_page_pa(dst_tpage); 1198 dst_paddr = round_down(dst_paddr, 16); 1199 len = round_up(size, 16); 1200 } 1201 1202 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 1203 1204 e_free: 1205 if (src_tpage) 1206 __free_page(src_tpage); 1207 if (dst_tpage) 1208 __free_page(dst_tpage); 1209 return ret; 1210 } 1211 1212 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 1213 { 1214 unsigned long vaddr, vaddr_end, next_vaddr; 1215 unsigned long dst_vaddr; 1216 struct page **src_p, **dst_p; 1217 struct kvm_sev_dbg debug; 1218 unsigned long n; 1219 unsigned int size; 1220 int ret; 1221 1222 if (!sev_guest(kvm)) 1223 return -ENOTTY; 1224 1225 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug))) 1226 return -EFAULT; 1227 1228 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 1229 return -EINVAL; 1230 if (!debug.dst_uaddr) 1231 return -EINVAL; 1232 1233 vaddr = debug.src_uaddr; 1234 size = debug.len; 1235 vaddr_end = vaddr + size; 1236 dst_vaddr = debug.dst_uaddr; 1237 1238 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 1239 int len, s_off, d_off; 1240 1241 /* lock userspace source and destination page */ 1242 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 1243 if (IS_ERR(src_p)) 1244 return PTR_ERR(src_p); 1245 1246 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE); 1247 if (IS_ERR(dst_p)) { 1248 sev_unpin_memory(kvm, src_p, n); 1249 return PTR_ERR(dst_p); 1250 } 1251 1252 /* 1253 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 1254 * the pages; flush the destination too so that future accesses do not 1255 * see stale data. 1256 */ 1257 sev_clflush_pages(src_p, 1); 1258 sev_clflush_pages(dst_p, 1); 1259 1260 /* 1261 * Since user buffer may not be page aligned, calculate the 1262 * offset within the page. 1263 */ 1264 s_off = vaddr & ~PAGE_MASK; 1265 d_off = dst_vaddr & ~PAGE_MASK; 1266 len = min_t(size_t, (PAGE_SIZE - s_off), size); 1267 1268 if (dec) 1269 ret = __sev_dbg_decrypt_user(kvm, 1270 __sme_page_pa(src_p[0]) + s_off, 1271 (void __user *)dst_vaddr, 1272 __sme_page_pa(dst_p[0]) + d_off, 1273 len, &argp->error); 1274 else 1275 ret = __sev_dbg_encrypt_user(kvm, 1276 __sme_page_pa(src_p[0]) + s_off, 1277 (void __user *)vaddr, 1278 __sme_page_pa(dst_p[0]) + d_off, 1279 (void __user *)dst_vaddr, 1280 len, &argp->error); 1281 1282 sev_unpin_memory(kvm, src_p, n); 1283 sev_unpin_memory(kvm, dst_p, n); 1284 1285 if (ret) 1286 goto err; 1287 1288 next_vaddr = vaddr + len; 1289 dst_vaddr = dst_vaddr + len; 1290 size -= len; 1291 } 1292 err: 1293 return ret; 1294 } 1295 1296 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1297 { 1298 struct sev_data_launch_secret data; 1299 struct kvm_sev_launch_secret params; 1300 struct page **pages; 1301 void *blob, *hdr; 1302 unsigned long n, i; 1303 int ret, offset; 1304 1305 if (!sev_guest(kvm)) 1306 return -ENOTTY; 1307 1308 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1309 return -EFAULT; 1310 1311 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE); 1312 if (IS_ERR(pages)) 1313 return PTR_ERR(pages); 1314 1315 /* 1316 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1317 * place; the cache may contain the data that was written unencrypted. 1318 */ 1319 sev_clflush_pages(pages, n); 1320 1321 /* 1322 * The secret must be copied into contiguous memory region, lets verify 1323 * that userspace memory pages are contiguous before we issue command. 1324 */ 1325 if (get_num_contig_pages(0, pages, n) != n) { 1326 ret = -EINVAL; 1327 goto e_unpin_memory; 1328 } 1329 1330 memset(&data, 0, sizeof(data)); 1331 1332 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1333 data.guest_address = __sme_page_pa(pages[0]) + offset; 1334 data.guest_len = params.guest_len; 1335 1336 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1337 if (IS_ERR(blob)) { 1338 ret = PTR_ERR(blob); 1339 goto e_unpin_memory; 1340 } 1341 1342 data.trans_address = __psp_pa(blob); 1343 data.trans_len = params.trans_len; 1344 1345 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1346 if (IS_ERR(hdr)) { 1347 ret = PTR_ERR(hdr); 1348 goto e_free_blob; 1349 } 1350 data.hdr_address = __psp_pa(hdr); 1351 data.hdr_len = params.hdr_len; 1352 1353 data.handle = to_kvm_sev_info(kvm)->handle; 1354 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1355 1356 kfree(hdr); 1357 1358 e_free_blob: 1359 kfree(blob); 1360 e_unpin_memory: 1361 /* content of memory is updated, mark pages dirty */ 1362 for (i = 0; i < n; i++) { 1363 set_page_dirty_lock(pages[i]); 1364 mark_page_accessed(pages[i]); 1365 } 1366 sev_unpin_memory(kvm, pages, n); 1367 return ret; 1368 } 1369 1370 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1371 { 1372 void __user *report = u64_to_user_ptr(argp->data); 1373 struct sev_data_attestation_report data; 1374 struct kvm_sev_attestation_report params; 1375 void __user *p; 1376 void *blob = NULL; 1377 int ret; 1378 1379 if (!sev_guest(kvm)) 1380 return -ENOTTY; 1381 1382 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 1383 return -EFAULT; 1384 1385 memset(&data, 0, sizeof(data)); 1386 1387 /* User wants to query the blob length */ 1388 if (!params.len) 1389 goto cmd; 1390 1391 p = u64_to_user_ptr(params.uaddr); 1392 if (p) { 1393 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1394 return -EINVAL; 1395 1396 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT); 1397 if (!blob) 1398 return -ENOMEM; 1399 1400 data.address = __psp_pa(blob); 1401 data.len = params.len; 1402 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1403 } 1404 cmd: 1405 data.handle = to_kvm_sev_info(kvm)->handle; 1406 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1407 /* 1408 * If we query the session length, FW responded with expected data. 1409 */ 1410 if (!params.len) 1411 goto done; 1412 1413 if (ret) 1414 goto e_free_blob; 1415 1416 if (blob) { 1417 if (copy_to_user(p, blob, params.len)) 1418 ret = -EFAULT; 1419 } 1420 1421 done: 1422 params.len = data.len; 1423 if (copy_to_user(report, ¶ms, sizeof(params))) 1424 ret = -EFAULT; 1425 e_free_blob: 1426 kfree(blob); 1427 return ret; 1428 } 1429 1430 /* Userspace wants to query session length. */ 1431 static int 1432 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1433 struct kvm_sev_send_start *params) 1434 { 1435 struct sev_data_send_start data; 1436 int ret; 1437 1438 memset(&data, 0, sizeof(data)); 1439 data.handle = to_kvm_sev_info(kvm)->handle; 1440 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1441 1442 params->session_len = data.session_len; 1443 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1444 sizeof(struct kvm_sev_send_start))) 1445 ret = -EFAULT; 1446 1447 return ret; 1448 } 1449 1450 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1451 { 1452 struct sev_data_send_start data; 1453 struct kvm_sev_send_start params; 1454 void *amd_certs, *session_data; 1455 void *pdh_cert, *plat_certs; 1456 int ret; 1457 1458 if (!sev_guest(kvm)) 1459 return -ENOTTY; 1460 1461 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1462 sizeof(struct kvm_sev_send_start))) 1463 return -EFAULT; 1464 1465 /* if session_len is zero, userspace wants to query the session length */ 1466 if (!params.session_len) 1467 return __sev_send_start_query_session_length(kvm, argp, 1468 ¶ms); 1469 1470 /* some sanity checks */ 1471 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1472 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1473 return -EINVAL; 1474 1475 /* allocate the memory to hold the session data blob */ 1476 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1477 if (!session_data) 1478 return -ENOMEM; 1479 1480 /* copy the certificate blobs from userspace */ 1481 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1482 params.pdh_cert_len); 1483 if (IS_ERR(pdh_cert)) { 1484 ret = PTR_ERR(pdh_cert); 1485 goto e_free_session; 1486 } 1487 1488 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1489 params.plat_certs_len); 1490 if (IS_ERR(plat_certs)) { 1491 ret = PTR_ERR(plat_certs); 1492 goto e_free_pdh; 1493 } 1494 1495 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1496 params.amd_certs_len); 1497 if (IS_ERR(amd_certs)) { 1498 ret = PTR_ERR(amd_certs); 1499 goto e_free_plat_cert; 1500 } 1501 1502 /* populate the FW SEND_START field with system physical address */ 1503 memset(&data, 0, sizeof(data)); 1504 data.pdh_cert_address = __psp_pa(pdh_cert); 1505 data.pdh_cert_len = params.pdh_cert_len; 1506 data.plat_certs_address = __psp_pa(plat_certs); 1507 data.plat_certs_len = params.plat_certs_len; 1508 data.amd_certs_address = __psp_pa(amd_certs); 1509 data.amd_certs_len = params.amd_certs_len; 1510 data.session_address = __psp_pa(session_data); 1511 data.session_len = params.session_len; 1512 data.handle = to_kvm_sev_info(kvm)->handle; 1513 1514 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1515 1516 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr), 1517 session_data, params.session_len)) { 1518 ret = -EFAULT; 1519 goto e_free_amd_cert; 1520 } 1521 1522 params.policy = data.policy; 1523 params.session_len = data.session_len; 1524 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, 1525 sizeof(struct kvm_sev_send_start))) 1526 ret = -EFAULT; 1527 1528 e_free_amd_cert: 1529 kfree(amd_certs); 1530 e_free_plat_cert: 1531 kfree(plat_certs); 1532 e_free_pdh: 1533 kfree(pdh_cert); 1534 e_free_session: 1535 kfree(session_data); 1536 return ret; 1537 } 1538 1539 /* Userspace wants to query either header or trans length. */ 1540 static int 1541 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1542 struct kvm_sev_send_update_data *params) 1543 { 1544 struct sev_data_send_update_data data; 1545 int ret; 1546 1547 memset(&data, 0, sizeof(data)); 1548 data.handle = to_kvm_sev_info(kvm)->handle; 1549 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1550 1551 params->hdr_len = data.hdr_len; 1552 params->trans_len = data.trans_len; 1553 1554 if (copy_to_user(u64_to_user_ptr(argp->data), params, 1555 sizeof(struct kvm_sev_send_update_data))) 1556 ret = -EFAULT; 1557 1558 return ret; 1559 } 1560 1561 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1562 { 1563 struct sev_data_send_update_data data; 1564 struct kvm_sev_send_update_data params; 1565 void *hdr, *trans_data; 1566 struct page **guest_page; 1567 unsigned long n; 1568 int ret, offset; 1569 1570 if (!sev_guest(kvm)) 1571 return -ENOTTY; 1572 1573 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1574 sizeof(struct kvm_sev_send_update_data))) 1575 return -EFAULT; 1576 1577 /* userspace wants to query either header or trans length */ 1578 if (!params.trans_len || !params.hdr_len) 1579 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1580 1581 if (!params.trans_uaddr || !params.guest_uaddr || 1582 !params.guest_len || !params.hdr_uaddr) 1583 return -EINVAL; 1584 1585 /* Check if we are crossing the page boundary */ 1586 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1587 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1588 return -EINVAL; 1589 1590 /* Pin guest memory */ 1591 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1592 PAGE_SIZE, &n, 0); 1593 if (IS_ERR(guest_page)) 1594 return PTR_ERR(guest_page); 1595 1596 /* allocate memory for header and transport buffer */ 1597 ret = -ENOMEM; 1598 hdr = kzalloc(params.hdr_len, GFP_KERNEL); 1599 if (!hdr) 1600 goto e_unpin; 1601 1602 trans_data = kzalloc(params.trans_len, GFP_KERNEL); 1603 if (!trans_data) 1604 goto e_free_hdr; 1605 1606 memset(&data, 0, sizeof(data)); 1607 data.hdr_address = __psp_pa(hdr); 1608 data.hdr_len = params.hdr_len; 1609 data.trans_address = __psp_pa(trans_data); 1610 data.trans_len = params.trans_len; 1611 1612 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1613 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1614 data.guest_address |= sev_me_mask; 1615 data.guest_len = params.guest_len; 1616 data.handle = to_kvm_sev_info(kvm)->handle; 1617 1618 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1619 1620 if (ret) 1621 goto e_free_trans_data; 1622 1623 /* copy transport buffer to user space */ 1624 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr), 1625 trans_data, params.trans_len)) { 1626 ret = -EFAULT; 1627 goto e_free_trans_data; 1628 } 1629 1630 /* Copy packet header to userspace. */ 1631 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr, 1632 params.hdr_len)) 1633 ret = -EFAULT; 1634 1635 e_free_trans_data: 1636 kfree(trans_data); 1637 e_free_hdr: 1638 kfree(hdr); 1639 e_unpin: 1640 sev_unpin_memory(kvm, guest_page, n); 1641 1642 return ret; 1643 } 1644 1645 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1646 { 1647 struct sev_data_send_finish data; 1648 1649 if (!sev_guest(kvm)) 1650 return -ENOTTY; 1651 1652 data.handle = to_kvm_sev_info(kvm)->handle; 1653 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1654 } 1655 1656 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1657 { 1658 struct sev_data_send_cancel data; 1659 1660 if (!sev_guest(kvm)) 1661 return -ENOTTY; 1662 1663 data.handle = to_kvm_sev_info(kvm)->handle; 1664 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1665 } 1666 1667 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1668 { 1669 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 1670 struct sev_data_receive_start start; 1671 struct kvm_sev_receive_start params; 1672 int *error = &argp->error; 1673 void *session_data; 1674 void *pdh_data; 1675 int ret; 1676 1677 if (!sev_guest(kvm)) 1678 return -ENOTTY; 1679 1680 /* Get parameter from the userspace */ 1681 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1682 sizeof(struct kvm_sev_receive_start))) 1683 return -EFAULT; 1684 1685 /* some sanity checks */ 1686 if (!params.pdh_uaddr || !params.pdh_len || 1687 !params.session_uaddr || !params.session_len) 1688 return -EINVAL; 1689 1690 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1691 if (IS_ERR(pdh_data)) 1692 return PTR_ERR(pdh_data); 1693 1694 session_data = psp_copy_user_blob(params.session_uaddr, 1695 params.session_len); 1696 if (IS_ERR(session_data)) { 1697 ret = PTR_ERR(session_data); 1698 goto e_free_pdh; 1699 } 1700 1701 memset(&start, 0, sizeof(start)); 1702 start.handle = params.handle; 1703 start.policy = params.policy; 1704 start.pdh_cert_address = __psp_pa(pdh_data); 1705 start.pdh_cert_len = params.pdh_len; 1706 start.session_address = __psp_pa(session_data); 1707 start.session_len = params.session_len; 1708 1709 /* create memory encryption context */ 1710 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1711 error); 1712 if (ret) 1713 goto e_free_session; 1714 1715 /* Bind ASID to this guest */ 1716 ret = sev_bind_asid(kvm, start.handle, error); 1717 if (ret) { 1718 sev_decommission(start.handle); 1719 goto e_free_session; 1720 } 1721 1722 params.handle = start.handle; 1723 if (copy_to_user(u64_to_user_ptr(argp->data), 1724 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1725 ret = -EFAULT; 1726 sev_unbind_asid(kvm, start.handle); 1727 goto e_free_session; 1728 } 1729 1730 sev->handle = start.handle; 1731 sev->fd = argp->sev_fd; 1732 1733 e_free_session: 1734 kfree(session_data); 1735 e_free_pdh: 1736 kfree(pdh_data); 1737 1738 return ret; 1739 } 1740 1741 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1742 { 1743 struct kvm_sev_receive_update_data params; 1744 struct sev_data_receive_update_data data; 1745 void *hdr = NULL, *trans = NULL; 1746 struct page **guest_page; 1747 unsigned long n; 1748 int ret, offset; 1749 1750 if (!sev_guest(kvm)) 1751 return -EINVAL; 1752 1753 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), 1754 sizeof(struct kvm_sev_receive_update_data))) 1755 return -EFAULT; 1756 1757 if (!params.hdr_uaddr || !params.hdr_len || 1758 !params.guest_uaddr || !params.guest_len || 1759 !params.trans_uaddr || !params.trans_len) 1760 return -EINVAL; 1761 1762 /* Check if we are crossing the page boundary */ 1763 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1764 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE) 1765 return -EINVAL; 1766 1767 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1768 if (IS_ERR(hdr)) 1769 return PTR_ERR(hdr); 1770 1771 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1772 if (IS_ERR(trans)) { 1773 ret = PTR_ERR(trans); 1774 goto e_free_hdr; 1775 } 1776 1777 memset(&data, 0, sizeof(data)); 1778 data.hdr_address = __psp_pa(hdr); 1779 data.hdr_len = params.hdr_len; 1780 data.trans_address = __psp_pa(trans); 1781 data.trans_len = params.trans_len; 1782 1783 /* Pin guest memory */ 1784 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1785 PAGE_SIZE, &n, FOLL_WRITE); 1786 if (IS_ERR(guest_page)) { 1787 ret = PTR_ERR(guest_page); 1788 goto e_free_trans; 1789 } 1790 1791 /* 1792 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1793 * encrypts the written data with the guest's key, and the cache may 1794 * contain dirty, unencrypted data. 1795 */ 1796 sev_clflush_pages(guest_page, n); 1797 1798 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1799 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1800 data.guest_address |= sev_me_mask; 1801 data.guest_len = params.guest_len; 1802 data.handle = to_kvm_sev_info(kvm)->handle; 1803 1804 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1805 &argp->error); 1806 1807 sev_unpin_memory(kvm, guest_page, n); 1808 1809 e_free_trans: 1810 kfree(trans); 1811 e_free_hdr: 1812 kfree(hdr); 1813 1814 return ret; 1815 } 1816 1817 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1818 { 1819 struct sev_data_receive_finish data; 1820 1821 if (!sev_guest(kvm)) 1822 return -ENOTTY; 1823 1824 data.handle = to_kvm_sev_info(kvm)->handle; 1825 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1826 } 1827 1828 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1829 { 1830 /* 1831 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1832 * active mirror VMs. Also allow the debugging and status commands. 1833 */ 1834 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1835 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1836 cmd_id == KVM_SEV_DBG_ENCRYPT) 1837 return true; 1838 1839 return false; 1840 } 1841 1842 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1843 { 1844 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1845 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1846 int r = -EBUSY; 1847 1848 if (dst_kvm == src_kvm) 1849 return -EINVAL; 1850 1851 /* 1852 * Bail if these VMs are already involved in a migration to avoid 1853 * deadlock between two VMs trying to migrate to/from each other. 1854 */ 1855 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1)) 1856 return -EBUSY; 1857 1858 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1)) 1859 goto release_dst; 1860 1861 r = -EINTR; 1862 if (mutex_lock_killable(&dst_kvm->lock)) 1863 goto release_src; 1864 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING)) 1865 goto unlock_dst; 1866 return 0; 1867 1868 unlock_dst: 1869 mutex_unlock(&dst_kvm->lock); 1870 release_src: 1871 atomic_set_release(&src_sev->migration_in_progress, 0); 1872 release_dst: 1873 atomic_set_release(&dst_sev->migration_in_progress, 0); 1874 return r; 1875 } 1876 1877 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm) 1878 { 1879 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm); 1880 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm); 1881 1882 mutex_unlock(&dst_kvm->lock); 1883 mutex_unlock(&src_kvm->lock); 1884 atomic_set_release(&dst_sev->migration_in_progress, 0); 1885 atomic_set_release(&src_sev->migration_in_progress, 0); 1886 } 1887 1888 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm) 1889 { 1890 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm); 1891 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm); 1892 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1893 struct vcpu_svm *dst_svm, *src_svm; 1894 struct kvm_sev_info *mirror; 1895 unsigned long i; 1896 1897 dst->active = true; 1898 dst->asid = src->asid; 1899 dst->handle = src->handle; 1900 dst->pages_locked = src->pages_locked; 1901 dst->enc_context_owner = src->enc_context_owner; 1902 dst->es_active = src->es_active; 1903 dst->vmsa_features = src->vmsa_features; 1904 1905 src->asid = 0; 1906 src->active = false; 1907 src->handle = 0; 1908 src->pages_locked = 0; 1909 src->enc_context_owner = NULL; 1910 src->es_active = false; 1911 1912 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list); 1913 1914 /* 1915 * If this VM has mirrors, "transfer" each mirror's refcount of the 1916 * source to the destination (this KVM). The caller holds a reference 1917 * to the source, so there's no danger of use-after-free. 1918 */ 1919 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms); 1920 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) { 1921 kvm_get_kvm(dst_kvm); 1922 kvm_put_kvm(src_kvm); 1923 mirror->enc_context_owner = dst_kvm; 1924 } 1925 1926 /* 1927 * If this VM is a mirror, remove the old mirror from the owners list 1928 * and add the new mirror to the list. 1929 */ 1930 if (is_mirroring_enc_context(dst_kvm)) { 1931 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner); 1932 1933 list_del(&src->mirror_entry); 1934 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms); 1935 } 1936 1937 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) { 1938 dst_svm = to_svm(dst_vcpu); 1939 1940 sev_init_vmcb(dst_svm); 1941 1942 if (!dst->es_active) 1943 continue; 1944 1945 /* 1946 * Note, the source is not required to have the same number of 1947 * vCPUs as the destination when migrating a vanilla SEV VM. 1948 */ 1949 src_vcpu = kvm_get_vcpu(src_kvm, i); 1950 src_svm = to_svm(src_vcpu); 1951 1952 /* 1953 * Transfer VMSA and GHCB state to the destination. Nullify and 1954 * clear source fields as appropriate, the state now belongs to 1955 * the destination. 1956 */ 1957 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1958 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1959 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1960 dst_vcpu->arch.guest_state_protected = true; 1961 1962 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1963 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1964 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1965 src_vcpu->arch.guest_state_protected = false; 1966 } 1967 } 1968 1969 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src) 1970 { 1971 struct kvm_vcpu *src_vcpu; 1972 unsigned long i; 1973 1974 if (src->created_vcpus != atomic_read(&src->online_vcpus) || 1975 dst->created_vcpus != atomic_read(&dst->online_vcpus)) 1976 return -EBUSY; 1977 1978 if (!sev_es_guest(src)) 1979 return 0; 1980 1981 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1982 return -EINVAL; 1983 1984 kvm_for_each_vcpu(i, src_vcpu, src) { 1985 if (!src_vcpu->arch.guest_state_protected) 1986 return -EINVAL; 1987 } 1988 1989 return 0; 1990 } 1991 1992 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd) 1993 { 1994 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm); 1995 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1996 CLASS(fd, f)(source_fd); 1997 struct kvm *source_kvm; 1998 bool charged = false; 1999 int ret; 2000 2001 if (fd_empty(f)) 2002 return -EBADF; 2003 2004 if (!file_is_kvm(fd_file(f))) 2005 return -EBADF; 2006 2007 source_kvm = fd_file(f)->private_data; 2008 ret = sev_lock_two_vms(kvm, source_kvm); 2009 if (ret) 2010 return ret; 2011 2012 if (kvm->arch.vm_type != source_kvm->arch.vm_type || 2013 sev_guest(kvm) || !sev_guest(source_kvm)) { 2014 ret = -EINVAL; 2015 goto out_unlock; 2016 } 2017 2018 src_sev = to_kvm_sev_info(source_kvm); 2019 2020 dst_sev->misc_cg = get_current_misc_cg(); 2021 cg_cleanup_sev = dst_sev; 2022 if (dst_sev->misc_cg != src_sev->misc_cg) { 2023 ret = sev_misc_cg_try_charge(dst_sev); 2024 if (ret) 2025 goto out_dst_cgroup; 2026 charged = true; 2027 } 2028 2029 ret = kvm_lock_all_vcpus(kvm); 2030 if (ret) 2031 goto out_dst_cgroup; 2032 ret = kvm_lock_all_vcpus(source_kvm); 2033 if (ret) 2034 goto out_dst_vcpu; 2035 2036 ret = sev_check_source_vcpus(kvm, source_kvm); 2037 if (ret) 2038 goto out_source_vcpu; 2039 2040 sev_migrate_from(kvm, source_kvm); 2041 kvm_vm_dead(source_kvm); 2042 cg_cleanup_sev = src_sev; 2043 ret = 0; 2044 2045 out_source_vcpu: 2046 kvm_unlock_all_vcpus(source_kvm); 2047 out_dst_vcpu: 2048 kvm_unlock_all_vcpus(kvm); 2049 out_dst_cgroup: 2050 /* Operates on the source on success, on the destination on failure. */ 2051 if (charged) 2052 sev_misc_cg_uncharge(cg_cleanup_sev); 2053 put_misc_cg(cg_cleanup_sev->misc_cg); 2054 cg_cleanup_sev->misc_cg = NULL; 2055 out_unlock: 2056 sev_unlock_two_vms(kvm, source_kvm); 2057 return ret; 2058 } 2059 2060 int sev_dev_get_attr(u32 group, u64 attr, u64 *val) 2061 { 2062 if (group != KVM_X86_GRP_SEV) 2063 return -ENXIO; 2064 2065 switch (attr) { 2066 case KVM_X86_SEV_VMSA_FEATURES: 2067 *val = sev_supported_vmsa_features; 2068 return 0; 2069 2070 default: 2071 return -ENXIO; 2072 } 2073 } 2074 2075 /* 2076 * The guest context contains all the information, keys and metadata 2077 * associated with the guest that the firmware tracks to implement SEV 2078 * and SNP features. The firmware stores the guest context in hypervisor 2079 * provide page via the SNP_GCTX_CREATE command. 2080 */ 2081 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp) 2082 { 2083 struct sev_data_snp_addr data = {}; 2084 void *context; 2085 int rc; 2086 2087 /* Allocate memory for context page */ 2088 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT); 2089 if (!context) 2090 return NULL; 2091 2092 data.address = __psp_pa(context); 2093 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error); 2094 if (rc) { 2095 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d", 2096 rc, argp->error); 2097 snp_free_firmware_page(context); 2098 return NULL; 2099 } 2100 2101 return context; 2102 } 2103 2104 static int snp_bind_asid(struct kvm *kvm, int *error) 2105 { 2106 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2107 struct sev_data_snp_activate data = {0}; 2108 2109 data.gctx_paddr = __psp_pa(sev->snp_context); 2110 data.asid = sev_get_asid(kvm); 2111 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error); 2112 } 2113 2114 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 2115 { 2116 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2117 struct sev_data_snp_launch_start start = {0}; 2118 struct kvm_sev_snp_launch_start params; 2119 int rc; 2120 2121 if (!sev_snp_guest(kvm)) 2122 return -ENOTTY; 2123 2124 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2125 return -EFAULT; 2126 2127 /* Don't allow userspace to allocate memory for more than 1 SNP context. */ 2128 if (sev->snp_context) 2129 return -EINVAL; 2130 2131 if (params.flags) 2132 return -EINVAL; 2133 2134 if (params.policy & ~SNP_POLICY_MASK_VALID) 2135 return -EINVAL; 2136 2137 /* Check for policy bits that must be set */ 2138 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) || 2139 !(params.policy & SNP_POLICY_MASK_SMT)) 2140 return -EINVAL; 2141 2142 if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET) 2143 return -EINVAL; 2144 2145 sev->policy = params.policy; 2146 2147 sev->snp_context = snp_context_create(kvm, argp); 2148 if (!sev->snp_context) 2149 return -ENOTTY; 2150 2151 start.gctx_paddr = __psp_pa(sev->snp_context); 2152 start.policy = params.policy; 2153 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw)); 2154 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error); 2155 if (rc) { 2156 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n", 2157 __func__, rc); 2158 goto e_free_context; 2159 } 2160 2161 sev->fd = argp->sev_fd; 2162 rc = snp_bind_asid(kvm, &argp->error); 2163 if (rc) { 2164 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n", 2165 __func__, rc); 2166 goto e_free_context; 2167 } 2168 2169 return 0; 2170 2171 e_free_context: 2172 snp_decommission_context(kvm); 2173 2174 return rc; 2175 } 2176 2177 struct sev_gmem_populate_args { 2178 __u8 type; 2179 int sev_fd; 2180 int fw_error; 2181 }; 2182 2183 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn, 2184 void __user *src, int order, void *opaque) 2185 { 2186 struct sev_gmem_populate_args *sev_populate_args = opaque; 2187 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2188 int n_private = 0, ret, i; 2189 int npages = (1 << order); 2190 gfn_t gfn; 2191 2192 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src)) 2193 return -EINVAL; 2194 2195 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) { 2196 struct sev_data_snp_launch_update fw_args = {0}; 2197 bool assigned = false; 2198 int level; 2199 2200 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level); 2201 if (ret || assigned) { 2202 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n", 2203 __func__, gfn, ret, assigned); 2204 ret = ret ? -EINVAL : -EEXIST; 2205 goto err; 2206 } 2207 2208 if (src) { 2209 void *vaddr = kmap_local_pfn(pfn + i); 2210 2211 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) { 2212 ret = -EFAULT; 2213 goto err; 2214 } 2215 kunmap_local(vaddr); 2216 } 2217 2218 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K, 2219 sev_get_asid(kvm), true); 2220 if (ret) 2221 goto err; 2222 2223 n_private++; 2224 2225 fw_args.gctx_paddr = __psp_pa(sev->snp_context); 2226 fw_args.address = __sme_set(pfn_to_hpa(pfn + i)); 2227 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K); 2228 fw_args.page_type = sev_populate_args->type; 2229 2230 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2231 &fw_args, &sev_populate_args->fw_error); 2232 if (ret) 2233 goto fw_err; 2234 } 2235 2236 return 0; 2237 2238 fw_err: 2239 /* 2240 * If the firmware command failed handle the reclaim and cleanup of that 2241 * PFN specially vs. prior pages which can be cleaned up below without 2242 * needing to reclaim in advance. 2243 * 2244 * Additionally, when invalid CPUID function entries are detected, 2245 * firmware writes the expected values into the page and leaves it 2246 * unencrypted so it can be used for debugging and error-reporting. 2247 * 2248 * Copy this page back into the source buffer so userspace can use this 2249 * information to provide information on which CPUID leaves/fields 2250 * failed CPUID validation. 2251 */ 2252 if (!snp_page_reclaim(kvm, pfn + i) && 2253 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID && 2254 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) { 2255 void *vaddr = kmap_local_pfn(pfn + i); 2256 2257 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE)) 2258 pr_debug("Failed to write CPUID page back to userspace\n"); 2259 2260 kunmap_local(vaddr); 2261 } 2262 2263 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */ 2264 n_private--; 2265 2266 err: 2267 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n", 2268 __func__, ret, sev_populate_args->fw_error, n_private); 2269 for (i = 0; i < n_private; i++) 2270 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K); 2271 2272 return ret; 2273 } 2274 2275 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp) 2276 { 2277 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2278 struct sev_gmem_populate_args sev_populate_args = {0}; 2279 struct kvm_sev_snp_launch_update params; 2280 struct kvm_memory_slot *memslot; 2281 long npages, count; 2282 void __user *src; 2283 int ret = 0; 2284 2285 if (!sev_snp_guest(kvm) || !sev->snp_context) 2286 return -EINVAL; 2287 2288 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2289 return -EFAULT; 2290 2291 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__, 2292 params.gfn_start, params.len, params.type, params.flags); 2293 2294 if (!PAGE_ALIGNED(params.len) || params.flags || 2295 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL && 2296 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO && 2297 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED && 2298 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS && 2299 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID)) 2300 return -EINVAL; 2301 2302 npages = params.len / PAGE_SIZE; 2303 2304 /* 2305 * For each GFN that's being prepared as part of the initial guest 2306 * state, the following pre-conditions are verified: 2307 * 2308 * 1) The backing memslot is a valid private memslot. 2309 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES 2310 * beforehand. 2311 * 3) The PFN of the guest_memfd has not already been set to private 2312 * in the RMP table. 2313 * 2314 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page 2315 * faults if there's a race between a fault and an attribute update via 2316 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized 2317 * here. However, kvm->slots_lock guards against both this as well as 2318 * concurrent memslot updates occurring while these checks are being 2319 * performed, so use that here to make it easier to reason about the 2320 * initial expected state and better guard against unexpected 2321 * situations. 2322 */ 2323 mutex_lock(&kvm->slots_lock); 2324 2325 memslot = gfn_to_memslot(kvm, params.gfn_start); 2326 if (!kvm_slot_can_be_private(memslot)) { 2327 ret = -EINVAL; 2328 goto out; 2329 } 2330 2331 sev_populate_args.sev_fd = argp->sev_fd; 2332 sev_populate_args.type = params.type; 2333 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr); 2334 2335 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages, 2336 sev_gmem_post_populate, &sev_populate_args); 2337 if (count < 0) { 2338 argp->error = sev_populate_args.fw_error; 2339 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n", 2340 __func__, count, argp->error); 2341 ret = -EIO; 2342 } else { 2343 params.gfn_start += count; 2344 params.len -= count * PAGE_SIZE; 2345 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO) 2346 params.uaddr += count * PAGE_SIZE; 2347 2348 ret = 0; 2349 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) 2350 ret = -EFAULT; 2351 } 2352 2353 out: 2354 mutex_unlock(&kvm->slots_lock); 2355 2356 return ret; 2357 } 2358 2359 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 2360 { 2361 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2362 struct sev_data_snp_launch_update data = {}; 2363 struct kvm_vcpu *vcpu; 2364 unsigned long i; 2365 int ret; 2366 2367 data.gctx_paddr = __psp_pa(sev->snp_context); 2368 data.page_type = SNP_PAGE_TYPE_VMSA; 2369 2370 kvm_for_each_vcpu(i, vcpu, kvm) { 2371 struct vcpu_svm *svm = to_svm(vcpu); 2372 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 2373 2374 ret = sev_es_sync_vmsa(svm); 2375 if (ret) 2376 return ret; 2377 2378 /* Transition the VMSA page to a firmware state. */ 2379 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true); 2380 if (ret) 2381 return ret; 2382 2383 /* Issue the SNP command to encrypt the VMSA */ 2384 data.address = __sme_pa(svm->sev_es.vmsa); 2385 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE, 2386 &data, &argp->error); 2387 if (ret) { 2388 snp_page_reclaim(kvm, pfn); 2389 2390 return ret; 2391 } 2392 2393 svm->vcpu.arch.guest_state_protected = true; 2394 /* 2395 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to 2396 * be _always_ ON. Enable it only after setting 2397 * guest_state_protected because KVM_SET_MSRS allows dynamic 2398 * toggling of LBRV (for performance reason) on write access to 2399 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set. 2400 */ 2401 svm_enable_lbrv(vcpu); 2402 } 2403 2404 return 0; 2405 } 2406 2407 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 2408 { 2409 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2410 struct kvm_sev_snp_launch_finish params; 2411 struct sev_data_snp_launch_finish *data; 2412 void *id_block = NULL, *id_auth = NULL; 2413 int ret; 2414 2415 if (!sev_snp_guest(kvm)) 2416 return -ENOTTY; 2417 2418 if (!sev->snp_context) 2419 return -EINVAL; 2420 2421 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params))) 2422 return -EFAULT; 2423 2424 if (params.flags) 2425 return -EINVAL; 2426 2427 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */ 2428 ret = snp_launch_update_vmsa(kvm, argp); 2429 if (ret) 2430 return ret; 2431 2432 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 2433 if (!data) 2434 return -ENOMEM; 2435 2436 if (params.id_block_en) { 2437 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE); 2438 if (IS_ERR(id_block)) { 2439 ret = PTR_ERR(id_block); 2440 goto e_free; 2441 } 2442 2443 data->id_block_en = 1; 2444 data->id_block_paddr = __sme_pa(id_block); 2445 2446 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE); 2447 if (IS_ERR(id_auth)) { 2448 ret = PTR_ERR(id_auth); 2449 goto e_free_id_block; 2450 } 2451 2452 data->id_auth_paddr = __sme_pa(id_auth); 2453 2454 if (params.auth_key_en) 2455 data->auth_key_en = 1; 2456 } 2457 2458 data->vcek_disabled = params.vcek_disabled; 2459 2460 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE); 2461 data->gctx_paddr = __psp_pa(sev->snp_context); 2462 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error); 2463 2464 /* 2465 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages 2466 * can be given to the guest simply by marking the RMP entry as private. 2467 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY. 2468 */ 2469 if (!ret) 2470 kvm->arch.pre_fault_allowed = true; 2471 2472 kfree(id_auth); 2473 2474 e_free_id_block: 2475 kfree(id_block); 2476 2477 e_free: 2478 kfree(data); 2479 2480 return ret; 2481 } 2482 2483 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp) 2484 { 2485 struct kvm_sev_cmd sev_cmd; 2486 int r; 2487 2488 if (!sev_enabled) 2489 return -ENOTTY; 2490 2491 if (!argp) 2492 return 0; 2493 2494 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 2495 return -EFAULT; 2496 2497 mutex_lock(&kvm->lock); 2498 2499 /* Only the enc_context_owner handles some memory enc operations. */ 2500 if (is_mirroring_enc_context(kvm) && 2501 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 2502 r = -EINVAL; 2503 goto out; 2504 } 2505 2506 /* 2507 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only 2508 * allow the use of SNP-specific commands. 2509 */ 2510 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) { 2511 r = -EPERM; 2512 goto out; 2513 } 2514 2515 switch (sev_cmd.id) { 2516 case KVM_SEV_ES_INIT: 2517 if (!sev_es_enabled) { 2518 r = -ENOTTY; 2519 goto out; 2520 } 2521 fallthrough; 2522 case KVM_SEV_INIT: 2523 r = sev_guest_init(kvm, &sev_cmd); 2524 break; 2525 case KVM_SEV_INIT2: 2526 r = sev_guest_init2(kvm, &sev_cmd); 2527 break; 2528 case KVM_SEV_LAUNCH_START: 2529 r = sev_launch_start(kvm, &sev_cmd); 2530 break; 2531 case KVM_SEV_LAUNCH_UPDATE_DATA: 2532 r = sev_launch_update_data(kvm, &sev_cmd); 2533 break; 2534 case KVM_SEV_LAUNCH_UPDATE_VMSA: 2535 r = sev_launch_update_vmsa(kvm, &sev_cmd); 2536 break; 2537 case KVM_SEV_LAUNCH_MEASURE: 2538 r = sev_launch_measure(kvm, &sev_cmd); 2539 break; 2540 case KVM_SEV_LAUNCH_FINISH: 2541 r = sev_launch_finish(kvm, &sev_cmd); 2542 break; 2543 case KVM_SEV_GUEST_STATUS: 2544 r = sev_guest_status(kvm, &sev_cmd); 2545 break; 2546 case KVM_SEV_DBG_DECRYPT: 2547 r = sev_dbg_crypt(kvm, &sev_cmd, true); 2548 break; 2549 case KVM_SEV_DBG_ENCRYPT: 2550 r = sev_dbg_crypt(kvm, &sev_cmd, false); 2551 break; 2552 case KVM_SEV_LAUNCH_SECRET: 2553 r = sev_launch_secret(kvm, &sev_cmd); 2554 break; 2555 case KVM_SEV_GET_ATTESTATION_REPORT: 2556 r = sev_get_attestation_report(kvm, &sev_cmd); 2557 break; 2558 case KVM_SEV_SEND_START: 2559 r = sev_send_start(kvm, &sev_cmd); 2560 break; 2561 case KVM_SEV_SEND_UPDATE_DATA: 2562 r = sev_send_update_data(kvm, &sev_cmd); 2563 break; 2564 case KVM_SEV_SEND_FINISH: 2565 r = sev_send_finish(kvm, &sev_cmd); 2566 break; 2567 case KVM_SEV_SEND_CANCEL: 2568 r = sev_send_cancel(kvm, &sev_cmd); 2569 break; 2570 case KVM_SEV_RECEIVE_START: 2571 r = sev_receive_start(kvm, &sev_cmd); 2572 break; 2573 case KVM_SEV_RECEIVE_UPDATE_DATA: 2574 r = sev_receive_update_data(kvm, &sev_cmd); 2575 break; 2576 case KVM_SEV_RECEIVE_FINISH: 2577 r = sev_receive_finish(kvm, &sev_cmd); 2578 break; 2579 case KVM_SEV_SNP_LAUNCH_START: 2580 r = snp_launch_start(kvm, &sev_cmd); 2581 break; 2582 case KVM_SEV_SNP_LAUNCH_UPDATE: 2583 r = snp_launch_update(kvm, &sev_cmd); 2584 break; 2585 case KVM_SEV_SNP_LAUNCH_FINISH: 2586 r = snp_launch_finish(kvm, &sev_cmd); 2587 break; 2588 default: 2589 r = -EINVAL; 2590 goto out; 2591 } 2592 2593 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 2594 r = -EFAULT; 2595 2596 out: 2597 mutex_unlock(&kvm->lock); 2598 return r; 2599 } 2600 2601 int sev_mem_enc_register_region(struct kvm *kvm, 2602 struct kvm_enc_region *range) 2603 { 2604 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2605 struct enc_region *region; 2606 int ret = 0; 2607 2608 if (!sev_guest(kvm)) 2609 return -ENOTTY; 2610 2611 /* If kvm is mirroring encryption context it isn't responsible for it */ 2612 if (is_mirroring_enc_context(kvm)) 2613 return -EINVAL; 2614 2615 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 2616 return -EINVAL; 2617 2618 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 2619 if (!region) 2620 return -ENOMEM; 2621 2622 mutex_lock(&kvm->lock); 2623 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 2624 FOLL_WRITE | FOLL_LONGTERM); 2625 if (IS_ERR(region->pages)) { 2626 ret = PTR_ERR(region->pages); 2627 mutex_unlock(&kvm->lock); 2628 goto e_free; 2629 } 2630 2631 /* 2632 * The guest may change the memory encryption attribute from C=0 -> C=1 2633 * or vice versa for this memory range. Lets make sure caches are 2634 * flushed to ensure that guest data gets written into memory with 2635 * correct C-bit. Note, this must be done before dropping kvm->lock, 2636 * as region and its array of pages can be freed by a different task 2637 * once kvm->lock is released. 2638 */ 2639 sev_clflush_pages(region->pages, region->npages); 2640 2641 region->uaddr = range->addr; 2642 region->size = range->size; 2643 2644 list_add_tail(®ion->list, &sev->regions_list); 2645 mutex_unlock(&kvm->lock); 2646 2647 return ret; 2648 2649 e_free: 2650 kfree(region); 2651 return ret; 2652 } 2653 2654 static struct enc_region * 2655 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 2656 { 2657 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2658 struct list_head *head = &sev->regions_list; 2659 struct enc_region *i; 2660 2661 list_for_each_entry(i, head, list) { 2662 if (i->uaddr == range->addr && 2663 i->size == range->size) 2664 return i; 2665 } 2666 2667 return NULL; 2668 } 2669 2670 static void __unregister_enc_region_locked(struct kvm *kvm, 2671 struct enc_region *region) 2672 { 2673 sev_unpin_memory(kvm, region->pages, region->npages); 2674 list_del(®ion->list); 2675 kfree(region); 2676 } 2677 2678 int sev_mem_enc_unregister_region(struct kvm *kvm, 2679 struct kvm_enc_region *range) 2680 { 2681 struct enc_region *region; 2682 int ret; 2683 2684 /* If kvm is mirroring encryption context it isn't responsible for it */ 2685 if (is_mirroring_enc_context(kvm)) 2686 return -EINVAL; 2687 2688 mutex_lock(&kvm->lock); 2689 2690 if (!sev_guest(kvm)) { 2691 ret = -ENOTTY; 2692 goto failed; 2693 } 2694 2695 region = find_enc_region(kvm, range); 2696 if (!region) { 2697 ret = -EINVAL; 2698 goto failed; 2699 } 2700 2701 /* 2702 * Ensure that all guest tagged cache entries are flushed before 2703 * releasing the pages back to the system for use. CLFLUSH will 2704 * not do this, so issue a WBINVD. 2705 */ 2706 wbinvd_on_all_cpus(); 2707 2708 __unregister_enc_region_locked(kvm, region); 2709 2710 mutex_unlock(&kvm->lock); 2711 return 0; 2712 2713 failed: 2714 mutex_unlock(&kvm->lock); 2715 return ret; 2716 } 2717 2718 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd) 2719 { 2720 CLASS(fd, f)(source_fd); 2721 struct kvm *source_kvm; 2722 struct kvm_sev_info *source_sev, *mirror_sev; 2723 int ret; 2724 2725 if (fd_empty(f)) 2726 return -EBADF; 2727 2728 if (!file_is_kvm(fd_file(f))) 2729 return -EBADF; 2730 2731 source_kvm = fd_file(f)->private_data; 2732 ret = sev_lock_two_vms(kvm, source_kvm); 2733 if (ret) 2734 return ret; 2735 2736 /* 2737 * Mirrors of mirrors should work, but let's not get silly. Also 2738 * disallow out-of-band SEV/SEV-ES init if the target is already an 2739 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 2740 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 2741 */ 2742 if (sev_guest(kvm) || !sev_guest(source_kvm) || 2743 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) { 2744 ret = -EINVAL; 2745 goto e_unlock; 2746 } 2747 2748 /* 2749 * The mirror kvm holds an enc_context_owner ref so its asid can't 2750 * disappear until we're done with it 2751 */ 2752 source_sev = to_kvm_sev_info(source_kvm); 2753 kvm_get_kvm(source_kvm); 2754 mirror_sev = to_kvm_sev_info(kvm); 2755 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms); 2756 2757 /* Set enc_context_owner and copy its encryption context over */ 2758 mirror_sev->enc_context_owner = source_kvm; 2759 mirror_sev->active = true; 2760 mirror_sev->asid = source_sev->asid; 2761 mirror_sev->fd = source_sev->fd; 2762 mirror_sev->es_active = source_sev->es_active; 2763 mirror_sev->need_init = false; 2764 mirror_sev->handle = source_sev->handle; 2765 INIT_LIST_HEAD(&mirror_sev->regions_list); 2766 INIT_LIST_HEAD(&mirror_sev->mirror_vms); 2767 ret = 0; 2768 2769 /* 2770 * Do not copy ap_jump_table. Since the mirror does not share the same 2771 * KVM contexts as the original, and they may have different 2772 * memory-views. 2773 */ 2774 2775 e_unlock: 2776 sev_unlock_two_vms(kvm, source_kvm); 2777 return ret; 2778 } 2779 2780 static int snp_decommission_context(struct kvm *kvm) 2781 { 2782 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2783 struct sev_data_snp_addr data = {}; 2784 int ret; 2785 2786 /* If context is not created then do nothing */ 2787 if (!sev->snp_context) 2788 return 0; 2789 2790 /* Do the decommision, which will unbind the ASID from the SNP context */ 2791 data.address = __sme_pa(sev->snp_context); 2792 down_write(&sev_deactivate_lock); 2793 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL); 2794 up_write(&sev_deactivate_lock); 2795 2796 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret)) 2797 return ret; 2798 2799 snp_free_firmware_page(sev->snp_context); 2800 sev->snp_context = NULL; 2801 2802 return 0; 2803 } 2804 2805 void sev_vm_destroy(struct kvm *kvm) 2806 { 2807 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 2808 struct list_head *head = &sev->regions_list; 2809 struct list_head *pos, *q; 2810 2811 if (!sev_guest(kvm)) 2812 return; 2813 2814 WARN_ON(!list_empty(&sev->mirror_vms)); 2815 2816 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2817 if (is_mirroring_enc_context(kvm)) { 2818 struct kvm *owner_kvm = sev->enc_context_owner; 2819 2820 mutex_lock(&owner_kvm->lock); 2821 list_del(&sev->mirror_entry); 2822 mutex_unlock(&owner_kvm->lock); 2823 kvm_put_kvm(owner_kvm); 2824 return; 2825 } 2826 2827 /* 2828 * Ensure that all guest tagged cache entries are flushed before 2829 * releasing the pages back to the system for use. CLFLUSH will 2830 * not do this, so issue a WBINVD. 2831 */ 2832 wbinvd_on_all_cpus(); 2833 2834 /* 2835 * if userspace was terminated before unregistering the memory regions 2836 * then lets unpin all the registered memory. 2837 */ 2838 if (!list_empty(head)) { 2839 list_for_each_safe(pos, q, head) { 2840 __unregister_enc_region_locked(kvm, 2841 list_entry(pos, struct enc_region, list)); 2842 cond_resched(); 2843 } 2844 } 2845 2846 if (sev_snp_guest(kvm)) { 2847 snp_guest_req_cleanup(kvm); 2848 2849 /* 2850 * Decomission handles unbinding of the ASID. If it fails for 2851 * some unexpected reason, just leak the ASID. 2852 */ 2853 if (snp_decommission_context(kvm)) 2854 return; 2855 } else { 2856 sev_unbind_asid(kvm, sev->handle); 2857 } 2858 2859 sev_asid_free(sev); 2860 } 2861 2862 void __init sev_set_cpu_caps(void) 2863 { 2864 if (sev_enabled) { 2865 kvm_cpu_cap_set(X86_FEATURE_SEV); 2866 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM); 2867 } 2868 if (sev_es_enabled) { 2869 kvm_cpu_cap_set(X86_FEATURE_SEV_ES); 2870 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM); 2871 } 2872 if (sev_snp_enabled) { 2873 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP); 2874 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM); 2875 } 2876 } 2877 2878 static bool is_sev_snp_initialized(void) 2879 { 2880 struct sev_user_data_snp_status *status; 2881 struct sev_data_snp_addr buf; 2882 bool initialized = false; 2883 int ret, error = 0; 2884 2885 status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO); 2886 if (!status) 2887 return false; 2888 2889 buf.address = __psp_pa(status); 2890 ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error); 2891 if (ret) { 2892 pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n", 2893 ret, error, error); 2894 goto out; 2895 } 2896 2897 initialized = !!status->state; 2898 2899 out: 2900 snp_free_firmware_page(status); 2901 2902 return initialized; 2903 } 2904 2905 void __init sev_hardware_setup(void) 2906 { 2907 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2908 struct sev_platform_init_args init_args = {0}; 2909 bool sev_snp_supported = false; 2910 bool sev_es_supported = false; 2911 bool sev_supported = false; 2912 2913 if (!sev_enabled || !npt_enabled || !nrips) 2914 goto out; 2915 2916 /* 2917 * SEV must obviously be supported in hardware. Sanity check that the 2918 * CPU supports decode assists, which is mandatory for SEV guests to 2919 * support instruction emulation. Ditto for flushing by ASID, as SEV 2920 * guests are bound to a single ASID, i.e. KVM can't rotate to a new 2921 * ASID to effect a TLB flush. 2922 */ 2923 if (!boot_cpu_has(X86_FEATURE_SEV) || 2924 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) || 2925 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) 2926 goto out; 2927 2928 /* 2929 * The kernel's initcall infrastructure lacks the ability to express 2930 * dependencies between initcalls, whereas the modules infrastructure 2931 * automatically handles dependencies via symbol loading. Ensure the 2932 * PSP SEV driver is initialized before proceeding if KVM is built-in, 2933 * as the dependency isn't handled by the initcall infrastructure. 2934 */ 2935 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init()) 2936 goto out; 2937 2938 /* Retrieve SEV CPUID information */ 2939 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2940 2941 /* Set encryption bit location for SEV-ES guests */ 2942 sev_enc_bit = ebx & 0x3f; 2943 2944 /* Maximum number of encrypted guests supported simultaneously */ 2945 max_sev_asid = ecx; 2946 if (!max_sev_asid) 2947 goto out; 2948 2949 /* Minimum ASID value that should be used for SEV guest */ 2950 min_sev_asid = edx; 2951 sev_me_mask = 1UL << (ebx & 0x3f); 2952 2953 /* 2954 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2955 * even though it's never used, so that the bitmap is indexed by the 2956 * actual ASID. 2957 */ 2958 nr_asids = max_sev_asid + 1; 2959 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2960 if (!sev_asid_bitmap) 2961 goto out; 2962 2963 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2964 if (!sev_reclaim_asid_bitmap) { 2965 bitmap_free(sev_asid_bitmap); 2966 sev_asid_bitmap = NULL; 2967 goto out; 2968 } 2969 2970 if (min_sev_asid <= max_sev_asid) { 2971 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2972 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)); 2973 } 2974 sev_supported = true; 2975 2976 /* SEV-ES support requested? */ 2977 if (!sev_es_enabled) 2978 goto out; 2979 2980 /* 2981 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest 2982 * instruction stream, i.e. can't emulate in response to a #NPF and 2983 * instead relies on #NPF(RSVD) being reflected into the guest as #VC 2984 * (the guest can then do a #VMGEXIT to request MMIO emulation). 2985 */ 2986 if (!enable_mmio_caching) 2987 goto out; 2988 2989 /* Does the CPU support SEV-ES? */ 2990 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2991 goto out; 2992 2993 if (!lbrv) { 2994 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV), 2995 "LBRV must be present for SEV-ES support"); 2996 goto out; 2997 } 2998 2999 /* Has the system been allocated ASIDs for SEV-ES? */ 3000 if (min_sev_asid == 1) 3001 goto out; 3002 3003 sev_es_asid_count = min_sev_asid - 1; 3004 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)); 3005 sev_es_supported = true; 3006 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP); 3007 3008 out: 3009 if (sev_enabled) { 3010 init_args.probe = true; 3011 if (sev_platform_init(&init_args)) 3012 sev_supported = sev_es_supported = sev_snp_supported = false; 3013 else if (sev_snp_supported) 3014 sev_snp_supported = is_sev_snp_initialized(); 3015 } 3016 3017 if (boot_cpu_has(X86_FEATURE_SEV)) 3018 pr_info("SEV %s (ASIDs %u - %u)\n", 3019 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" : 3020 "unusable" : 3021 "disabled", 3022 min_sev_asid, max_sev_asid); 3023 if (boot_cpu_has(X86_FEATURE_SEV_ES)) 3024 pr_info("SEV-ES %s (ASIDs %u - %u)\n", 3025 str_enabled_disabled(sev_es_supported), 3026 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3027 if (boot_cpu_has(X86_FEATURE_SEV_SNP)) 3028 pr_info("SEV-SNP %s (ASIDs %u - %u)\n", 3029 str_enabled_disabled(sev_snp_supported), 3030 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); 3031 3032 sev_enabled = sev_supported; 3033 sev_es_enabled = sev_es_supported; 3034 sev_snp_enabled = sev_snp_supported; 3035 3036 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) || 3037 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP)) 3038 sev_es_debug_swap_enabled = false; 3039 3040 sev_supported_vmsa_features = 0; 3041 if (sev_es_debug_swap_enabled) 3042 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP; 3043 } 3044 3045 void sev_hardware_unsetup(void) 3046 { 3047 if (!sev_enabled) 3048 return; 3049 3050 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 3051 sev_flush_asids(1, max_sev_asid); 3052 3053 bitmap_free(sev_asid_bitmap); 3054 bitmap_free(sev_reclaim_asid_bitmap); 3055 3056 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 3057 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 3058 3059 sev_platform_shutdown(); 3060 } 3061 3062 int sev_cpu_init(struct svm_cpu_data *sd) 3063 { 3064 if (!sev_enabled) 3065 return 0; 3066 3067 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 3068 if (!sd->sev_vmcbs) 3069 return -ENOMEM; 3070 3071 return 0; 3072 } 3073 3074 /* 3075 * Pages used by hardware to hold guest encrypted state must be flushed before 3076 * returning them to the system. 3077 */ 3078 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va) 3079 { 3080 unsigned int asid = sev_get_asid(vcpu->kvm); 3081 3082 /* 3083 * Note! The address must be a kernel address, as regular page walk 3084 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user 3085 * address is non-deterministic and unsafe. This function deliberately 3086 * takes a pointer to deter passing in a user address. 3087 */ 3088 unsigned long addr = (unsigned long)va; 3089 3090 /* 3091 * If CPU enforced cache coherency for encrypted mappings of the 3092 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache 3093 * flush is still needed in order to work properly with DMA devices. 3094 */ 3095 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) { 3096 clflush_cache_range(va, PAGE_SIZE); 3097 return; 3098 } 3099 3100 /* 3101 * VM Page Flush takes a host virtual address and a guest ASID. Fall 3102 * back to WBINVD if this faults so as not to make any problems worse 3103 * by leaving stale encrypted data in the cache. 3104 */ 3105 if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid))) 3106 goto do_wbinvd; 3107 3108 return; 3109 3110 do_wbinvd: 3111 wbinvd_on_all_cpus(); 3112 } 3113 3114 void sev_guest_memory_reclaimed(struct kvm *kvm) 3115 { 3116 /* 3117 * With SNP+gmem, private/encrypted memory is unreachable via the 3118 * hva-based mmu notifiers, so these events are only actually 3119 * pertaining to shared pages where there is no need to perform 3120 * the WBINVD to flush associated caches. 3121 */ 3122 if (!sev_guest(kvm) || sev_snp_guest(kvm)) 3123 return; 3124 3125 wbinvd_on_all_cpus(); 3126 } 3127 3128 void sev_free_vcpu(struct kvm_vcpu *vcpu) 3129 { 3130 struct vcpu_svm *svm; 3131 3132 if (!sev_es_guest(vcpu->kvm)) 3133 return; 3134 3135 svm = to_svm(vcpu); 3136 3137 /* 3138 * If it's an SNP guest, then the VMSA was marked in the RMP table as 3139 * a guest-owned page. Transition the page to hypervisor state before 3140 * releasing it back to the system. 3141 */ 3142 if (sev_snp_guest(vcpu->kvm)) { 3143 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT; 3144 3145 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K)) 3146 goto skip_vmsa_free; 3147 } 3148 3149 if (vcpu->arch.guest_state_protected) 3150 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa); 3151 3152 __free_page(virt_to_page(svm->sev_es.vmsa)); 3153 3154 skip_vmsa_free: 3155 if (svm->sev_es.ghcb_sa_free) 3156 kvfree(svm->sev_es.ghcb_sa); 3157 } 3158 3159 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control) 3160 { 3161 return (((u64)control->exit_code_hi) << 32) | control->exit_code; 3162 } 3163 3164 static void dump_ghcb(struct vcpu_svm *svm) 3165 { 3166 struct vmcb_control_area *control = &svm->vmcb->control; 3167 unsigned int nbits; 3168 3169 /* Re-use the dump_invalid_vmcb module parameter */ 3170 if (!dump_invalid_vmcb) { 3171 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 3172 return; 3173 } 3174 3175 nbits = sizeof(svm->sev_es.valid_bitmap) * 8; 3176 3177 /* 3178 * Print KVM's snapshot of the GHCB values that were (unsuccessfully) 3179 * used to handle the exit. If the guest has since modified the GHCB 3180 * itself, dumping the raw GHCB won't help debug why KVM was unable to 3181 * handle the VMGEXIT that KVM observed. 3182 */ 3183 pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa); 3184 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 3185 kvm_ghcb_get_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm)); 3186 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 3187 control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm)); 3188 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 3189 control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm)); 3190 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 3191 svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm)); 3192 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap); 3193 } 3194 3195 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 3196 { 3197 struct kvm_vcpu *vcpu = &svm->vcpu; 3198 struct ghcb *ghcb = svm->sev_es.ghcb; 3199 3200 /* 3201 * The GHCB protocol so far allows for the following data 3202 * to be returned: 3203 * GPRs RAX, RBX, RCX, RDX 3204 * 3205 * Copy their values, even if they may not have been written during the 3206 * VM-Exit. It's the guest's responsibility to not consume random data. 3207 */ 3208 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 3209 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 3210 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 3211 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 3212 } 3213 3214 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 3215 { 3216 struct vmcb_control_area *control = &svm->vmcb->control; 3217 struct kvm_vcpu *vcpu = &svm->vcpu; 3218 struct ghcb *ghcb = svm->sev_es.ghcb; 3219 u64 exit_code; 3220 3221 /* 3222 * The GHCB protocol so far allows for the following data 3223 * to be supplied: 3224 * GPRs RAX, RBX, RCX, RDX 3225 * XCR0 3226 * CPL 3227 * 3228 * VMMCALL allows the guest to provide extra registers. KVM also 3229 * expects RSI for hypercalls, so include that, too. 3230 * 3231 * Copy their values to the appropriate location if supplied. 3232 */ 3233 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 3234 3235 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap)); 3236 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap)); 3237 3238 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb); 3239 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb); 3240 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb); 3241 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb); 3242 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb); 3243 3244 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb); 3245 3246 if (kvm_ghcb_xcr0_is_valid(svm)) { 3247 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 3248 vcpu->arch.cpuid_dynamic_bits_dirty = true; 3249 } 3250 3251 /* Copy the GHCB exit information into the VMCB fields */ 3252 exit_code = ghcb_get_sw_exit_code(ghcb); 3253 control->exit_code = lower_32_bits(exit_code); 3254 control->exit_code_hi = upper_32_bits(exit_code); 3255 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 3256 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 3257 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb); 3258 3259 /* Clear the valid entries fields */ 3260 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 3261 } 3262 3263 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 3264 { 3265 struct vmcb_control_area *control = &svm->vmcb->control; 3266 struct kvm_vcpu *vcpu = &svm->vcpu; 3267 u64 exit_code; 3268 u64 reason; 3269 3270 /* 3271 * Retrieve the exit code now even though it may not be marked valid 3272 * as it could help with debugging. 3273 */ 3274 exit_code = kvm_ghcb_get_sw_exit_code(control); 3275 3276 /* Only GHCB Usage code 0 is supported */ 3277 if (svm->sev_es.ghcb->ghcb_usage) { 3278 reason = GHCB_ERR_INVALID_USAGE; 3279 goto vmgexit_err; 3280 } 3281 3282 reason = GHCB_ERR_MISSING_INPUT; 3283 3284 if (!kvm_ghcb_sw_exit_code_is_valid(svm) || 3285 !kvm_ghcb_sw_exit_info_1_is_valid(svm) || 3286 !kvm_ghcb_sw_exit_info_2_is_valid(svm)) 3287 goto vmgexit_err; 3288 3289 switch (exit_code) { 3290 case SVM_EXIT_READ_DR7: 3291 break; 3292 case SVM_EXIT_WRITE_DR7: 3293 if (!kvm_ghcb_rax_is_valid(svm)) 3294 goto vmgexit_err; 3295 break; 3296 case SVM_EXIT_RDTSC: 3297 break; 3298 case SVM_EXIT_RDPMC: 3299 if (!kvm_ghcb_rcx_is_valid(svm)) 3300 goto vmgexit_err; 3301 break; 3302 case SVM_EXIT_CPUID: 3303 if (!kvm_ghcb_rax_is_valid(svm) || 3304 !kvm_ghcb_rcx_is_valid(svm)) 3305 goto vmgexit_err; 3306 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd) 3307 if (!kvm_ghcb_xcr0_is_valid(svm)) 3308 goto vmgexit_err; 3309 break; 3310 case SVM_EXIT_INVD: 3311 break; 3312 case SVM_EXIT_IOIO: 3313 if (control->exit_info_1 & SVM_IOIO_STR_MASK) { 3314 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3315 goto vmgexit_err; 3316 } else { 3317 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK)) 3318 if (!kvm_ghcb_rax_is_valid(svm)) 3319 goto vmgexit_err; 3320 } 3321 break; 3322 case SVM_EXIT_MSR: 3323 if (!kvm_ghcb_rcx_is_valid(svm)) 3324 goto vmgexit_err; 3325 if (control->exit_info_1) { 3326 if (!kvm_ghcb_rax_is_valid(svm) || 3327 !kvm_ghcb_rdx_is_valid(svm)) 3328 goto vmgexit_err; 3329 } 3330 break; 3331 case SVM_EXIT_VMMCALL: 3332 if (!kvm_ghcb_rax_is_valid(svm) || 3333 !kvm_ghcb_cpl_is_valid(svm)) 3334 goto vmgexit_err; 3335 break; 3336 case SVM_EXIT_RDTSCP: 3337 break; 3338 case SVM_EXIT_WBINVD: 3339 break; 3340 case SVM_EXIT_MONITOR: 3341 if (!kvm_ghcb_rax_is_valid(svm) || 3342 !kvm_ghcb_rcx_is_valid(svm) || 3343 !kvm_ghcb_rdx_is_valid(svm)) 3344 goto vmgexit_err; 3345 break; 3346 case SVM_EXIT_MWAIT: 3347 if (!kvm_ghcb_rax_is_valid(svm) || 3348 !kvm_ghcb_rcx_is_valid(svm)) 3349 goto vmgexit_err; 3350 break; 3351 case SVM_VMGEXIT_MMIO_READ: 3352 case SVM_VMGEXIT_MMIO_WRITE: 3353 if (!kvm_ghcb_sw_scratch_is_valid(svm)) 3354 goto vmgexit_err; 3355 break; 3356 case SVM_VMGEXIT_AP_CREATION: 3357 if (!sev_snp_guest(vcpu->kvm)) 3358 goto vmgexit_err; 3359 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY) 3360 if (!kvm_ghcb_rax_is_valid(svm)) 3361 goto vmgexit_err; 3362 break; 3363 case SVM_VMGEXIT_NMI_COMPLETE: 3364 case SVM_VMGEXIT_AP_HLT_LOOP: 3365 case SVM_VMGEXIT_AP_JUMP_TABLE: 3366 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 3367 case SVM_VMGEXIT_HV_FEATURES: 3368 case SVM_VMGEXIT_TERM_REQUEST: 3369 break; 3370 case SVM_VMGEXIT_PSC: 3371 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm)) 3372 goto vmgexit_err; 3373 break; 3374 case SVM_VMGEXIT_GUEST_REQUEST: 3375 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 3376 if (!sev_snp_guest(vcpu->kvm) || 3377 !PAGE_ALIGNED(control->exit_info_1) || 3378 !PAGE_ALIGNED(control->exit_info_2) || 3379 control->exit_info_1 == control->exit_info_2) 3380 goto vmgexit_err; 3381 break; 3382 default: 3383 reason = GHCB_ERR_INVALID_EVENT; 3384 goto vmgexit_err; 3385 } 3386 3387 return 0; 3388 3389 vmgexit_err: 3390 if (reason == GHCB_ERR_INVALID_USAGE) { 3391 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 3392 svm->sev_es.ghcb->ghcb_usage); 3393 } else if (reason == GHCB_ERR_INVALID_EVENT) { 3394 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n", 3395 exit_code); 3396 } else { 3397 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n", 3398 exit_code); 3399 dump_ghcb(svm); 3400 } 3401 3402 svm_vmgexit_bad_input(svm, reason); 3403 3404 /* Resume the guest to "return" the error code. */ 3405 return 1; 3406 } 3407 3408 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 3409 { 3410 /* Clear any indication that the vCPU is in a type of AP Reset Hold */ 3411 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE; 3412 3413 if (!svm->sev_es.ghcb) 3414 return; 3415 3416 if (svm->sev_es.ghcb_sa_free) { 3417 /* 3418 * The scratch area lives outside the GHCB, so there is a 3419 * buffer that, depending on the operation performed, may 3420 * need to be synced, then freed. 3421 */ 3422 if (svm->sev_es.ghcb_sa_sync) { 3423 kvm_write_guest(svm->vcpu.kvm, 3424 svm->sev_es.sw_scratch, 3425 svm->sev_es.ghcb_sa, 3426 svm->sev_es.ghcb_sa_len); 3427 svm->sev_es.ghcb_sa_sync = false; 3428 } 3429 3430 kvfree(svm->sev_es.ghcb_sa); 3431 svm->sev_es.ghcb_sa = NULL; 3432 svm->sev_es.ghcb_sa_free = false; 3433 } 3434 3435 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 3436 3437 sev_es_sync_to_ghcb(svm); 3438 3439 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map); 3440 svm->sev_es.ghcb = NULL; 3441 } 3442 3443 int pre_sev_run(struct vcpu_svm *svm, int cpu) 3444 { 3445 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu); 3446 struct kvm *kvm = svm->vcpu.kvm; 3447 unsigned int asid = sev_get_asid(kvm); 3448 3449 /* 3450 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid 3451 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP 3452 * AP Destroy event. 3453 */ 3454 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa)) 3455 return -EINVAL; 3456 3457 /* Assign the asid allocated with this SEV guest */ 3458 svm->asid = asid; 3459 3460 /* 3461 * Flush guest TLB: 3462 * 3463 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 3464 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 3465 */ 3466 if (sd->sev_vmcbs[asid] == svm->vmcb && 3467 svm->vcpu.arch.last_vmentry_cpu == cpu) 3468 return 0; 3469 3470 sd->sev_vmcbs[asid] = svm->vmcb; 3471 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 3472 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 3473 return 0; 3474 } 3475 3476 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 3477 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 3478 { 3479 struct vmcb_control_area *control = &svm->vmcb->control; 3480 u64 ghcb_scratch_beg, ghcb_scratch_end; 3481 u64 scratch_gpa_beg, scratch_gpa_end; 3482 void *scratch_va; 3483 3484 scratch_gpa_beg = svm->sev_es.sw_scratch; 3485 if (!scratch_gpa_beg) { 3486 pr_err("vmgexit: scratch gpa not provided\n"); 3487 goto e_scratch; 3488 } 3489 3490 scratch_gpa_end = scratch_gpa_beg + len; 3491 if (scratch_gpa_end < scratch_gpa_beg) { 3492 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 3493 len, scratch_gpa_beg); 3494 goto e_scratch; 3495 } 3496 3497 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 3498 /* Scratch area begins within GHCB */ 3499 ghcb_scratch_beg = control->ghcb_gpa + 3500 offsetof(struct ghcb, shared_buffer); 3501 ghcb_scratch_end = control->ghcb_gpa + 3502 offsetof(struct ghcb, reserved_0xff0); 3503 3504 /* 3505 * If the scratch area begins within the GHCB, it must be 3506 * completely contained in the GHCB shared buffer area. 3507 */ 3508 if (scratch_gpa_beg < ghcb_scratch_beg || 3509 scratch_gpa_end > ghcb_scratch_end) { 3510 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 3511 scratch_gpa_beg, scratch_gpa_end); 3512 goto e_scratch; 3513 } 3514 3515 scratch_va = (void *)svm->sev_es.ghcb; 3516 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 3517 } else { 3518 /* 3519 * The guest memory must be read into a kernel buffer, so 3520 * limit the size 3521 */ 3522 if (len > GHCB_SCRATCH_AREA_LIMIT) { 3523 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 3524 len, GHCB_SCRATCH_AREA_LIMIT); 3525 goto e_scratch; 3526 } 3527 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT); 3528 if (!scratch_va) 3529 return -ENOMEM; 3530 3531 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 3532 /* Unable to copy scratch area from guest */ 3533 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 3534 3535 kvfree(scratch_va); 3536 return -EFAULT; 3537 } 3538 3539 /* 3540 * The scratch area is outside the GHCB. The operation will 3541 * dictate whether the buffer needs to be synced before running 3542 * the vCPU next time (i.e. a read was requested so the data 3543 * must be written back to the guest memory). 3544 */ 3545 svm->sev_es.ghcb_sa_sync = sync; 3546 svm->sev_es.ghcb_sa_free = true; 3547 } 3548 3549 svm->sev_es.ghcb_sa = scratch_va; 3550 svm->sev_es.ghcb_sa_len = len; 3551 3552 return 0; 3553 3554 e_scratch: 3555 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA); 3556 3557 return 1; 3558 } 3559 3560 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 3561 unsigned int pos) 3562 { 3563 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 3564 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 3565 } 3566 3567 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 3568 { 3569 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 3570 } 3571 3572 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 3573 { 3574 svm->vmcb->control.ghcb_gpa = value; 3575 } 3576 3577 static int snp_rmptable_psmash(kvm_pfn_t pfn) 3578 { 3579 int ret; 3580 3581 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1); 3582 3583 /* 3584 * PSMASH_FAIL_INUSE indicates another processor is modifying the 3585 * entry, so retry until that's no longer the case. 3586 */ 3587 do { 3588 ret = psmash(pfn); 3589 } while (ret == PSMASH_FAIL_INUSE); 3590 3591 return ret; 3592 } 3593 3594 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu) 3595 { 3596 struct vcpu_svm *svm = to_svm(vcpu); 3597 3598 if (vcpu->run->hypercall.ret) 3599 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3600 else 3601 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP); 3602 3603 return 1; /* resume guest */ 3604 } 3605 3606 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) 3607 { 3608 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr)); 3609 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr); 3610 struct kvm_vcpu *vcpu = &svm->vcpu; 3611 3612 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) { 3613 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3614 return 1; /* resume guest */ 3615 } 3616 3617 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3618 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); 3619 return 1; /* resume guest */ 3620 } 3621 3622 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3623 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3624 /* 3625 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3626 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3627 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3628 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3629 */ 3630 vcpu->run->hypercall.ret = 0; 3631 vcpu->run->hypercall.args[0] = gpa; 3632 vcpu->run->hypercall.args[1] = 1; 3633 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) 3634 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3635 : KVM_MAP_GPA_RANGE_DECRYPTED; 3636 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3637 3638 vcpu->arch.complete_userspace_io = snp_complete_psc_msr; 3639 3640 return 0; /* forward request to userspace */ 3641 } 3642 3643 struct psc_buffer { 3644 struct psc_hdr hdr; 3645 struct psc_entry entries[]; 3646 } __packed; 3647 3648 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc); 3649 3650 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret) 3651 { 3652 svm->sev_es.psc_inflight = 0; 3653 svm->sev_es.psc_idx = 0; 3654 svm->sev_es.psc_2m = false; 3655 3656 /* 3657 * PSC requests always get a "no action" response in SW_EXITINFO1, with 3658 * a PSC-specific return code in SW_EXITINFO2 that provides the "real" 3659 * return code. E.g. if the PSC request was interrupted, the need to 3660 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1. 3661 */ 3662 svm_vmgexit_no_action(svm, psc_ret); 3663 } 3664 3665 static void __snp_complete_one_psc(struct vcpu_svm *svm) 3666 { 3667 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3668 struct psc_entry *entries = psc->entries; 3669 struct psc_hdr *hdr = &psc->hdr; 3670 __u16 idx; 3671 3672 /* 3673 * Everything in-flight has been processed successfully. Update the 3674 * corresponding entries in the guest's PSC buffer and zero out the 3675 * count of in-flight PSC entries. 3676 */ 3677 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight; 3678 svm->sev_es.psc_inflight--, idx++) { 3679 struct psc_entry *entry = &entries[idx]; 3680 3681 entry->cur_page = entry->pagesize ? 512 : 1; 3682 } 3683 3684 hdr->cur_entry = idx; 3685 } 3686 3687 static int snp_complete_one_psc(struct kvm_vcpu *vcpu) 3688 { 3689 struct vcpu_svm *svm = to_svm(vcpu); 3690 struct psc_buffer *psc = svm->sev_es.ghcb_sa; 3691 3692 if (vcpu->run->hypercall.ret) { 3693 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3694 return 1; /* resume guest */ 3695 } 3696 3697 __snp_complete_one_psc(svm); 3698 3699 /* Handle the next range (if any). */ 3700 return snp_begin_psc(svm, psc); 3701 } 3702 3703 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) 3704 { 3705 struct psc_entry *entries = psc->entries; 3706 struct kvm_vcpu *vcpu = &svm->vcpu; 3707 struct psc_hdr *hdr = &psc->hdr; 3708 struct psc_entry entry_start; 3709 u16 idx, idx_start, idx_end; 3710 int npages; 3711 bool huge; 3712 u64 gfn; 3713 3714 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { 3715 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3716 return 1; 3717 } 3718 3719 next_range: 3720 /* There should be no other PSCs in-flight at this point. */ 3721 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) { 3722 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); 3723 return 1; 3724 } 3725 3726 /* 3727 * The PSC descriptor buffer can be modified by a misbehaved guest after 3728 * validation, so take care to only use validated copies of values used 3729 * for things like array indexing. 3730 */ 3731 idx_start = hdr->cur_entry; 3732 idx_end = hdr->end_entry; 3733 3734 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) { 3735 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR); 3736 return 1; 3737 } 3738 3739 /* Find the start of the next range which needs processing. */ 3740 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) { 3741 entry_start = entries[idx]; 3742 3743 gfn = entry_start.gfn; 3744 huge = entry_start.pagesize; 3745 npages = huge ? 512 : 1; 3746 3747 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) { 3748 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY); 3749 return 1; 3750 } 3751 3752 if (entry_start.cur_page) { 3753 /* 3754 * If this is a partially-completed 2M range, force 4K handling 3755 * for the remaining pages since they're effectively split at 3756 * this point. Subsequent code should ensure this doesn't get 3757 * combined with adjacent PSC entries where 2M handling is still 3758 * possible. 3759 */ 3760 npages -= entry_start.cur_page; 3761 gfn += entry_start.cur_page; 3762 huge = false; 3763 } 3764 3765 if (npages) 3766 break; 3767 } 3768 3769 if (idx > idx_end) { 3770 /* Nothing more to process. */ 3771 snp_complete_psc(svm, 0); 3772 return 1; 3773 } 3774 3775 svm->sev_es.psc_2m = huge; 3776 svm->sev_es.psc_idx = idx; 3777 svm->sev_es.psc_inflight = 1; 3778 3779 /* 3780 * Find all subsequent PSC entries that contain adjacent GPA 3781 * ranges/operations and can be combined into a single 3782 * KVM_HC_MAP_GPA_RANGE exit. 3783 */ 3784 while (++idx <= idx_end) { 3785 struct psc_entry entry = entries[idx]; 3786 3787 if (entry.operation != entry_start.operation || 3788 entry.gfn != entry_start.gfn + npages || 3789 entry.cur_page || !!entry.pagesize != huge) 3790 break; 3791 3792 svm->sev_es.psc_inflight++; 3793 npages += huge ? 512 : 1; 3794 } 3795 3796 switch (entry_start.operation) { 3797 case VMGEXIT_PSC_OP_PRIVATE: 3798 case VMGEXIT_PSC_OP_SHARED: 3799 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 3800 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 3801 /* 3802 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) 3803 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that 3804 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting 3805 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. 3806 */ 3807 vcpu->run->hypercall.ret = 0; 3808 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); 3809 vcpu->run->hypercall.args[1] = npages; 3810 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE 3811 ? KVM_MAP_GPA_RANGE_ENCRYPTED 3812 : KVM_MAP_GPA_RANGE_DECRYPTED; 3813 vcpu->run->hypercall.args[2] |= entry_start.pagesize 3814 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M 3815 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K; 3816 vcpu->arch.complete_userspace_io = snp_complete_one_psc; 3817 return 0; /* forward request to userspace */ 3818 default: 3819 /* 3820 * Only shared/private PSC operations are currently supported, so if the 3821 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH), 3822 * then consider the entire range completed and avoid exiting to 3823 * userspace. In theory snp_complete_psc() can always be called directly 3824 * at this point to complete the current range and start the next one, 3825 * but that could lead to unexpected levels of recursion. 3826 */ 3827 __snp_complete_one_psc(svm); 3828 goto next_range; 3829 } 3830 3831 BUG(); 3832 } 3833 3834 /* 3835 * Invoked as part of svm_vcpu_reset() processing of an init event. 3836 */ 3837 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) 3838 { 3839 struct vcpu_svm *svm = to_svm(vcpu); 3840 struct kvm_memory_slot *slot; 3841 struct page *page; 3842 kvm_pfn_t pfn; 3843 gfn_t gfn; 3844 3845 if (!sev_snp_guest(vcpu->kvm)) 3846 return; 3847 3848 guard(mutex)(&svm->sev_es.snp_vmsa_mutex); 3849 3850 if (!svm->sev_es.snp_ap_waiting_for_reset) 3851 return; 3852 3853 svm->sev_es.snp_ap_waiting_for_reset = false; 3854 3855 /* Mark the vCPU as offline and not runnable */ 3856 vcpu->arch.pv.pv_unhalted = false; 3857 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED); 3858 3859 /* Clear use of the VMSA */ 3860 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 3861 3862 /* 3863 * When replacing the VMSA during SEV-SNP AP creation, 3864 * mark the VMCB dirty so that full state is always reloaded. 3865 */ 3866 vmcb_mark_all_dirty(svm->vmcb); 3867 3868 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) 3869 return; 3870 3871 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa); 3872 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3873 3874 slot = gfn_to_memslot(vcpu->kvm, gfn); 3875 if (!slot) 3876 return; 3877 3878 /* 3879 * The new VMSA will be private memory guest memory, so retrieve the 3880 * PFN from the gmem backend. 3881 */ 3882 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL)) 3883 return; 3884 3885 /* 3886 * From this point forward, the VMSA will always be a guest-mapped page 3887 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In 3888 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but 3889 * that involves cleanups like wbinvd_on_all_cpus() which would ideally 3890 * be handled during teardown rather than guest boot. Deferring that 3891 * also allows the existing logic for SEV-ES VMSAs to be re-used with 3892 * minimal SNP-specific changes. 3893 */ 3894 svm->sev_es.snp_has_guest_vmsa = true; 3895 3896 /* Use the new VMSA */ 3897 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn); 3898 3899 /* Mark the vCPU as runnable */ 3900 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); 3901 3902 /* 3903 * gmem pages aren't currently migratable, but if this ever changes 3904 * then care should be taken to ensure svm->sev_es.vmsa is pinned 3905 * through some other means. 3906 */ 3907 kvm_release_page_clean(page); 3908 } 3909 3910 static int sev_snp_ap_creation(struct vcpu_svm *svm) 3911 { 3912 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 3913 struct kvm_vcpu *vcpu = &svm->vcpu; 3914 struct kvm_vcpu *target_vcpu; 3915 struct vcpu_svm *target_svm; 3916 unsigned int request; 3917 unsigned int apic_id; 3918 3919 request = lower_32_bits(svm->vmcb->control.exit_info_1); 3920 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1); 3921 3922 /* Validate the APIC ID */ 3923 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id); 3924 if (!target_vcpu) { 3925 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n", 3926 apic_id); 3927 return -EINVAL; 3928 } 3929 3930 target_svm = to_svm(target_vcpu); 3931 3932 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex); 3933 3934 switch (request) { 3935 case SVM_VMGEXIT_AP_CREATE_ON_INIT: 3936 case SVM_VMGEXIT_AP_CREATE: 3937 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) { 3938 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n", 3939 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features); 3940 return -EINVAL; 3941 } 3942 3943 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) { 3944 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n", 3945 svm->vmcb->control.exit_info_2); 3946 return -EINVAL; 3947 } 3948 3949 /* 3950 * Malicious guest can RMPADJUST a large page into VMSA which 3951 * will hit the SNP erratum where the CPU will incorrectly signal 3952 * an RMP violation #PF if a hugepage collides with the RMP entry 3953 * of VMSA page, reject the AP CREATE request if VMSA address from 3954 * guest is 2M aligned. 3955 */ 3956 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) { 3957 vcpu_unimpl(vcpu, 3958 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n", 3959 svm->vmcb->control.exit_info_2); 3960 return -EINVAL; 3961 } 3962 3963 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; 3964 break; 3965 case SVM_VMGEXIT_AP_DESTROY: 3966 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; 3967 break; 3968 default: 3969 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", 3970 request); 3971 return -EINVAL; 3972 } 3973 3974 target_svm->sev_es.snp_ap_waiting_for_reset = true; 3975 3976 /* 3977 * Unless Creation is deferred until INIT, signal the vCPU to update 3978 * its state. 3979 */ 3980 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT) 3981 kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); 3982 3983 return 0; 3984 } 3985 3986 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 3987 { 3988 struct sev_data_snp_guest_request data = {0}; 3989 struct kvm *kvm = svm->vcpu.kvm; 3990 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 3991 sev_ret_code fw_err = 0; 3992 int ret; 3993 3994 if (!sev_snp_guest(kvm)) 3995 return -EINVAL; 3996 3997 mutex_lock(&sev->guest_req_mutex); 3998 3999 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) { 4000 ret = -EIO; 4001 goto out_unlock; 4002 } 4003 4004 data.gctx_paddr = __psp_pa(sev->snp_context); 4005 data.req_paddr = __psp_pa(sev->guest_req_buf); 4006 data.res_paddr = __psp_pa(sev->guest_resp_buf); 4007 4008 /* 4009 * Firmware failures are propagated on to guest, but any other failure 4010 * condition along the way should be reported to userspace. E.g. if 4011 * the PSP is dead and commands are timing out. 4012 */ 4013 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err); 4014 if (ret && !fw_err) 4015 goto out_unlock; 4016 4017 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) { 4018 ret = -EIO; 4019 goto out_unlock; 4020 } 4021 4022 /* No action is requested *from KVM* if there was a firmware error. */ 4023 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err)); 4024 4025 ret = 1; /* resume guest */ 4026 4027 out_unlock: 4028 mutex_unlock(&sev->guest_req_mutex); 4029 return ret; 4030 } 4031 4032 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa) 4033 { 4034 struct kvm *kvm = svm->vcpu.kvm; 4035 u8 msg_type; 4036 4037 if (!sev_snp_guest(kvm)) 4038 return -EINVAL; 4039 4040 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type), 4041 &msg_type, 1)) 4042 return -EIO; 4043 4044 /* 4045 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for 4046 * additional certificate data to be provided alongside the attestation 4047 * report via the guest-provided data pages indicated by RAX/RBX. The 4048 * certificate data is optional and requires additional KVM enablement 4049 * to provide an interface for userspace to provide it, but KVM still 4050 * needs to be able to handle extended guest requests either way. So 4051 * provide a stub implementation that will always return an empty 4052 * certificate table in the guest-provided data pages. 4053 */ 4054 if (msg_type == SNP_MSG_REPORT_REQ) { 4055 struct kvm_vcpu *vcpu = &svm->vcpu; 4056 u64 data_npages; 4057 gpa_t data_gpa; 4058 4059 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm)) 4060 goto request_invalid; 4061 4062 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX]; 4063 data_npages = vcpu->arch.regs[VCPU_REGS_RBX]; 4064 4065 if (!PAGE_ALIGNED(data_gpa)) 4066 goto request_invalid; 4067 4068 /* 4069 * As per GHCB spec (see "SNP Extended Guest Request"), the 4070 * certificate table is terminated by 24-bytes of zeroes. 4071 */ 4072 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24)) 4073 return -EIO; 4074 } 4075 4076 return snp_handle_guest_req(svm, req_gpa, resp_gpa); 4077 4078 request_invalid: 4079 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4080 return 1; /* resume guest */ 4081 } 4082 4083 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 4084 { 4085 struct vmcb_control_area *control = &svm->vmcb->control; 4086 struct kvm_vcpu *vcpu = &svm->vcpu; 4087 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4088 u64 ghcb_info; 4089 int ret = 1; 4090 4091 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 4092 4093 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 4094 control->ghcb_gpa); 4095 4096 switch (ghcb_info) { 4097 case GHCB_MSR_SEV_INFO_REQ: 4098 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4099 GHCB_VERSION_MIN, 4100 sev_enc_bit)); 4101 break; 4102 case GHCB_MSR_CPUID_REQ: { 4103 u64 cpuid_fn, cpuid_reg, cpuid_value; 4104 4105 cpuid_fn = get_ghcb_msr_bits(svm, 4106 GHCB_MSR_CPUID_FUNC_MASK, 4107 GHCB_MSR_CPUID_FUNC_POS); 4108 4109 /* Initialize the registers needed by the CPUID intercept */ 4110 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 4111 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 4112 4113 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 4114 if (!ret) { 4115 /* Error, keep GHCB MSR value as-is */ 4116 break; 4117 } 4118 4119 cpuid_reg = get_ghcb_msr_bits(svm, 4120 GHCB_MSR_CPUID_REG_MASK, 4121 GHCB_MSR_CPUID_REG_POS); 4122 if (cpuid_reg == 0) 4123 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 4124 else if (cpuid_reg == 1) 4125 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 4126 else if (cpuid_reg == 2) 4127 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 4128 else 4129 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 4130 4131 set_ghcb_msr_bits(svm, cpuid_value, 4132 GHCB_MSR_CPUID_VALUE_MASK, 4133 GHCB_MSR_CPUID_VALUE_POS); 4134 4135 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 4136 GHCB_MSR_INFO_MASK, 4137 GHCB_MSR_INFO_POS); 4138 break; 4139 } 4140 case GHCB_MSR_AP_RESET_HOLD_REQ: 4141 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO; 4142 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 4143 4144 /* 4145 * Preset the result to a non-SIPI return and then only set 4146 * the result to non-zero when delivering a SIPI. 4147 */ 4148 set_ghcb_msr_bits(svm, 0, 4149 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4150 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4151 4152 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4153 GHCB_MSR_INFO_MASK, 4154 GHCB_MSR_INFO_POS); 4155 break; 4156 case GHCB_MSR_HV_FT_REQ: 4157 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED, 4158 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS); 4159 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP, 4160 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS); 4161 break; 4162 case GHCB_MSR_PREF_GPA_REQ: 4163 if (!sev_snp_guest(vcpu->kvm)) 4164 goto out_terminate; 4165 4166 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK, 4167 GHCB_MSR_GPA_VALUE_POS); 4168 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK, 4169 GHCB_MSR_INFO_POS); 4170 break; 4171 case GHCB_MSR_REG_GPA_REQ: { 4172 u64 gfn; 4173 4174 if (!sev_snp_guest(vcpu->kvm)) 4175 goto out_terminate; 4176 4177 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK, 4178 GHCB_MSR_GPA_VALUE_POS); 4179 4180 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn); 4181 4182 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK, 4183 GHCB_MSR_GPA_VALUE_POS); 4184 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK, 4185 GHCB_MSR_INFO_POS); 4186 break; 4187 } 4188 case GHCB_MSR_PSC_REQ: 4189 if (!sev_snp_guest(vcpu->kvm)) 4190 goto out_terminate; 4191 4192 ret = snp_begin_psc_msr(svm, control->ghcb_gpa); 4193 break; 4194 case GHCB_MSR_TERM_REQ: { 4195 u64 reason_set, reason_code; 4196 4197 reason_set = get_ghcb_msr_bits(svm, 4198 GHCB_MSR_TERM_REASON_SET_MASK, 4199 GHCB_MSR_TERM_REASON_SET_POS); 4200 reason_code = get_ghcb_msr_bits(svm, 4201 GHCB_MSR_TERM_REASON_MASK, 4202 GHCB_MSR_TERM_REASON_POS); 4203 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 4204 reason_set, reason_code); 4205 4206 goto out_terminate; 4207 } 4208 default: 4209 /* Error, keep GHCB MSR value as-is */ 4210 break; 4211 } 4212 4213 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 4214 control->ghcb_gpa, ret); 4215 4216 return ret; 4217 4218 out_terminate: 4219 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4220 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4221 vcpu->run->system_event.ndata = 1; 4222 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4223 4224 return 0; 4225 } 4226 4227 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 4228 { 4229 struct vcpu_svm *svm = to_svm(vcpu); 4230 struct vmcb_control_area *control = &svm->vmcb->control; 4231 u64 ghcb_gpa, exit_code; 4232 int ret; 4233 4234 /* Validate the GHCB */ 4235 ghcb_gpa = control->ghcb_gpa; 4236 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 4237 return sev_handle_vmgexit_msr_protocol(svm); 4238 4239 if (!ghcb_gpa) { 4240 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 4241 4242 /* Without a GHCB, just return right back to the guest */ 4243 return 1; 4244 } 4245 4246 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 4247 /* Unable to map GHCB from guest */ 4248 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 4249 ghcb_gpa); 4250 4251 /* Without a GHCB, just return right back to the guest */ 4252 return 1; 4253 } 4254 4255 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 4256 4257 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb); 4258 4259 sev_es_sync_from_ghcb(svm); 4260 4261 /* SEV-SNP guest requires that the GHCB GPA must be registered */ 4262 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) { 4263 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa); 4264 return -EINVAL; 4265 } 4266 4267 ret = sev_es_validate_vmgexit(svm); 4268 if (ret) 4269 return ret; 4270 4271 svm_vmgexit_success(svm, 0); 4272 4273 exit_code = kvm_ghcb_get_sw_exit_code(control); 4274 switch (exit_code) { 4275 case SVM_VMGEXIT_MMIO_READ: 4276 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4277 if (ret) 4278 break; 4279 4280 ret = kvm_sev_es_mmio_read(vcpu, 4281 control->exit_info_1, 4282 control->exit_info_2, 4283 svm->sev_es.ghcb_sa); 4284 break; 4285 case SVM_VMGEXIT_MMIO_WRITE: 4286 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2); 4287 if (ret) 4288 break; 4289 4290 ret = kvm_sev_es_mmio_write(vcpu, 4291 control->exit_info_1, 4292 control->exit_info_2, 4293 svm->sev_es.ghcb_sa); 4294 break; 4295 case SVM_VMGEXIT_NMI_COMPLETE: 4296 ++vcpu->stat.nmi_window_exits; 4297 svm->nmi_masked = false; 4298 kvm_make_request(KVM_REQ_EVENT, vcpu); 4299 ret = 1; 4300 break; 4301 case SVM_VMGEXIT_AP_HLT_LOOP: 4302 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT; 4303 ret = kvm_emulate_ap_reset_hold(vcpu); 4304 break; 4305 case SVM_VMGEXIT_AP_JUMP_TABLE: { 4306 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4307 4308 switch (control->exit_info_1) { 4309 case 0: 4310 /* Set AP jump table address */ 4311 sev->ap_jump_table = control->exit_info_2; 4312 break; 4313 case 1: 4314 /* Get AP jump table address */ 4315 svm_vmgexit_success(svm, sev->ap_jump_table); 4316 break; 4317 default: 4318 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 4319 control->exit_info_1); 4320 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4321 } 4322 4323 ret = 1; 4324 break; 4325 } 4326 case SVM_VMGEXIT_HV_FEATURES: 4327 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED); 4328 ret = 1; 4329 break; 4330 case SVM_VMGEXIT_TERM_REQUEST: 4331 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n", 4332 control->exit_info_1, control->exit_info_2); 4333 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 4334 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM; 4335 vcpu->run->system_event.ndata = 1; 4336 vcpu->run->system_event.data[0] = control->ghcb_gpa; 4337 break; 4338 case SVM_VMGEXIT_PSC: 4339 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2); 4340 if (ret) 4341 break; 4342 4343 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa); 4344 break; 4345 case SVM_VMGEXIT_AP_CREATION: 4346 ret = sev_snp_ap_creation(svm); 4347 if (ret) { 4348 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT); 4349 } 4350 4351 ret = 1; 4352 break; 4353 case SVM_VMGEXIT_GUEST_REQUEST: 4354 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2); 4355 break; 4356 case SVM_VMGEXIT_EXT_GUEST_REQUEST: 4357 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2); 4358 break; 4359 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 4360 vcpu_unimpl(vcpu, 4361 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 4362 control->exit_info_1, control->exit_info_2); 4363 ret = -EINVAL; 4364 break; 4365 default: 4366 ret = svm_invoke_exit_handler(vcpu, exit_code); 4367 } 4368 4369 return ret; 4370 } 4371 4372 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 4373 { 4374 int count; 4375 int bytes; 4376 int r; 4377 4378 if (svm->vmcb->control.exit_info_2 > INT_MAX) 4379 return -EINVAL; 4380 4381 count = svm->vmcb->control.exit_info_2; 4382 if (unlikely(check_mul_overflow(count, size, &bytes))) 4383 return -EINVAL; 4384 4385 r = setup_vmgexit_scratch(svm, in, bytes); 4386 if (r) 4387 return r; 4388 4389 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 4390 count, in); 4391 } 4392 4393 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4394 { 4395 struct kvm_vcpu *vcpu = &svm->vcpu; 4396 4397 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { 4398 bool v_tsc_aux = guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) || 4399 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID); 4400 4401 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); 4402 } 4403 4404 /* 4405 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if 4406 * the host/guest supports its use. 4407 * 4408 * KVM treats the guest as being capable of using XSAVES even if XSAVES 4409 * isn't enabled in guest CPUID as there is no intercept for XSAVES, 4410 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is 4411 * exposed to the guest and XSAVES is supported in hardware. Condition 4412 * full XSS passthrough on the guest being able to use XSAVES *and* 4413 * XSAVES being exposed to the guest so that KVM can at least honor 4414 * guest CPUID for RDMSR and WRMSR. 4415 */ 4416 if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && 4417 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4418 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); 4419 else 4420 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0); 4421 } 4422 4423 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm) 4424 { 4425 struct kvm_vcpu *vcpu = &svm->vcpu; 4426 struct kvm_cpuid_entry2 *best; 4427 4428 /* For sev guests, the memory encryption bit is not reserved in CR3. */ 4429 best = kvm_find_cpuid_entry(vcpu, 0x8000001F); 4430 if (best) 4431 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f)); 4432 4433 if (sev_es_guest(svm->vcpu.kvm)) 4434 sev_es_vcpu_after_set_cpuid(svm); 4435 } 4436 4437 static void sev_es_init_vmcb(struct vcpu_svm *svm) 4438 { 4439 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm); 4440 struct vmcb *vmcb = svm->vmcb01.ptr; 4441 struct kvm_vcpu *vcpu = &svm->vcpu; 4442 4443 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 4444 4445 /* 4446 * An SEV-ES guest requires a VMSA area that is a separate from the 4447 * VMCB page. Do not include the encryption mask on the VMSA physical 4448 * address since hardware will access it using the guest key. Note, 4449 * the VMSA will be NULL if this vCPU is the destination for intrahost 4450 * migration, and will be copied later. 4451 */ 4452 if (!svm->sev_es.snp_has_guest_vmsa) { 4453 if (svm->sev_es.vmsa) 4454 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 4455 else 4456 svm->vmcb->control.vmsa_pa = INVALID_PAGE; 4457 } 4458 4459 if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES)) 4460 svm->vmcb->control.allowed_sev_features = sev->vmsa_features | 4461 VMCB_ALLOWED_SEV_FEATURES_VALID; 4462 4463 /* Can't intercept CR register access, HV can't modify CR registers */ 4464 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 4465 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 4466 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 4467 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 4468 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 4469 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 4470 4471 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 4472 4473 /* Track EFER/CR register changes */ 4474 svm_set_intercept(svm, TRAP_EFER_WRITE); 4475 svm_set_intercept(svm, TRAP_CR0_WRITE); 4476 svm_set_intercept(svm, TRAP_CR4_WRITE); 4477 svm_set_intercept(svm, TRAP_CR8_WRITE); 4478 4479 vmcb->control.intercepts[INTERCEPT_DR] = 0; 4480 if (!sev_vcpu_has_debug_swap(svm)) { 4481 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ); 4482 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE); 4483 recalc_intercepts(svm); 4484 } else { 4485 /* 4486 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't 4487 * allow debugging SEV-ES guests, and enables DebugSwap iff 4488 * NO_NESTED_DATA_BP is supported, so there's no reason to 4489 * intercept #DB when DebugSwap is enabled. For simplicity 4490 * with respect to guest debug, intercept #DB for other VMs 4491 * even if NO_NESTED_DATA_BP is supported, i.e. even if the 4492 * guest can't DoS the CPU with infinite #DB vectoring. 4493 */ 4494 clr_exception_intercept(svm, DB_VECTOR); 4495 } 4496 4497 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 4498 svm_clr_intercept(svm, INTERCEPT_XSETBV); 4499 4500 /* Clear intercepts on selected MSRs */ 4501 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 4502 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 4503 } 4504 4505 void sev_init_vmcb(struct vcpu_svm *svm) 4506 { 4507 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; 4508 clr_exception_intercept(svm, UD_VECTOR); 4509 4510 /* 4511 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as 4512 * KVM can't decrypt guest memory to decode the faulting instruction. 4513 */ 4514 clr_exception_intercept(svm, GP_VECTOR); 4515 4516 if (sev_es_guest(svm->vcpu.kvm)) 4517 sev_es_init_vmcb(svm); 4518 } 4519 4520 void sev_es_vcpu_reset(struct vcpu_svm *svm) 4521 { 4522 struct kvm_vcpu *vcpu = &svm->vcpu; 4523 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm); 4524 4525 /* 4526 * Set the GHCB MSR value as per the GHCB specification when emulating 4527 * vCPU RESET for an SEV-ES guest. 4528 */ 4529 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version, 4530 GHCB_VERSION_MIN, 4531 sev_enc_bit)); 4532 4533 mutex_init(&svm->sev_es.snp_vmsa_mutex); 4534 } 4535 4536 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa) 4537 { 4538 struct kvm *kvm = svm->vcpu.kvm; 4539 4540 /* 4541 * All host state for SEV-ES guests is categorized into three swap types 4542 * based on how it is handled by hardware during a world switch: 4543 * 4544 * A: VMRUN: Host state saved in host save area 4545 * VMEXIT: Host state loaded from host save area 4546 * 4547 * B: VMRUN: Host state _NOT_ saved in host save area 4548 * VMEXIT: Host state loaded from host save area 4549 * 4550 * C: VMRUN: Host state _NOT_ saved in host save area 4551 * VMEXIT: Host state initialized to default(reset) values 4552 * 4553 * Manually save type-B state, i.e. state that is loaded by VMEXIT but 4554 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed 4555 * by common SVM code). 4556 */ 4557 hostsa->xcr0 = kvm_host.xcr0; 4558 hostsa->pkru = read_pkru(); 4559 hostsa->xss = kvm_host.xss; 4560 4561 /* 4562 * If DebugSwap is enabled, debug registers are loaded but NOT saved by 4563 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does 4564 * not save or load debug registers. Sadly, KVM can't prevent SNP 4565 * guests from lying about DebugSwap on secondary vCPUs, i.e. the 4566 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what 4567 * the guest has actually enabled (or not!) in the VMSA. 4568 * 4569 * If DebugSwap is *possible*, save the masks so that they're restored 4570 * if the guest enables DebugSwap. But for the DRs themselves, do NOT 4571 * rely on the CPU to restore the host values; KVM will restore them as 4572 * needed in common code, via hw_breakpoint_restore(). Note, KVM does 4573 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs 4574 * don't need to be restored per se, KVM just needs to ensure they are 4575 * loaded with the correct values *if* the CPU writes the MSRs. 4576 */ 4577 if (sev_vcpu_has_debug_swap(svm) || 4578 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) { 4579 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); 4580 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); 4581 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); 4582 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3); 4583 } 4584 } 4585 4586 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 4587 { 4588 struct vcpu_svm *svm = to_svm(vcpu); 4589 4590 /* First SIPI: Use the values as initially set by the VMM */ 4591 if (!svm->sev_es.received_first_sipi) { 4592 svm->sev_es.received_first_sipi = true; 4593 return; 4594 } 4595 4596 /* Subsequent SIPI */ 4597 switch (svm->sev_es.ap_reset_hold_type) { 4598 case AP_RESET_HOLD_NAE_EVENT: 4599 /* 4600 * Return from an AP Reset Hold VMGEXIT, where the guest will 4601 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value. 4602 */ 4603 svm_vmgexit_success(svm, 1); 4604 break; 4605 case AP_RESET_HOLD_MSR_PROTO: 4606 /* 4607 * Return from an AP Reset Hold VMGEXIT, where the guest will 4608 * set the CS and RIP. Set GHCB data field to a non-zero value. 4609 */ 4610 set_ghcb_msr_bits(svm, 1, 4611 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK, 4612 GHCB_MSR_AP_RESET_HOLD_RESULT_POS); 4613 4614 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP, 4615 GHCB_MSR_INFO_MASK, 4616 GHCB_MSR_INFO_POS); 4617 break; 4618 default: 4619 break; 4620 } 4621 } 4622 4623 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) 4624 { 4625 unsigned long pfn; 4626 struct page *p; 4627 4628 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4629 return alloc_pages_node(node, gfp | __GFP_ZERO, 0); 4630 4631 /* 4632 * Allocate an SNP-safe page to workaround the SNP erratum where 4633 * the CPU will incorrectly signal an RMP violation #PF if a 4634 * hugepage (2MB or 1GB) collides with the RMP entry of a 4635 * 2MB-aligned VMCB, VMSA, or AVIC backing page. 4636 * 4637 * Allocate one extra page, choose a page which is not 4638 * 2MB-aligned, and free the other. 4639 */ 4640 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1); 4641 if (!p) 4642 return NULL; 4643 4644 split_page(p, 1); 4645 4646 pfn = page_to_pfn(p); 4647 if (IS_ALIGNED(pfn, PTRS_PER_PMD)) 4648 __free_page(p++); 4649 else 4650 __free_page(p + 1); 4651 4652 return p; 4653 } 4654 4655 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) 4656 { 4657 struct kvm_memory_slot *slot; 4658 struct kvm *kvm = vcpu->kvm; 4659 int order, rmp_level, ret; 4660 struct page *page; 4661 bool assigned; 4662 kvm_pfn_t pfn; 4663 gfn_t gfn; 4664 4665 gfn = gpa >> PAGE_SHIFT; 4666 4667 /* 4668 * The only time RMP faults occur for shared pages is when the guest is 4669 * triggering an RMP fault for an implicit page-state change from 4670 * shared->private. Implicit page-state changes are forwarded to 4671 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults 4672 * for shared pages should not end up here. 4673 */ 4674 if (!kvm_mem_is_private(kvm, gfn)) { 4675 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n", 4676 gpa); 4677 return; 4678 } 4679 4680 slot = gfn_to_memslot(kvm, gfn); 4681 if (!kvm_slot_can_be_private(slot)) { 4682 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n", 4683 gpa); 4684 return; 4685 } 4686 4687 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order); 4688 if (ret) { 4689 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n", 4690 gpa); 4691 return; 4692 } 4693 4694 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4695 if (ret || !assigned) { 4696 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n", 4697 gpa, pfn, ret); 4698 goto out_no_trace; 4699 } 4700 4701 /* 4702 * There are 2 cases where a PSMASH may be needed to resolve an #NPF 4703 * with PFERR_GUEST_RMP_BIT set: 4704 * 4705 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM 4706 * bit set if the guest issues them with a smaller granularity than 4707 * what is indicated by the page-size bit in the 2MB RMP entry for 4708 * the PFN that backs the GPA. 4709 * 4710 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is 4711 * smaller than what is indicated by the 2MB RMP entry for the PFN 4712 * that backs the GPA. 4713 * 4714 * In both these cases, the corresponding 2M RMP entry needs to 4715 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already 4716 * split into 4K RMP entries, then this is likely a spurious case which 4717 * can occur when there are concurrent accesses by the guest to a 2MB 4718 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in 4719 * the process of being PMASH'd into 4K entries. These cases should 4720 * resolve automatically on subsequent accesses, so just ignore them 4721 * here. 4722 */ 4723 if (rmp_level == PG_LEVEL_4K) 4724 goto out; 4725 4726 ret = snp_rmptable_psmash(pfn); 4727 if (ret) { 4728 /* 4729 * Look it up again. If it's 4K now then the PSMASH may have 4730 * raced with another process and the issue has already resolved 4731 * itself. 4732 */ 4733 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) && 4734 assigned && rmp_level == PG_LEVEL_4K) 4735 goto out; 4736 4737 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n", 4738 gpa, pfn, ret); 4739 } 4740 4741 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD); 4742 out: 4743 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret); 4744 out_no_trace: 4745 kvm_release_page_unused(page); 4746 } 4747 4748 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end) 4749 { 4750 kvm_pfn_t pfn = start; 4751 4752 while (pfn < end) { 4753 int ret, rmp_level; 4754 bool assigned; 4755 4756 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4757 if (ret) { 4758 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n", 4759 pfn, start, end, rmp_level, ret); 4760 return false; 4761 } 4762 4763 if (assigned) { 4764 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n", 4765 __func__, pfn, start, end, rmp_level); 4766 return false; 4767 } 4768 4769 pfn++; 4770 } 4771 4772 return true; 4773 } 4774 4775 static u8 max_level_for_order(int order) 4776 { 4777 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M)) 4778 return PG_LEVEL_2M; 4779 4780 return PG_LEVEL_4K; 4781 } 4782 4783 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order) 4784 { 4785 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4786 4787 /* 4788 * If this is a large folio, and the entire 2M range containing the 4789 * PFN is currently shared, then the entire 2M-aligned range can be 4790 * set to private via a single 2M RMP entry. 4791 */ 4792 if (max_level_for_order(order) > PG_LEVEL_4K && 4793 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD)) 4794 return true; 4795 4796 return false; 4797 } 4798 4799 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) 4800 { 4801 struct kvm_sev_info *sev = to_kvm_sev_info(kvm); 4802 kvm_pfn_t pfn_aligned; 4803 gfn_t gfn_aligned; 4804 int level, rc; 4805 bool assigned; 4806 4807 if (!sev_snp_guest(kvm)) 4808 return 0; 4809 4810 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4811 if (rc) { 4812 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n", 4813 gfn, pfn, rc); 4814 return -ENOENT; 4815 } 4816 4817 if (assigned) { 4818 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n", 4819 __func__, gfn, pfn, max_order, level); 4820 return 0; 4821 } 4822 4823 if (is_large_rmp_possible(kvm, pfn, max_order)) { 4824 level = PG_LEVEL_2M; 4825 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD); 4826 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD); 4827 } else { 4828 level = PG_LEVEL_4K; 4829 pfn_aligned = pfn; 4830 gfn_aligned = gfn; 4831 } 4832 4833 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false); 4834 if (rc) { 4835 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n", 4836 gfn, pfn, level, rc); 4837 return -EINVAL; 4838 } 4839 4840 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n", 4841 __func__, gfn, pfn, pfn_aligned, max_order, level); 4842 4843 return 0; 4844 } 4845 4846 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) 4847 { 4848 kvm_pfn_t pfn; 4849 4850 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP)) 4851 return; 4852 4853 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end); 4854 4855 for (pfn = start; pfn < end;) { 4856 bool use_2m_update = false; 4857 int rc, rmp_level; 4858 bool assigned; 4859 4860 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level); 4861 if (rc || !assigned) 4862 goto next_pfn; 4863 4864 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) && 4865 end >= (pfn + PTRS_PER_PMD) && 4866 rmp_level > PG_LEVEL_4K; 4867 4868 /* 4869 * If an unaligned PFN corresponds to a 2M region assigned as a 4870 * large page in the RMP table, PSMASH the region into individual 4871 * 4K RMP entries before attempting to convert a 4K sub-page. 4872 */ 4873 if (!use_2m_update && rmp_level > PG_LEVEL_4K) { 4874 /* 4875 * This shouldn't fail, but if it does, report it, but 4876 * still try to update RMP entry to shared and pray this 4877 * was a spurious error that can be addressed later. 4878 */ 4879 rc = snp_rmptable_psmash(pfn); 4880 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n", 4881 pfn, rc); 4882 } 4883 4884 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K); 4885 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n", 4886 pfn, rc)) 4887 goto next_pfn; 4888 4889 /* 4890 * SEV-ES avoids host/guest cache coherency issues through 4891 * WBINVD hooks issued via MMU notifiers during run-time, and 4892 * KVM's VM destroy path at shutdown. Those MMU notifier events 4893 * don't cover gmem since there is no requirement to map pages 4894 * to a HVA in order to use them for a running guest. While the 4895 * shutdown path would still likely cover things for SNP guests, 4896 * userspace may also free gmem pages during run-time via 4897 * hole-punching operations on the guest_memfd, so flush the 4898 * cache entries for these pages before free'ing them back to 4899 * the host. 4900 */ 4901 clflush_cache_range(__va(pfn_to_hpa(pfn)), 4902 use_2m_update ? PMD_SIZE : PAGE_SIZE); 4903 next_pfn: 4904 pfn += use_2m_update ? PTRS_PER_PMD : 1; 4905 cond_resched(); 4906 } 4907 } 4908 4909 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) 4910 { 4911 int level, rc; 4912 bool assigned; 4913 4914 if (!sev_snp_guest(kvm)) 4915 return 0; 4916 4917 rc = snp_lookup_rmpentry(pfn, &assigned, &level); 4918 if (rc || !assigned) 4919 return PG_LEVEL_4K; 4920 4921 return level; 4922 } 4923 4924 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu) 4925 { 4926 struct vcpu_svm *svm = to_svm(vcpu); 4927 struct vmcb_save_area *vmsa; 4928 struct kvm_sev_info *sev; 4929 int error = 0; 4930 int ret; 4931 4932 if (!sev_es_guest(vcpu->kvm)) 4933 return NULL; 4934 4935 /* 4936 * If the VMSA has not yet been encrypted, return a pointer to the 4937 * current un-encrypted VMSA. 4938 */ 4939 if (!vcpu->arch.guest_state_protected) 4940 return (struct vmcb_save_area *)svm->sev_es.vmsa; 4941 4942 sev = to_kvm_sev_info(vcpu->kvm); 4943 4944 /* Check if the SEV policy allows debugging */ 4945 if (sev_snp_guest(vcpu->kvm)) { 4946 if (!(sev->policy & SNP_POLICY_DEBUG)) 4947 return NULL; 4948 } else { 4949 if (sev->policy & SEV_POLICY_NODBG) 4950 return NULL; 4951 } 4952 4953 if (sev_snp_guest(vcpu->kvm)) { 4954 struct sev_data_snp_dbg dbg = {0}; 4955 4956 vmsa = snp_alloc_firmware_page(__GFP_ZERO); 4957 if (!vmsa) 4958 return NULL; 4959 4960 dbg.gctx_paddr = __psp_pa(sev->snp_context); 4961 dbg.src_addr = svm->vmcb->control.vmsa_pa; 4962 dbg.dst_addr = __psp_pa(vmsa); 4963 4964 ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error); 4965 4966 /* 4967 * Return the target page to a hypervisor page no matter what. 4968 * If this fails, the page can't be used, so leak it and don't 4969 * try to use it. 4970 */ 4971 if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa)))) 4972 return NULL; 4973 4974 if (ret) { 4975 pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n", 4976 ret, error, error); 4977 free_page((unsigned long)vmsa); 4978 4979 return NULL; 4980 } 4981 } else { 4982 struct sev_data_dbg dbg = {0}; 4983 struct page *vmsa_page; 4984 4985 vmsa_page = alloc_page(GFP_KERNEL); 4986 if (!vmsa_page) 4987 return NULL; 4988 4989 vmsa = page_address(vmsa_page); 4990 4991 dbg.handle = sev->handle; 4992 dbg.src_addr = svm->vmcb->control.vmsa_pa; 4993 dbg.dst_addr = __psp_pa(vmsa); 4994 dbg.len = PAGE_SIZE; 4995 4996 ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error); 4997 if (ret) { 4998 pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n", 4999 ret, error, error); 5000 __free_page(vmsa_page); 5001 5002 return NULL; 5003 } 5004 } 5005 5006 return vmsa; 5007 } 5008 5009 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa) 5010 { 5011 /* If the VMSA has not yet been encrypted, nothing was allocated */ 5012 if (!vcpu->arch.guest_state_protected || !vmsa) 5013 return; 5014 5015 free_page((unsigned long)vmsa); 5016 } 5017