1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 #include <asm/fpu/internal.h> 21 22 #include <asm/trapnr.h> 23 24 #include "x86.h" 25 #include "svm.h" 26 #include "svm_ops.h" 27 #include "cpuid.h" 28 #include "trace.h" 29 30 #define __ex(x) __kvm_handle_fault_on_reboot(x) 31 32 #ifndef CONFIG_KVM_AMD_SEV 33 /* 34 * When this config is not defined, SEV feature is not supported and APIs in 35 * this file are not used but this file still gets compiled into the KVM AMD 36 * module. 37 * 38 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 39 * misc_res_type {} defined in linux/misc_cgroup.h. 40 * 41 * Below macros allow compilation to succeed. 42 */ 43 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 44 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 45 #endif 46 47 #ifdef CONFIG_KVM_AMD_SEV 48 /* enable/disable SEV support */ 49 static bool sev_enabled = true; 50 module_param_named(sev, sev_enabled, bool, 0444); 51 52 /* enable/disable SEV-ES support */ 53 static bool sev_es_enabled = true; 54 module_param_named(sev_es, sev_es_enabled, bool, 0444); 55 #else 56 #define sev_enabled false 57 #define sev_es_enabled false 58 #endif /* CONFIG_KVM_AMD_SEV */ 59 60 static u8 sev_enc_bit; 61 static DECLARE_RWSEM(sev_deactivate_lock); 62 static DEFINE_MUTEX(sev_bitmap_lock); 63 unsigned int max_sev_asid; 64 static unsigned int min_sev_asid; 65 static unsigned long sev_me_mask; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, pos, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 pos = find_next_bit(sev_reclaim_asid_bitmap, max_asid, min_asid); 84 if (pos >= max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 max_sev_asid); 118 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); 119 120 return true; 121 } 122 123 static int sev_asid_new(struct kvm_sev_info *sev) 124 { 125 int pos, min_asid, max_asid, ret; 126 bool retry = true; 127 enum misc_res_type type; 128 129 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 130 WARN_ON(sev->misc_cg); 131 sev->misc_cg = get_current_misc_cg(); 132 ret = misc_cg_try_charge(type, sev->misc_cg, 1); 133 if (ret) { 134 put_misc_cg(sev->misc_cg); 135 sev->misc_cg = NULL; 136 return ret; 137 } 138 139 mutex_lock(&sev_bitmap_lock); 140 141 /* 142 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 143 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 144 */ 145 min_asid = sev->es_active ? 0 : min_sev_asid - 1; 146 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 147 again: 148 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid); 149 if (pos >= max_asid) { 150 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 151 retry = false; 152 goto again; 153 } 154 mutex_unlock(&sev_bitmap_lock); 155 ret = -EBUSY; 156 goto e_uncharge; 157 } 158 159 __set_bit(pos, sev_asid_bitmap); 160 161 mutex_unlock(&sev_bitmap_lock); 162 163 return pos + 1; 164 e_uncharge: 165 misc_cg_uncharge(type, sev->misc_cg, 1); 166 put_misc_cg(sev->misc_cg); 167 sev->misc_cg = NULL; 168 return ret; 169 } 170 171 static int sev_get_asid(struct kvm *kvm) 172 { 173 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 174 175 return sev->asid; 176 } 177 178 static void sev_asid_free(struct kvm_sev_info *sev) 179 { 180 struct svm_cpu_data *sd; 181 int cpu, pos; 182 enum misc_res_type type; 183 184 mutex_lock(&sev_bitmap_lock); 185 186 pos = sev->asid - 1; 187 __set_bit(pos, sev_reclaim_asid_bitmap); 188 189 for_each_possible_cpu(cpu) { 190 sd = per_cpu(svm_data, cpu); 191 sd->sev_vmcbs[pos] = NULL; 192 } 193 194 mutex_unlock(&sev_bitmap_lock); 195 196 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 197 misc_cg_uncharge(type, sev->misc_cg, 1); 198 put_misc_cg(sev->misc_cg); 199 sev->misc_cg = NULL; 200 } 201 202 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 203 { 204 struct sev_data_decommission decommission; 205 struct sev_data_deactivate deactivate; 206 207 if (!handle) 208 return; 209 210 deactivate.handle = handle; 211 212 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 213 down_read(&sev_deactivate_lock); 214 sev_guest_deactivate(&deactivate, NULL); 215 up_read(&sev_deactivate_lock); 216 217 /* decommission handle */ 218 decommission.handle = handle; 219 sev_guest_decommission(&decommission, NULL); 220 } 221 222 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 223 { 224 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 225 bool es_active = argp->id == KVM_SEV_ES_INIT; 226 int asid, ret; 227 228 if (kvm->created_vcpus) 229 return -EINVAL; 230 231 ret = -EBUSY; 232 if (unlikely(sev->active)) 233 return ret; 234 235 sev->es_active = es_active; 236 asid = sev_asid_new(sev); 237 if (asid < 0) 238 goto e_no_asid; 239 sev->asid = asid; 240 241 ret = sev_platform_init(&argp->error); 242 if (ret) 243 goto e_free; 244 245 sev->active = true; 246 sev->asid = asid; 247 INIT_LIST_HEAD(&sev->regions_list); 248 249 return 0; 250 251 e_free: 252 sev_asid_free(sev); 253 sev->asid = 0; 254 e_no_asid: 255 sev->es_active = false; 256 return ret; 257 } 258 259 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 260 { 261 struct sev_data_activate activate; 262 int asid = sev_get_asid(kvm); 263 int ret; 264 265 /* activate ASID on the given handle */ 266 activate.handle = handle; 267 activate.asid = asid; 268 ret = sev_guest_activate(&activate, error); 269 270 return ret; 271 } 272 273 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 274 { 275 struct fd f; 276 int ret; 277 278 f = fdget(fd); 279 if (!f.file) 280 return -EBADF; 281 282 ret = sev_issue_cmd_external_user(f.file, id, data, error); 283 284 fdput(f); 285 return ret; 286 } 287 288 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 289 { 290 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 291 292 return __sev_issue_cmd(sev->fd, id, data, error); 293 } 294 295 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 296 { 297 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 298 struct sev_data_launch_start start; 299 struct kvm_sev_launch_start params; 300 void *dh_blob, *session_blob; 301 int *error = &argp->error; 302 int ret; 303 304 if (!sev_guest(kvm)) 305 return -ENOTTY; 306 307 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 308 return -EFAULT; 309 310 memset(&start, 0, sizeof(start)); 311 312 dh_blob = NULL; 313 if (params.dh_uaddr) { 314 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 315 if (IS_ERR(dh_blob)) 316 return PTR_ERR(dh_blob); 317 318 start.dh_cert_address = __sme_set(__pa(dh_blob)); 319 start.dh_cert_len = params.dh_len; 320 } 321 322 session_blob = NULL; 323 if (params.session_uaddr) { 324 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 325 if (IS_ERR(session_blob)) { 326 ret = PTR_ERR(session_blob); 327 goto e_free_dh; 328 } 329 330 start.session_address = __sme_set(__pa(session_blob)); 331 start.session_len = params.session_len; 332 } 333 334 start.handle = params.handle; 335 start.policy = params.policy; 336 337 /* create memory encryption context */ 338 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 339 if (ret) 340 goto e_free_session; 341 342 /* Bind ASID to this guest */ 343 ret = sev_bind_asid(kvm, start.handle, error); 344 if (ret) 345 goto e_free_session; 346 347 /* return handle to userspace */ 348 params.handle = start.handle; 349 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 350 sev_unbind_asid(kvm, start.handle); 351 ret = -EFAULT; 352 goto e_free_session; 353 } 354 355 sev->handle = start.handle; 356 sev->fd = argp->sev_fd; 357 358 e_free_session: 359 kfree(session_blob); 360 e_free_dh: 361 kfree(dh_blob); 362 return ret; 363 } 364 365 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 366 unsigned long ulen, unsigned long *n, 367 int write) 368 { 369 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 370 unsigned long npages, size; 371 int npinned; 372 unsigned long locked, lock_limit; 373 struct page **pages; 374 unsigned long first, last; 375 int ret; 376 377 lockdep_assert_held(&kvm->lock); 378 379 if (ulen == 0 || uaddr + ulen < uaddr) 380 return ERR_PTR(-EINVAL); 381 382 /* Calculate number of pages. */ 383 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 384 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 385 npages = (last - first + 1); 386 387 locked = sev->pages_locked + npages; 388 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 389 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 390 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 391 return ERR_PTR(-ENOMEM); 392 } 393 394 if (WARN_ON_ONCE(npages > INT_MAX)) 395 return ERR_PTR(-EINVAL); 396 397 /* Avoid using vmalloc for smaller buffers. */ 398 size = npages * sizeof(struct page *); 399 if (size > PAGE_SIZE) 400 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 401 else 402 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 403 404 if (!pages) 405 return ERR_PTR(-ENOMEM); 406 407 /* Pin the user virtual address. */ 408 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 409 if (npinned != npages) { 410 pr_err("SEV: Failure locking %lu pages.\n", npages); 411 ret = -ENOMEM; 412 goto err; 413 } 414 415 *n = npages; 416 sev->pages_locked = locked; 417 418 return pages; 419 420 err: 421 if (npinned > 0) 422 unpin_user_pages(pages, npinned); 423 424 kvfree(pages); 425 return ERR_PTR(ret); 426 } 427 428 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 429 unsigned long npages) 430 { 431 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 432 433 unpin_user_pages(pages, npages); 434 kvfree(pages); 435 sev->pages_locked -= npages; 436 } 437 438 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 439 { 440 uint8_t *page_virtual; 441 unsigned long i; 442 443 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 444 pages == NULL) 445 return; 446 447 for (i = 0; i < npages; i++) { 448 page_virtual = kmap_atomic(pages[i]); 449 clflush_cache_range(page_virtual, PAGE_SIZE); 450 kunmap_atomic(page_virtual); 451 } 452 } 453 454 static unsigned long get_num_contig_pages(unsigned long idx, 455 struct page **inpages, unsigned long npages) 456 { 457 unsigned long paddr, next_paddr; 458 unsigned long i = idx + 1, pages = 1; 459 460 /* find the number of contiguous pages starting from idx */ 461 paddr = __sme_page_pa(inpages[idx]); 462 while (i < npages) { 463 next_paddr = __sme_page_pa(inpages[i++]); 464 if ((paddr + PAGE_SIZE) == next_paddr) { 465 pages++; 466 paddr = next_paddr; 467 continue; 468 } 469 break; 470 } 471 472 return pages; 473 } 474 475 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 476 { 477 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 478 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 479 struct kvm_sev_launch_update_data params; 480 struct sev_data_launch_update_data data; 481 struct page **inpages; 482 int ret; 483 484 if (!sev_guest(kvm)) 485 return -ENOTTY; 486 487 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 488 return -EFAULT; 489 490 vaddr = params.uaddr; 491 size = params.len; 492 vaddr_end = vaddr + size; 493 494 /* Lock the user memory. */ 495 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 496 if (IS_ERR(inpages)) 497 return PTR_ERR(inpages); 498 499 /* 500 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 501 * place; the cache may contain the data that was written unencrypted. 502 */ 503 sev_clflush_pages(inpages, npages); 504 505 data.reserved = 0; 506 data.handle = sev->handle; 507 508 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 509 int offset, len; 510 511 /* 512 * If the user buffer is not page-aligned, calculate the offset 513 * within the page. 514 */ 515 offset = vaddr & (PAGE_SIZE - 1); 516 517 /* Calculate the number of pages that can be encrypted in one go. */ 518 pages = get_num_contig_pages(i, inpages, npages); 519 520 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 521 522 data.len = len; 523 data.address = __sme_page_pa(inpages[i]) + offset; 524 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 525 if (ret) 526 goto e_unpin; 527 528 size -= len; 529 next_vaddr = vaddr + len; 530 } 531 532 e_unpin: 533 /* content of memory is updated, mark pages dirty */ 534 for (i = 0; i < npages; i++) { 535 set_page_dirty_lock(inpages[i]); 536 mark_page_accessed(inpages[i]); 537 } 538 /* unlock the user pages */ 539 sev_unpin_memory(kvm, inpages, npages); 540 return ret; 541 } 542 543 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 544 { 545 struct vmcb_save_area *save = &svm->vmcb->save; 546 547 /* Check some debug related fields before encrypting the VMSA */ 548 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 549 return -EINVAL; 550 551 /* Sync registgers */ 552 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 553 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 554 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 555 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 556 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 557 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 558 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 559 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 560 #ifdef CONFIG_X86_64 561 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 562 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 563 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 564 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 565 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 566 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 567 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 568 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 569 #endif 570 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 571 572 /* Sync some non-GPR registers before encrypting */ 573 save->xcr0 = svm->vcpu.arch.xcr0; 574 save->pkru = svm->vcpu.arch.pkru; 575 save->xss = svm->vcpu.arch.ia32_xss; 576 577 /* 578 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 579 * the traditional VMSA that is part of the VMCB. Copy the 580 * traditional VMSA as it has been built so far (in prep 581 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 582 */ 583 memcpy(svm->vmsa, save, sizeof(*save)); 584 585 return 0; 586 } 587 588 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 589 { 590 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 591 struct sev_data_launch_update_vmsa vmsa; 592 struct kvm_vcpu *vcpu; 593 int i, ret; 594 595 if (!sev_es_guest(kvm)) 596 return -ENOTTY; 597 598 vmsa.reserved = 0; 599 600 kvm_for_each_vcpu(i, vcpu, kvm) { 601 struct vcpu_svm *svm = to_svm(vcpu); 602 603 /* Perform some pre-encryption checks against the VMSA */ 604 ret = sev_es_sync_vmsa(svm); 605 if (ret) 606 return ret; 607 608 /* 609 * The LAUNCH_UPDATE_VMSA command will perform in-place 610 * encryption of the VMSA memory content (i.e it will write 611 * the same memory region with the guest's key), so invalidate 612 * it first. 613 */ 614 clflush_cache_range(svm->vmsa, PAGE_SIZE); 615 616 vmsa.handle = sev->handle; 617 vmsa.address = __sme_pa(svm->vmsa); 618 vmsa.len = PAGE_SIZE; 619 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, 620 &argp->error); 621 if (ret) 622 return ret; 623 624 svm->vcpu.arch.guest_state_protected = true; 625 } 626 627 return 0; 628 } 629 630 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 631 { 632 void __user *measure = (void __user *)(uintptr_t)argp->data; 633 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 634 struct sev_data_launch_measure data; 635 struct kvm_sev_launch_measure params; 636 void __user *p = NULL; 637 void *blob = NULL; 638 int ret; 639 640 if (!sev_guest(kvm)) 641 return -ENOTTY; 642 643 if (copy_from_user(¶ms, measure, sizeof(params))) 644 return -EFAULT; 645 646 memset(&data, 0, sizeof(data)); 647 648 /* User wants to query the blob length */ 649 if (!params.len) 650 goto cmd; 651 652 p = (void __user *)(uintptr_t)params.uaddr; 653 if (p) { 654 if (params.len > SEV_FW_BLOB_MAX_SIZE) 655 return -EINVAL; 656 657 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 658 if (!blob) 659 return -ENOMEM; 660 661 data.address = __psp_pa(blob); 662 data.len = params.len; 663 } 664 665 cmd: 666 data.handle = sev->handle; 667 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 668 669 /* 670 * If we query the session length, FW responded with expected data. 671 */ 672 if (!params.len) 673 goto done; 674 675 if (ret) 676 goto e_free_blob; 677 678 if (blob) { 679 if (copy_to_user(p, blob, params.len)) 680 ret = -EFAULT; 681 } 682 683 done: 684 params.len = data.len; 685 if (copy_to_user(measure, ¶ms, sizeof(params))) 686 ret = -EFAULT; 687 e_free_blob: 688 kfree(blob); 689 return ret; 690 } 691 692 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 693 { 694 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 695 struct sev_data_launch_finish data; 696 697 if (!sev_guest(kvm)) 698 return -ENOTTY; 699 700 data.handle = sev->handle; 701 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 702 } 703 704 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 705 { 706 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 707 struct kvm_sev_guest_status params; 708 struct sev_data_guest_status data; 709 int ret; 710 711 if (!sev_guest(kvm)) 712 return -ENOTTY; 713 714 memset(&data, 0, sizeof(data)); 715 716 data.handle = sev->handle; 717 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 718 if (ret) 719 return ret; 720 721 params.policy = data.policy; 722 params.state = data.state; 723 params.handle = data.handle; 724 725 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 726 ret = -EFAULT; 727 728 return ret; 729 } 730 731 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 732 unsigned long dst, int size, 733 int *error, bool enc) 734 { 735 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 736 struct sev_data_dbg data; 737 738 data.reserved = 0; 739 data.handle = sev->handle; 740 data.dst_addr = dst; 741 data.src_addr = src; 742 data.len = size; 743 744 return sev_issue_cmd(kvm, 745 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 746 &data, error); 747 } 748 749 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 750 unsigned long dst_paddr, int sz, int *err) 751 { 752 int offset; 753 754 /* 755 * Its safe to read more than we are asked, caller should ensure that 756 * destination has enough space. 757 */ 758 offset = src_paddr & 15; 759 src_paddr = round_down(src_paddr, 16); 760 sz = round_up(sz + offset, 16); 761 762 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 763 } 764 765 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 766 unsigned long __user dst_uaddr, 767 unsigned long dst_paddr, 768 int size, int *err) 769 { 770 struct page *tpage = NULL; 771 int ret, offset; 772 773 /* if inputs are not 16-byte then use intermediate buffer */ 774 if (!IS_ALIGNED(dst_paddr, 16) || 775 !IS_ALIGNED(paddr, 16) || 776 !IS_ALIGNED(size, 16)) { 777 tpage = (void *)alloc_page(GFP_KERNEL); 778 if (!tpage) 779 return -ENOMEM; 780 781 dst_paddr = __sme_page_pa(tpage); 782 } 783 784 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 785 if (ret) 786 goto e_free; 787 788 if (tpage) { 789 offset = paddr & 15; 790 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, 791 page_address(tpage) + offset, size)) 792 ret = -EFAULT; 793 } 794 795 e_free: 796 if (tpage) 797 __free_page(tpage); 798 799 return ret; 800 } 801 802 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 803 unsigned long __user vaddr, 804 unsigned long dst_paddr, 805 unsigned long __user dst_vaddr, 806 int size, int *error) 807 { 808 struct page *src_tpage = NULL; 809 struct page *dst_tpage = NULL; 810 int ret, len = size; 811 812 /* If source buffer is not aligned then use an intermediate buffer */ 813 if (!IS_ALIGNED(vaddr, 16)) { 814 src_tpage = alloc_page(GFP_KERNEL); 815 if (!src_tpage) 816 return -ENOMEM; 817 818 if (copy_from_user(page_address(src_tpage), 819 (void __user *)(uintptr_t)vaddr, size)) { 820 __free_page(src_tpage); 821 return -EFAULT; 822 } 823 824 paddr = __sme_page_pa(src_tpage); 825 } 826 827 /* 828 * If destination buffer or length is not aligned then do read-modify-write: 829 * - decrypt destination in an intermediate buffer 830 * - copy the source buffer in an intermediate buffer 831 * - use the intermediate buffer as source buffer 832 */ 833 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 834 int dst_offset; 835 836 dst_tpage = alloc_page(GFP_KERNEL); 837 if (!dst_tpage) { 838 ret = -ENOMEM; 839 goto e_free; 840 } 841 842 ret = __sev_dbg_decrypt(kvm, dst_paddr, 843 __sme_page_pa(dst_tpage), size, error); 844 if (ret) 845 goto e_free; 846 847 /* 848 * If source is kernel buffer then use memcpy() otherwise 849 * copy_from_user(). 850 */ 851 dst_offset = dst_paddr & 15; 852 853 if (src_tpage) 854 memcpy(page_address(dst_tpage) + dst_offset, 855 page_address(src_tpage), size); 856 else { 857 if (copy_from_user(page_address(dst_tpage) + dst_offset, 858 (void __user *)(uintptr_t)vaddr, size)) { 859 ret = -EFAULT; 860 goto e_free; 861 } 862 } 863 864 paddr = __sme_page_pa(dst_tpage); 865 dst_paddr = round_down(dst_paddr, 16); 866 len = round_up(size, 16); 867 } 868 869 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 870 871 e_free: 872 if (src_tpage) 873 __free_page(src_tpage); 874 if (dst_tpage) 875 __free_page(dst_tpage); 876 return ret; 877 } 878 879 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 880 { 881 unsigned long vaddr, vaddr_end, next_vaddr; 882 unsigned long dst_vaddr; 883 struct page **src_p, **dst_p; 884 struct kvm_sev_dbg debug; 885 unsigned long n; 886 unsigned int size; 887 int ret; 888 889 if (!sev_guest(kvm)) 890 return -ENOTTY; 891 892 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 893 return -EFAULT; 894 895 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 896 return -EINVAL; 897 if (!debug.dst_uaddr) 898 return -EINVAL; 899 900 vaddr = debug.src_uaddr; 901 size = debug.len; 902 vaddr_end = vaddr + size; 903 dst_vaddr = debug.dst_uaddr; 904 905 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 906 int len, s_off, d_off; 907 908 /* lock userspace source and destination page */ 909 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 910 if (IS_ERR(src_p)) 911 return PTR_ERR(src_p); 912 913 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 914 if (IS_ERR(dst_p)) { 915 sev_unpin_memory(kvm, src_p, n); 916 return PTR_ERR(dst_p); 917 } 918 919 /* 920 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 921 * the pages; flush the destination too so that future accesses do not 922 * see stale data. 923 */ 924 sev_clflush_pages(src_p, 1); 925 sev_clflush_pages(dst_p, 1); 926 927 /* 928 * Since user buffer may not be page aligned, calculate the 929 * offset within the page. 930 */ 931 s_off = vaddr & ~PAGE_MASK; 932 d_off = dst_vaddr & ~PAGE_MASK; 933 len = min_t(size_t, (PAGE_SIZE - s_off), size); 934 935 if (dec) 936 ret = __sev_dbg_decrypt_user(kvm, 937 __sme_page_pa(src_p[0]) + s_off, 938 dst_vaddr, 939 __sme_page_pa(dst_p[0]) + d_off, 940 len, &argp->error); 941 else 942 ret = __sev_dbg_encrypt_user(kvm, 943 __sme_page_pa(src_p[0]) + s_off, 944 vaddr, 945 __sme_page_pa(dst_p[0]) + d_off, 946 dst_vaddr, 947 len, &argp->error); 948 949 sev_unpin_memory(kvm, src_p, n); 950 sev_unpin_memory(kvm, dst_p, n); 951 952 if (ret) 953 goto err; 954 955 next_vaddr = vaddr + len; 956 dst_vaddr = dst_vaddr + len; 957 size -= len; 958 } 959 err: 960 return ret; 961 } 962 963 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 964 { 965 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 966 struct sev_data_launch_secret data; 967 struct kvm_sev_launch_secret params; 968 struct page **pages; 969 void *blob, *hdr; 970 unsigned long n, i; 971 int ret, offset; 972 973 if (!sev_guest(kvm)) 974 return -ENOTTY; 975 976 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 977 return -EFAULT; 978 979 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 980 if (IS_ERR(pages)) 981 return PTR_ERR(pages); 982 983 /* 984 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 985 * place; the cache may contain the data that was written unencrypted. 986 */ 987 sev_clflush_pages(pages, n); 988 989 /* 990 * The secret must be copied into contiguous memory region, lets verify 991 * that userspace memory pages are contiguous before we issue command. 992 */ 993 if (get_num_contig_pages(0, pages, n) != n) { 994 ret = -EINVAL; 995 goto e_unpin_memory; 996 } 997 998 memset(&data, 0, sizeof(data)); 999 1000 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1001 data.guest_address = __sme_page_pa(pages[0]) + offset; 1002 data.guest_len = params.guest_len; 1003 1004 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1005 if (IS_ERR(blob)) { 1006 ret = PTR_ERR(blob); 1007 goto e_unpin_memory; 1008 } 1009 1010 data.trans_address = __psp_pa(blob); 1011 data.trans_len = params.trans_len; 1012 1013 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1014 if (IS_ERR(hdr)) { 1015 ret = PTR_ERR(hdr); 1016 goto e_free_blob; 1017 } 1018 data.hdr_address = __psp_pa(hdr); 1019 data.hdr_len = params.hdr_len; 1020 1021 data.handle = sev->handle; 1022 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1023 1024 kfree(hdr); 1025 1026 e_free_blob: 1027 kfree(blob); 1028 e_unpin_memory: 1029 /* content of memory is updated, mark pages dirty */ 1030 for (i = 0; i < n; i++) { 1031 set_page_dirty_lock(pages[i]); 1032 mark_page_accessed(pages[i]); 1033 } 1034 sev_unpin_memory(kvm, pages, n); 1035 return ret; 1036 } 1037 1038 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1039 { 1040 void __user *report = (void __user *)(uintptr_t)argp->data; 1041 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1042 struct sev_data_attestation_report data; 1043 struct kvm_sev_attestation_report params; 1044 void __user *p; 1045 void *blob = NULL; 1046 int ret; 1047 1048 if (!sev_guest(kvm)) 1049 return -ENOTTY; 1050 1051 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1052 return -EFAULT; 1053 1054 memset(&data, 0, sizeof(data)); 1055 1056 /* User wants to query the blob length */ 1057 if (!params.len) 1058 goto cmd; 1059 1060 p = (void __user *)(uintptr_t)params.uaddr; 1061 if (p) { 1062 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1063 return -EINVAL; 1064 1065 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1066 if (!blob) 1067 return -ENOMEM; 1068 1069 data.address = __psp_pa(blob); 1070 data.len = params.len; 1071 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1072 } 1073 cmd: 1074 data.handle = sev->handle; 1075 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1076 /* 1077 * If we query the session length, FW responded with expected data. 1078 */ 1079 if (!params.len) 1080 goto done; 1081 1082 if (ret) 1083 goto e_free_blob; 1084 1085 if (blob) { 1086 if (copy_to_user(p, blob, params.len)) 1087 ret = -EFAULT; 1088 } 1089 1090 done: 1091 params.len = data.len; 1092 if (copy_to_user(report, ¶ms, sizeof(params))) 1093 ret = -EFAULT; 1094 e_free_blob: 1095 kfree(blob); 1096 return ret; 1097 } 1098 1099 /* Userspace wants to query session length. */ 1100 static int 1101 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1102 struct kvm_sev_send_start *params) 1103 { 1104 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1105 struct sev_data_send_start data; 1106 int ret; 1107 1108 data.handle = sev->handle; 1109 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1110 if (ret < 0) 1111 return ret; 1112 1113 params->session_len = data.session_len; 1114 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1115 sizeof(struct kvm_sev_send_start))) 1116 ret = -EFAULT; 1117 1118 return ret; 1119 } 1120 1121 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1122 { 1123 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1124 struct sev_data_send_start data; 1125 struct kvm_sev_send_start params; 1126 void *amd_certs, *session_data; 1127 void *pdh_cert, *plat_certs; 1128 int ret; 1129 1130 if (!sev_guest(kvm)) 1131 return -ENOTTY; 1132 1133 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1134 sizeof(struct kvm_sev_send_start))) 1135 return -EFAULT; 1136 1137 /* if session_len is zero, userspace wants to query the session length */ 1138 if (!params.session_len) 1139 return __sev_send_start_query_session_length(kvm, argp, 1140 ¶ms); 1141 1142 /* some sanity checks */ 1143 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1144 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1145 return -EINVAL; 1146 1147 /* allocate the memory to hold the session data blob */ 1148 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1149 if (!session_data) 1150 return -ENOMEM; 1151 1152 /* copy the certificate blobs from userspace */ 1153 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1154 params.pdh_cert_len); 1155 if (IS_ERR(pdh_cert)) { 1156 ret = PTR_ERR(pdh_cert); 1157 goto e_free_session; 1158 } 1159 1160 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1161 params.plat_certs_len); 1162 if (IS_ERR(plat_certs)) { 1163 ret = PTR_ERR(plat_certs); 1164 goto e_free_pdh; 1165 } 1166 1167 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1168 params.amd_certs_len); 1169 if (IS_ERR(amd_certs)) { 1170 ret = PTR_ERR(amd_certs); 1171 goto e_free_plat_cert; 1172 } 1173 1174 /* populate the FW SEND_START field with system physical address */ 1175 memset(&data, 0, sizeof(data)); 1176 data.pdh_cert_address = __psp_pa(pdh_cert); 1177 data.pdh_cert_len = params.pdh_cert_len; 1178 data.plat_certs_address = __psp_pa(plat_certs); 1179 data.plat_certs_len = params.plat_certs_len; 1180 data.amd_certs_address = __psp_pa(amd_certs); 1181 data.amd_certs_len = params.amd_certs_len; 1182 data.session_address = __psp_pa(session_data); 1183 data.session_len = params.session_len; 1184 data.handle = sev->handle; 1185 1186 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1187 1188 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1189 session_data, params.session_len)) { 1190 ret = -EFAULT; 1191 goto e_free_amd_cert; 1192 } 1193 1194 params.policy = data.policy; 1195 params.session_len = data.session_len; 1196 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1197 sizeof(struct kvm_sev_send_start))) 1198 ret = -EFAULT; 1199 1200 e_free_amd_cert: 1201 kfree(amd_certs); 1202 e_free_plat_cert: 1203 kfree(plat_certs); 1204 e_free_pdh: 1205 kfree(pdh_cert); 1206 e_free_session: 1207 kfree(session_data); 1208 return ret; 1209 } 1210 1211 /* Userspace wants to query either header or trans length. */ 1212 static int 1213 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1214 struct kvm_sev_send_update_data *params) 1215 { 1216 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1217 struct sev_data_send_update_data data; 1218 int ret; 1219 1220 data.handle = sev->handle; 1221 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1222 if (ret < 0) 1223 return ret; 1224 1225 params->hdr_len = data.hdr_len; 1226 params->trans_len = data.trans_len; 1227 1228 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1229 sizeof(struct kvm_sev_send_update_data))) 1230 ret = -EFAULT; 1231 1232 return ret; 1233 } 1234 1235 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1236 { 1237 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1238 struct sev_data_send_update_data data; 1239 struct kvm_sev_send_update_data params; 1240 void *hdr, *trans_data; 1241 struct page **guest_page; 1242 unsigned long n; 1243 int ret, offset; 1244 1245 if (!sev_guest(kvm)) 1246 return -ENOTTY; 1247 1248 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1249 sizeof(struct kvm_sev_send_update_data))) 1250 return -EFAULT; 1251 1252 /* userspace wants to query either header or trans length */ 1253 if (!params.trans_len || !params.hdr_len) 1254 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1255 1256 if (!params.trans_uaddr || !params.guest_uaddr || 1257 !params.guest_len || !params.hdr_uaddr) 1258 return -EINVAL; 1259 1260 /* Check if we are crossing the page boundary */ 1261 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1262 if ((params.guest_len + offset > PAGE_SIZE)) 1263 return -EINVAL; 1264 1265 /* Pin guest memory */ 1266 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1267 PAGE_SIZE, &n, 0); 1268 if (!guest_page) 1269 return -EFAULT; 1270 1271 /* allocate memory for header and transport buffer */ 1272 ret = -ENOMEM; 1273 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1274 if (!hdr) 1275 goto e_unpin; 1276 1277 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1278 if (!trans_data) 1279 goto e_free_hdr; 1280 1281 memset(&data, 0, sizeof(data)); 1282 data.hdr_address = __psp_pa(hdr); 1283 data.hdr_len = params.hdr_len; 1284 data.trans_address = __psp_pa(trans_data); 1285 data.trans_len = params.trans_len; 1286 1287 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1288 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1289 data.guest_address |= sev_me_mask; 1290 data.guest_len = params.guest_len; 1291 data.handle = sev->handle; 1292 1293 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1294 1295 if (ret) 1296 goto e_free_trans_data; 1297 1298 /* copy transport buffer to user space */ 1299 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1300 trans_data, params.trans_len)) { 1301 ret = -EFAULT; 1302 goto e_free_trans_data; 1303 } 1304 1305 /* Copy packet header to userspace. */ 1306 ret = copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1307 params.hdr_len); 1308 1309 e_free_trans_data: 1310 kfree(trans_data); 1311 e_free_hdr: 1312 kfree(hdr); 1313 e_unpin: 1314 sev_unpin_memory(kvm, guest_page, n); 1315 1316 return ret; 1317 } 1318 1319 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1320 { 1321 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1322 struct sev_data_send_finish data; 1323 1324 if (!sev_guest(kvm)) 1325 return -ENOTTY; 1326 1327 data.handle = sev->handle; 1328 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1329 } 1330 1331 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1332 { 1333 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1334 struct sev_data_send_cancel data; 1335 1336 if (!sev_guest(kvm)) 1337 return -ENOTTY; 1338 1339 data.handle = sev->handle; 1340 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1341 } 1342 1343 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1344 { 1345 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1346 struct sev_data_receive_start start; 1347 struct kvm_sev_receive_start params; 1348 int *error = &argp->error; 1349 void *session_data; 1350 void *pdh_data; 1351 int ret; 1352 1353 if (!sev_guest(kvm)) 1354 return -ENOTTY; 1355 1356 /* Get parameter from the userspace */ 1357 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1358 sizeof(struct kvm_sev_receive_start))) 1359 return -EFAULT; 1360 1361 /* some sanity checks */ 1362 if (!params.pdh_uaddr || !params.pdh_len || 1363 !params.session_uaddr || !params.session_len) 1364 return -EINVAL; 1365 1366 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1367 if (IS_ERR(pdh_data)) 1368 return PTR_ERR(pdh_data); 1369 1370 session_data = psp_copy_user_blob(params.session_uaddr, 1371 params.session_len); 1372 if (IS_ERR(session_data)) { 1373 ret = PTR_ERR(session_data); 1374 goto e_free_pdh; 1375 } 1376 1377 memset(&start, 0, sizeof(start)); 1378 start.handle = params.handle; 1379 start.policy = params.policy; 1380 start.pdh_cert_address = __psp_pa(pdh_data); 1381 start.pdh_cert_len = params.pdh_len; 1382 start.session_address = __psp_pa(session_data); 1383 start.session_len = params.session_len; 1384 1385 /* create memory encryption context */ 1386 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1387 error); 1388 if (ret) 1389 goto e_free_session; 1390 1391 /* Bind ASID to this guest */ 1392 ret = sev_bind_asid(kvm, start.handle, error); 1393 if (ret) 1394 goto e_free_session; 1395 1396 params.handle = start.handle; 1397 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1398 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1399 ret = -EFAULT; 1400 sev_unbind_asid(kvm, start.handle); 1401 goto e_free_session; 1402 } 1403 1404 sev->handle = start.handle; 1405 sev->fd = argp->sev_fd; 1406 1407 e_free_session: 1408 kfree(session_data); 1409 e_free_pdh: 1410 kfree(pdh_data); 1411 1412 return ret; 1413 } 1414 1415 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1416 { 1417 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1418 struct kvm_sev_receive_update_data params; 1419 struct sev_data_receive_update_data data; 1420 void *hdr = NULL, *trans = NULL; 1421 struct page **guest_page; 1422 unsigned long n; 1423 int ret, offset; 1424 1425 if (!sev_guest(kvm)) 1426 return -EINVAL; 1427 1428 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1429 sizeof(struct kvm_sev_receive_update_data))) 1430 return -EFAULT; 1431 1432 if (!params.hdr_uaddr || !params.hdr_len || 1433 !params.guest_uaddr || !params.guest_len || 1434 !params.trans_uaddr || !params.trans_len) 1435 return -EINVAL; 1436 1437 /* Check if we are crossing the page boundary */ 1438 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1439 if ((params.guest_len + offset > PAGE_SIZE)) 1440 return -EINVAL; 1441 1442 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1443 if (IS_ERR(hdr)) 1444 return PTR_ERR(hdr); 1445 1446 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1447 if (IS_ERR(trans)) { 1448 ret = PTR_ERR(trans); 1449 goto e_free_hdr; 1450 } 1451 1452 memset(&data, 0, sizeof(data)); 1453 data.hdr_address = __psp_pa(hdr); 1454 data.hdr_len = params.hdr_len; 1455 data.trans_address = __psp_pa(trans); 1456 data.trans_len = params.trans_len; 1457 1458 /* Pin guest memory */ 1459 ret = -EFAULT; 1460 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1461 PAGE_SIZE, &n, 0); 1462 if (!guest_page) 1463 goto e_free_trans; 1464 1465 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1466 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1467 data.guest_address |= sev_me_mask; 1468 data.guest_len = params.guest_len; 1469 data.handle = sev->handle; 1470 1471 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1472 &argp->error); 1473 1474 sev_unpin_memory(kvm, guest_page, n); 1475 1476 e_free_trans: 1477 kfree(trans); 1478 e_free_hdr: 1479 kfree(hdr); 1480 1481 return ret; 1482 } 1483 1484 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1485 { 1486 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1487 struct sev_data_receive_finish data; 1488 1489 if (!sev_guest(kvm)) 1490 return -ENOTTY; 1491 1492 data.handle = sev->handle; 1493 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1494 } 1495 1496 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1497 { 1498 struct kvm_sev_cmd sev_cmd; 1499 int r; 1500 1501 if (!sev_enabled) 1502 return -ENOTTY; 1503 1504 if (!argp) 1505 return 0; 1506 1507 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1508 return -EFAULT; 1509 1510 mutex_lock(&kvm->lock); 1511 1512 /* enc_context_owner handles all memory enc operations */ 1513 if (is_mirroring_enc_context(kvm)) { 1514 r = -EINVAL; 1515 goto out; 1516 } 1517 1518 switch (sev_cmd.id) { 1519 case KVM_SEV_ES_INIT: 1520 if (!sev_es_enabled) { 1521 r = -ENOTTY; 1522 goto out; 1523 } 1524 fallthrough; 1525 case KVM_SEV_INIT: 1526 r = sev_guest_init(kvm, &sev_cmd); 1527 break; 1528 case KVM_SEV_LAUNCH_START: 1529 r = sev_launch_start(kvm, &sev_cmd); 1530 break; 1531 case KVM_SEV_LAUNCH_UPDATE_DATA: 1532 r = sev_launch_update_data(kvm, &sev_cmd); 1533 break; 1534 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1535 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1536 break; 1537 case KVM_SEV_LAUNCH_MEASURE: 1538 r = sev_launch_measure(kvm, &sev_cmd); 1539 break; 1540 case KVM_SEV_LAUNCH_FINISH: 1541 r = sev_launch_finish(kvm, &sev_cmd); 1542 break; 1543 case KVM_SEV_GUEST_STATUS: 1544 r = sev_guest_status(kvm, &sev_cmd); 1545 break; 1546 case KVM_SEV_DBG_DECRYPT: 1547 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1548 break; 1549 case KVM_SEV_DBG_ENCRYPT: 1550 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1551 break; 1552 case KVM_SEV_LAUNCH_SECRET: 1553 r = sev_launch_secret(kvm, &sev_cmd); 1554 break; 1555 case KVM_SEV_GET_ATTESTATION_REPORT: 1556 r = sev_get_attestation_report(kvm, &sev_cmd); 1557 break; 1558 case KVM_SEV_SEND_START: 1559 r = sev_send_start(kvm, &sev_cmd); 1560 break; 1561 case KVM_SEV_SEND_UPDATE_DATA: 1562 r = sev_send_update_data(kvm, &sev_cmd); 1563 break; 1564 case KVM_SEV_SEND_FINISH: 1565 r = sev_send_finish(kvm, &sev_cmd); 1566 break; 1567 case KVM_SEV_SEND_CANCEL: 1568 r = sev_send_cancel(kvm, &sev_cmd); 1569 break; 1570 case KVM_SEV_RECEIVE_START: 1571 r = sev_receive_start(kvm, &sev_cmd); 1572 break; 1573 case KVM_SEV_RECEIVE_UPDATE_DATA: 1574 r = sev_receive_update_data(kvm, &sev_cmd); 1575 break; 1576 case KVM_SEV_RECEIVE_FINISH: 1577 r = sev_receive_finish(kvm, &sev_cmd); 1578 break; 1579 default: 1580 r = -EINVAL; 1581 goto out; 1582 } 1583 1584 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1585 r = -EFAULT; 1586 1587 out: 1588 mutex_unlock(&kvm->lock); 1589 return r; 1590 } 1591 1592 int svm_register_enc_region(struct kvm *kvm, 1593 struct kvm_enc_region *range) 1594 { 1595 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1596 struct enc_region *region; 1597 int ret = 0; 1598 1599 if (!sev_guest(kvm)) 1600 return -ENOTTY; 1601 1602 /* If kvm is mirroring encryption context it isn't responsible for it */ 1603 if (is_mirroring_enc_context(kvm)) 1604 return -EINVAL; 1605 1606 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1607 return -EINVAL; 1608 1609 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1610 if (!region) 1611 return -ENOMEM; 1612 1613 mutex_lock(&kvm->lock); 1614 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1615 if (IS_ERR(region->pages)) { 1616 ret = PTR_ERR(region->pages); 1617 mutex_unlock(&kvm->lock); 1618 goto e_free; 1619 } 1620 1621 region->uaddr = range->addr; 1622 region->size = range->size; 1623 1624 list_add_tail(®ion->list, &sev->regions_list); 1625 mutex_unlock(&kvm->lock); 1626 1627 /* 1628 * The guest may change the memory encryption attribute from C=0 -> C=1 1629 * or vice versa for this memory range. Lets make sure caches are 1630 * flushed to ensure that guest data gets written into memory with 1631 * correct C-bit. 1632 */ 1633 sev_clflush_pages(region->pages, region->npages); 1634 1635 return ret; 1636 1637 e_free: 1638 kfree(region); 1639 return ret; 1640 } 1641 1642 static struct enc_region * 1643 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1644 { 1645 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1646 struct list_head *head = &sev->regions_list; 1647 struct enc_region *i; 1648 1649 list_for_each_entry(i, head, list) { 1650 if (i->uaddr == range->addr && 1651 i->size == range->size) 1652 return i; 1653 } 1654 1655 return NULL; 1656 } 1657 1658 static void __unregister_enc_region_locked(struct kvm *kvm, 1659 struct enc_region *region) 1660 { 1661 sev_unpin_memory(kvm, region->pages, region->npages); 1662 list_del(®ion->list); 1663 kfree(region); 1664 } 1665 1666 int svm_unregister_enc_region(struct kvm *kvm, 1667 struct kvm_enc_region *range) 1668 { 1669 struct enc_region *region; 1670 int ret; 1671 1672 /* If kvm is mirroring encryption context it isn't responsible for it */ 1673 if (is_mirroring_enc_context(kvm)) 1674 return -EINVAL; 1675 1676 mutex_lock(&kvm->lock); 1677 1678 if (!sev_guest(kvm)) { 1679 ret = -ENOTTY; 1680 goto failed; 1681 } 1682 1683 region = find_enc_region(kvm, range); 1684 if (!region) { 1685 ret = -EINVAL; 1686 goto failed; 1687 } 1688 1689 /* 1690 * Ensure that all guest tagged cache entries are flushed before 1691 * releasing the pages back to the system for use. CLFLUSH will 1692 * not do this, so issue a WBINVD. 1693 */ 1694 wbinvd_on_all_cpus(); 1695 1696 __unregister_enc_region_locked(kvm, region); 1697 1698 mutex_unlock(&kvm->lock); 1699 return 0; 1700 1701 failed: 1702 mutex_unlock(&kvm->lock); 1703 return ret; 1704 } 1705 1706 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1707 { 1708 struct file *source_kvm_file; 1709 struct kvm *source_kvm; 1710 struct kvm_sev_info *mirror_sev; 1711 unsigned int asid; 1712 int ret; 1713 1714 source_kvm_file = fget(source_fd); 1715 if (!file_is_kvm(source_kvm_file)) { 1716 ret = -EBADF; 1717 goto e_source_put; 1718 } 1719 1720 source_kvm = source_kvm_file->private_data; 1721 mutex_lock(&source_kvm->lock); 1722 1723 if (!sev_guest(source_kvm)) { 1724 ret = -EINVAL; 1725 goto e_source_unlock; 1726 } 1727 1728 /* Mirrors of mirrors should work, but let's not get silly */ 1729 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1730 ret = -EINVAL; 1731 goto e_source_unlock; 1732 } 1733 1734 asid = to_kvm_svm(source_kvm)->sev_info.asid; 1735 1736 /* 1737 * The mirror kvm holds an enc_context_owner ref so its asid can't 1738 * disappear until we're done with it 1739 */ 1740 kvm_get_kvm(source_kvm); 1741 1742 fput(source_kvm_file); 1743 mutex_unlock(&source_kvm->lock); 1744 mutex_lock(&kvm->lock); 1745 1746 if (sev_guest(kvm)) { 1747 ret = -EINVAL; 1748 goto e_mirror_unlock; 1749 } 1750 1751 /* Set enc_context_owner and copy its encryption context over */ 1752 mirror_sev = &to_kvm_svm(kvm)->sev_info; 1753 mirror_sev->enc_context_owner = source_kvm; 1754 mirror_sev->asid = asid; 1755 mirror_sev->active = true; 1756 1757 mutex_unlock(&kvm->lock); 1758 return 0; 1759 1760 e_mirror_unlock: 1761 mutex_unlock(&kvm->lock); 1762 kvm_put_kvm(source_kvm); 1763 return ret; 1764 e_source_unlock: 1765 mutex_unlock(&source_kvm->lock); 1766 e_source_put: 1767 fput(source_kvm_file); 1768 return ret; 1769 } 1770 1771 void sev_vm_destroy(struct kvm *kvm) 1772 { 1773 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1774 struct list_head *head = &sev->regions_list; 1775 struct list_head *pos, *q; 1776 1777 if (!sev_guest(kvm)) 1778 return; 1779 1780 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 1781 if (is_mirroring_enc_context(kvm)) { 1782 kvm_put_kvm(sev->enc_context_owner); 1783 return; 1784 } 1785 1786 mutex_lock(&kvm->lock); 1787 1788 /* 1789 * Ensure that all guest tagged cache entries are flushed before 1790 * releasing the pages back to the system for use. CLFLUSH will 1791 * not do this, so issue a WBINVD. 1792 */ 1793 wbinvd_on_all_cpus(); 1794 1795 /* 1796 * if userspace was terminated before unregistering the memory regions 1797 * then lets unpin all the registered memory. 1798 */ 1799 if (!list_empty(head)) { 1800 list_for_each_safe(pos, q, head) { 1801 __unregister_enc_region_locked(kvm, 1802 list_entry(pos, struct enc_region, list)); 1803 cond_resched(); 1804 } 1805 } 1806 1807 mutex_unlock(&kvm->lock); 1808 1809 sev_unbind_asid(kvm, sev->handle); 1810 sev_asid_free(sev); 1811 } 1812 1813 void __init sev_set_cpu_caps(void) 1814 { 1815 if (!sev_enabled) 1816 kvm_cpu_cap_clear(X86_FEATURE_SEV); 1817 if (!sev_es_enabled) 1818 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 1819 } 1820 1821 void __init sev_hardware_setup(void) 1822 { 1823 #ifdef CONFIG_KVM_AMD_SEV 1824 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 1825 bool sev_es_supported = false; 1826 bool sev_supported = false; 1827 1828 if (!sev_enabled || !npt_enabled) 1829 goto out; 1830 1831 /* Does the CPU support SEV? */ 1832 if (!boot_cpu_has(X86_FEATURE_SEV)) 1833 goto out; 1834 1835 /* Retrieve SEV CPUID information */ 1836 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1837 1838 /* Set encryption bit location for SEV-ES guests */ 1839 sev_enc_bit = ebx & 0x3f; 1840 1841 /* Maximum number of encrypted guests supported simultaneously */ 1842 max_sev_asid = ecx; 1843 if (!max_sev_asid) 1844 goto out; 1845 1846 /* Minimum ASID value that should be used for SEV guest */ 1847 min_sev_asid = edx; 1848 sev_me_mask = 1UL << (ebx & 0x3f); 1849 1850 /* Initialize SEV ASID bitmaps */ 1851 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1852 if (!sev_asid_bitmap) 1853 goto out; 1854 1855 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1856 if (!sev_reclaim_asid_bitmap) { 1857 bitmap_free(sev_asid_bitmap); 1858 sev_asid_bitmap = NULL; 1859 goto out; 1860 } 1861 1862 sev_asid_count = max_sev_asid - min_sev_asid + 1; 1863 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 1864 goto out; 1865 1866 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 1867 sev_supported = true; 1868 1869 /* SEV-ES support requested? */ 1870 if (!sev_es_enabled) 1871 goto out; 1872 1873 /* Does the CPU support SEV-ES? */ 1874 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1875 goto out; 1876 1877 /* Has the system been allocated ASIDs for SEV-ES? */ 1878 if (min_sev_asid == 1) 1879 goto out; 1880 1881 sev_es_asid_count = min_sev_asid - 1; 1882 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 1883 goto out; 1884 1885 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 1886 sev_es_supported = true; 1887 1888 out: 1889 sev_enabled = sev_supported; 1890 sev_es_enabled = sev_es_supported; 1891 #endif 1892 } 1893 1894 void sev_hardware_teardown(void) 1895 { 1896 if (!sev_enabled) 1897 return; 1898 1899 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 1900 sev_flush_asids(0, max_sev_asid); 1901 1902 bitmap_free(sev_asid_bitmap); 1903 bitmap_free(sev_reclaim_asid_bitmap); 1904 1905 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 1906 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 1907 } 1908 1909 int sev_cpu_init(struct svm_cpu_data *sd) 1910 { 1911 if (!sev_enabled) 1912 return 0; 1913 1914 sd->sev_vmcbs = kcalloc(max_sev_asid + 1, sizeof(void *), GFP_KERNEL); 1915 if (!sd->sev_vmcbs) 1916 return -ENOMEM; 1917 1918 return 0; 1919 } 1920 1921 /* 1922 * Pages used by hardware to hold guest encrypted state must be flushed before 1923 * returning them to the system. 1924 */ 1925 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1926 unsigned long len) 1927 { 1928 /* 1929 * If hardware enforced cache coherency for encrypted mappings of the 1930 * same physical page is supported, nothing to do. 1931 */ 1932 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1933 return; 1934 1935 /* 1936 * If the VM Page Flush MSR is supported, use it to flush the page 1937 * (using the page virtual address and the guest ASID). 1938 */ 1939 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1940 struct kvm_sev_info *sev; 1941 unsigned long va_start; 1942 u64 start, stop; 1943 1944 /* Align start and stop to page boundaries. */ 1945 va_start = (unsigned long)va; 1946 start = (u64)va_start & PAGE_MASK; 1947 stop = PAGE_ALIGN((u64)va_start + len); 1948 1949 if (start < stop) { 1950 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1951 1952 while (start < stop) { 1953 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 1954 start | sev->asid); 1955 1956 start += PAGE_SIZE; 1957 } 1958 1959 return; 1960 } 1961 1962 WARN(1, "Address overflow, using WBINVD\n"); 1963 } 1964 1965 /* 1966 * Hardware should always have one of the above features, 1967 * but if not, use WBINVD and issue a warning. 1968 */ 1969 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 1970 wbinvd_on_all_cpus(); 1971 } 1972 1973 void sev_free_vcpu(struct kvm_vcpu *vcpu) 1974 { 1975 struct vcpu_svm *svm; 1976 1977 if (!sev_es_guest(vcpu->kvm)) 1978 return; 1979 1980 svm = to_svm(vcpu); 1981 1982 if (vcpu->arch.guest_state_protected) 1983 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 1984 __free_page(virt_to_page(svm->vmsa)); 1985 1986 if (svm->ghcb_sa_free) 1987 kfree(svm->ghcb_sa); 1988 } 1989 1990 static void dump_ghcb(struct vcpu_svm *svm) 1991 { 1992 struct ghcb *ghcb = svm->ghcb; 1993 unsigned int nbits; 1994 1995 /* Re-use the dump_invalid_vmcb module parameter */ 1996 if (!dump_invalid_vmcb) { 1997 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 1998 return; 1999 } 2000 2001 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2002 2003 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2004 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2005 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2006 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2007 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2008 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2009 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2010 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2011 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2012 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2013 } 2014 2015 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2016 { 2017 struct kvm_vcpu *vcpu = &svm->vcpu; 2018 struct ghcb *ghcb = svm->ghcb; 2019 2020 /* 2021 * The GHCB protocol so far allows for the following data 2022 * to be returned: 2023 * GPRs RAX, RBX, RCX, RDX 2024 * 2025 * Copy their values, even if they may not have been written during the 2026 * VM-Exit. It's the guest's responsibility to not consume random data. 2027 */ 2028 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2029 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2030 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2031 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2032 } 2033 2034 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2035 { 2036 struct vmcb_control_area *control = &svm->vmcb->control; 2037 struct kvm_vcpu *vcpu = &svm->vcpu; 2038 struct ghcb *ghcb = svm->ghcb; 2039 u64 exit_code; 2040 2041 /* 2042 * The GHCB protocol so far allows for the following data 2043 * to be supplied: 2044 * GPRs RAX, RBX, RCX, RDX 2045 * XCR0 2046 * CPL 2047 * 2048 * VMMCALL allows the guest to provide extra registers. KVM also 2049 * expects RSI for hypercalls, so include that, too. 2050 * 2051 * Copy their values to the appropriate location if supplied. 2052 */ 2053 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2054 2055 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2056 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2057 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2058 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2059 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2060 2061 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2062 2063 if (ghcb_xcr0_is_valid(ghcb)) { 2064 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2065 kvm_update_cpuid_runtime(vcpu); 2066 } 2067 2068 /* Copy the GHCB exit information into the VMCB fields */ 2069 exit_code = ghcb_get_sw_exit_code(ghcb); 2070 control->exit_code = lower_32_bits(exit_code); 2071 control->exit_code_hi = upper_32_bits(exit_code); 2072 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2073 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2074 2075 /* Clear the valid entries fields */ 2076 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2077 } 2078 2079 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2080 { 2081 struct kvm_vcpu *vcpu; 2082 struct ghcb *ghcb; 2083 u64 exit_code = 0; 2084 2085 ghcb = svm->ghcb; 2086 2087 /* Only GHCB Usage code 0 is supported */ 2088 if (ghcb->ghcb_usage) 2089 goto vmgexit_err; 2090 2091 /* 2092 * Retrieve the exit code now even though is may not be marked valid 2093 * as it could help with debugging. 2094 */ 2095 exit_code = ghcb_get_sw_exit_code(ghcb); 2096 2097 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2098 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2099 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2100 goto vmgexit_err; 2101 2102 switch (ghcb_get_sw_exit_code(ghcb)) { 2103 case SVM_EXIT_READ_DR7: 2104 break; 2105 case SVM_EXIT_WRITE_DR7: 2106 if (!ghcb_rax_is_valid(ghcb)) 2107 goto vmgexit_err; 2108 break; 2109 case SVM_EXIT_RDTSC: 2110 break; 2111 case SVM_EXIT_RDPMC: 2112 if (!ghcb_rcx_is_valid(ghcb)) 2113 goto vmgexit_err; 2114 break; 2115 case SVM_EXIT_CPUID: 2116 if (!ghcb_rax_is_valid(ghcb) || 2117 !ghcb_rcx_is_valid(ghcb)) 2118 goto vmgexit_err; 2119 if (ghcb_get_rax(ghcb) == 0xd) 2120 if (!ghcb_xcr0_is_valid(ghcb)) 2121 goto vmgexit_err; 2122 break; 2123 case SVM_EXIT_INVD: 2124 break; 2125 case SVM_EXIT_IOIO: 2126 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2127 if (!ghcb_sw_scratch_is_valid(ghcb)) 2128 goto vmgexit_err; 2129 } else { 2130 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2131 if (!ghcb_rax_is_valid(ghcb)) 2132 goto vmgexit_err; 2133 } 2134 break; 2135 case SVM_EXIT_MSR: 2136 if (!ghcb_rcx_is_valid(ghcb)) 2137 goto vmgexit_err; 2138 if (ghcb_get_sw_exit_info_1(ghcb)) { 2139 if (!ghcb_rax_is_valid(ghcb) || 2140 !ghcb_rdx_is_valid(ghcb)) 2141 goto vmgexit_err; 2142 } 2143 break; 2144 case SVM_EXIT_VMMCALL: 2145 if (!ghcb_rax_is_valid(ghcb) || 2146 !ghcb_cpl_is_valid(ghcb)) 2147 goto vmgexit_err; 2148 break; 2149 case SVM_EXIT_RDTSCP: 2150 break; 2151 case SVM_EXIT_WBINVD: 2152 break; 2153 case SVM_EXIT_MONITOR: 2154 if (!ghcb_rax_is_valid(ghcb) || 2155 !ghcb_rcx_is_valid(ghcb) || 2156 !ghcb_rdx_is_valid(ghcb)) 2157 goto vmgexit_err; 2158 break; 2159 case SVM_EXIT_MWAIT: 2160 if (!ghcb_rax_is_valid(ghcb) || 2161 !ghcb_rcx_is_valid(ghcb)) 2162 goto vmgexit_err; 2163 break; 2164 case SVM_VMGEXIT_MMIO_READ: 2165 case SVM_VMGEXIT_MMIO_WRITE: 2166 if (!ghcb_sw_scratch_is_valid(ghcb)) 2167 goto vmgexit_err; 2168 break; 2169 case SVM_VMGEXIT_NMI_COMPLETE: 2170 case SVM_VMGEXIT_AP_HLT_LOOP: 2171 case SVM_VMGEXIT_AP_JUMP_TABLE: 2172 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2173 break; 2174 default: 2175 goto vmgexit_err; 2176 } 2177 2178 return 0; 2179 2180 vmgexit_err: 2181 vcpu = &svm->vcpu; 2182 2183 if (ghcb->ghcb_usage) { 2184 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2185 ghcb->ghcb_usage); 2186 } else { 2187 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2188 exit_code); 2189 dump_ghcb(svm); 2190 } 2191 2192 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2193 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2194 vcpu->run->internal.ndata = 2; 2195 vcpu->run->internal.data[0] = exit_code; 2196 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2197 2198 return -EINVAL; 2199 } 2200 2201 static void pre_sev_es_run(struct vcpu_svm *svm) 2202 { 2203 if (!svm->ghcb) 2204 return; 2205 2206 if (svm->ghcb_sa_free) { 2207 /* 2208 * The scratch area lives outside the GHCB, so there is a 2209 * buffer that, depending on the operation performed, may 2210 * need to be synced, then freed. 2211 */ 2212 if (svm->ghcb_sa_sync) { 2213 kvm_write_guest(svm->vcpu.kvm, 2214 ghcb_get_sw_scratch(svm->ghcb), 2215 svm->ghcb_sa, svm->ghcb_sa_len); 2216 svm->ghcb_sa_sync = false; 2217 } 2218 2219 kfree(svm->ghcb_sa); 2220 svm->ghcb_sa = NULL; 2221 svm->ghcb_sa_free = false; 2222 } 2223 2224 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 2225 2226 sev_es_sync_to_ghcb(svm); 2227 2228 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 2229 svm->ghcb = NULL; 2230 } 2231 2232 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2233 { 2234 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2235 int asid = sev_get_asid(svm->vcpu.kvm); 2236 2237 /* Perform any SEV-ES pre-run actions */ 2238 pre_sev_es_run(svm); 2239 2240 /* Assign the asid allocated with this SEV guest */ 2241 svm->asid = asid; 2242 2243 /* 2244 * Flush guest TLB: 2245 * 2246 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2247 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2248 */ 2249 if (sd->sev_vmcbs[asid] == svm->vmcb && 2250 svm->vcpu.arch.last_vmentry_cpu == cpu) 2251 return; 2252 2253 sd->sev_vmcbs[asid] = svm->vmcb; 2254 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2255 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2256 } 2257 2258 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2259 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2260 { 2261 struct vmcb_control_area *control = &svm->vmcb->control; 2262 struct ghcb *ghcb = svm->ghcb; 2263 u64 ghcb_scratch_beg, ghcb_scratch_end; 2264 u64 scratch_gpa_beg, scratch_gpa_end; 2265 void *scratch_va; 2266 2267 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2268 if (!scratch_gpa_beg) { 2269 pr_err("vmgexit: scratch gpa not provided\n"); 2270 return false; 2271 } 2272 2273 scratch_gpa_end = scratch_gpa_beg + len; 2274 if (scratch_gpa_end < scratch_gpa_beg) { 2275 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2276 len, scratch_gpa_beg); 2277 return false; 2278 } 2279 2280 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2281 /* Scratch area begins within GHCB */ 2282 ghcb_scratch_beg = control->ghcb_gpa + 2283 offsetof(struct ghcb, shared_buffer); 2284 ghcb_scratch_end = control->ghcb_gpa + 2285 offsetof(struct ghcb, reserved_1); 2286 2287 /* 2288 * If the scratch area begins within the GHCB, it must be 2289 * completely contained in the GHCB shared buffer area. 2290 */ 2291 if (scratch_gpa_beg < ghcb_scratch_beg || 2292 scratch_gpa_end > ghcb_scratch_end) { 2293 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2294 scratch_gpa_beg, scratch_gpa_end); 2295 return false; 2296 } 2297 2298 scratch_va = (void *)svm->ghcb; 2299 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2300 } else { 2301 /* 2302 * The guest memory must be read into a kernel buffer, so 2303 * limit the size 2304 */ 2305 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2306 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2307 len, GHCB_SCRATCH_AREA_LIMIT); 2308 return false; 2309 } 2310 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2311 if (!scratch_va) 2312 return false; 2313 2314 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2315 /* Unable to copy scratch area from guest */ 2316 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2317 2318 kfree(scratch_va); 2319 return false; 2320 } 2321 2322 /* 2323 * The scratch area is outside the GHCB. The operation will 2324 * dictate whether the buffer needs to be synced before running 2325 * the vCPU next time (i.e. a read was requested so the data 2326 * must be written back to the guest memory). 2327 */ 2328 svm->ghcb_sa_sync = sync; 2329 svm->ghcb_sa_free = true; 2330 } 2331 2332 svm->ghcb_sa = scratch_va; 2333 svm->ghcb_sa_len = len; 2334 2335 return true; 2336 } 2337 2338 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2339 unsigned int pos) 2340 { 2341 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2342 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2343 } 2344 2345 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2346 { 2347 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2348 } 2349 2350 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2351 { 2352 svm->vmcb->control.ghcb_gpa = value; 2353 } 2354 2355 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2356 { 2357 struct vmcb_control_area *control = &svm->vmcb->control; 2358 struct kvm_vcpu *vcpu = &svm->vcpu; 2359 u64 ghcb_info; 2360 int ret = 1; 2361 2362 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2363 2364 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2365 control->ghcb_gpa); 2366 2367 switch (ghcb_info) { 2368 case GHCB_MSR_SEV_INFO_REQ: 2369 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2370 GHCB_VERSION_MIN, 2371 sev_enc_bit)); 2372 break; 2373 case GHCB_MSR_CPUID_REQ: { 2374 u64 cpuid_fn, cpuid_reg, cpuid_value; 2375 2376 cpuid_fn = get_ghcb_msr_bits(svm, 2377 GHCB_MSR_CPUID_FUNC_MASK, 2378 GHCB_MSR_CPUID_FUNC_POS); 2379 2380 /* Initialize the registers needed by the CPUID intercept */ 2381 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2382 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2383 2384 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2385 if (!ret) { 2386 ret = -EINVAL; 2387 break; 2388 } 2389 2390 cpuid_reg = get_ghcb_msr_bits(svm, 2391 GHCB_MSR_CPUID_REG_MASK, 2392 GHCB_MSR_CPUID_REG_POS); 2393 if (cpuid_reg == 0) 2394 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2395 else if (cpuid_reg == 1) 2396 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2397 else if (cpuid_reg == 2) 2398 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2399 else 2400 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2401 2402 set_ghcb_msr_bits(svm, cpuid_value, 2403 GHCB_MSR_CPUID_VALUE_MASK, 2404 GHCB_MSR_CPUID_VALUE_POS); 2405 2406 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2407 GHCB_MSR_INFO_MASK, 2408 GHCB_MSR_INFO_POS); 2409 break; 2410 } 2411 case GHCB_MSR_TERM_REQ: { 2412 u64 reason_set, reason_code; 2413 2414 reason_set = get_ghcb_msr_bits(svm, 2415 GHCB_MSR_TERM_REASON_SET_MASK, 2416 GHCB_MSR_TERM_REASON_SET_POS); 2417 reason_code = get_ghcb_msr_bits(svm, 2418 GHCB_MSR_TERM_REASON_MASK, 2419 GHCB_MSR_TERM_REASON_POS); 2420 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2421 reason_set, reason_code); 2422 fallthrough; 2423 } 2424 default: 2425 ret = -EINVAL; 2426 } 2427 2428 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2429 control->ghcb_gpa, ret); 2430 2431 return ret; 2432 } 2433 2434 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2435 { 2436 struct vcpu_svm *svm = to_svm(vcpu); 2437 struct vmcb_control_area *control = &svm->vmcb->control; 2438 u64 ghcb_gpa, exit_code; 2439 struct ghcb *ghcb; 2440 int ret; 2441 2442 /* Validate the GHCB */ 2443 ghcb_gpa = control->ghcb_gpa; 2444 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2445 return sev_handle_vmgexit_msr_protocol(svm); 2446 2447 if (!ghcb_gpa) { 2448 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2449 return -EINVAL; 2450 } 2451 2452 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 2453 /* Unable to map GHCB from guest */ 2454 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2455 ghcb_gpa); 2456 return -EINVAL; 2457 } 2458 2459 svm->ghcb = svm->ghcb_map.hva; 2460 ghcb = svm->ghcb_map.hva; 2461 2462 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2463 2464 exit_code = ghcb_get_sw_exit_code(ghcb); 2465 2466 ret = sev_es_validate_vmgexit(svm); 2467 if (ret) 2468 return ret; 2469 2470 sev_es_sync_from_ghcb(svm); 2471 ghcb_set_sw_exit_info_1(ghcb, 0); 2472 ghcb_set_sw_exit_info_2(ghcb, 0); 2473 2474 ret = -EINVAL; 2475 switch (exit_code) { 2476 case SVM_VMGEXIT_MMIO_READ: 2477 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2478 break; 2479 2480 ret = kvm_sev_es_mmio_read(vcpu, 2481 control->exit_info_1, 2482 control->exit_info_2, 2483 svm->ghcb_sa); 2484 break; 2485 case SVM_VMGEXIT_MMIO_WRITE: 2486 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2487 break; 2488 2489 ret = kvm_sev_es_mmio_write(vcpu, 2490 control->exit_info_1, 2491 control->exit_info_2, 2492 svm->ghcb_sa); 2493 break; 2494 case SVM_VMGEXIT_NMI_COMPLETE: 2495 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2496 break; 2497 case SVM_VMGEXIT_AP_HLT_LOOP: 2498 ret = kvm_emulate_ap_reset_hold(vcpu); 2499 break; 2500 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2501 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2502 2503 switch (control->exit_info_1) { 2504 case 0: 2505 /* Set AP jump table address */ 2506 sev->ap_jump_table = control->exit_info_2; 2507 break; 2508 case 1: 2509 /* Get AP jump table address */ 2510 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2511 break; 2512 default: 2513 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2514 control->exit_info_1); 2515 ghcb_set_sw_exit_info_1(ghcb, 1); 2516 ghcb_set_sw_exit_info_2(ghcb, 2517 X86_TRAP_UD | 2518 SVM_EVTINJ_TYPE_EXEPT | 2519 SVM_EVTINJ_VALID); 2520 } 2521 2522 ret = 1; 2523 break; 2524 } 2525 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2526 vcpu_unimpl(vcpu, 2527 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2528 control->exit_info_1, control->exit_info_2); 2529 break; 2530 default: 2531 ret = svm_invoke_exit_handler(vcpu, exit_code); 2532 } 2533 2534 return ret; 2535 } 2536 2537 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2538 { 2539 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2540 return -EINVAL; 2541 2542 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2543 svm->ghcb_sa, svm->ghcb_sa_len, in); 2544 } 2545 2546 void sev_es_init_vmcb(struct vcpu_svm *svm) 2547 { 2548 struct kvm_vcpu *vcpu = &svm->vcpu; 2549 2550 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2551 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2552 2553 /* 2554 * An SEV-ES guest requires a VMSA area that is a separate from the 2555 * VMCB page. Do not include the encryption mask on the VMSA physical 2556 * address since hardware will access it using the guest key. 2557 */ 2558 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2559 2560 /* Can't intercept CR register access, HV can't modify CR registers */ 2561 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2562 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2563 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2564 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2565 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2566 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2567 2568 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2569 2570 /* Track EFER/CR register changes */ 2571 svm_set_intercept(svm, TRAP_EFER_WRITE); 2572 svm_set_intercept(svm, TRAP_CR0_WRITE); 2573 svm_set_intercept(svm, TRAP_CR4_WRITE); 2574 svm_set_intercept(svm, TRAP_CR8_WRITE); 2575 2576 /* No support for enable_vmware_backdoor */ 2577 clr_exception_intercept(svm, GP_VECTOR); 2578 2579 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2580 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2581 2582 /* Clear intercepts on selected MSRs */ 2583 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2584 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2585 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2586 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2587 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2588 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2589 } 2590 2591 void sev_es_create_vcpu(struct vcpu_svm *svm) 2592 { 2593 /* 2594 * Set the GHCB MSR value as per the GHCB specification when creating 2595 * a vCPU for an SEV-ES guest. 2596 */ 2597 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2598 GHCB_VERSION_MIN, 2599 sev_enc_bit)); 2600 } 2601 2602 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2603 { 2604 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2605 struct vmcb_save_area *hostsa; 2606 2607 /* 2608 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2609 * of which one step is to perform a VMLOAD. Since hardware does not 2610 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2611 */ 2612 vmsave(__sme_page_pa(sd->save_area)); 2613 2614 /* XCR0 is restored on VMEXIT, save the current host value */ 2615 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2616 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2617 2618 /* PKRU is restored on VMEXIT, save the current host value */ 2619 hostsa->pkru = read_pkru(); 2620 2621 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2622 hostsa->xss = host_xss; 2623 } 2624 2625 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2626 { 2627 struct vcpu_svm *svm = to_svm(vcpu); 2628 2629 /* First SIPI: Use the values as initially set by the VMM */ 2630 if (!svm->received_first_sipi) { 2631 svm->received_first_sipi = true; 2632 return; 2633 } 2634 2635 /* 2636 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2637 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2638 * non-zero value. 2639 */ 2640 if (!svm->ghcb) 2641 return; 2642 2643 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2644 } 2645