xref: /linux/arch/x86/kvm/svm/sev.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 
21 #include <asm/pkru.h>
22 #include <asm/trapnr.h>
23 #include <asm/fpu/xcr.h>
24 
25 #include "x86.h"
26 #include "svm.h"
27 #include "svm_ops.h"
28 #include "cpuid.h"
29 #include "trace.h"
30 
31 #ifndef CONFIG_KVM_AMD_SEV
32 /*
33  * When this config is not defined, SEV feature is not supported and APIs in
34  * this file are not used but this file still gets compiled into the KVM AMD
35  * module.
36  *
37  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
38  * misc_res_type {} defined in linux/misc_cgroup.h.
39  *
40  * Below macros allow compilation to succeed.
41  */
42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
44 #endif
45 
46 #ifdef CONFIG_KVM_AMD_SEV
47 /* enable/disable SEV support */
48 static bool sev_enabled = true;
49 module_param_named(sev, sev_enabled, bool, 0444);
50 
51 /* enable/disable SEV-ES support */
52 static bool sev_es_enabled = true;
53 module_param_named(sev_es, sev_es_enabled, bool, 0444);
54 #else
55 #define sev_enabled false
56 #define sev_es_enabled false
57 #endif /* CONFIG_KVM_AMD_SEV */
58 
59 static u8 sev_enc_bit;
60 static DECLARE_RWSEM(sev_deactivate_lock);
61 static DEFINE_MUTEX(sev_bitmap_lock);
62 unsigned int max_sev_asid;
63 static unsigned int min_sev_asid;
64 static unsigned long sev_me_mask;
65 static unsigned int nr_asids;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68 
69 struct enc_region {
70 	struct list_head list;
71 	unsigned long npages;
72 	struct page **pages;
73 	unsigned long uaddr;
74 	unsigned long size;
75 };
76 
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80 	int ret, asid, error = 0;
81 
82 	/* Check if there are any ASIDs to reclaim before performing a flush */
83 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
84 	if (asid > max_asid)
85 		return -EBUSY;
86 
87 	/*
88 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89 	 * so it must be guarded.
90 	 */
91 	down_write(&sev_deactivate_lock);
92 
93 	wbinvd_on_all_cpus();
94 	ret = sev_guest_df_flush(&error);
95 
96 	up_write(&sev_deactivate_lock);
97 
98 	if (ret)
99 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100 
101 	return ret;
102 }
103 
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108 
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112 	if (sev_flush_asids(min_asid, max_asid))
113 		return false;
114 
115 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117 		   nr_asids);
118 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
119 
120 	return true;
121 }
122 
123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
124 {
125 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
126 	return misc_cg_try_charge(type, sev->misc_cg, 1);
127 }
128 
129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
130 {
131 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
132 	misc_cg_uncharge(type, sev->misc_cg, 1);
133 }
134 
135 static int sev_asid_new(struct kvm_sev_info *sev)
136 {
137 	int asid, min_asid, max_asid, ret;
138 	bool retry = true;
139 
140 	WARN_ON(sev->misc_cg);
141 	sev->misc_cg = get_current_misc_cg();
142 	ret = sev_misc_cg_try_charge(sev);
143 	if (ret) {
144 		put_misc_cg(sev->misc_cg);
145 		sev->misc_cg = NULL;
146 		return ret;
147 	}
148 
149 	mutex_lock(&sev_bitmap_lock);
150 
151 	/*
152 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
153 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
154 	 */
155 	min_asid = sev->es_active ? 1 : min_sev_asid;
156 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
157 again:
158 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
159 	if (asid > max_asid) {
160 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
161 			retry = false;
162 			goto again;
163 		}
164 		mutex_unlock(&sev_bitmap_lock);
165 		ret = -EBUSY;
166 		goto e_uncharge;
167 	}
168 
169 	__set_bit(asid, sev_asid_bitmap);
170 
171 	mutex_unlock(&sev_bitmap_lock);
172 
173 	return asid;
174 e_uncharge:
175 	sev_misc_cg_uncharge(sev);
176 	put_misc_cg(sev->misc_cg);
177 	sev->misc_cg = NULL;
178 	return ret;
179 }
180 
181 static int sev_get_asid(struct kvm *kvm)
182 {
183 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
184 
185 	return sev->asid;
186 }
187 
188 static void sev_asid_free(struct kvm_sev_info *sev)
189 {
190 	struct svm_cpu_data *sd;
191 	int cpu;
192 
193 	mutex_lock(&sev_bitmap_lock);
194 
195 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
196 
197 	for_each_possible_cpu(cpu) {
198 		sd = per_cpu(svm_data, cpu);
199 		sd->sev_vmcbs[sev->asid] = NULL;
200 	}
201 
202 	mutex_unlock(&sev_bitmap_lock);
203 
204 	sev_misc_cg_uncharge(sev);
205 	put_misc_cg(sev->misc_cg);
206 	sev->misc_cg = NULL;
207 }
208 
209 static void sev_decommission(unsigned int handle)
210 {
211 	struct sev_data_decommission decommission;
212 
213 	if (!handle)
214 		return;
215 
216 	decommission.handle = handle;
217 	sev_guest_decommission(&decommission, NULL);
218 }
219 
220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
221 {
222 	struct sev_data_deactivate deactivate;
223 
224 	if (!handle)
225 		return;
226 
227 	deactivate.handle = handle;
228 
229 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
230 	down_read(&sev_deactivate_lock);
231 	sev_guest_deactivate(&deactivate, NULL);
232 	up_read(&sev_deactivate_lock);
233 
234 	sev_decommission(handle);
235 }
236 
237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
238 {
239 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
240 	int asid, ret;
241 
242 	if (kvm->created_vcpus)
243 		return -EINVAL;
244 
245 	ret = -EBUSY;
246 	if (unlikely(sev->active))
247 		return ret;
248 
249 	sev->active = true;
250 	sev->es_active = argp->id == KVM_SEV_ES_INIT;
251 	asid = sev_asid_new(sev);
252 	if (asid < 0)
253 		goto e_no_asid;
254 	sev->asid = asid;
255 
256 	ret = sev_platform_init(&argp->error);
257 	if (ret)
258 		goto e_free;
259 
260 	INIT_LIST_HEAD(&sev->regions_list);
261 
262 	return 0;
263 
264 e_free:
265 	sev_asid_free(sev);
266 	sev->asid = 0;
267 e_no_asid:
268 	sev->es_active = false;
269 	sev->active = false;
270 	return ret;
271 }
272 
273 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
274 {
275 	struct sev_data_activate activate;
276 	int asid = sev_get_asid(kvm);
277 	int ret;
278 
279 	/* activate ASID on the given handle */
280 	activate.handle = handle;
281 	activate.asid   = asid;
282 	ret = sev_guest_activate(&activate, error);
283 
284 	return ret;
285 }
286 
287 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
288 {
289 	struct fd f;
290 	int ret;
291 
292 	f = fdget(fd);
293 	if (!f.file)
294 		return -EBADF;
295 
296 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
297 
298 	fdput(f);
299 	return ret;
300 }
301 
302 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
303 {
304 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
305 
306 	return __sev_issue_cmd(sev->fd, id, data, error);
307 }
308 
309 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
310 {
311 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
312 	struct sev_data_launch_start start;
313 	struct kvm_sev_launch_start params;
314 	void *dh_blob, *session_blob;
315 	int *error = &argp->error;
316 	int ret;
317 
318 	if (!sev_guest(kvm))
319 		return -ENOTTY;
320 
321 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
322 		return -EFAULT;
323 
324 	memset(&start, 0, sizeof(start));
325 
326 	dh_blob = NULL;
327 	if (params.dh_uaddr) {
328 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
329 		if (IS_ERR(dh_blob))
330 			return PTR_ERR(dh_blob);
331 
332 		start.dh_cert_address = __sme_set(__pa(dh_blob));
333 		start.dh_cert_len = params.dh_len;
334 	}
335 
336 	session_blob = NULL;
337 	if (params.session_uaddr) {
338 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
339 		if (IS_ERR(session_blob)) {
340 			ret = PTR_ERR(session_blob);
341 			goto e_free_dh;
342 		}
343 
344 		start.session_address = __sme_set(__pa(session_blob));
345 		start.session_len = params.session_len;
346 	}
347 
348 	start.handle = params.handle;
349 	start.policy = params.policy;
350 
351 	/* create memory encryption context */
352 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
353 	if (ret)
354 		goto e_free_session;
355 
356 	/* Bind ASID to this guest */
357 	ret = sev_bind_asid(kvm, start.handle, error);
358 	if (ret) {
359 		sev_decommission(start.handle);
360 		goto e_free_session;
361 	}
362 
363 	/* return handle to userspace */
364 	params.handle = start.handle;
365 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
366 		sev_unbind_asid(kvm, start.handle);
367 		ret = -EFAULT;
368 		goto e_free_session;
369 	}
370 
371 	sev->handle = start.handle;
372 	sev->fd = argp->sev_fd;
373 
374 e_free_session:
375 	kfree(session_blob);
376 e_free_dh:
377 	kfree(dh_blob);
378 	return ret;
379 }
380 
381 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
382 				    unsigned long ulen, unsigned long *n,
383 				    int write)
384 {
385 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
386 	unsigned long npages, size;
387 	int npinned;
388 	unsigned long locked, lock_limit;
389 	struct page **pages;
390 	unsigned long first, last;
391 	int ret;
392 
393 	lockdep_assert_held(&kvm->lock);
394 
395 	if (ulen == 0 || uaddr + ulen < uaddr)
396 		return ERR_PTR(-EINVAL);
397 
398 	/* Calculate number of pages. */
399 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
400 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
401 	npages = (last - first + 1);
402 
403 	locked = sev->pages_locked + npages;
404 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
405 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
406 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
407 		return ERR_PTR(-ENOMEM);
408 	}
409 
410 	if (WARN_ON_ONCE(npages > INT_MAX))
411 		return ERR_PTR(-EINVAL);
412 
413 	/* Avoid using vmalloc for smaller buffers. */
414 	size = npages * sizeof(struct page *);
415 	if (size > PAGE_SIZE)
416 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
417 	else
418 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
419 
420 	if (!pages)
421 		return ERR_PTR(-ENOMEM);
422 
423 	/* Pin the user virtual address. */
424 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
425 	if (npinned != npages) {
426 		pr_err("SEV: Failure locking %lu pages.\n", npages);
427 		ret = -ENOMEM;
428 		goto err;
429 	}
430 
431 	*n = npages;
432 	sev->pages_locked = locked;
433 
434 	return pages;
435 
436 err:
437 	if (npinned > 0)
438 		unpin_user_pages(pages, npinned);
439 
440 	kvfree(pages);
441 	return ERR_PTR(ret);
442 }
443 
444 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
445 			     unsigned long npages)
446 {
447 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
448 
449 	unpin_user_pages(pages, npages);
450 	kvfree(pages);
451 	sev->pages_locked -= npages;
452 }
453 
454 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
455 {
456 	uint8_t *page_virtual;
457 	unsigned long i;
458 
459 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
460 	    pages == NULL)
461 		return;
462 
463 	for (i = 0; i < npages; i++) {
464 		page_virtual = kmap_atomic(pages[i]);
465 		clflush_cache_range(page_virtual, PAGE_SIZE);
466 		kunmap_atomic(page_virtual);
467 	}
468 }
469 
470 static unsigned long get_num_contig_pages(unsigned long idx,
471 				struct page **inpages, unsigned long npages)
472 {
473 	unsigned long paddr, next_paddr;
474 	unsigned long i = idx + 1, pages = 1;
475 
476 	/* find the number of contiguous pages starting from idx */
477 	paddr = __sme_page_pa(inpages[idx]);
478 	while (i < npages) {
479 		next_paddr = __sme_page_pa(inpages[i++]);
480 		if ((paddr + PAGE_SIZE) == next_paddr) {
481 			pages++;
482 			paddr = next_paddr;
483 			continue;
484 		}
485 		break;
486 	}
487 
488 	return pages;
489 }
490 
491 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
492 {
493 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
494 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
495 	struct kvm_sev_launch_update_data params;
496 	struct sev_data_launch_update_data data;
497 	struct page **inpages;
498 	int ret;
499 
500 	if (!sev_guest(kvm))
501 		return -ENOTTY;
502 
503 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
504 		return -EFAULT;
505 
506 	vaddr = params.uaddr;
507 	size = params.len;
508 	vaddr_end = vaddr + size;
509 
510 	/* Lock the user memory. */
511 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
512 	if (IS_ERR(inpages))
513 		return PTR_ERR(inpages);
514 
515 	/*
516 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
517 	 * place; the cache may contain the data that was written unencrypted.
518 	 */
519 	sev_clflush_pages(inpages, npages);
520 
521 	data.reserved = 0;
522 	data.handle = sev->handle;
523 
524 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
525 		int offset, len;
526 
527 		/*
528 		 * If the user buffer is not page-aligned, calculate the offset
529 		 * within the page.
530 		 */
531 		offset = vaddr & (PAGE_SIZE - 1);
532 
533 		/* Calculate the number of pages that can be encrypted in one go. */
534 		pages = get_num_contig_pages(i, inpages, npages);
535 
536 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
537 
538 		data.len = len;
539 		data.address = __sme_page_pa(inpages[i]) + offset;
540 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
541 		if (ret)
542 			goto e_unpin;
543 
544 		size -= len;
545 		next_vaddr = vaddr + len;
546 	}
547 
548 e_unpin:
549 	/* content of memory is updated, mark pages dirty */
550 	for (i = 0; i < npages; i++) {
551 		set_page_dirty_lock(inpages[i]);
552 		mark_page_accessed(inpages[i]);
553 	}
554 	/* unlock the user pages */
555 	sev_unpin_memory(kvm, inpages, npages);
556 	return ret;
557 }
558 
559 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
560 {
561 	struct vmcb_save_area *save = &svm->vmcb->save;
562 
563 	/* Check some debug related fields before encrypting the VMSA */
564 	if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
565 		return -EINVAL;
566 
567 	/* Sync registgers */
568 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
569 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
570 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
571 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
572 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
573 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
574 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
575 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
576 #ifdef CONFIG_X86_64
577 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
578 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
579 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
580 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
581 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
582 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
583 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
584 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
585 #endif
586 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
587 
588 	/* Sync some non-GPR registers before encrypting */
589 	save->xcr0 = svm->vcpu.arch.xcr0;
590 	save->pkru = svm->vcpu.arch.pkru;
591 	save->xss  = svm->vcpu.arch.ia32_xss;
592 	save->dr6  = svm->vcpu.arch.dr6;
593 
594 	/*
595 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
596 	 * the traditional VMSA that is part of the VMCB. Copy the
597 	 * traditional VMSA as it has been built so far (in prep
598 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
599 	 */
600 	memcpy(svm->sev_es.vmsa, save, sizeof(*save));
601 
602 	return 0;
603 }
604 
605 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
606 				    int *error)
607 {
608 	struct sev_data_launch_update_vmsa vmsa;
609 	struct vcpu_svm *svm = to_svm(vcpu);
610 	int ret;
611 
612 	/* Perform some pre-encryption checks against the VMSA */
613 	ret = sev_es_sync_vmsa(svm);
614 	if (ret)
615 		return ret;
616 
617 	/*
618 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
619 	 * the VMSA memory content (i.e it will write the same memory region
620 	 * with the guest's key), so invalidate it first.
621 	 */
622 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
623 
624 	vmsa.reserved = 0;
625 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
626 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
627 	vmsa.len = PAGE_SIZE;
628 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
629 	if (ret)
630 	  return ret;
631 
632 	vcpu->arch.guest_state_protected = true;
633 	return 0;
634 }
635 
636 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
637 {
638 	struct kvm_vcpu *vcpu;
639 	unsigned long i;
640 	int ret;
641 
642 	if (!sev_es_guest(kvm))
643 		return -ENOTTY;
644 
645 	kvm_for_each_vcpu(i, vcpu, kvm) {
646 		ret = mutex_lock_killable(&vcpu->mutex);
647 		if (ret)
648 			return ret;
649 
650 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
651 
652 		mutex_unlock(&vcpu->mutex);
653 		if (ret)
654 			return ret;
655 	}
656 
657 	return 0;
658 }
659 
660 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
661 {
662 	void __user *measure = (void __user *)(uintptr_t)argp->data;
663 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
664 	struct sev_data_launch_measure data;
665 	struct kvm_sev_launch_measure params;
666 	void __user *p = NULL;
667 	void *blob = NULL;
668 	int ret;
669 
670 	if (!sev_guest(kvm))
671 		return -ENOTTY;
672 
673 	if (copy_from_user(&params, measure, sizeof(params)))
674 		return -EFAULT;
675 
676 	memset(&data, 0, sizeof(data));
677 
678 	/* User wants to query the blob length */
679 	if (!params.len)
680 		goto cmd;
681 
682 	p = (void __user *)(uintptr_t)params.uaddr;
683 	if (p) {
684 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
685 			return -EINVAL;
686 
687 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
688 		if (!blob)
689 			return -ENOMEM;
690 
691 		data.address = __psp_pa(blob);
692 		data.len = params.len;
693 	}
694 
695 cmd:
696 	data.handle = sev->handle;
697 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
698 
699 	/*
700 	 * If we query the session length, FW responded with expected data.
701 	 */
702 	if (!params.len)
703 		goto done;
704 
705 	if (ret)
706 		goto e_free_blob;
707 
708 	if (blob) {
709 		if (copy_to_user(p, blob, params.len))
710 			ret = -EFAULT;
711 	}
712 
713 done:
714 	params.len = data.len;
715 	if (copy_to_user(measure, &params, sizeof(params)))
716 		ret = -EFAULT;
717 e_free_blob:
718 	kfree(blob);
719 	return ret;
720 }
721 
722 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
723 {
724 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
725 	struct sev_data_launch_finish data;
726 
727 	if (!sev_guest(kvm))
728 		return -ENOTTY;
729 
730 	data.handle = sev->handle;
731 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
732 }
733 
734 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
735 {
736 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
737 	struct kvm_sev_guest_status params;
738 	struct sev_data_guest_status data;
739 	int ret;
740 
741 	if (!sev_guest(kvm))
742 		return -ENOTTY;
743 
744 	memset(&data, 0, sizeof(data));
745 
746 	data.handle = sev->handle;
747 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
748 	if (ret)
749 		return ret;
750 
751 	params.policy = data.policy;
752 	params.state = data.state;
753 	params.handle = data.handle;
754 
755 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
756 		ret = -EFAULT;
757 
758 	return ret;
759 }
760 
761 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
762 			       unsigned long dst, int size,
763 			       int *error, bool enc)
764 {
765 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
766 	struct sev_data_dbg data;
767 
768 	data.reserved = 0;
769 	data.handle = sev->handle;
770 	data.dst_addr = dst;
771 	data.src_addr = src;
772 	data.len = size;
773 
774 	return sev_issue_cmd(kvm,
775 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
776 			     &data, error);
777 }
778 
779 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
780 			     unsigned long dst_paddr, int sz, int *err)
781 {
782 	int offset;
783 
784 	/*
785 	 * Its safe to read more than we are asked, caller should ensure that
786 	 * destination has enough space.
787 	 */
788 	offset = src_paddr & 15;
789 	src_paddr = round_down(src_paddr, 16);
790 	sz = round_up(sz + offset, 16);
791 
792 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
793 }
794 
795 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
796 				  void __user *dst_uaddr,
797 				  unsigned long dst_paddr,
798 				  int size, int *err)
799 {
800 	struct page *tpage = NULL;
801 	int ret, offset;
802 
803 	/* if inputs are not 16-byte then use intermediate buffer */
804 	if (!IS_ALIGNED(dst_paddr, 16) ||
805 	    !IS_ALIGNED(paddr,     16) ||
806 	    !IS_ALIGNED(size,      16)) {
807 		tpage = (void *)alloc_page(GFP_KERNEL);
808 		if (!tpage)
809 			return -ENOMEM;
810 
811 		dst_paddr = __sme_page_pa(tpage);
812 	}
813 
814 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
815 	if (ret)
816 		goto e_free;
817 
818 	if (tpage) {
819 		offset = paddr & 15;
820 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
821 			ret = -EFAULT;
822 	}
823 
824 e_free:
825 	if (tpage)
826 		__free_page(tpage);
827 
828 	return ret;
829 }
830 
831 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
832 				  void __user *vaddr,
833 				  unsigned long dst_paddr,
834 				  void __user *dst_vaddr,
835 				  int size, int *error)
836 {
837 	struct page *src_tpage = NULL;
838 	struct page *dst_tpage = NULL;
839 	int ret, len = size;
840 
841 	/* If source buffer is not aligned then use an intermediate buffer */
842 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
843 		src_tpage = alloc_page(GFP_KERNEL);
844 		if (!src_tpage)
845 			return -ENOMEM;
846 
847 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
848 			__free_page(src_tpage);
849 			return -EFAULT;
850 		}
851 
852 		paddr = __sme_page_pa(src_tpage);
853 	}
854 
855 	/*
856 	 *  If destination buffer or length is not aligned then do read-modify-write:
857 	 *   - decrypt destination in an intermediate buffer
858 	 *   - copy the source buffer in an intermediate buffer
859 	 *   - use the intermediate buffer as source buffer
860 	 */
861 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
862 		int dst_offset;
863 
864 		dst_tpage = alloc_page(GFP_KERNEL);
865 		if (!dst_tpage) {
866 			ret = -ENOMEM;
867 			goto e_free;
868 		}
869 
870 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
871 					__sme_page_pa(dst_tpage), size, error);
872 		if (ret)
873 			goto e_free;
874 
875 		/*
876 		 *  If source is kernel buffer then use memcpy() otherwise
877 		 *  copy_from_user().
878 		 */
879 		dst_offset = dst_paddr & 15;
880 
881 		if (src_tpage)
882 			memcpy(page_address(dst_tpage) + dst_offset,
883 			       page_address(src_tpage), size);
884 		else {
885 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
886 					   vaddr, size)) {
887 				ret = -EFAULT;
888 				goto e_free;
889 			}
890 		}
891 
892 		paddr = __sme_page_pa(dst_tpage);
893 		dst_paddr = round_down(dst_paddr, 16);
894 		len = round_up(size, 16);
895 	}
896 
897 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
898 
899 e_free:
900 	if (src_tpage)
901 		__free_page(src_tpage);
902 	if (dst_tpage)
903 		__free_page(dst_tpage);
904 	return ret;
905 }
906 
907 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
908 {
909 	unsigned long vaddr, vaddr_end, next_vaddr;
910 	unsigned long dst_vaddr;
911 	struct page **src_p, **dst_p;
912 	struct kvm_sev_dbg debug;
913 	unsigned long n;
914 	unsigned int size;
915 	int ret;
916 
917 	if (!sev_guest(kvm))
918 		return -ENOTTY;
919 
920 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
921 		return -EFAULT;
922 
923 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
924 		return -EINVAL;
925 	if (!debug.dst_uaddr)
926 		return -EINVAL;
927 
928 	vaddr = debug.src_uaddr;
929 	size = debug.len;
930 	vaddr_end = vaddr + size;
931 	dst_vaddr = debug.dst_uaddr;
932 
933 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
934 		int len, s_off, d_off;
935 
936 		/* lock userspace source and destination page */
937 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
938 		if (IS_ERR(src_p))
939 			return PTR_ERR(src_p);
940 
941 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
942 		if (IS_ERR(dst_p)) {
943 			sev_unpin_memory(kvm, src_p, n);
944 			return PTR_ERR(dst_p);
945 		}
946 
947 		/*
948 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
949 		 * the pages; flush the destination too so that future accesses do not
950 		 * see stale data.
951 		 */
952 		sev_clflush_pages(src_p, 1);
953 		sev_clflush_pages(dst_p, 1);
954 
955 		/*
956 		 * Since user buffer may not be page aligned, calculate the
957 		 * offset within the page.
958 		 */
959 		s_off = vaddr & ~PAGE_MASK;
960 		d_off = dst_vaddr & ~PAGE_MASK;
961 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
962 
963 		if (dec)
964 			ret = __sev_dbg_decrypt_user(kvm,
965 						     __sme_page_pa(src_p[0]) + s_off,
966 						     (void __user *)dst_vaddr,
967 						     __sme_page_pa(dst_p[0]) + d_off,
968 						     len, &argp->error);
969 		else
970 			ret = __sev_dbg_encrypt_user(kvm,
971 						     __sme_page_pa(src_p[0]) + s_off,
972 						     (void __user *)vaddr,
973 						     __sme_page_pa(dst_p[0]) + d_off,
974 						     (void __user *)dst_vaddr,
975 						     len, &argp->error);
976 
977 		sev_unpin_memory(kvm, src_p, n);
978 		sev_unpin_memory(kvm, dst_p, n);
979 
980 		if (ret)
981 			goto err;
982 
983 		next_vaddr = vaddr + len;
984 		dst_vaddr = dst_vaddr + len;
985 		size -= len;
986 	}
987 err:
988 	return ret;
989 }
990 
991 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
992 {
993 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
994 	struct sev_data_launch_secret data;
995 	struct kvm_sev_launch_secret params;
996 	struct page **pages;
997 	void *blob, *hdr;
998 	unsigned long n, i;
999 	int ret, offset;
1000 
1001 	if (!sev_guest(kvm))
1002 		return -ENOTTY;
1003 
1004 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1005 		return -EFAULT;
1006 
1007 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1008 	if (IS_ERR(pages))
1009 		return PTR_ERR(pages);
1010 
1011 	/*
1012 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1013 	 * place; the cache may contain the data that was written unencrypted.
1014 	 */
1015 	sev_clflush_pages(pages, n);
1016 
1017 	/*
1018 	 * The secret must be copied into contiguous memory region, lets verify
1019 	 * that userspace memory pages are contiguous before we issue command.
1020 	 */
1021 	if (get_num_contig_pages(0, pages, n) != n) {
1022 		ret = -EINVAL;
1023 		goto e_unpin_memory;
1024 	}
1025 
1026 	memset(&data, 0, sizeof(data));
1027 
1028 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1029 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1030 	data.guest_len = params.guest_len;
1031 
1032 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1033 	if (IS_ERR(blob)) {
1034 		ret = PTR_ERR(blob);
1035 		goto e_unpin_memory;
1036 	}
1037 
1038 	data.trans_address = __psp_pa(blob);
1039 	data.trans_len = params.trans_len;
1040 
1041 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1042 	if (IS_ERR(hdr)) {
1043 		ret = PTR_ERR(hdr);
1044 		goto e_free_blob;
1045 	}
1046 	data.hdr_address = __psp_pa(hdr);
1047 	data.hdr_len = params.hdr_len;
1048 
1049 	data.handle = sev->handle;
1050 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1051 
1052 	kfree(hdr);
1053 
1054 e_free_blob:
1055 	kfree(blob);
1056 e_unpin_memory:
1057 	/* content of memory is updated, mark pages dirty */
1058 	for (i = 0; i < n; i++) {
1059 		set_page_dirty_lock(pages[i]);
1060 		mark_page_accessed(pages[i]);
1061 	}
1062 	sev_unpin_memory(kvm, pages, n);
1063 	return ret;
1064 }
1065 
1066 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1067 {
1068 	void __user *report = (void __user *)(uintptr_t)argp->data;
1069 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1070 	struct sev_data_attestation_report data;
1071 	struct kvm_sev_attestation_report params;
1072 	void __user *p;
1073 	void *blob = NULL;
1074 	int ret;
1075 
1076 	if (!sev_guest(kvm))
1077 		return -ENOTTY;
1078 
1079 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1080 		return -EFAULT;
1081 
1082 	memset(&data, 0, sizeof(data));
1083 
1084 	/* User wants to query the blob length */
1085 	if (!params.len)
1086 		goto cmd;
1087 
1088 	p = (void __user *)(uintptr_t)params.uaddr;
1089 	if (p) {
1090 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1091 			return -EINVAL;
1092 
1093 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1094 		if (!blob)
1095 			return -ENOMEM;
1096 
1097 		data.address = __psp_pa(blob);
1098 		data.len = params.len;
1099 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1100 	}
1101 cmd:
1102 	data.handle = sev->handle;
1103 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1104 	/*
1105 	 * If we query the session length, FW responded with expected data.
1106 	 */
1107 	if (!params.len)
1108 		goto done;
1109 
1110 	if (ret)
1111 		goto e_free_blob;
1112 
1113 	if (blob) {
1114 		if (copy_to_user(p, blob, params.len))
1115 			ret = -EFAULT;
1116 	}
1117 
1118 done:
1119 	params.len = data.len;
1120 	if (copy_to_user(report, &params, sizeof(params)))
1121 		ret = -EFAULT;
1122 e_free_blob:
1123 	kfree(blob);
1124 	return ret;
1125 }
1126 
1127 /* Userspace wants to query session length. */
1128 static int
1129 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1130 				      struct kvm_sev_send_start *params)
1131 {
1132 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1133 	struct sev_data_send_start data;
1134 	int ret;
1135 
1136 	memset(&data, 0, sizeof(data));
1137 	data.handle = sev->handle;
1138 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1139 
1140 	params->session_len = data.session_len;
1141 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1142 				sizeof(struct kvm_sev_send_start)))
1143 		ret = -EFAULT;
1144 
1145 	return ret;
1146 }
1147 
1148 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1149 {
1150 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1151 	struct sev_data_send_start data;
1152 	struct kvm_sev_send_start params;
1153 	void *amd_certs, *session_data;
1154 	void *pdh_cert, *plat_certs;
1155 	int ret;
1156 
1157 	if (!sev_guest(kvm))
1158 		return -ENOTTY;
1159 
1160 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1161 				sizeof(struct kvm_sev_send_start)))
1162 		return -EFAULT;
1163 
1164 	/* if session_len is zero, userspace wants to query the session length */
1165 	if (!params.session_len)
1166 		return __sev_send_start_query_session_length(kvm, argp,
1167 				&params);
1168 
1169 	/* some sanity checks */
1170 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1171 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1172 		return -EINVAL;
1173 
1174 	/* allocate the memory to hold the session data blob */
1175 	session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1176 	if (!session_data)
1177 		return -ENOMEM;
1178 
1179 	/* copy the certificate blobs from userspace */
1180 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1181 				params.pdh_cert_len);
1182 	if (IS_ERR(pdh_cert)) {
1183 		ret = PTR_ERR(pdh_cert);
1184 		goto e_free_session;
1185 	}
1186 
1187 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1188 				params.plat_certs_len);
1189 	if (IS_ERR(plat_certs)) {
1190 		ret = PTR_ERR(plat_certs);
1191 		goto e_free_pdh;
1192 	}
1193 
1194 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1195 				params.amd_certs_len);
1196 	if (IS_ERR(amd_certs)) {
1197 		ret = PTR_ERR(amd_certs);
1198 		goto e_free_plat_cert;
1199 	}
1200 
1201 	/* populate the FW SEND_START field with system physical address */
1202 	memset(&data, 0, sizeof(data));
1203 	data.pdh_cert_address = __psp_pa(pdh_cert);
1204 	data.pdh_cert_len = params.pdh_cert_len;
1205 	data.plat_certs_address = __psp_pa(plat_certs);
1206 	data.plat_certs_len = params.plat_certs_len;
1207 	data.amd_certs_address = __psp_pa(amd_certs);
1208 	data.amd_certs_len = params.amd_certs_len;
1209 	data.session_address = __psp_pa(session_data);
1210 	data.session_len = params.session_len;
1211 	data.handle = sev->handle;
1212 
1213 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1214 
1215 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1216 			session_data, params.session_len)) {
1217 		ret = -EFAULT;
1218 		goto e_free_amd_cert;
1219 	}
1220 
1221 	params.policy = data.policy;
1222 	params.session_len = data.session_len;
1223 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1224 				sizeof(struct kvm_sev_send_start)))
1225 		ret = -EFAULT;
1226 
1227 e_free_amd_cert:
1228 	kfree(amd_certs);
1229 e_free_plat_cert:
1230 	kfree(plat_certs);
1231 e_free_pdh:
1232 	kfree(pdh_cert);
1233 e_free_session:
1234 	kfree(session_data);
1235 	return ret;
1236 }
1237 
1238 /* Userspace wants to query either header or trans length. */
1239 static int
1240 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1241 				     struct kvm_sev_send_update_data *params)
1242 {
1243 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1244 	struct sev_data_send_update_data data;
1245 	int ret;
1246 
1247 	memset(&data, 0, sizeof(data));
1248 	data.handle = sev->handle;
1249 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1250 
1251 	params->hdr_len = data.hdr_len;
1252 	params->trans_len = data.trans_len;
1253 
1254 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1255 			 sizeof(struct kvm_sev_send_update_data)))
1256 		ret = -EFAULT;
1257 
1258 	return ret;
1259 }
1260 
1261 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1262 {
1263 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1264 	struct sev_data_send_update_data data;
1265 	struct kvm_sev_send_update_data params;
1266 	void *hdr, *trans_data;
1267 	struct page **guest_page;
1268 	unsigned long n;
1269 	int ret, offset;
1270 
1271 	if (!sev_guest(kvm))
1272 		return -ENOTTY;
1273 
1274 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1275 			sizeof(struct kvm_sev_send_update_data)))
1276 		return -EFAULT;
1277 
1278 	/* userspace wants to query either header or trans length */
1279 	if (!params.trans_len || !params.hdr_len)
1280 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1281 
1282 	if (!params.trans_uaddr || !params.guest_uaddr ||
1283 	    !params.guest_len || !params.hdr_uaddr)
1284 		return -EINVAL;
1285 
1286 	/* Check if we are crossing the page boundary */
1287 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1288 	if ((params.guest_len + offset > PAGE_SIZE))
1289 		return -EINVAL;
1290 
1291 	/* Pin guest memory */
1292 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1293 				    PAGE_SIZE, &n, 0);
1294 	if (IS_ERR(guest_page))
1295 		return PTR_ERR(guest_page);
1296 
1297 	/* allocate memory for header and transport buffer */
1298 	ret = -ENOMEM;
1299 	hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1300 	if (!hdr)
1301 		goto e_unpin;
1302 
1303 	trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1304 	if (!trans_data)
1305 		goto e_free_hdr;
1306 
1307 	memset(&data, 0, sizeof(data));
1308 	data.hdr_address = __psp_pa(hdr);
1309 	data.hdr_len = params.hdr_len;
1310 	data.trans_address = __psp_pa(trans_data);
1311 	data.trans_len = params.trans_len;
1312 
1313 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1314 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1315 	data.guest_address |= sev_me_mask;
1316 	data.guest_len = params.guest_len;
1317 	data.handle = sev->handle;
1318 
1319 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1320 
1321 	if (ret)
1322 		goto e_free_trans_data;
1323 
1324 	/* copy transport buffer to user space */
1325 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1326 			 trans_data, params.trans_len)) {
1327 		ret = -EFAULT;
1328 		goto e_free_trans_data;
1329 	}
1330 
1331 	/* Copy packet header to userspace. */
1332 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1333 			 params.hdr_len))
1334 		ret = -EFAULT;
1335 
1336 e_free_trans_data:
1337 	kfree(trans_data);
1338 e_free_hdr:
1339 	kfree(hdr);
1340 e_unpin:
1341 	sev_unpin_memory(kvm, guest_page, n);
1342 
1343 	return ret;
1344 }
1345 
1346 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1347 {
1348 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1349 	struct sev_data_send_finish data;
1350 
1351 	if (!sev_guest(kvm))
1352 		return -ENOTTY;
1353 
1354 	data.handle = sev->handle;
1355 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1356 }
1357 
1358 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1359 {
1360 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1361 	struct sev_data_send_cancel data;
1362 
1363 	if (!sev_guest(kvm))
1364 		return -ENOTTY;
1365 
1366 	data.handle = sev->handle;
1367 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1368 }
1369 
1370 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1371 {
1372 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1373 	struct sev_data_receive_start start;
1374 	struct kvm_sev_receive_start params;
1375 	int *error = &argp->error;
1376 	void *session_data;
1377 	void *pdh_data;
1378 	int ret;
1379 
1380 	if (!sev_guest(kvm))
1381 		return -ENOTTY;
1382 
1383 	/* Get parameter from the userspace */
1384 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1385 			sizeof(struct kvm_sev_receive_start)))
1386 		return -EFAULT;
1387 
1388 	/* some sanity checks */
1389 	if (!params.pdh_uaddr || !params.pdh_len ||
1390 	    !params.session_uaddr || !params.session_len)
1391 		return -EINVAL;
1392 
1393 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1394 	if (IS_ERR(pdh_data))
1395 		return PTR_ERR(pdh_data);
1396 
1397 	session_data = psp_copy_user_blob(params.session_uaddr,
1398 			params.session_len);
1399 	if (IS_ERR(session_data)) {
1400 		ret = PTR_ERR(session_data);
1401 		goto e_free_pdh;
1402 	}
1403 
1404 	memset(&start, 0, sizeof(start));
1405 	start.handle = params.handle;
1406 	start.policy = params.policy;
1407 	start.pdh_cert_address = __psp_pa(pdh_data);
1408 	start.pdh_cert_len = params.pdh_len;
1409 	start.session_address = __psp_pa(session_data);
1410 	start.session_len = params.session_len;
1411 
1412 	/* create memory encryption context */
1413 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1414 				error);
1415 	if (ret)
1416 		goto e_free_session;
1417 
1418 	/* Bind ASID to this guest */
1419 	ret = sev_bind_asid(kvm, start.handle, error);
1420 	if (ret) {
1421 		sev_decommission(start.handle);
1422 		goto e_free_session;
1423 	}
1424 
1425 	params.handle = start.handle;
1426 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1427 			 &params, sizeof(struct kvm_sev_receive_start))) {
1428 		ret = -EFAULT;
1429 		sev_unbind_asid(kvm, start.handle);
1430 		goto e_free_session;
1431 	}
1432 
1433     	sev->handle = start.handle;
1434 	sev->fd = argp->sev_fd;
1435 
1436 e_free_session:
1437 	kfree(session_data);
1438 e_free_pdh:
1439 	kfree(pdh_data);
1440 
1441 	return ret;
1442 }
1443 
1444 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1445 {
1446 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1447 	struct kvm_sev_receive_update_data params;
1448 	struct sev_data_receive_update_data data;
1449 	void *hdr = NULL, *trans = NULL;
1450 	struct page **guest_page;
1451 	unsigned long n;
1452 	int ret, offset;
1453 
1454 	if (!sev_guest(kvm))
1455 		return -EINVAL;
1456 
1457 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1458 			sizeof(struct kvm_sev_receive_update_data)))
1459 		return -EFAULT;
1460 
1461 	if (!params.hdr_uaddr || !params.hdr_len ||
1462 	    !params.guest_uaddr || !params.guest_len ||
1463 	    !params.trans_uaddr || !params.trans_len)
1464 		return -EINVAL;
1465 
1466 	/* Check if we are crossing the page boundary */
1467 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1468 	if ((params.guest_len + offset > PAGE_SIZE))
1469 		return -EINVAL;
1470 
1471 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1472 	if (IS_ERR(hdr))
1473 		return PTR_ERR(hdr);
1474 
1475 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1476 	if (IS_ERR(trans)) {
1477 		ret = PTR_ERR(trans);
1478 		goto e_free_hdr;
1479 	}
1480 
1481 	memset(&data, 0, sizeof(data));
1482 	data.hdr_address = __psp_pa(hdr);
1483 	data.hdr_len = params.hdr_len;
1484 	data.trans_address = __psp_pa(trans);
1485 	data.trans_len = params.trans_len;
1486 
1487 	/* Pin guest memory */
1488 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1489 				    PAGE_SIZE, &n, 1);
1490 	if (IS_ERR(guest_page)) {
1491 		ret = PTR_ERR(guest_page);
1492 		goto e_free_trans;
1493 	}
1494 
1495 	/*
1496 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1497 	 * encrypts the written data with the guest's key, and the cache may
1498 	 * contain dirty, unencrypted data.
1499 	 */
1500 	sev_clflush_pages(guest_page, n);
1501 
1502 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1503 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1504 	data.guest_address |= sev_me_mask;
1505 	data.guest_len = params.guest_len;
1506 	data.handle = sev->handle;
1507 
1508 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1509 				&argp->error);
1510 
1511 	sev_unpin_memory(kvm, guest_page, n);
1512 
1513 e_free_trans:
1514 	kfree(trans);
1515 e_free_hdr:
1516 	kfree(hdr);
1517 
1518 	return ret;
1519 }
1520 
1521 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1522 {
1523 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1524 	struct sev_data_receive_finish data;
1525 
1526 	if (!sev_guest(kvm))
1527 		return -ENOTTY;
1528 
1529 	data.handle = sev->handle;
1530 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1531 }
1532 
1533 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1534 {
1535 	/*
1536 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1537 	 * active mirror VMs. Also allow the debugging and status commands.
1538 	 */
1539 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1540 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1541 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1542 		return true;
1543 
1544 	return false;
1545 }
1546 
1547 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1548 {
1549 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1550 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1551 	int r = -EBUSY;
1552 
1553 	if (dst_kvm == src_kvm)
1554 		return -EINVAL;
1555 
1556 	/*
1557 	 * Bail if these VMs are already involved in a migration to avoid
1558 	 * deadlock between two VMs trying to migrate to/from each other.
1559 	 */
1560 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1561 		return -EBUSY;
1562 
1563 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1564 		goto release_dst;
1565 
1566 	r = -EINTR;
1567 	if (mutex_lock_killable(&dst_kvm->lock))
1568 		goto release_src;
1569 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1570 		goto unlock_dst;
1571 	return 0;
1572 
1573 unlock_dst:
1574 	mutex_unlock(&dst_kvm->lock);
1575 release_src:
1576 	atomic_set_release(&src_sev->migration_in_progress, 0);
1577 release_dst:
1578 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1579 	return r;
1580 }
1581 
1582 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1583 {
1584 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1585 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1586 
1587 	mutex_unlock(&dst_kvm->lock);
1588 	mutex_unlock(&src_kvm->lock);
1589 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1590 	atomic_set_release(&src_sev->migration_in_progress, 0);
1591 }
1592 
1593 
1594 static int sev_lock_vcpus_for_migration(struct kvm *kvm)
1595 {
1596 	struct kvm_vcpu *vcpu;
1597 	unsigned long i, j;
1598 
1599 	kvm_for_each_vcpu(i, vcpu, kvm) {
1600 		if (mutex_lock_killable(&vcpu->mutex))
1601 			goto out_unlock;
1602 	}
1603 
1604 	return 0;
1605 
1606 out_unlock:
1607 	kvm_for_each_vcpu(j, vcpu, kvm) {
1608 		if (i == j)
1609 			break;
1610 
1611 		mutex_unlock(&vcpu->mutex);
1612 	}
1613 	return -EINTR;
1614 }
1615 
1616 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1617 {
1618 	struct kvm_vcpu *vcpu;
1619 	unsigned long i;
1620 
1621 	kvm_for_each_vcpu(i, vcpu, kvm) {
1622 		mutex_unlock(&vcpu->mutex);
1623 	}
1624 }
1625 
1626 static void sev_migrate_from(struct kvm_sev_info *dst,
1627 			      struct kvm_sev_info *src)
1628 {
1629 	dst->active = true;
1630 	dst->asid = src->asid;
1631 	dst->handle = src->handle;
1632 	dst->pages_locked = src->pages_locked;
1633 	dst->enc_context_owner = src->enc_context_owner;
1634 
1635 	src->asid = 0;
1636 	src->active = false;
1637 	src->handle = 0;
1638 	src->pages_locked = 0;
1639 	src->enc_context_owner = NULL;
1640 
1641 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1642 }
1643 
1644 static int sev_es_migrate_from(struct kvm *dst, struct kvm *src)
1645 {
1646 	unsigned long i;
1647 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1648 	struct vcpu_svm *dst_svm, *src_svm;
1649 
1650 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1651 		return -EINVAL;
1652 
1653 	kvm_for_each_vcpu(i, src_vcpu, src) {
1654 		if (!src_vcpu->arch.guest_state_protected)
1655 			return -EINVAL;
1656 	}
1657 
1658 	kvm_for_each_vcpu(i, src_vcpu, src) {
1659 		src_svm = to_svm(src_vcpu);
1660 		dst_vcpu = kvm_get_vcpu(dst, i);
1661 		dst_svm = to_svm(dst_vcpu);
1662 
1663 		/*
1664 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1665 		 * clear source fields as appropriate, the state now belongs to
1666 		 * the destination.
1667 		 */
1668 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1669 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1670 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1671 		dst_vcpu->arch.guest_state_protected = true;
1672 
1673 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1674 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1675 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1676 		src_vcpu->arch.guest_state_protected = false;
1677 	}
1678 	to_kvm_svm(src)->sev_info.es_active = false;
1679 	to_kvm_svm(dst)->sev_info.es_active = true;
1680 
1681 	return 0;
1682 }
1683 
1684 int svm_vm_migrate_from(struct kvm *kvm, unsigned int source_fd)
1685 {
1686 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1687 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1688 	struct file *source_kvm_file;
1689 	struct kvm *source_kvm;
1690 	bool charged = false;
1691 	int ret;
1692 
1693 	source_kvm_file = fget(source_fd);
1694 	if (!file_is_kvm(source_kvm_file)) {
1695 		ret = -EBADF;
1696 		goto out_fput;
1697 	}
1698 
1699 	source_kvm = source_kvm_file->private_data;
1700 	ret = sev_lock_two_vms(kvm, source_kvm);
1701 	if (ret)
1702 		goto out_fput;
1703 
1704 	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1705 		ret = -EINVAL;
1706 		goto out_unlock;
1707 	}
1708 
1709 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1710 
1711 	/*
1712 	 * VMs mirroring src's encryption context rely on it to keep the
1713 	 * ASID allocated, but below we are clearing src_sev->asid.
1714 	 */
1715 	if (src_sev->num_mirrored_vms) {
1716 		ret = -EBUSY;
1717 		goto out_unlock;
1718 	}
1719 
1720 	dst_sev->misc_cg = get_current_misc_cg();
1721 	cg_cleanup_sev = dst_sev;
1722 	if (dst_sev->misc_cg != src_sev->misc_cg) {
1723 		ret = sev_misc_cg_try_charge(dst_sev);
1724 		if (ret)
1725 			goto out_dst_cgroup;
1726 		charged = true;
1727 	}
1728 
1729 	ret = sev_lock_vcpus_for_migration(kvm);
1730 	if (ret)
1731 		goto out_dst_cgroup;
1732 	ret = sev_lock_vcpus_for_migration(source_kvm);
1733 	if (ret)
1734 		goto out_dst_vcpu;
1735 
1736 	if (sev_es_guest(source_kvm)) {
1737 		ret = sev_es_migrate_from(kvm, source_kvm);
1738 		if (ret)
1739 			goto out_source_vcpu;
1740 	}
1741 	sev_migrate_from(dst_sev, src_sev);
1742 	kvm_vm_dead(source_kvm);
1743 	cg_cleanup_sev = src_sev;
1744 	ret = 0;
1745 
1746 out_source_vcpu:
1747 	sev_unlock_vcpus_for_migration(source_kvm);
1748 out_dst_vcpu:
1749 	sev_unlock_vcpus_for_migration(kvm);
1750 out_dst_cgroup:
1751 	/* Operates on the source on success, on the destination on failure.  */
1752 	if (charged)
1753 		sev_misc_cg_uncharge(cg_cleanup_sev);
1754 	put_misc_cg(cg_cleanup_sev->misc_cg);
1755 	cg_cleanup_sev->misc_cg = NULL;
1756 out_unlock:
1757 	sev_unlock_two_vms(kvm, source_kvm);
1758 out_fput:
1759 	if (source_kvm_file)
1760 		fput(source_kvm_file);
1761 	return ret;
1762 }
1763 
1764 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1765 {
1766 	struct kvm_sev_cmd sev_cmd;
1767 	int r;
1768 
1769 	if (!sev_enabled)
1770 		return -ENOTTY;
1771 
1772 	if (!argp)
1773 		return 0;
1774 
1775 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1776 		return -EFAULT;
1777 
1778 	mutex_lock(&kvm->lock);
1779 
1780 	/* Only the enc_context_owner handles some memory enc operations. */
1781 	if (is_mirroring_enc_context(kvm) &&
1782 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1783 		r = -EINVAL;
1784 		goto out;
1785 	}
1786 
1787 	switch (sev_cmd.id) {
1788 	case KVM_SEV_ES_INIT:
1789 		if (!sev_es_enabled) {
1790 			r = -ENOTTY;
1791 			goto out;
1792 		}
1793 		fallthrough;
1794 	case KVM_SEV_INIT:
1795 		r = sev_guest_init(kvm, &sev_cmd);
1796 		break;
1797 	case KVM_SEV_LAUNCH_START:
1798 		r = sev_launch_start(kvm, &sev_cmd);
1799 		break;
1800 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1801 		r = sev_launch_update_data(kvm, &sev_cmd);
1802 		break;
1803 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1804 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1805 		break;
1806 	case KVM_SEV_LAUNCH_MEASURE:
1807 		r = sev_launch_measure(kvm, &sev_cmd);
1808 		break;
1809 	case KVM_SEV_LAUNCH_FINISH:
1810 		r = sev_launch_finish(kvm, &sev_cmd);
1811 		break;
1812 	case KVM_SEV_GUEST_STATUS:
1813 		r = sev_guest_status(kvm, &sev_cmd);
1814 		break;
1815 	case KVM_SEV_DBG_DECRYPT:
1816 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1817 		break;
1818 	case KVM_SEV_DBG_ENCRYPT:
1819 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1820 		break;
1821 	case KVM_SEV_LAUNCH_SECRET:
1822 		r = sev_launch_secret(kvm, &sev_cmd);
1823 		break;
1824 	case KVM_SEV_GET_ATTESTATION_REPORT:
1825 		r = sev_get_attestation_report(kvm, &sev_cmd);
1826 		break;
1827 	case KVM_SEV_SEND_START:
1828 		r = sev_send_start(kvm, &sev_cmd);
1829 		break;
1830 	case KVM_SEV_SEND_UPDATE_DATA:
1831 		r = sev_send_update_data(kvm, &sev_cmd);
1832 		break;
1833 	case KVM_SEV_SEND_FINISH:
1834 		r = sev_send_finish(kvm, &sev_cmd);
1835 		break;
1836 	case KVM_SEV_SEND_CANCEL:
1837 		r = sev_send_cancel(kvm, &sev_cmd);
1838 		break;
1839 	case KVM_SEV_RECEIVE_START:
1840 		r = sev_receive_start(kvm, &sev_cmd);
1841 		break;
1842 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1843 		r = sev_receive_update_data(kvm, &sev_cmd);
1844 		break;
1845 	case KVM_SEV_RECEIVE_FINISH:
1846 		r = sev_receive_finish(kvm, &sev_cmd);
1847 		break;
1848 	default:
1849 		r = -EINVAL;
1850 		goto out;
1851 	}
1852 
1853 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1854 		r = -EFAULT;
1855 
1856 out:
1857 	mutex_unlock(&kvm->lock);
1858 	return r;
1859 }
1860 
1861 int svm_register_enc_region(struct kvm *kvm,
1862 			    struct kvm_enc_region *range)
1863 {
1864 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1865 	struct enc_region *region;
1866 	int ret = 0;
1867 
1868 	if (!sev_guest(kvm))
1869 		return -ENOTTY;
1870 
1871 	/* If kvm is mirroring encryption context it isn't responsible for it */
1872 	if (is_mirroring_enc_context(kvm))
1873 		return -EINVAL;
1874 
1875 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1876 		return -EINVAL;
1877 
1878 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1879 	if (!region)
1880 		return -ENOMEM;
1881 
1882 	mutex_lock(&kvm->lock);
1883 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1884 	if (IS_ERR(region->pages)) {
1885 		ret = PTR_ERR(region->pages);
1886 		mutex_unlock(&kvm->lock);
1887 		goto e_free;
1888 	}
1889 
1890 	region->uaddr = range->addr;
1891 	region->size = range->size;
1892 
1893 	list_add_tail(&region->list, &sev->regions_list);
1894 	mutex_unlock(&kvm->lock);
1895 
1896 	/*
1897 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1898 	 * or vice versa for this memory range. Lets make sure caches are
1899 	 * flushed to ensure that guest data gets written into memory with
1900 	 * correct C-bit.
1901 	 */
1902 	sev_clflush_pages(region->pages, region->npages);
1903 
1904 	return ret;
1905 
1906 e_free:
1907 	kfree(region);
1908 	return ret;
1909 }
1910 
1911 static struct enc_region *
1912 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1913 {
1914 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1915 	struct list_head *head = &sev->regions_list;
1916 	struct enc_region *i;
1917 
1918 	list_for_each_entry(i, head, list) {
1919 		if (i->uaddr == range->addr &&
1920 		    i->size == range->size)
1921 			return i;
1922 	}
1923 
1924 	return NULL;
1925 }
1926 
1927 static void __unregister_enc_region_locked(struct kvm *kvm,
1928 					   struct enc_region *region)
1929 {
1930 	sev_unpin_memory(kvm, region->pages, region->npages);
1931 	list_del(&region->list);
1932 	kfree(region);
1933 }
1934 
1935 int svm_unregister_enc_region(struct kvm *kvm,
1936 			      struct kvm_enc_region *range)
1937 {
1938 	struct enc_region *region;
1939 	int ret;
1940 
1941 	/* If kvm is mirroring encryption context it isn't responsible for it */
1942 	if (is_mirroring_enc_context(kvm))
1943 		return -EINVAL;
1944 
1945 	mutex_lock(&kvm->lock);
1946 
1947 	if (!sev_guest(kvm)) {
1948 		ret = -ENOTTY;
1949 		goto failed;
1950 	}
1951 
1952 	region = find_enc_region(kvm, range);
1953 	if (!region) {
1954 		ret = -EINVAL;
1955 		goto failed;
1956 	}
1957 
1958 	/*
1959 	 * Ensure that all guest tagged cache entries are flushed before
1960 	 * releasing the pages back to the system for use. CLFLUSH will
1961 	 * not do this, so issue a WBINVD.
1962 	 */
1963 	wbinvd_on_all_cpus();
1964 
1965 	__unregister_enc_region_locked(kvm, region);
1966 
1967 	mutex_unlock(&kvm->lock);
1968 	return 0;
1969 
1970 failed:
1971 	mutex_unlock(&kvm->lock);
1972 	return ret;
1973 }
1974 
1975 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1976 {
1977 	struct file *source_kvm_file;
1978 	struct kvm *source_kvm;
1979 	struct kvm_sev_info *source_sev, *mirror_sev;
1980 	int ret;
1981 
1982 	source_kvm_file = fget(source_fd);
1983 	if (!file_is_kvm(source_kvm_file)) {
1984 		ret = -EBADF;
1985 		goto e_source_fput;
1986 	}
1987 
1988 	source_kvm = source_kvm_file->private_data;
1989 	ret = sev_lock_two_vms(kvm, source_kvm);
1990 	if (ret)
1991 		goto e_source_fput;
1992 
1993 	/*
1994 	 * Mirrors of mirrors should work, but let's not get silly.  Also
1995 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
1996 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
1997 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
1998 	 */
1999 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2000 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2001 		ret = -EINVAL;
2002 		goto e_unlock;
2003 	}
2004 
2005 	/*
2006 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2007 	 * disappear until we're done with it
2008 	 */
2009 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2010 	kvm_get_kvm(source_kvm);
2011 	source_sev->num_mirrored_vms++;
2012 
2013 	/* Set enc_context_owner and copy its encryption context over */
2014 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2015 	mirror_sev->enc_context_owner = source_kvm;
2016 	mirror_sev->active = true;
2017 	mirror_sev->asid = source_sev->asid;
2018 	mirror_sev->fd = source_sev->fd;
2019 	mirror_sev->es_active = source_sev->es_active;
2020 	mirror_sev->handle = source_sev->handle;
2021 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2022 	ret = 0;
2023 
2024 	/*
2025 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2026 	 * KVM contexts as the original, and they may have different
2027 	 * memory-views.
2028 	 */
2029 
2030 e_unlock:
2031 	sev_unlock_two_vms(kvm, source_kvm);
2032 e_source_fput:
2033 	if (source_kvm_file)
2034 		fput(source_kvm_file);
2035 	return ret;
2036 }
2037 
2038 void sev_vm_destroy(struct kvm *kvm)
2039 {
2040 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2041 	struct list_head *head = &sev->regions_list;
2042 	struct list_head *pos, *q;
2043 
2044 	WARN_ON(sev->num_mirrored_vms);
2045 
2046 	if (!sev_guest(kvm))
2047 		return;
2048 
2049 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2050 	if (is_mirroring_enc_context(kvm)) {
2051 		struct kvm *owner_kvm = sev->enc_context_owner;
2052 		struct kvm_sev_info *owner_sev = &to_kvm_svm(owner_kvm)->sev_info;
2053 
2054 		mutex_lock(&owner_kvm->lock);
2055 		if (!WARN_ON(!owner_sev->num_mirrored_vms))
2056 			owner_sev->num_mirrored_vms--;
2057 		mutex_unlock(&owner_kvm->lock);
2058 		kvm_put_kvm(owner_kvm);
2059 		return;
2060 	}
2061 
2062 	/*
2063 	 * Ensure that all guest tagged cache entries are flushed before
2064 	 * releasing the pages back to the system for use. CLFLUSH will
2065 	 * not do this, so issue a WBINVD.
2066 	 */
2067 	wbinvd_on_all_cpus();
2068 
2069 	/*
2070 	 * if userspace was terminated before unregistering the memory regions
2071 	 * then lets unpin all the registered memory.
2072 	 */
2073 	if (!list_empty(head)) {
2074 		list_for_each_safe(pos, q, head) {
2075 			__unregister_enc_region_locked(kvm,
2076 				list_entry(pos, struct enc_region, list));
2077 			cond_resched();
2078 		}
2079 	}
2080 
2081 	sev_unbind_asid(kvm, sev->handle);
2082 	sev_asid_free(sev);
2083 }
2084 
2085 void __init sev_set_cpu_caps(void)
2086 {
2087 	if (!sev_enabled)
2088 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2089 	if (!sev_es_enabled)
2090 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2091 }
2092 
2093 void __init sev_hardware_setup(void)
2094 {
2095 #ifdef CONFIG_KVM_AMD_SEV
2096 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2097 	bool sev_es_supported = false;
2098 	bool sev_supported = false;
2099 
2100 	if (!sev_enabled || !npt_enabled)
2101 		goto out;
2102 
2103 	/*
2104 	 * SEV must obviously be supported in hardware.  Sanity check that the
2105 	 * CPU supports decode assists, which is mandatory for SEV guests to
2106 	 * support instruction emulation.
2107 	 */
2108 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2109 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2110 		goto out;
2111 
2112 	/* Retrieve SEV CPUID information */
2113 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2114 
2115 	/* Set encryption bit location for SEV-ES guests */
2116 	sev_enc_bit = ebx & 0x3f;
2117 
2118 	/* Maximum number of encrypted guests supported simultaneously */
2119 	max_sev_asid = ecx;
2120 	if (!max_sev_asid)
2121 		goto out;
2122 
2123 	/* Minimum ASID value that should be used for SEV guest */
2124 	min_sev_asid = edx;
2125 	sev_me_mask = 1UL << (ebx & 0x3f);
2126 
2127 	/*
2128 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2129 	 * even though it's never used, so that the bitmap is indexed by the
2130 	 * actual ASID.
2131 	 */
2132 	nr_asids = max_sev_asid + 1;
2133 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2134 	if (!sev_asid_bitmap)
2135 		goto out;
2136 
2137 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2138 	if (!sev_reclaim_asid_bitmap) {
2139 		bitmap_free(sev_asid_bitmap);
2140 		sev_asid_bitmap = NULL;
2141 		goto out;
2142 	}
2143 
2144 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
2145 	if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
2146 		goto out;
2147 
2148 	pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
2149 	sev_supported = true;
2150 
2151 	/* SEV-ES support requested? */
2152 	if (!sev_es_enabled)
2153 		goto out;
2154 
2155 	/* Does the CPU support SEV-ES? */
2156 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2157 		goto out;
2158 
2159 	/* Has the system been allocated ASIDs for SEV-ES? */
2160 	if (min_sev_asid == 1)
2161 		goto out;
2162 
2163 	sev_es_asid_count = min_sev_asid - 1;
2164 	if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
2165 		goto out;
2166 
2167 	pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
2168 	sev_es_supported = true;
2169 
2170 out:
2171 	sev_enabled = sev_supported;
2172 	sev_es_enabled = sev_es_supported;
2173 #endif
2174 }
2175 
2176 void sev_hardware_teardown(void)
2177 {
2178 	if (!sev_enabled)
2179 		return;
2180 
2181 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2182 	sev_flush_asids(1, max_sev_asid);
2183 
2184 	bitmap_free(sev_asid_bitmap);
2185 	bitmap_free(sev_reclaim_asid_bitmap);
2186 
2187 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2188 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2189 }
2190 
2191 int sev_cpu_init(struct svm_cpu_data *sd)
2192 {
2193 	if (!sev_enabled)
2194 		return 0;
2195 
2196 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2197 	if (!sd->sev_vmcbs)
2198 		return -ENOMEM;
2199 
2200 	return 0;
2201 }
2202 
2203 /*
2204  * Pages used by hardware to hold guest encrypted state must be flushed before
2205  * returning them to the system.
2206  */
2207 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
2208 				   unsigned long len)
2209 {
2210 	/*
2211 	 * If hardware enforced cache coherency for encrypted mappings of the
2212 	 * same physical page is supported, nothing to do.
2213 	 */
2214 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
2215 		return;
2216 
2217 	/*
2218 	 * If the VM Page Flush MSR is supported, use it to flush the page
2219 	 * (using the page virtual address and the guest ASID).
2220 	 */
2221 	if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
2222 		struct kvm_sev_info *sev;
2223 		unsigned long va_start;
2224 		u64 start, stop;
2225 
2226 		/* Align start and stop to page boundaries. */
2227 		va_start = (unsigned long)va;
2228 		start = (u64)va_start & PAGE_MASK;
2229 		stop = PAGE_ALIGN((u64)va_start + len);
2230 
2231 		if (start < stop) {
2232 			sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
2233 
2234 			while (start < stop) {
2235 				wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
2236 				       start | sev->asid);
2237 
2238 				start += PAGE_SIZE;
2239 			}
2240 
2241 			return;
2242 		}
2243 
2244 		WARN(1, "Address overflow, using WBINVD\n");
2245 	}
2246 
2247 	/*
2248 	 * Hardware should always have one of the above features,
2249 	 * but if not, use WBINVD and issue a warning.
2250 	 */
2251 	WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
2252 	wbinvd_on_all_cpus();
2253 }
2254 
2255 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2256 {
2257 	struct vcpu_svm *svm;
2258 
2259 	if (!sev_es_guest(vcpu->kvm))
2260 		return;
2261 
2262 	svm = to_svm(vcpu);
2263 
2264 	if (vcpu->arch.guest_state_protected)
2265 		sev_flush_guest_memory(svm, svm->sev_es.vmsa, PAGE_SIZE);
2266 	__free_page(virt_to_page(svm->sev_es.vmsa));
2267 
2268 	if (svm->sev_es.ghcb_sa_free)
2269 		kvfree(svm->sev_es.ghcb_sa);
2270 }
2271 
2272 static void dump_ghcb(struct vcpu_svm *svm)
2273 {
2274 	struct ghcb *ghcb = svm->sev_es.ghcb;
2275 	unsigned int nbits;
2276 
2277 	/* Re-use the dump_invalid_vmcb module parameter */
2278 	if (!dump_invalid_vmcb) {
2279 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2280 		return;
2281 	}
2282 
2283 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2284 
2285 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2286 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2287 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2288 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2289 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2290 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2291 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2292 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2293 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2294 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2295 }
2296 
2297 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2298 {
2299 	struct kvm_vcpu *vcpu = &svm->vcpu;
2300 	struct ghcb *ghcb = svm->sev_es.ghcb;
2301 
2302 	/*
2303 	 * The GHCB protocol so far allows for the following data
2304 	 * to be returned:
2305 	 *   GPRs RAX, RBX, RCX, RDX
2306 	 *
2307 	 * Copy their values, even if they may not have been written during the
2308 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2309 	 */
2310 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2311 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2312 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2313 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2314 }
2315 
2316 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2317 {
2318 	struct vmcb_control_area *control = &svm->vmcb->control;
2319 	struct kvm_vcpu *vcpu = &svm->vcpu;
2320 	struct ghcb *ghcb = svm->sev_es.ghcb;
2321 	u64 exit_code;
2322 
2323 	/*
2324 	 * The GHCB protocol so far allows for the following data
2325 	 * to be supplied:
2326 	 *   GPRs RAX, RBX, RCX, RDX
2327 	 *   XCR0
2328 	 *   CPL
2329 	 *
2330 	 * VMMCALL allows the guest to provide extra registers. KVM also
2331 	 * expects RSI for hypercalls, so include that, too.
2332 	 *
2333 	 * Copy their values to the appropriate location if supplied.
2334 	 */
2335 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2336 
2337 	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2338 	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2339 	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2340 	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2341 	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2342 
2343 	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2344 
2345 	if (ghcb_xcr0_is_valid(ghcb)) {
2346 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2347 		kvm_update_cpuid_runtime(vcpu);
2348 	}
2349 
2350 	/* Copy the GHCB exit information into the VMCB fields */
2351 	exit_code = ghcb_get_sw_exit_code(ghcb);
2352 	control->exit_code = lower_32_bits(exit_code);
2353 	control->exit_code_hi = upper_32_bits(exit_code);
2354 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2355 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2356 
2357 	/* Clear the valid entries fields */
2358 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2359 }
2360 
2361 static bool sev_es_validate_vmgexit(struct vcpu_svm *svm)
2362 {
2363 	struct kvm_vcpu *vcpu;
2364 	struct ghcb *ghcb;
2365 	u64 exit_code;
2366 	u64 reason;
2367 
2368 	ghcb = svm->sev_es.ghcb;
2369 
2370 	/*
2371 	 * Retrieve the exit code now even though it may not be marked valid
2372 	 * as it could help with debugging.
2373 	 */
2374 	exit_code = ghcb_get_sw_exit_code(ghcb);
2375 
2376 	/* Only GHCB Usage code 0 is supported */
2377 	if (ghcb->ghcb_usage) {
2378 		reason = GHCB_ERR_INVALID_USAGE;
2379 		goto vmgexit_err;
2380 	}
2381 
2382 	reason = GHCB_ERR_MISSING_INPUT;
2383 
2384 	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2385 	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2386 	    !ghcb_sw_exit_info_2_is_valid(ghcb))
2387 		goto vmgexit_err;
2388 
2389 	switch (ghcb_get_sw_exit_code(ghcb)) {
2390 	case SVM_EXIT_READ_DR7:
2391 		break;
2392 	case SVM_EXIT_WRITE_DR7:
2393 		if (!ghcb_rax_is_valid(ghcb))
2394 			goto vmgexit_err;
2395 		break;
2396 	case SVM_EXIT_RDTSC:
2397 		break;
2398 	case SVM_EXIT_RDPMC:
2399 		if (!ghcb_rcx_is_valid(ghcb))
2400 			goto vmgexit_err;
2401 		break;
2402 	case SVM_EXIT_CPUID:
2403 		if (!ghcb_rax_is_valid(ghcb) ||
2404 		    !ghcb_rcx_is_valid(ghcb))
2405 			goto vmgexit_err;
2406 		if (ghcb_get_rax(ghcb) == 0xd)
2407 			if (!ghcb_xcr0_is_valid(ghcb))
2408 				goto vmgexit_err;
2409 		break;
2410 	case SVM_EXIT_INVD:
2411 		break;
2412 	case SVM_EXIT_IOIO:
2413 		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2414 			if (!ghcb_sw_scratch_is_valid(ghcb))
2415 				goto vmgexit_err;
2416 		} else {
2417 			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2418 				if (!ghcb_rax_is_valid(ghcb))
2419 					goto vmgexit_err;
2420 		}
2421 		break;
2422 	case SVM_EXIT_MSR:
2423 		if (!ghcb_rcx_is_valid(ghcb))
2424 			goto vmgexit_err;
2425 		if (ghcb_get_sw_exit_info_1(ghcb)) {
2426 			if (!ghcb_rax_is_valid(ghcb) ||
2427 			    !ghcb_rdx_is_valid(ghcb))
2428 				goto vmgexit_err;
2429 		}
2430 		break;
2431 	case SVM_EXIT_VMMCALL:
2432 		if (!ghcb_rax_is_valid(ghcb) ||
2433 		    !ghcb_cpl_is_valid(ghcb))
2434 			goto vmgexit_err;
2435 		break;
2436 	case SVM_EXIT_RDTSCP:
2437 		break;
2438 	case SVM_EXIT_WBINVD:
2439 		break;
2440 	case SVM_EXIT_MONITOR:
2441 		if (!ghcb_rax_is_valid(ghcb) ||
2442 		    !ghcb_rcx_is_valid(ghcb) ||
2443 		    !ghcb_rdx_is_valid(ghcb))
2444 			goto vmgexit_err;
2445 		break;
2446 	case SVM_EXIT_MWAIT:
2447 		if (!ghcb_rax_is_valid(ghcb) ||
2448 		    !ghcb_rcx_is_valid(ghcb))
2449 			goto vmgexit_err;
2450 		break;
2451 	case SVM_VMGEXIT_MMIO_READ:
2452 	case SVM_VMGEXIT_MMIO_WRITE:
2453 		if (!ghcb_sw_scratch_is_valid(ghcb))
2454 			goto vmgexit_err;
2455 		break;
2456 	case SVM_VMGEXIT_NMI_COMPLETE:
2457 	case SVM_VMGEXIT_AP_HLT_LOOP:
2458 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2459 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2460 		break;
2461 	default:
2462 		reason = GHCB_ERR_INVALID_EVENT;
2463 		goto vmgexit_err;
2464 	}
2465 
2466 	return true;
2467 
2468 vmgexit_err:
2469 	vcpu = &svm->vcpu;
2470 
2471 	if (reason == GHCB_ERR_INVALID_USAGE) {
2472 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2473 			    ghcb->ghcb_usage);
2474 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2475 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2476 			    exit_code);
2477 	} else {
2478 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2479 			    exit_code);
2480 		dump_ghcb(svm);
2481 	}
2482 
2483 	/* Clear the valid entries fields */
2484 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2485 
2486 	ghcb_set_sw_exit_info_1(ghcb, 2);
2487 	ghcb_set_sw_exit_info_2(ghcb, reason);
2488 
2489 	return false;
2490 }
2491 
2492 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2493 {
2494 	if (!svm->sev_es.ghcb)
2495 		return;
2496 
2497 	if (svm->sev_es.ghcb_sa_free) {
2498 		/*
2499 		 * The scratch area lives outside the GHCB, so there is a
2500 		 * buffer that, depending on the operation performed, may
2501 		 * need to be synced, then freed.
2502 		 */
2503 		if (svm->sev_es.ghcb_sa_sync) {
2504 			kvm_write_guest(svm->vcpu.kvm,
2505 					ghcb_get_sw_scratch(svm->sev_es.ghcb),
2506 					svm->sev_es.ghcb_sa,
2507 					svm->sev_es.ghcb_sa_len);
2508 			svm->sev_es.ghcb_sa_sync = false;
2509 		}
2510 
2511 		kvfree(svm->sev_es.ghcb_sa);
2512 		svm->sev_es.ghcb_sa = NULL;
2513 		svm->sev_es.ghcb_sa_free = false;
2514 	}
2515 
2516 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2517 
2518 	sev_es_sync_to_ghcb(svm);
2519 
2520 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2521 	svm->sev_es.ghcb = NULL;
2522 }
2523 
2524 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2525 {
2526 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2527 	int asid = sev_get_asid(svm->vcpu.kvm);
2528 
2529 	/* Assign the asid allocated with this SEV guest */
2530 	svm->asid = asid;
2531 
2532 	/*
2533 	 * Flush guest TLB:
2534 	 *
2535 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2536 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2537 	 */
2538 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2539 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2540 		return;
2541 
2542 	sd->sev_vmcbs[asid] = svm->vmcb;
2543 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2544 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2545 }
2546 
2547 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2548 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2549 {
2550 	struct vmcb_control_area *control = &svm->vmcb->control;
2551 	struct ghcb *ghcb = svm->sev_es.ghcb;
2552 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2553 	u64 scratch_gpa_beg, scratch_gpa_end;
2554 	void *scratch_va;
2555 
2556 	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2557 	if (!scratch_gpa_beg) {
2558 		pr_err("vmgexit: scratch gpa not provided\n");
2559 		goto e_scratch;
2560 	}
2561 
2562 	scratch_gpa_end = scratch_gpa_beg + len;
2563 	if (scratch_gpa_end < scratch_gpa_beg) {
2564 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2565 		       len, scratch_gpa_beg);
2566 		goto e_scratch;
2567 	}
2568 
2569 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2570 		/* Scratch area begins within GHCB */
2571 		ghcb_scratch_beg = control->ghcb_gpa +
2572 				   offsetof(struct ghcb, shared_buffer);
2573 		ghcb_scratch_end = control->ghcb_gpa +
2574 				   offsetof(struct ghcb, reserved_1);
2575 
2576 		/*
2577 		 * If the scratch area begins within the GHCB, it must be
2578 		 * completely contained in the GHCB shared buffer area.
2579 		 */
2580 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2581 		    scratch_gpa_end > ghcb_scratch_end) {
2582 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2583 			       scratch_gpa_beg, scratch_gpa_end);
2584 			goto e_scratch;
2585 		}
2586 
2587 		scratch_va = (void *)svm->sev_es.ghcb;
2588 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2589 	} else {
2590 		/*
2591 		 * The guest memory must be read into a kernel buffer, so
2592 		 * limit the size
2593 		 */
2594 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2595 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2596 			       len, GHCB_SCRATCH_AREA_LIMIT);
2597 			goto e_scratch;
2598 		}
2599 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2600 		if (!scratch_va)
2601 			goto e_scratch;
2602 
2603 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2604 			/* Unable to copy scratch area from guest */
2605 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2606 
2607 			kvfree(scratch_va);
2608 			goto e_scratch;
2609 		}
2610 
2611 		/*
2612 		 * The scratch area is outside the GHCB. The operation will
2613 		 * dictate whether the buffer needs to be synced before running
2614 		 * the vCPU next time (i.e. a read was requested so the data
2615 		 * must be written back to the guest memory).
2616 		 */
2617 		svm->sev_es.ghcb_sa_sync = sync;
2618 		svm->sev_es.ghcb_sa_free = true;
2619 	}
2620 
2621 	svm->sev_es.ghcb_sa = scratch_va;
2622 	svm->sev_es.ghcb_sa_len = len;
2623 
2624 	return true;
2625 
2626 e_scratch:
2627 	ghcb_set_sw_exit_info_1(ghcb, 2);
2628 	ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2629 
2630 	return false;
2631 }
2632 
2633 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2634 			      unsigned int pos)
2635 {
2636 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2637 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2638 }
2639 
2640 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2641 {
2642 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2643 }
2644 
2645 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2646 {
2647 	svm->vmcb->control.ghcb_gpa = value;
2648 }
2649 
2650 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2651 {
2652 	struct vmcb_control_area *control = &svm->vmcb->control;
2653 	struct kvm_vcpu *vcpu = &svm->vcpu;
2654 	u64 ghcb_info;
2655 	int ret = 1;
2656 
2657 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2658 
2659 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2660 					     control->ghcb_gpa);
2661 
2662 	switch (ghcb_info) {
2663 	case GHCB_MSR_SEV_INFO_REQ:
2664 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2665 						    GHCB_VERSION_MIN,
2666 						    sev_enc_bit));
2667 		break;
2668 	case GHCB_MSR_CPUID_REQ: {
2669 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2670 
2671 		cpuid_fn = get_ghcb_msr_bits(svm,
2672 					     GHCB_MSR_CPUID_FUNC_MASK,
2673 					     GHCB_MSR_CPUID_FUNC_POS);
2674 
2675 		/* Initialize the registers needed by the CPUID intercept */
2676 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2677 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2678 
2679 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2680 		if (!ret) {
2681 			/* Error, keep GHCB MSR value as-is */
2682 			break;
2683 		}
2684 
2685 		cpuid_reg = get_ghcb_msr_bits(svm,
2686 					      GHCB_MSR_CPUID_REG_MASK,
2687 					      GHCB_MSR_CPUID_REG_POS);
2688 		if (cpuid_reg == 0)
2689 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2690 		else if (cpuid_reg == 1)
2691 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2692 		else if (cpuid_reg == 2)
2693 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2694 		else
2695 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2696 
2697 		set_ghcb_msr_bits(svm, cpuid_value,
2698 				  GHCB_MSR_CPUID_VALUE_MASK,
2699 				  GHCB_MSR_CPUID_VALUE_POS);
2700 
2701 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2702 				  GHCB_MSR_INFO_MASK,
2703 				  GHCB_MSR_INFO_POS);
2704 		break;
2705 	}
2706 	case GHCB_MSR_TERM_REQ: {
2707 		u64 reason_set, reason_code;
2708 
2709 		reason_set = get_ghcb_msr_bits(svm,
2710 					       GHCB_MSR_TERM_REASON_SET_MASK,
2711 					       GHCB_MSR_TERM_REASON_SET_POS);
2712 		reason_code = get_ghcb_msr_bits(svm,
2713 						GHCB_MSR_TERM_REASON_MASK,
2714 						GHCB_MSR_TERM_REASON_POS);
2715 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2716 			reason_set, reason_code);
2717 
2718 		ret = -EINVAL;
2719 		break;
2720 	}
2721 	default:
2722 		/* Error, keep GHCB MSR value as-is */
2723 		break;
2724 	}
2725 
2726 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2727 					    control->ghcb_gpa, ret);
2728 
2729 	return ret;
2730 }
2731 
2732 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2733 {
2734 	struct vcpu_svm *svm = to_svm(vcpu);
2735 	struct vmcb_control_area *control = &svm->vmcb->control;
2736 	u64 ghcb_gpa, exit_code;
2737 	struct ghcb *ghcb;
2738 	int ret;
2739 
2740 	/* Validate the GHCB */
2741 	ghcb_gpa = control->ghcb_gpa;
2742 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2743 		return sev_handle_vmgexit_msr_protocol(svm);
2744 
2745 	if (!ghcb_gpa) {
2746 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2747 
2748 		/* Without a GHCB, just return right back to the guest */
2749 		return 1;
2750 	}
2751 
2752 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2753 		/* Unable to map GHCB from guest */
2754 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2755 			    ghcb_gpa);
2756 
2757 		/* Without a GHCB, just return right back to the guest */
2758 		return 1;
2759 	}
2760 
2761 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2762 	ghcb = svm->sev_es.ghcb_map.hva;
2763 
2764 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2765 
2766 	exit_code = ghcb_get_sw_exit_code(ghcb);
2767 
2768 	if (!sev_es_validate_vmgexit(svm))
2769 		return 1;
2770 
2771 	sev_es_sync_from_ghcb(svm);
2772 	ghcb_set_sw_exit_info_1(ghcb, 0);
2773 	ghcb_set_sw_exit_info_2(ghcb, 0);
2774 
2775 	ret = 1;
2776 	switch (exit_code) {
2777 	case SVM_VMGEXIT_MMIO_READ:
2778 		if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2779 			break;
2780 
2781 		ret = kvm_sev_es_mmio_read(vcpu,
2782 					   control->exit_info_1,
2783 					   control->exit_info_2,
2784 					   svm->sev_es.ghcb_sa);
2785 		break;
2786 	case SVM_VMGEXIT_MMIO_WRITE:
2787 		if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2788 			break;
2789 
2790 		ret = kvm_sev_es_mmio_write(vcpu,
2791 					    control->exit_info_1,
2792 					    control->exit_info_2,
2793 					    svm->sev_es.ghcb_sa);
2794 		break;
2795 	case SVM_VMGEXIT_NMI_COMPLETE:
2796 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2797 		break;
2798 	case SVM_VMGEXIT_AP_HLT_LOOP:
2799 		ret = kvm_emulate_ap_reset_hold(vcpu);
2800 		break;
2801 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2802 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2803 
2804 		switch (control->exit_info_1) {
2805 		case 0:
2806 			/* Set AP jump table address */
2807 			sev->ap_jump_table = control->exit_info_2;
2808 			break;
2809 		case 1:
2810 			/* Get AP jump table address */
2811 			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2812 			break;
2813 		default:
2814 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2815 			       control->exit_info_1);
2816 			ghcb_set_sw_exit_info_1(ghcb, 2);
2817 			ghcb_set_sw_exit_info_2(ghcb, GHCB_ERR_INVALID_INPUT);
2818 		}
2819 
2820 		break;
2821 	}
2822 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2823 		vcpu_unimpl(vcpu,
2824 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2825 			    control->exit_info_1, control->exit_info_2);
2826 		ret = -EINVAL;
2827 		break;
2828 	default:
2829 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2830 	}
2831 
2832 	return ret;
2833 }
2834 
2835 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2836 {
2837 	int count;
2838 	int bytes;
2839 
2840 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2841 		return -EINVAL;
2842 
2843 	count = svm->vmcb->control.exit_info_2;
2844 	if (unlikely(check_mul_overflow(count, size, &bytes)))
2845 		return -EINVAL;
2846 
2847 	if (!setup_vmgexit_scratch(svm, in, bytes))
2848 		return 1;
2849 
2850 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2851 				    count, in);
2852 }
2853 
2854 void sev_es_init_vmcb(struct vcpu_svm *svm)
2855 {
2856 	struct kvm_vcpu *vcpu = &svm->vcpu;
2857 
2858 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2859 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2860 
2861 	/*
2862 	 * An SEV-ES guest requires a VMSA area that is a separate from the
2863 	 * VMCB page. Do not include the encryption mask on the VMSA physical
2864 	 * address since hardware will access it using the guest key.
2865 	 */
2866 	svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
2867 
2868 	/* Can't intercept CR register access, HV can't modify CR registers */
2869 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2870 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2871 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2872 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2873 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2874 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2875 
2876 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2877 
2878 	/* Track EFER/CR register changes */
2879 	svm_set_intercept(svm, TRAP_EFER_WRITE);
2880 	svm_set_intercept(svm, TRAP_CR0_WRITE);
2881 	svm_set_intercept(svm, TRAP_CR4_WRITE);
2882 	svm_set_intercept(svm, TRAP_CR8_WRITE);
2883 
2884 	/* No support for enable_vmware_backdoor */
2885 	clr_exception_intercept(svm, GP_VECTOR);
2886 
2887 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
2888 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
2889 
2890 	/* Clear intercepts on selected MSRs */
2891 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2892 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2893 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2894 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2895 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2896 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2897 }
2898 
2899 void sev_es_vcpu_reset(struct vcpu_svm *svm)
2900 {
2901 	/*
2902 	 * Set the GHCB MSR value as per the GHCB specification when emulating
2903 	 * vCPU RESET for an SEV-ES guest.
2904 	 */
2905 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2906 					    GHCB_VERSION_MIN,
2907 					    sev_enc_bit));
2908 }
2909 
2910 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2911 {
2912 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2913 	struct vmcb_save_area *hostsa;
2914 
2915 	/*
2916 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2917 	 * of which one step is to perform a VMLOAD. Since hardware does not
2918 	 * perform a VMSAVE on VMRUN, the host savearea must be updated.
2919 	 */
2920 	vmsave(__sme_page_pa(sd->save_area));
2921 
2922 	/* XCR0 is restored on VMEXIT, save the current host value */
2923 	hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2924 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2925 
2926 	/* PKRU is restored on VMEXIT, save the current host value */
2927 	hostsa->pkru = read_pkru();
2928 
2929 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2930 	hostsa->xss = host_xss;
2931 }
2932 
2933 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2934 {
2935 	struct vcpu_svm *svm = to_svm(vcpu);
2936 
2937 	/* First SIPI: Use the values as initially set by the VMM */
2938 	if (!svm->sev_es.received_first_sipi) {
2939 		svm->sev_es.received_first_sipi = true;
2940 		return;
2941 	}
2942 
2943 	/*
2944 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2945 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2946 	 * non-zero value.
2947 	 */
2948 	if (!svm->sev_es.ghcb)
2949 		return;
2950 
2951 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
2952 }
2953