1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 #include <asm/fpu/internal.h> 21 22 #include <asm/trapnr.h> 23 24 #include "x86.h" 25 #include "svm.h" 26 #include "svm_ops.h" 27 #include "cpuid.h" 28 #include "trace.h" 29 30 #define __ex(x) __kvm_handle_fault_on_reboot(x) 31 32 #ifndef CONFIG_KVM_AMD_SEV 33 /* 34 * When this config is not defined, SEV feature is not supported and APIs in 35 * this file are not used but this file still gets compiled into the KVM AMD 36 * module. 37 * 38 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 39 * misc_res_type {} defined in linux/misc_cgroup.h. 40 * 41 * Below macros allow compilation to succeed. 42 */ 43 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 44 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 45 #endif 46 47 static u8 sev_enc_bit; 48 static int sev_flush_asids(void); 49 static DECLARE_RWSEM(sev_deactivate_lock); 50 static DEFINE_MUTEX(sev_bitmap_lock); 51 unsigned int max_sev_asid; 52 static unsigned int min_sev_asid; 53 static unsigned long *sev_asid_bitmap; 54 static unsigned long *sev_reclaim_asid_bitmap; 55 56 struct enc_region { 57 struct list_head list; 58 unsigned long npages; 59 struct page **pages; 60 unsigned long uaddr; 61 unsigned long size; 62 }; 63 64 static int sev_flush_asids(void) 65 { 66 int ret, error = 0; 67 68 /* 69 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 70 * so it must be guarded. 71 */ 72 down_write(&sev_deactivate_lock); 73 74 wbinvd_on_all_cpus(); 75 ret = sev_guest_df_flush(&error); 76 77 up_write(&sev_deactivate_lock); 78 79 if (ret) 80 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 81 82 return ret; 83 } 84 85 /* Must be called with the sev_bitmap_lock held */ 86 static bool __sev_recycle_asids(int min_asid, int max_asid) 87 { 88 int pos; 89 90 /* Check if there are any ASIDs to reclaim before performing a flush */ 91 pos = find_next_bit(sev_reclaim_asid_bitmap, max_sev_asid, min_asid); 92 if (pos >= max_asid) 93 return false; 94 95 if (sev_flush_asids()) 96 return false; 97 98 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 99 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 100 max_sev_asid); 101 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); 102 103 return true; 104 } 105 106 static int sev_asid_new(struct kvm_sev_info *sev) 107 { 108 int pos, min_asid, max_asid, ret; 109 bool retry = true; 110 enum misc_res_type type; 111 112 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 113 WARN_ON(sev->misc_cg); 114 sev->misc_cg = get_current_misc_cg(); 115 ret = misc_cg_try_charge(type, sev->misc_cg, 1); 116 if (ret) { 117 put_misc_cg(sev->misc_cg); 118 sev->misc_cg = NULL; 119 return ret; 120 } 121 122 mutex_lock(&sev_bitmap_lock); 123 124 /* 125 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 126 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 127 */ 128 min_asid = sev->es_active ? 0 : min_sev_asid - 1; 129 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 130 again: 131 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid); 132 if (pos >= max_asid) { 133 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 134 retry = false; 135 goto again; 136 } 137 mutex_unlock(&sev_bitmap_lock); 138 ret = -EBUSY; 139 goto e_uncharge; 140 } 141 142 __set_bit(pos, sev_asid_bitmap); 143 144 mutex_unlock(&sev_bitmap_lock); 145 146 return pos + 1; 147 e_uncharge: 148 misc_cg_uncharge(type, sev->misc_cg, 1); 149 put_misc_cg(sev->misc_cg); 150 sev->misc_cg = NULL; 151 return ret; 152 } 153 154 static int sev_get_asid(struct kvm *kvm) 155 { 156 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 157 158 return sev->asid; 159 } 160 161 static void sev_asid_free(struct kvm_sev_info *sev) 162 { 163 struct svm_cpu_data *sd; 164 int cpu, pos; 165 enum misc_res_type type; 166 167 mutex_lock(&sev_bitmap_lock); 168 169 pos = sev->asid - 1; 170 __set_bit(pos, sev_reclaim_asid_bitmap); 171 172 for_each_possible_cpu(cpu) { 173 sd = per_cpu(svm_data, cpu); 174 sd->sev_vmcbs[pos] = NULL; 175 } 176 177 mutex_unlock(&sev_bitmap_lock); 178 179 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 180 misc_cg_uncharge(type, sev->misc_cg, 1); 181 put_misc_cg(sev->misc_cg); 182 sev->misc_cg = NULL; 183 } 184 185 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 186 { 187 struct sev_data_decommission *decommission; 188 struct sev_data_deactivate *data; 189 190 if (!handle) 191 return; 192 193 data = kzalloc(sizeof(*data), GFP_KERNEL); 194 if (!data) 195 return; 196 197 /* deactivate handle */ 198 data->handle = handle; 199 200 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 201 down_read(&sev_deactivate_lock); 202 sev_guest_deactivate(data, NULL); 203 up_read(&sev_deactivate_lock); 204 205 kfree(data); 206 207 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); 208 if (!decommission) 209 return; 210 211 /* decommission handle */ 212 decommission->handle = handle; 213 sev_guest_decommission(decommission, NULL); 214 215 kfree(decommission); 216 } 217 218 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 219 { 220 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 221 int asid, ret; 222 223 ret = -EBUSY; 224 if (unlikely(sev->active)) 225 return ret; 226 227 asid = sev_asid_new(sev); 228 if (asid < 0) 229 return ret; 230 sev->asid = asid; 231 232 ret = sev_platform_init(&argp->error); 233 if (ret) 234 goto e_free; 235 236 sev->active = true; 237 INIT_LIST_HEAD(&sev->regions_list); 238 239 return 0; 240 241 e_free: 242 sev_asid_free(sev); 243 sev->asid = 0; 244 return ret; 245 } 246 247 static int sev_es_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 248 { 249 if (!sev_es) 250 return -ENOTTY; 251 252 to_kvm_svm(kvm)->sev_info.es_active = true; 253 254 return sev_guest_init(kvm, argp); 255 } 256 257 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 258 { 259 struct sev_data_activate *data; 260 int asid = sev_get_asid(kvm); 261 int ret; 262 263 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 264 if (!data) 265 return -ENOMEM; 266 267 /* activate ASID on the given handle */ 268 data->handle = handle; 269 data->asid = asid; 270 ret = sev_guest_activate(data, error); 271 kfree(data); 272 273 return ret; 274 } 275 276 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 277 { 278 struct fd f; 279 int ret; 280 281 f = fdget(fd); 282 if (!f.file) 283 return -EBADF; 284 285 ret = sev_issue_cmd_external_user(f.file, id, data, error); 286 287 fdput(f); 288 return ret; 289 } 290 291 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 292 { 293 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 294 295 return __sev_issue_cmd(sev->fd, id, data, error); 296 } 297 298 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 299 { 300 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 301 struct sev_data_launch_start *start; 302 struct kvm_sev_launch_start params; 303 void *dh_blob, *session_blob; 304 int *error = &argp->error; 305 int ret; 306 307 if (!sev_guest(kvm)) 308 return -ENOTTY; 309 310 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 311 return -EFAULT; 312 313 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); 314 if (!start) 315 return -ENOMEM; 316 317 dh_blob = NULL; 318 if (params.dh_uaddr) { 319 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 320 if (IS_ERR(dh_blob)) { 321 ret = PTR_ERR(dh_blob); 322 goto e_free; 323 } 324 325 start->dh_cert_address = __sme_set(__pa(dh_blob)); 326 start->dh_cert_len = params.dh_len; 327 } 328 329 session_blob = NULL; 330 if (params.session_uaddr) { 331 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 332 if (IS_ERR(session_blob)) { 333 ret = PTR_ERR(session_blob); 334 goto e_free_dh; 335 } 336 337 start->session_address = __sme_set(__pa(session_blob)); 338 start->session_len = params.session_len; 339 } 340 341 start->handle = params.handle; 342 start->policy = params.policy; 343 344 /* create memory encryption context */ 345 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); 346 if (ret) 347 goto e_free_session; 348 349 /* Bind ASID to this guest */ 350 ret = sev_bind_asid(kvm, start->handle, error); 351 if (ret) 352 goto e_free_session; 353 354 /* return handle to userspace */ 355 params.handle = start->handle; 356 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 357 sev_unbind_asid(kvm, start->handle); 358 ret = -EFAULT; 359 goto e_free_session; 360 } 361 362 sev->handle = start->handle; 363 sev->fd = argp->sev_fd; 364 365 e_free_session: 366 kfree(session_blob); 367 e_free_dh: 368 kfree(dh_blob); 369 e_free: 370 kfree(start); 371 return ret; 372 } 373 374 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 375 unsigned long ulen, unsigned long *n, 376 int write) 377 { 378 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 379 unsigned long npages, size; 380 int npinned; 381 unsigned long locked, lock_limit; 382 struct page **pages; 383 unsigned long first, last; 384 int ret; 385 386 lockdep_assert_held(&kvm->lock); 387 388 if (ulen == 0 || uaddr + ulen < uaddr) 389 return ERR_PTR(-EINVAL); 390 391 /* Calculate number of pages. */ 392 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 393 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 394 npages = (last - first + 1); 395 396 locked = sev->pages_locked + npages; 397 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 398 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 399 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 400 return ERR_PTR(-ENOMEM); 401 } 402 403 if (WARN_ON_ONCE(npages > INT_MAX)) 404 return ERR_PTR(-EINVAL); 405 406 /* Avoid using vmalloc for smaller buffers. */ 407 size = npages * sizeof(struct page *); 408 if (size > PAGE_SIZE) 409 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 410 else 411 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 412 413 if (!pages) 414 return ERR_PTR(-ENOMEM); 415 416 /* Pin the user virtual address. */ 417 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 418 if (npinned != npages) { 419 pr_err("SEV: Failure locking %lu pages.\n", npages); 420 ret = -ENOMEM; 421 goto err; 422 } 423 424 *n = npages; 425 sev->pages_locked = locked; 426 427 return pages; 428 429 err: 430 if (npinned > 0) 431 unpin_user_pages(pages, npinned); 432 433 kvfree(pages); 434 return ERR_PTR(ret); 435 } 436 437 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 438 unsigned long npages) 439 { 440 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 441 442 unpin_user_pages(pages, npages); 443 kvfree(pages); 444 sev->pages_locked -= npages; 445 } 446 447 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 448 { 449 uint8_t *page_virtual; 450 unsigned long i; 451 452 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 453 pages == NULL) 454 return; 455 456 for (i = 0; i < npages; i++) { 457 page_virtual = kmap_atomic(pages[i]); 458 clflush_cache_range(page_virtual, PAGE_SIZE); 459 kunmap_atomic(page_virtual); 460 } 461 } 462 463 static unsigned long get_num_contig_pages(unsigned long idx, 464 struct page **inpages, unsigned long npages) 465 { 466 unsigned long paddr, next_paddr; 467 unsigned long i = idx + 1, pages = 1; 468 469 /* find the number of contiguous pages starting from idx */ 470 paddr = __sme_page_pa(inpages[idx]); 471 while (i < npages) { 472 next_paddr = __sme_page_pa(inpages[i++]); 473 if ((paddr + PAGE_SIZE) == next_paddr) { 474 pages++; 475 paddr = next_paddr; 476 continue; 477 } 478 break; 479 } 480 481 return pages; 482 } 483 484 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 485 { 486 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 487 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 488 struct kvm_sev_launch_update_data params; 489 struct sev_data_launch_update_data *data; 490 struct page **inpages; 491 int ret; 492 493 if (!sev_guest(kvm)) 494 return -ENOTTY; 495 496 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 497 return -EFAULT; 498 499 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 500 if (!data) 501 return -ENOMEM; 502 503 vaddr = params.uaddr; 504 size = params.len; 505 vaddr_end = vaddr + size; 506 507 /* Lock the user memory. */ 508 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 509 if (IS_ERR(inpages)) { 510 ret = PTR_ERR(inpages); 511 goto e_free; 512 } 513 514 /* 515 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 516 * place; the cache may contain the data that was written unencrypted. 517 */ 518 sev_clflush_pages(inpages, npages); 519 520 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 521 int offset, len; 522 523 /* 524 * If the user buffer is not page-aligned, calculate the offset 525 * within the page. 526 */ 527 offset = vaddr & (PAGE_SIZE - 1); 528 529 /* Calculate the number of pages that can be encrypted in one go. */ 530 pages = get_num_contig_pages(i, inpages, npages); 531 532 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 533 534 data->handle = sev->handle; 535 data->len = len; 536 data->address = __sme_page_pa(inpages[i]) + offset; 537 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); 538 if (ret) 539 goto e_unpin; 540 541 size -= len; 542 next_vaddr = vaddr + len; 543 } 544 545 e_unpin: 546 /* content of memory is updated, mark pages dirty */ 547 for (i = 0; i < npages; i++) { 548 set_page_dirty_lock(inpages[i]); 549 mark_page_accessed(inpages[i]); 550 } 551 /* unlock the user pages */ 552 sev_unpin_memory(kvm, inpages, npages); 553 e_free: 554 kfree(data); 555 return ret; 556 } 557 558 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 559 { 560 struct vmcb_save_area *save = &svm->vmcb->save; 561 562 /* Check some debug related fields before encrypting the VMSA */ 563 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 564 return -EINVAL; 565 566 /* Sync registgers */ 567 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 568 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 569 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 570 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 571 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 572 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 573 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 574 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 575 #ifdef CONFIG_X86_64 576 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 577 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 578 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 579 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 580 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 581 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 582 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 583 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 584 #endif 585 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 586 587 /* Sync some non-GPR registers before encrypting */ 588 save->xcr0 = svm->vcpu.arch.xcr0; 589 save->pkru = svm->vcpu.arch.pkru; 590 save->xss = svm->vcpu.arch.ia32_xss; 591 592 /* 593 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 594 * the traditional VMSA that is part of the VMCB. Copy the 595 * traditional VMSA as it has been built so far (in prep 596 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 597 */ 598 memcpy(svm->vmsa, save, sizeof(*save)); 599 600 return 0; 601 } 602 603 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 604 { 605 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 606 struct sev_data_launch_update_vmsa *vmsa; 607 int i, ret; 608 609 if (!sev_es_guest(kvm)) 610 return -ENOTTY; 611 612 vmsa = kzalloc(sizeof(*vmsa), GFP_KERNEL); 613 if (!vmsa) 614 return -ENOMEM; 615 616 for (i = 0; i < kvm->created_vcpus; i++) { 617 struct vcpu_svm *svm = to_svm(kvm->vcpus[i]); 618 619 /* Perform some pre-encryption checks against the VMSA */ 620 ret = sev_es_sync_vmsa(svm); 621 if (ret) 622 goto e_free; 623 624 /* 625 * The LAUNCH_UPDATE_VMSA command will perform in-place 626 * encryption of the VMSA memory content (i.e it will write 627 * the same memory region with the guest's key), so invalidate 628 * it first. 629 */ 630 clflush_cache_range(svm->vmsa, PAGE_SIZE); 631 632 vmsa->handle = sev->handle; 633 vmsa->address = __sme_pa(svm->vmsa); 634 vmsa->len = PAGE_SIZE; 635 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, vmsa, 636 &argp->error); 637 if (ret) 638 goto e_free; 639 640 svm->vcpu.arch.guest_state_protected = true; 641 } 642 643 e_free: 644 kfree(vmsa); 645 return ret; 646 } 647 648 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 649 { 650 void __user *measure = (void __user *)(uintptr_t)argp->data; 651 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 652 struct sev_data_launch_measure *data; 653 struct kvm_sev_launch_measure params; 654 void __user *p = NULL; 655 void *blob = NULL; 656 int ret; 657 658 if (!sev_guest(kvm)) 659 return -ENOTTY; 660 661 if (copy_from_user(¶ms, measure, sizeof(params))) 662 return -EFAULT; 663 664 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 665 if (!data) 666 return -ENOMEM; 667 668 /* User wants to query the blob length */ 669 if (!params.len) 670 goto cmd; 671 672 p = (void __user *)(uintptr_t)params.uaddr; 673 if (p) { 674 if (params.len > SEV_FW_BLOB_MAX_SIZE) { 675 ret = -EINVAL; 676 goto e_free; 677 } 678 679 ret = -ENOMEM; 680 blob = kmalloc(params.len, GFP_KERNEL); 681 if (!blob) 682 goto e_free; 683 684 data->address = __psp_pa(blob); 685 data->len = params.len; 686 } 687 688 cmd: 689 data->handle = sev->handle; 690 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); 691 692 /* 693 * If we query the session length, FW responded with expected data. 694 */ 695 if (!params.len) 696 goto done; 697 698 if (ret) 699 goto e_free_blob; 700 701 if (blob) { 702 if (copy_to_user(p, blob, params.len)) 703 ret = -EFAULT; 704 } 705 706 done: 707 params.len = data->len; 708 if (copy_to_user(measure, ¶ms, sizeof(params))) 709 ret = -EFAULT; 710 e_free_blob: 711 kfree(blob); 712 e_free: 713 kfree(data); 714 return ret; 715 } 716 717 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 718 { 719 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 720 struct sev_data_launch_finish *data; 721 int ret; 722 723 if (!sev_guest(kvm)) 724 return -ENOTTY; 725 726 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 727 if (!data) 728 return -ENOMEM; 729 730 data->handle = sev->handle; 731 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); 732 733 kfree(data); 734 return ret; 735 } 736 737 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 738 { 739 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 740 struct kvm_sev_guest_status params; 741 struct sev_data_guest_status *data; 742 int ret; 743 744 if (!sev_guest(kvm)) 745 return -ENOTTY; 746 747 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 748 if (!data) 749 return -ENOMEM; 750 751 data->handle = sev->handle; 752 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); 753 if (ret) 754 goto e_free; 755 756 params.policy = data->policy; 757 params.state = data->state; 758 params.handle = data->handle; 759 760 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 761 ret = -EFAULT; 762 e_free: 763 kfree(data); 764 return ret; 765 } 766 767 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 768 unsigned long dst, int size, 769 int *error, bool enc) 770 { 771 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 772 struct sev_data_dbg *data; 773 int ret; 774 775 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 776 if (!data) 777 return -ENOMEM; 778 779 data->handle = sev->handle; 780 data->dst_addr = dst; 781 data->src_addr = src; 782 data->len = size; 783 784 ret = sev_issue_cmd(kvm, 785 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 786 data, error); 787 kfree(data); 788 return ret; 789 } 790 791 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 792 unsigned long dst_paddr, int sz, int *err) 793 { 794 int offset; 795 796 /* 797 * Its safe to read more than we are asked, caller should ensure that 798 * destination has enough space. 799 */ 800 offset = src_paddr & 15; 801 src_paddr = round_down(src_paddr, 16); 802 sz = round_up(sz + offset, 16); 803 804 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 805 } 806 807 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 808 unsigned long __user dst_uaddr, 809 unsigned long dst_paddr, 810 int size, int *err) 811 { 812 struct page *tpage = NULL; 813 int ret, offset; 814 815 /* if inputs are not 16-byte then use intermediate buffer */ 816 if (!IS_ALIGNED(dst_paddr, 16) || 817 !IS_ALIGNED(paddr, 16) || 818 !IS_ALIGNED(size, 16)) { 819 tpage = (void *)alloc_page(GFP_KERNEL); 820 if (!tpage) 821 return -ENOMEM; 822 823 dst_paddr = __sme_page_pa(tpage); 824 } 825 826 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 827 if (ret) 828 goto e_free; 829 830 if (tpage) { 831 offset = paddr & 15; 832 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, 833 page_address(tpage) + offset, size)) 834 ret = -EFAULT; 835 } 836 837 e_free: 838 if (tpage) 839 __free_page(tpage); 840 841 return ret; 842 } 843 844 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 845 unsigned long __user vaddr, 846 unsigned long dst_paddr, 847 unsigned long __user dst_vaddr, 848 int size, int *error) 849 { 850 struct page *src_tpage = NULL; 851 struct page *dst_tpage = NULL; 852 int ret, len = size; 853 854 /* If source buffer is not aligned then use an intermediate buffer */ 855 if (!IS_ALIGNED(vaddr, 16)) { 856 src_tpage = alloc_page(GFP_KERNEL); 857 if (!src_tpage) 858 return -ENOMEM; 859 860 if (copy_from_user(page_address(src_tpage), 861 (void __user *)(uintptr_t)vaddr, size)) { 862 __free_page(src_tpage); 863 return -EFAULT; 864 } 865 866 paddr = __sme_page_pa(src_tpage); 867 } 868 869 /* 870 * If destination buffer or length is not aligned then do read-modify-write: 871 * - decrypt destination in an intermediate buffer 872 * - copy the source buffer in an intermediate buffer 873 * - use the intermediate buffer as source buffer 874 */ 875 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 876 int dst_offset; 877 878 dst_tpage = alloc_page(GFP_KERNEL); 879 if (!dst_tpage) { 880 ret = -ENOMEM; 881 goto e_free; 882 } 883 884 ret = __sev_dbg_decrypt(kvm, dst_paddr, 885 __sme_page_pa(dst_tpage), size, error); 886 if (ret) 887 goto e_free; 888 889 /* 890 * If source is kernel buffer then use memcpy() otherwise 891 * copy_from_user(). 892 */ 893 dst_offset = dst_paddr & 15; 894 895 if (src_tpage) 896 memcpy(page_address(dst_tpage) + dst_offset, 897 page_address(src_tpage), size); 898 else { 899 if (copy_from_user(page_address(dst_tpage) + dst_offset, 900 (void __user *)(uintptr_t)vaddr, size)) { 901 ret = -EFAULT; 902 goto e_free; 903 } 904 } 905 906 paddr = __sme_page_pa(dst_tpage); 907 dst_paddr = round_down(dst_paddr, 16); 908 len = round_up(size, 16); 909 } 910 911 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 912 913 e_free: 914 if (src_tpage) 915 __free_page(src_tpage); 916 if (dst_tpage) 917 __free_page(dst_tpage); 918 return ret; 919 } 920 921 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 922 { 923 unsigned long vaddr, vaddr_end, next_vaddr; 924 unsigned long dst_vaddr; 925 struct page **src_p, **dst_p; 926 struct kvm_sev_dbg debug; 927 unsigned long n; 928 unsigned int size; 929 int ret; 930 931 if (!sev_guest(kvm)) 932 return -ENOTTY; 933 934 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 935 return -EFAULT; 936 937 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 938 return -EINVAL; 939 if (!debug.dst_uaddr) 940 return -EINVAL; 941 942 vaddr = debug.src_uaddr; 943 size = debug.len; 944 vaddr_end = vaddr + size; 945 dst_vaddr = debug.dst_uaddr; 946 947 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 948 int len, s_off, d_off; 949 950 /* lock userspace source and destination page */ 951 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 952 if (IS_ERR(src_p)) 953 return PTR_ERR(src_p); 954 955 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 956 if (IS_ERR(dst_p)) { 957 sev_unpin_memory(kvm, src_p, n); 958 return PTR_ERR(dst_p); 959 } 960 961 /* 962 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 963 * the pages; flush the destination too so that future accesses do not 964 * see stale data. 965 */ 966 sev_clflush_pages(src_p, 1); 967 sev_clflush_pages(dst_p, 1); 968 969 /* 970 * Since user buffer may not be page aligned, calculate the 971 * offset within the page. 972 */ 973 s_off = vaddr & ~PAGE_MASK; 974 d_off = dst_vaddr & ~PAGE_MASK; 975 len = min_t(size_t, (PAGE_SIZE - s_off), size); 976 977 if (dec) 978 ret = __sev_dbg_decrypt_user(kvm, 979 __sme_page_pa(src_p[0]) + s_off, 980 dst_vaddr, 981 __sme_page_pa(dst_p[0]) + d_off, 982 len, &argp->error); 983 else 984 ret = __sev_dbg_encrypt_user(kvm, 985 __sme_page_pa(src_p[0]) + s_off, 986 vaddr, 987 __sme_page_pa(dst_p[0]) + d_off, 988 dst_vaddr, 989 len, &argp->error); 990 991 sev_unpin_memory(kvm, src_p, n); 992 sev_unpin_memory(kvm, dst_p, n); 993 994 if (ret) 995 goto err; 996 997 next_vaddr = vaddr + len; 998 dst_vaddr = dst_vaddr + len; 999 size -= len; 1000 } 1001 err: 1002 return ret; 1003 } 1004 1005 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 1006 { 1007 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1008 struct sev_data_launch_secret *data; 1009 struct kvm_sev_launch_secret params; 1010 struct page **pages; 1011 void *blob, *hdr; 1012 unsigned long n, i; 1013 int ret, offset; 1014 1015 if (!sev_guest(kvm)) 1016 return -ENOTTY; 1017 1018 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1019 return -EFAULT; 1020 1021 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1022 if (IS_ERR(pages)) 1023 return PTR_ERR(pages); 1024 1025 /* 1026 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1027 * place; the cache may contain the data that was written unencrypted. 1028 */ 1029 sev_clflush_pages(pages, n); 1030 1031 /* 1032 * The secret must be copied into contiguous memory region, lets verify 1033 * that userspace memory pages are contiguous before we issue command. 1034 */ 1035 if (get_num_contig_pages(0, pages, n) != n) { 1036 ret = -EINVAL; 1037 goto e_unpin_memory; 1038 } 1039 1040 ret = -ENOMEM; 1041 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 1042 if (!data) 1043 goto e_unpin_memory; 1044 1045 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1046 data->guest_address = __sme_page_pa(pages[0]) + offset; 1047 data->guest_len = params.guest_len; 1048 1049 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1050 if (IS_ERR(blob)) { 1051 ret = PTR_ERR(blob); 1052 goto e_free; 1053 } 1054 1055 data->trans_address = __psp_pa(blob); 1056 data->trans_len = params.trans_len; 1057 1058 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1059 if (IS_ERR(hdr)) { 1060 ret = PTR_ERR(hdr); 1061 goto e_free_blob; 1062 } 1063 data->hdr_address = __psp_pa(hdr); 1064 data->hdr_len = params.hdr_len; 1065 1066 data->handle = sev->handle; 1067 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); 1068 1069 kfree(hdr); 1070 1071 e_free_blob: 1072 kfree(blob); 1073 e_free: 1074 kfree(data); 1075 e_unpin_memory: 1076 /* content of memory is updated, mark pages dirty */ 1077 for (i = 0; i < n; i++) { 1078 set_page_dirty_lock(pages[i]); 1079 mark_page_accessed(pages[i]); 1080 } 1081 sev_unpin_memory(kvm, pages, n); 1082 return ret; 1083 } 1084 1085 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1086 { 1087 void __user *report = (void __user *)(uintptr_t)argp->data; 1088 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1089 struct sev_data_attestation_report *data; 1090 struct kvm_sev_attestation_report params; 1091 void __user *p; 1092 void *blob = NULL; 1093 int ret; 1094 1095 if (!sev_guest(kvm)) 1096 return -ENOTTY; 1097 1098 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1099 return -EFAULT; 1100 1101 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 1102 if (!data) 1103 return -ENOMEM; 1104 1105 /* User wants to query the blob length */ 1106 if (!params.len) 1107 goto cmd; 1108 1109 p = (void __user *)(uintptr_t)params.uaddr; 1110 if (p) { 1111 if (params.len > SEV_FW_BLOB_MAX_SIZE) { 1112 ret = -EINVAL; 1113 goto e_free; 1114 } 1115 1116 ret = -ENOMEM; 1117 blob = kmalloc(params.len, GFP_KERNEL); 1118 if (!blob) 1119 goto e_free; 1120 1121 data->address = __psp_pa(blob); 1122 data->len = params.len; 1123 memcpy(data->mnonce, params.mnonce, sizeof(params.mnonce)); 1124 } 1125 cmd: 1126 data->handle = sev->handle; 1127 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, data, &argp->error); 1128 /* 1129 * If we query the session length, FW responded with expected data. 1130 */ 1131 if (!params.len) 1132 goto done; 1133 1134 if (ret) 1135 goto e_free_blob; 1136 1137 if (blob) { 1138 if (copy_to_user(p, blob, params.len)) 1139 ret = -EFAULT; 1140 } 1141 1142 done: 1143 params.len = data->len; 1144 if (copy_to_user(report, ¶ms, sizeof(params))) 1145 ret = -EFAULT; 1146 e_free_blob: 1147 kfree(blob); 1148 e_free: 1149 kfree(data); 1150 return ret; 1151 } 1152 1153 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1154 { 1155 struct kvm_sev_cmd sev_cmd; 1156 int r; 1157 1158 if (!svm_sev_enabled() || !sev) 1159 return -ENOTTY; 1160 1161 if (!argp) 1162 return 0; 1163 1164 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1165 return -EFAULT; 1166 1167 mutex_lock(&kvm->lock); 1168 1169 switch (sev_cmd.id) { 1170 case KVM_SEV_INIT: 1171 r = sev_guest_init(kvm, &sev_cmd); 1172 break; 1173 case KVM_SEV_ES_INIT: 1174 r = sev_es_guest_init(kvm, &sev_cmd); 1175 break; 1176 case KVM_SEV_LAUNCH_START: 1177 r = sev_launch_start(kvm, &sev_cmd); 1178 break; 1179 case KVM_SEV_LAUNCH_UPDATE_DATA: 1180 r = sev_launch_update_data(kvm, &sev_cmd); 1181 break; 1182 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1183 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1184 break; 1185 case KVM_SEV_LAUNCH_MEASURE: 1186 r = sev_launch_measure(kvm, &sev_cmd); 1187 break; 1188 case KVM_SEV_LAUNCH_FINISH: 1189 r = sev_launch_finish(kvm, &sev_cmd); 1190 break; 1191 case KVM_SEV_GUEST_STATUS: 1192 r = sev_guest_status(kvm, &sev_cmd); 1193 break; 1194 case KVM_SEV_DBG_DECRYPT: 1195 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1196 break; 1197 case KVM_SEV_DBG_ENCRYPT: 1198 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1199 break; 1200 case KVM_SEV_LAUNCH_SECRET: 1201 r = sev_launch_secret(kvm, &sev_cmd); 1202 break; 1203 case KVM_SEV_GET_ATTESTATION_REPORT: 1204 r = sev_get_attestation_report(kvm, &sev_cmd); 1205 break; 1206 default: 1207 r = -EINVAL; 1208 goto out; 1209 } 1210 1211 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1212 r = -EFAULT; 1213 1214 out: 1215 mutex_unlock(&kvm->lock); 1216 return r; 1217 } 1218 1219 int svm_register_enc_region(struct kvm *kvm, 1220 struct kvm_enc_region *range) 1221 { 1222 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1223 struct enc_region *region; 1224 int ret = 0; 1225 1226 if (!sev_guest(kvm)) 1227 return -ENOTTY; 1228 1229 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1230 return -EINVAL; 1231 1232 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1233 if (!region) 1234 return -ENOMEM; 1235 1236 mutex_lock(&kvm->lock); 1237 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1238 if (IS_ERR(region->pages)) { 1239 ret = PTR_ERR(region->pages); 1240 mutex_unlock(&kvm->lock); 1241 goto e_free; 1242 } 1243 1244 region->uaddr = range->addr; 1245 region->size = range->size; 1246 1247 list_add_tail(®ion->list, &sev->regions_list); 1248 mutex_unlock(&kvm->lock); 1249 1250 /* 1251 * The guest may change the memory encryption attribute from C=0 -> C=1 1252 * or vice versa for this memory range. Lets make sure caches are 1253 * flushed to ensure that guest data gets written into memory with 1254 * correct C-bit. 1255 */ 1256 sev_clflush_pages(region->pages, region->npages); 1257 1258 return ret; 1259 1260 e_free: 1261 kfree(region); 1262 return ret; 1263 } 1264 1265 static struct enc_region * 1266 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1267 { 1268 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1269 struct list_head *head = &sev->regions_list; 1270 struct enc_region *i; 1271 1272 list_for_each_entry(i, head, list) { 1273 if (i->uaddr == range->addr && 1274 i->size == range->size) 1275 return i; 1276 } 1277 1278 return NULL; 1279 } 1280 1281 static void __unregister_enc_region_locked(struct kvm *kvm, 1282 struct enc_region *region) 1283 { 1284 sev_unpin_memory(kvm, region->pages, region->npages); 1285 list_del(®ion->list); 1286 kfree(region); 1287 } 1288 1289 int svm_unregister_enc_region(struct kvm *kvm, 1290 struct kvm_enc_region *range) 1291 { 1292 struct enc_region *region; 1293 int ret; 1294 1295 mutex_lock(&kvm->lock); 1296 1297 if (!sev_guest(kvm)) { 1298 ret = -ENOTTY; 1299 goto failed; 1300 } 1301 1302 region = find_enc_region(kvm, range); 1303 if (!region) { 1304 ret = -EINVAL; 1305 goto failed; 1306 } 1307 1308 /* 1309 * Ensure that all guest tagged cache entries are flushed before 1310 * releasing the pages back to the system for use. CLFLUSH will 1311 * not do this, so issue a WBINVD. 1312 */ 1313 wbinvd_on_all_cpus(); 1314 1315 __unregister_enc_region_locked(kvm, region); 1316 1317 mutex_unlock(&kvm->lock); 1318 return 0; 1319 1320 failed: 1321 mutex_unlock(&kvm->lock); 1322 return ret; 1323 } 1324 1325 void sev_vm_destroy(struct kvm *kvm) 1326 { 1327 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1328 struct list_head *head = &sev->regions_list; 1329 struct list_head *pos, *q; 1330 1331 if (!sev_guest(kvm)) 1332 return; 1333 1334 mutex_lock(&kvm->lock); 1335 1336 /* 1337 * Ensure that all guest tagged cache entries are flushed before 1338 * releasing the pages back to the system for use. CLFLUSH will 1339 * not do this, so issue a WBINVD. 1340 */ 1341 wbinvd_on_all_cpus(); 1342 1343 /* 1344 * if userspace was terminated before unregistering the memory regions 1345 * then lets unpin all the registered memory. 1346 */ 1347 if (!list_empty(head)) { 1348 list_for_each_safe(pos, q, head) { 1349 __unregister_enc_region_locked(kvm, 1350 list_entry(pos, struct enc_region, list)); 1351 cond_resched(); 1352 } 1353 } 1354 1355 mutex_unlock(&kvm->lock); 1356 1357 sev_unbind_asid(kvm, sev->handle); 1358 sev_asid_free(sev); 1359 } 1360 1361 void __init sev_hardware_setup(void) 1362 { 1363 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 1364 bool sev_es_supported = false; 1365 bool sev_supported = false; 1366 1367 /* Does the CPU support SEV? */ 1368 if (!boot_cpu_has(X86_FEATURE_SEV)) 1369 goto out; 1370 1371 /* Retrieve SEV CPUID information */ 1372 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1373 1374 /* Set encryption bit location for SEV-ES guests */ 1375 sev_enc_bit = ebx & 0x3f; 1376 1377 /* Maximum number of encrypted guests supported simultaneously */ 1378 max_sev_asid = ecx; 1379 1380 if (!svm_sev_enabled()) 1381 goto out; 1382 1383 /* Minimum ASID value that should be used for SEV guest */ 1384 min_sev_asid = edx; 1385 1386 /* Initialize SEV ASID bitmaps */ 1387 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1388 if (!sev_asid_bitmap) 1389 goto out; 1390 1391 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1392 if (!sev_reclaim_asid_bitmap) 1393 goto out; 1394 1395 sev_asid_count = max_sev_asid - min_sev_asid + 1; 1396 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 1397 goto out; 1398 1399 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 1400 sev_supported = true; 1401 1402 /* SEV-ES support requested? */ 1403 if (!sev_es) 1404 goto out; 1405 1406 /* Does the CPU support SEV-ES? */ 1407 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1408 goto out; 1409 1410 /* Has the system been allocated ASIDs for SEV-ES? */ 1411 if (min_sev_asid == 1) 1412 goto out; 1413 1414 sev_es_asid_count = min_sev_asid - 1; 1415 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 1416 goto out; 1417 1418 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 1419 sev_es_supported = true; 1420 1421 out: 1422 sev = sev_supported; 1423 sev_es = sev_es_supported; 1424 } 1425 1426 void sev_hardware_teardown(void) 1427 { 1428 if (!svm_sev_enabled()) 1429 return; 1430 1431 bitmap_free(sev_asid_bitmap); 1432 bitmap_free(sev_reclaim_asid_bitmap); 1433 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 1434 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 1435 1436 sev_flush_asids(); 1437 } 1438 1439 /* 1440 * Pages used by hardware to hold guest encrypted state must be flushed before 1441 * returning them to the system. 1442 */ 1443 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1444 unsigned long len) 1445 { 1446 /* 1447 * If hardware enforced cache coherency for encrypted mappings of the 1448 * same physical page is supported, nothing to do. 1449 */ 1450 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1451 return; 1452 1453 /* 1454 * If the VM Page Flush MSR is supported, use it to flush the page 1455 * (using the page virtual address and the guest ASID). 1456 */ 1457 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1458 struct kvm_sev_info *sev; 1459 unsigned long va_start; 1460 u64 start, stop; 1461 1462 /* Align start and stop to page boundaries. */ 1463 va_start = (unsigned long)va; 1464 start = (u64)va_start & PAGE_MASK; 1465 stop = PAGE_ALIGN((u64)va_start + len); 1466 1467 if (start < stop) { 1468 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1469 1470 while (start < stop) { 1471 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 1472 start | sev->asid); 1473 1474 start += PAGE_SIZE; 1475 } 1476 1477 return; 1478 } 1479 1480 WARN(1, "Address overflow, using WBINVD\n"); 1481 } 1482 1483 /* 1484 * Hardware should always have one of the above features, 1485 * but if not, use WBINVD and issue a warning. 1486 */ 1487 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 1488 wbinvd_on_all_cpus(); 1489 } 1490 1491 void sev_free_vcpu(struct kvm_vcpu *vcpu) 1492 { 1493 struct vcpu_svm *svm; 1494 1495 if (!sev_es_guest(vcpu->kvm)) 1496 return; 1497 1498 svm = to_svm(vcpu); 1499 1500 if (vcpu->arch.guest_state_protected) 1501 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 1502 __free_page(virt_to_page(svm->vmsa)); 1503 1504 if (svm->ghcb_sa_free) 1505 kfree(svm->ghcb_sa); 1506 } 1507 1508 static void dump_ghcb(struct vcpu_svm *svm) 1509 { 1510 struct ghcb *ghcb = svm->ghcb; 1511 unsigned int nbits; 1512 1513 /* Re-use the dump_invalid_vmcb module parameter */ 1514 if (!dump_invalid_vmcb) { 1515 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 1516 return; 1517 } 1518 1519 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 1520 1521 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 1522 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 1523 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 1524 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 1525 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 1526 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 1527 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 1528 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 1529 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 1530 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 1531 } 1532 1533 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 1534 { 1535 struct kvm_vcpu *vcpu = &svm->vcpu; 1536 struct ghcb *ghcb = svm->ghcb; 1537 1538 /* 1539 * The GHCB protocol so far allows for the following data 1540 * to be returned: 1541 * GPRs RAX, RBX, RCX, RDX 1542 * 1543 * Copy their values, even if they may not have been written during the 1544 * VM-Exit. It's the guest's responsibility to not consume random data. 1545 */ 1546 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 1547 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 1548 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 1549 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 1550 } 1551 1552 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 1553 { 1554 struct vmcb_control_area *control = &svm->vmcb->control; 1555 struct kvm_vcpu *vcpu = &svm->vcpu; 1556 struct ghcb *ghcb = svm->ghcb; 1557 u64 exit_code; 1558 1559 /* 1560 * The GHCB protocol so far allows for the following data 1561 * to be supplied: 1562 * GPRs RAX, RBX, RCX, RDX 1563 * XCR0 1564 * CPL 1565 * 1566 * VMMCALL allows the guest to provide extra registers. KVM also 1567 * expects RSI for hypercalls, so include that, too. 1568 * 1569 * Copy their values to the appropriate location if supplied. 1570 */ 1571 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 1572 1573 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 1574 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 1575 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 1576 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 1577 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 1578 1579 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 1580 1581 if (ghcb_xcr0_is_valid(ghcb)) { 1582 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 1583 kvm_update_cpuid_runtime(vcpu); 1584 } 1585 1586 /* Copy the GHCB exit information into the VMCB fields */ 1587 exit_code = ghcb_get_sw_exit_code(ghcb); 1588 control->exit_code = lower_32_bits(exit_code); 1589 control->exit_code_hi = upper_32_bits(exit_code); 1590 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 1591 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 1592 1593 /* Clear the valid entries fields */ 1594 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 1595 } 1596 1597 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 1598 { 1599 struct kvm_vcpu *vcpu; 1600 struct ghcb *ghcb; 1601 u64 exit_code = 0; 1602 1603 ghcb = svm->ghcb; 1604 1605 /* Only GHCB Usage code 0 is supported */ 1606 if (ghcb->ghcb_usage) 1607 goto vmgexit_err; 1608 1609 /* 1610 * Retrieve the exit code now even though is may not be marked valid 1611 * as it could help with debugging. 1612 */ 1613 exit_code = ghcb_get_sw_exit_code(ghcb); 1614 1615 if (!ghcb_sw_exit_code_is_valid(ghcb) || 1616 !ghcb_sw_exit_info_1_is_valid(ghcb) || 1617 !ghcb_sw_exit_info_2_is_valid(ghcb)) 1618 goto vmgexit_err; 1619 1620 switch (ghcb_get_sw_exit_code(ghcb)) { 1621 case SVM_EXIT_READ_DR7: 1622 break; 1623 case SVM_EXIT_WRITE_DR7: 1624 if (!ghcb_rax_is_valid(ghcb)) 1625 goto vmgexit_err; 1626 break; 1627 case SVM_EXIT_RDTSC: 1628 break; 1629 case SVM_EXIT_RDPMC: 1630 if (!ghcb_rcx_is_valid(ghcb)) 1631 goto vmgexit_err; 1632 break; 1633 case SVM_EXIT_CPUID: 1634 if (!ghcb_rax_is_valid(ghcb) || 1635 !ghcb_rcx_is_valid(ghcb)) 1636 goto vmgexit_err; 1637 if (ghcb_get_rax(ghcb) == 0xd) 1638 if (!ghcb_xcr0_is_valid(ghcb)) 1639 goto vmgexit_err; 1640 break; 1641 case SVM_EXIT_INVD: 1642 break; 1643 case SVM_EXIT_IOIO: 1644 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 1645 if (!ghcb_sw_scratch_is_valid(ghcb)) 1646 goto vmgexit_err; 1647 } else { 1648 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 1649 if (!ghcb_rax_is_valid(ghcb)) 1650 goto vmgexit_err; 1651 } 1652 break; 1653 case SVM_EXIT_MSR: 1654 if (!ghcb_rcx_is_valid(ghcb)) 1655 goto vmgexit_err; 1656 if (ghcb_get_sw_exit_info_1(ghcb)) { 1657 if (!ghcb_rax_is_valid(ghcb) || 1658 !ghcb_rdx_is_valid(ghcb)) 1659 goto vmgexit_err; 1660 } 1661 break; 1662 case SVM_EXIT_VMMCALL: 1663 if (!ghcb_rax_is_valid(ghcb) || 1664 !ghcb_cpl_is_valid(ghcb)) 1665 goto vmgexit_err; 1666 break; 1667 case SVM_EXIT_RDTSCP: 1668 break; 1669 case SVM_EXIT_WBINVD: 1670 break; 1671 case SVM_EXIT_MONITOR: 1672 if (!ghcb_rax_is_valid(ghcb) || 1673 !ghcb_rcx_is_valid(ghcb) || 1674 !ghcb_rdx_is_valid(ghcb)) 1675 goto vmgexit_err; 1676 break; 1677 case SVM_EXIT_MWAIT: 1678 if (!ghcb_rax_is_valid(ghcb) || 1679 !ghcb_rcx_is_valid(ghcb)) 1680 goto vmgexit_err; 1681 break; 1682 case SVM_VMGEXIT_MMIO_READ: 1683 case SVM_VMGEXIT_MMIO_WRITE: 1684 if (!ghcb_sw_scratch_is_valid(ghcb)) 1685 goto vmgexit_err; 1686 break; 1687 case SVM_VMGEXIT_NMI_COMPLETE: 1688 case SVM_VMGEXIT_AP_HLT_LOOP: 1689 case SVM_VMGEXIT_AP_JUMP_TABLE: 1690 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 1691 break; 1692 default: 1693 goto vmgexit_err; 1694 } 1695 1696 return 0; 1697 1698 vmgexit_err: 1699 vcpu = &svm->vcpu; 1700 1701 if (ghcb->ghcb_usage) { 1702 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 1703 ghcb->ghcb_usage); 1704 } else { 1705 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 1706 exit_code); 1707 dump_ghcb(svm); 1708 } 1709 1710 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1711 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 1712 vcpu->run->internal.ndata = 2; 1713 vcpu->run->internal.data[0] = exit_code; 1714 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 1715 1716 return -EINVAL; 1717 } 1718 1719 static void pre_sev_es_run(struct vcpu_svm *svm) 1720 { 1721 if (!svm->ghcb) 1722 return; 1723 1724 if (svm->ghcb_sa_free) { 1725 /* 1726 * The scratch area lives outside the GHCB, so there is a 1727 * buffer that, depending on the operation performed, may 1728 * need to be synced, then freed. 1729 */ 1730 if (svm->ghcb_sa_sync) { 1731 kvm_write_guest(svm->vcpu.kvm, 1732 ghcb_get_sw_scratch(svm->ghcb), 1733 svm->ghcb_sa, svm->ghcb_sa_len); 1734 svm->ghcb_sa_sync = false; 1735 } 1736 1737 kfree(svm->ghcb_sa); 1738 svm->ghcb_sa = NULL; 1739 svm->ghcb_sa_free = false; 1740 } 1741 1742 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 1743 1744 sev_es_sync_to_ghcb(svm); 1745 1746 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 1747 svm->ghcb = NULL; 1748 } 1749 1750 void pre_sev_run(struct vcpu_svm *svm, int cpu) 1751 { 1752 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1753 int asid = sev_get_asid(svm->vcpu.kvm); 1754 1755 /* Perform any SEV-ES pre-run actions */ 1756 pre_sev_es_run(svm); 1757 1758 /* Assign the asid allocated with this SEV guest */ 1759 svm->asid = asid; 1760 1761 /* 1762 * Flush guest TLB: 1763 * 1764 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 1765 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 1766 */ 1767 if (sd->sev_vmcbs[asid] == svm->vmcb && 1768 svm->vcpu.arch.last_vmentry_cpu == cpu) 1769 return; 1770 1771 sd->sev_vmcbs[asid] = svm->vmcb; 1772 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 1773 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1774 } 1775 1776 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 1777 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 1778 { 1779 struct vmcb_control_area *control = &svm->vmcb->control; 1780 struct ghcb *ghcb = svm->ghcb; 1781 u64 ghcb_scratch_beg, ghcb_scratch_end; 1782 u64 scratch_gpa_beg, scratch_gpa_end; 1783 void *scratch_va; 1784 1785 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 1786 if (!scratch_gpa_beg) { 1787 pr_err("vmgexit: scratch gpa not provided\n"); 1788 return false; 1789 } 1790 1791 scratch_gpa_end = scratch_gpa_beg + len; 1792 if (scratch_gpa_end < scratch_gpa_beg) { 1793 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 1794 len, scratch_gpa_beg); 1795 return false; 1796 } 1797 1798 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 1799 /* Scratch area begins within GHCB */ 1800 ghcb_scratch_beg = control->ghcb_gpa + 1801 offsetof(struct ghcb, shared_buffer); 1802 ghcb_scratch_end = control->ghcb_gpa + 1803 offsetof(struct ghcb, reserved_1); 1804 1805 /* 1806 * If the scratch area begins within the GHCB, it must be 1807 * completely contained in the GHCB shared buffer area. 1808 */ 1809 if (scratch_gpa_beg < ghcb_scratch_beg || 1810 scratch_gpa_end > ghcb_scratch_end) { 1811 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 1812 scratch_gpa_beg, scratch_gpa_end); 1813 return false; 1814 } 1815 1816 scratch_va = (void *)svm->ghcb; 1817 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 1818 } else { 1819 /* 1820 * The guest memory must be read into a kernel buffer, so 1821 * limit the size 1822 */ 1823 if (len > GHCB_SCRATCH_AREA_LIMIT) { 1824 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 1825 len, GHCB_SCRATCH_AREA_LIMIT); 1826 return false; 1827 } 1828 scratch_va = kzalloc(len, GFP_KERNEL); 1829 if (!scratch_va) 1830 return false; 1831 1832 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 1833 /* Unable to copy scratch area from guest */ 1834 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 1835 1836 kfree(scratch_va); 1837 return false; 1838 } 1839 1840 /* 1841 * The scratch area is outside the GHCB. The operation will 1842 * dictate whether the buffer needs to be synced before running 1843 * the vCPU next time (i.e. a read was requested so the data 1844 * must be written back to the guest memory). 1845 */ 1846 svm->ghcb_sa_sync = sync; 1847 svm->ghcb_sa_free = true; 1848 } 1849 1850 svm->ghcb_sa = scratch_va; 1851 svm->ghcb_sa_len = len; 1852 1853 return true; 1854 } 1855 1856 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 1857 unsigned int pos) 1858 { 1859 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 1860 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 1861 } 1862 1863 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 1864 { 1865 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 1866 } 1867 1868 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 1869 { 1870 svm->vmcb->control.ghcb_gpa = value; 1871 } 1872 1873 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 1874 { 1875 struct vmcb_control_area *control = &svm->vmcb->control; 1876 struct kvm_vcpu *vcpu = &svm->vcpu; 1877 u64 ghcb_info; 1878 int ret = 1; 1879 1880 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 1881 1882 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 1883 control->ghcb_gpa); 1884 1885 switch (ghcb_info) { 1886 case GHCB_MSR_SEV_INFO_REQ: 1887 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 1888 GHCB_VERSION_MIN, 1889 sev_enc_bit)); 1890 break; 1891 case GHCB_MSR_CPUID_REQ: { 1892 u64 cpuid_fn, cpuid_reg, cpuid_value; 1893 1894 cpuid_fn = get_ghcb_msr_bits(svm, 1895 GHCB_MSR_CPUID_FUNC_MASK, 1896 GHCB_MSR_CPUID_FUNC_POS); 1897 1898 /* Initialize the registers needed by the CPUID intercept */ 1899 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 1900 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 1901 1902 ret = svm_invoke_exit_handler(svm, SVM_EXIT_CPUID); 1903 if (!ret) { 1904 ret = -EINVAL; 1905 break; 1906 } 1907 1908 cpuid_reg = get_ghcb_msr_bits(svm, 1909 GHCB_MSR_CPUID_REG_MASK, 1910 GHCB_MSR_CPUID_REG_POS); 1911 if (cpuid_reg == 0) 1912 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 1913 else if (cpuid_reg == 1) 1914 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 1915 else if (cpuid_reg == 2) 1916 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 1917 else 1918 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 1919 1920 set_ghcb_msr_bits(svm, cpuid_value, 1921 GHCB_MSR_CPUID_VALUE_MASK, 1922 GHCB_MSR_CPUID_VALUE_POS); 1923 1924 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 1925 GHCB_MSR_INFO_MASK, 1926 GHCB_MSR_INFO_POS); 1927 break; 1928 } 1929 case GHCB_MSR_TERM_REQ: { 1930 u64 reason_set, reason_code; 1931 1932 reason_set = get_ghcb_msr_bits(svm, 1933 GHCB_MSR_TERM_REASON_SET_MASK, 1934 GHCB_MSR_TERM_REASON_SET_POS); 1935 reason_code = get_ghcb_msr_bits(svm, 1936 GHCB_MSR_TERM_REASON_MASK, 1937 GHCB_MSR_TERM_REASON_POS); 1938 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 1939 reason_set, reason_code); 1940 fallthrough; 1941 } 1942 default: 1943 ret = -EINVAL; 1944 } 1945 1946 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 1947 control->ghcb_gpa, ret); 1948 1949 return ret; 1950 } 1951 1952 int sev_handle_vmgexit(struct vcpu_svm *svm) 1953 { 1954 struct vmcb_control_area *control = &svm->vmcb->control; 1955 u64 ghcb_gpa, exit_code; 1956 struct ghcb *ghcb; 1957 int ret; 1958 1959 /* Validate the GHCB */ 1960 ghcb_gpa = control->ghcb_gpa; 1961 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 1962 return sev_handle_vmgexit_msr_protocol(svm); 1963 1964 if (!ghcb_gpa) { 1965 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB gpa is not set\n"); 1966 return -EINVAL; 1967 } 1968 1969 if (kvm_vcpu_map(&svm->vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 1970 /* Unable to map GHCB from guest */ 1971 vcpu_unimpl(&svm->vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 1972 ghcb_gpa); 1973 return -EINVAL; 1974 } 1975 1976 svm->ghcb = svm->ghcb_map.hva; 1977 ghcb = svm->ghcb_map.hva; 1978 1979 trace_kvm_vmgexit_enter(svm->vcpu.vcpu_id, ghcb); 1980 1981 exit_code = ghcb_get_sw_exit_code(ghcb); 1982 1983 ret = sev_es_validate_vmgexit(svm); 1984 if (ret) 1985 return ret; 1986 1987 sev_es_sync_from_ghcb(svm); 1988 ghcb_set_sw_exit_info_1(ghcb, 0); 1989 ghcb_set_sw_exit_info_2(ghcb, 0); 1990 1991 ret = -EINVAL; 1992 switch (exit_code) { 1993 case SVM_VMGEXIT_MMIO_READ: 1994 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 1995 break; 1996 1997 ret = kvm_sev_es_mmio_read(&svm->vcpu, 1998 control->exit_info_1, 1999 control->exit_info_2, 2000 svm->ghcb_sa); 2001 break; 2002 case SVM_VMGEXIT_MMIO_WRITE: 2003 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2004 break; 2005 2006 ret = kvm_sev_es_mmio_write(&svm->vcpu, 2007 control->exit_info_1, 2008 control->exit_info_2, 2009 svm->ghcb_sa); 2010 break; 2011 case SVM_VMGEXIT_NMI_COMPLETE: 2012 ret = svm_invoke_exit_handler(svm, SVM_EXIT_IRET); 2013 break; 2014 case SVM_VMGEXIT_AP_HLT_LOOP: 2015 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 2016 break; 2017 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2018 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 2019 2020 switch (control->exit_info_1) { 2021 case 0: 2022 /* Set AP jump table address */ 2023 sev->ap_jump_table = control->exit_info_2; 2024 break; 2025 case 1: 2026 /* Get AP jump table address */ 2027 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2028 break; 2029 default: 2030 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2031 control->exit_info_1); 2032 ghcb_set_sw_exit_info_1(ghcb, 1); 2033 ghcb_set_sw_exit_info_2(ghcb, 2034 X86_TRAP_UD | 2035 SVM_EVTINJ_TYPE_EXEPT | 2036 SVM_EVTINJ_VALID); 2037 } 2038 2039 ret = 1; 2040 break; 2041 } 2042 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2043 vcpu_unimpl(&svm->vcpu, 2044 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2045 control->exit_info_1, control->exit_info_2); 2046 break; 2047 default: 2048 ret = svm_invoke_exit_handler(svm, exit_code); 2049 } 2050 2051 return ret; 2052 } 2053 2054 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2055 { 2056 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2057 return -EINVAL; 2058 2059 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2060 svm->ghcb_sa, svm->ghcb_sa_len, in); 2061 } 2062 2063 void sev_es_init_vmcb(struct vcpu_svm *svm) 2064 { 2065 struct kvm_vcpu *vcpu = &svm->vcpu; 2066 2067 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2068 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2069 2070 /* 2071 * An SEV-ES guest requires a VMSA area that is a separate from the 2072 * VMCB page. Do not include the encryption mask on the VMSA physical 2073 * address since hardware will access it using the guest key. 2074 */ 2075 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2076 2077 /* Can't intercept CR register access, HV can't modify CR registers */ 2078 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2079 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2080 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2081 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2082 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2083 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2084 2085 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2086 2087 /* Track EFER/CR register changes */ 2088 svm_set_intercept(svm, TRAP_EFER_WRITE); 2089 svm_set_intercept(svm, TRAP_CR0_WRITE); 2090 svm_set_intercept(svm, TRAP_CR4_WRITE); 2091 svm_set_intercept(svm, TRAP_CR8_WRITE); 2092 2093 /* No support for enable_vmware_backdoor */ 2094 clr_exception_intercept(svm, GP_VECTOR); 2095 2096 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2097 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2098 2099 /* Clear intercepts on selected MSRs */ 2100 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2101 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2102 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2103 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2104 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2105 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2106 } 2107 2108 void sev_es_create_vcpu(struct vcpu_svm *svm) 2109 { 2110 /* 2111 * Set the GHCB MSR value as per the GHCB specification when creating 2112 * a vCPU for an SEV-ES guest. 2113 */ 2114 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2115 GHCB_VERSION_MIN, 2116 sev_enc_bit)); 2117 } 2118 2119 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2120 { 2121 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2122 struct vmcb_save_area *hostsa; 2123 2124 /* 2125 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2126 * of which one step is to perform a VMLOAD. Since hardware does not 2127 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2128 */ 2129 vmsave(__sme_page_pa(sd->save_area)); 2130 2131 /* XCR0 is restored on VMEXIT, save the current host value */ 2132 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2133 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2134 2135 /* PKRU is restored on VMEXIT, save the current host value */ 2136 hostsa->pkru = read_pkru(); 2137 2138 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2139 hostsa->xss = host_xss; 2140 } 2141 2142 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2143 { 2144 struct vcpu_svm *svm = to_svm(vcpu); 2145 2146 /* First SIPI: Use the values as initially set by the VMM */ 2147 if (!svm->received_first_sipi) { 2148 svm->received_first_sipi = true; 2149 return; 2150 } 2151 2152 /* 2153 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2154 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2155 * non-zero value. 2156 */ 2157 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2158 } 2159